

MEAP Edition
Manning Early Access Program

Grokking Continuous Delivery
Version 6

Copyright 2022 Manning Publications

For more information on this and other Manning titles go to

manning.com

https://www.manning.com/
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

welcome
Thank you for purchasing Grokking Continuous Delivery!

This book is for everyone who does the nitty-gritty day-to-day job of building software. Whether
you build frontends, backends, tools, or infrastructure, this book is for you!

To get the most benefit from this book, you’ll want to have some familiarity with the basics of
Linux, programming language concepts, and testing. You’ll also want to have some experience with
version control, HTTP servers and containers. You don’t need deep knowledge on any of these
topics; and if needed you could definitely research them as you go.

I have been super passionate about Continuous Delivery (CD) for most of my career. I’ve often
started a new position with the intention of switching my focus to something different, but it’s such
an intriguing space that I always find myself pulled back in. CD is at the heart of modern software
development, and as software development becomes more and more ambitious, CD is the
mechanism that enables it. At the same time, it’s a field where it’s hard to get your hands on
concrete best practices and actions that you can take as an engineer; so many resources are aimed
at selling the concepts to managers and directors or are tied to some specific vendor’s product.

In this book, I hope you’ll find practical takeaways for effectively practicing CD on your team,
regardless of what space you’re in or what language you’re using. I’ll be talking about the basic
building blocks you’ll need to have in place, but I won’t recommend any specific CD tools: you’ll be
able to use the recommendations in the book to evaluate the tools available and make the best
choices for your particular needs.

Consider this the missing manual for how to get started with CD and apply it effectively! As you
read, if you notice any missing topics or details, please let me know in the liveBook discussion
forum. CD is a huge topic that spans the entire development process and multiple roles. With your
feedback we can get the right balance of information to set folks up for success in this exciting and
essential space!

You might notice that chapter 3 is missing, but don’t worry; it is a work in progress and will be
added soon. You may also notice that some chapters have exercises while some do not, and that is
something you should also see fixed in subsequent updates.

Until then, happy reading!

—Christie Wilson

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

brief contents

PART 1: INTRO

 1 Welcome

 2 A basic pipeline

PART 2: KEEPING SOFTWARE IN A DELIVERABLE STATE AT ALL TIMES

 3 Version control is the only way to roll

 4 Use linting effectively

 5 Dealing with noisy tests

 6 Speeding up slow test suites

7 Give the right signals at the right times

PART 3: MAKING DELIVERY EASY

 8 Easy delivery starts with version control

 9 Building

10 Deploying

PART 4: PIPELINE DESIGN

11 Starter pack: go from 0 to CD

12 Scripts

13 Graph design

APPENDICES:

A CD systems

B Version control systems

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Welcome 1

In this chapter:

• why should you care about Continuous Delivery?

• understand the history of Continuous Delivery, Continuous Integration,

Continuous Deployment and CI/CD

• define the different kinds of software that you might be delivering and

explain how Continuous Delivery applies to them

• define the elements of Continuous Delivery: Keeping software in a deliverable

state at all times; Making delivery easy

Hi there! Welcome to my book! I’m so excited that you’ve decided to not only learn about

Continuous Delivery, but really understand it. That’s what this book is all about: learning

what you need to do to have Continuous Delivery really work for you on a day to day basis.

1

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.1 Do you need Continuous Delivery?

The first thing you might be wondering is if it’s worth your time to learn about Continuous

Delivery, and even if it is, is it worth the hassle of applying it you your projects?

The quick answer is YES if the following is true for you:

1. You are making software professionally

2. More than one person is involved in the project

If both of those are true for you, Continuous Delivery is worth investing in. Even if just

one is true, (you’re working on a project for fun with a group of people, or you’re making

professional software solo), you won’t regret investing in Continous Delivery.

“But wait - you didn’t ask what I’m making. What if I’m working on kernel drivers, or firmware, or

microservices? Are you sure I need Continuous Delivery?” - You

It doesn’t matter! Whatever kind of software you’re making,

you’ll benefit from applying the principles in this book. The

elements of Continuous Delivery that we’ll be explaining in this

book are built on the principles that we’ve been gathering ever

since we started making software; they’re not a trend that will

fade in and out of popularity, they are the foundations that will

remain whether we’re making microservices, monoliths,

distributed container based services, or whatever comes next.

In this book we’ll be covering the fundamentals of

Continuous Delivery and will give you some examples of how

you can apply them to your project; the exact details of how

you do Continuous Delivery will probably be unique and you

might not see them exactly reflected in this book, but what you

WILL see is the components you need to put it together, and

the principles to follow to be the most successful.

2

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.2 Why Continuous Delivery?

What’s this thing we’re here to learn about anyway? There are a lot of definitions out there,

but before we get into those, I want to tell you what Continuous Delivery (CD) means to me,

and why I think it’s so important:

Continuous Delivery is the process of modern professional software engineering.

Modern: Professional software engineering has been around

way longer than CD - though those folks working with punch

cards would have been ecstatic for CD! One of the reasons why

we can have CD today, and we couldn’t then, is that CD costs a

lot of CPU cycles. To have CD, you run a lot of code!

Professional: If you’re writing software for fun, it’s kind of up in the air whether you’re

going to want to bother with CD. For the most part, CD is the processes you put in place

when it’s really important that the software works. The more important it is, the more

elaborate the CD. And when we’re talking about professional software engineering, we’re

probably not talking about one person writing code on their own. Most engineers will find

themselves working with at least a few other people, if not hundreds, possibly working on

exactly the same codebase.

Software engineering: Other engineering disciplines come with bodies of standards and

certifications that are largely lacking when it comes to software engineering. So let’s simplify

it: software engineering is writing software. When we add the modifier “professional”, we’re

talking about writing software professionally.

Process: Writing software professionally requires a certain approaches to ensure that the

code we write actually does what we mean it to. These processes are less about how one

software engineer is writing code (though that’s important too!), and more about how that

engineer is able to work with other engineers to deliver professional quality software.

Continuous Delivery is the collection of processes that we need to have in place to ensure that

multiple software engineers, writing professional quality software, can create software that does what

they want.

QUESTION

Q Wait are you saying CD stands for Continuous Delivery? I thought it meant

Continuous Deployment!

A Some people do use it that way, and the fact that both terms came into existence

around the same time made this very confusing. Most of the literature I’ve

encountered (not to mention the CD Foundation!) favors using CD for Continuous

Delivery, so that’s what this book will use.

3

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.3 Continuous Word Soup

You might be thinking: okay Christie,

that’s all well and good, but what does

deliver actually mean? And what about

Continuous Deployment? What about

CI/CD?

It’s true, we’ve got a lot of phrases to

work with! And to make matters worse,

people don’t use them consistently. In their

defense, that’s probably because some of

them don’t even have definitions!

Let’s take a quick look at the evolution of

these terms to understand more.

Continuous Integration, Continuous

Delivery and Continuous Deployment are all

phrases that were created intentionally (or in

the case of Continuous Integration, evolved),

and the creators had specific definitions in

mind.

CI/CD is the odd one out: no one seems to

have created this phrase. It seems to have

popped into existence because lots of people

were trying to talk about all the different

continuous activities at the same time and

needed a short form. (CI/CD/CD didn’t take

for some reason!)

The phrase CI/CD as it’s used today refers to

the tools and automation required for any and

all of Continuous Integration, Delivery and

Deployment.

4

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.4 Continuous Delivery (CD)

Continuous Delivery is the collection of processes that we need to have in place to ensure that

multiple software engineers, writing professional quality software, can create software that does what

they want.

My definiton captures what I think is really cool about CD, but it’s far from the usual

definition you’ll encounter. Let’s take a look at the definition of Continuous Delivery used

by the Continuous Delivery Foundation (CDF):

A software development practice where working software is released to users as quickly as it makes

sense for the project and built in such a way that it has been proven that this can safely be done at

any time.

If you start to break this down, you’ll notice there are two big pieces to CD. You’re doing

Continuous Delivery when:

1. You can safely deliver changes to your software at any

time

2. Delivering that software is as simple as pushing a button

This book will be going into detail about the activities and

automation that will help you achieve these two goals.

Specifically:

1. To be able to safely deliver your changes at any time,

you must always be in a deliverable state. The way to

achieve this is with Continuous Integration (CI).

2. Once these changes have been verified with CI, the

processes to deliver the changes should be automated

and repeatable.

Before we start digging into how you can achieve these goals in the next chapters, let’s

break these terms down a bit further.

5

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.5 Integration

Continuous Integration (CI), is the oldest of the terms we’re dealing with - but still a key

piece of the Continuous Delivery pie. Let’s start even simpler with looking at just

integration.

What does it mean to integrate software? Actually part of that phrase is missing - to

integrate you need to integrate something into something else. And in software, that

something is code changes. When we’re talking about integrating software, what we’re really

talking about is:

Integrating code changes into existing software.

This is the primary activity that software engineers are doing on a daily basis: changing

the code of some existing piece of sofware.

This is especially interesting when you look at what a team of

software engineers does: they are constantly making code changes,

often to the same piece of software. Combining those changes

together is integrating them.

Software integration is the act of combining together code

changes made by multiple people.

As you have probably personally experienced, this can really go

wrong sometimes. For example, when I make a change to the same

line of code as you do, and we try to combine those together, we

have a conflict and have to manually decide how to integrate those

changes.

There’s one more piece missing from this definition; when we integrate code changes we

do more than just putting the code changes together, we also verify that the code works.

You might say that “V” for Verification is the missing letter in CI! Verification has been

packed into the Integration piece, so when we talk about software integration, what we really

mean is:

Software integration is the act of combining together multiple code changes made by multiple people

and verifying that the code does what it was intended to do.

QUESTION

Q Who cares about all these definitions? Show me the code already!!

A It’s hard to be intentional and methodical about what we’re doing if we can’t even

define it. Taking the time to arrive at a shared understanding (via a definition) and

getting back to core principles is the most effective way to level up!

6

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.6 Continuous Integration

Let’s put the continuous into continuous

integration with an example outside of

software engineering.

Holly is a chef and she’s cooking pasta

sauce. She starts with a set of raw ingredients:

onions, garlic, tomatoes, spices. In order to

cook, she needs to integrate these ingredients

together, in the right order and the right

quantities, to get the sauce that she wants.

To accomplish this, every time she adds a

new ingredient, she takes a quick taste. Based

on the flavor, she might decide to add a little

extra, or realize she wants to add an ingredient

she missed.

By tasting along the way, she’s evolving the

recipe through a series of integrations.

Integration here is expressing two things:

• Combining the ingredients

• Checking to verify the result

And that’s what the integration in continuous integration means: combining code

changes together, and also verifying that they work. Combine and verify.

Holly repeats this process as she cooks. If she waited until the end to taste the sauce,

she’d have a lot less control and it might be too late to make the needed changes. That’s

where the continuous piece of continuous integration comes in. We want to be

integrating (combining and verifying) our changes as frequently as we possibly can - as soon

as you can.

And when we’re talking about software, what’s the soonest we can combine and verify?

As soon as we make a change.

Continuous Integration is the process of combining code changes frequently, where each change is

verified on check in.

Combining code changes together means that engineers using continuous integration are

committing and pushing to shared version control every time we make a change, and they

are verifying those changes work together by applying automated verification, including tests

and static analysis.

Automated verification? Static analysis? Don’t worry if you don’t know what those are all

about, that’s what this book is here for! In the rest of the book, we’ll be looking at how to

create the automated verification that makes continuous integration work.

7

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.7 What do we deliver?

Now as we transition from looking at Continous Integration to Continuous integration, we

need to take a small step back. Almost every definition we explore is going to make some

reference to delivering some kind of software (for example, we’re about to start talking about

integrating and delivering change to software). Probably good to make sure we’re all talking

about the same thing when say software - and depending on the project you’re working on,

it can mean some very different things.

When you are delivering software, there are several different forms of software you could

be making (and integrating and delivering each of these will look slightly different):

Library: If your software doesn’t do anything on its own, but is intended to be used as

part of other software, it’s probably a library

Binary: If your software is intended to be run, it’s probably a binary executable of some

kind. This could be a service or application, it could be a tool which is run and completes, or

it could be an application which is installed onto a device like a tablet or phone.

Configuration: This refers to information that you can provide to a binary to change its

behavior without having to recompile it. Typically this corresponds to the levers that a

system administrator had available to make changes to running software.

Image: Container images are a specific kind of binary that are currently an extremely

popular format for sharing and distributing services with their configuration, so they can be

run in an operating system agnostic way.

Service: In general services are binaries that are intended to be up and running at all

times, waiting for requests that they can respond to by doing something or returning

information. Sometimes there are also referred to as applications.

VOCAB TIME

The term software exists in contrast to hardware. Hardware is the actual

physical pieces of our computers, i.e. the machines we do things with. And

we do those things by providing the physical machines with instructions.

Instructions can be built directly into hardware, or they can be provided to

hardware when it runs via software.

At different points in your career you may find yourself dealing with some or all of the

above kinds of software. But regardless of the particular form you are dealing with, in order

to create it, you need to integrate and deliver changes to it.

8

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.8 Delivery

What it means to deliver changes software depends on what you are making, who is using it

and how. Usually delivering changes refers to one or all of: building, releasing and deploying:

Building: Building software is the act of taking code

(including changes) and turning it into the form required for it to

be actually used. This usually means compiling the code written

in a programming language into a machine language. Sometimes

it also means wrapping the code into a package, such as an

image, or something that can be understood by a package

manager (e.g. pypi for Python packages).

Publishing: You publish software by copying it to a software repository (a storage

location for software). For example by uploading your image or library to a package registry.

Deploying: This is the act of copying the software where it

needs to be to run and putting it into a running state.

Releasing: You release software by making it available to your users. This could be by

uploading your image or library to a repository, or by setting a configuration value to direct a

percentage of traffic to a deployed instance.

VOCAB TIME

We’ve been building software for as long as we’ve had programming

languages. This is such a common activity that the earliest systems that did

what we now call Continuous Delivery were called build systems. This

terminology is so prevalent that even today you will often people refer to the

build and what they usually mean is one or more phases in a CD pipeline

(more on these in chapter 2!).

9

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.9 Continuous Delivery/Deployment

Now we know what it means to deliver software changes, but what does it mean when we

say that delivery is continuous?

When we looked at Continuous Integration (CI), we learned that in that conext

continuous means “as soon as possible”. Is that the case for Continuous Delivery (CD)?

Yes and no.

The way that Continuous Delivery uses continuous actually would be better represented

as a continuum:

Your software should be proven to be in a state where it could be built, released and/or

deployed at any time - but how frequently you choose to deliver that software is up to you.

Around this time you might be wondering, “What about Continuous Deployment? How

does that fit in?”

That’s a great question. Looking at the history again,

you’ll notice that the two terms, Continuous Delivery and

Continuous Deployment, came into existence pretty

much back to back. What was going on when these

terms were coined?

This was an inflection point for software: the old ways

of creating software, which relied on humans doing

things manually, a strong dev and ops divide (interstingly

the term “devops” appeared at around the same time)

and sharply delineated processes (e.g. “testing phase”) were starting to shift (left).

VOCAB TIME

Shifting left is a process where efforts are made to find defects as early as

possible in the software development process.

Both Continuous Deployment and Continuous Delivery were naming the set of practices

that emerged at this time.

Let’s look at the definition of Continuous Deployment:

Working software is released to users automatically on every commit.

Continuous Deployment is an optional step beyond Continuous Delivery. Whether you go

this far is up to you and what your project needs.

The key is that Continuous Delivery enables Continuous Deployment; always being in a

releasable state and automating delivery frees you up to decide what is best for your project.

10

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

1.10 Elements of Continuous Delivery

The rest of this book will show you the fundamental building blocks of

Continuous Delivery:

A software development practice where working software is released to

users as quickly as it makes sense for the project and built in such a way

that it has been proven that this can safely be done at any time.

You will learn how to use Continuous Integration (CI) to always be

in a releasable state, and you will learn how to make delivery

automated and repeatable, allowing you to choose whether you want

to go to the extreme of delivering on every change (Continuous

Deployment), or you’d rather deliver on some other cadence, but

confident in the knowledge that you have the automation in place to

deliver as frequently as you need.

And at the core of all of this automation will be your Continuous

Delivery pipeline. In this book we’ll dig into each of these tasks and

what they look like. You’ll find that no matter what kind of software

you’re making, many of these tasks will be useful to you.

QUESTION

Q Pipeline? Task? What are those?

A Read the next chapter to find out!

Let’s look back at the different forms of software we explored and what it means to

deliver each of them:

11

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Delivery includes

building?

Delivery includes

publishing?

Delivery includes

deploying?

Delivery includes

releasing?

Library Depends Yes No Yes

Binary Yes Usually Depends Yes

Configuration No No Usually Yes

Image Yes Yes Depends Yes

Service Yes Usually Yes Yes

1.11 Conclusion

There are a lot of terms in the Continuous Delivery space, and a lot of contradictory

definitions. In this book, we use CD to refer to Continuous Delivery, and we’ll be focusing on

how to setup the automation you need in order to use CD for whatever kind of software

you’re delivering.

1.12 Summary
• Continuous Delivery is useful for all software, it doesn’t matter what kind of

software you’re making.

• To enable teams of software developers to make professional quality software, you

need Continuous Delivery.

• To be doing Continuous Delivery, you use Continuous Integration to make sure your

software is always in a deliverable state.

• Continuous Integration is process of combining code changes frequently, where

each change is verified on check in.

• The other piece of the Continuous Delivery puzzle is the automation required to

make delivery as easy as pushing a button.

• Continuous Deployment is an optional step you can take if it makes sense for your

project, where software is automatically delivered on every commit.

1.13 Up next . . .

We’re going to learn all about the basics and terminology of Continuous Delivery automation,

setting up the foundation for the rest of the book!

12

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

A basic pipeline 2

In this chapter:

• terminology that will be used in this book for basic building blocks:

pipelines and tasks

• elements of a basic CD pipeline: static analysis, testing, building,

publishing, deploying

• the role of automation in the execution of pipelines: webhooks, events

and triggering.

• how the varied terminology in the CD space relates: Tasks, Stages,

Pipelines, Workflows, Steps, Jobs, Nodes, Runners, Executors, Events,

Triggers, Builds, Webhooks, Agents

Before we get into the nitty gritty of how to create great Continuous Delivery (CD) pipelines,

let’s zoom out and take a look at pipelines as a whole. In this chapter we’ll look at some

pipelines at a high level and identify the basic elements you should expect to see in most CD

pipelines.

13

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.1 Cat Picture Website

To understand what goes into basic CD Pipelines, we’ll take a

look at the Pipelines used for The Cat Picture Website.

The Cat Picture Website is the best website around for finding

and sharing cat pictures! The way it’s built is relatively simple,

but since it’s a very popular website, the company that works on

it (Cat Picture Inc.) has architected it into several services.

They run Cat Picture Website in the cloud (their cloud provider is called Big Cloud Inc)

and they use some of Big Cloud’s services, such as Big Cloud Blob Storage Services (BCBSS).

14

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.2 Cat Picture Website Source Code

The architecture diagram tells us how the cat picture

website is architected, but in order to understand the CD

pipeline there’s another important thing to consider: where

does the code live?

In Chapter 1 we looked at the elements of Continuous

Delivery, half of which is about using Continuous

Integration (CI) to ensure we are always in a relesable

state. Let’s look at the definition again:

Continuous Integration (CI) is process of combining code changes

frequently, where each change is verified on check in.

When we look at what we’re actually doing when we do

CD, we can see that the core is code changes. This means

that the input to our CD pipelines is the source code. In

fact this is what sets CD pipelines apart from other kinds of

workflow automation: CD pipelines almost always take

source code as an input.

Before we look at the Cat Picture Website CD pipelines,

we need to understand how their source code is organized

and stored.

The folks working on Cat Picture Website store their

code in several code repositories (repos):

• The Frontend Repo holds the code for the Frontend.

• The Picture Service, User Service and the database

schemas are all stored in the Service repo.

• Lastly, Cat Picture Website uses a gitops approach to

configuration management (more on this in Chapter

11), so their configuration is stored in the Config

Repo.

There are lots of other ways they could have organized

their code, all with their own pros and cons.

15

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.3 Cat Picture Website Pipelines

Since Cat Picture Website is made up of several services and

all the code and configuration needed for it is spread across

several repos, it is managed by several CD pipelines. We’ll go

over all of these pipelines in detail in future chapters where

we examine more advanced pipelines, but for now we’re going

to stick to the basic pipeline that is used for the User Service

and the Picture Service.

Since these two services are so similar, the same pipeline

is used for both, and that pipeline will show as all of the basic

elements we’d expect to see in a pipeline.

VOCAB TIME

Container images are executable software packages that contain

everything needed to run that software.

Not only is this the pipeline used for the cat picture website, this

pipeline has the basic elements that you’ll see in my pipelines!

16

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.4 What’s a pipeline? What’s a task?

We just spent a few pages looking at the Cat Picture Website pipeline, but what is a

“pipeline” anyway?

There’s a lot of different terminology in the CD space. Where we’re using the term

“pipeline”, some CD systems use other terms like “workflow”. We’ll have an overview of this

terminology at the end of the chapter, but for now let’s take a look at the terminology we’ll

be using in this book: pipelines and tasks.

Tasks are individual things you can do: you can think of them a lot like functions. And

pipelines are like the entrypoint to code, which calls all the functions at the right time, in the

right order.

Below is a pipeline, with 3 tasks: Task A runs first, then Task B, then Task C.

CD Pipelines will get run again and again; we’ll talk more about when in a few pages. If

we were to run the pipeline() function (representing the Pipeline on the left), we’d get this

output:

Hello from task A!
Hello from task B!
Hello from task C!

17

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.5 The basic tasks in a CD pipeline
The Cat Picture Website pipeline shows us all of the basic tasks that

you will see in most pipelines. We’ll be looking at these basic tasks in

detail in the next chapters.

Let’s review what each task in this pipeline is for:

• Linting catches common programing and style errors in the

picture service and user service code

• Unit and integration tests verify that the picture service and

user service code idoes what the authors intended

• After the code has been linted and tested, the build image

task builds container images for each of the services

• Next we upload the container images to an image registry

• Finally the running version of the software is updated to use

the new images

Each of the tasks in the cat picture website pipeline is representative of a basic pipeline

element:

• Linting is the most common form of static analysis in CD pipelines

• Unit and integration tests are forms of tests

• These services are built into images; to use most software you need to build it into

some other form before it can be used

• Container images are stored and retrieved from registries; as we saw in chapter 1,

some kinds of software will need to be published in order to be used

• Cat Picture Website needs to be up and running so users can interact with it.

Updating the running service to use the new image is how Cat Picture Website is

deployed.

These are the basic types of tasks you’ll see in a CI/CD pipeline:

18

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.6 Gates and Transformations

Some tasks are about verifying your

code. They are quality gates that your

code has to pass through.

Other tasks are about changing your code

from one form to another. They are

transformations on your code: your code

goes in as input and comes out in another

form.

Looking at the tasks in a CD pipeline as gates and transformations goes hand in hand

with the elements of Continuous Delivery. In chapter 1 we learned that you’re doing

Continuous Delivery when:

1. You can safely deliver changes to your software at any time

2. Delivering that software is as simple as pushing a button

If you squint at those, they map 1:1 to gates and transfomations:

• Gates verify the quality of your code changes, ensuring

it is safe to deliver them.

• Transformations build, publish, and, depending on the

kind of software, deploy your changes.

And in fact, the gates usually comprise the Continuous

Integration (CI) part of your pipeline!

19

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.7 CD: Gates and Transformations

Let’s look at our basic CD tasks again and see how they map to gates and

transformations:

• Code goes into gating tasks and they either pass or fail. If they fail, the code

should not continue through the pipeline.

• Code goes into transformation tasks and it changes into something completely

different or changes are made to some part of the world using it.

Linting is all about looking at the code and flagging

common mistakes and bugs, but without actually running

the code. Sounds like a gate to me!
Testing activities verify that the code does what we

intended it to do. Since this is another example of code

verification, this sounds like a gate too.

Building code is about taking code from one form and

transforming it into another form so that it can be used.

Sometimes this activity will catch issues with the code, so

it has aspects of CI, however in order to test our code, we

probably need to build it, so the main purpose here is to

transform (build) the code.

Publishing code is about putting the built software

somewhere so that it can be used. Putting the software

somewhere where it can be used is part of releasing that

software. (For some code, such as libraries, this is all you

need to do in order to release it!) This sounds like a kind of

transformation too.

Lastly, deploying the code (for kinds of software that

need to be up and running) is a kind of transformation of

the state of the built software.

QUESTION

Q Okay you said the gates are the CI tasks - are you saying CI is just about tests and

linting? I remember before Continuous Delivery, CI including building too.

