

Docker for
Developers

Develop and run your application with Docker
containers using DevOps tools for continuous delivery

Richard Bullington-McGuire

Andrew K. Dennis

Michael Schwartz

BIRMINGHAM—MUMBAI

Docker for Developers
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Commissioning Editor: Vijin Boricha

Acquisition Editor: Rohit Rajkumar

Senior Editor: Arun Nadar

Content Development Editor: Romy Dias

Technical Editor: Sarvesh Jayant

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello

Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Production Designer: Nilesh Mohite

First published: August 2020

Production reference: 1140820

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-605-8

www.packt.com

http://www.packt.com

To the doctors, nurses, public health officials, and first responders who are
protecting us from COVID-19.

– Richard Bullington-McGuire

To my wife, Megen, for her support over the past few months.

– Andrew K. Dennis

To all the people I've known over the years who've made me a better
engineer and person.

– Michael Schwartz

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the authors
Richard Bullington-McGuire is a software architect and DevOps practitioner with more
than 28 years of professional experience in information technology. He has operated
internet services continuously since 1995 when he established The Obscure Organization.
He has used Docker to build, deploy, and run applications in production, including
operating the Freezing Saddles winter cycling event since 2018. Richard is a member of
the IEEE and the ACM. He holds 6 AWS certifications, including all of the Foundational,
Associate, and Professional level certifications. He works at Modus Create, Inc. as director
of engineering. You can find him on Twitter and GitHub at @obscurerichard. Richard
lives in Arlington, VA, with his wife and four children.

I want to thank my wonderful wife, Patricia, and my children, for giving
me the space and support I've needed to write this book, even while the

COVID-19 global pandemic was raging around us. I'd also like to thank Jay
Garcia for suggesting that I join this effort. The whole Packt editing team

has helped this first-time book author immensely, but I'd like to give special
thanks to Romy Dias who edited most of my work.

Andrew K. Dennis is a full stack and cybersecurity architect with over 17 years'
experience who currently works for Modus Create in Reston, VA. He holds two
undergraduate degrees in software engineering and creative computing and a master's
degree in information security. Andy has worked in the US, Canada, and the UK in
software engineering, e-learning, data science, and cybersecurity across his career, and
has written four books on IoT, the Raspberry Pi, and supercomputing. His interests range
from the application of pataphysics in computing to security threat modeling. Andy lives
in New England and is an organizer of Security BSides CT.

I want to thank my wife, Megen, for her support during the writing of
this book; the other authors for their collaboration and hard work; Modus
Create for aiding me: and the other authors as well for helping to initiate
the project; my parents for all their support over the years as my career
in technology grew; and finally, a thank you to the Packt team for their

edits and insights.

Michael Schwartz is a full stack software engineer, architect, and embedded engineer for
Modus Create, with over 45 years' experience as a professional. He founded one of the
first public ISPs in the SF Bay Area, Best Internet Communications, and an early internet
advertising agency, MediaPlex. He was one of the early developers of video games, including
the upright coin-operated machines and consoles. His most recent project is RoboDomo,
a home automation system built around Node.js, Docker containers, MQTT, and React.js.
Originally from Chicago, IL, Mike resides in the Palm Springs area of California.

I want to thank Jesus Garcia and Pat Sheridan for throwing the support
of Modus Create behind this book project. I'd also like to thank my

co-authors, Andy and Richard, who've made this the definitive book
on Docker at this time.

About the reviewer
Sreenivas Makam is a customer engineer and application modernization specialist at
Google Cloud, Bangalore. He has a master's in electrical engineering and around 20
years' experience in the public/private cloud and networking industry. Prior to Google,
Sreenivas worked at Cisco Systems and a few start-ups. His interests include hybrid
cloud technologies, SDN, and DevOps. He also likes to try out and follow open source
projects in these areas. Sreenivas was also a Docker captain for 2 years, promoting Docker
technologies. He is pretty active in cloud technology forums and meetup groups. He can
be reached on Twitter at @srmakam.

I would like to thank my family for giving me extra time during the
weekend to do the book reviews. Thanks to my daughters, Sasha and

Masha, for keeping me energetic.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents
Preface

Section 1: An Introduction to
Docker – Containers and Local Development

1
Introduction to Docker

The drivers for Docker 4
Co-located hosting 5
Self-hosting 6
Data centers 6

Using virtualization to
economize resource usage 8

Addressing the increasing
power requirements 10
Using containers to further
optimize data center resources 13
Summary 15
Further reading 16

2
Using VirtualBox and Docker Containers for Development

Technical requirements 18
Host filesystem pollution
problem 18
Using VirtualBox for virtual
machines 19
Introduction to virtualization 19
Creating a virtual machine 19
Guest additions 22
Installing VirtualBox 22

Using Docker containers 23
Introduction to containers 24
Using Docker for development 26

Getting started with Docker 27
Automating Docker commands via sh
scripts 28

Summary 41
Further reading 42

ii Table of Contents

3
Sharing Containers Using Docker Hub

Technical requirements 44
Introducing Docker Hub 44
Interacting with Docker Hub from the
command line 45
Using the Docker Hub website 46

Implementing a MongoDB
container for our application 48
Running a shell within a container 52

Introducing the microservices

architecture 56
Scalability 56
Inter-container communication 57

Implementing a sample
microservices application 60
Sharing your containers on
Docker Hub 65
Summary 69
Further reading 70

4
Composing Systems Using Containers

Technical requirements 72
Introduction to Docker Compose 73
The problem with .sh scripts 73
Docker Compose configuration files 74
Inheritance using multiple
configuration files 78
The depends_on option 79
Adding port bindings using overrides 82

Using Docker local networking 85
Networking using .sh scripts 85
Networking with Docker Compose 88

Binding a host filesystem within
containers 89
Optimizing our container size 90
Using the build.sh script 93

Other composition tools 94
Docker Swarm 94
Kubernetes 95
Packer 95

Summary 95
Further reading 96

Section 2: Running Docker in Production

Table of Contents iii

5
Alternatives for Deploying and Running Containers in
Production

Technical requirements 100
Example application – ShipIt
Clicker 101
Running Docker in
production – many paths,
choose wisely 101
What is the minimum realistic
production environment? 102
Bare minimum – run Docker and
Docker Compose on one host 102
Docker support 103
Problems with single-host deployment 103

Managed cloud services 103
Google Kubernetes Engine 104
AWS Elastic Beanstalk 105

AWS ECS and Fargate 105
AWS EKS 105
Microsoft Azure Kubernetes Service 106
Digital Ocean Docker Swarm 106

Running your own Kubernetes
cluster – from bare metal to
OpenStack 107
Deciding on the right Docker
production setup 108
Exercise – join the ShipIt Clicker team 110
Exercise – choosing from reasonable
deployment alternatives 115
Exercise – Dockerfile and docker-
compose.yml evaluation 116

Summary 116

6
Deploying Applications with Docker Compose

Technical requirements 118
Example application – ShipIt Clicker v2 118

Selecting a host and operating
system for single-host
deployment 119
Requirements for single-host
deployment 119

Preparing the host for Docker
and Docker Compose 120
Using operating system packages to
install Docker and Git 120

Deploying using configuration
files and support scripts 122

Re-examining the initial Dockerfile 122
Re-examining the initial
docker-compose.yml file 124
Preparing the production .env file 127
Supporting scripts 129
Exercise – keeping builds off the
production server 132
Exercise – planning to secure the
production site 133

Monitoring small deployments
– logging and alerting 134
Limitations of single-host
deployment 135
No automatic failover 136

iv Table of Contents

Inability to scale horizontally to accept
more load 136
Tracking down unstable behavior
based on incorrect host tuning 136
Loss of single host could be disastrous
– backups are essential 137

Case study – migrating from CoreOS
and Digital Ocean to CentOS 7 and AWS 138

Summary 138
Further reading 139

7
Continuous Deployment with Jenkins

Technical requirements 142
Example application – ShipIt Clicker v3 143

Using Jenkins to facilitate
continuous deployment 143
Avoid these traps 143
Using an existing Jenkins server 144
Setting up a new Jenkins server 145
How Jenkins can support continuous
deployment 149

The Jenkinsfile and host
connectivity 149
Testing Jenkins and Docker with a
pipeline script 150

Driving configuration changes
through Jenkins 156
Using Git and GitHub to store your
Jenkinsfile 156
Changing the origin of all checked out
repositories 159
Creating Jenkins environment

variables for production support 160
Building Docker containers and
pushing them to Docker Hub 161
Pushing to Docker Hub and triggering
a production deployment 162

Deploying to multiple
environments through
multiple branches 165
Creating a staging environment 166
Creating Jenkins environment
variables for staging support 166
Deploying by force-pushing to the
staging branch 167

Complexity and limits to scaling
deployments through Jenkins 169
Managing multiple hosts 170
The complexity of build scripts 170
How do you know when you have hit
the limit? 171

Summary 171
Further reading 172

8
Deploying Docker Apps to Kubernetes

Technical requirements 174
Options for Kubernetes local
installation 175

Minikube 176
Verifying that your Kubernetes
installation works 176

Table of Contents v

Deploying a sample application
– ShipIt Clicker v4 177
Deploying the NGINX Ingress
Controller and ShipIt Clicker locally 178

Choosing a Kubernetes
distribution 180
Google Kubernetes Engine 180
AWS EKS 180
Microsoft Azure Kubernetes Service 182
Reviewing other relevant options 182
Objects 184
ConfigMaps 184
Pods 185
Nodes 186
Services 186
Ingress Controllers 187
Secrets 189
Namespaces 195

Spinning up AWS EKS with
CloudFormation 195

Introducing the AWS EKS Quick Start
CloudFormation templates 196
Preparing an AWS account 196
Launching the AWS EKS Quick Start
CloudFormation templates 201
Configuring the EKS cluster 205

Deploying an application with
resource limits to Kubernetes
on AWS EKS 206
Annotating ShipIt Clicker to use the
ALB Ingress Controller 208

Using AWS Elastic Container
Registry with AWS EKS 209
Creating an ECR repository 210
Local example – labeled environments
in the default namespace 212
Staged environments – Dev, QA,
staging, and production 214

Summary 214

9
Cloud-Native Continuous Deployment Using Spinnaker

Technical requirements 218
Improving your setup for
Kubernetes application
maintenance 219
Managing the EKS cluster from your
local workstation 219
Troubleshooting kubectl connection
failures 220
Switching between local and cluster
contexts 221
Verifying that you have a working ALB
Ingress Controller 222
Preparing a Route 53 domain and
certificate 223
Building and deploying ShipIt Clicker v5 224

Spinnaker – when and why you
might need more sophisticated
deployments 227
Introduction to Spinnaker 228

Setting up Spinnaker in an AWS
EKS cluster using Helm 229
Connecting to Spinnaker through the
kubectl proxy 231
Exposing Spinnaker via ALB Ingress
Controllers 231
Configuring Spinnaker using Halyard 233
Connecting Spinnaker to Jenkins 233
Setting up Jenkins to integrate with
both Spinnaker and ECR 235

vi Table of Contents

Connecting Spinnaker to GitHub 240
Connecting Spinnaker to Docker Hub 240
Troubleshooting Spinnaker issues 241

Deploying ShipIt Clicker with a
simple deployment strategy in
Spinnaker 242
Adding a Spinnaker application 243
Adding a Spinnaker pipeline 244
Setting up a DNS entry for the
Ingress Controller 250

Surveying Spinnaker's
deployment and testing
features 250
Canary deployments 250
Red/black deployments 251
Rolling back 252
Testing with Spinnaker 252

Summary 252
Further reading 253

10
Monitoring Docker Using Prometheus, Grafana, and Jaeger

Technical requirements 256
Setting up a demo application – ShipIt
Clicker v7 256

Docker logging and container
runtime logging 260
Understanding Kubernetes
container logging 261
Ideal characteristics for a log
management system 261
Troubleshooting Kubernetes control
plane issues with logs 262
Storing logs with CloudWatch Logs 264
Storing logs for the long term with
AWS S3 265
Analyzing logs stored in S3 with
AWS Athena 266

Using the liveness, readiness,
and startup probes in
Kubernetes 267
Using a liveness probe to see whether
a container can respond 268
Changing ShipIt Clicker to
support separate liveness
and readiness probes 269

Exercise – forcing ShipIt Clicker to fail
the readiness check 270

Gathering metrics and sending
alerts with Prometheus 271
Prometheus' history 271
Exploring Prometheus through its
query and graph web interface 272
Adding Prometheus metrics to
an application 273
Querying Prometheus for a
custom metric 275
Configuring Prometheus alerts 276
Sending notifications with the
Prometheus Alertmanager 278
Exploring Prometheus queries and
external monitoring in-depth 281

Visualizing operational data
with Grafana 281
Gaining access to Grafana 281
Adding a community-provided
dashboard 282
Adding a new dashboard with a
custom query 283

Table of Contents vii

Application performance
monitoring with Jaeger 285
Understanding the OpenTracing API 285
Introduction to Jaeger 286

Exploring the Jaeger client with ShipIt
Clicker 288
Installing the Jaeger Operator 293

Summary 294
Further reading 295

11
Scaling and Load Testing Docker Applications

Technical requirements 298
Using the updated ShipIt Clicker v8 299

Scaling your Kubernetes cluster 301
Scaling the cluster manually 302
Scaling the cluster dynamically
(autoscaling) 304

What is Envoy, and why might
I need it? 310
Network traffic management with an
Envoy service mesh 311

Setting up Envoy 312

Testing scalability and
performance with k6 318
Recording and replaying network
sessions 320
Hand-crafting a more realistic
load test 321
Running a stress test 327

Summary 328
Further reading 329

Section 3: Docker Security – Securing
Your Containers

12
Introduction to Container Security

Technical requirements 334
Virtualization and hypervisor
security models 334
Virtualization and protection rings 335
Docker and protection rings 337

Container security models 339
Docker Engine and containerd –
Linux security features 340
PID namespaces 342

MNT namespaces 342
NET namespaces 343
IPC namespaces 343
UTS namespaces 343
USER namespaces 343

A note on cgroups 344
An overview of best practices 344
Keeping Docker patched 345
Securing the Docker daemon socket 346

viii Table of Contents

Docker won't fix bad code 347
Always set an unprivileged user 347

Summary 348

13
Docker Security Fundamentals and Best Practices

Technical requirements 350
Docker image security 350
Image verification 352
Using minimal base images 355
Restricting privileges 357
Avoiding data leakages from
your image 358

Security around Docker
commands 360
COPY versus ADD – what's the story? 361
Recursive COPY – use with caution 362

Security around the build
process 364
Using multi-stage builds 364

Limiting resources and
capabilities when deploying
your builds 366
Limiting resources 366
Dropping capabilities 367

Summary 368

14
Advanced Docker Security – Secrets, Secret Commands,
Tagging, and Labels

Technical requirements 370
Securely storing secrets in
Docker 370
The Raft log 371

Adding, inspecting, and
removing secrets 372
Creating 373

Inspecting 373
Deleting 374

Secrets in action – examples 375
Docker tags for security 377
Using labels for metadata
application 379
Summary 380

15
Scanning, Monitoring, and Using Third-Party Tools

Technical requirements 382 Scanning and monitoring –
cloud and DevOps security for
containers 382

Table of Contents ix

Scanning using Anchore Engine 383
A brief mention of Chef InSpec 389
Native monitoring locally using Docker
stats 389
Aggregating monitoring data in the
cloud with Datadog 393

Securing your containers
using AWS 398
Security alerts for AWS with
GuardDuty 398

Securing your containers
using Azure 400

Container monitoring in Azure 400
Using Security Center to secure your
containers in Azure 401

Securing your containers
using GCP 403
Container Analysis and Binary
Authorization in GCP 403
Understanding your attack surface
with Security Command Center 406

Summary 407
Further reading 407

16
Conclusion – End of the Road, but not the Journey

Technical requirements 410
Wrapping up – let's get started 410
What we learned about
development 411
Going deeper – design patterns 411

Next steps for taking your
DevOps knowledge further 414

Chaos engineering and building
resilient production systems 414

A summary on security and
where to go next 416
Metasploit – container-based
penetration testing 417

Summary 420
Other Books You May Enjoy
Index

Preface
Software engineering teams are rapidly adopting containers to package and deploy
their software. Providing a platform-agnostic experience, containers allow you to run
applications with a variety of operating system images and to deploy on-premises, in
data centers, and in the cloud. In order to support container-based applications, vendors
have developed a wide variety of tools, ranging from Docker and Google's Kubernetes
project to Lyft's Envoy service mesh and Netflix's Spinnaker. Whether you are working on
the software development side of the house, hosting, and infrastructure, or constructing
DevOps pipelines, you need both a broad and in-depth understanding of many concepts
in order to manage container-based environments.

In Docker for Developers, we will start with a walk-through of the basics of developing
with containers locally using Docker, and then move on to deploying production-ready,
cloud-hosted systems with AWS. If you are interested in learning about container
orchestration, deployment, monitoring, and security, then we think you will enjoy this book.

Who this book is for
Docker for Developers is geared toward engineers and DevOps personnel who want
to learn the basics of containers and then build upon this knowledge to understand
how to use containers in production, through a set of successively more sophisticated
deployments. We will demonstrate how Docker applications can be deployed via CI/
CD pipelines and managed in a production-grade, cloud-hosted environment. A basic
understanding of containers would be helpful when tackling the book's subject matter, but
this is not essential. It is assumed that readers of this book are familiar with Linux, the use
of command-line tools, and basic software engineering concepts, such as version control
and using Git.

What this book covers
Chapter 1, Introduction to Docker, provides some background on Docker, a walk-through
of containers and their purpose, and presents the reader with an introduction to the topics
that will be discussed in the book.

xii Preface

Chapter 2, Using VirtualBox and Docker Containers for Development, guides the reader
through using a virtual machine locally for development and then compares this to how
Docker can be used for containerized development projects.

Chapter 3, Sharing Containers Using Docker Hub, introduces the reader to Docker Hub
and pre-built containers. Next, we explore the process of building specialized containers.

Chapter 4, Composing Systems Using Containers, investigates more complex situations
where multiple containers need to work together as a complete system. Additionally, we
give the reader an overview of Docker Compose.

Chapter 5, Alternatives for Deploying and Running Containers in Production, helps the
reader understand the spectrum of choices when it comes to running containers in a
production environment, including cloud options, on-premises and hybrid solutions.

Chapter 6, Deploying Applications with Docker Compose, discusses how to deploy a
production application on a single host with Docker Compose and how to deal with
logging and monitoring, along with the pros and cons of this simple setup.

Chapter 7, Continuous Deployment with Jenkins, shows how to use Jenkins for continuous
integration (CI) and continuous deployment (CD) for containers, using a Jenkinsfile
and multiple development branches.

Chapter 8, Deploying Docker Apps to Kubernetes, explores Kubernetes concepts, cloud
distribution options, and shows how to create an Amazon Web Services Elastic
Kubernetes Service (EKS) cluster for deploying Docker applications to Kubernetes.

Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker, builds upon the skills
we developed around CI/CD by integrating Netflix's Spinnaker with Kubernetes and
looking at automated tests.

Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger, explains how to
monitor container-based applications using AWS CloudWatch, Prometheus, and Grafana.
We introduce the OpenTracing API and implement it using Jaeger.

Chapter 11, Scaling and Load Testing Docker Applications, explores how to scale a
Docker-based application through Kubernetes. It introduces the concept of a service mesh
and shows a simple implementation using Envoy, integrating load balancing and advanced
traffic routing and filtering, including utilization of the circuit breaker pattern. Finally,
we show how to use k6.io to perform load testing to demonstrate that our application can
scale out.

Chapter 12, Introduction to Container Security, walks the reader through basic container
security concepts, including how virtualization and hypervisor security models work.

Preface xiii

Chapter 13, Docker Security Fundamentals and Best Practices, builds upon the previous
chapter's introduction and delves deeper into Docker and security components. This
includes a comparison of Docker commands and their security implications.

Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels,
covers the topics of secrets, including passwords, and how they can be used securely with
container-based environments. The reader is also introduced to the use of tagging and
labeling best practices.

Chapter 15, Scanning, Monitoring, and Using Third-Party Tools, expands upon our logging
and monitoring skills acquired from other chapters by refocusing on these elements from
a security focus. Here, we also look at what options are available for users of AWS, Azure,
and GCP and how we can scan containers for security issues using Anchore.

Chapter 16, Conclusion – End of the Road, but not the Journey, wraps the book up by
revisiting what we have learned so far. Finally, we provide some ideas for where the reader
can go next in exploring container-based projects. This ranges from adding Netflix Chaos
Monkey to their CI/CD pipeline, to running Metasploit in a container.

To get the most out of this book
You will need a Windows, Mac, or Linux workstation that can run Docker. You should
use the latest version if possible. Additionally, in order to complete any of the cloud-based
projects, you will need to set up a cloud provider account. The examples use Amazon
Web Services (AWS), although you could adapt much of the content to services hosted by
another cloud provider:

xiv Preface

While we do not explicitly demonstrate how to deploy the projects listed in this book to
Microsoft Azure or the Google Cloud Platform, if you wish to explore some of the security
features available on those cloud platforms, or try out the existing projects in them, you
will need to create an account for each provider.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.
com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the onscreen instructions.

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packt.com

Preface xv

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

• WinRAR/7-Zip for Windows

• Zipeg/iZip/UnRarX for Mac

• 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Docker-for-Developers. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3kDmrtq.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/
files/downloads/9781789536058_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, container names, folder names, filenames,
file extensions, pathnames, dummy URLs, and user input. Here is an example: "This file
needs to be added to the conf.d directory on the host."

A block of code or Dockerfile is set as follows:

FROM ubuntu:bionic

RUN apt-get -qq update && \

apt-get -qq install -y nodejs npm > /dev/null

RUN mkdir -p /app/public /app/server

COPY src/package.json* /app

WORKDIR /app

RUN npm -s install

https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/
https://bit.ly/3kDmrtq
http://www.packtpub.com/sites/default/files/downloads/9781789536058_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789536058_ColorImages.pdf

xvi Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

FROM alpine:20191114

RUN apk update && \

apk add nodejs nodejs-npm

RUN addgroup -S app && adduser -S -G app app

RUN mkdir -p /app/public /app/server

ADD src/package.json* /app/

Any command-line input or output is written as follows:

$ cp docker_daemon.yaml /path/to/conf.d/

$ vim /path/to/conf.d/conf.yaml

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You can do this by clicking the Get It Now button on the Azure Marketplace website."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in, and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xvii

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com

In this section, we introduce the reader to the technologies, skills, and steps involved
in developing applications using Docker Containers. We begin by tracing the history of
hosting and why we need Docker in the first place. We then demonstrate the differences
between virtualization and containerization, using VirtualBox to create simple virtual
machines and using Docker to create a simple PHP application with state. We discuss
how applications involving multiple containers working together (microservices) are
the ultimate way to use containers, and present a simple CRUD demo involving several
containers, including some prepared by third parties and shared with us on Docker
Hub. Finally, we present the Docker Compose tool as a means to orchestrate complete
applications made up of multiple containers, while providing private access between
the containers.

Section 1:
An Introduction

to Docker –
Containers and

Local Development

This section comprises the following chapters:

• Chapter 1, Introduction to Docker

• Chapter 2, Using VirtualBox and Docker Containers for Development

• Chapter 3, Sharing Containers Using Docker Hub

• Chapter 4, Composing Systems Using Containers

1
Introduction to

Docker
Docker is a technology that allows entire applications and their environments to be
encapsulated within individual containers. When multiple versions of these containers
are run on a single machine, they are sandboxed from one another as if running on their
own dedicated machines.

Docker is open source, which fits well with running Linux in containers, as well as
numerous available open source components that help build complex systems. It is the
logical progression of technologies used for hosting and backend development over the
past decade or longer. This progression has moved from a physical kind of hosting to
a logical one and has been driven by several requirements. These requirements include
reliability, reachability, scalability, and security.

This book is divided into three sections. The first is an introduction to Docker,
focusing on local development. The second describes the methodology for testing,
deploying, and scaling applications. The third goes into detail about security when using
a container-based design.

4 Introduction to Docker

In this chapter, we will review the history of hosting and backend solutions with a focus
on how Docker came to be a widely used technology.

The following topics will be covered in this chapter:

• Origins of hosting services

• Types of hosting services – co-location

• Types of hosting services – self-hosting

• The benefits of data centers

• How virtualization works

• The power requirements at data centers

• How virtualization is a solution for data centers and the invention of the cloud

• How containers are a bigger win for data centers and hosting

The drivers for Docker
The range of hosting services was originally limited to self-hosted servers, co-located
server hosting, and shared hosting. In 1994 and 1995, Best Internet Communications
rose from nothing to hosting 18,000+ websites on a pair of Pentium servers, which were
the most powerful servers of the time. Best also offered dedicated server-hosting through
co-location, dedicated broadband connectivity, and upscale premium services.

Most of the websites hosted by Best were of the shared-hosting variety. All of these sites
shared the same server, the same hard drives, the same filesystem, the same RAM, the
same CPUs, the same network connections, and so on.

It was not uncommon for any one of these websites to be slashdotted, or containing a
link to the site from a very popular site to the hosted site. This would cause a large spike
in traffic to the one out of the approximately 18,000 sites, and a performance hit to the
others. As the quality of the sites grew and demanded more resources, their administrators
would move to dedicated co-located hosting or self-hosting.

The drivers for Docker 5

Co-located hosting
With co-located hosting, the customer rents a secure cage within a larger hosting facility
(data center):

Figure 1.1 – A typical server rack, commonly seen in colocation

The customer can install and manage the machines of their choice. Some co-location
facilities offer, for additional fees, remote hands service, where the customer can call the
hosting company and one of their engineers does whatever the customer requires to the
hosted servers. The cages are locked so that other customers can't gain access to other
customers' equipment.

6 Introduction to Docker

Self-hosting
With self-hosting, the customer buys a full-time dedicated broadband-style connection in
a physical location of their choosing:

Figure 1.2 – Indian Railway 139 server room (self-hosting)

The customer ends up building their own kind of data center and installs and manages
servers and other equipment on-premises.

Data centers
The benefits of a professional data center are numerous, and ultimately, the trend became
that just a few companies, relative to all the companies with an internet presence, provided
data centers, and the remaining companies paid rent for dedicated, shared, or premium
hosting. A professional data center provides rich internet connectivity (more than one
provider, faster connections), clean power, battery-backed-up power for 24/7/365 uptime,
back-up generator-backed-up power for longer brownouts or blackouts, fire-suppression
systems, a controlled climate suitable for keeping equipment at the proper operating
temperatures, multiple physical locations, a professionally managed Network Operations
Center (NOC) and technical support, and security in the form of guards, cameras, and
fingerprint, handprint, and/or retina scanners:

The drivers for Docker 7

Figure 1.3 – A server room at CERN (Switzerland)

The companies that ended up building and running the majority of data centers are
Google (Google Cloud Platform), Microsoft (Azure), Amazon (Amazon Web Services
(AWS)), Yahoo! (once upon a time), and lesser players, which include boutique hosting
companies, regional hosting companies, and companies that require security beyond
what a hosting company can provide (for example, banks and financial institutions,
governments, and so on).

Amazon had a unique need for data centers. They are one of the largest online retailers
in the world, as well as the largest data center developer/owner. The number of servers,
the uptime, the security, and the reach that they require drove them to build data centers
throughout the country and then the world.

Google has a unique need for data centers as well. They are the largest search engine and
advertising company in the world. In order to be reachable, Google needs servers in as
many physical places as possible. In order to be fast, Google needs many servers—at least
enough servers for distributed search index processing in each of its geo-locations.

Companies such as RackSpace and Level 3 were originally built as data center providers.
Their specialties included co-location facilities, dedicated server hosting, remote hands,
NOCs, nationwide-dedicated fiber-optic backbones, clean and blackout resistant power,
and very rich connectivity to various other networks, including AT&T, Verizon, and
Comcast. They found themselves with the infrastructure to follow the trend toward
virtualization and began to offer these cloud services.

8 Introduction to Docker

The highest cost of providing data center services, and this passed on to the customer,
was initially bandwidth. The providers paid for bandwidth by the megabit, plus a monthly
cost of maintaining the physical connections that carried this bandwidth. As the providers
built their own private infrastructure to carry data between their own data centers around
the world, the cost became a flat rate, or a fixed cost, for a significant amount of the total
bandwidth used. This allowed the price of bandwidth to decline to the point where it
became a minimal consideration for hosting.

These companies ended up building a comprehensive infrastructure for dedicated hosting.
It turns out that this infrastructure is ideally suited for virtualized product offerings, too.

Using virtualization to economize resource
usage
Virtualization is the process of exposing a portion of a physical machine as a logical or
virtual machine that acts enough like a real machine that it supports the installation of
whole operating systems, their filesystems, and the software that runs on the operating
system. For example, a machine with 64 GB of RAM and 4 CPUs could run virtualization
software that masquerades as four 16 GB RAM machines with 1 CPU each. This machine
could run four instances of Linux.

Virtualization is not a new concept, having been implemented by IBM in the early 1960s.
It likely gained in overall popularity during the 1980s when it was used to run MS-DOS,
and then Windows by computer systems such as the original Apple Macintosh (Mac) and
Unix computers such as the Sun and Silicon Graphics workstations.

Initial virtualization software used what features were available on CPUs of the time,
but often simply emulated the instruction set of the x86 on the 68000 family or custom
CPUs of the professional Unix workstations. SoftPC was one of the most popular offerings
in the 1980s.

SoftPC was quite slow, but the ability to run Windows or MS-DOS applications on a Mac
computer allowed the use of these machines in business and education environments.
Instead of adding Microsoft Office compatibility to all the programs on the Mac to
support exchanging files between Windows/MS-DOS users and Mac users, users could
run Microsoft Office.

People saw it in action and saw the value in it. Windows was the dominant operating
system for home and business, and to fit in with Windows in the corporate environment,
something like SoftPC was needed. The problem with SoftPC is that it was pure software
emulation, which was quite slow in actual use. Virtualization is superior to emulation in
terms of performance!

Using virtualization to economize resource usage 9

Entire companies were founded around providing consumer or business virtualization
solutions. VMWare, founded in 1998, was one of the first of these companies.

Innotek developed VirtualBox and released it as open source in 2007, and was then
acquired by Sun Microsystems in 2008. Then, Sun was acquired by Oracle in 2010.
Parallels, a virtualization solution for Mac, was developed in 2004 and became
mainstream in 2006.

The value of virtualization encouraged chip makers to gradually add CPU support for
virtualization. With CPU support, an x86-based system could run virtualized machines or
software at close enough to native speed to be much more tolerable. This, in turn, led the
workstation companies (such as Apple, Sun, and Silicon Graphics) to move to x86 CPUs.

A key component of virtualization software is the hypervisor. The hypervisor presents
the virtual machine to the chosen operating system and then manages the resources
and execution of the virtual machines over time. The virtual machines themselves are
configurable, at least regarding the amount of RAM, the number of logical CPU cores,
graphics card memory, the host operating system disk files to act as virtual disk drives in
the virtual machine, the mounting and unmounting of CD-ROM in the virtual CD-ROM
drive, and so on. The hypervisor assures that these resources are truly available and that
no virtual machine starves the other virtual machines for the host machine's resources.

For the enterprise, the requirements were somewhat different. Instead of providing virtual
machines via a general-purpose host operating system such as Linux, the entire operating
system itself could be optimized just for being the hypervisor. VMWare offered its
Elastic Sky X Integrated (ESXi) operating system in 2004. The University of Cambridge
computer laboratory developed the Xen hypervisor in the late 1990s, and the first stable
version was released in 2003. Xen was originally the hypervisor used by Amazon for its
Elastic Compute Cloud offering, before moving to KVM.

KVM is a virtualization solution supported directly by the Linux kernel. The kernel can
act as the hypervisor under KVM. KVM can additionally emulate processors other than
the host's native CPU, which is typically x86. This allows KVM to be used to emulate
targets such as the Raspberry Pi.

Scaling a dedicated hosted website can be problematic. It's possible to simply upgrade to
a larger and more powerful server to handle growing traffic and services. At some point,
however, there is no server that is large and powerful! To scale up from that point requires
distributing services across multiple servers.

10 Introduction to Docker

Addressing the increasing power
requirements
The trend toward virtualization created a demand for a new breed of servers to be housed
at the data centers. Where a customer might have rented or installed their own dedicated
server with 16 GB of RAM, the virtual server provider could rent a portion of a 128 GB
RAM server and share that server with multiple customers. These bigger servers required
more CPU cores, so the virtual servers could have reasonable computing capabilities.

Fitting these specialized servers into the same space as the smaller and less capable
dedicated servers created a new challenge: power. Instead of using 400 watts of power for
the dedicated server, the cloud servers might use 1,600 watts; the power requirements
would be four times more. In addition to the power requirements of the machines
themselves, it took more power to run the air conditioners to cool the machines.

The power cost requirements changed the equation for dedicated hosting, so bandwidth
pricing was virtually free, while the power requirements of the servers were charged at
a very high price.

To help mitigate the cost of power, data centers have been built to provide some of their
own power. Solar panels, building near a river that can drive turbines, wind turbines, and
building in places with cool or cold climates are among some of the techniques used. Data
centers do use batteries for back-up power, and diesel-powered generators as well.

Energy efficiency is another way to mitigate power costs. The use of lower-powered CPUs
and other computer parts is one means to this end. The CPU manufacturers have had
a heavy focus on producing lower-powered CPUs for both data center and laptop use.

The hosting companies would supply a 60 watt power supply for each co-location cage.
If you needed more than 60 watts, you could pay extra to have additional 60 watt lines for
your cage. You'd pay for the construction and then the monthly power usage.

Hosting at one of these facilities was problematic for most customers. It required
purchasing physical machines and other hardware, designing the infrastructure required
for the services to be provided, physical access to the cage and hardware from time to
time, and potential failures, which meant downtime.

The growth and popularity of services require scalability or more and bigger machines.
You could repurpose old machines, but they take up space and power. Customer costs
soared when the current cage filled up and more presence was required.

The next step, and the solution to these hassles, is virtualization and running your servers
and services within the cloud.

Addressing the increasing power requirements 11

Virtualization and cloud computing
Most customers don't need dedicated servers. What they really need is the security of
a filesystem that only their software can read and write to, that the CPU is guaranteed
to be dedicated to their purpose, and that the throughput and computing power is
identifiable and delivered as expected.

The appeal of virtual servers offered by companies such as AWS drove many
administrators to move away from dedicated and self-hosting. AWS grows its offerings
to add more value to virtual hosting, so their customers get the benefit of Amazon's
developers efforts.

It's relatively cheap to duplicate the customer-designed infrastructure to create a testing
environment that is separate from the live/deployed applications. It's easy to scale services
that grow with popularity, or when the services are slashdotted. This is a term that
describes what happens when a very popular site adds a link to another site, driving a lot
more traffic to that site—perhaps more traffic than the site was designed to handle.

The design and deployment of a virtualized infrastructure can be done from the comfort
of your office. There is no need to physically visit a data center. If you need to scale
horizontally, you only need to spin up additional virtual machine instances. If you need
to scale vertically, you only need to spin up a more powerful virtual machine and
substitute it for the one that is too slow or too small.

If hardware fails at a cloud-hosting facility, the hosting company's employees install new
hardware. This is done in complete transparency with you, the customer. A feature known
as Teleport allows the hosting company to move a running virtual machine to a different
physical machine, without the interruption of service.

Along with virtual servers, hosting companies can also offer virtual disks, elastic IPs, load
balancers, DNS, backup solutions, and so on. Virtual disks are handy because you can
back them up by simply copying the file that is the image. You can also boot new instances
from an existing virtual disk, saving the time required to install a whole operating system
on a virtual machine.

The ability to use elastic IPs and virtual load balancers allows a scalability that is as easy
as the click of a mouse.

12 Introduction to Docker

You can assign an elastic IP to any virtual instance or load balancer. If the instance is
stopped, you can reassign that IP to another instance. If this were handled only with DNS,
there could be days' worth of delays for the DNS to propagate through the many DNS
servers at the ISPs. The load balancer allows you to create virtual server farms and
balance incoming requests between the virtual servers in the farm. You can trivially
spin up and add additional virtual servers to the load balancer as you need to scale. The
hosting companies can even provide software triggers that will automatically spin up and
add new servers when traffic increases, and then spin them down and remove them when
traffic is reduced:

Figure 1.4 – Hardware virtualization

Using containers to further optimize data center resources 13

A popular stack technology at the time that AWS was made available to the public was
LAMP, which is short for Linux, Apache, MySQL, and PHP. A typical setup would be
to install these four software packages on a dedicated Linux server. AWS offered RDS, or
a MySQL equivalent dedicated virtual server, which allowed the offloading and scaling
of the LAMP application. AWS offered virtual load balancers, which are logical Ethernet
switches that load balance traffic among two or more web servers. They offered domain
name-hosting and elastic IPs, so a site's uptime could be almost infinite. AWS continues
to develop new software and services to benefit its customers.

AWS and its competitors allow a cost-effective and dynamic way to grow an internet
presence as it gains popularity. The price structure is common among most providers.
The cost is based on the number of elastic load balancers, the number of virtual server
instances, the amount of RAM, the number of virtual CPUs, the size of persistent storage,
and the bandwidth. There are also optional additional services that can increase the price.

Virtual servers provide the benefits of a physical one, but it comes at the cost of the
dedication of physical RAM on the host machine and the power required to run the
machine. A host machine might have 64 GB of RAM; it can run some combination of
virtual machines that, combined, use up that RAM—for example, four 16 GB virtual
machines, two 32 GB virtual machines, two 16 gigabytes and one 32 GB virtual machine,
and so on.

A risk of virtual machines is that when the host machine is rebooted or fails, all the virtual
machines hosted on it will go off air.

The features that enable virtualization and the limitations of virtualization when applied
at data centers make containerization a viable and preferred alternative.

Using containers to further optimize data
center resources
Docker is a clever use of OS-level virtualization support that allows multiple Docker
containers to execute on a single machine. A container is a running instance of a
container image. The containers are, by default, isolated from the host machine, as well as
from one another.

14 Introduction to Docker

They can be configured to expose resources, such as networking ports, to the host network
(for example, the internet) or to one another. The following diagram illustrates the basic
structure of containers on a host:

Figure 1.5 – Docker containerization

Containers share their Linux kernel with the host, so you do not need to install complete
operating systems within the container as you do with virtual machines. The containers
are managed by the Docker daemon, which handles the management of the containers
and resources they use, as well as the images, networks, volumes, and so on.

An important distinction between virtual servers and containers is that containers share
the resources, directly, of the host, whereas virtual servers require duplicate resources.
For example, two identical containers use the host's RAM, rather than a block of RAM
configured before booting the virtual machine. If you need to constrain the resources (the
CPU, memory, swap, and so on) of a container, you can do so, but the default is to have no
resource constraints on any container.

Unlike with virtual servers, you deal with an application image, rather than a virtual
disk. You can copy the image to back it up, but there is no virtual disk file to copy. These
application images are progressively built on top of other containers. When you build
a container, only the bits of the application image that change need to be dealt with.

Summary 15

When designing services that use containers, you will not likely install many components
within any one container. For a virtual machine running a LAMP application, you
might install Apache, MySQL, and PHP all within one virtual machine. When designing
the same LAMP application for containers, you might configure one container just for
MySQL and another for Apache and PHP. You can then scale your application by running
additional Apache and PHP containers and additional MySQL instances in a cluster
configuration.

If we consider the use of containers for the LAMP application discussed earlier, we can
implement MySQL in a dedicated container, and Apache and PHP in another; all this
running on top of the host's Linux kernel. To scale the LAMP application, a second,
third, fourth, and so on instance of the Apache/PHP container can be spun up, and the
same is true for the MySQL container. MySQL containers can be configured for master-
subordinate operations.

If the host operating system is not Linux kernel-based, there are two options. The first
option is to run host OS native containers (for example, Windows containers on a
Windows host). The second option is to run a Linux virtual machine on the host and run
the containers within that virtual machine.

Containerization is a boon for hosting companies and their customers. No longer is it
required to dedicate a fixed amount of RAM per container as is required with virtual
machines. A physical machine is limited only by its resources when it comes to the
number of containers it can run concurrently. The pricing model for containers can save
customers on monthly costs. Thus, containerization is a big win.

In the next chapter, we'll look at how to use virtual machines and Docker to develop
applications locally. Later in this book, we'll look at how to deploy our locally developed
software to publicly accessible internet/cloud infrastructure.

Summary
In this chapter, we saw how Docker and containerization was a natural result of the
progression of hosting requirements since the start of the commercial internet. We
reviewed the history of hosting and how we got to today's hosting configurations. You
should now have a decent understanding of the difference between virtualization and
containerization.

In the next chapter, we'll look at VirtualBox and Docker. This is a good way to explore the
differences between virtual machines and Docker containers.

16 Introduction to Docker

Further reading
If you would like to look into some of the subjects discussed so far in-depth, refer to the
following links:

• This link partially describes how Google's search algorithm is implemented:
https://www.google.com/search/howsearchworks/

• This link describes Google's search infrastructure:
https://netvantagemarketing.com/blog/how-does-google-
return-results-so-damn-fast/

• This link also describes Google's search infrastructure: https://www.ctl.io/
centurylink-public-cloud/servers/

• This link describes IBM's early technology to support virtualization:
https://en.wikipedia.org/wiki/IBM_CP-40

• This link describes an old program that emulates a PC to run Windows on a
non-Windows host: https://en.wikipedia.org/wiki/SoftPC

• This link provides an introduction to the VMWare company:
https://en.wikipedia.org/wiki/VMware

• This link describes Oracle's VirtualBox: https://en.wikipedia.org/wiki/
VirtualBox

• This link introduces Parallels: https://en.wikipedia.org/wiki/
Parallels_(company)

• This link discusses the role of the Hypervisor in virtualization and containerization:
https://en.wikipedia.org/wiki/Hypervisor

• This link describes VMWare's standalone operating system designed specifically to
run virtual machines: https://en.wikipedia.org/wiki/VMware_ESXi

• This link describes the Xen hypervisor: https://15anniversary.
xenproject.org/#Intro

• This link describes Amazon's AWS virtual machines: https://en.wikipedia.
org/wiki/Amazon_Elastic_Compute_Cloud

• This link describes kernel features to support virtualization and containerization:
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

• This link describes using QEMU to emulate Raspberry Pi on a workstation:
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/

https://www.google.com/search/howsearchworks/
https://netvantagemarketing.com/blog/how-does-google-return-results-so-damn-fast/
https://netvantagemarketing.com/blog/how-does-google-return-results-so-damn-fast/
https://www.ctl.io/centurylink-public-cloud/servers/
https://www.ctl.io/centurylink-public-cloud/servers/
https://en.wikipedia.org/wiki/IBM_CP-40
https://en.wikipedia.org/wiki/SoftPC
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/VirtualBox
https://en.wikipedia.org/wiki/VirtualBox
https://en.wikipedia.org/wiki/Parallels_(company)
https://en.wikipedia.org/wiki/Parallels_(company)
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/VMware_ESXi
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://azeria-labs.com/emulate-raspberry-pi-with-qemu/

2
Using VirtualBox and

Docker Containers
for Development

In the previous chapter, we introduced virtualization and containerization. In this chapter,
we'll demonstrate how you can use software such as VirtualBox to create virtual machines
and we'll use Docker to create containers. The focus of this chapter will be on using these
technologies for development on your workstation.

A common problem among developers who work on multiple projects is that, over time,
they end up with a lot of software installed on their workstations that they don't currently
use. This can be so problematic that the developer might reformat their workstation's hard
drive and reinstall the operating system.

Both VirtualBox and Docker containers can be used to resolve this problem. The software
you install stays within either the virtual machine's or the container's filesystem and
is separate from the workstation's native filesystem. If you delete a virtual machine or
container, all the files installed therein are removed – including any applications or
development software that was installed.

18 Using VirtualBox and Docker Containers for Development

Another problem that arises for developers is the version of software required to work
on a specific project. If the developer is working on one project that uses Node.js v12
and another that uses Node.js v10, they can't really run both projects on the workstation
at the same time and switching between versions of Node.js is doable, but ugly. This is a
non-issue with virtual machines or containers – you can have one virtual machine with
Node.js v12 and another with Node.js v10 and run both virtual machines at the same
time. It is similar with two containers, one for each version of Node.js.

Virtualization is very useful when you need to model an entire machine. If your
production systems are virtual machines or physical machines, a virtual machine is a
good way to emulate that environment. Virtualization is terrific for running a complete
alternate operating system on the workstation; that is, you can run Windows 10 in a
virtual machine on a macOS or Linux workstation.

In this chapter, we will cover the following topics:

• Host filesystem pollution problem

• Using VirtualBox for virtual machines

• Using Docker containers

Technical requirements
The code for this chapter can be downloaded from: https://github.com/
PacktPublishing/Docker-for-Developers/tree/master/chapter2

Check out the following video to see the Code in Action:

https://bit.ly/3gX9dFE

Host filesystem pollution problem
Both virtualization and containerization solve certain problems developers face. There's
no real point in installing server-style software systems on your workstation – that
kind of software can be installed in a virtual machine or a Docker container. Using this
strategy means you don't have to pollute your workstation's filesystem, you won't have
software version conflicts, and you can run a different operating system than the one your
workstation runs.

The pollution problem is a real concern for developers – they end up with a lot of cruft,
or installed software, that they don't use day to day, but that take up system resources.
We will learn to use virtualization or containerization to install that software in a way that
isn't installed on your host's filesystem.

https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter2
https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter2
https://bit.ly/3gX9dFE

Using VirtualBox for virtual machines 19

Using VirtualBox for virtual machines
There are several options for running virtual machines on your workstation. These include
Parallels (for macOS), KVM/QEMU (for Linux), VMware (commercial for several host
operating systems), and VirtualBox (an Oracle product). We'll use VirtualBox because it is
open source and free to use. It's also portable in the sense that you can run VirtualBox and
your virtual machines on Linux, Windows, macOS, and other host operating systems.

Introduction to virtualization
Virtualization uses special instructions and features of your workstation's CPU to run
a generic pseudo-computer system (virtual machine) on your host. Within this virtual
machine, you can install a wide range of operating systems, including various versions
of Windows Server, Linux, BSD, and so on. The operating system running in a virtual
machine is called the guest operating system; the operating system running on your
workstation is called the host operating system.

As the guest operating system executes code, it will be required to perform disk and
network access, execute privileged CPU instructions, and otherwise access shared
resources with the host. The virtualization software effectively traps these guest operating
system accesses and translates them into host operating system calls. Thus, code running
in the virtual machine is mostly running at full native CPU speed until these shared access
traps are executed – then there is some overhead for the translation to host accesses.

The guest virtual machines may be configured before you install an operating system
within. You can set how much RAM to use, one or more virtual disks, one or more
Ethernet controllers, a graphics card, an ISO file (installation media) to insert in the
virtual CD-ROM drive, and so on.

You typically set RAM, disk space, and the number of virtual CPU cores to appropriate
values for your guest operating system and the apps you intend to use within the guest.
For example, if you are going to run Windows in a virtual machine, you might want to
give it at least 2 virtual CPU cores and 8 gigabytes of RAM and 32 gigabytes of disk space.
If you are going to run an application in the virtual machine that needs more than 8
gigabytes of memory, you would want to assign more RAM; if the app needs a lot of disk
space, you would assign more disk space.

Creating a virtual machine
To boot the virtual machine, use the VirtualBox program (user interface). When the
virtual machine boots, it acts just like a physical PC – as far as the installer on the
installation media is concerned, it is a physical PC. The installer will work as if you were
installing on a new PC or reinstalling on your PC.

20 Using VirtualBox and Docker Containers for Development

A virtual machine may present its console or desktop within a window on your
workstation's desktop, or it can be headless. A headless virtual machine is similar to a
server machine – you access it via FTP, SSH, and so on. You would use a headless virtual
machine when you have no use for the operating system console or graphical interface.
The headless machine provides all the services of a server you would remotely access.

You start a headless virtual machine from the command line instead of the VirtualBox user
interface program. This is done via the VBoxManage command, which is documented
here: https://www.virtualbox.org/manual/ch08.html. It is more likely that
you will be using a guest operating system with a graphical user interface, though.

A typical headless virtual machine might be used to run a LAMP application—Linux,
Apache, MySQL, and PHP all contained neatly within the virtual machine and not within
the filesystem of your workstation. You can model a scalable LAMP application by starting
a headless virtual machine that runs MySQL and two headless virtual machines that run
the HTTP server and the PHP code.

A typical graphics/desktop virtual machine might be used to run Windows in a window
on your Mac computer, to run Linux in a window on your Mac computer, to run Linux in
a window on your Windows machine, and so on. If you like to use Linux, but you need to
run Windows programs, doing it in a virtual machine is a good way to go.

A non-headless install will have a few display options. The entire desktop can be displayed
in a window on your host's desktop. This is the default display mode. The window can be
resized like any other window on the desktop. However, within the interior of the window,
the guest's desktop will not resize to fit until you install the VirtualBox guest additions in
the guest.

The guest window can be made full screen. This makes the guest look like it's the
operating system running native on the workstation. If you are running macOS, you can
switch desktops using the macOS gestures and go back and forth between full-screen
Windows and full-screen macOS desktops.

For some host operating systems, the guest can be put into seamless mode, where the
desktop is not displayed at all, but any applications running in the virtual machine render
their windows on top of the host desktop.

The result is a mixture of virtual machine application windows and your host operating
system application menus on your desktop, as shown in the following screenshot:

https://www.virtualbox.org/manual/ch08.html

Using VirtualBox for virtual machines 21

Figure 2.1 – Microsoft Windows 10 running fullscreen in VirtualBox on a Linux host

As you can see, you may run and manage a full Windows installation on your workstation
within a virtual machine. You can access the files and directories on your host if you set up
Samba for file sharing on the host.

Incidentally, portions of this book were written using Microsoft Word 365, running in
a Windows 10 virtual machine on a Linux host. The Docker examples that follow were
executed on the Linux host. This is a great example of why you would run a virtual machine.

Note:
Microsoft allows you to buy a Windows 10 license and use it to activate
Windows 10 within a virtual machine.

Apple only allows macOS to be run in a virtual machine on Apple hardware. It
is a violation of their licensing terms to run macOS within a virtual machine on
a PC running Windows or Linux.

Linux and most BSD variants are generally free to use on a PC or within a
virtual machine on a PC.

22 Using VirtualBox and Docker Containers for Development

Guest additions
For Windows and Linux guest operating systems, you can install drivers that fully
integrate the guest and host operating systems. These drivers are known as guest additions
and you can download these from the VirtualBox site: https://virtualbox.org.
They are installed within the virtual machine as any program you install for Windows or
Linux. The integration with the host is quite useful.

The guest additions display drivers that allow you to use the full resolution of the host's
screen and, if you're running in windowed mode (guest desktop in a host desktop
window), resizing the window will cause the guest desktop to resize to fit the new window
size. If you want to use the seamless windows feature, you are required to install the guest
display drivers.

The additions provide mouse pointer integration. This allows you to freely move the
cursor between physical screens, from guest windows to host windows. Otherwise, the
mouse would be captured by the virtual machine so that it can manage pointer events.

The guest additions also share the host and guest clipboards as if they were one clipboard.
You can select and copy text in a macOS host application and then paste that copied text
into a Windows application running in the virtual machine.

For Linux guests, the additions allow you to share host filesystem directories and files.
This is particularly useful because you can use the host operating system tools and
software to develop files seen by the host. For example, you create a shared folder on your
macOS machine for your project's working directory. You can use your macOS editors to
edit files in the project and, in the virtual machine, you can run Linux native compilers or
tools to execute your project. Let's now begin by installing VirtualBox.

Installing VirtualBox
The URL for VirtualBox is https://www.virtualbox.org/. There, you can find
documentation and downloads for the various host platforms (workstation operating
systems), add-ons, see screenshots, see recommended third-party software that works
with VirtualBox, and so on.

Windows installation instructions
To install the Windows installation, go to the downloads page at the VirtualBox site,
download the installer for the latest version, and then, when the download is complete,
double-click on it. Then, follow the onscreen instructions.

https://virtualbox.org
https://www.virtualbox.org/

Using Docker containers 23

macOS installation instructions
For macOS installation, you can use Homebrew or download the installer .dmg file
from the VirtualBox site and install from that. To use Homebrew, you only need to
enter one command:

$ brew cask install virtualbox

Homebrew (https://brew.sh/) is the missing package manager for macOS. It is a
command-line system for installing software from Homebrew's repositories. It is a terrific
tool for augmenting the software shipped with macOS. The software in those repositories
is updated far more frequently than the Apple software updates.

Linux installation instructions
The installation instructions for VirtualBox on Linux varies depending on the Linux
distribution that you use on your workstation. Since there are so many different
distributions, we'll cover Ubuntu to give you an idea of what to do and provide you
with helpful pointers for installing VirtualBox on other distributions (Arch Linux,
Fedora, and suchlike).

For Ubuntu, you can install VirtualBox from the Ubuntu Software Center, download
a .deb file from the VirtualBox site, or use apt:

$ sudo apt install virtualbox

For Arch Linux and its variants, you can follow the instructions on the terrific Arch wiki
at https://wiki.archlinux.org/index.php/VirtualBox.

For Fedora or other RPM-based Linux distributions, follow the instructions at the VirtualBox
site: https://virtualbox.org. Let's now learn how to use Docker containers.

Using Docker containers
Docker is generally used to create containers, which run your application as if in a
headless virtual machine. In fact, on host operating systems that are not Linux-based,
Docker effectively runs Linux in a virtual machine and runs your containers within that
virtual machine. This is done transparently.

Note:
You don't have to install VirtualBox yourself. Docker is packaged in such a
way that it will install or use any already-existing virtualization technology
(for example, a hypervisor) for your operating system.

https://brew.sh/
https://wiki.archlinux.org/index.php/VirtualBox
https://virtualbox.org

24 Using VirtualBox and Docker Containers for Development

Introduction to containers
Earlier versions of Docker installed VirtualBox to create its virtual machine, but more
recent virtualization technology implemented within the operating systems allows Docker
to use those technologies instead.

Docker for Linux containers expects the host operating system or the virtual machine
to be running Linux. The containers share the Linux kernel with the host. Docker can
be used to run Windows native containers, in a similar manner to Linux containers.
The Windows kernel is shared among the host and guests. For discussion purposes,
we'll focus on the Linux host and guests.

Docker containers are typically used to implement something like headless virtual
machines. The use of virtual machines for each application you might create a container
for is expensive – you must reserve a fixed amount of RAM and disk space for the virtual
machine. On a 16 gigabyte RAM MacBook Pro, you can roughly fit three 4 gigabyte RAM
virtual machines running at the same time. You do need to have some RAM for the host
operating system to run. Starving the host or guest virtual machines of RAM will cause
them to swap, which crushes performance:

 Figure 2.2 – Docker containers illustrated

Using Docker containers 25

Containers are separated from the host operating system using host operating system
features. The containers use the Linux kernel's namespaces feature (https://
manpages.debian.org/stretch/manpages/namespaces.7.en.html) to
separate the code running in containers from one another, and cgroups (see https://
manpages.debian.org/stretch/manpages/cgroups.7.en.html) to limit the
resources that a container may use (including RAM and CPU). Containers also use the
Linux unionfs (https://manpages.debian.org/buster/unionfs-fuse/
unionfs.8.en.html) filesystem to implement the layered filesystem our containers
see when running under Docker.

From the applications running within the container's point of view, the container is
a whole and dedicated computer; there is no direct communication with the host
operating system.

Containers do not require the number of virtual CPUs or a dedicated block of RAM
per container.

You are only limited by how much RAM the containers need and how much RAM the
host has.

Containers share the host's Linux kernel, while virtual machines must have a whole
operating system installed!

You may choose to limit the resources used by a container instance, but this is
not required.

Host resources may be shared with the guest containers. The host's networking can
be shared with any container, but this is only really needed for containers running
applications that require this. For example, to use the host's Bonjour networking
functionality, the guest would use the host's networking.

The guest containers may expose ports to the host and any computers that can access the
host. For example, a container running an HTTP server might expose port 80 and, when
the host is accessed at port 80, the container responds.

Containers have driven the concept of microservices. An application using microservice
architecture implements a collection of services that communicate among themselves
and the host. These services are meant to be trivial to implement – only the specific code
required to support the service needs to be included in the program. It's not uncommon
for microservices to be implemented in a single source code file with just a few lines
of code.

https://manpages.debian.org/stretch/manpages/namespaces.7.en.html
https://manpages.debian.org/stretch/manpages/namespaces.7.en.html
https://manpages.debian.org/stretch/manpages/cgroups.7.en.html
https://manpages.debian.org/stretch/manpages/cgroups.7.en.html
https://manpages.debian.org/buster/unionfs-fuse/unionfs.8.en.html
https://manpages.debian.org/buster/unionfs-fuse/unionfs.8.en.html

26 Using VirtualBox and Docker Containers for Development

Container architecture is quite scalable. You can run multiple containers running the
same application (horizontal scaling) and you can dedicate more host resources to the
container system (vertical scaling). For example, you might create a container running an
HTTP server; you can create a server farm by instantiating as many of these containers as
you desire.

Using Docker for development
A great reason to use Docker for development is that you don't have to install any
programs, other than Docker itself, on your host to enable development. For example,
you can run Apache in a container without installing it on your workstation.

You can also mix and match software versions within your containers. A microservices
architecture might require one container to use Node.js version 8 and another
container to use Node.js version 10. This is obviously problematic on a single host, but
is straightforward when using Docker. One container installs and runs version 8, and
another container installs and runs version 10.

During development, you can share your project's development files with the container
so that when you edit these files, the container sees that the files have changed.

Each container has its own set of global environment variables. It's typical to configure the
application using environment variables, rather than in source code or configuration files
within the container.

When you are ready to deploy or publish a container, you can push it to a container
hosting service, such as Docker Hub. In fact, Docker Hub is a terrific source for
already-existing containers that may aid you in your project development. There are
pre-made container images for MongoDB, Node.js (various versions), Apache, and so on.

Container construction is effectively object-oriented. You inherit from a base container
and add the functionality you need to that. You can create a Node.js application in a
container that starts with a ready-made Node.js container, install npm packages in the
container, and run your custom code in the container.

You can always develop your own base containers. For these, you can start with ready-made
packages for a flavor of Linux. The Alpine Linux base container is popular because it is one
of the most lightweight images to start from. There are base containers for Fedora, Ubuntu,
Arch Linux, and more. Whichever of these Linux containers you start from, you can use
that operating system's installation tools to add packages from the official repositories for
that operating system; that is, apt for Ubuntu, yum for Fedora, and so on.

Getting started with Docker 27

It's a good idea to Dockerize an existing application that wasn't designed to run in a
container. You can choose a flavor and version of Linux for the container that is compatible
with the application, and you can split up the application into multiple container images to
afford future scalability.

For example, you might have an older LAMP application that requires specific versions
of PHP, MySQL, and Apache, as well as an older version of Ubuntu. You would break this
up into a distinct MySQL container, and a distinct Apache plus PHP container. You would
want your Apache+PHP containers to use a shared volume so that they're all running the
same and latest PHP source code. You can set up the MySQL container to use master-slave
replication. You can set up a load balancer in another container that balances between as
many Apache and PHP container instances as you choose.

Time for a hands-on example, using Docker for development.

Getting started with Docker
We have created a GitHub repository to share code examples for this book. The
repository can be found at https://github.com/PacktPublishing/Docker-
for-Developers. You should fork this repository, and then clone it to your host.
Creating the fork means you can manage your copy of the repository as you see fit
without requiring permissions. The code of interest for this section is in the chapter2/
directory. The code here implements a small Apache+PHP application that is designed
to run in a container. There are sh scripts to perform the Docker command lines, so you
don't have to keep typing in a long string of command-line arguments.

Before we get into the code, let's make sure that Docker is installed properly. The docker
ps command prints a list of all running Docker containers. We can see we have no
containers running and there is an actual docker command:

% docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

%

A Dockerfile is a text file that defines how to build a Docker container image. The
container is not started; it is just created on disk. Once built, you can start as many
instances as you wish.

https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers

28 Using VirtualBox and Docker Containers for Development

Automating Docker commands via sh scripts
We're going to make heavy use of the docker cli command and sh scripts to automate
command-line use. The use of sh script files has a few advantages. Once the script file is
created, you don't have to remember what all the command-line switches to the command
are. Once the script is correct, you won't have any issues due to typos or improper
command-line switches. Typing the script filename is much shorter and your shell should
autocomplete it when you type the first few characters of the name and hit the Tab key.
Finally, the names of the scripts are mnemonic: build.sh means build the container,
run.sh means run the container, and so on.

The sh scripts we provide are as follows:

• ./build.sh: This builds the container from the Dockerfile. You will want to run
this script whenever you edit the Dockerfile, or if the container otherwise needs to
be built.

• ./debug.sh: This runs the container in debug mode. In debug mode, Apache is
run in foreground mode and you can hit ^C to stop the container.

• ./run.sh: This runs the container as a daemon. Unlike the ./debug.sh script,
you will be returned to the command-line prompt, with the container running in
Docker. You will use this script to run the container locally, as if in production, so
that you can test production behavior.

• ./stop.sh: When you have your container running in the background, this script
can be used to stop it.

• ./shell.sh: Sometimes, when creating your container and editing the
Dockerfile, things do not work as expected. You can use this script to get a Bash
command line running within the container. From this command line, you can
inspect and diagnose the problems.

• ./persist.sh: This script demonstrates using a named volume to persist the
application state within the container. That is, with a named volume, you can stop
and restart the container and the contents of the volume are persisted. The volume
is mounted in the container as if it were a disk.

To demonstrate how building a container using a Dockerfile works, we've created one in
the GitHub repository, in the chapter2/ directory (file named Dockerfile):

we will inherit from the Debian image on DockerHub
FROM debian

set timezone so files' timestamps are correct
ENV TZ=America/Los_Angeles

Getting started with Docker 29

install apache and php 7.3
we include procps and telnet so you can use these with shell.
sh prompt
RUN apt-get update && apt-get install -y procps telnet apache2
php7.3

add a user - this user will own the files in /home/app
RUN useradd --user-group --create-home --shell /bin/false app

set up and copy files to /home/app
ENV HOME=/usr/app
WORKDIR /home/app
COPY . /home/app

The PHP app is going to save its state in /data so we make a
/data inside the container
RUN mkdir /data && chown -R app /data && chmod 777 /data

we need custom php configuration file to enable userdirs
COPY php.conf /etc/apache2/mods-available/php7.3.conf

enable userdir and php
RUN a2enmod userdir && a2enmod php7.3

we run a script to stat the server; the array syntax makes it
so ^C will work as we want
CMD ["./entrypoint.sh"]

Let's look at what the Dockerfile does, step by step:

1. The Dockerfile inherits from the Debian image on Docker Hub.

2. We set the time zone for the container to match the time zone of the host; in other
words, ensure that the timestamps of files inside the container and on the host match.
This is important when mapping host directories to the container's filesystem.

3. We then install Apache and PHP 7.3. These are installed in the container's filesystem
and not on the host's filesystem. We have avoided the pollution problem of having a
version of both installed on the host that later become unused when not working on
this project.

4. We also installed some command-line utilities that allow us to examine the state of
the built container from a Bash shell running within the container.

30 Using VirtualBox and Docker Containers for Development

5. By default, the user and group that will be running the project in the container is
root. In order to provide some typical Unix/Linux security, we want to run as an
actual user; in our case, the username is app. So we add the user to the container's
environment with useradd.

6. We are going to put our PHP scripts in /home/app, with the ability to map our
working directory with our PHP scripts on the host over /home/app.

7. Our demo app writes its state to /data, so we need to create it and ensure that the
PHP script running as a user app can read and write files there.

8. We created a custom PHP configuration file that we want to use within the
container, so we copy it to the container in the correct location in the filesystem.

9. We need to enable the userdir and php7.3 modules. This allows us to run PHP
scripts from Apache as well as have our PHP scripts in /home/app/public_
html accessed via a URL such as http://localhost/~app/index.php.

10. When the container is started, it needs to run some program or script within
the container. We use an sh script named entrypoint.sh in the /home/app
directory to start the application. We can edit this file to suit our needs
during development.

We could have chosen from a variety of Linux flavors from which to start. We chose
Debian here because the configuration commands should be familiar to most readers.
If you install Debian in a virtual machine, you'd use the same commands to install and
maintain your system. Debian isn't the smallest or most lightweight of Linux images
to start from; Alpine is a great choice if you want to make your container use fewer
resources. If you choose to use Alpine, be sure to read up on how to install packages
and maintain the system using Alpine.

Note that whichever Linux image you start from, it's sharing the Linux kernel with your
host machine. Only within the container is it Debian – your host operating system can be
some other Linux distribution. What you install inside the container is not installed on
your workstation, only within the container. Obviously, you shouldn't mix, say, Debian
commands and installed packages directly on an Arch Linux workstation.

When you install Apache on an actual host or virtual machine, you configure it by using
the a2enmod and a2dismod commands, as well as by editing the various configuration
files in /etc/apache2. What we do here is edit the configuration file locally on our
workstation, and then we copy that configuration file to the container.

Getting started with Docker 31

The Dockerfile installs a few Debian applications within the container using apt-get.
The RUN command that spawns apt-get within the container uses the -y switch to
answer yes to any questions apt-get might ask, the -qq switch to make the apt-get
command less verbose, and the >/dev/null redirection of stdio to make the Docker
build (build.sh) output compact. Without the -qq and stdout redirection, the build
output would contain every package and dependency downloaded, along with all the
installation commands for all these packages.

Note that the final line in the Dockerfile is a CMD, the command to run when the
container is instantiated. In our case, we use an array with one item, entrypoint.sh.
The array makes it so that you can hit Ctrl + C to stop the container. The entrypoint.
sh script runs Apache in the container after performing the necessary initialization. Also
note that we enabled both the userdir and php7.3 modules in the Dockerfile.

Now that we have a Dockerfile, we need to be able to build the container so that we can
then use it. This is where the first of our .sh scripts comes into play.

Understanding build.sh
The build.sh script is used to build the container. You will need to build the container
at least once so that we can edit files on the host and see the changes in action within the
container. You will need to rebuild the container each time you want to try the container
in production mode and have the latest versions of the files:

#!/bin/sh

build.sh

we use the "docker build" command to build a container named
"chapter2" from . (current directory)
Dockerfile is found in the current directory, and determines
how the conatiner is built.

docker build -t chapter2 .

The -t flag says to name the container chapter 2. The Dockerfile is found in the
current directory. The output of the build.sh script is lengthy, so it is omitted here.

32 Using VirtualBox and Docker Containers for Development

You can see that each step printed in the output while building the container corresponds
to a line in the Dockerfile:

Sending build context to Docker daemon 15.87kB
Step 1/11 : FROM debian
 ---> 67e34c1c9477
Step 2/11 : ENV TZ=America/Los_Angeles
 ---> Using cache
 ---> 7bfa02a200a8
Step 3/11 : RUN apt-get update -qq >/dev/null && apt-get
install -y -qq procps telnet apache2 php7.3 -qq >/dev/null
 ---> Running in 98a4e3192e22
debconf: delaying package configuration, since apt-utils is not
installed
Removing intermediate container 98a4e3192e22
 ---> 86aa2b03b3b1
Step 4/11 : RUN useradd --user-group --create-home --shell /
bin/false app
 ---> Running in 917b16b86dc5
Removing intermediate container 917b16b86dc5
 ---> ef96ff367f1f
Step 5/11 : ENV HOME=/usr/app
 ---> Running in c9706abf0afd
Removing intermediate container c9706abf0afd
 ---> 4cc08031746b
Step 6/11 : WORKDIR /home/app
 ---> Running in 08c2b9c79204
Removing intermediate container 08c2b9c79204
 ---> 9b68722d6776
Step 7/11 : COPY . /home/app
 ---> d6a7b4a1a4f3
Step 8/11 : RUN mkdir /data && chown -R app /data && chmod 777
/data
 ---> Running in fe824496056c
Removing intermediate container fe824496056c
 ---> 75996f4d08bc
Step 9/11 : COPY php.conf /etc/apache2/mods-available/
php7.3.conf
 ---> c6a3b094a041
Step 10/11 : RUN a2enmod userdir && a2enmod php7.3
 ---> Running in 1899c1d01a2e
Removing intermediate container 1899c1d01a2e
 ---> ae6ddd93786c
Step 11/11 : CMD ["./entrypoint.sh"]
 ---> Running in cb0ffeaefca6

Getting started with Docker 33

Removing intermediate container cb0ffeaefca6
 ---> 9c64d1cb6bd3
Successfully built 9c64d1cb6bd3
Successfully tagged chapter2:latest

The container is incrementally built, as described by the Dockerfile. Each step is built in
an image layer denoted with a hash value – those are the hex hash values printed. When
you build the container again, Docker can start from the state of any of those layers' /
hash values, reducing the need to constantly rebuild the container from scratch. Each
layer is simply a diff (difference) between the current layer's requirements and the state
of the previous layer.

The first layer is the Debian image. The next layer is an intermediate image, the diff
between the result of the ENV command in the Dockerfile and the original Debian image.
The next layer is the diff between this previous intermediate image and the result of the
apt-get installed packages. Note that we use && to pack a few apt-get commands into
one layer in the container. This greatly speeds up the build process. The layering continues
as each command in the Dockerfile is processed by the Docker build command.

Docker is smart about how it caches and works with the layers. It doesn't have to
download the Debian image each time you build; it can start building from a previous
intermediate stage if it knows the previous steps have not changed the state of the
container to that point.

Whenever we need to build the container, because we've made changes to the Dockerfile,
we use the build.sh script. Once we have the container built, we have a few ways to use it.
The debug.sh script is probably the most common script you'll use during development.

Understanding debug.sh
The debug.sh script runs the container image that is not in daemon mode. You can hit
Ctrl + C to stop the program:

#!/usr/bin/env bash

debug.sh

run container without making it a daemon - useful to see
logging output

docker run \
 --rm \
 -p8086:80 \

34 Using VirtualBox and Docker Containers for Development

 --name="chapter2" \
 -v `pwd`:/home/app \
 chapter2

The docker run command takes many optional arguments that are too numerous
to detail here. For more complete information on all of the possible command-line
arguments to docker run, refer to the docker run documentation on the Docker
site: https://docs.docker.com/engine/reference/run/. We'll only cover the
ones used in our scripts:

• Here, we use –rm, which tells Docker to clean up when the container exits,
removing the container and filesystem for the container.

• The -p flag tells Docker to map port 80 from the container (HTTP) to port 8086
on the host; you can access the HTTP server in the container by using port 8086
on the host.

• The –name argument names the running container; if you don't provide a name,
you'll have to use docker ps to get the hash that identifies the container to stop
it using docker stop.

• The -v switch mounts volumes in the container. A volume can be a directory of a
file on the host, a named volume that Docker manages for you. If you want to stop
and restart the container and retain data that is written to the filesystem by the
container, you must mount a volume and the container must write to this volume.
You can mount multiple volumes, if you like. In our debug.sh script, we mount
the current directory with the sources over /home/app, so we can modify the
sources and the container programs see that the files are changed (because the file
timestamps are newer) as if they were inside the container, too. For this demo,
you can edit the index.php script and reload the page, and you'll see the change
in action. If you don't mount this volume, then the container will access the files
copied to /home/app by the Dockerfile and the build.sh script; this is what you
want for production.

• The last argument to docker run is the name of the container to start – in our
case, it's chapter2, the container image we created using the build.sh script.

Note:
We do not persist /data in the container. We can do this by adding the
-v switch to map a Docker volume to /data, which we will do in the
persist.sh script.

https://docs.docker.com/engine/reference/run/

Getting started with Docker 35

Running our chapter2 container with debug.sh
Let's see the container in action. We run the build.sh script and see that it succeeds.
Then, we use the debug.sh script to launch the container in debug/foreground
mode. Note that we did not do any configuration of the hostname for the container, so
there is a warning message printed by Apache:

% ./debug.sh

entrypoint.sh

----> Point your browser at http://localhost:8086/~app/index.
php

AH00558: apache2: Could not reliably determine the server's
fully qualified domain name, using 172.17.0.5. Set the
'ServerName' directive globally to suppress this message

On the host, we can use a browser to fetch http://localhost:8086/~app/index.
php.

Remember, we mapped port 8086 to port 80 of the container, we enabled the userdir
module, and, in the Dockerfile, we copied the index.php script to /home/app/
public_html (the userdir module).

We could have configured Apache with a default host and copied our files to /var/www
in the Dockerfile and build process. This would have given us a cleaner URL, and this is
what you would want to do for an actual production site. For our purposes, it's good to see
the Apache modules enabled and working within the container:

Figure 2.3 – Browser showing the output of our program

36 Using VirtualBox and Docker Containers for Development

When we reload the page in the browser a few times, we can see that the counter is being
properly maintained:

Figure 2.4 – Page after we reload

Note that we aren't generating any HTML (yet). If you're trying this yourself, you can now
edit the index.php file, change Counterx: to Counter: and reload the page, and you
will see that the page prints Counter: now.

We are now set up for PHP development.

If we want to add, say, MySQL support, we'll have to modify the Dockerfile to install the
PHP MySQL module, and enable it as we did with userdir and php. If we want to add
a PHP framework, we either need to install it within the container via the Dockerfile, or
add it to the chapter2/ directory that is copied to the container's /home/app directory
and, for development, mounted/bound in the container by replacing /home/app.

We can check to see that the container is running by using the docker ps command:

% docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

54925e51e404 chapter2 "./entrypoint.sh" 2
seconds ago Up 1 second 0.0.0.0:8086->80/tcp
chapter2

We can exit or kill the container by pressing Ctrl + C in the window where we started it
with debug.sh.

When we run the container with the run.sh script, we don't see any output from the
container, not even the Apache warning:

% ./run.sh

1707b1ff84fabed4d9696aadbcd597cee08063eaa7ad22bfe572c922df
43997e

Again, we use docker ps to see that it is running:

% docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

Getting started with Docker 37

1707b1ff84fa chapter2 "./entrypoint.sh" 41
seconds ago Up 39 seconds 0.0.0.0:8086->80/tcp
chapter2

Loading the same URL in the browser, we see that the counter is again 1. Reloading a few
times, we see the counter increments as we designed.

We can restart the container using docker restart. Note that the container was first
instantiated 3 minutes ago, but since we restarted it, the status is Up 1 second:

% docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

1707b1ff84fa chapter2 "./entrypoint.sh"
About a minute ago Up 1 second 0.0.0.0:8086->80/tcp
chapter2

Since the container was only restarted, its filesystem remains intact. Reloading the URL
in our browser, we see that the counter continues to increment. We can stop the container
using docker stop, or the stop.sh script. The docker ps command shows no
containers running. Then we start it up again:

% docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

Now, when we reload in our browser, the counter is reset to 1. This is because we are
writing to the container's filesystem. The filesystem goes away when the container exits.

If we want the counter to persist between container start/restart, we'd have to write it to a
volume that is mounted on the container.

We write to /data/container.txt, so we can do the following:

• Mount our own container.txt on the host to /data/container.txt
on the guest.

• Mount a directory on the host as /data on the guest.

• Have Docker create and maintain a named or anonymous volume for us.

38 Using VirtualBox and Docker Containers for Development

Since the advent of named volumes, they are the better choice. A named volume is created
and maintained using the -v switch to docker run with just the name of the directory
on the guest; for example, -v name:/data. We have a script, persist.sh, designed
to make using the named volume easy.

persist.sh
The persist.sh script does the same thing as the debug.sh script, except that it adds
the -v name:/data switch to the docker run command:

#!/usr/bin/env bash

run container without making it a daemon - useful to see
logging output
we are adding an anonymous volume for /data in the container
so the
counter persists between runs.

docker run \
 --rm \
 -p8086:80 \
 --name="chapter2" \
 -v `pwd`:/home/app \
 -v name:/data \
 chapter2

When we run it and point our browser at http://localhost:8086/~app/index.
php, we see that the counter works, even if we stop and restart the container.

run.sh
The run.sh script runs the container in daemon mode – you won't be able to see the
application's output without using the docker log command. It also does not mount the
host directory as a volume in the container. This simulates the production environment:

#!/usr/bin/env bash

run.sh

run the container in the background
/data is persisted using a named container

Getting started with Docker 39

docker run \
 --detach \
 --rm \

 --restart always \
 -p8086:80 \
 -v name:/data \
 --name="chapter2" \
 chapter2

We are using the docker run command, once again, but with slightly different arguments:

• The –detach flag to Docker Run is what causes the container to run in
the background.

• The named volume is used, so the data is persisted between starting and stopping
the container.

• The development working directory is mounted on /home/app within the container.

• The –restart switch always tells Docker to restart the container when the
system is rebooted. This is handy since you won't have to figure out some way to
automatically start your container(s) when the operating system starts.

The container is only able to run using the files copied to it using the Dockerfile and
build.sh. If you edit files on your host, you will not see the changes within the running
container, as with persist.sh. You will need to run the build.sh script every time
you edit files and want them changed within the container for the purposes of run.sh.

We'll need a way to stop our running container. This is where stop.sh comes in.

stop.sh
The stop.sh script will stop your chapter2 container. This is particularly useful when
you've used the run.sh script to launch your container in the background:

#!/bin/sh

stop.sh

stop running container - typing stop.sh is easier than the
whole docker command

docker stop chapter2

40 Using VirtualBox and Docker Containers for Development

Let's see run.sh and stop.sh in action:

build.sh debug.sh Dockerfile entrypoint.sh install-
virtualbox-macos.sh persist.sh php.conf public_html README.
md run.sh shell.sh stop.sh
 % docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
 % ./run.sh
7d6bc5195a583b3979a2533b50708978d96981d3d9ac59b266055246b6
fad329
 % docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
7d6bc5195a58 chapter2 "./entrypoint.sh" 2
seconds ago Up 1 second 0.0.0.0:8086->80/tcp
chapter2
 % ./stop.sh
chapter2
 % docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
%

The shell.sh script runs the container and starts the Bash shell so that you can use
command-line programs to diagnose issues with the container as it's built:

#!/usr/bin/env bash

shell.sh

This script starts a shell in an already built container.
Sometimes you need to poke around using the shell
to diagnose problems.

stop any existing running container
./stop.sh

fire up the container with shell (/bin/bash)
docker run -it --rm --name chapter2 chapter2 /bin/bash

Summary 41

The following code snippet shows the shell.sh script in action:

% ./shell.sh
Error response from daemon: No such container: chapter2
root@f10092244abe:/home/app# ls -l
total 44
-rw-r--r-- 1 root root 871 Dec 13 10:28 Dockerfile
-rw-r--r-- 1 root root 808 Dec 5 14:56 README.md
-rwxr-xr-x 1 root root 38 Dec 4 12:15 build.sh
-rwxr-xr-x 1 root root 197 Dec 4 16:12 debug.sh
-rwxr-xr-x 1 root root 411 Dec 13 10:28 entrypoint.sh
-rw-r--r-- 1 root root 75 Dec 2 17:31 install-virtualbox-
macos.sh
-rwxr-xr-x 1 root root 315 Dec 13 10:26 persist.sh
-rw-r--r-- 1 root root 860 Dec 4 16:24 php.conf
drwxr-xr-x 1 root root 18 Dec 13 10:27 public_html
-rwxr-xr-x 1 root root 152 Dec 5 13:01 run.sh
-rwxr-xr-x 1 root root 308 Dec 4 17:40 shell.sh
-rwxr-xr-x 1 root root 115 Dec 4 17:41 stop.sh
root@f10092244abe:/home/app# ls -ldg /data
drwxrwxrwx 1 root 0 Dec 13 10:28 /data
root@f10092244abe:/home/app# exit
 %

We can see that /data was created and has world write permissions.

These few sh scripts are enough to get you developing and using your own containers. As
you work with Docker, you'll likely come up with additional scripts of your own! However,
we will see in Chapter 4, Composing Systems Using Containers, a way to work with Docker
without the sh scripts.

Summary
In this chapter, we have learned about how VirtualBox can be used to create virtual
machines on your workstation and how you can use it to run Windows (or Linux or other
operating systems) in a virtual machine. We also learned enough about Docker to use it to
build our first application.

This chapter was written using Windows 10 running within a VirtualBox virtual machine,
running on an Arch Linux host. Microsoft Word was used within Windows, while the
Docker commands and scripts were run and edited on the Arch Linux host.

42 Using VirtualBox and Docker Containers for Development

We demonstrated how we can build a LAMP-style application, without MySQL, and
containerize it. We can mount our source code directory from the host to the container
so that we can edit files and see the changes immediately in the container. We learned how
to persist data, meaning that stopping and starting the container would retain important
files and state.

In the next chapter, we'll explore Docker Hub and build a more complex application that
requires more than one container.

Further reading
• This URL is for the official Docker documentation:

https://docs.docker.com

• This URL is for the Dockerfile reference:
https://docs.docker.com/engine/reference/builder/

• This URL is for the documentation for the Docker ps command:
https://docs.docker.com/engine/reference/commandline/ps/

• This URL is for the documentation pertaining to volumes and storage in Docker:
https://docs.docker.com/storage

• This URL is for the documentation pertaining to the Docker run command:
https://docs.docker.com/engine/reference/run/

• This URL is for the documentation pertaining to the Docker restart command:
https://docs.docker.com/engine/reference/commandline/
restart/

• This URL is for the documentation pertaining to the Docker stop command:
https://docs.docker.com/engine/reference/commandline/stop/

https://docs.docker.com
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/commandline/ps/
https://docs.docker.com/storage
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/commandline/restart/
https://docs.docker.com/engine/reference/commandline/restart/
https://docs.docker.com/engine/reference/commandline/stop/

3
Sharing Containers

Using Docker Hub
In the previous chapter, we learned how to build a container and run it on our workstation
using Docker. We used a Debian image as our starting point, but where did that image
come from? The answer is that it came from Docker Hub. Docker Hub is the official
container image library for Docker, run by the same folk who brought us Docker itself.

The container library contains the official images for numerous programs, servers,
services, and so on that you might install within your own containers. For example, there
are official images for various Linux distributions, versions of Node.js, versions of MySQL
and MongoDB, and so on.

You can think of Docker Hub as being like GitHub. You can explore existing
organizations and pre-made containers, as well as upload your own containers and
create your own organizations.

We will demonstrate how to use the Docker Hub website to search and get information
for third-party containers that you can use in your applications. We will also demonstrate
how to use third-party containers from Docker Hub using the command line. We will use
the official MongoDB container from Docker Hub, which is published by MongoDB, Inc.

http://Node.js

44 Sharing Containers Using Docker Hub

Entire backend applications can be implemented as a combination of multiple Docker
containers working together. This application structure allows each of our custom container
implementations to be simple and minimal. We'll apply microservices architecture to
build a simple application. This demonstrates how containers can work together to create
a complete working application. Lastly, we'll see how you can share your ready-for-
production containers with third parties and your development team using Docker Hub.

In this chapter, we will cover the following topics:

• Introducing Docker Hub

• Implementing a MongoDB container for our application

• Introducing the microservices architecture

• Implementing a sample microservices application

• Sharing your containers on Docker Hub

Technical requirements
The only technical requirements are to have Docker installed on your host, and a browser,
such as Google Chrome, Firefox, or Microsoft Edge. This is one of the best parts of
Docker—you don't have to install the complex servers/services on your host; we install
them in Docker containers.

We have prepared examples that you can use directly without modification in
a public GitHub repository, which can be found at https://github.com/
PacktPublishing/Docker-for-Developers.

Check out the following video to see the Code in Action:

https://bit.ly/2PTADjH

Introducing Docker Hub
You will typically interact with Docker Hub from the command line or in Dockerfiles,
but you can use the Docker Hub website (https://hub.docker.com) to search for
any pre-built containers that you know you want to use. You can also use the website to
discover pre-built containers that might be of interest to you.

In general, you will inherit from some pre-built Docker containers on Docker Hub
to create your own custom containers. For example, you might inherit from a Linux
distribution container and install the software you want for your project within that
inherited/custom container.

https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers
https://bit.ly/2PTADjH
https://hub.docker.com

Introducing Docker Hub 45

When you inherit from the Linux distribution, some of that distribution's base software
packages are installed. If you inherit from a Debian-flavor Linux container, you will be
able to use the apt package manager within the container to install software as if you
were running that Debian-flavor Linux container on a dedicated or virtual machine.

