grokking

contimnuous
delivery

Christie Wilson

1’,

\
I\'
‘3
§“
\

”——,



MEAP Edition
Manning Early Access Program

Grokking Continuous Delivery
Version 6

Copyright 2022 Manning Publications

For more information on this and other Manning titles go to

manning.com


https://www.manning.com/
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

welcome

Thank you for purchasing Grokking Continuous Delivery!

This book is for everyone who does the nitty-gritty day-to-day job of building software. Whether
you build frontends, backends, tools, or infrastructure, this book is for you!

To get the most benefit from this book, you'll want to have some familiarity with the basics of
Linux, programming language concepts, and testing. You'll also want to have some experience with
version control, HTTP servers and containers. You don't need deep knowledge on any of these
topics; and if needed you could definitely research them as you go.

I have been super passionate about Continuous Delivery (CD) for most of my career. I've often
started a new position with the intention of switching my focus to something different, but it's such
an intriguing space that I always find myself pulled back in. CD is at the heart of modern software
development, and as software development becomes more and more ambitious, CD is the
mechanism that enables it. At the same time, it's a field where it's hard to get your hands on
concrete best practices and actions that you can take as an engineer; so many resources are aimed
at selling the concepts to managers and directors or are tied to some specific vendor’s product.

In this book, I hope you’ll find practical takeaways for effectively practicing CD on your team,
regardless of what space you're in or what language you’re using. I'll be talking about the basic
building blocks you’ll need to have in place, but I won't recommend any specific CD tools: you'll be
able to use the recommendations in the book to evaluate the tools available and make the best
choices for your particular needs.

Consider this the missing manual for how to get started with CD and apply it effectively! As you
read, if you notice any missing topics or details, please let me know in the liveBook discussion
forum. CD is a huge topic that spans the entire development process and multiple roles. With your
feedback we can get the right balance of information to set folks up for success in this exciting and
essential space!

You might notice that chapter 3 is missing, but don’t worry; it is a work in progress and will be
added soon. You may also notice that some chapters have exercises while some do not, and that is
something you should also see fixed in subsequent updates.

Until then, happy reading!

—Christie Wilson

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

brief contents

PART 1: INTRO
1 Welcome
2 A basic pipeline
PART 2: KEEPING SOFTWARE IN A DELIVERABLE STATE AT ALL TIMES
3 Version control is the only way to roll
4 Use linting effectively
5 Dealing with noisy tests
6 Speeding up slow test suites
7 Give the right signals at the right times
PART 3: MAKING DELIVERY EASY
8 Easy delivery starts with version control
9 Building
10 Deploying
PART 4: PIPELINE DESIGN
11 Starter pack: go from 0 to CD
12 Seripts
13 Graph design
APPENDICES:
A CD systems

B Version control systems

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion
https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

Welcome

In this chapter:
« why should you care about Continuous Delivery?

« understand the history of Continuous Delivery, Continuous Integration,
Continuous Deployment and CI/CD

« define the different kinds of software that you might be delivering and
explain how Continuous Delivery applies to them

« define the elements of Continuous Delivery: Keeping software in a deliverable
state at all times; Making delivery easy

Hi there! Welcome to my book! I'm so excited that you’ve decided to not only learn about
Continuous Delivery, but really understand it. That's what this book is all about: learning
what you need to do to have Continuous Delivery really work for you on a day to day basis.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.1

Do you need Continuous Delivery?

The first thing you might be wondering is if it's worth your time to learn about Continuous
Delivery, and even if it is, is it worth the hassle of applying it you your projects?
The quick answer is YES if the following is true for you:

1. You are making software professionally

2. More than one person is involved in the project

If both of those are true for you, Continuous Delivery is worth investing in. Even if just
one is true, (you're working on a project for fun with a group of people, or you’re making
professional software solo), you won't regret investing in Continous Delivery.

“But wait - you didn’t ask what I'm making. What if I'm working on kernel drivers, or firmware, or
microservices? Are you sure | need Continuous Delivery?” - You

It doesn’t matter! Whatever kind of software you’re making,

you'll benefit from applying the principles in this book. The But/don't need to
elements of Continuous Delivery that we'll be explaining in this deploy anything!
book are built on the principles that we've been gathering ever Good point!
since we started making software; they're not a trend that will Deployment and the
fade in and out of popularity, they are the foundations that will related automation are
remain whether we’re making microservices, monoliths, an exception and do
distributed container based services, or whatever comes next. NOT apply to all kinds
In this book we’ll be covering the fundamentals of of software - but
Continuous Delivery and will give you some examples of how Continuous Delivery is
you can apply them to your project; the exact details of how flbom far more tha’n
) ) ) ) just deployment. We'll
you do Continuous Delivery will probably be unique and you oet into this in the rest
might not see them exactly reflected in this book, but what you Bfthis chapter.

WILL see is the components you need to put it together, and \L
the principles to follow to be the most successful.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.2

Why Continuous Delivery?

What's this thing we’re here to learn about anyway? There are a lot of definitions out there,
but before we get into those, I want to tell you what Continuous Delivery (CD) means to me,
and why I think it’s so important:

Continuous Delivery is the process of modern professional software engineering.

Modern: Professional software engineering has been around ;_./-"[ . o
way longer than CD - though those folks working with punch can't even imagine
) how many punch cards
cards would have been ecstatic for CD! One of the reasons why L .
. ) you'd need to define a
we can have CD today, and we couldn’t then, is that CD costs a typical CD workflow!
lot of CPU cycles. To have CD, you run a lot of code!

~.

Professional: If you're writing software for fun, it's kind of up in the air whether you're
going to want to bother with CD. For the most part, CD is the processes you put in place
when it’s really important that the software works. The more important it is, the more
elaborate the CD. And when we're talking about professional software engineering, we're
probably not talking about one person writing code on their own. Most engineers will find
themselves working with at least a few other people, if not hundreds, possibly working on
exactly the same codebase.

Software engineering: Other engineering disciplines come with bodies of standards and
certifications that are largely lacking when it comes to software engineering. So let’s simplify
it: software engineering is writing software. When we add the modifier “professional”, we're
talking about writing software professionally.

Process: Writing software professionally requires a certain approaches to ensure that the
code we write actually does what we mean it to. These processes are less about how one
software engineer is writing code (though that’s important too!), and more about how that
engineer is able to work with other engineers to deliver professional quality software.

Continuous Delivery is the collection of processes that we need to have in place to ensure that
multiple software engineers, writing professional quality software, can create software that does what

they want.
Q Wait are you saying CD stands for Continuous Delivery? | thought it meant
Continuous Deployment!
A Some people do use it that way, and the fact that both terms came into existence
around the same time made this very confusing. Most of the literature I've
QUESTION encountered (not to mention the CD Foundation!) favors using CD for Continuous

Delivery, so that’s what this book will use.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

13

Continuous Word Soup

Let’s take a quick look at the evolution of
these terms to understand more.

Continuous Integration, Continuous
Delivery and Continuous Deployment are all
phrases that were created intentionally (or in
the case of Continuous Integration, evolved),
and the creators had specific definitions in
mind.

CI/CD is the odd one out: no one seems to
have created this phrase. It seems to have
popped into existence because lots of people
were trying to talk about all the different
continuous activities at the same time and
needed a short form. (CI/CD/CD didn't take
for some reason!)

The phrase CI/CD as it's used today refers to
the tools and automation required for any and
all of Continuous Integration, Delivery and
Deployment.

You might be thinking: okay Christie,
that's all well and good, but what does
deliver actually mean? And what about
Continuous Deployment? What about
CI/CD?

It's true, we've got a lot of phrases to
work with! And to make matters worse,
people don’t use them consistently. In their
defense, that's probably because some of
them don’t even have definitions!

® 30le: “Ci/Co” entry odded to
wikipedia

® 30l4: earliest article men’donins
“ca/eo?

® 3010: “Continuous Deliverg”
proctice defined in book of the
3ame name

» 3009: “‘Continuous Deplogmen!:”
coined in b'.os post

@ 1999: “‘Continuous 1nt93ro.ﬁon”
proctice defined in extreme
Prosrmnming ‘é,xplodned

9 1994: “Continuous lntegrodﬁon”
coined in Object Oriented Analysis
and Desisn with npphcod.-ions

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.4

Continuous Delivery (CD)

Continuous Delivery is the collection of processes that we need to have in place to ensure that

multiple software engineers, writing professional quality software, can create software that does what
they want.

My definiton captures what I think is really cool about CD, but it's far from the usual
definition you’ll encounter. Let’s take a look at the definition of Continuous Delivery used
by the Continuous Delivery Foundation (CDF):

A software development practice where working software is released to users as quickly as it makes
sense for the project and built in such a way that it has been proven that this can safely be done at
any time.

If you start to break this down, you'll notice there are two big pieces to CD. You're doing
Continuous Delivery when:

1. You can safely deliver changes to your software at any /The big shift that CD

time represents over just CI

2. Delivering that software is as simple as pushing a button is redefining what it

) . . . i L means for a feature to

This book will be going into detail about the activities and be done. With CD,
automation that will help you achieve these two goals. done means delivered.

Specifically: And the process for
getting from imple-
mentation to delivered
change is automated,
easy, and fast.

1. To be able to safely deliver your changes at any time,
you must always be in a deliverable state. The way to
achieve this is with Continuous Integration (CI).

2. Once these changes have been verified with CI, the
processes to deliver the changes should be automated
and repeatable.

Before we start digging into how you can achieve these goals in the next chapters, let's
break these terms down a bit further.

A really interesting detail is that that Continuous Delivery
is a set of goals that we aim for; the way we get there might vary
from project to project. That being said, there are activites that
have emerged as the best ways we've found for achieving these
goals, and that’s what this book is about!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.5

Integration

Continuous Integration (CI), is the oldest of the terms we're dealing with - but still a key
piece of the Continuous Delivery pie. Let's start even simpler with looking at just

integration.

What does it mean to integrate software? Actually part of that phrase is missing - to
integrate you need to integrate something into something else. And in software, that
something is code changes. When we’re talking about integrating software, what we're really

talking about is:
Integrating code changes into existing software.

This is the primary activity that software engineers are doing on a daily basis: changing

the code of some existing piece of sofware.

This is especially interesting when you look at what a team of
software engineers does: they are constantly making code changes,
often to the same piece of software. Combining those changes
together is integrating them.

Software integration is the act of combining together code
changes made by multiple people.

As you have probably personally experienced, this can really go

Ve ~
[ On some rare occa-

sions we may be creat-
ing software for the
very first time, but
from every point after
the first successful
compile, we are once

) again integrating
wrong sometimes. For example, when I make a change to the same changes into existing
< =}
line of code as you do, and we try to combine those together, we software!
have a conflict and have to manually decide how to integrate those o y

changes.

There’s one more piece missing from this definition; when we integrate code changes we
do more than just putting the code changes together, we also verify that the code works.
You might say that “V” for Verification is the missing letter in CI! Verification has been
packed into the Integration piece, so when we talk about software integration, what we really
mean is:

Software integration is the act of combining together multiple code changes made by multiple people
and verifying that the code does what it was intended to do.

-}

Who cares about all these definitions? Show me the code already!!
A It’s hard to be intentional and methodical about what we're doing if we can’t even
define it. Taking the time to arrive at a shared understanding (via a definition) and

QUESTION getting back to core principles is the most effective way to level up!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.6

Continuous Integration

Let’s put the continuous into continuous
integration with an example outside of
software engineering.

Holly is a chef and she’s cooking pasta
sauce. She starts with a set of raw ingredients:
onions, garlic, tomatoes, spices. In order to
cook, she needs to integrate these ingredients
together, in the right order and the right
quantities, to get the sauce that she wants.

To accomplish this, every time she adds a
new ingredient, she takes a quick taste. Based
on the flavor, she might decide to add a little
extra, or realize she wants to add an ingredient
she missed.

By tasting along the way, she’s evolving the
recipe through a series of integrations.
Integration here is expressing two things:

e  Combining the ingredients
e  Checking to verify the result

And that’s what the integration in continuous integration means: combining code
changes together, and also verifying that they work. Combine and verify.

Holly repeats this process as she cooks. If she waited until the end to taste the sauce,
she’d have a lot less control and it might be too late to make the needed changes. That's
where the continuous piece of continuous integration comes in. We want to be
integrating (combining and verifying) our changes as frequently as we possibly can - as soon
as you can.

And when we're talking about software, what's the soonest we can combine and verify?
As soon as we make a change.

Continuous Integration is the process of combining code changes frequently, where each change is
verified on check in.

Combining code changes together means that engineers using continuous integration are
committing and pushing to shared version control every time we make a change, and they
are verifying those changes work together by applying automated verification, including tests
and static analysis.

Automated verification? Static analysis? Don’t worry if you dont know what those are all
about, that's what this book is here for! In the rest of the book, we'll be looking at how to
create the automated verification that makes continuous integration work.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.7

What do we deliver?

Now as we transition from looking at Continous Integration to Continuous integration, we
need to take a small step back. Almost every definition we explore is going to make some
reference to delivering some kind of software (for example, we’re about to start talking about
integrating and delivering change to software). Probably good to make sure we're all talking
about the same thing when say software - and depending on the project you're working on,
it can mean some very different things.

When you are delivering software, there are several different forms of software you could
be making (and integrating and delivering each of these will look slightly different):

Library: If your software doesn’t do anything on its own, but is intended to be used as
part of other software, it's probably a library

Binary: If your software is intended to be run, it's probably a binary executable of some
kind. This could be a service or application, it could be a tool which is run and completes, or
it could be an application which is installed onto a device like a tablet or phone.

Configuration: This refers to information that you can provide to a binary to change its
behavior without having to recompile it. Typically this corresponds to the levers that a
system administrator had available to make changes to running software.

Image: Container images are a specific kind of binary that are currently an extremely
popular format for sharing and distributing services with their configuration, so they can be
run in an operating system agnostic way.

Service: In general services are binaries that are intended to be up and running at all
times, waiting for requests that they can respond to by doing something or returning
information. Sometimes there are also referred to as applications.

The term software exists in contrast to hardware. Hardware is the actual
physical pieces of our computers, i.e. the machines we do things with. And
we do those things by providing the physical machines with instructions.
Instructions can be built directly into hardware, or they can be provided to
hardware when it runs via software.

VOCAB TIME

At different points in your career you may find yourself dealing with some or all of the
above kinds of software. But regardless of the particular form you are dealing with, in order
to create it, you need to integrate and deliver changes to it.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.8

Delivery

What it means to deliver changes software depends on what you are making, who is using it
and how. Usually delivering changes refers to one or all of: building, releasing and deploying:

Building: Building software is the act of taking code
(including changes) and turning it into the form required for it to
be actually used. This usually means compiling the code written
in a programming language into a machine language. Sometimes
it also means wrapping the code into a package, such as an changes work together
image, or something that can be understood by a package will be building the
manager (e.g. pypi for Python packages). software.

Building is also done
as part of integration;
part of ensuring that

Publishing: You publish software by copying it to a software repository (a storage
location for software). For example by uploading your image or library to a package registry.

Deploying: This is the act of copying the software where it
needs to be to run and putting it into a running state.

You can deploy
without releasing, e.g.
deploying a new ver-
sion of your software
but not directly any
traffic to it.

Releasing: You release software by making it available to your users. This could be by
uploading your image or library to a repository, or by setting a configuration value to direct a
percentage of traffic to a deployed instance.

We've been building software for as long as we've had programming
languages. This is such a common activity that the earliest systems that did
what we now call Continuous Delivery were called build systems. This
terminology is so prevalent that even today you will often people refer to the
build and what they usually mean is one or more phases in a CD pipeline
VOCABTIME (more on these in chapter 2!).

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

10

1.9 Continuous Delivery/Deployment

Now we know what it means to deliver software changes, but what does it mean when we
say that delivery is continuous?

When we looked at Continuous Integration (CI), we learned that in that conext
continuous means “as soon as possible”. Is that the case for Continuous Delivery (CD)?
Yes and no.

The way that Continuous Delivery uses continuous actually would be better represented
as a continuum:

I I

[ |
eeing able to so&e\g 5a¥e\3 delivering
deliver at any time on every change

Your software should be proven to be in a state where it could be built, released and/or
deployed at any time - but how frequently you choose to deliver that software is up to you.
Around this time you might be wondering, “What about Continuous Deployment? How
does that fit in?”
That’s a great question. Looking at the history again,

2010: “Continuous Delivery” you'll notice that the two terms, Continuous Delivery and

practice defined in book of the Continuous Deployment, came into existence pretty

came nome much back to back. What was going on when these
terms were coined?

8009: “Continuous Deployment” This was an inflection point for software: the old ways

coined in blog post of creating software, which relied on humans doing

things manually, a strong dev and ops divide (interstingly
the term “devops” appeared at around the same time)
and sharply delineated processes (e.g. “testing phase”) were starting to shift (left).

Shifting left is a process where efforts are made to find defects as early as
possible in the software development process.

VOCAB TIME

Both Continuous Deployment and Continuous Delivery were naming the set of practices
that emerged at this time.

Let’s look at the definition of Continuous Deployment:

Working software is released to users automatically on every commit.

Continuous Deployment is an optional step beyond Continuous Delivery. Whether you go
this far is up to you and what your project needs.

The key is that Continuous Delivery enables Continuous Deployment; always being in a
releasable state and automating delivery frees you up to decide what is best for your project.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

11

1.10 Elements of Continuous Delivery

The rest of this book will show you the fundamental building blocks of

} i —
Continuous Delivery: g

Static
Analysis

A software development practice where working software is released to
users as quickly as it makes sense for the project and built in such a way @
that it has been proven that this can safely be done at any time.

You will learn how to use Continuous Integration (CI) to always be Test

in a releasable state, and you will learn how to make delivery

automated and repeatable, allowing you to choose whether you want {}

to go to the extreme of delivering on every change (Continuous T T ey
Deployment), or you'd rather deliver on some other cadence, but Build
confident in the knowledge that you have the automation in place to

deliver as frequently as you need.

And at the core of all of this automation will be your Continuous
Delivery pipeline. In this book we'll dig into each of these tasks and Publish
what they look like. You'll find that no matter what kind of software

you’re making, many of these tasks will be useful to you.

Deploy

————————

Q Pipeline? Task? What are those?
A Read the next chapter to find out!

QUESTION

Let’s look back at the different forms of software we explored and what it means to
deliver each of them:

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

1.11

1.12

1.13

12

Delivery includes |Delivery includes |Delivery includes |Delivery includes
building? publishing? deploying? releasing?

Library Depends Yes No Yes

Binary Yes Usually Depends Yes

Configuration No No Usually Yes

Image Yes Yes Depends Yes

Service Yes Usually Yes Yes

Conclusion

There are a lot of terms in the Continuous Delivery space, and a lot of contradictory
definitions. In this book, we use CD to refer to Continuous Delivery, and we’ll be focusing on
how to setup the automation you need in order to use CD for whatever kind of software
you're delivering.

Summary

Continuous Delivery is useful for all software, it doesn’t matter what kind of
software you’re making.

To enable teams of software developers to make professional quality software, you
need Continuous Delivery.

To be doing Continuous Delivery, you use Continuous Integration to make sure your
software is always in a deliverable state.

Continuous Integration is process of combining code changes frequently, where
each change is verified on check in.

The other piece of the Continuous Delivery puzzle is the automation required to
make delivery as easy as pushing a button.

Continuous Deployment is an optional step you can take if it makes sense for your
project, where software is automatically delivered on every commit.

Up next...

We're going to learn all about the basics and terminology of Continuous Delivery automation,
setting up the foundation for the rest of the book!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

13

A basic pipeline

In this chapter:

« terminology that will be used in this book for basic building blocks:
pipelines and tasks

« elements of a basic CD pipeline: static analysis, testing, building,
publishing, deploying

» the role of automation in the execution of pipelines: webhooks, events
and triggering.

*  how the varied terminology in the CD space relates: Tasks, Stages,
Pipelines, Workflows, Steps, Jobs, Nodes, Runners, Executors, Events,
Triggers, Builds, Webhooks, Agents

Before we get into the nitty gritty of how to create great Continuous Delivery (CD) pipelines,
let's zoom out and take a look at pipelines as a whole. In this chapter we’ll look at some
pipelines at a high level and identify the basic elements you should expect to see in most CD
pipelines.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.1

Cat Picture Website

To understand what goes into basic CD Pipelines, we'll take a

look at the Pipelines used for The Cat Picture Website. What’s CD again?
The Cat Picture Website is the best website around for finding We use CD in this
and sharing cat pictures! The way it's built is relatively simple, book to refer to
but since it's a very popular website, the company that works on Continuous Delivery.
it (Cat Picture Inc.) has architected it into several services. See chapter | for more!

They run Cat Picture Website in the cloud (their cloud provider is called Big Cloud Inc)
and they use some of Big Cloud’s services, such as Big Cloud Blob Storage Services (BCBSS).

I. When o user Visits
the website, their

the frontend service.

v
o - pages!
re ST ¥Irst qoes
@i J Frontend

3o. ¥ the userison a
with cat pictures
(quite likelyD the
$rontend will make a
request to the picture
service to retrieve the
picture from storage

3a. The picture
service stores the
pictures as b‘marB
blobs.

What's a Pipeline?

Don’t worry, we’ll get
into that in a couple of

/ \ \J ab. ¢ fhe user is hg‘mg
‘o los in or look at their

User own uploaded pictures,
Picture Servi the frontend will malke
X ervice
Service requests to the user
service.
' 2b. The user service
and the picture service

both store data about
users and their
pictures in the
dotobase.

Big Cloud
Blob Storage

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.2

15

Cat Picture Website Source Code

The architecture diagram tells us how the cat picture
website is architected, but in order to understand the CD
pipeline there’s another important thing to consider: where
does the code live?

In Chapter 1 we looked at the elements of Continuous
Delivery, half of which is about using Continuous
Integration (CI) to ensure we are always in a relesable
state. Let's look at the definition again:

Continuous Integration (Cl) is process of combining code changes
frequently, where each change is verified on check in.

When we look at what we’re actually doing when we do
CD, we can see that the core is code changes. This means
that the input to our CD pipelines is the source code. In
fact this is what sets CD pipelines apart from other kinds of
workflow automation: CD pipelines almost always take
source code as an input.

/ ' Frontend

Frontend = I and stored.

Repo The folks working on Cat Picture Website store their
I Picture ‘ code in several code repositories (repos):
Service
/ e The Frontend Repo holds the code for the Frontend.

The Picture Service, User Service and the database
schemas are all stored in the Service repo.
Lastly, Cat Picture Website uses a gitops approach to
configuration management (more on this in Chapter
11), so their configuration is stored in the Config

L]
g <_._l User ‘
Service Service
Repo — .
\_\
Config ; PE ,
Repo L

Repo.

b

Frontend

Picture
Service

(" Version Control A

Using a version control
system such as git is a
prerequiste for CD;
without having your
code stored with his-
tory and  conflict
detection, it is practi-
cally impossible to

have CD.

Before we look at the Cat Picture Website CD pipelines,
we need to understand how their source code is organized

There are lots of other ways they could have organized

their code, all with their own pros and cons.

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.3

16

Cat Picture Website Pipelines

Since Cat Picture Website is made up of several services and

all the code and configuration needed for it is spread across
several repos, it is managed by several CD pipelines. We'll go
over all of these pipelines in detail in future chapters where
we examine more advanced pipelines, but for now we’re going
to stick to the basic pipeline that is used for the User Service
and the Picture Service.

Since these two services are so similar, the same pipeline

VOCAB TIME

When does  this
thing actually get run?
We'll get to that in a

few pages, and go in
depth in chapter 6.

' | Frontend |
/ e —

Picture
/ Service
«<—| User
Service
——

Frontend|

Service
is used for both, and that pipeline will show as all of the basic Repo

elements we’d expect to see in a pipeline.

Container images are executable software packages that contain
everything needed to run that software.

. Linting catches
common prosraming

and s&3|e errors in the

Service Linting picture service and user
Repo service code
(s — $ 3. Tests verify that the
S Unit anc.i picture service and
Integration user service code idoes
Repo Tests what the authors

3. Atter the code has

been linted and
Service | = | Build Image tested, container
Repo images are built for

each of the services

The code in the 2 ; 4. The container
service repo is the Upload Image images are uploaded
pipeline’s input: in to Registry %o an imoage registry
every task, we 7

are doing S. Finally the running
something with Version of the

this code. software is updated to

use the new imaae

Not only is this the pipeline used for the cat picture website, this
pipeline has the basic elements that you’ll see in my pipelines!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.4

17

What’s a pipeline? What'’s a task?

We just spent a few pages looking at the Cat Picture Website pipeline, but what is a
“pipeline” anyway?

There’s a lot of different terminology in the CD space. Where we’re using the term
“pipeline”, some CD systems use other terms like “workflow”. We'll have an overview of this
terminology at the end of the chapter, but for now let’s take a look at the terminology we'll
be using in this book: pipelines and tasks.

Tasks are individual things you can do: you can think of them a lot like functions. And
pipelines are like the entrypoint to code, which calls all the functions at the right time, in the
right order.

Below is a pipeline, with 3 tasks: Task A runs first, then Task B, then Task C.

each task is like a
Sunction def taskA():
Task A print(“Hello from task A!")

. —¥

def taskB():

Task B print(“Hello from task B!")
A
—_——

def taskC():
Task C print(“Hello from task C!")
—

A pipeling puts all the tasks \ def pipeline():
together by deseribing taskA()

whad order +o call them in taskB()
taskC()

CD Pipelines will get run again and again; we’ll talk more about when in a few pages. If
we were to run the pipeline() function (representing the Pipeline on the left), we'd get this
output:

Hello from task A!

Hello from task B!
Hello from task C!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

18

2.5 The basic tasks in a CD pipeline

The Cat Picture Website pipeline shows us all of the basic tasks that

you will see in most pipelines. We'll be looking at these basic tasks in e
detail in the next chapters. Linti
i i . i . . inting
Let’s review what each task in this pipeline is for:
e Linting catches common programing and style errors in the 4

Each
element:

picture service and user service code
Unit and integration tests verify that the picture service and Integration
user service code idoes what the authors intended Tests
After the code has been linted and tested, the build image 4

task builds container images for each of the services ;

Next we upload the container images to an image registry
Finally the running version of the software is updated to use
the new images

Unitand

Build Image

Upload Image
L to Registry

Update Runnin,
Service to Use

‘New Image
e ————————

of the tasks in the cat picture website pipeline is representative of a basic pipeline

Linting is the most common form of static analysis in CD pipelines

Unit and integration tests are forms of tests

These services are built into images; to use most software you need to build it into
some other form before it can be used

Container images are stored and retrieved from registries; as we saw in chapter 1,
some kinds of software will need to be published in order to be used

Cat Picture Website needs to be up and running so users can interact with it.
Updating the running service to use the new image is how Cat Picture Website is
deployed.

These are the basic types of tasks you’ll see in a CI/CD pipeline:

\ Linting [ Test ] Build rPublish )

Deploy

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

19

2.6 Gates and Transformations

Some tasks are about verifying your Other tasks are about changing your code
code. They are quality gates that your from one form to another. They are

code has to pass through. transformations on your code: your code
goes in as input and comes out in another
form.

Looking at the tasks in a CD pipeline as gates and transformations goes hand in hand
with the elements of Continuous Delivery. In chapter 1 we learned that you’re doing
Continuous Delivery when:

1. You can safely deliver changes to your software at any time
2. Delivering that software is as simple as pushing a button

If you squint at those, they map 1:1 to gates and transfomations:

e Gates verify the quality of your code changes, ensuring

it is safe to deliver them. CT is all about veri-
e Transformations build, publish, and, depending on the fying your code!

kind of software, deploy your changes. You'll often hear peo-
ple talk about “run-
ning CI” or “CI failing”
and wusually they're
referring to gates.

And in fact, the gates usually comprise the Continuous
Integration (CI) part of your pipeline!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

20

2.7 CD: Gates and Transformations

Let’'s look at our basic CD tasks again and see how they map to gates and
transformations:

e Code goes into gating tasks and they either pass or fail. If they fail, the code
should not continue through the pipeline.

e Code goes into transformation tasks and it changes into something completely
different or changes are made to some part of the world using it.

- - . . . _”—
Linting is all about looking at the code and flagging i

common mistakes and bugs, but without actually running Linting
the code. Sounds like a gate to me!

Testing activities verify that the code does what we
intended it to do. Since this is another example of code Test
verification, this sounds like a gate too.

Building code is about taking code from one form and

transforming it into another form so that it can be used.

Build Sometimes this activity will catch issues with the code, so
it has aspects of CI, however in order to test our code, we
probably need to build it, so the main purpose here is to
transform (build) the code.

J

Publishing code is about putting the built software
somewhere so that it can be used. Putting the software
Publish somewhere where it can be used is part of releasing that
software. (For some code, such as libraries, this is all you
need to do in order to release it!) This sounds like a kind of
transformation too.

Lastly, deploying the code (for kinds of software that
Deploy need to be up and running) is a kind of transformation of
the state of the built software.

i1

Q Okay you said the gates are the Cl tasks - are you saying Cl is just about tests and
linting? | remember before Continuous Delivery, Cl including building too.

A | hear you! Cl does often include building, and sometimes folks throw publishing in
there too. What really matters is having a conceptual framework for these
activities, so in this book we choose to treat Cl as being about verification, and not
building/publishing/deploying/releasing.

QUESTION

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

21

2.8 Cat Picture Website Service Pipeline

What does the Cat Picture Website service pipeline look like if we view it as a pipeline of
gates and transformations?

Linting

Unit and

Integration
Tests

a1

The first gate the code must pass
through is linting. If there are linting
problems in the code, we shouldn’t start
transforming the code and delivering it;
these problems should be fixed first.

The other gate the code must pass
through is unit and integration tests.
Just like with linting, if these tests
reveal the code doesn't do what the
authors intended, we shouldn't start
transforming the code and delivering it;
these problems should be fixed first.

Once the code has passed through all
the gates, we know it’s in good shape @
and we can start transforming it.

The first transformation is to build the
image from the source code. The code
is compiled and packaged up into a
container image that can be executed.

The next transformation takes that built
image and uploads it to the image
registry, changing it from an image on
disk to an image in a registry that can
be downloaded and used.

The last transformation will update the
running service to use the image.

And we're done!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.9

22

Running the pipeline

S —

\ Linting

Unitand
Integration
Tests

L —

‘ Build Image

I Upload Image
to Registry

Update Runnin
Service to Use
New Image

You might be starting to wonder how and when this pipeline actually
gets run. That's a great question! The process evolved over time for the
folks at Cat Picture Website Inc.

When Cat Picture Website Inc. started, there were only a few
engineers: Topher, Angela and Sato. Angela wrote the cat picture
website service pipeline in python and it looked like this:

def pipeline(source_repo, config repo):

linting(source_repo)

unit_and_integration_tests(source_repo)

image = build_image(source_repo)

image_url =
upload_image_to_registry(image)

update_running_service(image_url,
config_repo)

: ™\

[ This is a simplification
of the code Angela wrote,
but it’s enough info for us
to use for now!

The pipeline function in the code above executes each of the tasks
in the cat picture website as a function.

Both linting and testing happen on the source code, building an
image builds from the source code, and then the outputs of each
transformation (building, uploading, updating) are passed to each other
as they are created.

This is great, but how do you actually run it? Someone (or as we'll see later, some
THING) needs to execute the pipeline function.

Topher volunteered to be in charge of running the pipeline, so he wrote an executable
python file that looks like this:

if __name__ == “_main_ ”: ( e ‘
pipeline(“https://10.10.10.10/catpicturewebsite/service.git”, .
“https://10.10.10.10/catpicturewebsite/config.git”) L xontend /
Repo ";;;;_l
This executable file calls the pipeline function, passing in the |

addresses of the serverice repo and config repo git repositories

as arguments.

All Topher has to do is run the executable, and he’'ll run the
pipeline and all of its tasks.

Service
. 4 —
£ o l User |
Service Service
.

Repo

———
N

Config ;DB ]

Repo -~

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

QUESTION

23

Q Should | be writing my pipelines and tasks in Python like Angela and Topher ?

A Probably not! Instead of reinventing a CD system yourself, there are lots of existing
tools you an use. The appendices at the end of this book will give you a brief
overview of some of the current options.

We’'ll be using Python to demonstrate the ideas behind these CD systems without suggesting

any particular system to you - they all have their pros and cons and you should use the ones

that work best for your needs.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.10

24

Running once a day
Topher is in charge of running the pipeline, by running the executable python file.

def pipeline(source_repo, config repo):
linting(source_repo)
unit_and_integration_tests(source_repo)
image = build_image(source_repo)
image_url = upload_image_to_registry(image)
update_running_service(image_url, config_repo)

if __name__ == “__main__”:
pipeline(“https://10.10.10.10/catpicturewebsite/service.git”,

“https://10.10.10.10/catpicturewebsite/config.git”)

When does he actually run it? He decides that he’s going to run it every morning before
he starts his day. Let’s see what that looks like:

Tuesdoy 10am
Topher runs the pipeline.
The pipeline breaks.
Topher sees that Sato made the most
recent chanae.

whoops, thanks! M Fix them
vight away.

Hey Sato, looks like the tests
are foiling!

Saying a pipeline breaks means that some task in the pipeline
encountered an error and pipeline execution stopped.

VOCAB TIME
That worked okay, but look what happened the next day:

Wednesday 10am  Topher runs the pipeline.
The pipeline breaks.
&oth Sato and Anglea made changes

‘ the doy before.

Hey Sato and Anagela, the tests
are faing again

This isn’t working out like Topher has hoped: because he’s running the pipeline once a
day, he’s picking up all of the changes that were made the day before. When something goes
wrong, he can't tell which change caused the problem.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

25

2.11 Trying Continuous Integration

Wednesday 10am  Topher runs the pipeline.

The pipe'line breoks.

Both Sato and nnglea mode changes
the dag before.

| don't think it was me.

Hey Soto and Angela, the tests
are faiing ogain.

Because Topher is running the pipeline once a day, he’s picking up all of the changes
from the day before.

If we look back at the definition of Continuous Integration we can see what’s going
wrong:

¢ Continuous integration is process of combining code changes frequently, where
each change is verified on check in.

Topher needs to run the pipeline on every change. This way every time the code is
changed, the team will get a signal about whether that change introduced problems or not.

Topher asks his team to tell him each time they push a change, so that he can run the
pipeline right away. Now the pipeline is being run on every change and the team is getting
feedback immediately after they make their changes.

Thwrsdaa :1Sam

L

it passes, there are no problems
with your chanoes!

Hey Topher, | just pushed a
change!

Thanks Anglea, '\ run the
pipeline.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

26

Saying a pipeline passes means everything succeeded, i.e. nothing
broke.

VOCAB TIME

Continous Deployment
By running the entire pipeline, including the transformation tasks, Topher is actu-

ally doing Continuous Deployment as well!

Many people will run their CI tasks and their transformation tasks as different
pipelines. We’ll explore the tradeoffs in chapter 11.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.12

27

Using notifications

A few weeks have passed, and the team has been telling Topher every time they make a
change. Let’s see how it’s going!

Fridaa 2:ispm

Hey Topher, | just pushed a
change!

Thanks Sato!
Looks like the linting is breaking,
can you take a look?

| see what you
mean, but | didn't change
thot line - looks like # was

Anglea.

wihoops! Sorr Y Topher, |
foropt to tell you l pushed o I~
change 3 hours ago.

Once again, it didn't work quite as well as Topher hoped. Angela made a change and
forgot to tell him, and now the team has to backtrack. How can Topher make sure he doesn’t
miss any changes?

