

Automating Linux
and Unix System
Administration
Second Edition

Nate Campi and Kirk Bauer

Automating Linux and Unix System Administration, Second Edition

Copyright © 2009 by Nate Campi, Kirk Bauer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1059-7

ISBN-13 (electronic): 978-1-4302-1060-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Frank Pohlmann

Technical Reviewer: Mark Burgess

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cor-

nell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben

Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editors: Nina Goldschlager, Heather Lang

Associate Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Nancy Sixsmith

Indexer: Becky Hornyak

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail ,

or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,

Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail , or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional

use. eBook versions and licenses are also available for most titles. For more information, reference our

Special Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-

caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any

liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly

or indirectly by the information contained in this work.

The source code for this book is available to readers at .

I dedicate this book to my dear grandmother Mary Lou.

Her influence makes everyone around her a better person,

and her presence lights up a room.

She is beautiful inside and out,

and she meets adversity with faith,

quiet dignity, and grace.

—Nate Campi

v

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Introducing the Basics of Automation . 1

CHAPTER 2 Applying Practical Automation . 19

CHAPTER 3 Using SSH to Automate System Administration Securely 27

CHAPTER 4 Configuring Systems with cfengine . 49

CHAPTER 5 Bootstrapping a New Infrastructure . 79

CHAPTER 6 Setting Up Automated Installation . 107

CHAPTER 7 Automating a New System Infrastructure . 161

CHAPTER 8 Deploying Your First Application . 213

CHAPTER 9 Generating Reports and Analyzing Logs . 253

CHAPTER 10 Monitoring . 273

CHAPTER 11 Infrastructure Enhancement . 323

CHAPTER 12 Improving System Security . 353

APPENDIX A Introducing the Basic Tools . 375

APPENDIX B Writing cfengine Modules. 395

INDEX . 401

Contents at a Glance

vii

Contents

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

CHAPTER 1 Introducing the Basics of Automation . 1

Do You Need Automation? . 2

Large Companies with Many Diverse Systems 4

Medium-Sized Companies Planning for Growth 4

Internet Service Providers. 5

Application Service Providers . 5

Web Server Farms . 5

Beowulf Clusters . 6

Network Appliances . 7

What Will You Gain? . 7

Saving Time . 7

Reducing Errors . 7

Documenting System Configuration Policies . 8

Realizing Other Benefits . 8

What Do System Administrators Do? . 10

Methodology: Get It Right from the Start! . 11

Homogenizing Your Systems . 13

Deciding on Push vs. Pull . 13

Dealing with Users and Administrators . 14

Who Owns the Systems? . 17

Defining Policy . 18

NCONTENTSviii

CHAPTER 2 Applying Practical Automation . 19

Seeing Everything As a File . 19

Understanding the Procedure Before Automating It 20

Exploring an Example Automation . 21

Scripting a Working Procedure . 21

Prototyping Before You Polish . 22

Turning the Script into a Robust Automation 23

Attempting to Repair, Then Failing Noisily . 24

Focusing on Results. 25

CHAPTER 3 Using SSH to Automate System Administration

Securely . 27

Learning the Basics of Using SSH . 28

Enhancing Security with SSH . 29

Using Public- Key Authentication . 30

Generating the Key Pair . 31

Specifying Authorized Keys . 32

Using ssh- agent . 33

Knowing ssh- agent Basics . 33

Getting Advanced with ssh- agent . 34

Forwarding Keys. 36

Restricting RSA Authentication . 37

Dealing with Untrusted Hosts . 38

Allowing Limited Command Execution . 38

Forwarding a Port . 39

Using SSH for Common Accounts . 40

Preparing for Common Accounts . 41

Monitoring the Common Accounts . 45

NCONTENTS ix

CHAPTER 4 Configuring Systems with cfengine . 49

Getting an Overview of cfengine . 49

Defining cfengine Concepts . 49

Evaluating Push vs. Pull . 51

Delving into the Components of cfengine . 53

Mapping the cfengine Directory Structure . 53

Managing cfengine Configuration Files . 54

Identifying Systems with Classes . 55

Finding More Information About Cfengine . 57

Learning the Basic Setup . 58

Setting Up the Network . 58

Running Necessary Processes . 58

Creating Basic Configuration Files . 60

Creating the Configuration Server . 64

Preparing the Client Systems . 65

Debugging cfengine . 66

Creating Sections in cfagent.conf . 66

Using Classes in cfagent.conf . 67

The copy Section . 68

The directories Section . 69

The disable Section . 69

The editfiles Section . 71

The files Section . 72

The links Section . 74

The processes Section . 74

The shellcommands Section . 75

Using cfrun . 75

Looking Forward to Cfengine 3 . 76

Using cfengine in the Real World . 77

CHAPTER 5 Bootstrapping a New Infrastructure . 79

Installing the Central cfengine Host . 80

Setting Up the cfengine Master Repository . 81

NCONTENTSx

Creating the cfengine Config Files . 82

The cf.preconf Script . 82

The update.conf file . 88

The cfagent.conf file . 92

The cf.motd Task . 99

The cf.cfengine_cron_entries Task . 102

cfservd.conf . 103

Ready for Action . 105

CHAPTER 6 Setting Up Automated Installation . 107

Introducing the Example Environment . 108

FAI for Debian . 109

Employing JumpStart for Solaris . 122

Kickstart for Red Hat . 136

The Proper Foundation . 158

CHAPTER 7 Automating a New System Infrastructure 161

Implementing Time Synchronization . 161

External NTP Synchronization . 162

Internal NTP Masters . 163

Configuring the NTP Clients . 164

Copying the Configuration Files with cfengine 166

An Alternate Approach to Time Synchronization 170

Incorporating DNS . 170

Choosing a DNS Architecture . 171

Setting Up Private DNS . 171

Taking Control of User Account Files . 188

Standardizing the Local Account Files . 188

Distributing the Files with cfengine . 191

Adding New User Accounts . 196

Routing Mail . 208

Looking Back . 211

NCONTENTS xi

CHAPTER 8 Deploying Your First Application . 213

Deploying and Configuring the Apache Web Server 213

The Apache Package from Red Hat . 213

Building Apache from Source . 216

Sharing Data Between Systems . 218

Synchronizing Data with rsync . 218

Sharing Data with NFS . 232

Sharing Program Binaries with NFS . 235

Sharing Data with cfengine . 240

Sharing Data with Subversion . 242

NFS and rsync and cfengine, Oh My! . 251

CHAPTER 9 Generating Reports and Analyzing Logs 253

Reporting on cfengine Status . 253

Doing General syslog Log Analysis . 263

Configuring the syslog Server . 263

Outputting Summary Log Reports . 267

Doing Real- Time Log Reporting. 269

Seeing the Light . 272

CHAPTER 10 Monitoring . 273

Nagios . 274

Nagios Components . 275

Nagios Overview. 276

Deploying Nagios with cfengine . 278

Create the Nagios Web Interface Configuration Files 284

NRPE. 297

Monitoring Remote Systems . 306

What Nagios Alerts Really Mean . 312

Ganglia . 312

Building and Distributing the Ganglia Programs 313

Configuring the Ganglia Web Interface . 318

Now You Can Rest Easy . 321

NCONTENTSxii

CHAPTER 11 Infrastructure Enhancement . 323

Cfengine Version Control with Subversion . 323

Importing the masterfiles Directory Tree . 323

Using Subversion to Implement a Testing Environment 331

Backups . 337

Jumpstart . 338

Kickstart . 340

FAI . 342

Subversion Backups . 346

Enhancement Is an Understatement . 352

CHAPTER 12 Improving System Security . 353

Security Enhancement with cfengine . 354

Removing the SUID Bit . 355

Protecting System Accounts . 359

Applying Patches and Vendor Updates . 360

Shutting Down Unneeded Daemons . 361

Removing Unsafe Files . 362

File Checksum Monitoring . 363

Using the Lightweight Directory Access Protocol 364

Security with Kerberos . 365

Implementing Host-Based Firewalls . 365

Using TCP Wrappers . 366

Using Host-Based Packet Filtering . 367

Enabling Sudo at Our Example Site . 371

Security Is a Journey, Not a Destination . 374

APPENDIX A Introducing the Basic Tools . 375

The Bash Shell . 375

Compatibility Issues with Bash . 376

Creating Simple Bash Shell Scripts. 376

Debugging Bash Scripts . 377

Other Shells . 378

Bash Resources . 379

NCONTENTS xiii

Perl . 379

Basic Usage . 380

Other Scripting Languages . 382

Perl Resources . 383

Basic Regular Expressions . 383

Characters . 383

Matching Repeating Characters . 384

Other Special Characters . 385

Marking and Back Referencing . 385

grep . 386

The sed Stream Editor . 389

Modifying a File . 389

Modifying stdin . 390

Isolating Data . 391

Other Tools . 391

sed Resources . 392

AWK . 392

Very Basic Usage . 392

Not-Quite-As-Basic Usage . 393

AWK Resources . 394

APPENDIX B Writing cfengine Modules . 395

Requirements for Using Modules . 395

Defining Custom Classes Without Modules . 396

Creating Your First cfengine Module . 397

Using Modules in Place of shellcommands . 399

INDEX . 401

xv

About the Authors

NNATE CAMPI is a UNIX and Linux system administrator by trade, cur-

rently working as a UNIX operations manager in San Francisco. His

system administration experience is almost entirely with companies

with large-scale web operations based on open source software. In his

copious free time, he enjoys jogging, watching spaghetti westerns,

experimenting with Linux systems, and spending time with his family.

NKIRK BAUER has been involved in computer programming since

1985. He has been using and administering UNIX systems since 1994.

Although his personal favorite UNIX variant is Linux, he has adminis-

tered and developed on everything from FreeBSD to Solaris, AIX, and

HP-UX. He is the author of various open source solutions such as

Logwatch.

Kirk has been involved with software development and system/

network administration since his first year at the Georgia Institute of

Technology. He has done work for the Georgia Tech Research Institute, Fermi National

Accelerator Laboratory, and DHL. In 2000, Kirk was one of the founders and the chief

technology officer of TogetherWeb, which was purchased in 2003 by Proficient Systems.

Kirk is now a systems engineer with F5 Networks.

Kirk graduated from Georgia Tech in 2001 with a bachelor’s degree in computer engi-

neering and is currently pursuing his MBA at Arizona State University. He lives in Peoria,

Arizona, with his two dogs, and is looking forward to getting married to his lovely fiancée,

Rachel.

xvii

About the Technical Reviewer

NMARK BURGESS holds a first class honors degree in physics and a Ph.D. in theoretical

physics from the University of Newcastle upon Tyne. After working as a physicist, he

began to apply the methods of physics to the study of computers and eventually changed

research fields to study the formalization of system administration. His current research

interests include the behavior of computers as dynamic systems and applying ideas from

physics to describe computer behavior. Mark is the author of the popular configuration

management software package cfengine. He has received a number of awards including

the SAGE 2003 Professional Contribution Award “for groundbreaking work in systems

administration theory and individual contributions to the field.” He currently holds the

Professorship in Network and System Administration at Oslo University College.

xix

Acknowledgments

Only two names are on the book cover, but many talented and dedicated people worked

to make this book the best it could be.

We are very grateful to Paul W. Frields from Red Hat for Red Hat Enterprise Linux

licenses. This book wouldn’t have been possible without them. Mark Burgess lent his

unique insight into both cfengine and the book writing process. Our editor Frank Pohl-

mann is incredibly skilled at finding the weak points in a description and forcing us to

explain everything thoroughly. Thanks to our project manager Kylie Johnston; she is a

consummate professional. Thanks to our copy editors Nina Goldschlager and Heather

Lang, who are very talented and easy to work with. And thanks to our production editor

Ellie Fountain.

We really need to thank our families for putting up with our mental absence while

writing this book.

Finally, we’d like to thank the energy drink industry for enabling us to stay up late at

night even when totally exhausted, go to work the next day feeling like we had been hit by

a train, and do it all over again the very next night.

xxi

Introduction

The system administrator is one of the users of a system, and something more. The

administrator wears many hats, as knowledgeable user of UNIX commands, as an

operator of system hardware, and as a problem solver. The administrator is also

called upon to be an arbitrator in human affairs. A multiuser computer is like a vast

imaginary space where many people work and utilize the resources found there.

The administrator must be the village elder in this space and settle the disputes that

may arise with, hopefully, the wisdom of Solomon.

—Rebecca Thomas and Rik Farrow

(UNIX Administration Guide for System V,

Pearson PTR, 1989)

We find it interesting how little UNIX system administration has changed in the last

twenty years. If you substitute “computer network” for “multiuser computer,” this

description still fits perfectly.

The main difference in UNIX system administration between 1989 and 2008 (besides

ubiquitous networking) is the sheer number of systems that the average system admin-

istrator deals with. Automation is the primary tool to deal with the chaos that can result

from so many systems. With it, you can deploy systems identically every time, restore sys-

tems to a known good state, and implement changes reliably across all systems (or only

an appropriate subset).

We do not claim that the approaches, procedures, and tools used in this book are

the only way to set up and maintain a UNIX-based environment. Instead, we walk you

through the creation of an example environment, and during the process, help you gain

a solid understanding of the basic principles of system automation. This way, you can

decide for yourself how you want to set up your own UNIX-based environment.

This book isn’t like most UNIX/Linux administration books, because it illustrates

techniques and principles by building a real UNIX/Linux environment from scratch. We

demonstrate that you can configure each host at your site, from installation through pro-

duction service to system retirement, without logging in and making manual changes to

the host. Instead, we’ll configure the hosts via imaging systems designed for unattended

installation, followed by management with an automation framework.

We wrote this book, because we felt that it is important to demonstrate that an entire

site can be managed using automation. Our goal is to be able to quickly, easily, and reli-

ably restore hosts to service after complete system failure. The host might have failed

NINTRODUCTIONxxii

due to hardware issues; an entire geographic region might be unreachable due to natural

disaster, or you might simply have purchased updated hardware on which to run that

particular host and need to upgrade. The point of our approach is to configure a host only

once and, from that point on, allow an automation system to do that work for you.

Whether you choose to use our exact setup or something completely different, you’ll

have gained knowledge and experience by going though the process with us in our exam-

ple environment. Our promise to you is that if you need to configure a new UNIX-based

infrastructure from scratch (and you’re able or allowed to use the operating systems and

software we demonstrate), you can use this book to create a fully functional and scalable

new infrastructure. Every service and piece of architecture that our new environment

needs is set up using automation.

This book moves fast and will be best utilized if you follow along with the examples

and implement the described steps on systems of your own. In addition, download the

code and configuration files from the Source Code page of the Apress web site (

).