Some pre-built containers inherit from a Linux flavor and provide pre-installed packages
that are specific to the offering. When you inherit from a Node.js container, that Node.js
container might inherit from a Linux distribution container and will have Node.js, npm,
and yarn already installed.

Interacting with Docker Hub from the command line
The easiest way to see Docker Hub and Docker working together is to run the official
hello-world container. The command to run a container from Docker Hub is docker
run name-of-container; we'll type docker run hello-world:

docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:4fe721ccc2e8dc7362278a29dc660d833570ec2682f4e
4194f4ee23e415e1064
Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working
correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the
Docker Hub.

 (amd64)

 3. The Docker daemon created a new container from that image
which runs the

 executable that produces the output you are currently
reading.

 4. The Docker daemon streamed that output to the Docker
client, which sent it

 to your terminal.

http://Node.js
http://Node.js
http://Node.js

46 Sharing Containers Using Docker Hub

To try something more ambitious, you can run an Ubuntu
container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker
ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/

Docker did not find the container in its local container cache, so it automatically
downloaded it and then ran it within the Docker engine. This code in the container is
simple—it just prints the preceding messages.

Note
You can run any container you find on the Docker Hub website in the same
way!

If your output does not resemble the preceding output, you either have an issue with your
Docker installation or the Docker Hub servers are not accessible from your host. One
possible problem may be that your installation of Docker requires you to run the docker
commands as root or an administrator.

The installation instructions can be found at https://docs.docker.com/
install/, while the post-installation instructions for Docker can be found at
https://docs.docker.com/install/linux/linux-postinstall/. These
post-installation instructions explain how to set up Docker so that you can manage it
as a non-root user.

Using the Docker Hub website
Let's go find the hello-world container page in Docker Hub—https://hub.
docker.com/_/hello-world. The page will look something like this:

https://hub.docker.com/
https://docs.docker.com/get-started/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/linux/linux-postinstall/
https://hub.docker.com/_/hello-world
https://hub.docker.com/_/hello-world

Introducing Docker Hub 47

Figure 3.1 – The hello-world image page on Docker Hub

This is typical of what you'll see for most containers shared on Docker Hub. Specific
software packages encapsulated in a container, such as MongoDB, offer official images
for various versions of the software. This allows you to deal with software that depends on
a specific version of a Docker Hub package.

The MongoDB page on Docker Hub is https://hub.docker.com/_/mongo. To find
it, simply type mongodb into the search box at the top of the hello-world (or any other
package) page and select it from the search results page. You can use the search box to find
any shared images for whatever software you might want.

Of interest are the Simple Tags and Shared Tags sections of the page. The various version
images of MongoDB are tagged with simple tags and shared tags.

For example, the 3.4-xenial simple tag means there is an image for version 3.4 of
MongoDB running in an Ubuntu Xenial container.

The 3.4 shared tag means there are images of version 3.4 of MongoDB that run on more
than one host operating system—typically, Windows Server, Linux, or macOS. The
Docker daemon will choose the appropriate image for the host operating system.

https://hub.docker.com/_/mongo

48 Sharing Containers Using Docker Hub

As of the time of writing, there are images for the MongoDB 3.4, 3.6, 4.0, and 4.2 major
versions, as well as minor point versions of these major versions:

Figure 3.2 – Simple tags and shared tags for hello-world

The process for finding the available pre-built third-party containers is the same. You
can search for Redis, for example, and you will get a similar page with details about the
available Redis containers.

Implementing a MongoDB container for our
application
We can explore using pre-built containers from Docker Hub by implementing a
MongoDB container. We'll use this container later as part of a demo application that
is made up of several containers that work together.

Implementing a MongoDB container for our application 49

We will use the official Docker image for MongoDB, found on the Docker Hub website
at https://hub.docker.com/_/mongo. We will create a .sh script to start running
our image within Docker so that the startup process is easy and repeatable.

We learned in Chapter 2, Using VirtualBox and Docker Containers for Development,
that we can expose a container's network ports to the host. That means we can run this
MongoDB container image in Docker and access the running MongoDB server within
that container by accessing the MongoDB port on the host.

In the GitHub repository (https://github.com/PacktPublishing/Docker-
for-Developers) for this book, there is a chapter3/ directory, which is a
companion for this chapter. Within that directory is a shell script, start-mongodb.sh.
This script is a bit more elaborate than the simple ones we used in the previous chapter.
We're going to use environment variables to configure MongoDB, and we're going to use
a directory on the host for MongoDB's data files—this makes backing up the data as easy
as copying those files to back-up media:

#!/bin/bash

start-mongodb.sh

SERVICE=mongodb # name of the service

You can set these in this script (uncomment and edit the
lines) or set them in your .zshrc/.bashrc/etc.

Change this to an EXISTING directory on the HOST where the
mongodb database files will be created #!/bin/bash

start-mongodb.sh

SERVICE=mongodb # name of the service

Change this to an EXISTING directory on the HOST where the
mongodb database files will be created and maintained.

#MONGO_DATADIR="$HOME/data"

Stop any running MongoDB container, remove previous
container, pull newer version

docker stop $SERVICE

docker rm $SERVICE

docker pull mongo:3.4

Now we run it!

docker run …

You do need a Dockerfile to create a container image. However, if you are using a
pre-made container image from Docker Hub that is standalone, such as MongoDB, you
won't need one. The developers at MongoDB use Dockerfiles to generate the images
before uploading them to Docker Hub.

https://hub.docker.com/_/mongo
https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers
http://start-mongodb.sh
http://start-mongodb.sh
http://start-mongodb.sh

50 Sharing Containers Using Docker Hub

In fact, you can see from the Supported tags section of the MongoDB page in
Docker Hub that they produce and support quite a few images, including different
versions—some for Windows OS, some for Linux, and so on. The MongoDB developers
must have quite a few Dockerfiles—one for each image!

We must provide one environment variable to start-mongodb.sh: MONGO_
DATADIR, which is an existing directory on your workstation where you want MongoDB
in the container to store its data files. There are a few ways to set this variable:

• You can add export MONGODB_DATADIR=/path/to/data/dir to your shell
startup file (.zshrc, .bashrc, and so on).

• You can do the export (environment variable) operation by hand in the shell
before running the script.

• You can set the value of the environment variable when using the command line to
run the start-mongodb.sh script:
MONGODB_DATADIR=~/data ./start-mongodb.sh.

• You can uncomment the line that sets MONGO_DATADIR in the start-mongodb.
sh script file and edit it to set it to your desired data directory each time you run the
script.

The last line in the start-mongodb.sh script is a single command line. The backslash
(\) character at the end of the line signifies that the line is being continued or joined with
the next line. This command is the one that starts the container. As you can imagine, if
you had to type in this long command every time to start your MongoDB container, it
would be painful. The .sh script makes it rather painless:

docker run \

 --name $SERVICE \

 -d \

 --restart always \

 -e TITLE=$SERVICE \

 -p 27017:27017 \

 -v "$MONGO_DATADIR":/data/db \

 mongo:3.4

Let's take a look at the different parts of the preceding command:

• The docker run command names the mongodb running container.

• The -d switch runs the container in detached mode. The container will
automatically start when your workstation is rebooted.

http://start-mongodb.sh:
http://start-mongodb.sh
http://start-mongodb.sh
http://start-mongodb.sh
http://start-mongodb.sh
http://start-mongodb.sh

Implementing a MongoDB container for our application 51

• The -e switch allows you to pass environment variables to the container; in this
case, we pass the TITLE=mongodb environment variable. You can have multiple
-e switches if you want to pass more than one variable.

• The -p switch exposes port 27017 in the container to port 27017 on the host. You
can remap an exposed port in the container to a different port number on the host.
You would do this if you have a MongoDB server already running in a container or
on your host. However, Docker provides us the flexibility to always run MongoDB
within a container, so we'll never have to install it on our host.

We might want to install MongoDB client programs on the host so that we can
access MongoDB using the MongoDB REPL/shell. Once port 27017 is exposed
on the host, any program can access the MongoDB database, using it as if it were
running on the host.

• The -v switch maps a directory on the host to the directory in the container where
MongoDB will manage its database and other files.

• We choose to download and run mongo:3.4 (tag/version 3.4) from Docker Hub.

Note
The docker run command only downloads the container from Docker
Hub if it doesn't exist on your workstation yet or if the container image on
Docker Hub is newer.

You can run any container you find on Docker Hub in the same way!

Let's run the script by using the following commands:

mkdir -p ~/mongodb

MONGO_DATADIR=~/mongodb ./start-mongodb.sh

The following output contains a few warnings about not being able to stop an already-
running container named mongodb (this is expected):

mkdir -p ~/mongodb && MONGO_DATADIR=~/mongodb ./start-
mongodb.sh
stopping mongodb
Error response from daemon: No such container: mongodb
removing old mongodb
Error: No such container: mongodb
pulling mongodb
3.4: Pulling from library/mongo
976a760c94fc: Pull complete

http://start-mongodb.sh
http://start-mongodb.sh
http://start-mongodb.sh

52 Sharing Containers Using Docker Hub

c58992f3c37b: Pull complete
0ca0e5e7f12e: Pull complete
…

3757d63ce2b9: Pull complete
Digest: sha256:4c7003e140fc7dce5f12817d510b5a9bd265f2
c3bbd6f81d50a60cc11f6395d9
Status: Downloaded newer image for mongo:3.4
docker.io/library/mongo:3.4
e3854f6931e1aa4b64557d5a54e652653123f84a
544fedf39a5cf68d2ee9d0af
 # docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
e3854f6931e1 mongo:3.4 "docker-entrypoint.s…"
5 seconds ago Up 3 seconds 0.0.0.0:27017->27017/
tcp mongodb
 #

Docker pulled the proper MongoDB image and ran it in the background in the Docker
engine. You can observe the following:

• The MongoDB image consists of several layers that were downloaded (Pull
complete).

• There was already an existing (but older) image on the workstation (Downloaded
newer image…).

• The container is running via the docker ps command.

If the container encounters errors, it may exit and print diagnostic messages in the output.
You can run a shell in the container to perform forensic diagnosis.

Running a shell within a container
Generally, you would run a shell within the container so that you can discover more about
the container's environment. For example, you may have a bug in your Dockerfile—such
as forgetting to copy a file into the container. You can run a shell in the container and list
directories and you will see that the file is missing.

http://docker.io/library/mongo

Implementing a MongoDB container for our application 53

In the case of the MongoDB container, you might want to run the MongoDB client
commands from within the container. The Docker Hub page for the MongoDB container
says we can run the client commands by simply attaching to the running container
(https://hub.docker.com/_/mongo). The command from the MongoDB Docker
Hub page is as follows:

docker exec -it mongodb bash

The different parts of this command are as follows:

• docker exec runs a command in a running container (https://docs.
docker.com/engine/reference/commandline/exec/).

• The -it switches specify that Docker is to run the container interactively—this
means it gets input from the keyboard and sends output to the Terminal window.

Within the container, we can list directories using the ls command:

docker exec -it mongodb bash
root@e3854f6931e1:/# ls
bin data docker-entrypoint-initdb.d etc js-yaml.js lib64
mnt proc run srv tmp var
boot dev entrypoint.sh home lib media
opt root sbin sys usr

We can see that the Docker containers are running using the ps command within the
container:

root@e3854f6931e1:/# ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START
TIME COMMAND
mongodb 1 0.7 0.0 954676 62028 ? Ssl 22:37
0:02 mongod
root 40 2.8 0.0 18240 3248 pts/0 Ss 22:41
0:00 bash
root 51 0.0 0.0 34420 2848 pts/0 R+ 22:41
0:00 ps -aux
root@e3854f6931e1:/#

We can run the command-line MongoDB tools inside the container. We did not have to
install these on our workstation! Here, we run the MongoDB command and then run the
show collections and show databases commands within the Mongo REPL:

root@e3854f6931e1:/# mongo
MongoDB shell version v3.4.23

https://hub.docker.com/_/mongo
https://docs.docker.com/engine/reference/commandline/exec/
https://docs.docker.com/engine/reference/commandline/exec/

54 Sharing Containers Using Docker Hub

connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.4.23
Welcome to the MongoDB shell.
For interactive help, type "help".
For more comprehensive documentation, see
 http://docs.mongodb.org/
Questions? Try the support group
 http://groups.google.com/group/mongodb-user
Server has startup warnings:
2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten]
2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten] **
WARNING: Access control is not enabled for the database.
2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten]
** Read and write access to data and configuration is
unrestricted.
2019-12-13T22:37:12.342+0000 I CONTROL [initandlisten]
> show collections
> show databases
admin 0.000GB
local 0.000GB
>root@e3854f6931e1:/# exit

We're all set to go—MongoDB is running and we were able to use the REPL. The show
collections command returned no collections because we haven't created any. The
show databases command shows that MongoDB has, by default, two databases:
admin and local.

The docker logs command shows us the stdout and stderr output of the container:

docker logs mongodb
2019-12-13T22:37:09.161+0000 I CONTROL [initandlisten]
MongoDB starting : pid=1 port=27017 dbpath=/data/db 64-bit
host=e3854f6931e1
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] db
version v3.4.23
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] git
version: 324017ede1dbb1c9554dd2dceb15f8da3c59d0e8
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] OpenSSL
version: OpenSSL 1.0.2g 1 Mar 2016
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten]
allocator: tcmalloc
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten]
modules: none
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten] build
environment:

Implementing a MongoDB container for our application 55

2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten]
distmod: ubuntu1604
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten]
distarch: x86_64
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten]
target_arch: x86_64
2019-12-13T22:37:09.162+0000 I CONTROL [initandlisten]
options: {}
2019-12-13T22:37:09.165+0000 I STORAGE [initandlisten]
wiredtiger_open config: create,cache_size=31491M,session_
max=20000,eviction=(threads_min=4,threads_m
ax=4),config_base=false,statistics=(fast),log=(enabled=true,
archive=true,path=journal,compressor=snappy),file_
manager=(close_idle_time=100000),checkpoint=(w
ait=60,log_size=2GB),statistics_log=(wait=0),verbose=(recovery_
progress),
2019-12-13T22:37:14.335+0000 I INDEX [initandlisten]
building index using bulk method; build may temporarily use up
to 500 megabytes of RAM
2019-12-13T22:37:14.342+0000 I INDEX [initandlisten] build
index done. scanned 0 total records. 0 secs
2019-12-13T22:37:14.344+0000 I COMMAND [initandlisten] setting
featureCompatibilityVersion to 3.4 (

…

You will likely use the docker logs command to see the debugging output from your
containers.

What we see in our preceding logs is that MongoDB seems to be running just fine within
the container. There are no error messages printed.

You can have the docker logs command follow the log file using the -f command-
line switch. When the command is in follow mode, any new lines written to the log as the
application is running will be appended to the display on the screen.

Up to point, we have explored using Docker to run a complex server application
(MongoDB) without having to install MongoDB on our workstation. Using Docker, we
have access to MongoDB.

We can start MongoDB using our .sh script, and we can also stop it—we can do this at
will so that we don't have to always have MongoDB running in the background.

Now that we know how to run a Docker container, let's have a look at how to work with
multiple containers that work together.

56 Sharing Containers Using Docker Hub

Introducing the microservices architecture
Docker and Docker Hub enable development using the microservices architecture. This
architecture emphasizes building and running containers that focus on a single aspect
of the overall application. When all the containers are running, you have your complete
backend application. The containers can be complex, such as a full-blown database server,
or simple, such as a short shell script. Ideally, the containers you implement for your
application will be simple, short, and focused. Each microservice you write should be
simple to debug since you don't need many lines of code.

Suppose we want to develop a backend application that uses MongoDB and Redis
and whose application code is written using Node.js. We have the option to create a
Dockerfile and start with the MongoDB image. We would then add Redis by installing
it using apt, and then add our program to it as we did with the Debian image in
Chapter 2, Using VirtualBox and Docker Containers for Development. The problem
with creating the application using this method is that when you stop the container for
development reasons, you're also stopping the running MongoDB and Redis servers.

Instead of a monolithic container with everything installed, you can run MongoDB, Redis,
and your custom application containers separately. You can even divide your custom
application into multiple containers. All you need is a mechanism to communicate
between your application containers.

Note
It is far better to avoid using monolithic containers in your design! While it
might seem that a large and complex program such as MongoDB is
a monolithic sort of thing, it's just one dedicated service you can use as
a microservice.

Now that we have a brief understanding of microservices architecture, we can examine
some of the benefits and requirements of containers as microservices.

Scalability
Scalability is almost always a huge consideration for backend implementations. For
example, a simple HTTP/WWW (web page) server can grind to a halt if enough people
are trying to fetch our pages from it at the same time. For this reason, server farms exist
so that you can deploy two or more of these HTTP/WWW servers that duplicate the
functionality of serving our pages. For a two-server farm, you basically get double
the number of people fetching your pages from it than for a single server. As traffic
grows—for example, if the site gains in popularity—you can add a third server, then a
fourth server, and so on. The capability of the backend to serve pages grows as you need it.

http://Node.js

Introducing the microservices architecture 57

In a microservices architecture, we achieve a similar means of scalability. We can run
multiple instances of our MongoDB container to achieve more capacity for database
operations. The only trick is to configure MongoDB as a cluster or as shards and the
application containers to use this database setup.

Inter-container communication
Inter-container communication usually involves some technology that allows messages
to be sent from one container to another and for responses or statuses to be sent in
return. Being able to communicate between running containers can be done via a few
technologies, including the following:

• Sockets

• The filesystem

• Database records

• HTTP

• MQTT

Let's discuss each of them now.

Using sockets
Using sockets is a non-trivial way to communicate between containers. If you have five
containers, you might have five sockets per container to provide communication paths
between them all. As you scale, more sockets need to be created in each container, and
you really want to automate this. There's quite a bit of business logic involved.

Using the filesystem
Using the filesystem involves sharing something such as a network drive among all the
containers. To send a message, a container writes to a file in the filesystem. To receive
a message, the container reads from a file in the filesystem. The receiver needs to poll,
or repeatedly check, the filesystem to detect when the file is written to. This is not ideal
because we don't really want to share a network drive like this—the performance is going
to be on the slow side.

Note
Polling is a programming technique where you continuously check the status of
a machine state (such as whether a file has changed).

58 Sharing Containers Using Docker Hub

Using database records
Using database records is similar to the filesystem method, except the messages to be
sent are simply written to records in the database and the receivers only need to poll the
database records for changes. Some databases provide a notification mechanism to tell
a client (receiver) that the database has changed.

Both filesystem and database schemes require a good amount of business logic and
debugging. You have to consider the order of messages sent and received and avoid
missing a message because an older message is overwritten in the database or filesystem.

Using HTTP
HTTP is a stateless protocol, so you don't have to maintain a mesh of open sockets for
communication. The protocol is well-defined and human-readable (for example, in text).
To send a message, you send an HTTP request to the container you want to communicate
with and wait for the response. You can close or persist the connection (keep it alive) as
the HTTP protocol permits. Additionally, to avoid having to poll for messages or state
change via HTTP, you can use WebSockets.

Using MQTT
MQTT is a well-designed message bus. It works much like IRC or Slack in that you have
rooms (topics) and people in rooms (subscribers). Messages sent to a room (topic) are
received by the people (subscribers). The people (subscribers) can join multiple rooms
(topics) and they receive the messages for those rooms (topics).

For an MQTT application, there must be one MQTT server (broker) container that is
accessible from the other containers. The other containers do not have to know about one
another, only the address of the MQTT broker.

The MQTT broker accepts connections from one or more clients. The clients can
subscribe to one or more topics. The topics are as arbitrary as the channel/room names
are in IRC or Slack; they are typically strings. When a message is sent to the MQTT broker
for a specific topic, the broker sends the message to all the clients who are subscribed to
that topic.

Mosca (https://hub.docker.com/r/matteocollina/mosca) is an MQTT
broker written in JavaScript. You can run it in a container, as you do with MongoDB
or Redis.

https://hub.docker.com/r/matteocollina/mosca

Introducing the microservices architecture 59

There are several other MQTT brokers to choose from, as well—you can find them on
Docker Hub.

HTTP versus MQTT
MQTT is a protocol specifically designed for passing messages of key/value pairs.
Its strength is in its broadcast capability. Each client is responsible for asking for
modifications to values based on the specific keys it cares about. Each client can be
assured that their updates are received by any and all other interested clients. MQTT also
has the capability to retain specific key/value pairs, so when a new client subscribes, it can
be notified of the current key/value pair (the most recently sent one).

MQTT does not provide a request/response protocol, although it is simple to implement
one. The downside of using MQTT for request/response-type transactions is that the
response is not guaranteed to happen as soon as possible.

HTTP requires custom programming to provide the message-passing services that
MQTT provides. You could implement a message bus sort of system that mimics
MQTT's functionality, but that means more programming work for you and additional
maintenance costs down the line. HTTP's strength is that it is a request/response protocol,
so you can typically expect a response right away. The downside is that if the server is
maintaining a set of key/value pairs, you would be required to poll the server from the
clients to see whether the values have changed and post to the server to update the values.
Polling causes the server to burn CPU, even when values haven't changed, and this can
add up in a way that grinds your server to a halt if enough clients are polling frequently
enough. You could use WebSockets, but in the end, you've reinvented MQTT.

HTTP is a good choice if you need more than what MQTT provides. Certainly, HTTP
supports PHP or Node.js (and others) backend services.

It's possible to combine HTTP and MQTT. Use HTTP for request/response-type
transactions and MQTT for state updates.

MQTT is a good choice for our purposes.

The chapter3/ directory in the companion GitHub repository contains a simple
microservices-based backend demonstration application. It uses MongoDB, Redis, and
MQTT, along with some publisher and subscriber applications that you can find in the
GitHub repository for this book (https://github.com/PacktPublishing/
Docker-for-Developers). Later in this chapter, we'll learn how to share our
subscriber and publisher containers via Docker Hub.

http://Node.js
https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers

60 Sharing Containers Using Docker Hub

Implementing a sample microservices
application
We can use the Mosca, MongoDB, and Redis containers, along with a couple of custom
containers, to implement a simple but complete application:

Figure 3.3 – Diagram of our sample microservices application

The publisher and subscriber will communicate with each other using MQTT. The
subscriber will listen for a handful of MQTT topics that direct it to operate on or retrieve
information from the MongoDB and Redis databases. The publisher will send these
MQTT topics and print the responses.

The publisher will be based on Node.js version 11 and the subscriber will be based on
Node.js version 12. Without Docker or a virtual machine, running two Node.js versions
on the same machine concurrently requires the use of Node Version Manager (nvm)
and having multiple versions of Node.js installed on your workstation. Docker containers
make it simple to use as many versions as you need and to package the version, along with
the app that uses it, in a nice package (a container).

The publisher and subscriber apps are in their own publisher/ and subscriber/
subdirectories of chapter3/ in the companion repository. These programs each need
their own Dockerfile so that we can build the two separate containers. They also have
their own helper .sh scripts (debug.sh, run.sh, build.sh, and so on). The
publisher app only needs to have an MQTT library. The subscriber app needs the MQTT
library and a MongoDB library and a Redis library. These libraries will be installed using
npm (the Node.js package manager) within the containers.

http://Node.js
http://Node.js
http://Node.js
http://Node.js
http://debug.sh
http://run.sh
http://build.sh
http://Node.js

Implementing a sample microservices application 61

The publisher and subscriber apps demonstrate how a microservices architecture works,
using multiple Docker containers.

The subscriber connects to the MongoDB and Redis containers using Node.js packages/
libraries, which are installed in the container with npm. The subscriber provides basic
Create, Read, Update, and Delete (CRUD) functions for adding, listing, removing, and
retrieving count of records in each of the MongoDB and Redis databases. The publisher
sends MQTT messages to the subscriber to invoke this functionality.

Our topics are strings that are derived from a pattern: container/command. If we want
to communicate with the subscriber, the pattern is subscriber/command. If we want to
communicate with the publisher, the pattern is publisher/command. This convention
makes it obvious which topics each microservice would want to subscribe or publish to.

The MQTT topics and messages are as follows:

• subscriber/mongo-count: Responds with the count of records in the
MongoDB database.

• subscriber/mongo-add: Adds the message content to the MongoDB database.

• subscriber/mongo-list: Returns a JSON object that contains a list of records
in the MongoDB database. If the message is a non-zero length string, it is used to
filter the list of records returned.

• subscriber/mongo-remove: Removes a record from the MongoDB database.
The message may contain a string or an object (JSON) suitable for passing to
MongoDB's collection.deleteOne() method.

• subscriber/mongo-removeall: Deletes all records from the MongoDB
database.

• subscriber/redis-count: Responds with the count of records in the
Redis database.

• subscriber/redis-flushall: Removes all the records from the
Redis database.

• subscriber/redis-set: Adds a record to the Redis database; the message is
of the key=value form.

• subscriber/redis-list: Lists all the records in the Redis database and
returns a JSON array of records.

• subscriber/redis-del: Deletes a record from the Redis database.

• subscriber/commands: Returns a list of available commands (MQTT topics).

http://Node.js

62 Sharing Containers Using Docker Hub

There are shell scripts in the root of the chapter3/ directory that individually start
Redis (start-redis.sh), MongoDB (start-mongodb.sh), and the Mosca MQTT
broker (start-mosca.sh), as well as a script, start-all.sh that starts all three.

We've already detailed the workings of the start-mongodb.sh script earlier. The
start-redis.sh and start-mosca.sh scripts are roughly the same; just the names
of the programs that are started (Redis and Mosca) are changed.

It is important to note that the start-mongodb.sh script connects the host's port
27017 to the container's port 27017. This is so that other containers can reach
MongoDB via the default port. The start-mosca.sh script connects ports 1883 and
80 to the host so that MQTT and MQTT, over WebSocket, can be used from any of the
containers. The start-redis.sh script connects port 6379 to the host so that Redis
can be accessed from the containers via the default Redis port. Of course, the host can
access any of the containers as well.

The subscriber/start-subscriber.sh and publisher-start-publisher.
sh scripts both run the applications locally on the host, not in containers. This allows
host native debugging functionality, using WebStorm or another IDE or Node.js
debugger. Developing and debugging our publisher and subscriber entirely within
Docker containers is covered in the next chapter.

Note
To use the start-subscriber.sh and start-publisher.sh
scripts, you will need to install Node.js and yarn on your development
workstation. Ensure that you run yarn install in both subscriber/
and publisher/ directories.

This is what start-subscriber.sh looks like:

#!/bin/sh

start-subscriber.sh

yarn start

The start-publisher.sh script is identical to the start-subscriber.sh script.
The package.json file in the publisher directory signals yarn start to launch the
publisher program.

http://start-redis.sh
http://start-mongodb.sh
http://start-mosca.sh
http://start-all.sh
http://start-mongodb.sh
http://start-redis.sh
http://start-mosca.sh
http://start-mongodb.sh
http://start-mosca.sh
http://start-redis.sh
http://publisher-start-publisher.sh
http://publisher-start-publisher.sh
http://Node.js
http://start-subscriber.sh
http://start-publisher.sh
http://Node.js
http://start-subscriber.sh
http://start-subscriber.sh
http://start-publisher.sh
http://start-subscriber.sh

Implementing a sample microservices application 63

The HOSTIP variable must be set to your host machine's IP, available to our publisher and
subscriber, and is used by our Node.js programs to address the MQTT broker, MongoDB
server, and Redis server when connecting.

To find your IP on macOS (assuming you use 192.168.*.* as your home network IP
address range):

ifconfig | grep 192

inet 192.168.0.19 netmask 0xffff0000 broadcast 192.168.255.255

The IP of the host is 192.168.0.19.

To find your IP on Linux, use the following command:

$ ip address | grep 192

inet 192.168.0.21/16 brd 192.168.255.255 scope global dynamic
enp0s31f6

The IP of this host is 192.168.0.21.

You will run the start-publisher.sh script using the following command:

HOSTIP=192.168.0.19 ./start-publisher.sh

To run the start-subscriber.sh script use the following command:

HOSTIP=192.168.0.19 ./start-subscriber.sh

The publisher program is relatively simple. It connects to the MQTT broker and listens for
topics starting with publisher/. The topics and messages received are then converted
into the subscriber/ format topics and published to MQTT. The subscriber responds
with the publisher topic and the response message.

With both the publisher and subscriber running, we use the MQTT command-line tool to
send messages to the publisher. In the following screenshot, you can see how we exercise a
few of the subscriber commands.

64 Sharing Containers Using Docker Hub

These two scripts assume that we have Mosca installed on our host. We don't need to
install it for the MQTT broker, but for the command-line tools. Being able to send MQTT
topics/commands from the command line on the host, in .sh scripts on the host, and in
crontabs on the host is very useful. You can also use Mosca as a library to implement a
broker in your own Node.js code.

Note
For curious readers, the screenshot is of a Terminal window running tmux
with three panes. tmux is a terminal multiplexer: it enables several terminals
to be created, accessed, and controlled from a single screen. The tmux GitHub
repository can be found at https://github.com/tmux/tmux.

In the following screenshot, you can see how we exercise a few of the subscriber
commands:

Figure 3.4 – Three shells demonstrating the publisher and subscriber working together

As we can see, the publisher and subscriber work as expected, as do the database queries
between containers and the host. We can edit and debug the publisher and subscriber
programs to get them working to our satisfaction.

Now that we have these working publisher and subscriber containers, we want to share
them with the rest of the development team.

http://Node.js
https://github.com/tmux/tmux

Sharing your containers on Docker Hub 65

Sharing your containers on Docker Hub
To share our containers, we'll use Docker Hub and publish the two containers. The rest of
the team can pull the pre-built containers from Docker Hub and use them without having
to deal with the source code repository at all. They are just microservices to them, just as
we don't need the source to Mosca, MongoDB, or Redis with those containers.

Of course, the development team is going to have to run them.

We have created an organization on Docker Hub, dockerfordevelopers, which we
will use to publish the containers for this book. You won't be able to push to it, but we can.
In order to publish to Docker Hub, you will need to use the docker login command,
and you must have already created an account on https://hub.docker.com/.

You can also create your own organization on Docker Hub where you can share your
own containers. If you want to use the examples in the GitHub repository for this chapter,
you will have to edit the scripts to replace dockerfordevelopers with your own
organization name.

Since we are creating our own custom containers, we will need some .sh scripts for
each container, as explained in the previous chapter. There are a set of .sh scripts for the
publisher and the subscriber.

The Dockerfile used to build the container for the publisher is almost identical to the one
used in the previous chapter:

we will inherit from the NodeJS v12 image on Docker Hub

FROM node:12

set time zone so files' timestamps are correct

ENV TZ=America/Los_Angeles

we include procps and telnet so you can use these with
shell.sh prompt

RUN apt-get update -qq >/dev/null && apt-get install -y -qq
curl procps telnet >/dev/null

add a user - this user will own the files in /home/app

RUN useradd --user-group --create-home --shell /bin/false app

set up and copy files to /home/app

ENV HOME=/usr/app

WORKDIR /home/app

COPY . /home/app

install our NodeJS packages (from package.json)

https://hub.docker.com/
http://shell.sh

66 Sharing Containers Using Docker Hub

RUN yarn install

we run a script to stat the server; the array syntax makes it
so ^C will work as we want

CMD ["yarn", "start"]

The major difference in this Dockerfile and the one in the previous chapter is that we are
not installing Apache and PHP, but we are inheriting from node:12 and installing our
Node.js program's required packages.

We are inheriting from node:12 in this Dockerfile for the publisher. The Dockerfile for
the subscriber is identical, except that it inherits from node:13. This illustrates how you
can have containers with different base software versions on the same host; this would be
unpleasant to deal with on a host without containers.

Note
The node:12 and node:13 containers are pulled from Docker Hub and
updated each time we build the containers.

The following is the build.sh script that is used to build the publisher:

#!/bin/sh

build.sh

we use the "docker build" command to build a container named
"dockerfordevelopers/publisher" from . (current directory)

Dockerfile is found in the current directory, and determines
how the container is built.

docker build -t dockerfordevelopers/publisher .

The build.sh script is very short and only really consists of the line, a single
command. It is easier to type ./build.sh instead of the whole docker build -t
dockerfordevelopers/publisher . command. This also makes the process less
error-prone and you don't have to memorize the command-line switches and format.

There is a nearly identical build.sh script for the subscriber, too. Only the name of the
container built is different: dockerfordevelopers/subscriber.

http://Node.js
http://build.sh
http://build.sh
http://build.sh
http://build.sh
http://build.sh

Sharing your containers on Docker Hub 67

The output of the build.sh script for the publisher is as follows:

./build.sh

Sending build context to Docker daemon 4.902MB

Step 1/9 : FROM node:12

Step 2/9 : ENV TZ=America/Los_Angeles

Step 3/9 : RUN apt-get update -qq >/dev/null && apt-get install
-y -qq curl procps telnet >/dev/null

Step 4/9 : RUN useradd --user-group --create-home --shell /bin/
false app

Step 5/9 : ENV HOME=/usr/app

Step 6/9 : WORKDIR /home/app

Step 7/9 : COPY . /home/app

Step 8/9 : RUN yarn install

yarn install v1.16.0

[1/4] Resolving packages...

[2/4] Fetching packages...

[3/4] Linking dependencies...

[4/4] Building fresh packages...

Done in 1.55s.

Step 9/9 : CMD ["yarn", "start"]

 ---> Running in f882d870bc6a

Removing intermediate container f882d870bc6a

 ---> b8f9439e36fa

Successfully built b8f9439e36fa

Successfully tagged dockerfordevelopers/publisher:latest

You can see that the 1/9, 2/9, 3/9, and so on steps map one to one to the lines in our
Dockerfile. The first line in our Dockerfile reads From Node:12 and the Step 1/1 line
reads From Node:12. Similarly, Step 2/2 is the second line in the Dockerfile. The
build process follows the Dockerfile as a series of steps to build the final container image.

The last line in the output tells us that the name of the container is
dockerfordevelopers/publisher:latest. We use this name to push our build
container to Docker Hub.

http://build.sh

68 Sharing Containers Using Docker Hub

We use the push.sh script to perform the commands to push the publisher container to
the organization on Docker Hub:

#!/bin/sh

push.sh

docker push dockerfordevelopers/publisher

This is another one-line .sh script for our convenience.

The following is the output of the push.sh script for the publisher:

./push.sh

The push refers to repository [docker.io/dockerfordevelopers/
publisher]

9502c45a0d0e: Pushed

79b7f0047832: Pushed

bca5484440a2: Pushed

…

6a335755bda7: Pushed

latest: digest: sha256:e408ae01416511ad8451c31e532e3c2c6eb3324
ad43834a966ff161f9062e9ad size: 3056

#

We have a sort of template or pattern for working with custom containers in our
microservices architecture project:

1. We edit and debug the code for our container.

2. We run the build.sh script to build a container image.

3. We run the push.sh script to push the container to Docker Hub.

Your fellow developers can now run the publisher image. This is run on a second machine,
such as a developer's workstation:

docker run --rm dockerfordevelopers/publisher

Unable to find image 'dockerfordevelopers/publisher:latest'
locally

latest: Pulling from dockerfordevelopers/publisher

c5e155d5a1d1: Pull complete

221d80d00ae9: Pull complete

http://push.sh
http://push.sh
http://push.sh
http://push.sh
http://docker.io/dockerfordevelopers/publisher
http://docker.io/dockerfordevelopers/publisher
http://build.sh
http://push.sh

Summary 69

4250b3117dca: Pull complete

69df12c70287: Pull complete

…

Digest: sha256:e408ae01416511ad8451c31e532e3c2c6eb3324ad
43834a966ff161f9062e9ad

Status: Downloaded newer image for dockerfordevelopers/
publisher:latest

yarn run v1.16.0

$ node ./index.js

Of course, on this second machine, the developer has installed and run the required
microservices: Mosca, MongoDB, and Redis. The application will not run without all the
microservices running within Docker.

Pushing to Docker Hub on your development host and pulling from Docker Hub on
a production host is a simple way to deploy containers for production. It is not very
robust, however. We will cover better schemes for deployment in later chapters.

Summary
In this chapter, we learned how to break up an application that would normally be
run in a virtual machine with multiple services (MongoDB, Redis, and Mosca) into a
microservices-based architecture run as containers within Docker.

We learned how to navigate the Docker Hub website and find useful pre-made Docker
containers that you simply download and run.

We also learned how to package our own microservices as Docker containers and how
we can push them to Docker Hub for the public or development team members to use.

Several containers were used to launch the complete application as microservices
communicated through ports mapped to the host's ports. This is not ideal, especially if
you already have a WWW server running on port 80; Mosca uses port 80, too.

In the next chapter, we will discuss how we can use the Docker Compose tool to design
complete microservice architecture applications and run them so that they have a private
internal network and so host ports are not required.

http://index.js

70 Sharing Containers Using Docker Hub

Further reading
You can refer to the following links for more information on the topics covered in
this chapter:

• The official Docker documentation: https://docs.docker.com

• The Dockerfile reference: https://docs.docker.com/engine/
reference/builder/

• The Docker Hub site: https://hub.docker.com/

• The documentation for Docker Hub: https://docs.docker.com/docker-
hub/

• The documentation for the Node.js containers on Docker Hub: https://hub.
docker.com/_/node

• The documentation for the Redis containers on Docker Hub: https://hub.
docker.com/_/redis

• The documentation for the MongoDB containers on Docker Hub: https://hub.
docker.com/_/mongo

• The documentation for the Mosca containers on Docker Hub: https://hub.
docker.com/r/matteocollina/mosca

https://docs.docker.com
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://hub.docker.com/_/node
https://hub.docker.com/_/node
https://hub.docker.com/_/redis
https://hub.docker.com/_/redis
https://hub.docker.com/_/mongo
https://hub.docker.com/_/mongo
https://hub.docker.com/r/matteocollina/mosca
https://hub.docker.com/r/matteocollina/mosca

4
Composing Systems

Using Containers
In the previous chapter, we created a server-side application using microservices
architecture. The application was made up of five separate containers: three official
images and two custom images. The official images were for MongoDB, Redis, and
Mosca (MQTT).

For the most part, communication between containers is done via MQTT message
passing. The subscriber container carries out the database Create, Read, Update, and
Delete (CRUD) operations via the Node.js API for MongoDB and Redis. All of the
relevant network ports are exposed on the development host, enabling the subscriber
program to access the database servers at localhost (127.0.0.1) and both
subscriber and publisher programs to access Mosca/MQTT at localhost, too.

In this chapter, we are going to discuss composing systems—specifically, Docker
Compose. We are also going to learn how to keep network access private so that services
can be accessed from within our containers but not be accessible from the host. We
will learn how we can share volumes in the filesystem between containers. There are
alternatives to Docker Compose, and we will look at some of them.

http://Node.js

72 Composing Systems Using Containers

We will cover the following topics in this chapter:

• Introduction to Docker Compose

• Using Docker local networking

• Local volumes

• Other composition tools

To recap, we have three official image containers for MongoDB, Mosca, and Redis.
We have an additional two containers created for this book—publisher and subscriber
microservices.

The publisher microservice has been modified to present a form in a web browser. The
fields in the form and the submit buttons allow us to exercise the various operations
supported by the subscriber microservice:

Figure 4.1 – The form generated by our updated publisher program

You can choose which database to perform CRUD operations on. You can also set a value
that is to be used for the List, Count, Add, and Remove operations. There is a button for
each of the CRUD operations, as well as a Flush button, which removes all the records
from the selected database. The return value/result of the operation is shown beneath the
form under the Result heading.

Technical requirements
The prerequisite software for this chapter includes Docker, Docker Compose (see
https://docs.docker.com/compose/install/), Git, and a web browser, such
as Google Chrome or Safari.

The Docker and Docker Compose documentation use the term service, whereas we use
the term microservice. For the purposes of this chapter, the terms are interchangeable.

https://docs.docker.com/compose/install/

Introduction to Docker Compose 73

In the GitHub repository (https://github.com/PacktPublishing/Docker-
for-Developers), there is a chapter4/ directory that accompanies this chapter.
It contains a modified version of the microservices architecture code used in the
previous chapter.

Check out the following video to see the Code in Action:

https://bit.ly/3iRWqoH

Introduction to Docker Compose
A composing system for containers is a tool that allows us to describe the whole
microservices architecture program in a configuration file and then perform operations
on the system described. Docker Compose is one such tool. Before we get into what
Docker Compose is and does, let's look at the reason why we need a tool like this.

The problem with .sh scripts
So far, we've been using .sh scripts to make working with our microservices application
easy. We have used the following scripts:

• start-mongodb.sh

• start-redis.sh

• start-mosca.sh

• subscriber/start-subscriber.sh

• publisher/start-publisher.sh

• subscriber/build.sh

• publisher/build.sh

• subscriber/push.sh

• publisher/push.sh

Instead of having to invoke each of these as separate commands, we can make a single
start-all.sh script that invokes them all:

#!/bin/sh

./start-mosca.sh

./start-mongodb.sh

./start-redis.sh

https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers
https://bit.ly/3iRWqoH
http://start-mongodb.sh
http://start-redis.sh
http://start-mosca.sh
http://start-subscriber.sh
http://start-publisher.sh
http://build.sh
http://build.sh
http://push.sh
http://push.sh
http://start-all.sh
http://start-mosca.sh
http://start-mongodb.sh
http://start-redis.sh

74 Composing Systems Using Containers

cd subscriber && ./start-subscriber.sh & cd ..

cd publisher && ./start-publisher.sh & cd ..

Note
The start-all.sh script is presented for informational purposes. We will
not be using it going forward!

This approach works, but the information about what ports are open and other
container-specific access information is hidden within those .sh scripts. For example,
the mongodb.sh script starts MongoDB and binds port 27017 of the container to port
27017 of the host.

Making changes to the configuration may require editing each of those .sh scripts, and
maybe even the start-all.sh script itself, as well as its counterpart, stop-sll.sh.
We have several additional scripts as well for building and publishing the containers and
to perform other housekeeping tasks. This approach is both inconvenient and error-prone.

The Docker Compose tool solves most of the issues with .sh scripts, although we might
still want to use .sh scripts to invoke the docker-compose command with its various
command-line arguments.

Docker Compose configuration files
Configuration for Docker Compose is done via .yml files, the contents of which are
YAML. YAML is a markup language that allows data serialization. It is similar to JSON
format but is much more human-friendly in its syntax.

A file named docker-compose.yml is Docker Compose's default configuration file.
You may have multiple configuration files, and you can tell Docker Compose which
configuration files to use via a command-line switch.

Let's look at the docker-compose-example.yml file in the chapter4/ directory in
the repository. The Docker Compose tool can replace the shell script methodology we've
used so far:

Example Docker Compose file for our chapter 4 application

version: '3'

services:

Docker Compose supports different versions of the docker-compose.yml format. Newer
versions have higher version numbers and add additional docker-compose features. In the
services section, we describe each of the containers that are to be built and run.

http://start-subscriber.sh
http://start-publisher.sh
http://start-all.sh
http://mongodb.sh
http://start-all.sh
http://stop-sll.sh

Introduction to Docker Compose 75

We have our redis container under the services section. The image field specifies
that we will be using the redis image from Docker Hub. We persist the database in /
tmp/redis so that the data is not lost when the container is stopped and restarted:

 redis:

 image: redis

 volumes:

 - /tmp/redis:/data

 ports:

 - 6379:6379

We expose port 6379, the default Redis port, on the host. Exposing this port allows the
host and other containers to access the Redis server.

After Redis, we have our MongoDB container. We are going to use the mongo image
from Docker Hub. We persist the data in the host's /tmp/mongo directory so that the
database's contents are retained between stopping and restarting the container:

 mongodb:

 image: mongo

 volumes:

 - /tmp/mongo:/data/db

 ports:

 - 27017:27017

The default TCP port for MongoDB is 27017, and we expose it to map port 27017 in
the container to port 27017 on the host. Tools on the host and within our containers can
access MongoDB via localhost, and we don't need to specify a port on the command
lines since the default is configured.

Next is the Mosca container. We are using the matteocollina/mosca image from
Docker Hub. We set the /db volume in the container to /tmp/mosca on the host to
persist Mosca's state:

 mosca:

 image: matteocollina/mosca

 volumes:

 - /tmp/mosca:/db

 ports:

 - 1883:1883

 - 80:80

76 Composing Systems Using Containers

We expose ports 1883 and 80 as the same ports on the host. Port 1883 is the default
MQTT port. Port 80 is provided to support MQTT over WebSocket, so you can use
MQTT in JavaScript programs in the browser.

In our publisher container, the build: line tells docker-compose that we need
to build the container specified in the publisher/ directory. The Dockerfile in the
publisher directory is used to define how the container is to be built:

 publisher:

 build: publisher

 environment:

 - MQTT_HOST=${HOSTIP}

 - REDIS_HOST=${HOSTIP}

 - MONGO_HOST=${HOSTIP}

 ports:

 - 3000:3000

We expose port 3000 so that we can access the web server that is running in the container
using a web browser on the host.

In our subscriber container, the build: line tells docker-compose that we need
to build the container specified in the subscriber/ directory. The Dockerfile in the
subscriber directory is used to define how the container is to be built:

 subscriber:

 build: subscriber

 environment:

 - MQTT_HOST=${HOSTIP}

 - REDIS_HOST=${HOSTIP}

 - MONGO_HOST=${HOSTIP}

We don't expose anything—the subscriber performs all of its I/O operations via direct
API calls for MongoDB and Redis, as well as accepting commands and reporting status
via MQTT.

Some things to note are as follows:

• All the containers are described neatly within the single configuration file.

• The containers still expose the same ports on the host as with the .sh scripts.

Introduction to Docker Compose 77

• The containers must still find the database and MQTT broker containers via the
HOSTIP environment variable. This variable must still be set as explained in the
previous chapter.

To use our docker-compose-example.yml script to bring up all five microservices,
we use the docker-compose up command. The -f switch tells docker-compose
which Docker Compose .yml file to use:

% docker-compose -f docker-compose-example.yml up

By default, docker-compose runs all the containers in the configuration file in debug
mode. They will print their output to the Terminal/console in the order that the lines are
printed. You may see lines printed by the subscriber, then lines printed by the publisher,
then lines printed by subscriber again. If you hit Ctrl + C, it will terminate all of the
containers and return you to Command Prompt.

If you want the containers to run in detached or daemon mode, use the -d switch:

% docker-compose -f docker-compose-example.yml up -d

In detached or daemon mode, the containers will not print output to the Terminal/console
and you will be returned to the prompt right away.

To stop all five microservices, we use a similar docker-compose command:

% docker-compose -f docker-compose-example.yml down

If we do not specify the Docker Compose configuration file to use (-f docker-
compose-example.yml), then the docker-compose command will look for and use
a file named docker-compose.yml instead.

The docker-compose up/down commands allow us to start and stop one or more of
our services as well. For example, we can start only the mongodb and redis containers:

% docker-compose -f docker-compose-example.yml up mongodb redis

The existing mongodb and/or redis containers will be stopped and new ones started. It
is up to your programs to detect whether the connections to these services were stopped
and to handle the error accordingly.

We can build any or all of our services using docker-compose:

% docker-compose -f docker-compose-example.yml build publisher

This command builds our publisher container but does not start any containers.

78 Composing Systems Using Containers

The key takeaway from the ability to specify none (none means all) or one or more of
our containers (by name) replaces several of our old .sh scripts. We don't need start
scripts anymore because we can use docker-compose up; we don't need stop scripts
because we can use docker-compose down; we don't need build scripts because
we can use docker-compose build; and more! See https://docs.docker.
com/compose/reference/ for details on other docker-compose command
functionality.

We are likely to have different setups for development and production, if not additional
scenarios. With .sh scripts, we have a debug.sh and run.sh script for development
and production. The problem with this .sh file scheme is that we have almost identical
docker run commands in each, with only minor differences.

Docker Compose has an inheritance feature where multiple configuration files can be
specified on the docker-compose command line.

Inheritance using multiple configuration files
We can implement a base docker-compose.yml file and then override the settings in
that file with our own override configuration files. This feature is called inheritance—we
will inherit the base settings from the docker-compose file and override the settings for
our purposes.

Docker Compose starts with the first configuration file on the command line, then merges
the second one into it, then merges the third (if there is one), and so on. To merge means
to apply settings in the second (or third) configuration file to the current state of the
configuration, which will ultimately be used. Any settings in the second configuration file
will replace the ones in the first configuration file, if they exist, or will add new services or
settings if they don't already exist.

Let's look at the docker-compose.yml base file, which we'll use from now on:

version: '3'

services:

 redis:

 image: redis

 mongodb:

 image: mongo

 volumes:

 - /tmp/mongo:/data/db

 mosca:

 image: matteocollina/mosca

https://docs.docker.com/compose/reference/
https://docs.docker.com/compose/reference/
http://debug.sh
http://run.sh

Introduction to Docker Compose 79

 volumes:

 - /tmp/mosca:/db

 publisher:

 build: publisher

 depends_on:

 - "mosca"

 - "subscriber"

 subscriber:

 build: subscriber

 depends_on:

 - "redis"

 - "mongodb"

 - "mosca"

This looks like the docker-compose-example.yml file from the previous section,
but you may notice a couple of differences:

• There are two depends_on options—one for the publisher and one for the
subscriber.

• We are no longer exposing or binding the container's ports to the host's ports.

Let's take a look at them in detail in the following sections.

The depends_on option
The depends_on option allows us to control the start-up order of the containers (refer
to https://docs.docker.com/compose/startup-order/). Additionally,
depends_on expresses an interdependency between containers. Refer to https://
docs.docker.com/compose/compose-file/#depends-on#depends_on for
more information about the depends_on option.

Service dependencies cause the following behaviors:

• docker-compose up starts services in dependency order. In our example,
redis, mongo, and the mosca services are started before the subscriber
container, and both mosca and subscriber are started before publisher.

• docker-compose up SERVICE automatically includes dependencies under
SERVICE.

https://docs.docker.com/compose/startup-order/

80 Composing Systems Using Containers

docker-compose stop stops services in dependency order (mosca, then mongodb,
then redis in our docker-compose.yml file).

The order in which the services are started is important because if we start publisher
before mosca is running, the logic to connect to the MQTT broker in the publisher
program will fail. Similarly, starting subscriber before the database and MQTT broker
services would likely cause the logic in subscriber to connect to the databases and the
MQTT broker to fail. It doesn't make sense to start publisher before subscriber is
running because anything publisher sends via MQTT will fall on deaf ears, so to speak.

Even though a container has started, there is no guarantee that the container's program
will have completed its initialization by the time the microservices that use them try to
connect. In our publisher and subscriber code, we created a wait_for_services()
method that ensures that we can connect to the services only when they are up and ready.

We call wait_for_services() first thing in our publisher and subscriber programs
to ensure we have waited just long enough for the dependent services to be up and ready.

The wait_for_services() method in publisher/index.js is as follows:

/**

 * wait_for_services

 *

 * This method is called at startup to wait for any dependent
containers to be running.

 */

const waitOn = require("wait-on"),

 wait_for_services = async () => {

 try {

 await waitOn({ resources: [`tcp:${mqtt_host}:${mqtt_port}`]
});

 } catch (e) {

 debug("waitOn exception", e.stack);

 }

};

Our publisher microservice only connects to the MQTT broker, so the
wait_for_services() method only waits for our MQTT broker's TCP port
to be accessible.

http://index.js

Introduction to Docker Compose 81

The wait_for_services() method in subscriber/index.js is a bit
more complicated:

/**

 * wait_for_services

 *

 * This method is called at startup to wait for any dependent
containers to be running.

 */

const waitOn = require("wait-on"),

 wait_for_services = async () => {

 try {

 debug(`waiting for mqtt (${mqtt_host}:${mqtt_port})`);

 await waitOn({ resources: [`tcp:${mqtt_host}:${mqtt_port}`]
});

 debug(`waiting for redis (${redis_host}:${redis_port})`);

 await waitOn({ resources: [`tcp:${redis_host}:${redis_
port}`] });

 debug(`waiting for mongo (${mongo_host}:${mongo_port})`);

 await waitOn({ resources: [`tcp:${mongo_host}:${mongo_
port}`] });

 } catch (e) {

 debug("***** exception ", e.stack);

 }

};

The subscriber microservice needs to connect to the MQTT broker, the redis server,
and the mongo server. We wait for the TCP ports of those servers to be accessible.

There are other ways to wait for services to be available that involve installing command-
line programs/scripts in the container and running them before starting our publisher
or subscriber service. For example, you might use this handy wait-for-it.sh script,
which can be found at https://github.com/vishnubob/wait-for-it.

The lack of options in the docker-compose.yml file to expose container ports is not
an oversight. We are fully able to specify those options in an override file that can provide
options to existing containers.

http://index.js
http://wait-for-it.sh
https://github.com/vishnubob/wait-for-it

82 Composing Systems Using Containers

Adding port bindings using overrides
In the chapter4/ directory in the code repository, we have a docker-compose-
simple.yml file that is an example of an override file:

version: '3'

services:

 redis:

 ports:

 - 6379:6379

 mongodb:

 ports:

 - 27017:27017

 mosca:

 ports:

 - 1883:1883

 - 80:80

 publisher:

 environment:

 - MQTT_HOST=${HOSTIP}

 - REDIS_HOST=${HOSTIP}

 - MONGO_HOST=${HOSTIP}

 ports:

 - 3000:3000

 subscriber:

 environment:

 - MQTT_HOST=${HOSTIP}

 - REDIS_HOST=${HOSTIP}

 - MONGO_HOST=${HOSTIP}

Here, we specify the ports for each container. We are inheriting the options from
our docker-compose.yml file and adding options to expose the ports for each
of our containers.

We don't expose any ports for the subscriber microservice because it never exposes
any ports to the host's ports.

We also define three environment variables to be used by the publisher and subscriber
containers to access the MQTT_HOST (mosca), REDIS_HOST (redis), and MONGO_
HOST (mongodb) services.

Introduction to Docker Compose 83

The docker-compose command to bring up our services using the two configuration
files (inheritance) is as follows:

% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f
docker-compose-simple.yml up

Since we are not using the -d switch, our containers are not detached but print their
console/debug output to the Terminal. You cannot enter more commands until you hit
Ctrl+ C. Doing this will stop all the containers in reverse depends_on order and return
you to Command Prompt:

% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f
docker-compose-simply.yml up -d

Adding the -d switch causes all the containers to be started in daemon mode. They run
in the background and you immediately get a command-line prompt. No further output
is sent to the Terminal.

If containers are running in daemon mode, you can stop them using the docker-
compose down command:

% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f
docker-compose-simple.yml down

We can use three or more configuration files as well. Each additional file specified on the
command line further extends the containers and options specified within.

What we have so far is effectively a production that is set up using inheritance. Debugging
using this is particularly painful because your only means of diagnosing errors is to add
debug() calls to the publisher and/or subscriber, then rebuilding the container(s), and
then rerunning the whole application.

To improve our development and debugging cycles, we can bind/mount our
publisher/ and subscriber/ directories to the /home/app directory in the
containers. The Dockerfiles for both containers use the nodemon (https://nodemon.
io/) utility to start the application within the container.

The nodemon utility does a bit more than just starting our program:

• It also monitors the state of the program, and if it stops, nodemon will restart it.
This is useful because our Node.js programs might detect an error from which they
cannot easily be recovered, so they just exit and allow nodemon to restart them.

• For development, nodemon also monitors the timestamps of the files in the code
directory and will restart the program if any of the files change.

https://nodemon.io/
https://nodemon.io/
http://Node.js

84 Composing Systems Using Containers

Since we can bind/mount our source code directly in the container, any changes we
make to the files using our editor or IDE on the host will immediately affect the changes
in the container.

We can create a docker-compose-simple-dev.yml file, which adds our bind/
mounts to publisher and subscriber:

version: '3'

services:

 publisher:

 volumes:

 - ./publisher:/home/app

 subscriber:

 volumes:

 - ./subscriber:/home/app

We run this using the docker-compose up command:

% HOSTIP=192.168.0.21 docker-compose -f docker-compose.yml -f
docker-compose-simple.yml -f dockercompose-simple-dev.yml up -d

If we edit, say, the publisher/index.js file on the host, we can see that nodemon
sees the change and restarts the publisher program:

publisher_1 | [nodemon] restarting due to changes...

publisher_1 | [nodemon] starting `node ./index.js`

publisher_1 | 2020-03-30T18:03:39.537Z publisher publisher
microservice, about to wait for MQTT host(192.168.0.21, 1883

publisher_1 | 2020-03-30T18:03:39.546Z publisher ---> wait
succeeded

publisher_1 | 2020-03-30T18:03:39.587Z publisher publisher
connecting to MQTT mqtt://192.168.0.21

publisher_1 | 2020-03-30T18:03:39.591Z publisher connected to
192.168.0.21 port 1883

publisher_1 | 2020-03-30T18:03:39.638Z publisher listening on
port 3000

http://index.js
http://index.js
mqtt://192.168.0.21

Using Docker local networking 85

We now have a good handle on docker-compose, but we are binding ports from our
containers to the host's ports. This is problematic if you have a container that wants to
bind to port 80 on the host but the host is running a web server or another container for
another project that also wants to bind to port 80.

Fortunately, Docker provides a facility to only expose our ports to our containers!

Using Docker local networking
Both Docker and Docker Compose have command-line options to specify a Docker
local network that the application will use. Using this Docker local network allows our
containers to access another container's ports without having to bind/expose these ports
to the host's ports.

Networking using .sh scripts
You use the docker network create command to create a named network that your
containers can use to privately communicate with one another. You can have as many of
these private networks defined as you like—you might want to work on multiple unrelated
projects simultaneously and each needs its own network:

% docker network create chapter4

This command creates a network named chapter4 that we can use for our microservices
example programs. We can destroy networks we have created using the docker
network rm command:

% docker network rm chapter4

This command removes our chapter4 network from the system.

The start-mongodb.sh, start-redis.sh, start-mosca.sh, publisher/
run.sh, and subscriber/run.sh scripts are used by the up.sh script to bring up
our application's containers using the docker run command.

Let's examine our up.sh script:

#!/bin/sh

./stop-all.sh

We run the docker network create command to create our chapter4 network:

docker network create chapter4

http://start-mongodb.sh
http://start-redis.sh
http://start-mosca.sh
http://run.sh
http://run.sh
http://up.sh
http://up.sh
http://stop-all.sh

86 Composing Systems Using Containers

We start our three servers:

./start-mosca.sh

./start-mongodb.sh

We also run ./start-redis.sh:

SUBSCRIBER

cd subscriber

./run.sh

Finally, we start the publisher:

PUBLISHER

publisher needs to expose port 3000

so we can access the WWW interface

cd ../publisher

./run.sh

The start-mongodb.sh and start-redis.sh scripts are roughly the same as the
start-mosca.sh script. The relevant lines in the start-mosca.sh script are the
ones for the docker run command:

docker run \

 --name $SERVICE \

 -d \

 --restart always \

 -e TITLE=$SERVICE \

 --network chapter4 \

 -v /tmp/mosca:/db \

 matteocollina/mosca

Only the service name, which third-party/Docker Hub container to use, and any
container to host directory bindings are specific to mongodb, mosca, or redis. They all
share the chapter4 network.

The docker run command in the subscriber/run.sh script looks as follows:

docker run \

 --name $SERVICE \

 -d \

http://start-mosca.sh
http://start-mongodb.sh
http://start-redis.sh:
http://run.sh
http://run.sh
http://start-mongodb.sh
http://start-redis.sh
http://start-mosca.sh
http://start-mosca.sh
http://run.sh

Using Docker local networking 87

 --restart always \

 -e TITLE=$SERVICE \

 --network chapter4 \

 dockerfordevelopers/$SERVICE

We are no longer defining the HOSTIP environment variable because the Docker local
networking system provides a DNS function that allows the programs in our containers
to look up the other containers by name. The name is the name of the container, which is
specified in the docker run commands scripts with the –name command-line option.

The relevant lines in subscriber/index.js are as follows:

const debug = require("debug")("subscriber"),

 mongo_host = process.env.MONGO_HOST || "mongodb",

 mongo_port = 27017,

 mongoUrl = `mongodb://${mongo_host}:${mongo_port}`,

 mqtt_host = process.env.MQTT_HOST || "mosca",

 mqtt_port = 1883,

 mqttUrl = `mqtt://${mqtt_host}`,

 redis_host = process.env.REDIS_HOST || "redis",

 redis_port = 6379,

 redisUrl = `redis://${redis_host}`;

The code is designed to accept the MONGO_HOST environment variable; otherwise, it will
use the mongodb container name. The same is the case for MQTT_HOST/mosca and
REDIS_HOST/redis.

Note
We have been defining the HOSTIP, MONGO_HOST, MQTT_HOST, and
REDIS_HOST environment variables, especially in the .sh script examples.
Since we've been naming our containers using the --name switch on our
docker run commands, Docker's local DNS will work with .sh scripts.
That is, we don't need to define those environment variables if we name our
containers. We still need to bind container ports to the host's ports, unless we
also add the --network switch and docker network create to the
Docker local network.

http://index.js

88 Composing Systems Using Containers

The down.sh script stops all the containers and removes the chapter4 network:

#!/bin/sh

docker stop publisher

docker stop subscriber

docker stop redis

docker stop mongodb

docker stop mosca

docker network rm chapter4

We can use these .sh scripts, but we've already learned that Docker Compose is the
superior method for managing our microservices.

Networking with Docker Compose
The docker-compose.yml configuration file that we created is still enough to use
as the base for using the docker-compose commands to manage our containers.
However, we no longer need to expose or bind container ports to the host's ports; the only
exception is we'll continue to bind port 3000 so that we can access the publisher web
pages using our browser on the host. The base docker-compose.yml file does not bind
port 3000, so we will continue to bind ports using the override file.

By default, if you specify no configuration files on the command line, docker-compose
looks for docker-compose.yml and uses it, and then looks for docker-compose.
override.yml and uses that.

If you need to specify a third configuration file, you must use the -f command-line switch
for each configuration file.

Our docker-compose.override.yml file handles our production case:

version: '3'

services:

 redis:

 networks:

 - chapter4

 mongodb:

 networks:

 - chapter4

 mosca:

 networks:

http://down.sh

Binding a host filesystem within containers 89

 - chapter4

 publisher:

 ports:

 - 3000:3000

 networks:

 - chapter4

 subscriber:

 networks:

 - chapter4

networks:

 chapter4:

This file adds the chapter4 network, assigns it to each of the containers, and binds port
3000 in the publisher container to port 3000 on the host.

All we need to do to use docker-compose.yml and docker-compose.override.
yml is run a simple docker-compose command:

% docker-compose up

After a few seconds, our five containers are up and running and we can access the
application with our browser on the host. We can see it is all working. We can also do the
following:

• Use the -d switch to run the containers in detached/daemon mode.

• Use docker-compose to stop and start any one or more containers.

• Use docker-compose to build any one or more containers.

• Use docker-compose logs to show the logs of any of our containers running
in daemon mode.

What we now have is a pair of configuration files that work for production mode. We now
need a way to work in development mode by binding our source code to the container's
home directory.

Binding a host filesystem within containers
Previously, we used a third docker-compose configuration file to specify bindings
so that our source code directory would be overlaid within the container (in place of
the app's home directory). We will do the same for the latest incarnation of our Docker
Compose setup.

90 Composing Systems Using Containers

We first create a docker-compose-dev.yml file:

version: '3'

services:

 publisher:

 volumes:

 - ./publisher:/home/app

 subscriber:

 volumes:

 - ./subscriber:/home/app

This override file simply maps the publisher and subscriber source code directory over
/home/app in the related container. Now, we can freely edit sources on the host and,
thanks to nodemon, our changes will take effect almost immediately within the running
containers. There is no need to stop, rebuild, or restart any containers.

Unfortunately, docker-compose has no facility to remove options using inheritance;
we can only modify existing ones or add new ones. If we could remove options, we would
bind the source in our docker-compose.override.yml file and remove them in
a docker-compose-production.yml file. This would allow us to use the short
docker-compose up form for development and to use a command line with three -f
switches for production. This would be handy because we would use development most of
the time and rarely use production.

As it is, we must specify the three -f switches:

% docker-compose -f docker-compose.yml -f docker-compose.
override.yml -f docker-compose-dev.yml up

There are other uses for volumes, which we will explore.

Optimizing our container size
We can examine our container images using the docker images command:

% docker images | grep pub

chapter4_publisher latest
15f3a84d348d 24 minutes ago 987MB

Binding a host filesystem within containers 91

As you can see, our publisher image is 987 megabytes! All that for an almost-250-line
JavaScript program. We can try to shrink this size by moving our node_modules
directory out of the container and into a named volume. This will also speed up the
building of our container since node_modules will be persisted in this named volume
from build to build, and using the yarn command to install the modules will only install
anything that is new.

Note
We renamed the Dockerfile to Dockerfile.chapter3 in the
publisher/ directory. The new Dockerfile has been modified to build a
very small image.

A smaller image can be created by optimizing our Dockerfile. What we're going to do
is build a base image and our result image. The base image will have node_modules
installed. The base image is only rebuilt when something changes that requires one of its
layers to be rebuilt.

Let's look at an optimized Dockerfile for the publisher:

FROM node:12-alpine

We inherit from the alpine OS node v12 image. This image is much lighter than the
Debian flavor default node container:

ENV TZ=America/Los_Angeles

WORKDIR /home/app

add a user - this user will own the files in /home/app

RUN adduser -S app

ENV HOME=/home/app

COPY . /home/app

The resulting image is built without installing or updating node_modules. We will
install the modules in another step. This saves us from having to use yarn install every
time we build our container:

CMD ["yarn", "start"]

We use yarn start to launch our publisher app.

92 Composing Systems Using Containers

After we run docker-compose build publisher, we can see we have greatly
reduced the size of our container!

Before our optimizations, the container was 987 megabytes. After the optimizations,
89.5 megabytes, which is almost a 900-megabyte reduction:

docker images | grep pub

chapter4_publisher latest
080efb97e0d3 About a minute ago 89.5MB

We still need to install our node_modules/ modules, which will be done within
a named volume and defined in the docker-compose-overrides.yml file. This is
done once, and then again only if you add packages to the packages.json file in the
publisher/ directory:

docker-compose run publisher yarn install

This command installs the node_modules/ packages using yarn install within the
publisher container. The named volume is mounted correctly because it is specified within
the docker-compose configuration (.yml) files.

Note
We did not optimize the subscriber build.

We can verify that the volume was created and does contain the installed node_modules
modules by examining the _data directory of our volume, which on Linux should be in
/var/lib/docker/volumes:

cd /var/lib/docker/volumes/

ls -1 chapter4_node_modules_publisher/_data/

abbrev

accepts

ajv

ansi-align

ansi-regex

ansi-styles

anymatch

Binding a host filesystem within containers 93

The location of the volumes is significantly different for macOS. You will need to use the
following command to get a shell in the Linux virtual machine that is running Docker:

screen ~/Library/Containers/com.docker.docker/Data/vms/0/tty

You might have to hit ^C a few times to get a shell prompt. This prompt is a shell running
in the virtual machine. Within the virtual machine, the volume for the node_modules/
directory in the container is at /var/lib/docker/volumes, as with Docker on Linux.

We can see the speedup of our build. The initial build of the publisher, after completely
removing all of the images from the system, takes around 16 seconds:

time docker-compose build publisher

Successfully built e50ec5f4d53b

Successfully tagged chapter4_publisher:latest

docker-compose build publisher 0.36s user 0.09s system 2% cpu
16.187 total

A subsequent build without node_modules installed takes around a half a second:

time docker-compose build publisher

Successfully tagged chapter4_publisher:latest

docker-compose build publisher 0.34s user 0.08s system 74% cpu
0.568 total

After editing index.js and doing a rebuild, it takes less than 1 second:

time docker-compose build publisher

Successfully tagged chapter4_publisher:latest

docker-compose build publisher 0.34s user 0.08s system 49% cpu
0.842 total

As you can see, we were able to reduce the size and build time of our containers!

Using the build.sh script
There is a build.sh script provided in the chapter4/ directory of the GitHub
repository. It just contains a few lines of actual shell commands:

#!/bin/sh

build.sh

http://index.js
http://build.sh
http://build.sh
http://build.sh

94 Composing Systems Using Containers

build publisher and subscriber and install node_modules in
each

docker-compose build --force-rm --no-cache

docker-compose run publisher yarn install

docker-compose run subscriber yarn install

The build.sh script builds all five containers and runs yarn install in both the
publisher and subscriber containers to install the node_modules modules in their
respective named volumes. The command-line switches to the docker-compose
build command are as follows:

• --force-rm: Forces Docker to remove all the intermediate container images
as it builds

• --no-cache: Forces Docker to use no cached/downloaded/built versions of
anything

You can drop these two switches to greatly improve the build speed. They are provided
here to demonstrate a way of forcibly rebuilding everything from scratch.

That's a decent overview of Docker Compose. It is one of the first, if not the first,
composition tools for describing, building, and running Docker applications. But there
are also other alternatives out there.

Other composition tools
We have already seen how we can compose and build a multiple service application using
docker-compose and .sh scripts. But there are some other options that you may want
to consider.

Docker Swarm
Docker Swarm is a cluster management system. It allows you to deploy containers that
are defined with docker-compose to a cluster of nodes or servers. There are some
limitations to what you can do with docker-compose.yml if you want to use Docker
Swarm. For example, you cannot use volumes with Docker Swarm, and binding container
ports to the host should be carefully planned.

http://build.sh

Summary 95

Kubernetes
Kubernetes is a feature-rich alternative to docker-compose. It allows containers to
be deployed to a cluster of Docker container servers and uses a configuration file format
similar to docker-compose.yml.

Packer
Packer is a tool that generates several output formats, including Docker containers.
You define your containers using JSON files and the tool reads from them. Packer uses
builders to generate output files. The output can be (but is not limited to) the following:

• Azure machine images

• DigitalOcean machine images

• Docker container images

• Google cloud images

• Parallels (for macOS) images

• VirtualBox images

• VMware images

The composition tool that you choose should make your job easier. Be sure to choose
one that truly suits your needs. Docker Compose is the official Docker composition tool.
The others may be more modern and solve additional problems that Docker Compose
does not.

Summary
In this chapter, we introduced Docker Compose as a superior management tool for
managing and running a complex system of containers. We described several useful
docker-compose configuration file options that allow us to specify ports to expose,
local networking, and local volumes. We exploited the docker-compose tool's
inheritance capabilities as well.

A critical part of using Docker is the development cycle. We typically edit, build, run,
and test each cycle—then repeat. The size of images, as well as the time spent building,
publishing, and downloading them, can be strategically reduced.

96 Composing Systems Using Containers

We also explored some alternatives to using .sh scripts and docker-compose. These
are a natural next step in your Docker education as they provide facilities for deploying
your orchestrations to swarms or clusters of servers in production or for testing.

The next few chapters go into detail about how to deploy your applications and how
to implement continuous integration and automated testing. After that, we will cover
security considerations for containerized applications.

Further reading
You can refer to the following URLs for more information on the topics covered in
this chapter:

• The official Docker documentation:
https://docs.docker.com

• The official Docker Compose documentation:
https://docs.docker.com/compose/

• The Dockerfile reference:
https://docs.docker.com/engine/reference/builder/

• The Docker Hub site:
https://hub.docker.com/

• The documentation for Docker Hub:
https://docs.docker.com/docker-hub/

• The documentation for the Node.js containers on Docker Hub:
https://hub.docker.com/_/node

• The documentation for the Redis containers on Docker Hub:
https://hub.docker.com/_/redis

• The documentation for the MongoDB containers on Docker Hub:
https://hub.docker.com/_/mongo

• The documentation for the Mosca containers on Docker Hub:
https://hub.docker.com/r/matteocollina/mosca

https://docs.docker.com
https://docs.docker.com/compose/
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/
https://docs.docker.com/docker-hub/
http://Node.js
https://hub.docker.com/_/node
https://hub.docker.com/_/redis
https://hub.docker.com/_/mongo
https://hub.docker.com/r/matteocollina/mosca

In this section, you will learn how to choose between the different alternatives for running
Docker applications in production, ranging from single-host configurations to sophisticated
clusters of servers in the cloud that can scale out to handle heavy loads. You will learn
how to deploy systems first using Docker Compose, and how to automate building and
deploying a simple setup using Jenkins. We will then explore a more sophisticated setup
in Chapter 8, Deploying Docker Apps to Kubernetes through Chapter 11, Scaling and Load
Testing Docker Applications, centering around the use of Kubernetes and Amazon Web
Services. You will learn how to deploy applications both manually and using the Spinnaker
continuous deployment system, and how to use a variety of tools to monitor applications.
Finally, we will learn how to scale Docker applications using Kubernetes, using tools such as
the Envoy service mesh and k6 for load testing. We will use a sample application, a game
called ShipIt Clicker, to demonstrate each of these concepts in turn.

Section 2:
Running Docker

in Production

This section comprises the following chapters:

• Chapter 5, Alternatives for Deploying and Running Containers to Production

• Chapter 6, Deploying Applications with Docker Compose

• Chapter 7, Continuous Deployment with Jenkins

• Chapter 8, Deploying Docker Apps to Kubernetes

• Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker

• Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger

• Chapter 11, Scaling and Load Testing Docker Applications

5
Alternatives for

Deploying and
Running Containers

in Production
As container technology and cloud computing mature, the number of ways in which you
can deploy your Docker containers has exploded. Some of the options are as simple as
running Docker on a single host, and others feature advanced features such as autoscaling,
multi-cloud support, and more. You could even run your Docker containers on-premises
on bare-metal servers or adopt a hybrid cloud solution.

After reading this chapter, you will understand that the many choices available
offer different trade-offs. You will learn how to build the smallest viable production
environment. You will be able to choose between different cloud providers and their
managed container runtimes, as well as articulate the benefits of running Docker either
on-premises or in a hybrid cloud. Most importantly, you will be able to make an informed
decision about choosing a production path for deploying Docker containers given
competing objectives.

100 Alternatives for Deploying and Running Containers in Production

Understanding the spectrum of choices will help guide you toward making
better decisions.

In this chapter, we are going to cover the following main topics:

• Running Docker in production – many paths, choose wisely

• What is the minimum realistic production environment?

• Managed cloud services

• Running your own Kubernetes cluster – from bare-metal servers to OpenStack

• Deciding on the right Docker production setup

Technical requirements
To complete the exercises in this chapter, you'll need Git and Docker on your
local workstation. For Mac and Windows users, please install Docker Desktop
(https://www.docker.com/products/docker-desktop) as this is how
most people using Docker use it on their local workstations. You need to learn more
about the options before you choose a production deployment tool.

Depending on what avenues you explore, you may also want to establish accounts with
Amazon Web Services, Google Cloud, Microsoft Azure, or Digital Ocean. Most of
these services have fairly generous free tiers that may allow you to experiment without
spending much money, especially if you only use the services for a short duration. When
considering what sort of environment might be suitable for your application, it helps to
have multiple options. If you do create resources in the cloud, don't forget to terminate
resources that you are done with or are not planning to keep, or you could receive a nasty
surprise when you see the bill. Most cloud providers have a billing alert system. Please
consider setting up an alarm that will notify you if your spending exceeds your budget.

If you want to explore hosting a more complex on-premises setup, or use a bare-metal
hosting service such as Packet (https://www.packet.com/), you may need one or
more server computers that meet the specifications for running Docker or OpenStack on
bare-metal computer hardware.

The GitHub repository for this chapter is https://github.com/Packt-
Publishing/Docker-for-Developers – please see the chapter5 folder inside.

Check out the following video to see the Code in Action:

https://bit.ly/2DYMria

https://www.docker.com/products/docker-desktop
https://www.packet.com/
https://github.com/Packt-Publishing/Docker-for-Developers
https://github.com/Packt-Publishing/Docker-for-Developers
https://bit.ly/2DYMria

Example application – ShipIt Clicker 101

Example application – ShipIt Clicker
The linked GitHub repository for this chapter has code for a prototype for an online game
– called ShipIt Clicker. In this game, a fedora-clad squirrel urges you to deploy containers
to production; the faster you click, the faster you accumulate Squirrel Dollars (SQ$),
which you can use in the ShipIt Store to purchase upgrades that either increase how many
containers you deploy per click, or allow you to deploy containers even if you are not
clicking. The prototype version of this game has a simple HTML interface, with a RESTful
API that talks to a Redis database to keep score. The version of ShipIt Clicker included in
this chapter is a bare-bones prototype that has only a fraction of the full features of the
game. However, it has many of the characteristics of an early-stage production application
and is ready for its first production deployment. It features a setup using docker-
compose to run multiple containers. The game features communications between a web
browser game client, a Node.js server using Express and a Swagger-driven API, and a
Redis NoSQL database used to track scores and other game information.

You can experiment with ShipIt Clicker to get familiar with more elaborate applications
than previous chapters explored. Feel free to adapt and improve both the configuration
files and the code in conjunction with a variety of tools and services in order to learn
more about deploying to production. In subsequent chapters, we will learn how to deploy
this application to production in several different ways, each offering progressively more
capabilities, but different trade-offs in terms of cost, complexity, and availability. Before we
do that, let's learn more about these alternatives.

Running Docker in production – many paths,
choose wisely
If you thought running Docker on your local workstation offered many choices, buckle
up as the variety available to developers and system administrators in deploying an
application built using Docker in a robust way makes the local development environment
look simple by comparison. Some of the largest information technology companies in the
world use Docker (or equivalent container technologies) to run at a massive scale, and
container orchestration makes that possible. The promise of having a self-healing cluster
that can continue to run applications in the face of network partitions and hardware
failure has lured many into the Docker arena. Many people see their enthusiasm wane
when the complexity of running a fault-tolerant cluster becomes evident.

102 Alternatives for Deploying and Running Containers in Production

However, you don't have to do it all yourself. Multiple cloud providers offer services
that make running applications with Docker more manageable. The solution larger
organizations are gravitating toward is Kubernetes, a project sponsored by Google as a
public and community-supported alternative to proprietary container orchestration tools.
Kubernetes takes the lessons that Google learned from building and operating Borg, their
internal container orchestration tool, and makes them available to the public.

Or maybe you just need to run a simple dynamic website on as small a setup as
possible – you don't have to learn cloud orchestration to do that if you have access
to an internet-connected server that itself can run Docker.

What is the minimum realistic production
environment?
Docker can run on a wide variety of hardware and software, but the level of support you
will receive from either Docker itself or from a third party, such as an operating system
distribution that bundles Docker, may vary significantly. Docker can run on a wide variety
of operating systems: Linux, Apple macOS, Microsoft Windows, and even IBM S/390x.

Bare minimum – run Docker and Docker Compose on
one host
Given the wide distribution of Docker on different environments, the minimum production
environment for a Docker-hosted application is a single host, whether it is physical or
virtual, running an operating system that supports Docker and Docker Compose. Many
popular mainstream operating systems and distributions have some version of Docker built
in, including the current Long-Term Support (LTS) versions of Ubuntu (16.04, 18.04, and
20.04) and CentOS (7 and 8). Other more specialized operating systems, such as CoreOS
and Container Linux, focus exclusively on running containers and may be good choices,
albeit with a learning curve for people used to more mainstream systems.

You could even run Docker on Windows or macOS for a production system. You might be
more comfortable running Docker on a platform that has support, depending on your risk
tolerance and needs. Trade-offs abound!

Managed cloud services 103

Docker support
The community edition of Docker receives support from the parent company for a very
limited time – the developer-focused Docker Inc. company (https://www.docker.
com) produces quarterly releases of the Community Edition (CE) Docker toolchain with
a 4-month rolling support window. As of November 13, 2019, the Enterprise Edition
(EE) of Docker is a Mirantis product; see https://www.mirantis.com/company/
press-center/company-news/mirantis-acquires-docker-enterprise/
for more details. The EE version of Docker features longer support horizons; support
for a variety of Linux, Windows, and macOS operating systems; and an expanded set
of supported orchestration systems; see https://docs.docker.com/ee/ for
more information on Docker EE. Mirantis announced that it would end support for
the Docker Swarm container orchestrator, a part of Docker EE, in November 2021, but
retracted the retirement announcement in February 2020. See https://devclass.
com/2020/02/25/mirantis-to-keep-docker-swarm-buzzing-around-
pledges-new-features/ for more details.

Kubernetes appears to be the winner of the Docker container orchestration wars, given
this news, although Mirantis is still supporting Docker Swarm.

Problems with single-host deployment
Running Docker on a single host has major drawbacks, however. If that host suffers a
major hardware or software failure or has impaired internet connectivity, your application
will suffer decreased availability. Computers are fundamentally unreliable and even
systems that have enterprise availability features, such as redundant disks, power supplies,
and cooling features, can suffer failures due to environmental factors. If you do go down
this route, it would be prudent to add some sort of external monitoring and ensure
you have a reliable backup and restore routine to mitigate these risks. In order to avoid
these risks, we need to consider more sophisticated approaches, such as relying on more
container orchestration systems that a third party runs.

Managed cloud services
In order to overcome the limitations of deploying applications on a single host, the easiest
option to choose is to consider running your application using a managed cloud service
that provides a container orchestration solution. Some of the most popular solutions
include the following:

• Google Kubernetes Engine (GKE)

• Amazon Web Services Elastic Beanstalk (EB)

https://www.docker.com
https://www.docker.com
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://www.mirantis.com/company/press-center/company-news/mirantis-acquires-docker-enterprise/
https://docs.docker.com/ee/
https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers

104 Alternatives for Deploying and Running Containers in Production

• Amazon Web Services Elastic Container Service (ECS)

• Amazon Web Services Elastic Kubernetes Service (EKS)

• Microsoft Azure Kubernetes Service (AKS)

• DigitalOcean Docker Swarm

Most of these services support running a set of Docker containers through Kubernetes
(https://kubernetes.io/), a project initiated by Google. For many years,
Google has run a container orchestration system called Borg (https://ai.google/
research/pubs/pub43438), and Google used that as inspiration to create a container
orchestration system suitable for external use, which got named Kubernetes.

Some managed cloud services support Docker Swarm, while others (including AWS
Elastic Beanstalk and AWS ECS) have their own custom orchestration systems.

All of the container orchestration systems allow software developers and system
administrators to run a fleet of servers that execute multiple containers simultaneously,
with policy-based mechanisms for distributing multiple container instances among the
cluster. The container orchestrators are responsible for starting, monitoring, and moving
container workloads from host to host as health checks and scaling constraints dictate.
Since Google popularized running these container orchestration systems, many vendors
have devised managed service offerings, including Google, Microsoft, Amazon Web
Services, Digital Ocean, and others, as we will discuss in the following subsections.

Google Kubernetes Engine
Google offers a system called Google Kubernetes Engine (GKE) (https://cloud.
google.com/kubernetes-engine/), which offers a supported Kubernetes cluster
running within the Google Cloud. If you use this service, you don't have to operate and
upgrade the Kubernetes cluster master nodes yourself; you won't see the master nodes in
the cloud console at all, as Google operates them directly. Furthermore, Google does not
charge customers for running those Kubernetes master nodes. This option is appealing to
developers because it has a way to run low-cost Kubernetes clusters. Having the support
directly from Google to run Kubernetes workloads gives some customers additional
confidence with this system.

However, Google Cloud is not the first or even the second biggest cloud provider, and
the rest of the services available from Google Cloud are not as varied as the services that
Azure, AWS, or other cloud providers such as AliBaba offer.

If you are invested in Google Cloud, or you want a low-cost environment to experiment
with Kubernetes or take it to production and you are not tied to cloud services from other
providers, evaluate GKE for running Docker and Kubernetes loads.

https://kubernetes.io/
https://ai.google/research/pubs/pub43438
https://ai.google/research/pubs/pub43438
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/

Managed cloud services 105

AWS Elastic Beanstalk
Amazon Web Services offers a way to run Docker applications through its
platform-as-a-service offering, Elastic Beanstalk (https://aws.amazon.com/
elasticbeanstalk/). You can run either single Docker containers or a setup that
supports multiple Docker containers. Under the covers, Elastic Beanstalk uses ECS if you
select multiple containers. With Elastic Beanstalk, developers use a command-line interface
tool that simplifies deployment to multiple environments, in conjunction with some concise
configuration files that hide some of the complexity of running an autoscaling cluster.