Topher looks into the problem and realizes that he can get notifications from his source
code management every time someone makes a change. Instead of having the team tell
him when they make changes, he uses these email notifications.

monday 10:13am: Angela. pushed a. change ﬁ@

Topher runs the pipeline and it posses.

1S pmi: Sado pushed o change @

Topher runs the Pipe| ine and it breaks.

Hey Sato, looks like you broke

the unit fests. Oops! I'm on it, thanks Topher.

Source Code Management (SCM) is the term for systems like GitHub
which combine version control with extra features such as code review
tools. Other examples are GitLab and BitBucket.

VOCAB TIME

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

28

2.13  Scaling manual effort

Things have been going so well for the team that two more team members have joined.
What does this look like for Topher now?

Friday 9:00am: Angela pushed a change
9:Mam: Sato pushed a change

‘ 9:a7am: Mi-Jung pushed a change

/ \-., 10:030m: Robert pushed o change

| o do | keep uo wikh Hhise |

LCICHES

.--/‘

Topher is now spending his entire day running the pipeline and has no time to do any
other work. He has lots of ideas for things he wants to improve in the pipeline, and some
features he wants to implement, but he can’t find any time!

He decides to step back and think about what’s happening so he can find a way to save
his own time.

An email arrives in Topher’s inbox

Topher’s email application notifies Topher he has a new email
Topher sees the notification

Topher runs the pipeline script

Topher tells people when the pipeline fails

vk wnN e

Topher looks at his own role in this process. Which parts require Topher’s human
intervention?

1. Topher has to see the email notification

2. Topher has to type the command to run the script

3. Topher tells people what happened

Is there some way Topher could take himself out of the process? He'd need something
that could:

1. See the notification
2. Run the pipeline script
3. Tell people what happened

Topher needs to find something that can receive a notification and run his script for him.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.14

29

Automation with webhooks

Time is precious! Topher has realized his whole day is being taken up running the pipeline,
but he can take himself out of the process if he can find tools to:

1. See the notification
2. Run the pipeline script
3. Tell people what happened

Topher looks into the problem and realizes that his SCM (Source Code Management)
system supports webhooks.
By writing a simple webserver, he can do everything he needs:

1. The SCM will make a request to his webserver every time someone
pushes a change (Topher doesn’t need to see the notification!)
2. When the webserver gets the request, it can run the pipeline script
(Topher doesn’t need to do it!) -
3. The request the SCM system makes to the webserver contains the P N
email of the person who made the change, so if the pipeline script
fails, the webserver can send an email to the person who caused the
problem.

Use webhooks to get a system outside of your control to run your code
when events happen. Usually you do this by giving the system the URL of an
HTTP endpoint that you control.

VOCAB TIME

class Webhook(BaseHTTPRequestHandler):
def do_POST(self):
respond(self)
email = get_email_from_request(self)
success, logs = run_pipeline()
if not success:
send_email(email, logs)

if __name__ == ‘__main__’:
httpd = HTTPServer((¢’, 8080), Webhook)
httpd.serve_forever()

Topher starts the webserver running on his workstation and voila: he has automated
pipeline execution!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

30

Q How do | get notifications and events from my SCM?

A You'll have to look at the documentation for your version control system to see
how to set this up, but getting notifications for changes and webhook triggering is
a core feature of most SCMs. If yours doesn’t have that, consider changing to a

QUESTION different system that does!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

2.15

31

Automation with webhooks

class Webhook(BaseHTTPRequestHandler):
def do_POST(self):
respond(self)
email = get_email_from_request(self)
success, logs = run_pipeline()
if not success:
send_email(email, logs)

if __name__ == ‘__main_ ’:
httpd = HTTPServer((¢’, 8080), Webhook)
httpd.serve_forever()

Having your SCM call your webhook when an event happens is often

referred to as triggering your pipeline.

VOCAB TIME

Let’s look at what happens now that Topher has automated execution with his webhook.

mondag

EHEY 1Y r-\ngela pushes a. chnnge

. The SCm triggers Topher’s webhook

Topher’s webhook runs the pipeline: it fails!

m

Topher’s webhook sends an email to Angela.
teﬂina her that her c}unae broke the pipeline

=

The events from the SCM system and the webhooks are taking care of all that manual
work Topher was doing before. Now he can move on to the work he actually wants to get

done!

Q Should | write these webhooks myself like Topher did?

A Again, probably not! We’re using Python here to demonstrate how CD systems work
in general, but instead of creating one yourself, look at the appendices at the end of
this book to see existing CD systems you could use. Supporting webhooks is a key

QUESTION feature to look for!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

32

2.16 Don’t push changes when broken

There are a few more problems Topher will run into. Let’s look at a couple of them here and
we'll leave the rest for Chapter 7.

What if Angela introduced a change and wasn't able to fix it before another change was
made?.

I‘r\ond.mj
Topher’s webhook sends an email to
Angela. telling her that her change
broke the pipeline

a:1s: Angela starts %{ms the problem

9:30: Sato pushes a dunse

A T

- Topher’s webhook runs the pipeline: it fails — again,
reaes, Since Angelais still %(ins the probelm she introduced

Topher’s webhook sends an email to Sato
\T:i'.‘ms him that his d\anse broke the
pipeline, though it was actually Aneeiad

The sCm riggers Topher's webhook

While Angela is fixing the problem she introduced, Sato pushes one of his changes. The
system thinks that Sato caused the pipeline to break, but it was actually Angela, and poor
Sato is confused.

Plus, every change that is added on top of an existing problem has the potential to make
it harder and harder to fix the original problem.

The way to combat this is to enforce a simple rule:

When the pipeline breaks, stop pushing changes.

This can be enforced by the CD system itself, and also by notifying all the other engineers
working on the project that the pipeline is broken, via notifications.
Stay tuned for chapter 7 to learn more!

4 Why break the pipeline at all? A
Wouldn't it be better if Angela found out before she pushed that there was a prob-
lem? That way she could fix it before pushing and it wouldn’t interfere with Sato’s
work. Yes, that’s definitely better! We’ll talk a bit more about this in the next chap-
ter and get into more detail in chapter 7.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

33

2.17 Cat Picture Website CD

Whew! Now we know all about Cat Picture Website's CD: the pipeline that they use for their
services, and also how it is automated and triggered.

I When changes are pushed,

this creates an event causing
the sCm si.js{'ern {ﬂagers
Topher’s webhook

a. T r's webhook, -
running on his workstation,
runs the pipeline S

-‘"—_.__-‘
C_ o
Service | = Linting
Repo
m— &
Unit and
= Integration
Repo

3. The pipeline executes. ¥

any task fails, the entire - —
pipeline halts andis
considered broken.
=P
4. 18 the pipeline breaks,
T r's webhook sends an
emeil o the person who made
the triggering change.
Q Should | run webhooks directly on my workstation too?
A No! Running webhooks for you is another feature most CD systems will handle for
you
ANSWERS

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

34

2.18 What’s in a name?

Once you start using a CD system, you might encounter terminology different from what
we've been using in this chapter and will be using in the rest of this book. So here’s an
overview of the different terminology used across the space and how it relates to the terms
we'll be using.

Tasks can be called:

Events and triggers are sometimes used

interchangably; sometimes trigger refers

to the combination of the event and the
action to take.

g
-

Webhooks are usually just webhooks! The machines pipelines

CEXERTE are executed on can be
& called:
Tasks can be called: + Nodes
* Tasks * Runners
+ Stages \‘L A
+ Executors
" Jobs *  Agents
* Builds
*+ Steps* \
B Pipelines can be called:

*sometimes Tasks will be

broken up into even more * Pipelines

diserete pieces, sometimes & *  Workflows
olso called steps.
/—k
C
The CD System that brings
this all together can be since of this aukomodion
called: & )

was initially ereated to build

* CD Platform code into executobles, the term

* CI/CD Platform Tpuild” hos stuck around and
. \ can be used to refer to be used
Automation server e toreter o T Pipelines or
* Build server Not}f[catmns are even Triggers + Tasks +
sometimes also called Pipelines.

events.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

35

2.19 Conclusion

The pipeline used by Cat Picture Website for their services shows us the same basic building
blocks that you should expect to see in most CD pipelines. By looking at how the folks at Cat
Picture Website run their pipeline, we've learned how important automation is in making CD
scale, especially as a company grows.

In the rest of this book we’ll be looking at the details of each element of the pipeline and
how to stitch them together.

2.20 Summary

This book will use the terms pipelines and tasks to refer to basic CD building blocks
which can go by many other names

Tasks are like functions. Tasks can also be called stages, jobs, builds and steps
Pipelines are the orchestration that combines Tasks together. Pipelines can also be
called workflows

The basic components of a CD pipeline are static analysis, testing, building,
delivering and deploying

Static analysis and testing are gates (aka Continuous Integration (CI) tasks), while
building, delivering and deploying are transformations

Source Code Management (SCM) systems provide mechanisms such as events and
webhooks to make it possible to automate pipeline execution

When a pipeline breaks, stop pushing changes!

2.21 Upnext...

In the next chapter we’ll be looking at static analysis in detail: why we need it, what we can
catch with it and what we can’t, and when it makes sense to use it.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.1

36

Version control is the
only way to roll

In this chapter:

«  Explain why version control is essential to Continuous Delivery

Keep your software in a releasable state by keeping version control green
and triggering pipelines based on changes in version control

« Define “config as code”

Enable automation by storing all configuration in version control

We're going to start your Continuous Delivery journey at the very beginning with the tool
that we need for the basis for absolutely everything we’re going to do next: version control.

In this chapter you'll learn why version control is crucial to Continuous Delivery and how
to use it to set you and your team up for success.

Sasha and Sarah’s start-up

Recent university grads Sasha and Sarah have just gotten funding for an ambitious start-up
idea: Watch Me Watch, a social networking site based around TV and movie viewing habits.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

37

With Watch Me Watch, users can rate movies and TV shows as they watch them, see what
their friends like, and get personalized recommendations for what to watch next.

Sasha and Sarah want the user experience to be seamless, so they are integrating with
popular streaming providers. This means users don’t have to tediously add movies and TV
shows as they watch them, all of their viewing will automatically be uploaded to the app!

Before they get started, they’ve sketched out the architecture they want to build:

. User / 7 DB
Service
Website \J /7/
API

2 Service

Phone / \\! Streaming

App Integration
Service

They’re going to break up the backend logic into three services:

Streaming

—_—
Services

e  The watch me watch API service, which handles all requests from the frontends
e The user service, which holds data about users
e The streaming integration service which integrates with popular streaming providers

They also plan to provide two different frontends for interacting with Watch Me Watch, a
website and a phone app.

3.2 All kinds of data

As they stare proudly at this architecture diagram on their newly purchased white board,
they realize that all the code they need to build is going to have to live somewhere. And
they’re going to both be making changes to it, so they’ll need some kind of co-ordination.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

38

They are going to create 3 services, which are designed and built in roughly the same
way: they are written in Golang, and executed as running containers.

Streaming
API User >
St Service Inéegra_tlon
ervice
-/—-‘

They’ll also run a website and create and distribute a phone app, both of which will be
ways for users to use Watch Me Watch.

Phone Website
App
_.—-""-_.-

The data to define the 3 services, the app and the website will include:

e  Source code and tests written in Golang

. READMEs and other docs written in markdown

e Container image definitions (Dockerfiles) for the services

¢ Images for the website and phone app

¢ Task and Pipeline definitions for testing, building and deploying

The database (which will be running in the cloud) is going to need: ’

e Versioned schemas
e Task and Pipeline definitions for deploying

To connect to the streaming services they’ll be integrating with, they're
also going to need API keys and connection information.

Streaming

Services

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.3

39

Source and software

Even before they've written a single line of code, gazing at their architecture diagram and
thinking about what each piece is going to need, Sasha and Sarah realize they are going to
have a lot of data to store:

e  Source code

. Tests

. Dockerfiles

. Markdown files Images
e Tasks and Pipelines

e Versioned schemas

e  API keys

. Connection information

That's a lot! (And this is is for a fairly straightforward system!) But what do all of these
items have in common? They’ll all data. And in fact, one step further than that, they are all
plain text.

Even though each of the above is used differently, each of them is represented by plain
text data. And when you’re working on building and maintaining software, like Sasha and
Sarah are about to be, you need to manage all that plain text data somehow.

And that’s where version control comes in. Version control (also called source control)
stores this data and tracks changes to it. It stores all of the data your software needs: the
source code, the configuration you use to run it, supporting data like documentation and
scripts: all the data you need to define, run and interact with your software.

Plain text is data in the form of printable (or human readable) characters.

In the context of software, plain text is often contrasted with binary data,

which is data that is stored as sequences of bits which are not plain text.

More simply: plain text is human readable data, the rest is binary data.

Version control could be used for any data but it is usually optimized for plain

text, so it doesn’t handle binary data very well. This means you can use it to

VOCAB TIME store binary data if you want, but some features won’t work, or won't work
well.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.4

40

Repositories and versions

Version control is software for tracking changes to plain text, where each change is
identified by a version, also called a commit or a revision. Version control gives you (at
least) these two features for your software:

1. A central location to store everything, usually called repository (or repo for short!)
2. A history of all changes, where each change (or set of changes) results in a new,
uniquely identifiable, version
The configuration and source code needed for projects can often be stored in multiple
repos - sticking to just one repo for everything is exceptional enough that this has its own

name: the monorepo.
Sasha and Sarah decide to have roughly one repo per service in their architecture, and
they decide that they first repo they’ll create will be for their user service.

Streaming ]
Pkone Website S ;EII ce ngﬁz . Integration
PP Service
___,..-""'_- ___,..-""-_- ———————

!

Streaming
Integration
Service
Repo

PROUE Website Seﬁ, iIce
R
a0 ]

Developrment will start
with just this one repo/

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.5

41

Continuous Delivery and version control

Version control is the foundation for Continuous Delivery. I like the idea of treating
Continuous Delivery as a “practice”, asserting that if you’re doing software development,
you're already doing Continuous Delivery (at least to some extent); however the one
exception I'll make to that statement is that if you're not using version control, you're not
doing Continuous Delivery.

To be doing Continuous Delivery, you must use version control.

Why is it so important for Continuous Delivery? Remember that CD is all about getting to
a state where:

1. You can safely deliver changes to your software at any time
2. Delivering that software is as simple as pushing a button

In Chapter 1 we looked at what was required to achieve (1) - specifically, Continuous
Integration (CI), which we defined as:

The process of combining code changes frequently, where each change is verified on check in.

We glossed over what “check in” means here - in fact we already assumed version control
was involved! Let’s try to redefine CI without assuming version control is present:

The process of combining code changes frequently, where each change is verified on when it is added
to the already accumulated and verified changes.

This definition suggests that in order to do CI we need:

1. Some way to combine changes

2. Somewhere to store (and add to) changes

And how do we store and combine changes to software? You guessed it: using version
control. In every subsequent chapter after this, as we discuss elements you’ll want in your
Continuous Delivery pipelines, we’ll be assuming that we're starting from changes that are
tracked in version control.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

TAKEAWAY

TAKEAWAY

42

To be doing Continuous Delivery, you must use version control.

Writing and maintaining software means creating and editing a lot of data,
specifically plain text data. Use version control to store and track the history
of your source code, configuration - all the data you need to define your
software. Store the data in one or more repositories, with each change
uniquely identified by a version.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.6

43

Git and GitHub

Sarah and Sasha are going to be using git for version control. The next
question is where their repository will be hosted and how they will
interact with it. Sarah and Sasha are going to be using GitHub to host
this repository and the other repositories they will create.

Git is a distributed version control system. What this means is
that when you clone (that is, copy) a repository onto your own machine,
you get a full copy of the entire repository which can be used
independently of the remote copy - even the history is separate!

Sarah creates the project’s first repository on GitHub and then clones
the repo - this makes another copy of the repo on her machine, with all
the same commits (none so far), but she can make changes to it
independently. Sasha does the same thing, and they both have clones of
the repo they can work on independently, and use to push changes back
to the repo in GitHub.

Which version A

control should | use?

At the time of writing,
git is widely supported
and popular and would
be a great choice!

While we're using
GitHub for our exam-
ples, there are other
appealing options as
well with different
tradeoffs - see the
appendices for an
overview of other
options such as GitLab
and Bitbucket.

——
A

User
Service
- //-"'
User
SR‘, " Clon'lng creates Sarah's done
po incb-pendeni‘ C-OPIE—S -
The repo in gitHub \__._ User
Service
Repo
Soshals clone

4 SCM: Software Configuration Management and Source Code Management

Fun fact! Version control software is part of Software Configuration Management
(SCM), the process of tracking changes to the configuration that is used to build and
run your software. In this context configuration actually refers to details about all
of the data in the repo, including source code, and in fact the practice of configura-
tion management for computers dates back to at least the 1970s. This terminology
has fallen out of favor, leading both to a rebirth in infrastructure as code and later
configuration as code (more on this in a few pages!) and a redefining of SCM as
Source Code Management. SCM is now often used interchangeably with version
control and sometimes used to refer to systems like GitHub which offer version con-
trol coupled with features like issue tracking and code review.

—

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.7

44

An initial commit - with a bug!

Sarah and Sasha both have clones of the user service repo and they're ready to work. In a
burst of inspiration, Sarah starts working on the initial user class in the repo. She intends for
it to be able to store all of the movies a user has watched, and the ratings that a given user
has explicitly given to movies.

The User class she creates stores the name of the user, and she adds a method
rate movie which will be called when a user wants to rate a movie. The function takes the
name of the movie to rate, and the score (as a floating point percentage) to give the movie.
It tries to store these in the User object, but there’s a bug in her code: the function tries to
use self.ratings, but that object hasn’t been initialized anywhere.
class User:

def _ init_ (self, name):
self.name = name

def rate_movie(self, movie, score):
self.ratings[movie] = score #A

#A There’s a bug here: self.ratings hasn’t been initialized, so trying to store a key in it is going to raise an exception!

Sarah wrote a bug into this code, but she actually also wrote a unit test that will catch that
error. She wrote a test (test rate movie) that tries to rate a movie and then verifies that
the rating has been added:
def test_rate_movie(self):
u = User(“sarah”)

u.rate_movie(“jurassic park”, 0.9)
self.assertEqual(u.ratings[“jurassic park”], 0.9)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

45

Unfortunately, Sarah forgets to actually run the test before
she commits this new code! She adds these changes to her local
repo, creating a new commit with ID abcd0123abcd0123. She
commits this to the main branch on her repo, then pushes the
comit back to the main branch in GitHub’s repo.

4 <4
User User
Service Service
Repo Repo

GitHub's main Sarah’s main

Commits: Commits:
abcd0123abed0123 abcd(123abed0123
+—"""/

Sarah pushes her main branch
baek 1o the GitHub repe. Now the
bug is in the main branch in the
&itHub repo!

©Manning Publications Co. To comment go to liveBook

4 By default, the first )
branch created in git is
called main. This
default branch is used
as the source of truth
(the authoritative ver-
sion of the code) and
all changes are ulti-
mately integrated here.
See chapter 8 for a dis-
cussion of  other
branching strategies.

These example com-

mit IDs are just for
show; actual git com-
mit IDs are the SHA-1
hash of the commit.



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

46

3.8 Breaking main

Shortly after Sarah pushes her new code (and her bug!), Sasha pulls the main branch from
GitHub to her local repo, pulling in the new commit.

- Sasha pulls main

User from the gitHub
Service refth:dso[xdhna
Repo Sarah's new commit.

gitHub's main Sasha’s main

Commits: Commits:

abed0123abed0123 . abed0123abed0123

Sasha is excited to see the changes Sarah made:

class User:
def __init_ (self, name):
self.name = name

def rate_movie(self, movie, score):
self.ratings[movie] = score

Sasha tries to use them right away, but as soon as she tries to use rate movie, she runs
smack into the bug, seeing the following error:

AttributeError: ‘User’ object has no attribute ‘ratings’

“I thought I saw that Sarah included a unit test for this method,” wonders Sasha. “How
could it be broken?”

def test_rate_movie(self):
u = User(“sarah”)
u.rate_movie(“jurassic park”, 0.9)
self.assertEqual(u.ratings[“jurassic park”], 0.9)

Sasha runs the unit test and, low and behold, the unit test fails too:

Traceback (most recent call last):
File “test_user.py”, line 21, in test_rate_movie
u.rate_movie(“jurassic park”, 0.9)
File “test_user.py”, line 12, in rate_movie
self.ratings[movie] = score
AttributeError: ‘User’ object has no attribute ‘ratings’

Sasha realizes that the code in the GitHub repo is broken.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

47

3.9 Are we doing Continuous Delivery?

Sasha is a bit frustrated after learning that the User Service code in the GitHub repo is
broken and brings up the issue with Sarah.

Hey Sarah, lthought we
:xg‘eed we were going ‘o do
Continuous, De\iven:j?

Yep, for sure! | mean, Ve been
working as fast os | con

| appreciote that, of the
same time, | think wete
[rissing something Our codebose
is broken right nous

W m:{ual\g not
passing.

©h shoot; | must have
forgotten to run it before |
checrked it in

1 think it's worth
doin3 Continuous DelNerﬂ, and
the $irst thing we need to do is make
sure our code is always ready to

Qiaht And ! quess thot's
not the case right now,
becouse the code in the repo
right now is broken

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.10

48

Keep version control releasable

Sarah and Sasha have realized that by allowing broken code to
be commited to the user service repo in GitHub, they’re violating
one of two pillars of Continuous Delivery.

Remember, to be doing CD you want to be trying to get to a
state where:

1. You can safely deliver changes to your software at any

time

2. Delivering that software is as simple as pushing a button

The user service cannot be safely delievered until the bug
Sarah introduced is fixed. This means the user service is not in a
state where it is safe to deliver.

Sarah is able to fix it and quickly push a commit with the fix,
but how can Sarah and Sasha make sure this doesn’t happen
again? After all, Sarah had written a test that caught the
problem she introduced, and that wasn’t enough to stop the bug
from getting in.

No matter how hard Sarah tries, she might forget to run the
tests before committing at some point in the future - and Sasha
might too - they’re only human after all!

What Sasha and Sarah need to do is to guarantee that the
tests will be run before changes are committed. When you need
to guarantee that something happens (and if it's possible to
automate that thing) your best bet is to automate it.

(" Won't there always
be broken code?

You'll never catch
every single bug, so in
some sense, there will
always be broken code
committed to version
control. The key is to
always keep version
control in a state where
you feel confident
releasing; introducing
the occasional bug is
par for the course but
the goal is to be in a
state where the need to

roll back is minimal
and the risk of a release
or deployment is low.
See chapters 8 and 10

for more on releasing.

If you rely on humans to do something that always without fail needs to be done,
sometimes they’ll make mistakes - which is totally okay because that's how humans work!
Let humans be good at what humans do, and when you need to guarantee that the same
thing is done in the exact same way every time, and happens without fail, use automation.

. -

Fl A

TAKEAWAY

©Manning Publications Co. To comment go to liveBook

When you need to guarantee that something happens, use automation.
. : Human beings are not machines, and they’re going to make mistakes and forget
to do things. Instead of blaming the person for forgetting to do something, try to
find a way to make it so they don’t have to remember.


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.11

49

Trigger on changes to version control

Looking at what led to user service repo being in an unsafe state, we realize that the point
where Sarah went wrong wasn’t when she introduced the bug, or even when she committed
it. The problems started when she pushed the broken code to the remote repo:

Still doing Continuous Delivery; buge
happen!
S, I saroh urites the bugqy code
4l OK. S0 she ?orgo‘: to run the
tests; it happens.

—

Now the User Service can't be
releosed sa#etg, and we're getting

4. Sarah eommits the code to her own repo

3. Sarah pushes the cormmit o the aithub repo

further away from Continuous
Dewerﬂ. _-——/'
Not only is it unsafe 4o release: 4. Sasha tries o use the new code and ¥inds

before this, NO ONE BNOWS ITS
UNSAFE. It would be totally
reaszonoble to release the softwar
ot this point - and so this is where
th'mgs have re.:d'.}j gone wrong.

ﬂ"rebus.

So what's the missing piece between (3) and (4) above that would
let Sarah and Sasha do Continuous Delivery?

In chapter 2 we learned an important principle for what to do when
breaking change are introduced:

When the pipeline breaks, stop pushing changes.

But what - what pipeline? Sasha and Sarah don’t have any kind of
pipeline or automation set up at all. They have to rely on manually
running tests to figure out when anything is wrong. And that's the
missing piece that Sasha and Sarah need: not just having a pipeline to
automate that manual effort and make it reliable, but setting it up to
be triggered on changes to the remote repo.

Trigger pipelines on changes to version control.

If Sasha and Sarah had a pipeline that ran the unit tests whenever
a change was pushed to the GitHub repo, Sarah would have
immediately been notified of the problem she introduced.

©Manning Publications Co. To comment go to liveBook

-

Can something be
done even earlier to
stop (3) from
happening at all?

Absolutely! Becoming
aware of when prob-
lems are introduced is
a good first step, but
even better is to stop
the problems from
being introduced at all.
This can be done by
running pipelines
before commits are
introduced to the
remote main branch.
See chapter 7 for more
on this.

o J



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

50

3.12 Triggering the User Service Pipeline

Sasha and Sarah create a pipeline. For now it has just one task to run their unit tests. They
setup webhook triggering so that the pipeline will be automatically run every time commits
are pushed to the repo in GitHub, and if the pipeline is unsuccessful, an email notification will
be sent to both of them.

Now if any breaking changes are introduced, they’ll find out right away. They agree to
adopt a policy of dropping everything to fix any breakages that are introduced; i.e.:

When the pipeline breaks, stop pushing changes.

I. When Cho-nges are pushed,
sitrub will trigger execution of -

e

the pipeline T =y Where does their
ﬂ? pipeline actually
run?

We’re not going to get
into the details of the
CD system Sasha and
Sarah chose; see the
appendices at the end

3. The pipeline has just one
tosk which runs the unit
tests For the User Service

Run User Service
Unit Tests

—_—

3. 18 the pipeline breaks (in this cose, {!7 of the book for some of
it the unit tests Lail), an email will be the options they con-
sent to both Sarah and $asha <o they sidered. Since they're
know there's o problem. already using GitHub,
GitHub Actions would

4. ¥ the pipeline breaks, this means that the code in be a quick and easy

the &itHub repo is not safe to release. Sarah and Sasha. | W& fo‘r tl‘1em to get

agree that when that happens, no other changes their pipeline up and

should be merged, and the priority should be ¥ixing the running!
code and getting the repo back into a.releasable state.

Trigger pipelines on changes to version control. Just writing tests isn’'t enough; they need to

LI
\
be running regularly. Relying on people to remember to run them manually is error prone.
a -
. \ Version control is not just the source of truth for the state of your software, it's also the
jumping off point for all the CD automation we’ll look at in this book.
TAKEAWAY

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.13

51

Building the User Service
Sarah and Sasha now have a (small) pipeline in place that will make sure they know
immediately if something breaks.

This code isn’t doing them any good unless they're doing with it! So far this pipeline has
been helping them with the first part of Continuous Delivery:

1. You can safely deliver changes to your software at any time

Having a pipeline and automation to trigger it will also help them with the second part of
Continuous Delivery:

2. Delivering that software is as simple as pushing a button

They need to add tasks to their pipeline to build and publish the User Service. They
decide to package the User Service as a container image and push it to an image registry.

e

Run User Service

Unit Tests
—
/ T ——
Build

User Service Image

Upload

User Service Image

By adding this to their pipeline, they make this “as simple as pushing a button” (or in this
case, even simpler, since it will be triggered by changes to version control!)

Now on every commit, the unit tests will be run, and if they are successful, the User
Service will be packaged up and pushed as an image.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

52

3.14 The User Service in the cloud

The last question Sarah and Sasha need to answer for the User Service is the image they are
now automatically building will run. They decide they’ll run it using the popular cloud
provider RandomCloud.

RandomCloud provides a service for running containers, so running the User Service will
be easy - except that in order to be able to run, the User Service also needs access to a
database, where it stores information about users and movies:

P

The User Senvice

User il needs to connect

Website Service 4o o datobase in

order to manage

‘ l information about
LSers.

PR;]FJ'E I Iitmﬁ — Streaming
Service Services

Fortunately, like most cloud offerings, Random Cloud provides a database service which
Sarah and Sasha can use with the User Service:

=3 \Database

Service

With the User Service pipeline automatically building and publishing the User Service
image, all they need to do now is configure the User Service container to use RandomCloud’s
database service.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

53

3.15 Connecting to the RandomCloud database

To get the User Service up and running in RandomCloud, Sasha and Sarah need to configure
the User Service container to connect to RandomCloud’s database service. To pull this off,
two pieces need to be in place:

1. It needs to be possible to configure the User Service with the information the service
needs to connect to a database.

2. When running the User Service, it needs to be possible to provide the specific
configuration that allows it to Random Cloud’s database service.

For (1), Sasha adds command line options that the User Service uses to determine what
database to connect to:

./user_service.py \
--db-host=10.10.10.10 \
--db-username=some-user \
--db-password=some-password \
--db-name=watch-me-watch-users #A

#A The database connection information is provided as command line arguments

For (2), the specifics of RandomCloud’s database service can be provided via the
configuration that RandomCloud uses to run the User Service container.

apiVersion: randomcloud.dev/v1l
kind: Container
spec:
image: watchmewatch/userservice:latest #A
args:
- --db-host=10.10.10.10
- --db-username=some-user
- --db-password=some-password
- --db-name=watch-me-watch-users #B

#A This image is built and pushed as part of the User Service pipeline. It contains and runs user_service.py
#B These are the same arguments as above, now provided as part of the RandomCloud configuration

T N
Using :latest to
identify the image to
deploy has some seri-
ous downsides - see
Chapter 9 for what
those are and what you
can do instead!

r Should they be passing around passwords in plain text? A

The short answer is no. Sasha and Sarah are about to learn that they want to store
this configuration in version control, and they definitely don’t want to commit the
password there. More on this in a bit.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.16

54

Managing the User Service

Sarah and Sasha are all set to run the User Service as a container using popular cloud
provider RandomCloud.

See Chapter 10 for
more on Deployment

automation!

For the first couple of weeks, every time they want to do a launch, they use the
RandomCloud UI to update the container configuration with the latest version, sometimes
changing the arguments as well.

Sasha. or Sarah
mﬂlﬂ]]& updates the
RandomCloud
configuration to use . -
the latest image built - -
by the User Service

pipeline

Database
Service

Soon Sarah and Sasha decide to invest in their deployment tooling a bit more, and so
they pay for a license with Deployaker, a service which allows them to easily manage
deployments of User Service (and later the other services that make up Watch Me Watch as
well).

Soshao or Sarah now
rrmm.a.llﬁ updote
Deployaker o use
the latest image and

manage the ———» - ~—~——# | Deployaker

Randomcloud —> \Database
i Service

conPiguradion through

Deploaaher

The User Service is now running in a container on RandomCloud, and that service is
managed by Deployaker. Deployaker continually monitors the state of the User Service and
makes sure that it is always configured as expected.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.17

55

The User Service outage

One Thursday afternoon, Sasha gets an alert on her phone from RandomCloud, telling her
the User Service is down. Sasha looks at the logs from the User Service and realizes that it
can no longer connect to the database service. The database called watch-me-watch-users
no longer exists!

Sasha did you get the alert?
UJhlj is the uger Service havmg
an Ou’(age?

'm not
sure what happened
but RandomCloud soys the
“wotch-me-wotch-users”
dotobose doesn't exist

Oh shoot, thot's
my foult! | ¥or30& to tell
you, | uparaded the dotabose -
the new one is just called

Oh is that all? | can
fix thot right away I
- ‘ update the user service
con?.gwahor\

1 got thig!

Sasha races to fix the configuration - but she makes a crucial mistake. She completely
forgets that Deployaker is managing the User Service now. Instead of using Deployaker to
make the update, she makes the fix directly in the Random Cloud UI.

apiVersion: randomcloud.dev/v1
kind: Container
spec:
image: watchmewatch/userservice:latest
args:
- --db-host=10.10.10.10
- --db-username=some-user
- --db-password=some-password
- --db-name=users #A

#A Sasha updates the configuration to use the correct database, but she makes the change directly to RandomCloud
and forgets about Deployaker completely

The User Service is fixed and the alerts from RandomCloud stop.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.18

56

Outsmarted by automation

Sasha has rushed in a fix to the RandomCloud configuration to get the User Service back up
and running, but she completely forgot that Deployaker is running behind the scenes.

That night, Sarah has been sleeping soundly when she is suddenly woken up by another
alert from RandomCloud. The User Service is down again!

Sarah opens up the Deployaker UI and looks at the configuration it is using for the User
Service:

apiVersion: randomcloud.dev/v1
kind: Container
spec:
image: watchmewatch/userservice:latest
args:
- --db-host=10.10.10.10
- --db-username=some-user
- --db-password=some-password
- --db-name=watch-me-watch-users #A

#A This configuration is still using the database that Sarah deleted!

In spite of being so tired that she can't think properly, Sarah realizes what happened. Sasha
fixed the configuration in RandomCloud but didn’t update it in Deployaker. Deployaker
periodically checks the deployed User Service to make sure it is deployed and configured as
expected. Unfortunately, when Deployaker checked that night, it saw the change Sarah had
made - which didn’t match what it expected to see. So Deployaker resolved the problem by
overwriting the fixed configuration with the configuration it had stored - triggering the same
outage again! Sarah sighs and makes the fix in Deployaker:

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

57

apiVersion: randomcloud.dev/v1
kind: Container
spec:
image: watchmewatch/userservice:latest
args:
- --db-host=10.10.10.10
- --db-username=some-user
- --db-password=some-password
- --db-name=users #A

#A Now the correct configuration is stored in Deployaker and Deployaker will ensure that the service running in
RandomCloud uses this configuration.

The alerts stop and she can finally go back to sleep.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

58

3.19 What’s the source of truth?

The next morning, bleary eyed over coffee, Sarah tells Sasha what happened.

Oh no, Sarah 'm o sorry, |

was so caught up in making
the fix thot | completely ¥or30{
obout Dep\oyjaher!

s ok.mj, it wos easy

enough to fix. | quess the real
problem is we have two sources of
trudh: Depk)ljalﬁe( AND
RandomCloud,.

)

HM, “sources of truth?’,
thot has me ’(h\nKmS: GitHub &
owr “source of truth” for code,
maube it can be our “source of
fruth” for configuration to0?

Interesting idea!

The configuration that they are talking about is the RandomCloud configuration for the
User Service container that needed to be changed to fix the outages the previous day:
apiVersion: randomcloud.dev/v1l
kind: Container
spec:

image: watchmewatch/userservice:latest

args:

- --db-host=10.10.10.10

- --db-username=some-user

- --db-password=some-password

- --db-name=users # OR --db-name=watch-me-watch-users

There were two sources of truth for this Configuration:

1. The configuration that RandomCloud was actually using
2. The configuration stored in Deployaker, which it would use to overwrite whatever
RandomCloud was using if it didn't match

Sasha has suggested that maybe they can store this configuration in the GitHub repo
alongside the User Service source code. But would this just end up being a third source of
truth?