A I hear you! CI does often include building, and sometimes folks throw publishing in

there too. What really matters is having a conceptual framework for these

activities, so in this book we choose to treat CI as being about verification, and not

building/publishing/deploying/releasing.

20

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.8 Cat Picture Website Service Pipeline

What does the Cat Picture Website service pipeline look like if we view it as a pipeline of

gates and transformations?

The first gate the code must pass

through is linting. If there are linting

problems in the code, we shouldn’t start

transforming the code and delivering it;

these problems should be fixed first.

The other gate the code must pass

through is unit and integration tests.

Just like with linting, if these tests

reveal the code doesn’t do what the

authors intended, we shouldn’t start

transforming the code and delivering it;

these problems should be fixed first.

Once the code has passed through all

the gates, we know it’s in good shape

and we can start transforming it.

The first transformation is to build the

image from the source code. The code

is compiled and packaged up into a

container image that can be executed.

The next transformation takes that built

image and uploads it to the image

registry, changing it from an image on

disk to an image in a registry that can

be downloaded and used.

The last transformation will update the

running service to use the image.

And we’re done!

21

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.9 Running the pipeline

You might be starting to wonder how and when this pipeline actually

gets run. That’s a great question! The process evolved over time for the

folks at Cat Picture Website Inc.

When Cat Picture Website Inc. started, there were only a few

engineers: Topher, Angela and Sato. Angela wrote the cat picture

website service pipeline in python and it looked like this:

def pipeline(source_repo, config_repo):
 linting(source_repo)
 unit_and_integration_tests(source_repo)
 image = build_image(source_repo)
 image_url =

upload_image_to_registry(image)
 update_running_service(image_url,

config_repo)

The pipeline function in the code above executes each of the tasks

in the cat picture website as a function.

Both linting and testing happen on the source code, building an

image builds from the source code, and then the outputs of each

transformation (building, uploading, updating) are passed to each other

as they are created.

This is great, but how do you actually run it? Someone (or as we’ll see later, some

THING) needs to execute the pipeline function.

Topher volunteered to be in charge of running the pipeline, so he wrote an executable

python file that looks like this:

if __name__ == “__main__”:
 pipeline(“https://10.10.10.10/catpicturewebsite/service.git”,
 “https://10.10.10.10/catpicturewebsite/config.git”)

This executable file calls the pipeline function, passing in the

addresses of the serverice repo and config repo git repositories

as arguments.

All Topher has to do is run the executable, and he’ll run the

pipeline and all of its tasks.

22

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

QUESTION

Q Should I be writing my pipelines and tasks in Python like Angela and Topher ?

A Probably not! Instead of reinventing a CD system yourself, there are lots of existing

tools you an use. The appendices at the end of this book will give you a brief

overview of some of the current options.

We’ll be using Python to demonstrate the ideas behind these CD systems without suggesting

any particular system to you - they all have their pros and cons and you should use the ones

that work best for your needs.

23

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.10 Running once a day

Topher is in charge of running the pipeline, by running the executable python file.

def pipeline(source_repo, config_repo):
 linting(source_repo)
 unit_and_integration_tests(source_repo)
 image = build_image(source_repo)
 image_url = upload_image_to_registry(image)
 update_running_service(image_url, config_repo)

if __name__ == “__main__”:
 pipeline(“https://10.10.10.10/catpicturewebsite/service.git”,
 “https://10.10.10.10/catpicturewebsite/config.git”)

When does he actually run it? He decides that he’s going to run it every morning before

he starts his day. Let’s see what that looks like:

VOCAB TIME

Saying a pipeline breaks means that some task in the pipeline

encountered an error and pipeline execution stopped.

That worked okay, but look what happened the next day:

This isn’t working out like Topher has hoped: because he’s running the pipeline once a

day, he’s picking up all of the changes that were made the day before. When something goes

wrong, he can’t tell which change caused the problem.

24

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.11 Trying Continuous Integration

Because Topher is running the pipeline once a day, he’s picking up all of the changes

from the day before.

If we look back at the definition of Continuous Integration we can see what’s going

wrong:

• Continuous integration is process of combining code changes frequently, where

each change is verified on check in.

Topher needs to run the pipeline on every change. This way every time the code is

changed, the team will get a signal about whether that change introduced problems or not.

Topher asks his team to tell him each time they push a change, so that he can run the

pipeline right away. Now the pipeline is being run on every change and the team is getting

feedback immediately after they make their changes.

25

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

VOCAB TIME

Saying a pipeline passes means everything succeeded, i.e. nothing

broke.

26

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.12 Using notifications

A few weeks have passed, and the team has been telling Topher every time they make a

change. Let’s see how it’s going!

Once again, it didn’t work quite as well as Topher hoped. Angela made a change and

forgot to tell him, and now the team has to backtrack. How can Topher make sure he doesn’t

miss any changes?

Topher looks into the problem and realizes that he can get notifications from his source

code management every time someone makes a change. Instead of having the team tell

him when they make changes, he uses these email notifications.

VOCAB TIME

Source Code Management (SCM) is the term for systems like GitHub

which combine version control with extra features such as code review

tools. Other examples are GitLab and BitBucket.

27

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.13 Scaling manual effort

Things have been going so well for the team that two more team members have joined.

What does this look like for Topher now?

Topher is now spending his entire day running the pipeline and has no time to do any

other work. He has lots of ideas for things he wants to improve in the pipeline, and some

features he wants to implement, but he can’t find any time!

He decides to step back and think about what’s happening so he can find a way to save

his own time.

1. An email arrives in Topher’s inbox

2. Topher’s email application notifies Topher he has a new email

3. Topher sees the notification

4. Topher runs the pipeline script

5. Topher tells people when the pipeline fails

Topher looks at his own role in this process. Which parts require Topher’s human

intervention?

1. Topher has to see the email notification

2. Topher has to type the command to run the script

3. Topher tells people what happened

Is there some way Topher could take himself out of the process? He’d need something

that could:

1. See the notification

2. Run the pipeline script

3. Tell people what happened

Topher needs to find something that can receive a notification and run his script for him.

28

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.14 Automation with webhooks

Time is precious! Topher has realized his whole day is being taken up running the pipeline,

but he can take himself out of the process if he can find tools to:

1. See the notification

2. Run the pipeline script

3. Tell people what happened

Topher looks into the problem and realizes that his SCM (Source Code Management)

system supports webhooks.

By writing a simple webserver, he can do everything he needs:

1. The SCM will make a request to his webserver every time someone

pushes a change (Topher doesn’t need to see the notification!)

2. When the webserver gets the request, it can run the pipeline script

(Topher doesn’t need to do it!)

3. The request the SCM system makes to the webserver contains the

email of the person who made the change, so if the pipeline script

fails, the webserver can send an email to the person who caused the

problem.

VOCAB TIME

Use webhooks to get a system outside of your control to run your code

when events happen. Usually you do this by giving the system the URL of an

HTTP endpoint that you control.

class Webhook(BaseHTTPRequestHandler):
 def do_POST(self):
 respond(self)
 email = get_email_from_request(self)
 success, logs = run_pipeline()
 if not success:
 send_email(email, logs)

if __name__ == ‘__main__’:
 httpd = HTTPServer((‘’, 8080), Webhook)
 httpd.serve_forever()

Topher starts the webserver running on his workstation and voila: he has automated

pipeline execution!

29

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

QUESTION

Q How do I get notifications and events from my SCM?

A You’ll have to look at the documentation for your version control system to see

how to set this up, but getting notifications for changes and webhook triggering is

a core feature of most SCMs. If yours doesn’t have that, consider changing to a

different system that does!

30

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.15 Automation with webhooks

class Webhook(BaseHTTPRequestHandler):
 def do_POST(self):
 respond(self)
 email = get_email_from_request(self)
 success, logs = run_pipeline()
 if not success:
 send_email(email, logs)

if __name__ == ‘__main__’:
 httpd = HTTPServer((‘’, 8080), Webhook)
 httpd.serve_forever()

VOCAB TIME

Having your SCM call your webhook when an event happens is often

referred to as triggering your pipeline.

Let’s look at what happens now that Topher has automated execution with his webhook.

The events from the SCM system and the webhooks are taking care of all that manual

work Topher was doing before. Now he can move on to the work he actually wants to get

done!

QUESTION

Q Should I write these webhooks myself like Topher did?

A Again, probably not! We’re using Python here to demonstrate how CD systems work

in general, but instead of creating one yourself, look at the appendices at the end of

this book to see existing CD systems you could use. Supporting webhooks is a key

feature to look for!

31

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.16 Don’t push changes when broken

There are a few more problems Topher will run into. Let’s look at a couple of them here and

we’ll leave the rest for Chapter 7.

What if Angela introduced a change and wasn’t able to fix it before another change was

made?.

While Angela is fixing the problem she introduced, Sato pushes one of his changes. The

system thinks that Sato caused the pipeline to break, but it was actually Angela, and poor

Sato is confused.

Plus, every change that is added on top of an existing problem has the potential to make

it harder and harder to fix the original problem.

The way to combat this is to enforce a simple rule:

When the pipeline breaks, stop pushing changes.

This can be enforced by the CD system itself, and also by notifying all the other engineers

working on the project that the pipeline is broken, via notifications.

Stay tuned for chapter 7 to learn more!

32

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.17 Cat Picture Website CD

Whew! Now we know all about Cat Picture Website’s CD: the pipeline that they use for their

services, and also how it is automated and triggered.

ANSWERS

Q Should I run webhooks directly on my workstation too?

A No! Running webhooks for you is another feature most CD systems will handle for

you

33

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.18 What’s in a name?

Once you start using a CD system, you might encounter terminology different from what

we’ve been using in this chapter and will be using in the rest of this book. So here’s an

overview of the different terminology used across the space and how it relates to the terms

we’ll be using.

Tasks can be called:

34

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

2.19 Conclusion

The pipeline used by Cat Picture Website for their services shows us the same basic building

blocks that you should expect to see in most CD pipelines. By looking at how the folks at Cat

Picture Website run their pipeline, we’ve learned how important automation is in making CD

scale, especially as a company grows.

In the rest of this book we’ll be looking at the details of each element of the pipeline and

how to stitch them together.

2.20 Summary
• This book will use the terms pipelines and tasks to refer to basic CD building blocks

which can go by many other names

• Tasks are like functions. Tasks can also be called stages, jobs, builds and steps

• Pipelines are the orchestration that combines Tasks together. Pipelines can also be

called workflows

• The basic components of a CD pipeline are static analysis, testing, building,

delivering and deploying

• Static analysis and testing are gates (aka Continuous Integration (CI) tasks), while

building, delivering and deploying are transformations

• Source Code Management (SCM) systems provide mechanisms such as events and

webhooks to make it possible to automate pipeline execution

• When a pipeline breaks, stop pushing changes!

2.21 Up next . . .

In the next chapter we’ll be looking at static analysis in detail: why we need it, what we can

catch with it and what we can’t, and when it makes sense to use it.

35

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Version control is the

only way to roll 3

In this chapter:

• Explain why version control is essential to Continuous Delivery

• Keep your software in a releasable state by keeping version control green

and triggering pipelines based on changes in version control

• Define “config as code”

• Enable automation by storing all configuration in version control

We’re going to start your Continuous Delivery journey at the very beginning with the tool

that we need for the basis for absolutely everything we’re going to do next: version control.

In this chapter you’ll learn why version control is crucial to Continuous Delivery and how

to use it to set you and your team up for success.

3.1 Sasha and Sarah’s start-up

Recent university grads Sasha and Sarah have just gotten funding for an ambitious start-up

idea: Watch Me Watch, a social networking site based around TV and movie viewing habits.

36

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

With Watch Me Watch, users can rate movies and TV shows as they watch them, see what

their friends like, and get personalized recommendations for what to watch next.

Sasha and Sarah want the user experience to be seamless, so they are integrating with

popular streaming providers. This means users don’t have to tediously add movies and TV

shows as they watch them, all of their viewing will automatically be uploaded to the app!

Before they get started, they’ve sketched out the architecture they want to build:

They’re going to break up the backend logic into three services:

• The watch me watch API service, which handles all requests from the frontends

• The user service, which holds data about users

• The streaming integration service which integrates with popular streaming providers

They also plan to provide two different frontends for interacting with Watch Me Watch, a

website and a phone app.

3.2 All kinds of data

As they stare proudly at this architecture diagram on their newly purchased white board,

they realize that all the code they need to build is going to have to live somewhere. And

they’re going to both be making changes to it, so they’ll need some kind of co-ordination.

37

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

They are going to create 3 services, which are designed and built in roughly the same

way: they are written in Golang, and executed as running containers.

They’ll also run a website and create and distribute a phone app, both of which will be

ways for users to use Watch Me Watch.

The data to define the 3 services, the app and the website will include:

• Source code and tests written in Golang

• READMEs and other docs written in markdown

• Container image definitions (Dockerfiles) for the services

• Images for the website and phone app

• Task and Pipeline definitions for testing, building and deploying

The database (which will be running in the cloud) is going to need:

• Versioned schemas

• Task and Pipeline definitions for deploying

To connect to the streaming services they’ll be integrating with, they’re

also going to need API keys and connection information.

38

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.3 Source and software

Even before they’ve written a single line of code, gazing at their architecture diagram and

thinking about what each piece is going to need, Sasha and Sarah realize they are going to

have a lot of data to store:

• Source code

• Tests

• Dockerfiles

• Markdown files Images

• Tasks and Pipelines

• Versioned schemas

• API keys

• Connection information

That’s a lot! (And this is is for a fairly straightforward system!) But what do all of these

items have in common? They’ll all data. And in fact, one step further than that, they are all

plain text.

Even though each of the above is used differently, each of them is represented by plain

text data. And when you’re working on building and maintaining software, like Sasha and

Sarah are about to be, you need to manage all that plain text data somehow.

And that’s where version control comes in. Version control (also called source control)

stores this data and tracks changes to it. It stores all of the data your software needs: the

source code, the configuration you use to run it, supporting data like documentation and

scripts: all the data you need to define, run and interact with your software.

VOCAB TIME

Plain text is data in the form of printable (or human readable) characters.

In the context of software, plain text is often contrasted with binary data,

which is data that is stored as sequences of bits which are not plain text.

More simply: plain text is human readable data, the rest is binary data.

Version control could be used for any data but it is usually optimized for plain

text, so it doesn’t handle binary data very well. This means you can use it to

store binary data if you want, but some features won’t work, or won’t work

well.

39

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.4 Repositories and versions

Version control is software for tracking changes to plain text, where each change is

identified by a version, also called a commit or a revision. Version control gives you (at

least) these two features for your software:

1. A central location to store everything, usually called repository (or repo for short!)

2. A history of all changes, where each change (or set of changes) results in a new,

uniquely identifiable, version

The configuration and source code needed for projects can often be stored in multiple

repos - sticking to just one repo for everything is exceptional enough that this has its own

name: the monorepo.

Sasha and Sarah decide to have roughly one repo per service in their architecture, and

they decide that they first repo they’ll create will be for their user service.

40

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.5 Continuous Delivery and version control

Version control is the foundation for Continuous Delivery. I like the idea of treating

Continuous Delivery as a “practice”, asserting that if you’re doing software development,

you’re already doing Continuous Delivery (at least to some extent); however the one

exception I’ll make to that statement is that if you’re not using version control, you’re not

doing Continuous Delivery.

To be doing Continuous Delivery, you must use version control.

Why is it so important for Continuous Delivery? Remember that CD is all about getting to

a state where:

1. You can safely deliver changes to your software at any time

2. Delivering that software is as simple as pushing a button

In Chapter 1 we looked at what was required to achieve (1) - specifically, Continuous

Integration (CI), which we defined as:

The process of combining code changes frequently, where each change is verified on check in.

We glossed over what “check in” means here - in fact we already assumed version control

was involved! Let’s try to redefine CI without assuming version control is present:

The process of combining code changes frequently, where each change is verified on when it is added

to the already accumulated and verified changes.

This definition suggests that in order to do CI we need:

1. Some way to combine changes

2. Somewhere to store (and add to) changes

And how do we store and combine changes to software? You guessed it: using version

control. In every subsequent chapter after this, as we discuss elements you’ll want in your

Continuous Delivery pipelines, we’ll be assuming that we’re starting from changes that are

tracked in version control.

41

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

TAKEAWAY

To be doing Continuous Delivery, you must use version control.

TAKEAWAY

Writing and maintaining software means creating and editing a lot of data,

specifically plain text data. Use version control to store and track the history

of your source code, configuration - all the data you need to define your

software. Store the data in one or more repositories, with each change

uniquely identified by a version.

42

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.6 Git and GitHub

Sarah and Sasha are going to be using git for version control. The next

question is where their repository will be hosted and how they will

interact with it. Sarah and Sasha are going to be using GitHub to host

this repository and the other repositories they will create.

Git is a distributed version control system. What this means is

that when you clone (that is, copy) a repository onto your own machine,

you get a full copy of the entire repository which can be used

independently of the remote copy - even the history is separate!

Sarah creates the project’s first repository on GitHub and then clones

the repo - this makes another copy of the repo on her machine, with all

the same commits (none so far), but she can make changes to it

independently. Sasha does the same thing, and they both have clones of

the repo they can work on independently, and use to push changes back

to the repo in GitHub.

43

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.7 An initial commit - with a bug!

Sarah and Sasha both have clones of the user service repo and they’re ready to work. In a

burst of inspiration, Sarah starts working on the initial User class in the repo. She intends for

it to be able to store all of the movies a user has watched, and the ratings that a given user

has explicitly given to movies.

The User class she creates stores the name of the user, and she adds a method

rate_movie which will be called when a user wants to rate a movie. The function takes the

name of the movie to rate, and the score (as a floating point percentage) to give the movie.

It tries to store these in the User object, but there’s a bug in her code: the function tries to

use self.ratings, but that object hasn’t been initialized anywhere.

class User:
 def __init__(self, name):
 self.name = name

 def rate_movie(self, movie, score):
 self.ratings[movie] = score #A

#A There’s a bug here: self.ratings hasn’t been initialized, so trying to store a key in it is going to raise an exception!

Sarah wrote a bug into this code, but she actually also wrote a unit test that will catch that

error. She wrote a test (test_rate_movie) that tries to rate a movie and then verifies that

the rating has been added:

 def test_rate_movie(self):
 u = User(“sarah”)
 u.rate_movie(“jurassic park”, 0.9)
 self.assertEqual(u.ratings[“jurassic park”], 0.9)

44

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Unfortunately, Sarah forgets to actually run the test before

she commits this new code! She adds these changes to her local

repo, creating a new commit with ID abcd0123abcd0123. She

commits this to the main branch on her repo, then pushes the

comit back to the main branch in GitHub’s repo.

45

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.8 Breaking main

Shortly after Sarah pushes her new code (and her bug!), Sasha pulls the main branch from

GitHub to her local repo, pulling in the new commit.

Sasha is excited to see the changes Sarah made:

class User:
 def __init__(self, name):
 self.name = name

 def rate_movie(self, movie, score):
 self.ratings[movie] = score

Sasha tries to use them right away, but as soon as she tries to use rate_movie, she runs

smack into the bug, seeing the following error:

AttributeError: ‘User’ object has no attribute ‘ratings’

“I thought I saw that Sarah included a unit test for this method,” wonders Sasha. “How

could it be broken?”

 def test_rate_movie(self):
 u = User(“sarah”)
 u.rate_movie(“jurassic park”, 0.9)
 self.assertEqual(u.ratings[“jurassic park”], 0.9)

Sasha runs the unit test and, low and behold, the unit test fails too:

Traceback (most recent call last):
 File “test_user.py”, line 21, in test_rate_movie
 u.rate_movie(“jurassic park”, 0.9)
 File “test_user.py”, line 12, in rate_movie
 self.ratings[movie] = score
AttributeError: ‘User’ object has no attribute ‘ratings’

Sasha realizes that the code in the GitHub repo is broken.

46

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.9 Are we doing Continuous Delivery?

Sasha is a bit frustrated after learning that the User Service code in the GitHub repo is

broken and brings up the issue with Sarah.

47

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.10 Keep version control releasable

Sarah and Sasha have realized that by allowing broken code to

be commited to the user service repo in GitHub, they’re violating

one of two pillars of Continuous Delivery.

Remember, to be doing CD you want to be trying to get to a

state where:

1. You can safely deliver changes to your software at any

time

2. Delivering that software is as simple as pushing a button

The user service cannot be safely delievered until the bug

Sarah introduced is fixed. This means the user service is not in a

state where it is safe to deliver.

Sarah is able to fix it and quickly push a commit with the fix,

but how can Sarah and Sasha make sure this doesn’t happen

again? After all, Sarah had written a test that caught the

problem she introduced, and that wasn’t enough to stop the bug

from getting in.

No matter how hard Sarah tries, she might forget to run the

tests before committing at some point in the future - and Sasha

might too - they’re only human after all!

What Sasha and Sarah need to do is to guarantee that the

tests will be run before changes are committed. When you need

to guarantee that something happens (and if it’s possible to

automate that thing) your best bet is to automate it.

If you rely on humans to do something that always without fail needs to be done,

sometimes they’ll make mistakes - which is totally okay because that’s how humans work!

Let humans be good at what humans do, and when you need to guarantee that the same

thing is done in the exact same way every time, and happens without fail, use automation.

TAKEAWAY

When you need to guarantee that something happens, use automation.

Human beings are not machines, and they’re going to make mistakes and forget

to do things. Instead of blaming the person for forgetting to do something, try to

find a way to make it so they don’t have to remember.

48

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.11 Trigger on changes to version control

Looking at what led to user service repo being in an unsafe state, we realize that the point

where Sarah went wrong wasn’t when she introduced the bug, or even when she committed

it. The problems started when she pushed the broken code to the remote repo:

So what’s the missing piece between (3) and (4) above that would

let Sarah and Sasha do Continuous Delivery?

In chapter 2 we learned an important principle for what to do when

breaking change are introduced:

When the pipeline breaks, stop pushing changes.

But what - what pipeline? Sasha and Sarah don’t have any kind of

pipeline or automation set up at all. They have to rely on manually

running tests to figure out when anything is wrong. And that’s the

missing piece that Sasha and Sarah need: not just having a pipeline to

automate that manual effort and make it reliable, but setting it up to

be triggered on changes to the remote repo.

Trigger pipelines on changes to version control.

If Sasha and Sarah had a pipeline that ran the unit tests whenever

a change was pushed to the GitHub repo, Sarah would have

immediately been notified of the problem she introduced.

49

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.12 Triggering the User Service Pipeline

Sasha and Sarah create a pipeline. For now it has just one task to run their unit tests. They

setup webhook triggering so that the pipeline will be automatically run every time commits

are pushed to the repo in GitHub, and if the pipeline is unsuccessful, an email notification will

be sent to both of them.

Now if any breaking changes are introduced, they’ll find out right away. They agree to

adopt a policy of dropping everything to fix any breakages that are introduced; i.e.:

When the pipeline breaks, stop pushing changes.

TAKEAWAY

Trigger pipelines on changes to version control. Just writing tests isn’t enough; they need to

be running regularly. Relying on people to remember to run them manually is error prone.

Version control is not just the source of truth for the state of your software, it’s also the

jumping off point for all the CD automation we’ll look at in this book.

50

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.13 Building the User Service

Sarah and Sasha now have a (small) pipeline in place that will make sure they know

immediately if something breaks.

This code isn’t doing them any good unless they’re doing with it! So far this pipeline has

been helping them with the first part of Continuous Delivery:

1. You can safely deliver changes to your software at any time

Having a pipeline and automation to trigger it will also help them with the second part of

Continuous Delivery:

2. Delivering that software is as simple as pushing a button

They need to add tasks to their pipeline to build and publish the User Service. They

decide to package the User Service as a container image and push it to an image registry.

By adding this to their pipeline, they make this “as simple as pushing a button” (or in this

case, even simpler, since it will be triggered by changes to version control!)

Now on every commit, the unit tests will be run, and if they are successful, the User

Service will be packaged up and pushed as an image.

51

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.14 The User Service in the cloud

The last question Sarah and Sasha need to answer for the User Service is the image they are

now automatically building will run. They decide they’ll run it using the popular cloud

provider RandomCloud.

RandomCloud provides a service for running containers, so running the User Service will

be easy - except that in order to be able to run, the User Service also needs access to a

database, where it stores information about users and movies:

Fortunately, like most cloud offerings, Random Cloud provides a database service which

Sarah and Sasha can use with the User Service:

With the User Service pipeline automatically building and publishing the User Service

image, all they need to do now is configure the User Service container to use RandomCloud’s

database service.

52

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.15 Connecting to the RandomCloud database

To get the User Service up and running in RandomCloud, Sasha and Sarah need to configure

the User Service container to connect to RandomCloud’s database service. To pull this off,

two pieces need to be in place:

1. It needs to be possible to configure the User Service with the information the service

needs to connect to a database.

2. When running the User Service, it needs to be possible to provide the specific

configuration that allows it to Random Cloud’s database service.