Who This Book Is For
This book is written for the experienced system administrator. We have made every

attempt to refer you to appropriate external sources when we weren’t able to delve into

great detail on a service or protocol that we were automating. In addition, little explana-

tion is given to the usage of basic UNIX/Linux commands and shell scripts. You don’t,

however, have to be an advanced system administrator. We feel that a system administra-

tor with only one or two years of full-time on-the-job experience is more than ready to

utilize the concepts and tools in this book.

How This Book Is Structured
The book begins with four introductory chapters that you should be very familiar with

before you move on to later, more detailed chapters. The later chapters, starting with

Chapter 5, build a new UNIX environment: we set up an automation system; automate

installation systems; and enhance the site with real applications, monitoring, reporting,

and security.

Chapter 1, “Introducing the Basics of Automation,” covers the reasons for and

benefits of automation, as well as the methodology behind it. Also, the utility is intro-

duced and explained.

Chapter 2, “Applying Practical Automation,” covers the steps behind automating a

common procedure—adding a new user account. During the process, the core tenets of

automation are covered.

NINTRODUCTION xxiii

Chapter 3, “Using SSH to Automate System Administration Securely,” covers the

basics of using secure shell (SSH), discusses SSH security concerns, describes how to set

up public key authentication in SSH, and delves into various other related topics such as

SSH log analysis.

Chapter 4, “Configuring Systems with cfengine,” explains the concepts behind

cfengine, as well as the various cfengine daemons and utilities. A full discussion takes

place of the common configuration settings in the main cfengine configuration file. The

requirements for a minimal cfengine architecture with two hosts are fully explored.

Chapter 5, “Bootstrapping a New Infrastructure,” covers the cfengine configuration

for a new, automated UNIX/Linux environment. A “master” cfengine host is set up, with

all the required configuration files to manage new Red Hat Linux, Debian Linux, and

Solaris hosts. This is the first step in building a UNIX/Linux environment from scratch

using automation.

Chapter 6, “Setting Up Automated Installation,” demonstrates the automated instal-

lation of Red Hat Linux using Kickstart, Debian Linux using Fully Automatic Installation

(FAI), and Sun Solaris using Jumpstart. The hosts deployed in this chapter continue to be

used in the later development of our example UNIX/Linux infrastructure.

Chapter 7, “Automating a New System Infrastructure,” covers the automation of these

services and procedures in our new infrastructure: the Network Time Protocol (NTP),

Domain Name System (DNS), standardized local account files and new user accounts, mail

routing, and home directories mounted with the Network File System (NFS).

Chapter 8, “Deploying Your First Application,” covers the deployment and configura-

tion of the Apache web server, demonstrating various ways to automate the distribution

of both the web server daemon binaries and the web content. Along the way, you learn

about sharing data with NFS, rsync, , cfengine data copies, and Subversion.

Chapter 9, “Generating Reports and Analyzing Logs,” covers automated syslog and

cfengine log analysis and reporting in our new infrastructure.

Chapter 10, “Monitoring,” uses cfengine to automate the deployment and configura-

tion of Ganglia and Nagios in our example environment.

Chapter 11, “Infrastructure Enhancement,” uses cfengine to manage version control

with Subversion, including branching the cfengine configuration tree to create testing

and development environments. Also, backups are handled, in a very simple way.

Chapter 12, “Improving System Security,” covers the implementation of security

enhancements with cfengine. Measures undertaken include removing the SUID bit from

root-owned binaries, protecting system accounts, applying UNIX/Linux patches and ven-

dor updates, shutting down unneeded daemons, adding host-based firewalls, and more.

Appendix A, “Introducing the Basic Tools,” provides a basic introduction to the tools

used throughout this book and provides a good starting point for understanding and uti-

lizing the examples presented in this text. This appendix covers the following tools: bash,

Perl, , , and AWK.

Appendix B, “Writing cfengine Modules,” covers extending cfengine through mod-

ules. This is a quick but thorough introduction using examples.

NINTRODUCTIONxxiv

Downloading the Code
The source code for this book is available to readers at in the

Source Code section of this book’s home page. Please feel free to visit the Apress web site

and download all the code there. You can also check for errata and find related titles from

Apress.

Contacting the Authors
We have gone through several stages of proofreading and error checking during the pro-

duction of this book in an effort to reduce the number of errors. We have also tried to

make the examples and the explanations as clear as possible.

There may, however, still be errors and unclear areas in this book. If you have ques-

tions or find any of these errors, please feel free to contact us at . You can

also visit the Apress web site at to download code from the book

and see any available errata.

1

C H A P T E R 1

Introducing the Basics of
Automation

When one of this book’s authors was in high school, he got his first part- time job keep-

ing some of the school’s computers running. He loved it. He did everything by hand. And

because the school had only two or three computers, doing everything by hand wasn’t

a big issue. But even then, as the number of systems grew to five, six, and finally more

than ten, he realized just how much time you can spend doing the same things over and

over again. This is how his love of automation was born.

This book’s other author found automation through necessity as well, although

later in his career. During the so- called “tech downturn” around the year 2003 in Silicon

Valley, he suddenly found himself the sole member of what had been a three- person

 system- administration team. The number of systems and responsibilities were increas-

ing, while staffing levels had dramatically decreased. This is when he found the cfengine

automation framework. Cfengine drastically reduced the amount of time required to

implement system changes, allowing him to focus on improving the infrastructure

instead.

In this chapter you will learn the basics of automating system administration so

that you can begin to make your life easier—as well as the lives of everybody who uses

or depends on your systems. The topics covered in this book apply to a wide variety of

situations. Whether you have thousands of isolated systems (sold to your customers, for

example), a large number of diverse machines (at a large company or university campus),

or just a few servers in your home or small business, the techniques we’ll cover will save

you time and make you a better administrator.

Throughout this book, we will assume the reader has a basic set of UNIX skills and

some prior experience as a system administrator (SA). We will use numerous tools

throughout the book to provide example automation solutions. These tools include the

following:

 s 4HE"ASHSHELL

 s 0ERL

 s #FENGINE

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION2

 s 2EGULAREXPRESSIONS

 s 4HE command

 s 4HE stream editor

 s !7+

If you are not familiar with one or more of these tools, read their introductions in the

Appendix before you proceed. See Chapter 4 for an introduction to cfengine.

Do You Need Automation?
If you have one Linux system sitting on your desk at home, you don’t need automation.

You can take care of everything manually—and many people do. But you might want

automation anyway because it will ensure your system has the following characteristics:

 s Routine tasks such as performing backups and applying security updates take place

as scheduled: This saves the user time and ensures that important tasks aren’t for-

gotten.

 s The system is consistently set up: You might have one system, but how often is

it replaced due to faulty hardware or upgrades? When the system hardware is

upgraded or replaced, an automation system will configure the software again in

the same manner as before.

 s The system can be expertly configured, even if you’re not an expert: If you use

automation built by someone more experienced with system configuration and

automation, you benefit from his or her expertise. For example, you benefit from

THE2ED(AT.ETWORK�2(.	WHENUSINGALICENSEDINSTALLATIONOF2ED(AT%NTER-

PRISE,INUX�2(.REGULARLYSUPPLIESAUTOMATEDSOFTWAREUPDATESTHATARERELIABLE
and timely, resulting in a more secure and stable system. Most users don’t have

the required system configuration and programming skills to implement such

ASYSTEM�SO2ED(ATDEVELOPEDASOLUTIONTHATANYOFTHEIRSOFTWARELICENSEESCAN
use freely.

 s The system is in compliance with guidelines and standards: You might be respon-

sible for only one system, but if the system belongs to your employer, it might be

subject to regulatory or other legislative requirements around security and config-

uration. If this is the case, an automation system that enforces those requirements

SUPPLIESTHEDOCUMENTATIONNEEDEDTOPROVECOMPLIANCE�%VENIFNOLAWSORCREDIT

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 3

card–company guidelines apply, your employer might require that all systems on

its network meet certain minimal security standards. Usually a one- time manual

configuration isn’t enough to satisfy these standards; an automated solution is

required.

 s The system is reliable: If solutions to occasional problems are automated, the sys-

tem is more reliable. When a disk fills up with temporary files, for example, the

user who employs an automation system can schedule a daily cleanup procedure

to prevent failed writes to disk and system crashes from full disks.

Likewise, you might think you don’t need automation if you have only one server in

your company. However, you might want it because backups and timely security updates

are easy tasks for a busy system administrator to neglect, even in this most basic setup.

In addition, if your company’s server is a file server or mail server, its drives will tend

to fill up and cause problems. In fact, any security or stability problem with this type of

computer will likely result in expenses for the company, and any loss of data could be

disastrous. This is exactly the reason OS vendors rotate the log files for the daemons they

install on the system, because they know the end result of unmaintained log files. An

automation system can also help out your successor or the person covering for you dur-

ing your vacation.

When it comes down to it, the number of machines isn’t an important factor in

the decision to use automation. Think of automation as insurance that the machine is

BEINGMONITORED�!2ED(AT0ACKAGE-ANAGER�20-	INSTALLORSECURITYUPDATECANUNDO
a manual change to a configuration file, for example. If an automation system enforces

the policy that the configuration file contains a particular entry or value, it will reapply

the change if necessary.

In addition to log- file rotation, your OS distributor already automates many tasks on

a stand- alone system. It makes security checks, updates databases with information on

file locations (e.g.,), and collects system accounting and performance informa-

tion. All this and more happens quietly and automatically from within a standard UNIX

or Linux system.

Automation is already a core part of UNIX philosophy, and cron jobs have histori-

cally been the de facto method for automating UNIX tasks. In this book we favor cfengine

for task automation, but for now you can think of cfengine as a next- generation cron

daemon.

For the sake of the single system, it’s fine to go the simple route. You can add

more log- rotation settings to already automated systems such as the “logrotate” utility

(standard on all Linux distributions that we can think of). You don’t need something

complex, but you do need automation if you want to ensure important tasks happen

regularly and reliably.

You should do everything you can to prevent problems before they happen. If you

can’t do that, follow the advice of one of our old managers: make sure the same problem

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION4

never happens again. If a disk fills, set up a log- rotation script run from cron that deletes

unneeded temporary files—whatever addresses the root cause. If a process dies, set up

a process monitor to restart it when it exits. In later chapters, we will show you how to

accomplish these tasks using cfengine. The automation systems at most sites grow over

time in response to new issues that arise.

SAs who respond to all problems with permanent (read: automated) solutions go

a long way toward increasing overall availability of their sites’ applications and services.

Automated solutions also allow them to get some sleep while on call. (The sleep factor

alone is reason enough for most SAs to spend a lot of time on automation.)

So, back to the question—do you need automation? We’ll introduce a variety of situa-

tions that require automation and discuss them further throughout the book.

Large Companies with Many Diverse Systems

The most traditional situation requiring automation involves a large company or orga-

nization with hundreds or even thousands of systems. These systems range from web

servers to file servers to desktop workstations. In such a situation, you tend to have

numerous administrators and thousands of users.

You might treat the systems as several groups of specialized servers (i.e., all work-

stations in one group, all web servers in another) or you might administer all of them

TOGETHER�%ITHERWAY�WITHALARGENUMBEROFDIFFERENTSYSTEMS�AUTOMATIONISTHEONLY
option. Cfengine is especially suited to this type of environment. It uses a high- level con-

figuration file and allows each system to pull its configuration from the configuration

server. One of cfengine’s key strengths: Not only can it configure hundreds or even thou-

sands of systems in exactly the same manner, but it can also configure a single system in

a unique way. We’ll discuss cfengine thoroughly in later chapters.

Medium-Sized Companies Planning for Growth

Any medium- sized or small company is in just about the same situation as the large

companies. You might have only 50 servers now and some basic solutions might work for

you, but you probably hope to expand. Automation systems built on cfengine scale from

a few systems to many thousands of systems. The example cfengine infrastructure dem-

onstrated in Chapter 5 assists scalability by segmenting the configuration into many files.

Sites with more than 25,000 hosts use cfengine.

You might have only one type of a particular system, but if it fails, cfengine can

reproduce the original system quickly and reliably. Normally at that point some user or

application data needs to be restored, but that’s much easier than reproducing a system

from a base install.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 5

Internet Service Providers

If YOUWORKATAN)NTERNET3ERVICE0ROVIDER�)30	�YOUPROBABLYHAVEMORECOMPUTERSTHAN
employees. You also (hopefully) have a large number of customers who pay you money

for the service you provide. Your systems might offer a wide variety of services, and you

need to keep them all running. Other types of companies have some critical servers, but

most of their systems are not critical for the companies’ success (e.g., individual work-

STATIONS�TESTINGSYSTEMS�ANDSOON	�!TAN)30�ALMOSTALLOFYOURSYSTEMSARECRITICAL�SO
you need to create an automation system that promotes system stability and availability.

Application Service Providers

If YOU�REANAPPLICATIONSERVICEPROVIDER�!30	�YOUMIGHTHAVEHUNDREDSOFSYSTEMSTHATALL
work together or numerous groups of independent systems. Your system- administration

tasks probably include deploying and configuring complex, custom software. You must

synchronize such changes among the various systems and make them happen only on

demand. Stability is very important, and by minimizing changes you can minimize down-

time. You might have a central administration system or a separate administration for each

group of systems (or both). When you create your automation system, be sure to keep an

eye on scalability—how many systems do you have now, and how many will you have in

the future?

Fortunately with cfengine you already have an automation system; what you need

to keep in mind is that in such an environment you often need additional capacity in

a hurry. Being able to boot new hardware off the network and have cfengine configure it

appropriately means that the most time- consuming aspect of adding new systems is the

time required to order, rack, and cable up the new systems. This is the ideal situation for

AN!30�ANDTHE3!STAFFINSUCHSHOPSSHOULDASPIRETOIT�

Web Server Farms

Automation within web clusters is common today. If you have only a couple of load bal-

ancers and a farm of web servers behind them, all your systems will be virtually identical.

This makes things easier because you can focus your efforts on scalability and reliability

without needing to support differing types of systems. In a more advanced situation, you

also have database systems, back- end servers, and other systems. In this case, you need

AMOREFLEXIBLEAUTOMATIONSYSTEM�SUCHASCFENGINE�2EGARDLESSOFTHEUNDERLYINGINFRA-

structure, web servers will be plentiful. You need a quick and efficient way to install and

configure new systems (for expansion and recovery from failures). Sound familiar? The

core needs and considerations are common across different business types. We’ll return

to these recurring themes at the end of the chapter.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION6

Beowulf Clusters

Beowulf clusters are large groups of Linux systems that can perform certain tasks on par

WITHATRADITIONALSUPERCOMPUTER�2EGARDLESSOFWHETHERYOUUSEA"EOWULFCLUSTEROR
another type of computational cluster, each cluster usually has one control system and

hundreds of computational units. To set up and maintain the cluster efficiently, you need

the ability to install new systems with little or no interaction. You have a set of identical

systems, which makes configuration easy. You also usually have maintenance periods

during which you can do what you want on the systems, which is always nice. But when

the systems are in use, making changes to them might be disastrous. For this reason, you

will usually want to control the times when the systems will accept modifications.