The final missing piece is to configure Deployaker to use the configuration in the GitHub
repo as its source of truth as well.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.20

59

Version Control and sensitive data

As a rule of thumb, all plain text data should go into version control. But what about
sensitive data, like secrets and passwords? Usually you wouldn’t want everyone with access
to the repo to have access to this kind of information (and they usually don't need it). Plus,
adding this information to version control will store it indefinitely in the history of the repo!
For Sasha and Sarah, the configuration for the User Service contains sensitive data: the
username and password for connecting to the database service:
user-service.yaml

i apiVersion: randomcloud.dev/vl i
lkind: Contalner !
i spec: i
!  1image: watchmewatch/userservice:latest !
| args: Sosho and Sarah want !
i - —-db-host=10.10.10.10 this contig Fie in version |
! - --db-username=some-user <+— , control, buk they dont !
i — ——db-password=some-password want to cormmit these i
! - —-—db-name=users sensitive valugs. H
1 1

But they want to commit this config file to version control - how do they do that without
committing the username and password? The answer is to store that information somewhere
else and have it managed and populated for you. Most clouds provide mechanisms for
storing secure information, and many CD systems will allow you to populate these secrets
safely - which will mean trusting the CD system enough to give it access.

Sasha and Sarah decide to store the username and password in a storage bucket in
RandomCloud, and they configure Deployaker so that it can access the values in this bucket
and populate them at deploy time.

user-service.yaml

i a;_)j_\fersj_on: _1‘andomcloud.dev,-’vl These keywords indicate i
! kind: Container to Deployaker that it !
j SPECE ) ) needs to fetch the real |
i image: watchmewatch/userservice:latest values Yrom En.ndnrrﬂw.di
| args: i
i~ —db-host=10.10.10.10 i
! - ——db-username=randomCloud:watchMeWatch:iuserServiceDBUser |
i - ——db-password=randomCloud:watchMeWatch:userServiceDBPass i
! — ——db-name=users !
1 1

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

60

3.21  User Service config as code

Now that Sasha and Sarah have setup Deployaker such that it can fetch sensitive data (the
User Service database username and password) from RandomCloud they want to commit the
config file for the User Service the repo:

user-service.yaml

iainersion: randomcloud.dev/vl i
| kind: Container !
E spec: E
!  image: watchmewatch/userservice:latest !
| args: I
i - ——db-host=10.10.10.10 ;
! — ——db-username=randomCloud:watchMeWatch:userServiceDBUser |
E — ——db-password=randomCloud:watchMeWatch:userServiceDBPass E
! — ——db-name=users !
1 1

They make a new directory in the User Service repo called config where they store this
config file, and they’ll put any other configuration they discover that they need along the
way. Now the User Service repo structure looks like this:

docs/

config/ #A
user-service.yaml

service/ #B

test/

setup.py

LICENSE

README .md

requirements.txt

#A This new directory will hold the User Service configuration used by Deployaker as well as any other configuration
they need to add in the future
#B All of the source code is in the service directory

~

Can I store the configuration in a separate repo instead?

Sometimes this makes sense, especially if you are dealing with mulitple services and
you want to manage the configuration for all of them in the same place. However
keeping the configuration near the code it configures makes it easier to change both
in tandem. Start with using the same repo and move the configuration to a separate
one only if you later find you need to.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.22

61

Hard-coded data

user-service.yaml

! apiVersion: randomcloud.dev/vl even it Depio:jak.a popiua-tes !
| kind: Container some of these values, the !
i spect dotobose connection in?-ormtioni
|  1image: watchmewatch/userservice... isessenfiallyhard-codedand |
i args: this config cant be used in other |
|~ ——db-host=10.10.10.10 /’em-.rmﬁm |
' - ——db-username=randomCloud:watchMeWatch:userServiceDBUser !
i — ——db-password=randomCloud:watchMeWatchiuserServiceDBPass i
! - ——db-name=users !
1 1

With the databse connection information hardcoded, it can't be used in any other
environments - for example when spinning up a test environment or developing locally. This
defeats one of the advantages to config as code, which is that by tracking the configuration
you are using when you run your software in version control, you can use this exact
configuration when you develop and test. But what can you do about those hardcoded
values?

The answer is usually to make it possible to provide different values at runtime (i.e.
when the software is actually being deployed), usually by either:

¢ Using templating. For example instead of hard-coding --db-host=10.10.10.10,
you’d use a templating syntax such as --db-host={{ $db-host }} and use a tool
to populate the value of $db-host as part of deployment

e Using layering. Some tools for configuration allow you to define layers which
override each other, for example commiting the hard-coded --db-
host=10.10.10.10 to the repo for when the User Service is deployed, and using
tools to override certain values when running somewhere else (e.g. something like
--db-host=localhost:3306 when running locally).

Both of the above approaches have the downside of the configuration in version control
not representing entirely the actual configuration being run. For this reason, sometimes
people will choose instead to add steps to their pipelines to explicitly hydrate (i.e. fully
populate the configuration with the actual values for a particular environment) the
configuration and commit this “hydrated” configuration back to version control.

Even if Deployaker popluates some of these values, the database connection information
is essentially hard-coded and this config can’t be used in other environments

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.23

62

Configuring Deployaker

Now that the User Service configuration is committed to GitHub, Sasha and Sarah no longer
need to supply this configuration to Deployaker. Instead they configure Deployaker to
connect to the User Service GitHub repo and give it the path to the config file for the User
Service: user-service.yaml.

This way, Sarah and Sasha never need to make any changes directly in RandomCloud or
Deployaker. They commit the changes to the GitHub repo and Deployaker picks up the
changes from there and rolls them out to RandomCloud.

Nowy, to molse

config updates,

Sasha and Sarah )

just update the —— | (SR Deployaker
confi File in the Repo

repo Py

Any change made in the repo
will be p‘lt‘.ked.upb:j

Deployaker and rolled out to

RandomCloud

Is it reasonable to expect CD tools to use configuration in version control? A

Absolutey! Many tools will let you point them directly at files in version control, or

at the very least will be programmatically configurable so you can use other tools to

update them from config in version control. In fact, it’s a good idea to look for these

features when evaluating CD tooling and steer clear of tools that only let you config-
ure them through their Uls.

Wait, what about the config that tells Deployaker’s how to find the service
config in the repo? Should that be in version control too?

Good question - to a certain extent you need to draw a line somewhere and not
strictly everything will be in version control (e.g. senstitive data). That being said,
Sasha and Sarah would benefit from at least writing some docs on how Deployaker
is configured and commiting those to version control, to record how everything
works for themselves and new team members, or if they ever need to setup Deployaker
again. Plus, there’s a big difference between configuring Deployaker to connect to a
few git repos and pasting and maintaining all of the Watch Me Watch service con-
figuration in it.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.24

63

Config as code

How does configuration fit into Continuous Delivery? Remember that the first half of
Continuous Delivery is about getting to a state where:

You can safely deliver changes to your software at any time

When many people think about their delivering their software, they only think about the
source code. But as we saw at the beginning of this chapter, there are actually all kinds of by
plain text data that make up your software - and that includes the configuration you use to
run it.

We also took a look at Continuous Integation to see why version control was key.
Continuous integration is:

The process of combining code changes frequently, where p ~
each change is verified on when it is added to the already | Configascodeisnot |

accumulated and verified changes. a new idea! You may

. remember earlier in
In order to really be sure you can safely deliver changes to _ 3
the chapter we men-

your software, you need to be accumulating and verifying tioned that the practice
changes to all the plain text data that makes up your software - configuration man-
including the configuration. agement for comput-

This practice of treating software configuration the same way ers dates back to at

least the 1970s - some-
times we forget the
ideas we've already dis-

you treat source code (i.e. storing it in version control and
verifying it with CI) is often called config as code. Doing config

as code is key to practicing Continuous Delivery, and doing covered them and have
config as code is as simple as versioning your configuration in to rediscover them
version control, and as much as you can, applying verification to with new names.

it such as static analysis and using it when spinning up test H

environments.

4 What's the difference between infrastructure as code and config as code? N
The idea of infrastructure as code came along first, but config as code was hot on its
heels. The basic idea with infrastructure as code is to use code/configuration (stored
in version control) to define the infrastructure your software runs on, e.g. machine
specs and firewall configuration. Where config as code is all about configuring the
running software, infrastructure as code is more about defining the environment
the software runs in (and automating its creation). The line between the two is espe-
cially blurry today when so much of the infrastructure we use is cloud based - when
you deploy your software as a container, are you defining the infrastructure, or con-
figuring the software? But the core principles of both are the same: treat everything
required to run your software “like code™ store it in version control and verify it.

A J

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.25

64

Rolling out software and config changes

Sarah and Sasha have begun doing config as code by storing the User Service configuration
in Deployaker.

They almost immediately see the payoff a few weeks later when they decide that they
want to separate the data they are storing in the database into two separate databases.
Instead of one giant User database, they want a User database and a Movie database. To do
this they need to make two changes:

1. The User Service previously only took one argument for the database name: --db-
name, how it needs to take two arguments
./user_service.py \
--db-host=10.10.10.10 \
--db-username=some-user \
--db-password=some-password \

--db-users-name=users \ #A
--db-movies-name=movies

#A The User Service has to be updated to recognize these two new arguments

2. The configuration for the User Service needs to be updated to use the two arguments
instead of just the --db-name argument it is currently using

apiVersion: randomcloud.dev/v1l
kind: Container
spec:

image: watchmewatch/userservice:latest

args:

- --db-host=10.10.10.10

- --db-username=some-user

- --db-password=some-password

- --db-users-name=users #A

- --db-movies-name=movies

#A And the configuration has to be updated to actually use the new arguments as well

Back when they were making configuration changes directly in Deployaker, they would have
had to roll these changes out in two phases:

1. After making the source code changes to the User Service, they’d need to build a new
image
2. At this point, the new image would be incompatible with the config in Deployaker;
they wouldn’t be able to do any deployments until Deployaker was updated
But now that they source code and the configuration live in version control together, they
can make all the changes and once, and they’ll all be smoothly rolled out together by
Deployaker!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

. |:' _E h-
TAKEAWAY

TAKEAWAY

65

Only use tools that let you store their configuration in version control. Some tools assume
you'll configure the view their Uls (e.g. websites and CLIs); this can be fine for getting
something up and running quickly, but in the long run to practice continuous delivery you'll
want to be able to store this configuration in version control. Avoid tools that don’t let you.

Treat ALL the plain text data that defines your software like code and store it in version
control. You'll run into some challenges in this approach around sensitive data and
environment specific values, but the extra tooling you'll need to fill these gaps is well worth
the effort. By storing everything in version control you can be confident that you are always
in a safe state to release - accounting for ALL the data involved, not just the source code.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

3.26

3.27

3.28

66

Conclusion

Even though it's early days for Watch Me Watch, Sarah and Sasha quickly learned how
critical version control is to Continuous Delivery. They learned that far from being just
passive storage, it's the place where the first piece of Continuous Delivery happens: it's
where code changes are combined, and those changes are the triggering point for
verification - all to make sure that the software remains in a releasable state.

Though at first they were only storing source code in version control, they realized that
they could get a lot of value from storing configuration there as well - and treating it like
code!

As the company grows, they’ll continue to use version control as the single source of
truth for their software. Changes made in version control will be the jumping off point for any
and all of the automation they add from this point forward, from automatically running unit
tests to doing canary deployments.

Summary

e You must use version control in order to be doing Continuous Delivery

e Trigger CD pipelines on changes to version control

e Version control is the source of truth for the state of your software, and it’s also the
jumping off point for all the CD automation in this book

. Pratice config as code and store all plain text data that defines your software (not
just source code but configuration too) in version control. Avoid tools that don't let
you do this.

Up next...

In the next chapter we’ll look at how to use linting in CD pipelines to avoid common bugs
and enforce quality standards across codebases, even with many contributors.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.1

67

Use linting effectively

In this chapter:

identify the types of problems linting can find in your code: bugs, errors,
and style problems

aim for the ideal of 0 problems identified but temper this against the
reality of legacy codebases

lint large existing codebase by approaching the problem iteratively

- weigh the risks of introducing new bugs against the benefits of
addressing problems

Let’'s get started actually building your pipelines! Linting is a key component to the
continuous integration (CI) portion of your pipeline: it allows you to identify and flag known
issues and coding standard violations, reducing bugs in your code and making it easier to

maintain.

Becky and Super Game Console

Becky just joined the team at Super Game Console and she’s really excited!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

68

Super Game Console is a video game console that runs simple python games, and it's
very popular. The best feature is its huge library of python games, which anyone can

contribute.

The folks at Super Game Console have a submission process that allows everyone from
the hobbyist to the professional sign up as a developer and submit their own games.

But there are a /ot of bugs in the games and it has been starting to become a problem.
Becky and Ramon, who has been on the team for a while now, have been working their
way through the massive backlog of game bugs. Becky has noticed a few things:
Some of the games wouldn’t even compile! And a lot of the other bugs are caused
by simple mistakes like trying to use variables that aren't initialized
There are lots of mistakes which do not actually cause bugs but get in the way of

Becky’s work, for example unused variables.
The code in every single game looks different from the one before it! The

inconsistent style makes it hard for her to debug.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

69

4.2 Linting to the rescue!

Looking at the types of problems causing the bugs she and Ramon has been fixing, they
remind Becky a lot of the kinds of problems that linters catch.

Fixing these bugs one ot o time
is really tasing o wkile.

There's enougi here to
keep us busy for months ot
leost!

——/  whotif there's o foster
way than tockling these buge
one ot o time? Dnﬂth\rg hmssot to be better
than thist

% we used stotic

anolsysis, | bet we could
toke core of many ot these all
of once.

What is linting anyway? Well it’s the action of finding lint, using a linter! And what’s lint?
You might think of the lint that accumlates in your clothes dyer.

By themselves, the individual fibers don't cause any problems, but when they build up
over time, they can interfere with the effective funcitoning of your dryer. Eventually, if they

are neglected for too long, the lint builds up and the hot air in the dryer eventually sets it on
firel

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

70

And it's the same for programming errors and inconsistencies that may seem minor: they
build up over time! Just like in Becky and Ramon’s case: the code they are looking at is
inconsistent and full of simple mistakes. Not only are these problems causing bugs, they're
also getting in the way of maintaining the code effectively.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.3

71

The lowdown on linting

There are linters of all different shapes and sizes. Since they anaylze and interact with code,
they are usually specific to a particular langauge, e.g. pylint for Python. Some linters apply
generically to anything you might be doing in the language, and some are specific to
particular domains and tools, for example linters for working effectively with http libraries.

We'll be focusing on linters that apply generically to the language you are using. Different
linters will categorize the problems they raise differently, but they can all be viewed as falling
into one of three buckets. Let's take a look at the problems Becky noticed and how they
demonstrate the three kinds of problems:

Bugs: code misuses that lead to
/ behavior you probably don't want!

*+ Some of the games wouldn’t even compile! And a lot of the
other bugs are caused by simple mistakes like trying to use
variables that aren't initialized

* There are lots of mistakes which do not actually cause bugs
but get in the way of Becky’s work, for example unused
variables.

errors: code  * 1he code in every single game looks different from the one
misuses that dp  Defore it! The inconsistent style makes it hard for her to debug.
not aftect \
behavior

513&3 viglations: inconsistent

code style decisions and
code smells

4 What's the difference between static analysis and linting? A
Using static analysis lets you analyze your code without actually executing it. In
the next chapter we’ll talk about tests, which are a kind of dynamic analysis because
you have to actually execute your code.

Linting is a kind of static analysis; the term static analysis can encompass many
different ways of analyzing code. In the context of CI/CD, most of the static analysis
we’ll be discussing is done with tools called linters, otherwise the distinction isn’t
that important.

The name linter comes from the 1978 tool of the same name created by Bell Labs.
Most of the time, especially in the context of CI/CD, the terms static analysis and
linting can be used interchangably, but technically there are forms of static analysis
that go beyond what linters can do.

\\ S

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.4

72

The tale of pylint and many many issues

Since the games for Super Game Console are all in Python, Becky and Ramon decide that
using the tool pylint is a good place to start.
This is the layout of the Super Game console codebase:

console/

docs/

games/ #A
test/

setup.py

LICENSE
README . md
requirements.txt

#A The games directory is where they store all the developer submitted games!

The folder games has thousands of games in it! Becky is excited to see what pylint can tell
them about all these games. She and Ramon watch eagerly as Becky types in the command
and presses enter...

pylint games

And they are rewarded with screen after screen filled with warnings and errors! This is a
small sample of what they see:

games/bridge.py:40:0: WO311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)

games/bridge.py:41:0: WO311: Bad indentation. Found 4 spaces, expected 8 (bad-indentation)

games/bridge.py:46:0: WO311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)

games/bridge.py:1:0: C0114: Missing module docstring (missing-module-docstring)

games/bridge.py:3:0: C0116: Missing function or method docstring (missing-function-
docstring)

games/bridge.py:13:15: E@601: Using variable ‘board’ before assignment (used-before-
assignment)

games/bridge.py:8:2: WO612: Unused variable ‘cards’ (unused-variable)

games/bridge.py:23:0: C0103: Argument name “x” doesn’t conform to snake_case naming style
(invalid-name)

games/bridge.py:23:0: C0116: Missing function or method docstring (missing-function-
docstring)

games/bridge.py:26:0: C0115: Missing class docstring (missing-class-docstring)

games/bridge.py:30:2: C0116: Missing function or method docstring (missing-function-
docstring)

games/bridge.py:30:2: R0201: Method could be a function (no-self-use)

games/bridge.py:26:0: RO903: Too few public methods (1/2) (too-few-public-methods)

games/snakes.py:30:4: C0103: Method name “do_POST” doesn’t conform to snake_case naming
style (invalid-name)

games/snakes.py:30:4: C0116: Missing function or method docstring (missing-function-
docstring)

games/snakes.py:39:4: C0103: Constant name “httpd” doesn’t conform to UPPER_CASE naming
style (invalid-name)

games/snakes.py:2:0: WO611: Unused import logging (unused-import)

games/snakes.py:3:0: WO611: Unused argv imported from sys (unused-import)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

73

é What about other languages and linters? A
Becky and Ramon are using python and pylint, but the same principles apply
regardless of the language or linter you are using. All good linters should give you
the same flexibility of configuration we’ll demonstrate with pylint and catch the
same variety of issues.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.5

74

Legacy code: using a systematic approach

This is berrible, there rust
be ters of thousands of errors

here!

This i _qr@cd': Just Hhink,
hows miuch better the code will
be afterwere done!

Trn really overwhelrmed)

Dot Lorru, e Bdt o plant

The first time you run a linting tool against an existing codebase, the number of issues it
finds can be overwhelming! (In a few pages we'll talk about what to do if you don’t have to
deal with a huge existing codebase.)

Fortunately Becky has dealt with applying linting to legacy codebases before and has a
systematic approach that she and Ramon can use to both speed things up and use their time
effectively.

1. Before doing anything else, they need to configure the linting tools. The options that
pylint is applying out of the box might not make sense for Super Game Console.

2. Next, measure a baseline and keep measuring. Becky and Ramon don’t necessarily
need to fix every single issue; if all they do is make sure the number of issues goes
down over time, that’s time well spent!

3. Once they've got the measurements, every time a developer submits a new game,
they can measure again, and stop the game from being submitted if it introduces
more problems. This way the number won’t ever go up!

4. At this point, Becky and Ramon have ensured things won’t get any worse; with that in
place they can start tackling the existing problems. Becky knows that not all linting
problems are created equal, so she and Ramon will be dividing and conquering so that
they can make the most effective use of their valuable time.

we cant Fix all of these! This is
impossivle!

ule don't have tol

The key to Becky’s plan is that she knows that they don’t have to fix everything: just by
preventing new problems from getting in, they've already improved things. And the truth is,
not everything has to be fixed - or even should be.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

75

4.6 Step 1: Configure against coding standards

Ramon has been looking through some of the errors pylint has been spitting out and notices
that it's complaining they should be indenting with 4 spaces instead of 2:

bridge.py:2:0: WO311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)

/f

Already familiar
with configuring

inti 7

- linting?
Then you can probably
skip this! Read this
page if you've never

configured a linting
tool before.

Becky, this error is wrong,
our coding standard actually
SOLE to use A spoces.

wait, we hove ac&xiir\_q
stondard?

well, sort of, but no one really
Follows it

This is often the case when coding standards aren’t backed
up by automation, so Becky isn’t surprised. But the great news
is that the (currently ignored) coding standards have most of

the information that Becky and Ramon need, information like: When evaluating lint-
ing tools, expect them

e Indent with tabs or spaces? If spaces, how many to be configurable. Not
spaces? all  codebases and
e Are variables named with snake_case or camelCase? teams are the same, so

. . - it’s important to be
e Is there a maximum line length? What is it? P .
able to tune your linter.

The answers to these questions can be fed into pylint as Linters need to work

™

e
[ Features to look for

configuation options, into a file usually called .pylintrc. for you, "gf the other
Becky didn't find everything she needed in the existing Wway around: y
coding

style, so she and Ramon had to make some decisions themselves. They invited the rest of
the team at Super Game Console to give input as well, but there were some items that no
one could agree on; in the end, Becky and Ramon just had to make a decision. When in
doubt, they leaned on Python language idioms, which mostly meant sticking with pylint’s
defaults.

4 Automation is essential to maintain coding standards

Without automation, it’s up to individual engineers to remember to apply coding
standards, and it’s up to reviewers to remember to review for them. People are peo-
ple: we’re going to miss stuff! But machines aren’t: linters let us automate coding
standards so no one has to worry about them.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.7

76

Step 2: Establish a baseline

Now that Becky and Ramon had tweaked pylint according to the existing and newly
established coding standard, they had slightly less errors, but still in the tens of thousands.

.

Becky knows that even if she and Ramon left the codebase exactly the way it is, by just
reporting on the number of issues and observing it over time, this can help motivate the
team to decrease the number of errors. And in the next step they’ll use this data to stop the
number of errors from going up.

Becky writes a script that runs pylint and counts the number of issues it reports. She
creates a pipeline that runs every night and publishes this data to a blob store. After a week
she collects the data and creates this graph showing the number of issues:

This is still Wwoy more errors
than | wart to tackje!

Lets $ind out exactly how
many and start tracking them!

#0000

85000
80000
75000
70000

March 3 Macch 4 March § March 6 March 7

The number just keeps

qoing up and up! This is is
hopeless!

The number keeps going up because even as Becky and Ramon work on this, developers
are eagerly submitting more games and updates to Super Game Console. Each new game
and new update has the potential to include a new issue.

\

d Do I need to build this myself?
Yes, in this case, you probably will. Becky had to write the tool herself to measure
the baseline number of issues and track them over time. If you want to do this,
there’s a good chance you'll need to build the tool yourself. This will depend on the
language you are using and the tools available; there are also services you can sign
up for that will track this information for you over time. Most CI/CD systems do
not offer this functionality because it is so language and domain specific.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.8

77

Step 3: Enforce at submission time

Ramon noticed that as submissions came in, the number of issues pylint was finding was
going up, but Becky has a solution for that: block submissions that increase the number of

issues. This means enforcing a new rule on each pull request:

Every pull request must either reduce the number of linting issues or leave it the same.

Becky creates this script to add to the pipeline that Super Game Console runs against all

pull requests:

# when the pipeline runs, it will pass to this script
# paths the files that changed in the pull request
paths_to_changes = get_arguments()

# run the linting against the files that changed to see
# how many problems are found
problems = run_lint(paths_to_changes)

# becky created a pipelines that runs every night and
# writes the number of observed issues to a blob store;
# here the lint script will download that data
known_problems = get_known_problems(paths_to_changes)

# compare the number of problems seen in the changed code
# to the number of problems seen last night
if len(problems) > 1len(known_problems):
# the pull request should not be merged if it increase the
# number of linting issues
fail( ‘number of lint issues increased from {} to {}’.format(
len(known_problems), len(problems)))

The next step is for Becky to add this to the existing pipeline that runs against every pull

request.

/—\
Shouldn’t you look

at more than just the
number of issues?

It’s true that just com-
paring the number of
issues glosses some
things over; for exam-
ple, the changes could
fix one issue but intro-
duce another. But the
really important thing
for this situation is the
overall trend over time,
and not so much the
individual issues.

E

Every pull request must either reduce the number of linting issues or leave it the same.

Pt
Run Tests For All Build Upltc())a;lt:n;:lge(s)
Changed Game Code Game Image(s) ging

\

Green field or small code base
We’ll talk about this a bit more in a few pages, but if you're working with a small or
brand new codebase, you can skip measuring the baseline and just clean up every-
thing at once. Then, instead of adding a check to your pipeline that ensures the
number doesn’t go up, add a check that fails if linting finds any problems at all.

©Manning Publications Co. To comment go to liveBook

Registry



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.9

78

Step 3: Enforce at submission time

Becky wants her new check to be run every time a developer submits a new game or an
update to an existing game.

Super Game Console accepts new games as pull requests to their GitHub repository. They
already make it possible for developers to include tests with their games and they run those
tests on each pull request. This is what the pipeline looks like before Becky’s change:

/ﬂ
Run Tests For All Build
Changed Game Code | = Game Image(s)

GE=

Upload Image(s)
to Staging

Registry

Games authors can The phasical hardware Lasﬂ5 the image is
include unit tests. 1$ Lor Super Game uploaded to a reaiskra.
the tests exist for a Console runs each Since this is happenign on o
game that o pull game as a. container, pull request, the image is
request is adding or so when o pull request only uploaded %o a staging
updating, they are run. changes a. game, o registry. Someone
new image is built. reviewing the pull request
can pull and run the image
‘o {Y‘B it out.

Becky wants to add her new check to the pipeline that Super Game Console runs against
every pull request.

6ecK3 decides to run
the hnﬁns check in
payailel aith the unt Changed Game Code
tests. There is no

reason for one o block

*:heotherandthiswaﬂ )

Run Tests For All

Build
Game Image(s)

developers will get o Ensure # of linting =
con see all the issues <= baseline
problems with their

code and fix them at ~

once.

Now, whenever a developer opens a pull request to add or change a Super Game Console
game, Becky'’s script will run. If this pull request increase the number of linting issues in the
project, the pipeline will stop. The developer must fix this before the pipeline will continue to
building images.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.10

79

Step 4: Divide and conquer

#5000
83000
75000
79000
Mach® March M
0 1

March 3 March & March S March & March 7 h March  March
2 13

Okoy the number ot issues
isnt qoiﬁq up, buk itisnt going
down either.

Becky and Ramon have stopped the problem from getting worse. Now the pressure is off
and they are free to start tackling the existing issues, confident that more won’t be added.
It's time to start fixing issues! But Ramon quickly runs into a problem...

ez

Making ANY changes, including changes that fix linting issues, has the risk of introducing
more problems.

So why do we do it? Because the reward outweighs the risk! And it ONLY makes sense to
do it when that’s the case. Let’s take a look at the rewards and the risks when we fix linting
problems:

We can determine some intersting things from this list. The first reward is about catching
bugs, which we need to weigh against the first risk of introducing new bugs.

Hm, interesting, thot
game hosnt ciwxge,d in fuo
yeors, and this is the Frst bug
it's had in o long time.

Oh ro Backy, | introduced ’
anews bua into Super Snakes
and Ladders!

Reunrdtunhnsmnmtchbuss R.'ls.Hl:moHlng ) can
Reward a: Linting helps remove introduce new bugs
distracting errors _ o

Risk a: ana hnhna issues
Reward 2: Consistent code is takes time
easier to maintain

Ramon introduced a new bug into a game that didn’t have any open reported bugs. Was
it worth the risk of adding a bug to a game that, as far as everyone could tell, was working
just fine? Maybe not!

The other two rewards (2 and 3) are only relevant when the code is being changed. If
you don't ever need to change the code, it doesn’t matter how many distracting errors it has,
or how inconsistent it is.

Ramon was updating a game that hasn't had a change in two years. Was it worth taking
the time and risking introducing new bugs into a game that wasn’t being updated? Probably
not! He should find a way to isolate these games so he can avoid wasting time on them.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

80

4.11 Isolation: Not everything should be fixed

I¥ no one is repor*cing any bugs, the
return on investment con be small.

Reword i Linting con a— There will always be bugs; the

coteh bugs question is whether or not they are
worth m’cchins

Rewaord a: L.ini‘ing helps

remove clis.krm:!cins

errors ﬂi\\ These two rewar ds are only relevant

Reward 2: Consistent i¥ you expect to actually make

code ie easier to Chanaes.ﬂ: the code. I} H,cwre never

osmtoin ‘\_ going to touch the code again, why

spend the time and risk in’croch.cina
new bu.ss?

Becky and Ramon look at all the games they have in their library, and they identify the
ones that change the least. These are all more than a year old and the developers have
stopped updating them. They also look at the number of user reported bugs with these
games. They select the games which haven’t changed in mor than a year and don’t have any
open bugs, and move them into their own folder.

Their codebase now looks like this:

.pylintrc #A
console/
docs/
games/

frozen/ #B
test/
setup.py
LICENSE
README . md
requirements.txt
[MASTER]
ignore=games/frozen

#A The configuration file for pylint that Becky and Ramon made in Step 1

#B These games haven’t been updated in more than a year and have no open bugs. They don’t expect changes, so it's
okay to exclude them from the linting check

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.12

81

Enforcing isolation

: IIIII|I|I|
75000
70000

Much Much MBh Mih Mach Merch Wh Mah Meh Mach Mexh

i

wow that got rid of 0% of
our errors: were maKing

PTO%\’E’ SS

g

And to be extra safe, Becky created a new script that made sure that no one was making

changes to the games in the frozen directory:

# when the pipeline runs, it will pass to this script
# paths the files that changed in the pull request
paths_to_changes = get_arguments()

# instead of hardcoding this script to look for changes
# to games/frozen, load the ignored directories from

# .pylintrc to make this check more general purpose
ignored_dirs = get_ignored_dirs_from_pylintrc()

# check for any paths that are being changed which are in

# the directories being ignored

ignored_paths_with_changes = get_common_paths(
paths_to_changes, ignored_dirs)

if len(ignored_paths_with_changes) > @:
# the pull request should not be merged if it
# includes changes to ignored directories
fail(‘linting checks are not run against {},
‘“therefore changes are not allowed’.format(
ignored_paths_with_changes))

'/ But what if you
NEED to change a
frozen game?

This error message
should include some
guidance for what to
do if that’s the case -
and the answer is that
the submitter will need
to then move hte game
out of the frozen folder
- and then deal with all
the linting issues which
would undoubtedly be
surfaced as a result!

H

Next she added it to the Pipeline that runs against pull requests:

Run Tests For All
Changed Game Code

Ensure # of linting
issues <= baseline

Upload Image(s)
to Staging
Registry

Build

- Game Image(s)

Ensure there are no
changes to
games/frozen

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.13

82

Not all problems are created equal

Okay NOW it was finally time to start fixing problems, right? Ramon dove right in, but two

days in he was frustrated:
\- .
(=F 3 —

Becky and Ramon want to focus on fixing the most impactful issues first. Let’s look again
at the rewards and risks of fixing linting issues for some guidance:

Becky # took me
o dowgs to Fix all the linting
issues in Super Checkers! How

are we going to Fix

That's a.good pdint, let's G'-\l'&"jﬂ"inq??

focus on the mest important
issuzs First!

Reward I: Linting can

coteh buss RisK I: modﬁing chanses can
Reward a: Linting helps introduce new buss
remove dis’crac’dns

Risk &: F’\x'ms I'\nﬁns issues

rors
-t takes time

Reward 32: Consistent
code is easier to
maintain

Ramon is running smack into Risk 2: it’s taking a lot of time for him to fix all the issues.
So Becky has a counterproposal: fix the most impactful issues first. That way they can get
the most value for the time they do spend, without having to fix absolutely everything.

So which issues should they tackle first? The linting rewards happen to correspond to
different types of linting issues:

Bugs e Reward I: Lmhna can
cotch bugs
Reward a: Linﬁng helps
errors ~——" remove d\s’cro.cﬁng
errors

Reword 3: Consistent
style ~—— > code is easier to
moantain

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.14

83

Types of linting issues

The types of issues that linters are able to find can fall into three buckets: bugs, errors and
style.

Bugs found by linting are common misuses of code that lead to undesirable behavior, for
example:

e Uninitialized variables

Buns
e Formatting variable mismatches ng

Errors found by linting common misuses of code that do not affect behavior but either
cause performance problems or interfere with maintainability. For example:

e Unused variables

errors

e Aliasing variables

And lastly the style problems found by linters are inconsistent application of code style
decisions and code smells, for example:

e Long function signatures
S{HIB
While it would be great to fix all of these, if you only had time to fix one set of linting

issues, which would you choose? Probably bugs, right? Makes sense, since these affect the
acutal behavior of your programs! And that’s what the hierarchy looks like:

e Inconsistent ordering in imports

Buos ——> Reward I Lin’dng con __—p Fixthese
“3 cakeh bugs Lirst!
Reward a: L.‘nnﬁng helps

errors — ™ remove distracting _——» These are mistokses,
errors but less impactful than

bugs. Fix these next.
Reward 2: Consistent

Style ~—™ code is easier to

——a Deal with the st}jle
maintain

issues i and when you
have time.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

84

4.15 Bugs first, style later

Bugs —> Reward I: L,inkinscan _——> Fixthese
“3 coteh bugs Lirst!

Reward &: Linting helps

o — > remove distracting _—» These are mistakes,
errors but less impactful than

bugs. Fix these next.

Exror:

Reward 3: Consistent

style —_ codg isAeasier to Deal with the styjle
maintain issues it and when you
have time.

Becky recommends to Ramon that they tackle the linting issues systematically. That way
if they need to switch to another project, they’ll know they time they spent fixing issues as
well used. They might even decide to time box their efforts: see how many issues they can
fix in two weeks, then move on.

How can they tell which issues are which? Many linting tools categorize the issues they
find. Let’s look again at some of the issues pylint found:

games/bridge.py:46:0: WO311: Bad indentation. Found 2 spaces, expected 4 (bad-indentation)
games/bridge.py:1:0: C0114: Missing module docstring (missing-module-docstring))
games/bridge.py:13:15: E@601: Using variable ‘board’ before assignment (used-before-
assignment)
games/bridge.py:8:2: WO612: Unused variable ‘cards’ (unused-variable)
games/bridge.py:30:2: RO201: Method could be a function (no-self-use)
games/bridge.py:26:0: RO903: Too few public methods (1/2) (too-few-public-methods)
games/snakes.py:30:4: C0103: Method name “do_POST” doesn’t conform to snake_case naming
style (invalid-name)

Each issue has a letter and a number. pylint recognizes 4 categorize of issues: E is for
error, which is the type we are calling bugs. W for warning is what we are calling errors, and
the last two, C for convention and R for refactor are what we are calling style.

Ramon creates a script and tracks the number of errors of each time as they work for the
next week:

Bugs, Errors and Style
Style Erors [l Bugs

90000
80000
70000
60000
50000
40000
30000
20000
10000
0

Maren 17 Mareh 18 March 19 Mareh 20 March 21

The overall number of issues stays fairly high, but the number of bugs - the most
important type of linting issue - is steadily decreasing!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

85

4.16  Jumping through the hoops

we're down to less
than half the issues we

storted with, and none are

bugs!

Nice! Ve been going

sut game developers
are ur\ho{;pﬂ about all the
issues we're finding in every
pull request

Letme quess,
ﬁ\eLj think ﬁ\elj\'e done, then
they open the pull request and
txuddenhj h\etj have a bunch
more work?

1 Knows what to dot

It can be frustrating to think you're done, just to encounter a whole new set of hoops to
jump through.

But the answer here is pretty simple: encorporate linters into your development process.
How do you do this, and how do you make it easy for the developers you are working with?

1. Commit the configuration files for your linting alongside your code. Becky and Ramon
have checked in the .pylintrc code they’re using right into the Super Game Console
repo. This way developers can use the exact same configuration that will be used by
the CI/CD pipeline and there will be no surprises.

2. Run the linter as you work. You could run it manually, but the easiest way to do this is
to use your IDE (Integrated Development Environment). Most IDEs, and even editors
like vim, will let you integrate linters and run them as you work. This way when you
make mistakes, you'll find out immediately.