It is easier to set up Elastic Beanstalk than it is to set up either ECS or EKS, and developers
needing an easy on-ramp to get to production with low overhead and minimal setup
might consider using Elastic Beanstalk.

AWS ECS and Fargate
AWS also offers a container orchestration system called ECS (https://aws.amazon.
com/ecs/). ECS has two basic modalities: one where containers run on a fleet of EC2
instances managed directly by the account owner, and one where AWS manages the nodes
that containers run on, called Fargate (https://aws.amazon.com/fargate/).

Using ECS with either EC2 or Fargate can make sense if you are invested in AWS. While
this path allows you to deploy containers without having to deal with Kubernetes or Docker
Swarm, however, it is a proprietary system that only AWS supports, so you would have to
do extra work to move your systems away from it compared to using Kubernetes or Docker
Swarm as an orchestrator. It has its own learning curve and requires that you commit to
running your Docker workloads on AWS because these interfaces are AWS-specific.

AWS EKS
Amazon Web Services (AWS) offers EKS, a managed Kubernetes service that offloads the
maintenance and configuration of the Kubernetes master servers to AWS. EKS is the AWS
equivalent of Google's GKE. It offers robust integration with the rest of the AWS services,
and even though it is not as economical as the GKE service with respect to running the
Kubernetes masters, the baseline costs are modest compared with the cost of running
a busy application. AWS has generally had support available for Kubernetes through
EKS since 2018 and has fixed enough of the initial rough spots that surfaced after its
launch (such as a lack of support for some common autoscaling strategies) to make EKS
a formidable Kubernetes distribution. In December 2019, AWS announced support for
running Kubernetes containers managed by EKS through Fargate, melding the support
AWS has for EKS with the managed container runtime and elastic and transparent
provisioning that AWS provides.

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

106 Alternatives for Deploying and Running Containers in Production

AWS has the largest and most comprehensive set of services available from a cloud
provider as of early 2020. If you have an investment in AWS, and you want a well-trod
path that many people have traveled, consider using AWS EKS as your Kubernetes
master environment.

Microsoft Azure Kubernetes Service
Microsoft Azure provides a robust container deployment service in Azure Kubernetes
Service (AKS). This option may be particularly appealing if you or your company have a
large investment in Microsoft platform tooling, including Windows, Visual Studio Code,
or Active Directory. Microsoft claims to have robust support for all these concerns. The
developer tooling from Microsoft also tends to have a gentler learning curve than the
tools from some other organizations. However, if you rely really heavily on elements of the
Microsoft stack, it may be more difficult to migrate to other solutions.

If you are working for a Microsoft shop, or you want an easy on-ramp to Kubernetes that
is tightly integrated into Visual Studio Code, consider AKS.

Digital Ocean Docker Swarm
Digital Ocean provides support for running a fleet of containers using Docker Swarm,
a relatively simple container orchestration system. This technology has a reputation for
being easier to deploy than deploying containers on Kubernetes or even AWS ECS. The
Docker tooling has support for deploying to Docker Swarm out of the box.

However, after the Mirantis acquisition, Docker Swarm's support status was deprecated
and then revived after customers demanded continuing support. Given the wavering
commitment from the main vendor supporting it, you should carefully consider whether
you should field new applications using Docker Swarm.

Now that we have seen what the alternatives entail for running Docker applications in
production, let's examine the set of alternatives for running applications using Docker
and Kubernetes.

Running your own Kubernetes cluster – from bare metal to OpenStack 107

Running your own Kubernetes cluster – from
bare metal to OpenStack
If you must run your application on-premises, in a data center, or if you have the need
to run across multiple cloud computing providers, you may need to run your own
Kubernetes cluster. Once you learn more about the benefits and drawbacks of running
Docker and Kubernetes either on-premises or in a hybrid cloud, you should be able to
know when it is an appropriate solution. While these scenarios are more complex than
using one of the managed services, they can provide different benefits, listed as follows:

• Upgrading cluster software (or not) on your own schedule, with full control of what
versions you run today and tomorrow. Cloud vendors may lag in what versions are
supported, or deprecate versions in ways that can impose operational risk.

• Using one of the many mature Kubernetes provisioning solutions, such as Kops, that
facilitate setting up k8s clusters on AWS EC2.

• Operating a hybrid cloud solution across a mixture of data center and cloud
computing environments. While some cloud provider solutions, such as Google
Cloud Anthos or Azure Arc, can support hybrid environments, many do not.

• Running high-performance Kubernetes clusters on bare metal, without the
overhead of a hypervisor.

• Running on platforms not supported by major cloud vendors, such as running
Docker and Kubernetes on a cluster of Raspberry Pi computers.

• Having complete control over the supporting infrastructure of your cluster
integrating with a platform that uses Kubernetes as a starting point, such as the
OpenShift platform.

• Running on a private cloud solution, such as OpenStack or VMware Tanzu
(formerly known as VMware Enterprise PKS).

• Running Docker containers as part of a comprehensive computing platform that has
other major features and capabilities beyond vanilla Kubernetes, such as Red Hat
OpenShift or Rancher.

In practice, running any of these solutions is more complex than relying on either a
single-host deployment of Docker or a vendor-managed software-as-a-service Kubernetes
clustering solution.

108 Alternatives for Deploying and Running Containers in Production

Deciding on the right Docker production setup
Because of the bewildering number of choices, picking the right path to deploy your
application in production is daunting. You may need to weigh many factors, including
the following:

• Setup: How hard is it to go from local development to production?

• Features: Deployment, testing, monitoring, alerting, and cost reporting.

• Cost: Initial and ongoing monthly charges.

• Support: Is support easily available either from vendors or from the community?

• Elasticity: Can it scale out as the load increases, with automatic or manual controls?

• Availability: Can the setup survive the loss of services, hosts, and networks?

• Stickiness: How hard will it be to change the deployment strategy?

Running Docker on a single host is inexpensive and easy to set up but has poor
scaling and availability characteristics. All the major cloud orchestration services that
support Kubernetes are well-balanced in terms of features and scaling and availability
characteristics, but they are more complex to set up and operate. The non-Kubernetes
options are stickier than the Kubernetes options. Running your own clusters either in the
cloud, on bare-metal servers, or in a hybrid cloud gives you enormous flexibility at the
cost of increased complexity and support burden.

Learning the relative strengths and weaknesses of these systems will help you judge the
right set of technologies to use to deploy your applications. The following matrix shows
my snap judgements on a scale of 1 to 5, where 5 is the best, of how well the different
technology options compare.

Deciding on the right Docker production setup 109

You can use this matrix to help rank alternative solutions. By comparing two or more of
the choices, you can get a better idea of what sort of solution would be appropriate. In
order to evaluate this matrix, you could build an evaluation table where you compare
alternatives. If you rank the priorities with a number, where 5 is the highest priority and 1
is the lowest priority, you can multiply the priority by the scores in Table 1 in order to get
a scaled score.

The following example matrix has priorities that emphasize ease of setup, minimization
of cost, and minimization of stickiness, while disregarding robustness in the form of high
availability or elasticity under load. That set of priorities matches up with the priorities
many real-world applications have when they first launch – the struggle developers face
is often to get things up and running quickly, and it is OK to compromise on the other
factors. The scaled scores in the Alternative columns represent the result of multiplying
the priority versus the Production Alternatives Rank table for each alternative.

110 Alternatives for Deploying and Running Containers in Production

In this case, alternative 1, Docker on a single host, has the highest-ranked scaled score,
78 versus 74. The factors that are important, setup, cost, and stickiness, combine with the
weights to push it above the other alternative. Given this score, you should consider using
that deployment alternative. Consider though that if the availability or elasticity priority
was even one notch higher, the other alternative, Google Cloud GKE, would have been the
higher-ranking service.

You may find that your needs are served by a hybrid solution also, where more than one of
the solutions is appropriate and necessary to solve your problems. For example, you might
find that your everyday demands tilt toward an on-premises cluster, but peak demand
might require scaling out into the cloud.

Exercise – join the ShipIt Clicker team
Let's pretend that you have just joined the ShipIt Clicker development team. Other people
on the team have created the basic design for the game (see the game design document in
https://github.com/PacktPublishing/Docker-for-Developers/blob/
master/chapter5/ShipIt_Clicker-spec.md) and written a prototype that has
only the bare minimum required functionality to build, test, and package the application
with Docker.

The rest of the team might be experts in design, or frontend or backend development, but
they are not sure how they should proceed regarding deploying to production. At this point,
you have more experience using Docker than any of the other developers on the team. The
Dockerfile and docker-compose.yml files they have produced are functioning.

Get the ShipIt Clicker—the version made for this chapter—running on your local
workstation to better understand how it is put together.

Run docker-compose up in order to start the containers on your local machine.
This will allow you to evaluate the deployment alternatives and experiment with changes
that will prepare the application for production use. You will see output similar to the
following; we will explain in detail what each group of lines in the output means:

$ docker-compose up

Building shipit-clicker-web

Step 1/11 : FROM ubuntu:bionic

---> 775349758637

Step 2/11 : RUN apt-get -qq update && apt-get -qq install
-y nodejs npm > /dev/null

---> Using cache

---> f8a9a6eddb8e

https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter5/ShipIt_Clicker-spec.md
https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter5/ShipIt_Clicker-spec.md

Deciding on the right Docker production setup 111

The preceding output shows Docker using the ubuntu:bionic image, and then the
installation of the operating system packages.

Steps 3-5 of the Dockerfile prepare the container image for the application installation by
creating essential directories and copying the package configuration file for node modules
into place:

Step 3/11 : RUN mkdir -p /app/public /app/server

---> Using cache

---> f7e56a628e8b

Step 4/11 : COPY src/package.json* /app

---> eede94466dc7

Step 5/11 : WORKDIR /app

---> Running in adcadb6616c2

Removing intermediate container adcadb6616c2

---> 6256f613803e

Next, the Dockerfile installs the node modules:

Step 6/11 : RUN npm install > /dev/null

---> Running in 02ae124cf711

npm WARN deprecated superagent@3.8.3: Please note that v5.0.1+
of superagent removes User-Agent header by default, therefore
you may need to add it yourself (e.g. GitHub blocks requests
without a User-Agent header). This notice will go away with
v5.0.2+ once it is released.

npm WARN optional Skipping failed optional dependency /
chokidar/fsevents:

npm WARN notsup Not compatible with your operating system or
architecture: fsevents@1.2.11

npm WARN shipit-clicker@1.0.5 No repository field.

npm WARN shipit-clicker@1.0.5 No license field.

Removing intermediate container 02ae124cf711

---> 64ea4b348ed1

112 Alternatives for Deploying and Running Containers in Production

After this, the Dockerfile copies more configuration files into the container image,
as well as copying the sources for the application itself into place within the container
under /app:

Step 7/11 : COPY src/.babelrc src/.env src/.
nodemonrc.json /app/

---> 88e88c1bc35d

Step 8/11 : COPY src/public/ /app/public/

---> c9872fccc1c9

Step 9/11 : COPY src/server/ /app/server/

---> f6e76811659a

Finally, the Dockerfile tells Docker what port to expose and how to run the application:

Step 10/11 : EXPOSE 3000

---> Running in 75fbd217ef27

Removing intermediate container 75fbd217ef27

---> 03faaa0e8030

Step 11/11 : ENTRYPOINT DEBUG='shipit-clicker:*' npm run dev

---> Running in 0a44ab13b0d3

Removing intermediate container 0a44ab13b0d3

---> ab6e4da773e7

Successfully built ab6e4da773e7

At this point, the Docker container is built, and Docker applies the latest tag:

Successfully tagged chapter5_shipit-clicker-web:latest

WARNING: Image for service shipit-clicker-web was built because
it did not already exist. To rebuild this image you must use
`docker-compose build` or `docker-compose up --build`.

The power of using docker-compose up is on display next, as the one command
we ran at the beginning not only builds the Docker container for our application, but
it also starts all the containers together. When it starts the containers, it starts both the
application container, and the Redis container. The Redis container emits some detailed
output as part of its startup. The output of our docker-compose up command
continues with container startup messages:

Starting chapter5_redis_1 ... done

Creating chapter5_shipit-clicker-web_1 ... done

Attaching to chapter5_redis_1, chapter5_shipit-clicker-web_1

Deciding on the right Docker production setup 113

redis_1 | 1:C 04 Feb 2020 06:15:08.774 #
oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo

redis_1 | 1:C 04 Feb 2020 06:15:08.774 # Redis
version=5.0.7, bits=64, commit=00000000, modified=0, pid=1,
just started

redis_1 | 1:C 04 Feb 2020 06:15:08.774 # Warning:
no config file specified, using the default config. In order to
specify a config file use redis-server /path/to/redis.conf

redis_1 | 1:M 04 Feb 2020 06:15:08.776 * Running
mode=standalone, port=6379.

redis_1 | 1:M 04 Feb 2020 06:15:08.776 # WARNING:
The TCP backlog setting of 511 cannot be enforced because /
proc/sys/net/core/somaxconn is set to the lower value of 128.

redis_1 | 1:M 04 Feb 2020 06:15:08.776 # Server
initialized

Note that Redis is not entirely happy being run as part of a Docker container that uses
a Linux kernel that is not tuned explicitly for it. This is an example where using Docker
might not yield optimal results, but results that are good enough anyway:

redis_1 | 1:M 04 Feb 2020 06:15:08.776 # WARNING
you have Transparent Huge Pages (THP) support enabled in your
kernel. This will create latency and memory usage issues with
Redis. To fix this issue run the command 'echo never > /sys/
kernel/mm/transparent_hugepage/enabled' as root, and add it
to your /etc/rc.local in order to retain the setting after a
reboot. Redis must be restarted after THP is disabled.

redis_1 | 1:M 04 Feb 2020 06:15:08.776 * DB
loaded from disk: 0.000 seconds

redis_1 | 1:M 04 Feb 2020 06:15:08.776 * Ready to
accept connections

You can see that Redis is now ready to go. Next, docker-compose starts up the ShipIt
Clicker container, using the command given in the preceding ENTRYPOINT DEBUG
output ('shipit-clicker:*' npm run dev):

shipit-clicker-web_1 |

shipit-clicker-web_1 | > shipit-clicker@1.0.5 dev /app

shipit-clicker-web_1 | > nodemon server --exec babel-node
--config .nodemonrc.json | pino-pretty

shipit-clicker-web_1 |

114 Alternatives for Deploying and Running Containers in Production

shipit-clicker-web_1 | [nodemon] 1.19.4

shipit-clicker-web_1 | [nodemon] to restart at any time, enter
`rs`

shipit-clicker-web_1 | [nodemon] watching dir(s): *.*

shipit-clicker-web_1 | [nodemon] watching extensions:
js,json,mjs,yaml,yml

shipit-clicker-web_1 | [nodemon] starting `babel-node server`

shipit-clicker-web_1 | [1580796912837] INFO (shipit-
clicker/47 on 52e6d59c6121): Redis connection established

shipit-clicker-web_1 | redis_url: "redis://redis:6379"

shipit-clicker-web_1 | [1580796913083] INFO (shipit-
clicker/47 on 52e6d59c6121): up and running in development @:
52e6d59c6121 on port: 3000}

Once you have done this, you can play the game by going to http://localhost:3005/
in a web browser. In the following figure, we see the output of the main menu of the game,
with a link to the API documentation at http://localhost:3005/api-explorer/:

Figure 5.1 – ShipIt Clicker game main menu

Deciding on the right Docker production setup 115

Once you have the application running and have explored it, you can learn how to deploy
it in different ways.

Exercise – choosing from reasonable deployment
alternatives
The setup in this chapter works to get the game running on a local development
environment. However, the setup has some issues that might cause problems for a
production deployment.

The initial audiences for the game in this prototype stage are as follows:

• Your fellow game developers and the management team of the company

• A globally distributed team of enthusiasts who signed up for an Alpha program

• A professional cadre of testers twelve time zones away from where you live

Management wants to get the prototype available for the alpha tester volunteers and the
professional testers as soon as possible, but wants to know what the options and costs will
be to support a more robust deployment environment that can scale if the game goes viral
or the investors approve an ad campaign to boost subscribers.

Your tasks, given what you know about Docker and the alternatives for deploying to
production, are as follows:

• Advise management on what the first production deployment should be, after
constructing a Production Decision Alternatives table.

• Advise management on what one or more reasonable alternatives to the first
deployment would be, which would increase elasticity and availability.

• Build a spreadsheet model of the one-time and recurring costs incurred over the
first year for each option, after consulting current price lists from vendors.

Solution
Compare your decision matrix to the preceding example in the Deciding on the right
Docker production setup section and see whether your result differs. Show the spreadsheet
model of costs and your decision matrix to a colleague and ask them what they might
choose and whether they agree with your decision.

116 Alternatives for Deploying and Running Containers in Production

Exercise – Dockerfile and docker-compose.yml
evaluation
Management wants you to stretch a little and help smooth the way for a production
deployment. They want you to identify areas for improvement:

• Are the choices made in the Dockerfile and docker-compose.yml files
reasonable for this application?

• What choices could be made to better prepare the application for a
production deployment?

• What effect does the choice of a commodity operating system distribution have
when choosing a container base to use in FROM?

Solution
Look at the versions of the Dockerfile and docker-compose.yml files in
https://github.com/PacktPublishing/Docker-for-Developers/tree/
master/chapter6 and see how your recommendations line up. We will explore this in
more detail in Chapter 6, Deploying Applications with Docker Compose.

Now that we have learned more about the alternatives for deploying Docker containers
into production, and done some practical exercises, let's review what we have learned.

Summary
In this chapter, we learned about the alternatives for deploying your Docker-based
application to production. We learned that the many choices involve trade-offs, and how
to build the smallest viable production environment. We learned how to choose between
different cloud providers and their managed container runtimes, and how to articulate the
benefits of running Docker either on-premises or in a hybrid cloud. We also learned how to
decide on a production path for deploying Docker containers given competing objectives.

Given these lessons, you can apply what you have learned to create a real production
deployment. Having enough context about the technology alternatives is very important
– because different strategies offer different advantages and disadvantages. Your company
might need a super-robust autoscaling deployment in the future but might only need
something that works today.

In the next chapter, we will show how you can create a robust single-host Docker
production deployment while maintaining the ability to develop locally.

https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter6
https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter6

6
Deploying

Applications with
Docker Compose

The simplest possible practical deployment scenario of an application packaged with
Docker involves running Docker Compose on a single host. Many of the commands
that you use as a developer, such as docker-compose up -d, also apply to deploying
Docker applications on a single host.

Running Docker applications on a single host is easier to understand than running them
using one of the more complex container orchestration systems because many of the same
techniques you might use to run a non-Docker application apply; however, it has some
significant drawbacks in terms of performance and availability.

In this chapter, you will discover why this is the simplest practical option, learn how
to configure Docker for production on a single host, and master some techniques
for managing and monitoring a simple setup efficiently. Furthermore, you will better
understand the drawbacks of running Docker on a single host, including the problems
you may face.

118 Deploying Applications with Docker Compose

In this chapter, we're going to cover the following main topics:

• Selecting a host and operating system for single-host deployment

• Preparing the host for Docker and Docker Compose

• Deploying using configuration files and support scripts

• Monitoring small deployments—logging and alerting

• Limitations of single-host deployment

Technical requirements
To complete the exercises in this chapter, you'll need Git and Docker on your local
workstation, and you will need a single host capable of running Linux and Docker for
your production server, connected to a network that you can SSH into and that your users
can reach.

The GitHub repository for this chapter can be found at https://github.com/
PacktPublishing/Docker-for-Developers—please refer to the chapter6 folder.

Check out the following video to see the Code in Action:

https://bit.ly/31OSi1H

Example application – ShipIt Clicker v2
The version of ShipIt Clicker in this chapter is more polished than the one we used in
Chapter 5, Alternatives for Deploying and Running Containers in Production. It has the
following features:

• An improved Dockerfile and docker-compose.yml file suitable for basic
production use

• Storage of game state in Redis tied to a server session, leading to distinct game states
for different client devices

• Improved visual and audio assets

We will use this enhanced version of ShipIt Clicker as the application to deploy on a single
host using Docker Compose.

https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers
https://bit.ly/31OSi1H

Selecting a host and operating system for single-host deployment 119

Selecting a host and operating system for
single-host deployment
Deploying your application on a single host is the simplest possible way to run an
application in production. In many ways, it resembles the user experience of performing
local development using Docker and Docker Compose. If you can package the parts of
your application using a docker-compose.yml file, you are already 70 percent of the
way there. If you already have basic UNIX or Linux system administration skills, this will
be very easy—this strategy requires the least effort and you can master the essentials in an
hour or two.

Requirements for single-host deployment
In order to proceed with deployment, you will need a computer running a modern Linux
operating system of the same architecture as your development system, with enough
memory and processor and storage capacity to run your application. If you are developing
on a Windows 10 64-bit desktop using Docker Community Edition, you need a Linux
system that also uses the x86_64 architecture. If you're using Docker on a Raspberry
Pi 4 running Raspbian, you need an ARM architecture server. Really, you could use any
bare metal or virtual machine server, either on-premises or in the cloud, as long as it
supports Docker.

Some cloud providers, such as Amazon Web Services (AWS), offer a free tier for their
smallest virtual machine deployments, at least for the first year. The example in this
chapter will work on a host like this, but if you have a larger application, you may need to
use a larger and more expensive system.

Production applications often must run 24*7, and the users of these applications may
have reliability concerns. While running Docker applications on a single host is possibly
the least reliable way to proceed, it might be good enough for your application. All the
single-host reliability measures that vendors such as HP, Dell, and IBM have built can be
enough in many cases to ensure adequate reliability if your application requires that.

You will need one of the following Linux operating system distributions that
support Docker:

• Red Hat Enterprise Linux (or CentOS) 7 or 8

• Ubuntu 16.04 or 18.04 or newer

• Amazon Linux 2

• Debian Stretch 9

• Buster 10

120 Deploying Applications with Docker Compose

To minimize time to production and to maximize ease, pick one that you know already, or
use CentOS 7, which is used in the following examples.

Only select a Docker-focused distribution, such as Container Linux or CoreOS, if you
want to take a slower, more advanced path to production, as your system administration
skills may be less effective in those environments. User management in CoreOS, for
example, works quite differently than it does in more mainstream distributions.

Because this strategy depends only on having a host that the users of your application can
reach, you have tremendous flexibility.

Preparing the host for Docker and
Docker Compose
Before you configure the software on the host, you should ensure that it has a stable IP
address. Sometimes these are referred to as static IP addresses, or Elastic IP addresses,
in an AWS context. You may need to specially allocate these IP address through your
provider, which can often be done through the provider's console, such as with the
Network tab in AWS Lightsail, or the Elastic IPs settings in the AWS EC2 console.

Also, you should map an address (type A) record in a Domain Name System (DNS) zone
that you control to the IP address so that your users can get to the application by using a
short name, such as shipitclicker.example.com instead of a raw IP address, such
as 192.2.0.10. All public cloud systems have the ability to manage DNS entries—for
example, AWS Route 53 (https://docs.aws.amazon.com/route53/index.
html), and most virtual hosting systems have this capacity as well.

Using operating system packages to install Docker
and Git
You will need to install Docker on the host. For production use, avoid the outdated
Docker versions that ships with operating system distributions, and try to use the
operating system packages that Docker publishes for Docker Community Edition. You
can find instructions on installing Docker Community Edition on the Docker website for
various operating systems, as follows:

• CentOS: https://docs.docker.com/install/linux/docker-ce/
centos/

• Debian: https://docs.docker.com/install/linux/docker-ce/
debian/

https://docs.aws.amazon.com/route53/index.html
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/fedora/

Preparing the host for Docker and Docker Compose 121

• Fedora: https://docs.docker.com/install/linux/docker-ce/
fedora/

• Ubuntu: https://docs.docker.com/install/linux/docker-ce/
ubuntu/

• Binaries: https://docs.docker.com/install/linux/docker-ce/
binaries/

Use the following commands for a fresh installation of CentOS 7:

$ sudo yum install -y yum-utils

$ sudo yum install -y device-mapper-persistent-data lvm2

$ sudo yum-config-manager --add-repo \

https://download.docker.com/linux/centos/docker-ce.repo

$ sudo yum install -y docker-ce docker-ce-cli containerd.io

Add your normal, non-root user to the Docker user group, and become a member of that
group for this Terminal session:

$ sudo usermod -aG docker $USER

$ newgrp docker

Make sure the Docker service is enabled so that it will start on boot, and that the Docker
service is started:

$ sudo systemctl enable docker

$ sudo systemctl restart docker

Install docker-compose by following the directions at https://docs.docker.
com/compose/install/. 1.25.3 is the latest version as of January 2020, but please
check the version number on that page for the latest to put in the following command,
which should all be one line:

$ sudo curl -L "https://github.com/docker/compose/releases/
download/1.25.3/docker-compose-$(uname -s)-$(uname -m)" -o /
usr/local/bin/docker-compose

$ sudo chmod +x /usr/local/bin/docker-compose

Now that you have the Docker daemon running and enabled, and you also have
docker-compose installed, you can deploy your application.

https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/binaries/
https://docs.docker.com/install/linux/docker-ce/binaries/
https://docs.docker.com/install/linux/docker-ce/binaries/
https://download.docker.com/linux/centos/docker-ce.repo
https://download.docker.com/linux/centos/docker-ce.repo
https://docs.docker.com/compose/install/

122 Deploying Applications with Docker Compose

Next, install git through your operating system's package manager. For Red Hat
family distributions (such as RHEL, CentOS, Fedora, and Amazon Linux), use the
following command:

$ sudo yum install -y git

For Debian family distributions (including Ubuntu), run the following command:

$ sudo apt-get update && apt-get install -y git

At this point, the host is ready to deploy Docker applications. In order to complete
deployment, we will use a strategy that relies on shell scripts and Docker environment
configuration files.

Deploying using configuration files and
support scripts
To deploy our application to a production server, we will use a combination of simple
commands and support scripts that start or update the running set of containers. Let's
start by taking a close look at the two most important files required for deployment:
Dockerfile and docker-compose.yml.

Re-examining the initial Dockerfile
The Dockerfile from Chapter 5, Alternatives for Deploying and Running Containers in
Production, has good layering and has package.json and package.json.lock
copied into the image before RUN npm -s install executes and before the main parts
of the app are copied into the image. However, it has some rough edges, which we are
going to smooth out in this chapter to prepare a solid production deployment. First, let's
take a look at the initial Dockerfile:

FROM ubuntu:bionic

RUN apt-get -qq update && \

 apt-get -qq install -y nodejs npm > /dev/null

RUN mkdir -p /app/public /app/server

COPY src/package.json* /app

WORKDIR /app

RUN npm -s install

COPY src/.babelrc \

 src/.env \

Deploying using configuration files and support scripts 123

 src/.nodemonrc.json \

 /app/

COPY src/public/ /app/public/

COPY src/server/ /app/server/

EXPOSE 3000

ENTRYPOINT DEBUG='shipit-clicker:*' npm run dev

The preceding Dockerfile for the ShipIt Clicker game prototype gets many things right
from a local development perspective, but has some limitations, which we will address in
the Dockerfile for this chapter.

Very often, developers start with a base image (such as FROM ubuntu:bionic) that
mirrors what they know best: traditional Linux distributions that you might run on your
workstation. This may help with debugging the Dockerfile initially, but it comes at a steep
cost because both the base and generated images are large, consisting of hundreds of
megabytes. Also, the package installation for Ubuntu is quite verbose, so the apt-get
install command has to redirect stdout to /dev/null to prevent verbose output
from taking over our Terminal (see https://askubuntu.com/a/1134785).

The rest of the initial Dockerfile has some common quirks that you should avoid for
production, such as copying configuration files for all of the development tooling (see
the COPY command, which copies dotfiles). The initial Dockerfile has an entry point
(ENTRYPOINT) that refers to a server that is best suited for development, not production,
because it was quick and easy to define that way. A real production setup requires a build
step that will create a set of assets suitable for distribution, as well as a different npm
command that launches the app using those assets.

The Dockerfile for this chapter has corrections for all of these issues:

FROM alpine:20191114

RUN apk update && \

 apk add nodejs nodejs-npm

RUN addgroup -S app && adduser -S -G app app

RUN mkdir -p /app/public /app/server

ADD src/package.json* /app/

WORKDIR /app

RUN npm -s install

COPY src/public/ /app/public/

COPY src/server/ /app/server/

COPY src/.babelrc /app/

https://askubuntu.com/a/1134785
https://askubuntu.com/a/1134785

124 Deploying Applications with Docker Compose

RUN npm run compile

USER app

EXPOSE 3000

ENTRYPOINT npm start

In this revised Dockerfile, we use Alpine Linux instead of Ubuntu for smaller images, and
we pin the version of Alpine for consistent builds. The container image based on Alpine
Linux is 71% smaller:

$ docker images | awk '/chapter._ship/{ print $1 " " $7}'

chapter6_shipit-clicker-web-v2 154MB

chapter5_shipit-clicker-web 524MB

In the revised Dockerfile, we also create an app user so that Docker runs the application
as a normal UNIX user, not the root user, as that can exacerbate security problems.

After installing the operating system packages and npm packages as silently as possible, we
can copy the application files and the .babelrc configuration file into /app, and then
run RUN npm run compile in order to prepare the production version of the node
application, which we run as the app user with ENTRYPOINT npm start.

Re-examining the initial docker-compose.yml file
The initial docker-compose.yml file from the previous chapter gets the job done
of starting both a web and a Redis container, but it has some deficiencies. The initial
docker-compose.yml file was adapted from the barebones example in the Docker
documentation at https://docs.docker.com/compose/, so it has some gaps
in how ready it is for production use. Many developers adapt these examples without
considering certain nuances that matter when you have to deploy an application to
production. You can think of it as a starting point, rather than the final destination. The
initial docker-compose.yml file is as follows:

version: '3'

services:

 shipit-clicker-web:

 build: .

 environment:

 REDIS_HOST: redis

 ports:

 - "3005:3000"

https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

Deploying using configuration files and support scripts 125

 links:

 - redis

 redis:

 image: redis

 ports:

 - "6379:6379"

The revised docker-compose.yml file for this chapter is much more robust. This file
is inspired in part by the samples at https://github.com/docker-library/
redis/issues/111 and especially by an example by GitHub user @lagden, which has
a nice example of a docker-compose.yml file that supports Redis:

version: '3'

services:

 shipit-clicker-web-v2:

 build: .

 environment:

 - APP_ID=shipit-clicker-v2

 - OPENAPI_SPEC=/api/v1/spec

 - OPENAPI_ENABLE_RESPONSE_VALIDATION=false

 - PORT=3000

 - LOG_LEVEL=${LOG_LEVEL:-debug}

 - REQUEST_LIMIT=100kb

 - REDIS_HOST=${REDIS_HOST:-redis}

 - REDIS_PORT=${REDIS_PORT:-6379}

 - SESSION_SECRET=${SESSION_SECRET:-mySecret-v2}

Note that we define all the environment variables explicitly for the application, and that
several of them are defined with a ${VARIABLE_NAME:-default_value} syntax that
uses the value of an environment variable. These can be specified on the command line, in
the usual configuration file: $HOME/.profile, $HOME/.bashrc, or the .env file in
the same directory as the docker-compose.yml file:

 ports:

 - "${PORT:-3006}:3000"

 networks:

 - private-redis-shipit-clicker-v2

 links:

https://github.com/docker-library/redis/issues/111

126 Deploying Applications with Docker Compose

 - redis

 depends_on:

 - redis

The preceding ports section defines the networking configuration for the main
container; it defines a private network called private-redis-shipit-clicker-v2,
which links the two containers. Note the use of depends_on in this section. This means
that the ShipIt Clicker container will wait until the Redis container is started before
starting. Next, let's examine the Redis container definition:

 redis:

 command: ["redis-server", "--appendonly", "yes"]

 image: redis:5-alpine3.10

 volumes:

 - redis-data-shipit-clicker:/data

 networks:

 - private-redis-shipit-clicker-v2

volumes:

 redis-data-shipit-clicker: {}

networks:

 private-redis-shipit-clicker-v2:

This has many environment variable entries—for example, LOG_LEVEL, REDIS_HOST,
and REDIS_PORT—that allow easy overrides. It allows the override of Redis host settings,
both for easier debugging and to pave the way for easy connection to cloud Redis services.
It starts Redis with command-line parameters that enable persistence and allocates a
Docker persistent volume to store Redis append-only log files. Otherwise, the data would
vanish every time the Redis container is restarted. It makes the network where Redis and
the web server communicates private. This is especially important with Redis because,
with the default configuration, the Redis server operates without any authentication or
authorization—it is wide open to whoever can connect!

Deploying using configuration files and support scripts 127

In this minimalistic, production-ready docker-compose.yml file, we expose the web
server directly on port 80 to the world. This works, but modern browsers will show a
security warning for plain HTTP content. It will work to get you to production, but many
production applications require more security safeguards than running over plain HTTP.
You can get around this by using either a proxy or external load balancer that terminates
HTTPS on port 443, or by configuring SSL certificates. We will cover this in more detail
in later chapters.

One of the features of the docker-compose v3 configuration is that it sets the default
behavior for when a container fails to always restart. This should happen even if the host
is rebooted, and will definitely happen if a process exits due to an unhandled exception.
If you need to configure the restart behavior of your application more directly, you can
do so with the settings listed in the documentation at https://docs.docker.com/
compose/compose-file/#restart_policy.

Preparing the production .env file
Clone the repository and prepare to configure docker-compose:

$ git clone https://github.com/PacktPublishing/Docker-for-
Developers.git

$ cd Docker-for-Developers/chapter6

In order to configure your application for production, you should create a file called .env
in the directory where your docker-compose.yml file lives. If you want to change any
of the defaults—for example, to change the level of debugging shown in production from
info to debug—you should do so through creating and editing the .env file associated
with the production deployment. Copy the file, env.sample, to .env and edit it to suit
your preferences for production.

Handling secrets
This demo application uses environment variables and an .env file to store secrets. This is
in accordance with the 12-factor application principles (see https://12factor.net/
config), but it is certainly not the only way, or the most secure way, to deal with secrets.
You could use a secret management system, such as HashiCorp Vault or Amazon Secrets
Manager, to store and retrieve secrets. We will cover this in detail in both Chapter 8,
Deploying Docker Apps to Kubernetes, and Chapter 14, Advanced Docker Security – Secrets,
Secret Commands, Tagging, and Labels; but for now, let's just use environment variables for
the secrets.

https://docs.docker.com/compose/compose-file/#restart_policy
https://docs.docker.com/compose/compose-file/#restart_policy
https://12factor.net/config

128 Deploying Applications with Docker Compose

You should replace the secret in the environment variable, SESSION_SECRET, with
a random secret and confirm whether you want to expose port 80 to the world. Use
whatever editor you are comfortable with, whether that is vi, emacs, or nano:

cp env.sample .env

vi .env

Once you have set the environment variable overrides, you can deploy the application.

Deploying for the first time
Once you have copied your .env file in place, start the services in the background to
deploy the application:

$ docker-compose up -d

Verify that the services are running, as follows:

$ docker-compose ps

 Name Command State Ports

chapter6_redi docker- Up 6379/tcp

s_1 entrypoint.sh

 redis ...

chapter6_ship /bin/sh -c Up 0.0.0.0:80-

it-clicker- npm start >3000/tcp

web-v2_1

Check whether the system logs show any errors:

$ docker-compose logs

As long as you don't see a stream of error messages in the logs, you should then
be able to reach the website at the IP address of the server—for example, at
http://192.0.2.10—substituting your IP address. If you assigned a hostname using
DNS, you should be able to reach it using that hostname—for example, at http://
shiptclicker.example.com—substituting the full canonical domain name for
this one.

http://192.0.2.10
http://shiptclicker.example.com
http://shiptclicker.example.com
http://shiptclicker.example.com

Deploying using configuration files and support scripts 129

Troubleshooting common errors
If you get an error like this, you need to ensure that the host is not running another web
server, such as Apache HTTPD or NGINX:

docker.errors.APIError: 500 Server Error: Internal Server
Error ("b'Ports are not available: listen tcp 0.0.0.0:80: bind:
address already in use'")

If you get this issue, you should either uninstall the web server that is running on the
host or change what port it uses to listen for requests. You could also change the port that
ShipIt Clicker runs on by changing the PORT variable in the .env file. For Red Hat family
systems, a server listening on port 80 is likely to be Apache HTTPd, and you can remove
it with the following:

$ yum remove -y httpd

For Debian family systems, it is also likely to be Apache, and you will need to use the
following command to remove it:

$ apt-get remove -y apache2

It is possible that you might have some other web server running. You can find out what
the process name of your web server is with netstat:

$ sudo netstat -nap | grep :80

tcp6 0 0 :::80 :::*
LISTEN 12037/httpd

You may not need to do any troubleshooting to get your application running in Docker,
but in a single-host deployment scenario, you can use your system administration
troubleshooting skills to figure out what might be going wrong.

Once you have the application running, you may find that you run some of the same
operations repeatedly, such as rebuilding the application when you have made changes.
This is where support scripts come in handy.

Supporting scripts
When running a site in production, you might have to do some operations frequently. It
becomes tiresome to remember the exact sequence of the Docker commands required to
restart and update the running system or to connect to the database.

130 Deploying Applications with Docker Compose

You should continue to develop your application on your local workstation and use the
production system to deploy changes to your users, once you have tested things locally.

With the improved networking setup in this chapter, it is no longer possible to connect
directly to the Redis container via a direct TCP port, so we will use docker exec within
a script to do that.

If you are in the Docker-for-Developers/chapter6 directory, you can
permanently add this directory to PATH with the following commands to make running
these scripts more convenient:

$ echo "PATH=$PWD:$PATH" | tee -a "$HOME/.bash_profile"

$. "$HOME/.bash_profile"

The most common operations for this application are probably restarting the application,
deploying changes, and connecting to Redis to troubleshoot. For these operations, we will
use the restart.sh script, the deploy.sh script, and the redis-cli.sh script.

Restarting
The restart.sh script will restart all the containers. You should run this after you make
a change to the configuration file, .env. You could just run docker-compose up -d,
but that alone will not tell you whether the changes took hold. This will also run docker-
compose ps for you, which will show you whether your containers are running
correctly after the change, including what the port mappings are. In the following example
session, we remove the .env file entirely and then recreate it with just a single setting for
PORT=80:

[centos@ip-172-26-0-237 chapter6]$ rm .env

[centos@ip-172-26-0-237 chapter6]$ deploy.sh

chapter6_redis_1 is up-to-date

Recreating chapter6_shipit-clicker-web-v2_1 ... done

 Name Command
State Ports

chapter6_redis_1 docker-entrypoint.sh redis
... Up 6379/tcp

chapter6_shipit-clicker-web-v2_1 npm start
Up 0.0.0.0:3006->3000/tcp

[centos@ip-172-26-0-237 chapter6]$ echo 'PORT=80' > .env

[centos@ip-172-26-0-237 chapter6]$ restart.sh

Deploying using configuration files and support scripts 131

chapter6_redis_1 is up-to-date

Recreating chapter6_shipit-clicker-web-v2_1 ... done

 Name Command
State Ports

chapter6_redis_1 docker-entrypoint.sh redis
... Up 6379/tcp

chapter6_shipit-clicker-web-v2_1 npm start
Up 0.0.0.0:80->3000/tcp

[centos@ip-172-26-0-237 chapter6]$

You can see that the chapter6_shipit-clicker-web-v2_1 application was
recreated the second time that restart.sh was run, and that the server is now
connected to the wildcard IPv4 0.0.0.0 address on port 80. This will allow the server to
respond to an HTTP request without a special port number in the URL.

Deploying
The deploy.sh script pulls changes from the git upstream repository, builds the
container, and restarts any containers requiring an update. You should use this after you
have made changes to the code and tested them locally.

Redis
The redis-cli.sh script will allow you to connect to the running Redis server in
the command line. It uses a docker exec command, which attaches to the running
container and starts a new redis-cli command within it This is needed in part because
now, Redis is running in an isolated network, and you should not be able to reach it via
TCP sockets, even from the production host. This will let you troubleshoot any issues with
the backend server.

Here is a sample session showing redis-cli.sh in action:

[centos@ip-172-26-0-237 chapter6]$./redis-cli.sh

127.0.0.1:6379> help

redis-cli 5.0.7

To get help about Redis commands type:

 "help @<group>" to get a list of commands in <group>

 "help <command>" for help on <command>

 "help <tab>" to get a list of possible help topics

132 Deploying Applications with Docker Compose

 "quit" to exit

To set redis-cli preferences:

 ":set hints" enable online hints

 ":set nohints" disable online hints

Set your preferences in ~/.redisclirc

127.0.0.1:6379> keys *

1) "example/deploys"

2) "example/nextPurchase"

3) "example/score"

127.0.0.1:6379> get example/score

"209"

127.0.0.1:6379> quit

Note that you can use this redis-cli.sh script to connect to the Redis server, even
though it is on a private virtual network that would be inaccessible if you had installed
the standard redis-cli program on the host. Being able to rely on tools in a container
can allow you to reach deep into the configuration of an application, even though it is
protected from being directly exposed to the internet.

Exercise – keeping builds off the production server
The deployment script for this chapter does the simplest thing possible for updates: it
rebuilds the container on the production server. This might, however, lead to resource
exhaustion and bringing the production server down.

Given what you learned about Docker Hub in Chapter 4, Composing Systems Using
Containers, how might you change the workflow of application development to revise the
docker-compose.yml file and the deploy.sh script to avoid building the Docker
container on the production server?

Write down one or two sentences describing the workflow that you would use and what
alterations to the docker-compose.yml configuration file would be needed.

Note:
There are multiple ways to achieve these goals, and there is no single answer
to how to achieve them. You can compare your answer with the docker-
compose.yml file in the next chapter to see how your ideas compare to the
solution for building the containers highlighted in that chapter.

Deploying using configuration files and support scripts 133

Exercise – planning to secure the production site
Imagine that you hear from your boss that the ShipIt Squirrel code and production
systems are going to get some attention from your company's chief information security
officer, who is going to go through everything looking for weaknesses. He is concerned
that in the rush to get this live, too many shortcuts have been taken, and he wants you to
provide some more information to him. Please write down the answers to these
three questions:

1. What could be done to secure communication between the clients and the server
with SSL? Which of the following should you do?

a. Terminate SSL within the program itself.

b. Use an external load balancer to terminate SSL.

c. Use a web server on the host, but outside Docker, to terminate SSL.

d. Use Docker and a web server container to terminate SSL.

2. How do you plan on renewing the SSL certificate periodically?

3. Are there other weaknesses in the security of the current system that you can find,
either at the Docker layer or the API layer?

Once you have deployed the application and considered some enhancements to its
security, you should learn how to monitor the deployment so that you can find out when
something goes wrong before the users of your application notice.

Answers for how to secure the production site:
Any of the four options for Question 1 could work, but options b and d are the
most robust and stable in practice. Option a is tricky to get right, and option c
requires separate updates to the application environment.

Regarding Question 2, you can either purchase an SSL certificate from a vendor,
which you must renew and reinstall every year, you can rely on the vendor of
your load balancer to automatically renew your certificate (if they offer that as
an option), or you can use Let's Encrypt to automatically renew the certificate.
See the Further reading section of the next chapter for more about using Let's
Encrypt to renew the certificate, as well as using a set of Docker containers to
terminate SSL.

Question 3 is open-ended, but the first thing that you should notice is that
there is no authentication or authorization built into the web services in the
chapter6 code base.

134 Deploying Applications with Docker Compose

Monitoring small deployments – logging
and alerting
One of the nice things about starting small is that you may be able to rely on very simple
mechanisms for both logging and alerting. For any deployment using Docker and
Docker Compose on a single host—for example, a deployment of ShipIt Clicker—you
can use some basic tools and commands to deal with logging, and a variety of simple
alerting services provided by third parties to deal with alerting.

Logging
For logging, in many cases, all that is required is to use the logs built into Docker. Docker
captures the standard output and standard error file handles of every process it starts and
makes them available as logs for each container. You can review the consolidated logs
for all the services started since the last container restart with the following command,
assuming you are in the directory where your docker-compose.yml file is present
(less -R will interpret the ANSI color escapes that the logs command produces):

$ docker-compose logs 2>&1 | less -R

You can also do docker ps in order to find the name of the running containers so that
you can retrieve their log streams:

 [centos@ip-172-26-0-237 ~]$ docker ps

CONTAINER ID IMAGE COMMAND
CREATED

 STATUS PORTS NAMES

e947e7de33ef chapter6_shipit-clicker-web-v2 "npm
start" 4 hours ago

 Up 4 hours 0.0.0.0:80->3000/tcp chapter6_
shipit-clicker-web-v2_1

3f91820e097b redis:5-alpine3.10 „docker-
entrypoint.s…" 4 hours ago

 Up 4 hours 6379/tcp chapter6_
redis_1

Monitoring small deployments – logging and alerting 135

Once you have the names of the containers, you can retrieve the individual log files for
each running container separately. You can pipe them to less, or redirect the output of
the logs to a file, for example:

 [centos@ip-172-26-0-237 ~]$ docker logs chapter6_shipit-
clicker-web-v2_1 > shipit.log

[centos@ip-172-26-0-237 ~]$ tail shipit.log

> shipit-clicker@1.0.0 start /app

> node dist/index.js

{"level":30,"time":1580087119723,"pid":16,"hostname":"e947e7de3
3ef","name":"shipit-clicker-

v2","msg":"Redis connection established","redis_url":"redis://
redis:6379","v":1}

{"level":30,"time":1580087119934,"pid":16,"hostname":"e947e7de3
3ef","name":"shipit-clicker-

v2","msg":"up and running in development @: e947e7de33ef on
port: 3000}","v":1}

[centos@ip-172-26-0-237 ~]$

This procedure does require you to log into the production server and run some
commands there, but in practice, this is a good way to examine the logs of an application
running on a single host.

Alerting
To begin, it would be enough to monitor the HTTP server on port 80 of the production
server to ensure it stays alive. If you have access to a network monitoring system for
your company—for example, a Nagios or Icinga server—you could use that. If the
system is accessible via the internet, you can use a free monitoring service, such as
https://uptimerobot.com, to monitor the server.

In order to extend monitoring deeper, you might want to also monitor the internal
services, such as Redis. This is more challenging in a simple setup like this one, though.
We will go into more depth about advanced monitoring systems in Chapter 10, Monitoring
Docker Using Prometheus, Grafana, and Jaeger.

The basic idea here is that you want to get either an email, an SMS message, or both if the
system goes down.

https://uptimerobot.com

136 Deploying Applications with Docker Compose

Limitations of single-host deployment
What could go wrong with deploying a Docker application to a single host? Plenty! While
single-host deployment offers operational simplicity, it has some major limitations. Let's
look at some of the limitations in the following sections.

No automatic failover
If either the database server container or the web service container fails and cannot be
restarted automatically, the site will be down and will require manual intervention. This
might be as simple as noticing that your monitoring system says that the site is down, and
so you need to SSH in and reboot the server. But sometimes, a single server will be so low
on memory that it must be manually rebooted from a higher-level console or even power-
cycled manually. This tends to lead to significant periods of time where an application is
down and not available to serve requests.

Inability to scale horizontally to accept more load
What happens if the traffic for the system exceeds the current capacity? In single-host
deployment, you may be able to switch the host to a larger computer with more memory
and processors, which is called vertical scaling. That is much easier in a cloud environment
than it is in an environment, where you have to deal with physical hardware, such as
an on-premises or data center environment. It would be much harder to adapt these
simple deployment techniques to a whole fleet of server instances—which is called
horizontal scaling.

Tracking down unstable behavior based on incorrect
host tuning
Depending on your hosting provider, the base operating system you start with, and how
the Docker containers are configured, you might experience instability that is hard to
track down. Maybe your host gets rebooted frequently due to the provider's network
detecting unstable hardware or network conditions. Maybe you have configured your
operating system to install automatic updates and applying them causes periods of
outages. Maybe the application grows in memory until it triggers a failure of some kind.

Limitations of single-host deployment 137

For simplicity's sake, the examples in this chapter do not specify memory limits at an
application or container level. This means that the Redis container could consume all
available memory on the host since it lacks a max_memory setting in its application-level
main configuration file. It also means that the node container running the Express web
application could leak memory until the operating system Out-Of-Memory (OOM) killer
terminates it or the Docker daemon.

One way of mitigating this problem is by configuring virtual memory on the host using
a swap file or swap partition, which makes the system look as if it has more physical
memory than it actually does. If you do not configure a swap file on the host, you may
find that running the deploy.sh script will fail. You might not see any messages in the
console when this happens, but if you check /var/log/messages, you will find traces
of the Linux kernel's OOM killer terminating the npm install program or another part of
the Docker container build process.

See the Docker documentation for more on the dangers of not configuring the memory
for your containers and operating system appropriately:

https://docs.docker.com/config/containers/resource_constraints/

Loss of single host could be disastrous – backups are
essential
If you have hosted your application on a single physical or virtual server, you should
ensure that the system is backed up regularly. Many providers have an image backup
service that you can configure to take daily backups and preserve them for some period
of time for an extra cost. You could also script backups of the critical volumes using
old-school methods, such as using TAR and SSH or using a modern backup system, such
as restic (see https://restic.readthedocs.io/en/latest/), to back up the
files and volumes to a cloud storage system.

https://docs.docker.com/config/containers/resource_constraints/
https://restic.readthedocs.io/en/latest/
https://restic.readthedocs.io/en/latest/

138 Deploying Applications with Docker Compose

Case study – migrating from CoreOS and Digital Ocean
to CentOS 7 and AWS
One of the authors, Richard Bullington-McGuire, maintained a winter cycling
competition website, https://freezingsaddles.org/, on a Digital Ocean droplet
using CoreOS for more than a year. This system would frequently be knocked offline after
a reboot, and it was difficult to track down exactly what the problems were that caused the
periodic outages. Lack of console access to the Digital Ocean control panel and a lack of
familiarity with CoreOS made troubleshooting the system even more difficult. To ensure
that the system was backed up, restic was installed and configured to send backups
to Amazon S3. After many frustrating system administration experiences, the system
was moved over to AWS using Lightsail, running CentOS 7 as a host operating system.
To guard against OOM conditions, the new system ran with a swap file equal in size to
RAM. After this, the system stopped randomly failing every few days and operations
became much more smooth. Additionally, the new system had daily automatic snapshot
backups enabled, lessening the need to back up the system with an application-level tool
such as restic. Even so, if the system reboots, the web server does not always come up
smoothly, with manual intervention required to restore the service.

Summary
The simplest way to get your Docker-based application to production is to deploy it onto
a single host with Docker Compose. If you have properly prepared the host with the
right software, including Docker Compose, you can deploy your application there in a
production-ready configuration. This can be completed in a matter of hours and can serve
applications with low to moderate performance and availability demands efficiently. If
you make the right adjustments to your configuration files, your application will be ready
to deploy to production. By using shell scripts that encapsulate long, verbose commands,
you can more easily handle regular maintenance and updates for your applications. In the
simplest case, you can use external monitoring and alerting for this class of application
and handle this concern with low effort.

You can apply what you have learned in this chapter to increase the sophistication
of the Dockerfile and the docker-compose.yml file that support your application.
You can craft simple shell scripts to automate the most common applications. You
will have learned that you can rely on external monitoring through services such as
https://uptimerobot.com to provide simple availability monitoring, and that
you can use the built-in Docker logging facilities to provide insights into the operations
of your application.

https://freezingsaddles.org/
https://freezingsaddles.org/
https://uptimerobot.com
https://uptimerobot.com

Further reading 139

Once you have an application deployed, it would be a good idea to increase the level
of automation surrounding it, particularly related to how you can build and deploy
the application. In the next chapter, we will see how you can use Jenkins, a common
continuous integration system, to automate deployment and testing.

Further reading
• Docker Cookbook: https://www.packtpub.com/free-ebooks/

virtualization-and-cloud/docker-cookbook-second-
edition/9781788626866

• Use Compose in production: https://docs.docker.com/compose/
production/

• Open source monitoring tools: https://geekflare.com/best-open-
source-monitoring-software/

• Free monitoring tools: https://www.dnsstuff.com/free-network-
monitoring-software

• Is docker-compose suited for production? https://vsupalov.com/
docker-compose-production/

• Docker tip 2: the difference between COPY and ADD in a Dockerfile:
https://nickjanetakis.com/blog/docker-tip-2-the-
difference-between-copy-and-add-in-a-dockerile

If you are running a real production application on a single host with docker-compose,
you should strongly consider securing your site with SSL. You can use Let's Encrypt and
a host of Docker sidecar containers to achieve this:

• How to use Let's Encrypt, NGINX, and Docker to secure your site with SSL:
https://github.com/nginx-proxy/docker-letsencrypt-
nginxproxy-companion

• Using docker-compose.yml to configure Let's Encrypt with NGINX
and Docker: https://github.com/nginx-proxy/docker-
letsencryptnginx-proxy-companion/blob/master/docs/Docker-
Compose.md

https://www.packtpub.com/free-ebooks/virtualization-and-cloud/docker-cookbook-second-edition/9781788626866
https://www.packtpub.com/free-ebooks/virtualization-and-cloud/docker-cookbook-second-edition/9781788626866
https://www.packtpub.com/free-ebooks/virtualization-and-cloud/docker-cookbook-second-edition/9781788626866
https://www.packtpub.com/free-ebooks/virtualization-and-cloud/docker-cookbook-second-edition/9781788626866
https://docs.docker.com/compose/production/
https://docs.docker.com/compose/production/
https://docs.docker.com/compose/production/
https://geekflare.com/best-open-source-monitoring-software/
https://geekflare.com/best-open-source-monitoring-software/
https://geekflare.com/best-open-source-monitoring-software/
https://www.dnsstuff.com/free-network-monitoring-software
https://www.dnsstuff.com/free-network-monitoring-software
https://www.dnsstuff.com/free-network-monitoring-software
https://vsupalov.com/docker-compose-production/
https://vsupalov.com/docker-compose-production/
https://vsupalov.com/docker-compose-production/
https://vsupalov.com/docker-compose-production/
https://vsupalov.com/docker-compose-production/
https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile
https://nickjanetakis.com/blog/docker-tip-2-the-difference-between-copy-and-add-in-a-dockerile
https://github.com/nginx-proxy/docker-letsencrypt-nginxproxy-companion
https://github.com/nginx-proxy/docker-letsencrypt-nginxproxy-companion
https://github.com/nginx-proxy/docker-letsencryptnginx-proxy-companion/blob/master/docs/Docker-Compose.md
https://github.com/nginx-proxy/docker-letsencryptnginx-proxy-companion/blob/master/docs/Docker-Compose.md
https://github.com/nginx-proxy/docker-letsencryptnginx-proxy-companion/blob/master/docs/Docker-Compose.md

7
Continuous

Deployment with
Jenkins

In order to reliably use Docker containers in production, you need a process that will
consistently build, test, and deploy your software. A team building very small applications
might be satisfied with running tests and deployment scripts manually. However,
discipline often breaks down, and people step on each other's toes. This often results in
broken builds and tests that are not run before or after a production deployment. The
aftermath is often downtime and unhappy customers. In order to make sure that we can
build, test, and deploy software reliably, we can use continuous integration software. This
type of software can reliably build, test, and deploy revisions in a disciplined and traceable
way. A well-run modern project can even use this software to achieve continuous
deployment, where even the smallest changes to the software can be quickly promoted to
either a test or production environment.

In this chapter, we show how to configure Jenkins, one of the most popular continuous
integration software systems, to facilitate deployment to the minimal environment shown
in the previous chapter. We will use Jenkins to manage both the production installation
and a new staging environment installation of the application used to test changes before
they reach production.

142 Continuous Deployment with Jenkins

By the end of this chapter, you will know when it might be a good idea to deploy Jenkins for
CI and CD with Docker. You will learn how to set up a basic Jenkinsfile that can help
Jenkins secure shell (SSH) to production hosts and run docker-compose commands to
update the application. You will discover how to set up Jenkins parameterized builds that
allow both changing and auditing configuration parameters. You will extend the simple
production setup by adding an isolated staging environment to allow developers to make
changes more confidently. Finally, you will know when this type of solution has exhausted
its limits and when it is time to reach for more sophisticated tools.

In this chapter, we're going to cover the following main topics:

• Using Jenkins to facilitate continuous deployment

• The Jenkinsfile and host connectivity

• Driving configuration changes through Jenkins

• Deploying to multiple environments through multiple branches

• Complexity and limits to scaling deployments through Jenkins

Technical requirements
To complete the exercises in this chapter, you'll need Git and Docker on your local
workstation, and you will need to have already set up a production application as
described in the previous chapter. To complete the exercises about deploying to multiple
environments, you will need another host to run a test environment, with similar
specifications as the production host.

You will also need a Jenkins server. This chapter will go over some options for the simple
setup and maintenance of a Jenkins server if you don't already have one available to you. If
your company already runs a Jenkins server, you can use that—ask the system administrators
for permission. This server will need to be able to reach your production server via SSH.

You will need to be able to create DNS entries in a zone you control, for both the
staging server and the Jenkins server. You can use the same DNS zone as you used
in the previous chapter.

The GitHub repository for this chapter is https://github.com/Packt-
Publishing/Docker-for-Developers—please see the chapter7 folder inside.

Check out the following video to see the Code in Action:

https://bit.ly/3kL1EUU

https://github.com/Packt-Publishing/Docker-for-Developers
https://github.com/Packt-Publishing/Docker-for-Developers
https://bit.ly/3kL1EUU

Using Jenkins to facilitate continuous deployment 143

Example application – ShipIt Clicker v3
The version of ShipIt Clicker in this chapter is very similar to the one in the previous
chapter. We will use it to test deployment through Jenkins to both a production and a
staging environment.

Using Jenkins to facilitate continuous
deployment
The world of continuous integration servers has come a long way in the last 20 years. One
of the most popular systems is Jenkins (see https://jenkins.io/)—because it is
free, flexible, and offers a huge variety of integrations and plugins. CloudBees (https://
www.cloudbees.com/), the company behind it, also offers commercial support via a
paid version. Your company might already be running Jenkins, in which case you may not
need to do much setup to get your project to build and run.

We are going to use the Jenkins 2.x Pipeline project type, where a Jenkinsfile is
committed to source control in GitHub and controls the steps Jenkins uses to build and
deploy the project.

Avoid these traps
Before we set up Jenkins, we should make sure we avoid certain common traps people fall
into when setting it up for the first time.

Avoid running Jenkins in Docker
Although you can use Docker to run a Jenkins server, doing so introduces some
complications that are best avoided, especially when just trying to get a continuous
integration server running for the first time. You would either need to use a feature called
Docker-in-Docker (dind) or a customized Docker installation of Jenkins that has the
correct ports and files mapped from the host in a very specific way. If you don't get it just
right, you might run into trouble with not being able to build Docker containers since you
can't double-mount a union filesystem, for example.

Setting up Jenkins itself running as a Docker container and working through the quirks
would probably consume a ton of effort and time, and is beyond the scope of the advice
we can give in this book.

https://jenkins.io/
https://www.cloudbees.com/
https://www.cloudbees.com/

144 Continuous Deployment with Jenkins

Avoid running Jenkins on the production server
In a previous chapter, we set up a production server in the cloud to host an application.
You might be tempted to have that same server you already have running do double-duty
by having it run the Jenkins CI server as well. This would be economical, but it is risky as
any problem with either the production configuration or the Jenkins server could both
bring down production and knock your CI server offline. This would also complicate the
network and web hosting virtual host configuration—it would be too easy to have these
distinct services conflict, without a more sophisticated orchestration system.

Part of running robust systems is to have adequate isolation between processes and
systems that have distinct purposes, so avoid doubling-up Jenkins and your production
server; run it on a system separate from your production server.

Avoid running Jenkins on your local workstation
You might also be tempted to just install Jenkins on your local workstation to give it a test
drive. However, you will find several major drawbacks to this approach:

• Your workstation probably does not have a stable IP address, necessitating dynamic
DNS solutions, and possibly punching holes in firewalls and setting up NAT port
redirections.

• You would have to run Jenkins on your system constantly to have it process and
build changes to the software as commits get pushed.

• Jenkins can be pretty heavyweight to run alongside a full development
environment—and it may slow your workstation down significantly.

If we should not run Jenkins as a Docker container, and we should not run it on our local
workstation, where should we run Jenkins? Let's explore the options.

Using an existing Jenkins server
You don't have to set up Jenkins from scratch if you have access to a Jenkins server
running a recent version of Jenkins in the 2.x series. Recent versions of Jenkins have
excellent support for Docker, assuming that the hosts running the Jenkins builds have
Docker running on them.

Using Jenkins to facilitate continuous deployment 145

You will need to make sure that the following Jenkins plugins are present:

• SSH credentials

• Pipeline

• GitHub

• GitHub Organization

Ideally, the Jenkins server would already be set up with the GitHub Organization plugin
and it should be configured so that it can automatically manage GitHub webhooks. If
this is the case, you can either fork the sample repository or clone it and push it into your
GitHub organization as a new repository and start deploying from there.

You will need enough permissions on the Jenkins server to create credentials, which we
will use to hold secrets required for building and deploying the software.

Setting up a new Jenkins server
A convenient way to simplify the set of technologies you have to maintain is to use
the same base operating system and Docker setup that the production host runs. The
instructions and scripts here are tailored to a CentOS 7 installation, but you can follow the
same basic steps for other operating system distributions with some modification of the
specific commands used to set up and maintain the packages, for example using apt-get
instead of yum to install operating system packages.

Begin by installing Docker and docker-compose just as you did in the previous
chapter. Once that is done, test that Docker works with the docker run --rm
hello-world command and then install Jenkins. If you are using CentOS 7, you
can use the script at https://github.com/PacktPublishing/Docker-for-
Developers/blob/master/chapter7/bin/provision-jenkins.sh to install
both Docker and Jenkins together (replace centos@jenkins.example.com with the
user name and IP address or hostname of your new Jenkins server):

$ ssh centos@jenkins.example.com < bin/provision-jenkins.sh

$ ssh centos@jenkins.example.com

146 Continuous Deployment with Jenkins

If you are using another operating system, consult the Jenkins documentation online
for installation instructions: https://wiki.jenkins.io/display/JENKINS/
Installing+Jenkins

In order to configure CentOS 7 to allow network traffic to flow to Jenkins, you may have
to configure its host firewall to allow inbound traffic.

Also, it is desirable to have Jenkins listen on a standard port such as port 80 or 443.
This can be accomplished in several ways, including having a web server act as a proxy
for Jenkins, or using a load balancer to terminate SSL. A shortcut for allowing network
traffic to flow to Jenkins on port 80 for CentOS 7 is as follows (if you used the
provision-docker.sh script to provision Jenkins this is already done):

$ sudo firewall-cmd --zone=public --permanent --add-masquerade

$ sudo firewall-cmd --permanent --add-service=http

$ sudo firewall-cmd --permanent --add-forward-port=port=80:prot
o=tcp:toport=8080

$ sudo firewall-cmd --permanent --direct \

 --add-rule ipv4 nat OUTPUT 0 \

 -p tcp -o lo --dport 80 -j REDIRECT --to-ports 8080

$ sudo firewall-cmd --reload

The firewall-cmd invocation will allow you to reach Jenkins on port 80 instead of
specifying port 8080.

Once Jenkins is installed, you must retrieve a password from its logs to connect to
the server:

$ sudo grep -A 3 password /var/log/jenkins/jenkins.log

Note the password given in the output of this command. If this does not work
immediately, wait a few minutes and try again, as Jenkins may still be starting up.

Then, open a web browser and put in the IP address with the appropriate port, either
8080 or 80 depending on whether you have redirected connections. For example, enter
http://192.2.0.10:8080 and navigate to the site.

You should see a screen that says Unlock Jenkins:

https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins
https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins
http://192.2.0.10:8080

Using Jenkins to facilitate continuous deployment 147

Figure 7.1 – Unlock Jenkins

Use the administrator password from the /var/log/jenkins/jenkins.log file to
sign in for the first time.

The next screen will prompt you to install plugins. Please install the suggested plugins:

Figure 7.2 – Customize Jenkins

148 Continuous Deployment with Jenkins

If your system has less than 4 GB of memory, you will want to run with a swap file. Run
the free command to see if the server has any swap memory available. If not, issue these
commands to create a 1 GB swap file and activate it:

$ free

 total used free shared buff/
cache available

Mem: 1882296 89008 1533220 8676
260068 1612156

Swap: 2097148 0 2097148

$ sudo dd if=/dev/zero of=/swap bs=1M count=1024

1024+0 records in

1024+0 records out

1073741824 bytes (1.1 GB) copied, 2.94343 s, 365 MB/s

[vagrant@localhost ~]$ sudo chmod 0600 /swap

[vagrant@localhost ~]$ sudo mkswap /swap

Setting up swapspace version 1, size = 1048572 KiB

no label, UUID=2bd70cac-3730-45bb-8b77-982425fb7af5

[vagrant@localhost ~]$ echo /swap swap swap defaults 0 0 | sudo
tee -a /etc/fstab

/swap swap swap defaults 0 0

[vagrant@localhost ~]$ sudo mount -a

[vagrant@localhost ~]$ free

 total used free shared buff/
cache available

Mem: 1882296 83120 481244 8668
1317932 1604256

Swap: 2097148 0 2097148

You should see that the system has non-zero swap memory in the output of free.

Jenkins security and HTTPS
For production use, you should configure Jenkins to run behind either an SSL-
terminating load balancer or a web server configured with an SSL certificate
that will listen on HTTPS. Please consult the Jenkins documentation or the
many tutorials available on the internet regarding securing Jenkins with
HTTPS on how to accomplish this. You should also consider restricting the set
of IP addresses that can directly reach the Jenkins server as these servers are
frequent targets for malicious actors. See the Further reading section at the end
of this chapter for more about securing Jenkins.

The Jenkinsfile and host connectivity 149

In order to use Jenkins with Docker, you will need to install the Docker Pipeline plugin.
From the Jenkins main screen, go to the Manage Jenkins | Manage Plugins menu, click
on the Available tab, select the Docker Pipeline plugin, and then press the Download
now and install after restart button. When Jenkins restarts, log in again.

Now that you have a Jenkins server available to you, you can proceed to configure it to talk
to the production server.

How Jenkins can support continuous deployment
Jenkins can check out the sources for a project from version control, build the software,
run tests, and run deployment scripts. Because it has Docker support, it can build a
Docker container, push the container to Docker Hub or another container repository, and
then run deployment scripts that connect to a server to tell it to update its running Docker
containers. In order to support all these objectives, we must configure Jenkins to integrate
with the production server, with a version control repository, and with Docker Hub. First,
we will ensure that we can use Jenkins to connect to the production server.

The Jenkinsfile and host connectivity
To ensure repeatable builds, we are going to use Jenkins scripts to run build and
deployment automation. Jenkins supports a type of script called a declarative pipeline
script that allows a concise definition of steps needed to build, test, and deploy software.
This script is conventionally known as a Jenkinsfile. Because these scripts are written
using the Groovy language (see https://groovy-lang.org/), you can declare
variables, write functions, and use many features of this very powerful language to help
you build and deploy your software. Jenkins supports both a free-form scripting style and
a more structured declarative style of script that uses a special Groovy DSL to provide
more scaffolding for concise scripts.

See here for more information on how to write a Jenkinsfile: https://www.
jenkins.io/doc/book/pipeline/jenkinsfile/

You can either directly enter these scripts into a Jenkins job definition or store them in
version control. If you put a file called Jenkinsfile in the root of a version control
repository, Jenkins can discover those files if it gets configured to talk to a version control
system such as GitHub.

https://groovy-lang.org/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

150 Continuous Deployment with Jenkins

Testing Jenkins and Docker with a pipeline script
To test that Jenkins and Docker are working together, we will first enter a script through
the console. At the top-level Jenkins screen, click on the New Item menu and then create a
new job of type Pipeline. Call it Hello Docker:

Figure 7.3 – New Item – Hello Docker pipeline

Then, in the Pipeline section, enter this script (see chapter7/Jenkinsfile-hello-
world in the companion GitHub project):

pipeline {

 agent { docker { image 'alpine:20191114' } }

 stages {

 stage('build') {

 steps {

 sh 'echo "Hello, World (Docker for Developers
Chapter 7)"'

 }

https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter7/Jenkinsfile-hello-world

The Jenkinsfile and host connectivity 151

 }

 }

 }

Save the job and click on the Build Now link, and Jenkins will create build #1. Follow
the link for #1 that appears on the left and then click on the Console Output button. You
should see something like this:

Figure 7.4 – New Item – Hello Docker Console Output

152 Continuous Deployment with Jenkins

You should see Hello, World (Docker for Developers Chapter 7) in the
Console Output on the Jenkins web page. If you see out of memory errors here, ensure
that you have a swap file on your Jenkins server. If you see an error about Docker not
being a known agent type, go to the Manage Jenkins | Manage Plugins menu, and install
the Docker Pipeline plugin.

Connecting to the production server via SSH
Next, we will configure Jenkins to connect to the production server via SSH. We need to
do this in order to control the Docker subsystem on the remote server. We will generate
an SSH key for Jenkins to use and add it to the production server's list of authorized keys.

Generating an SSH key and adding it to Jenkins credentials
On your local workstation, issue the following command to generate a 2,048-bit RSA SSH
key pair and view it:

ssh-keygen -t rsa -b 2048 -f jenkins.shipit

cat jenkins.shipit

Copy the contents of the jenkins.shipit file to your clipboard, then go to your
Jenkins home page, and in the left-hand menu, navigate to the Manage Jenkins link,
then to the Manage Credentials link, then navigate to System | Global credentials
(unrestricted) of the kind SSH Username with private key. Give it the ID of
jenkins.shipit and enter the username of the non-root user from the production
server (typically, centos for CentOS 7 cloud servers). Click on Enter directly and add
the key and click on the OK button to save the credentials:

The Jenkinsfile and host connectivity 153

Figure 7.5 – Add Credentials – SSH key

Copy the SSH public key, jenkins.shipit.pub, from your local system to the
production server and append it to the ~/.ssh/authorized_keys file. By entering
the following commands on your local workstation, replace centos@192.2.0.10 with
the username and IP address of your production server:

prod=centos@192.2.0.10

ssh $prod mkdir -p .ssh

ssh $prod tee -a .ssh/authorized_keys < jenkins.shipit.pub

ssh $prod chmod 700 .ssh
ssh $prod chmod 600 .ssh/authorized_keys

Test that the SSH key authentication is working by using the key to log in from your local
workstation:

$ ssh -i jenkins.shipit $prod

Last login: Mon Mar 2 04:57:35 2020 from gateway.example.net

[centos@ip-172-26-13-202 ~]$

Once you have done this, you can create a test job that uses these credentials to SSH to
the server.

154 Continuous Deployment with Jenkins

Use a Jenkins Pipeline job to SSH to the production server
In the Jenkins web console, create a new Jenkins job with the New Item menu, give it the
item name SSH to Production, and pick the Pipeline job type:

Figure 7.6 – Create Item – SSH to Production

The Jenkinsfile and host connectivity 155

In the job definition form, in the Pipeline section, for the Definition field, choose
Pipeline script and enter the following pipeline script into the Script field, but change
centos@192.2.0.10 to the user and host for your production server, and save the job
script (see chapter7/Jenkinsfile-ssh-proof-of-concept) in the companion
GitHub project):

pipeline {

 agent any

 stages {

 stage('SSH') {

 steps {

 withCredentials([sshUserPrivateKey(

 credentialsId: 'jenkins.shipit',

 keyFileVariable: 'keyfile')]) {

 sh '''

prod=centos@192.2.0.10

cmd="docker ps"

ssh -i "$keyfile" -o StrictHostKeyChecking=no $prod $cmd

 '''

 }

 }

 }

 }

}

When you run this by clicking on the Build Now link, and view the console output, you
should see output similar to the following:

…

+ ssh -i **** -o StrictHostKeyChecking=no centos@34.238.248.192
docker ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES

6c9ef1ca65f6 chapter6_shipit-clicker-web-v2 "npm
start" 6 weeks ago Up 6 weeks
0.0.0.0:80->3000/tcp chapter6_shipit-clicker-web-v2_1

…

3f91820e097b redis:5-alpine3.10 "docker-

https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter7/Jenkinsfile-ssh-proof-of-concept
https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter7/Jenkinsfile-ssh-proof-of-concept

156 Continuous Deployment with Jenkins

entrypoint.s…" 7 weeks ago Up 7 weeks 6379/
tcp chapter6_redis_1

If you do not see the output of docker ps, double-check the username, IP address, and
SSH key. Check for any error messages that Jenkins emits about the Jenkinsfile or
related to the ssh shell command to troubleshoot. You will need to get this to work in
order to get the next stage to work reliably.

You can use Jenkins to connect to other hosts to run scripts that use docker and
docker-compose. But you can also run docker and docker-compose directly on
the Jenkins server if you need to. We will explore that later in the chapter.

Now that we can use Jenkins to connect to the production server via SSH, using a pipeline
script, we can use that connection to make changes to the production server, including
deploying new changes to the server.

Driving configuration changes through Jenkins
Next, we will learn how to make changes to the production system by running scripts
from the Git repository hosted in Jenkins. We can use Jenkins both to build the Docker
containers for the application and to deploy those containers on the production server.
That way, any changes to either the program or to its Dockerfile or the docker-
compose.yml file can be propagated through automation to the production system.

Here are some tips for integrating Jenkins with other systems, including GitHub, that
can make your life easier. The first tip relates to the best way to configure Jenkins with a
Jenkinsfile—by storing it in a version control system.

Using Git and GitHub to store your Jenkinsfile
In the previous section, we used Jenkinsfile entered directly into a Jenkins job to
do some quick testing. That works well for doing exploratory work, but to build and
manage a more complex set of scripts, you should use Git version control to store the
Jenkinsfile and use GitHub to store and share the Git repository, since GitHub
integrates nicely with Jenkins. This will let you make changes not only to your program
but also to the deployment scripts in a controlled fashion.

For more information about why you should use the Git version control system in
conjunction with GitHub, see this introductory guide: https://guides.github.
com/introduction/git-handbook/.

https://guides.github.com/introduction/git-handbook/
https://guides.github.com/introduction/git-handbook/

Driving configuration changes through Jenkins 157

We can combine the power of a script stored in GitHub with the Jenkins Environment
variables feature, which lets you centrally store values that will be substituted in the same
Jenkinsfile as the one in the repository for this book to deploy the demonstration
project. This support for environment variable substitution will allow you to use the
Jenkinsfile unchanged, even though your production server may be set up with a
distinct user and host, while also using your SSH, Docker Hub, and GitHub credentials,
which are similarly distinct.

In order to make further progress, you must make sure that Jenkins has a GitHub
username and security token as a credential so that you can use Jenkins to check out
GitHub repositories.

Ensuring Jenkins has a GitHub username and security token
credential
In order to use Jenkins with GitHub, you will need to save a Jenkins credential that has a
GitHub personal access token. In a web browser, sign in to GitHub, and go to https://
github.com/settings/tokens and generate a token that has both the repo and
admin:repo_hook scopes. Copy the generated token to the clipboard. Then, in another
browser window, go to your Jenkins server and navigate through credentials to the Jenkins
global credentials and create a Global credentials (unrestricted) credential of the type
Username with password and put in your GitHub username, paste the security token
from the clipboard, and give it an ID of github.repo.username and a description of
GitHub repo credentials (username), but replace username with your actual GitHub
username. Press the OK button to save the credential.

Option 1 – Configuring Jenkins with a GitHub organization item
Jenkins has support for defining items that might be individual Jenkins jobs or
collections of related jobs. Several of the types of items allow you to connect a version
control system to Jenkins so that it will automatically define multiple Jenkins jobs. One
of the most powerful of these is a GitHub Organization item. Using a GitHub
Organization item will allow Jenkins to scan GitHub for every project that has a
Jenkinsfile, and Jenkins will automatically set up a forest of child items for all the
repositories in the GitHub organization where it finds a Jenkinsfile.

This is the easiest way to have Jenkins manage a set of related projects If you are using a
new Jenkins server to explore Docker development, in a GitHub organization you control,
try setting this up. If you are using a corporate Jenkins server, this may already be set up.

https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens

158 Continuous Deployment with Jenkins

From your Jenkins installation's home page, click the New Item link and create an item
with a name that matches your GitHub organization of type GitHub Organization.
Use the credentials labeled as GitHub repo credentials (username) and make sure the
name in the organization field matches your GitHub organization name.

You can set up a filter so that this scans only the projects you want for a Jenkinsfile.
This might be a good idea if you have a huge number of repositories and branches in
your organization, or if you only want your installation of Jenkins to build specific
repositories—the repositories that might work with Jenkins—or there is some other
Jenkins server that also builds a subset of the projects in your GitHub organization. If
you want to do this, add a Behavior of type Filter by name (with regular
expression) and construct a regular expression to match the names of only the
repositories you want to include.

Using GitHub, fork the Docker-for-Developers repository (https://github.
com/PacktPublishing/Docker-for-Developers/) to your organization.
Alternatively, if you don't want to fork the repository, create an empty repository in
your organization. Then, push your local copy of the repository to the freshly created
repository, go into the GitHub organization item you created, and you should see a
Docker-for-Developers item show up.

If you are using an individual GitHub account, and lack access to a GitHub
organization, this may not be a good option, however. You could instead configure
Jenkins with a multibranch pipeline item that retrieves the Jenkinsfile from a
single GitHub repository.

Option 2 – Configuring Jenkins with a multibranch pipeline item
Using a multibranch pipeline item will allow Jenkins to scan GitHub for a single
repository for every project that has a Jenkinsfile, and Jenkins will automatically set
up a forest of child items for branches and pull requests for a single configured GitHub
repository, for branches where it finds a Jenkinsfile.

Fork the Docker-for-Developers repository to your organization or create an empty
repository in your account and push your local copy of the repository to GitHub. You
need to do this before configuring the multibranch pipeline.

From your Jenkins installation's home page, click the New Item link and create an
item with a name that matches your GitHub repository name of type Multibranch
Pipeline. In Branch Sources, choose GitHub, and then fill out the GitHub form with
the credentials labeled as GitHub repo credentials (username), and put the URL of your
GitHub repository in the Repository HTTPS URL field. Then, save the item. It will scan
the repository and set up the individual Jenkins jobs for each Git branch.

https://github.com/PacktPublishing/Docker-for-Developers/
https://github.com/PacktPublishing/Docker-for-Developers/

Driving configuration changes through Jenkins 159

At this point, whether you have used the multibranch pipeline or the GitHub organization
item type, you should have a set of branches in your Jenkins.

Changing the origin of all checked out repositories
At this point, you should also change the URL for your Git repositories, both on your
local workstation, and on the production server you set up in the previous chapter, to
the new repository URL. Replace example with the name of your GitHub organization
or user where you forked the repository:

git remote set-url origin https://github.com/example/Docker-
for-Developers.git

Checking that your GitHub repository is talking to Jenkins via
a webhook
GitHub can communicate with other systems via webhooks, which are HTTP requests
that the system triggers, targeting another system, when people do certain actions.

See here for more information about GitHub's support for webhooks and system
integration: https://developer.github.com/webhooks/

When we set up the GitHub Organization item or the MultiBranch Pipeline
item, Jenkins should have set up one of these webhooks in GitHub so that it can talk to
Jenkins. If it did not, you can go to the Settings tab on GitHub for your GitHub repository,
go to Webhooks, and add a webhook of the form https://jenkins.example.com/
github-webhook/ (replacing jenkins.example.com with your Jenkins server).

Now that we have configured Jenkins to be able to communicate with GitHub, we want to
make sure that pushing a branch to GitHub triggers builds in Jenkins. Depending on your
account's GitHub permissions and the Jenkins configuration, it might not have created the
webhook automatically.

In a web browser, navigate to your GitHub repository and go to Settings, then to
Webhooks, and verify that there is a webhook with your Jenkins server URL there.

What to expect now that Jenkins is connected to GitHub
Now that we have configured Jenkins to be able to check for the presence of a
Jenkinsfile in the repository we are using, we can proceed. Jenkins will try to build
the project you have just defined. The build will fail unless you provide Jenkins with
additional variables and credentials, however.

https://developer.github.com/webhooks/

160 Continuous Deployment with Jenkins

In order to tie the specific configurations for the build to your environment, we will need
to use Jenkins to set up some environment variables to store the less sensitive items, in
addition to storing cryptographic keys and passwords using the Credentials feature.

Creating Jenkins environment variables for
production support
Jenkins has support for setting environment variables that items (build and deployment
jobs, for example) can reference. For secret variables, such as SSH private keys, or
Docker Hub API credentials, you can use the Credentials system that we used in the
previous section to store these securely. For values that are less sensitive, we can use the
Environment variables settings available on the Jenkins configuration screen:

Figure 7.7 – Jenkins configuration – Environment variables for production host

Driving configuration changes through Jenkins 161

In order to proceed, please double-check with the DNS provider that you use that your
production host has a DNS name associated with its IP address. In Chapter 6, Deploying
Applications with Docker Compose, we set up DNS names for the production server.
Having a DNS name will make the configurations more readable and will make it easier
for people to reach the server in a web browser. Set up variables for these keys and values:

• shipit_prod_host: Production server DNS domain name, for example,
shipitclicker.example.com)

• shipit_prod_user: Production server username, for example, centos

Once you have set up these variables, hit the Save button. We will use these variables when
we run the Jenkins job that updates the running containers. Before we do that though,
we need a place to put the containers. In a previous chapter, you learned how to push a
container image to Docker Hub. Next, we will automate that process.

Building Docker containers and pushing them to
Docker Hub
In order to avoid building the containers on the production server, we will need to build
them on Jenkins and then push the containers into a Docker container registry, such
as Docker Hub. This allows a clean separation of building the Docker containers from
deploying them. If you try to both build and deploy the container on a single small server,
it is highly likely that at some point you will run into out of memory issues or other
system stability problems. And on a production server, you want to maximize the stability
of that environment.

While you could push the container to Docker Hub from your local workstation, part
of the benefit of using Jenkins is that you can use it to automatically build and push
containers to a central repository. To do that, you will need to give Jenkins credentials to
Docker Hub.

Adding Docker Hub credentials to Jenkins credential manager
Log in to https://hub.docker.com/ with your Docker account and create an
API token for Jenkins to use from the https://hub.docker.com/settings/
security security settings page. Copy that API token to the clipboard and in another
web browser tab, visit the Jenkins credential manager and create another global
unrestricted credential of type Username with Password. Give it an ID called
shipit.dockerhub.id and put your Docker account username in the username
field, and the access token in the password field and save it.

http://shipitclicker.example.com
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/settings/security
https://hub.docker.com/settings/security
https://hub.docker.com/settings/security
https://hub.docker.com/settings/security
http://shipit.dockerhub.id

162 Continuous Deployment with Jenkins

This will allow you to use your Docker Hub credentials to push a build to Docker Hub,
and since we already have SSH credentials set up in Jenkins, we can use those to push a
Docker image to Docker Hub after we build it, and then to connect to the production
server in order to deploy the new software.

Ensuring the previous production environment is stopped
If the production environment from the previous chapter is running, you will need to
stop it in order to deploy the new environment. This will ensure that the new production
environment can bind to the correct TCP ports.

Note
In a situation where you have a real production application with valuable
customer data, you would want to back up and restore any databases and other
persistent storage to the new environment. The ShipIt Clicker application only
uses Redis in order to save details about the production environment. For
Redis, this can be done via the CLI using the SAVE command. You can then
copy the resulting dump.rdb file into the Docker volume that this chapter's
Redis container uses.

From your local workstation, SSH to the server and stop it (replace 192.0.2.10 with
the IP address of your server):

cmd='cd Docker-for-Developers/chapter6; docker-compose stop'

ssh centos@192.2.0.10 "$cmd"

Now that the previous Docker containers are stopped, you may proceed with using
Jenkins to build the software, push to Docker Hub, and deploy the containers on the
production server. You only have to do this once, when you are first transitioning from the
setup from the previous chapter to the environment managed by Jenkins in this chapter.