Hosts in such clusters will typically boot off the network and load up a minimal

operating system entirely into memory. Any local storage on the system is probably for

application data and temporary storage. Many of the network boot schemes like this

completely ignore the containment of system drift during the time between boot and

shutdown.

In a worst- case scenario, an attacker might access the system and modify running

processes, access other parts of your network from there, or launch attacks against other

sites. A less extreme problem would be one where certain applications need to be kept

running or be restarted if they consume more than a defined amount of memory. An

automation system that ignores the need to control a running system is at best only half

an automation system. Using a system reboot to restore a known good state is sufficient

if the site administrators don’t wish to do any investigation or improvement. A reboot is

only a temporary solution to a system problem. An attacker will simply come back using

the same mechanism as before, or processes will still die or grow too large after a reboot.

You need a permanent solution.

A cluster designed to network- boot can just as easily run cfengine and use it

to contain system drift. You’ll find helpful cfengine features that can checksum

 security- critical files against a known good copy and alert administrators to modifi-

cations. Other cfengine features can kill processes that shouldn’t be running or restart

daemons that are functioning incorrectly. Systems that are booted from identical

boot media don’t always have the same runtime behavior, and cfengine allows you to

control the runtime characteristics of your systems.

For some of the best documentation on system drift and ways to control it, check out

the book Principles of Network and System Administration, Second Edition by Mark Bur-

gess (Wiley, 2004). The author approaches the subject from an academic standpoint, but

don’t let that scare you away. He uses real- world examples to illustrate his points, which

can pay off at your site by helping you understand the reasons behind system drift. The

book will help you minimize these negative effects in your system and application design.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 7

Network Appliances

Finally, many companies produce what we call “network appliances,” which are sys-

tems that run some UNIX variant (often Linux or FreeBSD) and are sold to customers as

a “drop- in” solution. Some current examples of these products include load balancers

and search engines. The end user administers the systems but might know very little

ABOUT5.)8�%NDUSERSALSOUSUALLYDONOTHAVE access to the system. For this reason,

the system must be able to take care of itself, performing maintenance and fixing prob-

lems automatically. It will also need to have a good user interface (usually web- based)

that allows the customer to configure its behavior. Such vendors can leverage cfengine so

that they can focus on their core competency without worrying about writing new code to

keep processes running or file permissions correct.

What Will You Gain?
The day-to- day work of system administration becomes easier with automation. We can

promise the following benefits, based on our own experience.

Saving Time

You can measure the time saved by automation in two ways. The first is in the elapsed

 wall- clock time between the start and end of a task. This is important, but not as impor-

tant as the amount of actual SA time required. If the only SA time required is in setting

up the task to be automated in the first place and occasionally updating the automation

from time to time, the benefits are much greater than faster initial completion. This frees

the SA to work on automating more tasks, testing out new software, giving security or

reliability lectures to the in- house programmers, or simply keeping current with recent

technology news.

Reducing Errors

Unfortunately, you’ll see a rather large difference between systems built according

to documentation and systems configured entirely through automated means. If you

were to audit two systems for differences at a site where all systems were configured by

cfengine, the differences should—in theory—arise only from errors outside the auto-

mation system, such as a full disk. We know from firsthand experience that systems

configured according to a written configuration guide invariably differ from one another.

After all, humans are fallible. We make mistakes.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION8

You can reduce errors at your site by carefully testing automated changes in a non-

production environment first. When the testing environment is configured properly, only

then do you implement the change in your production environment.

For the sake of this book, the term “production” means the systems upon which the

business relies, in any manner. If the company is staffed primarily with nontechnical

people, perhaps only the SA staff understands the differentiation when the term is used.

Trust us, though: the business people understand when particular hosts are important to

the business and will speak out about perceived problems with those systems.

Documenting System Configuration Policies

Whether THEAUTOMATEDCONFIGURATIONATASITEISDONEBYSHELLSCRIPTS�0ERLSCRIPTS�OR
a tool such as cfengine, the automation serves as documentation. It is in fact some of the

most usable documentation for a fellow SA, simply because it is authoritative.

If new SAs at a site read some internal documentation about installing and configur-

ing some software, they don’t have any assurance that following the documentation will

achieve the desired effect. The SA is much better off using a script that has been used all

the previous times the software needed to be installed and configured.

%ITHERTHESCRIPTWILLWORKANDTHEPROPERRESULTSWILLEMERGE�ORIT�LLBREAKBECAUSE
of some change in the environment. The change should be much easier to find based on

error output from the script. If the steps on a wiki page or a hard copy of the documen-

tation don’t work, on the other hand, the error could be due to typos in the doc, steps

omitted, or updates to the procedure not making it back into the docs. Using automation

instead helps insulate the SA against these scenarios.

Realizing Other Benefits

This book applies to a wide range of people and situations, so not all the material will be

of interest to all readers. If you haven’t yet created an automation system or implemented

an open source framework (such as cfengine) from scratch, this book will show you how

to get started and how to take the system from initial implementation through full site

automation. You will also learn the principles that should guide you in your quest for

automation. As your skills and experience grow, you will become more interested in some

of the more advanced topics the book discusses and find that it points you in the right

direction on related subjects.

If you already have an automation system of some sort, this book will provide you

with ideas on how to expand it. There are so many ways to perform any given task that

you are sure to encounter new possibilities. In many cases, your current system will

be advanced enough to leave as is. In other cases, though, you will find new ways to

automate old tasks and you’ll find new tasks that you might never have considered

automating.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 9

Don’t write off a complicated manual task as too difficult to automate before care-

fully evaluating the decisions made during the process. You’ll usually find during manual

inspection that the decision process is based on attributes of the system that cfengine or

a script can collect. The act of documenting a change before making it usually forces the

SA to approach the problem in a systematic way. The change process will end up produc-

ing better results when the process is planned this way.

Imagine that you often have to restart a web- server process on one of your servers, in

a sequence of actions such as this:

 s 9OUCHECKALOGFILEFORACOMMONLYRECURRINGERRORMESSAGE�

 s 9OUCHECKIF#05UTILIZATIONISHIGH�

 s 9OUTESTTHEWEBSERVERUSINGACOMMANDLINEUTILITY�LOOKINGFORASUCCESSFUL
(440STATUSMESSAGE�

You can collect each of these manual checks automatically, and a script or cfengine

can make the decision to restart. If this makes you nervous, write the script’s collection

aspects first, and at the point where a system change would be made, instruct the script

TOPRINTAMESSAGETOTHESCREENABOUTTHEDECISIONITHASREACHED�2UNTHESCRIPT�THEN
MANUALLYGOTHROUGHYOURDECISIONPROCESSINDEPENDENTLYOFTHESCRIPT�%NHANCETHE
script each time its decision differs from yours. You’d be surprised at the complex proce-

dures you can automate this way. You don’t have to enable the automated restart itself

until you’re comfortable that it will do the right thing.

AUTOMATING A DIFFICULT PROBLEM/RESPONSE PROCEDURE

One of us works at a site where the SA staff used complex manual procedures to fix a distributed

cluster when application errors would occur. The manual process would often take several hours to

completely restore the cluster to a working state.

The staff slowly automated the process, beginning with simple commands in a shell script to avoid

repeatedly typing the same commands. Over time the staff enhanced the script with tests to determine

which errors were occurring and to describe the state of the cluster’s various systems. Based on these

tests, the script could determine and perform the correct fix.

Eventually, the SA staff used the automated process to repair the cluster in as little as a few

minutes. In addition, the script incorporated so many of the decisions previously made by the SA staff

members that it became the foremost authority on how to deal with the situation. Essentially, the script

serves as documentation on how to deal with multiple issues and situations on that particular applica-

tion cluster.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION10

When it comes to computer systems, every environment is different—each has dif-

ferent requirements and many unique situations. Instead of attempting to provide the

unattainable “one solution fits all,” this book shows how to set up an example environ-

ment. As we configure our example environment, we will explain the decision process

behind the solutions we have chosen. After you have learned these options, you will be

able to make an informed choice about what you should automate in your environment

and how you should do it.

What Do System Administrators Do?
Life as a system administrator usually falls into three categories:

 s 4EDIOUS�REPETITIVETASKS�A�K�A�BORINGTASKS	

 s .EW�INNOVATIVETASKS�A�K�A�WHYYOULOVETHEJOB	

 s !NSWERINGUSERS�QUESTIONS�OROTHERWISEDEALINGWITHMONITORINGALARMS�ISSUES
or emergencies (a.k.a. pulling your hair out)

The goal of this book is to help you create new and innovative solutions to eliminate

those tedious and repetitive tasks. And if you find a way to automate the task of answer-

ing users’ questions, please let us know! But even if you can’t, you can at least create

a system that detects and even fixes many problems before they come to the attention

of the users, or more important, your monitoring systems. Also, any task you have auto-

mated is a task the users could potentially perform on their own.

System administrators spend time on other tasks, of course, but we won’t address

them here because they aren’t pertinent to this discussion. (These might include brows-

ing the Slashdot web site, checking on reservations for the next science- fiction conven-

tion, or discussing a ham- radio setup with other geeks around the office.) Suffice it to

say that following the guidelines in this book will allow you to spend more time on these

other tasks and less time on the tedious tasks and emergencies.

You can classify the tedious tasks into the following categories:

 s 0REINSTALLATION�!SSIGNINGAN)0ADDRESS�CONFIGURINGEXISTINGSERVERSANDNETWORK
services, and so on

 s)NSTALLATION: Installing a new operating system and preparing it for automation

 s #ONFIGURATION�0ERFORMINGINITIALCONFIGURATIONANDRECONFIGURATIONTASKS

 s -ANAGINGDATA: Duplicating or sharing data (users’ home directories, common

scripts, web content, etc.), backups, and restores

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 11

 s -AINTENANCEANDCHANGES�2OTATINGLOGS�ADDINGACCOUNTS�ANDSOON

 s)NSTALLING�UPGRADINGSOFTWARE: Using package management and/or custom distri-

bution methods

 s 3YSTEMMONITORINGANDSECURITY�0ERFORMINGLOGANALYSISANDSECURITYSCANS�MONI-
toring system load, disk space, drive failures, and so on

Methodology: Get It Right from the Start!
Automating tasks proves much more useful when you apply a consistent methodology.

Not only will you have less direct work (by having code that is easier to maintain and

reuse), but you will also save yourself and others time in the future. Whenever possible,

we’ll include techniques in this book that support these basic methodologies:

 s !CTIVITIESYOUHAVEPERFORMEDMUSTBEREPRODUCIBLE�

 s !NYSYSTEM�SSTATEMUSTBEVERIFIABLE�

 s 0ROBLEMSSHOULDBEDETECTEDASTHEYOCCUR�

 s 0ROBLEMSSHOULDBEREPAIREDAUTOMATICALLY�IFPOSSIBLE�

 s 4HEAUTOMATIONMETHODSMUSTBESECURE�

 s 4HESYSTEMSHOULDBEDOCUMENTEDANDEASYTOUNDERSTAND�

 s #HANGESSHOULDBETESTABLEINASAFEENVIRONMENT�

 s %VERYSYSTEMCHANGESHOULDBEEXAMINEDFORSIDEEFFECTSTHATALSOMUSTBEHAN-

dled automatically.

0ERHAPSthe most important aspect of any automated system is reproducibility. If

you have two machines configured just the way you like them, you should be able to add

an identically configured third machine to the group with minimal effort. If somebody

makes an incorrect change or loses a file, restoring the system to full functionality should

be relatively easy. These nice capabilities all require that you can quickly and perfectly

REPRODUCEWHATYOUHAVEDONEINTHEPASTORTOOTHERSYSTEMS�%VENIFYOUDON�TPLANTO
add more systems, you can bet that at some point one of your systems will fail. It might

BETHE#05ORDISK�S	�ORYOUMIGHTHAVEAFIREINYOURSERVERROOM��9OUDOHAVEADISAS-

ter recovery plan, right?) The experienced SA protects his systems against their inevitable

failure, and automation is a big part of the solution.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION12

You also need to be able to verify a system’s status. Does it have the latest security

updates? Is it configured correctly? Are the drives being monitored? Is it using your new-

est automation scripts, or old ones? These are all important questions, and you should be

able to easily determine the answers if your automation system is implemented properly.

In many cases, detecting problems is a great step forward in your automation

process. But how about automatically fixing problems? This too can be a powerful tech-

nique. If systems fix their own problems, you will get more full nights of sleep. But if your

 auto- repair methods are overzealous, you might end up causing more problems than you

solve. We will definitely explore self- repair whenever appropriate.

An administrator always has to consider security. With every solution you imple-

ment, you must be certain you are not introducing any new security issues. Ideally, you

want to create solutions that minimize or even eliminate existing security concerns. For

example, you might find it convenient to set up Secure Shell (SSH) so that it uses private

keys without a passphrase, but doing so usually opens up serious security holes.

There will always be people who follow in your footsteps. If you ask them, the most

important component of your work is good documentation. We already mentioned that

in many cases automation techniques provide automatic documentation. You should

take full advantage of this easy documentation whenever possible. Consider, as an exam-

ple, a web server under your control. You can manually configure the web server and

document the process for yourself and others in the future, or you can write a script to

configure the web server for you. With a script, you can’t neglect anything—if you forget

to do something, the web server does not run properly.

As obvious as it might sound, it is important to test out your automation before

you deploy it on production servers. One or more staging machines are a must. We will

discuss techniques for propagating code across machines and explain how you can use

these techniques for pushing code to your staging server(s).

Whenever you automate a task, you must consider dependencies. If you automated

the installation of software updates and Apache is automatically upgraded on your sys-

tems, that’s great. But if the configuration files are replaced in the process, will they be

regenerated automatically? You need to ask yourself these kinds of questions when you

automate a task.

What do you do about these dependencies? They should be your next project. If you

can automatically upgrade but can’t automatically configure Apache, you might want to

ADDRESSTHATTASKNEXT�%VENIFYOUHAVEALREADYAUTOMATEDTHISTASK�YOUNEEDTOMAKE
sure the automation event is triggered after the software is updated. You might also need

to update a binary checksum database or services on your systems. Whether or not these

tasks are automated, you need to be sure they will not be forgotten.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 13

Homogenizing Your Systems

Most people reading this book will have a variety of UNIX systems within their network. If

you’re lucky, they will all run the exact same operating system. In most cases, though, you

will have different systems because there are a wide variety of commercial UNIX systems

ASWELLAS&REE"3$AND,INUX�%VENWITHONETYPEOF5.)8�YOUMIGHTHAVEDIFFERENTVARI-
ETIES�CALLEDhDISTRIBUTIONSvIN,INUX	�%VENIFALLYOURSYSTEMSRUNTHESAME5.)8SYSTEM�
some might run older versions than others.