Becky and Ramon send out a PSA to all the developers they work with recommending

they turn on linting in their IDEs. They also add a message when the linting task fails on a
pull request reminding the game developers that they can turn this on.

(" What about formatters? A
Some languages make it easy to go a step beyond linting and eliminate many coding
style questions by providing tools called formatters which automatically format
your code as you work. They can take care of issues such as making sure imports are
in the correct order and making sure spacing is consistent. If you work in a lan-
guage with a formatter, this can save you a lot of headaches! Make sure to integrate
the formatter with your IDE, and in your pipeline, run the formatter and compare

the output to the submitted code.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.17

86

Legacy code vs the ideal

Becky and Ramon didn't get a chance to fix every single issue because there was a lot of
code that already existed before they started linting. This means they have to keep tracking
the baseline and making sure that the number of issues doesn’t increase, or they have to
keep tweaking the pylint configuration to ignore the issues they’ve decided to just live with.

Styla Errors [ Bugs
90000
BO00D
To000
60000
50000
40000
30000
20000
10000

But what does the ideal look like, i.e. what if Becky and Ramon could spend as much time
as they wanted on linting, what state would they want to end up in?

If you are lucky enough to be working on a brand new or relatively small codebase, you
can shoot directly for this ideal.

The ideal: The linter produces O problems when run agianst your codebase.

Is this a reasonable goal to aim for? Yes! And even if you never get there, shooting for
the stars and landing on the moon isn’t too bad.

If you're dealing with a new or small codebase, you don’t have to do everything that
Becky and Ramon did.

In steps 2 and 3 you’'ll notice that Becky and Ramon spend a lot of time focusing on
measuring and tracking the baseline. Instead of doing that, take the time to work through all
of the problems. You can still apply the order as described in Step 4, that way if you get
interrupted for some reason, you've still dealt with the most important issues first, but the
goal is to get to the point where there are 0 problems.

Then, apply a similar check to the one that Becky and Ramon added in step 3, but
instead of comparing the number of linting problems to the baseline, require it to always be
0!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

4.18

4.19

4.20

87

Conclusion

Super Game Console had a huge backlog of bugs and issues, and the lack of consistent style
across all of their games made them hard to maintain.

Even though their existing codebase was so huge, Becky was able to add linting to their
processes in a way that brought immediate value. She did this by approaching the problem
iteratively. After re-establishing the project’s coding standards, she worked with Ramon to
measure the number of linting issues they currently had, and add checks to their pull request
pipeline to make sure that the number didn't increase.

As Becky and Ramon started working through the issues, they realized they were not all
equally important, so they focused on code that was likely to change, and tackled the issues
in priority order.

Summary

e Linting identifies bugs and helps keep your codebase consistent and maintainable.

e The ideal situation is that running linting tools will raise 0 errors, but with huge
legacy codebases, we can settle for at least not introducing more errors.

e Changing code always carries the risk of introducing more bugs, so it's important to
be intentional and consider if the change is worth it. If the code is changing a lot
and/or has a lot of known bugs, it probably is, but otherwise, you can isolate it and
leave it alone.

e Linting typically identifies three different kinds of issues, and they are not equally
important. Bugs are almost always worth fixing. Errors can lead to bugs and make
code harder to maintain, but aren’t as important as bugs. Lastly, fixing style issues
makes your code easier to work with, but these issues aren’t nearly as important as
bugs and errors.

Up next...

In the next chapter we’ll look at how to effectively include unit tests in your pipelines.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

88

Dealing with noisy tests

In this chapter
« Explain why tests are crucially important to continuous delivery

« Create and execute a plan to go from noisy test failures to a useful
signal

« Understand what makes tests noisy
« Treat test failures as bugs
 Define flakey tests and understand why they are harmful

« Retry tests appropriately

It'd be nearly impossible to have Continuous Delivery without tests! For a lot of folks, tests
are synonymous with at least the Continuous Integration (CI) side of CD, however, over time
some test suites seem to degrate in value. In this chapter we’ll take a look at how to take
care of noisy test suites.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

89

5.1 Continuous Delivery and tests

How do tests fit into Continuous Delivery? Let’s look again at what we discussed in chapter 1.

Continuous Delivery is all about getting to a state where:

1. You can safely deliver changes to your software at any time

2. Delivering that software is as simple as pushing a button

How do you know you can safely deliver changes? You need to be confident that your
code will do what you intended it to do. In software, we gain confidence about our code by
testing it. Tests confirm to us that our code does what we meant for it to do.

This book isn’t going to teach you to write tests -
there are many great books written on the subject you
can refer to! We're going to assume that not only do
you know how to write tests, but also that most modern
software projects have at least some tests defined for
them. It has become common knowledge that
production software needs tests.

In chapter 3 we talked about the importance
continuously verifying every change. It is crucially
important that tests are run not only frequently,
but on every single change! This is all well and good
when a project is new and only has a few tests, but as
the project grows, so do the suites of tests and they can
become slower and less reliable over time. In this
chapter we're going to look at how to maintain these
tests over time so you can keep getting a useful signal,
and be confident you're always in a releasable state!

Vocab time

Test suite is a term
for a grouping of
tests. It often means
“the set of tests
which test this par-
ticular piece of
software.”

)

/‘% Question

humans performing a QA role!

Q: Where does QA fit into Continuous Delivery?

A: With all this focus on test automation, you might wonder
it Continuous Delivery means getting rid of the QA (Quality
Assurance) role. It doesn’t! The important thing is to let
humans do what humans do best: explore and think outside
the box. Automate when you can, but automated tests will
always do exactly what you tell them. If you want to discover
new problems you’ve never even thought of, you'll need

~

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

90

5.2 Ice Cream for All outage

One company that’s really struggling with their test
maintenance is the wildly successful ice cream delivery
company, Ice Cream for All. Their unique business
proposition is that they connect you directly to ice cream
vendors in your area so that you can order your favorite ice
cream and have it delivered directly to your house within
minutes!

Ice Cream for All connects users to thousands of ice
cream vendors. To do this, the Ice Cream service needs to be
able to connect to each vendor’s unique APIL.

July 4 is a peak day for Ice Cream for All. Every year on
July 4, Ice Cream for All receives the most ice cream orders
they receive all year. But this year, they had a terrible
outage, during the busiest part of the day! The Ice Cream
Service was down for more than an hour.

The team working on the Ice Cream Service wrote up a
retrospective to try to capture what went wrong and fix it in
the future, and had an interesting discussion in the
comments:

/ %Vocab time \

A retrospective,
sometimes called a
post mortem, is an
opportunity to
reflect on processes,
often when some-
thing goes wrong,
and decided how to
improve in the
future.

Retrospective: Ice Cream Service Outage July 4

Impact:
80% of Ice Cream Service requests errored with
500 from July 4 19:00 UTC to 20:13 UTC

Root cause:

Pull Request #20034 introduced a regression
(previously fixed in issue #9877) into the Ice
Cream API Adpater class

Duration: 73 minutes
Resolution: Piyush reverted the changes from
#20034 and manually built and pushed a new

image for the Ice Cream Service

3 of service impacted: 93% of requests to the
Ice Cream service failed

Detection: The on call engineer (Piyush) as
paged when the SLO violation was detected

@ Nishi

I'm a bit confused, if we
fixed this already, why
did it happen again?
Didn’t we have tests?

& Piyush

We do have tests for it,
and actually it looks like
those tests failed on
#20034

7 Nishi
What?? Why did we
merge #20034 anyway?

© Pete

That test fails all the
time, so unfortunately
we didn’t realize it had
caught a real problem
this time :(

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

91

5.3 Signal vs. noise

Ice Cream for All has a problem with noisy tests. Their tests fail so frequently that their
engineers often ignore the failures. And this caused them real world problems: ignoring a
noisy test cost them business on their busiest day of the year!

What should the team do about their noisy tests? Before they do anything, they need to
understand the problem. What does it mean for tests to be noisy?

The term “noisy” comes from “the signal to noise ratio” which compares some desired
information (the signal) to interferring information that obscures it (the noise).

i L
\,,,!Hm!m”'['n"/!/, i

| [ WY TR R N—

pr——
- el

When we're talking about tests, what is the signal? What is the information that we're
looking for? This is an interesting question, because your gut reaction might be to say the
signal is passing tests. Or maybe the opposite, that failures are the signal.

The answer is: both! The signal is the information, the noise is anything that distracts us
from the information.

When tests pass, this gives us information: we know the system is behaving as we expect
it to (as defined by our tests). When tests fail, that gives us information too. And it's even
more complicated than that. In the chart below you can see that both failures and successes
can be signals and they can be noise.

Tests | Succeed Fail

Signal [ Passes and should pass (i.e. catches the errors it was meant | Failures provide new information
to catch)

Noise | Passes but shouldn’t (i.e. the error condition is happening) Failures do not provide any new
information

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

92

5.4 Noisy successes

This can be a bit of a paradigm shift, especially if you are used to thinking of passing tests as
providing a good signal, and failing tests as causing noise. This can be true, but as we've just
seen it’s a bit more complicated:

The signal is the information, the noise is anything that distracts us from the information.

e Successes are signals unless they are covering up information
e Failures are signals when the provide new information and noise when they don't

When can a successful test cover up information? One example is a test that passes but
really shouldnt, aka a noisy success. For example, in the orders class, a method recently
added to the Ice Cream For All codebase was supposed to return the most recent order, and
this test was added for it:

def test_get_most_recent(self):
orders = Orders()
orders.add(datetime.date(2020, 9, 4), “swirl cone”)
orders.add(datetime.date(2020, 9, 7), “cherry glazed”)
orders.add(datetime.date(2020, 9, 10), “rainbow sprinkle”)

most_recent = orders.get_most_recent()
self.assertEqual(most_recent, “rainbow sprinkle”)

The test currently passes - but it turns out that the method get most recent is actually
just returning the last order in the underlying dictionary:
class Orders:

def __init_ (self):
self.orders = collections.defaultdict(list)

def add(self, date, order):
self.orders[date].append(order)

def get_most_recent(self):
most_recent_key = list(self.orders)[-1]
return self.orders[most_recent_key][@] #A

#A There are a number of things wrong with this method, including not handling the case where no orders have been
added, but more importantly, what if the orders are added out of order?

The method get most recent is not actually paying attention to when the orders are made
at all, it is just assuming that the last key in the dictionary corresponds to the most recent
order. And since the test just so happens to be adding the most recent order last (and since
Python 3 dictionary ordering is now guaranteed to be insertion order), the test is passing.

But since the underlying functionality is actually broken, the test really shouldn't be
passing at all - and this is what we call a noisy success: by passing, this test is covering up
the information that the underlying functionality actually does not work as intended.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

93

5.5 How failures become noise

We've just seen how a test success can be noise - but what about failures? Are failures
always noise? Always signal? Neither! The answer is that Failures are signals when the
provide new information and noise when they don’t. Remember:

The signal is the information, the noise is anything that distracts us from the information.

e Successes are signals unless they are covering up information
e Failures are signals when the provide new information and noise when they don't

When a test fails initially, it gives us new information: it tells us there is some kind of
mismatch between the behavior the test expects and the actual behavior. This is a signal.

That same signal can become noise if we ignore the failure. The next time the same
failure occurs, it's giving us information that we already know: we already knew that the test
had failed previously, this new failure is not new information. By ignoring test failure, we
have made that failure into noise.

This is especially common if it's hard to diagnose the cause of the failure, and if the
failure doesn’t always happen (say the test passes when run as part of the CI automation,
but fails locally), it's much more likely to get ignored, therefore creating noise.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

.

94

— @ It’s your turn: evaluating signal vs. noise

Let’s take a look at some of the test situations that Ice Cream for All is
dealing with and categorize them as noise or signal.

1.

While working on a new feature around favoriting ice cream flavors, Pete
creates a pull request for his changes. One of the UI tests fails because
Pete’s changes accidentally moved the “order” button from the expected
location to a different one.

While running the integration tests on his machine, Piyush sees a test fail:
TestOrderCancelledWhenPaymentRejected He looks at the
output from the test, looks at the test and the code being tested, and
doesn’t understand why it fails. When he re-runs the test, it passes.

. Although TestOrderCancelledWhenPaymentRejected failed

once for Piyush, he can’t reproduce the issue and so he merges his changes.
Later on, he submits some other change and sees the same test fail against
his pull request. He reruns it, and it passes, so he ignores the failure again
and merges the changes.

Nishi has been refactoring some of the code around displaying order
history. While doing this, she notices that the logic in one of the tests is
incorrect: TestPaginationLastPage is expecting the generated
page to include 3 elements but it should only include 2, and there is
actually a bug in the pagination logic.

~ @ Answers

1.

Signal. The failure of the UI test has given Piyush new information: that he
moved the “order” button.

. Signal. Piyush didn’t understand what caused the failure of this test, but

something caused the test to fail, and this revealed new information.

Noise. Piyush suspected from his previous experience with this test that
something might be wrong with it. Seeing the test fail again tells him that
the information he got before was legitimate, but by allowing this failure
and merging, he has created noise.

Noise. The test Nishi discovered should have been failing; by passing it was
covering up information.

S

J

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

95

5.6 Going from noise to signal

Alerting systems are only useful if people pay attention to the alerts. When they are too
noisy, people stop paying attention, so they may miss the signal.

Car alarms are an example of this: if you live in a neighborhood where a lot of cars are
parked, and you hear an alarm go off, are you rushing to your window with your phone out,
ready to phone in an emergency? It probably depends on frequently it's happened; if you've
never heard a alarm like that, you might. But if you hear them every few days, more likely
you're thinking, "Oh someone bumped into that car. I hope the alarm gets turned off soon.”

What if you live or work in an apartment building and the fire alarm goes off? You
probably take it seriously: begrudgingly exit the building. What if it happens again the next
day? You'll probably leave the building anyway because those alarms are LOUD but you’d
probably start to doubt that it's an actual emergency, and the next day you’d definitely think
it's a false alarm.

6’?@,‘)’, .}) GKK |HU(7

The longer we tolerate a noisy signal, the easier it is to ignore it and the less effective it

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

96

5.7 Getting to green

The longer we tolerate noisy tests, the easier it is to ignore
them - even when there is real information there - and the less %\kxab time
effective they are. Leaving them in this state seriously ( \
undermines their value. People get desensitized to the failures
and feel comfortable ignoring them. Test successes are
often visualized as
green while failures
are often red; getting
to green means that
all your tets are
passing!

o J

This is the same position that Ice Cream for All is in: their
engineers have gotten so used to ignoring their tests that
they’'ve let some major problems slip through, which were
actually caught by the tests, and they’ve actually lost money as
a result.

How do they fix this? The answer is to get to green as fast as possible, i.e. get to a state
where the tests are in a consistent state (passing) and any change in this state (failing) is a
real signal that needs to be investigated.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

97

| cant
believe we had o test
that cmagh(’ the bug that coused
the oud'age and we \gnored

s like Pete said; our
tests are just too MES\j'. ¢ we

look ot every failure, we'l ever
get any feotures in.

If thot's the case, wele Sok ‘o

, stop cxdd‘mg features.

welll
freeze feoture
development, just for a sprint or
two, and %ix all of these

all that time, just for
tests?

Our tests are worthless i¢
we aren't paying aftention to
them.

Nishi is totally right: creating and maintaining tests isn't
something we do for the sake of the tests themselves; we

do this because we believe they add value and most of that Tests provide value

value is the signals they give us. in other ways too, for
So she has made a hard decision: stop adding features example creating unit

until all the tests are fixed. tests can help improve

the quality of your
code; but that’s outside
the scope of this book.
Look for a book about

unit testing to learn
more!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

98

5.8 Another outage!

The team did what Nishi requested: they froze feature development for two weeks and
during that time did nothing but fix tests. After the end of week 3, the test task in their
pipeline was consistently passing. They had gotten to green!

m—

A ——
Run Tests for Build Ice Cream Upload Ice Cream
Ice Cream Service )=V Service Image = Service Image
-

The team felt confident about adding new features again and in the third week, went
back to their regular work. At the end of that week, they had another release - and a small
party to celebrate. But at 3am, Nishi was roused from her sleep by an alert telling her ther
had been another outage.

/“% Noodle on it ~N

Did Nishi make a good call? She decided to freeze feature development for two
weeks, to focus on fixing tests, and the end result was another outage. Looking
back at that decision, an easy conclusion to draw is that the (undoubtedly expen-
sive) feature freeze was not worth it and did more harm than good.

Nishi was faced with a decision that many of us will often face: maintain the
status quo (where, for Ice Cream for All, this meant noisy tests that unexpectedly
cause outages) or take some kind of action. Taking action means trying some-
thing out and making a change; anytime you change the way you do things,
you're taking a risk: the change could be good or it could be bad. Often, it’s both!
And, often, when changes are made, there can be an adjustment period during
which things are definitely worse, though ultimately they end up better.

What would you do if you were in Nishi’s position? Do you think she made the
right call? What would you do differently in her shoes, if anything?

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

99

5.9 Passing tests can be noisy

Nishi jumped into the team’s group chat to investigate the outage she had just been alerted
to:

So@curdua 2:00am

Alert Percenkage of SO0 errors is past
SLO threshold

Hey, does anyone Know what's

going on?

Looks like our last
release had a. couple of
regress'\ons, we're ro\\'\ng back

How can thot be? What
about our tests, | ’chough& we U~
fixed them all?

Depends on what you mean
by fixed..

That sounds ominous, what do
you mean?

Sounds ke we
need to have o talk about
what it actually meons to Qi
the tests.

just Flakes, so we decided to retry

them - and there were a few we
couldnt S"\gure out ot all, 0 we
disabled them for now..

The team had felt good about their test suite because all

the tests were passing, but unfortunately they hadn’t %Vocab time
actually removed the noise - they’d just changed it. Now, ( )
the successful tests were the noise.

Getting the test suite from noise to signal was the right Test successes are
call to make, and getting the suite from often failing to often visualized as
green was a good first step, because it combats green while failures
desensitization. are often red; getting

But just getting to green isn't enough: test suites that

to green means that
pass can still be noisy, and can hide serious problems.

all your tets are
passing!

. J

The team at Ice Cream for All had fixed their desensitization problem, but they hadn't
actually fixed their tests.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

100

~ @ Takeaway

Nishi made a good call, but getting to green on its own isn’t enough. The goal
is to get to a state where the tests are in a consistent state (passing) and any change
in this state (failing) is a real signal that needs to be investigated. When dealing
with noisy test suites:

1. Get to green as fast as possible.

\ 2. Actually FIX every failing test; just silencing them adds more noise.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

101

5.10 Fixing test failures

You might be surprised to learn that it’s not totally straightforward to know if you have fixed
a test! It comes back to the question of what constitutes a signal and what is noise when it
comes to tests.

People often think that fixing a test means going from a failing test to a passing test. But
there is more to it than that!

Technically fixing the test means that you have gone from the state of the test
being noise to it being a signal. This means that there are tests that are currently passing
which may need “fixing.” More about that in a bit, for now let’s talk about fixing tests that
are currently failing.

Every time a test fails, this means one (or both) of two thing have happened:

1. The test was written incorrectly (i.e. the system was not intended to behave in the
way the test was written to expect).

2. There is a bug in the system (i.e. the test is correct and it’s the system that isn't
behaving correctly).

What's interesting is that we write tests with situation (2) in mind, but when tests fail
(especially if we can’t immediately understand why), we tend to assume that the situation is
(1), i.e. that the tests themselves are the problem.

This is what is usually happening when people say their tests are noisy: their tests are
failing and they can’t immediately understand why, so they jump to the conclusion that
something is wrong with the tests.

But both (1) and (2) have something in common:

When a test fails, there is a mismatch between how the test expects the system to behave and how
the system is actually behaving.

Regardless of whether the fix is to update the test or to update the system, there is a
mismatch that needs to be investigated.

This is the point in the test’s lifecycle where there is the greatest chance that noise will be
introduced. The test’s failure has given you information, specifically that there is a mismatch
between the tests and the system. If you ignore that information, then every new failure
isn’t telling you anything new, it’s repeating what you already know: there is a mismatch.
This is how test failures become noise.

The other way you can introduce noise is by misdiagnosing case (2) as case (1). It is
often easier to change the test than it is to figure out why the system is behaving the way it
is; if you do this without really understanding the system’s behavior, you've created a noisy
successful test. Every time that test passes, it's covering up information: the fact that there
was a mismatch between the test and the system that was never fully investigated.

Treat every test failure as a bug and investigate it fully.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

102

5.11 Ways of failing: flakes

Complicating the story around signal and noise in tests, we have the most notorius kind of
test failure: the test flake.
Tests can fail in two ways:

1. Consistently: every time the test is run, it will fail
2. Inconsistently: sometimes the test succeeds, sometimes it fails, and the conditions
that make it fail are not clear
Tests that fail inconsistently are often called flakes or flakey, and when these tests fail,
this is often called flaking, because in the same way that you cannot rely on a flakey friend
to follow through on plans you make with them, you cannot depend on these tests to
consistently pass or fail.

wednesdag

Sure, I'd love to hang
out on Wednesdoy

Oh did we have plans?

whoops, sorrlj'.

Consistent tests are much easier to deal with than flakes - and much more likely to be
acted on (hopefully in a way that reduces noise). Flakes are the most common reason that a
test suite ends up in a noisy state.

And maybe because of that, or maybe just because it's easier, people do not treat flakes
as seriously as consistent failures.

o Flakes make test suites noisy
e Flakes are likely to be ignored and treated as not serious

This is kind of ironic, becuase we’ve seen that the noiser a test suite is, the less valuable
it is. And what kind of test is likely to make a test suite noisy? The flake, which we are likely
to ignore. What is the solution?

Treat flakes like any other kind of test failure: like a bug.

Just like any other case of test failure, flakes represent a mismatch between the system’s
behavior and the behavior that the system expects, the only difference is that there is
something about that mismatch that is non-deterministic.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

103

5.12 Reacting to failures

What went wrong with Ice Cream For All’'s approach? The had the right initial idea.

When tests fail, stop the line: don’t move forward until they are fixed.

This means: if you have failing tests in your codebase, it's important to get to green as
fast as possible, i.e. stop all merging into your main branch unil those failures are fixed. And
if it’s happening in a branch, don’t merge that branch until the failures are fixed.

But the question is: how do you fix those failures? You have a few options

1. Actually fix it. Ultimately the goal is to understand why the test is failing and either
fix the bug that is being revealed our update an incorrect test.

2. Delete the test. This is rare, but your investigation may reveal that this test was not
adding any value and its failure is not actionable. In that case, there’s no reason to
keep it around and maintain it.

3. Disable the test. This is an extreme measure and if it is done, it should only be done
temporarily. Disabling the test means that you are hiding the signal. Any disabled
tests should be investigated as fast as possible and either actually fixed (see above) or
deleted.

4. Retry the test. This is another extreme measure, and also hides the signal. This is a
common way of dealing with flakey tests. The reasoning behind this is rooted in the
idea that ultimately what we want the tests to do is pass, but this is incorrect: what
we want the tests to do is provide us information. If a test is sometimes failing, and
we cover that up by retrying it, we're actually hiding the information and creating
more noise. Retrying is sometimes appropriate, but rarely at the level of the test
itself.

Looking at these options, really the only good options are (1) and in some rare cases,
(2). Both (3) and (4) are stop gap measures that should only be taken temporarily, if at all,
because they add noise to your signal by hiding failures.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

104

5.13 Fixing the test: change the code or the test?

Ice Cream for All had rolled back their latest release and once again frozen feature
development as they looked into the tests they had tried to “fix” previously.

Looking back through some of the fixes that had been merged, Nishi noticed a disturbing
pattern: many of the “fixes” were changing only the tests, very few of them were changing
the actual code being tested. Nishi knew this was an antipattern.

For example, this test had been been flaking, so it was updated to wait longer for the
success condition:

def test submit_order(self):
orders = _generate_orders(5)

def test submit order(self): submit_orders(orders)

orders = generate orders(5) e - ) ) L

submit_orders (orders) # wait for all the orders to be processed .
events = get_events(PROCESSED) do&e = lambdaf ?en(qet_events(PHOCBSSED)) =5
Gelf.assertEEuaL(Len(events), 5) wait_for condition(TIMEOUT SECONDS, done)

events = get_events(PROCESSED)
self.assertEqual(len(events), 5

The test was initially written with an assumption in mind: that the order would be
considered acknowledged immediately after it had been submitted. And in fact that cod that
called submit orders was built with this assumption as well. But this test was flaking
because there was a race condition in submit_orders!

Instead of fixing this problem in the submit orders function, someone had updated the
test instead, which covered up the bug, and added a noisy success to the test suite.

They were in fact hiding the bug!

Whenever you deal with a test that is failing, before you make any changes, you have to
understand:

Is the test failing becuase of a problem with the actual code that is being tested? That is,
if the code acts like this when it is actually being used, is that what it should be doing? If it
is, then it's appropriate to fix the test. But if not, the fix shouldn’t go in the test: it should be
in the code.

This means making a mental shift from “let’s fix the test”, i.e. "making the test pass” to
“let’s understand the mismatch between the actual behavior of the code - and make the fix
in the appropriate place.”

Treat every test failure as a bug and investigate it fully.

Nishi asked the engineer who updated the test to investigate further; after finding the
source of the race condition, they were able to fix the underlying bug and the test didn't
need to be changed at all.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

105

5.14 The dangers of retries

Retrying an entire test is usually not a good idea, because ANYTHING that causes the failure
will be hidden.

Take a look at this test in the Ice Cream Service integration test suite, one of the tests
for their integration with Mr. Freezie:

# We don’t want this test to fail just because
# the MrFreezie network connection is unreliable
@retry(retries=3)
def test_process_order(self):
order = _generate_mr_freezie_order()
mrf = MrFreezie()
mrf.connect()
mrf.process_order(order)
_assert_order_updated(order)

During the development freeze, Pete had made the decision that this test should be
retried. His reasons were sound: the network connection to Mr. Freezie’s servers were known
to be unreliable, so this test would sometimes flake because it couldn’t establish a
connection successfully, and would immediately pass on a retry.

But the problem is that Pete is retying the entire test: this means that if the test fails for
some other reason, the test will still be retried. And that’s exactly what happened - it turned
out there was a bug in how they were passing orders to Mr. Freezie which made it so that
the total charge was sometimes incorrect - and when this happened in the live system, users
were being charged the wrong amount, leading to 500 errors and an outage.

What should Pete do instead? Remember that test failures represent a mismatch:

When a test fails, there is a mismatch between how the test expects the system to behave and how
the system is actually behaving.

Pete needs to ask himself the question we need to ask every time we investigate a test
failure:

Which represents the behavior we actually want: the test or the system?

A reasonable improvement on Pete’s strategy would be to change the retry logic to just
be around the network connection:

def test_process_order_better(self):
order = _generate_mr_freezie_order()
mrf = MrFreezie()

# We don’t want this test to fail just because
# the MrFreezie network connection is unreliable
def connect():

mrf.connect()
retry_network_errors(connect, retries=3)

mrf.process_order(order)
_assert_order_updated(order)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

106

5.15 Retrying revisited

Pete had improved his retry based solution by only retrying the part of the test that he felt
was okay to have fail sometimes, but in code review, Piyush took it a step further:

&) Piyush
Thanks for the fix Pete!! This is way better :)
Just wondering, in the code that actually calls MrFreezie.Connect(), do we
do the same retrying? I'm thinking that if the connection is so unreliable, users
are going to run into the same problem.

© Pete

Oh that’s a good point - you're right, if the Connect () call fails for any of our
integrations, we just immediately give up. I'll update the Ice Cream Service
code so that we are a bit more tolerant of network errors.

There were actually two bugs being covered up by the retry: in addition to missing the
bug with how orders were being passed to Mr. Freezie, there was a larger bug in that none of
the Ice Cream Service code was tolerant of network failures either (you don’t want your ice
cream order to fail just because of a temporary network problem, do you?).

Ice Cream for All was actually lucky that they caught the issues that the retry was
introducing so quickly. If there hadn’t been an outage, they may never have noticed, and
they probably would have used this retry strategy to deal with more flakey tests. You can
imagine how this can built up over time: imagine how many bugs they would be hiding after
a few years of applying this strategy.

Causing flakey tests to pass with retries introduces noise: the noise of tests that pass but shouldn’t.

The nature of software projects is that we are going to keep adding more and more
complxity, which means the little shortcuts we take are going to get blown up in scope as the
projet progresses.

Slowing down a tiny bit and rethinking stop gap measures like retries will pay off in the
long run!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

107

@ It’s your turn

\

Piyush is trying to deal with another flakey test in the Ice Cream service. This
test fails, but it’s happens less than once a week, even though the tests run at least

a hundred times per day, and it’s very hard to reproduce locally:
def test_add_to_cart(self):
cart = _generate_cart()
1temx:: = _gen?erate_ltems(S) This assertion
for item in items:

cart.add_item(item) /—someﬁmes Lails
)

self.assertEqual(len(cart.get_items()), 5

The cart is backed by a database. Every time an item is added to the cart, the
underlying database is updated, and when items are read from the cart, they are
read from the database.

1. Assume that what when the tests fail, the number of items in the cart is 4

instead of 5. What do you think might be going wrong?

2. What if the problem is that the number of items is 6 instead of 5, what
might be going wrong then?

3. If Piyush deals with this by retrying the test, what bugs might he risk
hiding?

4. Let’s say Piyush noticed this problem while he was trying to fix a critical
production issue. What can he do to make sure he doesn’t add more noise,
while not blocking his critical fix?

\

/"

@ Answers

1. If the number of items read is less than the number written, suggesting
there is a race somewhere; some kind of synchronization needs to be
introduced to ensure that reads actually reflect the writes.

2. If the number is greater, there might be a fundamental flaw in how items
are being written to the database.

3. Either of the above scenarios suggest flaws in the cart logic that could lead
to customer orders being lost and customers being over or under charged.

4. In this scenario, adding a temporary retry to unblock this work might be
reasonable, as long as the issue with test_add to_cart is subsequently
treated as a bug and the retry logic is quickly removed.

3

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

108

5.16 Why do we retry?

Given what we just looked at, you might be surprised that anyone retries failing tests at all.
If it's so bad, why do so many people do it, and why do so many test frameworks support it?
There are a few reasons:

1. There are often good reasons to have some
kind of retrying logic; for example in Pete’s
case he was right to want to retry network
connections when they fail. But instead of
taking the extra step of making sure the retry
logic is in the appropriate place, it's easier to
retry the whole test.

2. Another very compelling reason is that if you've

setup your pipelines appropriately (more on Temporary is

this in the next chapter!), then a failing test forever

blocks development and slows people down.

It's reasonable that people often want to do the Be careful whenever
quickest easiest thing they can do to unblock you make a Temporary

development; and in situations like that, using
retries as a temporary fix can be appropriate -
as long as it’s only temporary.

fix: these fixes reduce
the urgency of address-

3. It feels good to fix something, and it feels even 1ng the underly‘mg
better to fix something with a clever piece of pl‘Oblel'IL and before
technology; retries let you get immediate you know it, 2 years

satisfaction. have gone by and your
4. Most importantly, people often have the Temporary fix is now
mentality that the goal is to get the tests to perma nent.
pass, but that’s a misconception. We don't
make tests pass just for the sake of making
tests pass. We maintain tests because we want
to get information from them (the signal).
When we cover up failures without addressing
them properly, we're actually reducing the
value of our test suite by introducing noise.

So if you find yourself tempted to retry a test, try to slow down and see if you can
understand what'’s actually causing the problem. Retrying can be appropriate if it is:

e Applied only to non-deterministic elements that are outside of your control (for
example, intergrations with other running systems)

o Isolated to precisely the operation you want to retry (for example in Pete’s case,
retrying the connect () call only, vs. retrying the entire test)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

109

5.17 Get to green and stay green

It seems like no matter what Ice Cream
for All did, something went wrong. In
spite of that, they had the right
approach; they just ran into some
valuable lessons that they needed to
learn along the way - and hopefully we
can learn from their mistakes!

Regardless of your project, your goal
should be to get your test suite to green
and keep it green.

If you currently have a lot of tests
that fail (whether they fail consistently
or are flakes), it makes sense to take
some drastic measures in order to get
back to a meaningful signal:

e Freezing development to fix the test suites will be worth the investment. If you can't
get the buy-in for this (it's expensive!) all hope is not lost, it'll just be harder.

o Disabling and retrying problematic tests, while not approaches you want to take in the
long run, can help you get to a green, i.e. get back to a signal people will listen to - as
long as you prioritize properly investigating them afterward!

Remember, there’s always a balance: no matter how hard you try and how well you
maintain your tests, there are always going to be bugs. The question is, what is the cost of
those bugs?

If you’re working on critical healthcare technology, the cost of those bugs is enormous,
and it's worth taking the time to carefully stamp out every bug you can. But if you're working
on a website that let’s people buy ice cream, you can definitely get away with a lot more.
(Not to say ice cream isn’t important - it’s delicious!)

Get to green and stay green. Treat every failure as a bug, but also don't failures any
more seriously than you need to.

Okay come on: lots of tests are flakey and they don't all cause outages right?
It’s probably extreme that poor Ice Cream for All had multiple outages that could
have been caught by these neglected tests, but it’s not out of the question. Usually
the issues these cause are a bit more subtle, but the point is that you never know.
And the bigger problem is that treating tests like this undermines their value over
time. Imagine the difference between a fire alarm that sometimes means fire and
sometimes doesn’t (or even worse, sometimes fails to go off when there is a fire!)
versus one that ALWAYS means fire. Which is more valuable?

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

110

~ @ Build Engineer vs. Developer

Depending on your role on the team, you may be reading this chapter in hor-
ror, thinking: But [ can’t change the tests!

It’s pretty common to divide up roles on the team such that someone ends up
responsible to for the state of the test suite, but they are not actually the same
people developing the features, or writing the tests. This can happen to folksin a
role called “build engineer”, or “engineering productivity” or similar: these are
roles which are adjacent to, and supporting the feature development of a team.

If you find yourself in this role, it can be very tempting to lean on solutions
that don’t require input or work from the developers on the team working on
features. This is another big reason why we end up seeing folks trying to rely on
automation (e.g. retyring) instead of trying to tackle the problems in the tests
directly.

But if the evolution of software development so far has taught us anything, it’s
that drawing lines of responsibility too rigidly between roles is an antipattern:
just take a look at the whole DevOps movement: an attempt to break down the
barriers between the developers and the operations team. Similarly, if we draw a
hard line between build enginering and feature development, we’ll find ourselves
walking down a similar path of frustration and wasted effort.

When we’re talking about CD in general, and about testing in particular, the
truth is that we can’t do this effectively without effort from the feature developers
themselves. Trying to do this will lead to a degredation in the quality and effec-
tiveness of the test suite over time.

So if you're a build engineer, what do you do? You have three options:

1. You can apply fancy automation like retries (and the strategies we'll see in
the next chapter) and accept the reality that this will cause the test suite to
degrade over time.

2. You can learn to put on the feature developer hat and make these required
fixes (to the tests AND the code you're testing).

3. You can get buy in from the feature developers and work closely with them
to address any test failures, e.g. opening bugs to track failing tests and
trusting them to treat the bugs with appropriate urgency.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

111

5.18 Conclusion

Testing is the beating heart of Continuous Delivery! Without testing we don’t know if the
changes that we are trying to Continuously Integrate are safe to deliver. But the sad truth is
that the way we maintain our tests suites over time often causes them to degrade in value.
In particular this often comes from a misunderstanding about what it means for tests to be
noisy - but it's something we can proactively address!