For (1), Sasha adds command line options that the User Service uses to determine what

database to connect to:

./user_service.py \
 --db-host=10.10.10.10 \
 --db-username=some-user \
 --db-password=some-password \
 --db-name=watch-me-watch-users #A

#A The database connection information is provided as command line arguments

For (2), the specifics of RandomCloud’s database service can be provided via the

configuration that RandomCloud uses to run the User Service container.

apiVersion: randomcloud.dev/v1
kind: Container
spec:
 image: watchmewatch/userservice:latest #A
 args:
 - --db-host=10.10.10.10
 - --db-username=some-user
 - --db-password=some-password
 - --db-name=watch-me-watch-users #B

#A This image is built and pushed as part of the User Service pipeline. It contains and runs user_service.py

#B These are the same arguments as above, now provided as part of the RandomCloud configuration

53

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.16 Managing the User Service

Sarah and Sasha are all set to run the User Service as a container using popular cloud

provider RandomCloud.

For the first couple of weeks, every time they want to do a launch, they use the

RandomCloud UI to update the container configuration with the latest version, sometimes

changing the arguments as well.

Soon Sarah and Sasha decide to invest in their deployment tooling a bit more, and so

they pay for a license with Deployaker, a service which allows them to easily manage

deployments of User Service (and later the other services that make up Watch Me Watch as

well).

The User Service is now running in a container on RandomCloud, and that service is

managed by Deployaker. Deployaker continually monitors the state of the User Service and

makes sure that it is always configured as expected.

54

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.17 The User Service outage

One Thursday afternoon, Sasha gets an alert on her phone from RandomCloud, telling her

the User Service is down. Sasha looks at the logs from the User Service and realizes that it

can no longer connect to the database service. The database called watch-me-watch-users

no longer exists!

Sasha races to fix the configuration - but she makes a crucial mistake. She completely

forgets that Deployaker is managing the User Service now. Instead of using Deployaker to

make the update, she makes the fix directly in the Random Cloud UI.

apiVersion: randomcloud.dev/v1
kind: Container
spec:
 image: watchmewatch/userservice:latest
 args:
 - --db-host=10.10.10.10
 - --db-username=some-user
 - --db-password=some-password
 - --db-name=users #A

#A Sasha updates the configuration to use the correct database, but she makes the change directly to RandomCloud

and forgets about Deployaker completely

The User Service is fixed and the alerts from RandomCloud stop.

55

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.18 Outsmarted by automation

Sasha has rushed in a fix to the RandomCloud configuration to get the User Service back up

and running, but she completely forgot that Deployaker is running behind the scenes.

That night, Sarah has been sleeping soundly when she is suddenly woken up by another

alert from RandomCloud. The User Service is down again!

Sarah opens up the Deployaker UI and looks at the configuration it is using for the User

Service:

apiVersion: randomcloud.dev/v1
kind: Container
spec:
 image: watchmewatch/userservice:latest
 args:
 - --db-host=10.10.10.10
 - --db-username=some-user
 - --db-password=some-password
 - --db-name=watch-me-watch-users #A

#A This configuration is still using the database that Sarah deleted!

In spite of being so tired that she can’t think properly, Sarah realizes what happened. Sasha

fixed the configuration in RandomCloud but didn’t update it in Deployaker. Deployaker

periodically checks the deployed User Service to make sure it is deployed and configured as

expected. Unfortunately, when Deployaker checked that night, it saw the change Sarah had

made - which didn’t match what it expected to see. So Deployaker resolved the problem by

overwriting the fixed configuration with the configuration it had stored - triggering the same

outage again! Sarah sighs and makes the fix in Deployaker:

56

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

apiVersion: randomcloud.dev/v1
kind: Container
spec:
 image: watchmewatch/userservice:latest
 args:
 - --db-host=10.10.10.10
 - --db-username=some-user
 - --db-password=some-password
 - --db-name=users #A

#A Now the correct configuration is stored in Deployaker and Deployaker will ensure that the service running in

RandomCloud uses this configuration.

The alerts stop and she can finally go back to sleep.

57

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.19 What’s the source of truth?

The next morning, bleary eyed over coffee, Sarah tells Sasha what happened.

The configuration that they are talking about is the RandomCloud configuration for the

User Service container that needed to be changed to fix the outages the previous day:

apiVersion: randomcloud.dev/v1
kind: Container
spec:
 image: watchmewatch/userservice:latest
 args:
 - --db-host=10.10.10.10
 - --db-username=some-user
 - --db-password=some-password
 - --db-name=users # OR --db-name=watch-me-watch-users

There were two sources of truth for this Configuration:

1. The configuration that RandomCloud was actually using

2. The configuration stored in Deployaker, which it would use to overwrite whatever

RandomCloud was using if it didn’t match

Sasha has suggested that maybe they can store this configuration in the GitHub repo

alongside the User Service source code. But would this just end up being a third source of

truth?

The final missing piece is to configure Deployaker to use the configuration in the GitHub

repo as its source of truth as well.

58

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.20 Version Control and sensitive data

As a rule of thumb, all plain text data should go into version control. But what about

sensitive data, like secrets and passwords? Usually you wouldn’t want everyone with access

to the repo to have access to this kind of information (and they usually don’t need it). Plus,

adding this information to version control will store it indefinitely in the history of the repo!

For Sasha and Sarah, the configuration for the User Service contains sensitive data: the

username and password for connecting to the database service:

But they want to commit this config file to version control - how do they do that without

committing the username and password? The answer is to store that information somewhere

else and have it managed and populated for you. Most clouds provide mechanisms for

storing secure information, and many CD systems will allow you to populate these secrets

safely - which will mean trusting the CD system enough to give it access.

Sasha and Sarah decide to store the username and password in a storage bucket in

RandomCloud, and they configure Deployaker so that it can access the values in this bucket

and populate them at deploy time.

59

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.21 User Service config as code

Now that Sasha and Sarah have setup Deployaker such that it can fetch sensitive data (the

User Service database username and password) from RandomCloud they want to commit the

config file for the User Service the repo:

They make a new directory in the User Service repo called config where they store this

config file, and they’ll put any other configuration they discover that they need along the

way. Now the User Service repo structure looks like this:

docs/
config/ #A
 user-service.yaml
service/ #B
test/
setup.py
LICENSE
README.md
requirements.txt

#A This new directory will hold the User Service configuration used by Deployaker as well as any other configuration

they need to add in the future

#B All of the source code is in the service directory

60

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.22 Hard-coded data

With the databse connection information hardcoded, it can’t be used in any other

environments - for example when spinning up a test environment or developing locally. This

defeats one of the advantages to config as code, which is that by tracking the configuration

you are using when you run your software in version control, you can use this exact

configuration when you develop and test. But what can you do about those hardcoded

values?

The answer is usually to make it possible to provide different values at runtime (i.e.

when the software is actually being deployed), usually by either:

• Using templating. For example instead of hard-coding --db-host=10.10.10.10,

you’d use a templating syntax such as --db-host={{ $db-host }} and use a tool

to populate the value of $db-host as part of deployment

• Using layering. Some tools for configuration allow you to define layers which

override each other, for example commiting the hard-coded --db-

host=10.10.10.10 to the repo for when the User Service is deployed, and using

tools to override certain values when running somewhere else (e.g. something like

--db-host=localhost:3306 when running locally).

Both of the above approaches have the downside of the configuration in version control

not representing entirely the actual configuration being run. For this reason, sometimes

people will choose instead to add steps to their pipelines to explicitly hydrate (i.e. fully

populate the configuration with the actual values for a particular environment) the

configuration and commit this “hydrated” configuration back to version control.

Even if Deployaker popluates some of these values, the database connection information

is essentially hard-coded and this config can’t be used in other environments

61

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.23 Configuring Deployaker

Now that the User Service configuration is committed to GitHub, Sasha and Sarah no longer

need to supply this configuration to Deployaker. Instead they configure Deployaker to

connect to the User Service GitHub repo and give it the path to the config file for the User

Service: user-service.yaml.

This way, Sarah and Sasha never need to make any changes directly in RandomCloud or

Deployaker. They commit the changes to the GitHub repo and Deployaker picks up the

changes from there and rolls them out to RandomCloud.

62

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.24 Config as code

How does configuration fit into Continuous Delivery? Remember that the first half of

Continuous Delivery is about getting to a state where:

You can safely deliver changes to your software at any time

When many people think about their delivering their software, they only think about the

source code. But as we saw at the beginning of this chapter, there are actually all kinds of by

plain text data that make up your software - and that includes the configuration you use to

run it.

We also took a look at Continuous Integation to see why version control was key.

Continuous integration is:

The process of combining code changes frequently, where

each change is verified on when it is added to the already

accumulated and verified changes.

In order to really be sure you can safely deliver changes to

your software, you need to be accumulating and verifying

changes to all the plain text data that makes up your software -

including the configuration.

This practice of treating software configuration the same way

you treat source code (i.e. storing it in version control and

verifying it with CI) is often called config as code. Doing config

as code is key to practicing Continuous Delivery, and doing

config as code is as simple as versioning your configuration in

version control, and as much as you can, applying verification to

it such as static analysis and using it when spinning up test

environments.

63

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.25 Rolling out software and config changes

Sarah and Sasha have begun doing config as code by storing the User Service configuration

in Deployaker.

They almost immediately see the payoff a few weeks later when they decide that they

want to separate the data they are storing in the database into two separate databases.

Instead of one giant User database, they want a User database and a Movie database. To do

this they need to make two changes:

1. The User Service previously only took one argument for the database name: --db-

name, now it needs to take two arguments

./user_service.py \
 --db-host=10.10.10.10 \
 --db-username=some-user \
 --db-password=some-password \
 --db-users-name=users \ #A
 --db-movies-name=movies

#A The User Service has to be updated to recognize these two new arguments

2. The configuration for the User Service needs to be updated to use the two arguments

instead of just the --db-name argument it is currently using

apiVersion: randomcloud.dev/v1
kind: Container
spec:
 image: watchmewatch/userservice:latest
 args:
 - --db-host=10.10.10.10
 - --db-username=some-user
 - --db-password=some-password
 - --db-users-name=users #A
 - --db-movies-name=movies

#A And the configuration has to be updated to actually use the new arguments as well

Back when they were making configuration changes directly in Deployaker, they would have

had to roll these changes out in two phases:

1. After making the source code changes to the User Service, they’d need to build a new

image

2. At this point, the new image would be incompatible with the config in Deployaker;

they wouldn’t be able to do any deployments until Deployaker was updated

But now that they source code and the configuration live in version control together, they

can make all the changes and once, and they’ll all be smoothly rolled out together by

Deployaker!

64

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

TAKEAWAY

Only use tools that let you store their configuration in version control. Some tools assume

you’ll configure the view their UIs (e.g. websites and CLIs); this can be fine for getting

something up and running quickly, but in the long run to practice continuous delivery you’ll

want to be able to store this configuration in version control. Avoid tools that don’t let you.

TAKEAWAY

Treat ALL the plain text data that defines your software like code and store it in version

control. You’ll run into some challenges in this approach around sensitive data and

environment specific values, but the extra tooling you’ll need to fill these gaps is well worth

the effort. By storing everything in version control you can be confident that you are always

in a safe state to release - accounting for ALL the data involved, not just the source code.

65

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

3.26 Conclusion

Even though it’s early days for Watch Me Watch, Sarah and Sasha quickly learned how

critical version control is to Continuous Delivery. They learned that far from being just

passive storage, it’s the place where the first piece of Continuous Delivery happens: it’s

where code changes are combined, and those changes are the triggering point for

verification - all to make sure that the software remains in a releasable state.

Though at first they were only storing source code in version control, they realized that

they could get a lot of value from storing configuration there as well - and treating it like

code!

As the company grows, they’ll continue to use version control as the single source of

truth for their software. Changes made in version control will be the jumping off point for any

and all of the automation they add from this point forward, from automatically running unit

tests to doing canary deployments.

3.27 Summary
• You must use version control in order to be doing Continuous Delivery

• Trigger CD pipelines on changes to version control

• Version control is the source of truth for the state of your software, and it’s also the

jumping off point for all the CD automation in this book

• Pratice config as code and store all plain text data that defines your software (not

just source code but configuration too) in version control. Avoid tools that don’t let

you do this.

3.28 Up next . . .

In the next chapter we’ll look at how to use linting in CD pipelines to avoid common bugs

and enforce quality standards across codebases, even with many contributors.

66

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Use linting effectively 4

In this chapter:

• identify the types of problems linting can find in your code: bugs, errors,

and style problems

• aim for the ideal of 0 problems identified but temper this against the

reality of legacy codebases

• lint large existing codebase by approaching the problem iteratively

• • weigh the risks of introducing new bugs against the benefits of

addressing problems

Let’s get started actually building your pipelines! Linting is a key component to the

continuous integration (CI) portion of your pipeline: it allows you to identify and flag known

issues and coding standard violations, reducing bugs in your code and making it easier to

maintain.

4.1 Becky and Super Game Console

Becky just joined the team at Super Game Console and she’s really excited!

67

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Super Game Console is a video game console that runs simple python games, and it’s

very popular. The best feature is its huge library of python games, which anyone can

contribute.

The folks at Super Game Console have a submission process that allows everyone from

the hobbyist to the professional sign up as a developer and submit their own games.

But there are a lot of bugs in the games and it has been starting to become a problem.

Becky and Ramon, who has been on the team for a while now, have been working their

way through the massive backlog of game bugs. Becky has noticed a few things:

• Some of the games wouldn’t even compile! And a lot of the other bugs are caused

by simple mistakes like trying to use variables that aren’t initialized

• There are lots of mistakes which do not actually cause bugs but get in the way of

Becky’s work, for example unused variables.

• The code in every single game looks different from the one before it! The

inconsistent style makes it hard for her to debug.

68

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.2 Linting to the rescue!

Looking at the types of problems causing the bugs she and Ramon has been fixing, they

remind Becky a lot of the kinds of problems that linters catch.

What is linting anyway? Well it’s the action of finding lint, using a linter! And what’s lint?

You might think of the lint that accumlates in your clothes dyer.

By themselves, the individual fibers don’t cause any problems, but when they build up

over time, they can interfere with the effective funcitoning of your dryer. Eventually, if they

are neglected for too long, the lint builds up and the hot air in the dryer eventually sets it on

fire!

69

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

And it’s the same for programming errors and inconsistencies that may seem minor: they

build up over time! Just like in Becky and Ramon’s case: the code they are looking at is

inconsistent and full of simple mistakes. Not only are these problems causing bugs, they’re

also getting in the way of maintaining the code effectively.

70

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.3 The lowdown on linting

There are linters of all different shapes and sizes. Since they anaylze and interact with code,

they are usually specific to a particular langauge, e.g. pylint for Python. Some linters apply

generically to anything you might be doing in the language, and some are specific to

particular domains and tools, for example linters for working effectively with http libraries.

We’ll be focusing on linters that apply generically to the language you are using. Different

linters will categorize the problems they raise differently, but they can all be viewed as falling

into one of three buckets. Let’s take a look at the problems Becky noticed and how they

demonstrate the three kinds of problems:

71

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.4 The tale of pylint and many many issues

Since the games for Super Game Console are all in Python, Becky and Ramon decide that

using the tool pylint is a good place to start.

This is the layout of the Super Game console codebase:

console/
docs/
games/ #A
test/
setup.py
LICENSE
README.md
requirements.txt

#A The games directory is where they store all the developer submitted games!

The folder games has thousands of games in it! Becky is excited to see what pylint can tell

them about all these games. She and Ramon watch eagerly as Becky types in the command

and presses enter...

pylint games

And they are rewarded with screen after screen filled with warnings and errors! This is a

small sample of what they see:

games/bridge.py:40:0: W0311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)
games/bridge.py:41:0: W0311: Bad indentation. Found 4 spaces, expected 8 (bad-indentation)
games/bridge.py:46:0: W0311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)
games/bridge.py:1:0: C0114: Missing module docstring (missing-module-docstring)
games/bridge.py:3:0: C0116: Missing function or method docstring (missing-function-

docstring)
games/bridge.py:13:15: E0601: Using variable ‘board’ before assignment (used-before-

assignment)
games/bridge.py:8:2: W0612: Unused variable ‘cards’ (unused-variable)
games/bridge.py:23:0: C0103: Argument name “x” doesn’t conform to snake_case naming style

(invalid-name)
games/bridge.py:23:0: C0116: Missing function or method docstring (missing-function-

docstring)
games/bridge.py:26:0: C0115: Missing class docstring (missing-class-docstring)
games/bridge.py:30:2: C0116: Missing function or method docstring (missing-function-

docstring)
games/bridge.py:30:2: R0201: Method could be a function (no-self-use)
games/bridge.py:26:0: R0903: Too few public methods (1/2) (too-few-public-methods)
games/snakes.py:30:4: C0103: Method name “do_POST” doesn’t conform to snake_case naming

style (invalid-name)
games/snakes.py:30:4: C0116: Missing function or method docstring (missing-function-

docstring)
games/snakes.py:39:4: C0103: Constant name “httpd” doesn’t conform to UPPER_CASE naming

style (invalid-name)
games/snakes.py:2:0: W0611: Unused import logging (unused-import)
games/snakes.py:3:0: W0611: Unused argv imported from sys (unused-import)

72

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

73

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.5 Legacy code: using a systematic approach

The first time you run a linting tool against an existing codebase, the number of issues it

finds can be overwhelming! (In a few pages we’ll talk about what to do if you don’t have to

deal with a huge existing codebase.)

Fortunately Becky has dealt with applying linting to legacy codebases before and has a

systematic approach that she and Ramon can use to both speed things up and use their time

effectively.

1. Before doing anything else, they need to configure the linting tools. The options that

pylint is applying out of the box might not make sense for Super Game Console.

2. Next, measure a baseline and keep measuring. Becky and Ramon don’t necessarily

need to fix every single issue; if all they do is make sure the number of issues goes

down over time, that’s time well spent!

3. Once they’ve got the measurements, every time a developer submits a new game,

they can measure again, and stop the game from being submitted if it introduces

more problems. This way the number won’t ever go up!

4. At this point, Becky and Ramon have ensured things won’t get any worse; with that in

place they can start tackling the existing problems. Becky knows that not all linting

problems are created equal, so she and Ramon will be dividing and conquering so that

they can make the most effective use of their valuable time.

The key to Becky’s plan is that she knows that they don’t have to fix everything: just by

preventing new problems from getting in, they’ve already improved things. And the truth is,

not everything has to be fixed - or even should be.

74

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.6 Step 1: Configure against coding standards

Ramon has been looking through some of the errors pylint has been spitting out and notices

that it’s complaining they should be indenting with 4 spaces instead of 2:

bridge.py:2:0: W0311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)

This is often the case when coding standards aren’t backed

up by automation, so Becky isn’t surprised. But the great news

is that the (currently ignored) coding standards have most of

the information that Becky and Ramon need, information like:

• Indent with tabs or spaces? If spaces, how many

spaces?

• Are variables named with snake_case or camelCase?

• Is there a maximum line length? What is it?

The answers to these questions can be fed into pylint as

configuation options, into a file usually called .pylintrc.

Becky didn’t find everything she needed in the existing

coding

style, so she and Ramon had to make some decisions themselves. They invited the rest of

the team at Super Game Console to give input as well, but there were some items that no

one could agree on; in the end, Becky and Ramon just had to make a decision. When in

doubt, they leaned on Python language idioms, which mostly meant sticking with pylint’s

defaults.

75

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.7 Step 2: Establish a baseline

Now that Becky and Ramon had tweaked pylint according to the existing and newly

established coding standard, they had slightly less errors, but still in the tens of thousands.

Becky knows that even if she and Ramon left the codebase exactly the way it is, by just

reporting on the number of issues and observing it over time, this can help motivate the

team to decrease the number of errors. And in the next step they’ll use this data to stop the

number of errors from going up.

Becky writes a script that runs pylint and counts the number of issues it reports. She

creates a pipeline that runs every night and publishes this data to a blob store. After a week

she collects the data and creates this graph showing the number of issues:

The number keeps going up because even as Becky and Ramon work on this, developers

are eagerly submitting more games and updates to Super Game Console. Each new game

and new update has the potential to include a new issue.

76

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.8 Step 3: Enforce at submission time

Ramon noticed that as submissions came in, the number of issues pylint was finding was

going up, but Becky has a solution for that: block submissions that increase the number of

issues. This means enforcing a new rule on each pull request:

Every pull request must either reduce the number of linting issues or leave it the same.

Becky creates this script to add to the pipeline that Super Game Console runs against all

pull requests:

 # when the pipeline runs, it will pass to this script
 # paths the files that changed in the pull request
 paths_to_changes = get_arguments()

 # run the linting against the files that changed to see
 # how many problems are found
 problems = run_lint(paths_to_changes)

 # becky created a pipelines that runs every night and
 # writes the number of observed issues to a blob store;
 # here the lint script will download that data
 known_problems = get_known_problems(paths_to_changes)

 # compare the number of problems seen in the changed code
 # to the number of problems seen last night
 if len(problems) > len(known_problems):
 # the pull request should not be merged if it increase the
 # number of linting issues
 fail(‘number of lint issues increased from {} to {}’.format(
 len(known_problems), len(problems)))

The next step is for Becky to add this to the existing pipeline that runs against every pull

request.

Every pull request must either reduce the number of linting issues or leave it the same.

77

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.9 Step 3: Enforce at submission time

Becky wants her new check to be run every time a developer submits a new game or an

update to an existing game.

Super Game Console accepts new games as pull requests to their GitHub repository. They

already make it possible for developers to include tests with their games and they run those

tests on each pull request. This is what the pipeline looks like before Becky’s change:

Becky wants to add her new check to the pipeline that Super Game Console runs against

every pull request.

Now, whenever a developer opens a pull request to add or change a Super Game Console

game, Becky’s script will run. If this pull request increase the number of linting issues in the

project, the pipeline will stop. The developer must fix this before the pipeline will continue to

building images.

78

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.10 Step 4: Divide and conquer

Becky and Ramon have stopped the problem from getting worse. Now the pressure is off

and they are free to start tackling the existing issues, confident that more won’t be added.

It’s time to start fixing issues! But Ramon quickly runs into a problem...

Making ANY changes, including changes that fix linting issues, has the risk of introducing

more problems.

So why do we do it? Because the reward outweighs the risk! And it ONLY makes sense to

do it when that’s the case. Let’s take a look at the rewards and the risks when we fix linting

problems:

We can determine some intersting things from this list. The first reward is about catching

bugs, which we need to weigh against the first risk of introducing new bugs.

Ramon introduced a new bug into a game that didn’t have any open reported bugs. Was

it worth the risk of adding a bug to a game that, as far as everyone could tell, was working

just fine? Maybe not!

The other two rewards (2 and 3) are only relevant when the code is being changed. If

you don’t ever need to change the code, it doesn’t matter how many distracting errors it has,

or how inconsistent it is.

Ramon was updating a game that hasn’t had a change in two years. Was it worth taking

the time and risking introducing new bugs into a game that wasn’t being updated? Probably

not! He should find a way to isolate these games so he can avoid wasting time on them.

79

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.11 Isolation: Not everything should be fixed

Becky and Ramon look at all the games they have in their library, and they identify the

ones that change the least. These are all more than a year old and the developers have

stopped updating them. They also look at the number of user reported bugs with these

games. They select the games which haven’t changed in mor than a year and don’t have any

open bugs, and move them into their own folder.

Their codebase now looks like this:

.pylintrc #A
console/
docs/
games/
 frozen/ #B
 ...
test/
setup.py
LICENSE
README.md
requirements.txt
[MASTER]
ignore=games/frozen

#A The configuration file for pylint that Becky and Ramon made in Step 1

#B These games haven’t been updated in more than a year and have no open bugs. They don’t expect changes, so it’s

okay to exclude them from the linting check.

80

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.12 Enforcing isolation

And to be extra safe, Becky created a new script that made sure that no one was making

changes to the games in the frozen directory:

 # when the pipeline runs, it will pass to this script
 # paths the files that changed in the pull request
 paths_to_changes = get_arguments()

 # instead of hardcoding this script to look for changes
 # to games/frozen, load the ignored directories from
 # .pylintrc to make this check more general purpose
 ignored_dirs = get_ignored_dirs_from_pylintrc()

 # check for any paths that are being changed which are in
 # the directories being ignored
 ignored_paths_with_changes = get_common_paths(
 paths_to_changes, ignored_dirs)

 if len(ignored_paths_with_changes) > 0:
 # the pull request should not be merged if it
 # includes changes to ignored directories
 fail(‘linting checks are not run against {}, ‘
 ‘therefore changes are not allowed’.format(
 ignored_paths_with_changes))

Next she added it to the Pipeline that runs against pull requests:

81

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.13 Not all problems are created equal

Okay NOW it was finally time to start fixing problems, right? Ramon dove right in, but two

days in he was frustrated:

Becky and Ramon want to focus on fixing the most impactful issues first. Let’s look again

at the rewards and risks of fixing linting issues for some guidance:

Ramon is running smack into Risk 2: it’s taking a lot of time for him to fix all the issues.