The more similar your systems, the better. Sure, you can have a script that behaves

differently on each type of system. You can also use classes in cfengine to perform differ-

ent actions on different systems (discussed throughout the book). These approaches will

be necessary to some degree, but your first and best option is to minimize these differ-

ences among your systems.

9OURFIRSTSTEP�0ROVIDEACERTAINBASESETOFCOMMANDSTHATOPERATETHESAMEWAYON
ALLSYSTEMS�4HE'.50ROJECT�) is helpful because the GNU developers

have created open source versions of most standard UNIX commands. You can compile

these to run on any system, but most of them are binary programs, so you’ll need to com-

pile each program for each platform or find prebuilt packages. You can then distribute

these programs using the methods discussed in Chapter 8. Once they reside on all your

systems in a standard location (such as), you should use them in all your

scripts.

Some operating systems will provide other helpful commands that you might want

TOHAVEONALLYOURSYSTEMS�)FYOU�RELUCKY�THESECOMMANDSWILLBESHELLOR0ERLSCRIPTS
THATYOUCANMODIFYTOOPERATEONOTHERSYSTEMS�%VENIFTHEYAREBINARYCOMMANDS�THEY
might be open source and therefore usable on commercial UNIX systems.

In addition to consistent commands, a consistent filesystem layout can be helpful.

As we already mentioned, placing custom commands in the same location on all systems

is a must. But what else is different? Do some of your systems place logs in and

others in ? If so, you can easily fix this with symbolic links.

We recommend that you consider each difference separately. If it is easy to modify

your systems to make them similar, then do so. Otherwise, you might be able to work

around the differences, which is what you should do. Finally, if it isn’t too difficult to add

a specific set of consistent commands to all your systems, try that approach. In most

cases, you will have to use some combination of all three of these approaches in your

environment.

Deciding on Push vs. Pull

You can take one of two main approaches when configuring, maintaining, and modifying

systems: the “push” method or the “pull” method. The “push” method is when you have

one or more systems contact the rest of the systems and perform the necessary tasks.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION14

You implement the “pull” method by having the systems contact one or more servers

on a regular basis to receive configuration instructions and configure themselves. Both

methods have their advantages and disadvantages. As usual, the one you should choose

depends on your situation. We personally have a favorite, but read on as we present the

options.

The push method gives the SA the feeling of control, because changes are triggered

actively by one or more systems. This scenario allows you to automatically configure,

update, or modify your systems, but only when you (or some other trigger) cause it to

happen.

The push method sounds great, right? Well, not exactly—there are plenty of draw-

backs. For instance, what if you have more than 1,000 systems? How long would it take

to contact every system when you need to make a change? What happens if some sys-

tems are currently unavailable? Are they just forgotten?

This is where the pull method really shines. If you make a change to one or more con-

figuration servers, all your systems will pick up those changes when they can. If a system

is a laptop at somebody’s home, it might not get the changes until the next day. If a sys-

tem has hardware problems, it might not get the changes until the next week. But all your

systems will eventually have the changes applied—and most almost immediately.

So, does your environment consist of several systems that are intricately related? Do

these systems need to be updated and modified together at all times? Does the update

process unavoidably cause some amount of service outage? If so, you probably want to

push any changes to these systems. If these aren’t issues for you, and especially if you

have a large number of systems, then the pull method is generally preferable.

2EGARDLESSOFTHEMETHODYOUCHOOSE�YOUSTILLMUSTBEAWAREOFTHELOADSTHATWILLBE
placed on your systems, your network, and especially your servers. If you push in series

(one system at a time), you are probably okay. But if you push in parallel (all systems

at once), the server might suffer. If your clients pull from a server, be sure they don’t all

pull at the same time. Consider adding a random delay before the task begins. Cfengine,

which uses the pull method, provides the option that does just this.

Dealing with Users and Administrators
%VERYONEwho uses your systems is either a user or an administrator (where an admin-

ISTRATORISUSUALLYAUSERASWELL	�!TAN)30�MOSTEMPLOYEESAREADMINISTRATORSBUTTHE
customers are actually the users. At a traditional company, a small number of people are

administrators and all other employees are users.

Your more technical users might also be administrators of their own desktop systems.

These systems can still be security risks, so you should include them in your automation

system. You have to be aware of conflicts that might arise between your automation sys-

tem and the user’s own actions. The user might destroy something your system did, in

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 15

which case the system should do it again automatically. Similarly, your automation might

destroy changes the user wanted to make on his or her system—you would have to work

with the user to find a different way to make the change.

What you have to worry about the most are any interactions that might cause prob-

lems with the system. If, for example, your automation system assumes that a certain

account resides on the system, it might not operate without it. This isn’t a problem—

unless, of course, somebody manually deletes that user.

Ideally, you would have a list of every assumption your automation system makes

about every system. You would then enhance your automation system to check all these

ASSUMPTIONSANDREPAIRANYPROBLEMS�2EALISTICALLY�YOUWOULDHAVEAHARDTIMEREACH-

ing this ideal, but the more hands you have in the pot (i.e., the more administrators), the

harder you should try.

Another concern, if you have more than one or two administrators for a system, is an

audit trail. Who has been accessing each system and what have they been doing? Most

systems provide process accounting—a log of every executed process, the user who exe-

cuted it, and the amount of time it was running. You usually have to enable this logging

because it can consume quite a bit of drive space.

The problem is that when you see that executed the command ,

how do you know who did it? You know that the user ran it, but who was logged in as

 at that time? Did you make an unfortunate typo, or did the pissed- off employee who

quit yesterday do it on purpose?

The easiest solution when you have multiple administrators is to give the pass-

word to everybody, but this provides no audit trail at all. A better option is to specify

which SSH keys should provide access to the ACCOUNT�%ACHUSERHASHISORHEROWN
private SSH key and, assuming the logging is turned up slightly, the SSH server records

the key used for each login. This allows you to determine who was logged in as at any

given time. You can find information on this approach in Chapter 3.

There is still a chance that multiple people will be logged in as when a problem

has occurred. The only way to know exactly who ran which commands is to use Sudo.

Sudo is a program that allows specified users (or any user, really) to execute specified

commands as . Using it is easy:

Note that Sudo prompts you for a password. It wants you to enter the password for

your user account, not the account. This request helps verify that the person using

the ACCOUNTISSTILL+IRK�4HEAUTHENTICATIONWILLLASTFORSOMEPERIODOFTIME�USUALLY
five minutes) or until the command is executed.

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION16

%XECUTINGTHATCOMMANDAS results in the following log entry (sent through sys-

log, which ends up in on our system):

NNote You can find the code samples for this chapter in the Downloads section of the Apress web site

().

None of this will work, however, without the proper permissions in the Sudo con-

figuration file: . You can edit this file manually, but if more than one person

might edit the file at the same time, you should use the command. This command

also checks the file for valid syntax on exit.

Here is the entry that allows to start the web server:

This line says that the user is allowed, on any host (), to run the command

. You could also allow the web server to be stopped and restarted

by allowing any parameter to be specified to this script:

You can also limit this command so that it can be executed only on the web server:

This would allow the same file to be used on all of your systems (if this

is the way you want it). You can even allow certain users to execute commands as other

specific users:

This allows to list directories as the user . You might find this useful for

verifying permissions within web content. If you can list directories with this command,

the web server can also get into the directory. You could also apply this rule to all users in

a specific group:

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION 17

This command allows anybody in the group to execute the command (with

any arguments) as the user on the host . You could even remove the password

prompt as well:

Now the users won’t have to enter their passwords at all when they run this com-

mand. Because this command isn’t that dangerous in most cases, removing the password

requirement is a nice option.

With Sudo, you can run certain commands without a password to allow scripts that

are running as a user other than to execute system commands. This is the most ben-

eficial way to use Sudo when it comes to automation.

NWarning It might be tempting to provide unlimited access to certain users through Sudo. Although

this will allow the users to execute commands as with full logging enabled, it is not usually the most

secure thing to do. Because each user can run commands as with his or her password, you

effectively have several passwords for the system.

Many more options are available to you within the file. We’re not going

to attempt to cover them here, but you can view the and man pages as well

as the web site for more information.

Who Owns the Systems?
The systems and services on your network aren’t yours to change at will. Normally your

company has established people empowered to make business decisions about when

a service can and should go down for maintenance. These staff members understand the

established requirements for advance notifications to customers, partners, and users.

They usually also understand internal or external factors that would affect whether

a scheduled time is a good fit for the business.

You can’t decide on your own to make changes in an unannounced window, or per-

form maintenance that takes down some functionality of your applications or systems

without prior approval. You need to schedule downtime and/or changes that affect or

might affect production services with your stakeholders. The SA might very well be the

person empowered to make the decision, but then the SA needs to communicate the

activity with enough advance notice to satisfy any internal or external SLAs (Service Level

Agreements).

CHAPTER 1 N INTRODUCING THE BASICS OF AUTOMATION18

This information is probably well known to most readers, but a reminder is useful

even to advanced SAs. SAs often get very close to their systems and applications, so they

might forget that the decisions about what’s best for their systems don’t start and stop

with them.

Defining Policy
We keep mentioning “policy,” which might sound like a big document handed down

from on high, bound in leather and signed in blood by all executives at your company.

This isn’t what we mean. The configuration policy is highly technical, and although it’s

influenced by factors outside the technology team (i.e., legislation, credit card–security

guidelines, site security policy, and so on), it is purely a statement of how the SA team

believes the systems should be configured.

The problem with most sites (whether running UNIX- like operating systems, Win-

dows, or other OSs) is that many machines will at best only partially comply with policy.

All systems might be imaged exactly the same way, but over time user and SA activities

make enough changes to each host that the system drifts from the desired state.

Sites that use automation for all aspects of system configuration will still suffer from

SOMEDRIFTASSOCIATEDWITHUSERSANDNETWORKEDAPPLICATIONS�%XAMPLESOFTHISDRIFT
include varying disk utilization based on log files from daemons or files left on the sys-

tem by users, or stray processes left around by users. This should be the extent of the

drift, because the automation system should install and configure all configuration files

and programs, as well as keep them in conformance with policy. In addition, as drift is

observed, you can update the automation system to rein in its effects.

You already have a system configuration policy, but there’s a good chance that it’s

documented incompletely. There’s an even better chance that some or all of it exists only

in your head. This book exists so that you can move it from wetware into software.

19

C H A P T E R 2

Applying Practical Automation

You need to know several key things before you automate a new procedure or task.

(Well, first you need to know where your soda and potato chips are. Find them? Okay,

moving on.) This chapter presents the prerequisite information in an easy-to- digest for-

mat. We’ll demonstrate these same key points in later chapters when configuring our

example systems. You might want to review this chapter after reading the entire book,

especially when embarking on a new automation project.

This chapter assumes familiarity with Bourne Shell scripting. Experienced SAs shy

away from scripting specifically for the Bash shell (Bourne- Again SHell) except when

absolutely necessary. Even if your site has Bash installed everywhere today, you might

have to integrate some new systems into your infrastructure tomorrow due to an acquisi-

tion. If the script that does some initial automation framework setup—such as installing

cfengine or other required administrative utilities—doesn’t work on the new systems,

you’re in for some serious extra work. If your scripting is as portable as possible from the

start, in effect you’re buying insurance against future pain.

Seeing Everything As a File
One of the core strengths of UNIX and UNIX- like operating systems is the fact that almost

everything on the system is represented to the user as a file. Both real and pseudo devices

(such as , , and so on) can be read from and (often) written to as nor-

mal files. This capability has made many operations easy, when the same results would

be difficult to attain under other operating systems. Be thankful for the UNIX heritage of

being written for and by programmers.

For example, if you want to create an ISO file on a remote system from a DVD in your

laptop, you could run this:

Linux represents the CD/DVD drive as a file, in this case , so you simply

use the command to copy it bit for bit to a different file. If you don’t have the disk

space on your laptop for storing the ISO file, you can pipe the output over SSH and use

 again on the remote host to place the output in a single file.

CHAPTER 2 N APPLYING PRACTICAL AUTOMATION20

You can then configure VMware to mount the ISO file as a CD- ROM drive (standard

VMware functionality) and quickly boot from the device and install on a host with no

physical CD/DVD drive.

You probably won’t ever need to automate ISO- file creation (although every site is

different), but it’s important to remember that the vast majority of automation operations

are based on copying and/or modifying files. Either you need to update a file by copying

a new file over it, edit the file in place, or copy out an additional file or files.

Often when files change or new files are distributed, a process on the host needs to

restart so the host can recognize the change. Sometimes a host process starts for the first

time if the new files comprise a new server/daemon process distributed as a package, tar-

ball, or simply a file.

The bulk of what we’ll be doing in this book is copying files, modifying files, and tak-

ing actions based on the success or failure of earlier file operations. Certain operations

might prove tricky, but most of what we’re doing should be familiar to UNIX SAs.

Understanding the Procedure Before Automating It
We’ve seen many administrators open a cfengine config file to automate a task and end

up sitting there, unsure of what to do. It’s an easy mistake to make when you need to

modify many hosts and want to start the automation right away. The reason they ended

up drawing a blank is that they weren’t ready to effect changes on even a single host. They

needed first to figure out how to reach the desired state.

This is the first rule of automation: automation is simply a set of already working

steps, tied together in an automated manner.

This means that the first step toward automating a procedure usually involves

manual changes! A development system (such as an SA’s desktop UNIX/Linux system

or a dedicated server system) is used to build, install, and configure software. You might

need to perform these activities separately for all your site’s operating systems and hard-

ware platforms (SPARC vs. x86 vs. x86_64, etc.).

Here’s an overview of the automated change development process:

 s -AKETHECHANGEINATESTENVIRONMENT�

 s -AKEITFITYOURPOLICY�FOREXAMPLE�MAKEITRUNASANONROOTUSERORINSTALLITIN
a specific directory tree.

 s !UTOMATETHEDEPLOYMENTSTEPS�

 s 4ESTTHEDEPLOYMENTTOASMALLNUMBEROFTESTINGORSTAGINGHOSTSANDCONFIRM
that you achieve the desired effects.

 s $EPLOYTHECHANGETOALLHOSTSUSINGTHENEWLYDEVELOPEDAUTOMATION�

CHAPTER 2 N APPLYING PRACTICAL AUTOMATION 21

So with automation, you simply take the solid work that you already do manually and

speed it up. The side effect is that you also reduce the errors involved when deploying the

change across all the systems at your site.

Exploring an Example Automation
In this section we’ll take a set of manual steps frequently performed at most sites and turn

it into an automated procedure. We’ll use the example to illustrate the important points

about creating automated procedures.