5.19 Summary

Tests are crucial to Continuous Delivery

Both failing AND passing tests can be causing noise; noisy tests are any tests that are
obscuring the information that your test suite is intended to provide

The best way to restore the value of a noisy test suite is to get to green (a passing
suite of tests) as quickly as possible

Treat test failures as bugs and understand that often the appropriate fix for the test is
in the code and not the test itself; either way the failure represents a mismatch
between the system’s behavior and the behavior the test expected and it deserves a
thorough investigation

Retrying entire tests is rarely a good idea and should be done with caution

5.20 Up next...

In the next chapter, we’'ll continue to look at the kinds of issues that plague test suites as
they grow over time, particularly their tendency to become slower, often to the point of
slowing down actual feature development.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

112

Speeding up slow test suites

In this chapter:
« Speed up slow test suites by running faster tests first

« Use the test pyramid to identify the most effective ratio of unit to
integration to system tests

« Use test coverage measurement to get to and maintain the appropriate
ratio

+ Get a faster signal from slow tests using parallel and sharded execution

« Understand when parallel and sharded execution are viable and how to use
them

In the last chapter we learned how to deal with test suites that weren’t giving us a good
signal - but what about tests that are just plain old slow? No matter how good the signal is, if
it takes too long to get it, it'll slow down your whole development process! Let’'s see what we
can do with even the most hopelessly slow suites.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

113

Dog Picture Website

Remember Cat Picture website from Chapter 2? Their biggest competitor, Dog Picture
Website, has been struggling with their velocity.

Jada, the product manager is upset because it's taking months for even the simple
features that users are demanding to make it to production.

Is i frue thet it's going to
—] be of least ancther few weeks
before we con launch the
Ravouriting feature?

YouNe heord correctly, it
locks fike it's going to be another
2 weeks of LEAST.

How can that be? The team
has been working on it for
months already It can't be that
complicated, can 77

well tne problem sk the 5~
Veature iteell, it just takes

forever o add. any functionality
of all..

To understand why development is so slow for Dog Picture Website, let’s
take a quick look at their architecture and their pipeline.

You might notice that the Dog Picture Website architecture is a bit less 1
complex than some of the other architectures we’ve looked at: they have j
separated their frontend and backend services, but they haven’t gone any Fsinian!
further than that, and they haven’t moved any of their storage to the cloud.

With such a simple architecture, why are they running into trouble? }

) Backend
Upload images
and update DB

4

=

Build front and
backend images

Run all tests =

bl

Is moving to the cloud the answer?

One big difference between Dog Picture Website and Cat Picture Website you might
notice is that Cat Picture Website uses cloud storage. Is that the answer here? Not to

solve this problem! If anything, that would complicate the testing story because less
of the components would be in the engineer’s control. (There are other benefits that
outweigh these downsides, but that’s a topic for a different book!)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

114

6.2 When simple is too simple

The pipeline that Dog Picture Website is using seems simple and reasonable - and at first

glance, it might seem the same as the pipelines we've looked at so far. But there is an
important difference.

i Upload images
1 Run all test > Build front and p g
AR o backend images and update DB
| <

This is the only pipeline that Dog Picture website uses. They use this to test, build and
upload both their frontend and backend images. There is no other pipeline.

Back in chapter 2 we looked at the architecture and pipeline design used by Dog Picture
Website’s biggest competitor: Cat Picture Website.

‘ Cat Picture Website’s
1
- Architecture
@

Picture
Service

Unitand
Integration Tests

- Upload Image
to Registry

\ Linting ‘

Dog Picture website has decided instead to have one pipeline for their entire system;
which is a reasonable starting point, but also one that they never evolved beyond. In
particular, the task that runs their tests runs all of their tests at once.

In the sophistication of their pipeline design, Dog Picture Website is way behind their
closest competitor!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.3

115

New engineer tries to submit code

Let’s take a look at what it's like to try to submit code to Dog Picture Website and how the
pipeline design, particularly the test aspect, impacts velocity.

Sridhar, who is new to Dog Picture Website, has been working on the new favoriting
feature that Jada was asking about. In fact, he’s already written the code that he thinks the
feature needs and he’s written some tests as well.

What happens next?

Tuesdmj

3:00pm: sndhar pushes his code cho.nges

5:l4pm: Another de\leloper pu.shes chanses

2:30pm: Ancther de\teloper pushes. 5e’c more chanaes

- ii:oopm The CO system starts the nishﬂﬂ run of the pipeline
= = ==y

u.)ednesdag

- :430m The tests Fail
T = =N

The CO 5.55’cem emails sridhor and the other a de\.felopers who
pushed changes, telling them the pipeline is broken.

4:03pm: After spending all day trying to
debug the problem, sridhar and the other
3 developers revert their cho.nses to Fix
the pipeline. Sridhar will try to debua the
failures and, 'noPeS}uI ly push again
‘omorrow.

Dog Picture Website’s problems are different from the ones we looked at in the pervious
chapter: their test suite is always green, but the tests are only run once a day in the
evening, and in the morning they have to sort out who broke what. And just like we saw in
Chapter 2, this really slows things down!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.4

116

Tests and Continuous Delivery

This might be a good time to ask an interesting question: with this process, is Dog Picture
Website actually practicing Continuous Delivery? To some extent, the answer is always yes,
in that they have some elements of the practice, including deployment automation and
Continuous Testing, but let’s look back again at what we learned in chapter 1. You're doing
Continuous Delivery when:

1. You can safely deliver changes to your software at any time
2. Delivering that software is as simple as pushing a button

Thinking about the first element, can Dog Picture Website safely deliver changes at any
time? Sridhar merged his changes hours before the nightly automation noticed that the tests
were broken. What if Dog Picture Website had wanted to do a deployment that afternoon,
would that have been safe?

No! Definitely not! Because their tests run only at night:

e They will always have to wait until at least the day after a change has been pushed
to deploy it.

e The only time they know they are actually in a releasable state is immediately after
the tests pass, before any other changes are added (say the tests pass at night and
someone pushes a change at 8am: that immediately puts them back into the state
where they don’t know if they can release or not

In conclusion, Dog Picture Website is falling short of the first element of Continuous
Delivery.

Continuous Testing is a phrase that refers to running tests as part of your Continuous

Delivery pipelines. It's not so much a separate practice on it's own, as it is an

acknolwedgement that tests need to be run continuously. Just having tests isn’t enough: you

have have tests, but never run them, or you may automate your tests, but only run them

once in a while.
VOCAB TIME

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

117

6.5 Diagnosis: too slow

Fortunately Sridhar is an experienced engineer and has seen this kind of problem before!

| just want to check in - |

Thonks for asking! Actually,
it's the opposite - 'm excited
because | Know how we con

speed things up.

with ow slowly your festure is
going

Whot? G_eollﬁ? Thot's Ugreo&!
wWhat do we need o do?

we need to get to the point
where our code can sak ely be
delivered ot any tirme.

we need to run these tests
BEFORE ony chonges are pushed,

But we can't - they foke
so Iong! They take more than 4
hours ¥o run, we can't block

everyone like thot.

SN ou ik he il on e head:

the real Prob!em here is that
these tests are too slow and we
need fo tackle that directly.

His manager is skeptical, but Sridhar is confident and
Jada, their product manager, is overjoyed at the idea of doing
something to fix their slow velocity.

Sridhar looks at the average runtimes of the test suite
over the past few weeks: 2 hours and 35 minutes. He sets the
following goals:

e Tests should run on every change, before the change
gets pushed

e The entire test suite should run in an average of 30
minutes or less

e The integration and unit tests should run in less than
five minutes

e The unit tests should run in less than one minute

The numbers you choose to aim for with your test suite
will depend on your project, but in most cases should be in
the same order of magnitude as the ones Sridhar chose.

ope you aren't +oo frustrated \

N

Ifit hurts, bring the
pain forward!

When something s
difficult or takes a long
time, our instinct
might be to delay it as
long as possible, but
the best approach is
the opposite! If you
isolate yourself from
the problem, you’ll be
less motivated to ever
fix it. So the best way
to deal with bad pro-
cesses is do them more
often!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.6 The test pyramid

118

You may have noticed that the goals Sridhar set are different depending on the type of test

involved:

e The entire test suite should run in an average of 30 minutes or less
e The integration and unit tests should run in less than five minutes
e  The unit tests should run in less than one minute

Integration

Unit

What are these kinds of tests that we're talking
about? Sridhar is referring to the test pyramid, a
common visualization for the kinds of tests that most
software projects need and the approximate ratio of
each kind of test that’s appropriate.

The idea is that the
vast majority of tests in
the suite will be unit
tests, and there will be
a significantly smaller

i

number of integration
tests and finally a small
number of end to end
tests.

//We’re not going to
go into detail about the
specific  differences
between these kinds of
tests in general - take at
a look about testing to
learn more!

Sridhar has used this pyramid to set the goals for the Dog Picture website test suite:

The entire test suite
should run in less
than 30 minutes

Running just the unit

tests should take \»

less than | minute

Integration

The browser tests launch
«——_ and click &hroush the
website Via a browser

Without the browser
tests, the tests should
run in less than S
minutes

/Serw'ce tests vs Ul tests vs end to end tests vs integration tests vs...

If you have seen test pyramids before, you may have seen slightly different terminol-
ogy used; the terminology is less important than the idea that there are different
kinds of tests, where the tests at the bottom of the pyramid are the least coupled and
the tests at the top are the most coupled (where “coupled” refers to the increasing
interdependencies between components being tested, usually resulting in more
complicated tests that take longer to run).

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.7

119

Fast tests first

One of the big reasons why Sridhar is taking an approach to the tests based on the pyramid
is that he knows that one immediate way to get feedback faster is to start grouping and
running the tests based on the kinds of tests they are.

Run the fastest tests first.

At the moment, Dog Picture Website is running all of their tests simultaneously, but when
Sridhar identifies the unit tests in the code base and runs them on their own, he finds that
they already run in less than a minute. He’s already accomplished his first goal!

If he can make it easy for all the Dog Picture Website developers to run just the unit
tests, they’ll have a quick way to to get some immediate feedback about their changes. They
can run these tests locally, and they can immediately start running these tests on their
changes before they get merged.

All he needs to do is find a way to make it easy to run these tests in isolation. He has a
few choices of how to do this:

¢ Conventions around test location is the easiest way, for example, you could always
store your unit tests beside the code that they test, and keep integration and
system tests in different folders. To run just the unit tests, run the tests in the
folders with the code (or in a folder called unit); to run the integration tests run the
tests in the integration test folder, etc.

¢ Many languages allow you to specify the type of test somehow, for example by
using a build flag in Golang (you can isolate integration tests by requiring them to
be run with a build flag integration) or in Python if you use the pytest package
you can use a decorator to mark tests of different types.

Fortunately Dog Picture Website has already been more or less following a convention
based on test location: browser tests are in a folder called tests/browser and the unit tests
live next to the code. The integration tests were mixed in with the unit tests, so Sridhar
moved them into a folder called tests/integration and then updated their pipeline to look

like this:
! Upload images
and update DB

Run integration and

Build front and

Run unit tests g
backend images

=

browser tests

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.8

120

Two pipelines

Up until now, engineers had to wait until the nightly pipeline run to get feedback on their
changes, because the pipeline takes so long to run. However the new “Run unit tests” task
that Sridhar has made runs in less than a minute, so it's safe to run that on every change,

even before the change is merged.
Sridhar updates the Dog Picture Website automation so that the following pipeline,
containing only one task, runs on every change before merging:

This (’cing) pipeline
4~ runs before every
chanse is mersed

Run unit tests

L —

This means that Dog Picture Website now has two pipelines, they have the above pipeline
that runs on every change, and they have the longer slower pipeline that runs every night:

o ——

Upload images
and update DB

Build front and
backend images

Run integration and
browser tests

=

Run unit tests ,:}

—_—

This pipeline
runs every n'\gh’c

Is it bad that they have two pipelines? The goal is always get “shift left” and get as much
information as early as possible (more about this in the next chapter), so this situation is not
ideal, but by creating the separate, faster pipeline that can run on every change, Sridhar was
able to improve the situation: previously, engineers got no feedback at all on their changes
before they were merged, now they will at least get some feedback. Depending on your
project’s needs, you may have one pipeline, or you may have many. See the chapter on
graph design for more on this.

When dealing with a slow suite of tests, get an immediate gain by making it possible to run
. |:“ - the fastest tests on their own, and by running those tests first, before any others. Even
- ~£/ " though the entire suite of tests will still be just as slow as ever, this will let you get some
amount of the signal out faster.

TAKEAWAY

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.9

121

Getting the right balance

Sridhar has improved the situation, but his change has had virtually no effect on the
integration and browser tests - they are just as slow as ever and developers still have to wait
until the next morning after pushing their changes to find out the results.

For his next improvement, Sridhar is once again going back to the testing pyramid. When
he last looked at it, he was thinking about the relative speed of each set of tests. But now
he’s going to look at the relative distribution of tests.

The pyramid also gives us guidelines as to how many (literally the quantity) tests of each
type we want to aim for. Why is that? Because as you go up the pyramid, the tests are
slower. (And also harder to maintain but that’s a story for another book!)

ln’cegra’don tests are
usuod\g less complicated
than end to end tests, so
when something can’t be
\ covered with o unit tests,

There should be very few
end 1o end tests. s

Integration

most (by a. huge an integration tests is the
marginD of the tests next best option; as a
should be unit tests. result there can be more
\» integration tests than
end ot end tests, but far

fewer than the unit tests.

Sridhar counts up the tests in the Dog Picture Website suite so he can compare their
pyramid to the ideal. The Dog Picture Website looks more like this:

There are less browser

tests than any other Kind The Vast majority of the
of test (10% of the total tests are integration
testo). tests (6S% of the totols.
At least the deVelopers
Integration Knew not 10 a.dd. too

There arent Verg many
unit tests at all @s% 0¥ v,

the total testo).
/ Unit \

many browser tests!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

122

6.10 Changing the pyramid

Why is Sridhar looking at ratios in the pyramid? Because he knows that the ratios in this
pyramid are not set in stone. Not only is it possible to change these ratios, but changing the
ratios can lead to faster test suites.

Let’s look again at the goals he set around execution time:

The entire test suite
should run in less
than 320 minutes

Integration Without the browser
tests, the tests should
run in less than S
Running just the unit minutes
tests should take

less than | minute \»

Sridhar wants the integration and unit tests to run in less than 5 minutes. Currently the
integration tests are 65% of the total number of tests. The rest are 10% browser tests and
25% unit tests. Given that integration tests are slower than unit tests, imagine what a
difference it could make if the ratio was changed (assuming the same total humber of tests):
if the integration tests were only 20% of the total number of tests, and the unit tests were
instead 70%. This would mean removing about 2/3 of the existing (slow) integration tests,
and replacing them with (faster) unit tests - which would immediately impact the overall
execution time.

With the ultimate goal of adjusting the ratios in order to speed up the test suite overall,
Sridhar sets some new goals:

e Increase the % of unit tests from 25% to 70%
e Decrease the % of integration tests from 65% to 20%
e Keep the % of browser tests at 10%

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.11

123

Safely adjusting tests

Sridhar wants to make some changes in the ratio of unit tests to integration tests. He wants
to:

. Increase the % of unit tests from 25% to 70%

Measuring coverage
e Decrease the % of integration tests from 65% to 20%

will also run the unit

This means he needs to increase the number of unit tests, tests, so somefimes
while decreasing the number of integration tests. How will he do you'll see these com-
this safely, and where can he even start? bined as one t“Skj (It

Sridhar noticed that Dog Picture Website’s pipeline doesn’t | theunit tests task fails,
include any concept of test coverage measurement. The pipeline the coxTer]z(lgev'lﬁleasulr‘e—
runs tests, then builds and deploys, but at no point does it E’lf{lgﬁzd‘;l proba-
measure the code coverage provided by any of the tests. The ‘ )
very first change he’s going to make is to add test coverage
measurement into this pipeline, in parallel to running the tests:

Rununititests =2 [Run integration and —
Dot S| Build front and Upload images
backend images =7 | and update DB
Measure
The pre-merge [ Run unit tests
pipeline will run

unit test
coverage
these tasks in
parod\el Measure
unit test

coverage

Since the coverage task is just as fast as the unit test test, he’s able to add it to the
pipeline that runs before changes are merged also.

Q Wait! Where'’s the linting? | read chapter 4 and | know linting is important too,
shouldn’t Sridhar be adding linting too?
A Totally agree - and that’s probably going to be Sridhar’s next step once he deals

with these tests, but he can only tackle one problem at a time! In chapter 2 you
can see an overview of all the elements a CD pipeline should have, including
linting.

QUESTION

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

124

6.12 Test Coverage

Sridhar decided the first step toward safely adjusting the ratio of unit test to integration tests
was to start measuring test coverage. What is test coverage measurement and why is it
important?

Test coverage is a way of evaluating how effectively your tests exercise the code they are
testing. Specifically, test coverage reports will tell you, line by line, which code under test is
being used by tests, and which isn’t.

For example, Dog Picture Website has this unit test for their search by tag logic:

def test_search_by_tag(self):
search = _new_search()

results = search.by_tags([ ‘fluffy’])
self.assertDogResultsEqual(results, ‘fluffy’, [Dog(‘sheldon’)])

This test is testing the method by tags on the Search object, which looks like this:
def by_tags(self, tags):
try:
query = build_query_from_tags(tags)
except EmptyQuery:
raise InvalidSearch()

result = self._db.query(query)
return result

Test coverage measurement will run the test test search by tag and observe which
lines of code in by tags are executing, producing a report about the percentage of lines
covered. The coverage for by tags by test search by tag looks this, where yellow
indicates lines that are executed by the text and red indicates lines that aren't:

def by tags(self, tags):
try:
query = build query from tags(tags)
raise InvalidSearch()
result = self. db.query(query)
return result

It's reasonable that the test above doesn’t exercise any error conditions, good unit
testing practice would leave that for another test - but in this case test search by tag is

the only unit test for by tags. So those lines are not covered by any test at all. For this
method, the test coverage is 3 out of 5 lines, or 60%.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

125

4 Coverage critiera L

The above example uses a coverage criteria called statement coverage, which eval-
utates each statement to see if it has been executed or not. There are also other, more
fine grained criteria that can be used such as condition coverage: if an if statement
has multiple conditions, statement coverage would consider it covered if it’s hit at
all, but condition coverage coverage would require that every condition be explored
fully. In this chapter we’ll stick to statement coverage which is a great go-to.

—

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.13

126

Enforcing test coverage

It's important to remember that while Sridhar is making these changes, people are still
working and submitting features! People are submitting more features (and bug fixes), and
sometimes (hopefully most of the time!) tests as well. This means that even as Sridhar looks

at the test coverage, it could be going down!

But fortunately Sridhar knows a way that not only stop
this from happening, he can actually use this to help his
quest to increase the number of unit tests.

Before going any further, Sridhar is going to update the
coverage measurement task to fail the pipeline if the
coverage goes down. From the moment that he introduces
this change onward, he can be confident that the test
coverage in the code base will at the very least not go down,
but ideally go up as well.

(Besides helping the overall problem, this is a great way
to share the load such that Sridhar isn’t the only one doing
all the work!)

He updates the task that runs the test coverage to run this script:

# when the pipeline runs, it will pass to this script
# paths the files that changed in the pull request
paths_to_changes = get_arguments()

# measure the code coverage for the files that were changed
coverage = measure_coverage(paths_to_changes)

# measure the coverage of the files before the changes;
this

# could be by retrieving the values from storage somewhere,

# or it could be as simple as running the coverage again

# against the same files in trunk (i.e. before the changes)

prev_coverage = get_previous_coverage(paths_to_changes)

# compare the coverage with the changes to the previous
coverage
if coverage < prev_coverage:
# the changes should not be merged if they decrease
coverage
fail( ‘coverage reduced from {} to
{}’ .format(prev_coverage, coverage))

Does this sound
familiar? You might
recognize this as a very
similar approach to the
one Becky took in
chapter 4 with linting!
Measuring linting and
measuring  coverage
have a lot in comon!

You might recognize
this as a variation on
the linting script that
Becky created in chap-
ter 4!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.14

127

Test coverage in the pipeline

By introducing this script into the pre-merge pipeline, Sridhar has triaged the existing
coverage problem: the problem was that folks weren't being fastidious about how they
introduced unit test. By adding automation to measure coverage and block them, they can
make more informed decisions about what they cover and what they don’t.

With Sridhar updating the unit test coverage task to actually enforce requirements on
test coverage, the pre-merge pipeline looks like this:

Since this pipeline has to pass before

changes can be merged,, +his will ensure
thot every chanae will increose the test
coverage (or ot least leave it the same)

Run unit tests

This tasKk used to just ) .
measure the coverage, A T This updated task will run as part of

] L coverage and ensure the nishﬂ3 pipd ine os well - since the
ow it also Fails it the :
now! OTSINE | itdoesnotdecrease goal 1S utimadely o run the nightly
coverage goes down
\._.Pipehne before c,hamses are merged,

It's a very subtle change from the previous iteration, but now Sridhar can continue on
with his work and be sure that the features and bug fixes being merged as he works are
going to either increase the coverage, or in the worst case, leave it the same.

/Do I need to build this myself?
It depends! For most languages, there are a lot of existing tools you can make us of
to measure your coverge, and even store and report on it over time. Many folks
choose to write their own regardless, because it’s not very hard to implement and

you have slightly more control over the behavior. You’ll need to investigate the tools
available and decide for yourself.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.15

128

Moving tests in the pyramid with coverage

At this point, the number of unit tests is likely to start to steadily increase, even without any
further intervention, because Sridhar has made it a requirement to include unit tests
alongside the changes that the engineers are making.

Will this be enough for him to achieve his goals? Remember his goals are:

. Increase the % of unit tests from 25% to 70%
e Decrease the % of integration tests from 65% to 20%

Over time the ratios will likely trend in these directions, but not fast enough to make the
dramatic kinds of changes Sridhar is looking for. Sridhar is going to need to write additional
unit tests and probably also remove existing integration tests. How will he know which to add
and which to remove?

Sridhar looks at the code coverage def by_tags(self, tags):
. . try:
reports, finds the code with the lowest TrEy = (LGl GETEy (e AeeE(eTas]
coverage percentages and looks at which except EmptyQuery:
lines are not covered. For example he ralce TovalidSearchl)
result = self. db.query(query)
looks at the coverage of the by tags return result

function we saw a few pages ago.

The error case of having an empty query is not covered by unit tests. So Sridhar knows
that this is a place where he can add a unit test. Additionally, if he can find an integration
test that covers the same logic, he can potentially delete it. So he goes looking through the
integration tests and find a test called test invalid queries. This test creates an instance
of the running backend service (this is what all the integration tests do), then makes invalid
queries, and ensures that they fail. Looking at this test, Sridhar realizes he can cover all of
the invalid query test cases with unit tests. He writes the unit tests, which execute in less
than a second, and is able to delete test invalid queries, which took around 20 seconds
or more, and still feel confident that the test suite would catch the same errors that it did
before the change.

Q Should | measure coverage for my integration and end to end tests?

A To get a complete idea of your test suite coverage, you may be tempted to measure
coverage for your integration and end to end tests. This is sometimes possible,
usually requiring the systems under test to be built with extra debug information
that can be used to measure code coverage while these higher level tests execute.
You may find this useful, however it's usually something you have to build yourself,

QUESTION and might give you a false sense of confidence; i.e. your best bet will always be high
unit test coverage, so that metric is important in isolation, and you might miss it if
you only look at the total test suite coverage as a whole.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

129

6.16 What to move down the pyramid?

In order to continue to increase the percentage of unit tests, Sridhar applies this pattern to

the test suite:

1. He looks for gaps in unit test coverage; i.e. literally lines of code that are not covered.
He looks at the packages and files with the lowest percentages first in order to
maximize his impact.

2. For the code he finds that isn’t covered, he adds unit tests that cover those lines

3. He looks through the slower tests, specifically in this case the integration tests, to find
any tests that cover the logic now covered by the unit tests, and updates or deletes

them.

By doing this he is able to both dramatically increase the amount of unit tests and reduce
the amount of integration tests, that is to increase the number of fast tests and decrease the

number of slow tests.

Lastly he audits the integration tests to look for duplicate coverage: for every integration
tests he asks these questions:

1. Is this case covered in the unit tests?
2. What would cause this test case to fail when the unit tests pass?

If the case is covered in the unit tests already (1), and if there isn’t anything (that isn't
covered somewhere else) that would cause the integration test to fail when the unit tests
pass (2), it is safe to delete the integration test.

Q

QUESTION

Hold on, surely I'm going to lose some information if | do this! Aren’t my integration
tests better than my unit tests? I've seen the memes, unit tests aren’t enough.
You're right! The question is: how many integration tests do you need? The purpose
of the integration tests is to make sure that all the individual units are wired
together correctly. If you test the individual units, and then you test that the units
are connected together correcly, you've covered nearly everything. At this point it
becomes a cost benefit tradeoff: is it worth the cost of running and maintaining
integration tests that cover the same ground as unit tests, on the off chance that
they might catch a corner case you missed? The answer depends on what you're
working on. If people’s lives are at stake, the answer may be yes; it's important to
make the right tradeoff for your software.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

130

It’s your turn

Sridhar has found that the Search class has very low coverage in general, and he’s working
his way through the reports to increase it. Working his way through the reports, he looks at
the coverage for the function from favorited search and sees:

def from favorited search(self, favorite):
try:
cached result = self. cache.get result(favorite.query())
except CacheError:
cached result = None
if cached result is None:
result = self. db.query(favorite.query())
else:
result = cached result.result()
return result

He looks for the integration tests that cover the favorited search behavior and finds these
tests:

test_favorited_search_many_results
test_favorited_search_no_results
test_favorited_search_cache_connection_error
test_favorited_search_many_results_cached
test_favorited_search_no_results_cached

Which integration tests should Sridhar consider removing? What unit tests might he add?

This looks like a classic scenario where the integration tests are doing all the heavy lifting.
The unit tests are covering only one path: the path where there is no cached result and
there are no errors, and the integration tests are trying to cover everything. Sridhar’s plan is
basically to invert this: instead of covering one happy path with unit tests, and handling all
the other cases with integration tests, he’ll replace all of the above integration tests with

test favorited search, and he'll add unit tests to cover all of the integration test
ANSWERS cases above.

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.17

131

Legacy tests and FUD

It can feel scary to make changes to, or even remove, tests that have been around for a long
time! This is a place where we can often encounter FUD: Fear, Uncertainty and Doubt.

If we listen to the FUD, we might decide it's too dangerous to make changes to the
existing test suites: there are too many tests, it's too hard to tell what they’re testing, and
we become afraid of being the person who removed the test that it turned out was holding
the whole thing up.

If you find yourself thinking this way, it's worth taking a moment to think ultimately
about what FUD really is, and where it comes from. It's ultimately all about the F: fear. It's
fear that we might do something wrong, or make things worse, and it holds us back from
making changes.

Then, think about why we have all the tests we do: the tests are meant to empower us,
to make us feel confident that we can make changes that do what we want them to, without
fear.

FUD is the very opposite of what our tests are meant to do for us. Our tests are meant to
give us confidence, and FUD takes that confidence away.

Don’t let FUD hold you back! When you hear FUD whispering to you that it's too
dangerous to make any changes, you can counter it with cold hard facts. Remember what
tests are: they are nothing more or less than a codification of how the test author though the
system was supposed to behave. Nothing more or less than that. They aren’t even the
system itself! Instead of giving in to the fear, take a deep breath and ask yourself: do I
understand what this test is trying to do? If not, then take the time to read it and understand
it. If you understand it, then consider yourself empowered to make changes. If you don't
make them, maybe no one will, and the sense of FUD that people feel about the test suite
will only grow over time.

In general, working from a fear based mindset, and giving into FUD, will prevent you
from trying anything new, and that will prevent you from improving, and if you don’t improve
your test suite over time I can guarantee you that it will only get worse.

e N

Just say no to FUD! I

- When dealing with slow tests suites, looking at the test suite through the lens of the
L]

|:“ - testing pyramid can help you focus on where things are going wrong. If your pyramid is too
# ‘£/' ' top heavy (a common problem!) you can use test coverage to immediately start to improve
your ratios, and point you in the direction of what tests can be replaced with faster and

easier to maintain unit tests.
TAKEAWAY

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.18

132

Running tests in parallel

After working hard on the integration and unit tests, Sridhar has made as much
improvement as he thinks he can for now and he met his the goals he set for their relative
quantities:

e He has increased the % of unit tests from 25% to 72% (his goal was 70%)
e He has decreased the % of integration tests from 65% to 21% (his goal was 20%)

The unit tests still run in less than a minute, but even meeting the goals above, the
integration tests still take around 35 minutes to run. His overall goal was for the integration
and unit tests together to run in less than five minutes. Even though he has improved the
overall time (shaving more than 1 hour from the total), these tests are still slower than he
wants them to be. He'd like to be able to include them in the pre-merge tests, and at 35
minutes, this might be almost reasonable, but he has trick up his sleeve that will let him
improve this substantially before he adds them.

He’s going to run the integration tests in parallel! Most test suites will by default run tests
one at a time. For example, here are some of the integration tests which are left after
Sridhar has reduced their number, and their average execution time:

test_search query (20 seconds)

test view latest dog pics (10 seconds)
test log in (20 seconds)

test unauthorized edit (10 seconds)
test picture upload (30 seconds)

vk

Running these tests tests one at a time takes 20 + Ve
10 + 20 + 10 + 30 = 90 seconds on average. Instead,
Sridhar updates the integration test task to run these

If one test runs
waaaaay longer than

tests in parallel, running as many of them as possible
at once individually. In most cases, this means running
one test at a time per CPU core. On an 8 core machine,
the above five tests can easily run in parallel, meaning
that executing them all will only take as long as the
longest test: 30 seconds, instead of the entire 90
seconds.

After his cleanup, Dog Picture Website has 116
integration tests. Running at an average of 18 seconds
each, one at a time, they take about 35 minutes to
run. Running them in parallel on an 8 core machine

the others, you'll still
be held hostage to this
test; for example if one
test took 30 minutes on
its own, paralleliza-
tion isn’t going to help
and the solution is

going to be to fix the
test itself.

means that 8 tests can execute at once, and the entire suite can execute in approximately
1/8 of the time, or about 4 and a half minutes! By running the integration tests in parallel,
Sridhar is able to finally meet his goal of being able to run the unit + integration tests in
less than 5 minutes.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

133

6.19 When can tests run in parallel?

Can any tests be run in parallel? Not exactly. In order for tests to be able to run in parallel,
they need to meet these criteria:

\

e The tests must not depend on each other /Running unit tests

e The tests must be able to run in any order
e The tests must not interfere with each other (e.g.
sharing common memory)

It is good practice to write tests that do not depend on or
interfere with each other in any way, so if you are writing
good tests, then you might not have any trouble at all making
them run in parallel.

The trickiest requirement is probably making sure that
tests do not interfere with each other. This can easily happen
by accident, especially when testing code that makes use of
any kind of global storage. With a little finesse, you'll be able
to find ways to fix your tests so that they can be totallly
isolated, and then the result will likely be better code overall
(i.e. code that is less coupled and more cohesive).

When Sridhar updated the Dog Picture Website test suite
to run in parallel, he found a few tests that interfered with
each other and had to be updated, but once he made those
fixes, he was able to run both the unit and integration tests in
less than five minutes.

in parallel is a smell

Remember the goal of
unit tests is to test
functionality in isola-
tion and to be FAST, as
in on the order of sec-
onds or faster. If your
unit tests are taking
minutes or longer,
making you tempted
to speed them up by
running them in par-
allel, this is a sign that
your unit ftests are
doing too much and
are likely integration
or system tests - there
is a good chance you
are missing unit tests
entirely.

Q Do | need to build this “tests in parallel” functionality myself too?

A Probably not! This is such a common way of optimizing test execution that most

languages will provide you with a way to run your tests in parallel, either out of the
box or with the help of common libraries. For example, you can run tests in parallel
with Python by using a library such as testtools or an extension to the popular
pytest library, and in Golang you get the functionality out of the box via the ability
QUESTION to mark a test as parallelizable when you write it with t . Parallel (). Find the
relevant information for your language by looking up documentation on running

tests in parallel or concurrently.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.20

134

Updating the pipelines

Now that Sridhar had met his goal of running both the unit tests and the integration tests in
less than 5 minutes, he could add the integration tests to the pre merge pipeline and
engineers would get feedback on both the unit and integration tests before their changes
merged.

This meant he had to make some tweaks to the set of tasks in the Dog Picture Website
Pipeline - there was still one task that ran the integration and browser tests together.

/‘This task was running the browser tests as
well, so it needs to be split up

‘ Upload image
= | and update DB

Run integration and

Run unit tests = e

Build front and

backend images

Measure unit test

coverage and ensure

it does not decrease

Fortunately the tests were already setup well for this change. You may recall that
thebrowser tests are arleady in a separate folder called tests/browser and when Sridhar
updated the pipeline to run the unit tests first, he separated the integration tests and put
them into a folder called tests/integration. This makes it easy to take the final step of
running the integration and browser tests separately:

g Now the integration and browser tests

The unit tests y ]

: /_ can run in paraliel and save more time!
run $irst so Run unit tests & Run integration tests
they can fail ! D .

e 5§ — Build front and Upload image
the pipeline - backendimages )= | and update DB

" Measure unit test
qwma coverage and ensure N .
Run browser tests
it does not decrease
f— [

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

135

And then Sridhar can add the integration test task to the pre
merge pipeline. The pipeline will fail quickly if there is a problem
with the unit tests; and the entire thing will run in less than five

minutes.

Run unit tests

[

= | Run integration tests

Measure unit test
coverage and ensure
it does not decrease

Fail ins coveroge won’t stop the
integration tests from running

- see the chapter on aroph desisn
for more.

©Manning Publications Co. To comment go to liveBook

Wi rotramatithe )
Wh

y not run all the
test tasks in parallel?

Sridhar has assumed
that if the unit tests,
which take seconds to
execute, fail, there’s no
point in running the
integration tests
because they’ll proba-
bly fail, but both are
good options. See the

chapter on  graph
design for more.
o J



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.21

136

Still too slow!

After working hard on the integration and unit tests, Sridhar has made as much
improvement as he thinks he can for now and he met his the goals he set for their relative
quantities:

e He has increased the % of unit tests from 25% to 72% (his goal was 70%)
e He has decreased the % of integration tests from 65% to 21% (his goal was 20%)

Is he done? He steps back and looks at his overal goals:

¢ Tests should run on every change, before the change gets pushed - he’s
almost there, now the unit and integration tests run, but not the browser tests

¢ The entire test suite should run in an average of 30 minutes or less - Sridhar
has reduced the execution time of the integration tests - they used to take 35
minutes and now take around 5. The entire suite used to take 2 hours and 35
minutes and now is down to just over 2 hours. This is a big improvement, but
Sridhar still hasn’t met his goal.

¢ The integration and unit tests should run in less than five minutes - done!

¢ The unit tests should run in less than one minute - done!

The entire test suite is running in an average of 2 hours and 5 minutes:

. Unit tests: Less than 1 minute
e Integration tests: Around 5 minute
. Browser tests: The other 2 hours

The last remaining problem is the browser tests. All along, the browser tests have been
the slowest part of the test suite. At an average runtime of 2 hours, no matter how much
Sridhar optimizes the rest of the test suite, if he doesn’t do something about the browser
tests, it's always going to take more than 2 hours.

Can Sridhar take a similar approach and remove browser tests, replacing them with
integration and unit tests? This is definitely an option, but when Sridhar looks at the suite of
browser tests, he can’t find any candidates to remove! The tests are already very focused
and well factored, and at only 10% of the total test suite (with around 50 individual tests),
the number of browser tests is quite reasonable.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.22

137

Test sharding aka parallel++

Sridhar is stuck with the browser tests as they are, and they take about 2 hours to run. Does
this mean he has to say goodbye to his goals of running the entire suite on every change in
less than 30 minutes?