So Becky has a counterproposal: fix the most impactful issues first. That way they can get

the most value for the time they do spend, without having to fix absolutely everything.

So which issues should they tackle first? The linting rewards happen to correspond to

different types of linting issues:

82

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.14 Types of linting issues

The types of issues that linters are able to find can fall into three buckets: bugs, errors and

style.

Bugs found by linting are common misuses of code that lead to undesirable behavior, for

example:

● Uninitialized variables

 ● Formatting variable mismatches

Errors found by linting common misuses of code that do not affect behavior but either

cause performance problems or interfere with maintainability. For example:

● Unused variables

● Aliasing variables

And lastly the style problems found by linters are inconsistent application of code style

decisions and code smells, for example:

● Long function signatures

 ● Inconsistent ordering in imports

While it would be great to fix all of these, if you only had time to fix one set of linting

issues, which would you choose? Probably bugs, right? Makes sense, since these affect the

acutal behavior of your programs! And that’s what the hierarchy looks like:

83

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.15 Bugs first, style later

Becky recommends to Ramon that they tackle the linting issues systematically. That way

if they need to switch to another project, they’ll know they time they spent fixing issues as

well used. They might even decide to time box their efforts: see how many issues they can

fix in two weeks, then move on.

How can they tell which issues are which? Many linting tools categorize the issues they

find. Let’s look again at some of the issues pylint found:

games/bridge.py:46:0: W0311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)
games/bridge.py:1:0: C0114: Missing module docstring (missing-module-docstring))
games/bridge.py:13:15: E0601: Using variable ‘board’ before assignment (used-before-

assignment)
games/bridge.py:8:2: W0612: Unused variable ‘cards’ (unused-variable)
games/bridge.py:30:2: R0201: Method could be a function (no-self-use)
games/bridge.py:26:0: R0903: Too few public methods (1/2) (too-few-public-methods)
games/snakes.py:30:4: C0103: Method name “do_POST” doesn’t conform to snake_case naming

style (invalid-name)

Each issue has a letter and a number. pylint recognizes 4 categorize of issues: E is for

error, which is the type we are calling bugs. W for warning is what we are calling errors, and

the last two, C for convention and R for refactor are what we are calling style.

Ramon creates a script and tracks the number of errors of each time as they work for the

next week:

The overall number of issues stays fairly high, but the number of bugs - the most

important type of linting issue - is steadily decreasing!

84

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.16 Jumping through the hoops

It can be frustrating to think you’re done, just to encounter a whole new set of hoops to

jump through.

But the answer here is pretty simple: encorporate linters into your development process.

How do you do this, and how do you make it easy for the developers you are working with?

1. Commit the configuration files for your linting alongside your code. Becky and Ramon

have checked in the .pylintrc code they’re using right into the Super Game Console

repo. This way developers can use the exact same configuration that will be used by

the CI/CD pipeline and there will be no surprises.

2. Run the linter as you work. You could run it manually, but the easiest way to do this is

to use your IDE (Integrated Development Environment). Most IDEs, and even editors

like vim, will let you integrate linters and run them as you work. This way when you

make mistakes, you’ll find out immediately.

Becky and Ramon send out a PSA to all the developers they work with recommending

they turn on linting in their IDEs. They also add a message when the linting task fails on a

pull request reminding the game developers that they can turn this on.

85

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.17 Legacy code vs the ideal

Becky and Ramon didn’t get a chance to fix every single issue because there was a lot of

code that already existed before they started linting. This means they have to keep tracking

the baseline and making sure that the number of issues doesn’t increase, or they have to

keep tweaking the pylint configuration to ignore the issues they’ve decided to just live with.

But what does the ideal look like, i.e. what if Becky and Ramon could spend as much time

as they wanted on linting, what state would they want to end up in?

If you are lucky enough to be working on a brand new or relatively small codebase, you

can shoot directly for this ideal.

The ideal: The linter produces 0 problems when run agianst your codebase.

Is this a reasonable goal to aim for? Yes! And even if you never get there, shooting for

the stars and landing on the moon isn’t too bad.

If you’re dealing with a new or small codebase, you don’t have to do everything that

Becky and Ramon did.

In steps 2 and 3 you’ll notice that Becky and Ramon spend a lot of time focusing on

measuring and tracking the baseline. Instead of doing that, take the time to work through all

of the problems. You can still apply the order as described in Step 4, that way if you get

interrupted for some reason, you’ve still dealt with the most important issues first, but the

goal is to get to the point where there are 0 problems.

Then, apply a similar check to the one that Becky and Ramon added in step 3, but

instead of comparing the number of linting problems to the baseline, require it to always be

0!

86

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

4.18 Conclusion

Super Game Console had a huge backlog of bugs and issues, and the lack of consistent style

across all of their games made them hard to maintain.

Even though their existing codebase was so huge, Becky was able to add linting to their

processes in a way that brought immediate value. She did this by approaching the problem

iteratively. After re-establishing the project’s coding standards, she worked with Ramon to

measure the number of linting issues they currently had, and add checks to their pull request

pipeline to make sure that the number didn’t increase.

As Becky and Ramon started working through the issues, they realized they were not all

equally important, so they focused on code that was likely to change, and tackled the issues

in priority order.

4.19 Summary
• Linting identifies bugs and helps keep your codebase consistent and maintainable.

• The ideal situation is that running linting tools will raise 0 errors, but with huge

legacy codebases, we can settle for at least not introducing more errors.

• Changing code always carries the risk of introducing more bugs, so it’s important to

be intentional and consider if the change is worth it. If the code is changing a lot

and/or has a lot of known bugs, it probably is, but otherwise, you can isolate it and

leave it alone.

• Linting typically identifies three different kinds of issues, and they are not equally

important. Bugs are almost always worth fixing. Errors can lead to bugs and make

code harder to maintain, but aren’t as important as bugs. Lastly, fixing style issues

makes your code easier to work with, but these issues aren’t nearly as important as

bugs and errors.

4.20 Up next . . .

In the next chapter we’ll look at how to effectively include unit tests in your pipelines.

87

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Dealing with noisy tests 5

In this chapter

• Explain why tests are crucially important to continuous delivery

• Create and execute a plan to go from noisy test failures to a useful

signal

• Understand what makes tests noisy

• Treat test failures as bugs

• Define flakey tests and understand why they are harmful

• Retry tests appropriately

It’d be nearly impossible to have Continuous Delivery without tests! For a lot of folks, tests

are synonymous with at least the Continuous Integration (CI) side of CD, however, over time

some test suites seem to degrate in value. In this chapter we’ll take a look at how to take

care of noisy test suites.

88

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.1 Continuous Delivery and tests

How do tests fit into Continuous Delivery? Let’s look again at what we discussed in chapter 1.

Continuous Delivery is all about getting to a state where:

1. You can safely deliver changes to your software at any time

2. Delivering that software is as simple as pushing a button

How do you know you can safely deliver changes? You need to be confident that your

code will do what you intended it to do. In software, we gain confidence about our code by

testing it. Tests confirm to us that our code does what we meant for it to do.

This book isn’t going to teach you to write tests -

there are many great books written on the subject you

can refer to! We’re going to assume that not only do

you know how to write tests, but also that most modern

software projects have at least some tests defined for

them. It has become common knowledge that

production software needs tests.

In chapter 3 we talked about the importance

continuously verifying every change. It is crucially

important that tests are run not only frequently,

but on every single change! This is all well and good

when a project is new and only has a few tests, but as

the project grows, so do the suites of tests and they can

become slower and less reliable over time. In this

chapter we’re going to look at how to maintain these

tests over time so you can keep getting a useful signal,

and be confident you’re always in a releasable state!

89

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.2 Ice Cream for All outage

One company that’s really struggling with their test

maintenance is the wildly successful ice cream delivery

company, Ice Cream for All. Their unique business

proposition is that they connect you directly to ice cream

vendors in your area so that you can order your favorite ice

cream and have it delivered directly to your house within

minutes!

Ice Cream for All connects users to thousands of ice

cream vendors. To do this, the Ice Cream service needs to be

able to connect to each vendor’s unique API.

July 4 is a peak day for Ice Cream for All. Every year on

July 4, Ice Cream for All receives the most ice cream orders

they receive all year. But this year, they had a terrible

outage, during the busiest part of the day! The Ice Cream

Service was down for more than an hour.

The team working on the Ice Cream Service wrote up a

retrospective to try to capture what went wrong and fix it in

the future, and had an interesting discussion in the

comments:

90

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.3 Signal vs. noise

Ice Cream for All has a problem with noisy tests. Their tests fail so frequently that their

engineers often ignore the failures. And this caused them real world problems: ignoring a

noisy test cost them business on their busiest day of the year!

What should the team do about their noisy tests? Before they do anything, they need to

understand the problem. What does it mean for tests to be noisy?

The term “noisy” comes from “the signal to noise ratio” which compares some desired

information (the signal) to interferring information that obscures it (the noise).

When we’re talking about tests, what is the signal? What is the information that we’re

looking for? This is an interesting question, because your gut reaction might be to say the

signal is passing tests. Or maybe the opposite, that failures are the signal.

The answer is: both! The signal is the information, the noise is anything that distracts us

from the information.

When tests pass, this gives us information: we know the system is behaving as we expect

it to (as defined by our tests). When tests fail, that gives us information too. And it’s even

more complicated than that. In the chart below you can see that both failures and successes

can be signals and they can be noise.

Tests Succeed Fail

Signal Passes and should pass (i.e. catches the errors it was meant

to catch)

Failures provide new information

Noise Passes but shouldn’t (i.e. the error condition is happening) Failures do not provide any new

information

91

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.4 Noisy successes

This can be a bit of a paradigm shift, especially if you are used to thinking of passing tests as

providing a good signal, and failing tests as causing noise. This can be true, but as we’ve just

seen it’s a bit more complicated:

The signal is the information, the noise is anything that distracts us from the information.

• Successes are signals unless they are covering up information

• Failures are signals when the provide new information and noise when they don’t

When can a successful test cover up information? One example is a test that passes but

really shouldn’t, aka a noisy success. For example, in the Orders class, a method recently

added to the Ice Cream For All codebase was supposed to return the most recent order, and

this test was added for it:

 def test_get_most_recent(self):
 orders = Orders()
 orders.add(datetime.date(2020, 9, 4), “swirl cone”)
 orders.add(datetime.date(2020, 9, 7), “cherry glazed”)
 orders.add(datetime.date(2020, 9, 10), “rainbow sprinkle”)

 most_recent = orders.get_most_recent()
 self.assertEqual(most_recent, “rainbow sprinkle”)

The test currently passes - but it turns out that the method get_most_recent is actually

just returning the last order in the underlying dictionary:

class Orders:
 def __init__(self):

 self.orders = collections.defaultdict(list)

 def add(self, date, order):
 self.orders[date].append(order)

 def get_most_recent(self):
 most_recent_key = list(self.orders)[-1]
 return self.orders[most_recent_key][0] #A

#A There are a number of things wrong with this method, including not handling the case where no orders have been

added, but more importantly, what if the orders are added out of order?

The method get_most_recent is not actually paying attention to when the orders are made

at all, it is just assuming that the last key in the dictionary corresponds to the most recent

order. And since the test just so happens to be adding the most recent order last (and since

Python 3 dictionary ordering is now guaranteed to be insertion order), the test is passing.

But since the underlying functionality is actually broken, the test really shouldn’t be

passing at all - and this is what we call a noisy success: by passing, this test is covering up

the information that the underlying functionality actually does not work as intended.

92

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.5 How failures become noise

We’ve just seen how a test success can be noise - but what about failures? Are failures

always noise? Always signal? Neither! The answer is that Failures are signals when the

provide new information and noise when they don’t. Remember:

The signal is the information, the noise is anything that distracts us from the information.

• Successes are signals unless they are covering up information

• Failures are signals when the provide new information and noise when they don’t

When a test fails initially, it gives us new information: it tells us there is some kind of

mismatch between the behavior the test expects and the actual behavior. This is a signal.

That same signal can become noise if we ignore the failure. The next time the same

failure occurs, it’s giving us information that we already know: we already knew that the test

had failed previously, this new failure is not new information. By ignoring test failure, we

have made that failure into noise.

This is especially common if it’s hard to diagnose the cause of the failure, and if the

failure doesn’t always happen (say the test passes when run as part of the CI automation,

but fails locally), it’s much more likely to get ignored, therefore creating noise.

93

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

94

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.6 Going from noise to signal

Alerting systems are only useful if people pay attention to the alerts. When they are too

noisy, people stop paying attention, so they may miss the signal.

Car alarms are an example of this: if you live in a neighborhood where a lot of cars are

parked, and you hear an alarm go off, are you rushing to your window with your phone out,

ready to phone in an emergency? It probably depends on frequently it’s happened; if you’ve

never heard a alarm like that, you might. But if you hear them every few days, more likely

you’re thinking, “Oh someone bumped into that car. I hope the alarm gets turned off soon.”

What if you live or work in an apartment building and the fire alarm goes off? You

probably take it seriously: begrudgingly exit the building. What if it happens again the next

day? You’ll probably leave the building anyway because those alarms are LOUD but you’d

probably start to doubt that it’s an actual emergency, and the next day you’d definitely think

it’s a false alarm.

The longer we tolerate a noisy signal, the easier it is to ignore it and the less effective it

is.

95

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.7 Getting to green

The longer we tolerate noisy tests, the easier it is to ignore

them - even when there is real information there - and the less

effective they are. Leaving them in this state seriously

undermines their value. People get desensitized to the failures

and feel comfortable ignoring them.

This is the same position that Ice Cream for All is in: their

engineers have gotten so used to ignoring their tests that

they’ve let some major problems slip through, which were

actually caught by the tests, and they’ve actually lost money as

a result.

How do they fix this? The answer is to get to green as fast as possible, i.e. get to a state

where the tests are in a consistent state (passing) and any change in this state (failing) is a

real signal that needs to be investigated.

96

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Nishi is totally right: creating and maintaining tests isn’t

something we do for the sake of the tests themselves; we

do this because we believe they add value and most of that

value is the signals they give us.

So she has made a hard decision: stop adding features

until all the tests are fixed.

97

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.8 Another outage!

The team did what Nishi requested: they froze feature development for two weeks and

during that time did nothing but fix tests. After the end of week 3, the test task in their

pipeline was consistently passing. They had gotten to green!

The team felt confident about adding new features again and in the third week, went

back to their regular work. At the end of that week, they had another release - and a small

party to celebrate. But at 3am, Nishi was roused from her sleep by an alert telling her ther

had been another outage.

98

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.9 Passing tests can be noisy

Nishi jumped into the team’s group chat to investigate the outage she had just been alerted

to:

The team had felt good about their test suite because all

the tests were passing, but unfortunately they hadn’t

actually removed the noise - they’d just changed it. Now,

the successful tests were the noise.

Getting the test suite from noise to signal was the right

call to make, and getting the suite from often failing to

green was a good first step, because it combats

desensitization.

But just getting to green isn’t enough: test suites that

pass can still be noisy, and can hide serious problems.

The team at Ice Cream for All had fixed their desensitization problem, but they hadn’t

actually fixed their tests.

99

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

100

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.10 Fixing test failures

You might be surprised to learn that it’s not totally straightforward to know if you have fixed

a test! It comes back to the question of what constitutes a signal and what is noise when it

comes to tests.

People often think that fixing a test means going from a failing test to a passing test. But

there is more to it than that!

Technically fixing the test means that you have gone from the state of the test

being noise to it being a signal. This means that there are tests that are currently passing

which may need “fixing.” More about that in a bit, for now let’s talk about fixing tests that

are currently failing.

Every time a test fails, this means one (or both) of two thing have happened:

1. The test was written incorrectly (i.e. the system was not intended to behave in the

way the test was written to expect).

2. There is a bug in the system (i.e. the test is correct and it’s the system that isn’t

behaving correctly).

What’s interesting is that we write tests with situation (2) in mind, but when tests fail

(especially if we can’t immediately understand why), we tend to assume that the situation is

(1), i.e. that the tests themselves are the problem.

This is what is usually happening when people say their tests are noisy: their tests are

failing and they can’t immediately understand why, so they jump to the conclusion that

something is wrong with the tests.

But both (1) and (2) have something in common:

When a test fails, there is a mismatch between how the test expects the system to behave and how

the system is actually behaving.

Regardless of whether the fix is to update the test or to update the system, there is a

mismatch that needs to be investigated.

This is the point in the test’s lifecycle where there is the greatest chance that noise will be

introduced. The test’s failure has given you information, specifically that there is a mismatch

between the tests and the system. If you ignore that information, then every new failure

isn’t telling you anything new, it’s repeating what you already know: there is a mismatch.

This is how test failures become noise.

The other way you can introduce noise is by misdiagnosing case (2) as case (1). It is

often easier to change the test than it is to figure out why the system is behaving the way it

is; if you do this without really understanding the system’s behavior, you’ve created a noisy

successful test. Every time that test passes, it’s covering up information: the fact that there

was a mismatch between the test and the system that was never fully investigated.

Treat every test failure as a bug and investigate it fully.

101

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.11 Ways of failing: flakes

Complicating the story around signal and noise in tests, we have the most notorius kind of

test failure: the test flake.

Tests can fail in two ways:

1. Consistently: every time the test is run, it will fail

2. Inconsistently: sometimes the test succeeds, sometimes it fails, and the conditions

that make it fail are not clear

Tests that fail inconsistently are often called flakes or flakey, and when these tests fail,

this is often called flaking, because in the same way that you cannot rely on a flakey friend

to follow through on plans you make with them, you cannot depend on these tests to

consistently pass or fail.

Consistent tests are much easier to deal with than flakes - and much more likely to be

acted on (hopefully in a way that reduces noise). Flakes are the most common reason that a

test suite ends up in a noisy state.

And maybe because of that, or maybe just because it’s easier, people do not treat flakes

as seriously as consistent failures.

• Flakes make test suites noisy

• Flakes are likely to be ignored and treated as not serious

This is kind of ironic, becuase we’ve seen that the noiser a test suite is, the less valuable

it is. And what kind of test is likely to make a test suite noisy? The flake, which we are likely

to ignore. What is the solution?

Treat flakes like any other kind of test failure: like a bug.

Just like any other case of test failure, flakes represent a mismatch between the system’s

behavior and the behavior that the system expects, the only difference is that there is

something about that mismatch that is non-deterministic.

102

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.12 Reacting to failures

What went wrong with Ice Cream For All’s approach? The had the right initial idea.

When tests fail, stop the line: don’t move forward until they are fixed.

This means: if you have failing tests in your codebase, it’s important to get to green as

fast as possible, i.e. stop all merging into your main branch unil those failures are fixed. And

if it’s happening in a branch, don’t merge that branch until the failures are fixed.

But the question is: how do you fix those failures? You have a few options

1. Actually fix it. Ultimately the goal is to understand why the test is failing and either

fix the bug that is being revealed our update an incorrect test.

2. Delete the test. This is rare, but your investigation may reveal that this test was not

adding any value and its failure is not actionable. In that case, there’s no reason to

keep it around and maintain it.

3. Disable the test. This is an extreme measure and if it is done, it should only be done

temporarily. Disabling the test means that you are hiding the signal. Any disabled

tests should be investigated as fast as possible and either actually fixed (see above) or

deleted.

4. Retry the test. This is another extreme measure, and also hides the signal. This is a

common way of dealing with flakey tests. The reasoning behind this is rooted in the

idea that ultimately what we want the tests to do is pass, but this is incorrect: what

we want the tests to do is provide us information. If a test is sometimes failing, and

we cover that up by retrying it, we’re actually hiding the information and creating

more noise. Retrying is sometimes appropriate, but rarely at the level of the test

itself.

Looking at these options, really the only good options are (1) and in some rare cases,

(2). Both (3) and (4) are stop gap measures that should only be taken temporarily, if at all,

because they add noise to your signal by hiding failures.

103

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.13 Fixing the test: change the code or the test?

Ice Cream for All had rolled back their latest release and once again frozen feature

development as they looked into the tests they had tried to “fix” previously.

Looking back through some of the fixes that had been merged, Nishi noticed a disturbing

pattern: many of the “fixes” were changing only the tests, very few of them were changing

the actual code being tested. Nishi knew this was an antipattern.

For example, this test had been been flaking, so it was updated to wait longer for the

success condition:

The test was initially written with an assumption in mind: that the order would be

considered acknowledged immediately after it had been submitted. And in fact that cod that

called submit_orders was built with this assumption as well. But this test was flaking

because there was a race condition in submit_orders!

Instead of fixing this problem in the submit_orders function, someone had updated the

test instead, which covered up the bug, and added a noisy success to the test suite.

They were in fact hiding the bug!

Whenever you deal with a test that is failing, before you make any changes, you have to

understand:

Is the test failing becuase of a problem with the actual code that is being tested? That is,

if the code acts like this when it is actually being used, is that what it should be doing? If it

is, then it’s appropriate to fix the test. But if not, the fix shouldn’t go in the test: it should be

in the code.

This means making a mental shift from “let’s fix the test”, i.e. “making the test pass” to

“let’s understand the mismatch between the actual behavior of the code - and make the fix

in the appropriate place.”

Treat every test failure as a bug and investigate it fully.

Nishi asked the engineer who updated the test to investigate further; after finding the

source of the race condition, they were able to fix the underlying bug and the test didn’t

need to be changed at all.

104

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.14 The dangers of retries

Retrying an entire test is usually not a good idea, because ANYTHING that causes the failure

will be hidden.

Take a look at this test in the Ice Cream Service integration test suite, one of the tests

for their integration with Mr. Freezie:

 # We don’t want this test to fail just because
 # the MrFreezie network connection is unreliable
 @retry(retries=3)
 def test_process_order(self):

 order = _generate_mr_freezie_order()
 mrf = MrFreezie()
 mrf.connect()
 mrf.process_order(order)
 _assert_order_updated(order)

During the development freeze, Pete had made the decision that this test should be

retried. His reasons were sound: the network connection to Mr. Freezie’s servers were known

to be unreliable, so this test would sometimes flake because it couldn’t establish a

connection successfully, and would immediately pass on a retry.

But the problem is that Pete is retying the entire test: this means that if the test fails for

some other reason, the test will still be retried. And that’s exactly what happened - it turned

out there was a bug in how they were passing orders to Mr. Freezie which made it so that

the total charge was sometimes incorrect - and when this happened in the live system, users

were being charged the wrong amount, leading to 500 errors and an outage.

What should Pete do instead? Remember that test failures represent a mismatch:

When a test fails, there is a mismatch between how the test expects the system to behave and how

the system is actually behaving.

Pete needs to ask himself the question we need to ask every time we investigate a test

failure:

Which represents the behavior we actually want: the test or the system?

A reasonable improvement on Pete’s strategy would be to change the retry logic to just

be around the network connection:

 def test_process_order_better(self):
 order = _generate_mr_freezie_order()
 mrf = MrFreezie()

 # We don’t want this test to fail just because
 # the MrFreezie network connection is unreliable
 def connect():
 mrf.connect()

 retry_network_errors(connect, retries=3)

 mrf.process_order(order)
 _assert_order_updated(order)

105

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.15 Retrying revisited

Pete had improved his retry based solution by only retrying the part of the test that he felt

was okay to have fail sometimes, but in code review, Piyush took it a step further:

There were actually two bugs being covered up by the retry: in addition to missing the

bug with how orders were being passed to Mr. Freezie, there was a larger bug in that none of

the Ice Cream Service code was tolerant of network failures either (you don’t want your ice

cream order to fail just because of a temporary network problem, do you?).

Ice Cream for All was actually lucky that they caught the issues that the retry was

introducing so quickly. If there hadn’t been an outage, they may never have noticed, and

they probably would have used this retry strategy to deal with more flakey tests. You can

imagine how this can built up over time: imagine how many bugs they would be hiding after

a few years of applying this strategy.

Causing flakey tests to pass with retries introduces noise: the noise of tests that pass but shouldn’t.

The nature of software projects is that we are going to keep adding more and more

complxity, which means the little shortcuts we take are going to get blown up in scope as the

projet progresses.

Slowing down a tiny bit and rethinking stop gap measures like retries will pay off in the

long run!

106

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

107

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.16 Why do we retry?

Given what we just looked at, you might be surprised that anyone retries failing tests at all.

If it’s so bad, why do so many people do it, and why do so many test frameworks support it?

There are a few reasons:

1. There are often good reasons to have some

kind of retrying logic; for example in Pete’s

case he was right to want to retry network

connections when they fail. But instead of

taking the extra step of making sure the retry

logic is in the appropriate place, it’s easier to

retry the whole test.