Scripting a Working Procedure

An SA needs to create user accounts regularly. In this case, you’ll use several commands

to create a directory on a central Network File System (NFS) server and send off a wel-

come e-mail. You must run the commands on the correct host because the accounts from

that host are pushed out to the rest of the hosts.

To begin the automation process, the SA can simply take all the commands and put

them into a shell script. The script might look as simple as this:

Then the SA composes an e-mail to the new user with important information (having

a template for the user e-mail is helpful). This procedure works, but another SA cannot

use it easily. If it generates any errors, you might find it difficult to determine what failed.

Plus, you might encounter problems because the script attempts all the steps regardless

of any errors resulting from earlier steps. In just a few minutes, you can make some sim-

ple additions to turn this procedure into a tool that’s usable by all SA staff:

CHAPTER 2 N APPLYING PRACTICAL AUTOMATION22

Because the revised script ensures that it’s running on the right host and that an

argument is passed to it, it now helps the SA make sure it’s not called incorrectly. This

helps the author and any other users of the script. Having usage information should be

considered mandatory for all administrative scripts, even if the scripts are meant to be

used only by the original author.

Another advantage of scripting this procedure is that the same message is sent to all

new users. Consistency is important for such communications, and it’ll help ensure that

new users are productive as soon as possible in their new environment.

Administrative scripts should not run if the arguments or input is not exactly correct.

You could also improve the preceding script to ensure that the username supplied meets

certain criteria.

Prototyping Before You Polish

The preceding script is still a prototype. If you were to give it an official version number,

it would need to be something like 0.5, meaning that it’s not yet intended for general

release. Other SA staff members can run this functional prototype to see if it achieves the

desired goal of creating a working user account.

Once this goal is achieved, the automation author can move on to the next step of

polishing the script. The SA shouldn’t spend much time on cosmetic issues such as more

verbose usage messages before ensuring the procedure achieves the desired goal. Such

things can wait.

CHAPTER 2 N APPLYING PRACTICAL AUTOMATION 23

Turning the Script into a Robust Automation

Now you want to turn the script into something you would consider version 1.0—some-

thing that will not cause errors when used in unintended ways. Every automation’s

primary focus should be to achieve one of two things:

 s A change to one or more systems that achieves a business goal: The creation of

a new user account falls into this category.

 s No change at all: If something unexpected happens at any point in the automa-

tion, no changes should be made at all. This means that if an automated proce-

dure makes several changes, a failure in a later stage should normally result in

a rollback of the earlier changes (where appropriate or even possible).

Your earlier user- creation script could use some improved error messages, as well as

a rollback step. Give that a shot now:

CHAPTER 2 N APPLYING PRACTICAL AUTOMATION24

It seems like a bad idea to trust that someone who calls your help desk claiming to be

a new user is really the person in question, even if caller ID tells you the phone resides in

your building. You might want to require that the user physically visit your help desk. If

this isn’t possible, the SA staff should come up with a suitable substitute such as calling

the new user’s official extension, or perhaps having the new user identify himself or her-

self with some private information such as a home address or employee number.

Attempting to Repair, Then Failing Noisily

The preceding script attempts a removal of the new user account when things go wrong.

If the account was never created, that’s okay because the command will fail, and

it should fail with a meaningful error message such as “No such account.”

You’ll encounter situations where a rollback is multistep, so you’ll need to evaluate

each step’s exit code and indicate or contraindicate further rollback steps based on those

exit codes. Be sure to emit messages about each step being taken and the results of those

steps when the command is an interactive command. As the script author you know

exactly what a failure means at each step, so be sure to relay that information to the SA

running the script.

Each and every step in an automation or administrative script needs to ensure suc-

CESS�DON�TEVERMOVEONBLINDLYWITHTHEASSUMPTIONTHATACOMMANDWORKED�%VEN

CHAPTER 2 N APPLYING PRACTICAL AUTOMATION 25

something as simple as copying a few config files into a new user’s home directory can

fail when a disk fills up. Assumptions can and will bite you.

Focusing on Results

When in doubt, opt for simplicity. Don’t attempt fancy logic and complicated commands

when the goal is simple.

For example, you might have a script that takes a list of Domain Name System (DNS)

servers and generates a file that’s pushed to all hosts at your site. When a new

DNS server is added or a server is replaced with another, you need to run the script to

update the file on all your systems.

Instead of running the script to generate the file on each and every host at your site,

you can run the command on one host, take the resulting output, and push that out as

a file to all hosts. This technique is simple and reliable compared to the requirement of

running a command successfully on every host. A complicated procedure becomes a sim-

ple file push. This is the KISS (Keep It Simple, Stupid) principle in all its glory. Our system

administration experience has taught us that increased simplicity results in increased

reliability.

27

C H A P T E R 3

Using SSH to Automate System
Administration Securely

The Secure Shell (SSH) protocol has revolutionized system administration ever since

it became popular in the late 1990s. It facilitates secure, encrypted communication

between untrusted hosts over an unsecure network. This entire chapter is devoted to SSH

because it plays such an important part in securely automating system administration.

In this introductory chapter, we assume that you already have SSH installed and

operating properly. We have based the examples in this book on OpenSSH 4.x using ver-

sion 2 of the SSH protocol. If you are using another version of SSH, the principles are the

same, but the implementation details might differ.

For a more thorough and complete discussion of SSH, we highly recommend SSH,

The Secure Shell: The Definitive Guide, Second Edition by Daniel J. Barrett, Richard E.

 Silverman, and Robert G. Byrnes (O’Reilly Media Inc., 2005).

SSH AND CFENGINE

The author of cfengine, Mark Burgess, has said that SSH and cfengine are “perfect partners.” The SSH

suite of programs provides secure communications for remote logins, and cfengine provides secure

communications for system automation (along with the automation framework itself).

SSH and cfengine share the same distributed authentication model. SSH clients use a public- key

exchange to verify the identity of an SSH server, with the option of trusting the remote host’s identity

the first time the host’s key is seen. Cfengine also uses public- key authentication, although the cfengine

server daemon also authenticates connecting clients for additional security. As with SSH, you can con-

figure cfengine to trust the identity of other hosts upon initial connection.

We recommend you allow cfengine to trust the identity of other hosts in this manner. Doing so

allows an SA to bring up a new cfengine infrastructure without the additional problem of key generation

and distribution. If a host’s keys change at any point in the future, cfengine will no longer trust its iden-

tity and will log errors.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY28

Learning the Basics of Using SSH
If you are already familiar with the basic use of SSH, you might want to skim this section.

If, on the other hand, you are an SSH novice, you are in for quite a surprise. You’ll find

that SSH is easy and efficient to use, and that it can help with a wide variety of tasks.

The commands in this section work fine without any setup (assuming you have the

SSH daemon running on the remote host). If nothing has been configured, all of these

commands use password authentication just like Telnet; except with SSH, the password

(and all traffic) is sent over an encrypted connection.

Use this command to initiate a connection to any machine as any user and to start an

interactive shell:

You can also execute any command in lieu of starting an interactive shell. This code

displays memory usage information on the remote host:

Finally, the command allows you to copy files between hosts using the SSH proto-

col. The syntax resembles the standard command, but if a file name contains a colon, it

is a remote file instead of a local file. As with the standard command, if no username

is specified on the command line, your current username is used. If no path is specified

after the colon, the user’s home directory is used as the source or destination directory.

Here are a few examples:

The last example copies the file named from user1’s home directory on host1

directly into user2’s home directory on host2. No file name is given in the second argu-

ment, so the original file name is used (, in this case).

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 29

Enhancing Security with SSH
Before SSH, the command was widely used for interactive logins. Telnet works

fine, except that the password (well, everything actually) is sent over the network in

plain text. This isn’t a problem within a secure network, but you rarely encounter secure

networks in the real world. Machines on an unsecure network can capture account pass-

words by monitoring Telnet traffic.

IS YOUR NETWORK SECURE?

Some people define an unsecure network as the Internet and a secure network as anything else. Others

think that as long as you have a firewall between a private network and the Internet that the private

network is secure. The truly paranoid (such as ourselves) just assume that all networks are unsecure.

It really depends on how much security you need. Are you a likely target for crackers? Do you store

important, private information? Because nothing is ever 100 percent secure, we find it easier to assume

networks are not secure and skip the rest of the questions.

If you think you have a secure network, be sure to consider all the possible security vulnerabilities.

Remember, employees within a company are often not as trustworthy or security- conscious as you

would like. Somebody might have plugged in a wireless access point, for example. A person with more

malicious intentions might deliberately tap into your private network, or exploit a misconfigured router

or firewall. Even a fully switched network with strict routing can be vulnerable. We always try to be on

the paranoid side because we’d rather be safe than sorry.

When it comes to automating system administration tasks across multiple systems,

passwords are a real pain. If you want to delete a file on ten different machines, logging

into each machine with a password and then deleting the file is not very efficient. In the

past, many system administrators turned to for a solution. Using a file,

would allow a certain user (i.e.,) on a specific machine to log in as a particular user

(again, often) on another machine. Unfortunately, the entire authorization scheme

relies on the IP address of the source machine, which can be spoofed, particularly on an

unsecure network.

The most secure way to use SSH is to use password- protected public/private Rivest,

Shamir, and Adleman (RSA) or Digital Signature Algorithm (DSA) key pairs. Access to any

given account is granted only to users who not only possess the private key file, but also

know the passphrase used to decrypt that file.

Another component of SSH is a program called nt. The program uses the

passphrase to decrypt your private key, which is stored in memory for the duration of

your session. This process eliminates the requirement that you enter the passphrase

every time you need to use your private key.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY30

Using Public- Key Authentication
Many SAs are more than happy to use SSH with its default password authentication.

In this case, SSH simply functions as a more secure version of Telnet. The problem is

that you need to enter a password manually for every operation. This can become quite

tedious, or even impossible, when you are automating SA tasks. For most of the activities

throughout this book, you must use RSA or DSA authentication.

Even if you use RSA authentication, you still need a passphrase to encrypt the private

key. You can avoid entering the passphrase every time you use SSH in one of two ways.

You can use an empty passphrase, or you can use the command as discussed

in the next section. One major disadvantage of empty passphrases is that they are easy to

guess, even by people with little skill.

SHOULD YOU USE AN EMPTY PASSPHRASE?

Some think that using an empty passphrase is one of the seven deadly sins of system administration.

We think it can be appropriate within an isolated environment, especially when the security implica-

tions are minimal. For example, a Beowulf cluster generally has an internal private network containing

only one machine with an external network connection. For instance, if a university uses the cluster for

research, it might not be a target for intrusion. In this case, having an unencrypted private key on one of

the cluster machines might not be too much of a concern.

However, if the same cluster were in use by a company doing important and confidential research,

then, at the very least, the key should not reside on the one machine with an external connection. Of

course, it would be even better to use an encrypted key along with nt. This key could be placed

on a machine completely separate from the cluster, yet you could use it to access both the gateway and

the individual nodes. This scenario would also remove the need to have the private- key file on the clus-

ter at all, whether encrypted or not.

The most important thing to consider is what access the key provides. If the key provides

access to every system in your entire network, then the risks of leaving the key unencrypted (i.e., with

no passphrase) are pretty great. But if the key allows the Dynamic Host Configuration Protocol (DHCP)

server to be restarted on only one host, then what will an attacker do with it? Perpetually restart your

DHCP server? Maybe—but that’s not the end of the world, and it’s easy to fix (change keys).

Version 2 of the SSH protocol supports two types of public- key encryption: RSA and

DSA. The two encryption schemes are similar and generally considered to provide equiv-

alent security. For no particular reason (apart from the fact that we are most familiar with

it), we will use RSA for the examples within this book.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 31

The main security difference in using RSA or DSA keys for login authentication is that

the trust relationship changes. When you use password authentication, the server directly

challenges the client. With public- key authentication, the challenge occurs at the client

side. This means that if a user on the client side can get hold of a key, he or she will get

into the system unchallenged. Thus the server has to trust the client user’s integrity.

Generating the Key Pair

The first step in the key- generation process is to create your public- and private- key pair.

OpenSSH provides a command just for this purpose. The following command creates

a 2,048- bit RSA key pair and prompts you for a passphrase (which can be left blank if you

so desire):

The default output files are and for the private and

public keys, respectively.

WHAT SIZE KEY SHOULD YOU USE?

The bigger the key is, the harder it is to crack. Plus, a longer key length makes a key only slightly

slower to use.

When choosing a key size, you must consider the value of the information or capabilities that the

key protects. As long as your key would take more effort to crack than the data (or power) is worth, you

are okay. An excessively large key places an unnecessarily large load on your systems.

If you are protecting data, you should also consider how long that data will be valuable. If the

data will be worthless in one month and the key would take three months to crack, then the key is big

enough. But be sure to consider that the attacker might have specialized hardware or advanced algo-

rithms that can crack your key faster than you’d expect.

The size of the key makes the biggest speed difference during the actual key- generation process.

Large keys are also more work (and therefore a little slower) when the computer encrypts and decrypts

data. SSH uses RSA/DSA only when it initiates a new connection, so the key size affects only the initial

session negotiations—not the performance of a session once it is established.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY32

Throughout this book, we will generally show you examples that use the SSH key to access your

systems. The actual data being sent is usually not important; it will typically contain commands to be

executed and other control data. If somebody later decrypts this traffic, the results will probably be of

little value.

But in some cases, the data being transferred is sensitive. In these instances, the RSA/DSA key

is one of many things to consider because you use these protocols only to exchange keys for the algo-

rithm used to encrypt the actual data. If attackers have captured the SSH session (i.e., using a network

sniffer), they can crack the public key (by determining its associated private key) and determine the

encryption key, or they can crack the actual encrypted data directly.

You can use the switch to the command to control which cipher you use to encrypt your

session. Your options with SSH protocol version 1 are , , and —but you should avoid

version 1 of the SSH protocol. With version 2, you have many bulk cipher options (including).

Most SAs favor the cipher because it’s fast and believed to be secure.

Specifying Authorized Keys

Now that you have a public- key file, you can simply place that key in any account on any

machine running the SSH server (usually named). Once you’ve set up the account

properly, your private key will allow easy access to it. Determining the private key from

a public key is virtually impossible, so only someone who has the private key can access

the account.

To allow access to an account, simply create . The file con-

tains one key per line (although the lines are very long—the 2,048- bit RSA key created in

the previous example is almost 400 characters long in its ASCII representation). If the file

does not currently exist, you can simply make a copy of your public- key file.

You should also be careful with your permissions because is usually very picky.

In general, your home directory and the directory must be only writable by the

user (and not their group, even if they have their own group). The directory must be

owned by the user as well—this can be an issue if ’s home directory is and it is not

owned by . If your RSA key is rejected, look in the logs on the system you are connect-

ing to; they will usually tell you why.