Next, let's trigger a production environment deployment through Jenkins.

Pushing to Docker Hub and triggering a
production deployment
Now that we have all the environment variables and credentials in place, we can trigger
a Jenkins build. Jenkins normally triggers a build when it detects a commit, but we can
also force Jenkins to start a build. Go to the Jenkins job that is hooked up to the GitHub
repository where the application code resides for the master branch and click on Build
Now. Jenkins will start building the job and show the build number in the user interface:

Driving configuration changes through Jenkins 163

Figure 7.8 – Jenkins jobs in GitHub Organization – master branch

Before we check on the progress of the job, let's examine how it works.

Jenkins runs a combination of the Jenkinsfile and the script chapter7/bin/
dep-ssh.sh in order to build and deploy the software. The Jenkinsfile checks out
the repository, builds the Docker container, and pushes it to Docker Hub. The following
excerpt from the Jenkinsfile shows the code that manages the checkout, build, and
push process:

pipeline {

 agent any

 stages {

 stage('build') {

 steps {

 checkout scm

 script {

 docker.withRegistry(registry, 'shipit.dockerhub.id')
{

http://dep-ssh.sh

164 Continuous Deployment with Jenkins

 def image = docker.build(

 getImageName(appName),

 "-f ${dockerfile} --network host ./chapter7"

)

 image.push()

 }

 }

 }

 }

The next stage, the deploy stage, runs when the branch is master or staging and
invokes the shell script chapter7/bin/dep-ssh.sh, which connects to the server via
SSH and updates the copy of the repository, pulls the built Docker containers, and restarts
the containers. See the following excerpt from dep-ssh.sh for the most important part:

ssh -i "$keyfile" -o StrictHostKeyChecking=no "$targetEnv"
<<EOF

set -euo pipefail

cd Docker-for-Developers/chapter7

git fetch

git reset --hard HEAD

git checkout -f origin/"$GIT_BRANCH"

docker pull "$image"

set -a

DOCKER_IMAGE="$image"

PORT="$port"

bin/restart.sh

EOF

Now that you understand how the build and deploys are chained together, you should see
whether the deployment to the production environment worked.

Verifying that the deployment worked
Click on the most recent build and then click on Console Output to follow the
progress of the job. A successful run will show Finished: Success at the end of the
console output.

Deploying to multiple environments through multiple branches 165

The console output will show these basic steps:

1. The Git repository being cloned from GitHub.

2. The Docker container being built.

3. The Docker container being pushed to Docker Hub.

4. Jenkins connecting to the production server via SSH.

5. The script chapter7/bin/ssh-dep.sh runs on the production server, which
then pulls the image from Docker Hub and restarts the Docker services.

If any of the preceding steps fail, the Jenkins job will fail. If that happens, double-check
that the credentials and environment variables are correct. You can compare the output
of your test run to the sample output, chapter7/consoleOutput.txt, in the
companion GitHub repository to see whether your Jenkins run worked as expected.

If this has built successfully, you should be able to go to the same URL you used in
the previous chapter (for example, http://shipitclicker.example.com/ or
http://192.2.0.10/) in order to see the application. Congratulations! Now every
push to the master branch, including when pull requests get merged to the master branch,
will deploy the production environment. This is one of the simplest ways to achieve
continuous deployment.

You might want to be able to see your changes in a separate environment that is stable
and always available so that if you make changes that might break the production
environment, you can test them out in isolation. In the next section, we will learn how
to set up a staging environment similar to the production environment and orchestrate
deployments to it using Jenkins.

Deploying to multiple environments through
multiple branches
Being able to deploy to a single production environment is valuable, but in order to
support development and testing, it is useful to have at least one other environment other
than the production environment to test with. That way, people testing the software who
do not have a development environment can see the effect of changes you make, without
you having to deploy them to the production environment.

In the next part of the chapter, we are going to create a second environment, a staging
environment, to allow us to test changes before they are in production.

https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter7/consoleOutput.txt
https://github.com/PacktPublishing/Docker-for-Developers/blob/master/chapter7/consoleOutput.txt
http://shipitclicker.example.com/
http://shipitclicker.example.com/
http://shipitclicker.example.com/
http://192.2.0.10/

166 Continuous Deployment with Jenkins

Creating a staging environment
You will need another host, similar in specifications to the one running the production
environment, for the staging environment. Once you can SSH to that host, you could follow
the instructions in the previous chapter about installing Docker and Git. Assuming you are
running on CentOS 7, you can use the following script snippet to quickly provision Docker
on that system and test that it is working (replace centos@192.2.0.11 with the user
and host you are using for your staging environment, and the GitHub URL with the URL of
your organization's fork of the project repository):

$ staging=centos@192.2.0.11

$ ssh $staging < bin/provision-docker.sh

$ ssh $staging git clone https://github.com/PacktPublishing/
Docker-for-Developers.git

$ ssh $staging docker run --rm hello-world

Once you have Docker working on the staging system, you can enter the exit command
to go back to your local workstation. Then, make sure that the staging system has the same
SSH public key that the production system has. Do this from the directory that contains
the jenkins.shipit.pub key file:

$ ssh $staging mkdir -p .ssh

$ ssh $staging tee -a .ssh/authorized_keys < jenkins.shipit.pub

$ ssh $staging chmod 700 .ssh
$ ssh $staging chmod 600 .ssh/authorized_keys

Now that the staging server has been prepared with the right SSH credentials and the
essential software needed to run Docker applications, we will configure Jenkins to support
this staging environment.

Creating Jenkins environment variables for staging
support
In order to prepare Jenkins for deployments to the staging server, we will return to the
Environment variables settings available on the Jenkins configuration screen. In order to
proceed, please make sure that your staging host has a DNS name associated with it. Set
up variables for these keys and values:

• shipit_staging_host: Staging server DNS domain name, for example,
shipit-staging.example.com)

• shipit_staging_user: Staging server username, for example, centos

Deploying to multiple environments through multiple branches 167

Deploying by force-pushing to the staging branch
The deployment scripts detect what branch is being processed and deploy to the right
environment. This is done with a combination of directives in the Jenkinsfile and
having the deploy script use environment variables set up through the Jenkinsfile
and the Jenkins global configuration. Before we get to the example that shows how to use
Git to force-push, we need to examine the Jenkinsfile and support scripts to see how
they handle branch names.

How do the scripts know what server to use?
The Jenkinsfile will only run the deploy stage if the branch name is either master or
staging:

 stage('deploy') {

 when {

 anyOf {

 branch 'master'

 branch 'staging'

 }

 }

Next up, we are going to see some of the power of using a Jenkinsfile, showing off
some of the Groovy language features such as variable interpolation and calling functions.
The steps that follow in the Jenkinsfile define environment variables that the
chapter7/bin/ssh-dep.sh script uses to help pick the right environment:

 steps {

 echo "BRANCH_NAME is ${env.BRANCH_NAME}"

 echo "Deploying to ${getTarget()}"

 withCredentials([sshUserPrivateKey(

 credentialsId: 'jenkins.shipit',

 keyFileVariable: 'keyfile')]) {

 sh """

 set -a

 target=${getTarget()}

 image=${getImageName(appName)}

 keyfile=${keyfile}

 ./chapter7/bin/ssh-dep.sh

 """

168 Continuous Deployment with Jenkins

These use Jenkins variable interpolation expressions to call Jenkins functions written
in Groovy (getTarget() and getImageName(appName)) that set some of the
environment variables that the chapter7/bin/ssh-dep.sh script uses.

The getTarget() function uses this ternary expression to pick whether to target the
prod or staging environment:

def getTarget() {

 env.BRANCH_NAME == 'staging' ? 'staging' : 'prod'

}

Once the flow of control has passed to the chapter7/bin/ssh-dep.sh script, it uses
the target environment variables to pick what environment to target and sets variables up
so that the SSH command will pick the correct server:

port=${port:-80}

prod="${shipit_prod_user}@${shipit_prod_host}"

staging="${shipit_staging_user}@${shipit_staging_host}"

image=${image:-dockerfordevelopers/shipitclicker:latest}

if [["$target" = "staging"]]; then

 targetEnv="$staging"

 targetHost="$shipit_staging_host"

else

 targetEnv="$prod"

 targetHost="$shipit_prod_host"

fi

In this way, the shell script sets up targetEnv so that the following SSH command can
reach the correct server:

ssh -i "$keyfile" -o StrictHostKeyChecking=no "$targetEnv"
<<EOF

Now that you see how the variables in the Jenkinsfile and chapter7/bin/
ssh-dep.sh interact, you are ready to use Git to initiate a deployment to staging.

Complexity and limits to scaling deployments through Jenkins 169

Preparing to use Git to force-push a branch to staging
Although force-pushing branches in Git can be problematic, this is one of the times when
it makes sense. If you consider the staging branch to be special, not something that
you would ordinarily merge into the master, you can then repeatedly force-push work in
progress from any branch to it.

On your local workstation, create a new branch in the Git repository called experiment
by issuing the command git checkout -b experiment. Edit the chapter7/
src/public/index.html file and change the text enclosed in the <h1> tags to
ShipIt Clicker Experiment. Save the file and do a git commit command.
Then, force-push the HEAD of your branch to GitHub as follows:

$ git push origin HEAD:staging --force

This will push the code you just committed to GitHub. Then, open a web browser to
your Jenkins server and examine the item for your repository. You should shortly see
that Jenkins has created a staging branch job and will build the software and push it
to Docker Hub, and deploy it to the staging environment. Observe the Jenkins console
log for the job for the staging branch and make sure that it is similar to the one for the
production deployments from the master branch.

If your deployment worked, check with a web browser to see that the title of the
application on the staging server is ShipIt Clicker Experiment—the text
you changed.

At this point, we have used Jenkins to deploy a Docker application to both a production
and a staging server. You might wonder what it would take to add a third or fourth
environment, or what the drawbacks of this approach might be. Very complex scripts and
environments might make it harder to deploy with Jenkins—let's examine that
more closely.

Complexity and limits to scaling deployments
through Jenkins
Since Jenkins is a general-purpose tool for building and scripting processes related to
software development, it offers immense flexibility, but at the cost of complexity. While
it can do almost any function related to continuous integration and deployment, it
may take more scripting and setup than other systems, such as Spinnaker, CodeFresh,
or WeaveWorks, that are more purpose-built. Some other continuous integration and
deployment systems deal exclusively with Docker-focused workflows.

170 Continuous Deployment with Jenkins

Using Jenkins to manage builds, tests, and deployments to one or two hosts is quite
manageable. But when you start to scale out, it may become more complex and difficult
to continue to use Jenkins to handle builds and deployments. The build and deployment
scripts may also become too complex to manage due to the many different programming
languages and approaches required. Let's examine these limits, starting with limits about
managing multiple hosts.

Managing multiple hosts
The scripts shown in this chapter handled deployments to two environments: a
production environment and a staging environment. However, if we wanted to have four
more similar environments, say, development, QA, demo, and beta, we might have to
spin up four additional hosts and extend our scripts accordingly. It could get to be a big,
expensive mess pretty fast. Also consider what would happen if one host became too
small to run the production site. You might need to run a fleet of instances and make sure
that they all use the same database. Then, you would get into issues about how you might
update and deploy that fleet of instances without downtime. The questions and problems
start to get bigger if you use a brute-force scripting approach.

If you were going to use Jenkins to manage multiple hosts at scale, you would want to look
into integrating it with services that offer additional abstractions to handle scaling and
deployment, such as AWS EC2 Auto Scaling Groups, and AWS CodeDeploy. However,
neither of those are focused on Docker-specific functionality. You could also use Jenkins
to run scripts that used Kubernetes tools, such as kubectl or helm, in order to deploy
the software to a Kubernetes cluster, if you have an organizational commitment to using
Jenkins as your continuous integration environment.

The complexity of build scripts
One of the best things about Jenkins is that it allows you to script builds using the Groovy
domain-specific language; however, this can be one of the worst things simultaneously.
Groovy is a powerful and concise Java virtual machine-based language, but it is much
less well known than many other scripting languages, such as Python, Ruby, and Bash.
Furthermore, Jenkins uses a sandbox model to limit what type of Groovy statements
are allowed.

This often means that implementers must split their build scripts between a high-level
orchestration layer written in the Jenkins pipeline DSL dialect of Groovy and some other
language. This project uses a combination of Groovy Jenkinsfile and Bash shell
scripts to do this, which drive the Docker builds and deploys.

Summary 171

How do you know when you have hit the limit?
People who have had many years of experience using Jenkins and hand-rolled scripts to
build and deploy software have learned to recognize a few signs that using Jenkins for
your purposes has hit its limits:

• The installation of Jenkins itself becomes fragile and too complex for new people on
the project to learn quickly.

• It becomes difficult to upgrade Jenkins because of plugin incompatibilities.

• The build scripts fail routinely, and people ignore the failures.

• It starts taking too long to build and deploy the software to meet the business needs.

• If you maintain many applications, the scripts used to build and maintain them
become a maze of cut and paste spaghetti code.

If you see these signs, it might be time to consider using a more purpose-built approach,
such as Spinnaker, GitLab CI, or CodeFresh as your CI and container pipeline
management tool.

Summary
In this chapter, you have learned how to construct a continuous deployment pipeline
using Docker, Jenkins, and GitHub. You learned how to establish connectivity between a
Jenkins server and multiple host servers through SSH, scripted using a Jenkinsfile.
You learned how to combine those techniques to drive configuration changes and Docker
deployments to the production host using Jenkins. You also learned how to set up a
second staging environment and use the Jenkins environment variables and credentials
support in order to make a single set of scripts deploy to multiple environments. Finally,
you learned about the limitations of using Jenkins to manage larger-scale deployments,
and when it might be time to reach for other tools to manage continuous deployment.

Now that you have mastered the basics of using Jenkins to build and deploy software to
both a production and a staging environment, you can apply this to your own projects.
This will help you build and deploy your software more reliably.

In the next chapter, we will see how we can use Kubernetes and the Amazon Web
Services Elastic Kubernetes Service (AWS EKS) to manage larger-scale, more robust
clusters of servers that can host applications running in Docker.

172 Continuous Deployment with Jenkins

Further reading
If you choose to use Jenkins to manage your Docker-based environments, you should look
at these resources more closely:

• Using a Jenkinsfile: https://jenkins.io/doc/book/pipeline/
jenkinsfile/

• Jenkins Docker integration docs: https://jenkins.io/doc/book/
pipeline/docker/

• Securing Jenkins: https://jenkins.io/doc/book/system-
administration/security/

• Using Let's Encrypt and Apache to secure Jenkins with SSL: https://www.
agileana.com/blog/serve-jenkins-over-https-with-apache-as-
proxy-and-certbot-letsencrypt-ssl/

• Using an NGINX reverse proxy or AWS ELB to secure Jenkins with
SSL: https://wiki.jenkins.io/display/JENKINS/
Jenkins+behind+an+NGinX+reverse+proxy

If you are running a real production application on a single host with docker-compose,
you should strongly consider securing your site with SSL. You can use Let's Encrypt and a
host of Docker sidecar containers to achieve this:

• How to use Let's Encrypt, NGINX, and Docker to secure your site with SSL:
https://github.com/nginx-proxy/docker-letsencrypt-nginx-
proxy-companion

• Using docker-compose.yml to configure Let's Encrypt with NGINX and
Docker: https://github.com/nginx-proxy/docker-letsencrypt-
nginx-proxy-companion/blob/master/docs/Docker-Compose.md

https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/jenkinsfile/
https://jenkins.io/doc/book/pipeline/docker/
https://jenkins.io/doc/book/pipeline/docker/
https://jenkins.io/doc/book/system-administration/security/
https://jenkins.io/doc/book/system-administration/security/
https://wiki.jenkins.io/display/JENKINS/Jenkins+behind+an+NGinX+reverse+proxy
https://wiki.jenkins.io/display/JENKINS/Jenkins+behind+an+NGinX+reverse+proxy
https://wiki.jenkins.io/display/JENKINS/Jenkins+behind+an+NGinX+reverse+proxy
https://wiki.jenkins.io/display/JENKINS/Jenkins+behind+an+NGinX+reverse+proxy
https://wiki.jenkins.io/display/JENKINS/Jenkins+behind+an+NGinX+reverse+proxy
https://github.com/nginx-proxy/docker-letsencrypt-nginx-proxy-companion
https://github.com/nginx-proxy/docker-letsencrypt-nginx-proxy-companion
https://github.com/nginx-proxy/docker-letsencrypt-nginx-proxy-companion/blob/master/docs/Docker-Compose.md
https://github.com/nginx-proxy/docker-letsencrypt-nginx-proxy-companion/blob/master/docs/Docker-Compose.md

8
Deploying Docker

Apps to Kubernetes
Recently, lots of container orchestrators have sprung up like mushrooms after a rainstorm,
but one orchestrator is poised to dominate the market: Kubernetes, from the Cloud Native
Computing Foundation. Google originally released Kubernetes with the intention of
bringing the same level of sophistication to the world of open source container runtimes
as it has been doing for years internally with the Borg clustering system.

We will begin by learning more about different Kubernetes distributions and why you
might want to use each one. We will start with using Kubernetes on a local development
workstation, and then install a sample application locally.

As we progress through the chapter, you will learn how to create a Kubernetes cluster on
Amazon Web Services (AWS) through Elastic Kubernetes Service (EKS), and deploy
your application to a cluster running on multiple Elastic Compute Cloud (EC2) nodes.
We will use AWS CloudFormation, an infrastructure-as-code system, to deploy the EKS
cluster. Once we have deployed the cluster to AWS, we will learn about using labels and
namespaces to organize our applications.

Running a Kubernetes cluster is more complex than the alternatives presented so far, but
it opens up a huge universe of tools and techniques for running clustered applications
with a vendor-neutral, cloud-native approach. Kubernetes is useful not only for cloud
deployments, but also for on-premises deployments and local development.

174 Deploying Docker Apps to Kubernetes

In this chapter, we're going to cover the following main topics:

• Options for Kubernetes local installation

• Deploying a sample application – ShipIt Clicker v4

• Choosing a Kubernetes distribution

• Getting familiar with Kubernetes concepts

• Spinning up AWS EKS with CloudFormation

• Deploying an application with resource limits to Kubernetes on AWS EKS

• Using AWS Elastic Container Registry with AWS EKS

• Using labels and namespaces to segregate environments

Let's get started by getting Kubernetes running on our local workstation. Then, we will
look at the various Kubernetes distributions available.

Technical requirements
For this chapter, you will need to set up Kubernetes on your local workstation, either
through Docker Desktop or by installing a Kubernetes distribution, such as Minikube. In
addition, to deploy your containers to AWS, you will need an account set up in advance.

You can sign up for an AWS account at the following URL if you haven't already done so:

https://aws.amazon.com/

The code files for this chapter can be downloaded from the chapter8 directory at
https://github.com/PacktPublishing/Docker-for-Developers/.

Check out the following video to see the Code in Action:

https://bit.ly/3fXO5xy

https://aws.amazon.com/
https://github.com/PacktPublishing/Docker-for-Developers/
https://bit.ly/3fXO5xy

Options for Kubernetes local installation 175

Options for Kubernetes local installation
You need to set up a local Kubernetes installation in order to build, package, and test
your Docker application in preparation for deploying it to a production installation in
the cloud. Please review the Kubernetes Getting Started documentation (https://
kubernetes.io/docs/setup/). This documentation calls this local environment
a learning environment. Think of the local environment as a way to learn about and
test your application before you take the application to production with Kubernetes in
the cloud. Let's continue by weighing up the options, starting with Docker Desktop's
Kubernetes support.

Docker Desktop with Kubernetes
For most people, this is the easiest way to start experimenting with Kubernetes. You don't
have to set up cloud accounts or do a complicated installation to get started if you choose
to do this. To install Docker Desktop, follow the download links at https://www.
docker.com/products/docker-desktop.

With recent versions of Docker Desktop, you can enable Kubernetes support and run
and develop Kubernetes applications on your workstation. Open the Docker Desktop
application on your workstation and go to the Preferences menu to open the Settings
dialog. Tick the Enable Kubernetes box and hit the Apply & Restart button:

Figure 8.1 – Example of enabling Kubernete

https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

176 Deploying Docker Apps to Kubernetes

This will activate a single-node Kubernetes cluster on your local workstation. Once you
have enabled Kubernetes, you are ready to verify that your local installation works. See the
following section to find out how to do this.

Minikube
If you don't want to run Kubernetes through Docker Desktop, you should probably use
Minikube to set up a local Kubernetes single-node cluster environment. This is available
on Windows, Macintosh, and a wide variety of Linux operating system distributions.

To install Minikube, follow the directions for your operating system found at https://
kubernetes.io/docs/tasks/tools/install-minikube/, and then follow the
instructions in the following section to verify that your Minikube installation works.

Verifying that your Kubernetes installation works
Interacting with Kubernetes is done mostly through the command-line interface (CLI).
You can issue the following command to see whether your environment is functional; it
will show all the running pods, including the system pods:

kubectl get pods -A

The output will look something like this:

Figure 8.2 – Output of kubectl get pods

Now that you have Kubernetes running on your local workstation, you can develop
and deploy applications using Kubernetes. Applications you develop and package with
Kubernetes can be deployed with the same tools that you use locally – but at a much larger
scale in the cloud. Before we deploy an application to the cloud, though, we should show
that we can deploy a packaged application locally.

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

Deploying a sample application – ShipIt Clicker v4 177

Deploying a sample application – ShipIt
Clicker v4
Let's imagine that the ShipIt Clicker application introduced in previous chapters has been
shipped to production and the team responsible for operations is nervous about the limits
of scaling this application since it is only deployed on one server. In order to scale out this
Docker application to multiple servers, the team has decided to migrate to Kubernetes and
package the software for Kubernetes using the Helm package manager. To proceed, let's
install Helm and test it out.

Installing Helm
Helm is to Kubernetes what a package manager is to a modern operating system. It allows
developers to specify how their application is packaged and deployed in a Kubernetes
cluster. Helm is not only a package manager, but also a templating system for generating
Kubernetes configurations and applying those configurations in a controlled way. Helm
allows developers to define the entire set of containers and their interrelated Kubernetes
configurations. Once you have defined an application in Helm, it becomes simple to install
and update that application.

You can install this on macOS easily with Homebrew using the following command:

brew install helm

For other operating systems, follow the Helm installation instructions at
https://helm.sh/docs/intro/install/.

Once you have installed Helm, use it to install the stable Helm repository (so that we
can install other software packages that Helm supports, such as the NGINX Ingress
Controller) with the following command:

helm repo add stable https://kubernetes-charts.storage.
googleapis.com/

Once you have installed this, you can use Helm to install applications from the catalog
to your local Kubernetes instance. You can also use Helm to install applications defined
in local Helm charts. We will use Helm to deploy ShipIt Clicker to Kubernetes, in
conjunction with another Helm package, the NGINX Ingress Controller. In this chapter,
we will first deploy the ShipIt Clicker application to the local learning environment
Kubernetes cluster, and later, we will deploy ShipIt Clicker to the cloud on Amazon EKS.

https://helm.sh/docs/intro/install/

178 Deploying Docker Apps to Kubernetes

Deploying the NGINX Ingress Controller and ShipIt
Clicker locally
Let's use Helm to install a packaged application, the NGINX Ingress Controller, and then
use it to install ShipIt Clicker. An Ingress Controller is a Kubernetes networking proxy
that allows requests from the outside to reach applications deployed to Kubernetes, with
well-defined interfaces to help wire together the applications. The stable Helm repository
contains the NGINX Ingress Controller. Install it as follows:

helm install nginx-ingress stable/nginx-ingress

Later in the chapter, we will explore Ingress Controller in more detail. Know for now that
this simple installation is sufficient to expose services inside the Kubernetes cluster with
the right configurations to localhost so that you can test them.

Next, we will build the ShipIt Clicker Docker container, tag it, and push it to Docker
Hub. Kubernetes relies on pulling Docker images from a Docker image registry, so it
is insufficient to only have the container on your local system. Issue these commands,
replacing dockerfordevelopers with your Docker Hub username:

$ cd chapter8

$ docker build . -t dockerfordevelopers/shipitclicker:0.4.0

$ docker push dockerfordevelopers/shipitclicker:0.4.0

Edit the shipitclicker/values.yaml file and replace dockerfordevelopers
with your Docker Hub username in this stanza:

Default values for shipitclicker.

This is a YAML-formatted file.

Declare variables to be passed into your templates.

replicaCount: 1

image:

 repository: dockerfordevelopers/shipitclicker

 pullPolicy: IfNotPresent

Deploying a sample application – ShipIt Clicker v4 179

Then, deploy ShipIt Clicker to the Kubernetes local environment. In this case, we will
use a local Helm Chart instead of one from a network Helm Chart repository. The Helm
Chart for ShipIt Clicker is in the GitHub repository, in the chapter8/shipitclicker
directory. Install it with Helm, as follows:

$ helm install shipitclicker shipitclicker
NAME: shipitclicker

LAST DEPLOYED: Fri Apr 24 23:21:22 2020

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTES:

1. Get the application URL by running these commands:

 http://localhost

Visit http://localhost/ to view the ShipIt Clicker application. You should see the
running application splash screen.

Troubleshooting local installation
If you can't reach the application at http://localhost/, you might have another web
server running on port 80, such as Apache 2.

Now that we are running this on Kubernetes, you need to use Kubernetes commands
to connect to services that are on the inside of the cluster and not exposed through the
Ingress Controller.

To expose the Redis port from the Kubernetes cluster for testing, use the
following commands:

$ brew install redis

$ kubectl port-forward deployment/shipitclicker 6379 &

$ redis-cli

> keys *

> quit

Now that you have deployed the ShipIt Clicker application to a local Kubernetes
installation, you can proceed with deploying it to a larger cloud environment and
configuring it for production readiness.

180 Deploying Docker Apps to Kubernetes

Choosing a Kubernetes distribution
So, how do we host Kubernetes beyond installing it on our workstations? When it comes
to choosing a Kubernetes distribution, you are presented with a plethora of options, as we
saw in Chapter 5, Alternatives for Deploying and Running Containers in Production. We are
now going to revisit some of the most popular options to help you gain an understanding
of the choices available based on your cloud provider or bare-metal data center setup, as
well as see why we are choosing to use EKS to demonstrate the migration of the ShipIt
Clicker sample application to Kubernetes.

Google Kubernetes Engine
Google Kubernetes Engine (GKE) is Google's key service for hosting containers in a
Kubernetes-based environment. GKE (formerly known as Google Container Engine) was
released in an Alpha state in November 2014 and went live in August 2015 for general usage.

It currently offers one of the most mature Kubernetes services offered by cloud providers,
including the following features:

• A single cluster quick start option for trialing the service

• Container vulnerability scanning

• Built-in data encryption

• Multiple channels for upgrading, repairing, and releasing

• Integration with Google monitoring services

• Automatic scaling and load balancing

• Google-managed underlying hardware

Further documentation for interested readers can be found at the GKE website at
https://cloud.google.com/kubernetes-engine/docs.

Let's now compare this with Amazon's offerings.

AWS EKS
Amazon's answer to serving and managing containers in the cloud is its EKS service. As
with GKE, Amazon's Kubernetes services, EKS, offers a managed service. Unlike Google's
offering, it came to the market later, not being available until early 2018. However, what
EKS loses in maturity, it makes up for in features.

https://cloud.google.com/kubernetes-engine/docs

Choosing a Kubernetes distribution 181

These features include the following:

• Serverless hosting via AWS Fargate (https://aws.amazon.com/fargate/)

• Server deployment options on EC2

• Zero-downtime upgrades and patching

• Auto-detection of unhealthy nodes

• Hybrid hosting solutions with AWS Outposts (https://aws.amazon.com/
outposts/)

• Kubernetes Jobs for batch processing

You can read more about EKS on the official website at https://aws.amazon.com/
eks/features/.

We'll be exploring EKS in more detail throughout this chapter and in subsequent chapters,
mostly since it is the managed Kubernetes offering from the dominant cloud vendor.
Other distributions have their merits, however, so we will also examine some of the other
options out there. Next is Red Hat OpenShift.

Red Hat OpenShift
OpenShift is a collection of software developed by Red Hat geared toward containerized
application architectures. Like GKE and EKS, OpenShift is Kubernetes-focused; however,
where it diverges is with its focus on build-related artifacts and a native image repository.

Having used Jenkins in the projects presented in this book, you will now be familiar with
continuous integration and continuous deployment (CI/CD) pipelines in relation to
containers. One of the key features of OpenShift is its extension of the standard kubectl
commands to include mechanisms that replicate the sort of CI/CD functionality that you
might otherwise have to use software such as Jenkins or Spinnaker to get. This includes
the ability to create builds, test runs, and deployments.

There are some other key features that also make OpenShift a desirable option:

• Automated upgrades and life cycle management

• Open source code base available on GitHub (https://github.com/openshift)

• Deploy in any cloud, in a data center, or on-premises

• An image registry

• Monitoring and log aggregation

https://aws.amazon.com/fargate/
https://aws.amazon.com/outposts/
https://aws.amazon.com/outposts/
https://aws.amazon.com/eks/features/
https://aws.amazon.com/eks/features/
https://github.com/openshift

182 Deploying Docker Apps to Kubernetes

For further information on Red Hat OpenShift, make sure to check out the documentation
on GitHub (https://github.com/openshift/openshift-docs) or on the official
website (https://www.openshift.com/).

Microsoft Azure Kubernetes Service
We've looked at the major players so far, but of course, couldn't go any further without
mentioning Microsoft's contribution to the Kubernetes ecosystem. For users of Microsoft
cloud products, Azure Kubernetes Service (AKS) provides a mechanism to serve Docker
containers in a Kubernetes-based environment.

Let's take a brief tour of what AKS offers:

• The elastic provisioning of services

• Integration with the Azure DevOps and Monitor services

• Identity and access management with Active Directory

• Failure detection and container health monitoring

• Canary deployments

• Log aggregation

As you can see, for Azure users, it has a comparable set of features to those available in
EKS and GKE. If you would like to learn more, please refer to the AKS documentation
(https://docs.microsoft.com/en-us/azure/aks/). Here, you will also find a
quick start guide for getting a taste of what the service has to offer.

Before running through the components that form the basis of Kubernetes, let's briefly
review the other options available.

Reviewing other relevant options
EKS, OpenShift, GKE, and AKS represent the most popular Kubernetes services on the
market. However, they are not alone. Digital Ocean offers an option for those wishing to
get a taste of a managed service outside of deploying your own RedShift infrastructure
or signing up to the big cloud providers. You can read more about it at https://www.
digitalocean.com/products/kubernetes/.

Many readers will be familiar with IBM, and they too offer cloud-hosting services. If
you want to try out Kubernetes in their cloud environment, you can find details on their
website, including how to set up a free cluster (https://www.ibm.com/cloud/
container-service/).

https://github.com/openshift/openshift-docs
https://www.openshift.com/
https://docs.microsoft.com/en-us/azure/aks/
https://www.digitalocean.com/products/kubernetes/
https://www.digitalocean.com/products/kubernetes/
https://www.ibm.com/cloud/container-service/
https://www.ibm.com/cloud/container-service/

Choosing a Kubernetes distribution 183

Anyone familiar with VMware might wish to explore their Kubernetes offering as well
–VMware Tanzu Kubernetes Grid – which has strengths in building hybrid clouds
(https://tanzu.vmware.com/kubernetes-grid).

Finally, those looking for a fully managed Kubernetes service or those who are already
customers of Rackspace have the option of checking out their Kubernetes as a Service
(KaaS) offerings (https://www.rackspace.com/managed-kubernetes).

That wraps up our whistle-stop tour of the hosting platforms available for deploying
your containers.

For the remainder of this chapter, we will be using Amazon's EKS service. If you haven't
created an account, we recommend you sign up for one here now:

https://aws.amazon.com/

Note
Users of other cloud providers may find that they can adapt the following
sections to their own services if they wish.

Let's now dig into the core concepts of Kubernetes, including pods, nodes, and namespaces.

Getting familiar with Kubernetes concepts
Now that you know where you can deploy Kubernetes, let's dive into some of the key
concepts (including objects, ConfigMaps, pods, nodes, services, Ingress Controllers,
secrets, and namespaces) and how they work. Let's start by examining an architecture
diagram that shows the relationship between the various components of the system:

Figure 8.3 – Kubernetes architecture diagram

Figure 8.3 – Kubernetes architecture diagram

https://tanzu.vmware.com/kubernetes-grid
https://www.rackspace.com/managed-kubernetes
https://aws.amazon.com/

184 Deploying Docker Apps to Kubernetes

With Kubernetes, the cluster consists of a control plane that manages all aspects of
the Kubernetes cluster (including the interface with the cloud provider) and a set of
workers for the cluster, known as nodes, where the applications hosted by the cluster live.
Developers and cluster operators interact with Kubernetes via the control plane through
an API. The processes in the control plane communicate with the processes running on
the individual worker nodes via the kubelet process, and the processes on the worker
nodes are organized as pods that communicate with one another via the kube-proxy
process that runs on each node.

Objects
The most fundamental concept in Kubernetes is an object. You use Kubernetes to create
and maintain a collection of objects that might represent different elements of a cluster.
All of the items explored in this section are Kubernetes objects. Kubernetes exposes APIs
that let administrators create these objects and that some of the objects can use to discover
and communicate with one another. You can use the kubectl utility to create, query, and
modify all the different types of Kubernetes objects, as well as to configure the cluster.

The kubectl command-line utility can take YAML format files that describe the objects
and use them to create and update the state of the system. This is the most basic way of
defining, installing, and upgrading Kubernetes applications. The Helm tool we used to install
applications takes this a step further by providing templating and life cycle capabilities.

We recommend configuring your application through Helm Charts. You briefly saw
how to use Helm at the beginning of this chapter. A Helm Chart is simply a set of YAML
configuration files that contain information about your containerized application.

You can create a new Helm Chart using the following command:

helm create my-chart

This sets up a Helm Chart structure with template files that are ready for customization.

ConfigMaps
Kubernetes handles application configuration with a concept known as a ConfigMap.
Then, we need to define the configuration for the container itself. This is handled
through a ConfigMap.

The key idea behind ConfigMaps is that you can separate the important configuration
from the content of the images themselves. This is done in order to provide better
portability of your microservices and applications.

Choosing a Kubernetes distribution 185

ConfigMaps can be created directly through kubectl using the following command:

kubectl create configmap sample-configmap-name

A ConfigMap will contain information used by your application, and other key-value
pairs, such as the namespace. The following example illustrates how an application's
ConfigMap might look:

apiVersion: v1

kind: ConfigMap

metadata:

 name: shipitclicker-configmap

data:

 language: "JavaScript"

 node.version: "13.x"

A ConfigMap such as the one we just demonstrated would then be stored inside your
Helm Chart directory in the templates folder – for example, shipitclicker/
templates/configmap.yaml.

With this basic setup in place, you can then install your configuration through the helm
install command. We will be exploring configuration in both its ConfigMap and Helm
Chart formats in further detail throughout this chapter.

Pods
Pods in Kubernetes serve the purpose of grouping together 1 to n containerized
components, which are then run in a shared context. They also include shared resources,
such as IP addresses, storage, and definitions on how containers should be run. Multiple
containers running together in a pod can communicate with each other on fixed ports on
localhost, simplifying application configuration significantly.

When defining what should be run in a pod, the best approach is to think of it as holding
all the necessary containers for a system or application. Multiple pods can then be
added to Kubernetes to scale your application out horizontally. This allows you to create
redundancy and helps cope with increases in traffic and load.

The shared context that the pods use is implemented through Linux concepts such as
cgroups and namespaces. In Chapter 12, Introduction to Container Security, we will
explore some of these concepts in depth in relation to container security.

186 Deploying Docker Apps to Kubernetes

Nodes
Machines that host Docker containers in Kubernetes' ecosystem are known as nodes,
though you may also encounter the terms minions or workers – they all mean the same
thing, but node is the official term. Kubernetes supports nodes that are either physical or
virtual machines. Services such as Amazon's EKS provide the mechanisms for deploying
node infrastructure. You deploy Kubernetes pods on nodes; the pods include both
containers and shared resources.

In the learning environment that we are using, our local development workstation is the
sole node in the cluster. Later in this chapter, we will be creating a Kubernetes cluster with
nodes managed by EKS on AWS EC2. Kubernetes nodes run containers through pods and
other Kubernetes objects, such as DaemonSets.

Alternative container runtimes
Kubernetes nodes could potentially run different container runtimes.
Kubernetes not only supports Docker containers, but also other container
technologies, including containerd, CRI-O, and Frakti. Since this book is about
Docker, we will exclusively use the Docker runtime in our examples.

Services
A Kubernetes service is a way of declaring how your application exposes its interfaces
to the world. It typically defines a network port that other Kubernetes pods can use to
communicate with your application.

The Helm Chart for ShipIt Clicker emits a service template that defines a ClusterIP
service definition:

$ helm template shipitclicker ./shipitclicker | less

…

Source: shipitclicker/templates/service.yaml

apiVersion: v1

kind: Service

metadata:

 name: shipitclicker

 labels:

 helm.sh/chart: shipitclicker-0.1.10

 app.kubernetes.io/name: shipitclicker

 app.kubernetes.io/instance: shipitclicker

 app.kubernetes.io/version: "0.4.0"

Choosing a Kubernetes distribution 187

 app.kubernetes.io/managed-by: Helm

spec:

 type: ClusterIP

 ports:

 - port: 8008

 targetPort: http

 protocol: TCP

 name: http

 selector:

 app.kubernetes.io/name: shipitclicker

 app.kubernetes.io/instance: shipitclicker

This declaration describes the fact that ShipIt Clicker exposes HTTP on port 8008 as a
service on each pod. This lets other Kubernetes services discover and make connections
to it.

Ingress Controllers
Kubernetes manages an internal network where the applications in a cluster can
communicate with one another via a private network. By default, there is no way to reach
applications running on the inside of a Kubernetes cluster from the outside. The Ingress
Controller plays the role of a proxy and connection broker. Depending on whether you are
deploying on-premises or in the cloud, different types of Ingress Controller have different
uses. For example, earlier in this chapter, we installed the nginx-ingress Ingress
Controller to allow us to reach applications running on our local Kubernetes installation.
That controller is also useful when you want a vendor-neutral way of granting access to
Kubernetes applications.

Other Ingress Controllers allow Kubernetes to work smoothly with different types of
external load balancers, such as aws-alb-ingress-controller, which enables the
use of an Application Load Balancer (ALB) in the AWS cloud, or k8s-bigip-ctlr,
which enables the use of F5 BIG-IP load balancers, which are found in many data centers.

188 Deploying Docker Apps to Kubernetes

You can use Ingress Controllers to map domain names and HTTP paths to Kubernetes
services. This makes it really easy to expose different services at different URLs. If you
had a fleet of microservices, you could expose them at different API endpoints using this
pattern. You can take advantage of Ingress Controllers by declaring an ingress object for
your application that advertises how to connect your service to the outside world. For the
ShipIt Clicker example, we use the following to map the service to localhost in the
default namespace:

$ helm template shipitclicker ./shipitclicker | less

…

Source: shipitclicker/templates/ingress.yaml

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 name: shipitclicker

 labels:

 helm.sh/chart: shipitclicker-0.1.10

 app.kubernetes.io/name: shipitclicker

 app.kubernetes.io/instance: shipitclicker

 app.kubernetes.io/version: "0.4.0"

 app.kubernetes.io/managed-by: Helm

 annotations:

 kubernetes.io/ingress.class: nginx

 kubernetes.io/tls-acme: "true"

spec:

 rules:

 - host: "localhost"

 http:

 paths:

 - path: /

 backend:

 serviceName: shipitclicker

 servicePort: 8008

…

Choosing a Kubernetes distribution 189

The Kubernetes system handles connections to applications hosted inside the cluster from
the outside using this Ingress Controllers definition. This means that when you are first
developing your application, you do not need to worry about how it is connected to the
outside world. The Kubernetes configurations that enable Ingress Controllers can all be
managed with Helm Charts, too.

Next, we will examine how Kubernetes deals with sensitive information – using secrets.

Secrets
Every application has values that need to be protected, from database passwords to
API keys, so having a mechanism to store and retrieve them securely is an important
function. In Kubernetes, this is handled with a mechanism called secrets. You can use a
combination of configuration files and kubectl commands for sharing and modifying
information that needs to be protected with your pods and their running containers.
Once you have created a secret, you can use it in your application through a variety of
mechanisms, including exposing a secret as an environment variable or creating a file that
containers running in a pod can retrieve.

The key operations in Kubernetes related to secrets are as follows:

• Creating a secret
• Describing a secret
• Retrieving a secret
• Editing a secret

Let's explore these four concepts, starting with creating a secret.

Creating a secret
We can use several procedures to create a secret. This could be done by adding it manually
on the command line or storing it in a YAML template file and using it from there.

To add a secret stored in a text document via the command line, we can use the
following commands:

$ echo "new-secret" > secret.txt

$ kubectl create secret generic secex --from-file=./secret.txt

If we do this, kubectl will take care of encoding the secret for us using Base64 encoding.

190 Deploying Docker Apps to Kubernetes

Let's prepare a secret another way, with a configuration file. In order to prepare a text
secret for this file, it must be Base64-encoded. You can do that from the command line in
macOS or Linux with the following command:

$ echo -n "changed-api-key" | base64

Y2hhbmdlZC1hcGkta2V5

If we wanted to instead store the secret in a configuration file, and use kubectl to add it
to Kubernetes, we could create the following secret-api-token.yaml file:

apiVersion: v1

kind: Secret

metadata:

 name: api-token

 namespace: default

type: Opaque

data:

 token: "Y2hhbmdlZC1hcGkta2V5"

Then, using the kubectl apply command-line option, we can create the secret:

kubectl apply –f ./secret-api-token.yaml

You will notice that the configuration file format for the secret is very similar to the
example ConfigMap we examined.

Because shipitclicker uses Helm to manage its Kubernetes objects, it has support
for secrets built into its templates. The one secret it references in the code in this chapter is
related to a Node.js server-side framework setting for the Express framework used by the
sample application that deals with server sessions. This secret is called SESSION_SECRET,
and it is stored in the chapter8/shipitclicker/templates/secrets.yaml file:

apiVersion: v1
kind: Secret
metadata:
 name: {{ .Release.Name}}-secrets
 namespace: {{ .Release.Namespace }}
type: Opaque
data:
 SESSION_SECRET: "bXlTZWNyZXQtdjQK"

Choosing a Kubernetes distribution 191

Notice that this uses template expressions for name and namespace in order to align
with the other templates that Helm transforms.

We created this secret when we installed the shipitclicker Helm template earlier in
the chapter when we used the helm install command. That is how you create secrets
when you use a Helm template.

Now that we have seen several ways of creating secrets, we will show how we ask
Kubernetes what secrets it knows about.

Describing a secret
Once a secret has been created, you can list it using the kubectl get secrets
command. This will list the secrets in a similar way to this:

Figure 8.4 – List of secrets

To learn more about the secret, use the kubectl describe command:

kubectl describe secrets/shipitclicker-secrets

The output of the preceding command is shown in the following screenshot:

Figure 8.5 – Output of the kubectl describe command showing the secret's metadata

192 Deploying Docker Apps to Kubernetes

You will see metadata about your secret displayed, including the key of the secret – in this
case, SESSION_SECRET. It will not show the value of the secret, though.

Retrieving a secret
A typical way for a Kubernetes application to retrieve a simple secret is to define it as an
environment variable passed to the container referencing the secret. See this excerpt from
the rendered Helm chart templates:

Source: shipitclicker/templates/deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: shipitclicker
…
 containers:

 - name: shipitclicker

…

 env:
…
 - name: REDIS_PORT

 valueFrom:

 configMapKeyRef:

 name: shipitclicker-configmap

 key: REDIS_PORT

 - name: SESSION_SECRET

 valueFrom:

 secretKeyRef:

 name: shipitclicker-secrets

 key: SESSION_SECRET

You can see that the environment variables mapped to the deployment for the
shipitclicker container reference both the configMapKeyRef and
secretKeyRef entries.

To deal with more complex secrets that are complete files, such as SSH private keys, the
mechanism is similar. See the Kubernetes secrets documentation for more scenarios at
https://kubernetes.io/docs/concepts/configuration/secret/.

https://kubernetes.io/docs/concepts/configuration/secret/

Choosing a Kubernetes distribution 193

For troubleshooting purposes, we can retrieve a secret from Kubernetes from the
command line:

$ template='go-template={{index .data "SESSION_SECRET"}}'

$ kubectl get secrets shipitclicker-secrets -o "$template" |
base64 -D

mySecret-v4

Now that we have seen how to retrieve a secret, we will examine how to edit secrets.

Editing secrets
If you wish to edit the secret after creating it, use the kubectl edit command:

kubectl edit secrets secex

This will open your default editor (by default, vi) and you can edit the secret. You will have
to have the Base64-encoded replacement value ready. It will look something like this:

apiVersion: v1

data:

 secret.txt: Y2hhbmdlZC1hcGkta2V5LTI=

kind: Secret

metadata:

 creationTimestamp: "2020-04-25T20:54:31Z"

 name: secex

 namespace: default

 resourceVersion: "826562"

 selfLink: /api/v1/namespaces/default/secrets/sample-secret

 uid: ce8fbf27-33ba-461e-9bb8-1ca31fa3e888

type: Opaque

You can edit secrets directly this way. You might need to redeploy your application after
updating a secret, depending on how it uses that secret. Having to manage this by hand can
get complicated, which is one of the reasons why we use Helm to package applications.

194 Deploying Docker Apps to Kubernetes

Updating the ShipIt Clicker session secret
For applications deployed with Helm, it is usual practice to make changes through the
Helm templates instead of using raw kubectl commands. Now, we will change the
ShipIt Clicker SESSION_SECRET key using Helm by following this procedure:

1. Generate a Base64-encoded secret with the following command:

echo -n "new-session-secret" | base64

2. Edit the template chapter8/shipitclicker/templates/secrets.yaml
file.

3. Use the value outputted by the openssl command for the new
SESSION_SECRET value.

4. Edit the chapter8/shipitclicker/Chart.yaml file and increment the
chart's version number.

5. You have to do this every time you update a Helm Chart. Then, update the template
with the following command:

helm upgrade shipitclicker ./shipitclicker

As you can see, the basic commands to add and edit secrets are very simple. Using them
in our application is slightly more complex. This should give you a taste of how to create a
secret value and retrieve information on it to explore the feature.

Note
For further information on secrets, you can check out the latest Kubernetes
documentation at https://kubernetes.io/docs/concepts/
configuration/secret/.

In Chapter 14, Advanced Docker Security – Secrets, Secret Commands, Tagging, and
Labels, we look into secret storage and usage in relation to Docker Swarm. While Docker
Swarm is falling out of favor, with many teams switching to Kubernetes, it is important
to understand these concepts when maintaining legacy systems. Additionally, you may
find yourself in a position where you have to migrate systems from Docker Swarm to
Kubernetes. The information provided in this chapter and Chapter 14, Advanced Docker
Security – Secrets, Secret Commands, Tagging, and Labels, should help you map concepts
from one technology to the other.

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

Spinning up AWS EKS with CloudFormation 195

Namespaces
In order to partition resources within Kubernetes, we can use a concept called
namespaces. Namespaces provide a mechanism to group container resources into
non-overlapping sets, which then allows you to subdivide your Kubernetes resources,
based on your business needs, within the same cluster. This could include everything from
environments (development, staging, and production) to groups of microservices. One
important factor you should consider is that applications in the same namespace can read
any secret in that namespace, so it represents a security boundary as well.

It is tempting, once you learn of this feature, to want to use it everywhere, but the
Kubernetes documentation cautions against this. The main namespaces content page
(https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/) states the following:

"For clusters with a few to tens of users, you should not need to create or think about
namespaces at all."

Keep in mind, though, that different teams might want to segregate applications from one
another, and namespaces are a good way to do that as they provide a security boundary.
Later in this chapter, in the Using labels and namespaces to segregate environments
section, we will explore using this concept to deploy our application to both a staging and
production environment in AWS.

Next, let's set up AWS EKS with CloudFormation in order to deploy our application to the
public cloud using Kubernetes.

Spinning up AWS EKS with CloudFormation
Now that we have walked through a local installation of Kubernetes and explored some
of the cloud vendor options, we are going to try deploying containers to an AWS-hosted
Kubernetes environment. This will be the EKS service we briefly introduced in the
previous section of this chapter.

In order to achieve this, we will describe how to create and manage an EKS cluster
using AWS CloudFormation, their infrastructure-as-code service. For more information
on CloudFormation, be sure to check out the AWS guides and documentation at
https://docs.aws.amazon.com/cloudformation/.

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://docs.aws.amazon.com/cloudformation/

196 Deploying Docker Apps to Kubernetes

Assuming you have previously created an AWS account or followed the instructions under
the Technical requirements section of this chapter, load up the AWS cloud console.

To proceed, we need to set up EKS. There are many ways to get a working EKS cluster that
require varying amounts of work:

• Set up everything by hand, step by step through the AWS console. We do not
recommend this approach as it requires deep AWS knowledge to carry out correctly,
and will lead to a hard-to-replicate environment with poor controls.

• Write infrastructure-as-code templates from scratch in either AWS CloudFormation
or Terraform to control all the resources needed. This is an approach that might
work for you if you are an expert in either CloudFormation or Terraform and have
an existing investment in CloudFormation or Terraform tooling, but we do not
recommend this for beginners.

• Use the eksctl tool (see https://eksctl.io) to create a cluster with a simple
CLI tool. This could work well if you are already familiar with AWS and want to put
your cluster in a specific region and tweak more of the parameters of your cluster.
We only recommend this if you are familiar with AWS and EKS already.

• Research and adopt infrastructure-as-code templates that someone else has already
written. Both AWS and many other people have created CloudFormation and
Terraform templates.

We are going to follow this last approach and use the AWS Quick Start CloudFormation
templates for EKS to create our first cloud Kubernetes cluster.

Introducing the AWS EKS Quick Start
CloudFormation templates
Amazon provides a handy set of CloudFormation templates called Quick Starts, built by
their expert cloud architects to quickly get you up and running for a wide selection of
AWS services and scenarios (https://aws.amazon.com/quickstart/).

We will be using an AWS EKS Quick Start template for the next section of this chapter.

However, before you deploy the EKS Quick Start CloudFormation templates, please take
a moment to prepare your AWS account for deployment.

https://eksctl.io
https://aws.amazon.com/quickstart/

Spinning up AWS EKS with CloudFormation 197

Preparing an AWS account
If you are just starting to use AWS, there are a few critical things to take care of before you
proceed in order to protect your account. These precautions and preparations also apply if
you choose a method other than using the AWS Quick Start CloudFormation templates to
create your EKS cluster.

If you are already an experienced AWS user and have an AWS Identity and Account
Management (IAM) user account with administrative privileges, you have an EC2
key pair in the us-east-2 region, and you know your public IPv4 address, you
can skip ahead to the Launching the AWS EKS Quick Start CloudFormation templates
section. Avoid using an assumed IAM role with administrative privileges to create the
CloudFormation template, though – that can cause some of the child templates to enter
an UPDATE_ROLLBACK_FAILED state, which is difficult to recover from.

Using an IAM administrator user and not the root account user
First of all, ensure that you are not using the AWS console as the root account user. This
is a major security risk. You will need an AWS IAM user account with administrative
privileges. If you have just created your AWS root account, you can set one up by
following the AWS instructions at https://docs.aws.amazon.com/IAM/latest/
UserGuide/getting-started_create-admin-group.html.

Once you have set up this user and enabled billing access for the IAM user as per instructions,
go to the https://console.aws.amazon.com/iam/home#/home page and copy the
IAM user's sign-in link to the clipboard. Edit your web browser bookmarks and use this URL
to create an AWS IAM Login item. You will want to use this to sign in to your AWS account
with your administrator account instead of using the root account.

On your local system, create an eks-notes.txt file and record the sign-in link there. Also,
record the User ARN value of the administrator user from the https://console.aws.
amazon.com/iam/home?region=us-east-2#/users/Administrator URL:

Figure 8.6 – AWS IAM user summary for the administrative user

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://console.aws.amazon.com/iam/home#/home
https://console.aws.amazon.com/iam/home?region=us-east-2#/users/Administrator URL
https://console.aws.amazon.com/iam/home?region=us-east-2#/users/Administrator URL

198 Deploying Docker Apps to Kubernetes

This Amazon Resource Name (ARN) user is a string, much like a web Uniform Resource
Identifier (URI), but it is Amazon-specific. Now that we have set up an administrative
user, let's set up multi-factor authentication (MFA) to protect both the root account and
the administrator user.

Setting up MFA
We recommend that you protect both the root account and every IAM user account with
administrative privileges using MFA. If someone compromises your root account, they
could create huge bills by launching expensive cloud resources, steal your information, or
even delete all your data. When you are getting started, we recommend that you use MFA
with a virtual MFA device and supporting software such as Google Authenticator, Authy,
or 1Password.

For added security, you have the option of using one of the supported hardware token
solutions, but virtual MFA works fine. Please see the AWS MFA documentation for more
details on setting up MFA:

https://aws.amazon.com/iam/features/mfa/

Signing in to the AWS console with the IAM user account
Ensure you have signed out of the root account. Then, use the sign-in URL from your
eks-notes.txt document to sign in to the AWS console with your administrator IAM
user account before proceeding.

Creating access keys for the IAM administrator user
In order to use the AWS command-line tools, you will need to generate AWS access keys.
You can read more about access keys and other types of AWS credentials at https://
docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html.

In the AWS console, go to the IAM service and look in the Users section for the
administrator user you just created. Then, navigate to the Security credentials tab and
create new access keys by pressing the Create access key button:

https://aws.amazon.com/iam/features/mfa/
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html

Spinning up AWS EKS with CloudFormation 199

Figure 8.7– AWS IAM user summary for an administrative user

Download these access keys as a CSV file to your local system. You will need to open that
file and examine the keys in order to configure the AWS CLI, which we will do next.

Configuring the AWS CLI on your local workstation
You are going to need a working AWS CLI installation on your local workstation to
complete the configuration of the EKS cluster. If you don't already have this installed,
follow the instructions to install it at https://aws.amazon.com/cli/.

Once it is installed, issue the aws configure command and use the access ID and
secret key from the access key's CSV file you saved in the previous section to configure the
CLI to use the administrator user. Verify that it works with the aws sts get-caller-
identity command. Inspect the output to make sure that it does not show an error
message, and then verify that the ARN that this command emits for the active user is the
same one as for the administrator user shown in the IAM web console. The output should
look something like this:

Figure 8.8 – Output of aws sts get-caller-identity

https://aws.amazon.com/cli/

200 Deploying Docker Apps to Kubernetes

You will need this set up when you configure the cluster for the ALB Ingress Controller
later in the chapter.

Creating an EC2 key pair for the EKS cluster
In order to perform the initial configuration of the EKS cluster, you will need to SSH to
an EC2 virtual server that the CloudFormation template sets up, known as the bastion
host. A bastion host is a server set up for the purposes of being a single point of access
to a protected network. In order to gain access to the bastion host, you will need an SSH
key pair registered with AWS EC2. Having this configured can also help you gain access
to the nodes in order to troubleshoot and inspect them. In order to do this, you need an
SSH key pair registered with AWS EC2 in the us-east-2 region. Signed in as your IAM
administrator user, go to https://console.aws.amazon.com/ec2, and then make
sure you switch your region to us-east-2 from the region picker:

Figure 8.9 – Switching your AWS region

Then, find and click on the key pairs link in the menu on the left, create a new key pair
called ec2-eks, and download it. You will need this key pair when you configure the
EKS cluster. To prepare for that, copy this key pair to the .ssh directory under your local
user home directory and set its permissions so that SSH will allow its use:

$ mkdir -p ~/.ssh

$ chmod 0700 ~/.ssh

$ cp ~/Downloads/ec2-eks.pem ~/.ssh/

$ chmod 0600 ~/.ssh/ec2-eks.pem

You will need this key to connect to the bastion host for your EKS cluster later. Next, make
sure you know your public IP address.

https://console.aws.amazon.com/ec2

Spinning up AWS EKS with CloudFormation 201

Recording your public IP address in CIDR notation
We are going to restrict access from the internet to the Kubernetes cluster by restricting
it to just the pubic IPv4 address you are currently using. This will keep malicious
hackers and people who attack internet hosts from scanning your system. To do this,
go to https://whatismyip.com/ and copy your public IPv4 address in CIDR
format, which is the raw numerical address with /32 appended. For example, if it was
192.2.0.15, the CIDR form of your IPv4 address would be 192.2.0.15/32. On
your local system, open your eks-notes.txt file and record the CIDR address there.

Launching the AWS EKS Quick Start
CloudFormation templates
You can find the documentation on the AWS EKS Quick Start CloudFormation templates
at https://aws.amazon.com/quickstart/architecture/amazon-eks/.

To get a complete picture of what this offers, read the deployment guide that AWS offers
related to this quick start:

https://docs.aws.amazon.com/quickstart/latest/amazon-eks-
architecture/welcome.html

At a minimum, review the outline on that page. When you want to proceed with
deployment, click on the How to Deploy section. You will see that you have two options
when deploying the CloudFormation templates, as follows:

• Deploy to a new VPC (https://fwd.aws/6dEQ7)

• Deploy to an existing VPC (https://fwd.aws/e37MA)

Before you begin, sign out of the AWS console if you are still signed in with the root
account user, and sign in as a administrator user using the IAM sign-in URL you recorded
in the eks-notes.txt file.

We recommend that you start by deploying this infrastructure to a new Virtual Private
Cloud (VPC). Click on that link or use the preceding URL to go to the CloudFormation
stack creation forms. Most of the items in these forms can be left at their defaults, but
some must be filled out both to complete initial cluster configuration and to ensure that
you do not accidentally create an unsecure configuration.

https://whatismyip.com/
https://aws.amazon.com/quickstart/architecture/amazon-eks/
https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/welcome.html
https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/welcome.html
https://fwd.aws/6dEQ7
https://fwd.aws/e37MA

202 Deploying Docker Apps to Kubernetes

Guidance for EKS Quick Start CloudFormation creation
Creating the CloudFormation stack will require you to fill out a four-page
CloudFormation parameters form by following the Deploy into a new VPC link in the
previous section. This is the first page of that form:

Figure 8.10 – CloudFormation form, page 1 of 4: Prepare template

This guidance will allow you to complete the items to get a working EKS cluster in about
30 minutes.

Create Stack – Prerequisite – Prepare Template
Leave all the items on this form at their defaults and hit the Next button. This will take
you to the Specify Stack Details screen.

Spinning up AWS EKS with CloudFormation 203

Specify Stack Details
You can leave almost all of these items at their defaults, but specify items for the
following parameters:

• Availability Zones: us-east-2a, us-east-2b, and us-east-2c.

• Allowed external access CIDR: Enter your IPv4 CIDR address, such as
192.2.0.15/32.

• EKS cluster name: Choose a short cluster name.

• Maximum number of nodes: 8.

• SSH Key Name: eks-ec2.

• Additional EKS admin ARN (IAM Role): Leave this blank, unless you have
another AWS IAM role in your account that you want to give access to.

• Additional EKS admin ARN (IAM User): Leave this blank, unless you have
another AWS IAM user in your account that you want to give access to.

• Kubernetes Version: 1.15.

Note
Do not use 1.16 or higher if you want to experiment with Spinnaker as
described in Chapter 9, Cloud-Native Continous Deployment Using Spinnaker,
as Spinnaker is not compatible with higher versions

• EKS Public Access Endpoint: Enabled.

• EKS Public Access CIDRs: Enter your IPv4 CIDR address, such as
192.2.0.15/32.

• ALB Ingress Controller: Enabled.

• Cluster Autoscaler: Enabled.

• EFS Storage Class: Enabled.

• Monitoring Stack: Prometheus and Grafana.

Selecting these options will ultimately allow you to manage the EKS cluster from your
local workstation using the kubectl, helm, and eksctl tools. Once these are specified,
press the Next button at the bottom of the form. This will take you to the Configure Stack
Options screen.

204 Deploying Docker Apps to Kubernetes

Configure Stack Options
Leave all of these at their defaults. Press the Next button at the bottom of the form.
This will take you to the Review screen.

Review
Scroll to the bottom of the form and check both of the checkboxes acknowledging
that this might create IAM resources with custom names and that it might require the
CAPABILITY_AUTO_EXPAND capability. Press the Next button at the bottom of the form
to create the CloudFormation template. Wait about 30 minutes and review the creation
status of the template in the CloudFormation console—it should complete without issue.
Check that all the CloudFormation templates reach the completed state before proceeding.
It should look something like this:

Figure 8.11 – The CloudFormation console with the CREATE_COMPLETE status

Now, your EKS cluster is ready for its initial configuration.

Spinning up AWS EKS with CloudFormation 205

Configuring the EKS cluster
Having deployed the CloudFormation template, you will have an environment that
contains the following AWS services:

• A VPC that serves as networking infrastructure for the cluster

• An EKS Kubernetes control plane managed by AWS

• An EC2 bastion host used to configure the cluster

• Kubernetes infrastructure, including three EC2 instances serving as nodes deployed
across three AWS availability zones

• An ALB Ingress Controller that will allow outside access to cluster services

To gain initial access to the cluster, view the CloudFormation outputs for the stack and
note the IPv4 address marked BastionIP. Then, SSH to the host with that address,
replacing 192.2.10 with that IP address:

ssh -i ~/.ssh/eks-ec2.pem ec2-user@192.2.0.10

Once the deployment is complete, follow the AWS deployment guide to validate the
cluster state:

https://docs.aws.amazon.com/quickstart/latest/amazon-eks-
architecture/step-3.html.

Use some of the commands you have learned about, such as kubectl get all -A,
kubectl get nodes, and kubectl describe service/kubernetes, to
explore the cluster configuration from the bastion host.

The bastion node already has kubectl, helm, and git installed, so you have the option
of using it to perform some cluster maintenance chores. The Helm installation even has
the stable charts repository already installed, which you can verify with the helm repo
list command.

https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/step-3.html
https://docs.aws.amazon.com/quickstart/latest/amazon-eks-architecture/step-3.html

206 Deploying Docker Apps to Kubernetes

Keep an eye on AWS costs
Once you have deployed the EKS infrastructure, AWS will start charging you
by the hour while it is running. You will be responsible for all charges incurred
while the EKS cluster and EC2 servers are running. Keeping this EKS cluster
running might cost up to $10-20 per day. Please visit the Billing & Cost
Management dashboard at https://console.aws.amazon.com/
billing/home?#/ in order to see your month-to-date and projected
costs. We recommend that you have AWS generate cost and usage reports on
a regular basis to help you track your spending. Information on enabling this
can be found at https://docs.aws.amazon.com/cur/latest/
userguide/cur-create.html.

Verifying that the ALB Ingress Controller is working
Because we enabled the ALB Ingress Controller optional add-in when we created the EKS
cluster, we can skip the detailed directions in the ALB user guide (https://docs.aws.
amazon.com/eks/latest/userguide/alb-ingress.html) to set up an ALB
Ingress Controller for EKS. Since the ALB Ingress Controller is already set up, the cluster
will automatically be able to create new Ingress Controllers and application load balancers
when it finds a correctly annotated ingress object.

As an exercise, you can deploy the 2048 game described in the last section of the user
guide to validate that the ALB works as expected.

Deploying an application with resource limits
to Kubernetes on AWS EKS
In Kubernetes, we can set resource limits on an application in order to prevent it from
consuming all the available CPU and memory resources in the cluster. This is desirable to
protect the system from resource exhaustion, and to ensure that an application that has a
memory leak or a bug that causes it to consume more CPU than expected does not bring
down the entire cluster.

To demonstrate setting resource limits, we are going to deploy the ShipIt Clicker Docker
container and Helm charts we deployed to our local Kubernetes installation in the
Deploying a sample application section earlier in this chapter to the EKS cluster.

https://console.aws.amazon.com/billing/home?#/
https://console.aws.amazon.com/billing/home?#/
https://docs.aws.amazon.com/cur/latest/userguide/cur-create.html
https://docs.aws.amazon.com/cur/latest/userguide/cur-create.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html

Deploying an application with resource limits to Kubernetes on AWS EKS 207

To demonstrate setting resource limits, we will now look at deploying the ShipIt
Clicker application to Kubernetes, managed by the AWS EKS service, with CPU and
memory limits enabled. We will also expose this application to the world using an
Ingress Controller.

Configuring resource limits to guard against memory
leaks and runaway CPU usage
Now that we are deploying to EKS, we want to be sure that our pod's containers are
good citizens in the cluster. To do this, we will specify both resource requests and limits.
Requests give Kubernetes guidance about how much of each resource it will initially
allocate to the application, and will guide the orchestrator when it places the containers
and pods on the nodes. Kubernetes will only schedule a pod on a node if it has adequate
headroom to support a request. Limits give the orchestrator hard-maximum limits on how
much CPU or memory to allocate. If a container exceeds its memory limit, its process will
be killed with an out-of-memory (OOM) error.

We are going to use the Helm templates at chapter8/shipitclicker-eks/ in
order to make the first set of changes versus the basic Helm template we installed on our
local system.

In chapter8/shipitclicker-eks/values.yaml, we are now specifying the CPU
and memory requests and limits for the containers:

resources:

 limits:

 cpu: 500m

 memory: 512Mi

 requests:

 cpu: 500m

 memory: 512Mi

These apply both to the Redis and the ShipIt Clicker containers.

208 Deploying Docker Apps to Kubernetes

Annotating ShipIt Clicker to use the ALB Ingress
Controller
Some changes are required for the chapter8/shipitclicker-eks/values.yaml
file to make sure that the Ingress Controller annotations are compatible with the EKS
setup. We need to switch up the annotations so that they are targeted toward EKS. Also,
we will remove the host restriction and make sure that the configuration for paths has a
wildcard in it. Since we use a ClusterIP service point, we also need to use the ip target
type for the ALB Ingress Controller:

ingress:

 enabled: true

 annotations:

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/target-type: ip

 hosts:

 # - host: "*"

 - paths: ['/*']

Without these annotations, the ALB Ingress Controller would have trouble connecting to
the services.

Deploying an EKS-ready ShipIt Clicker to EKS
SSH to the bastion host, clone the repository, and deploy the software with Helm:

$ git clone https://github.com/PacktPublishing/Docker-for-
Developers.git

$ cd Docker-for-Developers
helm install shipitclicker chapter8/shipitclicker-eks/

Check in the AWS EC2 console for evidence that an elastic load balancer is getting
created. It may take a few minutes to become available. When it does, enter its DNS name
in a browser and you should see the ShipIt Clicker game.

If you don't see it, troubleshoot by looking at the Ingress Controller logs:

kubectl logs -n kube-system deployment.apps/alb-ingress-
controller

Using AWS Elastic Container Registry with AWS EKS 209

Now that we have the ShipIt Clicker application deployed to EKS and exposed to the
world with an ALB Ingress Controller, let's examine how we can segregate environments
so that different Docker containers can run without interfering with each other.

Using AWS Elastic Container Registry with AWS
EKS
Using public images stored in Docker Hub is fine for some applications, but for more
sensitive applications, you might want to store your Docker containers in a private Docker
registry. AWS provides just such a registry: Elastic Container Registry (ECR). You can
read more about the basics of ECR on the main product website at https://aws.
amazon.com/ecr/.

In order to get a Kubernetes cluster to use images from a private repository, you must
configure the cluster with the right credentials so that it can pull images from the
repository. The process for most repositories is in the Kubernetes documentation at
https://kubernetes.io/docs/tasks/configure-pod-container/pull-
image-private-registry/.

However, AWS ECR uses an enhanced security system that relies on AWS IAM to grant
temporary access tokens that are used to authenticate with ECR. Kubernetes has built-in
support for this authentication process, as described in the documentation on images
regarding using a private registry (https://kubernetes.io/docs/concepts/
containers/images/#using-aws-ec2-container-registry).

When using ECR with Kubernetes, you use an ECR identifier in the specification for the
images used in pod configurations or their Helm templates. Instead of using the default
Docker Hub image specifications, you can specify images using the following syntax:

ACCOUNT.dkr.ecr.REGION.amazonaws.com/imagename:tag

The AWS documentation on EKS explains that the worker nodes that run the pods must
have the correct IAM policies applied via IAM roles in order to get authentication tokens
and retrieve the images:

https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_
EKS.html

Fortunately, the AWS CloudFormation templates we used to set up the EKS cluster
produce worker nodes that already have the correct permissions applied, as do all clusters
set up using the eksctl tool, if you set up your cluster with that alternative path. The
access control rules described in ECR on the preceding EKS web page will grant EKS
nodes permission to read any images stored in any ECR repository on the account.

https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/concepts/containers/images/#using-aws-ec2-container-registry
https://kubernetes.io/docs/concepts/containers/images/#using-aws-ec2-container-registry
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_EKS.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_on_EKS.html

210 Deploying Docker Apps to Kubernetes

So, to use ECR with EKS, all we should have to do is make sure our containers are
pushed to an ECR repository in the same account with the EKS cluster, and that we
use the ECR-style repository URIs as the identifiers for the containers that run in our
Kubernetes pods.

Next up, let's create an ECR repository so that we can prepare for integrating ECR
and EKS.

Creating an ECR repository
In a web browser, log in to the AWS console. Make sure you switch to the us-east-2
region (the same region where your EKS cluster lives), and then click on the Services link
and choose Elastic Container Registry. If you don't have any registries created yet,
click on the Get Started button. The AWS console will prompt you for a namespace
and repository.

Alternatively, visit the following URL to start the creation process:

https://console.aws.amazon.com/ecr/create-repository?region=us-
east-2

Either way, you will see something like this:

Figure 8.12 – The ECR Create repository form

https://console.aws.amazon.com/ecr/create-repository?region=us-east-2
https://console.aws.amazon.com/ecr/create-repository?region=us-east-2

Using AWS Elastic Container Registry with AWS EKS 211

Leave the other settings at their defaults. After you create the repository, note the URI for
your repository; you will need it in order to push containers to the registry. You will see
the URI on a screen that looks like this:

Figure 8.13 – The ECR Repositories page

Then, click on the View push commands button. This will give you detailed instructions
on how to use the AWS CLI to get temporary credentials that you can use to accomplish a
Docker push to the ECR repository.

Exercise – pushing ShipIt Clicker to the ECR repository
Follow the instructions shown after clicking on the View push commands button to build
and deploy the ShipIt Clicker Docker container to ECR. The following commands are a
less repetitive way of executing those steps (replace the REPO value with the hostname of
your ECR registry from the URI generated in the Create form):

$ cd Docker-for-Developers/chapter8

$ REPO=143970405955.dkr.ecr.us-east-2.amazonaws.com

$ IMAGE=dockerfordevelopers/shipitclicker

$ aws ecr get-login-password --region us-east-2 | \

 docker login --username AWS --password-stdin $REPO

$ docker build -t $IMAGE:latest .

$ docker tag $IMAGE:latest $REPO/$IMAGE:latest

$ docker push $REPO/$IMAGE:latest

212 Deploying Docker Apps to Kubernetes

If this succeeds, you will see an output similar to the following:

Figure 8.14 – A Docker push to ECR

In the next chapter, we are going to use ECR to store Docker images that we build through
Jenkins and deploy using Spinnaker and Helm.

Now that we have seen how we might store Docker container images in an ECR repository,
we will examine how we can segregate environments using labels and namespaces.

Using labels and namespaces to
segregate environments
We learned earlier in this chapter what a namespace is. Now, we will explore how we
can use both namespaces and labels to create separate environments in both a local
environment and in an EKS cluster.

Local example – labeled environments in the
default namespace
Let's imagine you are developing the ShipIt Clicker application and want to keep a
working stable environment deployed so that you can demonstrate it to others and
compare new behaviors in code that you are changing to stable behavior. While you
could use namespaces to segregate the application, it would be simpler to just deploy
the Helm Chart again with deployments that have different labels. You can use multiple
deployments with distinct labels, along with some template overrides, to accomplish this
with Helm, without having to deal with the complexity of multiple namespaces.

Using AWS Elastic Container Registry with AWS EKS 213

To do this, we need to do the following:

1. Define a hostname to use to reach the service.

2. Configure the Ingress Controller for ShipIt Clicker to use that hostname.

3. Configure and bump the chart version in chapter8/shipitclicker/Chart.
yaml.

4. Deploy the Helm Chart with a different name from the one already deployed, for
example shipit-stable.

5. Test that we can reach the alternative environment.

Let's go through each of these steps in order to set up this stable environment
using namespaces.

Adding multiple hostnames to the local environment

The time-tested way to add alternative names for your local environment is to edit
your operating system hosts file – this is /etc/hosts on UNIX-inspired systems,
such as Linux and macOS, or C:\Windows\System32\Drivers\etc\hosts
on Windows systems. You must do so as a user with administrative privileges, though.
You might add an entry such as 127.0.0.1 shipit-stable.internal. to your
hosts file, following some of the guidance at https://tools.ietf.org/html/
rfc6762#appendix-G to pick a TLD that is unlikely to cause operational problems.

However, there is an easier way to do this now. You can use a hostname of the
name.A.B.C.D.nip.io form and it will map to whatever IP address you give, thanks
to the free https://nip.io/ service. This enables the easy creation of localhost
aliases as we can use shipit-stable.127.0.0.1.nip.io and similar names for
local development.

Temporarily configuring the Helm Chart for the
shipit-stable environment
Edit the chapter8/shipitclicker/values.yaml file to switch up the host so that
it matches shipit-stable.127.0.0.1.nip.io, and bump the chart version. Then,
use Helm to deploy the app using the command helm install shipit-stable
shipitclicker/. You should then be able to see the application in your web browser
by going to http://shipit-stable.127.0.0.1.nip.io/.

https://tools.ietf.org/html/rfc6762#appendix-G
https://tools.ietf.org/html/rfc6762#appendix-G
https://nip.io/
http://nip.io/

214 Deploying Docker Apps to Kubernetes

Staged environments – Dev, QA, staging,
and production
In the EKS environment, you could also get a pretty good separation of environments
just by deploying labeled stacks. You could label the stacks with a prefix or suffix name
that indicates what environment they are. With ALB support, each separate service that is
exposed to the world will get its own distinct load balancer, whether they are in different
namespaces or not.

But there are some cases where you would want to use namespaces. For example, if you
host both production and non-production resources in the cluster, you could make it so
that the namespaces for the non-production resources use quotes. Refer to https://
kubernetes.io/docs/concepts/policy/resource-quotas/ for more
information on quotas.

Exercise
Create a qa namespace with kubectl and use Helm to deploy ShipIt Clicker
to that namespace. Then, set a memory quota on that namespace so that it
never uses more than 1 GB of RAM.

For even more advanced practices regarding namespaces, you should consult the best
practices documentation at https://cloud.google.com/blog/products/gcp/
kubernetes-best-practices-organizing-with-namespaces.

Now that we have set up a separate environment that is segregated using namespaces, we
have more flexibility in how we might deploy and manage our applications. Next, let's
review what we have learned in this chapter.

Summary
In this chapter, we learned all about Kubernetes and options for hosting it in the cloud. We
walked through some of the cloud-hosting platforms on the market and then completed a
quick overview of the key components of Kubernetes.

Following this, we developed a process for deploying our Docker containers to AWS
EKS, using AWS ECR as a Docker container registry. Here, you also got the chance to
experiment with Amazon's CloudFormation technology, a platform for developing
infrastructure as code.

Next, we studied Helm and Helm Charts and built on the ShipIt Clicker application.
This was stood up in AWS with resource limits.

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-organizing-with-namespaces
https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-organizing-with-namespaces

Summary 215

You should now feel comfortable with repeating this process for another project if
you wish!

Now that our basic Kubernetes setup is ready to go, what other concerns do we need to
address before we can use it for a scalable production project? We have seen how we can
use Jenkins for continuous deployment, but it would be tedious to write all the scripts
required to get the basic Jenkins system to manage a complex Kubernetes cluster and
deploy applications to it reliably.

This chapter has presented a simplified set of Helm Charts that generate Kubernetes
configurations that result in a running application, but there are some refinements we
must make in order to make the application production-ready, just as we did in previous
chapters with Docker Compose.

In the next chapter, we are going to introduce Spinnaker as a cloud-native CI/CD platform
that will help us facilitate CI/CD for a Kubernetes for this exact task.

Further reading
These articles may help you get a better handle on some of the essential
Kubernetes concepts:

• A gentle illustrated introduction to Kubernetes concepts through this tongue-in-
cheek guide: https://www.cncf.io/the-childrens-illustrated-
guide-to-kubernetes/

• Another Cloud Native Computing Foundation illustrated guide to Kubernetes
concepts featuring Phippy: https://www.cncf.io/phippy-goes-to-the-
zoo-book/

• Why is Kubernetes getting so popular? See this blog article: https://
stackoverflow.blog/2020/05/29/why-kubernetes-getting-so-
popular/

• Many applications require you to use private Docker image registries, whether that
is Docker Hub, AWS ECR, or something else. Read this to find out how to integrate
registry secrets into your Kubernetes configuration files: https://kubernetes.
io/docs/tasks/configure-pod-container/pull-image-private-
registry/

• While this is targeted at customers of Digital Ocean using their Kubernetes service,
it does an excellent job of explaining NGINX Ingress Controllers: https://www.
digitalocean.com/community/tutorials/how-to-set-up-an-
nginx-ingress-on-digitalocean-kubernetes-using-helm

https://www.cncf.io/the-childrens-illustrated-guide-to-kubernetes/
https://www.cncf.io/the-childrens-illustrated-guide-to-kubernetes/
https://www.cncf.io/phippy-goes-to-the-zoo-book/
https://www.cncf.io/phippy-goes-to-the-zoo-book/
https://stackoverflow.blog/2020/05/29/why-kubernetes-getting-so-popular/
https://stackoverflow.blog/2020/05/29/why-kubernetes-getting-so-popular/
https://stackoverflow.blog/2020/05/29/why-kubernetes-getting-so-popular/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-nginx-ingress-on-digitalocean-kubernetes-using-helm

216 Deploying Docker Apps to Kubernetes

• The user guide for EKS. This is chock full of super-detailed information
about running EKS: https://docs.aws.amazon.com/eks/latest/
userguide/what-is-eks.html

• Deploy the Kubernetes dashboard. This is optional but will give you a nice web
user interface to see more information about the cluster: https://docs.aws.
amazon.com/eks/latest/userguide/dashboard-tutorial.html

• An example of an advanced configuration using Kubernetes namespaces might
involve using the Kubernetes role-based access control (RBAC) system to
further restrict how applications in different namespaces interact: https://
kubernetes.io/docs/reference/access-authn-authz/rbac/

• Learn more about the options for EKS installations, including Terraform, using
a hybrid strategy that mixes NGINX and ALB Ingress Controller, and more:
https://medium.com/@dmaas/setting-up-amazon-eks-what-you-
must-know-9b9c39627fbc

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html
https://docs.aws.amazon.com/eks/latest/userguide/dashboard-tutorial.html
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://medium.com/

9
Cloud-Native

Continuous
Deployment Using

Spinnaker
Deploying Docker containers as cloud-native applications to Kubernetes poses challenges
that a specialized container-centric continuous deployment system can solve. Instead
of writing custom deployment logic in those scripts that Jenkins runs, as we did when
we deployed to a single host, we can use Spinnaker to deploy to Kubernetes. Because
Spinnaker works with Jenkins, we can continue to use the Jenkins server that we already
set up to build the Docker containers and prepare the Helm Charts for deployment.
Using Spinnaker, we will deploy an application using its built-in support for Helm Charts
and Kubernetes deployments. We will also explore some of Spinnaker's specialized
deployment strategies and see how they apply to Kubernetes-centric environments.

218 Cloud-Native Continuous Deployment Using Spinnaker

In this chapter, we are going to learn when and why you would use Spinnaker in addition
to Jenkins. We will learn how to improve your setup for supporting the deployment
and maintenance of Kubernetes applications by learning to configure Spinnaker and
integrating it with GitHub, Docker Hub, and Jenkins. We will learn how to deploy an app
to Kubernetes using a Spinnaker pipeline and AWS Elastic Container Registry (ECR),
as well as learn a bit about how Spinnaker's support for different deployment and testing
strategies may or may not apply when you use it in conjunction with Kubernetes.

We will cover the following topics in this chapter:

• Improving your setup for Kubernetes application maintenance

• Spinnaker – when and why you might need more sophisticated deployments

• Setting up Spinnaker in your AWS EKS cluster with Helm

• Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker

• Learning about Spinnaker's support for different deployment and testing strategies
with respect to Kubernetes applications

Let's get started by reviewing the technical requirements for this chapter, and then we will
move on to learning about the Spinnaker platform.

Technical requirements
You will need to have a working Kubernetes cluster in the cloud, as set up in the previous
chapter. You could reuse that cluster or set up a new one for this chapter using the
same method or by using eksctl. Please note that the Spinnaker version described
in this chapter is not compatible with Kubernetes 1.16 and later; be sure to install this
on a Kubernetes 1.15 cluster. You will also need to have a current version of the AWS
Command-Line Interface (CLI), kubectl, and helm 3.x installed on your local
workstation, as described in the previous chapter. The Helm commands in this chapter
use the helm 3.x syntax. The AWS Elastic Kubernetes Service (EKS) cluster must have a
working Application Load Balancer (ALB) Ingress Controller setup. We will also use the
AWS ECR Docker repository set up in the previous chapter. You will also need to have the
Jenkins server that was set up in Chapter 7, Continuous Deployment with Jenkins, available
as Spinnaker relies on Jenkins for building software artifacts.

Spinnaker requires more resources than might be available on your local workstation, and
we will want to connect it to outside services, such as Jenkins and GitHub, in a way that
might not work with a local Kubernetes learning environment.

Improving your setup for Kubernetes application maintenance 219

Check out the following video to see the Code in Action:

https://bit.ly/2DUGumq

Using the updated ShipIt Clicker v5
We will use the version of ShipIt Clicker in the chapter9 directory in the following
GitHub repository:

https://github.com/PacktPublishing/Docker-for-Developers/

This version has some changes from the previous version. It only has one copy of the
Helm Charts in chapter9/shipitclicker, with several override YAML files for
cluster deployment: values-eks.yaml and values-spin.yaml.

In the previous chapter, we kept multiple directories of redundant template and
configuration files, but the only differences in the Helm Charts were the overrides in the
values file. The copy in this chapter uses a more concise strategy. It turns out that you
can use multiple YAML config files that override just the settings that have to change
for each deployment or environment. In this chapter, we will transition the container
repository for the sample application from Docker Hub to ECR, deploy it once manually,
and then switch to deploying ShipIt Clicker using Spinnaker.

Improving your setup for Kubernetes
application maintenance
In order to deploy and maintain Spinnaker, we need to be able to talk to the Kubernetes
cluster from our local workstation. We also want to be able to use Secure Sockets
Layer (SSL)-protected communications to Kubernetes-hosted resources. Let's take
this step by step in order to prepare your local workstation and AWS account for more
advanced deployments.

Managing the EKS cluster from your local workstation
In order to make it easier to administer the EKS cluster and work with it, you will want
to set up your local workstation to talk to the cluster. In the previous chapter, we set up
the AWS CLI with an AWS IAM administrator account and then used it to set up an EKS
cluster. We will build on that in this chapter to make sure that we can efficiently manage
the cluster and the applications in it from our local workstation.

https://bit.ly/2DUGumq
https://github.com/PacktPublishing/Docker-for-Developers/

220 Cloud-Native Continuous Deployment Using Spinnaker

Follow the instructions here on your local workstation to get kubectl and the rest of the
Kubernetes utilities talking with your EKS cluster:

https://aws.amazon.com/premiumsupport/knowledge-center/
eks-cluster-connection

The essential parts of the instructions in the preceding link involve executing an aws cli
command from your local workstation. Issue this command to update .kube/config
with an entry that will let you connect to the EKS cluster, but replace EKS-VIVLKQ5X
with the name of your EKS cluster:

aws eks --region us-east-2 update-kubeconfig --name EKS-
VIVLKQ5X

Then, test whether you can communicate with the cluster:

kubectl get nodes

If this works, you will see a list of EC2 hosts that comprise your EKS cluster nodes.