2. Another very compelling reason is that if you’ve

setup your pipelines appropriately (more on

this in the next chapter!), then a failing test

blocks development and slows people down.

It’s reasonable that people often want to do the

quickest easiest thing they can do to unblock

development; and in situations like that, using

retries as a temporary fix can be appropriate -

as long as it’s only temporary.

3. It feels good to fix something, and it feels even

better to fix something with a clever piece of

technology; retries let you get immediate

satisfaction.

4. Most importantly, people often have the

mentality that the goal is to get the tests to

pass, but that’s a misconception. We don’t

make tests pass just for the sake of making

tests pass. We maintain tests because we want

to get information from them (the signal).

When we cover up failures without addressing

them properly, we’re actually reducing the

value of our test suite by introducing noise.

So if you find yourself tempted to retry a test, try to slow down and see if you can

understand what’s actually causing the problem. Retrying can be appropriate if it is:

• Applied only to non-deterministic elements that are outside of your control (for

example, intergrations with other running systems)

• Isolated to precisely the operation you want to retry (for example in Pete’s case,

retrying the Connect() call only, vs. retrying the entire test)

108

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.17 Get to green and stay green

It seems like no matter what Ice Cream

for All did, something went wrong. In

spite of that, they had the right

approach; they just ran into some

valuable lessons that they needed to

learn along the way - and hopefully we

can learn from their mistakes!

Regardless of your project, your goal

should be to get your test suite to green

and keep it green.

If you currently have a lot of tests

that fail (whether they fail consistently

or are flakes), it makes sense to take

some drastic measures in order to get

back to a meaningful signal:

• Freezing development to fix the test suites will be worth the investment. If you can’t

get the buy-in for this (it’s expensive!) all hope is not lost, it’ll just be harder.

• Disabling and retrying problematic tests, while not approaches you want to take in the

long run, can help you get to a green, i.e. get back to a signal people will listen to - as

long as you prioritize properly investigating them afterward!

Remember, there’s always a balance: no matter how hard you try and how well you

maintain your tests, there are always going to be bugs. The question is, what is the cost of

those bugs?

If you’re working on critical healthcare technology, the cost of those bugs is enormous,

and it’s worth taking the time to carefully stamp out every bug you can. But if you’re working

on a website that let’s people buy ice cream, you can definitely get away with a lot more.

(Not to say ice cream isn’t important - it’s delicious!)

Get to green and stay green. Treat every failure as a bug, but also don’t failures any

more seriously than you need to.

109

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

110

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

5.18 Conclusion

Testing is the beating heart of Continuous Delivery! Without testing we don’t know if the

changes that we are trying to Continuously Integrate are safe to deliver. But the sad truth is

that the way we maintain our tests suites over time often causes them to degrade in value.

In particular this often comes from a misunderstanding about what it means for tests to be

noisy - but it’s something we can proactively address!

5.19 Summary

• Tests are crucial to Continuous Delivery

• Both failing AND passing tests can be causing noise; noisy tests are any tests that are

obscuring the information that your test suite is intended to provide

• The best way to restore the value of a noisy test suite is to get to green (a passing

suite of tests) as quickly as possible

• Treat test failures as bugs and understand that often the appropriate fix for the test is

in the code and not the test itself; either way the failure represents a mismatch

between the system’s behavior and the behavior the test expected and it deserves a

thorough investigation

• Retrying entire tests is rarely a good idea and should be done with caution

5.20 Up next . . .

In the next chapter, we’ll continue to look at the kinds of issues that plague test suites as

they grow over time, particularly their tendency to become slower, often to the point of

slowing down actual feature development.

111

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Speeding up slow test suites 6

In this chapter:

• Speed up slow test suites by running faster tests first

• Use the test pyramid to identify the most effective ratio of unit to

integration to system tests

• Use test coverage measurement to get to and maintain the appropriate

ratio

• Get a faster signal from slow tests using parallel and sharded execution

• Understand when parallel and sharded execution are viable and how to use

them

In the last chapter we learned how to deal with test suites that weren’t giving us a good

signal - but what about tests that are just plain old slow? No matter how good the signal is, if

it takes too long to get it, it’ll slow down your whole development process! Let’s see what we

can do with even the most hopelessly slow suites.

112

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.1 Dog Picture Website

Remember Cat Picture website from Chapter 2? Their biggest competitor, Dog Picture

Website, has been struggling with their velocity.

Jada, the product manager is upset because it’s taking months for even the simple

features that users are demanding to make it to production.

To understand why development is so slow for Dog Picture Website, let’s

take a quick look at their architecture and their pipeline.

You might notice that the Dog Picture Website architecture is a bit less

complex than some of the other architectures we’ve looked at: they have

separated their frontend and backend services, but they haven’t gone any

further than that, and they haven’t moved any of their storage to the cloud.

With such a simple architecture, why are they running into trouble?

113

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.2 When simple is too simple

The pipeline that Dog Picture Website is using seems simple and reasonable - and at first

glance, it might seem the same as the pipelines we’ve looked at so far. But there is an

important difference.

This is the only pipeline that Dog Picture website uses. They use this to test, build and

upload both their frontend and backend images. There is no other pipeline.

Back in chapter 2 we looked at the architecture and pipeline design used by Dog Picture

Website’s biggest competitor: Cat Picture Website.

Cat Picture Website uses a separate pipeline for each of their services:

Dog Picture website has decided instead to have one pipeline for their entire system;

which is a reasonable starting point, but also one that they never evolved beyond. In

particular, the task that runs their tests runs all of their tests at once.

In the sophistication of their pipeline design, Dog Picture Website is way behind their

closest competitor!

114

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.3 New engineer tries to submit code

Let’s take a look at what it’s like to try to submit code to Dog Picture Website and how the

pipeline design, particularly the test aspect, impacts velocity.

Sridhar, who is new to Dog Picture Website, has been working on the new favoriting

feature that Jada was asking about. In fact, he’s already written the code that he thinks the

feature needs and he’s written some tests as well.

What happens next?

Dog Picture Website’s problems are different from the ones we looked at in the pervious

chapter: their test suite is always green, but the tests are only run once a day in the

evening, and in the morning they have to sort out who broke what. And just like we saw in

Chapter 2, this really slows things down!

115

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.4 Tests and Continuous Delivery

This might be a good time to ask an interesting question: with this process, is Dog Picture

Website actually practicing Continuous Delivery? To some extent, the answer is always yes,

in that they have some elements of the practice, including deployment automation and

Continuous Testing, but let’s look back again at what we learned in chapter 1. You’re doing

Continuous Delivery when:

1. You can safely deliver changes to your software at any time

2. Delivering that software is as simple as pushing a button

Thinking about the first element, can Dog Picture Website safely deliver changes at any

time? Sridhar merged his changes hours before the nightly automation noticed that the tests

were broken. What if Dog Picture Website had wanted to do a deployment that afternoon,

would that have been safe?

No! Definitely not! Because their tests run only at night:

• They will always have to wait until at least the day after a change has been pushed

to deploy it.

• The only time they know they are actually in a releasable state is immediately after

the tests pass, before any other changes are added (say the tests pass at night and

someone pushes a change at 8am: that immediately puts them back into the state

where they don’t know if they can release or not

In conclusion, Dog Picture Website is falling short of the first element of Continuous

Delivery.

VOCAB TIME

Continuous Testing is a phrase that refers to running tests as part of your Continuous

Delivery pipelines. It’s not so much a separate practice on it’s own, as it is an

acknolwedgement that tests need to be run continuously. Just having tests isn’t enough: you

have have tests, but never run them, or you may automate your tests, but only run them

once in a while.

116

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.5 Diagnosis: too slow

Fortunately Sridhar is an experienced engineer and has seen this kind of problem before!

His manager is skeptical, but Sridhar is confident and

Jada, their product manager, is overjoyed at the idea of doing

something to fix their slow velocity.

Sridhar looks at the average runtimes of the test suite

over the past few weeks: 2 hours and 35 minutes. He sets the

following goals:

• Tests should run on every change, before the change

gets pushed

• The entire test suite should run in an average of 30

minutes or less

• The integration and unit tests should run in less than

five minutes

• The unit tests should run in less than one minute

The numbers you choose to aim for with your test suite

will depend on your project, but in most cases should be in

the same order of magnitude as the ones Sridhar chose.

117

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.6 The test pyramid

You may have noticed that the goals Sridhar set are different depending on the type of test

involved:

• The entire test suite should run in an average of 30 minutes or less

• The integration and unit tests should run in less than five minutes

• The unit tests should run in less than one minute

What are these kinds of tests that we’re talking

about? Sridhar is referring to the test pyramid, a

common visualization for the kinds of tests that most

software projects need and the approximate ratio of

each kind of test that’s appropriate.

The idea is that the

vast majority of tests in

the suite will be unit

tests, and there will be

a significantly smaller

number of integration

tests and finally a small

number of end to end

tests.

Sridhar has used this pyramid to set the goals for the Dog Picture website test suite:

118

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.7 Fast tests first

One of the big reasons why Sridhar is taking an approach to the tests based on the pyramid

is that he knows that one immediate way to get feedback faster is to start grouping and

running the tests based on the kinds of tests they are.

Run the fastest tests first.

At the moment, Dog Picture Website is running all of their tests simultaneously, but when

Sridhar identifies the unit tests in the code base and runs them on their own, he finds that

they already run in less than a minute. He’s already accomplished his first goal!

If he can make it easy for all the Dog Picture Website developers to run just the unit

tests, they’ll have a quick way to to get some immediate feedback about their changes. They

can run these tests locally, and they can immediately start running these tests on their

changes before they get merged.

All he needs to do is find a way to make it easy to run these tests in isolation. He has a

few choices of how to do this:

• Conventions around test location is the easiest way, for example, you could always

store your unit tests beside the code that they test, and keep integration and

system tests in different folders. To run just the unit tests, run the tests in the

folders with the code (or in a folder called unit); to run the integration tests run the

tests in the integration test folder, etc.

• Many languages allow you to specify the type of test somehow, for example by

using a build flag in Golang (you can isolate integration tests by requiring them to

be run with a build flag integration) or in Python if you use the pytest package

you can use a decorator to mark tests of different types.

Fortunately Dog Picture Website has already been more or less following a convention

based on test location: browser tests are in a folder called tests/browser and the unit tests

live next to the code. The integration tests were mixed in with the unit tests, so Sridhar

moved them into a folder called tests/integration and then updated their pipeline to look

like this:

119

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.8 Two pipelines

Up until now, engineers had to wait until the nightly pipeline run to get feedback on their

changes, because the pipeline takes so long to run. However the new “Run unit tests” task

that Sridhar has made runs in less than a minute, so it’s safe to run that on every change,

even before the change is merged.

Sridhar updates the Dog Picture Website automation so that the following pipeline,

containing only one task, runs on every change before merging:

This means that Dog Picture Website now has two pipelines, they have the above pipeline

that runs on every change, and they have the longer slower pipeline that runs every night:

Is it bad that they have two pipelines? The goal is always get “shift left” and get as much

information as early as possible (more about this in the next chapter), so this situation is not

ideal, but by creating the separate, faster pipeline that can run on every change, Sridhar was

able to improve the situation: previously, engineers got no feedback at all on their changes

before they were merged, now they will at least get some feedback. Depending on your

project’s needs, you may have one pipeline, or you may have many. See the chapter on

graph design for more on this.

TAKEAWAY

When dealing with a slow suite of tests, get an immediate gain by making it possible to run

the fastest tests on their own, and by running those tests first, before any others. Even

though the entire suite of tests will still be just as slow as ever, this will let you get some

amount of the signal out faster.

120

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.9 Getting the right balance

Sridhar has improved the situation, but his change has had virtually no effect on the

integration and browser tests - they are just as slow as ever and developers still have to wait

until the next morning after pushing their changes to find out the results.

For his next improvement, Sridhar is once again going back to the testing pyramid. When

he last looked at it, he was thinking about the relative speed of each set of tests. But now

he’s going to look at the relative distribution of tests.

The pyramid also gives us guidelines as to how many (literally the quantity) tests of each

type we want to aim for. Why is that? Because as you go up the pyramid, the tests are

slower. (And also harder to maintain but that’s a story for another book!)

Sridhar counts up the tests in the Dog Picture Website suite so he can compare their

pyramid to the ideal. The Dog Picture Website looks more like this:

121

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.10 Changing the pyramid

Why is Sridhar looking at ratios in the pyramid? Because he knows that the ratios in this

pyramid are not set in stone. Not only is it possible to change these ratios, but changing the

ratios can lead to faster test suites.

Let’s look again at the goals he set around execution time:

Sridhar wants the integration and unit tests to run in less than 5 minutes. Currently the

integration tests are 65% of the total number of tests. The rest are 10% browser tests and

25% unit tests. Given that integration tests are slower than unit tests, imagine what a

difference it could make if the ratio was changed (assuming the same total number of tests):

if the integration tests were only 20% of the total number of tests, and the unit tests were

instead 70%. This would mean removing about 2/3 of the existing (slow) integration tests,

and replacing them with (faster) unit tests - which would immediately impact the overall

execution time.

With the ultimate goal of adjusting the ratios in order to speed up the test suite overall,

Sridhar sets some new goals:

• Increase the % of unit tests from 25% to 70%

• Decrease the % of integration tests from 65% to 20%

• Keep the % of browser tests at 10%

122

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.11 Safely adjusting tests

Sridhar wants to make some changes in the ratio of unit tests to integration tests. He wants

to:

• Increase the % of unit tests from 25% to 70%

• Decrease the % of integration tests from 65% to 20%

This means he needs to increase the number of unit tests,

while decreasing the number of integration tests. How will he do

this safely, and where can he even start?

Sridhar noticed that Dog Picture Website’s pipeline doesn’t

include any concept of test coverage measurement. The pipeline

runs tests, then builds and deploys, but at no point does it

measure the code coverage provided by any of the tests. The

very first change he’s going to make is to add test coverage

measurement into this pipeline, in parallel to running the tests:

Since the coverage task is just as fast as the unit test test, he’s able to add it to the

pipeline that runs before changes are merged also.

QUESTION

Q Wait! Where’s the linting? I read chapter 4 and I know linting is important too,

shouldn’t Sridhar be adding linting too?

A Totally agree - and that’s probably going to be Sridhar’s next step once he deals

with these tests, but he can only tackle one problem at a time! In chapter 2 you

can see an overview of all the elements a CD pipeline should have, including

linting.

123

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.12 Test Coverage

Sridhar decided the first step toward safely adjusting the ratio of unit test to integration tests

was to start measuring test coverage. What is test coverage measurement and why is it

important?

Test coverage is a way of evaluating how effectively your tests exercise the code they are

testing. Specifically, test coverage reports will tell you, line by line, which code under test is

being used by tests, and which isn’t.

For example, Dog Picture Website has this unit test for their search by tag logic:

 def test_search_by_tag(self):
 search = _new_search()
 results = search.by_tags([‘fluffy’])
 self.assertDogResultsEqual(results, ‘fluffy’, [Dog(‘sheldon’)])

This test is testing the method by_tags on the Search object, which looks like this:

 def by_tags(self, tags):
 try:
 query = build_query_from_tags(tags)

 except EmptyQuery:
 raise InvalidSearch()

 result = self._db.query(query)
 return result

Test coverage measurement will run the test test_search_by_tag and observe which

lines of code in by_tags are executing, producing a report about the percentage of lines

covered. The coverage for by_tags by test_search_by_tag looks this, where yellow

indicates lines that are executed by the text and red indicates lines that aren’t:

It’s reasonable that the test above doesn’t exercise any error conditions, good unit

testing practice would leave that for another test - but in this case test_search_by_tag is

the only unit test for by_tags. So those lines are not covered by any test at all. For this

method, the test coverage is 3 out of 5 lines, or 60%.

124

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

125

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.13 Enforcing test coverage

It’s important to remember that while Sridhar is making these changes, people are still

working and submitting features! People are submitting more features (and bug fixes), and

sometimes (hopefully most of the time!) tests as well. This means that even as Sridhar looks

at the test coverage, it could be going down!

But fortunately Sridhar knows a way that not only stop

this from happening, he can actually use this to help his

quest to increase the number of unit tests.

Before going any further, Sridhar is going to update the

coverage measurement task to fail the pipeline if the

coverage goes down. From the moment that he introduces

this change onward, he can be confident that the test

coverage in the code base will at the very least not go down,

but ideally go up as well.

(Besides helping the overall problem, this is a great way

to share the load such that Sridhar isn’t the only one doing

all the work!)

He updates the task that runs the test coverage to run this script:

 # when the pipeline runs, it will pass to this script
 # paths the files that changed in the pull request
 paths_to_changes = get_arguments()

 # measure the code coverage for the files that were changed
 coverage = measure_coverage(paths_to_changes)

 # measure the coverage of the files before the changes;
this

 # could be by retrieving the values from storage somewhere,
 # or it could be as simple as running the coverage again
 # against the same files in trunk (i.e. before the changes)
 prev_coverage = get_previous_coverage(paths_to_changes)

 # compare the coverage with the changes to the previous
coverage

 if coverage < prev_coverage:
 # the changes should not be merged if they decrease

coverage
 fail(‘coverage reduced from {} to

{}’.format(prev_coverage, coverage))

126

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.14 Test coverage in the pipeline

By introducing this script into the pre-merge pipeline, Sridhar has triaged the existing

coverage problem: the problem was that folks weren’t being fastidious about how they

introduced unit test. By adding automation to measure coverage and block them, they can

make more informed decisions about what they cover and what they don’t.

With Sridhar updating the unit test coverage task to actually enforce requirements on

test coverage, the pre-merge pipeline looks like this:

It’s a very subtle change from the previous iteration, but now Sridhar can continue on

with his work and be sure that the features and bug fixes being merged as he works are

going to either increase the coverage, or in the worst case, leave it the same.

127

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.15 Moving tests in the pyramid with coverage

At this point, the number of unit tests is likely to start to steadily increase, even without any

further intervention, because Sridhar has made it a requirement to include unit tests

alongside the changes that the engineers are making.

Will this be enough for him to achieve his goals? Remember his goals are:

• Increase the % of unit tests from 25% to 70%

• Decrease the % of integration tests from 65% to 20%

Over time the ratios will likely trend in these directions, but not fast enough to make the

dramatic kinds of changes Sridhar is looking for. Sridhar is going to need to write additional

unit tests and probably also remove existing integration tests. How will he know which to add

and which to remove?

Sridhar looks at the code coverage

reports, finds the code with the lowest

coverage percentages and looks at which

lines are not covered. For example he

looks at the coverage of the by_tags

function we saw a few pages ago.

The error case of having an empty query is not covered by unit tests. So Sridhar knows

that this is a place where he can add a unit test. Additionally, if he can find an integration

test that covers the same logic, he can potentially delete it. So he goes looking through the

integration tests and find a test called test_invalid_queries. This test creates an instance

of the running backend service (this is what all the integration tests do), then makes invalid

queries, and ensures that they fail. Looking at this test, Sridhar realizes he can cover all of

the invalid query test cases with unit tests. He writes the unit tests, which execute in less

than a second, and is able to delete test_invalid_queries, which took around 20 seconds

or more, and still feel confident that the test suite would catch the same errors that it did

before the change.

QUESTION

Q Should I measure coverage for my integration and end to end tests?

A To get a complete idea of your test suite coverage, you may be tempted to measure

coverage for your integration and end to end tests. This is sometimes possible,

usually requiring the systems under test to be built with extra debug information

that can be used to measure code coverage while these higher level tests execute.

You may find this useful, however it’s usually something you have to build yourself,

and might give you a false sense of confidence; i.e. your best bet will always be high

unit test coverage, so that metric is important in isolation, and you might miss it if

you only look at the total test suite coverage as a whole.

128

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.16 What to move down the pyramid?

In order to continue to increase the percentage of unit tests, Sridhar applies this pattern to

the test suite:

1. He looks for gaps in unit test coverage; i.e. literally lines of code that are not covered.

He looks at the packages and files with the lowest percentages first in order to

maximize his impact.

2. For the code he finds that isn’t covered, he adds unit tests that cover those lines

3. He looks through the slower tests, specifically in this case the integration tests, to find

any tests that cover the logic now covered by the unit tests, and updates or deletes

them.

By doing this he is able to both dramatically increase the amount of unit tests and reduce

the amount of integration tests, that is to increase the number of fast tests and decrease the

number of slow tests.

Lastly he audits the integration tests to look for duplicate coverage: for every integration

tests he asks these questions:

1. Is this case covered in the unit tests?

2. What would cause this test case to fail when the unit tests pass?

If the case is covered in the unit tests already (1), and if there isn’t anything (that isn’t

covered somewhere else) that would cause the integration test to fail when the unit tests

pass (2), it is safe to delete the integration test.

QUESTION

Q Hold on, surely I’m going to lose some information if I do this! Aren’t my integration

tests better than my unit tests? I’ve seen the memes, unit tests aren’t enough.

A You’re right! The question is: how many integration tests do you need? The purpose

of the integration tests is to make sure that all the individual units are wired

together correctly. If you test the individual units, and then you test that the units

are connected together correcly, you’ve covered nearly everything. At this point it

becomes a cost benefit tradeoff: is it worth the cost of running and maintaining

integration tests that cover the same ground as unit tests, on the off chance that

they might catch a corner case you missed? The answer depends on what you’re

working on. If people’s lives are at stake, the answer may be yes; it’s important to

make the right tradeoff for your software.

129

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

It’s your turn

Sridhar has found that the Search class has very low coverage in general, and he’s working

his way through the reports to increase it. Working his way through the reports, he looks at

the coverage for the function from_favorited_search and sees:

He looks for the integration tests that cover the favorited search behavior and finds these

tests:

test_favorited_search_many_results
test_favorited_search_no_results
test_favorited_search_cache_connection_error
test_favorited_search_many_results_cached
test_favorited_search_no_results_cached

Which integration tests should Sridhar consider removing? What unit tests might he add?

ANSWERS

This looks like a classic scenario where the integration tests are doing all the heavy lifting.

The unit tests are covering only one path: the path where there is no cached result and

there are no errors, and the integration tests are trying to cover everything. Sridhar’s plan is

basically to invert this: instead of covering one happy path with unit tests, and handling all

the other cases with integration tests, he’ll replace all of the above integration tests with

test_favorited_search, and he’ll add unit tests to cover all of the integration test

cases above.

130

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.17 Legacy tests and FUD

It can feel scary to make changes to, or even remove, tests that have been around for a long

time! This is a place where we can often encounter FUD: Fear, Uncertainty and Doubt.

If we listen to the FUD, we might decide it’s too dangerous to make changes to the

existing test suites: there are too many tests, it’s too hard to tell what they’re testing, and

we become afraid of being the person who removed the test that it turned out was holding

the whole thing up.

If you find yourself thinking this way, it’s worth taking a moment to think ultimately

about what FUD really is, and where it comes from. It’s ultimately all about the F: fear. It’s

fear that we might do something wrong, or make things worse, and it holds us back from

making changes.

Then, think about why we have all the tests we do: the tests are meant to empower us,

to make us feel confident that we can make changes that do what we want them to, without

fear.

FUD is the very opposite of what our tests are meant to do for us. Our tests are meant to

give us confidence, and FUD takes that confidence away.

Don’t let FUD hold you back! When you hear FUD whispering to you that it’s too

dangerous to make any changes, you can counter it with cold hard facts. Remember what

tests are: they are nothing more or less than a codification of how the test author though the

system was supposed to behave. Nothing more or less than that. They aren’t even the

system itself! Instead of giving in to the fear, take a deep breath and ask yourself: do I

understand what this test is trying to do? If not, then take the time to read it and understand

it. If you understand it, then consider yourself empowered to make changes. If you don’t

make them, maybe no one will, and the sense of FUD that people feel about the test suite

will only grow over time.

In general, working from a fear based mindset, and giving into FUD, will prevent you

from trying anything new, and that will prevent you from improving, and if you don’t improve

your test suite over time I can guarantee you that it will only get worse.

TAKEAWAY

When dealing with slow tests suites, looking at the test suite through the lens of the

testing pyramid can help you focus on where things are going wrong. If your pyramid is too

top heavy (a common problem!) you can use test coverage to immediately start to improve

your ratios, and point you in the direction of what tests can be replaced with faster and

easier to maintain unit tests.

131

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.18 Running tests in parallel

After working hard on the integration and unit tests, Sridhar has made as much

improvement as he thinks he can for now and he met his the goals he set for their relative

quantities:

• He has increased the % of unit tests from 25% to 72% (his goal was 70%)

• He has decreased the % of integration tests from 65% to 21% (his goal was 20%)

The unit tests still run in less than a minute, but even meeting the goals above, the

integration tests still take around 35 minutes to run. His overall goal was for the integration

and unit tests together to run in less than five minutes. Even though he has improved the

overall time (shaving more than 1 hour from the total), these tests are still slower than he

wants them to be. He’d like to be able to include them in the pre-merge tests, and at 35

minutes, this might be almost reasonable, but he has trick up his sleeve that will let him

improve this substantially before he adds them.