Here is an example that assumes you have already copied your public- key file into

your home directory in another account:

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 33

To add a second key, simply append it to the file. Once you have the file in place, your

private key alone allows you to access the account. Of course, by default, the account

password also allows access to the account. You can disable this feature in the OpenSSH

 by modifying (or the equivalent on your system) and adding

this line:

Alternatively, you could completely disable the account password (usually stored in

) and allow only RSA- authenticated logins. However, this isn’t a good idea if

the user needs that password for other services such as POP3 mail access, FTP file trans-

fers, and so on.

Using ssh- agent
If you can use to allow passwordless operation instead of leaving your private

key unencrypted, then you will greatly add to the security of your systems. The

program allows you to enter your passphrase only once per “session” and keeps your pri-

vate key in memory, allowing passwordless connections for the rest of the session.

Knowing ssh- agent Basics

Using is simple. You start your command shell or your X session using the

agent. Once logged in, you can run

and you will have a new shell running through the agent. Or, if you use the wonder-

ful screen program (included with most Linux installations and available from

), you can use

to begin your screen session. Use the following script as your (or)

to allow easy use of within X:

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY34

As you can see, runs the script. That script runs

 to add the key and prompt for a passphrase (causes the program

to use an X window for the passphrase entry). The script also performs

other startup tasks and finally starts the window manager.

These manual steps to start shouldn’t be necessary on modern desktop

environments; generally you’ll already have an process running. To test, simply

list the keys loaded into your agent:

If your output looks like this, you don’t have an agent running and you should start

one yourself as shown previously:

Once you are running the agent, you can add your private key(s) with dd:

When you use to run another command, that session exists for as

long as that command runs (such as your X session). Once that command terminates, any

stored keys are lost. This is fine when you can start your entire X session as you just saw,

but what if you can’t? You can use the command as shown in the next section

to start a new for each login. This works well, unless you have a good number of

simultaneous logins, in which case you will have to add your SSH keys for each session. If

you are in this situation, consider using a tool called keychain that allows all your logins

on the same system to share the same easily. You can find information about

this tool at .

We generally recommend using . Whenever you spawn new shells inside

, they’ll each have the same environment, allowing you to use the same

from each virtual screen. The additional benefits of are many, but we will men-

tion only one here: you can log back in to a remote host and resume your session after

an interruption arising from network or local computer problems. This benefit alone is

worth a lot to an SA.

Getting Advanced with ssh- agent

You can also use without starting a new process. In the Bash shell (or any

 POSIX- compliant shell) you can, for example, start like this:

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 35

Note the backticks around nt; they cause the output of this command to be

passed to the command that will execute the code. In fact, all really does is

start itself and print out some environment variables to be set by the shell. When you use

 to start a new process (as shown in the previous section), it simply sets these

variables and creates a new process with the variables already set. You can run

by itself to easily see what is set:

The environment variable contains the path to the named socket that

 created to allow communication between the SSH program and the agent. The

 variable contains the agent’s process ID so that it can be killed at some

point in the future.

The main disadvantage of running this way is that you must kill the agent

through some external method if you want it to stop running once you have logged out.

The more basic usage causes the agent to die upon completion of the process it executed.

Suppose you have a script that executes numerous SSH operations and you want to

enter the passphrase only once. You could create the following script:

This script would prompt you for the passphrase only once, store the private key in

the agent, perform several operations, and then kill the agent when it was finished.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY36

NNote You can find the code samples for this chapter in the Downloads section of the Apress web site

().

Forwarding Keys

You can configure your SSH client to forward your as well. If you enable this

option, you can connect from machine to machine while your private key is in memory

only on the original machine (the start of the chain). The key itself is never transmitted

over the network. You’ll find the agent useful when connecting to machines on pri-

vate networks. You can connect to the gateway machine and then connect to internal

machines that you cannot access directly from your workstation. For example, you can

connect to one machine as and run a script that connects to other machines using

your private key, although your key does not actually exist on that machine.

BE CAREFUL WITH SSH- AGENT FORWARDING

You should never forward your connection to untrusted hosts (hosts where untrusted

users have access). The users on other systems cannot obtain your actual private key, but

they can use your forwarded connection to access other machines using your private key.

OpenSSH lets you specify different options for different hosts (in) so that you can forward

your only to trusted hosts.

In addition, once you connect to another host and then use the command on that host to con-

nect to a third host, you are using the SSH client configuration of the second host, not the first host.

That second host might have been configured to forward connections anywhere—including

untrusted hosts.

So, prudent users forward their agents only to specific hosts. These select machines allow only

trusted users access to the account, and they also limit the hosts to which they will forward the

 session. You can also do this on the command line instead of modifying the actual

 file; simply specify the option to the command.

Also note that, in the file, you can use the directive to restrict which

remote hosts are allowed to connect with the specified key (discussed next in the “Restricting RSA

Authentication” section). If you forward your key only to certain systems, you can allow login only from

those systems. If you accidentally forward your key to some other host, it won’t work from that system

anyway.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 37

Some people also use in a noninteractive environment. For example, you

might have a system- monitoring script that needs to connect to other machines continu-

ously. You could manually start the script through nt, and then the script could

run indefinitely using the passphrase you entered at startup. You could even place some-

thing like this in your system’s startup scripts:

Any scripts that need access to this can source . If attack-

ers can access the system backups or steal the system disk, they’ll gain the encrypted

 private- key file. But even though they’ll have the private key, they won’t be able to use it

because they lack the passphrase to decrypt it. If you employed a passphrase- free private

key instead, you’ll need good backup security and physical security.

Restricting RSA Authentication
The file can contain some powerful options that limit the amount of

account access the private key is granted. You can also use these options to prevent your

agent from being forwarded to an untrusted host. To do so, place these options in the

 file at the beginning of the line and follow the entry with a space char-

acter. No spaces are allowed within the option string unless they are contained within

double quotes. If you specify multiple options, you must separate them with commas.

Here’s a list of the options and a brief description of each (the man page contains

more detailed information):

: This option can specify a list of hosts from which the connec-

tion must be made. This way, even if the key (and the passphrase) is stolen, the

connection still must be made from the appropriate host(s). The pattern could be

 to allow only hosts from the office to connect using that key.

: If specified, the given command always runs, regardless of what

the SSH client attempts to run.

: You can use this command—which you can list multiple

times—to modify or set environment variables. The command is disabled by default

for security reasons, but if you want its functionality you can enable it using the

 option in .

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY38

: SSH allows ports on the server (or any machine accessible by the

server) to be forwarded to the remote client. So, if users can connect to a gateway

machine via SSH, they can forward ports from your private network to their remote

machines, possibly bypassing some or all security. This prevents a specific key from

forwarding any ports over its connection.

 SSH can also forward X11 connections over the encrypted con-

nection, allowing you (and the user) to run X11 applications that display on the

computer initiating the SSH connection. The command disables

this feature for the key in question.

: This prevents an connection from being forwarded to

the host when a user connects to it with the specified key.

: Prevents the allocation of a pseudo terminal so that an interactive login is not

possible).

: Allows only a given host and port to be forwarded to the

remote client.

You can use these options for a lot of interesting tasks, as the following sections

illustrate.

Dealing with Untrusted Hosts

When adding your public key to the file on an untrusted host, you could

add some of the options just discussed to prevent agent and X11 forwarding. This is

a good idea, but you shouldn’t rely on it—if an untrusted user on the machine can

hijack your forwarded X11 or agent session, that user can probably also modify your

 file. That said, you can prevent the forwarding on both ends (client and

server) to be extra safe. To do so, put the following in your file on the

remote host (the key has been trimmed down for easier reading):

This example also limits connections to this account. The key will be granted access

only if the canonical hostname is .

Allowing Limited Command Execution

Suppose you have a script that monitors a set of servers. Root access is not necessary for

monitoring the systems. The script does, however, need to reboot the machines in some

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 39

cases, which does require root access. The following configuration, when placed in

, allows this specific key to reboot the system and nothing more:

Whoever possesses the specified private key cannot open an interactive shell or for-

ward ports. They can do only one thing: run the command. In this specific

example, you must be careful because if you connect to the account with the specified

key, the system will reboot (regardless of what command the remote client attempts to

run). You must also make sure you use an absolute path for the command. If you don’t,

a malicious user might be able to place a command with the same name earlier in the

search path.

Forwarding a Port

Forwarding a port between two machines proves useful in many situations. If the port is

not encrypted, for example, you can use SSH to forward it over an encrypted channel. If

the machine is behind a firewall, that machine can connect to an outside machine and

forward ports to enable outside access.

Accessing a Server Behind NAT

Suppose you want to view a web page on a machine that resides on a private network but

can initiate outgoing connections using Network Address Translation (NAT). You can

connect from that web server to your desktop machine on another network using SSH:

The command says to connect from the web server (which is behind the NAT router)

to the client (your desktop) and connect port 80 on the server to port 8080 on the client

(the desktop). Once this command has been executed, a user of the desktop system can

point a browser to port 8080 and view the content on port 80 of the web server.

You could replace the hostname with the name of any other host that the

initiating host (the web server, in this example) can access. You can use this technique to

provide connectivity between two systems that could not normally communicate with

each other. Let’s say, for example, that a router in the same private network as the web

server allows Telnet access through port 23. The web server could map port 23 on that

router to port 2323 on some other system:

Once you run this command, you will actually have an interactive login session on

the destination system. As long as that session is open, the port forwarding is active.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY40

Encrypting Mail Traffic

To forward unencrypted port 25 (mail) traffic from your client to a server over an

encrypted channel, you could run this command as on your local machine:

(This doesn’t work if a mail server is already running on the local machine because

it is already using port 25.) When the command is executing, you could send mail to

port 25 of your local machine and that traffic would really go to the mail server over the

encrypted connection.

Configuring authorized_keys

If you want to create a special account on the mail server that allows users only to forward

traffic to port 25, you could configure the file to restrict access to the

account:

Please note that the preceding code would be only one line in the actual

 file, with no space after the y,. This configuration allows you to

make a connection that runs an infinite loop and forwards port 25—that’s all. When

connecting with this specific key, you cannot do anything else with this account.

Using SSH for Common Accounts
One interesting way to use SSH involves allowing several users to access one or more

common accounts. You’ll probably find this practice most useful for the account

(when there are multiple administrators), but you could also use it for other accounts

(such as a special account to do software builds). The advantage of this approach is that

each user does not have to know the account password to access the account. In addition,

the logs can tell you who is actually logging into the account.

Another, and perhaps better, solution is to have each user log in with his or her user

account. The user can then use to execute certain commands as (we introduced

 in Chapter 1). But is not always an option—particularly if you don’t want to cre-

ate a user account on the system for each user who needs to run commands as .

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 41

Preparing for Common Accounts

The setup is simple. You generate a key pair for each user and then list the appropriate

public keys in the account’s file. However, you might find it frustrating to

maintain this system manually when you have a large number of accounts and/or users.

It is much easier to create a configuration file:

Then create a script that can process the configuration file and generate all the

 files. This particular script assumes that each person’s public key is in his

or her home directory and that he or she is using RSA:

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY42

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 43

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY44

ALWAYS WATCH FOR RACE CONDITIONS

You might find it odd that the file- generation script changes ownership of the

directory to user and group and then changes it back to the proper user later in the script.

The script makes these ownership changes to prevent any race- condition exploits by the user of that

account. Even if you trust all your users now, you might not trust them all in the future, so you’re better

off addressing the problems while you write the original script.

The script first makes sure the directory is owned by and writable by nobody else. Then it

removes the current file. If this is not done, the current file could

be a symbolic link to a system file that is overwritten when you create the file.

The script also checks the user’s public- key file to make sure it is a regular file (the operator)

and not a symbolic link (the operator). If the user’s public- key file is a symbolic link, the account’s

user could point that link to any system file he or she could not normally read (such as the shadow

password file). Then the script, when run, would copy the contents of that file into an

 file.

Note that you must remove the current file and check the public- key file after

the directory’s ownership and permissions change. If you do not, the user could theoretically

change the files after you have checked them but before you access them, effectively bypassing all the

security in the script.

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 45

As you can see, the script assumes all the home directories are on this particular

machine. You can use various methods to synchronize home directories among multiple

machines, as discussed in Chapter 7 and elsewhere throughout the book. Alternatively,

you could easily modify this script to manage accounts on other machines using to

transfer the actual files. Here’s the output from this script when it is run

with the sample configuration file:

The script also creates a file that lists all the key fingerprints and their associated

account names. Later, you can use this file to aid in the analysis of the log entries.

The file, as you will notice, might contain duplicate entries, but that won’t affect how it’s

used later.

Monitoring the Common Accounts

If you want to monitor which users are logging into which accounts, you must first keep

a log of which key logs into which account. Unfortunately, OpenSSH does not do this by

default. You need to turn up the logging level of by adding this line to

 (or wherever it is on your system):

Once you have added this configuration line and restarted , you will see these

logs (in or wherever you have your other logs). We’ve removed the

headers for easier reading:

Unfortunately, the information you need for each login spans two lines in the log file,

which makes analysis slightly more complicated. Here is an example script that can ana-

lyze a log file and summarize user logins (as with every example in this book, this script is

only an example; you should modify it as necessary for your specific needs):

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY46

CHAPTER 3 N USING SSH TO AUTOMATE SYSTEM ADMINISTRATION SECURELY 47

Here’s an example of the script being executed:

The script is fairly simple, but you could expand it to support date ranges or to report

the dates of the various logins.

49

C H A P T E R 4

Configuring Systems with
cfengine

So far we’ve been discussing automation in a general way. At this point we’ll move

beyond single ad hoc measures to a more systematic and robust approach. While you

certainly have the option of writing your own collection of automation scripts, we recom-

mend you use a proven automation framework: cfengine.

Getting an Overview of cfengine
Cfengine is software you can use to automate changes on UNIX (and UNIX- like) systems.

It is a high- level language that describes system state, not a general- purpose program-

ming language such as Perl or a shell. It’s primarily declarative, meaning that the SA

writes out a technical description instead of a list of low- level steps to accomplish the

goal. It is high- level enough that someone familiar with UNIX concepts and usage can

read a cfengine configuration and understand what is being done without any prior

cfengine knowledge.

The language drives what you should consider your personal software robot. This

robot (called) does your repetitive work for you while you move on to other tasks.

In this chapter we’ll use the current version of cfengine at the time of this writing:

version 2.2.7.

Defining cfengine Concepts

Cfengine was designed to save time and reduce errors though automation. Its second,

related goal is to enable computer systems to self- correct errors. It might take you some

time to set up and configure cfengine, but you will be happier when everything has been

said and done.