Fortunately not! Because Sridhar has one last trick up his sleeve: sharding. Sharding is
a technique that is very similar to running tests in parallel, but increases the number of tests
that can be executed at once by parallelizing them across multiple machines.

Right now, all of the 50 browser tests run on one machine, one at a time. Each test runs
in an average of about 2 and a half minutes. Sridhar first tries running the tests in parallel,
but they are so CPU and memory intensive that the gains are negligible (and in some cases
the tests steal resources from each other, effectively slowing down). One executing machine
can really only run one test at a time.

By sharding the test execution, Sridhar will divide up the set of browser tests so that he
uses multiple machines which will each execute a subset of the tests, one at a time, allowing
him to decrease the overall execution time.

Q What if Sridhar beefed up the machines? Maybe then he could get away with
running the tests in parallel on one machine?

A This might help, but as you probably know, machines are getting more and more
powerful all the time - and we respond by creating more complex software and
more complex tests! So while using more powerful machines might help Sridhar

QUESTION here, we're going to look at what you can do when this isn’t an option; and we're

not going to dive into the specifc CPU and memory capcacity of the machines he’s

using because what seems powerful today will seem trivial tomorrow!

We’'re referring to parallelizing tests across multiple machines as sharding, but you will
find different terminology used by CD systems. Some systems will call this test splitting,
and others will simply also refer to this as running tests in parallel, where “in parallel”
means across multiple machines as opposed to how in this chapter we've used “in
parallel” to refer to running running multiple tests on one machine. Regardless you can

VOCAB TIME think of sharding as the same basic idea as test parallelization, but across multiple
machines.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.23

138

How to shard

Sharding test execution allows you to take a suite of long running tests, and execute it faster
by running it across more hardware, i.e. several executing machines instead of just one. But
how does it actually work? You might be imagining a complex system requiring some kind of
worker nodes co-ordinating with a central controller, but don’t worry, it can be much much
simpler than that!

The basic idea is that you have multiple shards, and each is instructed to run a subset of
the tests. There are a few different ways you can decide which tests to run on which shard.
In increasing order of complexity:

1. Run tests in a deterministic order and assign each shard a set
of indexes to run

2. Assign each shard an explicit set of tests to run (for example,
by name)

3. Keep track of attributes of tests from previous test runs (for
example, how long it takes each to run) and use those
attributes to distribute tests across shards (probably using their
names like in option 2)

VOCAB TIME
Each machine
available to execute a
subset of your tests is

referred to as a shard.
Let’s get a better handle on test sharding by looking at option 1 in a bit more detail. For
example, imagine sharding the following 13 tests across 3 executing machines:

test_login Our first shard, shard
test st pic !
est_po *P%C O will get S tests: Srom
test rate pic . B

13 tests across 3 -~ . sto.rhns index O o
test browse pics

shards: 12/3 = 4.333,
which we’ll round up to

test_follow_dog S‘!mlShlns index 4
test_view leaderboard

Shard | will also Se’cs

0 mNa RN =D

S, giving the First & i ’
» QVing test view logged out teste: Srom starfing
shards each S tests test edit pic - S
- - index S 4o ¥inishing
and the last shard the test post forum index o
o o naex
rema_inins 3. . test edit forum
10. test_share twitter Shard a gets the remainder,
11. test_share_instagram Srom s{ar’cing index 10 to
12. test_report_user S}-’mishmq index 13

We can shard these tests using the first method by running a subset of the above tests
on each of our 3 shards. If we're using python, one way to do this is with the python library
pytest-shard:

pytest --shard-id=$SHARD_ID --num-shards=$NUM_SHARDS

For example, shard 1 would run:

pytest --shard-id=1 --num-shards=3

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.24

139

More complex sharding

Sharding by index is fairly straight forward, but what about outliers? Sridhar’s browser tests
run in an average of 2.5 minutes, but what if some of them take waaaaay longer?

This is where more complex sharding schemes come in handy, for example the third
option we listed: keeping track of attributes of tests from previous test runs and use those
attributes to distribute tests across shards using their names.

In order to do this, you need to store timing data for tests as you execute them. For
example, take the 13 tests we ran in the last example and imagine we’d been storing how
many minutes each had taken to run across the last 3 runs:

0) test login (1.5, 1.7, 1.6) Average = 1.6 minutes
1) test post pic (3, 3.1, 3.2) Average = 3.1 minutes
2) test rate pic (0.8, 0.9, 0.7) Average = 0.8 minutes
3) test browse pics (2, 2, 2) Average = 2.0 minutes
4) test follow dog (0.8, 0.8, 0.8) Average = 0.8 minutes
5) test view leaderboard (1.8, 2.0, 1.9) Average = 1.9 minutes
6) test view logged out (1.7, 2.1, 1.9) Average = 1.9 minutes
7) test edit pic (2.1, 2.6, 2.2) Average = 2.3 minutes
8) test post forum (1.8, 1.9, 1.7) Average = 1.8 minutes
9) test edit forum (1.6, 1.5, 1.7) Average = 1.6 minutes
10) test share twitter (2.1, 1.9, 2.0) Average = 2.0 minutes
11) test share instagram (2.0, 1.9, 2.1) Average = 2.0 minutes
12) test report user (1.3, 1.2, 1.1) Average = 1.2 minutes

To determine the sharding for the next run,
you'd look at the average timing data and create
groupings such that each of the 3 shards would
execute the test in roughly the same amount of

Shard 0: 1.4 minutes
test edit pie (2.3)
test _share instagram (2.0)

test post forum (1.8)

time. test report user (1.2)
We're going to skip going into the details of test follow dog (0.8)

this algorithm (though it does make for a fun and — —

surprisinly practical interview question!). If you Shard I: 8. minutes

want this kind of sharding, it's possible that you test post pic (3.1)

might need to build it yourself, but you also
might find that the CD system you’re using (or
tools in your language) will do it for you. For
example, the CD system CircleCI lets you do this chord 4: 1.5 minutes
by feeidng the names of your tests into a test_browse pics (2.0)
language agnostic splitting command: test share twitter (2.0)

test view leaderboard (1.9)
test _login (1.6)
test _rate pic (0.8)

circleci tests split --split-by=timings test_view logged out: (1.9)

test edit forum: (1.6)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

140

6.25 Sharded pipeline

You may decide to do all of the steps for sharding within one task of your pipeline, or if your
CD system supports it, you might break this out into multiple tasks.

& 5ou’re do'mg some’chins simple like sharc\ins b5
index, you probobly don’t need this first step, but
Sor something complex like d’\s{ﬂbu’dns tests YR v

based on how IonS ’cheg ran pre\/iouslg, you will. the tests
by index or by
name

| Determine which
tests to distribute to
which shards

for each shard ...

Run a subset of

o } - the tests
In order to do this in multiple tasks, your CD by index or by
sas’cem must support iteration in its pipel'mes. name
1¥ it doesnt you can combine this logic into one
taskK instead.

In order to support being run with sharding, a set of tests must meet the following
requirements:

e  The tests must not depend on each other.

e The tests must not interfere with each other; if the tests share resources, for
example all connecting to the same instance of a dependency, they may conflict
with each other (or maybe not - the easiest way to find out is to try).

¢ If you want to distribute your tests by index, it must be possible to run the tests in
a deterministic order so that the test represented by an index must be consistent
across all shards.

4 If running unit tests in parallel is a smell, then sharding them is a stink!

As mentioned earlier, if your unit tests are slow enough that you need to run them in
parallel for them to run in a reasonable length of time, then that’s a smell that some-
thing is not quite right with your unit tests (they are probably doing too much). If
they are SO SLOW that you want to shard them, then I can say with 99.99999%
certainty that what you have are not unit tests, and your code base would be well
served by replacing some of these integration/system tests in disguise with unit tests.
p.s. I hearby propose calling really bad code smells “code stinks”

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

141

6.26  Sharding the browser tests

Srdihar is going to solve the problem of the slow browser tests by applying sharding! The
overall goal Sridhar is aiming for is:

¢ The entire test suite should run in an average of 30 minutes or less

The unit and the integration tests take an average of 5 minutes in total, so Sridhar needs
to get the browser tests to run in about 25 minutes.

The browser tests take an average of 2 and a half minutes, and there are 50 of them.
The time each test tasks to execute is fairly uniform, so Sridhar decides to use the simpler
route and shard by index. How many shards does he need to meet his goal?

.

Since the goal is to complete all the tests in 25 minutes, this means each shard can run
for up to 25 minutes. How many browser tests can run in 25 minutes?

If they each take an average of 2.5 minutes, 25 minutes / 2.5 minutes = 10. In 25
minutes, one shard can run 10 tests.

With 50 tests in total, and each shard able to run 10 tests in 25 minutes, Sridhar needs
50/10 = 5 shards.

Using 5 shards will meet his goal, but he knows they have enough hardware available
that he can be even more generous, and he decides to allocate 7 shards for the browser
tests.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.27

142

With 7 shards, each shard will need to run 50/7 tests; the shards with the most will run
the ceiling of 50/7 = 8 tests. 8 tests at an average of 2.5 minutes will complete in 20
minutes. This lets Sridhar slightly beat his goal of 25 minutes, and gives everyone a bit more
room to add more tests, before more shards will need to be added.

Sharding in the pipeline

Simple index based sharding will work for the Browser tests, so all the Shridar has to to is
add tasks that run in parallel, one for each shard, and have each use pytest-shard to run
their subset of the tests.

His sharded browser test tasks will run this python script, using python to call pytest:

# when the pipeline runs, it will pass to this script
# the index of the the shard and the total number of shards
# as arguments
shard_index, num_shards, path_to_tests = get_arguments()
# we’ll invoke pytest as command to run the correct set of tests
# for this shard
run_command (

“pytest --shard-id={} --num-shards={} {}”.format(

shard_index, num_shards, path_to_tests

))

To add this script to his pipeline, all he has to do is add a set of tasks that run in parallel,
in his case 7, one for each of the 7 shards.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

Run pytest-shard
for shard index 0

Run pytest-shard
for shard index 1

Run pytest-shard
for shard index 2

Run pytest-shard
for shard index 3

Run pytest-shard
for shard index 4

Run pytest-shard
for shard index 5

Run pytest-shard

for shard index 6

143

Does he need to hard code 7 individual tasks into his pipeline to
make this happen? It depends on the features of the CD system he’s
using. Most will provide a way to parallelize tasks, allowing you to
specify how many instances of the task you’d like to run, and then
providing as arguments (often environment variables) information to
the running tasks on how many instances are running in total and
which instance they are.

For example, using GitHub actions you can use a matrix strategy
to run the same job multiple times:
jobs: #A

tests:

strategy:

fail-fast: false
matrix:

total_shards: [7]
shard_indexes: [0, 1, 2, 3, 4, 5, 6]

#A GitHub actions uses “jobs” to refer to what this book calls “tasks”

With the above configuration, the tests job would be run 7 times,
and steps in each job can be provided with the following context
variables so they’ll know how many shards there are in total and
which shard they are running as:

${{ matrix.total_shards }}
${{ matrix.shard_indexes }} #A

#A These matrix option names are arbitrary; see the GitHub Actions
jobs.<job_id>.strategy.matrix documentation for more

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

144

6.28 Dog Picture Website’s pipelines
Now that Sridhar has met his goal of running the browser tests in 25 minutes - in fact, in 20
minutes! - he can combine all the tests together and the entire suite can run in an average of
30 minutes or less. This means he can go back to his last goal:

e Tests should run on every change, before the change gets pushed

Sridhar adds the browser tests to the pre merge pipeline, running them in parallel with
the integration tests. The pre merge pipeline can now run all of the tests and it will take only
the length of the sharded browser tests (20 minutes) + the unit tests (less than 1 minute).

\ntegro&ion tests toke
about S minutes and
un tests ’/_ run in paroliel with the

The unit tests run : i
First; it they fail the Rinonibtests A ¥ sharded browser tests
longer tests don’t run

™ S [ Run pytest-shard for

shard index 0

Al 7 shards of browser
for each shard 0..6 fests will run in about
a0 minutes

coverage and ensure

Measure unit test
it does not decrease

Run pytest-shard for
shard index 6

Why is the pre Sridhar makes the same updates to the nightly release pipeline as
merge pipeline well so that it gets the same speed boost.
different from the
nightly pipeline?
That’s a good question! i
It doesn’t have to be - Rununittests. 12
see the chapter on o) = ~—

t i Run pytest-shard for Build frontand | Upload image
graph design for more ( i R = | andupdate DB
about the tradeoffs. e it tat &

coverage and ensure

it does not decrease for each shard 0..6

Run pytest-shard for
shard index 6

@ Takeaway

Running tests in parallel will increase your hardware footprint, but it will save
you one another invaluable asset: time! When tests are slow, first optimize the
test distribution by leveraging unit tests, then leverage parallelization and shard-
ing if needed.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

145

Noodle on it

Sridhar needed 5 shards to run the 50 tests in 25 minutes or less, and he added an
extra 2 shards for a total of 7, speeding up the test execution time and adding some buffer
for future tests. But what if the number of tests keeps growing, does that mean adding

more and more shards? Will that work?

Once the number of browser tests increases from 50 to 70, each shard of the 7 shards

will be running 10 tests, and the overall execution time will be 25 minutes.

1

This means if any more tests are added, the browser tests will take
more than 25 minutes to run and more shards will need to be added.
Does this mean they’ll have to keep adding shards indefinitely? Won't
that eventually be too much?

That could happen; you may remember that the architecture of Dog
Picture Website is quite monolithic:

If Dog Picture Website continues to grow its feature base, they will
likely want to start dividing up responsibilities of the “backend service”
into separate services - which can each have their own tests suites.

This will mean that when something is changed, only the tests that
are related to that change can be run, instead of needing to run
absolutely everything. This kind of division of responsibilities will
probably be required in order to match the growth of the company as
well, i.e. as more people are added, they will need to be divided into
effective teams which each have independent areas of ownership.

Food for thought: fast forward to the future, where Dog Picture
Website is made up of multiple services, each with their own set of end
to end tests. Is running each set separately enough to be confident
that the entire system works? Should all of the tests be run together
before a release in order to be certain? The answer is: it depends, but
remember, you can never be 100% certain. The key is to make the
tradeoffs that work for your project.

Frontend

Backend

Gl

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

146

It’s your turn

Dog Picture Website and Cat Picture Website actually share a common competitor: the up
and coming Bird Picture Website. Bird Picture Website is actually dealing with a similar
problem around slow tests, but their situation is a bit different. Their entire test suite runs
in about 3 hours, but unlike Dog Picture Website, they run this entire suite for every pull
request. This means that when their engineers are ready to submit changes, they open up
a pull request, and then leave it, often until the next day, to wait for the tests to run. One
advantage to this approach is that they catch a lot of problems before they get merged, but
it means that engineers will often spend days trying to get their changes merged
(sometimes called “wrestling with the tests”).
The test suite Bird Picture website uses has the following distribution:

. 10% unit tests
. No integration tests
. 90% end to end tests

Y-

The unit tests cover 34% of the codebase, and they take 20 minutes to run. Given the
above, what are some good next steps for Bird Picture Website to go about speeding up
their test suite?

©Manning Publications Co. To comment go to liveBook



https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

ANSWERS

147

A few things stand out immediately about Bird Picture Website's test

suites:

The tests they are calling “unit tests” are quite slow for unit
tests; ideally they would run in a couple of minutes max, if
not in seconds. There is a good chance there are actually
more like integration tests.

The unit test (or maybe “integration test”) coverage is quite
low

There are a LOT of end to end tests in comparison to the
amount of unit tests; it could be that there just aren't very
many tests in general, but there’s also a good chance that
Bird Picture Website is relying too much on these end to end
tests.

Based on this information, there are a few things that the folks at
Bird Picture website could do:

Sort through the slow unit tests; if any of these are actually
unit tests (i.e. running in seconds or less), run those
separately from the other slower tests (which are actually
integration tests). These unit test can be run quickly first
and give an immediate signal.

Measure the coverage of these fast unit tests - it will be
even lower than the already low 34% coverage. Compare
the areas without coverage to the huge set of end to end
tests, and identify end to end tests that can be replaced with
unit tests.

Introduce a task to measure and report on unit test
coverage on every pull request, and don't merge any pull
requests that decrease the unit test coverage.

From there, take a fresh look at the distribution of tests and
decide what to do next. There’s a good chance that many of
the end to end tests could be downgraded to integration
tests; i.e. instead of needing the entire system to be up and
running, maybe the same cases could be covered with just a
couple of components, which will probably be faster.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

6.29

6.30

6.31

148

Conclusion

Over time, Dog Picture Website’s test suite had taken longer and longer to run. Instead of
facing this problem directly and finding ways to speed up the tests, they had removed the
tests from their daily routine, basically postponing dealing with the pain as long as possible.
Though this may have helped them speed up initially, it was now slowing them down. Sridhar
knew that the answer was to look critically at the test suite and optimize it as much as
possible. And when it couldn’t be optimized any further, he was able to use parallelization
and sharding to make the tests fast enough that the tests could once again become part of
the pre merge routine and engineers could get feedback faster.

Summary

e Get an immediate gain from a slow test suite by making it possible to run the
fastest tests independently and running them first

o Before solving slow test suite problems with technology, first take a critical look at
the tests themselves. Using the test pyramid will help you focus your efforts, and
enforcing test coverage will help you maintain a strong unit test base

e That being said, perhaps your test suite is super solid, but they just take a long time
to run. When you've reached this point, you can use parallelization, and sharding
(parallelization) to speed up your tests by trading time for hardware

Up next...

In the next chapter we’ll expand on the theme of getting signals at the right time in the
development lifecycle - in Dog Picture Website's case, by shifting the tests to earlier in their
process, often called shifting left. We'll look at the various signals that are a part of the
software lifecycle, as well as when and how to make the signals available.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

149

Give the right signals at the right
times

This chapter covers:
« dentify the points in a change’s lifecycle when bugs can be introduced

« Describe how to guarantee that bugs will not be introduced by conflicting
changes; weigh the pros and cons of each approach

« Catch bugs at all points in a change’s lifecycle by running Cl before merging, after
merging and periodically

In the previous chapters we've seen Continuous Integration pipelines running at different
stages in a change’s lifecycle. We've seen them run after a change is committed, leading to
an important rule: when the pipeline breaks, stop merging. We've also seen cases where
linting and tests are made to run before changes are merged, ideally to prevent getting to a
state where the code base is broken.

In this chapter we’ll look at the lifecycle of a change, all the different places where bugs
can be introduced, and how to run pipelines at the right times to catch and fix these bugs as
quickly as possible.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

150

CoinExCompare

CoinExCompare is a website that publishes exchange rates between digital currencies. Users
can log onto their website and compare exchange rates, for example between currencies
such as CatCoin and DogCoin.

1T

@11

gax
@}

CATCoIA

i g I

= , . ; + |
w3 o Ve s /e a3 ey I1/29

The company has been growing rapidly, but lately they’ve been facing bugs and outages.
They’re especially confused because they've been looking carefully at their pipelines, and
they think they’ve done a pretty good job of covering all the bases:

Their test pl.jrmd is well balanced: 8%
Run linting system tests, 10% integradion tests, the
1 rest are unit tests

The unit tests,
which run first,

COmple'ce inless . .
Run unit tests Run integration Run system tests
than 20 seconds = vs

tests

Th.e‘lj hove > 80% — A The entire pipeline
unit test coverage B con‘.Ple’ces. in around a0
and ‘H'Ie‘lj ensure it coverage minutes

doesn't decrease |

With a great CI pipeline like that, what could they be doing wrong?

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

151

7.2  Lifecycle of a change

To figure out what might be going wrong for CoinExCompare, they map out the timeline of a
change, so they can think about what might go wrong along the way:

¥ne
oo
u)('fv‘ o 5’(.0‘&5
o » Work on the change Iocul'.-j,
update it many times

¢ Moke o commit with the Chmwse

i This is the point at
Open i pull request with the 4——_ which Coi o
comm! currently runs their ¢

P Merge the commit into the This is often the point
remote repo’s main branch " where Folks wil initially
stort running &l - rish{
after changes are
merged - because it's
aneasy place to start.

/—% Vocab time N

The term production is used to refer to the environment
where you make your software available to your customers.
If you run a service, the endpoint(s) available to your cus-
tomers can be referred to as production. Artifacts such as
images and binaries that run in this environment (or are dis-
tributed directly to your customers) can be called produc-
tion artifacts (e.g. “production images”). This term is used to
contrast with any intermediate environments (e.g. a “stag-
ing” environment) or artifacts which may be used for verifi-
cation or testing along the way, but aren’t ever made directly
available to your customers.

8uild a production artifact with
the comnmit

v

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.3

152

Cl before and after merge

If you're starting from no automation at all, the easiest place to
start running CI is often right after a change is merged.
We saw this in chapter 2, when Topher setup webhook

— ~

[ This depends on
what  tools  youre
already using. Some

automation for Cat Picture website that would run their tests tools, like GitHub,

whenever a change was pushed. This quickly led to them make it very easy to

adopting an important rule: setup pull request
based CI.

When the pipeline breaks, stop pushing changes.

This is still a great place to start and the easiest way to hook in automation, especialy if
you're using version control software that doesnt come with additional automation features
out of the box and you need to build it yourself (like Topher did in chapter 2).

However it has some definite downsides:

You will only find out about problems AFTER they are already added to the codebase.
This means that your codebase can get into a state where it isn't safe to release - and
part of Continuous Delivery is getting to a state where you can safely deliver
changes to your software at any time. Allowing your codebase to become broken
on a regular basis directly interferes with that goal.

Requiring that everyone stop pushing changes when the CI breaks stops everyone
from being able to make progress which is at best frustrating, and at worst,
expensive.

This is where CoinExCompare was about 6 months ago, but they decided to invest in
automation that would allow them to run their CI before merging instead - so they could
prevent their codebase from getting into a broken state. This mitigates the two downsides of
runnining CI after the changes are already merged:

Instead of finding out about problems after they've already been added, stop them
from being added to the main codebase at all.

Avoid blocking everyone when a change is bad; instead let the author of the change
deal with the problem. Once it's fixed, the author will be able to merge the change.

This is where CoinExCompare is today: they run CI before changes are merged, and they
don’t merge changes until the CI passes.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

153

Timeline of a change’s bugs

CoinExCompare requires CI to pass before a change is merged, but they’re still running into
bugs in production. How can that be? To understand, let’s take a look at all the places bugs

can be introduced for a change:

» Work on the change Iocal'n‘uj,
update it many Yimes

~

rrors: There will be some errors as a change is created
Some will be resolved as you. work and some won'.
Flakes: There also may be non-deterministic behoavior
introduced that will show up as Hakes (see chapter S for
more on Hlokes)

Divergence: As you work, other changes moy be
introduced into the main branch, which %aren’k
acCounting for in your change

» Moke a commit with the change

Divergence: Changes in the main branch continue to
build up as you work

» Open o pull request with the
commit
(This is where CoinexCompare is
cu.rrerﬂ:lﬂ running their tests)

\"“—-h—

errors: 65 running Ci ok this poin’c, any errors thot are
cmeredbﬂ the test suite will be cought. As long as
possing Cl is required betore merging, these will be
removed.

Flakes: These Moy or Moy not be caught. This depends
on whether or not the non-deterministic behovior was
surfaced by the automation, and ' they author
decided to take action.

Divergence: As ime passes, the divergence from the
main branch will continue to grow.

merge the commitinto the

(once people start blocking PRs
on Cl, they o¥ten stop running ¢
ok this Poin’r)

’ remote repo’s main branch ~—1

Integrating the divergence: This is the point where the
changes become integrated again with the main
branch. Becouse main may have changes that were not
yet integrated with this new change, there is potentiol
$or new errors to be introduced,

p Build o. production artifoct with
'H'\e cormmit

\\_____’

Dependencies: While building production artifacts, itis
IiHeIﬂ that depdendencies may be pulled in, which may
pull in Purther changes that were not present when C
ran, and more bugs may be introduced
Non—deterministic builds: ANy other factors that make
it so that building ot one point in time produces a
different artifact than building at another point in
time have the pontential to introduce more bugs.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

154

Cl only before merging misses bugs

CoinExCompare is currently blocking PR merges on CI passing, but that is the ONLY time
they're running their CI. And as it turns out, there are a few more places that bugs can creep
in after that point:

merge the commit into the I Integrating the divergence: This is the point where the
’ remote repo’s main branch 1l changes become integrated again with the main
branch. Because main moy have changes that were not
3et integroted with this new change, there is potential
for new errors to be introduced.

(once people start blocking PRs
on €, they often stop running I

at this point )
» Build a. production artitact with | - Dependencies: While building production artifacts, it is
the commit ~—1, likely thot depdendencies may be pulled in, which may
A 4

pull in further ehanges that were not present when CI
ran, and more bugs moy be introduced

4. Non-deterministic builds: f"n'j other Foctors that make
it 0 that building at one point in time produces o
di¥ferent artifact than building at another point in
time have the pontential to introduce more bugs.

This comes down to three sources of bugs:

1. Divergence from the main branch: If CI runs only before a change is integrated
back into the main branch, this means that there might be changes in main that the
new change didn't take into account, and CI was never run for.

2. Changes to dependencies: Most artifacts will require packages and libraries outside
of its own codebase in order to operate. When building production artifacts, some
version of these dependencies will be pulled in. If these are not the same version that
you ran CI with, new bugs can be introduced.

3. Non-determinism: this pops up both in the form of flakes that aren’t caught and also
subtle difference from one artifact build to the next which have the potential to
introduce bugs.

Let’s take a look at how CoinExCompare can tackle each of these sources of bugs.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

155

7.6  Atale of two graphs: default to seven days

CoinExCompare recently ran into a production bug that was caused by the first source of
post-merge bugs:

Divergence from the main branch

Nia has been working on a feature to graph the last 7 days worth of coin activity for a
particular coin. For example, if a user went to the landing page for DogCoin, they would see
a graph like this, showing the closing price of the coin in USD on each of the last 7 days:

Jsh

e 1 |
W /a3 nay WS s /e e /a5

While she’s working on this functionality, she find an existing function that looks like it’ll
make her job a lot easier. The function get daily rates will return the peak daily rates for
a particular coin (relative to USD) for some period of time. By default the function will return
the rates for all time, indicated by a value of 0 (aka MAX).

MAX=0

def get_daily rates{coin, num days=MAX):
rate_hub = get_rate_hub(coin)
rates = rate hub.get rates(num days)
return rates

Looking around the codebase, Nia is surprised to see that none of the callers are making
use of the logic that defaults num days to Max. Since she has to call this function a few times,
she decides that defaulting to 7 days is reasonable, and it gives her the functionality she

needs, so she changes the function to default to 7 days instead of MAX and adds a unit test
to cover it.

def get_daily rates(coin, num days=7):
rate hub = get rate_ hub{coin)
rates = rate_hub.get_rates(num_days)
return rates

def test_get_daily rates default(szelf):
rates = get_daily ratea(“catcoin”)
self.assertEqual (rates, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.07)

All the tests, including her new one, pass, so she feels good about opening up a pull
request for her change.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

156

7.7  Atale of two graphs: default to thirty days

But Nia doesn't realize that someone else is making changes to the same code!

Fellow CoinExCompare employee Zihao is working on a graph feature for another page.
This feature shows the last 30 days worth of data for a particular coin.

Unfortunately neither Nia nor Zihao have realized that there is more than one person
working on this very similar logic!

And great minds think alike: Zihao also noticed the same function that Nia did and
thought it would give him exactly what he needed:

d We just saw that Nia )\

MAX=0 o A
changed this function,
def get_daily_rates(coin, num_days=MAX): but her changes haven’t
rate_hub = get_rate_hub(coin)
rates = rate_hub.get _rates(num daye) been merged yet, so
Teturn rates Zihao isn’t at all aware
of them.

Zihao did the same investigation that Nia did, and noticed that no one was using the
default behavior of this function. Since he has to call it a few times, he felt it would be
reasonable to change the default behavior of the function so that it would return rates for the
last 30 days instead of for all time.

He makes the change a bit differently than Nia:

MAX=0

def get daily rates(coin, num days=MAX):
rate_hub = get rate_ hub{coin)
rates = rate_hub.get_rates(30 if num_ days==MAX else num days)
return rates

Zihao also adds a unit test to cover his changes:

def test_get daily rates_default thirty day(self):
rateas = get_daily_rates(“catcoin”)
self.assertEqual (ratea, [2.0]%30)

Both Nia and Zihao have changed the same function to behave differently, and are
relying on the changes they’ve made. Nia is relying on the function returning 7 days worth of
rates by default, and Zihao is relying on it returning 30 days worth of data.

(" Who changed it better? )

Nia changed the argument default, while Zihao left the argument default alone and
changed the place where the argument was used. Nia’s change was the better appra-
och: in Zihao’s version the default is being set twice to two different values - not to
mention that the MAX argument will no longer work because even if someone pro-
vides it explicitly, the logic will return 30 days instead. This is the sort of thing that
hopefully would be pointed out in code review. In reality this example is a bit con-
trived so that we can demonstrate what happens when conflicting changes are made
\but not caught by version control.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.8

157

Conflicts aren’t always caught

Nia and Zihao have both changed the defaulting logic in the same function, but at least when
it comes time to merge, these conflicting changes will be caught, right?

Unfortunately no! For most version control systems, the logic to find conflicts is simple
and has no awareness of the actual semantics of the changes involved. When merging
changes together, if exactly the same lines are changed, the version control system will
realize that something is wrong, but it can’t go much further than that.

Nia and Zihao changed different lines in the get daily rates function, so the changes
can actually be merged together without conflict!

Zihao merges his changes first, changing the state of get daily ratesin the main
branch to have his new defaulting logic:

MAX=0

def get daily rates(coin, num days=MAX):
rate hub = get rate hub(coin)
rates = rate_hub.get_rates(30 if num days==MAX else num days)
return rates

Meanwhile, Nia merges her changes in as well. Zihao’s changes are already present in

main, so her changes to the line two lines above Zihao’s changes are merged in, resulting in
this function:

Nia’s ehange sets the default
valug For the argument

MAX=0

def get_daily rates(coin, num days=7):

hub = get_rate_hub(coin)
= rate_hub.get_rates(30 if num days==MAX clse num_days)
return rates

meanwhile Zihao wos reiaing on
the argument de¥m;jhn3 +o mAx

The result is that Zihao's graph feature is merged first, and it works just fine, until Nia’'s
changes are merged, resulting in the function above. Nia’s changes break Zihaos: now that
the default value is 7 instead of Max, Zihao’s ternary condition will be false (unless some
unlucky caller tries to explicitly pass in Max), and so the function will now return 7 days worth

of data by default. This means Nia’s functionality will work as expected, but Zihao’s is now
broken.

( Does this really happen? h

It sure does! This example is a little contrived since the more obvious solution for
Zihao would be to also change the default argument value, which would have imme-
diately been caught as a conflict. A more realistic scenario that comes up more fre-
quently in day to day development might involve changes that span multiple files, for
example making changes that depend on a specific function, while someone else
makes changes to that function.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

158

7.9 What about the unit tests?

Nia and Zihao both added unit tests as well. Surely this means that the conflicting changes
will be caught?

If they had added the tests at the same point in the file, the version control system would
catch this as a caught as a conflict, since they would both be changing the same lines.
Unfortunately in our example, the unit tests were introduced at different points in the file so
no conflict was caught! The end result of the merges would be both unit tests being present:

Nio’s unit test expects the function o
def test get_daily rates default(self): /'reh"'rn 7 dﬂt}s worth °¥ doto. b‘j (EE—O.UPC

rates = get_daily_rates(”catcoin”)
self.assertEqual (rates, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.01)

def test_get_daily rates_default_ thirty day(self):
rates = get_daily rates(“catcoin”)

self.assertEqual (rates, [2.01*30) Zihao's unit test eYPeC{'S the exoct same
¥ Runction, called with exactly the same
arguments, to return 30 days worth of data.

The version control system couldn’t catch the conflict, but at least it should be impossible
for both tests to pass, right? So surely the problem will be caught when the tests are run?

Yes and no! If both of these tests are run at the same time, one of them will fail (it is
impossible for both to pass unless something undeterministic is happening).

But will both tests be run together? Let’s look at a timeline of what happens to Nia and
Zihao’s changes and when the tests will be run:

CoingxCompare {riagers unit tests on pull
requests, so Zihao's unit tests run and pass

Zihoo s his pull request
opens his pullreq Running unit tests for Nia’s pull request will

Nia. opens her pull request ‘_/ also be triggered automatically

Zihao's pull request is merged, adding his changes to Zihao's tests passed, so
get_daily_rates and his new unit test to main <+— they won’t block his
Nia’s pull request is merged, adding her changes to ges being merged

get_daily rates and her new unit test to main - on top 5 Lor Nia
of the chcmaes Zihoo a.lreadlj mode '

Nia. and Zihao's changes are both in main, including the

unit tests (which can't both pass!D

s tests

Tests are run automatically for each pull request only. CoinExCompare is relying solely on
running their CI (including tests) on each pull request, but there is no automation to run CI
on the combined changes after they have been merged together.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

159

7.10 Pull request triggering still lets bugs sneak in

Running CI triggered by pull requests is a great way to catch bugs before they are introduced
into the main branch. But as we saw with Nia and Zihao,

b Work on the “"'ﬂ“e.e Iomn:}, Rs you work, other charges mawy be introduced

update it many times ~ into the main branch; which you aren’t

accounting for in your change
b Make a.commit with the change Changes in the main branch continue to build up
-~ » O 5oul.uork
b Open o pull re + fs time passes, the divergence from the main
\ “—— branch will continue to grow

Merge the commit into the gecause main may hove changes that were not
[ remote repo’s main branch ot ted with i oh there i
v \__‘__’5 mtegra w is new change, e is
potential for new errors to be introduced.

The longer your changes are in your own branch and aren’t
integrated back into the main branch, the more chance there will [ Another way to mit-
be that a conflicting change will be introduced that will cause
unforseen bugs.

igate this risk is to
merge back into main
as quickly as possible -
more on this in the
next chapter!

Question

Q: I regularly pull in changes from main as I work, doesn’t that fix the problem?
A: That certainly reduces the chances of missing conflicting changes introduced
into main, but unless you can guarantee the latest changes are pulled in, CI is run
immediately before merge, and no further changes sneak in during that time, there
is still a chance you'll miss something with only pull request triggered CI.

@ Takeaway

Running CI on pull requests before merging won't catch all conflicting changes.
If the conflicting changes are changing exactly the same lines, version control
can catch the conflict and force updating (and re-running CI) before merging,
but if the changes are on different lines - or in different files - you can end up in
asituation where CI has passed before merge, but after merging, the main branch
is in a broken state.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.11

160

Cl before AND after merge

What can CoinExCompare do to avoid getting into a state where main is broken because
conflicts haven't been caught?

Both Nia and Zihao added tests to cover their functionality - if those tests had been run
once the changes had been combined (merged) the issue would have been caught right
away.

CoinExCompare sets a new goal:

Require changes are combined with the latest main and CI passes before
merging

What can CoinExCompare do to meet this goal? They have a few options:

1. Run CI periodically on main

2. Require branches to be up to date before they can be merged into main

3. Use automation to merge changes with main and re-run CI before merging (aka using
a merge queue)

We'll look at each option in more detail, but at a glance each comes with its own set of
tradeoffs:

Option (1) will catch these errors but only after they’ve actually been introduced into
main; this means main can still get into a broken state.