He’s going to run the integration tests in parallel! Most test suites will by default run tests

one at a time. For example, here are some of the integration tests which are left after

Sridhar has reduced their number, and their average execution time:

1. test_search_query (20 seconds)

2. test_view_latest_dog_pics (10 seconds)

3. test_log_in (20 seconds)

4. test_unauthorized_edit (10 seconds)

5. test_picture_upload (30 seconds)

Running these tests tests one at a time takes 20 +

10 + 20 + 10 + 30 = 90 seconds on average. Instead,

Sridhar updates the integration test task to run these

tests in parallel, running as many of them as possible

at once individually. In most cases, this means running

one test at a time per CPU core. On an 8 core machine,

the above five tests can easily run in parallel, meaning

that executing them all will only take as long as the

longest test: 30 seconds, instead of the entire 90

seconds.

After his cleanup, Dog Picture Website has 116

integration tests. Running at an average of 18 seconds

each, one at a time, they take about 35 minutes to

run. Running them in parallel on an 8 core machine

means that 8 tests can execute at once, and the entire suite can execute in approximately

1/8 of the time, or about 4 and a half minutes! By running the integration tests in parallel,

Sridhar is able to finally meet his goal of being able to run the unit + integration tests in

less than 5 minutes.

132

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.19 When can tests run in parallel?

Can any tests be run in parallel? Not exactly. In order for tests to be able to run in parallel,

they need to meet these criteria:

• The tests must not depend on each other

• The tests must be able to run in any order

• The tests must not interfere with each other (e.g.

sharing common memory)

It is good practice to write tests that do not depend on or

interfere with each other in any way, so if you are writing

good tests, then you might not have any trouble at all making

them run in parallel.

The trickiest requirement is probably making sure that

tests do not interfere with each other. This can easily happen

by accident, especially when testing code that makes use of

any kind of global storage. With a little finesse, you’ll be able

to find ways to fix your tests so that they can be totallly

isolated, and then the result will likely be better code overall

(i.e. code that is less coupled and more cohesive).

When Sridhar updated the Dog Picture Website test suite

to run in parallel, he found a few tests that interfered with

each other and had to be updated, but once he made those

fixes, he was able to run both the unit and integration tests in

less than five minutes.

QUESTION

Q Do I need to build this “tests in parallel” functionality myself too?

A Probably not! This is such a common way of optimizing test execution that most

languages will provide you with a way to run your tests in parallel, either out of the

box or with the help of common libraries. For example, you can run tests in parallel

with Python by using a library such as testtools or an extension to the popular

pytest library, and in Golang you get the functionality out of the box via the ability

to mark a test as parallelizable when you write it with t.Parallel(). Find the

relevant information for your language by looking up documentation on running

tests in parallel or concurrently.

133

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.20 Updating the pipelines

Now that Sridhar had met his goal of running both the unit tests and the integration tests in

less than 5 minutes, he could add the integration tests to the pre merge pipeline and

engineers would get feedback on both the unit and integration tests before their changes

merged.

This meant he had to make some tweaks to the set of tasks in the Dog Picture Website

Pipeline - there was still one task that ran the integration and browser tests together.

Fortunately the tests were already setup well for this change. You may recall that

thebrowser tests are arleady in a separate folder called tests/browser and when Sridhar

updated the pipeline to run the unit tests first, he separated the integration tests and put

them into a folder called tests/integration. This makes it easy to take the final step of

running the integration and browser tests separately:

134

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

And then Sridhar can add the integration test task to the pre

merge pipeline. The pipeline will fail quickly if there is a problem

with the unit tests; and the entire thing will run in less than five

minutes.

135

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.21 Still too slow!

After working hard on the integration and unit tests, Sridhar has made as much

improvement as he thinks he can for now and he met his the goals he set for their relative

quantities:

• He has increased the % of unit tests from 25% to 72% (his goal was 70%)

• He has decreased the % of integration tests from 65% to 21% (his goal was 20%)

Is he done? He steps back and looks at his overal goals:

• Tests should run on every change, before the change gets pushed - he’s

almost there, now the unit and integration tests run, but not the browser tests

• The entire test suite should run in an average of 30 minutes or less - Sridhar

has reduced the execution time of the integration tests - they used to take 35

minutes and now take around 5. The entire suite used to take 2 hours and 35

minutes and now is down to just over 2 hours. This is a big improvement, but

Sridhar still hasn’t met his goal.

• The integration and unit tests should run in less than five minutes - done!

• The unit tests should run in less than one minute - done!

The entire test suite is running in an average of 2 hours and 5 minutes:

• Unit tests: Less than 1 minute

• Integration tests: Around 5 minute

• Browser tests: The other 2 hours

The last remaining problem is the browser tests. All along, the browser tests have been

the slowest part of the test suite. At an average runtime of 2 hours, no matter how much

Sridhar optimizes the rest of the test suite, if he doesn’t do something about the browser

tests, it’s always going to take more than 2 hours.

Can Sridhar take a similar approach and remove browser tests, replacing them with

integration and unit tests? This is definitely an option, but when Sridhar looks at the suite of

browser tests, he can’t find any candidates to remove! The tests are already very focused

and well factored, and at only 10% of the total test suite (with around 50 individual tests),

the number of browser tests is quite reasonable.

136

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.22 Test sharding aka parallel++

Sridhar is stuck with the browser tests as they are, and they take about 2 hours to run. Does

this mean he has to say goodbye to his goals of running the entire suite on every change in

less than 30 minutes?

Fortunately not! Because Sridhar has one last trick up his sleeve: sharding. Sharding is

a technique that is very similar to running tests in parallel, but increases the number of tests

that can be executed at once by parallelizing them across multiple machines.

Right now, all of the 50 browser tests run on one machine, one at a time. Each test runs

in an average of about 2 and a half minutes. Sridhar first tries running the tests in parallel,

but they are so CPU and memory intensive that the gains are negligible (and in some cases

the tests steal resources from each other, effectively slowing down). One executing machine

can really only run one test at a time.

By sharding the test execution, Sridhar will divide up the set of browser tests so that he

uses multiple machines which will each execute a subset of the tests, one at a time, allowing

him to decrease the overall execution time.

QUESTION

Q What if Sridhar beefed up the machines? Maybe then he could get away with

running the tests in parallel on one machine?

A This might help, but as you probably know, machines are getting more and more

powerful all the time - and we respond by creating more complex software and

more complex tests! So while using more powerful machines might help Sridhar

here, we’re going to look at what you can do when this isn’t an option; and we’re

not going to dive into the specifc CPU and memory capcacity of the machines he’s

using because what seems powerful today will seem trivial tomorrow!

VOCAB TIME

We’re referring to parallelizing tests across multiple machines as sharding, but you will

find different terminology used by CD systems. Some systems will call this test splitting,

and others will simply also refer to this as running tests in parallel, where “in parallel”

means across multiple machines as opposed to how in this chapter we’ve used “in

parallel” to refer to running running multiple tests on one machine. Regardless you can

think of sharding as the same basic idea as test parallelization, but across multiple

machines.

137

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.23 How to shard

Sharding test execution allows you to take a suite of long running tests, and execute it faster

by running it across more hardware, i.e. several executing machines instead of just one. But

how does it actually work? You might be imagining a complex system requiring some kind of

worker nodes co-ordinating with a central controller, but don’t worry, it can be much much

simpler than that!

The basic idea is that you have multiple shards, and each is instructed to run a subset of

the tests. There are a few different ways you can decide which tests to run on which shard.

In increasing order of complexity:

1. Run tests in a deterministic order and assign each shard a set

of indexes to run

2. Assign each shard an explicit set of tests to run (for example,

by name)

3. Keep track of attributes of tests from previous test runs (for

example, how long it takes each to run) and use those

attributes to distribute tests across shards (probably using their

names like in option 2)

VOCAB TIME

Each machine

available to execute a

subset of your tests is

referred to as a shard.

Let’s get a better handle on test sharding by looking at option 1 in a bit more detail. For

example, imagine sharding the following 13 tests across 3 executing machines:

We can shard these tests using the first method by running a subset of the above tests

on each of our 3 shards. If we’re using python, one way to do this is with the python library

pytest-shard:

pytest --shard-id=$SHARD_ID --num-shards=$NUM_SHARDS

For example, shard 1 would run:

pytest --shard-id=1 --num-shards=3

138

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.24 More complex sharding

Sharding by index is fairly straight forward, but what about outliers? Sridhar’s browser tests

run in an average of 2.5 minutes, but what if some of them take waaaaay longer?

This is where more complex sharding schemes come in handy, for example the third

option we listed: keeping track of attributes of tests from previous test runs and use those

attributes to distribute tests across shards using their names.

In order to do this, you need to store timing data for tests as you execute them. For

example, take the 13 tests we ran in the last example and imagine we’d been storing how

many minutes each had taken to run across the last 3 runs:

0) test_login (1.5, 1.7, 1.6)

1) test_post_pic (3, 3.1, 3.2)

2) test_rate_pic (0.8, 0.9, 0.7)

3) test_browse_pics (2, 2, 2)

4) test_follow_dog (0.8, 0.8, 0.8)

5) test_view_leaderboard (1.8, 2.0, 1.9)

6) test_view_logged_out (1.7, 2.1, 1.9)

7) test_edit_pic (2.1, 2.6, 2.2)

8) test_post_forum (1.8, 1.9, 1.7)

9) test_edit_forum (1.6, 1.5, 1.7)

10) test_share_twitter (2.1, 1.9, 2.0)

11) test_share_instagram (2.0, 1.9, 2.1)

12) test_report_user (1.3, 1.2, 1.1)

Average = 1.6 minutes

Average = 3.1 minutes

Average = 0.8 minutes

Average = 2.0 minutes

Average = 0.8 minutes

Average = 1.9 minutes

Average = 1.9 minutes

Average = 2.3 minutes

Average = 1.8 minutes

Average = 1.6 minutes

Average = 2.0 minutes

Average = 2.0 minutes

Average = 1.2 minutes

To determine the sharding for the next run,

you’d look at the average timing data and create

groupings such that each of the 3 shards would

execute the test in roughly the same amount of

time.

We’re going to skip going into the details of

this algorithm (though it does make for a fun and

surprisinly practical interview question!). If you

want this kind of sharding, it’s possible that you

might need to build it yourself, but you also

might find that the CD system you’re using (or

tools in your language) will do it for you. For

example, the CD system CircleCI lets you do this

by feeidng the names of your tests into a

language agnostic splitting command:

circleci tests split --split-by=timings

139

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.25 Sharded pipeline

You may decide to do all of the steps for sharding within one task of your pipeline, or if your

CD system supports it, you might break this out into multiple tasks.

In order to support being run with sharding, a set of tests must meet the following

requirements:

• The tests must not depend on each other.

• The tests must not interfere with each other; if the tests share resources, for

example all connecting to the same instance of a dependency, they may conflict

with each other (or maybe not - the easiest way to find out is to try).

• If you want to distribute your tests by index, it must be possible to run the tests in

a deterministic order so that the test represented by an index must be consistent

across all shards.

140

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.26 Sharding the browser tests

Srdihar is going to solve the problem of the slow browser tests by applying sharding! The

overall goal Sridhar is aiming for is:

• The entire test suite should run in an average of 30 minutes or less

The unit and the integration tests take an average of 5 minutes in total, so Sridhar needs

to get the browser tests to run in about 25 minutes.

The browser tests take an average of 2 and a half minutes, and there are 50 of them.

The time each test tasks to execute is fairly uniform, so Sridhar decides to use the simpler

route and shard by index. How many shards does he need to meet his goal?

Since the goal is to complete all the tests in 25 minutes, this means each shard can run

for up to 25 minutes. How many browser tests can run in 25 minutes?

If they each take an average of 2.5 minutes, 25 minutes / 2.5 minutes = 10. In 25

minutes, one shard can run 10 tests.

With 50 tests in total, and each shard able to run 10 tests in 25 minutes, Sridhar needs

50/10 = 5 shards.

Using 5 shards will meet his goal, but he knows they have enough hardware available

that he can be even more generous, and he decides to allocate 7 shards for the browser

tests.

141

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

With 7 shards, each shard will need to run 50/7 tests; the shards with the most will run

the ceiling of 50/7 = 8 tests. 8 tests at an average of 2.5 minutes will complete in 20

minutes. This lets Sridhar slightly beat his goal of 25 minutes, and gives everyone a bit more

room to add more tests, before more shards will need to be added.

6.27 Sharding in the pipeline

Simple index based sharding will work for the Browser tests, so all the Shridar has to to is

add tasks that run in parallel, one for each shard, and have each use pytest-shard to run

their subset of the tests.

His sharded browser test tasks will run this python script, using python to call pytest:

 # when the pipeline runs, it will pass to this script
 # the index of the the shard and the total number of shards
 # as arguments
 shard_index, num_shards, path_to_tests = get_arguments()
 # we’ll invoke pytest as command to run the correct set of tests
 # for this shard
 run_command(

 “pytest --shard-id={} --num-shards={} {}”.format(
 shard_index, num_shards, path_to_tests

))

To add this script to his pipeline, all he has to do is add a set of tasks that run in parallel,

in his case 7, one for each of the 7 shards.

142

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Does he need to hard code 7 individual tasks into his pipeline to

make this happen? It depends on the features of the CD system he’s

using. Most will provide a way to parallelize tasks, allowing you to

specify how many instances of the task you’d like to run, and then

providing as arguments (often environment variables) information to

the running tasks on how many instances are running in total and

which instance they are.

For example, using GitHub actions you can use a matrix strategy

to run the same job multiple times:

jobs: #A
 tests:

 strategy:
 fail-fast: false
 matrix:
 total_shards: [7]
 shard_indexes: [0, 1, 2, 3, 4, 5, 6]

#A GitHub actions uses “jobs” to refer to what this book calls “tasks”

With the above configuration, the tests job would be run 7 times,

and steps in each job can be provided with the following context

variables so they’ll know how many shards there are in total and

which shard they are running as:

${{ matrix.total_shards }}
${{ matrix.shard_indexes }} #A

#A These matrix option names are arbitrary; see the GitHub Actions

jobs.<job_id>.strategy.matrix documentation for more

143

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.28 Dog Picture Website’s pipelines

Now that Sridhar has met his goal of running the browser tests in 25 minutes - in fact, in 20

minutes! - he can combine all the tests together and the entire suite can run in an average of

30 minutes or less. This means he can go back to his last goal:

• Tests should run on every change, before the change gets pushed

Sridhar adds the browser tests to the pre merge pipeline, running them in parallel with

the integration tests. The pre merge pipeline can now run all of the tests and it will take only

the length of the sharded browser tests (20 minutes) + the unit tests (less than 1 minute).

Sridhar makes the same updates to the nightly release pipeline as

well so that it gets the same speed boost.

144

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Noodle on it

Sridhar needed 5 shards to run the 50 tests in 25 minutes or less, and he added an

extra 2 shards for a total of 7, speeding up the test execution time and adding some buffer

for future tests. But what if the number of tests keeps growing, does that mean adding

more and more shards? Will that work?

Once the number of browser tests increases from 50 to 70, each shard of the 7 shards

will be running 10 tests, and the overall execution time will be 25 minutes.

This means if any more tests are added, the browser tests will take

more than 25 minutes to run and more shards will need to be added.

Does this mean they’ll have to keep adding shards indefinitely? Won’t

that eventually be too much?

That could happen; you may remember that the architecture of Dog

Picture Website is quite monolithic:

If Dog Picture Website continues to grow its feature base, they will

likely want to start dividing up responsibilities of the “backend service”

into separate services - which can each have their own tests suites.

This will mean that when something is changed, only the tests that

are related to that change can be run, instead of needing to run

absolutely everything. This kind of division of responsibilities will

probably be required in order to match the growth of the company as

well, i.e. as more people are added, they will need to be divided into

effective teams which each have independent areas of ownership.

Food for thought: fast forward to the future, where Dog Picture

Website is made up of multiple services, each with their own set of end

to end tests. Is running each set separately enough to be confident

that the entire system works? Should all of the tests be run together

before a release in order to be certain? The answer is: it depends, but

remember, you can never be 100% certain. The key is to make the

tradeoffs that work for your project.

145

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

It’s your turn

Dog Picture Website and Cat Picture Website actually share a common competitor: the up

and coming Bird Picture Website. Bird Picture Website is actually dealing with a similar

problem around slow tests, but their situation is a bit different. Their entire test suite runs

in about 3 hours, but unlike Dog Picture Website, they run this entire suite for every pull

request. This means that when their engineers are ready to submit changes, they open up

a pull request, and then leave it, often until the next day, to wait for the tests to run. One

advantage to this approach is that they catch a lot of problems before they get merged, but

it means that engineers will often spend days trying to get their changes merged

(sometimes called “wrestling with the tests”).

The test suite Bird Picture website uses has the following distribution:

• 10% unit tests

• No integration tests

• 90% end to end tests

The unit tests cover 34% of the codebase, and they take 20 minutes to run. Given the

above, what are some good next steps for Bird Picture Website to go about speeding up

their test suite?

146

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

ANSWERS

A few things stand out immediately about Bird Picture Website’s test

suites:

• The tests they are calling “unit tests” are quite slow for unit

tests; ideally they would run in a couple of minutes max, if

not in seconds. There is a good chance there are actually

more like integration tests.

• The unit test (or maybe “integration test”) coverage is quite

low

• There are a LOT of end to end tests in comparison to the

amount of unit tests; it could be that there just aren’t very

many tests in general, but there’s also a good chance that

Bird Picture Website is relying too much on these end to end

tests.

Based on this information, there are a few things that the folks at

Bird Picture website could do:

• Sort through the slow unit tests; if any of these are actually

unit tests (i.e. running in seconds or less), run those

separately from the other slower tests (which are actually

integration tests). These unit test can be run quickly first

and give an immediate signal.

• Measure the coverage of these fast unit tests - it will be

even lower than the already low 34% coverage. Compare

the areas without coverage to the huge set of end to end

tests, and identify end to end tests that can be replaced with

unit tests.

• Introduce a task to measure and report on unit test

coverage on every pull request, and don’t merge any pull

requests that decrease the unit test coverage.

• From there, take a fresh look at the distribution of tests and

decide what to do next. There’s a good chance that many of

the end to end tests could be downgraded to integration

tests; i.e. instead of needing the entire system to be up and

running, maybe the same cases could be covered with just a

couple of components, which will probably be faster.

147

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

6.29 Conclusion

Over time, Dog Picture Website’s test suite had taken longer and longer to run. Instead of

facing this problem directly and finding ways to speed up the tests, they had removed the

tests from their daily routine, basically postponing dealing with the pain as long as possible.

Though this may have helped them speed up initially, it was now slowing them down. Sridhar

knew that the answer was to look critically at the test suite and optimize it as much as

possible. And when it couldn’t be optimized any further, he was able to use parallelization

and sharding to make the tests fast enough that the tests could once again become part of

the pre merge routine and engineers could get feedback faster.

6.30 Summary
• Get an immediate gain from a slow test suite by making it possible to run the

fastest tests independently and running them first

• Before solving slow test suite problems with technology, first take a critical look at

the tests themselves. Using the test pyramid will help you focus your efforts, and

enforcing test coverage will help you maintain a strong unit test base

• That being said, perhaps your test suite is super solid, but they just take a long time

to run. When you’ve reached this point, you can use parallelization, and sharding

(parallelization) to speed up your tests by trading time for hardware

6.31 Up next . . .

In the next chapter we’ll expand on the theme of getting signals at the right time in the

development lifecycle - in Dog Picture Website’s case, by shifting the tests to earlier in their

process, often called shifting left. We’ll look at the various signals that are a part of the

software lifecycle, as well as when and how to make the signals available.

148

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Give the right signals at the right
times 7

This chapter covers:

• dentify the points in a change’s lifecycle when bugs can be introduced

• Describe how to guarantee that bugs will not be introduced by conflicting
changes; weigh the pros and cons of each approach

• Catch bugs at all points in a change’s lifecycle by running CI before merging, after
merging and periodically

In the previous chapters we’ve seen Continuous Integration pipelines running at different
stages in a change’s lifecycle. We’ve seen them run after a change is committed, leading to
an important rule: when the pipeline breaks, stop merging. We’ve also seen cases where
linting and tests are made to run before changes are merged, ideally to prevent getting to a
state where the code base is broken.

In this chapter we’ll look at the lifecycle of a change, all the different places where bugs
can be introduced, and how to run pipelines at the right times to catch and fix these bugs as
quickly as possible.

149

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.1 CoinExCompare
CoinExCompare is a website that publishes exchange rates between digital currencies. Users
can log onto their website and compare exchange rates, for example between currencies
such as CatCoin and DogCoin.

The company has been growing rapidly, but lately they’ve been facing bugs and outages.
They’re especially confused because they’ve been looking carefully at their pipelines, and
they think they’ve done a pretty good job of covering all the bases:

With a great CI pipeline like that, what could they be doing wrong?

150

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.2 Lifecycle of a change
To figure out what might be going wrong for CoinExCompare, they map out the timeline of a
change, so they can think about what might go wrong along the way:

151

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.3 CI before and after merge

If you’re starting from no automation at all, the easiest place to
start running CI is often right after a change is merged.

We saw this in chapter 2, when Topher setup webhook
automation for Cat Picture website that would run their tests
whenever a change was pushed. This quickly led to them
adopting an important rule:

When the pipeline breaks, stop pushing changes.
This is still a great place to start and the easiest way to hook in automation, especialy if

you’re using version control software that doesnt come with additional automation features
out of the box and you need to build it yourself (like Topher did in chapter 2).

However it has some definite downsides:

• You will only find out about problems AFTER they are already added to the codebase.
This means that your codebase can get into a state where it isn’t safe to release - and
part of Continuous Delivery is getting to a state where you can safely deliver
changes to your software at any time. Allowing your codebase to become broken
on a regular basis directly interferes with that goal.

• Requiring that everyone stop pushing changes when the CI breaks stops everyone
from being able to make progress which is at best frustrating, and at worst,
expensive.

This is where CoinExCompare was about 6 months ago, but they decided to invest in
automation that would allow them to run their CI before merging instead - so they could
prevent their codebase from getting into a broken state. This mitigates the two downsides of
runnining CI after the changes are already merged:

• Instead of finding out about problems after they’ve already been added, stop them
from being added to the main codebase at all.

• Avoid blocking everyone when a change is bad; instead let the author of the change
deal with the problem. Once it’s fixed, the author will be able to merge the change.

This is where CoinExCompare is today: they run CI before changes are merged, and they
don’t merge changes until the CI passes.

152

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.4 Timeline of a change’s bugs
CoinExCompare requires CI to pass before a change is merged, but they’re still running into
bugs in production. How can that be? To understand, let’s take a look at all the places bugs
can be introduced for a change:

153

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.5 CI only before merging misses bugs
CoinExCompare is currently blocking PR merges on CI passing, but that is the ONLY time
they’re running their CI. And as it turns out, there are a few more places that bugs can creep
in after that point:

This comes down to three sources of bugs:

1. Divergence from the main branch: If CI runs only before a change is integrated
back into the main branch, this means that there might be changes in main that the
new change didn’t take into account, and CI was never run for.

2. Changes to dependencies: Most artifacts will require packages and libraries outside
of its own codebase in order to operate. When building production artifacts, some
version of these dependencies will be pulled in. If these are not the same version that
you ran CI with, new bugs can be introduced.

3. Non-determinism: this pops up both in the form of flakes that aren’t caught and also
subtle difference from one artifact build to the next which have the potential to
introduce bugs.

Let’s take a look at how CoinExCompare can tackle each of these sources of bugs.

154

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.6 A tale of two graphs: default to seven days
CoinExCompare recently ran into a production bug that was caused by the first source of
post-merge bugs:

Divergence from the main branch
Nia has been working on a feature to graph the last 7 days worth of coin activity for a

particular coin. For example, if a user went to the landing page for DogCoin, they would see
a graph like this, showing the closing price of the coin in USD on each of the last 7 days:

While she’s working on this functionality, she find an existing function that looks like it’ll
make her job a lot easier. The function get_daily_rates will return the peak daily rates for
a particular coin (relative to USD) for some period of time. By default the function will return
the rates for all time, indicated by a value of 0 (aka MAX).

Looking around the codebase, Nia is surprised to see that none of the callers are making
use of the logic that defaults num_days to MAX. Since she has to call this function a few times,
she decides that defaulting to 7 days is reasonable, and it gives her the functionality she
needs, so she changes the function to default to 7 days instead of MAX and adds a unit test
to cover it.

All the tests, including her new one, pass, so she feels good about opening up a pull
request for her change.

155

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.7 A tale of two graphs: default to thirty days
But Nia doesn’t realize that someone else is making changes to the same code!