Troubleshooting kubectl connection failures
If the preceding aws eks command yielded an error message or an access denied
message, or it failed to complete, you will need to troubleshoot before proceeding. Follow
the steps in the following sections, and also look at the AWS guide for troubleshooting this
communication failure:

https://aws.amazon.com/premiumsupport/knowledge-center/
eks-cluster-connection/

Making sure you have the right AWS CLI profile active
If you have multiple AWS CLI profiles, your default user might not match the one
expected. You can either explicitly tell the AWS CLI to use a profile with the --profile
parameter or you can set the AWS_DEFAULT_PROFILE variable to force it to use a
particular profile, as follows, before issuing the aws eks command:

export AWS_DEFAULT_PROFILE=my-eks-profile

Now that we have set up the AWS CLI with the profile, we must double-check that we can
still reach our EKS cluster by checking the CloudFormation template access control list.

https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-connection
https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-connection
https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-connection/
https://aws.amazon.com/premiumsupport/knowledge-center/eks-cluster-connection/

Improving your setup for Kubernetes application maintenance 221

Ensuring that your CloudFormation template is configured to
allow access
In the previous chapter, when we set up the EKS cluster, we entered our IPv4 address in
Classless Inter-Domain Routing (CIDR) form and set the CloudFormation parameters
so that the EKS public access endpoint was enabled. Ensure that the setting to enable the
public access endpoint is still enabled. Also, double-check the EKS public access CIDR
setting and make sure it matches your current IPv4 address in CIDR form – for example,
192.2.0.15/32. Double-check your address with https://whatismyip.com/ to
be sure. If these are not set correctly, update the CloudFormation stack with these values.

The CLI profile must match the IAM user that you used to create the EKS cluster with the
AWS Quick Start.

This will configure IAM and EKS appropriately.

Switching between local and cluster contexts
When you have multiple Kubernetes contexts configured, you can switch between them
via the kubectl config get-contexts and kubectl config use-context
commands, as follows:

$ kubectl config get-contexts

CURRENT
NAME CLUS
TER AUTHINFO
NAMESPACE

* arn:aws:eks:us-east-2:143970405955:cluster/
EKS-8PWG76O8 arn:aws:eks:us-east-2:143970405955:cluster/
EKS-8PWG76O8 arn:aws:eks:us-east-2:143970405955:cluster/
EKS-8PWG76O8

 docker-
desktop docker-
desktop docker-
desktop

$ kubectl config use-context docker-desktop

Switched to context "docker-desktop".

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

https://whatismyip.com/

222 Cloud-Native Continuous Deployment Using Spinnaker

docker-desktop Ready master 21d v1.15.5

$ kubectl config use-context arn:aws:eks:us-east-
2:143970405955:cluster/EKS-VIVLKQ5X

Switched to context "arn:aws:eks:us-east-
2:143970405955:cluster/EKS-VIVLKQ5X".

 $ kubectl get nodes

NAME STATUS ROLES
AGE VERSION

ip-10-0-31-183.us-east-2.compute.internal Ready <none>
2d9h v1.15.10-eks-bac369

ip-10-0-57-2.us-east-2.compute.internal Ready <none>
2d9h v1.15.10-eks-bac369

ip-10-0-90-115.us-east-2.compute.internal Ready <none>
2d9h v1.15.10-eks-bac369

In the preceding listing, we can see all the contexts we have defined. We can also see that
when we use the docker-desktop context, we only see one node, but when we use the
EKS context, we see multiple EC2 server nodes. For the rest of the chapter, we are going to
target the EKS context for the Kubernetes-related commands.

Verifying that you have a working ALB Ingress
Controller
In the previous chapter, we set up an EKS cluster with an ALB Ingress Controller in order
to grant the world access to the ShipIt Clicker application. If you are reusing that EKS
cluster and the ALB Ingress Controller is working OK, you can skip to the next section.

If you have set up a new cluster, you can either follow the instructions in the last chapter
in order to get the ALB Ingress Controller working, or you can run one of the shell scripts
included in this chapter as a shortcut if the new cluster lacks an ALB Ingress Controller.

To use the ALB Ingress Controller setup script, make a note of your EKS cluster name,
and make sure you have installed both Helm and eksctl.

Then, run the deploy-alb-ingress-controller.sh script from your local
workstation to set up the ALB Ingress Controller (replace EKS-8PWG76O8 with the name
of your EKS cluster):

chapter9/bin/deploy-alb-ingress-controller.sh EKS-8PWG76O8

Improving your setup for Kubernetes application maintenance 223

Now that you have the ALB Ingress Controller installed, you can proceed to get a domain
managed in AWS and generate an SSL certificate.

Preparing a Route 53 domain and certificate
In order to secure the communications between your EKS cluster and the outside world,
we are going to use the following services to manage Domain Name Server (DNS) entries
and server certificates:

• AWS Route 53: https://aws.amazon.com/route53/

• AWS Certificate Manager (ACM): https://aws.amazon.com/
certificate-manager/

In Chapter 7, Continuous Deployment with Jenkins, we configured Jenkins to use domain
names to map entries for staging and production for ShipIt Clicker. In this chapter, we
are going to use Route 53 to manage DNS entries and ACM to manage certificates to help
secure communication.

You can either transfer the top-level domain you are using to Route 53, or you can
delegate a subdomain of an existing domain you control, such as eks.example.com,
to Route 53. See this AWS guide on delegating a subdomain to Route 53:

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/
CreatingNewSubdomain.html

Once you have delegated the domain to Route 53, verify that you can view the SOA record
for that domain (substituting your domain for eks.example.com):

$ host -t soa eks.example.com
eks.example.com has SOA record ns-1372.awsdns-43.org. awsdns-
hostmaster.amazon.com. 1 7200 900 1209600 86400

If this returns an SOA record similar to the preceding log, you are set. If it yields a not
found error, you need to troubleshoot more.

Once your domain is resolving OK, go to the ACM console at https://us-east-2.
console.aws.amazon.com/acm/home?region=us-east-2#/ and generate a
new public certificate containing both of the domain names – *.eks.example.com
and eks.example.com (replacing example.com with your domain). The domain
name starting with * is known as a wildcard certificate because it matches any domain
name that has the same domain suffixes. Using that will allow us to have one certificate
covering many domain names.

https://aws.amazon.com/route53/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingNewSubdomain.html
http://eks.example.com

224 Cloud-Native Continuous Deployment Using Spinnaker

Use the DNS method of validation. Since you have that domain managed in Route 53, you
can expand the domain and hit the shortcut Create record in Route 53 button, which
should look similar to the following:

Figure 9.1 – Requesting a certificate in ACM

This will add validation records to your Route 53 zone, which will speed up the issuance
of the certificates. The certificate might take from 5 minutes to 1 hour to get issued,
unless there is a problem with the DNS validation records, such as the domain not
being properly delegated from the name servers that are one level above it. Wait for the
certificate to be issued and note the ARN of the certificate – you will need it later.

Building and deploying ShipIt Clicker v5
In order to verify that we have support for SSL-protected sites, we are going to deploy
ShipIt Clicker to EKS and enable ALB load balancer support for HTTPS. In order to
demonstrate that we can use the AWS ECR container registry, we will also push the
container to ECR and use that registry to deploy the application.

Improving your setup for Kubernetes application maintenance 225

Copy chapter9/values-eks.yaml to chapter9/values.yaml, and then
edit the values.yaml file, as follows. Start by changing the name of the image at
the start of the file and prefix it with the name of your ECR container registry (replace
143970405955 with your AWS account ID and make sure the region – here,
us-east-2 – matches the region you are using):

image:

 repository: 143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:0.5.0

Note that the values.yaml file has annotations indicating that the ALB should listen on
both port 80 and 443, and that it has a fully qualified domain name in the host setting.
Edit the values in the following host entry so that the shipit-v5.eks.example.com
domain name matches a domain name that would match the wildcard SSL certificate you
have in ACM:

ingress:

 enabled: true

 annotations:

 kubernetes.io/ingress.class: alb

 alb.ingress.kubernetes.io/scheme: internet-facing

 alb.ingress.kubernetes.io/listen-ports:
'[{"HTTPS":443},{"HTTP":80}]'

 alb.ingress.kubernetes.io/target-type: ip

 hosts:

 - host: "shipit-v5.eks.example.com"

 paths: ['/*']

Now that we have prepared the values.yml file, we will build the container and push
it to EKS.

226 Cloud-Native Continuous Deployment Using Spinnaker

Change the directory to Docker-for-Developers/chapter9 and issue these
commands to build and deploy the ShipIt Clicker to the cluster to test the ALB integration
(replace 143970405955.dkr.ecr.us-east-2.amazonaws.com with your
ECR registry):

docker build . -t dockerfordevelopers/shipitclicker:0.5.0

docker tag dockerfordevelopers/shipitclicker:0.5.0
143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:0.5.0

aws ecr get-login-password --region us-east-2 | docker login
--username AWS --password-stdin 143970405955.dkr.ecr.us-east-2.
amazonaws.com

docker push 143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:0.5.0

helm install shipit-v5 -f values.yaml ./shipitclicker

After a few minutes, you should be able to verify that the Ingress Controller is working:

$ kubectl get ingress

NAME HOST
S ADDRESS
PORTS AGE

shipit-v5-shipitclicker shipit-v5.eks.shipitclicker.
com 9bbd6f9c-default-shipitv5s-051a-795288134.us-east-2.elb.
amazonaws.com 80 90m

If this does not appear, check the Ingress Controller logs, as follows, for
troubleshooting clues:

kubectl logs -n kube-system deployment.apps/alb-ingress-
controller

Next, we need to create a DNS address-mapping record, also known as an A record,
to map the address for shipit-v5.eks.example.com to the address of the ALB
shown in the HOSTS column in the preceding output of kubectl get ingress.
Go to the Route 53 AWS console for your domain and create a new record of type A for
shipit-v5.eks. Make this record an alias record and enter the DNS name from the
HOSTS column of the ALB listed in the kubectl get ingress output. The form to
do that should look something like the one in the following screenshot:

http://shipit-v5.eks.example.com

Spinnaker – when and why you might need more sophisticated deployments 227

Figure 9.2 – Creating an A record as an alias in AWS Route 53

Press the Create button to save the record, and then wait 5 minutes for the DNS changes
to propagate. Then, go to https://shipit-v5.eks.example.com/ (replacing
example.com with your domain name) to verify that you can view it over HTTPS.

Now that you've made sure that you can administer the EKS cluster from your local
environment, pushed the demo application's container to ECR, deployed the demo
application to Kubernetes using Helm, and configured the HTTPS support to secure an
ALB Ingress Controller to reach a service hosted in EKS, you are ready to proceed with
a Spinnaker installation.

Spinnaker – when and why you might need
more sophisticated deployments
In order to reliably deploy your application, you could write many scripts by hand and use
a continuous integration system. However, many people have thought about the problems
inherent in deploying applications in Kubernetes. Kubernetes does have significant
deployment capabilities, especially when you use the deployment controller. But this
approach does not meet everyone's needs. Some people have developed specialized
systems that reduce the complexity of handling these tasks. Systems such as Jenkins-X,
Weaveworks, CodeFresh, and Spinnaker fit this niche. We are going to examine Spinnaker,
a continuous deployment toolset, in more detail (https://www.spinnaker.io/).

We will begin by walking through Spinnaker's core concepts and highlighting where
it shares terminology with other platforms, such as Kubernetes, including where the
meanings are different.

https://shipit-v5.eks.example.com/
https://www.spinnaker.io/

228 Cloud-Native Continuous Deployment Using Spinnaker

Introduction to Spinnaker
Spinnaker is a continuous delivery (CD) platform that works across cloud vendors and
is open source. Netflix originally wrote Spinnaker to help manage their multi-cloud
deployments, using the immutable server pattern (see https://martinfowler.com/
bliki/ImmutableServer.html). Spinnaker features an image bakery that involves
combining application code with an operating system image and supporting libraries,
and then saving (baking) an immutable machine image, such as an AWS Amazon
Machine Image (AMI) or VMware Virtual Machine Disk (VMDK) image, to speed up
deployments and minimize runtime configuration. Read more about the image bakery
and its use in Spinnaker in the following articles:

• https://netflixtechblog.com/how-we-build-code-at-netflix-
c5d9bd727f15

• https://docs.armory.io/spinnaker-install-admin-guides/
packer/

This pattern works well at a scale, but the advent of Docker and container-centric
runtimes, such as Kubernetes, provides a different approach to reach the same goals.

Spinnaker has been adapted to work with Kubernetes and Docker, as well as supporting
its original deployment strategy of using an image bakery and the immutable server
pattern. You can find the source code for the platform among other projects at the official
GitHub repository:

https://github.com/spinnaker

Before we install the application, we should familiarize ourselves with some of the core
concepts of this technology. The first one we will look at is application management.

Application management
We can use the management feature to administer and view our cloud resources. Using
Spinnaker, we model our applications around concepts such as server groups and clusters.
Refer to the Spinnaker documentation for a complete overview of these concepts:

https://spinnaker.io/concepts/

An application is the top-level container, which can be deployed on the infrastructure
that Spinnaker maintains, including clusters and server groups. Each cluster then acts as
a mechanism to organize server groups. Spinnaker considers Docker containers running
in Kubernetes in pods as members of a server group. These Docker images may contain
services such as ShipIt Clicker and any associated tools, such as the Datadog monitoring
agents featured in Chapter 15, Scanning, Monitoring, and Using Third-Party Tools.

https://martinfowler.com/bliki/ImmutableServer.html
https://martinfowler.com/bliki/ImmutableServer.html
https://netflixtechblog.com/how-we-build-code-at-netflix-c5d9bd727f15
https://netflixtechblog.com/how-we-build-code-at-netflix-c5d9bd727f15
https://docs.armory.io/spinnaker-install-admin-guides/packer/
https://docs.armory.io/spinnaker-install-admin-guides/packer/
https://github.com/spinnaker
https://spinnaker.io/concepts/

Setting up Spinnaker in an AWS EKS cluster using Helm 229

Now that we understand how a containerized project is represented in Spinnaker, we
should consider how we can deploy it to our EKS cluster in AWS via this framework.

Application deployment
The application deployment piece of the puzzle is represented graphically in the Spinnaker
user interface with a pipeline. A pipeline can either be started manually or kicked off
automatically as part of a process triggered by other events, such as a source code control-
system push. A pipeline tells us all the steps (called stages) along the way that need to
be completed – for example, to take a Docker container, install it, and make subsequent
updates to it in our cloud environment.

The following screenshot demonstrates what a deployment pipeline and its various stages
look like:

Figure 9.3 – Spinnaker pipeline

Each of the stages in this pipeline can be thought of as a discrete task. Each task is
executed in sequence or in parallel, depending on whether the pipeline forks. As we will
see shortly, Spinnaker comes with a number of predefined stages that we can incorporate
into our custom pipeline.

It is advantageous to tie the pipeline to your build server and your source code control
repository so that when you push changes to your application and its Helm Charts,
Spinnaker can package, test, and deploy them appropriately.

Now that we have briefly walked through the two major concepts of Spinnaker, let's get
stuck into building out some infrastructure and a pipeline so that we can get a better
handle of how the stages work and the types of deployment strategies that are possible.

Setting up Spinnaker in an AWS EKS cluster
using Helm
Setting up a production-grade Spinnaker cluster requires some careful planning, but for
learning purposes, we are going to use one of the simplified approaches. The complete
Spinnaker setup guide can be found at https://www.spinnaker.io/setup/.

https://www.spinnaker.io/setup/

230 Cloud-Native Continuous Deployment Using Spinnaker

In order to demonstrate the proof of concept of using Spinnaker, we are going to use the
Helm Chart found at the following link to deploy Spinnaker:

https://github.com/helm/charts/tree/master/stable/spinnaker

The Spinnaker Helm Chart warns against production use
Although this Helm Chart states that it is not suitable for production use,
we can use it to demonstrate the proof of concept for building, testing, and
deploying applications. The Spinnaker setup guide gives guidance for setting
up production-grade Spinnaker systems. Most importantly, that includes
making the Spinnaker installation separate from the cluster that also hosts the
applications that end users consume. We are going to ignore that advice to save
time and money in this chapter and make it easier to demonstrate. If you are
going to adopt Spinnaker at scale, please take this advice to heart and set up
Spinnaker according to their best practices documentation in a separate cluster.

Ensure you are connected to the correct Kubernetes context targeting your EKS cluster,
and enter the following command to deploy Spinnaker to its own namespace:

$ kubectl create namespace spinnaker

$ helm install spinnaker stable/spinnaker --namespace spinnaker
--version 1.23.3 --timeout 600s

It may take several minutes for the Spinnaker deployment to complete. When it is done,
you should see an output similar to the following:

Figure 9.4 – Spinnaker Helm Chart installation

https://github.com/helm/charts/tree/master/stable/spinnaker

Setting up Spinnaker in an AWS EKS cluster using Helm 231

Next, we will connect to the freshly installed Spinnaker system.

Connecting to Spinnaker through the kubectl proxy
To carry out preliminary testing, pay attention to the advice in the output you receive
from the helm install command you ran to create port forwarding tunnels in the
previous section. It should be similar to the output shown in the preceding section. You
should set up two separate console windows or tabs on your local workstation, and then
run the pairs of commands listed in the output of the helm install spinnaker
command in the NOTES section to set up the port forwarding tunnels, one per console
window or tab. You can then go to http://127.0.0.1:9000 in your browser to verify
that Spinnaker is up and running.

Exposing Spinnaker via ALB Ingress Controllers
The directions for integrating Spinnaker with EKS (https://www.spinnaker.io/
setup/install/providers/kubernetes-v2/aws-eks/) describe a solution
using services with a LoadBalancer annotation to expose the services. However, since
we have our ALB Ingress Controller, Route 53, and ACM already configured, it would
be better to expose them using the ALB Ingress Controller. Edit the chapter9/
spinnaker-alb-ingress.yaml file, and make the following changes in the ingress
configuration for both spin-deck and spin-gate (there are two sets of configurations
in the file):

• Replace eks.example.com with the domain name you have configured with the
ACM wildcard certificate.

• Replace 192.2.0.10/32 with your public IP address in CIDR format (the same
format you used to lock down the EKS API).

• Replace 192.2.0.200/32 with the public IP address of your Jenkins server.

Security notice
It is important to add the preceding IP address restriction because, out of
the box, Spinnaker's user interface runs as the cluster administrator user. If
you allowed 0.0.0.0/0 (the entire internet) access, someone could run
processes as the cluster administrator and modify or take over your cluster. If
you have a dynamic IP address, you might have to change this several times,
starting with the CloudFormation template.

http://127.0.0.1:9000
https://www.spinnaker.io/setup/install/providers/kubernetes-v2/aws-eks/
https://www.spinnaker.io/setup/install/providers/kubernetes-v2/aws-eks/
http://eks.example.com

232 Cloud-Native Continuous Deployment Using Spinnaker

Then, apply the config template to create the ALB Ingress Controllers:

kubectl apply -n spinnaker -f spinnaker-alb-ingress.yaml

After a few seconds, issue the following command to verify that this worked (look for your
domain name instead of eks.example.com):

$ kubectl get -n spinnaker ingress

NAME HOSTS ADDRESS
PORTS AGE

spin-deck spinnaker.eks.example.com 9bbd6f9c-
spinnaker-spindec-5f03-917097792.us-east-2.elb.amazonaws.com
80 10m

spin-gate spinnaker-gate.eks.example.com 9bbd6f9c-
spinnaker-spingat-712f-2021704484.us-east-2.elb.amazonaws.com
80 10m

The DNS names that this lists under the HOSTS column are the names we intend to use to
call the services. The DNS addresses under the ADDRESS column are the actual DNS names
that the ALB Ingress Controller has created using the AWS ALBs. To connect these two
names, we need to create two DNS records in our domain in order to reach the Spinnaker
services with the friendlier names. Note the DNS names of the ingress controllers from the
ADDRESS column in this listing. Then, go to the AWS Route 53 console for your domain
and create two new DNS entries of type A. Make them alias records.

Name the first one spinnaker and give it the value shown in the ADDRESS column for
the entry named spin-deck.

Name the second entry spinnaker-gate and give it the value shown in the ADDRESS
column for the entry named spin-gate.

The result of this will be two new DNS entries similar to the following (with your domain
name instead of example.com):

• spinnaker.eks.example.com

• spinnaker-gate.eks.example.com

http://eks.example.com
http://example.com
http://spinnaker.eks.example.com
http://spinnaker-gate.eks.example.com

Setting up Spinnaker in an AWS EKS cluster using Helm 233

While you are waiting for 5 minutes or so for the DNS records to become available and
the ALB to be fully activated, use Halyard to configure Spinnaker with the HTTPS version
of these URLs.

Configuring Spinnaker using Halyard
Now that we have assigned friendly DNS names to our Spinnaker installation, we need to
configure Spinnaker to make it understand that it must respect these names. From your
local workstation, connect to the Halyard maintenance pod:

kubectl exec --namespace spinnaker -it spinnaker-spinnaker-
halyard-0 bash

Once you have connected to the pod, you will see a spinnaker@spinnaker-
spinnaker-halyard-0:/workdir$ prompt. Then, enter these commands, replacing
example.com with your domain name:

$ hal config security api edit --override-base-url https://
spinnaker-gate.eks.example.com --cors-access-pattern https://
spinnaker.eks.example.com

$ hal config security ui edit --override-base-url https://
spinnaker.eks.example.com

$ hal deploy apply

The last hal command will redeploy the Spinnaker application.

Wait 5 minutes for the DNS records to activate and the ALBs to be fully created. Once this
is done, visit the Spinnaker site via its fully qualified domain name, replacing example.
com with your domain name:

http://spinnaker.eks.example.com/

You should be redirected to the HTTPS version of the site.

Connecting Spinnaker to Jenkins
In order to get Spinnaker to receive artifacts from Jenkins, we must connect it using a
Jenkins administrator API token. Spinnaker has instructions on this that can be found at
https://www.spinnaker.io/setup/ci/jenkins/.

http://example.com
http://example.com
http://spinnaker.eks.example.com/
https://www.spinnaker.io/setup/ci/jenkins/

234 Cloud-Native Continuous Deployment Using Spinnaker

Go to the Jenkins server you used in a previous chapter. Sign in and go to the user
configuration page at a URL similar to https://jenkins.example.com/user/
admin/configure (substitute your Jenkins URL for jenkins.example.com). Then,
generate an API token for Spinnaker:

Figure 9.5 – Jenkins API token generation

As shown in the Configuring Spinnaker using Halyard section, connect to the hal
maintenance pod from your local workstation:

kubectl exec --namespace spinnaker -it spinnaker-spinnaker-
halyard-0 bash

Then, issue these commands in the shell of that pod to configure Jenkins, replacing the
values to the right of the equals sign for the BASEURL, APIKEY, and USERNAME values
with those for your installation:

$ hal config ci jenkins enable

$ BASEURL=https://jenkins.example.com

$ APIKEY=123456789012345678901234567890

$ USERNAME=admin

$ echo $APIKEY | hal config ci jenkins \

 master add my-jenkins-master \
 --address $BASEURL --username $USERNAME --password

$ hal deploy apply

https://jenkins.example.com/user/admin/configure
https://jenkins.example.com/user/admin/configure
http://jenkins.example.com

Setting up Spinnaker in an AWS EKS cluster using Helm 235

Now that Spinnaker is set up to talk to Jenkins, we will move on to configuring Jenkins
with an additional set of build jobs that Spinnaker will use.

Setting up Jenkins to integrate with both Spinnaker
and ECR
In order to run the Spinnaker-specific jobs and integrate Jenkins with ECR, we are
going to need to configure Jenkins with additional plugins and credentials so that it
can push containers to AWS ECR, and also set up a new multi-branch pipeline item
in order to use the Jenkinsfile for this chapter, stored in the GitHub repository as
chapter9/Jenkinsfile.

In the following sections, we will make all the changes needed to make Jenkins work
with both ECR and Spinnaker.

Installing the AWS ECR Jenkins plugin
Sign in to your Jenkins server as the admin user, and then navigate in the left menu to
Configure | Plugin Manager. Click on the Available tab and type ECR into the Filter box.
You will see something like this:

Figure 9.6 – Installing the Amazon ECR plugin through Jenkins Plugin Manager

236 Cloud-Native Continuous Deployment Using Spinnaker

Click on the Install checkbox next to the Amazon ECR plugin and select the Download
now and install after restart button. You will see something as in the following screenshot:

Figure 9.7 – Installation in progress for the Amazon ECR Jenkins plugin

It might take Jenkins 5–15 minutes to restart before it is available again. Once it is
available, sign in again as the Jenkins admin user. Next, we will create an AWS IAM user
with limited privileges and configure Jenkins with those credentials.

Creating a limited AWS IAM user for Jenkins
In a previous chapter, we used the AWS console to create an administrator IAM user for
the account. This time, we will use the AWS CLI in order to create a Jenkins user, with
more limited permissions than the administrator user so that it can only manage ECR
repositories and push Docker images to those repositories. This is in line with the security
principle of granting the least privilege access required for a system only. To create the
user, attach the appropriate policy, create the access keys, and issue the three aws iam
commands in the following listing to set up the Jenkins user (the output that you should
expect to see is in line with these commands):

$ aws iam create-user --user-name Jenkins

{

 "User": {

 "Path": "/",

Setting up Spinnaker in an AWS EKS cluster using Helm 237

 "UserName": "Jenkins",

 "UserId": "AIDASDBKOBZBU6ZX6SQ7U",

 "Arn": "arn:aws:iam::143970405955:user/Jenkins",

 "CreateDate": "2020-05-03T02:45:34Z"

 }

}

$ aws iam attach-user-policy --user-name Jenkins --policy-arn
arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryPowerUser

$ aws iam create-access-key --user-name Jenkins

{

 "AccessKey": {

 "UserName": "Jenkins",

 "AccessKeyId": "AKIASDBKOBZBYFDCBLMR",

 "Status": "Active",

 "SecretAccessKey": "q+1z7wt/
FsbYOv5Yy7HRUSZI0OsLbANV7a8nIQDy",

 "CreateDate": "2020-05-03T02:46:00Z"

 }

}

Note the values associated with AccessKeyId and SecretAccessKey in the output of
your commands. You will need those to configure a Jenkins credential for AWS access in
the next section. Next, let's configure Jenkins with AWS credentials.

Configuring Jenkins with credentials for AWS and ECR
We need to tell Jenkins what our AWS credentials are so that it can push the Docker
containers it builds to ECR. Furthermore, we also need to configure Jenkins to know
what ECR registry to use. In Chapter 6, Deploying Applications with Docker Compose, we
configured Jenkins with credentials for GitHub and Docker Hub. Now, we will configure
additional credentials for the AWS IAM user and the ECR container registry.

238 Cloud-Native Continuous Deployment Using Spinnaker

While you are signed into the Jenkins server with the admin user, go to its home page
and then navigate in the left menu to the Credentials | System | Global credentials
(unrestricted) screen. Then, add a credential of the AWS Credentials type with the
shipit.aws.key ID, the ShipIt Clicker AWS API Keys description, and the
access key ID and secret access key from the previous section. You should see a credential
form that looks like this:

Figure 9.8 – Configuring AWS credentials in Jenkins

Once you have done this, add an additional credential of the Secret text type with the
following fields, but replace the values in the Secret field with the value of the ECR
container host from the URL you used earlier this chapter when deploying ShipIt Clicker,
omitting the dockerfordevelopers/shipitclicker:0.5.0 reference at the end:

• Scope: Global
• Secret: 143970405955.dkr.ecr.us-east-2.amazonaws.com
• ID: shipit.ecr.container.id
• Description: ShipIt Clicker ECR container ID

Save this credential by pressing the OK button.

Now that we have configured Jenkins with the credentials needed to connect to AWS and
ECR, let's configure a new multi-branch pipeline for the code in this chapter.

Setting up Spinnaker in an AWS EKS cluster using Helm 239

Configuring Jenkins with a multi-branch pipeline for the Jenkinsfile
Next, we will configure Jenkins to use an additional multi-branch pipeline item that pulls
from the same GitHub repository but is configured to use chapter9/Jenkinsfile
instead of the Jenkinsfile at the root of the repository. Sign in to Jenkins, and from the
home page, navigate to New Item. Create a new multi-branch pipeline item, name it
Spinnaker, and then configure it with your GitHub repo credentials, similar to what
is included in the following screenshot (replace PacktPublishing/Docker-for-
Developerswith the GitHub organization and name of the forked copy of the repository
that you set up in Chapter 7, Continuous Deployment with Jenkins):

Figure 9.9 – Jenkins multi-branch pipeline setup

240 Cloud-Native Continuous Deployment Using Spinnaker

After you configure this, the new item should connect to the GitHub repository and build
and push a container to AWS ECR. Inspect the console output from the master branch in
this new item to make sure the build succeeds and that the Docker image gets pushed to
the AWS ECR repository.

Now that you have configured Jenkins with the ECR plugin, created a Jenkins IAM
user, configured Jenkins with the credentials for that user, configured Jenkins with new
credentials to reflect the AWS integration, and added the new Jenkins multi-branch setup,
you can proceed to connect other services to Spinnaker. Next, we will connect GitHub.

Connecting Spinnaker to GitHub
We will follow the guidance from https://www.spinnaker.io/setup/
artifacts/github/ to connect Spinnaker to Jenkins so that it can read artifacts from
GitHub. Go to your GitHub user account and, in Developer Settings, generate an access
token for Spinnaker with repo scope.

From your local workstation, connect to the Halyard maintenance pod, as shown in the
Configuring Spinnaker using Halyard section, put the GitHub token in a file in the home
directory, and then issue the following commands (replacing xxxx with your GitHub
token and my-github-user with your GitHub username):

TOKEN=xxxx

GH_ACCOUNT=my-github-user

TOKEN_FILE=~/.github-token.txt

echo "$TOKEN" > $TOKEN_FILE

hal config artifact github enable

hal config artifact github account add $GH_ACCOUNT --token-file
$TOKEN_FILE

hal deploy apply

Once you have done this, Spinnaker should be able to talk to GitHub. Next, we will
connect Spinnaker to Docker Hub.

Connecting Spinnaker to Docker Hub
You will also need to connect Spinnaker to Docker Hub so that it can read your repository
and the library/redis repository. Integrating Spinnaker with Docker Hub requires
you to whitelist all the repositories that your templates will use. The default Docker Hub
integration has a short whitelist of the most common libraries.

https://www.spinnaker.io/setup/artifacts/github/
https://www.spinnaker.io/setup/artifacts/github/

Setting up Spinnaker in an AWS EKS cluster using Helm 241

We will follow the guidance from https://www.spinnaker.io/setup/install/
providers/docker-registry/ in order to add Docker Hub to Spinnaker.

Log in to your Docker Hub account and generate a new API token for the Spinnaker
installation from https://hub.docker.com/settings/security.

From your local workstation, connect to the Halyard maintenance pod:

kubectl exec --namespace spinnaker -it spinnaker-spinnaker-
halyard-0 bash

Then, issue the following commands (replacing xxxx with your Docker Hub token and
my-dockerhub-user with your Docker Hub username):

$ ADDRESS=index.docker.io

$ REPOSITORIES="library/redis dockerhub-user/shipitclicker"

$ USERNAME=dockerhub-user

$ PASSWORD=xxxx

$ REPOSITORIES="library/redis dockerhub-user/shipitclicker"

$ echo $PASSWORD | hal config provider docker-registry \

 account add my-docker-registry \

 --address $ADDRESS \

 --repositories $REPOSITORIES \

 --username $USERNAME \

 --password

$ hal deploy apply

Once Docker Hub is connected, you are ready to start setting up an application and
pipeline in Spinnaker. But before we do that, let's talk about how to troubleshoot
Spinnaker issues.

Troubleshooting Spinnaker issues
If you have any difficulties getting a Spinnaker pipeline execution to work, or have
other issues setting up and configuring Spinnaker, the user interface has minimal error-
reporting capabilities. It can seem opaque and daunting.

For example, let's imagine you have a typo in one of your artifact definitions – for
example, gitgub.com instead of github.com. The pipeline might fail when it tries to
retrieve that artifact due to a hostname failure lookup.

https://www.spinnaker.io/setup/install/providers/docker-registry/
https://www.spinnaker.io/setup/install/providers/docker-registry/
https://hub.docker.com/settings/security
http://gitgub.com
http://github.com

242 Cloud-Native Continuous Deployment Using Spinnaker

Rather than trying to figure out which of the Spinnaker pods might have recorded an
error, you can just tail all the logs of all the Spinnaker pods at once:

kubectl logs -n spinnaker -f -l app=spin --all-containers
--max-log-requests 10

If you search your console output for the word exception, you may find a clue, such as
this one found when troubleshooting Spinnaker:

com.netflix.spinnaker.clouddriver.artifacts.exceptions.
FailedDownloadException: Unable to determine the download
URL of artifact Artifact(type=github/file, customKind=false,
name=chapter9/helm.tar.gz, version=staging, location=null,
reference=https://api.gitgub.com/repos/PacktPublishing/
Docker-for-Developers/contents/chapter9/helm.tar.
gz, metadata={id=8ebb0ad7-2d14-4882-9b77-fde3a03e3c45},
artifactAccount=obscurerichard, provenance=null, uuid=null):
api.gitgub.com: Try again

Analyzing log files like this can really get you out of a jam. Next up, we will deploy ShipIt
Clicker with Spinnaker.

Deploying ShipIt Clicker with a simple
deployment strategy in Spinnaker
Let's get our hands dirty with Spinnaker by deploying our ShipIt Clicker application.
For this, we will be using Helm Charts, and we will use the version of the application in
the chapter9 directory.

Spinnaker requires Helm archive files to operate
In order to simplify the deployment of the Helm Charts, we have created an
archive of the chapter9/shipitclicker Helm Chart directory in
chapter9/helm.tar.gz, as Spinnaker expects an archive in this format
as one of its inputs. We could instead output this archive to an AWS S3 object,
or even as a GitHub release artifact, but that is beyond the scope of this chapter.
If you change the Helm Charts in the chapter9/shipitclicker
directory, be sure to update the helm.tar.gz archive and commit and push
it before building with Spinnaker.

Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker 243

Adding a Spinnaker application
Go to your Spinnaker installation in the web browser at https://spinnaker.eks.
example.com (replacing example.com with your domain). Add an application called
shipandspin, then, in Repo Project, insert your GitHub username, and in Repo Name,
insert the name of the repo where you have forked the Docker-for-Developers code:

Figure 9.10 – The New Application dialog in Spinnaker

When you submit this form, it will take you to an infrastructure definition form. Stop
here, and do not fill in or submit the infrastructure definition form. This form is intended
for other types of Spinnaker deployments, not for Kubernetes-centric deployments.
When you deploy your application, it will define infrastructure in Kubernetes that
Spinnaker understands.

https://spinnaker.eks.example.com
https://spinnaker.eks.example.com
http://example.com

244 Cloud-Native Continuous Deployment Using Spinnaker

Adding a Spinnaker pipeline
Navigate to the PIPELINES screen:

Figure 9.11 – A PIPELINES screen example in Spinnaker

Create a pipeline called shipit-eks-staging, and then add two artifacts – one for the
Helm Chart and one for a values-spin.yaml override.

For the first one, pick the GitHub account, give it the chapter9/helm.tar.gz Helm
artifact, and click Use Default Artifact. Then, give it the full URL of the artifact from the
API, changing this to match your account and repository name (double-check that this is
correct before submitting):

https://api.github.com/repos/PacktPublishing/Docker-for-
Developers/contents/chapter9/helm.tar.gz

Tell it to use the staging branch. It will look something like this when you have defined it:

Figure 9.12 – Overriding the artifact: Helm Chart archive in Spinnaker

https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/helm.tar.gz
https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/helm.tar.gz

Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker 245

Give it another artifact for the chapter9/values-spin.yaml override file. Set
the chapter9/values-spin.yaml file path and the values-spin.yaml
display name, select Use Default Artifact, and then set https://api.github.
com/repos/PacktPublishing/Docker-for-Developers/contents/
chapter9/values-spin.yaml for Content URL and staging for the branch
(replacePacktPublishing/Docker-for-Developerswith the GitHub
organization and name of the forked copy of the repository that you set up in Chapter 7,
Continuous Deployment with Jenkins):

Figure 9.13 – Overriding the artifact: Helm Chart archive in Spinnaker

https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/values-spin.yaml
https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/values-spin.yaml
https://api.github.com/repos/PacktPublishing/Docker-for-Developers/contents/chapter9/values-spin.yaml

246 Cloud-Native Continuous Deployment Using Spinnaker

Then, configure Automated Triggers to get triggers from your GitHub installation, as
follows. Pick the job marked job/staging, which pulls from the branch that you learned
to force push in a previous chapter. Be sure to also specify build.properties for
Property File, which is a Jenkins archived file that this will use to get the version of the
container that Jenkins built:

Figure 9.14 – The Jenkins Automated Triggers screen in Spinnaker

Go to the bottom of the form and save the Configuration stage.

Now, let's add the next stage, which creates the Kubernetes manifest from the Helm Charts.

Adding the Bake (Manifest) stage
After you have saved the configuration stage, you will still be at the bottom of the very
long stage-definition web form. Go back to the top of the form and add an additional
stage of the Bake (Manifest) type. Configure it with the shipit-staging name and tell
it to deploy to the default namespace. Give it a Template Artifact setting of helm.tar.gz.

For Overrides, set values-spin.yaml. Add an override key-value pair with the image.
repository name and the ${trigger["properties"]["imageName"]}
value. Add an override key-value pair with the ingress.hosts[0].host name and
the shipit-stage.eks.example.com value, replacing example.com with your
domain name.

We will set up a Route 53 DNS entry for the Ingress Controller that this creates as soon as
it is deployed. The form should look something like the following:

http://shipit-stage.eks.example.com
http://example.com

Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker 247

Figure 9.15 – The Bake (Manifest) template renderer configuration screen in Spinnaker

Then, at the bottom of the form, in the Produces Artifacts section, pick a Base64 kind of
artifact. Give it a name and display name of kube-templates.yaml and save the form.
It should look something like this:

Figure 9.16 – The Bake (Manifest) Produces Artifacts section in Spinnaker

248 Cloud-Native Continuous Deployment Using Spinnaker

Configuring this stage will set up the Helm template-rendering process. Then, save the
form. Next, we will set up the Deploy (Manifest) stage.

Adding the Deploy (Manifest) stage
After you have saved the previous configuration change, go to the top of the
configuration form again and add another stage, Deploy (Manifest). Pick the default
account and tell it to override the namespace to deploy to the default namespace. Select
kube-templates.yaml for Manifest Artifact to deploy. Do not select the Rollout
Strategy Options setting, as this only works if you have one ReplicaSet and forego using
Deployments as a Kubernetes controller. It will look something like this:

Figure 9.17 – Deploy (Manifest) Configuration in Spinnaker

Now, we are ready to trigger a deployment. Click on PIPELINES at the top of the screen
and click on the Start Manual Execution link. It should reach out to GitHub for the latest
build, and then bake the manifest using Helm Charts and deploy.

Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker 249

Because we used Jenkins to emit a build.properties file and used a Spring
Expression Language (SPEL) expression to override the image.repository field in
the template, we will be using the specific container that the Jenkins job connected to the
trigger built. Refer to the following link for more information on SPEL expressions and
Spinnaker pipelines:

https://www.spinnaker.io/guides/user/pipeline/expressions/

There might be some issues that you need to troubleshoot, particularly if you have made
a typo in some of the required configurations. If all goes well, it should look something
like this:

Figure 9.18 – Pipelines showing a completed job in Spinnaker

You can then explore the Execution Details and INFRASTRUCTURE panes, as
Spinnaker will show you some information about the running application. It can even
show you the logs from your running pods.

https://www.spinnaker.io/guides/user/pipeline/expressions/

250 Cloud-Native Continuous Deployment Using Spinnaker

Setting up a DNS entry for the Ingress Controller
To see the running application from the outside, you will need to set up a DNS entry.
Issue the kubectl get ingress command to determine the DNS alias of the Ingress
Controller for shipit-eks-staging, and then set up the DNS alias in Route 53 for
your domain to match the override you set up for shipit-stage.eks.example.com
(replacing example.com with your domain).

You should be able to visit https://shipit-stage.eks.example.com/
(replacing example.com with your domain) once this is complete and see the running
ShipIt Clicker game.

Next up, we will learn about Spinnaker's support for different types of deployments and
how they apply (or don't apply) to Kubernetes deployments.

Surveying Spinnaker's deployment and testing
features
In the introduction to Spinnaker earlier in this chapter, we noted that you would have
the opportunity to learn more about the various deployment methodologies available to
you. Let's now dig into these concepts, including canary and red/black deployments, and
describe their relevance to Spinnaker when used to manage Kubernetes deployments.

Canary deployments
Canary deployment is a method of exposing an application to its users where you run a
subset of the traffic for the application through a new deployment while keeping most of
the traffic for the application going to the currently deployed version. This can help you
test whether the new version is suitable for production use without immediately funneling
all the traffic through.

The Kubernetes v2 Spinnaker provider does not support canary deployments
Although this is one of Spinnaker's most desired features, the Kubernetes
v2 cloud provider does not support canary deployments, so we won't use it
for ShipIt Clicker. If we were using a non-Kubernetes cloud provider, such
as the AWS, Google Compute Engine, or an Azure provider, this would be a
more natural pattern to use. See https://spinnaker.io/setup/
install/providers/ for the full list of Spinnaker cloud providers.

http://shipit-staging.eks.example.com
http://example.com
https://shipit-staging.eks.example.com/
http://example.com
https://spinnaker.io/setup/install/providers/
https://spinnaker.io/setup/install/providers/

Surveying Spinnaker's deployment and testing features 251

Red/black deployments
Let's now look at how the red/black deployment methodologies work. This is another
name for the better-known blue/green deployment strategy. With a red/black strategy, you
keep two sets of servers or containers available during a deployment, with traffic flowing
to only one at a time. Let's say red is taking traffic when the deployment begins. During
the deployment, you would deploy to black. Once the health checks pass, you switch
traffic to black, but keep red around so that if anything goes wrong, you can switch traffic
back to red without having to redeploy.

Spinnaker announced support for red/black deployments through the Kubernetes v2
provider in 2019:

https://blog.spinnaker.io/introducing-rollout-strategies-in-
the-kubernetes-v2-provider-8bbffea109a

However, this has some significant limitations. It means you can't use the Kubernetes
deployment objects and must instead use the lower-level ReplicaSet annotations.
The Helm Chart generator produces a skeleton with a deployment in it that sits atop
ReplicaSets, so if you want to use the Spinnaker red/black support with Kubernetes,
you will have to alter your Helm Charts significantly. Refer to this advice on the
Kubernetes v2 provider:

https://www.spinnaker.io/guides/user/kubernetes-v2/traffic-
management/#you-must-use-replica-sets

What Spinnaker does support for Kubernetes deployments that only use ReplicaSets are
the following deployment strategies:

• Dark: Deploy to a new ReplicaSet that is not connected to the live load balancer.

• Red/black: Deploy a new ReplicaSet and switch back and forth between the new
and old sets using Spinnaker.

• Highlander: Deploy a new ReplicaSet and destroy the old one as soon as the new
one starts taking traffic (there can be only one ReplicaSet).

If you are using the Kubernetes deployment controller, the behavior you will get is very
similar to the Spinnaker Highlander strategy. So, you may not need to use the Spinnaker
support for advanced deployment strategies if you are using Kubernetes.

https://blog.spinnaker.io/introducing-rollout-strategies-in-the-kubernetes-v2-provider-8bbffea109a
https://blog.spinnaker.io/introducing-rollout-strategies-in-the-kubernetes-v2-provider-8bbffea109a

252 Cloud-Native Continuous Deployment Using Spinnaker

Rolling back
So, what happens if a deployment fails? Well, we will need to roll back to our previous
release in a safe fashion. For the style of deployment where Spinnaker manages deploying
machine images, it orchestrates this rollback. However, with the Kubernetes operator, it
relies on the Kubernetes deployment mechanisms that use liveness and readiness probes
in order to check that a deployment is valid.

Spinnaker does have some support for undoing a rollout of a set of templates directly
through its interface. However, this may not work if all the resources in the templates
do not have independent revisions, such as separately versioned and tagged Docker
containers. See here for more information about rollbacks with Spinnaker and Kubernetes:

https://www.spinnaker.io/guides/user/kubernetes-v2/automated-
rollbacks/

Testing with Spinnaker
With Spinnaker, you can either use a manual judgement stage to provide time for people
to do a manual test on an application or you can use a scripted pipeline stage to run an
automated test suite in Jenkins versus your application. If you are deploying to multiple
environments or using the red/black strategies, this can give you a better opportunity to
execute tests versus your application before deploying it to production or exposing it to
the world.

You can find more information on testing using either one of these strategies in their
respective Spinnaker documentation at https://www.spinnaker.io/guides/
tutorials/codelabs/safe-deployments/ and https://www.spinnaker.
io/setup/features/script-stage/.

Summary
In this chapter, we explored the topic of continuous deployment in AWS using the
Spinnaker framework. We started by configuring Spinnaker to work with Jenkins, GitHub,
AWS ECR, and Docker Hub. Then, we used it to deploy the ShipIt Clicker application to
Kubernetes on EKS, securing both Spinnaker and the ShipIt Clicker application with SSL.

https://www.spinnaker.io/guides/user/kubernetes-v2/automated-rollbacks/
https://www.spinnaker.io/guides/user/kubernetes-v2/automated-rollbacks/
https://www.spinnaker.io/guides/tutorials/codelabs/safe-deployments/
https://www.spinnaker.io/guides/tutorials/codelabs/safe-deployments/
https://www.spinnaker.io/setup/features/script-stage/
https://www.spinnaker.io/setup/features/script-stage/

Further reading 253

Following this, we learned about some advanced deployment strategies that Spinnaker
offers, and what some of the trade-offs are that you would have to make when configuring
your Kubernetes-driven Docker application to take advantage of them. We also learned
how you can trigger the execution of tests (manual or automated) via Spinnaker. By using
the lessons learned in this chapter in practice, you can construct continuous deployment
systems that use a combination of simple Jenkins build jobs and Spinnaker pipelines
to deploy Docker applications to Kubernetes. The skills you have acquired related to
integrating Spinnaker with Kubernetes are also applicable to integrating other software
packages with Kubernetes.

In the next chapter, we will explore monitoring our Docker containers with Prometheus,
Grafana, and Jaeger.

Further reading
Use the following resources to expand your knowledge of Spinnaker and EKS:

• Spinnaker is not a build server, and other misconceptions: https://www.
armory.io/blog/spinnaker-is-not-a-build-server-and-other-
misconceptions/

• An AWS blog post describing a full installation of Kubernetes and Spinnaker
with Jenkins and ECR: https://aws.amazon.com/blogs/opensource/
deployment-pipeline-spinnaker-kubernetes/

• A good article on how Kubernetes services are exposed to the world:
https://medium.com/google-cloud/kubernetes-nodeport-
vs-loadbalancer-vs-ingress-when-should-i-use-what-
922f010849e0

• The AWS official documentation on the ALB Ingress Controller: https://docs.
aws.amazon.com/eks/latest/userguide/alb-ingress.html

• The Spinnaker CLI: https://www.spinnaker.io/guides/spin/

• A Kubernetes external DNS provider that you can use to annotate your templates
to avoid having to manually set up DNS aliases: https://github.com/
kubernetes-sigs/external-dns

https://www.armory.io/blog/spinnaker-is-not-a-build-server-and-other-misconceptions/
https://www.armory.io/blog/spinnaker-is-not-a-build-server-and-other-misconceptions/
https://www.armory.io/blog/spinnaker-is-not-a-build-server-and-other-misconceptions/
https://aws.amazon.com/blogs/opensource/deployment-pipeline-spinnaker-kubernetes/
https://aws.amazon.com/blogs/opensource/deployment-pipeline-spinnaker-kubernetes/
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0
https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/eks/latest/userguide/alb-ingress.html
https://www.spinnaker.io/guides/spin/
https://github.com/kubernetes-sigs/external-dns
https://github.com/kubernetes-sigs/external-dns

254 Cloud-Native Continuous Deployment Using Spinnaker

Spinnaker is not the only advanced Kubernetes-aware CD system you should be aware of;
you might consider these other alternatives as well, and carry out fresh research on this
topic as this landscape is changing rapidly:

• Jenkins-X – an opinionated Kubernetes-focused CI/CD system:
https://jenkins-x.io/

• Argo Project – workflows, CD, and more. A CNCF project at the incubating stage
as of July 2020: https://argoproj.github.io/

• WeaveWorks – a GitOps system for CD using Kubernetes:
https://www.weave.works/technologies/ci-cd-for-kubernetes/

https://jenkins-x.io/
https://argoproj.github.io/
https://www.weave.works/technologies/ci-cd-for-kubernetes/

10
Monitoring Docker
Using Prometheus,

Grafana, and Jaeger
In order to understand how an application behaves when it runs in production, developers
and system operators rely on logging, monitoring, and alerting systems. These systems can
both give insight into whether an application and its environment are operating normally
and provide clues to follow if troubleshooting is needed. As systems become more complex,
the need for deeper insights into both applications and their support software also grows.
Systems that allow for deep inspection of all these concerns without having to alter the code
that runs on the system can be said to have good observability characteristics.

In this chapter, you will learn how to instrument your application and its runtime
environment to improve the observability of the entire system. You will learn about
many aspects of logging, monitoring, and alerting. Specifically, you will learn how to
view, query, and store logs from the Kubernetes cluster both within the cluster and in
CloudWatch and Amazon Simple Storage Service (S3). You will learn how to implement
liveness and readiness probes specific to the needs of a cloud-native application, get alerts
when something goes wrong, and capture application metrics with Prometheus. You will
learn how to visualize performance and availability metrics using Grafana. Finally, we will
dive deep into the application-specific metrics at the code and database layer using Jaeger.

256 Monitoring Docker Using Prometheus, Grafana, and Jaeger

We will cover the following topics in this chapter:

• Docker logging and container runtime logging

• Use liveness and readiness probes in Kubernetes

• Gathering metrics and sending alerts with Prometheus

• Visualizing operational data with Grafana

• Application performance monitoring with Jaeger

Next up, let's make sure that you are ready to test out these systems and learn how to use
them in concert to achieve observability for your system.

Technical requirements
This chapter focuses on the integration of Kubernetes with some AWS services, including
CloudWatch, Kinesis, and S3, so you must have a working AWS account with administrator
privileges. You will need to have a working Kubernetes cluster in AWS, as set up in a
previous chapter with AWS Elastic Kubernetes Service (EKS). You could reuse that cluster
or set up a new one for this chapter using either the AWS EKS Quick Start CloudFormation
templates or eksctl.

You will also need to have a current version of the AWS CLI, kubectl, and helm 3.x
installed on your local workstation, as described in the previous chapter. The helm
commands in this chapter use the helm 3.x syntax. The EKS cluster must have a
working ALB Ingress Controller setup.

You could use Spinnaker and Jenkins, as set up in previous chapters, to deploy the
applications in this chapter, but it is not required.

Check out the following video to see the Code in Action:

https://bit.ly/3iIqgvM

Setting up a demo application – ShipIt Clicker v7
In order to have a sample application to instrument and monitor, we will use the version
of ShipIt Clicker in the chapter10 directory in the following GitHub repository:

https://github.com/PacktPublishing/Docker-for-Developers/

https://bit.ly/3iIqgvM
https://github.com/PacktPublishing/Docker-for-Developers/

Technical requirements 257

This version of the application has some important production-readiness updates in
contrast to the version in the previous chapter. Instead of being tightly coupled with a
specific Redis installation, this version uses a Redis server installed separately. We will
need to deploy the Redis cluster onto Kubernetes before installing the latest version of
ShipIt Clicker.

To prepare our Kubernetes environments, both in the local learning environment and the
AWS cloud EKS cluster, we will first need to install Redis using Helm.

Installing Redis from the Bitnami Helm repository
In order to deploy this version, we are going to have to deploy the Redis server
independently of the ShipIt Clicker pod. This represents a more realistic scenario than
the one where the ShipIt Clicker Kubernetes pod had both the Redis server and the
stateless application container running in it.

We are going to use the version of Redis maintained by Bitnami (https://bitnami.
com/), which offers separate reader and writer endpoints. Deploy Redis first through
Helm, both to your local Kubernetes installation and then to your cloud Kubernetes
installation (replace docker-desktop and the AWS ARN with the context IDs for
your installation when you run the following commands):

$ helm repo add bitnami https://charts.bitnami.com/bitnami

$ kubectl config use-context docker-desktop

$ helm install redis bitnami/redis

$ kubectl config use-context arn:aws:eks:us-east-
2:143970405955:cluster/EKS-8PWG76O8

$ helm install redis bitnami/redis

This will deploy a Redis cluster with one node that accepts read and write, and multiple
nodes that are replicas that are read-only. The version of ShipIt Clicker in this chapter has
been adapted to use this external Redis service, which uses a Kubernetes secret to store a
password needed for authentication.

https://bitnami.com/
https://bitnami.com/

258 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Offensive terms – master and slave considered harmful
The Bitnami Redis template, and Redis itself, use master and slave terminology
to describe the roles of nodes in a distributed system. Please know that
while these terms are common in information technology, many people find
this terminology backward and offensive. Other terms, such as primary/
secondary or reader/writer, convey the same information without the negative
connotations. See this article for more on this controversial issue:

https://medium.com/@zookkini/masters-and-slaves-
in-the-tech-world-132ef1c87504

Next, let's build and install ShipIt Clicker into our learning environment.

Installing the latest version of ShipIt Clicker locally

Next, we will build the ShipIt Clicker Docker container, tag it, and push it to Docker Hub,
as we did in previous chapters. Issue these commands, replacing dockerfordevelopers
with your Docker Hub username:

$ docker build . -t dockerfordevelopers/shipitclicker:0.10.0

$ docker push dockerfordevelopers/shipitclicker:0.10.0

$ kubectl config use-context docker-desktop

$ helm install --set image.repository=dockerfordevelopers/
shipitclicker:0.10.0 shipit-v7 shipitclicker

Inspect the running pods and services using kubectl get all to verify that the pod is
running, note its name, then inspect the logs with kubectl logs to see the startup logs.
There should be no errors in the log.

Next, let's install this version on EKS.

Installing the latest version of ShipIt Clicker on EKS through ECR
Now that you have built the Docker containers and installed this locally, install it to
AWS EKS via Elastic Container Registry (ECR). Edit values.yaml to give this a
hostname in the Route 53 zone, such as shipit-v7.eks.example.com (replace the
ECR reference with the one corresponding to your AWS account and region, and replace
example.com with your domain name):

$ docker tag dockerfordevelopers/shipitclicker:0.10.0
143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:0.10.0

$ aws ecr get-login-password --region us-east-2 | docker login
--username AWS --password-stdin 143970405955.dkr.ecr.us-east-2.

mailto:https://medium.com/@zookkini/masters-and-slaves-in-the-tech-world-132ef1c87504
mailto:https://medium.com/@zookkini/masters-and-slaves-in-the-tech-world-132ef1c87504

Technical requirements 259

amazonaws.com

$ docker push 143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:0.10.0

$ kubectl config use-context arn:aws:eks:us-east-
2:143970405955:cluster/EKS-8PWG76O8

$ kubectl config use-context arn:aws:eks:us-east-
2:143970405955:cluster/EKS-8PWG76O8

$ helm install shipit-v7 -f values.yaml --set image.
repository=143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:0.10.0 ./shipitclicker

Inspect the Kubernetes logs to make sure the application has deployed cleanly to
the cluster:

kubectl logs services/shipit-v7-shipitclicker

If all is well with the deployment, get the AWS ALB Ingress Controller ingress address,
as described in the previous chapter, and create DNS entries in the Route 53 console
for the deployed application with the ALB address. You should then be able to reach
your application at a URL similar to https://shipit-v7.eks.example.com/
(replace example.com with your domain name).

Configuring Jenkins and Spinnaker for this chapter
You might wonder whether you can use the same Jenkins and Spinnaker configuration
you set up previously for this chapter. You can, by making a few simple configuration
changes to the Jenkins job in the Spinnaker multi-branch pipeline item and the
Spinnaker pipeline definitions. Start by fixing up Jenkins. Edit the configuration of
the job and change the Build Configuration | Script Path item so that it references
chapter10/Jenkinsfile, and then hit the Save button:

Figure 10.1 – The Jenkins Build Configuration setting for the Spinnaker multi-branch pipeline item

Jenkins will rescan the repository and use the files from chapter10 instead of chapter9.

260 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Then, go to Spinnaker and edit the pipeline for the staging environment in the
configuration pipeline stage, and change all the chapter9 references to chapter10.

You can then use git push --force origin HEAD:staging as described in the
previous chapter to trigger a Kubernetes deployment from Spinnaker.

The Helm templates for ShipIt Clicker in this chapter have been packaged into an archive
file, chapter10/helm.tar.gz, using the following commands:

$ cd chapter10

$ helm package shipitclicker

Successfully packaged chart and saved it to: /Users/richard/
Documents/Docker-for-Developers/chapter10/shipitclicker-
0.10.0.tgz

$ mv shipitclicker-*.tgz helm.tar.gz

If you alter the Helm Charts and you are using Spinnaker, be sure to use the preceding
commands to repackage the helm.tar.gz file, as Spinnaker expects the charts in that
specific file.

Next, let's take a detailed look at logging for both the Docker containers and the container
runtime logs, such as those for the Kubernetes control plane.

Docker logging and container runtime logging
When you are trying to troubleshoot problems with your application, it helps to have
detailed logs for both the application itself and from whatever system it runs. Every
Docker container, whether it is run locally or with a cloud container runtime manager
such as Kubernetes, produces its own logs that you can query.

In previous chapters, we've used both the docker logs command and the kubectl
logs command in order to examine logs for the demo application when run both on a
local workstation and in the cloud with Kubernetes. These commands can yield insight
into events that are critical to your system, including both application logging messages
and error and exception logs. They are still the bedrock tools you will reach for; but
particularly when we need to scale out our application with Kubernetes, we will need
a more sophisticated approach.

Docker logging and container runtime logging 261

Understanding Kubernetes container logging
Every Docker container running in every Kubernetes pod produces logs. The Kubernetes
runtime, by default, will temporarily store the last 10 MB of logs for every running
container. This makes it possible to sample the logs for every running application using
only the kubectl logs tool. When a pod is evicted from a node, or when a container
restarts, Kubernetes will delete these ephemeral log files; it will not automatically save the
logs to permanent storage. This is far from ideal if you need to troubleshoot a problem,
especially if the problem happened long ago enough that those logs have rolled over and
the older log entries are unavailable.

You can use kubectl to examine multiple logs at once, as shown in the previous chapter,
with respect to showing multiple Spinnaker container logs, and you can use common
command-line tools, such as grep, awk, jq, and less, to carry out further basic
searching and filtering on logs. However, the issue with logs rolling over will thwart
some search attempts.

Given the constraints on the basic features of the Kubernetes system with respect to both
log retention and searching, it would be prudent to explore how we might want to mitigate
these issues. Let's talk about the characteristics we would want from a log management
system next.

Ideal characteristics for a log management system
Ideally, you would want to use a system for managing your logs that has some of the
following characteristics:

• Having log messages be available to view in a central console

• Low latency from when a log event happens to when it is available for searches

• Collection of logs from multiple sources, including Kubernetes objects such as pods,
nodes, deployments, and Docker containers

• An easy-to-use search interface, with the ability to save and reuse ad hoc queries

• A way to visualize a histogram of search results that includes the ability to zoom in
on the graph by clicking and dragging over the graph (a feature known as brushing)

• A way to send alerts based on the contents of log messages

• A way to configure the retention period of the log messages

262 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Various organizations have built many excellent log storage and analysis systems over the
past 20 years, including the following third-party log management systems:

• Splunk (https://www.splunk.com/)

• Elasticsearch (https://www.elastic.co/)

• Loggly (https://www.loggly.com/)

• Papertrail (https://www.papertrail.com/)

• New Relic Logs (https://newrelic.com/products/logs)

• Datadog Log Management (https://docs.datadoghq.com/logs/)

Cloud providers also have built excellent integrated log storage and analysis systems,
including the following:

• AWS CloudWatch (https://aws.amazon.com/cloudwatch/)

• Google Cloud Logging (https://cloud.google.com/logging)

• Microsoft Azure Monitor Logs (https://docs.microsoft.com/en-us/
azure/azure-monitor/platform/data-platform-logs)

As a developer or system operator, you can use these systems to store and search log
entries. However, in order to do so, you must use a log shipper to extract the logs from
their origins and forward them to the log management system.

We will examine how to forward Kubernetes container logs to one of these systems
shortly, but first, let's examine another critical system aspect: logging for the Kubernetes
control plane that provides orchestration for nodes, pods, and the rest of the family of
Kubernetes objects.

Troubleshooting Kubernetes control plane issues
with logs
If you run your own Kubernetes cluster, where you manage the control plane servers,
you may have a difficult time troubleshooting system-level issues. The Kubernetes
troubleshooting guide offers guidance about looking at various log files on individual
machines in the control plane cluster, which could be a painful exercise:

https://kubernetes.io/docs/tasks/debug-application-cluster/
debug-cluster/

https://www.splunk.com/
https://www.elastic.co/
https://www.loggly.com/
https://www.papertrail.com/
https://newrelic.com/products/logs
https://docs.datadoghq.com/logs/
https://aws.amazon.com/cloudwatch/
https://cloud.google.com/logging
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-platform-logs
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/data-platform-logs
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/

Docker logging and container runtime logging 263

However, if you are using managed Kubernetes services, such as AWS EKS, you will not
have direct access to these systems. You might ask, how do I get those logs? The managed
Kubernetes service providers all have ways to ship those logs to another system in order
to aid in troubleshooting. Fortunately, AWS EKS has an optional configuration setting
that tells it to ship logs from its control plane directly to CloudWatch:

https://docs.aws.amazon.com/eks/latest/userguide/control-
plane-logs.html

If you used the AWS EKS Quick Start described in Chapter 8, Deploying Docker Apps
to Kubernetes, to create your EKS cluster, it sets this up for you. You can go to the
CloudWatch Logs console in the us-east-2 region to verify: https://us-east-2.
console.aws.amazon.com/cloudwatch/home?region=us-east-2#logs:

You will see a listing of log groups similar to the following:

Figure 10.2 – CloudWatch log groups showing EKS control plane logs

The main Kubernetes control plan log group will be named similarly to /aws/eks/
EKS-8PWG76O8/cluster, but with your EKS cluster name. You can navigate to this
and examine the logs there in detail through the console.

If you used eksctl to create your EKS cluster, you may not have enabled CloudWatch
logging. You can use the instructions here to add CloudWatch logging to EKS
through eksctl:

https://eksctl.io/usage/cloudwatch-cluster-logging/

https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://docs.aws.amazon.com/eks/latest/userguide/control-plane-logs.html
https://us-east-2.console.aws.amazon.com/cloudwatch/home?region=us-east-2#logs:
https://us-east-2.console.aws.amazon.com/cloudwatch/home?region=us-east-2#logs:
https://eksctl.io/usage/cloudwatch-cluster-logging/

264 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Now that you have verified that your EKS cluster control plane is logging to CloudWatch
and have learned how to get a basic viewing of the logs, let's proceed to capture the rest of
the Kubernetes logs in CloudWatch Logs and analyze them with CloudWatch Logs Insights.

Storing logs with CloudWatch Logs
AWS operates a cloud-scale service to handle logging, time-series metrics, data
ingestion, storage, and analysis called CloudWatch. Many AWS services, including
EKS, offer logging integration through CloudWatch. As with so many AWS services,
you only pay for what you use. You can learn more about the basics of CloudWatch at
https://aws.amazon.com/cloudwatch/.

We saw in the previous section that AWS allows us to configure the EKS control plane to
send logs directly to CloudWatch. This is good, but if we are going to manage our logs in a
central place, we should try to store all of our logs there.

Next, we will look at how we can ship more logs to CloudWatch, using the solution that
AWS recommends in the EKS documentation – Fluent Bit (https://fluentbit.io/).

AWS provides an excellent tutorial on setting up Fluent Bit with EKS at https://aws.
amazon.com/blogs/containers/kubernetes-logging-powered-by-aws-
for-fluent-bit/.

The scripts and configuration files described later in this chapter are inspired by and
partially derived from that article.

Next, we will learn how we can use a script to install Fluent Bit and supporting AWS
resources quickly and repeatably.

Installing Fluent Bit to ship logs to CloudWatch
While you could go through the steps in the previously referenced AWS blogs by hand, in
order to streamline these operations and make them work more seamlessly with the AWS
EKS Quick Start, you can use the install-fluentbit-daemonset.sh script in this
chapter to install Fluent Bit as a DaemonSet in your EKS cluster, with a configuration that
ships logs to CloudWatch Logs. Give it the name of the CloudFormation template for your
EKS cluster CloudFormation template as a command-line parameter:

chapter10/bin/install-fluentbit-daemonset.sh Amazon-EKS

Setting up Fluent Bit to work with AWS requires a bit more work than it does with some
other cloud platforms; for example, if you were using Google Cloud Platform's GKE, it
would be installed automatically for you.

https://aws.amazon.com/cloudwatch/
https://fluentbit.io/
https://aws.amazon.com/blogs/containers/kubernetes-logging-powered-by-aws-for-fluent-bit/
https://aws.amazon.com/blogs/containers/kubernetes-logging-powered-by-aws-for-fluent-bit/
https://aws.amazon.com/blogs/containers/kubernetes-logging-powered-by-aws-for-fluent-bit/

Docker logging and container runtime logging 265

Once you have the logs for the containers streaming into CloudWatch, you can use the
CloudWatch AWS console to view the container logs, as well as the control plane logs.

Changing the CloudWatch log retention periods
By default, CloudWatch will store logs indefinitely. To save on log storage fees, you should
consider setting a relatively short retention period for your CloudWatch logs – such as
60 days. You can do that from the console or the command line, as follows, where this
command sets the period for the fluentbit-cloudwatch log group created by the
install-fluentbit-daemonset.sh script:

aws logs put-retention-policy --log-group-name fluentbit-
cloudwatch --retention-in-days 60 --region us-east-2

You might consider doing this for each of the CloudWatch log groups, even the ones
created by the AWS EKS Quick Start CloudFormation template.

Next, let's see how we can store logs in S3.

Storing logs for the long term with AWS S3
In order to economically store log data for the long term, over a period of months or
years, you can use an inexpensive cloud object storage system, such as Amazon S3
(https://aws.amazon.com/s3/).

If you have a serious need to retain logs for the long term – for example, if you have
a sensitive financial application where regulations mandate 5 years of storage for all
application logs – S3 could be a good fit. You can make long-term storage even less
expensive by setting up S3 life cycle rules on the bucket to move objects to less expensive
storage tiers, migrate them to Amazon Glacier (https://aws.amazon.com/
glacier/), or expire and delete older records.

AWS published a blog article (https://aws.amazon.com/blogs/opensource/
centralized-container-logging-fluent-bit/) that outlines a path that you
could use to stream the logs into S3 using Kinesis Firehose as an additional Fluent Bit
target. You could follow the instructions in the blog under the Log analysis across clusters
section to get the logs streaming to S3 that way, but it will probably be challenging to do
so as you would have to adapt the scripts to the EKS Quick Start in many ways, including
changing the AWS region and dealing with the assumption that you used eksctl to set
up your cluster.

https://aws.amazon.com/s3/
https://aws.amazon.com/glacier/
https://aws.amazon.com/glacier/
https://aws.amazon.com/blogs/opensource/centralized-container-logging-fluent-bit/
https://aws.amazon.com/blogs/opensource/centralized-container-logging-fluent-bit/

266 Monitoring Docker Using Prometheus, Grafana, and Jaeger

A project called CloudWatch2S3 that was inspired by that blog can help with this
process by deploying one CloudFormation template. This has the advantage that it can
send all of the CloudWatch log groups to S3, and you can install it by applying a single
CloudFormation template. It can also collect CloudWatch logs from multiple AWS
accounts should you choose to do that. Clone the GitHub repository at https://
github.com/CloudSnorkel/CloudWatch2S3 to your workstation and follow the
directions there to set up the streaming of CloudWatch logs to S3. Before you proceed,
you might consider creating an Amazon Key Management Service (KMS) key to encrypt
the Kinesis Firehose and S3 bucket contents. Install the CloudFormation template using
the AWS console or CLI, as you prefer.

Now that we have seen how to store logs in both CloudWatch and S3, it would be nice
to learn how we might query those logs.

Analyzing logs with CloudWatch Insights and Amazon
Athena
Now that you have logs stored in both CloudWatch and S3, you can query them with
either CloudWatch Insights or Amazon Athena.

Analyzing logs stored in CloudWatch with CloudWatch Insights
The easiest way to perform queries on the logs stored in AWS is with CloudWatch
Insights. This web-based query interface provides an interactive query builder and a way
to visualize the results in both histogram and tabular data formats. It features a saved
query manager, which is a key feature because it lets you build and refine a set of queries
that can span one or more log groups. The documentation for CloudWatch Insights is
available at https://docs.aws.amazon.com/AmazonCloudWatch/latest/
logs/AnalyzingLogData.html.

You can explore the sample queries in the AWS console for that service to get a better feel
for what CloudWatch Insights has to offer.

Analyzing logs stored in S3 with AWS Athena
When logs are stored in S3, you won't be able to query them in exactly the same way you
would if you used CloudWatch Insights or another log management system. However,
there are ways to efficiently query logs stored in S3. The most direct way is with a query
tool called Amazon Athena:

https://aws.amazon.com/athena/

https://github.com/CloudSnorkel/CloudWatch2S3
https://github.com/CloudSnorkel/CloudWatch2S3
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://aws.amazon.com/athena/

Using the liveness, readiness, and startup probes in Kubernetes 267

Athena will let you use a SQL-like query language on semi-structured data stored in S3
buckets. You pay by the query, according to how much data is scanned and how much
processing time it requires. In order to get Athena to understand the structure of your
S3 data, you would need to configure virtual tables using the AWS Glue catalog:

https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html

Setting up the combination of AWS Glue and Athena is pretty complex and is beyond the
scope of what we can show in this chapter. See the links in the Further reading section at
the end of this chapter for more information on setting up Athena so that you can use it
to query the data stored in S3.

Exercise – finding the number of ShipIt Clicker
games played
The ShipIt Clicker demo application emits a log message every time a game is started of
the form:

{"level":30,"time":1591067727743,"pid":17,"hostname":"ship
it-staging-shipitclicker-776c589c4f-z9tgg","name":"Shipit-
Clicker -shipit-staging","msg":"Game created in
Redis","key":"WWoor1SAYT_H98G4DDR-T","value":"OK","v":1}

Create a query in CloudWatch Insights that counts the total number of games that
have been created. For CloudWatch Insights, you will have to select the fluentbit-
cloudwatch log group.

Solution
Refer to the following file for the solution:

https://github.com/PacktPublishing/Docker-for-Developers/tree/
master/chapter10/cloudwatch-insights.txt

Using the liveness, readiness, and startup
probes in Kubernetes
Kubernetes has multiple types of health checks, called probes, to ensure that the Docker
containers it runs are in shape to process traffic. You can read about them in detail
at https://kubernetes.io/docs/tasks/configure-pod-container/
configure-liveness-readiness-startup-probes/.

https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html
https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter10/cloudwatch-insights.txt
https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter10/cloudwatch-insights.txt
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

268 Monitoring Docker Using Prometheus, Grafana, and Jaeger

The types of probes deal with different concerns:

• Liveness: Determines whether an application can process requests at all.

• Readiness: Determines whether a container is ready to receive real traffic, especially
if it depends on external resources that have to be reachable or connected.

• Startup: Determines whether a container is ready to start taking the other two types
of traffic, intended for slow-starting legacy applications to give them time to start.
As these are mostly needed for legacy applications, we won't cover them in detail.

You can configure probes to execute commands inside a running container, perform a
TCP port check, or check an HTTP endpoint. Probes have sensible default values for
timeouts and check intervals—by default, a probe will check every 10 seconds and will fail
with a timeout with 1 second. By default, a probe must fail three times in a row before the
probe enters the failure state, and it must succeed once before it enters a success state. You
can override these values through template annotations, in deployment.yaml in your
Helm Charts, for example.

If a liveness probe for a container fails enough times, Kubernetes will kill the container
and restart it. If a readiness probe for a container in a pod is failing, Kubernetes will not
direct any traffic for a service depending on that pod to the container. We are going to
examine liveness and readiness probes in detail next.

Using a liveness probe to see whether a container can
respond
For a service such as ShipIt Clicker, a good liveness check would be one where the
application can rely solely on internally configured resources to respond – for example,
relying on containers deployed in the same pod. In previous chapters, the liveness and
readiness checks for this application were set to retrieve the / resource via HTTP. The
liveness check stays the same for this chapter, as the ability to serve a simple HTML page
is a good liveness check for an Express application. Observe the following excerpt from
chapter10/shipitclicker/templates/deployment.yaml:

 livenessProbe:

 httpGet:

 path: /

 port: http

This makes Express serve the file in chapter10/src/public/index.html. This
makes a decent liveness probe, but it does not mean that a pod is ready to process requests
that reach out to external resources. For that, we should use a readiness check.

Using the liveness, readiness, and startup probes in Kubernetes 269

Using a readiness probe to ensure that a service can
receive traffic
Some applications have to complete a wave of initialization where they make database
calls and call on external services before they are ready to take traffic. For ShipIt Clicker,
the application must be able to contact Redis before it is ready to receive traffic. Next, we
are going to examine a defect in the prior versions of ShipIt Clicker and the fix that had to
be made to support both liveness and readiness probes, as these changes are illustrative of
the type of changes that you might have in your application.

Changing ShipIt Clicker to support separate liveness
and readiness probes
Previous versions of ShipIt Clicker would suffer a fatal exception if any connection to
Redis failed. This would happen as soon as the initialization routines in src/server/
index.js loaded, as the modules it loaded would instantiate the RedisDatabase class
in src/server/api/services/redis-service.js, which would immediately
connect to the Redis server. This class lacked a Redis error handler, so the error it threw
was fatal and caused the process to terminate.

This failure would repeat immediately as Kubernetes tried to start another container and
would trigger a series of crashes that engaged the Kubernetes crash loop detector.

The new error handler in the RedisDatabase.init() method in chapter10/src/
server/api/services/redis.service.js looks like this, and will log all Redis
errors to the console – and, therefore, to the Kubernetes logging system – to make it easier
to troubleshoot:

 client.on("error", err => l.error({msg: "Redis error",
err:err}));

This chapter's code also uses a lazy loading pattern to avoid having to immediately
connect to Redis when the classes are instantiated. With lazy loading, you defer the
creation of an object or resource until you actually need it. We achieve lazy loading by
using by the RedisDatabase.instance() method, which uses the singleton design
pattern for the Redis client connection:

 instance() {

 return this._client ? this._client : this._client = this.
init();

 }

270 Monitoring Docker Using Prometheus, Grafana, and Jaeger

 async ping() {

 return this.instance().pingAsync();

 }

Using lazy loading will allow us to defer connecting to the Redis server until a request
arrives that really requires it. Recall that in this version of the application, we split the
Redis server out from the ShipIt Clicker service and have it running separately. Given this,
a readiness probe should reach out to the Redis server and make sure that ShipIt Clicker
can indeed talk to it, before accepting traffic. This version has a new API endpoint, /
api/v2/games/ready, which performs a Redis PING operation to ensure that the
application is ready to take traffic:

 readinessProbe:

 httpGet:

 path: /api/v2/games/ready

 port: http

If the Redis server is not available, this readiness probe will fail and Kubernetes will
remove the container that fails the health check from the service.

Exercise – forcing ShipIt Clicker to fail the readiness
check
Next, we will run an experiment to see what happens when the liveness probe passes but
the readiness check fails. Use kubectl to switch to your local learning environment
Kubernetes context. Temporarily alter the chapter10/shipitclicker/template/
configmap.yaml file to break the Redis installation by changing the REDIS_PORT
value to an invalid number, such as 1234. Then, use Helm to install the chart with the
alternative shipit-ready-fail name. Use kubectl get pods to verify that the
new pod is in the RUNNING state but has 0/1 pods that are marked READY. Your output
should look something like this:

$ kubectl get pods | grep -E '^NAME|fail'

NAME READY
STATUS RESTARTS AGE

shipit-ready-fail-shipitclicker-57c67d76cd-qklh6 0/1
Running 0 3m20s

Gathering metrics and sending alerts with Prometheus 271

The readiness checks for this installation of ShipIt Clicker will start failing immediately.
If you describe the pod, you will see that it is no longer ready. When you are done,
use Helm to uninstall the shipit-ready-fail chart and revert the value in the
configmap.yaml file to its original value.

Gathering metrics and sending alerts with
Prometheus
Prometheus is the dominant Kubernetes-based system for collecting metrics on cluster
operations. Prometheus sports a wide range of features related to handling time-series
data, visualizing data, querying it, and sending alerts based on metrics data.

This metrics data might include a variety of time-series data for CPU usage, both for
nodes and for pods; storage utilization; application health, as defined by readiness
probes; and other application-specific metrics. Prometheus uses a pull model where it
polls endpoints for numeric data. Pods, DaemonSets, and other Kubernetes resources
supporting Prometheus use annotations to advertise that Kubernetes should scrape them
for metrics data via HTTP, usually via a /metrics endpoint. This can include data from
Nodes, surfaced through a DaemonSet called node_exporter that runs on each Node.

It stores the metrics data it receives by associating this data with a metric name and a set of
labels in key-value pair format, along with a millisecond-resolution timestamp. This labeling
allows both efficient storage and the querying of the metrics in a time-series database.
System operators and automated systems can then query this database to investigate the
system's health and performance.

It not only provides a time-series database for metrics but also an alerting subsystem so
that system operators can proactively take action when applications encounter trouble.

You can read more about the overall Prometheus architecture and its feature set at
https://prometheus.io/docs/introduction/overview/.

Prometheus' history
While Prometheus was originally developed by SoundCloud in 2012, it became a Cloud
Native Computing Foundation (CNCF) top-level project in 2016 and it is independent
of any single company, just like Kubernetes itself. Its design is inspired by Google's
Borgmon system.

https://prometheus.io/docs/introduction/overview/

272 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Exploring Prometheus through its query and graph
web interface
If you installed an EKS cluster using the AWS EKS Quick Start CloudFormation templates
as described in Chapter 8, Deploying Docker Apps to Kubernetes, you should already have
a working Prometheus application. If not, you can follow the instructions here to install it
using Helm:

https://docs.aws.amazon.com/eks/latest/userguide/prometheus.
html

You can connect to the Prometheus service and start exploring it by using kubectl to
create a port forwarding proxy to the Prometheus console web application. You should
connect the prometheus-server Kubernetes service to your local workstation as
follows (replace the expression after use-context with your AWS EKS cluster ARN):

$ kubectl config use-context arn:aws:eks:us-east-
2:143970405955:cluster/EKS-8PWG76O8

$ kubectl port-forward -n prometheus service/prometheus-server
9090:80

Then, open a web browser and visit http://localhost:9090/, and you will see the
Prometheus query console.

A good starter query to use to test Prometheus is the node_load1 term, which shows
the 1-minute load averages of the underlying Kubernetes nodes. Enter that into the query
field and hit the Execute button, and then activate the Graph tab. You will see a graph
showing those load averages.

The Prometheus query language is called PromQL and is quite different from other
time-series database query languages. You will need to learn more about PromQL to
formulate your own queries. Read more about that at https://medium.com/@
valyala/promql-tutorial-for-beginners-9ab455142085.

While Prometheus can graph query results on its own, Kubernetes users typically use
Grafana in conjunction with Prometheus to provide more sophisticated graphs and
dashboards. We will explore Grafana further later in this chapter. Next, let's examine
how you might add a Prometheus metric to an application.

https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
https://docs.aws.amazon.com/eks/latest/userguide/prometheus.html
mailto:https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085
mailto:https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085

Gathering metrics and sending alerts with Prometheus 273

Adding Prometheus metrics to an application
In order to integrate an application with Prometheus, you need to expose a specially
structured HTTP API via a Prometheus client library. Prometheus offers official client
libraries for several languages, and the community has created many other client
libraries for different languages. You can read more about the general process in the
Prometheus documentation at https://prometheus.io/docs/instrumenting/
clientlibs/.

To demonstrate this integration, the version of ShipIt Clicker in this chapter exposes
both a set of default metrics and a custom metric in the form of a counter, labeled
shipitclicker_deployments_total. To do this, we integrate the Prometheus
client for JavaScript applications using Node.js:

https://github.com/siimon/prom-client

To perform the integration, we installed and saved the prom-client Node module with
an npm install prom-client --save command, and then integrated the client
loosely following the provided example code at https://github.com/siimon/
prom-client/blob/master/example/server.js.

The structure of a metrics-enabled ShipIt Clicker program
The Prometheus metrics publishing code in ShipIt Clicker is organized conventionally
for a Node application written with the Express framework, with routes for metrics
added to the main router in chapter10/src/server/routes.js in the same
modular pattern as the routes for the game API. The main route imports chapter10/
src/server/api/controllers/metrics/router.js, which defines the
HTTP routes for /metrics and a special route for /metrics/shipitclicker_
deployment_total, using the controller class defined in chapter10/src/server/
api/controllers/metrics/controller.js. This controller has methods that
integrate with a Prometheus service class defined in chapter10/src/server/api/
services/prometheus.service.js, which integrates with the prom-client
library and exposes both the default metrics and the custom shipitclicker_
deployments_total metric. Refer to the following code excerpt from the service to
see how we encapsulate the prom-client library:

import * as client from 'prom-client';

…

export class Prometheus {

…

 this.register = client.register;

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/
https://github.com/siimon/prom-client
https://github.com/siimon/prom-client/blob/master/example/server.js
https://github.com/siimon/prom-client/blob/master/example/server.js

274 Monitoring Docker Using Prometheus, Grafana, and Jaeger

 this.deploymentCounter = new client.Counter({

 name: 'shipitclicker_deployments_total',

 help: 'Total of in-game deployments in this ShipIt
Clicker process',

 });

 client.collectDefaultMetrics({

 timeout: 10000,

 gcDurationBuckets: [0.001, 0.01, 0.1, 1, 2, 5],

 });

 }

}

export default new Prometheus();

The controller classes that serve up the metrics have proper exception-handling and
error-logging scaffolding that the baseline example from prom-client lacks. If you
wanted to, you could easily adapt the router, controller, and service classes to a new
application with minimal effort.

In order to simplify troubleshooting, the metrics are bound to the same HTTP port as
the rest of the application: port 3000. This means that you can retrieve the metrics from
any installed version of ShipIt Clicker that has this code integrated – for example, from
https://shipit-v7.eks.example.com/metrics (replace example.com with
your domain name). You should see a long list of metrics, starting with the following:

HELP shipitclicker_deployments_total Total of in-game
deployments in this ShipIt Clicker process

TYPE shipitclicker_deployments_total counter

shipitclicker_deployments_total 0

HELP process_cpu_user_seconds_total Total user CPU time spent
in seconds.

TYPE process_cpu_user_seconds_total counter

process_cpu_user_seconds_total 2.5176489999999996

…

Now that we have seen the raw metrics, let's examine how the configuration that allows
Prometheus to discover the demo application works.

https://shipit-v7.eks.example.com/metrics

Gathering metrics and sending alerts with Prometheus 275

Getting Prometheus to discover the ShipIt Clicker application
The installation of Prometheus configured through the AWS EKS Quick Start
CloudFormation template is configured to perform service discovery of pods that support
Prometheus metrics. In order for your Kubernetes pods to be discovered, they must
be annotated with Prometheus-specific metadata, including the prometheus.io/
scrape: "true" annotation. Refer to chapter10/shipitclicker/template/
deployment.yaml for the annotations used to expose ShipIt Clicker to Prometheus:

 template:

 metadata:

 labels:

 {{- include "shipitclicker.selectorLabels" . | nindent
8 }}

 annotations:

 prometheus.io/scrape: "true"

 prometheus.io/port: "3000"

As long as these annotations are on the pod, Prometheus will know that it must scrape
the pod's /metrics endpoint for data.