Option (2) will prevent the kind of errors that we've been looking at from getting in, and
it's supported out of the box by some version control systems (for example GitHub). But in
practical application it can be a huge nusiance.

Option (3) if implemented correctly can also prevent these errors from getting in. As an
out of the box feature it's works very well, but it can be complicated if you need to
implement and maintain it yourself.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.12

161

Option 1: Run Cl periodically

Let’s look at each of the options in more detail.

With Nia and Zihao's situation, one of the most frustrating aspects was that the issue
wasn’t caught until it was seen in production - even though there were unit tests that could
have caught it!

With this option, we focus less on stopping this edge case from happening, and more on
easily detecting it if it does. The truth is that that bugs like these, which are caused by the
interaction of multiple changes, are unlikely to happen very often.

An easy way to detect these problems is to run your CI periodically against main, in
addition to running it against pull requests. This could look like a nightly run of the CI, or
even more often (e.g. hourly) if the tasks are fast enough.

Of course it has a couple of downsides:

1. This approach will let main get into a broken state
2. This requires someone to monitor these periodic tests, or at least be responsible for
acting on them when they break

What would it look like for Nia and Zihao if CoinExCompare decided to use periodic CI as
their solution to addressing these conflicting changes? Let’s say CoinExCompare decides to
run their periodic tests every hour:

P Zihao's pull request is merged, adding his changes to
get_doil H_ra’ces and. his new unit +est o main
main is broken
» Nio’s pull request is merged, adding her changes to ack this point
get_daily rates and her new unit test to main — on top /
ot the changes Zihao already made

» Nio. and Zihoo's chmges are both in main, inch,-.d.ing the The conflict has been em:.ahi:,

unit tests however someone needs to see
that the periodic Cl has failed,
diagnose the problem and either
$ix it or pass the informadion along
» The periodic ¢ fails - the unit tests introduced by Nia. %o Nioand Zihao.
W and Zihao can't both pass «—

b Sometime within the next hour, the periodic Cl runs
against the current state of main

At least now the problem will be caught, and might be stopped before it makes it to
production, but does this meet CoinExCompare’s goal?

Require changes are combined with the latest main and CI passes before
merging

Since everything happens post merge, option 1 doesn’t meet their bar.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.13

162

Setting up periodic CI

CoinExCompare isn’t going to move ahead with periodic CI (yet)
but before we move on to the other options let's take a quick
look at what it would take to set this up. . - S
) . . . . . . running CI periodi-
CoinExCompare is using GitHub actions, so making this cally which we’ll look
change is easy. Say they wanted to run their pipeline every at a bit later in this
hour. In their GitHub actions workflow, they can use the chapter.
schedule syntax to do by including a schedule directive in
the on triggering section:

4 ™
Stay tuned: there are
some other upsides to

on:
schedule:
_ cron: ‘0 * % % ! The &itHub actions schedule directive uses

¥ _crontab s‘jn{ax *o express when to run

Though it's easy to setup the periodic (aka scheduled) triggering, the bigger challenging
is actually doing something with the results.

When running CI against a pull request, it's much more clear who needs to take action
when it fails: the author(s) of the pull request itself. And they will be motivated to do this
because they need the CI to pass before they can merge.

With periodic CI, the responsibility is much more diffused. In order to make your CI
useful, you need someone to be notified when failures occur, and you need a process for
determining who actually needs to fix the failures.

Notification could be handled through a mailing list or by creating a dashboard; the
harder part is deciding who needs to actually take action and fix the problems.

A common way to handle this is to setup a rotation (similar to being on call for production
issues) and share the responsibility across the team. When failures occur, whoever is
currently responsible needs to decide how to triage and deal with the issue.

If the periodic CI frequently has problems, dealing with the ) )
issues that pop up can have a significant negative impact on the ( See Chapter 5 for A
productivity of whoever has to handle them and can be a drain techniques for fixing
on morale. This makes it (even more) important to make a noisy CIL.
concerted effort to make CI realiable so that the interruptions
are infrequent.

@ Takeaway

Takeaway: Running CI periodically can catch (but not prevent) this class of
bugs. While it is very easy to get up and running, for it to be effective you need
someone to be monitoring these periodic tests and acting on failures.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.14

163

Option 2: Require branch to be up to date

Option 1 will detect the problem, but won't stop it from happening. In option 2, you are
guaranteed that problems wont sneak in. This works because if the base branch is updated,
you'll be forced to update your branch before you can merge- and at the point that you
update your branch, CI will be triggered.

Would this have fixed Nia and Zihao's problem? Let’s take a look at what would have
happened.

b Zihao opens his pull request a4~ Zihao's unit tests run and pass

» Nia. opens her pull request a+—  Nia’s unit tests also pass

» 2ihao's pull request is merged, adding his changes to Zihao's changes are
get_daily rates and his new unit test to main <—— added to main

» Main has changed since Nia. ereated the branch with
her changes, <o she is forced to update her branch with
those changes -~

Nia’s pull request now contains the
combinadion of her changes and
2ihao’s, including both unit tests.

) Nio haos o Fix the con?iicting chcmges in order {'036’((51 Wﬁng her branch will {rieﬁer‘the
+ 1o pass before she can merge tests to run, and Zihao's test will $ail

As soon as Zihao merged, Nia would be blocked from merging until she pulled in the
latest main, including Zihao’s changes. This would trigger CI to run again - which would run
both Nia and Zihao's unit tests. Zihao’s would fail, and the problem would be caught!

This strategy comes with an additional cost though: anytime main is updated, all pull
requests for branches which don’t contain these changes will need to be updated. In Nia and
Zihao's case this was important because their changes conflicted, but this policy will be
universally applied, whether it is important to pull in the changes or not.

e
[ Can you automate updating every single branch?

It’s possible (and this would be a nice feature for version control systems to support!)
However, remember that for distributed version control systems like git, the branch
that is backing the pull request is a copy of the branch the developer has been work-
ing on on their machine. This means the developer will need to pull any changes
automatically added if they need to continue working. Not a deal breaker, but some
extra complication. Also with this kind of automation, we’re starting to get into the
territory of option 3.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.15

164

Option 2: At what cost?

Requiring that a branch be up to date with main before being merged would have caught Nia
and Zihao’s problem, but also, this approach would impact every pull request and every
developer.

Pull Request #4S is opened

Pull Request #44 is opened

Pull Request #47 is opened

Pull Request #4S is merged, updating main

Main was updated, so PRs #44 and #47 are now blocked
$rom merging until they are updated

Pull Request #48 is opened

Pull Request #46 is updoted and then merged

Main was updated again, o now PR #48 is also blocked
from merging until it is updated, and PR #47 continues

%o be blocked by the changes merged for PR #4S and
now for PR #44 as well

Is it worth the cost? Let’s see how this policy would impact several pull requests:

Each time a pull request is merged, it impacts (and blocks)
all other open pull requests!

CoinExCompare has around 50 developers, and each of them
try to merge their changes back into main every day or so. This
means there are around 20-25 merges into main per day.

4 ™
Why merge so fre-
quently? See chapter 8
for more!

Imagine that 20 PRs are open at any given time, and the authors try to merge themwithin a
day or so of opening. Each time a PR is merged, it will block the other 19 open PRs until they
are updated with the latest changes.

The strategy in option 2 will guarantee that CI always runs with the latest changes, but at
the cost of potentially a lot of tedious updates to all open PRs. In the worst case, developers
will find themselves constantly racing to get their PRs in so they don’t get blocked by
someone else’s changes.

@ Takeaway

Requiring the branch to be up to date before changes can be merged will prevent
conflicting changes from sneaking in, but it is most effective when only a few
people are contributing to a codebase. Otherwise the headache may not be worth
the gain.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.16

165

Option 3: Automated merge CI

CoinExCompare decides that the additional overhead and frustration of always requiring
branches to be up to date before merging isn’t worth the benefit. What else can they do?

With CoinExCompare’s current setup, tests ran against both Nia and Zihao's pull requests
before merging. Those tests would be triggered to run again if anything in those PRs
changed. This worked out just fine for Zihao’s changes, but didn’t catch the issues introduced
when Nia’s changes were added.

If only Nia’s CI had been triggered to a) run one more time before merging, and b)
included the latest changes from main when running those tests, the problem would have
been caught.

So another solution to the problem is to introduce automation to run CI which runs final
time before merging, against the changes merged with the latest code from main.

Accomplish this by doing the following:

1. Before merging, even if the CI has passed previously, run the CI again, including the
latest state of main (even if the branch itself isn't up to date)

2. If the main branch changes during this final run, run it again. Repeat until it has been
run successfully with exactly the state of main that you'll be merging into

What would have happened to Nia and Zihao’s changes if they’d had this automation?

Zihao opens his pull request » Zihao’s unit tests run and pass
Nia. opens her pull request 4~ Mias unit tests aleo pass
3 ]
Zihao's pull request is merged, adding his changes to ?‘:;eo;::mﬂes ore
get_daily rates and his new unit test to main /a ain

Nia. attempts to merge her pull request, triggering a The unit tes’cs fail ond
final & which pulls in Zihao® : the conflict is caught
in run which pulls in Zihao’s updates to main. )

nia hos to Fix the mn@iicﬁng changes in order o get Cl
to pass before she con merge

With the CI had pulling in the latest main (with Zihao’s changes) and running a final time
before allowing Nia to merge, the conflicting changes would be caught and won’t make it into
main.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.17

166

Running Cl with the latest main

In theory it makes sense to run CI before merging, with the latest main, and make sure main
can’'t change without re-running CI, but how do you actually pull this off? We can break the
elements down a little further. We need:

1. A mechanism to combine the branch with the latest changes in main which CI can use

2. Something to run CI before merge and block the merge from occuring until it passes

3. A way to detect updates to main (and trigger the pre-merge CI process again) OR a
way to prevent main from changing while the pre-merge CI is running

How do you combine your branch with the latest changes in main? One way is to do this
yourself in your CI tasks by pulling the main branch and doing a merge.

But you often don’t need to because some version control systems will actually take care
of this for you. For example, when GitHub triggers webhook events (or when using GitHub
actions), GitHub provides a merged commit to test again: it creates a commit that merges
the PR changes with main.

For pull request events, &itrub will

automatically ereate o branch with Ve ~
PR those changes merged into main [ Using this merged
Branch -—--..\"k commit for all pull
PR request triggered CI
o GLITHUB_S% in will  increase your
- the event will be chances of catching
mt the HEAD of the these sneaky conflicts.
merge branch

As long as your tasks fetch this merge commit (provided as the GITHUB sHA in the
triggering event), you've got (1) covered!

(" A different way of looking at this option (automated merge CI) is that it’s an alter-
native approach to option 2. Option 2 requires branches to be up to date before
merging, and option 3 makes sure branches are up to date when CI runs by intro-
duction automation to update branch to that state before running CI, vs. blocking
and waiting for the author to update their pull request with the latest changes.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.18

167

Merge Events
Now that we've covered the first piece of the recipe, let’s look at the rest. We need:

2. Something to run CI before merge and block the merge from occuring until it passes
3. A way to detect updates to main (and trigger the pre-merge CI process again) OR a
way to prevent main from changing while the pre-merge CI is running

Most version control tems will give some way to run CI in ) PN
0s sion control sys s g you so ay to run C (" Gittub makes trig- )

response to events, such as when a pull request is opened, when gering on a merge a bit
it is updated, or in this case, when it is merged, aka a merge complex: the equiva-
. lent of the merge event

event. If you run your CI in response to the merge event, you can is 2 pull request
be alerted when a merge occurs, and run your CI in response. event with the activity
However this doesn’t quite address requirements (2) and (3) typeclose when the
above merged field inside

the payload has the
value true. Not ter-
ribly straightforward!

2. The merge event will be triggered AFTER the merge occurs, i.e. after the PR is merged
back into main, so if a problem is found it will have already made its way into the
main branch. At least you’'ll know about it, but main will be broken.

3. There is no mechanism to ensure that any changes to main that occur while this
automation is running will trigger the CI to run again, so some conflicts can still slip
through the cracks.

What would this look like for Nia and Zihao’s scenario?

» zihao's pull request is merged, adding his changes to whether this ¢l can coteh the
get_daily rokes and his new unit test to main conblict depends on timing; it's
possible that Nia’s merge Cl is
‘krieﬁered while Zihao's is still
running, in which case Zihao's

» Zihao's merge {riggers €l to run again on his changes
with the latest main

b NicYs pull request is merged, adding her changes to changes wouldn't yet be in main
get_daily rates and her new unit test to main and Nia’s merge Cl wouldn't
coteh the Probbem.
¥ Nia’s merge trig,gers € to run again on his changes u&’c’r‘m_/
the lotest main whether the ouwtomotion catehes it

b Nioland Zihoo's c'narges are both in main or not, main is now broken.
v

So unfortunately triggering on merges won't give us exactly what we're looking for. It will
increase the chances that we'll catch conflicts, but only after they’ve been introduced, and
more conflicts can still sneak in while the automation is running.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.19

168

Merge queues

If triggering on the merge event doesn’t give us the whole recipe, what else can we do? The
complete recipe we are looking for requires:

1. A mechanism to combine the branch with the latest changes in main which CI can use

2. Something to block the merge from occuring until CI passes

3. A way to detect updates to main (and trigger the pre-merge CI process again) OR a
way to prevent main from changing while the pre-merge CI is running

We have an answer for (1) but the complete solution to (2) and (3) is lacking. The
answer is to create automation which is entirely responsible for merging PRs. This
automation is often referred to as a merge queue or merge train, i.e. merging is never
done manually, it is always handled by automation which can enforce (2) and (3).

You can get this functionality by building the merge queue yourself, but fortunately you
shouldn’t need to! Many version control systems now provide a merge queue feature out of
the box.

Merge queues, as their name implies, will manage queues of pull requests which are
eligible to merge (e.g. they've passed all the required CI):

e Each eligible pull request is added to the merge queue

e For each pull request in order, the merge queue creates a temporary branch that
merges the changes into main (the same logic as the merged commit GitHub provides
in pull request events)

¢ The merge queue runs the required CI on the temporary branch

e If CI passes, the merge queue will go ahead and do the merge. If it fails, it won't.
Nothing else can merge while this is happening because all merges need to happen
through the merge queue.

¢ For very busy repos, some merge queues optimize by batching together pull )
requests for merging and running CI. If the CI fails, an approach like binary search
can be used to quickly isolate the offending PRs, for example, split the batch into two
groups, re-run Cl on each, and repeat until you discover which PR(s) broke the CL.
Given how rare post merge conflicts and and if enough PRs are in flight that waiting
for the merge queue becomes tedious, this optimization can save a lot of time.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

169

7.20 Merge queue for CoinExCompare

Let’s see how a merge queue would have addressed Nia and Zihao’s conflict:

Zihao's pull request is ready to merge
Zihao's pull request is added to the merge queue

The merge queue creates a branch from main, merges

in Zihao's changes and starts Cl even it Zihao and Nia’s attempts
to merge overlap, the merge
queue handles the race condition
Nia’s pull request is added to the merge queue and prevents any conflicts from
The merge queve is currently running 1 for Zinao's PR, sneaking in

50 Nia’s PR has to wait

nia’s pull request is ready to merge

Zihao's PR passes and the merge queue merges his

changes into main

It's Nia’s turn: the merge queue creates o branch $rom

main (including Zihao's recently merged changes),

merges in Nia’s changes and starts ¢! The conflict was cought before
¢l Roils ond Nia. must deal with the conlicting changes  2nd dide’t make it into main!

¥ betore she can merge her PR

—~ @ Building your own merge queue ——

This is doable but it’s a lot of work. At a high level what you need to do is to a)
create a system which is aware of the state of all pull requests in flight, b) block
your pull requests on merging (e.g. via branch protetction rules) until this system
gives the green light, ¢) have this system select PRs which are ready to merge,
merge them with main, and run CI, and finally d) have this system do the actual
merging. This complexity has a lot of potential for error, but if you absolutely
need to guarantee that conflicts do not sneak in, and you're not using a version

\_ control system with merge queue support, it might be worth the effort. Y,

@ Takeaway

Merge queues prevent conflicting changes from sneaking in by managing
merging and ensuring CI passes for combination of the changes being merged
and the latest state of main. Many version control systems provide this function-
ality, which is great because building your own may not be worth the effort.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

.

Let’s look again at the three options for catching conflicts that are introduced
between merges. Match these three options to the 2 downsides that fit best below:
1.
2.
3.

170

r@ It's your turn: match the downsides ——

Run CI periodically
Require branches to be up to date

Use a merge queue

For each of the three options above, select the 2 downsides that fit best:

1.
2.
3.

Slows down the time to merge a PR
Requires someone to monitor and be responsible for the results

Results in many pull requests being blocked from merging until the
authors unblock them

Allows main get into a broken state

5. Complex to implement if your version control system doesn’t support it

Tedious when more than a few developers are involved

,—@ Answers

L.

Run CI periodically: (4) conflicts introduced between pull requests will be
caught when the periodic CI runs, after the merge into main has already
occured. (2) if no one pays attention to the periodic runs, they’ll have no
benefit.

. Require branches to be up to date: (3) every time a merge happens, all

other open pull requests will be blocked until they update. (6) when only a
few developers are involved this is feasible but for a larger team this can be
tedious.

. Use a merge queue: (1) every PR will need to run CI an additional time

before merging, and may need to wait for PRs ahead of it in the queue. (5)
creating your own merge queue system can be complex.

S

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.21 Where can bugs still happen?

171

CoinExCompare decides to use a merge queue, and with GitHub they’re able to opt into this
functionality quite easily by adding the setting to their branch protection rules for main to

Require Merge Queue.

Now that they are using a merge queue, have the folks at CoinExCompare successfully
identified and mitigated all the places where bugs can be introduced?
Let’s take a look again at the timeline of a change and when bugs can be introduced:

® Work on the change iocaﬂ\-_.j, l

&rors: Moy be introduced

Flakes: There also may be non—deterministic behavior
introduced that will show up os Yokes

merge the commit into the I
" remote repo’s main branch S~

update it many times ~—_
a.
& Moke o commit with the (‘hange I
——
¢ Opena pu.ﬂ request with the I
commit -
N
3.

Dwergence arows over tirne
Divergence: Grows over Yime

grrors: CoingxCompare’s pull request {riﬂgerd pre-
merge Cl will cateh errors covered b3 tests

Flakes: These may or may not be coaught.

Divergence: Grows over time

Integrating the divergence: Now that CoingxCompare is
using o. merge queue, divergences will be resolved
before the commit is actually merged.

¢ Build a production artifoct with L

v the commit \"

Dependencies: While building production artifacts, it is
iiHei!.j thot depdendemies moy be pul'led in, which mowy
pull in further changes that were not present when Ci
ran, and more bu.as mowy be introduced

Mon-deterministic builds: Any other Yactors thot make
it so that building ot one point in time produces a
different artifact than building ot another point in
tirme have the pontential to introduce more bugs.

Even with the introduction of a merge queue, there are still several potential sources of

bugs CoinExCompare hasn't tackled:

2. Changes to dependencies

3. Non determinism: in code and/or tests (i.e. flakes), and/or how artifacts are built

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.22

172

Flakes and pull request triggered CI

We learned in Chapter 5 that flakes occur when tests fail inconsistently: sometimes they
pass, sometimes they fail. We also learned that this can be caused equally by a problem in
the test or by a problem in the code under test, so the best strategy is to treat these like
bugs and investigate them fully.

But since flakes don't happen all the time, they can be hard to catch!

CoinExCompare now runs CI on each pull request and before a pull request is merged.
This is where flakes would show up, and the truth is that they would often get ignored. It's
hard to resist the temptation to just run the tests again, merge, and call it a day - especially
if your changes don’t seem to be involved.

Is there a more effective way CoinExCompare can expose and deal with these flakes?

A few pages ago we looked at periodic CI, and decided it wasn't the best way to address
sneaky conflicts, however it turns out the periodic CI can be a great way to expose flakes.

Imagine a test that flakes only once out of every 500 runs.

CoinExCompare developers have about 20-25 PRs open per day. Let’s say the CI runs at
least three times against each PR: once initially, once with changes, and finally again in the
merge queue. This means every day there are about 25 PRs * 3 runs = 75 chances to hit the

B

Over a period of about 7 days that’s 525 changes to fail, so it's likely this test will fail one
of those PRs. (And it’s also likely the developer who created the pull request will just ignore it
and run the CI again!)

BEREEEEEEEEERREEEEEEEEEEEEEEEEEBEREEBE
PEEEEEEPRPEEEEREEEEEEEEREEPEBEEDPEEBEBE
PEREPREEEEEERPEEREREBEEFPEEERBBEBEBEE
BEHEHEBHEEEEEDREEEEEEBEEEEBEREBREEBE B
BEREEEEEEEEEEEEBEEEEEEEEEEEBRERF

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.23

173

Catching flakes with periodic tests

When relying only on pull request and merge queue based tests to uncover flakes,
CoinExCompare will be able to reproduce a flake that occurs 1/500 times around once every
7 days. And when the flake is reproduced, there’s a good chance that the author of the
impacted pull request will simply decide to run the tests again and move on.

EEREEEEREEEREREREERBERPBREEERPPEBEBEE
EEREEEEEEEEREREBEERRERRERERERPEEBEBEE
BEEREEEEEEREEREREEREEREEEEEEEREEBEBEE
BEPEEEREEERERPEEEBEEEREREEREEREBREEBE BME
EREPEEEEEEEERREEEEEERER EEEBBEEBE

Is there anything that CoinExCompare can do to make it easier to reproduce flakes and
not have to rely on the good behavior of the impacted engineer to fix it?

A few pages back we talked about periodic tests, and how they were not the best way to
prevent conflicts from sneaking in, but it turns out that catching flakes with periodic tests
works really well!

What if CoinExCompare sets up periodic CI to run once an hour? With the periodic CI
running once an hour, it would run 24 times a day.

The flakey test fails 1/500 runs, so it would take 500/24 days, or approximately 21 days
to reproduce the failure.

Reproducing the failure once every 21 days via periodic CI might not seem like a big
improvement, but the main appeal is that if the periodic tests catch the flake, they aren’t
blocking someone’s unrelated work. As long as the team has a process for handling failures
discovered by the periodic CI, a flake discovered this way has a better chance of being
handled and investigated thoroughly than when it pops up and blocks someone’s unrelated
work.

@ Takeaway

Periodic tests help identify and fix non-deterministic behavior in code and
tests, without blocking unrelated work

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

174

7.24 Bugs and building

By adding a merge queue and periodic tests, CoinExCompare has successfully eliminated
most of their potential sources of bugs, but there are still ways bugs can sneak in:

1. Divergence from and integration with the main branch

2. Changes to dependencies

3. Non determinism: in code and/or tests (i.e. flakes) (caught via periodic tests), and/or
how artifacts are built

Both of these sources of bugs revolve around the build
process. In chapter 9 we’re going to look at how to structure
your build process to avoid these problems, but in the
meantime, without overhauling how CoinExCompare builds
their images, what can be done to catch and fix bugs
introduced at build time?

( Spoiler, the best )
answer to (2) is to
always  pin  your
dependencies

pa_—

Run linting

Run unit tests Run integration =y | Run system tests

tests

L.

Measure
unit test
coverage

Let’s take a look again at their pipeline:

The last task in the pipeline runs the system tests. As with
any system tests, these tests test the CoinExCompare system
as a whole. System tests need something to run against, so
part of this task must include setting up the system under

( The system under )
test (SUT) refers to the
system that system
tests run against to

test (SUT). In order to create the SUT, the task needs to build verify the correct oper-

the images used by CoinExCompare. ation of.

The types of bugs we’re currently looking at sneak in while the images are being built - so
can they be caught by the system tests? The answer is yes BUT the problem is that that the
images being built for the system tests are not the same as the ones being built and
deployed to production. Those images will be built at some point later on, at which point the
bugs can sneak back in.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

175

7.25 Clvs. build and deploy

In chapter 2 we looked at two different kinds of tasks: gates and transformations.

# e

: Tasks that change your code
T t ver
osks that venty " from one form to another
Your code are quality -
Jotes that \ are transformadions: your

code goes in as an input and
has to pass through. )
comes out in another form.
CoinExCompare separates their gate and transformation tasks into two different
pipelines. The purpose of the pipeline we’ve been looking at so far, their CI pipeline, is to
verify code changes (aka gating code changes).

CoinExCompare uses a different pipeline to build and deploy
their production image (aka transforming the source code into a See Cha}?ter_ 13 for
running container): more on pipeline graph

design.

The reality is that the line between these two kinds of tasks can blur. If you want to be
confident in the decisions made by your gate tasks, i.e. your CI, you need to do a certain
amount of transformation in your CI as well.
This often shows up in system tests, which are often secretly doing some amount of
building and deploying.
©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.26

176

Build and deploy with the same logic
The CoinExCompare system test task is actually doing a few things:

Setting up an environment to run the system under test

Building an image

Pushing the image to a local registry

Running the image

And only THEN running the system tests against the running container

ukwne

But - and this is very common - it’s not actually using the same logic that the deployment
pipeline is using to build and deploy their images. If it was, it would be making use of the
same tasks that are used in that pipeline:

 Build
CoinExCompare

service image

Upload Deploy
CoinExCompare \—=) CoinExCompare

service image service image

NS

Runtime parameters provided to these tasks can
change where ’cheﬂ achml'uﬂ update and cleploﬂ o,
€.g. to the real image regis{rl.j or to outhpa'ar‘uj
local registry. Controlling the behavior of tosks with
params allows the logic to be reused.

This means there is a potential for bugs to sneak in when the actual images are built and
deployed, specifically:

o Differences based on when the build happens, for example pulling in the latest
version of a dependency during the system tests, but when the production image is
built an even newer version is pulled in.

o Difference based on the build environment, for example running the build on a
different version of the underlying operating system.

There are 2 changes that CoinExCompare can make to minimize these differences:

e Run the deployment tasks periodically as well
e Use the same tasks to build and deploy for the system tests as are used for the actual
build and deploy

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

177

7.27 Improved Cl pipeline with building
CoinExCompare updates their CI pipeline so that the system tests will use the same tasks

they use for production building and deploying and it looks like this:

’__,_.-—l—-_-'-\
After the integration tests pass, building the

Run linting o cdn%om?are image and set-ting up the suT

environment can happen in parallel The s\ujsi'em test task starts after
l Run unit tests 5 =

the suT is up and running with the

Setup SUT neuda bu.ll.{' imoges. The tosK now
environment does ""w’““ﬁ but run tests. \
= [ C‘mﬂhcm"P*“‘E ‘3"‘“‘13”3“"'!"“E = [ Run system tests
service image

Run integration
tests

Measure &!
unit test
coverage

The same tasks For building, u.plondlna cmd. The image under test will be
dﬂploamg their production images are now dﬂploged %o the SUT
being used in the ¢l pipeline environment once it is set up

( CoinExCompare\
isn’t using Continuous
Deployment; see chap-
ter 10 for more on dif-
ferent deployment
techniques.

2.| Changes to dependencies |

3.| Non determinism: #freode-andfortestseflakes), and/

or how artifacts are built

¢ Changes in dependencies are mitigated because the images are now being built (and
tested) every hour. If a change in a dependency introduces a bug, it now has a
window of only about an hour to do it, and it will likely be caught the next time the
periodic CI runs.

¢ Non-deterministic builds are mititgated because by using exactly the same tasks to
build images for CI, we've reduced the number of variables that can differ.

(See Chapter 9 for more on how to completely defeat these risks.)

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

178

7.28 Timeline of a change revisited

Did they get them all? The folks at CoinExCompare sit down to look one final time at all the
places a bug could be introduced:

Work on the change locally,
updote it many times

Molke o commit with the change

Open a. pull request with the Pull request triggered Cl here will cateh errors in the
comenit <+— changed logic.
merge the commit into the using a. merge queue will cateh conflicts introduced across

’ remote repo’s main branch q— merges.
Running periodic tests will reveal Hlakes that hoven't been caught or have been ignored.

8uild a. production artitoct with By using the same logic in the CI pipeline o build and depiovj
WVihe commit as is used to produce production artifacts, and bﬂ running
that Cl periodically, the chances of o bug being introduced
b:j shn%ns dependencies or non-deterministic build
elements have been greaﬁ\nj reduced,

CoinExCompare has successfully eliminated or at least mitigate all of the places that bugs
can sneak in by:

e Continuing to use their existing pull requst triggered CI

e Adding a merge queue

e Running CI periodically

e Updating their CI pipelines to use the same logic for building and deploying as their
production release pipeline

With these additional elements in place, they are very happy to see a dramatic reduction
in their production bugs and outages.

' ™~
| Treating periodic Cl artifacts as release candidates '

The last two sources of bugs we observed have only been mitigated, not completely
removed. Something quick and easy CoinExCompare would be to start treating the
artifacts of their periodic CI as release candidates, and releasing those images as-is;
i.e. no longer running a separate pipeline to build again before releasing. More on
this in chapter 9!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

179

/—@ It’s your turn: identify the gaps ———

For each of the following triggering setups, identify bugs that can sneak in and
any glaring downsides to this approach (assume no other CI triggering):
1. Triggering CI to run periodically
Triggering CI to run after a merge to main
Pull request triggered CI
Pull Request triggered CI with merge queues

LA O

Triggering CI to run as part of a production build and deploy pipeline
\ J

/-@ Answers N

1. Periodic CI alone will catch errors, and also sometimes catch flakes,
however this will be after they are already introduced to main. Making
periodic CI alone work will require having people paying attention to
periodic CI who will need to triage errors that occur back to their source.

2. Triggering after a merge to main will catch errors, but only after they are
introduced to main. Since it runs immediately after merging, it will be
easier to identify who is responsible for the changes, but also chances are
high that any flakes revealed will be ignored. This will also require a “don’t
merge to main when CI is broken” policy or errors can compound on each
other and grow.

3. Pull request triggered CI is quite effective but it will miss conflicts
introduced between pull requests and flakes that are revealed are likely to
be ignored.

4. Adding a merge queue to pull request triggered CI will eliminate conflicts
between pull requests, but it is likely flakes will still be ignored.

5. Running CI as part of a production release pipeline will ensure that errors
introduced by updated depdendencies (and some non-deterministic
elements) are caught before a release, but following up on these errors will
interrupt the release process. If they can’t be immediately fixed, and
re-running makes the error appear to disappear, there is a good chance
they will be ignored.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

7.29

7.30

7.31

180

Conclusion

CoinExCompare thought that running CI triggered on each pull request was enough to catch
all the errors that can be introduced by a change, however on closer examination they
realized that this approach can’t catch everything. By using merge queues, adding periodic
tests, and updating their CI to use the same logic as their release pipelines, they’ve now got
just about everything covered!

Summary

e Bugs can be introduced as part of the changes themselves, as conflicts between the
changes and a diverging main branch, and as part of the build process

e Merge queues are a very effective way to prevent changes that conflict between PRs
from sneaking in. If they aren’t available in your version control system, requiring
branches to be up to date can work well for small teams, or periodic tests are
effective (though this means main may get into a broken state).

e Periodic tests are worth adding regardless as they can be a way to identify flakes
without interrupting unrelated PRs, but using them effectively requires setting up
some process around them.

e Building and deploying in your CI pipelines in the same way as your production
releases are performed will mitigate the errors that can sneak between running the CI
and release pipelines.

Up next...

In the next chapter, we'll start transitioning into looking at the details of Continuous Delivery
pipelines which go beyond Continuous Integration: the transformation tasks that are used to
build and deploy your code. The next chapter will dive into effective approaches to version
control which can make the process run more smoothly, and how to measure that
effectiveness.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

181

Easy delivery starts
with version control

In this chapter:

« Explain the DORA metrics which measure velocity: deployment frequency
and lead time for changes

« Increase speed and communication by avoiding long lived feature
branches and code freezes

« Decrease lead time for changes by using small, frequent commits

 Increase deployment frequency safely by using small, frequent commits

In the previous chapters we've been focusing on Continuous Integration, but from this
chapter onward we’ll start transitioning to the details of the rest of the activities in a
Continuous Delivery Pipeline, specifically the transformation tasks that are used to build and
deploy your code.

Good CI practices have a direct impact on the rest of your CD. In this chapter we'll dive
into effective approaches to version control to make CD run more smoothly, and how to
measure that effectiveness.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

182

8.1 Meanwhile at Watch Me Watch

Remember the startup Watch Me Watch from chapter 3? Well they're still going strong - and

in fact growing as a company! In the past two years they’'ve grown from just Sasha and
Sarah to a company of more than 50 employees.

From the very beginning they invested in automating their deployments, but as they've

grown they’ve gotten nervous that these deployments are riskier and riskier, so they’ve been
slowing them down.

Each of their services is now only released during specific windows, once every 2 months.
For a week before a release, the code base is frozen and no new changes can go in.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

183

The AP, User and Streaming
\nkesra’don services are
released every & months,

ofter ol week code freeze. e
)@
Website \‘! /7 Service
API
Service
Phone / . \\]

Loy

Streaming Streaming
App Integration —7 "
Soroiie Services

In spite of these changes, somehow it feels like the problem is only getting worse: every
deployment still feels extremely risky, and even worse, features are taking too long to get
into production. Since Sasha and Sarah started on their initial vision, competitors have
sprung up, and with the slow pace of features being released, it feels like the competitors are
getting ahead!

It feels like now matter what they do, they’re going slower and slower.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

184

8.2 The DORA metrics

Sasha and Sarah are stumped, but new employee Sandy (they/them) has some ideas of
what they can do differently. One day they approach Sasha in the hallway.

Hey Sashal | hope you don't
mind me bu&k'mg in, | heard you
\'alK\ng about your deplovjmenk
problem

Youwyre not bud'i'\ng in ot all!
We're pretty stumped,

| was wonder'mg, whot
do your DORA metrics
look like?

DORA metrics? Whot
are those?

As they both stand in the hallway and Sandy starts to explain the DORA metrics, Sasha
realizes that the whole team could really benefit from what Sandy knows, and asks Sandy if
they’d mind giving a presentation to the company.

Sandy eagerly puts some slides together and gives everyone a quick introduction to the
DORA metrics:

Origin of the DORA metrics

The DevOps Research and

Assessment (DORA) team created

the DORA metrics from nearly a
decade of research

1

1

]

1

X The DORA metrics are 4 key

1 metrics that measure the

i performance of a software team
I
1
1

The DORA metrics: Velocity

Velocity is measured by 2 metrics:

+ DeploymentFrequency + Change Failure Rate

+ Lead Time for Changes + Time to Restore Service

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

185

8.3 Velocity at Watch Me Watch

After her presentation on the DORA metrics, Sandy
continues to discuss them with Sarah and Sasha, and
how they can help with the problems Watch Me Watch is
facing around how slowly they are moving.

Sandy suggests they focus on the two velocity
related DORA metris and measure these metrics for
Watch Me Watch.

Wondering  about
the other 2 DORA
metrics? We'll be look-
ing at them in more
detail in Chapter 10
when we talk about
deploying.

I I
l The DORA metrics: Velocity
I I
| Velocity is measured by 2 metrics:
I I
: *  DeploymentFrequency :
| 1
Lo Lead Time for Changes !

In order to measure these, we need to look at them in a
bit more detail.

o Deployment Frequency measures how often an
organization successfully releases to production

¢ Lead Time for Changes measures the amount of
time it takes a commit to get into production

At Watch Me Watch, deployments can only occur as
frequently as the deployment windows, which are every two
months. So for Watch Me Watch, the Deployment
Frequency is once very 2 months.