Fellow CoinExCompare employee Zihao is working on a graph feature for another page.
This feature shows the last 30 days worth of data for a particular coin.

Unfortunately neither Nia nor Zihao have realized that there is more than one person
working on this very similar logic!

And great minds think alike: Zihao also noticed the same function that Nia did and
thought it would give him exactly what he needed:

Zihao did the same investigation that Nia did, and noticed that no one was using the
default behavior of this function. Since he has to call it a few times, he felt it would be
reasonable to change the default behavior of the function so that it would return rates for the
last 30 days instead of for all time.

He makes the change a bit differently than Nia:

Zihao also adds a unit test to cover his changes:

Both Nia and Zihao have changed the same function to behave differently, and are
relying on the changes they’ve made. Nia is relying on the function returning 7 days worth of
rates by default, and Zihao is relying on it returning 30 days worth of data.

156

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.8 Conflicts aren’t always caught
Nia and Zihao have both changed the defaulting logic in the same function, but at least when
it comes time to merge, these conflicting changes will be caught, right?

Unfortunately no! For most version control systems, the logic to find conflicts is simple
and has no awareness of the actual semantics of the changes involved. When merging
changes together, if exactly the same lines are changed, the version control system will
realize that something is wrong, but it can’t go much further than that.

Nia and Zihao changed different lines in the get_daily_rates function, so the changes
can actually be merged together without conflict!

Zihao merges his changes first, changing the state of get_daily_rates in the main
branch to have his new defaulting logic:

Meanwhile, Nia merges her changes in as well. Zihao’s changes are already present in
main, so her changes to the line two lines above Zihao’s changes are merged in, resulting in
this function:

The result is that Zihao’s graph feature is merged first, and it works just fine, until Nia’s
changes are merged, resulting in the function above. Nia’s changes break Zihaos: now that
the default value is 7 instead of MAX, Zihao’s ternary condition will be false (unless some
unlucky caller tries to explicitly pass in MAX), and so the function will now return 7 days worth
of data by default. This means Nia’s functionality will work as expected, but Zihao’s is now
broken.

157

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.9 What about the unit tests?
Nia and Zihao both added unit tests as well. Surely this means that the conflicting changes
will be caught?

If they had added the tests at the same point in the file, the version control system would
catch this as a caught as a conflict, since they would both be changing the same lines.
Unfortunately in our example, the unit tests were introduced at different points in the file so
no conflict was caught! The end result of the merges would be both unit tests being present:

The version control system couldn’t catch the conflict, but at least it should be impossible
for both tests to pass, right? So surely the problem will be caught when the tests are run?

Yes and no! If both of these tests are run at the same time, one of them will fail (it is
impossible for both to pass unless something undeterministic is happening).

But will both tests be run together? Let’s look at a timeline of what happens to Nia and
Zihao’s changes and when the tests will be run:

Tests are run automatically for each pull request only. CoinExCompare is relying solely on
running their CI (including tests) on each pull request, but there is no automation to run CI
on the combined changes after they have been merged together.

158

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.10 Pull request triggering still lets bugs sneak in
Running CI triggered by pull requests is a great way to catch bugs before they are introduced
into the main branch. But as we saw with Nia and Zihao,

The longer your changes are in your own branch and aren’t
integrated back into the main branch, the more chance there will
be that a conflicting change will be introduced that will cause
unforseen bugs.

159

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.11 CI before AND after merge
What can CoinExCompare do to avoid getting into a state where main is broken because
conflicts haven’t been caught?

Both Nia and Zihao added tests to cover their functionality - if those tests had been run
once the changes had been combined (merged) the issue would have been caught right
away.

CoinExCompare sets a new goal:
Require changes are combined with the latest main and CI passes before

merging
What can CoinExCompare do to meet this goal? They have a few options:

1. Run CI periodically on main
2. Require branches to be up to date before they can be merged into main
3. Use automation to merge changes with main and re-run CI before merging (aka using

a merge queue)

We’ll look at each option in more detail, but at a glance each comes with its own set of
tradeoffs:

Option (1) will catch these errors but only after they’ve actually been introduced into
main; this means main can still get into a broken state.

Option (2) will prevent the kind of errors that we’ve been looking at from getting in, and
it’s supported out of the box by some version control systems (for example GitHub). But in
practical application it can be a huge nusiance.

Option (3) if implemented correctly can also prevent these errors from getting in. As an
out of the box feature it’s works very well, but it can be complicated if you need to
implement and maintain it yourself.

160

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.12 Option 1: Run CI periodically
Let’s look at each of the options in more detail.

With Nia and Zihao’s situation, one of the most frustrating aspects was that the issue
wasn’t caught until it was seen in production - even though there were unit tests that could
have caught it!

With this option, we focus less on stopping this edge case from happening, and more on
easily detecting it if it does. The truth is that that bugs like these, which are caused by the
interaction of multiple changes, are unlikely to happen very often.

An easy way to detect these problems is to run your CI periodically against main, in
addition to running it against pull requests. This could look like a nightly run of the CI, or
even more often (e.g. hourly) if the tasks are fast enough.

Of course it has a couple of downsides:

1. This approach will let main get into a broken state
2. This requires someone to monitor these periodic tests, or at least be responsible for

acting on them when they break

What would it look like for Nia and Zihao if CoinExCompare decided to use periodic CI as
their solution to addressing these conflicting changes? Let’s say CoinExCompare decides to
run their periodic tests every hour:

At least now the problem will be caught, and might be stopped before it makes it to
production, but does this meet CoinExCompare’s goal?

Require changes are combined with the latest main and CI passes before
merging

Since everything happens post merge, option 1 doesn’t meet their bar.

161

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.13 Setting up periodic CI

CoinExCompare isn’t going to move ahead with periodic CI (yet)
but before we move on to the other options let’s take a quick
look at what it would take to set this up.

CoinExCompare is using GitHub actions, so making this
change is easy. Say they wanted to run their pipeline every
hour. In their GitHub actions workflow, they can use the
schedule syntax to do by including a schedule directive in
the on triggering section:

Though it’s easy to setup the periodic (aka scheduled) triggering, the bigger challenging
is actually doing something with the results.

When running CI against a pull request, it’s much more clear who needs to take action
when it fails: the author(s) of the pull request itself. And they will be motivated to do this
because they need the CI to pass before they can merge.

With periodic CI, the responsibility is much more diffused. In order to make your CI
useful, you need someone to be notified when failures occur, and you need a process for
determining who actually needs to fix the failures.

Notification could be handled through a mailing list or by creating a dashboard; the
harder part is deciding who needs to actually take action and fix the problems.

A common way to handle this is to setup a rotation (similar to being on call for production
issues) and share the responsibility across the team. When failures occur, whoever is
currently responsible needs to decide how to triage and deal with the issue.

If the periodic CI frequently has problems, dealing with the
issues that pop up can have a significant negative impact on the
productivity of whoever has to handle them and can be a drain
on morale. This makes it (even more) important to make a
concerted effort to make CI realiable so that the interruptions
are infrequent.

162

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.14 Option 2: Require branch to be up to date
Option 1 will detect the problem, but won’t stop it from happening. In option 2, you are
guaranteed that problems wont sneak in. This works because if the base branch is updated,
you’ll be forced to update your branch before you can merge- and at the point that you
update your branch, CI will be triggered.

Would this have fixed Nia and Zihao’s problem? Let’s take a look at what would have
happened.

As soon as Zihao merged, Nia would be blocked from merging until she pulled in the
latest main, including Zihao’s changes. This would trigger CI to run again - which would run
both Nia and Zihao’s unit tests. Zihao’s would fail, and the problem would be caught!

This strategy comes with an additional cost though: anytime main is updated, all pull
requests for branches which don’t contain these changes will need to be updated. In Nia and
Zihao’s case this was important because their changes conflicted, but this policy will be
universally applied, whether it is important to pull in the changes or not.

163

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.15 Option 2: At what cost?
Requiring that a branch be up to date with main before being merged would have caught Nia
and Zihao’s problem, but also, this approach would impact every pull request and every
developer.

Is it worth the cost? Let’s see how this policy would impact several pull requests:
Each time a pull request is merged, it impacts (and blocks)

all other open pull requests!
CoinExCompare has around 50 developers, and each of them

try to merge their changes back into main every day or so. This
means there are around 20-25 merges into main per day.

Imagine that 20 PRs are open at any given time, and the authors try to merge themwithin a
day or so of opening. Each time a PR is merged, it will block the other 19 open PRs until they
are updated with the latest changes.

The strategy in option 2 will guarantee that CI always runs with the latest changes, but at
the cost of potentially a lot of tedious updates to all open PRs. In the worst case, developers
will find themselves constantly racing to get their PRs in so they don’t get blocked by
someone else’s changes.

164

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.16 Option 3: Automated merge CI
CoinExCompare decides that the additional overhead and frustration of always requiring
branches to be up to date before merging isn’t worth the benefit. What else can they do?

With CoinExCompare’s current setup, tests ran against both Nia and Zihao’s pull requests
before merging. Those tests would be triggered to run again if anything in those PRs
changed. This worked out just fine for Zihao’s changes, but didn’t catch the issues introduced
when Nia’s changes were added.

If only Nia’s CI had been triggered to a) run one more time before merging, and b)
included the latest changes from main when running those tests, the problem would have
been caught.

So another solution to the problem is to introduce automation to run CI which runs final
time before merging, against the changes merged with the latest code from main.

Accomplish this by doing the following:

1. Before merging, even if the CI has passed previously, run the CI again, including the
latest state of main (even if the branch itself isn’t up to date)

2. If the main branch changes during this final run, run it again. Repeat until it has been
run successfully with exactly the state of main that you’ll be merging into

What would have happened to Nia and Zihao’s changes if they’d had this automation?

With the CI had pulling in the latest main (with Zihao’s changes) and running a final time
before allowing Nia to merge, the conflicting changes would be caught and won’t make it into
main.

165

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.17 Running CI with the latest main
In theory it makes sense to run CI before merging, with the latest main, and make sure main
can’t change without re-running CI, but how do you actually pull this off? We can break the
elements down a little further. We need:

1. A mechanism to combine the branch with the latest changes in main which CI can use
2. Something to run CI before merge and block the merge from occuring until it passes
3. A way to detect updates to main (and trigger the pre-merge CI process again) OR a

way to prevent main from changing while the pre-merge CI is running

How do you combine your branch with the latest changes in main? One way is to do this
yourself in your CI tasks by pulling the main branch and doing a merge.

But you often don’t need to because some version control systems will actually take care
of this for you. For example, when GitHub triggers webhook events (or when using GitHub
actions), GitHub provides a merged commit to test again: it creates a commit that merges
the PR changes with main.

As long as your tasks fetch this merge commit (provided as the GITHUB_SHA in the
triggering event), you’ve got (1) covered!

166

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.18 Merge Events
Now that we’ve covered the first piece of the recipe, let’s look at the rest. We need:

2. Something to run CI before merge and block the merge from occuring until it passes
3. A way to detect updates to main (and trigger the pre-merge CI process again) OR a

way to prevent main from changing while the pre-merge CI is running

Most version control systems will give you some way to run CI in
response to events, such as when a pull request is opened, when
it is updated, or in this case, when it is merged, aka a merge
event. If you run your CI in response to the merge event, you can
be alerted when a merge occurs, and run your CI in response.

However this doesn’t quite address requirements (2) and (3)
above

2. The merge event will be triggered AFTER the merge occurs, i.e. after the PR is merged
back into main, so if a problem is found it will have already made its way into the
main branch. At least you’ll know about it, but main will be broken.

3. There is no mechanism to ensure that any changes to main that occur while this
automation is running will trigger the CI to run again, so some conflicts can still slip
through the cracks.

What would this look like for Nia and Zihao’s scenario?

So unfortunately triggering on merges won’t give us exactly what we’re looking for. It will
increase the chances that we’ll catch conflicts, but only after they’ve been introduced, and
more conflicts can still sneak in while the automation is running.

167

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.19 Merge queues
If triggering on the merge event doesn’t give us the whole recipe, what else can we do? The
complete recipe we are looking for requires:

1. A mechanism to combine the branch with the latest changes in main which CI can use
2. Something to block the merge from occuring until CI passes
3. A way to detect updates to main (and trigger the pre-merge CI process again) OR a

way to prevent main from changing while the pre-merge CI is running

We have an answer for (1) but the complete solution to (2) and (3) is lacking. The
answer is to create automation which is entirely responsible for merging PRs. This
automation is often referred to as a merge queue or merge train, i.e. merging is never
done manually, it is always handled by automation which can enforce (2) and (3).

You can get this functionality by building the merge queue yourself, but fortunately you
shouldn’t need to! Many version control systems now provide a merge queue feature out of
the box.

Merge queues, as their name implies, will manage queues of pull requests which are
eligible to merge (e.g. they’ve passed all the required CI):

• Each eligible pull request is added to the merge queue
• For each pull request in order, the merge queue creates a temporary branch that

merges the changes into main (the same logic as the merged commit GitHub provides
in pull request events)

• The merge queue runs the required CI on the temporary branch
• If CI passes, the merge queue will go ahead and do the merge. If it fails, it won’t.

Nothing else can merge while this is happening because all merges need to happen
through the merge queue.

168

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.20 Merge queue for CoinExCompare
Let’s see how a merge queue would have addressed Nia and Zihao’s conflict:

169

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

170

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.21 Where can bugs still happen?
CoinExCompare decides to use a merge queue, and with GitHub they’re able to opt into this
functionality quite easily by adding the setting to their branch protection rules for main to
Require Merge Queue.

Now that they are using a merge queue, have the folks at CoinExCompare successfully
identified and mitigated all the places where bugs can be introduced?

Let’s take a look again at the timeline of a change and when bugs can be introduced:

Even with the introduction of a merge queue, there are still several potential sources of
bugs CoinExCompare hasn’t tackled:

1. Divergence from and integration with the main branch (now handled!)
2. Changes to dependencies
3. Non determinism: in code and/or tests (i.e. flakes), and/or how artifacts are built

171

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.22 Flakes and pull request triggered CI
We learned in Chapter 5 that flakes occur when tests fail inconsistently: sometimes they
pass, sometimes they fail. We also learned that this can be caused equally by a problem in
the test or by a problem in the code under test, so the best strategy is to treat these like
bugs and investigate them fully.

But since flakes don’t happen all the time, they can be hard to catch!
CoinExCompare now runs CI on each pull request and before a pull request is merged.

This is where flakes would show up, and the truth is that they would often get ignored. It’s
hard to resist the temptation to just run the tests again, merge, and call it a day - especially
if your changes don’t seem to be involved.

Is there a more effective way CoinExCompare can expose and deal with these flakes?
A few pages ago we looked at periodic CI, and decided it wasn’t the best way to address

sneaky conflicts, however it turns out the periodic CI can be a great way to expose flakes.
Imagine a test that flakes only once out of every 500 runs.

CoinExCompare developers have about 20-25 PRs open per day. Let’s say the CI runs at
least three times against each PR: once initially, once with changes, and finally again in the
merge queue. This means every day there are about 25 PRs * 3 runs = 75 chances to hit the
failing test.

Over a period of about 7 days that’s 525 changes to fail, so it’s likely this test will fail one
of those PRs. (And it’s also likely the developer who created the pull request will just ignore it
and run the CI again!)

172

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.23 Catching flakes with periodic tests
When relying only on pull request and merge queue based tests to uncover flakes,
CoinExCompare will be able to reproduce a flake that occurs 1/500 times around once every
7 days. And when the flake is reproduced, there’s a good chance that the author of the
impacted pull request will simply decide to run the tests again and move on.

Is there anything that CoinExCompare can do to make it easier to reproduce flakes and
not have to rely on the good behavior of the impacted engineer to fix it?

A few pages back we talked about periodic tests, and how they were not the best way to
prevent conflicts from sneaking in, but it turns out that catching flakes with periodic tests
works really well!

What if CoinExCompare sets up periodic CI to run once an hour? With the periodic CI
running once an hour, it would run 24 times a day.

The flakey test fails 1/500 runs, so it would take 500/24 days, or approximately 21 days
to reproduce the failure.

Reproducing the failure once every 21 days via periodic CI might not seem like a big
improvement, but the main appeal is that if the periodic tests catch the flake, they aren’t
blocking someone’s unrelated work. As long as the team has a process for handling failures
discovered by the periodic CI, a flake discovered this way has a better chance of being
handled and investigated thoroughly than when it pops up and blocks someone’s unrelated
work.

173

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.24 Bugs and building
By adding a merge queue and periodic tests, CoinExCompare has successfully eliminated
most of their potential sources of bugs, but there are still ways bugs can sneak in:

1. Divergence from and integration with the main branch
2. Changes to dependencies
3. Non determinism: in code and/or tests (i.e. flakes) (caught via periodic tests), and/or

how artifacts are built

Both of these sources of bugs revolve around the build
process. In chapter 9 we’re going to look at how to structure
your build process to avoid these problems, but in the
meantime, without overhauling how CoinExCompare builds
their images, what can be done to catch and fix bugs
introduced at build time?

Let’s take a look again at their pipeline:
The last task in the pipeline runs the system tests. As with

any system tests, these tests test the CoinExCompare system
as a whole. System tests need something to run against, so
part of this task must include setting up the system under
test (SUT). In order to create the SUT, the task needs to build
the images used by CoinExCompare.

The types of bugs we’re currently looking at sneak in while the images are being built - so
can they be caught by the system tests? The answer is yes BUT the problem is that that the
images being built for the system tests are not the same as the ones being built and
deployed to production. Those images will be built at some point later on, at which point the
bugs can sneak back in.

174

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.25 CI vs. build and deploy
In chapter 2 we looked at two different kinds of tasks: gates and transformations.

CoinExCompare separates their gate and transformation tasks into two different
pipelines. The purpose of the pipeline we’ve been looking at so far, their CI pipeline, is to
verify code changes (aka gating code changes).

CoinExCompare uses a different pipeline to build and deploy
their production image (aka transforming the source code into a
running container):

The reality is that the line between these two kinds of tasks can blur. If you want to be
confident in the decisions made by your gate tasks, i.e. your CI, you need to do a certain
amount of transformation in your CI as well.

This often shows up in system tests, which are often secretly doing some amount of
building and deploying.

175

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.26 Build and deploy with the same logic
The CoinExCompare system test task is actually doing a few things:

1. Setting up an environment to run the system under test
2. Building an image
3. Pushing the image to a local registry
4. Running the image
5. And only THEN running the system tests against the running container

But - and this is very common - it’s not actually using the same logic that the deployment
pipeline is using to build and deploy their images. If it was, it would be making use of the
same tasks that are used in that pipeline:

This means there is a potential for bugs to sneak in when the actual images are built and
deployed, specifically:

• Differences based on when the build happens, for example pulling in the latest
version of a dependency during the system tests, but when the production image is
built an even newer version is pulled in.

• Difference based on the build environment, for example running the build on a
different version of the underlying operating system.

There are 2 changes that CoinExCompare can make to minimize these differences:

• Run the deployment tasks periodically as well
• Use the same tasks to build and deploy for the system tests as are used for the actual

build and deploy

176

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.27 Improved CI pipeline with building
CoinExCompare updates their CI pipeline so that the system tests will use the same tasks
they use for production building and deploying and it looks like this:

• Changes in dependencies are mitigated because the images are now being built (and
tested) every hour. If a change in a dependency introduces a bug, it now has a
window of only about an hour to do it, and it will likely be caught the next time the
periodic CI runs.

• Non-deterministic builds are mititgated because by using exactly the same tasks to
build images for CI, we’ve reduced the number of variables that can differ.

(See Chapter 9 for more on how to completely defeat these risks.)

177

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.28 Timeline of a change revisited
Did they get them all? The folks at CoinExCompare sit down to look one final time at all the
places a bug could be introduced:

CoinExCompare has successfully eliminated or at least mitigate all of the places that bugs
can sneak in by:

• Continuing to use their existing pull requst triggered CI
• Adding a merge queue
• Running CI periodically
• Updating their CI pipelines to use the same logic for building and deploying as their

production release pipeline

With these additional elements in place, they are very happy to see a dramatic reduction
in their production bugs and outages.

178

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

179

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

7.29 Conclusion
CoinExCompare thought that running CI triggered on each pull request was enough to catch
all the errors that can be introduced by a change, however on closer examination they
realized that this approach can’t catch everything. By using merge queues, adding periodic
tests, and updating their CI to use the same logic as their release pipelines, they’ve now got
just about everything covered!

7.30 Summary
• Bugs can be introduced as part of the changes themselves, as conflicts between the

changes and a diverging main branch, and as part of the build process
• Merge queues are a very effective way to prevent changes that conflict between PRs

from sneaking in. If they aren’t available in your version control system, requiring
branches to be up to date can work well for small teams, or periodic tests are
effective (though this means main may get into a broken state).

• Periodic tests are worth adding regardless as they can be a way to identify flakes
without interrupting unrelated PRs, but using them effectively requires setting up
some process around them.

• Building and deploying in your CI pipelines in the same way as your production
releases are performed will mitigate the errors that can sneak between running the CI
and release pipelines.

7.31 Up next . . .
In the next chapter, we’ll start transitioning into looking at the details of Continuous Delivery
pipelines which go beyond Continuous Integration: the transformation tasks that are used to
build and deploy your code. The next chapter will dive into effective approaches to version
control which can make the process run more smoothly, and how to measure that
effectiveness.

180

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Easy delivery starts

with version control 8

In this chapter:

• Explain the DORA metrics which measure velocity: deployment frequency

and lead time for changes

• Increase speed and communication by avoiding long lived feature

branches and code freezes

• Decrease lead time for changes by using small, frequent commits

• Increase deployment frequency safely by using small, frequent commits

In the previous chapters we’ve been focusing on Continuous Integration, but from this

chapter onward we’ll start transitioning to the details of the rest of the activities in a

Continuous Delivery Pipeline, specifically the transformation tasks that are used to build and

deploy your code.

Good CI practices have a direct impact on the rest of your CD. In this chapter we’ll dive

into effective approaches to version control to make CD run more smoothly, and how to

measure that effectiveness.

181

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.1 Meanwhile at Watch Me Watch

Remember the startup Watch Me Watch from chapter 3? Well they’re still going strong - and

in fact growing as a company! In the past two years they’ve grown from just Sasha and

Sarah to a company of more than 50 employees.

From the very beginning they invested in automating their deployments, but as they’ve

grown they’ve gotten nervous that these deployments are riskier and riskier, so they’ve been

slowing them down.

Each of their services is now only released during specific windows, once every 2 months.

For a week before a release, the code base is frozen and no new changes can go in.

182

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

In spite of these changes, somehow it feels like the problem is only getting worse: every

deployment still feels extremely risky, and even worse, features are taking too long to get

into production. Since Sasha and Sarah started on their initial vision, competitors have

sprung up, and with the slow pace of features being released, it feels like the competitors are

getting ahead!

It feels like now matter what they do, they’re going slower and slower.

183

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.2 The DORA metrics

Sasha and Sarah are stumped, but new employee Sandy (they/them) has some ideas of

what they can do differently. One day they approach Sasha in the hallway.

As they both stand in the hallway and Sandy starts to explain the DORA metrics, Sasha

realizes that the whole team could really benefit from what Sandy knows, and asks Sandy if

they’d mind giving a presentation to the company.

Sandy eagerly puts some slides together and gives everyone a quick introduction to the

DORA metrics:

184

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.3 Velocity at Watch Me Watch

After her presentation on the DORA metrics, Sandy

continues to discuss them with Sarah and Sasha, and

how they can help with the problems Watch Me Watch is

facing around how slowly they are moving.

Sandy suggests they focus on the two velocity

related DORA metris and measure these metrics for

Watch Me Watch.

In order to measure these, we need to look at them in a

bit more detail.

• Deployment Frequency measures how often an

organization successfully releases to production

• Lead Time for Changes measures the amount of

time it takes a commit to get into production

At Watch Me Watch, deployments can only occur as

frequently as the deployment windows, which are every two

months. So for Watch Me Watch, the Deployment

Frequency is once very 2 months.

185

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.4 Lead time for changes

To measure Lead Time for Changes Sandy needs to understand a bit about the development

process at Watch Me Watch. Most features are created in a feature branch, and that branch

is merged back into main when development has finished on the feature. Some features can

be completed in as little as a week, but most take at least a few weeks.

Here is what this process looks like for a two recent features, which were developed in

Feature Branch 1 and Feature Branch 2:

The lead time for the changes in Feature Branch 1 was 20 days. Even though Feature

Branch 2 was completed immediately before a deployment window, this was during the code

freeze window so it couldn’t be merged until after that, delaying the deployment until the

next deployment window, two months later. This made the lead time for the changes in

Feature Branch 2 two months, or around 60 days.

Looking across the last year worth of features and feature branches, Sandy finds that the

average lead time for changes is around 45 days.