Now that we have seen how the program and its configuration templates have been
extended to support Prometheus metrics, let's query Prometheus for the custom metric.

Querying Prometheus for a custom metric
Play the game deployed at https://shipit-v7.eks.example.com/ for a
minute or two (replace example.com with your domain name). Then, connect to the
Prometheus console using the port forwarding method explained earlier in this chapter,
and issue a query for shipitclicker_deployments_total, then switch to the
Graph tab. You should see a graph that shows an increasing number of deployments
over time.

If you keep playing the game and keep re-issuing the query in the Prometheus console,
you will see the number of deployments go up. The default scrape interval and targets that
Prometheus uses are defined in a prometheus.yml file embedded in the prometheus-
server ConfigMap in the prometheus namespace. By default, it is set to 30 seconds,
so you will not see instantaneous changes in the query results from Prometheus.

Next, let's explore Prometheus' support for alerts.

https://shipit-v7.eks.example.com/

276 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Configuring Prometheus alerts
Prometheus has the capability to query itself periodically in order to detect important
conditions – this is the basis of the alerts system. You can apply the powerful Prometheus
query language to detect when parts of your system that have Prometheus metrics are
overloaded, responding too slowly, or are not available.

For most applications, the foundational alert item must answer the question is the
application available? If the application is up, it is ready and available to serve user
requests. Prometheus has a metric called up that can help answer that question – it will
have a value of 1 if the service is up, and 0 if it is down. If you query Prometheus for up,
you will see the basic availability status of every service it monitors. You might want to
raise an alert if any service has a value other than 1 for 5 minutes or more. That is the
basic example given in the Prometheus documentation for alerts (refer to https://
prometheus.io/docs/prometheus/latest/configuration/alerting_
rules/). Next, we will show how to add the example InstanceDown rule from the
documentation to our Prometheus service configuration.

The AWS EKS Quick Start templates have a Prometheus installation that has no alerts
defined at the start, so we will have to define one or more ourselves. If you installed
Prometheus on your local workstation, you would edit configuration files in the /etc
directory to do this, and then trigger a configuration file reload. However, in a Kubernetes
setup, there has to be another mechanism in place to allow the editing of these values.

The AWS EKS Quick Start Prometheus setup uses a Kubernetes ConfigMap in the
prometheus namespace called prometheus-service that has multiple embedded
YAML configuration files defined within it, and a container running in each Prometheus
server pod (refer to https://github.com/jimmidyson/configmap-reload)
that monitors the ConfigMap files for changes and then sends an HTTP POST to the
Prometheus server running in the pod to get it to reload the changes. The ConfigMap files
are updated once per minute inside the pods. The editing cycle for making config changes
to alerts looks like this:

1. Edit the prometheus-service ConfigMap using kubectl.

2. Wait 1 minute for the ConfigMap changes to propagate to the pods.

3. View the alerts via the port-forwarded Prometheus console at
http://localhost:9090/alerts.

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://github.com/jimmidyson/configmap-reload

Gathering metrics and sending alerts with Prometheus 277

In order to add the monitoring, we run the following command to edit the ConfigMap
and add the rules under the alerts: stanza, as follows:

kubectl -n prometheus edit configmap/prometheus-server

Look at the top of the file and make the alerts: stanza match the following text:

apiVersion: v1

data:

 alerting_rules.yml: |

 {}

 alerts: |

 groups:

 - name: Kubernetes

 rules:

 - alert: InstanceDown

 expr: up == 0

 for: 5m

 labels:

 severity: page

 annotations:

 summary: "Instance {{ $labels.instance }} down"

 description: "{{ $labels.instance }} of job {{
$labels.job }} has been down for more than 5 minutes."

 prometheus.yml: |

After you have edited the file, save it and it will propagate to the pods within 1 minute.

Troubleshooting note – YAML format files are exacting
The capitalization and spacing in the Alerts section must be exact, or you may
get parsing errors (visible in the logs from the prometheus-server pods)
– or worse, a silent failure to add the alert you intended.

278 Monitoring Docker Using Prometheus, Grafana, and Jaeger

You should then be able to see the alert definition in the Prometheus console in the Alerts
section; click on InstanceDown and it should show the alert definition:

Figure 10.3 – Prometheus alerts showing InstanceDown

Now that you have an alert defined, you can configure Prometheus to send notifications
based on the alert.

Sending notifications with the Prometheus
Alertmanager
One of the most powerful aspects of Prometheus is its support for sending notifications
of alerts, powered by a component called Alertmanager. This component takes the
raw alert information from Prometheus, performs additional processing on it, and
then sends notifications. You can find an in-depth overview of Prometheus alerting
at https://prometheus.io/docs/alerting/overview/.

This alerting system supports multiple channels, including email, PagerDuty, Pushover,
Slack, and more through webhooks. We are going to configure a Slack integration
to demonstrate sending an alert. In order to do this, we are going to alter the
Alertmanager configuration, which is stored in a Kubernetes ConfigMap called
prometheus-alertmanager.

https://prometheus.io/docs/alerting/overview/

Gathering metrics and sending alerts with Prometheus 279

To add the Slack integration, make sure you have a Slack account that is signed in via a
web browser, then go to https://api.slack.com/ and build a new app for Slack.
In the Features configuration screen, configure a new incoming webhook and select a
channel in Slack to receive the notifications. Then, copy the URL of the incoming hook
to the clipboard and store it in a local text file. You will need that when you configure
Alertmanager. Configure any other settings that you feel are relevant, including an icon
for the Slack integration. Then, edit the ConfigMap for the Alertmanager using the
following command:

kubectl -n prometheus edit configmap/prometheus-alertmanager

The ConfigMap will have an empty {} clause for the global: section, which we will
remove, and then we add slack_api_url and the slack_configs section, as follows
(replace the value in single quotes for the Slack API URL with your incoming webhook
URL from the Slack application, and replace the channel with the hashtag name of your
Slack channel where alerts should appear):

apiVersion: v1

data:

 alertmanager.yml: |

 global:

 slack_api_url: 'https://hooks.slack.com/services/A/B/C'

 receivers:

 - name: default-receiver

 slack_configs:

 - channel: '#docker-book-notices'

 route:

This will give you a very basic alerting setup that you can expand on in order to get
notified of downtime. You can test that the Alertmanager is hooked up by sending a test
alert via the Prometheus Alertmanager API. First, port-forward the Alertmanager service
to your local machine:

kubectl -n prometheus port-forward service/prometheus-
alertmanager 9093:80

https://api.slack.com/

280 Monitoring Docker Using Prometheus, Grafana, and Jaeger

In a different console window, issue the following command:

curl -d '[{"status": "firing", "labels":{"alertname":"Hello
World"}}]' -H "Content-Type: application/json" http://
localhost:9093/api/v1/alerts

You should get a {"status":"success"} response from that curl command, and
then you should see the Hello World alert in your Slack:

Figure 10.4 – Prometheus alert in Slack

Exercise – deploy a broken ShipIt Clicker, expect an AlertManager notification
Edit the chapter10/shipitclicker/templates/deployment.
yamlfile to redirect Prometheus probes to port 3001 and deploy this broken
ShipIt Clicker application using Helm to see the alerting in action. Call the
application shipit-broken. Check the Prometheus console to verify that
the alert enters the pending state. This should happen in less than 1 minute.
Within 10 minutes, you should see an alert in Slack of the [FIRING:1]
(InstanceDown shipit-broken shipitclicker
10.0.87.39:3000 kubernetes-pods default shipit-
broken-shipitclicker-6658f47599-pkxwk 6658f47599
page) form. Once you get the alert, uninstall theshipit-broken Helm
Chart, revert the change to deployment.yaml, and you should stop
getting notifications about that specific issue.

Once you get the alert, uninstall the shipit-broken Helm Chart and you should stop
getting notifications about that specific issue.

Visualizing operational data with Grafana 281

Exploring Prometheus queries and external
monitoring in-depth
The topics about how to build Prometheus queries and how to extend Prometheus to
monitor external systems are quite deep and beyond the scope of this chapter. Please
consult the Prometheus documentation and the links in the Further reading section at the
end of this chapter to learn more about creating Prometheus queries and configuring it
to use additional metrics data sources.

Next, let's examine how we can use Grafana to visualize the data that Prometheus gathers.

Visualizing operational data with Grafana
Prometheus is often deployed with Grafana (https://grafana.com/) to provide
sophisticated dashboards and a more sophisticated UI for monitoring. The installation
of Kubernetes from the AWS EKS Quick Start includes Grafana, configured with a few
dashboards. Let's explore the Grafana installation and see how it integrates with Prometheus.

Gaining access to Grafana
The Grafana installation is exposed by default over a Kubernetes LoadBalancer, which
in EKS creates an AWS EC2-Classic Elastic Load Balancer (ELB). Find out what address
it is listening on, as follows. Look in the EXTERNAL-IP field for the actual DNS name
of the ELB:

$ kubectl -n grafana get service

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE

grafana LoadBalancer 172.20.5.46 aaa-bbb.us-east-2.elb.
amazonaws.com 80:30669/TCP 39d

Put that DNS address into your web browser, prefixed with http://, and you will get the
Grafana login screen. You will need to retrieve the administrative username and password
from the Kubernetes secret to login:

$ kubectl -n grafana get secrets/grafana --template='{{index
.data "admin-user"}}' | base64 -D

[username redacted]

$ kubectl -n grafana get secrets/grafana --template='{{index
.data "admin-password"}}' | base64 -D
[password redacted]

https://grafana.com/

282 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Use these values to log in to the Grafana console. You can then explore the UI, including
the dashboards and the Prometheus query explorer. Some of the dashboards might not
have values fully populated, such as the Kubernetes All Nodes dashboard, but don't
fret too much about it, as it is possible to add community-provided dashboards that are
extremely detailed and fully populated with cluster-wide statistics. Look at the Kubernetes
Pods dashboard and select different pods, including the Redis pods and the ShipIt Clicker
pod, to get a feel for how to use the dashboards. Change the time window with the widget
in the upper-right corner to show data for a day or a week, and then click and drag over
an interesting area to zoom in.

Next, let's add a couple of community-provided dashboards to get a flavor for the full
power that this system can deliver.

Adding a community-provided dashboard
Grafana provides a repository of both official and community-provided dashboards at
https://grafana.com/grafana/dashboards.

These include a bewildering variety of dashboards. You should explore this in detail with
your own needs in mind.

When you add a dashboard, one of the options presented is Import. Choose this and it
will ask you for a dashboard ID or URL from the community site.

Here are four general-purpose dashboards that are worth adding to your installation:

• Cluster Monitoring for Kubernetes: This compact dashboard from Pivotal
Observatory lets you see what pods are consuming the most CPU, memory,
and network resources at a glance – https://grafana.com/grafana/
dashboards/10000.

• Kubernetes Cluster (Prometheus): A concise dashboard showing critical cluster-
wide metrics – https://grafana.com/grafana/dashboards/6417.

• 1 Node Exporter for Prometheus Dashboard EN v20191102: A cluster-wide
complex dashboard that exposes many CPU, disk, and network metrics –
https://grafana.com/grafana/dashboards/11074.

• Node Exporter Full: This exposes every possible metric from the Prometheus
Node Exporter, a very popular dashboard on the site with over two million
downloads – https://grafana.com/grafana/dashboards/1860.

https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards/10000
https://grafana.com/grafana/dashboards/10000
https://grafana.com/grafana/dashboards/6417
https://grafana.com/grafana/dashboards/11074
https://grafana.com/grafana/dashboards/1860

Visualizing operational data with Grafana 283

Adding a new dashboard with a custom query
The steps to add a new dashboard with a custom query are as follows:

1. In the left menu, click on the + sign to add a new dashboard. Then, in the New
Panel area, click Add Query. Add the following query to the field next to Metrics:

shipitclicker_deployments_total

It should look something like this:

Figure 10.5 – Grafana custom dashboard item definition

2. Then, in the Panel tab on the right, click on the Panel Title field. Name this panel
ShipIt Clicker Deployments, and then click on the left-pointing arrow in
the top-left corner of the screen to return to defining the widget.

3. In the top menu, click on the graph with the plus sign to add another widget:

Figure 10.6 – The Grafana add widget

284 Monitoring Docker Using Prometheus, Grafana, and Jaeger

4. Add another similar panel with the following query with the title ShipIt
Clicker Deployments Rate:

rate(shipitclicker_deployments_total[2m])

5. Then, click on the gear icon in the top menu and change the name of the dashboard
to ShipIt Clicker Dashboard, and then save the dashboard.

6. Next, take a break and play the ShipIt Clicker game for a few minutes. This will
generate traffic that you will be able to see on the graph. A few minutes after you
stop playing, your dashboard might look like this:

Figure 10.7 – The ShipIt Clicker custom dashboard in Grafana

Understanding rates and counters
Note that the rate dashboard drops back down to 0 after you stopped playing,
but the one that counts only the total increases and stays as it is. Choosing a
rate query for a variable ending in total in Prometheus is usually what you
want to measure throughput.

Now that we have seen how to graph application metrics and build dashboards with
Grafana, let's explore another topic: application performance monitoring and distributed
tracing with Jaeger.

Application performance monitoring with Jaeger 285

Application performance monitoring with
Jaeger
We are now going to take a brief tour of Jaeger to see how it can be used for performance
monitoring in a microservices architecture. One of the key problems faced when
implementing performance and error tracking in a microservice architecture versus a
monolithic application is that a microservices architecture is inherently a distributed
environment.

Early attempts at solving this problem, such as OpenCensus (https://opencensus.
io/tracing/), suffered from disparate terminology and approaches and incompatible
systems. To solve this problem, the performance monitoring community created the
OpenTracing API.

Understanding the OpenTracing API
The OpenTracing project (https://opentracing.io/) is designed to allow
engineers to add performance-monitoring features to their projects using a common
API specification that is non-vendor specific.

Some of the key features of OpenTracing that realize this goal are as follows:

• The API specification itself (https://github.com/opentracing/
specification)

• Frameworks and libraries that implement the API specification

• Comprehensive documentation (https://opentracing.io/docs/)

Let's now look at the two most important core concepts of the specification: spans
and tracing.

Spans
A span represents a unit of work and is the basic building block of this type of tracing
system. Each span contains an operation name, the start and finish time, a SpanContext,
and finally, tags and logs key-value pairs.

https://opencensus.io/tracing/
https://opencensus.io/tracing/
https://opentracing.io/
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://opentracing.io/docs/

286 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Your tag key-value pairs apply to the whole span and include information such as
db.type and http.url. A list of conventional tags can be found on GitHub at
https://github.com/opentracing/specification/blob/master/
semantic_conventions.md.

The logs key-value pair is used to define logging messages that refer to a specific incident
or event, rather than the span as a whole. For example, you could use this collection of
key-value pairs to record debugging information.

The final concept in a span is the SpanContext, which is used to carry data across process
boundaries. Its two key components are the state that denotes a specific span within a
trace and a concept known as baggage items. These are essentially key-value pairs that
cross a process boundary.

You can read more about spans at the OpenTracing website's documentation at
https://opentracing.io/docs/overview/spans/.

Traces and tracers
The next concept we will look at is traces and tracers.

A trace is a way of grouping one or more spans under a single identifier known as the
trace identifier. This can be used to understand a workflow through a distributed system,
such as a microservices architecture.

The tracer is the actual implementation of the OpenTracing API specification that collects
spans and publishes them. Examples of tracers that implement OpenTracing include
Datadog (which we will explore in Chapter 14, Advanced Docker Security – Secrets, Secret
Commands, Tagging, and Labels), Instana, Lightstep, and Jaeger.

If you want to read more around tracers and traces, you can find the official
documentation at https://opentracing.io/docs/overview/tracers/.

Let's explore a tool that implements the OpenTracing API – Jaeger.

Introduction to Jaeger
Jaeger is an open source application-tracing framework that allows developers and system
operators to gather information from a running application and determine both how the
application spends its time and how it interacts with other distributed system components,
using the OpenTracing API. The Jaeger website is https://www.jaegertracing.io/.

https://github.com/opentracing/specification/blob/master/semantic_conventions.md
https://github.com/opentracing/specification/blob/master/semantic_conventions.md
https://opentracing.io/docs/overview/spans/
https://opentracing.io/docs/overview/tracers/
https://www.jaegertracing.io/

Application performance monitoring with Jaeger 287

Jaeger's history
Jaeger, named after the German word for hunter, originally came from the transportation
company Uber. Engineers there, led by Yuri Shkuro, built this distributed tracing
framework. Inspired by the Google paper on their tracing framework, Dapper
(https://research.google/pubs/pub36356/), and the Zipkin tracing
framework (https://zipkin.io/), they created Jaeger as a cloud-native tracing
framework. Uber has been using Jaeger since 2015 and contributed it to the CNCF in
2017; the CNCF promoted it to a top-level project in 2019. You can read more about
the history of Jaeger on the Uber engineering blog at https://eng.uber.com/
distributed-tracing/.

Jaeger's components
Some of the important components that make up the Jaeger ecosystem include
the following:

• The client libraries available as packages or directly from GitHub

• Jaeger agents used to listen for spans

• The collector, responsible for aggregating data sent from agents

• Jaeger query, for analyzing data via a UI

• The Ingester, which allows us to gather data from Kafka topics and then write the
data to services such as AWS Elasticsearch

Let's test Jaeger and see how it works in practice.

Exploring the Jaeger UI
To explore Jaeger, we can run the all-in-one latest image using Docker:

$ docker run --rm -i -p6831:6831/udp -p16686:16686
jaegertracing/all-in-one:latest

https://research.google/pubs/pub36356/
https://zipkin.io/
https://eng.uber.com/distributed-tracing/
https://eng.uber.com/distributed-tracing/

288 Monitoring Docker Using Prometheus, Grafana, and Jaeger

Then, we can open a web browser and visit http://localhost:16686/ to see the UI.
The Jaeger search interface itself is instrumented to send traces to the collector, so once
you see the UI, reload the page once to make some more traces, and populate the Service
drop-down box. Then, press the Find Traces button. It should look something like this:

Figure 10.8 – The Jaeger UI search interface

When you are done exploring, stop the running Docker container by pressing Ctrl + C.
Next, lets explore how you might instrument an application by seeing how ShipIt Clicker
is integrated with OpenTracing and Jaeger.

Exploring the Jaeger client with ShipIt Clicker
The Jaeger client is available in a number of languages. Our example will use Node.js, but
there is also support for Go, Java, and Python, among others. You can check the official
client documentation at the following URL to learn more:

https://www.jaegertracing.io/docs/1.18/client-libraries/

https://www.jaegertracing.io/docs/1.18/client-libraries/

Application performance monitoring with Jaeger 289

ShipIt Clicker v7 already has a Jaeger client, a piece of OpenTracing JavaScript Express
middleware, and the OpenTracing API client installed:

• The Jaeger client: https://github.com/jaegertracing/jaeger-
client-node

• Express middleware: https://github.com/opentracing-contrib/
javascript-express

• The OpenTracing client: https://github.com/opentracing/
opentracing-javascript

If you have an Express application that you want to use with Jaeger, you would issue the
following command to install the same combination of libraries:

$ npm install --save jaeger-client express-opentracing
opentracing

In the GitHub repository (https://github.com/PacktPublishing/Docker-
for-Developers), the Jaeger client configuration in chapter10/src/server/
common/jaeger.js has an example of how to configure the Jaeger client using a
mixture of environment variables and default values. Both the docker-compose
configuration files and the Helm templates for ShipIt Clicker have been updated to use
some environment variables to configure Jaeger, to give jaeger.js the right context for
those environments; this file imports the jaeger-client module, configures it, and
exports a tracer object. We use the tracer object from the express-opentracing
middleware in the chaper10/src/server/common/server.js file:

import tracer from './jaeger';

import middleware from 'express-opentracing';

…

export default class ExpressServer {

 constructor() {

…

 app.use(middleware({ tracer: tracer }));

 }

Using middleware or other software that can hook into common libraries processes provides
us with lift and lets us avoid writing boilerplate code. The express-opentracing
middleware object decorates the Express res response object with a span attribute, which
lets us use an OpenTracing span from within our controllers and request handlers.

https://github.com/jaegertracing/jaeger-client-node
https://github.com/jaegertracing/jaeger-client-node
https://github.com/opentracing-contrib/javascript-express
https://github.com/opentracing-contrib/javascript-express
 https://github.com/opentracing/opentracing-javascript
 https://github.com/opentracing/opentracing-javascript
https://github.com/PacktPublishing/Docker-for-Developers
https://github.com/PacktPublishing/Docker-for-Developers

290 Monitoring Docker Using Prometheus, Grafana, and Jaeger

We can use a more explicit style also, where we create the spans and log entries
programmatically:

1. To see this in action, inspect the ShipItClicker's API controller at chapter10/
src/server/api/controllers/games/controller.js:

 async incrementGameItem(req, res) {

 const key = `${req.body.id}/${req.body.element}`;

 const value = req.body.value;

 const span = tracer.startSpan('redis', {

 childOf: req.span,

2. The next stanza shows how to create a tag in the span that holds more detailed
tracing information:

 tags: {

 [opentracing.Tags.SPAN_KIND]: opentracing.Tags.
SPAN_KIND_RPC_CLIENT,

 'span.kind': 'client',

 'db.type': 'redis',

 'db.statement': `INCRBY ${key} ${value}`,

 },

 });

3. The preceding code initializes a child span for Redis, using the main span through
req.span. Then, we immediately call Redis, log the results, and finish the span:

 try {

 var redis = await RedisService.incrby(key, value);

 span.log({ result: redis }).finish();

4. Next, we log a message in the span associated with the parent span:

 const msg = {

 msg: 'Game item Redis INCRBY complete',

 key: key,

 value: redis,

 };

 req.span.log(msg);

Application performance monitoring with Jaeger 291

5. Now, we log the message using the regular logging mechanism and update the
Prometheus custom metric if this request increments the deploys element:

 l.info(msg);

 if (req.body.element === 'deploys') {

 const incr = parseInt(req.body.value, 10);

 PrometheusService.deploymentCounter.inc(incr);

 }

6. If we get this far, the Redis request has been successful, and we can return a JSON
response to the client:

 return res.json({

 id: req.params.id,

 element: req.params.element,

 value: redis,

 });

7. If the request fails – for example, if Redis is unavailable – we must carry out error
processing. First, we construct a message that has the detailed error in it:

 } catch (err) {

 const msg = {

 key: req.body.id,

 element: req.body.element,

 message: err.message,

 stack: err.stack,

 };

8. Then, we log the error to both the OpenTracing span and our regular error log, and
return a 404 Not Found HTTP response to the client:

 span.log(msg).finish();
 l.warn(msg);

 return res.status(404).json({

 status: 404,

 msg: 'Not Found',

 });

 }

 }

292 Monitoring Docker Using Prometheus, Grafana, and Jaeger

The preceding code shows how you can use the tracer object to initiate a child span
of the main span in req.span, and has logging elements that annotate both spans
with the results of the Redis operation.

In order to make it easy to demonstrate the Jaeger integration, this chapter has a Docker
Compose file, chapter10/docker-compose.yml, that integrates the ShipIt Clicker
container, Redis, and Jaeger. You can run all of them by issuing the following commands
from the chapter10 directory:

docker-compose build && docker-compose up -d

You can then visit http://localhost:3010/ to play the ShipIt Clicker game for a
minute to generate some traces, then visit http://localhost:16686/ to see the
Jaeger query interface in action. Query the shipitclicker-v7 service, click on one of
the traces in the graph, and then expand the two spans and the logs revealed within and
you should see something like this:

Figure 10.9 – Jaeger trace showing the ShipIt Clicker HTTP transaction and Redis spans

Application performance monitoring with Jaeger 293

In contrast to the docker-compose.yml file presented in Chapter 6, Deploying
Applications with Docker Compose, the one in this chapter is deliberately set up for
development, not as a production-hardened configuration. It exposes both the Redis and
Jaeger ports for convenience, so it is not suitable for production use without additional
hardening. However, this makes it very convenient for debugging and developing
the application. You can even run the ShipIt Clicker application code on your local
workstation by running npm run dev and have it connect to the Docker-hosted Redis
and Jaeger services – which is probably the fastest way to try out changes.

You could also install Jaeger in Kubernetes, both to your local learning environment and
to the AWS EKS Kubernetes cluster. To do that, we will use the Jaeger Operator.

Installing the Jaeger Operator
We've seen how we can use Jaeger locally through both a raw docker command and
through docker-compose. Next, we will learn how to deploy Jaeger to Kubernetes. The
Helm Charts for Jaeger (https://github.com/jaegertracing/helm-charts)
are not fully supported, and they may have issues with Helm 3. The Jaeger team is actively
investing in Jaeger Operator as the primary method to install and maintain this system.
A Kubernetes Operator is a special type of resource that orchestrates the installation
and maintenance of a whole set of related objects and configurations, often comprising
a complex distributed system.

To deploy to a Kubernetes environment, we can use the following GitHub repository as
a guide:

https://github.com/jaegertracing/jaeger-operator

Use the set of kubectl commands listed there to install the operator namespace and
the related Kubernetes objects for the Jaeger operator. Run not only the main kubectl
commands but also the set of kubectl commands to give the operator cluster-wide
permissions through a role binding. To get Jaeger to work smoothly with all the namespaces,
edit the deployment and remove the value from the WATCH_NAMESPACE variable:

kubectl -n observability edit deployment/jaeger-operator

The part of the file with WATCH_NAMESPACE should then look as follows:

 spec:

 containers:

 - args:

 - start

https://github.com/jaegertracing/helm-charts
https://github.com/jaegertracing/jaeger-operator

294 Monitoring Docker Using Prometheus, Grafana, and Jaeger

 env:

 - name: WATCH_NAMESPACE

 - name: POD_NAME

Now that you have done this, you can install a Jaeger Operator instance that will itself
spin up the services, pods, and DaemonSets for Jaeger. An example Operator definition
suitable for development or lightweight production use that deploys Jaeger using a
DaemonSet on all nodes using only memory for trace storage is in chapter10/
jaeger.yaml. Install it with kubectl:

kubectl apply -n observability -f chapter10/jaeger.yaml

This will install all the required components, including a jaeger-query Ingress
Controller that does not have any annotations, so the EKS cluster will not connect it to
anything. See the chapter10/jaeger-ingress.yaml file for a version that has
annotations to connect it to the internet with the ALB Ingress Controller. You can use the
same basic procedures you used with other Kubernetes services and Route 53 to expose
the Jaeger console from Kubernetes; or, you can leave it alone and connect to the Jaeger
console only when you need to via port forwarding.

If you are installing this on your local Kubernetes learning environment, you could
alternatively add NGINX Ingress Controller annotations to the Ingress Controller.

To further extend Jaeger, you might consider adding one of the storage backends, such
as Cassandra or Elasticsearch, so that traces will persist beyond the lifetime of the Jaeger
pod. We're going to leave it there with Jaeger, but feel free to explore it in more detail.

Next, we will review what we have learned in this chapter.

Summary
In this chapter, you have learned all about observability – how to perform logging and
monitoring for Docker applications using both Kubernetes cloud-native approaches and
using AWS services.

You learned about decoupling applications from common services (such as Redis)
to increase production-readiness. In order to aid troubleshooting and the analysis of
application and system problems, you learned how to extend logging beyond the running
containers in a Kubernetes cluster into AWS CloudWatch and S3, as well as how to query
those log storage systems using both CloudWatch Insights and AWS Athena. You saw
how you might add more sophisticated Kubernetes liveness and readiness probes to an
application, and how to make error handling more robust.

Further reading 295

Then, you learned how to collect detailed metrics from both the application and the
supporting systems using Prometheus, how to query those metrics, and how to set up
alerts with the Prometheus Alertmanager. Prometheus and Grafana go hand in hand; you
discovered how to configure Grafana dashboards provided by the community and how
to add a custom dashboard that shows application-specific metrics. Finally, you learned
how to use Jaeger and the OpenTracing API to instrument an application with traces
that give deep insight into the performance of an application by using both open source
middleware and explicitly annotating the application.

In the next chapter, we will explore how we can scale out the application using autoscaling,
protect it from overloading using Envoy and the circuit breaker pattern, and perform load
testing using k6.

Further reading
You can explore the following resources to expand your knowledge of observability,
Kubernetes logging, Prometheus monitoring, Grafana, Jaeger, and managing
Kubernetes clusters:

• Introduction to observability: https://docs.honeycomb.io/learning-
about-observability/intro-to-observability/.

• Manage your Kubernetes clusters in style with k9s – a quick and easy terminal
interface similar to Midnight Commander that is an alternative to using kubectl
to query and control a Kubernetes cluster: https://k9scli.io/.

• Kail – Kubernetes' log tail utility: https://github.com/boz/kail.
• Getting started with Athena: https://docs.aws.amazon.com/athena/

latest/ug/getting-started.html.
• Query data from S3 files using AWS Athena: https://towardsdatascience.

com/query-data-from-s3-files-using-aws-athena-686a5b28e943.
• Getting started with Kubernetes – Observability: Are Your Applications Healthy?

Liveness and Readiness Probes: https://www.alibabacloud.com/blog/
getting-started-with-kubernetes-%7C-observability-are-
your-applications-healthy_596077.

• Kubernetes Liveness and Readiness Probes: How to Avoid Shooting Yourself in the
Foot: https://blog.colinbreck.com/kubernetes-liveness-and-
readiness-probes-how-to-avoid-shooting-yourself-in-the-foot/

• Awesome Prometheus alerts – the mother lode of rules for not only Kubernetes
but also other systems that Prometheus can monitor, available under a Creative
Commons Attribution license: https://awesome-prometheus-alerts.
grep.to/rules.

https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
https://docs.honeycomb.io/learning-about-observability/intro-to-observability/
https://k9scli.io/
https://github.com/boz/kail
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://towardsdatascience.com/query-data-from-s3-files-using-aws-athena-686a5b28e943
https://towardsdatascience.com/query-data-from-s3-files-using-aws-athena-686a5b28e943
https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-observability-are-your-applications-healthy_596077
https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-observability-are-your-applications-healthy_596077
https://www.alibabacloud.com/blog/getting-started-with-kubernetes-%7C-observability-are-your-applications-healthy_596077
https://blog.colinbreck.com/kubernetes-liveness-and-readiness-probes-how-to-avoid-shooting-yourself-in-the-foot/
https://blog.colinbreck.com/kubernetes-liveness-and-readiness-probes-how-to-avoid-shooting-yourself-in-the-foot/
https://awesome-prometheus-alerts.grep.to/rules
https://awesome-prometheus-alerts.grep.to/rules

296 Monitoring Docker Using Prometheus, Grafana, and Jaeger

• Configuring Prometheus Operator Helm Chart with AWS EKS has good examples
of more detailed Alertmanager configurations: https://medium.com/zolo-
engineering/configuring-prometheus-operator-helm-chart-
with-aws-eks-c12fac3b671a.

• Monitoring Distributed Systems – from the Google SRE book – pay special
attention to the four Golden Signals: https://landing.google.com/sre/
sre-book/chapters/monitoring-distributed-systems/.

• How to monitor Golden Signals in Kubernetes: https://sysdig.com/blog/
golden-signals-kubernetes/.

• PromQL tutorial for beginners and humans: https://medium.com/@
valyala/promql-tutorial-for-beginners-9ab455142085.

• Understanding delays on Prometheus alerting: https://pracucci.com/
prometheus-understanding-the-delays-on-alerting.html.

• Kubernetes in Production – the Ultimate Guide to Monitoring Resource Metrics
with Prometheus: https://www.replex.io/blog/kubernetes-in-
production-the-ultimate-guide-to-monitoring-resource-
metrics.

• Kubernetes Monitoring with Prometheus – the ultimate guide (part 1) – yes, it's
funny that multiple articles claim to be the ultimate guide, but this one has really
detailed information and a part 2 that also covers Grafana: https://sysdig.
com/blog/kubernetes-monitoring-prometheus/.

• Kubernetes: Monitoring with Prometheus — exporters, Service Discovery, and its
roles. Has a section on setting up a Redis exporter that you could use to explore
ShipIt Clicker's operation better: https://itnext.io/kubernetes-
monitoring-with-prometheus-exporters-a-service-discovery-
and-its-roles-ce63752e5a1.

• Taking Advantage of Deadman's Switch in Prometheus: https://jpweber.
io/blog/taking-advantage-of-deadmans-switch-in-prometheus/
(combine with https://deadmanssnitch.com/ for a complete Deadman's
Switch alerting system).

• Using Prometheus Metrics in Amazon CloudWatch: https://aws.amazon.
com/blogs/containers/using-prometheus-metrics-in-amazon-
cloudwatch/.

• An alternative solution to the periodic export of CloudWatch logs to S3 via a
scheduled Lambda function: https://medium.com/searce/exporting-
cloudwatch-logs-to-s3-through-lambda-before-retention-
period-f425df06d25f.

https://medium.com/zolo-engineering/configuring-prometheus-operator-helm-chart-with-aws-eks-c12fac3b671a
https://medium.com/zolo-engineering/configuring-prometheus-operator-helm-chart-with-aws-eks-c12fac3b671a
https://medium.com/zolo-engineering/configuring-prometheus-operator-helm-chart-with-aws-eks-c12fac3b671a
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://sysdig.com/blog/golden-signals-kubernetes/
https://sysdig.com/blog/golden-signals-kubernetes/
mailto:https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085
mailto:https://medium.com/@valyala/promql-tutorial-for-beginners-9ab455142085
https://pracucci.com/prometheus-understanding-the-delays-on-alerting.html
https://pracucci.com/prometheus-understanding-the-delays-on-alerting.html
https://www.replex.io/blog/kubernetes-in-production-the-ultimate-guide-to-monitoring-resource-metrics
https://www.replex.io/blog/kubernetes-in-production-the-ultimate-guide-to-monitoring-resource-metrics
https://www.replex.io/blog/kubernetes-in-production-the-ultimate-guide-to-monitoring-resource-metrics
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://sysdig.com/blog/kubernetes-monitoring-prometheus/
https://itnext.io/kubernetes-monitoring-with-prometheus-exporters-a-service-discovery-and-its-roles-ce63752e5a1
https://itnext.io/kubernetes-monitoring-with-prometheus-exporters-a-service-discovery-and-its-roles-ce63752e5a1
https://itnext.io/kubernetes-monitoring-with-prometheus-exporters-a-service-discovery-and-its-roles-ce63752e5a1
https://jpweber.io/blog/taking-advantage-of-deadmans-switch-in-prometheus/
https://jpweber.io/blog/taking-advantage-of-deadmans-switch-in-prometheus/
https://deadmanssnitch.com/
https://aws.amazon.com/blogs/containers/using-prometheus-metrics-in-amazon-cloudwatch/
https://aws.amazon.com/blogs/containers/using-prometheus-metrics-in-amazon-cloudwatch/
https://aws.amazon.com/blogs/containers/using-prometheus-metrics-in-amazon-cloudwatch/
https://medium.com/searce/exporting-cloudwatch-logs-to-s3-through-lambda-before-retention-period-f425df06d25f
https://medium.com/searce/exporting-cloudwatch-logs-to-s3-through-lambda-before-retention-period-f425df06d25f
https://medium.com/searce/exporting-cloudwatch-logs-to-s3-through-lambda-before-retention-period-f425df06d25f

11
Scaling and Load

Testing Docker
Applications

Technology giants such as Google, Facebook, Lyft, and Amazon use container
orchestration systems in part so that they can run their massive computing resources at
very high levels of utilization. To do that, you must have a way to scale your applications
across a fleet of servers, which might be dynamically allocated from a cloud provider.
Even if you have a cluster that can scale out with high traffic and scale back in when
demand subsides, you may still need additional tools to make sure it operates correctly.
You also need to ensure that the service degrades gracefully if capacity limits are exceeded.

You can use a service mesh such as Envoy, Istio, or Linkerd to handle those concerns.
Envoy is one of the simpler options in the service mesh arena; it provides both load
balancing and advanced traffic routing and filtering capabilities. All these capabilities
provide the glue needed to serve traffic to demanding users. Some of the more complex
service meshes use Envoy as a building block since it is so flexible.

To prove that the scaling strategy works, you need to perform load testing. To do this,
we will use k6.io, a cloud-native load testing and API testing tool.

298 Scaling and Load Testing Docker Applications

In this chapter, you are going to learn how to use the Horizontal Pod Autoscaler, the
Vertical Pod Autoscaler, and the Cluster Autoscaler to configure your Kubernetes cluster
so that it scales out. You will learn about Envoy and why you might use it to provide
a proxy layer and service mesh on top of Kubernetes. This includes how to create an
Envoy service mesh on top of a Kubernetes cluster, as well as how to configure it with a
circuit breaker. Then, you will learn how to verify that the service mesh and autoscaler
mechanisms are working as expected. Finally, you will learn how to run a load test with
k6.io and observe how the service fails when subjected to a stress test.

We will cover the following topics in this chapter:

• Scaling your Kubernetes cluster

• What is Envoy, and why might I need it?

• Testing scalability and performance with k6

Technical requirements
You will need to have both a local Kubernetes learning environment and a working
Kubernetes cluster in the cloud, as set up in Chapter 8, Deploying Docker Apps to
Kubernetes. You will also need to have a current version of the AWS CLI, as well as
kubectl and helm 3.x installed on your local workstation, as described in the previous
chapter. The Helm commands in this chapter use helm 3.x syntax.

For your local Kubernetes learning environment, you should have a working NGINX
Ingress Controller configured, which you can install by running the chapter11/bin/
deploy-nginx-ingress.sh script. You should also have a local Jaeger operator,
which you can install by running the chapter11/bin/deploy-jaeger.sh script.

For the cloud-hosted cluster, you can reuse the AWS Elastic Kubernetes Service (EKS)
cluster or set up a new one for this chapter using the same method or using eksctl. The
EKS cluster must have a working ALB Ingress Controller set up. You should also have an
Elastic Container Registry (ECR) set up to hold container images. We recommend that
you also have working installations of Prometheus, Grafana, and Jaeger in your cloud-
hosted Kubernetes cluster, as described in Chapter 10, Monitoring Docker in Production
with Prometheus, Grafana, and Jaeger. You can run the deploy-jaeger.sh script
against your cloud cluster as well.

Check out the following video to see the Code in Action:

https://bit.ly/2CwdZeo

http://deploy-nginx-ingress.sh
https://bit.ly/2CwdZeo

Technical requirements 299

Using the updated ShipIt Clicker v8
We will use the version of ShipIt Clicker provided in the chapter11 directory of the
following GitHub repository: https://github.com/PacktPublishing/Docker-
for-Developers/.

This version of the application you use, similar to what we did in the previous chapter,
depends on an externally installed version of Redis from the bitnami/redis Helm
Charts when used in Kubernetes.

Understanding the differences from the previous version of
ShipIt Clicker
In each chapter, we have made enhancements to ShipIt Clicker to illustrate changes related
to the chapter content, as well as to polish the application the same way we would do as
part of a production release process.

This version of ShipIt Clicker is similar to the one provided in the previous chapter, but it
has one more API endpoint called /faults/spin that's used as a part of a fault injection
testing strategy to induce CPU load on the nodes running the application, in order to
test cluster autoscaling strategies. The spin endpoint will get slower the more frequently
it is called but will recover and get faster if calls subside. This simulates the way that an
application with poor performance behaves, without having to devise a complicated real
set of poorly performing code and database servers. It provides an artificial CPU load
that is convenient for testing CPU-based autoscaling. See the code in chapter11/
src/server/common/spin.js and chapter11/src/server/controllers/
faults/controller.js to see how this works.

This version of ShipIt Clicker also has an enhancement related to Prometheus metrics:
it exposes these metrics on a separate port by configuring Express to listen on a separate
port so that it serves up the /metrics endpoint. This helps us avoid exposing metrics
that contain information about the application that an ordinary user does not need and
makes it possible for multiple containers in the same pod as ShipIt Clicker to also expose
Prometheus metrics. See the code in the chapter11/src/server/index.js file,
which adds another HTTP listener and a router for metrics. The Helm templates in
chapter11/shipitclicker/templates/deployment.yaml also have changes
to support this new endpoint.

Next, we'll build and install ShipIt Clicker into our local Kubernetes learning
environment.

https://github.com/PacktPublishing/Docker-for-Developers/
https://github.com/PacktPublishing/Docker-for-Developers/

300 Scaling and Load Testing Docker Applications

Installing the latest version of ShipIt Clicker locally
In this section, we will build the ShipIt Clicker Docker container, tag it, and push it to
Docker Hub, as we did in previous chapters. Issue the following commands, replacing
dockerfordevelopers with your Docker Hub username:

$ docker build . -t dockerfordevelopers/shipitclicker:1.11.7

$ docker push dockerfordevelopers/shipitclicker:1.11.7

$ kubectl config use-context docker-desktop

$ helm install --set image.repository=dockerfordevelopers/
shipitclicker:1.11.7 shipit-v8 shipitclicker

Inspect the running pods and services using kubectl get all to verify the pod is
running, note its name, and then inspect the logs with kubectl logs to see the startup
logs. There should be no errors in the log.

Next, we'll install this version in EKS.

Installing the latest version of ShipIt Clicker in EKS through ECR
Now that you have built the Docker containers and installed this locally, we'll install
it in AWS EKS via ECR. Edit chapter11/values.yaml to give this a hostname in
the Route 53 DNS zone such as shipit-v8.eks.example.com (replace the ECR
reference with the one corresponding to your AWS account and region and replace
example.com with your domain name):

$ docker tag dockerfordevelopers/shipitclicker:1.11.7
143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:1.11.7

$ aws ecr get-login-password --region us-east-2 | docker login
--username AWS --password-stdin 143970405955.dkr.ecr.us-east-2.
amazonaws.com

$ docker push 143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:1.11.7

$ kubectl config use-context arn:aws:eks:us-east-
2:143970405955:cluster/EKS-8PWG76O8

$ helm install shipit-v8 -f values.yaml --set image.
repository=143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:1.11.7 ./shipitclicker

http://shipit-v8.eks.example.com

Scaling your Kubernetes cluster 301

Inspect the Kubernetes logs to make sure that the application has deployed cleanly to
the cluster:

kubectl logs services/shipit-v8-shipitclicker shipitclicker

If all is well with the deployment, get the AWS ALB Ingress Controller's address, as
described in Chapter 9, Cloud-Native Continuous Deployment Using Spinnaker, and
create DNS entries in the Route 53 console for the deployed application with the ALB
address. You should then be able to reach your application at a URL similar to https://
shipit-v8.eks.example.com/ (replace example.com with your domain name).

Scaling your Kubernetes cluster
To support more traffic and more applications, your Kubernetes cluster may need to grow
beyond its initial size. You can use both manual methods and dynamic programmed
methods to do this, especially if you are working with a cloud-based Kubernetes cluster.
To scale out an application, you need to control two dimensions: the number of pods
running a particular application and the number of nodes in a cluster. You can't scale the
number of pods infinitely on a cluster with the same number of nodes; practical limits
related to CPU, memory, and network concerns will ultimately demand that the cluster
scales out the number of nodes as well.

The method that's used to scale out a cluster will vary considerably, depending on the
cloud vendor and Kubernetes distribution. The Kubernetes documentation explains both
the general process and some specific instructions for clusters running in the Google and
Microsoft Azure clouds:

https://kubernetes.io/docs/tasks/administer-cluster/cluster-
management/

Generally speaking, you must start and configure a new server that is set up
similarly to the existing cluster nodes, and then join it to the cluster by using the
kubeadm join command:

https://kubernetes.io/docs/reference/setup-tools/kubeadm/
kubeadm-join/

Kubernetes distributions and cloud vendors make this easier by relying on mechanisms
such as machine images and autoscaling groups. We will show you how to scale your
cluster by using Amazon EKS. In Chapter 8, Deploying Docker Apps to Kubernetes, we set
up EKS with AWS Quick Start CloudFormation templates in the Spinning up AWS EKS
with CloudFormation section. The following sections assume that you have used that
method to set up a cluster that uses autoscaling groups.

https://shipit-v8.eks.example.com/
https://shipit-v8.eks.example.com/
https://kubernetes.io/docs/tasks/administer-cluster/cluster-management/
https://kubernetes.io/docs/tasks/administer-cluster/cluster-management/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-join/

302 Scaling and Load Testing Docker Applications

Scaling the cluster manually
Given that we want to increase the number of nodes in our cluster, we will want to identify
and follow the procedures that are specific to our Kubernetes installation. For Amazon
EKS clusters, see the following documentation:

https://docs.aws.amazon.com/eks/latest/userguide/launch-
workers.html

You could just launch an entirely new group of nodes, but you can often adjust a
parameter or two in order to increase the size of your cluster. This is done when you
increase the size of a cluster, which is called scaling out, and when you decrease the size of
a cluster, which is called scaling in. Next, we will learn how to adjust a simple parameter so
that we can scale out the number of nodes in the cluster.

Scaling nodes out manually
For the sake of simplicity, let's assume you used the AWS Quick Start for EKS
CloudFormation templates to create your cluster initially. Since that uses CloudFormation
to manage the cluster, you should prefer using CloudFormation to update the cluster's
configuration. To manually scale your cluster out, go to the AWS console and update
the CloudFormation deployment, changing the default values for Number of nodes and
Maximum number of nodes from their current values to higher values, such as 4 and 8:

Figure 11.1 – Updating the AWS EKS Quick Start CloudFormation template

Continue through the CloudFormation update forms and apply the changes. Look at the
CloudFormation events for updates and wait a few minutes. You can then check that the
update to the CloudFormation template worked fine. Then, you can check the size of the
autoscaling group to make sure it has grown.

https://docs.aws.amazon.com/eks/latest/userguide/launch-workers.html
https://docs.aws.amazon.com/eks/latest/userguide/launch-workers.html

Scaling your Kubernetes cluster 303

You could also update the autoscaling group sizes through the EC2 console, thereby
setting the minimum, desired, and maximum number of nodes to 4, 4, and 8, respectively.
This will cause your deployed configuration to drift from its CloudFormation templates,
however, which is undesirable as the actual state will no longer match the model that
CloudFormation expects. See the following post for more on why that is problematic:
https://aws.amazon.com/blogs/aws/new-cloudformation-drift-
detection/.

If you used eksctl to create your cluster instead, you can follow the instructions at
https://eksctl.io/usage/managing-nodegroups/ to scale the node groups
it creates.

Scaling nodes in manually
You can reverse the process to scale in the cluster (reducing its size), but beware that
scaling a cluster in manually is trickier. Doing this safely involves a process called
draining, which is described in the following Kubernetes documentation: https://
kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/.
Just changing the autoscaling group's size on its own will terminate an instance without
letting you choose which instance to terminate or giving you a chance to drain the
instance. If you really wanted to do this, you would have to do all the following:

• Decrement the autoscaling group minimum size by one.

• Drain the node with kubectl drain.

• Terminate the node using an AWS CLI command that decrements the
desired capacity.

After you've adjusted the autoscaling group's minimum size, you could issue the following
commands (replace the node name and instance ID in each of these commands with the
ones that match the node you want to terminate):

$ kubectl drain \

 ip-10-0-94-28.us-east-2.compute.internal \

 --ignore-daemonsets

$ aws autoscaling terminate-instance-in-auto-scaling-group \

 --instance-id i-09c88021d2324e821 \

 --should-decrement-desired-capacity

https://aws.amazon.com/blogs/aws/new-cloudformation-drift-detection/
https://aws.amazon.com/blogs/aws/new-cloudformation-drift-detection/
https://eksctl.io/usage/managing-nodegroups/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/

304 Scaling and Load Testing Docker Applications

This process is involved and could easily lead to manual error. It will also lead to
configuration drift from the CloudFormation template, so you should either seek to script
it or rely on automatic scaling mechanisms instead.

Scaling pods manually through deployments
Manually scaling the number of pods in a deployment or ReplicaSet is quite easy,
assuming that you have enough resources in your cluster. You can use the kubectl
scale command to set the number of replicas. You might have to issue several kubectl
get commands before you see all the replicas become ready, as shown in this transcript:

$ kubectl get deployment/shipit-v8-shipitclicker

NAME READY UP-TO-DATE AVAILABLE AGE

shipit-v8-shipitclicker 2/2 2 2 57m

$ kubectl scale deployment/shipit-v8-shipitclicker --replicas=4

deployment.apps/shipit-v8-shipitclicker scaled

$ kubectl get deployment/shipit-v8-shipitclicker

NAME READY UP-TO-DATE AVAILABLE AGE

shipit-v8-shipitclicker 2/4 4 1 58m

$ kubectl get deployment/shipit-v8-shipitclicker

NAME READY UP-TO-DATE AVAILABLE AGE

shipit-v8-shipitclicker 4/4 4 4 59m

Next, we will examine how we can apply programmatic scaling to the cluster, for both
nodes and pods.

Scaling the cluster dynamically (autoscaling)
Now that you've completed many of the exercises in the preceding three chapters, which
explored the complex concepts that go along with the Kubernetes container orchestration
system, you might be wondering: is all this effort worth it? In this section, we will explore
the key feature that can make the pain of managing these systems worth it – autoscaling.
By dynamically scaling the applications in a cluster, and the cluster itself, you can drive
high utilization of cluster resources, meaning that you will need fewer computers (virtual
or physical) to run your systems. When you combine dynamic scaling with the self-
healing capabilities of the Kubernetes system, this becomes compelling, even though it has
high complexity and a high learning curve in some areas.

Kubernetes supports several dynamic scaling mechanisms, including the Cluster
Autoscaler, the Horizontal Pod Autoscaler, and the Vertical Pod Autoscaler. Let's explore
each of these.

Scaling your Kubernetes cluster 305

Configuring the Cluster Autoscaler
The Cluster Autoscaler is responsible for scaling the nodes in a cluster out to meet
demand when the cluster has no more capacity to schedule pods, as well as for scaling in
nodes that no longer have running pods on them. This system runs as a deployment in the
kube-system namespace and uses cloud APIs to launch and terminate nodes.

If you used the AWS EKS Quick Start Cloudformation templates to create your cluster
and told it to enable the Cluster Autoscaler, no further configuration is needed. If you
used eksctl or another method to create the cluster, you may need to configure it
further using the directions provided here: https://docs.aws.amazon.com/eks/
latest/userguide/cluster-autoscaler.html.

You can verify that the Cluster Autoscaler is running by querying it:

$ kubectl -n kube-system get deployments | grep autoscaler

cluster-autoscaler-1592701624-aws-cluster-autoscaler 1/1
1 1

Now that we have learned a bit about the Cluster Autoscaler, let's discover how we might
configure an application to take advantage of its features.

Configuring a stateless application to work with the Cluster Autoscaler
A stateless application, such as ShipIt Clicker, can tolerate starting and stopping any one of
its pods and can run on any node in the cluster. It doesn't require special configuration to
work with the Cluster Autoscaler. Stateful applications that mount local storage and some
other classes of applications must avoid some scaling operations if possible and may require
special handling. See the Autoscaling FAQ for more details: https://github.com/
kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md.

You can give the Cluster Autoscaler a hint that it should not scale in pods beyond a
certain point, and that it should strive to keep a certain number or percentage of healthy
pods available by using a PodDisruptionBudget (PDB): https://kubernetes.io/
docs/tasks/run-application/configure-pdb/.

We have configured ShipIt Clicker with a PDB in its Helm Chart. See chapter11/
src/shipitclicker/templates/pdb.yaml for more information. You can find
the default values for it in chapter11/src/shipitclicker/values.yaml. The
defaults now have ShipIt Clicker configured to deploy two pods and have a PDB with a
minimum of one pod available. This provides hints to the Cluster Autoscaler and other
Kubernetes applications that it should always keep at least one pod alive, even as node
maintenance is underway.

https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/

306 Scaling and Load Testing Docker Applications

Next, we will demonstrate the Cluster Autoscaler in action.

Demonstrating the Cluster Autoscaler in action
In order to get the Cluster Autoscaler to make changes to the size of the cluster, we can
start more pods than it has capacity to handle currently. To watch this process in action,
it is helpful to tail the logs of the cluster-autoscaler service. Open a Terminal
window and run the following commands to tail the logs of the service:

$ service=service/$(kubectl get services -n kube-system \

 | awk '/cluster-autoscaler/{ print $1 }')

$ kubectl logs -f -n kube-system "$service"

Every 10 seconds, you will see log entries indicating that the service is looking for
unschedulable pods (which would cause the cluster to scale out the number of nodes) and
for nodes that are eligible for scaling in.

Then, in a different Terminal window, manually scale the deployment of ShipIt Clicker to
50 pods:

kubectl scale deployment/shipit-v8-shipitclicker --replicas=50

Each of the t3.medium nodes in the default EKS cluster can handle approximately
4 to 16 ShipIt Clicker pods, depending on how many other pods are also running on
each node. This will trip the Cluster Autoscaler and make it scale out by at least one
additional node. You will see entries in the Cluster Autoscaler log noting that it has found
unschedulable pods, and shortly afterward, that it has completed scaling.

To see the progress from the perspective of the nodes and pods in the deployment, issue
the following commands every few seconds:

kubectl get nodes; kubectl get deployments

You will see nodes launching and more and more replicas becoming ready until the set of
replicas stabilizes. Once that happens, scale it back down to a lower default state:

kubectl scale deployment/shipit-v8-shipitclicker --replicas=2

Scaling your Kubernetes cluster 307

Once you've done that, you may notice that the nodes do not scale in immediately as they
enter a cooldown condition for 10 minutes after a scale out operation completes. However,
a minute after the cooldown period expires, the Cluster Autoscaler will notice that the
CPU utilization of these nodes is close to zero and it will scale in the cluster, terminating
the nodes that no longer have pods available. The Cluster Autoscaler will respect the PDB
when it performs this scale in operation as well – allowing you to be as conservative as
required when shrinking the number of pods and nodes in the cluster.

Now that you have learned how to scale the cluster nodes in and out using the Cluster
Autoscaler, let's learn how to use the Horizontal Pod Autoscaler to set scaling policies.

Configuring the Horizontal Pod Autoscaler
The Horizontal Pod Autoscaler allows you to set up rules for scaling out sets of
Kubernetes pods using rules that can take into account CPU utilization or other custom
metrics. This service can also scale pods controlled by deployments, ReplicaSets, and
replication controllers. You can read more about the theory of how it works here:
https://kubernetes.io/docs/tasks/run-application/horizontal-
pod-autoscale/.

This is the last big piece of the puzzle you need before you can achieve a cluster that
automatically scales in and out in response to demand.

You need Metrics Server for the Horizontal Pod Autoscaler to work. We will install
this next.

Installing Metrics Server
To have more detailed statistics available in your Kubernetes cluster for use by the
software components that enable dynamic scaling (including the Horizontal Pod
Autoscaler), you need to run the standard Metrics Server. It aggregates statistics across
the cluster regarding the memory, CPU, and other resource utilization of the nodes and
among the pods in a format that the various Kubernetes autoscaler mechanisms can
understand and act upon. The AWS EKS guide talks about installing that here:

https://docs.aws.amazon.com/eks/latest/userguide/metrics-
server.html

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html
https://docs.aws.amazon.com/eks/latest/userguide/metrics-server.html

308 Scaling and Load Testing Docker Applications

To install it, ensure your kubectl config context is set to your cloud cluster. Then,
issue the following command from your local workstation:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-
server/releases/download/v0.3.6/components.yaml

Once you have installed Metrics Server, verify that it is running:

$ kubectl -n kube-system get deployment metrics-server

NAME READY UP-TO-DATE AVAILABLE AGE

metrics-server 1/1 1 1 6m

Next, we will activate the Horizontal Pod Autoscaler for the ShipIt Clicker application to
demonstrate how it works.

Activating the Horizontal Pod Autoscaler
The AWS EKS guide shows the steps needed to install the Horizontal Pod Autoscaler:
https://docs.aws.amazon.com/eks/latest/userguide/horizontal-
pod-autoscaler.html.

The main thing we need to install is the metrics service. It turns out that the Horizontal
Pod Autoscaler is baked into Kubernetes itself. We can issue a command such as the
following one to activate a Horizontal Pod Autoscaler for a deployment:

kubectl autoscale deployment shipit-v8-shipitclicker
--cpu-percent=50 --min=2 --max=50

If you need to edit these parameters, you can do so with the following command:

kubectl edit hpa/shipit-v8-shipitclicker

You can get a detailed view of what the Horizontal Pod Autoscaler has done recently by
issuing this command:

kubectl describe hpa/shipit-v8-shipitclicker

https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/horizontal-pod-autoscaler.html

Scaling your Kubernetes cluster 309

To test whether the Horizontal Pod Autoscaler and Cluster Autoscaler are working
as expected, we need to drive CPU load. That's where the /faults/spin endpoint
comes in handy. Later in this chapter, in the Testing scalability and performance with k6
section, we will see how to construct a realistic load test for the ShipIt Clicker application.
However, to exercise autoscaling, we are going to use a brute-force method by using
the Apache Bench utility that's run via Docker (replace example.com with your
domain name):

$ url=https://shipit-v8.eks.example.com/faults/spin

$ docker run --rm jordi/ab -c 50 -t 900 "$url"

Use the kubectl get deployments, kubectl get pods, kubectl get
nodes, and kubectl describe hpa commands repeatedly to watch the deployment
replicas grow. Alternatively, use a Kubernetes monitoring tool such as k9s (https://
k9scli.io/) to watch the pod and node counts grow over the first 10 minutes or
so, and then subside in the 15 minutes afterward. You could also look at some Grafana
dashboards and Jaeger traces, as described in the previous chapter, to see how the cluster
is handling the load, or even look at the CloudWatch metrics that surfaced in the EC2
console for the active nodes.

Next, we will consider when we might use the Vertical Pod Autoscaler.

Configuring the Vertical Pod Autoscaler
The Vertical Pod Autoscaler is a newer scaling mechanism that observes the amount of
memory and CPU usage that pods request, versus what they actually use, in order to
optimize memory and CPU requests – it performs right-sizing to drive better cluster
utilization. This is the most useful scaling mechanism for stateful pods.

However, the Vertical Pod Autoscaler documentation currently states that it is not
compatible with the Horizontal Pod Autoscaler, so you should avoid configuring it so
that it manages the same pods. You can explore using it for your application, but keep in
mind the advice it specifies about not mixing it with the Horizontal Pod Autoscaler using
CPU metrics. The installation procedure for the Vertical Pod Autoscaler is also more
involved than configuring either of the other autoscalers, so we won't show all the steps
in detail here – please refer to the Vertical Pod Autoscaler documentation for detailed
configuration instructions: https://github.com/kubernetes/autoscaler/
tree/master/vertical-pod-autoscaler.

https://k9scli.io/
https://k9scli.io/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler

310 Scaling and Load Testing Docker Applications

In this section, we learned all about how we can scale our application using both manual
and dynamic methods. In the next section, we will learn all about Envoy, a service mesh
that provides some advanced controls and sanity regarding communications between
pods in a Kubernetes cluster.

What is Envoy, and why might I need it?
Envoy (https://www.envoyproxy.io/) is a C++ open source service mesh and
edge proxy geared toward microservice deployments. Developed by a team at Lyft, it is
especially useful for teams developing Kubernetes-hosted applications, such as the ones
you have seen throughout this book.

So, why exactly would we need to deploy Envoy? When developing cloud-based
production systems that use multiple containers to host a distributed service, many of the
problems you will encounter are related to observability and networking.

Envoy aims to solve these two problems by introducing a proxy service that offers
runtime-configurable networking and metrics collection that can be used as a building
block for creating higher-level systems that manage these concerns. Whether you're
building out a small distributed application or a large microservice architecture designed
around the service mesh model, Envoy's features allow us to abstract the thorny problem
of networking in a cloud and platform-agnostic fashion.

The team at Lyft developed Envoy using the following concepts:

• Out of process architecture: Envoy is a self-contained process that can be deployed
alongside existing applications.

• A transparent communications mesh: All applications communicate via
localhost and are ignorant of the network topology. An L3/L4 filter architecture
is used for networking proxying. You can add custom filters to the proxy to support
tasks such as TLS client certificate authentication.

• Language agnosticism: Envoy works with multiple languages and allows you to mix
and match application frameworks. For example, through the use of Envoy PHP
and Python, containerized applications can communicate with each other.

• HTTP L7 filters and routing: As with L3/L4 filters, filtering is also supported at
the L7 layer. This allows plugins to be developed for different tasks, ranging from
buffering to interacting with AWS services such as DynamoDB. Envoy's routing
feature allows you to deploy a routing subsystem that can redirect requests based on
a variety of criteria, such as path and content type.

https://www.envoyproxy.io/

What is Envoy, and why might I need it? 311

• Load balancing and front/edge proxy support: Envoy supports advanced load
balancing techniques, including automatic retries, circuit breakers, health checking,
and rate limiting. Additionally, you can deploy Envoy at the network edge to handle
TLS termination and HTTP/2 requests.

• Observability and transparency: Envoy collects statistics to support observability
at both the application and networking layer. You can combine Envoy with
Prometheus, Jaeger, Datadog, and other monitoring platforms that support metrics
and tracing.

Let's explore some of Envoy's features in more detail so that we can understand these
concepts better.

Network traffic management with an Envoy service
mesh
You should already be familiar with the concept of a load balancer, which is one type of
network traffic manager. But what exactly is a service mesh? Why would you need to use
one? How does Envoy help us in this regard?

A service mesh is an infrastructure layer dedicated to handling service-to-service
communications, typically through a proxy service. The benefits of using a service mesh
are as follows:

• Transparency and observability into network communications.

• You can support secure connections across the network.

• Metrics collection, including length of time for a retry to succeed when a
service fails.

• You can deploy proxies as sidecars. This means they run alongside each service
rather than within it. In turn, this allows us to decouple the proxying service from
the application itself.

312 Scaling and Load Testing Docker Applications

An example of a four-application service mesh can be visualized as follows:

Figure 11.2 – Example of a service mesh with four microservices and sidecar proxies

Here, each of our containerized applications has a corresponding sidecar proxy. The
application communicates with the proxy, which, in turn, communicates across the
service mesh with the other containerized services we are hosting. The application does
not know that the proxy exists and does not need any modifications to work with the
proxy. All the configuration can be done by wiring ports together using the container
orchestration system, in a way that is invisible to the application.

Now, let's gets our hands dirty and get Envoy up and running.

Setting up Envoy
Because of Envoy's architecture, you have flexibility in terms of how you can deploy
the software:

• Configured explicitly as a sidecar container, with a static configuration file,
alongside an application container

• Configured dynamically as part of a service mesh control plane, where the container
might be injected into a Kubernetes pod as a component, using software such as
Istio (https://istio.io/) or AWS App Mesh (https://aws.amazon.
com/app-mesh/)

The second option offers additional power at the cost of adding major complexity.

https://istio.io/
https://aws.amazon.com/app-mesh/
https://aws.amazon.com/app-mesh/

What is Envoy, and why might I need it? 313

The Envoy sample configurations (see https://www.envoyproxy.io/docs/
envoy/latest/start/start#sandboxes) are all of the first variety, with explicit
Envoy proxy configurations. To learn about Envoy, it is simpler to consider the explicit
configuration examples. The version of ShipIt Clicker provided in this chapter has been
modified so that you can add an Envoy sidecar container using a static configuration
file when it is deployed in Kubernetes, with a minimalist approach that allows us to
demonstrate Envoy's features.

Configuring ShipIt Clicker for Envoy
Now, let's examine the specific changes that need to be made for Envoy to be supported
in ShipIt Clicker. The application JavaScript code does not require any changes; all the
changes are in the Helm Charts. See the Helm Charts in chapter11/shipitclicker
and compare them with the ones in chapter10/shipitclicker; you will
see a new Envoy sidecar container defined in chapter11/shipitclicker/
templates/deployment.yaml, configured with an image defined in chapter11/
shipitclicker/values.yml:

 - name: envoy-sidecar

 image: "{{ .Values.envoy.repository }}"

 imagePullPolicy: {{ .Values.envoy.pullPolicy }}

 command: ["/usr/local/bin/envoy"]

 args: ["-c", "/etc/envoy-config/config.yaml"]

The preceding lines in the template launch the Envoy container using a configuration file,
/etc/envoy-config/config.yaml, defined in a ConfigMap. Envoy needs both
a port definition for its administrative interface and a port definition for each service it
manages or proxies:

 ports:

 - name: envoy-admin

 containerPort: 9901

 protocol: TCP

 - name: envoy-http

 containerPort: 4000

 protocol: TCP

https://www.envoyproxy.io/docs/envoy/latest/start/start#sandboxes
https://www.envoyproxy.io/docs/envoy/latest/start/start#sandboxes

314 Scaling and Load Testing Docker Applications

We can query the administrative API to ensure that Envoy is both live and ready to accept
traffic, in accordance with Kubernetes best practices:

 livenessProbe:

 httpGet:

 path: /server_info

 port: envoy-admin

 readinessProbe:

 httpGet:

 path: /ready

 port: envoy-admin

To expose the configuration file to the container, we use a volume mount that exposes the
config.yaml file:

 volumeMounts:

 - name: envoy-config-vol

 mountPath: /etc/envoy-config/

 volumes:

 - name: envoy-config-vol

 configMap:

 name: {{ .Release.Name }}-envoy-sidecar-configmap

 items:

 - key: envoy-config

 path: config.yaml

The config.yaml file is defined in chapter11/shipitclicker/templates/
configmap-envoy.yaml and has definitions for listeners and clusters for
the following:

• An ingress proxy for the ShipIt Clicker container inside the pod

• An egress proxy for the Redis Kubernetes service that can be reached at redis-
master in the cluster

• An ingress proxy that allows Prometheus to scrape metrics from the Envoy sidecar
in the pod

What is Envoy, and why might I need it? 315

The ConfigMap for ShipIt Clicker in chapter11/shipitclicker/templates/
configmap.yaml has been modified so that it connects to localhost:6379 for
Redis, which Envoy listens for and proxies out via a TCP L4 proxy to the Redis service.
This listens elsewhere in the cluster at redis-master:6379.

The Kubernetes service in chapter11/shipitclicker/templates/service.
yaml now calls the envoy-http port instead of directly calling the application
container's port.

Why not use the Envoy Redis protocol proxy?
The example files used here use a plain TCP proxy, instead of Envoy's Redis protocol
proxy (see https://www.envoyproxy.io/docs/envoy/latest/api-v3/
extensions/filters/network/redis_proxy/v3/redis_proxy.proto
and https://github.com/envoyproxy/envoy/tree/master/examples/
redis).

This is because the ShipIt Clicker application has a Redis password authentication set up
that is not compatible with Envoy's Redis proxy. ShipIt Clicker is set up to use a password
it retrieves from a Kubernetes Secret that the Bitnami Redis Helm Chart stores. However,
Envoy does not pass through this password; when configured with the Redis protocol
proxy, it emitted an error message stating Warning: Redis server does not
require a password, but a password was supplied when ShipIt Clicker
tried to authenticate. It turns out that if you use the Envoy Redis protocol support, you
must configure the proxy itself with password authentication for the client, and optionally
the server, through the configuration file stored in a ConfigMap. However, the password
that the Bitnami Redis server uses is only available as a Kubernetes secret, so reworking
the system to support this would add complexity.

As an exercise, you could install Redis without a password and remove the password from
the configuration for ShipIt Clicker if you wanted to do this. If you did this, you could also
switch Redis implementations to the Bitnami Redis Cluster Helm Chart (see https://
github.com/bitnami/charts/tree/master/bitnami/redis-cluster),
and then use the Envoy support for Redis clusters in order to implement the reader/writer
split pattern.

So far, we've seen how to deploy Envoy to create a service mesh. Next, we are going to
explore the circuit breaker pattern.

https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/redis_proxy/v3/redis_proxy.proto
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/redis_proxy/v3/redis_proxy.proto
https://github.com/envoyproxy/envoy/tree/master/examples/redis
https://github.com/envoyproxy/envoy/tree/master/examples/redis
https://github.com/bitnami/charts/tree/master/bitnami/redis-cluster
https://github.com/bitnami/charts/tree/master/bitnami/redis-cluster

316 Scaling and Load Testing Docker Applications

Configuring Envoy's support for the circuit breaker pattern
The circuit breaker pattern is a mechanism that's used to configure thresholds for failures.
The goal here is to prevent cascading failures spreading across your microservice platform
and to stop continuous requests to a non-responsive service.

Configuring the pattern on Envoy is relatively simple. We can configure circuit breaking
values as part of an Envoy cluster definition via the circuit_breakers field.

To see how this works, examine the following ConfigMap file, which contains a definition
of a circuit breaker (chapter11/shipitclicker/templates/configmap-
envoy.yaml):

 circuit_breakers:

 thresholds:

 - priority: DEFAULT

 max_connections: {{ .Values.envoy.maxRequests }}

 max_pending_requests: {{ .Values.envoy.
maxRequests }}

 max_requests: {{ .Values.envoy.maxRequests }}

 max_retries: {{ .Values.envoy.maxRetries }}

This threshold definition specifies the maximum number of connections Envoy will make
and the maximum number of parallel requests. In our example, we have a configuration
for a default priority threshold and a second one for high priority (used for HTTP 1.1)
and the maximum number of requests (used for HTTP/2). If the rate of traffic that Envoy
detects exceeds these thresholds, it will throw an error and deny the requests, without
passing the request to the target service. Notice that since we are using Helm Charts, we
specify the actual values using the Helm template variable substitution with the values
coming from chapter11/shipitclicker/values.yaml or one of the override
mechanisms for Helm Chart values. The default values are from a section of the values.
yaml file that specifies Envoy-specific values:

envoy:

 repository: envoyproxy/envoy:v1.14.2

 pullPolicy: IfNotPresent

 accessLog: "/dev/null"

 maxRequests: 1024

 maxRetries: 2

What is Envoy, and why might I need it? 317

These default values are suitable for production for this application, but how can we test
that the circuit breaker works, without inducing a massive load? We will show you how do
that next.

Testing the Envoy circuit beaker
In order to test that the Envoy circuit breaker is working properly, we'll deploy ShipIt Clicker
to the cloud Kubernetes cluster with an artificially lowered request limit and perform a quick
load test to verify that it works. Issue a Helm upgrade command, followed by a kubectl
rollout restart command, similar to the following, to set the maximum simultaneous
requests to 10 (replace image.repository with your ECR repository reference):

$ helm upgrade shipit-v8 -f values.yaml --set image.
repository=143970405955.dkr.ecr.us-east-2.amazonaws.com/
dockerfordevelopers/shipitclicker:1.11.7 --set envoy.
maxRequests=2 ./shipitclicker

Release "shipit-v8" has been upgraded. Happy Helming!

NAME: shipit-v8

LAST DEPLOYED: Sun Jun 28 22:34:15 2020

NAMESPACE: default

STATUS: deployed

REVISION: 17

NOTES:

1. Get the application URL by running these commands:

 http://shipit-v8.eks.example.com/*

$ kubectl rollout restart deployment/shipit-v8-shipitclicker

deployment.apps/shipit-v8-shipitclicker restarted

Next, we'll use Apache Bench to test the deployed application, starting with a single
concurrent request:

$ url=https://shipit-v8.eks.example.com/faults/spin

$ docker run --rm jordi/ab -c 1 -n 400 $url | grep requests:

Completed 100 requests

Completed 200 requests

Completed 300 requests

Completed 400 requests

Finished 400 requests

Complete requests: 400

Failed requests: 0

318 Scaling and Load Testing Docker Applications

Here, you can see that when run with only one concurrent request, all the requests
succeeded. Next, we'll increase the concurrency to 50 simultaneous connections:

$ docker run --rm jordi/ab -c 50 -n 400 $url | grep requests:

Completed 100 requests

Completed 200 requests

Completed 300 requests

Completed 400 requests

Finished 400 requests

Complete requests: 400

Failed requests: 72

If we set the concurrency to 50 simultaneous requests, many of them will fail as the circuit
breaker kicks in. We've already seen how to set up a basic circuit breaker with two thresholds
for our cluster. More advanced circuit breaker patterns exist, including breaking on latency
and retries. We'll leave you to explore this further if you think your applications will need it.

Now that you have tested the circuit breaker with low connection thresholds, reset
the thresholds to their original values and redeploy the application to help set up the
application for more load testing.

If we had a good measurement of how much real user traffic each pod could handle
without failing, we could use this to set a better value for the circuit breaker. However,
Apache Bench is a blunt instrument that does not let us simulate a realistic user load. For
that, we need to use a more sophisticated load test framework. Now, we'll take a look at
how we can test scalability with k6, a Docker-based load testing framework.

Testing scalability and performance with k6
The k6 framework (https://k6.io) is a programmable open source load testing tool.
We are going to show you how to use it to generate a more realistic load pattern than you
could generate using a simple load generator such as Apache Bench (ab).

This framework is quite simple to set up and use thanks to its Docker image, which is
available on Docker Hub. You can find the Quick Start instructions at https://k6.io/
docs/getting-started/running-k6.

To create a load test using k6, you need to use JavaScript using k6's library routines. To
perform a smoke test, your script would need to look something like this:

import http from 'k6/http';

export default function() {

https://k6.io
https://k6.io/docs/getting-started/running-k6
https://k6.io/docs/getting-started/running-k6

Testing scalability and performance with k6 319

 http.get('https://shipit-v8.eks.example.com/');

}

This script is roughly equivalent to using the ab utility to stress test a web server. Create
a file called hello.js using the preceding source code, replacing shipit-v8.eks.
example.com with the fully qualified domain name of one of your websites.

Following Docker best practices, you should ensure that you add the --rm flag to
the Docker command line so that you do not accumulate stale containers in your
local installation:

$ docker run --rm -i loadimpact/k6 run - < hello.js

This will run k6 and retrieve the URL specified in hello.js.

There are just a few key concepts you must know about:

• You must provide a default function.

• K6 is not Node.js. It has no event loop.

• Your default function is known as a Virtual User (VU).

• Code defined outside of the default function is evaluated once, on program startup.

• The default function is run repeatedly until the test is over.

• You can run your test with as many VUs as you want, and for as long as you want.

Note
There are many command-line options you can use with k6 to ramp up
and down VUs over time, as well as to specify how long to run the test and
how many VUs to simulate. The defaults have only one VU, and only one
test iteration.

Let's use some of those options to run the test with more users and for a longer duration:

$ docker run --rm -i loadimpact/k6 run --vus 50 --duration 30s
- < hello.js

Running k6 like this will perform a load test almost identical to an Apache Bench load
test, with a concurrency of 50 and a duration of 30 seconds.

However, since you have the full power of JavaScript available, you can write more
nuanced load tests using a variety of strategies.

320 Scaling and Load Testing Docker Applications

Recording and replaying network sessions
An alternative to writing a script such as hello.js by hand is to use a record-and-replay
strategy. Many load testing frameworks support this paradigm, including k6. To do this,
use the Chrome browser and its Inspect feature. You can use the debugger's Network tab
to capture and save network traffic to and from the application's backend.

You start with an empty (cleared) network history in the debugger. Then, you load and
play the game. Each click will cause API requests to occur between the application
running in the browser and the backend.

When you are satisfied with your recording, right-click on the Network pane and choose
copy all as HAR. This puts the HAR-formatted text in the system clipboard:

Figure 11.3 – Google Chrome inspector debugging console – Copy all as HAR

Testing scalability and performance with k6 321

Paste from the clipboard into a file named chapter11/src/test/k6/session.
har. Then, run a conversion script to transform the HAR file into a JavaScript file at
chapter11/src/test/k6/har-session.js, and run another shell script that will
run k6 via Docker with the right arguments to initiate a one-user, 60-second test:

$ chapter11/bin/k6-convert-har.sh

$ chapter11/bin/k6-run-har.sh

The k6-run-har.sh script is set up to use environment variables that override the
VUs with the USERS variable, and to override the test duration with the DURATION
variable. So, you can prefix the script with those variables like this and run a 10-user
test for 300 seconds:

$ USERS=10 DURATION=300 chapter11/bin/k6-run-har.sh

There are some wrinkles to note about using this playback and record strategy, though:
the process is quite literal, and results in a file that has no delays between requests.
Running the test will induce a large, machine-speed load on the target service. There is
no randomization of the delays that should happen between requests, which is something
you want to do in order to closely model the load that a real user's session would put on
a service.

To create a more realistic test, we are going to have to do some JavaScript programming.

Hand-crafting a more realistic load test
In the chapter11/src/tests/k6/ directory, there is a test.js script designed to
realistically test ShipIt Clicker, whether it's deployed locally or in the cloud.

This script mimics a human playing the game by using these strategies:

• Fetches the HTML, stylesheets, images, and JavaScript files that make up
the application

• Performs HTTP post to start a new game

• Gets the initial score, deployments, and nextPurchase values

• Attempts to simulate the click stream a human player would make

The HTTP requests were identified by playing the game in a web browser such as Google
Chrome, using its Inspect feature, and viewing the Network tab as the game loads and is
played. Then, we wrote a test that simulated the series of requests in a way that is closely
modeled after real user behavior, including having realistic random delays.

322 Scaling and Load Testing Docker Applications

Let's examine the code in chapter11/src/test/k6/test.js. Here, we import the
http class and the sleep() method from the k6 supplied libraries:

import http from "k6/http";

import { sleep } from "k6";

We pass parameters to the test.js script as environment variables:

• The DEBUG environment variable lets us trigger more verbose logging.

• The MOVES environment variable contains the number of moves per game.

• The TARGET environment variable would be something like
http://192.2.0.10:3011 for localhost development, where 192.2.0.10
is the IPv4 LAN address of your workstation.

These parameters get retrieved from the __ENV object, as follows:

const DEBUG = __ENV.DEBUG;

const MOVES = __ENV.MOVES;

const target = __ENV.TARGET;

The ENDPOINTS array gets used to iterate through the three main elements that the
game tracks:

const ENDPOINTS = ['score', 'deploys', 'nextPurchase'];

The deploy() method simulates a human clicking on the Deploy button in the app; it
calls http.patch() twice – once to update the deployment count and once to update
the score:

const deploy = id => {

 validate(

 http.patch(

 `${target}/api/v2/games/${id}/deploys`,

 JSON.stringify({

 id: id,

 element: 'deploys',

 value: 1,

 }),

Testing scalability and performance with k6 323

 params

)

);

This function also updates the score:

 validate(

 http.patch(

 `${target}/api/v2/games/${id}/score`,

 JSON.stringify({

 id: id,

 element: 'score',

 value: 1,

 }),

 params

)

);

};

The validate() method that the deploy() method calls simply verifies that the
server returns a valid response:

 validate(

 http.patch(

 `${target}/api/v2/games/${id}/score`,

 JSON.stringify({

 id: id,

 element: 'score',

 value: 1,

 }),

 params

)

);

};

324 Scaling and Load Testing Docker Applications

The getStaticAssets() method simulates the user's browser fetching the HTML,
CSS, images, and JavaScript that make up the game:

const getStaticAssets = () =>

 [

 target,

 `${target}/stylesheet.css`,

 `${target}/img/shipit-640x640-lc.jpg`,

 `${target}/img/Richard-Cartoon-Headshot-Jaunty-180x180.
png`,

 `${target}/app.js`,

]

 .map(http.get)

 .map(validate);

The getGameId() method simulates the start of a new game:

const getGameId = () => {

 const uri = `${target}/api/v2/games/`;

 const response = validate(http.post(uri, {}, params));

 return JSON.parse(response.body).id;

};

The getScores() method retrieves the existing scores using the map functional
programming technique to both iterate over the endpoints and to run a validation
function on the HTTP response:

const getScores = id => {

 return ENDPOINTS.map(element =>

 http.get(`${target}/api/v2/games/${id}/${element}`)

).map(validate);

};

The putScores() method is used to reset all the game scores, such as when a new
game begins:

const putScores = (id, score) => {

 return ENDPOINTS.map(element =>

 http.put(

 `${target}/api/v2/games/${id}/${element}`,

Testing scalability and performance with k6 325

 JSON.stringify({

 id: id,

 element: element,

 value: score,

 }),

 params

)

).map(validate);

};

The default function is the one that k6 loops through for each virtual user:

export default function() {

 const startDelay = random_gaussian(6000, 1000) / 1000;

 log.debug(`Loading static assets, then wait ${startDelay}s to
start game`);

 getStaticAssets();

 sleep(startDelay);

After this function loads the static assets, it sleeps for a random delay to simulate a user
waiting at the splash screen:

 const gameDelay = random_gaussian(1500, 250) / 1000;

 const id = getGameId();

 log.debug(

 `Game ${id}: Reset game scores, then wait ${startDelay}s to
start game`

);

 getScores();

 putScores(id, 0);

 sleep(gameDelay);

After another delay, when simulating the user seeing the game screen, the test program
enters a loop where it starts rapidly simulating clicks:

 log.info(`Game ${id}: Simulating ${MOVES} moves, starting in
${gameDelay}s`);

 for (let i = 0; i < MOVES; i++) {

 const moveDelay = random_gaussian(125, 25) / 1000;

326 Scaling and Load Testing Docker Applications

Notice that we use a randomly generated delay between moves with a Gaussian
distribution that has a mean of 125 milliseconds and a standard deviation of 25
milliseconds. This simulates clicking at about 8 clicks/second, which is the rate we
measured when playing ShipIt Clicker on an iPhone – in 1 minute, we recorded 480 clicks:

 log.debug(`Game ${id}: move #${i}, then sleep ${moveDelay}
s`);

 deploy(id);

 sleep(moveDelay);

 }

 log.info(`Game ${id}: Done with ${MOVES} moves`);

}

The default function that's used for each virtual user fetches the same URLs that a
user's browser would fetch on first page load. Note all the random delays that realistically
simulate the delays that a real user would make. In a tight loop, the test simulates the user
clicking as fast as a human would. The delay between clicks is subtly randomized using a
random number with a normal distribution to simulate the fact that a human cannot click
with robotic precision.

The chapter11/bin/k6-run.sh script runs the test using the same environment
variable pattern override that the k6-har-run.sh script did, but with more variables.
It allows you to set these parameters:

• USERS: Number of users

• DURATION: Duration in seconds

• MOVES: Number of moves in a game

• STAGES: Specify a set of k6 stages, which can vary VUs over time

The script requires a command-line argument, which is the URL target for the test.
As mentioned earlier, this might be something like http://192.2.0.10:80/ to
test against the application infrastructure deployed on your workstation. Or, it could
be the application as it was deployed to your cluster in the cloud, such as https://
shipit-v8.eks.shipitclicker.com/.

https://shipit-v8.eks.shipitclicker.com/
https://shipit-v8.eks.shipitclicker.com/

Testing scalability and performance with k6 327

Running a stress test
In order to run a stress test, you want to ramp up the amount of load on an application
until it starts showing signs of failing. We can try doing that using the script.js k6
program and the k6-run.sh test harness. The key element that we must specify is the
STAGES parameter:

$ MOVES=400 STAGES=900s:100 chapter11/bin/k6-run.sh https://
shipit-v8.eks.example.com

You will likely find that with the default settings of two pods, this initial test will not show
any signs of failure. You can use the kubectl command, plus Prometheus, Grafana, and
Jaeger to monitor the test progress, plus the CPU and memory utilization in the cluster, as
described in the previous chapter. For example, here is a screenshot of Grafana after the
preceding load test:

Figure 11.4 – The Grafana dashboard showing the rate of ShipIt Clicker deployments during the load test

In order to get this deployment to fail during the stress test, we don't want it to
automatically scale out. So, we will delete the Horizontal Pod Autoscaler:

kubectl delete hpa/shipit-v8-shipitclicker

We also want to stress test a single pod in order to see how much it can take, so we will
shrink the number of replicas in the deployment to only 1:

kubectl scale deployment/shipit-v8-shipitclicker --replicas=1

328 Scaling and Load Testing Docker Applications

At this point, we can rerun the stress test using the preceding k9-run.sh command.
Watch the output. You will probably see some failed requests, which should be logged in
the k9 output with a warning that looks something like this:

time="2020-06-29T05:52:31Z" level=info msg="WARNING:
PATCH https://shipit-v8.eks.example.com/api/v2/games/
t2iAHlWtnhJhbsXfJI3zB/deploys: status 503"

Once we are done stress testing, we can recreate the Horizontal Pod Autoscaler and reset
the number of replicas for the deployment to a higher number.