At first, performing a new task with cfengine might take longer than performing the

same task manually. But when you upgrade the operating system and lose a change made

under the old OS installation, you’ll be glad you used cfengine because it will simply per-

form the change again. Or, when you realize a few other systems need the same change,

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE50

you can use cfengine to make this happen in seconds (by adding the new systems to the

appropriate class).

If you made the change manually, on the other hand, it might take some time before

you even notice that the change was lost. Once you notice, you’ll have to make the

change manually all over again—that is, of course, if you remember how you did it the

last time. If ten new systems need a specific change, you might spend an hour changing

each system yourself, whereas cfengine could have just done it for you.

Cfengine allows you to use one set of configuration files. Each host can transfer the

configuration files from one or more cfengine servers before each run. As long as you

make all the changes in that set of configuration files, all systems will receive the con-

figuration updates automatically. You will no longer need to remember to make manual

system changes. You will no longer need to use special scripts for special systems and/or

scripts that have so many conditionals (based on hostname, operating system, etc.) that

they’ve become unreadable and difficult to maintain. Cfengine comes with a rich set of

automatically detected UNIX characteristics that the SA can use to perform tasks on only

the desired systems.

Perhaps most important, this set of configuration files documents every change you

make to every system. If you put a few comments in the files along with the commands,

you will document not only what you have done but also why you did it.

CENTRALIZED CFENGINE CONFIGURATION FILES

Cfengine doesn’t force centralized configuration files onto its users. In our examples, we choose

to maintain a single configuration- file tree and distribute it to all hosts, and cfengine allows us to

update configuration files any way we choose. Some sites choose to retrieve some or all files directly

from a revision- control system such as Concurrent Versions System (CVS) or Subversion on all client

systems. Some sites have configuration files copied from multiple remote servers to create a single

configuration tree, in what would be considered a decentralized model.

For some tasks, cfengine abstracts the desired action from the technical specifics

of the underlying operating system. For other tasks (namely editing files), cfengine pro-

vides an editing- specific command that allows you to specify the modifications exactly.

Using these commands is similar to using . The cfengine text- editing commands have

 low- level abilities in addition to higher- level ones. We will cover the feature of

cfengine later in this chapter.

Cfengine doesn’t provide native support for certain tasks, but it lets you execute

external scripts based on a system’s class membership. When possible, you should use

the internal commands that cfengine provides. If you don’t, you can use custom shell and

Perl scripts, but you should still get cfengine to execute them on your behalf.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 51

Once you decide to use cfengine, you’ll want to use it for as many tasks as possible.

So you’ll probably need to change your habits because you might be tempted to just “fix

it real quick” instead of going through the proper cfengine process. The quotes around

the word “quick” are carefully positioned. If you do a manual “quick fix” to your existing

set of systems, a newly deployed system might be missing the change. When you work to

redeploy the change using cfengine, you’ll have to figure out how the change was made,

test it, and deploy it once again. The simple act of figuring out how to make the change

again is time- consuming. Using cfengine to deploy the change in the first place ensures

you don’t have to go through that process again for your existing systems and configura-

tion, at least until you upgrade your OS or major applications.

You don’t have to use cfengine to control all aspects of system configuration, so you

can easily introduce it into an existing management framework without eliminating any

existing methods of system configuration. You are free to use cfengine to control only the

aspects of your systems that you’re initially comfortable with. Over time, you can migrate

the old configuration methods into cfengine. This situation isn’t ideal for the long term

because having two administration frameworks incurs increased complexity, but it will

help you get comfortable with cfengine before committing all your site’s administration

to it.

Once you switch to cfengine, you will enjoy many benefits:

 s A standardized configuration for all hosts on your network that you can use to

enforce homogeneity or to support diversity, each in an automated manner: Cfen-

gine configuration rules are each essentially a promise about the nature of the

system. The program ensures that promises are kept.

 s The ability to change specific systems: You can classify systems using a variety of

 built- in methods and classes (even ones added by the SA staff), and make changes

only on the appropriate systems.

 s The ability to record system changes and perform them again if necessary: One of

cfengine’s primary goals is to bring systems into conformance with policy and

keep them that way.

 s Systems that might have intermittent uptime or network connectivity but will even-

tually make any necessary changes: You won’t need to keep track of what systems

were up when you made a particular change across all your systems.

Evaluating Push vs. Pull

Yet another advantage to using cfengine is that it pulls from a server instead of push-

ing from the master system. This doesn’t make a big difference when you have a local

set of reliable servers that are usually up and running. But the pull method is much

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE52

more reliable if your systems are spread out over an unreliable network or if they aren’t

always running.

For example, if some systems can boot to either Linux or Windows, they can pull

from the server whenever they are running Linux. If you were to use a push technique

instead, the system might get neglected if it’s running Windows at the time of the

attempted push because the master push system expects a Linux host to be running at

the remote IP address. When such systems boot into Linux again, cfengine will copy the

latest configuration files to the system and ensure that the current promises are kept.

Another problem situation arises when you have UNIX running on one or more

laptops that are not always connected to the network. A system like this might never be

updated using the push method, because it would have to be connected to the network at

the exact time a push occurs. With the pull method, the laptop would automatically pull

the configuration changes the next time it contacts the configuration server.

Pull also scales more manageably because each host can decide where to get its

updates and can fail over to an alternative if the request times out or otherwise fails. In

a push model where multiple central hosts attempt to push to the same client at once,

conflicts are likely to occur. Cfengine’s author Mark Burgess says: “Push methods are

basically indistinguishable from an attack on the system. They attempt to remove each

user’s local right to decide about their own systems. In a world where we increasingly

own the devices we use as personal objects, this all seems a bit like something from the

cold war.” Mark is speaking to the freedom that both the pull model and cfengine allow.

In this book we set standardized schedules and policies on our systems, but this is strictly

a local policy choice. The cfengine framework is remarkably free of assumptions and

requirements, and you can use it to implement the appropriate policies for your site.

Although cfengine typically pulls from a server and executes at regular intervals (con-

figurable, but defaults to once an hour), it also supports the ability to force updates to all

or any subset of the systems on demand. Obviously, you will find this useful when you are

performing mission- critical bug fixes (e.g., something else you did messed up a system or

two and you need to fix it very quickly).

You can also run cfengine directly on each system by logging in and manually run-

ning the command. Cfengine follows a good theory in system- administration

automation: the more ways you can initiate changes to a system, the better—as long as

all changes are done in the same way. In other words, cfengine provides several methods

for updating each system, but all of them use the same configuration files and operate

exactly the same way (once initiated). We can thank for this standardization; it’s

always the program reading the configuration files and implementing the policy.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 53

Delving into the Components of cfengine

The cfengine suite consists of several compiled programs. Modern systems have plenty

of disk space to house the binaries locally. Some of the older cfengine documentation

implied that it’s wise to share out or a similar directory through NFS—or

Andrew File System (AFS) or Distributed File System (DFS)—and utilize the shared files

from all systems. But most SAs today would see a real disadvantage to the single point of

failure inherent in the remote mounting of critical software like cfengine, at least when

disk space is as cheap as it is.

We’ll list some of cfengine’s programs here:

: The autonomous configuration agent (the heart of the framework). This

command can be run manually (on demand), by on a regular basis, and/or

by when triggered by a remote invocation. The necessary and sufficient

condition for using cfengine is to run somehow.

: The file- transfer and remote- activation daemon. You must run this on any

cfengine file servers and on any system where you would like to execute

remotely.

: The execution and reporting daemon. You run this either as a daemon or as

a regular cron job. In either case, it handles running and reporting its output.

: Generates public/private key pairs and needs to be run only once on every

host.

: You can run this command from a remote system that will contact the clients

(through) and tell them to execute .

For any given command, you can see a summary of its options by using the

 command- line option. When running a command, you can always specify the switch

to see detail. For example, is nonverbose by default but will describe the actions it

takes when the switch is used.

When debugging a program, you should use the switch to view debugging

information (and, for daemons, the switch prevents them from detaching from the

terminal).

Mapping the cfengine Directory Structure

You must install the binaries in a directory mounted on every host or install them inde-

pendently on each host. Everything cfengine uses during its normal operation is located

under the directory by default, although Debian and its derivative distri-

butions use by default. The directory’s contents are as follows:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE54

: Important binaries (, , and) are usually copied here to

ensure they are available when needed. Normal operation doesn’t require this, but

the cfengine example documentation recommends it and many sites adhere to it.

: This is the standard location for all the configuration files cfengine needs.

We will initially use three files from this directory— , , and

—but we’ll be expanding on those initial files quite a bit as the book pro-

gresses.

: This is where the output from each run is logged.

: This is where this system’s public and private keys, as well as other systems’

public keys, are located.

Managing cfengine Configuration Files

Each system must have a minimal number of configuration files. You should place these

in the directory on each system (on

Debian and derivatives), but you can maintain them in a central location and copy them

(using a pull) to all client systems:

: This file must be kept simple. It is always parsed and executed by

first. Its main job and intended usage is to copy the set of configuration files from the

server. If any of the other configuration files contains an error, this file should still

be able to update files so that the next run will succeed. If this file contains an error,

you will have to fix any affected systems manually. At most sites this file should go

unchanged for long periods of time once the cfengine infrastructure is initially set up.

: This file contains the guts of your automation system—all the actions,

group declarations, and so on. Throughout this book we utilize the file

as the starting point for all the included files (using cfengine’s feature) that

make up the bulk of the configuration. This approach leads to more modular and

 easy-to- read configurations.

: As the name suggests, this is the configuration file for the

daemon. It defines which hosts can remotely execute and which remote hosts

can transfer particular files.

You should manage the master copy of the configuration files with a source- control

system such as Subversion. This way you have a record of any changes made and you can

revert to an older configuration file if you introduce a problem into the system. If you feel

that you don’t have the time to set up Subversion or even CVS, then something extremely

simple such as Revision Control System (RCS) will still be better than nothing. We’ll

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 55

give examples on how to set up and use Subversion with cfengine in Chapter 11 (using

cfengine itself to fully automate the process).

WHERE IS MY /VAR/CFENGINE/INPUTS DIRECTORY?

The and directories are not included with UNIX or Linux

default installations. They might not even exist on systems with cfengine installed. Package- based cfen-

gine installations often create some of the required cfengine directories, but usually not all.

It is up to you to create and configure the required directories and configuration files needed for

your site’s cfengine framework. We’ll describe a simple cfengine site configuration later in this chapter,

but the example is intended for demonstration purposes only. In Chapter 5, we’ll configure a complete

cfengine framework and build on it in later chapters.

For now, simply be aware that by default (or any other cfengine program) doesn’t auto-

matically configure a system in a way that satisfies all the prerequisites for running cfengine. You’ll

have to handle all the details yourself. If you’re chomping at the bit to see how it’s done, check out the

 preconfiguration script from Chapter 5.

Identifying Systems with Classes

The concept of classes is at the heart of cfengine. Each system belongs to one or more

classes. Or, to put it another way: each time runs, many classes are defined based

on a variety of different kinds of information. Each action in the configuration file can

be limited only to certain classes. So, any given action could be performed on one host

only, on hosts running a specific operating system, or on every host. Cfengine uses both

 built- in and custom classes, both of which will be discussed within this section.

Categorizing Predefined Classes

The host itself determines many of the classes that are defined—its architecture, host-

name, IP address(es), and operating system. Several classes are also defined based on the

current date and time.

To determine which standard classes are defined on any given system, run this

command:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE56

As you can see, this example system contains quite a number of predefined classes.

They fall into a few categories:

Operating System:

Kernel:

Architecture:

Hostname:

IP Address:

Date/Time:

Every system is a member of the class, for obvious reasons. As you can see,

cfengine provides good granularity with its default class assignments. We cannot possibly

list all the classes that could be assigned to your systems, so you will have to check the list

on each of your systems (or, at least, each type of system on your network).

The time- related classes probably require some additional explanation. The

class specifies the current five- minute range. The class is always set in the last quarter

of the hour. The class says you are currently in the last quarter of the midnight

hour (it’s time for bed).

Defining Custom Classes

Custom classes are defined in the section of the configuration file.

Here is an example:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 57

When a class definition contains a quoted string, that is a command to be executed.

If the command returns an exit code of , then this system will be part of that class.

Class definitions can (and often do) list other classes. If a system is a member of any

of the listed classes, then it is also a member of the new class.

Some cfengine commands can define new classes in certain situations. If, for

example, a particular drive is too full, a command can define a class and print a warn-

ing. Other parts of the configuration file might take further action if that class is

defined. We’ll explore this quite a bit in later chapters.

Finding More Information About Cfengine

You can download cfengine from its web site: . The web site

includes a tutorial, a comprehensive reference manual, mailing lists, and archives.

Two additional web sites are useful. The first, , is a commercial

venture started by the cfengine author and some colleagues. It contains enhanced docu-

mentation in return for a little information about how you use cfengine. The second is

, a community- run site with a lot of useful tips and tricks for deal-

ing with cfengine, generally from very experienced cfengine users.

You should also examine the large number of sample configuration files included

with the cfengine distribution.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE58

Learning the Basic Setup
Within this section, we’ll illustrate and discuss a simple cfengine setup that will provide

a good framework for customization and expansion. These simple configuration files will

not make many changes to your systems, but they will still show some of the power of

cfengine.

This simple setup includes one central server and one other host. With cfengine, all

hosts are set up identically (even with only slight differences on the server), so you could

extend this example to any number of systems. We would recommend, though, that you

start out with just two systems. Once you get cfengine up and running on those systems,

expanding the system to other hosts is easy enough. In later chapters we’ll completely

overhaul this basic configuration to scale up to complete site- wide management.

Setting Up the Network

Before starting with cfengine, you should make sure your network is properly prepared.

Using cfengine with dynamic IP addresses is difficult because cfengine utilizes two- way

authentication during network communications. Even if you use the Dynamic Host

Configuration Protocol (DHCP) to assign addresses to some or all of your systems, it

should always assign the same IP address to systems that you’ll control with cfengine.

In other words, it doesn’t matter which method you use to assign the IP addresses, as

long as the IP address for each system to be managed stays consistent. Cfengine has

configuration directives allowing it to understand that hosts on certain IP ranges use

dynamic IP addresses, but this defeats the two- way trust mechanism. You should avoid

dynamic IP addresses if possible.

The next task is to make sure your Domain Name System (DNS) is properly con-

figured for your hosts. Each host should have a hostname, and a DNS lookup of that

hostname should return that host’s IP address. In addition, if that IP address is looked up

in DNS, the same hostname should be returned.

If this setup is not possible, we recommend that you add every host to the

file on every system, although if your DNS isn’t properly configured you’ll have pain

in other areas. If you are using a multihomed host, you must pay attention to which IP

address will be used when your host is communicating with other cfengine hosts.

Running Necessary Processes

In the simplest setup, you can use cfengine by running on each system manually.