©Manning Publications Co. To comment go to

/production refers to
the environment where
you make your soft-
ware available to your
customers, v.s inter-
mediate environments
you might use for other

purposes, such as

testing.

liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

186

8.4 Lead time for changes

To measure Lead Time for Changes Sandy needs to understand a bit about the development
process at Watch Me Watch. Most features are created in a feature branch, and that branch
is merged back into main when development has finished on the feature. Some features can
be completed in as little as a week, but most take at least a few weeks.

Here is what this process looks like for a two recent features, which were developed in

Feature Branch 1 and Feature Branch 2:

Feature eranch & is completed
during o.code Yreeze, so it

can’t be merged until the code
freeze is done. X

Apr 3k maﬂ IS June 10 June a9 June 49
Feature Feature Feature Feature Feature
eranch | eranch a eroanch | Branch a eranch a
c.recrted c.rerded Merlsed comlpleie mersed
R 0 ST | 1
npr as ma5 | June a3 Ju.15 | ﬂug a4 Sep’c |
Code Dep'.ogmen’c Code Deplogmen’c Code Deplogmen'c
freeze window freeze window freeze window
Changes from feature eranch | / Feature eranch & is finally /
are deploged in the next dep\oged in the next
depIoaunent window, 40 dags dep105mm window, & montns
after it was completed, after it was complete

The lead time for the changes in Feature Branch 1 was 20 days. Even though Feature
Branch 2 was completed immediately before a deployment window, this was during the code
freeze window so it couldn’t be merged until after that, delaying the deployment until the
next deployment window, two months later. This made the lead time for the changes in

Feature Branch 2 two months, or around 60 days.
Looking across the last year worth of features and feature branches, Sandy finds that the

average lead time for changes is around 45 days.

Vocab time

feature branching is a branching policy where every time development starts on a
new feature, a new branch (called a feature branchi) is created. Development on
this feature in this separate branch continues until the feature is completed, at
which point it is considered ready to be merged back into the main codebase.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

187

8.5 Watch Me Watch and elite perfomers
Sandy has measured the two velocity related DORA metrics for Watch Me Watch:

o Deployment Frequency: once every 2 months
¢ Lead Time for Changes: 45 days

Okm_,].,, ore those
5ood, or bad? 'm not sure
what we do with this
informodtion.

@reot question!

Looking at these values in isolation, it's hard to draw any conclusions or take away
anything actionable. As part of determining these metrics, the DORA team also ranked the
teams they were measuring in terms of overall performance and put them into four buckets:
low, medium, high and elite performing teams. For each metric, they reported what that
metric looked like for teams in each bucket.

For the the velocity metrics, the breakdown (from the 2021 report) looked like this:

Metric Elite High Medium Low

Deployment Multiple times a day [Once per week to Once per month to Fewer than once
Frequency once per month once every six months [every six months
Lead Time for Less than an hour One day to one week |One month to six More than six months
Changes months

On the elite end of the spectrum, multiple deployments happen every day and the lead time
for changes is less than an hour! On the other end, low performers deploy less frequently
than once every six months, and changes take more than six months to get to production.
Comparing the metrics at Watch Me Watch with these values, they are solidly aligned
with the medium performers.
\

/What if we're between two buckets?
The results reported by the DORA team are clustered such that there is a slight gap
between buckets - this is based on the values they saw in the teams that they sur-
veyed, and isn’t meant to be an absolute guideline. If you find your values falling
between buckets, it’s up to you whether you want to consider yourself on the high
end of the lower bucket or the low end of the higher bucket. It might be more inter-
esting to step back and look at your values across all of the metrics to get an overall
picture of your performance.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

188

8.6 Increasing velocity at Watch Me Watch

medium

performers! well it could ke

worse, but we con't stay ahead of

our corrpe{'rmm bqijusk being
i medium!

Dont Wor Ty, now thot
we Know where we are, it's

easier o ?iguure out how we con
Sek better!

Sandy sets out to create a plan to improve the velocity at Watch Me Watch.

o Deployment Frequency: to move from being a medium performer to a high
performer, they need to go from deploying once every 2 months to deploying at least
once a month

¢ Lead Time for Changes: to move from being a medium to a high performer, they
need to go from an average lead time of 45 days to one week or less

Their deployment frequency is currently determined by the fixed deployment windows
they use, once every two month. And their lead time for changes is impacted by this as well:
feature branches aren’t merged until the entire feature is complete, and can only be merged
between code freezes, and if the author misses a deployment window, their changes are
delayed by two months until the next one.

Sandy theorizes that both metrics are heavily influenced by the deployment windows
(and the code freeze immediately before deployment), and made worse by the use of feature
branches.

Orowy, | hove a. P\cm) and it
starts with 8eﬂ|ml rid of Yeoture
branches.

| like the sound of o_Plun, but
thot sounds like o_lma changel How [~
would that even work?

B&qm.nll_nj‘ instead of
one big merge for each
feoture, Pou()cs of the Peature will
be incrementolly meraed os
we go.

'mn not opposed, but P M\nm‘
o hard time picturing what thot
would even be like.

How about Wwe try it with one
J fecture os an exPemmer\-h and
see how i ges?

Sure, | love
experiments! Let’s
do !

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

189

8.7 Integrating with AllCatsAllTheTime

To experiment with getting rid of feature branches, Sandy starts to work with Jan to try out
this new approach for the next feature he’s working on.

Jan has taken on integrating with the new streaming provider AllCatsAllTheTime (a
streaming provider featuring curated cat releated content). To understand the changes Jan
will need to make, let's look again at the overall architecture of Watch Me Watch. Even
though the company has grown since we last looked at their architecture, the original plans
that Sasha and Sarah created have been working well for them, so the architecture hasn’t

changed:
User — 7; DB i
Website 7 SEEvi

\\\ 4

API
Service

7
Phone / \\j

B

s ISttreaming 5 Streaming
ntegration | —
PP The code to e Betviees

in’cegrodce with
AllCatsAllTheTime will
need to be added
here

Integrating AllCatsAllTheTime as a new streaming service provider means changing the
Streaming Integration service. Inside the Streaming Integration service codebase, each
integrated streaming service is implemented as a separate class, and is expected to inherit
from the class StreamingService, implementing the following methods:

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

190

def GetCurrentlyWatching(self):
def GetWatchHistory(self, time_period):
def GetDetails(self, show_or_movie):

// This interface enables most functionality that Watch Me Watch needs from streaming service providers: revealing
what a user has been watching, and getting details for particular shows or movies the user has watched

Vocab time

The approach Sandy is advocating for is often called trunk based development,
where instead of relying on long lived branches, developers frequently merge back
into the trunk of the repository, aka the main branch.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

191

8.8 Incremental feature delivery
Sandy and Jan talk through how Jan would normally approach this feature:

Make a feature branch off of main

Start work on end to end tests

Fill in the skeleton of the new streaming service class, with tests

Start making each individual function work, with more tests and new classes
If he remembers, from time to time, he’ll merge in changes from main
When it’s all ready to go, merge the feature back into main

oOuALNE

With the approach Sandy is suggesting, Jan will still create branches, but these branches
will be merged back to main as quickly as possible, multiple times a day if he can. Since this
is so different from how he usually works, they talk through how he’s going to do this
initially.

Sandy, Tl admit: 'm o bit
lost aboud how to even 5e+

No worries, lets
?iguu'e it oudk!

The Ws:kkhm,g1 want to do is
to write end to end tests but | need
o long lived branch for thot, righk? | meon,
{’heS wont poss urdil this whole {‘ning is
Lnor('rﬁing, 20 there’s no way | can
merge them into madn

| see whot 5m‘re sanjing'v

the end to end tests con't be
me'ged into main because they wont
po.ss until youw mrhmhtj in‘P'lemer‘s\' the 4
uﬁegrodrion?

Bgut is it true yow there's no
way you could possibly merge
Hhem into main?

hren, well, | mean
I guess | could disable the
tests? but that’s bad practice, riSh{-? we
don't want disabled tests in the

1 ee we don't
want fo disable tests and just

leave them - but in this cose _ljcu‘re
actively working on this feoture, so os long as
e don't leave them disabled, it seems like oy
reazonable {hing o do From iy

Pergpechve

oo, P e bt
skpe’dca] obout this, bud
let's try it out!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

192

8.9 Commiting skipped tests

Sandy has convince Jan that he can create his initial end to end tests, and even though they
won't all pass until the feautre is done, he can commit them back to main as disabled tests.
This will allow him to commit quickly back to main instead of keeping the tests in a long lived
feature branch.

Jan creates his initial set of end to end tests for the new AllCatsAllTheTime integration.
These tests will interact with the real AllCatsAllTheTime service, so he sets up a test account
(watchMewWatchTest01) and seeds the account with some viewing activity that his tests can
interact with.

For example, this is one of the end to end tests that covers the GetwWatchHistory
method:
def test_get_watch_history(self):

service = AllCatsAllTheTime(ACATT_TEST_USER)
history = service.GetWatchHistory(ALL_TIME)

self.assertEqual(len(history), 3)
self.assertEqual(history[@].name, “Real Cats of NYC”)

When he runs the tests, they of course fail, because he hasn't actually implemented any
of the functions that the tests are calling. He feels very skeptical about it, but he does what
Sandy suggested and disables the tests using unittest.skip, with a message explaining that
the implementation is a work in progress. He includes a link to the issue for the
AllCatsAllTheTime integration in their issue tracking system (#2387) so other engineers can
find more information if they need to:

@unittest.skip(“(#2387) AllCatsAllTheTime integration WIP”)
def test_get_watch_history(self):

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

193

Thic feelk like o woste of time,
this is just roise Yor the other
erSineers'.

Buck Vil +ry
ar\gi-hina onee

/Jan is so skeptical! Is he a bad engineer?
Absolutely not! It’s natural to be skeptical when trying new things, especially if
you've got a lot of experience doing things differently. The important thing isthe
fact that Jan is willing to try things out. In general, being willing to experiment and
give new ideas a fair shot is the key element you need to make sure you and your
team can keep growing and learning. And that doesn’t mean everyone has to like
every new idea right away.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

194

8.10 Code review and “incomplete” code

How does taking an approach like this work with code review? Surely tiny incomplete
commits like this are hard to review? Let’s see what happens!

Jan creates a Pull Request that contains his new skipped end to end tests and submits it
for review. When another engineer from his team, Melissa, goes to review the PR, she’s a
understandably a bit confused, because she’s used to reviewing complete features. Her initial
round of feedback reflects her confusion:

A Melissa

Hey Jan, 'm not sure how to review this, it doesn’t seem like the pull request is
complete? Are there maybe some files you forgot to add?

Up until this point, engineers working on Watch Me Watch have expected that a
complete pull request includes a working feature, and all the supporting tests (all passing
and none skipped) and documentation for that feature.

Getting used to a more incremental approach will mean redefining complete. Sandy lays
some groundwork for how to move forward by redefining a complete pull request as a PR
where:

e All code complies with linting checks

e Docstrings for incomplete functions explain why they are incomplete
e Each code change is supported by tests and documentation

e Disabled tests include an explanation and refer to a tracking issue

Sandy and Jan meet with Melissa and the rest of the team to explain what they are trying
to do and share their new definition of complete. After the meeting Melissa goes back to the
PR and leaves some new feedback.

&. Melissa

Okay I think I get it now! With this new incremental approach, I think the only
thing missing is an update to our streaming service integration docs?

Jan realizes Melissa is right: he’s added tests but the documentation in the repo that
explains their streaming service integrations hasn’t been updated, so he adds a change to
the PR to add some very cursory initial docs:

* AllCatsAllTheTime - (#2387) a WIP integration with the provider of cat related content

Melissa approves the changes and the disabled end to end tests are merged.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

195

8.11 Keeping up the momentum

Jan’s merged his initial (disabled) end to end tests. What's next? Jan’s still taking the same
approach he would to implementing a new feature, but without a dedicated feature branch:

Make-afeature-braneh-eff-ef-main (not using feature branches)
Start-werk-en-end-te-end-tests (done, merged to main)

Fill in the skeleton of the new streaming service class, with tests (The next step)
Start making each individual function work, with more tests and new classes

If he remembers, from time to time, he’ll merge in changes from main

When it’s all ready to go, merge the feature back into main

oOuAWLNE

Jan’s next step is to start working on implementing the skeleton of the new streaming
service and associated unit tests. After a couple days of work, Sandy checks in:

Hey Jan, | haven't seen any
new PRs from you in the last

couple dmjs

Oh, hoha.
yeah, s toking me a. few
doys to get the skeleton ond unit
tests {ogeﬂwer, i doesnt Feel like
there is amj*hma readﬂ to

well let's see
winad _ij\ie 50’{ 20
Yar.

For the record,
Sandy hates to micro-
manage and wouldn’t

normally butt in like
this!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

196

8.12 Committing work in progress code
So far Jan has some initial methods for the class AllCatsAllTheTime:

class AllCatsAllTheTime(StreamingService):
def __init_ (self, user):
super().__init_ (user)

def GetCurrentlyWatching(self):
“»’Get shows/movies AllCatsAllTheTime considers self.user to be watching
return []

333393

def GetWatchHistory(self, time_period):
“”»Get shows/movies AllCatsAllTheTime recorded self.user to have watched”””
return []

def GetDetails(self, show_or_movie):
“”»Get all attributes of the show/movie as stored by AllCatsAllTheTime”*”
return {}

He’s also created unit tests for GetDetails (which fail because nothing is implemented
yet) and he has some inital unit tests for the other functions which are totally empty and
always pass. He shows this work to Sandy and she has some feedback:

| bet you can
quess what 'm 90ing
‘o say.

*laughs™® You want me

to commit this back to main,

don't you?
gingo! ™
=\ 9
well some of

these tests don't even do
AI\!jH’\\(\s) S0 khe\_,j nlu;mjg passand |
guess theyre safe to commit - whot
about the tests that are currently

?

- lguess | could
disable them t00?

This is super weird v
to me, but okay, let’s do
it

Shouldn’t Jan have more to show for several days of work?
Maybe (also maybe not, creating mocks and getting unit tests working can be a lot
of work). But the real reason we’re keeping these examples short is so we can fit them
into the chapter - and the idea being demonstrated holds true even for these small
examples, i.e. to get used to making small frequent commits, even commits as small
as the ones Jan will be making.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

197

8.13 Reviewing work in progress code

Jan opens a pull request with his changes: the empty skeleton of the new class, a disabled
failing unit test, and several unit tests that do nothing but pass. However by this point
Melissa understands why so much of the PR is in progress and isn’t phased. She immediately
comes back with some feedback:

‘*' Melissa

Can we include some more documentation? The auto generated docs are going
to pick up this new class and all the docstrings are pretty much empty.

Jan is pleasantly surprised that a pull request with so little content can get useful
feedback. He starts filling in docstrings for the empty functions, describing what they are
intended to do, and what they currently do, for example he adds this docstring for the
method GetWatchHistory in the new class A11CatsAl1TheTime:

def GetWatchHistory(self, time_period):

€63333

Get shows/movies AllCatsAllTheTime recorded self.user to have watched

AllCatsAllTime will hold the complete history of all shows and movies
watched by a user from the time they sign up until the current time,
so this function can return anywhere from @ results to a list of
unbounded length.

The AllCatsAllTheTime integration is a work in progress (#2387) so
currently this function does nothing and always returns an empty list.

:param time_period: Either a value of ALL_TIME to return the complete

watch history or an instance of TimePeriod which specifies the start
and end datetimes to retrieve the history for

:returns: A list of Show objects, one for each currently being watched

€63333

return []

At Watch Me Watch,
docstrings  are  in
reStructuredText
format.

Once Jan updates the PR with the docstrings, Melissa approves it and it's merged into
main.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

198

Thig is still weird, but it does
feel 500d to be Beﬂ'mg these
changes into main $o quickly .-

Isn’t this a waste of time for Melissa? Reviewing all these incomplete changes?
Short answer: no! It’s much easier for Melissa to review these tiny pull requests than
it is to review a giant feature branch! Also she can spend more time reviewing the

interfaces (e.g. method signatures) and give feedback on them early, before they're
full fleshed out. Making changes to code before it is written is easier than making
the changes after!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

199

8.14 Meanwhile, back at the end to end tests

Meanwhie, unbeknownst to Jan, Sandy and Melissa, other code changes are brewing in the
repo!

Jan creates a new branch to start on his next phase of work, and when he opens the end
to end tests, and the skeleton service he’s been working on so far, he’s surprised to see new
changes to the code that he’s already commited - changes made by someone else!

In the end to end test, he notices the call to Al1CatsAllTheTime. GetWatchHistory has
some new arguments:

def GetWatchHistory(self, time_period, max, index): #A

:param time_period: Either a value of ALL_TIME to return the complete
watch history or an instance of TimePeriod which specifies the start
and end datetimes to retrieve the history for

:param max: The maximum number of results to return

:param index: The index into the total number of results from which to
return up to max results

#A Arguments have been added to GetWatchHistory to support paginating the results
These new arguments have been added to the skeleton service as well:

def GetWatchHistory(self, time_period, max, index):
return []

And there are even a couple of new unit tests:

def test_get_watch_history_paginated_first_page(self):
service = AllCatsAllTheTime(ACATT_TEST_USER)
history = service.GetWatchHistory(ALL_TIME, 2, 0)
# TODO(#2387) assert that the first page of results is returned #A

def test_get watch_history paginated_last_page(self):
service = AllCatsAllTheTime(ACATT_TEST_USER)
history = service.GetWatchHistory(ALL_TIME, 2, 1)
# TODO(#2387) assert that the first page of results is returned

#A These tests always pass because their bodies haven't been filled in, but the author has indicated what needs to be
done

Looking at the history of the changes, Jan sees that Louis merged a PR the day before that
added pagination to GetWatchHistory for all streaming services - and he notices he has a
chat message from Louis as well:

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

200

” Louis
Hey thanks for merging Al1CatsAllTheTime early! I was worried about
how I was going to make sure that any in progress integrations were updated for
pagination as well, T didn’t want to cause problems for you at merge time. It’s
great to be able to get these updates in right away

Becuase Jan merged his code early, Louis was able to contribute to it right away. If Jan
had kept this code in a feature branch, Louis wouldn’t have known about AllCatsAllTheTime,
and Jan wouldn’t have known about the pagination changes. When he finally went to merge
those changes in, weeks or even months later, he’d have to deal with the conflict with Louis’s
changes. But this way, Louis dealt with them right away!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

201

8.15 Seeing the benefits

OHOLU Sandﬁ, |
think 'm s;{orﬁna to
Sek it

Thot's gre ot!

1 real\g like +hat Louis was able
to make the Pagjincrhon char\geg
ria'rrt away = d.eolir\g with Po.g]ir\o.ﬁor\

when | was J(r5ir\8 o merge the ertire
\ AliCatzpliTheTime service would hove
been i‘ru.s{mhng

&(aﬁﬂ_tj& 65 Se* bnS the
c%ox\ges n eo.rlt}J _Ljou.‘re
irﬁeamding eM'l_lj and eons;{'onHH,
Now we're really domg clt

In this chapter we're starting to move beyond Continuous Integration (CI) to the
processes that happen after the fact (i.e. the rest of Continuous Delivery), but the truth is
that the line is blurry, and choices your team makes in CI processes have downstream ripple
impacts on the entire Continuous Delivery process.

Although Sandy’s overall goal is to improve velocity, as they just pointed out to Jan,
taking the incremental approach Sandy means that their CI processes are how much closer
to the ideal. What is that? Let's look briefly back on the definition of Continuous
Integration (CI):

The process of combining code changes frequently, where each change is verified on check in.

With long lived feature branches, code changes are only combined as frequently as the
feature branches are brought back to main. But by committing back to main as often as he
can, Jan is combining his code changes with the content of main (and enabling other
developers to combine their changes with his) frequently instead!

— @ Takeaway N

Improving deployment often means improving CI first.

AN
— @ Takeaway

Avoiding long lived feature branches and taking a more incremental approach,
with frequent merges back to main not only improves Continuous Delivery over-
all but is better Continous Integration as well. )

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

202

8.16 Decreasing lead time for changes

By getting closer to the Continuous Integration ideal, Sandy and Jan are having a direct
impact on the entire CD process, and specifically they are having a positive impact on Watch
Me Watch’s DORA metrics. Remember Sandy’s goals

« Deployment Frequency: move from being a medium to high performer by going
from deploying once every 2 months to deploying at least once a month

¢ Lead Time for Changes: move from being a medium to a high performer by going
from an average lead time of 45 days to one week or less

Jan’s most recent PR (including a skeleton of the new streaming class and some WIP unit
tests) was only a couple of days before a code freeze and the subsequent deployment
window. The result is that Jan’s new integration code actually made it to production as part
of that deployment.

Of course the new integration code doesn’t do actually anything yet, but the fact is that
the changes Jan is making are making it into production. Sandy takes a look at the lead time
for these changes:

cept | cent 2 Louis had been working
Jai:fs L.ofj:;’s /— frantically to get his
skeleton PR paginadtion pagination change PR in before
merg& PR merged the code Freeze
’ f
Septs Sept 1a This deployment includes Jan’s
Code Depl,o,jmn;c new AllCatsAllTheTime skeleton
Sreeze window service and Louig’s pagination
feature

Jan merged the skeleton class 4 days before the code freeze. 2 days before the code
freeze Louis updated GetWatchHistory to take pagination arguments. The code freeze
started 2 days later, and 1 week after that there was a deployment.

The entire lead time for the skeleton class change starts when Jan merged on Sept 1 and
ends with the deployment on Sept 12, for a total of an 11 day lead time.

Let’s compare that to the lead time for the changes Louis was working on. He'd been
working in a feature branch since before the last deployment window, which was July 12.
He’d started on July 8, so the entire lead time for his changes was from July 8 to Sept 12, or
66 days.

While Jan’s changes are incremental (and currently not functional), Jan was able to
reduce the lead time for each individual change to 11 days, while Louis’s changes had to wait
66 days.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

203

8.17 Continuing AllCatsAllTheTime

Jan continued to work with Sandy to use an incremental approach to implementing the rest
of the AllCatsAllTheTime integration. He worked method by method, implemetning the
method, fleshing out the unit tests and enabling end to end tests as he went.

A few weeks into the work, another team member (Mei) who is working on a search
feature adds a new method was added to the StreamingService interface:

class StreamingService:

@staticmethod
def Search(show_or_movie):
pass

This new method will allow users to search for specific movies and shows across
streaming providers, and the author of the change adds the new method to every existing
streaming service integration. Since Jan has been incrementally committing the
AllCatsAllTheTime class as he goes, Mei is able to add the Search method to the existing
AllCatsAllTheTime class - she doesn’t even need to tell Jan about the change at all! One
day Jan creates a new branch to start work on the GetDetails method and he sees the code
that Mei has added.

That's two major features that have been integrated with Jan’s changes as he developed
(pagination and search) that normally Jan would have to deal with at merge time with his
normal feature branch approach. In addition, after the next deployment (Nov 12), even
though the integration isn‘t complete, enough functionality is present for users to actually
start using it and for marketing to start advertising the integration.

As of the Nov 1 deployment, some
AllCatsAllTheTime features aren’t

Jons Louids Jan continues meis searoh 8 cbnk R%‘\s{:\lm z eth: users M{:
skeleton PR paginaction tomerge PRs, oo ture is S50 SO SSEgrasang) tiewn Lo

and using the ?—unctionalitg that’s done

d pR " every dng ora d
merae\' mfrge h merpe )

T ’ T T /
sSepts Septia Nov S Nov 13

Code Deplogmer\f Code Deplogmenk
freeze window freeze window

with a feature branch, |

I convinced Sandy! wetre would have had to deal ith E==
getting the code reviewed, pagination and the new search
integrated and deployed so much Sunctionality, at merge time buk insteod Let’s get everyone
faster now mei, Louis and | could handle them os doing this! ‘ ,

a team along the way,

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

204

8.18 Deployment windows and code freezes

Sandy and Jan present the results of their experiment back to Sasha and Sarah. They show
how by avoiding long lived feature branches and merging features incrementally they've
encountered multiple benefits:

e The lead time for changes is decreased
e Multiple features can be integrated sooner and more easily
e Users can get access to features earlier

Sasha and Sarah agree to try this policy across the company and see what happens, so
Sandy and Jan set about training the rest of the developers in using how to avoid feature
branches and use an incremental approach.

A few months later, Sandy revisits the lead time metrics for all the changes to see how
they’'ve improved. The average lead time has decreased significantly, from 45 days down to
18 days. Individual changes are making it into main faster, but they still get blocked by the
code freeze, and if they are merged soon after a deployment, they have to wait nearly 2
months to make it into the next deployment. While the metric has improved, it still falls short
of Sandy’s goal to upgrade their lead time for changes from being aligned with DORA
medium performers to high performers (1 week or less).

Ws loohmg o lot better $a!\dlj.
but something still feels slow - and
even with these b‘\9 chonges we're
making, we're till in the medium
Pe(i‘ommee bucket.

Youre nght and e
80& an idea for what we can
do next: let's Sek rid of the code
freezes and the deployment
windows

£r, isn't thot

going to be dangerous? ¥ we get
stulf out there 00 quickly, won't that
mean i‘nmgc, will be cor\q‘mnﬁg
breaking?

it turns out each deployment will
oc+uol\5 have much less risk associoted with
it! This is also the only woy we can keep
decreasing the lead time for changes and don't
forget deployment frequency is itself a key
metric we want +o improve!

See chapter 10 for
more on deploying,

minimizing risk, and
how to deploy safely.

They discuss a plan and agree to try doing weekly deployments and to remove the code
freeze entirely.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

205

8.19 Increased velocity

Sandy keeps track of metrics for the next few months and observes feature development to
see if things are speeding up and where their DORA metrics land without code freezes and
with more frequent deployments.

Melissa works on integration with a new streaming provider, HMV Max (Home Movie
Theatre Max):

The integration takes her about 5 weeks to completely implement, and during that time
there are 4 deployments, each of which includes some of her changes.

Febs melissa. Mar |
melisso continues 1o Melissa Finighes
starts merge PRs, the HMV Max
development every dgg ora in’cesria’don
Feb il Fe[: I8 Fel as mIr 4
Deploujmen’c Deplotjmen’c Deploujmen’c Deploi,;men’c
window window window window

The lead time for Melissa’s changes is a maximum of 5 days and some changes are
deployed as quickly as 1 day after merge.

Sandy looks at the stats overall and finds that the maximum lead time for changes is 8
days, but this is very rare since most engineers have gotten into the habit of merging back
into main every day or two. The averages are:

Getting to high performance with
* Deployment Frequency: once a week 4 this metric was as easy as
changing the intervals between

* Lead Time for Changes: 4 days .
deployment windows

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

206

Sandy has accomplished their goal: as far as velocity is concerned, Watch me Watch is
now aligned with the DORA high performers!

This is Brea{'! Bnd | con
eonfirm, i just feels like we're
getting features out Faster too. my
old dread is completely gore!

Not to mention thot
engineers ore sauing {‘r\e& reo.luj like

how # feels to get their work out there
immed.ume\tj, inctead of howing to wait months to
qet the sotistaction of seeing their code
deplo:.ﬁd!

Sasha, Sarah and Sandy also wonder how they can move beyond being high per-

formers to being elite performers, but we’ll save that for chapter 10!

8.20 Conclusion

Watch Me Watch had introduced code freezes and infrequent deployment windows with the
hope of making development safer, however it mostly just made development slow. By
looking at their processes through the lens of the DORA metrics, specfically the velocity
related metrics, they were able to chart a path toward moving more quickly.

Moving away from long lived feature branches, removing code freezes and increasing
deployment frequency directly improved their DORA metrics, and rescued the company from
the feeling that features were taking longer and longer, allowing their competition to get
ahead of them. Not to mention, the engineers realized this was a more satisfying way to
work!

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

207

8.21 Summary

The DevOps Research and Assessment (DORA) team has identified 4 key metrics to
measure software team performance and correlated these with elite, high, medium,
and low performance

Deployment frequency is one of two velocity related DORA metrics which measures
how frequently deployments to production occur

Lead time for changes is the other velocity related DORA metric, measuring the time
from which a change has been completed to when it gets to production

Decreasing lead time for changes requires revisting and improving Continuous
Integration practices. The better your CI, the better your lead time for changes
Improving the Continuous Delivery practices beyond CI often means revisiting CI as
well

Deployment frequency has a direct impact on lead time for changes; increasing
deployment frequency will likely decrease lead time for changes

8.22 Up next...

In the next chapter we’ll examine the main transformation that happens to source code in a
CD pipeline: building that source code into the final artifact that will be released and/or
deployed.

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/grokking-continuous-delivery/discussion

	Grokking Continuous Delivery MEAP V06
	Copyright
	Welcome
	Brief contents
	Chapter 1: Welcome
	1.1 Do you need Continuous Delivery?
	1.2 Why Continuous Delivery?
	1.3 Continuous Word Soup
	1.4 Continuous Delivery (CD)
	1.5 Integration
	1.6 Continuous Integration
	1.7 What do we deliver?
	1.8 Delivery
	1.9 Continuous Delivery/Deployment
	1.10 Elements of Continuous Delivery
	1.11 Conclusion
	1.12 Summary
	1.13 Up next . . .

	Chapter 2: A basic pipeline 
	2.1 Cat Picture Website
	2.2 Cat Picture Website Source Code
	2.3 Cat Picture Website Pipelines
	2.4 What’s a pipeline? What’s a task?
	2.5 The basic tasks in a CD pipeline
	2.6 Gates and Transformations
	2.7 CD: Gates and Transformations
	2.8 Cat Picture Website Service Pipeline
	2.9 Running the pipeline
	2.10 Running once a day
	2.11 Trying Continuous Integration
	2.12 Using notifications
	2.13 Scaling manual effort
	2.14 Automation with webhooks
	2.15 Automation with webhooks
	2.16 Don’t push changes when broken
	2.17 Cat Picture Website CD
	2.18 What’s in a name?
	2.19 Conclusion
	2.20 Summary
	2.21 Up next . . .

	Chapter 3: Version control is the only way to roll 
	3.1 Sasha and Sarah’s start-up
	3.2 All kinds of data
	3.3 Source and software
	3.4 Repositories and versions
	3.5 Continuous Delivery and version control
	3.6 Git and GitHub
	3.7 An initial commit - with a bug!
	3.8 Breaking main
	3.9 Are we doing Continuous Delivery?
	3.10 Keep version control releasable
	3.11 Trigger on changes to version control
	3.12 Triggering the User Service Pipeline
	3.13 Building the User Service
	3.14 The User Service in the cloud
	3.15 Connecting to the RandomCloud database
	3.16 Managing the User Service
	3.17 The User Service outage
	3.18 Outsmarted by automation
	3.19 What’s the source of truth?
	3.20 Version Control and sensitive data
	3.21 User Service config as code
	3.22 Hard-coded data
	3.23 Configuring Deployaker
	3.24 Config as code
	3.25 Rolling out software and config changes
	3.26 Conclusion
	3.27 Summary
	3.28 Up next . . .

	Chapter 4: Use linting effectively 
	4.1 Becky and Super Game Console
	4.2 Linting to the rescue!
	4.3 The lowdown on linting
	4.4 The tale of pylint and many many issues
	4.5 Legacy code: using a systematic approach
	4.6 Step 1: Configure against coding standards
	4.7 Step 2: Establish a baseline
	4.8 Step 3: Enforce at submission time
	4.9 Step 3: Enforce at submission time
	4.10 Step 4: Divide and conquer
	4.11 Isolation: Not everything should be fixed
	4.12 Enforcing isolation
	4.13 Not all problems are created equal
	4.14 Types of linting issues
	4.15 Bugs first, style later
	4.16 Jumping through the hoops
	4.17 Legacy code vs the ideal
	4.18 Conclusion
	4.19 Summary
	4.20 Up next . . .

	Chapter 5: Dealing with noisy tests 
	5.1 Continuous Delivery and tests
	5.2 Ice Cream for All outage
	5.3 Signal vs. noise
	5.4 Noisy successes
	5.5 How failures become noise
	5.6 Going from noise to signal
	5.7 Getting to green
	5.8 Another outage!
	5.9 Passing tests can be noisy
	5.10 Fixing test failures
	5.11 Ways of failing: flakes
	5.12 Reacting to failures
	5.13 Fixing the test: change the code or the test?
	5.14 The dangers of retries
	5.15 Retrying revisited
	5.16 Why do we retry?
	5.17 Get to green and stay green
	5.18 Conclusion
	5.19 Summary
	5.20 Up next . . .

	Chapter 6: Speeding up slow test suites 
	6.1 Dog Picture Website
	6.2 When simple is too simple
	6.3 New engineer tries to submit code
	6.4 Tests and Continuous Delivery
	6.5 Diagnosis: too slow
	6.6 The test pyramid
	6.7 Fast tests first
	6.8 Two pipelines
	6.9 Getting the right balance
	6.10 Changing the pyramid
	6.11 Safely adjusting tests
	6.12 Test Coverage
	6.13 Enforcing test coverage
	6.14 Test coverage in the pipeline
	6.15 Moving tests in the pyramid with coverage
	6.16 What to move down the pyramid?
	6.17 Legacy tests and FUD
	6.18 Running tests in parallel
	6.19 When can tests run in parallel?
	6.20 Updating the pipelines
	6.21 Still too slow!
	6.22 Test sharding aka parallel++
	6.23 How to shard
	6.24 More complex sharding
	6.25 Sharded pipeline
	6.26 Sharding the browser tests
	6.27 Sharding in the pipeline
	6.28 Dog Picture Website’s pipelines
	6.29 Conclusion
	6.30 Summary
	6.31 Up next . . .

	Chapter 7: Give the right signals at the right times
	7.1 CoinExCompare
	7.2 Lifecycle of a change
	7.3 CI before and after merge
	7.4 Timeline of a change’s bugs
	7.5 CI only before merging misses bugs
	7.6 A tale of two graphs: default to seven days
	7.7 A tale of two graphs: default to thirty days
	7.8 Conflicts aren’t always caught
	7.9 What about the unit tests?
	7.10 Pull request triggering still lets bugs sneak in
	7.11 CI before AND after merge
	7.12 Option 1: Run CI periodically
	7.13 Setting up periodic CI
	7.14 Option 2: Require branch to be up to date
	7.15 Option 2: At what cost?
	7.16 Option 3: Automated merge CI
	7.17 Running CI with the latest main
	7.18 Merge Events
	7.19 Merge queues
	7.20 Merge queue for CoinExCompare
	7.21 Where can bugs still happen?
	7.22 Flakes and pull request triggered CI
	7.23 Catching flakes with periodic tests
	7.24 Bugs and building
	7.25 CI vs. build and deploy
	7.26 Build and deploy with the same logic
	7.27 Improved CI pipeline with building
	7.28 Timeline of a change revisited
	7.29 Conclusion
	7.30 Summary
	7.31 Up next . . .

	Chapter 8: Easy delivery starts with version control
	8.1 Meanwhile at Watch Me Watch
	8.2 The DORA metrics
	8.3 Velocity at Watch Me Watch
	8.4 Lead time for changes
	8.5 Watch Me Watch and elite perfomers
	8.6 Increasing velocity at Watch Me Watch
	8.7 Integrating with AllCatsAllTheTime
	8.8  Incremental feature delivery
	8.9 Commiting skipped tests
	8.10  Code review and “incomplete” code
	8.11 Keeping up the momentum
	8.12  Committing work in progress code
	8.13 Reviewing work in progress code
	8.14  Meanwhile, back at the end to end tests
	8.15  Seeing the benefits
	8.16 Decreasing lead time for changes
	8.17 Continuing AllCatsAllTheTime
	8.18 Deployment windows and code freezes
	8.19  Increased velocity
	8.20 Conclusion
	8.21  Summary
	8.22 Up next . . .