At this point, we've learned how to use k6 to create a realistic load test and used it to
perform a stress test of ShipIt Clicker.

Summary
In this chapter, we explored the topic of scaling out clusters in Kubernetes by using the
Cluster Autoscaler and the Horizontal Pod Autoscaler. We then explored the topic of
service meshes and set up a minimalistic Envoy service mesh in order to provide proxying
and transparent network communications for complex microservice architectures.

Following this, we looked at how we could use the circuit breaker pattern to prevent a
service from becoming overwhelmed by traffic. Then, we used connection thresholds
to test that the circuit breaker worked, in conjunction with a simple load test technique,
using Docker and Apache Bench. After this, we learned about progressively more
sophisticated load testing techniques when using k6, including both record-and-playback
and detailed hand-crafted load tests designed to mimic real user behavior.

This brings us to the end of our Running Containers in Production section of this book.
We're going to move on and look at security next. Here, we will learn how to apply
some techniques to the projects and skills we have developed so far in this book to
improve our container security posture. So, let's move on to Chapter 12, Introduction
to Container Security.

Further reading 329

Further reading
Use the following resources to expand your knowledge of autoscaling, the Envoy service
mesh, and load testing:

• Envoy presentation from Lyft: https://www.slideshare.net/datawire/
lyfts-envoy-from-monolith-to-service-mesh-matt-klein-lyft.

• Performance Remediation Using New Relic and JMeter, a three-part article
series by the Docker for Developers co-author Richard Bullington-McGuire.
This covers load testing and performance improvement basics. You can adapt
these techniques to Kubernetes using Prometheus, Grafana, Jaeger, and k6.io:
https://moduscreate.com/blog/performance-remediation-
using-new-relic-jmeter-part-1-3/.

• Using a Network Load Balancer with the NGINX Ingress Controller on Amazon
EKS – an economical and flexible alternative to using the ALB Ingress Controller
for many scenarios: https://aws.amazon.com/blogs/opensource/
network-load-balancer-nginx-ingress-controller-eks/.

• Kubernetes Autoscaling 101: Cluster Autoscaler, Horizontal Pod Autoscaler,
and Vertical Pod Autoscaler: https://levelup.gitconnected.com/
kubernetes-autoscaling-101-cluster-autoscaler-horizontal-
pod-autoscaler-and-vertical-pod-2a441d9ad231.

• Velero to backup and restore your Kubernetes cluster. Backup and restore your
entire cluster, a namespace, or objects, filtered by tags: https://velero.io/.

• Expose Envoy Prometheus metrics as /metrics. See this issue for the workaround
that's integrated into ShipIt Clicker's Envoy configuration that lets you expose
Envoy's metrics to the Prometheus metrics scraper by adding an additional
Envoy mapping: https://github.com/prometheus/prometheus/
issues/3756.

• Microservicing with Envoy, Istio, and Kubernetes: https://thenewstack.io/
microservicing-with-envoy-istio-and-kubernetes/.

https://www.slideshare.net/datawire/lyfts-envoy-from-monolith-to-service-mesh-matt-klein-lyft
https://www.slideshare.net/datawire/lyfts-envoy-from-monolith-to-service-mesh-matt-klein-lyft
https://moduscreate.com/blog/performance-remediation-using-new-relic-jmeter-part-1-3/
https://moduscreate.com/blog/performance-remediation-using-new-relic-jmeter-part-1-3/
https://aws.amazon.com/blogs/opensource/network-load-balancer-nginx-ingress-controller-eks/
https://aws.amazon.com/blogs/opensource/network-load-balancer-nginx-ingress-controller-eks/
https://levelup.gitconnected.com/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231
https://levelup.gitconnected.com/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231
https://levelup.gitconnected.com/kubernetes-autoscaling-101-cluster-autoscaler-horizontal-pod-autoscaler-and-vertical-pod-2a441d9ad231
https://velero.io/
https://github.com/prometheus/prometheus/issues/3756
https://github.com/prometheus/prometheus/issues/3756
https://thenewstack.io/microservicing-with-envoy-istio-and-kubernetes/
https://thenewstack.io/microservicing-with-envoy-istio-and-kubernetes/

330 Scaling and Load Testing Docker Applications

• Jaeger Native Tracing with Envoy – an advanced tracing strategy: https://www.
envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_
native_tracing.

• Redis with Envoy Cheatsheet – setting up Redis and Envoy using TLS and Redis
Auth: https://blog.salrashid.me/posts/redis_envoy/.

• Introduction to Modern Network Load Balancing and Proxying, from Lyft's Matt
Klein: https://blog.envoyproxy.io/introduction-to-modern-
network-load-balancing-and-proxying-a57f6ff80236.

• Matt Klein on the Success of Envoy and the Future of the Service Mesh:
https://thenewstack.io/matt-klein-on-the-success-of-envoy-
and-the-future-of-the-service-mesh/.

• Cost Optimization for Kubernetes on AWS. Once you get a handle on scaling, the
next step is to reduce costs. The EKS cluster might cost between $10-20 per day to
run with the defaults given in the AWS EKS Quick Start CloudFormation templates:
https://aws.amazon.com/blogs/containers/cost-optimization-
for-kubernetes-on-aws/.

https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing
https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing
https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/jaeger_native_tracing
https://blog.salrashid.me/posts/redis_envoy/
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://blog.envoyproxy.io/introduction-to-modern-network-load-balancing-and-proxying-a57f6ff80236
https://thenewstack.io/matt-klein-on-the-success-of-envoy-and-the-future-of-the-service-mesh/
https://thenewstack.io/matt-klein-on-the-success-of-envoy-and-the-future-of-the-service-mesh/
https://aws.amazon.com/blogs/containers/cost-optimization-for-kubernetes-on-aws/
https://aws.amazon.com/blogs/containers/cost-optimization-for-kubernetes-on-aws/

In this section, we introduce the topic of security. Here, you will build upon the skills you
have learned throughout the book in order to understand how security techniques can
be adopted to protect your container-based environments from malicious actors. From
expanding our use of monitoring to introducing new tools to the DevOps pipeline, you'll
be left in a position to start exploring more advanced topics and projects.

This section comprises the following chapters:

• Chapter 12, Introduction to Container Security

• Chapter 13, Docker Security Fundamentals and Best Practices

• Chapter 14, Advanced Docker Security – Secrets, Secret Commands,
Tagging, and Labels

• Chapter 15, Scanning, Monitoring, and Using Third-Party Tools

• Chapter 16, Conclusion – End of the Road, but not the Journey

Section 3:
Docker Security
– Securing Your

Containers

12
Introduction to

Container Security
When developing technical projects, security should be a fundamental concern. We live
in a world surrounded by security threats, from malware and viruses to data breaches.
Being the victim of cybercrime or information leaks can have increasingly negative
consequences, especially under regulations such as the EU's General Data Protection
Regulation (GDPR).

When breaches or compromises do happen, having the ability to limit their scope through
good architectural practices is a must. This is achieved through the concept of limiting
what is called lateral movement. By this, we mean using one breached system to access
another, thereby providing the attacker with the ability to traverse through your system,
compromising further systems and stealing data.

Thankfully, containerization, when deployed correctly, can help you improve your security
posture through a variety of features that will be explored in the final section of this
book. First, however, we should explore the technical fundamentals of Docker's security
architecture so that we can start to build upon it. Some of the concepts in this chapter will
be a recap of ideas we have explored elsewhere in this book, framed in a security setting.
This should help to not only cement those concepts in your learning process but also help
you to understand how to secure your application development projects.

334 Introduction to Container Security

In this chapter, we're going to cover a brief overview of the security architecture of
containers and how this relates and compares to virtualization, as well as how Docker
Engine and containerd work from a security perspective and the concepts they have
inherited from Linux. We will also look at an overview of best practices that you can
implement that leverage Docker's security architecture. This will provide a foundation
for exploring the topic deeper in the following chapters.

We will cover the following topics in this chapter:

• Virtualization and hypervisor security models

• Container security models

• Docker Engine and containerd – Linux security features

• A note on cgroups

• An overview of best practices

So, let's start by reviewing how containers and virtualization differ and how security is a
fundamental component of both.

Technical requirements
For this chapter, you will need to have access to a Linux machine running Docker.
We recommend that you use the setup you have been using so far in this book.

If you have jumped to the security section as your starting point, we recommend you
install the Docker Community Edition from https://docs.docker.com/v17.09/
engine/installation/.

Check out the following video to see the Code in Action:

https://bit.ly/3gW33FD

Virtualization and hypervisor security models
In previous chapters, we explored how Docker works and how it compares to other
technologies, such as FreeBSD jails and virtualization. Building on what we learned here,
we will now seek to understand the security model that underpins Docker better.

To start with, let's look at how security is implemented by virtualization tools so that we
can then understand how Docker matches and differs from them.

https://docs.docker.com/v17.09/engine/installation/
https://docs.docker.com/v17.09/engine/installation/
https://bit.ly/3gW33FD

Virtualization and hypervisor security models 335

Virtualization and protection rings
When using virtual machines (VMs), you may have come across the term hypervisor.
This is a program that orchestrates how the VMs run on your system and interact with
the underlying hardware. Some hypervisor products, known as type 1 hypervisors, run
directly on top of the hardware. Others, such as VirtualBox, are installed via your existing
operating system and allow you to load additional operating systems as VMs.

How the hypervisor works with the underlying hardware is governed by what is known
as protection rings. These rings dictate the layers of privilege, effectively deciding which
aspects of a computer system's software, such as the operating system, drivers, and
desktop applications, can access which parts of the underlying hardware.

Typically, you will see the protection ring modeled as a set of concentric circles, such
as the following:

Figure 12.1 – Protection ring example

Sometimes the device drivers ring may show as two separate rings as well (denoted by the
dotted circle in the diagram).

Each hardware architecture will differ slightly in its adaptation of the protection ring
model and, in turn, the operating systems that run on it may also run code at different
levels than expected. However, it is typical to find ring 0—that is, the ring at the center
with the most privilege—denoted as the kernel ring (sometimes called kernel land).

Malicious software will often try to attack the kernel in order to gain full access over the
system and run low-level system processes. This software is usually known as kernel-mode
rootkits. Therefore, protecting the kernel is a must, as well as ensuring that if a system is
breached with a malicious application, library, or package, it cannot escalate privileges to
gain kernel access is paramount.

336 Introduction to Container Security

Outer rings may then handle device drivers and applications. Each is assigned a ring and
the outer ring containing user applications is often known as user land. Gates handle how
each ring can speak to the ring below it. As with the kernel, there is a risk of malicious
software infecting applications that run at these levels including user-mode rootkits that
run at level 3.

With these threats in mind, the protection ring model helps prevent the programs that
you install on your desktop from maliciously accessing the underlying hardware and
bypassing the kernel. Therefore, malware writers are forced to look for security holes and
other means of obfuscating their attacks, such as injecting their code into other processes.
You can think of these layers of security as providing a set of doors that need to be
breached, rather than an attacker just being able to walk in and be given direct access to
the underlying hardware.

These layers of segmentation, while not foolproof, help to provide what is known as
a layered approach to security. The idea here is that by adding one layer of security to
another, we make it increasingly difficult for an attack to be pulled off.

Virtualization and malware
Since we are interested in virtualization and subsequently, how this compares to Docker
containers, we are, of course, interested in how virtualization fits into this model. How
does virtualization protect against rootkits and other malware?

Many modern hardware architectures, such as the ARMv7-A, include a hypervisor as a
privilege level in our ring model that is more privileged than the operating system level.
This allows the hypervisor to switch between operating systems that are running at the
next ring above.

Some architectures also implement what is known as ring -1. This allows the hypervisor to
run at a further deeper security ring, with the guest operating system kernels running at
ring 0. If, for example, you are running VirtualBox on top of an x86 platform, depending
on whether hardware virtualization exists, VirtualBox will run either at ring -1 or ring 0.

VMs are useful for conducting malware analysis for a number of reasons, including the
fact the machine can be locked down, so it is a self-contained environment. Once the
investigator is done analyzing the code and its effects, the VM can be deleted without
having to reinstall the whole operating system of the machine, or (if configured correctly)
risk the malware gaining access to the underlying hardware.

Virtualization and hypervisor security models 337

So, in summary, protection rings provide a mechanism to provide a way to segment
software so that it can only access certain resources. In a virtualization model, a
hypervisor can run in the ring with the most privilege to switch between operating
systems. A hypervisor can be installed via an existing operating system, such as Windows,
or be deployed on bare metal, such as the VMware ESXi product. It can also be used to
create a sandbox environment that prevents malicious code from infecting the underlying
hardware or operating system.

So, how does this compare to Docker and how does the protection ring model apply?

Docker and protection rings
Like VMs, Docker containers provide an isolated environment for running your code on
top of an existing operating system. This operating system can be either virtualized or
installed directly onto bare metal.

So, how does this work? You may remember that Docker containers run on top of Docker
Engine, which in turn sits on top of the operating system via an intermediate component
called containerd. This is in comparison to the type 1 hypervisor, which runs on top of
the infrastructure, as we discussed previously, with the guest operating systems running
on top of the hypervisor.

Docker containers, therefore, all run on top of the same operating system, regardless
of whether it is virtualized or not. In fact, in some instances, such as if you run Linux
containers on Docker on Windows, you may notice that it uses an intermediary step.
This consists of running a virtualized version of Linux, which in turn runs the Docker
engine. In this scenario, all the containers are running on the same virtualized Linux
operating system.

Note
Docker Engine Enterprise Edition also supports native Windows containers.
You can read more about them at https://www.docker.com/
products/windows-containers.

The key concept to all of this is that isolation happens at the container level, rather than—
or in addition to—the VM level. So, at a basic level, Docker does not provide the same
sandboxing that the VM itself does.

https://www.docker.com/products/windows-containers
https://www.docker.com/products/windows-containers

338 Introduction to Container Security

The following diagram demonstrates the difference:

Figure 12.2 – Example of isolation in Docker and VMs

In the preceding diagram, if we run Docker on the VM stack, we would replace the
Applications layer with the Docker Engine/Containerd and container layers.

As you can probably see, this provides a layer of security in addition to that provided
by the underlying host operating system or, when applicable, the additional layer of the
hypervisor. However, this layer of security when operating on top of the host operating
system and not via a VM does mean that if the Docker Engine contains a security
vulnerability, you have an additional layer of risk.

The Docker containers' access to the underlying system/kernel, therefore, is mediated
by the engine, which in turn makes system calls via containerd (and, in most cases, is
called via runc).

Note
If you want to read about containerd and runc in more detail, check out the
official website at https://containerd.io/.

Here, we have provided a level of isolation between each container and the underlying
operating system and hardware. Docker Engine does not run at ring 0 or ring -1, but
rather at ring 3, meaning while it is susceptible to other forms of attack, it does not have
direct access to the hardware as the hypervisor does.

Note
Even with this layered approach to security, flaws have been found in
the past. You can read more at https://www.twistlock.com/
labs-blog/breaking-docker-via-runc-explaining-
cve-2019-5736/.

https://containerd.io/
https://www.twistlock.com/labs-blog/breaking-docker-via-runc-explaining-cve-2019-5736/
https://www.twistlock.com/labs-blog/breaking-docker-via-runc-explaining-cve-2019-5736/
https://www.twistlock.com/labs-blog/breaking-docker-via-runc-explaining-cve-2019-5736/

Container security models 339

Additionally, each container is a separate self-contained set of libraries and applications
that can only communicate with each other via Docker Engine. By default, as we noted,
the containers do not have access to the underlying operating system that Docker Engine
is hosted on. In fact, any calls to access system resources at the underlying OS level have to
be explicitly configured when setting up the Dockerfile. The Docker containers, therefore,
run at ring level 3, aka user land, with additional layers of security in place.

Now that we have an understanding of the ring model and how Docker and virtualization
work in conjunction with it, let's look at container security models and what they have
inherited from Linux's best practices and techniques.

Container security models
Moving up from the hardware layer and how the hypervisor and base operating system
mediate access to it, we can begin to review what happens at the software layer running
at ring level 3. To explore this, there are two key features of Docker's container security
model that we need to understand:

• Applications are isolated from the underlying host system.

• Containerized applications are isolated from each other.

So, how does Docker achieve these objectives? The answer to this is, as you may
have guessed, via Docker Engine and related components, such as containerd. These
components have inherited a number of key Linux features and concepts with major
benefits for security, including the following:

• runc: A lightweight container runtime

• Namespaces: A Linux method for partitioning kernel resources

• Control groups (cgroups): A kernel feature for limiting resources such as
CPU usage

Additionally, it also allows the implementation of other security features found in the
Linux kernel, such as the following:

• SELinux: The Linux kernel security module for handling access control
security policies

• AppArmor: A Linux feature for restricting application capabilities

• TOMOYO: A Linux security module for handling mandatory access
control (MAC)

• GRSEC: A collection of security enhancements for the Linux kernel

340 Introduction to Container Security

These tried and true best practices allow containers to be isolated from one another
and from the host operating system in a secure fashion. We will now delve deeper into
Docker Engine and containerd to get a better understanding of how these security
features are implemented.

Docker Engine and containerd – Linux security
features
Docker Engine, which you installed previously, acts as the coordinator for all your
application containers. In addition to the engine are other key components that make
up the Docker ecosystem. Initially, many of the components were baked into Docker
Engine, but over the years, in order to make the engine smaller and faster, some
components, such as the runtime mechanism for managing containers, were broken
down into separate projects.

One example of this is the containerd project. containerd, which implements runc,
allows container management and is used in a number of related projects beyond Docker,
including Kubernetes CRI.

Note
You can download and view the source code for containerd from GitHub
at https://github.com/docker/containerd and runc at
https://github.com/opencontainers/runc.

containerd solves the problem of aggregating a number of features in the Linux kernel
and providing an abstraction layer to handle system calls (syscalls). Docker Engine,
therefore, sits on top of this and uses it to interact with the underlying operating system.
An example of a task handed off to it from Docker Engine is attaching a process to an
existing container.

This modular approach is not limited to the engine and how it interacts with the operating
system. For example, containers and the engine do not need to reside on the same
machine. Therefore, hosting options can be broken up.

https://github.com/docker/containerd
https://github.com/opencontainers/runc

Docker Engine and containerd – Linux security features 341

This distributed model works as Docker implements a client-server model with the engine
being the server and each of your containers acting as clients. Some of the key features of
this architecture are as follows:

• The server running as a Linux daemon process (https://man7.org/linux/
man-pages/man7/daemon.7.html).

• A Docker command-line interface (CLI) where you can run containers from.
This is represented by the docker command in your terminal.

• Communication between the containers and the engine handled over a REST API.

It is important to note that the communication channel between the containers and the
engine can be encrypted using SSL/TLS.

SSL/TLS is the de facto standard for encrypting traffic between web endpoints. You will
have seen it used on websites when accessing content via the HTTPS protocol. Later on,
we will explore how you can enable SSL/TLS to help protect the Docker daemon socket.

Docker provides an extensive set of features for configuring complex networks, and you
can read more about it in detail at the Docker website at https://docs.docker.
com/v17.09/engine/userguide/networking/.

The isolation that this client-server architecture provides between the host OS and your
various containers (whether located on the same machine or distributed) works on the
premise of least access. This means that each Docker container effectively only has access
to the resources it needs, such as to the disk or network resources, and nothing more.
Additionally, one Docker container cannot access the processes of another container.

This model of least access is aided by the implementation of Linux namespaces to isolate
processes from one another. Running Docker on Windows via a virtualized Linux
environment hosting the engine is one way that Windows users can reap the benefits
of this technology.

Note
If you would like to learn more about how native Windows containers
achieve process and Hyper-V isolation, you can refer to the Windows
Containers website at https://docs.microsoft.com/en-
us/virtualization/windowscontainers/manage-
containers/hyperv-container.

https://man7.org/linux/man-pages/man7/daemon.7.html
https://man7.org/linux/man-pages/man7/daemon.7.html
https://docs.docker.com/v17.09/engine/userguide/networking/
https://docs.docker.com/v17.09/engine/userguide/networking/
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

342 Introduction to Container Security

Docker Engine, when deploying a container, will generate a number of these Linux
namespaces. They are as follows:

• The process ID (PID) namespace

• The mount (MNT) namespace

• The networking (NET) namespace

• The inter-process communication (IPC) namespace

• The Unix time-sharing (UTS) namespace

• The USER namespace

We'll now look at each of these in a little more detail to understand the security
implications.

PID namespaces
As you may know, each process in the Linux operating system resides in a tree structure
and is assigned an ID called the PID. The PID namespace allows the separation of
processes. By implementing the PID namespace, we can prevent our container from
viewing the system processes. Aside from the security benefit of this, it has the additional
benefit that system PIDs, such as PID 1, can be reused.

If you want to grant your containers access to system processes, you will, therefore, have
to encode this into your Dockerfile explicitly. This follows the previously mentioned
principle of granting the least access. So, think carefully before you implement any
features this way.

MNT namespaces
The MNT namespace allows a container to have access to its own collection of root
directories and file mounts. This method allows you to create a private filesystem and so
segment which files are accessible to which container, reducing the risk of a compromised
container getting access to files it shouldn't or accidental file corruption.

Docker Engine and containerd – Linux security features 343

NET namespaces
Docker, as we discussed briefly, has a variety of networking tools at its disposal. By
default, when you deploy a container, it will have its networking features enabled. This
will allow them to make outgoing connections. By default, the container will use the same
DNS servers as configured by the host and have a MAC address assigned to it. The IP
address in IPv4 and IPv6 can be set using the relevant flags. If you chose to override the
MAC address via the available flag, you should be aware that there is no mechanism to
automatically check whether the MAC address is unique. Duplicate MAC addresses will
likely result in a MAC address collision.

If you wish to disable networking as part of your security posture for a particular
container, this can be achieved by overriding the settings using the --network flag when
you execute the run command. Setting the flag to none will disable all external access,
leaving only the loopback address accessible.

A number of other configuration options are available to customize your container
network settings, and these can be accessed under the help menu.

IPC namespaces
The IPC namespace is used to provide separation of named shared memory segments,
along with message queues.

IPC namespaces are locked down to prevent processes in one namespace accessing those
within another. The benefit of this model is that a container can safely deploy a set of
services that require memory segment utilization, such as the types of applications you
might find in FinTech.

UTS namespaces
The UTS namespace allows us to set the domain and hostname for processes running in
the namespace. This namespace is a default feature, so all containers have it enabled, and it
allows you to assign a different hostname per container.

USER namespaces
The final category of namespace we will discuss is the USER namespace. This is a
mechanism that allows you to map users and groups to a container. Once mapped,
users can be assigned different user IDs.

344 Introduction to Container Security

One extremely useful benefit of this feature from a security perspective is that it helps to
prevent your container from being leveraged for privilege escalation attacks. Examples of
how to achieve this include not only running applications as an unprivileged user but also
mapping the root user within the container to a less-privileged user at the Docker host
level. Therefore, processes running at root within the container have this privilege level
limited to the container they operate within.

A note on cgroups
Linux cgroups are a mechanism used to control the number of processes that can be
spawned and so prevent a system from suffering severe performance loss or worse, crashing.

By using cgroups, we can set a limit to the number of processes that can be spawned
through the fork() and clone() operations. Once a limit is hit, it's not possible to
generate any further processes under the cgroup. Additionally, cgroups support the ability
to set CPU and memory limits. You can read about their comprehensive list of options at
https://www.man7.org/linux/man-pages/man7/cgroups.7.html

Using this feature enables you to have more granular control over the system resources
that your container is using. In an unfortunate event where a container is compromised,
preventing it from over-consuming system resources is a useful mechanism to limit the
damage until you can remediate the problem.

Having looked at how Docker Engine and containerd use best practices from Linux, let's
now move on to look at some best practices that we can use that also implement some of
the features we have discussed so far.

An overview of best practices
In the following chapters, we will be delving into techniques to ensure your containers are
secure. You'll be happy to know that there are a number of best practices that you can use
off the bat to ensure that you are thinking about and implementing security at the most
basic level.

The first thing to understand, and that you may have already picked up on, is that Docker
containers, compared to VMs, do not provide the same level of security. We gave an example
earlier of how a VM can be used for malware analysis due to its sandboxed environment.
Therefore, from a security perspective, you should approach containers as a mechanism that
is used to optimally package system resources and applications for development and delivery
(with some very useful security built in) but not treat them as a micro-VM.

With this in mind, let's look at some best practices we can apply when using Docker.

https://www.man7.org/linux/man-pages/man7/cgroups.7.html

An overview of best practices 345

Keeping Docker patched
As with any application you run, it is important to keep Docker patched. Unpatched
security vulnerabilities in Docker Engine, for example, can be leveraged by nefarious
actors who gain access to one of your containers in the case of a breach.

The Docker Desktop application in macOS, for example, provides an option to check for
updates, and the preferences allow you to automatically check for updates:

Figure 12.3 – Example of checking for updates on macOS

When implementing Docker, you may also wish to manually upgrade the software based
on security patches or whether you are using the Docker Enterprise edition.

A list of each patch/release can be found on the Docker website with a list of the features
added or issues addressed:

https://docs.docker.com/engine/release-notes/

You will notice here that some of the items are listed with the CVE prefix, which stands for
common vulnerabilities and exposures. The CVE list is a collection of publicly disclosed
security issues. When a security problem with Docker is identified, it may be listed in
the CVE database, and then when it is fixed, the CVE ID for the issue will be listed in the
release notes.

As a final note on this topic, also remember to keep the underlying operating system that
Docker is running on patched and hardened, too.

https://docs.docker.com/engine/release-notes/

346 Introduction to Container Security

Securing the Docker daemon socket
In addition to ensuring that Docker is regularly patched, we also need to safeguard the
daemon socket. This means locking it down to prevent an attacker from using it to gain
root access to the underlying host. Docker security documentation provides an extensive
guide to doing this; however, we will summarize it here.

Note
To read more about the daemon socket, review the official documentation
on Docker's website at https://docs.docker.com/engine/
reference/commandline/dockerd/#daemon-socket-
option.

You can find the domain socket file on Linux systems at /var/run/docker.sock.

This file should only be accessible via root permissions or accounts in the Docker group.

We are now going to set up encrypted access over TLS/SSL to the Docker daemon to add
another layer of protection.

As you may be aware, unencrypted TCP sockets are enabled through using the -H
flag and include the TCP protocol, host, and port number. The port for unencrypted
connections by convention is 2375. Going forward, if you have been using that method,
we recommend you stop and use the built-in TLS/SSL support.

Before we can connect over the secure channel between our client and host, we need to
generate the following files:

• Certificate authority (CA) private and public keys

• Server key

• Server certificate signing request (CSR)

• Signed certificates

• Client key

• Client CSR

Depending on your operating system, the steps to generate these OpenSSL files will be
different. The Docker website provides a handy list of steps for this process. Windows
users can use a Linux VM to perform these steps as well:

https://docs.docker.com/engine/security/https/

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-socket-option
https://docs.docker.com/engine/security/https/

An overview of best practices 347

Implementing encryption can be achieved in the following fashion by enabling the Docker
daemon to use the CA, server certificate, and server key. In this example, we will run the
daemon on 0.0.0.0 and on port 2376:

dockerd --tlsverify --tlscacert=tlsca.pem
--tlscert=tlsservercert.pem --tlskey=tlsserverkey.pem
-H=0.0.0.0:2376

Now, we can test connecting to it. First, make sure that the client certificate, key, and CA
are available. Then, run the following command:

docker --tlsverify --tlscacert=tlsca.pem --tlscert=tlscert.pem
--tlskey=tlskey.pem -H=$HOST:2376 version

You should now be able to successfully connect to the Docker daemon over the
encrypted channel.

Docker won't fix bad code
Docker can do a lot to help negate the effects of security problems, but it cannot fix bad
code. The same best practices apply when writing applications that apply when deploying
on an EC2 instance, VMware, or any other platform.

A great place to start with application security is the OWASP top 10. OWASP also offers a
number of helpful cheat sheet guides for application security development, in addition to
their standard documentation.

You can find them at https://cheatsheetseries.owasp.org/.

Always set an unprivileged user
We touched on the subject of the USER namespace and how it can aid you in securing
your Docker setup. One practice you should implement is to make sure you configure
containers to use an unprivileged user where possible. Doing this from the start will help
you get into good habits.

The two easiest methods to do this are as follows:

• Add a user to the Dockerfile.

• When running Docker, add the --user flag to the run command.

https://cheatsheetseries.owasp.org/

348 Introduction to Container Security

In the first case, this can be achieved in the following fashion:

FROM alpine

RUN addgroup -S secureusers && adduser -S secureuser -G
secureusers

#Execute any root commands prior to needing to switch users

USER secureuser

With the second option, we can apply the flag to the command line as follows:

docker run --user 5000:500

Here, we have included the user ID and group ID.

Now that we have some basics in place, let's quickly review what we have learned before
we further dig into some of the fundamentals and get our hands dirty.

Summary
Over the course of this chapter, we learned about how VMs and Docker work in
conjunction with the underlying operating system, hardware, and each other.

Following this, we explored the various features that Docker has implemented from
Linux to bake in security concerns.

Finally, we looked at some best practices that apply regardless of the applications we are
developing. Now, let's jump into some security fundamentals and learn about Docker
image security, commands, and the build process in the next chapter.

13
Docker Security

Fundamentals and
Best Practices

As we wish to ensure that our containers are hardened for both development and
production environments, there are many techniques and best practices we can implement
to achieve this task. In many cases, it is simply a case of modifying existing commands
or behaviors you've learned throughout this book to add an extra layer of security to
your practices.

Within this chapter, we will be building upon the foundational knowledge we have of
Docker and container security. This will involve hands-on exercises in building and
modifying containers. Covering subjects as varied as image security through the usage
of Docker commands and signed images, upon completing the following exercises,
you should feel comfortable in applying these skills in a real-world development and
DevOps environment.

350 Docker Security Fundamentals and Best Practices

In this chapter, we're going to cover the following main topics:

• Docker image security: Here, we will learn about image security, including using
minimal base images, signed and verified images, and avoiding data leakage.

• Security around Docker commands: Here, we will gain an understanding of how
to use Docker commands securely, including using COPY instead of ADD when
building out Docker images.

• Security around the build process: Here, we will learn about the best practices for
build processes, including multi-stage builds.

Let's get started by looking at Docker image security and some best practices we
can implement.

Technical requirements
For this chapter, you will need to have access to a Linux machine running Docker.
We recommend that you use the setup you have been using so far in this book.

In addition to this, you will need an account on Docker Hub in order to access images located
there. If you have not already set one up, you can do so at https://hub.docker.com.

If you have an existing container or service running SSH, this can be used later in this
chapter. If not, do not worry. We provide a link to an example Dockerfile from the official
Docker documentation you can use instead if you wish.

Check out the following video to see the Code in Action:

https://bit.ly/30WkOPE

Docker image security
As you have worked through the material in this book, you will have become increasingly
familiar with images. These are a fundamental building block in the Docker ecosystem.
An image is the combination of the filesystem and parameters that, when run by Docker,
becomes your container.

Having made sure Docker itself is patched and secured, that our application code is
robust, and that when we run the containers they will have limited privileges, we also want
to ensure that the image itself is secure.

One of the benefits of Docker is that services such as Docker Hub allow us to share and
reuse container images. However, we need to be careful that what we are downloading is
secure and has not been uploaded by a malicious party:

https://hub.docker.com
https://bit.ly/30WkOPE

Docker image security 351

Figure 13.1 – Docker Hub displaying example repositories

You should always be cautious, however, even with legitimate/official websites.

There have been several cases in the past where malicious images have been uploaded
to Docker Hub, with the hope that these will be downloaded by unsuspecting parties.
Examples of malicious code have included images purporting to be related to tomcat,
mysql, and cron. A compromised container containing a kernel exploit, for example,
could lead to an attack on the underlying host.

Kromtech Security Center in one particular time frame in 2018 found 17 malicious
Docker images on Docker Hub. You can read about this situation in their report,
Cryptojacking invades cloud. How modern containerization trend is exploited by attackers,
at https://kromtech.com/blog/security-center/cryptojacking-
invades-cloud-how-modern-containerization-trend-is-exploited-
by-attackers.

https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers
https://kromtech.com/blog/security-center/cryptojacking-invades-cloud-how-modern-containerization-trend-is-exploited-by-attackers

352 Docker Security Fundamentals and Best Practices

Your first step, therefore, in any project when using third-party tools and code should
be to verify that the source of these artifacts is trustworthy. It is also important to stay
on top of security alerts to make sure you do not inadvertently download images with
damaging flaws.

In the case of Docker images, once you are confident of the validity of origin, you can then
add additional verification processes to check the artifact itself is safe. In fact, you may be
familiar with this concept with other technologies you use, such as verifying a file integrity
hash when downloading an OS.

One mechanism to help ensure that the source of what we are downloading is legitimate
is to use the signed Docker Certified images served from Docker Hub. As we saw with the
Kromtech report, we can never be too careful, even with legitimate hosts like Docker Hub.
These certified images have been reviewed by the host and certified as authentic. Many
popular application environments are available on Docker Hub, including the following:

• Splunk Enterprise Edition: https://hub.docker.com/_/splunk-
enterprise

• Datadog: https://hub.docker.com/_/datadog-agent

• Dynatrace: https://hub.docker.com/_/dynatrace

• Oracle Java 8 SE (Server JRE): https://hub.docker.com/_/oracle-
serverjre-8

You can find more at the Docker Hub website here:

https://hub.docker.com/search?q=&type=image&certification_
status=certified

Let's now take a hands-on approach to checking the legitimacy of an image, including
interacting with Docker Hub. Load up your command-line tool and then move on to
the next section.

Image verification
The first concept we need to understand is that of content trust. This is the security model
in Docker applied to images.

Docker's Content Trust (DCT) model at its heart is a mechanism to use digital signatures
to prove the integrity of images hosted on platforms such as Docker Hub. With DCT
enabled, users can then ensure they do not pull untrusted images (that is, unsigned
images) unless they make explicit exceptions.

https://hub.docker.com/_/splunk-enterprise
https://hub.docker.com/_/splunk-enterprise
https://hub.docker.com/_/datadog-agent
https://hub.docker.com/_/dynatrace
https://hub.docker.com/_/oracle-serverjre-8
https://hub.docker.com/_/oracle-serverjre-8
https://hub.docker.com/search?q=&type=image&certification_status=certified
https://hub.docker.com/search?q=&type=image&certification_status=certified

Docker image security 353

By default, Docker has DCT disabled, which will allow you to pull images without
verifying the safety of them. This opens you up to the risk of downloading an artifact
that is infected with malware or another security vulnerability.

Thankfully, we can use the DOCKER_CONTENT_TRUST flag to ensure that when we pull
an image, it is verified. This works by checking whether the image has been signed by its
creator or whether we are using an explicit hash associated with an image. To enable it
system-wide, include it in your .bashrc file as follows:

$ vim /<path>/<to>/.bashrc

export DOCKER_CONTENT_TRUST=1

:x

$ source /<path>/<to>/.bashrc

If, for any reason, you wish to interact with an untagged image, you can temporarily
disable the setting by using the --disable-content-trust flag in your command.

The DOCKER_CONTENT_TRUST flag can be limited to a single shell in addition to system-
wide coverage. To quickly enable it in a new shell when you spawn, type the following:

$ export DOCKER_CONTENT_TRUST=1

Just remember that when you close the shell, you will need to enable the flag again, or set
the system-wide property as explained earlier in the .bashrc file.

In practice, with this setting enabled system-wide (or in an individual shell), it means that
command-line operations that interact with a tagged image will need to have one of two
things. These can be either content hashes appended to the image or the image itself will
need to be one that has already been signed in advance through the use of signing keys.

Signing keys
Signing keys are a set of components that are used to sign an image. They
consist of an offline key, which forms the basis for DCT to trust an image tag,
along with a tagging key for signing tags themselves and finally, a set of server-
managed keys for enforcing security guarantees.

So, from a practical perspective, what exactly does this result in when running
commands? Let's see a quick example using the image called shipitclicker.

354 Docker Security Fundamentals and Best Practices

If we wish to pull the shipitclicker image while the DOCKER_CONTENT_TRUST flag
is enabled, we can append a hash to the image using the @ symbol. Consider the following,
for example:

$ docker pull dockerfordevelopers/shipitclicker@
sha256:b20caa037ac2c36a9845f719ebb12952bbb3e749d4b05fcdcd8d
38201a7de795

As long as the content hash
sha256:b20caa037ac2c36a9845f719ebb12952bbb3e749d4b05fcdcd8d382
01a7de795 exists, the command will succeed. Otherwise, imagine that we wanted to pull
the latest version of this image or version number, such as the following, for example:

$ docker shipitclicker:v0.1

In this scenario, we then would need to ensure that the image had been signed, or the
command will fail. The pull command is not the only operation that interacts with
trusted content. Others include the following:

• $docker push

• $docker build

• $docker create

• $docker run

We can test this out now. We've created the shipitclicker image in advance for you
to pull from Docker Hub, located in the Packt Docker book repository at https://
hub.docker.com/r/dockerfordevelopers/shipitclicker.

You can attempt to pull this image using the following command:

$ docker pull dockerfordevelopers/shipitclicker:v0.1

You should now see a request denied error similar to the following:

Error: remote trust data does not exist for docker.io/
dockerfordevelopers/shipitclicker: notary.docker.io does
not have trust data for docker.io/ dockerfordevelopers/
shipitclicker

https://hub.docker.com/r/dockerfordevelopers/shipitclicker
https://hub.docker.com/r/dockerfordevelopers/shipitclicker

Docker image security 355

Ensuring that this flag is enabled in an automated build process is also a must, as it
prevents unverified images from making their way into your environments by accident.

This very simple approach of using DCT can go a long way to ensuring you avoid using
untrusted content from Docker Hub. Now let's look at the base images a little closer.

Using minimal base images
So we know that we are pulling in signed images or specific hashes, but is there anything
we need to consider around the type of image we are using in our containers? The answer
to this is yes.

You should ask yourself when using an image whether the whole OS, complete with all
its pre-installed packages, is required? In some cases, this can introduce vulnerabilities,
as you may be including unpatched libraries and other code in your container. The best
approach, therefore, is to start with something basic and then build up from there. This
will help to reduce your overall attack surface.

Let's grab a minimal image from Docker Hub now so we can work with it throughout the
rest of this chapter. The image we are going to use is shipitclicker:v0.1, which we
just tested with DOCKER_CONTENT_TRUST and is based on Alpine.

Note
If you are interested in checking it out and haven't already done so, the Alpine
image is only 5 MB in size and is part of the Official Images program on
Docker Hub. These are a set of repositories that provide all the essential basics,
while also ensuring all security patches are applied regularly. In addition to
this, the official Docker images are also signed, so can therefore guarantee some
of the security precautions that were just discussed around image verification
in this chapter.

The first thing you will need to do is disable DOCKER_CONTENT_TRUST in your
current shell, or grab the hash of the image so that you can now pull it. If you wish to
disable DOCKER_CONTENT_TRUST, you can do this via the following command in your
current shell:

$ export DOCKER_CONTENT_TRUST=0

Just remember, if you shut the shell down and create a new one, you will need to run
this command again. We recommend you leave the flag set to 1 and instead pull the
hash version.

356 Docker Security Fundamentals and Best Practices

You can find the hash under the Tags tab for the repository, as the following
link demonstrates:

https://hub.docker.com/r/dockerfordevelopers/shipitclicker/
tags

From here, select the digest value displayed under the version you are interested in.
This will then display the sha256 hash, such as the following, for example:

DIGEST:sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c
64992ef69804dbf01

The following screenshot shows where you can find the hash for use in your docker
pull commands:

Figure 13.2 – Information on a Docker image

The portion of the string containing sha256 onward can then be used in the pull request:

$ docker pull dockerfordevelopers/shipitclicker@
sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef
69804dbf01

You should now see something similar to the following in your terminal:

sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef
69804dbf01: Pulling from dockerfordevelopers/shipitclicker

Digest: sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c
4992ef69804dbf01

Running the docker images command should now show it present on your system.

When it comes to building your own images, another consideration is using the
.dockerignore file to help keep the overall container size down.

https://hub.docker.com/r/dockerfordevelopers/shipitclicker/tags
https://hub.docker.com/r/dockerfordevelopers/shipitclicker/tags

Docker image security 357

With the .dockerignore file included in the build context directory, any files listed
in the file will not be added to the image. This, as you will see shortly, has another handy
benefit. From an image size perspective, and in light of our general drive cleanliness as
a best practice, we can use it to avoid binaries such as Python .pyc files and similar
being accidentally added to the image. The following example .dockerignore file
demonstrates how we can do this:

 # ignore .pyc and .git files/directories

.git

**/*.pyc

This approach is very simple, and if you are used to using .gitignore files, it will
already be familiar.

Now we have our minimal base image, we should take a look at some methods to restrict
privileges when we create containers, so as to prevent accidental security breaches.

Restricting privileges
In the previous chapter, we looked at assigning a user and a group to restrict privilege
escalation when starting the image. We can build on this by also using a useful parameter
called no-new-privileges.

The flag leverages a feature of the underlying Linux kernel known as no_new_privs.
The basic idea of this feature was to ensure that any processes, including child processes,
cannot gain additional privileges when spawned. With this option enabled, applications
will not be able to use features such as setuid.

Note
The setuid feature allows users to run and execute certain programs with
escalated privileges. This poses a security threat, as an attacker can exploit it to
execute code and programs they would not normally have access to.

Processes spawned via this feature also cannot unset the no_new_privs flag on
themselves, thus preventing an attacker from disabling this feature and escalating
privileges via setgid or setuid.

To enable the no-new-privileges feature when running a container, you will need to
include the --security-opt flag and add it as a parameter.

358 Docker Security Fundamentals and Best Practices

Let's try this out with the image we just downloaded:

$ docker run -d -it --security-opt=no-new-privileges
dockerfordevelopers/shipitclicker@sha256:39eda93d15866957
feaee28f8fc5adb545276a64147445c64992ef69804dbf01

The image should now be running in this mode. Remember that we can get the container
name by running the following command:

$ docker ps -a

Disabling the ability for a container to gain further privileges can also help us to prevent
container breakout. The term breakout is used to refer to a case when a compromised
container can access sensitive data on the underlying host. In a scenario where a container
is exploited and the exploit allows the attacker to elevate privileges (if, for example, the
previously discussed flag wasn't included), they may then attempt to pivot and compromise
other containers through Docker, or exploit the host itself for some other gain.

As we will learn later in this chapter, there are ways to harden our system further, by
restricting the privileges (known as capabilities) of a container when we run it.

We'll now look at some more flags we can add, along with some other techniques to
ensure that the data we are using remains safe.

Avoiding data leakages from your image
In Linux, we can implement users and groups to ensure that only those who need access
to read and write files can do so. This fine-tuned system of access permissions is important
to help prevent data leakage. Another useful method we can use to protect the filesystem
used by the image is to set the filesystems and any volumes to a read-only state.

Let's start by looking at a volume we may want to mount. We're going to run a new
container based off the shipitclicker image and mount a local filesystem to it. In
order to achieve this, in addition to the --mount flag, we will include a readonly
statement within the run command.

Start by creating an empty folder on your local OS, which we can use to mount
the filesystem:

$mkdir testfiles

Docker image security 359

Next, try running the following command. It will mount the local folder and run the
container and attempt to write a file to the /mnt/testfiles directory called test.file:

$ docker run --mount source=testfiles,destination=/mnt/
testfiles,readonly dockerfordevelopers/shipitclicker@
sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef
69804dbf01 sh -c 'touch /mnt/testfiles/test.file'

You should now see an error informing you that the filesystem is read-only:

touch: /mnt/testfiles/test.file: Read-only filesystem

Using this mechanism, we can read files mounted to the container, but avoid a situation
where the container can write files back to it, thus accidentally writing keys or other data
into a directory on the host where they should not be located.

Note
An important point to remember is that the root account can override any file
permissions and thus can read any files in the container. If somebody gets root
access, they can exfiltrate your data!

What about protecting the filesystem in the container itself, for example, the /tmp
directory? Thankfully, Docker provides us with an easy method to do this, via the
--read-only flag. We can try this out and see how it works in practice. First, stop the
container we just created. Remember, you can get the container's name when you run the
docker ps -a command.

Once you have the container name, stop the container. We've used nervous_sinoussi
here to represent the name; replace this with your container's own unique name:

$ docker stop nervous_sinoussi

Now, we are going to recreate the container using the --read-only flag. Included in
the run command will be an example of trying to write a file called test to the /tmp
directory. With the --read-only flag enabled, we should get an error informing us this
is not permitted.

Let's remove the container we created previously in order to keep our environment clean:

$docker container rm nervous_sinoussi

360 Docker Security Fundamentals and Best Practices

So, try running the following command, including your container name:

$ docker run --read-only dockerfordevelopers/shipitclicker@
sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992e
f69804dbf01 sh -c 'echo "Testing" > /tmp/test'

You should now see an error such as the following:

sh: can't create /tmp/test: Read-only filesystem

Checking the list of Docker processes running, you will see the command executed and
exited. Let's clear this container out and try rerunning the command without the flag and
echo out the contents of the file we create:

$ docker run dockerfordevelopers/shipitclicker@sha256:
39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef69804
dbf01 sh -c 'echo "Testing" > /tmp/test | echo "File content
is: $(cat /tmp/test)"'

Confirmation that the filesystem was written to will now be displayed via the echo
command, which prints the contents of /tmp/test:

File content is: Testing

Therefore, to avoid this second scenario where the filesystem can be written to, always
include the --read-only flag.

Additionally, remember not to include sensitive information such as private keys and
API tokens inside the Dockerfile. There are a number of services you can use to avoid
this situation including HashiCorpVault, Docker Swarm, and services built into cloud
providers like AWS, such as SSM. Chapter 14, Advanced Docker Security – Secrets, Secret
Commands, Tagging, and Labels, will cover these in more detail.

With some of these best practices in mind, now let's look at the commands we would use
to build our own images and what security concerns we need to take into consideration.

Security around Docker commands
We will shortly be exploring the build process and how we can harden this from a security
perspective. In order to do this, however, we will first dig into some of the commands we
will use in a little more detail so we know which ones are safe to use, and which pose a
potential threat. Let's start by looking at the COPY and ADD commands.

Security around Docker commands 361

COPY versus ADD – what's the story?
When you come to build an image, you will want to copy files from the host over to it.
Typically, there are two methods for doing this. If you've done any research online, you
may have seen comments along the lines of "don't use the ADD command." So why is this?

The ADD command allows us to recursively copy files over to the image, much like a cp
-r command might do in Linux if we also piped it through zip when necessary. In short,
it expands archive files and creates any directories that don't exist on the target.

The input to the command is provided as a URL that can reference either a local or remote
(archive) file. As you can imagine, when pulling from a remote location, there are a
number of risks to consider

• Has the file been modified on the remote host and compromised?

• Do you know the origin of the file on the remote host?

• What considerations are there regarding Man-In-The-Middle (MITM) attacks?

An example of how this command might be used in a Dockerfile can be seen here:

ADD https://github.com/PacktPublishing/Docker-for-Developers/
archive/master.zip /tmp/ch13/

In this case, the zipped version of the repository hosted on this book's GitHub account
would be downloaded and expanded into the tmp directory.

Previously, we discussed using the .dockerignore file to help keep image sizes small.
In addition to this benefit, they can help to prevent files accidentally being added if you
include the ADD command. For example, you can ensure that configuration .ENV files or
similar are not copied over.

The COPY command works slightly differently to ADD. Like ADD, it copies files recursively.
However, you must provide an explicit source and destination folder. This means you
have to declare the locations the files are coming from and going to. A ZIP file copied
from A to B will still remain a ZIP file, and not be expanded while avoiding any
unintended consequences.

We can see an example of the syntax for this command as follows:

COPY master.zip /tmp/ch13

362 Docker Security Fundamentals and Best Practices

It is safer to break down the process of adding files into multiple steps, such as
downloading the files, scanning them, and then copying them over. When accessing
remote content, you should always use an SSL/TLS connection as well. This can prevent
MITM attacks being a problem by implementing a cryptographically secure and
authenticated communication route.

Note
An MITM attack is one where a malicious party secretly eavesdrops, relays, or
alters communications between two parties.

We've just looked at how the COPY command can avoid some of the issues of ADD, but
what about recursive copying? Are there risks here?

Recursive COPY – use with caution
Recursive copying, as you may be aware, copies the contents of one location to another,
and includes all the nested subfolders and files.

It's possible to accidentally copy files into the image you did not mean to when using the
recursive copy command in Docker.

Let's look at an example. In this following screenshot, we can see an example directory,
and included in it is a folder called oops and a my_secret file. This file contains a
hypothetical secret such as an API token that has been accidentally left in the folder:

Figure 13.3 – Example of a secret accidentally left in the source code

Security around Docker commands 363

Imagine that we were to run the following command:

COPY . .

Along with the parent directory in which all the folders reside, this secret file would also
be copied over, as the command will recursively copy everything, including the oops
directory and our nested file.

In order to avoid these negative effects, it is always a good practice to update your
.dockerignore file to ensure that sensitive file types are excluded.

As we noted earlier, if you are familiar with .gitignore, adding file types to your
.dockerignore file should be simple. Here are some quick rules to remember:

comment – the line is ignored

* # matches anything up to the * e.g. *.txt matches all text
files

**# matches any number of folders e.g. **/*.txt matches all
text files in build context

! #can be used to exclude a specific file e.g. !id_rsa.pub

tmp? # Any files or folder that start with tmp and include a
subsequent character are

 #ignored

/tmp # Will exclude any directories or files starting with
tmp directly below root

//tmp* # Similar to the above however works for two
directories below root

Using these mechanisms, you can ensure a variety of files are excluded from the container,
such as *.pem and *.ENV files.

Therefore, if you do plan to use recursive copying in your Dockerfile, ensure the
.dockerignore file is up to date and that you have audited your application to ensure
that everything being copied over is as intended.

Let's now turn our attention to the build process and how we can improve security at
this stage. Here, we will see how commands such as COPY come into play as part of a
larger process.

364 Docker Security Fundamentals and Best Practices

Security around the build process
We've seen how we can pull images and run them in a secure fashion. But what about
building our own container images? As you are now familiar with, some commands pose
additional risks when added to the Dockerfile. In this section of the chapter, we will look
at how we can secure the build process using the techniques we have learned so far. This
will include using a minimal base image (shipitclicker) as a starting point and then
using the security tweaks we have tested against this image when running it as a container.

Using multi-stage builds
As we previously covered, we need to be careful about secrets and ensure they are not
accidentally leaked. One way to avoid this is to not include them in the Dockerfile.
However, what about at the build stage? It's likely you will need to use private keys in
conjunction with the build process from time to time, for example, to pull code from a
remote service that is protected with public key encryption.

One method to use keys securely is through the use of multi-stage builds. This process
uses a disposable intermediate layer, which ensures that data isn't accidentally leaked into
the final build process. Let's look at a simple example. If you wish to run this code, you
will need to have an SSH server running and add your public key to it.

If you don't have one running already, to build a container that runs SSH, you can reuse
the Dockerfile located at https://docs.docker.com/engine/examples/
running_ssh_service/.

Next, let's take a look at an example of the multi-stage build process and how we can use it
in conjunction with accessing an SSH service.

Copy the following code to a new Dockerfile you can work with. On your container
running the SSH server, add a file called file.txt and then update the Dockerfile code
to include your user, IP/hostname, and the path to the file you just created.

Let's do a quick walkthrough of what is going on here before we build it:

FROM dockerfordevelopers/shipitclicker@sha256:39eda93
d15866957feaee28f8fc5adb545276a64147445c64992ef69804dbf01 as
intermediate

WORKDIR /test

ARG ssh_prv_key

RUN echo "$ssh_prv_key" > /tmp/id_rsa_test

https://docs.docker.com/engine/examples/running_ssh_service/
https://docs.docker.com/engine/examples/running_ssh_service/

Security around the build process 365

RUN chmod 600 /tmp/*

RUN apk add openssh

RUN scp -i /tmp/id_rsa_test user@server:/path/to/file.txt .

FROM dockerfordevelopers/shipitclicker@sha256:39eda93
d15866957feaee28f8fc5adb545276a64147445c64992ef69804dbf01

WORKDIR /test

COPY --from=intermediate /test .

This code does a number of things. First, it takes our shipitclicker image as an
intermediate build step.

Following this, it sets the WORKDIR to test and creates an ARG value called ssh_prv_key.
This ARG value will allow us to pass in the path to the RSA private key that will be needed
to connect to the remote SSH server.

Based upon our input, we echo it out as a file and then set permissions on the file to 600.
Then, we install openssh so we can use the scp command-line feature. The interesting
bit comes next.

The RUN scp command takes the private key we injected and uses it to connect to the
remote server to retrieve a file called file.txt, which is then copied back to the present
directory. This step completes the first stage of the build.

In the second stage, we once again use the shipitclicker image and use the same
WORKDIR, that is, test. The final line, however, is where the magic happens. It copies
from the intermediate step we completed in step 1, the file that was retrieved from the
remote server, and replicates it to the final build stage.

As you can see from the result, the final container does not contain the private key we
used to retrieve the file from the remote SSH server, and thus will not accidentally end
up in the final container.

To build out this Dockerfile once you have a remote location to copy the file from, you can
use the following command:

$docker build --build-arg ssh_prv_key="$(cat ~/.ssh/id_rsa_
test)" .

As you can probably guess from looking at this, the ssh_prv_key build argument is
simply the value of our private key concatenated out into the variable.

366 Docker Security Fundamentals and Best Practices

Once we have built our container, when we run it, we want to ensure that it does not
consume more resources than required. This can help to mitigate damage in the case
of an unfortunate security breach.

As a final note, multi-stage builds can also aid in keeping the images small, which is a
desirable quality, as already discussed. Let's now take a look at how we limit capabilities
and resource usage in Docker further.

Limiting resources and capabilities when
deploying your builds
You can limit a variety of resources available to your container, including CPU usage and
memory. This can help prevent denial-of-service attacks. In this scenario, the container is
exploited to use up the underlying resources of the host, thus causing overall performance
degradation, or worse, the underlying host to crash.

Additionally, access control mechanisms are an important piece of the puzzle to
ensure that as well as limiting the resources used by a container, we also limit privileges
and access.

Limiting resources
In order to avoid the types of DOS attacks mentioned earlier, we can use a combination of
flags to restrict how much of the underlying host resources a container can consume.

The first area we will look at is memory. Docker gives us the ability to restrict how much
memory a container can use through a combination of hard and soft limits.

We can set a hard limit on a container using the -m/--memory flag. This will set aside
the amount you specify and will not allow the container to exceed this. In the case that
a container does become compromised, the hard limit feature will prevent a runaway
malicious process from consuming more and more of the underlying host's RAM.

When setting the memory limit, ensure that you adjust it in line with what your
application is intended to do. Too little memory may prevent an issue if the container
were compromised, but may, in turn, not be enough to run your application.

The –memory flag can also be combined with the –memory-reservation flag.
This second feature allows you to specify a soft limit smaller than the –memory one.
When Docker discovers that the underlying host has an issue, such as low memory, it
will activate this feature. Once activated, Docker will attempt to restrict the amount of
memory available to the container.

Limiting resources and capabilities when deploying your builds 367

As with memory, we also need to be aware that an exploited container can also consume
more CPU resources than expected, which can, in turn, have negative side effects for
the host.

Note
If you are using Docker 1.12 or lower, you will need to use the –cpu-
period and –cpu-quota flags instead of the –cpus flag.

Using the –cpus flag, you can define how many CPUs a container has access to. If you
have multiple CPUs (for example, four) and set the value to –cpus="2", the container is
restricted to only being able to use up to two CPUs and no more.

We've seen how we can use some flags to restrict the resources a container has available
to it at runtime. Let's look at some additional flags we can use to further restrict potential
security risks when we run our container.

Dropping capabilities
Some techniques you can use to help avoid other risks include dropping capabilities when
running containers. Capabilities are a feature of Linux that divide privileges associated
with the root/super user account into individual components.

The list of capabilities that a container usually has are chown, dac_override, fowner,
fsetid, kill, setgid, setuid, setpcap, net_bind_service, net_raw, sys_
chroot, mknod, audit_write, and setfcap. To understand what each capability
allows, please refer to the Linux man-pages documentation at http://man7.org/
linux/man-pages/man7/capabilities.7.html.

To remove capabilities such as chown, you can use the –cap-drop flag when running a
container. Refer to the following for an example:

$ docker run -d -it --cap-drop=chown --security-opt=no-new-
privileges dockerfordevelopers/shipitclicker@sha256:39eda
93d15866957feaee28f8fc5adb545276a64147445c64992ef69804dbf01

Removing powerful capabilities that your production containers do not need can help
harden you against attacks that seek to break out of the container.

That ends this chapter on techniques to improve your fundamental security posture.
Before we move on to some more advanced techniques, let's quickly re-cap what we
have learned so far.

http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html

368 Docker Security Fundamentals and Best Practices

Summary
In this chapter, we have reviewed some basic steps you can take to ensure that when you
pull images and build and run containers, your attack surface will be reduced.

We learned about how to ensure that we only pull safe images from Docker Hub.
Additionally, we saw how we can use read-only permissions to prevent write access
to filesystems.

Multi-stage builds were discussed to show how we can break down our container build
process into steps to ensure that SSH keys and similar are not accidentally included in the
final product. The .dockerignore file was briefly reviewed from a security perspective,
and finally, we discussed how to restrict system resources and implement access control
through removing capabilities.

In the next chapter, we will look at how we can automate some of the security processes
by using scanning tools and implement monitoring.

14
Advanced Docker

Security – Secrets,
Secret Commands,

Tagging, and Labels
We've seen several examples so far of the need to use files that contain secrets. We can
think of secrets as a generic term for the types of sensitive data that would typically
be stored in config and ENV files, such as database access credentials or API tokens.
Docker provides a handy method for securing this type of data and sharing it. For legacy
systems using swarm mode instead of Kubernetes, having an understanding of how to
apply security to these environments is important, as you may have to retroactively fix
environments in your career.

Along with managing secret data, we can also use labels and tags to help ensure we are
working with security in mind. You've seen tags already in the previous chapter and we
will explore these further later in this chapter.

Additionally, we will explore how metadata labels can be used to provide extra
information about a container and how to use the security.txt file.

370 Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

In this chapter, we're going to cover the following main topics:

• An introduction to securely storing secrets in Docker

• What secrets are and why we need them

• A walk through the Raft log file

• Adding, editing, and removing secrets from a swarm

• Using tags more effectively to ensure we use secure images

• Implementing metadata labels and the secrets.txt file

Let's get started by looking at what Docker secrets are and why they are beneficial.

Technical requirements
For this chapter, you will need to have access to a Linux machine running Docker. We
recommend that you use the setup you have been using so far in this book.

In addition to this, you will need an account on Docker Hub in order to access images
located there. If you have not already set one up, you can do so via the following link:

https://hub.docker.com

Finally, in order to explore using Docker secrets, you will need to set up at least two
containers and use Docker's swarm feature. You can read more about swarm mode here:
https://docs.docker.com/engine/swarm/

Check out the following video to see the Code in Action:

https://bit.ly/3iDsjkA

Securely storing secrets in Docker
An inevitable part of working with complex, networked software projects is having to deal
with secret data. This can be a range of things such as private keys for SSH access, SSL
certificates, passwords, and API keys.

In order to share secrets securely with multiple containers, you will, of course, need to
avoid attempts to store the secret in the container itself in a fashion that allows a potential
attacker to access it. This layer of abstraction is not only useful for managing different sets
of credentials based upon the environment, but also provides an extra layer of security
should the container be compromised in some fashion.

https://hub.docker.com
https://docs.docker.com/engine/swarm/
https://bit.ly/3iDsjkA

Securely storing secrets in Docker 371

Thankfully, Docker comes with a useful feature for achieving this goal. It is simply
called Docker secrets. In order to use this feature or the Kubernetes equivalent, you
will need to implement swarm services or Kubernetes itself. As we have recommended
elsewhere in this book, you may wish to avoid swarm services if possible, in favor of
Kubernetes. However, you may have to work with legacy systems where they are in use,
so understanding secrets in this case is important. With this in mind, containers should,
therefore, run as a service.

Mirantis, having purchased Docker, has pledged open-ended support for Docker Swarm
as of February 2020 (https://www.mirantis.com/blog/mirantis-will-
continue-to-support-and-develop-docker-swarm/). You may be familiar
with this concept from Chapter 5, Alternatives for Deploying and Running Containers in
Production; however, if you need a refresher you can follow the steps provided on the
Docker website for getting started with swarm mode as an alternative to Kubernetes if
you wish:

https://docs.docker.com/engine/swarm/swarm-tutorial/

The secrets feature in both swarms and Kubernetes allows you to manage data such as
passwords and API keys centrally and then securely share it with the containers of your
choice. This avoids having to hardcode values in an insecure fashion within the container,
or having to allow all containers access to the sensitive data.

Additionally, secrets, when shared with other containers in a swarm by Docker secrets, for
example, are transferred over a secure connection encrypted via SSL/TLS. Let's now take
a deeper look at how Docker secrets work at a fundamental level, including an important
feature called the Raft log.

The Raft log
In order to share content between swarm nodes, we need to ensure there is both
consensus and fault tolerance. In short, this means that all nodes in the network agree on
some set of values to maintain a consistent state.

The algorithm that Docker Swarm uses is called Raft. You can read more about the
technical details in the paper In Search of an Understandable Consensus Algorithm,
available at the Raft GitHub account:

https://raft.github.io/raft.pdf

https://www.mirantis.com/blog/mirantis-will-continue-to-support-and-develop-docker-swarm/
https://www.mirantis.com/blog/mirantis-will-continue-to-support-and-develop-docker-swarm/
https://docs.docker.com/engine/swarm/swarm-tutorial/
https://raft.github.io/raft.pdf

372 Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

Docker Swarm uses a file known as the Raft log file as part of its implementation of
the algorithm. The benefit of this file is that it can be used for storing secrets, which
subsequently have to be shared across 1 to n nodes. When a secret is added via the
docker secret command, a value is added to the Raft log file and is then made
available via a temporary filesystem, as seen in this example:

/run/secrets/apikey

And this in essence is how a secret can be shared between multiple Docker containers in a
swarm. Reading the secret in an application will depend on what language you are using.
For example, if you were modifying the ShipIt Clicker application you would be using
JavaScript. If we had a secret such as an API key file, we could access it directly in the
JavaScript source code using the fs module, as the following example demonstrates:

fs.readFile('/run/secrets/apikey', 'utf8')

 As you can see, this is a fairly simple approach.

Although this file is encrypted, we can also add an extra layer of security through locking.

Swarms can be locked using the --autolock flag in order to prevent an attacker from
decrypting the Raft log file.

Refer to the Docker documentation for more details:

https://docs.docker.com/engine/swarm/swarm_manager_locking/

Now you have a basic understanding of how the Docker secrets feature works, let's look at
how we use it.

Adding, inspecting, and removing secrets
We will now begin exploring the various commands associated with secrets.

Feel free to also substitute the commands in this section with their Kubernetes equivalent
if you wish to try those instead. You can find the list of kubectl commands at
https://kubernetes.io/docs/concepts/configuration/secret/.

Or you can refer back to Chapter 8, Deploying Docker Apps to Kubernetes, where we
created, described, retrieved, and edited secrets via kubectl.

In relation to Docker, we will start by creating secrets first.

https://docs.docker.com/engine/swarm/swarm_manager_locking/
https://kubernetes.io/docs/concepts/configuration/secret/

Adding, inspecting, and removing secrets 373

Creating
The create command is how we add a new secret to the Raft log file. Its basic format
is the following:

docker secret create [OPTIONS] SECRET [file|-]

You may notice this is similar to the command in kubectl, which is kubectl
create secret.

When creating a secret, we can use the -l flag to add a label to the secret, such as
the following:

docker secret create -l key=val api_key -

This allows us to label values, so we know which environment they are destined for. For
example, we can add a key value for the environment such as Quality Assurance (QA),
Development (DEV), and Production (PROD).

A secret can also be a file. For example, if we want to add a private key, we might do
the following:

docker secret create my_key ./id_rsa

If you wish to add/update a secret to a running service, you will need to use the
--secret-add flag on the update command. See the following, for example:

docker service update --secret-add <secret> <service>

Having added a secret, let's explore how we can now review it.

Inspecting
There are a number of techniques we can use to examine Docker secrets. To list any
secrets that have been added to the Raft log file, we can use the ls command:

$ docker secret ls.

On running this command, the current secrets will be displayed, as shown in the
following example:

ID NAME CREATED UPDATED

123345 my_key 2 weeks ago 2 weeks ago

374 Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

We can gather more information about this secret using the inspect command.

The format for this is the following:

docker secret inspect [OPTIONS] SECRET [SECRET...]

So, using the preceding example, we could run the command as follows:

$ docker secret inspect my_key

This will then return a JSON object containing the ID, version created and updated
dates, and the spec object containing the labels and name. An example of this output
is now provided:

[

 {

 "ID": "ae4kfwe6s56sgop7vn1kxap59",

 "Version": {

 "Index": 10

 },

 "CreatedAt": "2020-01-26T07:15:29.674382561Z",

 "UpdatedAt": "2020-01-26T07:15:29.674382561Z",

 "Spec": {

 "Name": "my_key",

 "Labels": {

 "env": "dev",

 "rev": "20200126"

 }

 }

 }

]

We've added and inspected secrets, so now we shall explore how to delete them when we
no longer need them.

Deleting
Removing a secret is as easy as adding one, and uses the same syntax as its Linux
equivalent for removing files, that being rm.

Secrets in action – examples 375

The format of the command is as follows:

docker secret rm SECRET [SECRET...]

In Kubernetes, the equivalent would be kubectl delete secret.

To remove our example secret from earlier, we would run the command as follows:

docker secret rm my_key

If you wish to remove a secret being used by a current service, you will need to use the
--secret-rm flag with the update command, such as in the following example:

docker service update --secret-rm <secret> <service>

As you can see, adding, removing, and inspecting secrets is simple. Let's now try
the preceding commands out using the SSH file from Chapter 13, Docker Security
Fundamentals and Best Practices.

Secrets in action – examples
It's now time to try out the commands we just reviewed (create/inspect/ls/rm).
Make sure your setup is configured to use swarms. You can also re-use the image from the
previous chapter for this section. This can be obtained using the following command:

$ docker pull docker pull dockerfordevelopers/shipitclicker@
sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef
69804dbf01

Important note
Remember, you can use the docker swarm init command to initialize
the swarm. Use the --advertise-addr flag with the IP address of your
initial container as well.

Previously, we used the following command to add an SSH private key for use with SCP to
a single container:

$ docker build --build-arg ssh_prv_key="$(cat ~/.ssh/id_rsa_
test)" .

376 Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

To add this key to our swarm, we would use the following command:

$ docker secret create -l env=dev ssh_prv_key ~/.ssh/id_rsa_
test

Here, we have created a new secret with the same name as the build argument we used
previously, and we output the content of our private key to it. We also included a label,
which has a key=val pair denoting the environment we are working in. In this case,
it is the development environment.

Let's now check that we have added it correctly. We can do this by running the
ls command:

$ docker secret ls

ID NAME CREATED UPDATED

To5jj... ssh_prv_key 1 minutes ago 1minutes ago

Here, we see the ID of the secret and the name. This looks good! Now let's execute the
inspect command on the key using the NAME value:

$ docker secret inspect ssh_prv_key

You should now see a JSON object displayed, similar to the following:

[

 {

 "ID": "to5jjgshjqaddhf56ty89rss42",

 "Version": {

 "Index": 17

 },

 "CreatedAt": "2019-11-25T07:11:03.335174723Z",

 "UpdatedAt": "2019-11-25T07:11:03.335174723Z",

 "Spec": {

 "Name": "ssh_prv_key",

 "Labels": {

 "env": "dev",

 "rev": "20181125"

 }

 }

 }

]

Docker tags for security 377

If you have multiple containers in your swarm, then you can grant them access to this
secret. The following example demonstrates how we can send the secret we just created to
a new container that uses our example image:

$ docker service create --name second_container
--secret source=ssh_prv_key,target=second_ssh_prv_
key,mode=0400 dockerfordevelopers/shipitclicker@
sha256:39eda93d15866957feaee28f8fc5adb545276a64147445c64992ef
69804dbf01

Here, the --secret source value is set to the name of the Docker secret we created.
We are then going to store it in the variable defined in the target value. For clarity, we
have called this second_ssh_prv_key. The mode has been set to 0400 to make
the secret accessible and then chosen our tagged image as the source image for the
create command.

To confirm the secret is available, we can check the temporary filesystem we discussed
earlier. For this, you will need to grab the container ID of the new container. You can use
the docker ps command for this.

Next, use the container ID as follows:

$ docker exec -it <id> cat /run/secrets/second_ssh_prv_key

You should see that the contents of the secret are the same as those you passed into the
first container, namely the private SSH key we have been testing with so far.

Other options
In addition to using native Docker and Kubernetes tools, a variety of other
options exist for storing secrets in cloud-based systems. AWS, GCP, and
Azure offer native support, and HashiCorp provides a comprehensive
cloud-agnostic secrets-managing mechanism in the form of HashiCorp
Vault, at https://www.vaultproject.io/.

We are now going to build upon our knowledge of Docker secrets by understanding how
tags can be used.

Docker tags for security
We've just seen how we can make sure we are sharing secrets securely between containers
in a swarm. In Chapter 12, Introduction to Container Security, we gained an appreciation for
how to use tags combined with other security features, to ensure we use the correct image.

https://www.vaultproject.io/

378 Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

Now, we'll see how these two worlds can intersect by using tags with secrets and labels so
we can annotate which environment a given secret and tag are used in.

As a good security practice, we should always use different secrets for different
environments. For example, the passwords for database access in your development,
staging, and production instances should not be the same. Typically, as part of your
development process, you will likely be using newer versions of containers in research,
development, and QA environments compared to production.

We can use Docker tags to help ensure that once we have credentials/secrets set up for
a development environment, we are also pulling in the right image as well; that is, the
one we intended to use for development purposes with the development credentials we
created. Using fixed tags provides a layer of security through immutability and prevents an
experimental image that may contain security flaws from accidentally being used outside
of the development environment.

Typically, a methodology such as semantic versioning (https://semver.org/)
should be in place. This will result in tags using a format that communicates the level
of change you should expect when using the release. Major version numbers indicate
a backward-incompatible set of changes. A minor release is usually a new feature to an
existing release. Finally, we have a patch release, which could be a small security fix or
similar. A typical format might be the following:

1.1.2

When choosing the tag, in line with your versioning system, choose the one that most
closely matches the environment you want to deploy in. For example, choose :1.1.2-
dev over :1.

In this instance, you know you will be pulling the patch release. You can then deploy
credentials via docker secret, specifically for this build and for the environment you
are deploying it to. One useful method is to pair up the secret label with the tag version
you are using, as in the following code, for example:

$docker secret create --label ver=1.1.2-dev \

 --label env=dev \

 ssh_prv_key ~/.ssh/id_rsa_test

https://semver.org/

Using labels for metadata application 379

In this example, a secret has been created (an SSH key) and we know it should be used
with tag version 1.1.2 and that this is a development environment. Here, the labels
provide annotations to give us the context of the secret. Simple techniques like this
can help to provide more information to an engineering team and avoid a production
credential from accidentally being used with an experimental development container
or in the wrong environment.

We've seen how we can combine tags, secrets, and labels. Let's now look at other
labeling options.

Using labels for metadata application
Metadata labels are a way of annotating your containers with extra information to provide
development teams with useful facts. This can be useful for other developers on your
team when they need to understand key features of the image, such as its version and
a description.

We saw with the docker secrets command how we could add labels via the
command line. With metadata labels, we can also add labels to the Dockerfile so that
when we build out a new container, this information is baked in.

A label takes the following format:

LABEL key=value

Building upon our preceding example, we can set the version inside of our container via
the Dockerfile as follows:

LABEL "version"="1.1.2-test"

LABEL "description"=" Development environment container for
testing the newest security patch. Not for production release
yet"

Once you've built out a container, you can view any of the metadata you have added using
the docker inspect command:

"Labels" :{

 "version"="1.1.2-test",

 "description"=" Development environment container for
testing the newest security patch. Not for production release
yet"

}

380 Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels

When releasing software for public consumption, you should consider also linking to
a security.txt file. Like a code of conduct or contributors' guide, this provides a
mechanism to alert security researchers on how to responsibly disclose any security
issues they may find with your software.

You can automatically generate a security.txt file from the following website:

https://securitytxt.org/

Save this file to your code repository, and then link it via LABEL in your Dockerfile as in
the following example:

LABEL "security.txt"="https://respository.example.com/my_
project/security.txt"

That wraps up our guide to secrets, tags, and labels. Let's recap what we have learned
so far.

Summary
In this chapter, we learned all about Docker secrets, the counterpart to Kubernetes secrets.
We saw how this feature can be used to securely share sensitive data between containers in
a swarm if you need to work with this technology instead of Kubernetes. We also learned
this can be useful for segmenting sets of credentials based upon the environment you are
working in. Finally, we walked through how we can create, inspect, and delete them.

Following this, we looked at tags once again and discussed how these can be used to
ensure the right image is being pulled from the right environment. A combination of
environment-based secrets and tags were shown to help you secure your development
processes further.

Finally, we discussed how containers can be annotated with metadata labels. This also
included using the security.txt file.

In the next chapter, we will explore how third-party tools can be used to help secure our
containers and enforce some of the practices we have learned so far.

https://securitytxt.org/

15
Scanning,

Monitoring, and
Using Third-Party

Tools
So far, we have explored how we can manually configure our Docker containers to
ensure security is a priority. In this chapter, we will look at some of the tools available
to automatically scan our images and monitor our production loads. This will provide a
jumping off spot for you to expand your Docker-based projects further, based upon your
cloud provider if you use one.

We will start off by looking at DevOps solutions such as Anchore Engine for scanning
images for security vulnerabilities, review docker stats and learn how it is useful,
set up cAdvisor for local monitoring, and understand how Datadog can be used as a
cloud-based solution for gathering container stats.

This chapter will also briefly review AWS security options including GuardDuty for
monitoring production environments and cover some of the features that Microsoft Azure
offers. You'll gain an understanding of what tools are available to Google Cloud Platform
(GCP) users and deploy the Datadog Agent to your container environment.

382 Scanning, Monitoring, and Using Third-Party Tools

In this chapter, we're going to cover the following main topics:

• Scanning and monitoring – cloud and DevOps security for containers

• Securing your containers using AWS

• Securing your containers using Azure

• Securing your containers using GCP

Let's get started by looking at techniques for monitoring containers, scanning for
security issues.

Technical requirements
For this chapter, you will need to have access to a Linux machine running Docker.
We recommend that you use the setup you have been using so far in this book.

In addition to this, you will need an account on Docker Hub in order to access images
located there. If you have not already set one up during previous chapters, you can do so
via https://hub.docker.com:

In order to use many of the programs explored in this chapter, you will need to download
them from the web. We'll provide links in each section where relevant so you know where
to get them from. In some instances, you may need to set up an account in order to use a
service or download a tool.

Check out the following video to see the Code in Action:

https://bit.ly/30VfWu8

Scanning and monitoring – cloud and DevOps
security for containers
Before we begin to look at specific tools for monitoring and scanning your containers,
we shall first define exactly what we mean by the term monitoring in a security context.

As you have seen throughout this book, containers provide a mechanism to serve up
applications in small self-contained environments. However, we need to ensure that
released software does not suffer from performance degradation while running. For
example, we need to know if a container is consuming a lot of resources and thereby
impacting the overall performance of our environment. You may already have some
understanding of this concept from Chapter 10, Monitoring Docker Using Prometheus,
Grafana, and Jaeger.

https://hub.docker.com:
https://bit.ly/30VfWu8

Scanning and monitoring – cloud and DevOps security for containers 383

Additionally, monitoring allows us to look for anomalies that may indicate that the system
is under attack or has been compromised in some fashion. While elsewhere in this book
monitoring has been focused on ensuring system stability and performance, we will use
those concepts from a security angle. Security scanning applications are an important part
of any tool chain, but may not pick up every issue, especially newer exploits. Therefore,
looking for negative side effects of a malicious software's presence is an important defense
mechanism. As such, combining scanning prior to release, monitoring post release, and
incident response are important parts of running a production container system.

A note on sandbox environments
One concept that may also be useful to understand is a sandbox environment.
A sandbox provides an environment for isolating and testing untrusted code.
These environments are useful for reviewing containers you believe may be
infected with malware without risking impacting live systems or development
environments your team uses.

In this chapter, we are going to start by looking at the scanning stage in the CI/CD
(DevOps) pipeline, before investigating how monitoring tools can be used in conjunction
with them to protect our systems. Let's get started with Anchore Engine for scanning
our containers.

Scanning using Anchore Engine
When building out a DevOps pipeline, scanning our containers for security issues is
an important consideration. One of the final steps in a typical CI process is to build the
container itself, having tested the software we intend to deploy to it. As you have seen
throughout this book, we have experimented with a number of technologies deployed
within containers. While there are many security tools for each language, whether it be
JavaScript or PHP (which are sadly out of scope for this book), we shouldn't fail to lessen
our manual security burden at the container level by using automated tools.

While we have seen the importance of pulling down signed images, it certainly doesn't
hurt to scan them. As the saying goes, better safe than sorry!

If we discover that an image we have included in our build is compromised or a
tag violates an internal work security policy or compliance, we know that the whole
build is thus vulnerable to attack and can in turn prevent it from reaching our
production environment.

384 Scanning, Monitoring, and Using Third-Party Tools

Therefore, we can think of the security scanning process as the following two
interrelated steps:

1. Looking at the image we are including in the Dockerfile, and also the
configuration in the Dockerfile itself.

2. Ensuring that the container matches any internal requirements that we may
have such as not using blacklisted images. In this case, the image may have not
been blacklisted purely for security reasons, but also for performance.

In order to accommodate these two factors, we need a container scanning tool
that allows us the flexibility of defining our own policies on top of standard
security considerations.

One of the most popular open source tools on the market that allows us to
meet both these goals is Anchore Engine. You can find the official website at:
https://anchore.com/engine/.

In addition to a large number of features we will shortly investigate, it is also an open
source project. So, if you wish to contribute to it, make sure to check out the GitHub
repository at https://github.com/anchore/anchore-engine.

At its heart, Anchore is an engine for scanning containers for security issues. It can easily
be hooked into your CI pipeline to provide vulnerability and policy scanning prior to
deployment. Let's take a look at getting it installed and running a basic scan against the
latest Alpine image.

Installing Anchore Engine
Installing Anchore Engine is straightforward. First, we need to start with the engine
portion of the product. Let's create and navigate into a new directory called aevolume:

$ mkdir ~/aevolume

$ cd ~/aevolume

Next, pull down the latest version of Anchore Engine:

$ docker pull docker.io/anchore/anchore-engine:latest

We can now run Docker's create command:

$ docker create --name ae docker.io/anchore/anchore-
engine:latest

https://anchore.com/engine/
https://github.com/anchore/anchore-engine

Scanning and monitoring – cloud and DevOps security for containers 385

Use curl to grab the docker-compose.yaml
You can also copy the docker-compose.yaml via curl using:
curl https://docs.anchore.com/current/docs/engine/
quickstart/docker-compose.yaml > docker-compose.
yaml

Copy over the docker-compose file to your current directory and then remove the ae
folder that was created:

$ docker cp ae:/docker-compose.yaml ~/aevolume/docker-compose.
yaml

$ docker rm ae

Finally, run the pull and up commands as follows:

$ docker-compose pull

$ docker-compose up -d

Next, we need to install the CLI that can interact with the engine. You have several options
here, including the Docker container:

$ docker pull anchore/engine-cli:latest

You can also use one of the methods listed here, which will install the CLI locally onto
your machine: https://github.com/anchore/anchore-cli.

The Python version of the CLI can be installed using the following commands:

apt-get update

apt-get install python-pip

pip install anchorecli

If you have pulled the container image and wish to use the default credentials, run the
following command to be dropped into the CLI shell:

$ docker run -it anchore/engine-cli

In the following section will be use the Python command line version of the CLI to
interact with the engine.

https://docs.anchore.com/current/docs/engine/quickstart/docker-compose.yaml
https://docs.anchore.com/current/docs/engine/quickstart/docker-compose.yaml
https://github.com/anchore/anchore-cli

386 Scanning, Monitoring, and Using Third-Party Tools

You can now execute the CLI commands against the engine from within the container
shell, or from the CLI if you've installed it manually. The following example demonstrates
calling the endpoint via the CLI, passing in the credentials and endpoint, and requesting
the system status information:

$ anchore-cli --u admin --p foobar --url http://localhost:8228/
v1/ system status

You should now see some status results in your console indicating the engines are up:

Service analyzer (anchore-quickstart, http://engine-
analyzer:8228): up

Service simplequeue (anchore-quickstart, http://engine-
simpleq:8228): up

Service policy_engine (anchore-quickstart, http://engine-
policy-engine:8228): up

Service apiext (anchore-quickstart, http://engine-api:8228): up

Service catalog (anchore-quickstart, http://engine-
catalog:8228): up

Engine DB Version: 0.0.12

Engine Code Version: 0.6.1

Now let's review the scanning step.

Adding and scanning images
Let's try out Anchore Engine by running a scan on the latest Alpine container. You'll
remember that Alpine is the base operating system that our shipitclicker image
version 0.1 has been using so far. Therefore, confirming this is free of issues is a good
first step.

When we run a scan, it checks the image against what is known as a set of policies.
Policies in Anchore are collections of whitelists and checks that the image must pass.

The process to kick off a scan is as follows:

1. Let's add the Alpine image using the CLI command by executing the following:

$ anchore-cli --u admin --p foobar --url http://
localhost:8228/v1/ image add alpine:latest

Scanning and monitoring – cloud and DevOps security for containers 387

2. When this completes successfully, you should see something similar to the
following. This tells us the image was added:

Image Digest: sha256:ddba4d27a7ffc3f86dd6c2f92041af252a1
f23a8e742c90e6e1297bfa1bc0c45

Parent Digest: sha256:ab00606a42621fb68f2ed6ad3c88be54397f
981a7b70a79db3d1172b11c4367d

Analysis Status: not_analyzed

Image Type: docker

Analyzed At: None

Image ID: e7d92cdc71feacf90708cb59182d0df1b911f8ae022d29
e8e95d75ca6a99776a

Dockerfile Mode: None

Distro: None

Distro Version: None

Size: None

Architecture: None

Layer Count: None

Full Tag: docker.io/alpine:latest

Tag Detected At: 2020-02-04T16:22:19Z

3. Our image hasn't been analyzed by Anchore yet. This is where we extract and
classify metadata. So, let's move the image into this state as follows:

$ anchore-cli --u admin --p foobar --url http://
localhost:8228/v1/ image wait alpine:latest

4. Once complete, we can now run a vulnerability scan on the Alpine image using this
command. Here, we are checking for operating-system-level package vulnerabilities
using the os property. In addition to os, we have the option of checking for
non-os (this includes language-specific packages such as Python PIP and Ruby
GEM types) and all:

$ anchore-cli --u admin --p foobar --url http://
localhost:8228/v1/ image vuln alpine:latest os

If everything is successful and the image passes, you will not see any vulnerabilities
displayed on the screen.

388 Scanning, Monitoring, and Using Third-Party Tools

If a vulnerability is found, it will come back in the following format:
Vulnerability ID Package Severity Fix
Vulnerability URL

CVE-1111-1111 package.zip Negligible None https://
somewebsite

By default, the basic Anchore installation policy will scan for CVE issues and Dockerfile
problems, such as those we have explored in the previous few chapters.