186

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.5 Watch Me Watch and elite perfomers

Sandy has measured the two velocity related DORA metrics for Watch Me Watch:

• Deployment Frequency: once every 2 months

• Lead Time for Changes: 45 days

Looking at these values in isolation, it’s hard to draw any conclusions or take away

anything actionable. As part of determining these metrics, the DORA team also ranked the

teams they were measuring in terms of overall performance and put them into four buckets:

low, medium, high and elite performing teams. For each metric, they reported what that

metric looked like for teams in each bucket.

For the the velocity metrics, the breakdown (from the 2021 report) looked like this:

Metric Elite High Medium Low

Deployment

Frequency

Multiple times a day Once per week to

once per month

Once per month to

once every six months

Fewer than once

every six months

Lead Time for

Changes

Less than an hour One day to one week One month to six

months

More than six months

On the elite end of the spectrum, multiple deployments happen every day and the lead time

for changes is less than an hour! On the other end, low performers deploy less frequently

than once every six months, and changes take more than six months to get to production.

Comparing the metrics at Watch Me Watch with these values, they are solidly aligned

with the medium performers.

187

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.6 Increasing velocity at Watch Me Watch

Sandy sets out to create a plan to improve the velocity at Watch Me Watch.

• Deployment Frequency: to move from being a medium performer to a high

performer, they need to go from deploying once every 2 months to deploying at least

once a month

• Lead Time for Changes: to move from being a medium to a high performer, they

need to go from an average lead time of 45 days to one week or less

Their deployment frequency is currently determined by the fixed deployment windows

they use, once every two month. And their lead time for changes is impacted by this as well:

feature branches aren’t merged until the entire feature is complete, and can only be merged

between code freezes, and if the author misses a deployment window, their changes are

delayed by two months until the next one.

Sandy theorizes that both metrics are heavily influenced by the deployment windows

(and the code freeze immediately before deployment), and made worse by the use of feature

branches.

188

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.7 Integrating with AllCatsAllTheTime

To experiment with getting rid of feature branches, Sandy starts to work with Jan to try out

this new approach for the next feature he’s working on.

Jan has taken on integrating with the new streaming provider AllCatsAllTheTime (a

streaming provider featuring curated cat releated content). To understand the changes Jan

will need to make, let’s look again at the overall architecture of Watch Me Watch. Even

though the company has grown since we last looked at their architecture, the original plans

that Sasha and Sarah created have been working well for them, so the architecture hasn’t

changed:

Integrating AllCatsAllTheTime as a new streaming service provider means changing the

Streaming Integration service. Inside the Streaming Integration service codebase, each

integrated streaming service is implemented as a separate class, and is expected to inherit

from the class StreamingService, implementing the following methods:

189

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

def GetCurrentlyWatching(self):
 ...
def GetWatchHistory(self, time_period):
 ...
def GetDetails(self, show_or_movie):
 ...

// This interface enables most functionality that Watch Me Watch needs from streaming service providers: revealing

what a user has been watching, and getting details for particular shows or movies the user has watched

190

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.8 Incremental feature delivery

Sandy and Jan talk through how Jan would normally approach this feature:

1. Make a feature branch off of main

2. Start work on end to end tests

3. Fill in the skeleton of the new streaming service class, with tests

4. Start making each individual function work, with more tests and new classes

5. If he remembers, from time to time, he’ll merge in changes from main

6. When it’s all ready to go, merge the feature back into main

With the approach Sandy is suggesting, Jan will still create branches, but these branches

will be merged back to main as quickly as possible, multiple times a day if he can. Since this

is so different from how he usually works, they talk through how he’s going to do this

initially.

191

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.9 Commiting skipped tests

Sandy has convince Jan that he can create his initial end to end tests, and even though they

won’t all pass until the feautre is done, he can commit them back to main as disabled tests.

This will allow him to commit quickly back to main instead of keeping the tests in a long lived

feature branch.

Jan creates his initial set of end to end tests for the new AllCatsAllTheTime integration.

These tests will interact with the real AllCatsAllTheTime service, so he sets up a test account

(WatchMeWatchTest01) and seeds the account with some viewing activity that his tests can

interact with.

For example, this is one of the end to end tests that covers the GetWatchHistory

method:

def test_get_watch_history(self):
 service = AllCatsAllTheTime(ACATT_TEST_USER)
 history = service.GetWatchHistory(ALL_TIME)

 self.assertEqual(len(history), 3)
 self.assertEqual(history[0].name, “Real Cats of NYC”)

When he runs the tests, they of course fail, because he hasn’t actually implemented any

of the functions that the tests are calling. He feels very skeptical about it, but he does what

Sandy suggested and disables the tests using unittest.skip, with a message explaining that

the implementation is a work in progress. He includes a link to the issue for the

AllCatsAllTheTime integration in their issue tracking system (#2387) so other engineers can

find more information if they need to:

@unittest.skip(“(#2387) AllCatsAllTheTime integration WIP”)
def test_get_watch_history(self):

192

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

193

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.10 Code review and “incomplete” code

How does taking an approach like this work with code review? Surely tiny incomplete

commits like this are hard to review? Let’s see what happens!

Jan creates a Pull Request that contains his new skipped end to end tests and submits it

for review. When another engineer from his team, Melissa, goes to review the PR, she’s a

understandably a bit confused, because she’s used to reviewing complete features. Her initial

round of feedback reflects her confusion:

Up until this point, engineers working on Watch Me Watch have expected that a

complete pull request includes a working feature, and all the supporting tests (all passing

and none skipped) and documentation for that feature.

Getting used to a more incremental approach will mean redefining complete. Sandy lays

some groundwork for how to move forward by redefining a complete pull request as a PR

where:

• All code complies with linting checks

• Docstrings for incomplete functions explain why they are incomplete

• Each code change is supported by tests and documentation

• Disabled tests include an explanation and refer to a tracking issue

Sandy and Jan meet with Melissa and the rest of the team to explain what they are trying

to do and share their new definition of complete. After the meeting Melissa goes back to the

PR and leaves some new feedback.

Jan realizes Melissa is right: he’s added tests but the documentation in the repo that

explains their streaming service integrations hasn’t been updated, so he adds a change to

the PR to add some very cursory initial docs:

* AllCatsAllTheTime - (#2387) a WIP integration with the provider of cat related content

Melissa approves the changes and the disabled end to end tests are merged.

194

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.11 Keeping up the momentum

Jan’s merged his initial (disabled) end to end tests. What’s next? Jan’s still taking the same

approach he would to implementing a new feature, but without a dedicated feature branch:

1. Make a feature branch off of main (not using feature branches)

2. Start work on end to end tests (done, merged to main)

3. Fill in the skeleton of the new streaming service class, with tests (The next step)

4. Start making each individual function work, with more tests and new classes

5. If he remembers, from time to time, he’ll merge in changes from main

6. When it’s all ready to go, merge the feature back into main

Jan’s next step is to start working on implementing the skeleton of the new streaming

service and associated unit tests. After a couple days of work, Sandy checks in:

195

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.12 Committing work in progress code

So far Jan has some initial methods for the class AllCatsAllTheTime:

class AllCatsAllTheTime(StreamingService):
 def __init__(self, user):
 super().__init__(user)

 def GetCurrentlyWatching(self):
 “””Get shows/movies AllCatsAllTheTime considers self.user to be watching”””
 return []

 def GetWatchHistory(self, time_period):
 “””Get shows/movies AllCatsAllTheTime recorded self.user to have watched”””
 return []

 def GetDetails(self, show_or_movie):
 “””Get all attributes of the show/movie as stored by AllCatsAllTheTime”””
 return {}

He’s also created unit tests for GetDetails (which fail because nothing is implemented

yet) and he has some inital unit tests for the other functions which are totally empty and

always pass. He shows this work to Sandy and she has some feedback:

196

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.13 Reviewing work in progress code

Jan opens a pull request with his changes: the empty skeleton of the new class, a disabled

failing unit test, and several unit tests that do nothing but pass. However by this point

Melissa understands why so much of the PR is in progress and isn’t phased. She immediately

comes back with some feedback:

Jan is pleasantly surprised that a pull request with so little content can get useful

feedback. He starts filling in docstrings for the empty functions, describing what they are

intended to do, and what they currently do, for example he adds this docstring for the

method GetWatchHistory in the new class AllCatsAllTheTime:

def GetWatchHistory(self, time_period):
 “””
 Get shows/movies AllCatsAllTheTime recorded self.user to have watched

 AllCatsAllTime will hold the complete history of all shows and movies
 watched by a user from the time they sign up until the current time,
 so this function can return anywhere from 0 results to a list of
 unbounded length.

 The AllCatsAllTheTime integration is a work in progress (#2387) so
 currently this function does nothing and always returns an empty list.

 :param time_period: Either a value of ALL_TIME to return the complete
 watch history or an instance of TimePeriod which specifies the start
 and end datetimes to retrieve the history for
 :returns: A list of Show objects, one for each currently being watched
 “””
 return []

Once Jan updates the PR with the docstrings, Melissa approves it and it’s merged into

main.

197

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

198

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.14 Meanwhile, back at the end to end tests

Meanwhie, unbeknownst to Jan, Sandy and Melissa, other code changes are brewing in the

repo!

Jan creates a new branch to start on his next phase of work, and when he opens the end

to end tests, and the skeleton service he’s been working on so far, he’s surprised to see new

changes to the code that he’s already commited - changes made by someone else!

In the end to end test, he notices the call to AllCatsAllTheTime. GetWatchHistory has

some new arguments:

def GetWatchHistory(self, time_period, max, index): #A
 ...
 :param time_period: Either a value of ALL_TIME to return the complete
 watch history or an instance of TimePeriod which specifies the start
 and end datetimes to retrieve the history for
 :param max: The maximum number of results to return
 :param index: The index into the total number of results from which to
 return up to max results
...

#A Arguments have been added to GetWatchHistory to support paginating the results

These new arguments have been added to the skeleton service as well:

 def GetWatchHistory(self, time_period, max, index):
 return []

And there are even a couple of new unit tests:

def test_get_watch_history_paginated_first_page(self):
 service = AllCatsAllTheTime(ACATT_TEST_USER)
 history = service.GetWatchHistory(ALL_TIME, 2, 0)
 # TODO(#2387) assert that the first page of results is returned #A

def test_get_watch_history_paginated_last_page(self):
 service = AllCatsAllTheTime(ACATT_TEST_USER)
 history = service.GetWatchHistory(ALL_TIME, 2, 1)
 # TODO(#2387) assert that the first page of results is returned

#A These tests always pass because their bodies haven’t been filled in, but the author has indicated what needs to be

done

Looking at the history of the changes, Jan sees that Louis merged a PR the day before that

added pagination to GetWatchHistory for all streaming services - and he notices he has a

chat message from Louis as well:

199

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Becuase Jan merged his code early, Louis was able to contribute to it right away. If Jan

had kept this code in a feature branch, Louis wouldn’t have known about AllCatsAllTheTime,

and Jan wouldn’t have known about the pagination changes. When he finally went to merge

those changes in, weeks or even months later, he’d have to deal with the conflict with Louis’s

changes. But this way, Louis dealt with them right away!

200

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.15 Seeing the benefits

In this chapter we’re starting to move beyond Continuous Integration (CI) to the

processes that happen after the fact (i.e. the rest of Continuous Delivery), but the truth is

that the line is blurry, and choices your team makes in CI processes have downstream ripple

impacts on the entire Continuous Delivery process.

Although Sandy’s overall goal is to improve velocity, as they just pointed out to Jan,

taking the incremental approach Sandy means that their CI processes are now much closer

to the ideal. What is that? Let’s look briefly back on the definition of Continuous

Integration (CI):

The process of combining code changes frequently, where each change is verified on check in.

With long lived feature branches, code changes are only combined as frequently as the

feature branches are brought back to main. But by committing back to main as often as he

can, Jan is combining his code changes with the content of main (and enabling other

developers to combine their changes with his) frequently instead!

201

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.16 Decreasing lead time for changes

By getting closer to the Continuous Integration ideal, Sandy and Jan are having a direct

impact on the entire CD process, and specifically they are having a positive impact on Watch

Me Watch’s DORA metrics. Remember Sandy’s goals

• Deployment Frequency: move from being a medium to high performer by going

from deploying once every 2 months to deploying at least once a month

• Lead Time for Changes: move from being a medium to a high performer by going

from an average lead time of 45 days to one week or less

Jan’s most recent PR (including a skeleton of the new streaming class and some WIP unit

tests) was only a couple of days before a code freeze and the subsequent deployment

window. The result is that Jan’s new integration code actually made it to production as part

of that deployment.

Of course the new integration code doesn’t do actually anything yet, but the fact is that

the changes Jan is making are making it into production. Sandy takes a look at the lead time

for these changes:

Jan merged the skeleton class 4 days before the code freeze. 2 days before the code

freeze Louis updated GetWatchHistory to take pagination arguments. The code freeze

started 2 days later, and 1 week after that there was a deployment.

The entire lead time for the skeleton class change starts when Jan merged on Sept 1 and

ends with the deployment on Sept 12, for a total of an 11 day lead time.

Let’s compare that to the lead time for the changes Louis was working on. He’d been

working in a feature branch since before the last deployment window, which was July 12.

He’d started on July 8, so the entire lead time for his changes was from July 8 to Sept 12, or

66 days.

While Jan’s changes are incremental (and currently not functional), Jan was able to

reduce the lead time for each individual change to 11 days, while Louis’s changes had to wait

66 days.

202

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.17 Continuing AllCatsAllTheTime

Jan continued to work with Sandy to use an incremental approach to implementing the rest

of the AllCatsAllTheTime integration. He worked method by method, implemetning the

method, fleshing out the unit tests and enabling end to end tests as he went.

A few weeks into the work, another team member (Mei) who is working on a search

feature adds a new method was added to the StreamingService interface:

class StreamingService:
 ...
 @staticmethod
 def Search(show_or_movie):
 pass

This new method will allow users to search for specific movies and shows across

streaming providers, and the author of the change adds the new method to every existing

streaming service integration. Since Jan has been incrementally committing the

AllCatsAllTheTime class as he goes, Mei is able to add the Search method to the existing

AllCatsAllTheTime class - she doesn’t even need to tell Jan about the change at all! One

day Jan creates a new branch to start work on the GetDetails method and he sees the code

that Mei has added.

That’s two major features that have been integrated with Jan’s changes as he developed

(pagination and search) that normally Jan would have to deal with at merge time with his

normal feature branch approach. In addition, after the next deployment (Nov 12), even

though the integration isn’t complete, enough functionality is present for users to actually

start using it and for marketing to start advertising the integration.

203

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.18 Deployment windows and code freezes

Sandy and Jan present the results of their experiment back to Sasha and Sarah. They show

how by avoiding long lived feature branches and merging features incrementally they’ve

encountered multiple benefits:

• The lead time for changes is decreased

• Multiple features can be integrated sooner and more easily

• Users can get access to features earlier

Sasha and Sarah agree to try this policy across the company and see what happens, so

Sandy and Jan set about training the rest of the developers in using how to avoid feature

branches and use an incremental approach.

A few months later, Sandy revisits the lead time metrics for all the changes to see how

they’ve improved. The average lead time has decreased significantly, from 45 days down to

18 days. Individual changes are making it into main faster, but they still get blocked by the

code freeze, and if they are merged soon after a deployment, they have to wait nearly 2

months to make it into the next deployment. While the metric has improved, it still falls short

of Sandy’s goal to upgrade their lead time for changes from being aligned with DORA

medium performers to high performers (1 week or less).

They discuss a plan and agree to try doing weekly deployments and to remove the code

freeze entirely.

204

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.19 Increased velocity

Sandy keeps track of metrics for the next few months and observes feature development to

see if things are speeding up and where their DORA metrics land without code freezes and

with more frequent deployments.

Melissa works on integration with a new streaming provider, HMV Max (Home Movie

Theatre Max):

The integration takes her about 5 weeks to completely implement, and during that time

there are 4 deployments, each of which includes some of her changes.

The lead time for Melissa’s changes is a maximum of 5 days and some changes are

deployed as quickly as 1 day after merge.

Sandy looks at the stats overall and finds that the maximum lead time for changes is 8

days, but this is very rare since most engineers have gotten into the habit of merging back

into main every day or two. The averages are:

205

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

Sandy has accomplished their goal: as far as velocity is concerned, Watch me Watch is

now aligned with the DORA high performers!

8.20 Conclusion

Watch Me Watch had introduced code freezes and infrequent deployment windows with the

hope of making development safer, however it mostly just made development slow. By

looking at their processes through the lens of the DORA metrics, specfically the velocity

related metrics, they were able to chart a path toward moving more quickly.

Moving away from long lived feature branches, removing code freezes and increasing

deployment frequency directly improved their DORA metrics, and rescued the company from

the feeling that features were taking longer and longer, allowing their competition to get

ahead of them. Not to mention, the engineers realized this was a more satisfying way to

work!

206

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

©Manning Publications Co. To comment go to liveBook

8.21 Summary

• The DevOps Research and Assessment (DORA) team has identified 4 key metrics to

measure software team performance and correlated these with elite, high, medium,

and low performance

• Deployment frequency is one of two velocity related DORA metrics which measures

how frequently deployments to production occur

• Lead time for changes is the other velocity related DORA metric, measuring the time

from which a change has been completed to when it gets to production

• Decreasing lead time for changes requires revisting and improving Continuous

Integration practices. The better your CI, the better your lead time for changes

• Improving the Continuous Delivery practices beyond CI often means revisiting CI as

well

• Deployment frequency has a direct impact on lead time for changes; increasing

deployment frequency will likely decrease lead time for changes

8.22 Up next . . .

In the next chapter we’ll examine the main transformation that happens to source code in a

CD pipeline: building that source code into the final artifact that will be released and/or

deployed.

207

https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

	Grokking Continuous Delivery MEAP V06
	Copyright
	Welcome
	Brief contents
	Chapter 1: Welcome
	1.1 Do you need Continuous Delivery?
	1.2 Why Continuous Delivery?
	1.3 Continuous Word Soup
	1.4 Continuous Delivery (CD)
	1.5 Integration
	1.6 Continuous Integration
	1.7 What do we deliver?
	1.8 Delivery
	1.9 Continuous Delivery/Deployment
	1.10 Elements of Continuous Delivery
	1.11 Conclusion
	1.12 Summary
	1.13 Up next . . .

	Chapter 2: A basic pipeline
	2.1 Cat Picture Website
	2.2 Cat Picture Website Source Code
	2.3 Cat Picture Website Pipelines
	2.4 What’s a pipeline? What’s a task?
	2.5 The basic tasks in a CD pipeline
	2.6 Gates and Transformations
	2.7 CD: Gates and Transformations
	2.8 Cat Picture Website Service Pipeline
	2.9 Running the pipeline
	2.10 Running once a day
	2.11 Trying Continuous Integration
	2.12 Using notifications
	2.13 Scaling manual effort
	2.14 Automation with webhooks
	2.15 Automation with webhooks
	2.16 Don’t push changes when broken
	2.17 Cat Picture Website CD
	2.18 What’s in a name?
	2.19 Conclusion
	2.20 Summary
	2.21 Up next . . .

	Chapter 3: Version control is the only way to roll
	3.1 Sasha and Sarah’s start-up
	3.2 All kinds of data
	3.3 Source and software
	3.4 Repositories and versions
	3.5 Continuous Delivery and version control
	3.6 Git and GitHub
	3.7 An initial commit - with a bug!
	3.8 Breaking main
	3.9 Are we doing Continuous Delivery?
	3.10 Keep version control releasable
	3.11 Trigger on changes to version control
	3.12 Triggering the User Service Pipeline
	3.13 Building the User Service
	3.14 The User Service in the cloud
	3.15 Connecting to the RandomCloud database
	3.16 Managing the User Service
	3.17 The User Service outage
	3.18 Outsmarted by automation
	3.19 What’s the source of truth?
	3.20 Version Control and sensitive data
	3.21 User Service config as code
	3.22 Hard-coded data
	3.23 Configuring Deployaker
	3.24 Config as code
	3.25 Rolling out software and config changes
	3.26 Conclusion
	3.27 Summary
	3.28 Up next . . .

	Chapter 4: Use linting effectively
	4.1 Becky and Super Game Console
	4.2 Linting to the rescue!
	4.3 The lowdown on linting
	4.4 The tale of pylint and many many issues
	4.5 Legacy code: using a systematic approach
	4.6 Step 1: Configure against coding standards
	4.7 Step 2: Establish a baseline
	4.8 Step 3: Enforce at submission time
	4.9 Step 3: Enforce at submission time
	4.10 Step 4: Divide and conquer
	4.11 Isolation: Not everything should be fixed
	4.12 Enforcing isolation
	4.13 Not all problems are created equal
	4.14 Types of linting issues
	4.15 Bugs first, style later
	4.16 Jumping through the hoops
	4.17 Legacy code vs the ideal
	4.18 Conclusion
	4.19 Summary
	4.20 Up next . . .

	Chapter 5: Dealing with noisy tests
	5.1 Continuous Delivery and tests
	5.2 Ice Cream for All outage
	5.3 Signal vs. noise
	5.4 Noisy successes
	5.5 How failures become noise
	5.6 Going from noise to signal
	5.7 Getting to green
	5.8 Another outage!
	5.9 Passing tests can be noisy
	5.10 Fixing test failures
	5.11 Ways of failing: flakes
	5.12 Reacting to failures
	5.13 Fixing the test: change the code or the test?
	5.14 The dangers of retries
	5.15 Retrying revisited
	5.16 Why do we retry?
	5.17 Get to green and stay green
	5.18 Conclusion
	5.19 Summary
	5.20 Up next . . .

	Chapter 6: Speeding up slow test suites
	6.1 Dog Picture Website
	6.2 When simple is too simple
	6.3 New engineer tries to submit code
	6.4 Tests and Continuous Delivery
	6.5 Diagnosis: too slow
	6.6 The test pyramid
	6.7 Fast tests first
	6.8 Two pipelines
	6.9 Getting the right balance
	6.10 Changing the pyramid
	6.11 Safely adjusting tests
	6.12 Test Coverage
	6.13 Enforcing test coverage
	6.14 Test coverage in the pipeline
	6.15 Moving tests in the pyramid with coverage
	6.16 What to move down the pyramid?
	6.17 Legacy tests and FUD
	6.18 Running tests in parallel
	6.19 When can tests run in parallel?
	6.20 Updating the pipelines
	6.21 Still too slow!
	6.22 Test sharding aka parallel++
	6.23 How to shard
	6.24 More complex sharding
	6.25 Sharded pipeline
	6.26 Sharding the browser tests
	6.27 Sharding in the pipeline
	6.28 Dog Picture Website’s pipelines
	6.29 Conclusion
	6.30 Summary
	6.31 Up next . . .

	Chapter 7: Give the right signals at the right times
	7.1 CoinExCompare
	7.2 Lifecycle of a change
	7.3 CI before and after merge
	7.4 Timeline of a change’s bugs
	7.5 CI only before merging misses bugs
	7.6 A tale of two graphs: default to seven days
	7.7 A tale of two graphs: default to thirty days
	7.8 Conflicts aren’t always caught
	7.9 What about the unit tests?
	7.10 Pull request triggering still lets bugs sneak in
	7.11 CI before AND after merge
	7.12 Option 1: Run CI periodically
	7.13 Setting up periodic CI
	7.14 Option 2: Require branch to be up to date
	7.15 Option 2: At what cost?
	7.16 Option 3: Automated merge CI
	7.17 Running CI with the latest main
	7.18 Merge Events
	7.19 Merge queues
	7.20 Merge queue for CoinExCompare
	7.21 Where can bugs still happen?
	7.22 Flakes and pull request triggered CI
	7.23 Catching flakes with periodic tests
	7.24 Bugs and building
	7.25 CI vs. build and deploy
	7.26 Build and deploy with the same logic
	7.27 Improved CI pipeline with building
	7.28 Timeline of a change revisited
	7.29 Conclusion
	7.30 Summary
	7.31 Up next . . .

	Chapter 8: Easy delivery starts with version control
	8.1 Meanwhile at Watch Me Watch
	8.2 The DORA metrics
	8.3 Velocity at Watch Me Watch
	8.4 Lead time for changes
	8.5 Watch Me Watch and elite perfomers
	8.6 Increasing velocity at Watch Me Watch
	8.7 Integrating with AllCatsAllTheTime
	8.8 Incremental feature delivery
	8.9 Commiting skipped tests
	8.10 Code review and “incomplete” code
	8.11 Keeping up the momentum
	8.12 Committing work in progress code
	8.13 Reviewing work in progress code
	8.14 Meanwhile, back at the end to end tests
	8.15 Seeing the benefits
	8.16 Decreasing lead time for changes
	8.17 Continuing AllCatsAllTheTime
	8.18 Deployment windows and code freezes
	8.19 Increased velocity
	8.20 Conclusion
	8.21 Summary
	8.22 Up next . . .