Now you have the scanning engine in place, you can begin to build out your own policies
and scan against them. For more information, refer to the Anchor policy documentation:

https://docs.anchore.com/current/docs/using/cli_usage/
policies/

Also, to see examples of policies you can copy and modify, check out the Anchore Hub
page on GitHub:

https://github.com/anchore/hub

Whether defining custom policies or reusing others, these JSON files can be added using
the CLI:

$ anchore-cli policy add /path/to/image/policy/bundle.json

Once added, they can then be activated using the activate command:

$ anchore-cli policy activate <Policy ID>

If you need to know a policy ID, you can use the policy list command from the CLI:

anchore-cli --u admin --p foobar policy list

As an experiment, you might like to run the default or your own policies against the other
images in the Docker for Developers Docker Hub repository:

https://hub.docker.com/r/dockerfordevelopers/shipitclicker/tags

This covers the basics of getting up and running. If you wish to add scanning to your
DevOps pipeline, Anchore integrates with a number of CI/CD systems, including
the following:

• CloudBees

• GitHub

• GitLab

https://docs.anchore.com/current/docs/using/cli_usage/policies/
https://docs.anchore.com/current/docs/using/cli_usage/policies/
https://github.com/anchore/hub
https://hub.docker.com/r/dockerfordevelopers/shipitclicker/tags

Scanning and monitoring – cloud and DevOps security for containers 389

• CircleCI

• Codefresh

Integration instructions for each platform can be found on the Anchore website:

https://docs.anchore.com/current/docs/using/integration/ci_cd/

Anchore also includes a plugin for Jenkins, so you can experiment with integrating it with
the Jenkins setup we completed earlier in this book:

https://plugins.jenkins.io/anchore-container-scanner/

Let's quickly mention another tool before we move on to looking at monitoring tools.

A brief mention of Chef InSpec
Another tool you may be interested in reviewing when considering scanning container
infrastructure is Chef InSpec.

Chef InSpec is an open source framework like Anchore but geared toward testing and
auditing all of your applications and infrastructure. This includes running auditing tests
against Docker. If you are looking for an all-in-one solution for infrastructure beyond just
your container environment, this may meet your needs.

Note
A complete walk-through of InSpec is out of scope of this book, however, if
you would like to read more about it, you can find further information in the
document portal at the InSpec website: https://www.inspec.io/
docs/.

In summary, we can scan our containers before deploying them to check if they are secure.
Let's now move on and look at Docker stats for container monitoring.

Native monitoring locally using Docker stats
Now we have deployed our containers and believe that they are secure, we should
consider using monitoring tools to review performance and help investigate problems
when they arise.

https://docs.anchore.com/current/docs/using/integration/ci_cd/
https://plugins.jenkins.io/anchore-container-scanner/
https://www.inspec.io/docs/
https://www.inspec.io/docs/

390 Scanning, Monitoring, and Using Third-Party Tools

Before exploring some of the complex and comprehensive tools available in the cloud, we
can use Docker's native stats tool to get a quick overview of the container's health. This
can be useful if you are quickly testing a container in an isolated sandbox environment
due to a suspicion that some software on it may be using up resources in an anomalous
fashion – for example, if you suspect a web application may be infected by a coin miner
that wasn't picked up at the CI stage.

Note
Running a container in a VM sandbox, as well as allowing you to probe
performance metrics, allows you to safely scan it for security issues without
risking infecting the underlying machine.

To access data on your container's performance, you can execute the following command:

$ docker stats <container id>

For each container, you will see CPU usage, memory usage, the memory limit (MEM), %
NET I/O, and finally, BLOCK I/O. The following example demonstrates a typical output:

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O BLOCK I/O

ebb12326ae94 1% 73.63 MiB/490 MiB 15.02% 90.2 MB/275.5 MB 26.8
MB/873.7 MB

While the stats command is useful when doing local development or if you wish to
get a quick snapshot of how a system is performing, it would be nice to gather a more
comprehensive set of metrics. One method of achieving this is to use the Stats API. We'll
now briefly look at this and also consider some of the security implications around it.

Using the Stats API
The Stats API is a more comprehensive set of results, returned in JSON format, and is
available on the Docker socket:

$ /var/run/docker.sock

You'll remember from the Securing the Daemon Socket section in Chapter 12, Introduction
to Container Security, that we need to ensure an attacker cannot compromise the socket
and then use it to gain root access to the underlying host. We can do this by encrypting
the traffic using TLS. Refer back to this chapter if you need help in getting this set up.

The Stats API operates using a REST architecture and thus takes HTTP requests
as queries. You can see examples on the official documentation site at
https://docs.docker.com/engine/api/latest/.

https://docs.docker.com/engine/api/latest/

Scanning and monitoring – cloud and DevOps security for containers 391

Requests to the API can be made from the command line using netcat or curl, with a
third-party tool such as Postman, or you can write your own script using Python, Bash,
or similar, to hit the endpoint.

Using curl as an example, you can replace the value in this command with your own
and execute it:

$ curl -sk <options> https://<ip>:<port>/<rest endpoint>
--cert <path/to/cert.pem> --key <path/to/key.pem -cacert <path/
to/ca.pem>

You should see a JSON object returned with the results. These are more comprehensive
than using the Docker command, and may be more useful if you wish to save them as
JSON files for further analysis, for example, if gathering data on a container you may
believe is compromised.

In addition to the native Docker tools, Google provides Container Advisor (cAdvisor)
for gathering metrics on your container. We will now briefly take a look at this, as a third
option for local monitoring.

cAdvisor for container monitoring
cAdvisor is a Google-managed software project for providing container insights into
container performance and resource usage. The source code for cAdvisor is available on
GitHub at the following URL:

https://github.com/google/cadvisor

To test it out, you can use the standard demo container provided by Google. Simply run
the following command to pull it down from Google Container Registry and start it up:

$ sudo docker run \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:ro \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

 --volume=/dev/disk/:/dev/disk:ro \

 --publish=8080:8080 \

 --detach=true \

 --name=cadvisor \

 gcr.io/google-containers/cadvisor:latest

https://github.com/google/cadvisor

392 Scanning, Monitoring, and Using Third-Party Tools

You can now access cAdvisor's web portal on port 8080 of localhost. If you have other
services running on this port, such as Jenkins, you can change the cAdvisor port in the
preceding command.

Try accessing http://localhost:8080/containers/ and you should see the
dashboard shown in the following screenshot:

Figure 15.1 – cAdvisor dashboard

Scanning and monitoring – cloud and DevOps security for containers 393

From this dashboard, you can explore a variety of metrics ranging from filesystem and
memory to CPU and processes. Monitoring these for poor performance can be a useful
tool to monitor security issues as we have noted elsewhere.

For example, if resource usage seems to be abnormally high, this can be an indication of
software that it isn't functioning properly, or a potential security issue, such as malware
running on the container.

All of this is very useful for small local systems and perhaps a quick investigation of
a potentially compromised container, but what about monitoring our containers in a
production environment and gathering actionable data if we believe a security issue may
exist? Well, we can look at one of the many third-party tools that exist that allow us to
gather metrics and build comprehensive dashboard and alerting systems.

To demonstrate this, we are going to look at one of the most popular tools on the market
for gathering monitoring data for Kubernetes and Docker environments, Datadog.

Aggregating monitoring data in the cloud with
Datadog
For commercial projects where environments are deployed to a cloud environment or on
your own data center, we need a platform that is capable of aggregating data from a variety
of inputs and then presenting it in a fashion you can work with.

Datadog is one such product capable of achieving this and provides plugins for both
simple Docker and advanced Kubernetes-based environments. It is also supported
on a number of platforms, including major cloud providers such as AWS. Datadog
(https://www.datadoghq.com/) offers a free 14-day trial so you can experiment
with their container features and decide if they meet your needs. You'll find this a worthy
rival to some of the tools explored in earlier chapters.

So, now let's take a look at the agents you can run for Kubernetes and Docker on your
nodes to start sending data back to Datadog.

Datadog agents for Docker and Kubernetes
Once you have an account set up at https://www.datadoghq.com/, you can install
the Datadog Agent on a test node to monitor performance.

https://www.datadoghq.com/
https://www.datadoghq.com/

394 Scanning, Monitoring, and Using Third-Party Tools

Tip
We'd recommend starting with a test environment before trying to deploy the
production. We also recommend that, before deploying to your production
environment, you familiarize yourself with the Docker and Kubernetes agent
documentation at: https://docs.datadoghq.com/agent/
docker/?tab=standard.

The following examples will cover installing Docker Agent and also the Kubernetes agent.
Each example uses a cluster with only a single node for demonstration purposes. You
are welcome to reuse the Docker container from Chapter 12, Introduction to Container
Security, or one of the other containers used elsewhere in this book.

Installing and monitoring Docker Agent
Your first task is to install the Docker Agent on the host. The Datadog Docker Agent is
responsible for collecting the metrics and passing them back to your account dashboard.

Installing the agent is now incredibly easy. From within your host, execute the following
Docker command to include the Datadog Agent:

$ docker run -d --name dd-agent \

 -v /var/run/docker.sock:/var/run/docker.sock:ro \

 -v /proc/:/host/proc/:ro \

 -v /path/to/cgroup/:/host/sys/fs/cgroup:ro \

 -e DD_API_KEY={API_KEY} \

 datadog/docker-dd-agent:latest

Based upon your OS version, and the version of the agent you have installed, you can then
confirm it is running by checking the list of commands here:

https://docs.datadoghq.com/agent/guide/agent-
commands/?tab=agentv6v7#agent-status-and-information

From the Datadog dashboard you should now see data being returned. You can now
begin to explore the metrics that come back from your containers, and set alerts when
issues arise:

https://docs.datadoghq.com/agent/docker/?tab=standard
https://docs.datadoghq.com/agent/docker/?tab=standard

Scanning and monitoring – cloud and DevOps security for containers 395

Figure 15.2 – Example of the Datadog dashboard showing metrics

The next area you may be interested in exploring is the Security option in the menu.
Select this and follow the wizard to set up security monitoring. Once complete, you can
enable and disable security Detection Rules, as the following screenshot demonstrates:

Figure 15.3 – Detection rules in Datadog

For more on setting monitors and alerts for containers in Datadog, please refer to the
documentation here:

https://docs.datadoghq.com/monitors/

Let's now look at the Kubernetes agent equivalent.

Installing and monitoring the Kubernetes agent
As with our previous Docker example, we need to install the agent first. To do this, we can
deploy a DaemonSet via Helm. The following instructions use Helm version 3.

https://docs.datadoghq.com/monitors/

396 Scanning, Monitoring, and Using Third-Party Tools

Tip
Remember to run add helm repo add stable, https://
kubernetes-charts.storage.googleapis.com, if you haven't
already, to add stable to your repositories.

You can download the official Helm file (values.yaml) containing the configuration
from GitHub at (https://github.com/helm/charts/blob/master/stable/
datadog/values.yaml).

Next, you will need to grab your API key from your account. With the API key, we can
now complete the installation process. In the following command, replace {API_KEY}
with your own:

helm install datadog-agent -f values.yaml --set datadog.
apiKey={API KEY} stable/datadog

You should see a confirmation in your terminal that the deployment was successful:

Figure 15.4 – Datadog Agent deployment

Now you have deployed the agent, it will start to collect metrics from Kubernetes:

Figure 15.5 – Example dashboard metrics

As part of this installation process, the kube-state-metrics Helm chart is
also included. This Helm chart installs the kube-state-metrics service
(https://github.com/kubernetes/kube-state-metrics).

https://kubernetes-charts.storage.googleapis.com
https://kubernetes-charts.storage.googleapis.com
https://github.com/helm/charts/blob/master/stable/datadog/values.yaml
https://github.com/helm/charts/blob/master/stable/datadog/values.yaml
https://github.com/kubernetes/kube-state-metrics

Scanning and monitoring – cloud and DevOps security for containers 397

A variety of data is collected by this service and you can view the exposed metrics at
https://github.com/kubernetes/kube-state-metrics/tree/master/
docs.

For example, you may be interested in the metrics around secrets, so you can see what
data is being gathered by reviewing the Kubernetes log collection document. You can also
enable log collection via Helm. To do this, update the datadog-values.yaml file to
set the enabled and containerCollectAll key-value pairs both to true. Once you
have done this, run helm upgrade to update your Datadog Helm chart.

With the metrics from your nodes being sent back to the Datadog default Kubernetes
dashboard, you can start to configure alerting and monitoring and explore the many
features Datadog offers.

For example, you can create a custom dashboard that displays the number of security
signals discovered:

Figure 15.6 – Dashboard list

We've briefly seen how we can use third-party tools to monitor our containers in a
security context. This can help to alert us about security issues that may manifest their
symptoms as performance problems.

Let's now look at some of the tools provided by the major cloud platforms out there.
Both Datadog and the CI/CD scanning pipeline we discussed can be integrated with
the providers listed in the following sections, to provide an even more comprehensive
security posture.

https://github.com/kubernetes/kube-state-metrics/tree/master/docs
https://github.com/kubernetes/kube-state-metrics/tree/master/docs

398 Scanning, Monitoring, and Using Third-Party Tools

Securing your containers using AWS
There are a number of approaches we can take to securing containers in the cloud.
We will start by looking at Amazon Web Services, commonly known as AWS. This
section of the book assumes you are already familiar with working in AWS for hosting
container-based projects. If you use a different service, such as Azure or GCP, then
please feel free to skip ahead to the Azure container security and Google container security
options sections respectively. The topic of AWS and container hosting is also discussed
in Chapter 5, Alternatives for Deploying and Running Containers in Production, and
Chapter 8, Deploying Docker Apps to Kubernetes. Let's take a look at the tools used for
monitoring in AWS.

Security alerts for AWS with GuardDuty
A number of tools exist either in AWS or as third-party plugins that can be used to
monitor your Amazon environment hosting your container infrastructure.

Amazon's major tool for monitoring security issues within a VPC is GuardDuty
(https://aws.amazon.com/guardduty/).

We've seen how we can monitor container health with Datadog, but also saw how
important it is to monitor the environment that supports our infrastructure. Complex
production instances often use AWS services that sit outside of Elastic Kubernetes
Service (EKS), Elastic Container Service (ECS), and Elastic Compute Cloud (EC2).
Examples include the IAM roles you might have used to set up CloudWatch metrics or S3
buckets earlier in this book.

AWS GuardDuty provides a mechanism to monitor our cloud-based environment to
ensure that any attacks within the VPC that hosts our containers can be tracked down.
This is achieved by being integrated with CloudWatch, which allows us to trigger certain
security actions based upon the type of alert we see, such as triggering a lambda function,
or sending the events on to a third-party application or an S3 bucket for storage.

If you wish to enable GuardDuty, you will need a VPC setup hosting your containers, such
as the one configured in Chapter 8, Deploying Docker Apps to Kubernetes.

With this in place, you can now create a rule to allow CloudWatch to send events for
anything that GuardDuty discovers. This is especially useful for spotting whether
containers are generating suspicious network traffic in your VPC.

https://aws.amazon.com/guardduty/

Securing your containers using AWS 399

Using the AWS CLI, we can now enable CloudWatch to start sending the previously
mentioned events. To do this, execute the following command:

$ aws events put-rule --name PacktContainerSecurity --event-
pattern "{\"source\":[\"aws.guardduty\"]}"

With these events enabled, you have a number of options for next steps. You could,
for example, attach a lambda function that will handle events that are triggered and
act on them, or integrate CloudWatch GuardDuty events with your Datadog setup, as
outlined here:

https://github.com/DataDog/datadog-serverless-functions/tree/
master/aws/logs_monitoring

If you wish to write the results of CloudWatch GuardDuty events to the S3 bucket created
in Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger, in the Storing
logs for the long term with AWS S3 section, then you can attach the lambda function as an
event rule:

$ aws events put-targets --rule PacktContainerSecurity
--targets Id=1,Arn=arn:aws:lambda:<zone>:<ARN
digits>:function:<function>

An example of a lambda function that can be used to write to the S3 bucket is provided by
AWS at the following link:

https://aws.amazon.com/blogs/database/monitoring-your-security-
with-guardduty-in-real-time-with-amazon-elasticsearch-service/

Once you have modified this lambda to your needs and added it between the < and >
brackets, you can include the required permissions by running the following command:

$ aws lambda add-permission --function-name <function>
--statement-id 1 --action 'lambda:InvokeFunction' --principal
events.amazonaws.com

This should act as a jumping-off point for you to explore GuardDuty in more detail and
expand upon the setup you have created over the course of this book.

Another way to store findings to S3
You can also use the steps provided by AWS here for exporting GuardDuty
findings to an S3 bucket: https://docs.aws.amazon.com/
guardduty/latest/ug/guardduty_exportfindings.html

https://github.com/DataDog/datadog-serverless-functions/tree/master/aws/logs_monitoring
https://github.com/DataDog/datadog-serverless-functions/tree/master/aws/logs_monitoring
https://aws.amazon.com/blogs/database/monitoring-your-security-with-guardduty-in-real-time-with-amazon-elasticsearch-service/
https://aws.amazon.com/blogs/database/monitoring-your-security-with-guardduty-in-real-time-with-amazon-elasticsearch-service/
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_exportfindings.html
https://docs.aws.amazon.com/guardduty/latest/ug/guardduty_exportfindings.html

400 Scanning, Monitoring, and Using Third-Party Tools

Other security features in AWS you may be interested in checking out include
the following:

• Amazon Inspector for analyzing application security:
https://aws.amazon.com/inspector/

• AWS Security Hub for creating a unified central security center:
https://aws.amazon.com/security-hub/

• Amazon Detective for detecting potential security issues:
https://aws.amazon.com/detective/

Each of these services can be enabled through your AWS web console. Let's now move on
and take a look at some of the options available in Microsoft Azure.

Securing your containers using Azure
Azure is Microsoft's flagship cloud service and provides a number of tools you can use to
deploy and monitor Docker containers. This section assumes some familiarity with both
Azure and the Log Analytics service.

Container monitoring in Azure
Microsoft's Container Monitoring solution provides a mechanism to manage Docker and
Windows hosts from a single place and supports Kubernetes and Docker Swarm, both of
which have been discussed in this book.

If you are already using Microsoft's AKS service, you may be familiar with the monitoring
services available on the AKS page, however, it is also possible to monitor containers
across your whole Microsoft infrastructure in Azure.

To enable the monitoring of your containers, you will need to start by enabling the feature
by adding it to Log Analytics. You can do this by clicking the GET IT NOW button on the
Azure Marketplace website:

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/
microsoft.containersoms?tab=overview

Once this is complete, you can create a new Log Analytics workspace. From this new
workspace, record the name you chose, and also obtain the workspace ID and key. These
are available under the Advanced settings of your workspace and can be found under the
Connected Sources | Linux Servers options.

https://aws.amazon.com/inspector/
https://aws.amazon.com/security-hub/
https://aws.amazon.com/detective/
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft.containersoms?tab=overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/microsoft.containersoms?tab=overview

Securing your containers using Azure 401

For the purpose of this overview, we are going to assume an environment of a single host
as we did for Datadog running on Linux. In this scenario, you will need to install the Log
Analytics agent as follows:

$ wget https://raw.githubusercontent.com/Microsoft/OMS-Agent-
for-Linux/master/installer/scripts/onboard_agent.sh && sh
onboard_agent.sh -w <workspace_id> -s <workspace_key>

You can now restart the agent using the following command:

$ sudo /opt/microsoft/omsagent/bin/service_control restart
[<workspace_id>]

Now let's try running the monitor against the container as follows:

$ sudo docker run --privileged -d -v /var/run/docker.sock:/
var/run/docker.sock -v /var/lib/docker/containers:/var/lib/
docker/containers -e WSID="<workspace_id>" -e KEY="<workspace_
key>" -h=`hostname` -p 127.0.0.1:25225:25225 --name="omsagent"
--restart=always microsoft/oms

We can modify the event data we collect under the Data option of the Log Analytics
workspace. From here, we can add syslog and also enable the Linux Performance Counters.

Once the solution is enabled, you will see the Container tile appear. You can then drill
into the Container dashboard to gather metrics.

Now we have some monitoring in place, let's look at some security features that are
available in Azure for container-based platforms.

Using Security Center to secure your containers
in Azure
With monitoring in place, you can now move on to looking at Microsoft's container
security tools. The recommended native tool for achieving this in Azure is the Security
Center service.

You can sign up to add it to your Azure account by clicking the Turn on Security Center
button at https://azure.microsoft.com/en-us/services/security-
center/ and sign up for an Azure account at the same time if you wish.

https://azure.microsoft.com/en-us/services/security-center/
https://azure.microsoft.com/en-us/services/security-center/

402 Scanning, Monitoring, and Using Third-Party Tools

Once you have the feature enabled, you will see that Security Center provides a number
of features, including the following:

• Container runtime protection

• Vulnerability management

• Environment hardening

We'll take a look at each of these briefly.

Container runtime protection
Security Center's runtime protection for container environments allows you to generate
real-time threat metrics that can be used to plan remediation efforts. The threat detection
mechanism is broken down into two core areas:

• At the host level: At this level, we can monitor for containers acting in a malicious
or suspicious fashion, including an exposed Docker daemon or a privileged
command run within the container.

• At the AKS cluster level: AKS cluster-level threat detection analyzes the Kubernetes
audit logs for suspicious activity such as highly privileged role creation or a coin
miner being detected.

These two features combined can help to look at the layers of your container stack and
detect suspicious activity.

Vulnerability management
Here, you can use the Container Registries bundle to scan new images when they are
pushed. Security Center integration with third-party security provider Qualys scans the
container for some of the vulnerabilities we've discussed in this book.

When an issue is detected, it will be logged on the dashboard with a recommended
remediation step.

Environment hardening
Security Center provides a variety of tools for monitoring the security of your container
environment. One of the most important features is running bench mark tests, such as the
CIS Docker Benchmark, to alert you if your environment's configuration is weakened. An
example of a CIS control is checking whether containers have unrestricted network traffic
being exchanged between each other.

Securing your containers using GCP 403

You can download a copy of the CIS Docker Benchmark for free from the CIS website:

https://learn.cisecurity.org/benchmarks

Note
InSpec users may be interested in downloading the InSpec profile for CIS
Docker Benchmarking at https://github.com/dev-sec/cis-
docker-benchmark.

When Security Center spots a problem with your environment, it will flag it on the
Recommendations page of the dashboard for you, so you can start remediating the issue.

We've briefly looked at what is available in Azure. Let's wrap up with a quick tour of some
of GCP's features.

Securing your containers using GCP
Google offers a number of tools for monitoring containers in both Anthos and Google
Kubernetes Engine (GKE).

For those unfamiliar with Google's offerings, Anthos is a platform that is designed for
hybrid and multi-cloud deployment and allows you, among other features, to deploy
container-oriented platforms such as Kubernetes. GKE is Google's enterprise-grade
Kubernetes platform offered via Google Cloud Platform (GCP) and can be thought of as
a rival to Amazon's EKS. Googles Container Registry is a platform for storing images that
can be reused across your projects.

For the following sections, it is assumed that you have some prior knowledge of GCP. If you
would like to know more about getting started with GCP, please visit the following link:

https://cloud.google.com/gcp/getting-started

Let's start by looking at container security in GCP.

Container Analysis and Binary Authorization in GCP
A useful feature that Google offers is the Container Analysis scanner for Container
Registry. This feature allows you to scan images for security issues and exposes an API for
your use to pull down the metadata results. If you enable this feature on your account, it
will scan all new images that are pushed to the registry, however, for existing images you
will need to re-push them to trigger the scan.

https://learn.cisecurity.org/benchmarks
https://github.com/dev-sec/cis-docker-benchmark
https://github.com/dev-sec/cis-docker-benchmark
https://cloud.google.com/gcp/getting-started

404 Scanning, Monitoring, and Using Third-Party Tools

The two core features of Container Analysis are the following:

• Incremental scans: This handles the scanning of new images and generates the
metadata related to them.

• Continuous monitoring: The metadata generated by incremental scans is
continuously analyzed to see if it matches new sets of security vulnerabilities.

When running scans, a severity level for effective severity (the level defined by the
Linux distribution owner) and Common Vulnerability Scoring System (CVSS) score
is assigned to a matching issue.

Note
If you would like to know more about CVSS, please visit the CVSS website:
https://www.first.org/cvss/specification-document.

Severity levels are categorized as follows:

• Critical

• High

• Medium

• Low

• Minimal

These results are stored within your Container Registry account and can be viewed from
there. Additionally, they can be retrieved by the RESTful API. For an overview of the
REST commands available, please refer to the Container Analysis API documentation:

https://cloud.google.com/container-registry/docs/reference/rest

To explore Container Analysis further, you can enable it within your account and test it
out by pushing an existing image to the registry. For example, you could use one of the
shipitclicker projects we have used throughout this book. To do this, remember to
tag the image first:

$ docker tag <source_image> <hostname>/<project_
id>/<image>:<tag>

https://www.first.org/cvss/specification-document
https://cloud.google.com/container-registry/docs/reference/rest

Securing your containers using GCP 405

The hostname will be one of the four following storage regions:

• gcr.io (US)

• us.gcr.io (US)

• eu.gcr.io (EU)

• asia.gcr.io (Asia)

Then, to push to the registry, use the docker push command in the following format:

$ docker push <hostname>/<project_id>/<image>:<tag>

It's as simple as that, you can then pull the container image as and when you need to and
use the Container Analysis service. In addition to conducting analysis on containers, we
can enforce rules around using signed images to complement this.

Google have built a deploy-time security feature geared toward preventing untrusted
container images from making it into GKE. This is called Binary Authorization
(https://cloud.google.com/binary-authorization).

Binary Authorization is built around Kritis, which defines a specification for the
deployment authorization of Kubernetes applications. You can read more about it here
on GitHub:

https://github.com/grafeas/kritis/blob/master/docs/binary-
authorization.md

Using this service will allow you to enforce rules around requiring Docker images to be
signed by trusted authorities. This involves a process known as attestations. Effectively,
each container image has a unique hash (called a digest), which is signed by the signer.
You might remember we saw how digests can be used earlier in this book, in Chapter 13,
Docker Security Fundamentals and Best Practices.

When a digest is signed, this is known as an attestation. When we come to deploy a
container image, we can use a Binary Authorization attestor to verify the attestation. This
allows us to prevent unauthorized – that is, unsigned – container images being used.

If you are interested in learning more, to set up Binary Analysis you can follow the simple
steps documented here:

https://cloud.google.com/binary-authorization/docs/quickstart

Let's now take a look at another feature of GCP, Security Command Center.

http://gcr.io
http://us.gcr.io
http://eu.gcr.io
http://asia.gcr.io
https://cloud.google.com/binary-authorization
https://github.com/grafeas/kritis/blob/master/docs/binary-authorization.md
https://github.com/grafeas/kritis/blob/master/docs/binary-authorization.md
https://cloud.google.com/binary-authorization/docs/quickstart

406 Scanning, Monitoring, and Using Third-Party Tools

Understanding your attack surface with Security
Command Center
The final tool we will quickly take a look at is Google's Security Command Center. For
this, you will need to have set up an organization and project in GCP to work with. If not,
please refer back to the preceding section for a link to Google's own quick-start guide.

To enable Security Command Center for this new organization and project, follow
these steps:

1. Log into Cloud Console at https://console.cloud.google.com.

2. Add the following two roles via IAM &Admin in your web console, by selecting
your Project and Organization and then adding the permissions next to
your username: organizationAdmin (roles/resourcemanager.
organizationAdmin) from Resource Manager | Organization Administrator
and securitycenter.admin (roles/securitycenter.admin) from
Security Center | Security Center Admin.

3. Save the changes and navigate to the Security Command Center page in the
web console.

4. Select the organization you added in step 2 from the drop-down list called
Organization.

5. You will now be presented with the Enable asset discovery page.

6. Enable the All current and future projects option.

7. Asset discovery will now begin.

Once Security Command Center has finished scanning your resources, you will be able
to see the results on the dashboard. By default, anomaly detection is enabled, however,
Google provides a number of security sources you can integrate, or you can plug in
container-specific third-party services.

A full list of the potential sources you can integrate can be found here:

https://cloud.google.com/security-command-center/docs/how-to-
security-sources

With these two basic services set up, you are now free to explore integrating other
third-party providers such as Twistlock or experiment with these services to get
comfortable rolling them out to a production environment.

That concludes our whistle-stop tour of a few of the major cloud providers' offerings.
Let's summarize what we have looked at.

https://console.cloud.google.com
https://cloud.google.com/security-command-center/docs/how-to-security-sources
https://cloud.google.com/security-command-center/docs/how-to-security-sources

Summary 407

Summary
In this chapter, we've provided you with some pointers for where you can take your cloud
skills to next. This has included looking at scanning tools such as Anchore, reviewing
metric-gathering platforms such as Datadog, and looking briefly at some of the features
offered by the major cloud providers.

These cloud platforms included AWS, Microsoft Azure, and GCP. Each of these companies
also provide a number of other cloud-based container infrastructure products you may
wish to explore further.

We hope this high-level overview has provided you with some thoughtful insights on
how to apply these skills to your own projects. Each topic in this chapter should act as
a jumping-off point to explore each tool further, or provide you with the basics to start
experimenting with monitoring in a cloud-based container environment. For those of you
working with local projects, tools such as Docker stats and cAdvisor will provide a handy
mechanism for monitoring container performance.

Now we will move on to the final chapter, where we shall recap what we have studied
throughout the book and leave you with some takeaway points for where to take your
learning to next.

Further reading
Don't forget you can visit each provider's website for a list of these further features:

• Containers on AWS: https://aws.amazon.com/containers/services/

• Container services in Azure: https://azure.microsoft.com/en-us/
product-categories/containers/

• Container options in GCP: https://cloud.google.com/container-
options

https://aws.amazon.com/containers/services/
https://azure.microsoft.com/en-us/product-categories/containers/
https://azure.microsoft.com/en-us/product-categories/containers/
https://cloud.google.com/container-options
https://cloud.google.com/container-options

16
Conclusion – End of

the Road, but not
the Journey

You have now reached the final chapter of this book. Over the previous 15 chapters, a
variety of topics have been covered. As you may have noticed, the book was grouped into
three areas—development, DevOps with monitoring, and finally security. So, let's take the
time to recap what we studied in each area and where we can go next.

First, we will run through an overview of what we learned in the book. Next, a summary
of the skills we acquired on the development front will be presented. After this, we
will explore where we can go next to learn more about DevOps with containers and
expand our newly learned skills. Our penultimate review will consider what we learned
about security and how we can stay on top of it. Then, we will finish up with a general
conclusion on everything we've studied.

410 Conclusion – End of the Road, but not the Journey

In order to review these items, we've broken them down into the following topics in
this chapter:

• Wrapping up – let's get started

• What we learned about development

• Next steps for taking your DevOps knowledge further

• A summary on security and where to go next

Grab your containerized environment and get ready for our last foray together into the
world of Docker.

Technical requirements
For this chapter, you will need to have access to a Linux machine running Docker. We
recommend that you use the setup you have been using so far in this book. This is so you can
follow up with some of the tools and techniques recommended in this chapter if you wish.

Check out the following video to see the Code in Action:

https://bit.ly/2CpGTfZ

Wrapping up – let's get started
Over the course of this book, we have explored the world of containerization. As the
technology becomes ever more ubiquitous in companies and projects across the world,
having a solid handle on the basics and the toolsets supporting containers becomes ever
more useful.

Before we close the book, we are going to wrap up by reviewing what we have learned on the
development front. After this, we will discuss what steps can be taken next to build on your
DevOps skills and finally do a quick tour of some security projects that may be of interest.

You may wish to have your project from Chapter 9, Cloud-Native Continuous Deployment
Using Spinnaker, ready in order to augment it with some of the recommended projects in
this chapter.

Remember you can revisit the source code for setting up this project here:

https://github.com/PacktPublishing/Docker-for-Developers/tree/
master/chapter9

With that said, let's look at what we have learned about developing in a Docker-based
environment.

https://bit.ly/2CpGTfZ
https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter9
https://github.com/PacktPublishing/Docker-for-Developers/tree/master/chapter9

What we learned about development 411

What we learned about development
In the first section of this book, An Introduction to Docker – Containers and Local
Development, we got into the basics of Docker and containers, and how they are used for
development purposes.

First, we introduced the topic of containerization and related technologies such as
virtualization. Following this, we sized up the differences between Docker containers and
virtual machines to see how they compared for development purposes. In Chapter 3,
Sharing Containers using Docker Hub, we got our first taste of using Docker Hub to
store and retrieve images from a third-party location. Finally, having looked at pre-built
containers and container images, we explored the scenario where multiple containers
must work together to form a more complex system.

These four chapters in this section, taken together, provide the basics for local
development and understanding the tooling required to make you a successful engineer
in this area. To build upon this knowledge, understanding design patterns for container-
based systems would be a logical next step for you to explore.

Going deeper – design patterns
The first section of this book provided a guide to hands-on development. Just because you
are using containers does not mean that architectural patterns for software development
have to be abandoned!

So, you may be asking what a design pattern is if you are new to the subject. In short,
patterns are reusable blueprints for solving common architectural problems. Much
as engineers and architects in the construction industry reuse workable models for
constructing buildings, we can use a similar approach for building software systems.

The following container-oriented patterns provide a great jumping-off point for you to
explore the subject further once you have finished this book. In fact, you may recognize
some of them from earlier chapters, which is why we have included them here. Let's now
take a brief tour of five of them and look at which services and projects in this book have
implemented them.

A single container – keeping it simple
When we first embarked on the projects in this book, we kept things simple and used a
single container pattern. This is the simplest pattern you can adopt in a container-based
environment and the ShipIt Clicker application uses it.

412 Conclusion – End of the Road, but not the Journey

The sidecar design pattern – useful for logging
We've looked at logging throughout this book and log-monitoring systems are common
implementors of something known as a sidecar pattern. In its simplest form, we
have a container such as the ShipIt Clicker one, and then a second container with a
log monitoring tool. This could be Grafana, Datadog, or one of the other tools we
experimented with. As you start to build out your own projects, this simple pattern makes
a great starting point. Deploy your application on a container, and then use a second
container to handle log processing. You will also remember from our exploration of Envoy
that the sidecar pattern is used here to allow us to create a service mesh without having to
directly edit our applications to handle complex networking problems.

Leader and elections – adding redundancy
We've seen how highly available systems are desirable, and how tools such as Kubernetes
can help us achieve this goal through orchestrating multiple containers across pods. A
common design pattern used in conjunction with Kubernetes is the leader and election
approach. Here, data can be split across multiple nodes to provide redundancy; for
example, the data may be replicated across containers.

If, for some reason, our container crashes, the other containers will elect a new leader and
Kubernetes will spin up a new node to plug the gap.

The ambassador design pattern – an approach to proxying
Proxying is an important part of many systems, especially in microservice architectures.
As you have seen, in Docker-based environments, we can have multiple containers
residing on the same virtual network. Each of these containers is assigned a name, which
allows containers to communicate with one another.

An example of where we can use the ambassador pattern is in communicating between
a backend caching service, such as Redis, and a set of applications. In this instance, the
applications communicate with a single Redis proxy node, believing it to be Redis itself.
However, the proxy node then distributes the traffic across multiple other Redis nodes
on the network.

Redis
Redis (redis.io), as you may remember from earlier chapters, is an
in-memory, open source caching and message brokering system. It allows
you to store a variety of data structures in memory such as lists, sets, and
hashes, and can additionally be used as a primary database if you wish
(https://redislabs.com/blog/goodbye-cache-redis-
as-a-primary-database/).

http://redis.io
https://redislabs.com/blog/goodbye-cache-redis-as-a-primary-database/
https://redislabs.com/blog/goodbye-cache-redis-as-a-primary-database/

What we learned about development 413

The tool Envoy, which we examined in Chapter 11, Scaling and Load Testing Docker
Applications, is very useful for deploying an ambassador-style approach. If you are
interested in trying it out with Redis, then check out Dmitry Polyakovsky's article,
Envoy Proxy with Redis (http://dmitrypol.github.io/redis/2019/03/18/
envoy-proxy.html).

Redis can be obtained from Docker Hub as a container (https://hub.docker.com/_/
redis/). Let's now look at our final design pattern before moving on.

The adapter design pattern – solution reuse
Having a consistent way to communicate information between containers is important,
and this is especially the case when aggregating metrics. For example, if different
containers produce logs in different formats, we need to be able to ingest this data in a
common format. This is where the adapter pattern comes in. We can use this pattern to
develop a uniform interface and subsequently receive log files from multiple containers,
standardize them, and then store the data in a centralized monitoring service.

We saw in Chapter 10, Monitoring Docker Using Prometheus, Grafana, and Jaeger, that
Prometheus is a useful tool for container monitoring. However, Prometheus requires
a uniform interface from which to pull metrics, that being the metrics API. Where an
application does not expose endpoints that are compatible with Prometheus, we can
deploy an interface using the adapter pattern that wraps the target service containers with
a Prometheus-compatible set of endpoints. This then allows Prometheus to pull data from
the containers we are interested in seamlessly via the intermediate interface container.

Reading more on design patterns
Using container-based design patterns helps to ensure that the right model is being used
for your system, only introducing as much complexity is as needed, while ensuring the
system is resilient and easier to manage.

If you would like to learn more about container patterns in Kubernetes and Docker, be
sure to check out the book, Kubernetes Design Patterns and Extensions, by Packt.

http://dmitrypol.github.io/redis/2019/03/18/envoy-proxy.html
http://dmitrypol.github.io/redis/2019/03/18/envoy-proxy.html
https://hub.docker.com/_/redis/
https://hub.docker.com/_/redis/

414 Conclusion – End of the Road, but not the Journey

Next steps for taking your DevOps knowledge
further
The second section, Running Containers in Production, was geared toward DevOps
practices such as continuous integration and continuous deployment (CI/CD),
container orchestration with Kubernetes, and monitoring with tools such as Jaeger.

To start with, we looked at options around hosting containers in cloud-based systems and
hybrid environments. Next up, we explored the simple option of serving up our application
on a single host with Docker Compose. After this, experimenting with Jenkins provided
us with our first introduction to CI/CD tools and how these can be used with Docker.
With the concept of CD under our belt, it was then on to Chapter 8, Deploying Docker
Apps to Kubernetes, which gave us our first taste of Kubernetes for container orchestration.
Subsequently, the topic of special container-native cloud deployment options in the form
of Spinnaker was then trialed, including understanding what deployment methodologies
are useful for production environments. The penultimate chapter of section two of this
book explored monitoring tools for performance, such as Jaeger, Prometheus, and Grafana.
Finally, we closed this section with a discussion looking at Envoy service meshes, proxying,
and scaling and load testing projects in a production environment.

The seven chapters in this section provided a wealth of projects that gave you an
understanding of some of the core concepts companies face when hosting and serving
container-based applications in a production environment. However, there are still plenty
of interesting techniques and topics to learn in order to take your DevOps skills to the
next level.

Chaos engineering and building resilient production
systems
With a complex production system in place, containers being orchestrated in the cloud,
and CD happening, how do we ensure our systems are resilient against faults and
unexpected crashes? This is where the concept of chaos engineering comes into play.

Chaos engineering is the practice of understanding that code and infrastructure are
inherently complex and therefore we should approach the engineering and testing
process with this in mind. There are five concepts to chaos engineering that can be
summarized as follows:

• Develop a hypothesis around steady state behavior: Measure outputs from the
system over a short period of time to gather a baseline. This baseline is known as the
steady state and could include metrics such as the error rate, response and latency
times, and traffic loads.

Next steps for taking your DevOps knowledge further 415

• Test a variety of real-world events: When testing for real-world events that could
impact a production system, consider testing software failures, mangled inputs,
containers crashing, and other events that could degrade performance.

• Experiment in production: Testing in production may seem like anathema.
However, each environment is different and, for authentic results, testing in
production is a must.

• Minimize the impact, aka blast radius: Running tests in production, however,
does not absolve us of the responsibility to ensure that any degradation of
performance is temporary and easily recovered from. Always make sure your
experiments are well contained.

• Run automated experiments in a continuous fashion: Using an automated
approach allows you to reduce the labor overhead and for tests and experiments
to run at all hours of the day.

One such tool developed by Netflix implementing this concept is Chaos Monkey. Chaos
Monkey is a platform to which you deploy your infrastructure that will randomly
terminate containers that run in a production environment. The goal is to test how a
production system will respond/recover and to allow engineers to tune the system to be
more resilient.

You've already seen how to set up Spinnaker, so as a next step, you can integrate Chaos
Monkey into your existing pipeline. Chaos Monkey also works with AWS and Kubernetes.
The source code can be found at https://github.com/Netflix/chaosmonkey.

If you are interested in installing Chaos Monkey and adding it to the existing CI/CD
Spinnaker pipeline that you built in Chapter 9, Cloud-Native Continuous Deployment
Using Spinnaker, you can follow the official installation guide at https://netflix.
github.io/chaosmonkey/How-to-deploy/.

Once it's up and running, you can now test Chaos Monkey in your Spinnaker-based
container environment to see how it copes with terminating services and what
corresponding metrics are displayed in your monitoring tools.

https://github.com/Netflix/chaosmonkey
https://netflix.github.io/chaosmonkey/How-to-deploy/
https://netflix.github.io/chaosmonkey/How-to-deploy/

416 Conclusion – End of the Road, but not the Journey

If you are interested in combining Chaos Monkey with security techniques, be sure
to check out Packt's video guide on how you can use Chaos Monkey to fuzz test
applications you host:

https://subscription.packtpub.com/video/virtualization_and_
cloud/9781788394901/94651/94677/chaos-monkey-and-fuzz-testing

What is fuzz testing?
Fuzz testing is the process of testing random, invalid, and incompatible
randomized data inputs to an application to see how it responds.

In addition to Chaos Monkey, the following tools also offer mechanisms for building and
testing resilient systems:

• Gremlin: A chaos engineering platform that can be used with Kubernetes, Mesos,
ECS, and Docker Swam, available at https://www.gremlin.com/.

• Mangle: VMware's open source platform for orchestrating chaos engineering that
supports Kubernetes and Docker, available at https://vmware.github.io/
mangle/.

• Chaos Mesh: A cloud-native chaos engineering platform geared toward Kubernetes
environments. It can be deployed via Helm, and is available at https://github.
com/pingcap/chaos-mesh.

We've briefly covered chaos engineering as a concept you could explore further from a
DevOps perspective. Let's now recap what we studied under the banner of security.

A summary on security and where to go next
The final section of this book, Docker Security – Securing Your Containers, was dedicated
to the subject of security. First, we looked at how containers work with the underlying
hardware from a security perspective. We studied container and hypervisor security
models and quickly dipped our toes into security best practices.

Security fundamentals and best practices came next and provided us with guidance on
the best approach to handling our Dockerfile and building minimal base images. After
this, we looked at how secrets can be handled in Docker Swarm. This provided insight for
readers who may need to maintain legacy systems or migrate from Swarm to Kubernetes.
We also looked at how tags, metadata, and labels can be used from a security perspective.

https://subscription.packtpub.com/video/virtualization_and_cloud/9781788394901/94651/94677/chaos-monkey-and-fuzz-testing
https://subscription.packtpub.com/video/virtualization_and_cloud/9781788394901/94651/94677/chaos-monkey-and-fuzz-testing
https://www.gremlin.com/
https://vmware.github.io/mangle/
https://vmware.github.io/mangle/
https://github.com/pingcap/chaos-mesh
https://github.com/pingcap/chaos-mesh

A summary on security and where to go next 417

The penultimate chapter of this book, Chapter 15, Scanning, Monitoring, and using
Third-Party Tools, gave us a whistle-stop tour of Google, Amazon, and Microsoft's
container security features in the cloud. We also installed Anchore for security scanning,
looked at some extra monitoring tools that may be useful, and briefly tried out Datadog
for container monitoring, which, in turn, can be used in a security context.

With these basics under your belt, the following are ideas for some next steps regarding
container security projects that build upon this knowledge.

Metasploit – container-based penetration testing
Now that we've built secure containers, and hopefully a secure application too, you
can explore penetration testing in a container-based environment, such as the one you
deployed via Spinnaker. Penetration testing is the process of looking for security flaws in
a system that can then be leveraged to gain access, exfiltrate data, disrupt performance, or
turn the compromised system into a platform to launch other attacks.

A popular tool for performing penetration tests is the Metasploit framework
(https://www.metasploit.com/). Metasploit is an open source framework for
developing and deploying security exploit code against a remote target, such as a container
running in your environment. Metasploit is available in a container format from Docker
Hub, at https://hub.docker.com/r/metasploitframework/metasploit-
framework.

With this tool in place, you can test vulnerabilities found in containers with tools such as
Anchore. Vulnerabilities may include, for example, old versions of software installed on a
container that may be open to attack. To grab the latest copy, run the following code:

docker pull metasploitframework/metasploit-framework

You can then run the container as follows:

sudo docker run --rm -it metasploitframework/metasploit-
framework

https://www.metasploit.com/
https://hub.docker.com/r/metasploitframework/metasploit-framework
https://hub.docker.com/r/metasploitframework/metasploit-framework

418 Conclusion – End of the Road, but not the Journey

Once loaded, you will be dropped into the Metasploit shell, called msfconsole:

Figure 16.1 – Example of a Metasploit container running

From here, you can begin to explore the commands available and consider projects you
can run from inside the container. A free course on using Metasploit can be found on
the Offensive Security website at https://www.offensive-security.com/
metasploit-unleashed/. Once you are familiar with the basic commands, consider
exploring some of the following features in Metasploit.

https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/

A summary on security and where to go next 419

Unprotected TCP socket exploit
You will remember that we discussed how leaving the TCP socket for Docker exposed
could be exploited by attackers. Metasploit provides an example of how this can be
achieved. Try running Docker via 2375/tcp on a second machine and load up the
docker_daemon_tcp module (https://www.rapid7.com/db/modules/
exploit/linux/http/docker_daemon_tcp) in the Metasploit container we just
set up. You can now target the compromised socket via this module and create a Docker
container with the / path mounted with read and write permissions on the underlying
target host that is running the container.

Testing third-party vulnerable containers – Apache Struts
The following is just one example of the many vulnerable containers available for
downloading and experimenting with. This container, created by piesecurity,
includes a vulnerable version of Apache Struts (https://hub.docker.com/r/
piesecurity/apache-struts2-cve-2017-5638/).

Apache Struts is a popular framework built in Java for developing web applications.
In 2017, a vulnerability was discovered in the framework that allowed an attacker to
execute code remotely on the server running it. One of the most well-known victims
of this vulnerability was Equifax, who suffered a catastrophic data breach.

You can deploy and run this container loaded with Struts via Spinnaker and test out the
exploit yourself. Once installed, use the Metasploit module struts2_content_type_
ognl (https://www.rapid7.com/db/modules/exploit/multi/http/
struts2_content_type_ognl). This will allow you to launch an attack that creates
a reverse shell on the compromised container and demonstrates how security flaws
inside third-party frameworks can be exploited even when running in Kubernetes
and Docker.

If you'd like to dig into this further, the book Advanced Infrastructure Penetration
Testing from Packt provides guidance for using the Metasploit Framework and testing
container-based environment security.

https://www.rapid7.com/db/modules/exploit/linux/http/docker_daemon_tcp
https://www.rapid7.com/db/modules/exploit/linux/http/docker_daemon_tcp
https://hub.docker.com/r/piesecurity/apache-struts2-cve-2017-5638/
https://hub.docker.com/r/piesecurity/apache-struts2-cve-2017-5638/
https://www.rapid7.com/db/modules/exploit/multi/http/struts2_content_type_ognl
https://www.rapid7.com/db/modules/exploit/multi/http/struts2_content_type_ognl

420 Conclusion – End of the Road, but not the Journey

Summary
We hope you have enjoyed reading this book. It aimed to provide a comprehensive guide
to Docker development, both locally and in the cloud. Throughout the 16 chapters, our
goal was to demonstrate not only how to develop applications in containers, but how they
can be built, deployed, scanned, and monitored.

Whether you plan to build a new project from scratch, are maintaining legacy systems
on Docker Swarm, or migrating to a Kubernetes-based environment, Docker For
Developers is the type of book you can dip back into again to refresh your knowledge or
seek guidance as required.

We hope you have enjoyed your journey into the world of containers as much as we have
enjoyed sharing this knowledge with you. Good luck with your future projects!

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Continuous Delivery with Docker and Jenkins - Second Edition
Rafał Leszko
ISBN: 978-1-83855-218-3

• Get to grips with docker fundamentals and how to dockerize an application
for the CD process

• Learn how to use Jenkins on the Cloud environments

• Scale a pool of Docker servers using Kubernetes

• Create multi-container applications using Docker Compose

• Write acceptance tests using Cucumber and run them in the Docker ecosystem
using Jenkins

• Publish a built Docker image to a Docker Registry and deploy cycles of Jenkins
pipelines using community best practices

https://www.packtpub.com/data/dax-cookbook

422 Other Books You May Enjoy

Mastering Docker Enterprise

Mark Panthofer

ISBN: 978-1-78961-207-3

• Understand why containers are important to an enterprise

• Understand the features and components of Docker Enterprise 2

• Find out about the PoC, pilot, and production adoption phases

• Get to know the best practices for installing and operating Docker Enterprise

• Understand what is important for a Docker Enterprise in production

• Run Kubernetes on Docker Enterprise

https://www.packtpub.com/business-other/learn-microsoft-office-2019

Leave a review - let other readers know what you think 423

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
adapter design pattern 413
ADD command

about 361
versus COPY command 361

ALB ingress controller
using, by annotating ShipIt Clicker 208
verifying 206

alerting 135
Amazon

data centers 7
Amazon Athena

logs, analyzing 266
Amazon Detective

reference link 400
Amazon Glacier

URL 265
Amazon Inspector

reference link 400
Amazon Key Management

Service (KMS) 266
Amazon Machine Image

(AMI) image 228
Amazon Resource Name (ARN) 197

Amazon Web Services (AWS)
about 119
containers, securing 398

ambassador design pattern 412
Anchore Engine

images, scanning 386-388
installing 384-386
reference link 384
using, for scanning containers 383, 384

Anchore Hub page, on GitHub
reference link 388

Anchor policy documentation
reference link 388

Apache Bench (ab) 318
Apache Struts 419
Application Load Balancer (ALB) 187
applications

deploying, with configuration files 122
deploying, with support scripts 122

Arch Linux
reference link 23

A record 226
Attack Surface

with Security Command Center 406

426

AWS account
IAM administrator user, using 197
preparing 196, 197

AWS Athena
S3 stored logs, analyzing 266
URL 266

AWS Certificate Manager (ACM)
reference link 223

AWS CLI
configuring, on local

workstation 199, 200
URL 199

AWS CloudWatch
URL 262

AWS console
signing, with IAM user account 198

AWS ECS
URL 105

AWS EKS
about 105, 180
features 181
reference link 181
spinning up, with

CloudFormation 195, 196
AWS EKS Quick Start

CloudFormation templates
about 196
launching 201
reference link 201

AWS Elastic Beanstalk
URL 105

AWS Elastic Container Registry
using, with AWS EKS 209, 210

AWS Fargate
URL 105

AWS Glue catalog
URL 267

AWS Route 53
reference link 120, 223

AWS S3
URL 265
used, for storing logs 265, 266

AWS Security Hub
reference link 400

Azure
container monitoring 400, 401
containers, securing 400

Azure Kubernetes Service (AKS)
about 106, 182
reference link 182

B
baggage items 286
bastion host 200
best practices, Docker 344-347
Binary Authorization

in GCP 405
reference link 405

Bitnami
reference link 257

Bitnami Helm repository
Redis, installing 257

Bitnami Redis Cluster Helm chart
reference link 315

Borg 104
build deployments

capabilities, limiting 366, 367
resources, limiting 366, 367

build process
multi-stage builds, using 364-366
security 364

build.sh script 28-33

 427

C
cAdvisor

reference link 391
using, for container monitoring 391, 393

canary deployments 250
cgroups

about 344
reference link 344

chaos engineering
about 414
concepts 414

Chaos Mesh
reference link 416

Chaos Monkey
about 415
reference link 415

cheat sheet guides, OWASP
reference link 347

Chef InSpec
about 389
reference link 389

CIDR notation
recording 201

circuit breaker pattern
Envoy, configuring for 316, 317

CIS Docker Benchmark
download link 403

Classless Inter-Domain
Routing (CIDR) 221

cloud computing 11-13
CloudFormation

used, for spinning up AWS EKS 195, 196
CloudFormation parameters form

reviewing 204
Stack, creating 202
Stack, details specifying 203
Stack Options, configuring 203

CloudWatch
about 264
logs, shipping with installation

of Fluent Bit 264, 265
stored logs, analyzing 266

CloudWatch Insights
logs, analyzing 266
stored logs, analyzing 266

CloudWatch Logs
retention periods, modifying 265
used, for storing logs 264

Cluster Autoscaler
about 305
configuring 305
demonstrating 306, 307
stateless application, configuring

to work with 305
co-located hosting 5
command-line interface (CLI) 176
common vulnerabilities and

exposures (CVE) 345
Common Vulnerability Scoring

System (CVSS)
about 404
reference link 404

Community Edition (CE) 103
composition tools 94
configuration files

used, for deploying applications 122
Container Analysis

features 404
in GCP 403, 404

containerd
about 337, 340
reference link 338

container images 411
containerization 410

428

container monitoring
in Azure 400, 401

container runtime logging 260
containers

running, with debug.sh script 35-37
securing, with AWS 398
securing, with Azure 400
securing, with GCP 403
sharing, on Docker Hub 65-69
used, for optimizing data

center resources 13-15
container security models 339
continuous delivery (CD) 228
continuous integration and continuous

deployment (CI/CD) 181, 414
COPY command

about 361
versus ADD command 361

Create, Read, Update, and
Delete (CRUD) 61, 71

cron 351

D
daemon socket

reference link 346
Dapper

URL 287
dark deployments 251
database records

using 58
data centers

about 7, 8
benefits 6-8
power requirements, addressing 10
resources, optimizing with

containers 13-15

Datadog
monitoring data, aggregating

in cloud 393
reference link 393

Datadog agents
for Docker 393
for Kubernetes 393

Datadog Log Management
URL 262

data leakages
avoiding, from image 358-360

debug.sh script 28-34
containers, running with 35-37

declarative pipeline 149
demo application

used, for implementing MongoDB
container 48-52

deployments, scaling through Jenkins
complexity 169
limits 169, 171

design patterns 411 413
Development (DEV) 373
device drivers ring 335
Digital Ocean Docker Swarm 106
Docker

best practices 344-347
hosting services 4
host, preparing for 120
installing, operating system

packages used 120, 121
protection rings 337-339
running, in production 101, 102
testing, with pipeline script 150-152
used, for development 26
working with 27

Docker Agent
installing 394
monitoring 394, 395

 429

Docker commands
automating, via sh scripts 28, 31
COPY command, versus

ADD command 361
Recursive COPY command 362, 363
security 360

Docker Community Edition, on
Docker for operating systems

references 120, 121
Docker Compose

about 73
configuration files 74-78
depends_on option 79-81
host, preparing for 120
multiple configuration files, using

for inheritance 78, 79
networking with 88, 89
port bindings, adding with

overrides 82-85
reference link 121
.sh scripts, issues 73, 74

docker-compose.yml file
re-examining 124-126

Docker containers
about 24, 25
building 161
building, with Jenkins 156
pushing, to Docker Hub 161
using 23

Docker Desktop
with Kubernetes 175, 176

Docker documentation
reference link 372

Docker EE
URL 103

Docker Engine 340
Dockerfile

about 27

re-examining 122-124
working 29, 30

Docker Hub
about 44
containers, sharing 65-69
interacting, from command line 45, 46
URL 44
website, using 46, 48

Docker Hub, application environments
reference link 352

Docker Hub credentials
adding, to Jenkins credential

manager 161
Docker image, for MongoDB

reference link 49
Docker image security

about 350-352
data leakages, avoiding from

image 358-360
image verification 352-355
minimal base images, using 355-357
privileges, restricting 357, 358

Docker Inc. company
URL 103

Docker-in-Docker (dind) 143
Docker installation instructions

reference link 46
Docker local networking

.sh scripts, using 85-88
using 85
with Docker Compose 88, 89

Docker logging 260
Docker networking

reference link 341
Docker post-installation instructions

reference link 46
Docker production setup

factors 108

430

selecting 108-110
Docker production setup, Dockerfile and

docker-compose.yml evalution
solution 116

Docker production setup, reasonable
deployment alternatives selection

solution 115
Docker's Content Trust (DCT) 352
Docker secrets

about 371
adding 372
creating 373
deleting 372, 374
examples 375-377
inspecting 372-374
Raft log 371, 372
securely, storing 370, 371

Docker stats
using, for native monitoring 389, 390

Docker Swarm
about 94
reference link 371

Docker tags
for security 377, 378

Domain Name Server (DNS) 223
Domain Name System (DNS) 120
draining 303

E
EC2 key pair

creating, for EKS cluster 200
ECR repository

creating 210, 211
ShipIt Clicker, pushing it 211, 212

EKS
EKS-ready ShipIt Clicker,

deploying to 208, 209

EKS cluster
configuring 205
EC2 key pair, creating for 200

eksctl tool
URL 196

EKS Quick Start CloudFormation
creating, guidance 202

EKS-ready ShipIt Clicker
deploying, to EKS 208, 209

Elastic Compute Cloud (EC2) 398
Elastic Container Registry (ECR)

reference link 209
ShipIt Clicker v7, installing

on EKS 258, 259
Elastic Container Service (ECS) 398
Elastic Kubernetes Service (EKS) 398

ShipIt Clicker v7, installing
through ECR 258, 259

Elasticsearch
URL 262

Elastic Sky X Integrated (ESXi) 9
Enterprise Edition (EE) 103
environments

in default namespace 212
segregating, with labels and

namespaces 212
Envoy

about 310, 311
circuit breaker pattern, testing 317, 318
configuring, for circuit breaker

pattern 316, 317
need for 310, 311
service mesh, using in network

traffic management 311, 312
setting up 312
ShipIt Clicker, configuring 313, 314
URL 310

 431

Envoy, concepts
Front/Edge proxy 311
HTTP L7 filters and routing 310
language agnosticism 310
load balancing 311
observability and transparency 311
out of process architecture 310
transparent communications mesh 310

exercises, Docker production setup
Dockerfile and docker-compose.

yml evaluation 116
reasonable deployment

alternatives, selecting 115
the ShipIt Clicker team, joining 110-115

F
filesystem

using 57
Fluent Bit

installation, for shipping logs to
CloudWatch 264, 265

URL 264
fuzz testing 416

G
Git

branches, force-pushing 169
installing, operating system

packages used 120-122
used, for storing Jenkinsfile 156

GitHub
used, for storing Jenkinsfile 156

Google
data centers 7

Google Cloud Logging
URL 262

Google Cloud Platform (GCP)
containers, securing 403
reference link 403

Google Kubernetes Engine (GKE)
about 104, 180
reference link 180
URL 104

Grafana
access, gaining 281, 282
community-provided

dashboard, adding 282
dashboard, adding with

custom query 283, 284
URL 281
used, for visualizing

operational data 281
Gremlin

URL 416
Groovy language

URL 149
GuardDuty

reference link 398
security alerts, for AWS 398, 399

guest additions 22
guest operating system 19

H
HashiCorp Vault

reference link 377
headless virtual machine 20
hello-world container

reference link 46
Helm

installing 177
used, for Setting up Spinnaker in

AWS EKS cluster 229, 230

432

Helm Chart
configuring, for shipit-stable

environment 213
highlander deployments 251
Homebrew

URL 23
Horizontal Pod Autoscaler

about 307
activating 308, 309
configuring 307
Metrics Server, installing 307, 308

Horizontal Pod Autoscaler,
installation steps

reference link 308, 309
host

preparing, for Docker 120
preparing, for Docker Compose 120
selecting, for single-host

deployment 119
host filesystem

pollution problem 18
host filesystem, building within containers

about 89, 90
build.sh script, using 93, 94
container size, optimizing 90-93

hosting services
co-located hosting 5
origin 4
self-hosting 6

host operating system 19
HTTP

used, for securing Jenkins 148
using 58
versus MQTT 59

Hyper-V isolation
reference link 341

hypervisor security models 334

I
IAM administrator user

access keys, creating 198, 199
using 197

IAM user account
AWS console, signing in with 198

Identity and Account Management
(IAM) 197

image verification 352-355
inheritance 78
InSpec profile, for CIS Docker

Benchmarking
download link 403

integration instructions, Anchore
reference link 389

inter-container communication
about 57
database records, using 58
filesystem, using 57
HTTP, using 58
HTTP, versus MQTT 59
MQTT, using 58
sockets, using 57

IPC namespaces 343

J
Jaeger

about 286
components 287
history 287
URL 286
used, for application performance

monitoring 285
Jaeger client

exploring, with ShipIt
Clicker v7 288-293

 433

Jaeger operator
installing 293, 294

Jaeger UI
exploring 287, 288

Jenkins
configuring 259, 260
configuring, to connect production

server via SSH 152
host connectivity 149
securing, with HTTP 148
testing, with pipeline script 150-152
used, for building Docker

containers 156
used, for deploying Docker containers

on production server 156
used, for facilitating continuous

deployment 143, 149
Jenkins credential manager

Docker Hub credentials, adding 161
Jenkins, deployments scaling

complexity, of build scripts 170
multiple hosts, managing 170

Jenkins environment variables
creating, for production

support 160, 161
creating, for staging support 166

Jenkinsfile
about 149
storing, with Git 156
storing, with GitHub 156

Jenkins job
creating 154
SSH to Production 154-156

Jenkins pre-setup
traps, avoiding 143, 144

Jenkins server
setting up 145-148
using 144, 145

Jenkins, setting up to integrate
with Spinnaker and ECR

about 235
AWS ECR Jenkins plugin,

installing 235, 236
Jenkins, configuring with credentials

for AWS and ECR 237, 238
Jenkins, configuring with multi-branch

pipeline for Jenkinsfile 239, 240
limited AWS IAM user

creating, for Jenkins 236, 237
Jenkins, using with GitHub

rules 157-159

K
k6 framework

network sessions, recording 320, 321
network sessions, replaying 320, 321
realistic load test, hand-crafting 321-326
scalability and performance,

testing 318, 319
stress test, executing 327, 328
URL 318

kernel ring 335
Kritis 405
kubectl commands

reference link 372
Kubernetes

about 95
Docker Desktop with 175, 176
Helm package manager, installing 177
installation works, verifying 176
local installation, options 175
local installation, troubleshooting 179
namespaces, using 195
running, with Minikube 176
URL 104

434

Kubernetes agent
installing 395-397
monitoring 395-397

Kubernetes as a Service (KaaS) 183
Kubernetes cluster

Cluster Autoscaler, configuring 305
nodes, scaling in manually 303
nodes, scaling out manually 302
pods, scaling manually through

deployments 304
running 107
scaling 301
scaling, dynamically 304
scaling, manually 302
Vertical Pod Autoscaler, configuring 309

Kubernetes container logging 261
Kubernetes control plane issues

troubleshooting, with logs 262, 263
Kubernetes distribution

selecting 180
Kubernetes distribution, selection

AWS EKS 180
Google Kubernetes Engine (GKE) 180
Microsoft Azure Kubernetes Service 182
Red Hat OpenShift 181
relevant options, reviewing 182, 183

Kubernetes, fundamental concept
about 183, 184
ConfigMap 184, 185
ingress controllers 187-189
nodes 186
objects 184
pods 185
services 186, 187

Kubernetes, on AWS EKS
application, deploying with

resource limits to 206

resource limits, configuring to
against memory leaks 207

resource limits, configuring to against
runaway CPU usage 207

Kubernetes Operator 293
Kubernetes, secrets

about 189
creating 189-191
describing 191, 192
editing 193
retrieving 192, 193
ShipIt Clicker session secret, using 194

kube-state-metrics service
reference link 396

L
leader and election approach 412
learning environment 175
Linux, Apache, MySQL, and

PHP (LAMP) 13
Linux kernel, security features

AppArmor 339
GRSEC 339
SELinux 339
TOMOYO 339

Linux kernel's, namespaces feature
reference link 25

Linux man-pages documentation
reference link 367

Linux namespaces, for
deploying containers

IPC namespaces 343
MNT namespaces 342
NET namespaces 343
PID namespaces 342
USER namespaces 343
UTS namespaces 343

 435

Linux unionfs
reference link 25

Linux, VirtualBox installation
instructions 23

liveness probe
about 268
using 268

local environment
multiple hostnames, adding 213

logging 134, 135
Loggly

URL 262
log management system

characteristics 261, 262
logs

about 286
analyzing, in CloudWatch 266
analyzing, in CloudWatch Insights 266
analyzing, with CloudWatch Insights

and Amazon Athena 266
storing, with Amazon Glacier 265, 266
storing, with CloudWatch Logs 264
used, for troubleshooting Kubernetes

control plane issues 262, 263
log shipper 262
Long-Term Support (LTS) 102

M
macOS, VirtualBox installation

instructions 23
managed cloud services

about 103, 104
AWS ECS 105
AWS EKS 105
AWS Elastic Beanstalk 105
AWS Fargate 105
Digital Ocean Docker Swarm 106

Google Kubernetes Engine (GKE) 104
Microsoft Azure Kubernetes Service 106

mandatory access control (MAC) 339
Mangle

reference link 416
Man-In-The-Middle (MITM) attacks 361
metadata labels

using, for metadata application 379
Metasploit framework

about 417, 418
URL 417

Metrics Server
about 307
installing 307, 308

microservices application
implementing 60-64

microservices architecture
about 56
inter-container communication 57
scalability 56

Microsoft Azure Monitor Logs
URL 262

Minikube
installation link 176
used, for running Kubernetes 176

minimal base images
using 355-357

minimum realistic production
environment

about 102
Docker and Docker Compose,

running on single host 102
Docker support 103

MNT namespaces 342
MongoDB container

implementing, for demo
application 48-52

shell, executing 52-55

436

monitoring 383
monitors and alerts, setting for

containers in Datadog
reference link 395

mosca
reference link 58

MQTT
using 58
versus HTTP 59

msfconsole 418
multi-factor authentication (MFA)

setting up 198
multiple production environment

deploying, through multiple
branches 165

multi-stage builds
using 364-366

mysql 351

N
native Windows containers

reference link 337
NET namespaces 343
Network Operations Center (NOC) 6
network traffic management

with Envoy service mesh 311, 312
New Relic Logs

URL 262
NGINX ingress controller

deploying, locally 178, 179
Node Version Manager (NVM) 60

O
OpenCensus

URL 285

OpenTracing API
features 285
spans 285
tracers 286
traces 286
URL 285

operating system packages
used, for installing Docker 120, 121
used, for installing git 120, 121

operating systems
reference link 177
selecting, for single-host

deployment 119
out-of-memory (OOM) 136, 207

P
Packer 95
Papertrail

URL 262
patch/release, Docker

reference link 345
penetration testing 417
performance monitoring tools 414
persist.sh script 28, 38
PID namespaces 342
PodDisruptionBudget (PDB)

reference link 305
pre-built containers 411
privileges

restricting 357, 358
probes, Kubernetes

liveness 268
readiness 268
reference link 267
startup 268

 437

production .env file
application, deploying 128
errors, troubleshooting 129
preparing 127
secrets, handling 127

production environment
deploying, by force-pushing to the

staging branch 167, 168
stopping 162

production environment deployment
triggering, through Jenkins 162-164
verifying 164, 165

Production (PROD) 373
production server

builds, keeping 132
Docker containers, deploying

with Jenkins 156
production site

security, planning 133
Prometheus

alerts, configuring 276-278
alerts, reference link 276
external monitoring 281
graph web interface 272
history 271
installation link 272
query 272, 281
querying, for custom metric 275
reference link 271
used, for discovering ShipIt

Clicker application 275
used, for gathering metrics 271
used, for sending alerts 271

Prometheus Alertmanager
reference link 278
used, for sending notifications 278-280

Prometheus metrics
adding, to application 273

metrics-enabled ShipIt Clicker
program, structure 273, 274

Prometheus query language (PromQL)
URL 272

protection ring
example 335

public IP address
recording 201

Q
Quality Assurance (QA) 373

R
Raft

about 371
reference link 372

Raft log 371, 372
readiness probe

about 268
using 269

Recursive COPY command 362, 363
red/black deployments 251
Red Hat OpenShift

about 181
reference link 182

Redis
installing, from Bitnami

Helm repository 257
URL 412

redundancy
adding 412

resilient production systems
building 414

ring -1 336
runc

reference link 338

438

run.sh script 28-39

S
S3

stored logs, analyzing with
AWS Athena 266

sandbox environments 383
scalability 56
scanning

about 382
with Anchore Engine 383, 384

scripts
about 129
deploy.sh script 131
redis-cli.sh script 131, 132
restart.sh script 130, 131

Secure Sockets Layer (SSL) 219
security

best practices 416
fundamentals 416

Security Center, used for securing
containers in Azure

about 401
container runtime protection 402
environment hardening 402
vulnerability management 402

Security Command Center
Attack Surface 406

security.txt file, generating
reference link 380

self-hosting 6
service mesh

about 310, 311
benefits 311

shell
executing, in MongoDB container 53, 55

shell.sh script 28

ShipIt Clicker
about 101
annotating, to use ALB ingress

controller 208
configuring, for Envoy 313, 314
deploying, locally 178, 179
Envoy Redis protocol proxy, using 315
pushing, it to ECR repository 211, 212

ShipIt Clicker deployment, with
Spinnaker deployment strategy

about 242
Bake (Manifest) stage, adding 246-248
Deploy (Manifest) stage,

adding 248, 249
DNS entry, setting up for

ingress controller 250
Spinnaker application, adding 243
Spinnaker pipeline, adding 244, 246

Shipit Clicker games
played count, finding 267

ShipIt Clicker session secret
using 194

ShipIt Clicker v2 118
ShipIt Clicker v4

deploying 177
ShipIt Clicker v5

building 224-227
deploying 224-227
using 219

ShipIt Clicker v7
forcing, to fail readiness check 270, 271
installing, locally 258
installing, on EKS through

ECR 258, 259
modifying, to separate liveness and

readiness probes 269, 270
Redis, installing from Bitnami

Helm repository 257

 439

setting up 256
used, for exploring Jaeger client 288-292

ShipIt Clicker v8
latest version, installing in

EKS through ECR 300
latest version, installing locally 300
previous version, differences 299
using 299

sh scripts
about 28
build.sh script 28
debug.sh script 28
Docker commands,

automating via 28, 31
persist.sh script 28
run.sh script 28
shell.sh script 28
stop.sh script 28

sidecar design pattern 412
sidecars 311
single container pattern 411
single-host deployment

drawbacks 103
host, selecting for 119
limitations 135-138
operating system, selecting for 119
requisites 119, 120

Slack
reference link 279

slashdotted 11
small deployments

monitoring 134
sockets

using 57
SpanContext 285
spans

URL 286

Spinnaker
about 227, 228
application deployment 229
application management 228
configuring 259, 260
for application testing 252
machine images, deploying 252
URL 227

Spinnaker cloud providers
reference link 250

Spinnaker deployment
surveying 250

Spinnaker deployments, steps
certificate, preparing 223, 224
EKS cluster, managing form

local workstation 219
kubectl connection failures,

troubleshooting 220, 221
local and cluster contexts,

switching between 221, 222
Route 53 domain, preparing 223, 224
setup for Kubernetes application

maintenance, improving 219
verification, of working ALB

ingress controller 222
Spinnaker deployment, testing features

surveying 250
Spinnaker documentation

reference link 228, 252
Spinnaker Helm Chart 230
Spinnaker, setting up in AWS

EKS cluster with Helm
about 229, 230
Spinnaker, configuring with Halyard 233
Spinnaker, connecting through

kubectl proxy 231
Spinnaker, connecting to

Docker Hub 240, 241

440

Spinnaker, connecting to GitHub 240
Spinnaker, connecting to

Jenkins 233, 234
Spinnaker, exposing via ALB

Ingress Controllers 231, 232
Spinnaker issues, troubleshooting 241

Spinnaker, setup guide
reference link 229

Splunk
URL 262

Spring Expression Language (SPEL) 249
Squirrel Dollars (SQ$) 101
SSH key

adding, to Jenkins credentials 152, 153
generating 152, 153

stages 229
staging environment

creating 166
startup probe 268
Stats API

reference link 390
using 390, 391

steady state 414
stop.sh script 28, 39-41
support scripts

used, for deploying applications 122
swarm mode

reference link 371
system calls (syscalls) 340

T
tags 286
Teleport 11
terminal multiplexer (tmux)

about 64
reference link 64

third party vulnerable containers
testing 419

tomcat 351
TraceID 286
tracers

URL 286
traces

URL 286

U
Uniform Resource Identifier (URI) 197
unprotected TCP socket exploit 419
user land 336
USER namespaces 343
UTS namespaces 343

V
VBoxManage command documentation

reference link 20
Vertical Pod Autoscaler

configuring 309
reference link 309

VirtualBox
URL 22
using, for virtual machines 19

VirtualBox installation 22
virtualization

about 19, 334, 411
malware 336
protection rings 335, 336
used, for economizing

resource usage 8, 9
using, as solution for data centers 11, 13

Virtual Machine Disk (VMDK) image 228

 441

virtual machines (VMs)
about 335
creating 19-21

Virtual Private Cloud (VPC) 201
Virtual User (VU) 319
VMware Tanzu Kubernetes Grid

reference link 183

W
wildcard certificate 223
Windows containers achieve process

reference link 341
Windows, VirtualBox installation

instructions 22

Z
Zipkin tracing framework

URL 287

	Cover
	Copyright
	About PACKT
	Contributors
	Table of Contents
	Preface
	Section 1:
An Introduction
to Docker – Containers and Local Development
	Chapter 1: Introduction to Docker
	The drivers for Docker
	Co-located hosting
	Self-hosting
	Data centers

	Using virtualization to economize resource usage
	Addressing the increasing power requirements
	Using containers to further optimize data center resources
	Summary
	Further reading

	Chapter 2: Using VirtualBox and Docker Containers for Development
	Technical requirements
	Host filesystem pollution problem
	Using VirtualBox for virtual machines
	Introduction to virtualization
	Creating a virtual machine
	Guest additions
	Installing VirtualBox

	Using Docker containers
	Introduction to containers
	Using Docker for development

	Getting started with Docker
	Automating Docker commands via sh scripts

	Summary
	Further reading

	Chapter 3: Sharing Containers Using Docker Hub
	Technical requirements
	Introducing Docker Hub
	Interacting with Docker Hub from the command line
	Using the Docker Hub website

	Implementing a MongoDB container for our application
	Running a shell within a container

	Introducing the microservices architecture
	Scalability
	Inter-container communication

	Implementing a sample microservices application
	Sharing your containers on Docker Hub
	Summary
	Further reading

	Chapter 4: Composing Systems Using Containers
	Technical requirements
	Introduction to Docker Compose
	The problem with .sh scripts
	Docker Compose configuration files
	Inheritance using multiple configuration files
	The depends_on option
	Adding port bindings using overrides

	Using Docker local networking
	Networking using .sh scripts
	Networking with Docker Compose

	Binding a host filesystem within containers
	Optimizing our container size
	Using the build.sh script

	Other composition tools
	Docker Swarm
	Kubernetes
	Packer

	Summary
	Further reading

	Section 2:
Running Docker
in Production
	Chapter 5: Alternatives for Deploying and Running Containers in Production
	Technical requirements
	Example application – ShipIt Clicker
	Running Docker in production – many paths, choose wisely
	What is the minimum realistic production environment?
	Bare minimum – run Docker and Docker Compose on one host
	Docker support
	Problems with single-host deployment

	Managed cloud services
	Google Kubernetes Engine
	AWS Elastic Beanstalk
	AWS ECS and Fargate
	AWS EKS
	Microsoft Azure Kubernetes Service
	Digital Ocean Docker Swarm

	Running your own Kubernetes cluster – from bare metal to OpenStack
	Deciding on the right Docker production setup
	Exercise – join the ShipIt Clicker team
	Exercise – choosing from reasonable deployment alternatives
	Exercise – Dockerfile and docker-compose.yml evaluation

	Summary

	Chapter 6: Deploying Applications with Docker Compose
	Technical requirements
	Example application – ShipIt Clicker v2

	Selecting a host and operating system for single-host deployment
	Requirements for single-host deployment

	Preparing the host for Docker and
Docker Compose
	Using operating system packages to install Docker
and Git

	Deploying using configuration files and support scripts
	Re-examining the initial Dockerfile
	Re-examining the initial docker-compose.yml file
	Preparing the production .env file
	Supporting scripts
	Exercise – keeping builds off the production server
	Exercise – planning to secure the production site

	Monitoring small deployments – logging
and alerting
	Limitations of single-host deployment
	No automatic failover
	Inability to scale horizontally to accept more load
	Tracking down unstable behavior based on incorrect host tuning
	Loss of single host could be disastrous – backups are essential
	Case study – migrating from CoreOS and Digital Ocean to CentOS 7 and AWS

	Summary
	Further reading

	Chapter 7: Continuous Deployment with Jenkins
	Technical requirements
	Example application – ShipIt Clicker v3

	Using Jenkins to facilitate continuous deployment
	Avoid these traps
	Using an existing Jenkins server
	Setting up a new Jenkins server
	How Jenkins can support continuous deployment

	The Jenkinsfile and host connectivity
	Testing Jenkins and Docker with a pipeline script

	Driving configuration changes through Jenkins
	Using Git and GitHub to store your Jenkinsfile
	Changing the origin of all checked out repositories
	Creating Jenkins environment variables for
production support
	Building Docker containers and pushing them to Docker Hub
	Pushing to Docker Hub and triggering a
production deployment

	Deploying to multiple environments through multiple branches
	Creating a staging environment
	Creating Jenkins environment variables for staging support
	Deploying by force-pushing to the staging branch

	Complexity and limits to scaling deployments through Jenkins
	Managing multiple hosts
	The complexity of build scripts
	How do you know when you have hit the limit?

	Summary
	Further reading

	Chapter 8: Deploying Docker Apps to Kubernetes
	Technical requirements
	Options for Kubernetes local installation
	Minikube
	Verifying that your Kubernetes installation works

	Deploying a sample application – ShipIt
Clicker v4
	Deploying the NGINX Ingress Controller and ShipIt Clicker locally

	Choosing a Kubernetes distribution
	Google Kubernetes Engine
	AWS EKS
	Microsoft Azure Kubernetes Service
	Reviewing other relevant options
	Objects
	ConfigMaps
	Pods
	Nodes
	Services
	Ingress Controllers
	Secrets
	Namespaces

	Spinning up AWS EKS with CloudFormation
	Introducing the AWS EKS Quick Start
CloudFormation templates
	Preparing an AWS account
	Launching the AWS EKS Quick Start
CloudFormation templates
	Configuring the EKS cluster

	Deploying an application with resource limits to Kubernetes on AWS EKS
	Annotating ShipIt Clicker to use the ALB Ingress Controller

	Using AWS Elastic Container Registry with AWS EKS
	Creating an ECR repository
	Local example – labeled environments in the
default namespace
	Staged environments – Dev, QA, staging,
and production

	Summary

	Chapter 9: Cloud-Native Continuous Deployment Using Spinnaker
	Technical requirements
	Improving your setup for Kubernetes application maintenance
	Managing the EKS cluster from your local workstation
	Troubleshooting kubectl connection failures
	Switching between local and cluster contexts
	Verifying that you have a working ALB Ingress Controller
	Preparing a Route 53 domain and certificate
	Building and deploying ShipIt Clicker v5

	Spinnaker – when and why you might need more sophisticated deployments
	Introduction to Spinnaker

	Setting up Spinnaker in an AWS EKS cluster using Helm
	Connecting to Spinnaker through the kubectl proxy
	Exposing Spinnaker via ALB Ingress Controllers
	Configuring Spinnaker using Halyard
	Connecting Spinnaker to Jenkins
	Setting up Jenkins to integrate with both Spinnaker and ECR
	Connecting Spinnaker to GitHub
	Connecting Spinnaker to Docker Hub
	Troubleshooting Spinnaker issues

	Deploying ShipIt Clicker with a simple deployment strategy in Spinnaker
	Adding a Spinnaker application
	Adding a Spinnaker pipeline
	Setting up a DNS entry for the Ingress Controller

	Surveying Spinnaker's deployment and testing features
	Canary deployments
	Red/black deployments
	Rolling back
	Testing with Spinnaker

	Summary
	Further reading

	Chapter 10: Monitoring Docker Using Prometheus, Grafana, and Jaeger
	Technical requirements
	Setting up a demo application – ShipIt Clicker v7

	Docker logging and container runtime logging
	Understanding Kubernetes container logging
	Ideal characteristics for a log management system
	Troubleshooting Kubernetes control plane issues
with logs
	Storing logs with CloudWatch Logs
	Storing logs for the long term with AWS S3
	Analyzing logs stored in S3 with AWS Athena

	Using the liveness, readiness, and startup probes in Kubernetes
	Using a liveness probe to see whether a container can respond
	Changing ShipIt Clicker to support separate liveness and readiness probes
	Exercise – forcing ShipIt Clicker to fail the readiness check

	Gathering metrics and sending alerts with Prometheus
	Prometheus' history
	Exploring Prometheus through its query and graph web interface
	Adding Prometheus metrics to an application
	Querying Prometheus for a custom metric
	Configuring Prometheus alerts
	Sending notifications with the Prometheus Alertmanager
	Exploring Prometheus queries and external monitoring in-depth

	Visualizing operational data with Grafana
	Gaining access to Grafana
	Adding a community-provided dashboard
	Adding a new dashboard with a custom query

	Application performance monitoring with Jaeger
	Understanding the OpenTracing API
	Introduction to Jaeger
	Exploring the Jaeger client with ShipIt Clicker
	Installing the Jaeger Operator

	Summary
	Further reading

	Chapter 11: Scaling and Load Testing Docker Applications
	Technical requirements
	Using the updated ShipIt Clicker v8

	Scaling your Kubernetes cluster
	Scaling the cluster manually
	Scaling the cluster dynamically (autoscaling)

	What is Envoy, and why might I need it?
	Network traffic management with an Envoy service mesh
	Setting up Envoy

	Testing scalability and performance with k6
	Recording and replaying network sessions
	Hand-crafting a more realistic load test
	Running a stress test

	Summary
	Further reading

	Section 3:
Docker Security – Securing Your Containers
	Chapter 12: Introduction to Container Security
	Technical requirements
	Virtualization and hypervisor security models
	Virtualization and protection rings
	Docker and protection rings

	Container security models
	Docker Engine and containerd – Linux security features
	PID namespaces
	MNT namespaces
	NET namespaces
	IPC namespaces
	UTS namespaces
	USER namespaces

	A note on cgroups
	An overview of best practices
	Keeping Docker patched
	Securing the Docker daemon socket
	Docker won't fix bad code
	Always set an unprivileged user

	Summary

	Chapter 13: Docker Security Fundamentals and Best Practices
	Technical requirements
	Docker image security
	Image verification
	Using minimal base images
	Restricting privileges
	Avoiding data leakages from your image

	Security around Docker commands
	COPY versus ADD – what's the story?
	Recursive COPY – use with caution

	Security around the build process
	Using multi-stage builds

	Limiting resources and capabilities when deploying your builds
	Limiting resources
	Dropping capabilities

	Summary

	Chapter 14: Advanced Docker Security – Secrets, Secret Commands, Tagging, and Labels
	Technical requirements
	Securely storing secrets in Docker
	The Raft log

	Adding, inspecting, and removing secrets
	Creating
	Inspecting
	Deleting

	Secrets in action – examples
	Docker tags for security
	Using labels for metadata application
	Summary

	Chapter 15: Scanning, Monitoring, and Using Third-Party Tools
	Technical requirements
	Scanning and monitoring – cloud and DevOps security for containers
	Scanning using Anchore Engine
	A brief mention of Chef InSpec
	Native monitoring locally using Docker stats
	Aggregating monitoring data in the cloud with Datadog

	Securing your containers using AWS
	Security alerts for AWS with GuardDuty

	Securing your containers using Azure
	Container monitoring in Azure
	Using Security Center to secure your containers
in Azure

	Securing your containers using GCP
	Container Analysis and Binary Authorization in GCP
	Understanding your attack surface with Security Command Center

	Summary
	Further reading

	Chapter 16: Conclusion – End of the Road, but not the Journey
	Technical requirements
	Wrapping up – let's get started
	What we learned about development
	Going deeper – design patterns

	Next steps for taking your DevOps knowledge further
	Chaos engineering and building resilient production systems

	A summary on security and where to go next
	Metasploit – container-based penetration testing

	Summary

	Other Books You May Enjoy
	Index