You will, however, benefit more from running one or two daemons on each system.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 59

The cfexecd Daemon

Although you could, theoretically, run only on demand, you’re better off run-

ning it automatically on a regular basis. This is when comes in handy; it runs as

a daemon and executes on a regular, predefined schedule. You can modify this

schedule by adding time classes to the setting in the block in

. The default setting is , which means will run in the first five minutes

of every hour. To run twice per hour, for example, you could place the following line in

the section of :

The daemon does not have its own configuration file; it uses settings

intended for in the file.

You can also run on a regular basis using the system’s cron daemon. You

could add the following entry to the system crontab (usually) to execute

(and report) every hour:

The switch tells the program not to go into daemon mode because it is

being run by cron.

For increased reliability, you can run as a daemon and also run it from cron

(maybe once per day). You can then, in , check for the crontab entry and

check whether the daemon is running. The following lines, if placed in

, perform these checks and correct any problems:

With this technique, if either of the methods is not working properly, the other

method ultimately repairs the problem.

The cfservd Daemon

The daemon is not required on all systems. It needs to run on any cfengine file

servers, which, in our case, is the central configuration server only. It also allows you

to execute from other systems remotely. If you want this functionality (which

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE60

we recommend), then needs to be running on every system. In either case, you

should always check whether it’s running by using the following entry in :

Running on all hosts presents little risk, and it allows added flexibility

when you later need to retrieve information from client systems using cfengine. Make

sure that your access controls (the lines in) don’t allow access

to unnecessary hosts. Only access explicitly defined in is allowed, so

 is safe by default.

Creating Basic Configuration Files

You need to place your configuration files in the master configuration directory on the

configuration server (as we’ll explain in the next section). These common files will be

used in their exact original form on every server in your network.

Example cfservd.conf

This is the configuration file for the daemon. It allows clients to transfer the mas-

ter set of configuration files and also allows you to execute remotely using .

Obviously only one system needs to allow access to the central configuration files (the

server), but having allow access to those files doesn’t hurt anything on other sys-

tems (because those systems don’t have the files there to copy). All systems, however, can

benefit from allowing remote execution, because it allows you to execute

on demand from remote systems.

So, you can use the following on all your systems:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 61

The setting specifies the location of the binary to be run when

a connection from is received. The section is important because it specifies

which hosts have access to which files. You must grant access to the central configuration

directory and the binary. You also need to grant access to any other files that cli-

ents need to transfer from this server.

Basic update.conf

You should keep the file as simple as possible and change it rarely, if ever.

The command parses and executes the file before it does the same to

. If you put out a bad , the next time the clients execute

they get the new version because their file is still valid. Distributing a bad

 would be a bad idea, so we recommend testing any changes thoroughly

before you place the file in the central configuration directory. We also recommend you

include some comments in the file that warn about problems resulting from errors.

Again, the file is run on every host, including the server. The com-

mand is smart enough to copy the files locally (instead of over the network) when running

on the configuration server. Several variables are defined in the section and then

used in the section. You can accomplish variable substitution with either the

or sequence:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE62

Line 5: You should replace the string with the hostname of your

configuration server.

Line 6: This is the directory on the master configuration server that contains the mas-

ter configuration files. It requires the entry in .

Line 7: This is the location, on every server, of the cfengine binaries.

Line 23: This specifies that you should copy the source directory recursively to the

destination directory with no limit on the recursion depth.

Line 25: This option is misleading at first. It specifies that you should compare any

local file byte by byte with the master copy to determine if an update is required.

Line 29: This option causes the files to be retrieved from the specified server.

Line 33: This command in the section removes any directory files that

have not been accessed in the last seven days.

The permissions (modes) on each file are checked on each run even if the file already

exists.

Framework for cfagent.conf

The file is the meat of the cfengine configuration. You should make any

change on any system using this file (or files imported from this file, as demonstrated in

later chapters). We’ll keep the sample file simple for demonstration pur-

poses; don’t use it as is in a real- world scenario.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 63

If you call any scripts from cfengine and those scripts produce any output, that

output will be displayed (when executed interactively) or logged and e-mailed (when

executed from). Executing every hour is typical, so any scripts should

produce output only if there is a problem or if something changed and the administrator

needs to be notified:

Line 2: The command is very important and easy to overlook. You

must list each section that you wish to process in this variable. If you add a new sec-

tion but forget to add it to this list, it will not be executed.

Line 4: Cfengine will make sure the system is configured with one of the time zones in

this list.

Line 10: This section checks the ownership and permissions of a few important sys-

tem files and fixes any problems it finds.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE64

Line 15: This section checks the permissions on the directory and fixes them, if

necessary. It also creates the directory if necessary.

Line 18: This section removes everything from the directory that has not been

accessed in the past seven days. It removes only subdirectories of —not the

directory itself.

Line 21: These files are disabled for security reasons, and renamed if found. If they

are executable, the executable bit is unset.

Line 25: This section verifies that the and daemons are running and

starts them if they are not.

Creating the Configuration Server

The configuration server contains the master copy of the cfengine configuration files. It

also processes those configuration files on a regular basis as all the client systems do. The

server must run a properly configured so the client systems can retrieve the mas-

ter configuration from the system.

The configuration server needs a special place to keep the master cfengine configura-

tion files. In this example, that directory is . It could be

any directory, but not because the master host copies the files to

that directory when executing, just like every other host.

Like all systems, the server should also run either as a daemon or from cron

(or, even better, both).

Now we’ll discuss generating server keys. You need to run on the server system

to create its public- and private- key files. These files will be in the

directory (or on Debian and its derivatives) and will be named

 and .

The server also needs each client’s public key in the appropriate file, based on the cli-

ent’s IP address as described in the next section. You can populate the file automatically

upon the first connection of a remote host, similar to the way most SSH clients prompt

the user to store a remote SSH server’s host key for validation during subsequent connec-

tions. The value in and the value in statements

control server and client trust settings. We believe that trusted initial key exchange is

a good idea, so we’ll use that technique throughout this book.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 65

CFENGINE AND ROOT PRIVILEGES

Cfengine does not require root privileges. The demonstration configuration files in this chapter perform

operations that require root privileges, such as enforcing restrictive permissions on the

file.

You are encouraged to run cfengine as a nonprivileged user. The program defaults to the

 directory instead of for a working directory. The privileges needed are

entirely dependent on the actions taken in the configuration files.

Preparing the Client Systems

Each client system is relatively simple to configure. Once you install the cfengine binaries,

you need to generate the host’s public and private keys (as discussed in this section). You

also must copy the file from the master server manually and place it in

. Once this file is in place, you should manually run to download

the remaining configuration files and complete system configuration. We’ll explore auto-

mated ways to handle this later on, but for now we’re keeping things simple.

Each client should run either as a daemon or from cron. You probably also

want to run on each client to allow remote execution of using .

Assuming automatic execution has already configured in the file on

the server, these daemons will be started after the first manual execution of . From

that point on, cfengine will be self- sustaining. It will update its own config files, and you

can even use it to change its own behavior. For example, you can configure initialization

scripts to start cfengine, change its schedule using (from), or even

upgrade the cfengine binaries themselves.

You need to run on each client system before you run for the first time.

This creates and in . You don’t need

to copy the central server’s public key to the client manually. If the server’s IP address

is , then when is run and it sees the entry in the sec-

tion of , it will copy the server’s public key to in the

 directory on the client. From that point on, the key is trusted and

expected not to change for the host at IP . If the key does change, by default

cfengine will break off communications with the host when the key validation fails.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE66

Debugging cfengine
When you are trying to get cfengine up and running, you will probably face a few prob-

lems. Network problems are common, for example, when you transfer configuration files

from the master server and initiate execution on remote systems with .

For any network problems, you should run both the server () and the client (

or) in debugging mode. You can accomplish this by using the command- line

argument. For , this switch not only provides debugging output, but it also prevents

the daemon from detaching from the terminal.

When you are trying something new in your file, you should always try

it with the switch to see what it would do without making any actual changes.

The switch is also useful if you want to see what steps is taking. If it is not doing

something you think it should be doing, the verbose output will probably tell you why.

If you are making frequent changes or trying to get a new function to work properly,

you probably want to be able to run repeatedly on demand. By default,

will not do anything more frequently than once per minute. This helps prevent both

intentional and accidental denial-of- service attacks on your systems.

You can eliminate this feature for testing purposes by placing this line in the

section of :

You might also find it helpful to run only a certain set of actions by using the

 command- line option. For example, to check only on running processes, you can run the

command .

Creating Sections in cfagent.conf
Cfengine 2.2.7 offers 34 possible sections in ; we’ll cover some of these

sections in this chapter, some later in the book, and some not at all. For additional infor-

mation, refer to the comprehensive reference manual on the cfengine web site at

. Plus, read Brendan Strejcek’s blog post about picking and choos-

ing from the available cfengine feature set: “Cfengine Best Practices” (find it at

ml). It is also prominently

displayed on the site.

Every section can contain one or more class specifications. For example, the

section could be:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 67

Both and will be processed on all hosts (because the default

group is when none is specified). In addition, the file will be

checked only on systems running Red Hat Linux, and the will be checked

only if the operating system is Sun Microsystems’ Solaris.

You can use the period () to “and” groups together, whereas you can use the pipe

character () to “or” groups together. The exclamation character () can invert a class and

parentheses () can group classes. Here is a complex example:

In this case, the file will be checked only if the operating system is Red

Hat Linux or Solaris and today is not a Monday.

Using Classes in cfagent.conf

You can use the section to create user- defined classes, as we described earlier.

Determine a system’s class membership using a shell command:

If the command returns (exit code), this machine will be a member of that class

(for the current run). You can also define classes to contain specific hosts or any hosts

that are members of another existing class:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE68

Here are a few more possibilities that you could place in the section:

The copy Section

The section is one of the most commonly utilized in cfengine. Cfengine can copy

files between mounted filesystems on the client (whether local filesystems or remote

shares), as well as from remote cfengine servers (systems running).

Cfengine operations prevent corruption or other errors in copied files by first

copying the file to a file named on the local filesystem (where is the name

of the file being copied), then renaming the file quickly into place. This technique wards

off problems resulting from partially copied or corrupted files being left in place (due to

full disk, network interruption, system error, and so on).

You can choose from many configurable parameters for the section, but here are

some used for the common scenario of copying an entire directory tree of programs:

This action is performed only on hosts with both the and classes

defined. Cfengine sets these classes automatically based on system attributes. Take

advantage of these automatic classes to ensure that binary files of the correct type are

copied.

The directory is copied from

a remote host named . The remote host needs to run the

daemon with access controls that allow the client system to access the source files. The

setting specifies that the source directory be copied recursively—which

means to recurse infinitely and copy all subdirectories, as well as all the files in the source

directory. Instead of , you can specify a number to control the recursion depth.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 69

The type is set to , which means that an MD5 checksum is computed for

each source and destination file, and that the destination file is updated only if the check-

sums don’t match.

The owner and group are set to on the destination, regardless of the ownership

settings on the source files. We recommend explicitly setting ownership of copied files in

every section, for security reasons. We set all the copied files to have the mode ,

which will be executable for all users but writable only by the owner.

We set the network communications to be encrypted with the setting ,

because we like to keep all our administrative traffic private.

The directories Section

The section checks for the presence of one or more directories. Here is an

example:

If either directory does not exist, it will be created. The section will also check for

permissions and ownership and correct them, if necessary. In this example, the adminis-

trator will be informed (through mail or the terminal) and a syslog entry will be created if

the directory does not exist, or if it has incorrect permissions and/or ownership.

For the directory, the class is defined if the directory was created.

You could then use this class in another section of the configuration file to perform cer-

tain additional tasks.

The disable Section

The section causes cfengine to disable any number of files. This simple sec-

tion disables two files that you probably don’t want around because they allow access

to the account through Remote Shell (RSH) using only the source IP address as

authentication:

If either of these files exists, the section will disable it by renaming it with

a extension. It will also change the permissions to , so you could use it

to disable executables. At one point, for example, Solaris had a local root exploit with

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE70

the command. Until there was a patch available, you could have disabled that com-

mand using the following sequence:

This would not only disable the command, but it also would inform the administrator

and make a log entry using syslog.

Suppose you want to remove if it exists and create a sym-

bolic link pointing to the master file . The following command

sequence can accomplish this task:

The section would remove the file only if it is a normal file (and not a link,

for example). If the file is disabled, the class will be defined. Then, in the

 section, a symbolic link will be created in its place.

Remember that cfengine does not execute these sections in any predefined order.

The setting in the section controls the order of execution. So, for

this example, make sure the file is disabled before the symbolic link is created:

Managing the proper order is something of an art form. As your cfen-

gine configuration files grow in size, number, and complexity, you’ll usually find both

advantages and disadvantages to a particular ordering in your . Once you

find the order that works best in most cases, you’ll want to keep the ordering in mind as

you write configurations that set classes to trigger other actions, and try to line up your

dependencies accordingly. To see what we mean, skip ahead to the section on NTP client

configuration in Chapter 7. When NTP configuration files are copied:

 1. A class called is defined.

 2. In the section, the NTP daemon is restarted with a startup script.

 3. If the section doesn’t come after the section in the

, then this sequence of events can’t happen as planned.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 71

You can also use the section to rotate log files. The following sequence rotates

the web- server access log if it is larger than 5MB and keeps up to four files:

The editfiles Section

The section can be the most complex section in a configuration file. You can

choose from approximately 100 possible commands in this section. These commands

allow you to check and modify text files (and, in a few cases, binary files).

We won’t go into great detail on using because you should use this section

rarely. We generally prefer copying complete files to clients. This way, we can keep our

systems’ file contents properly in a revision- control system. You can use a script to cre-

ate the proper file contents for different systems in a central location, after which classes

based on system attributes (e.g., Debian vs. Solaris, or web server vs. mail server) can

copy the correct file into place.

That said, you’ll encounter some situations where doing a direct file modification on

clients can be appropriate and useful, such as maintaining a message of the day or updat-

ing files that were previously updated by a manual process and that differ from system to

system. The examples here are for demonstration purposes.

Here is an example section:

This command adds the specified line of text to . This makes sure that

cron runs every hour. You also might want to make sure that other hosts can

access and use the printers on your printer servers:

In your environment, perhaps a standard port is used for another purpose. For exam-

ple, you might want to rename port 23 to . To do this, you could change its label

in on every host:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE72

If you are using and want to disable the application, for example, you

could comment out those lines in :

Any line containing the string will be commented out with the character (if

not already commented). If you make such a change, the process is sent the HUP

signal in the section.

The files Section

The section can process files (and directories) and check for valid ownership and

permissions. It can also watch for changing files. Here is a simple example:

We accomplish several tasks with these entries. On every system, the section

checks and fixes the ownership and permissions on , , and

. It also calculates and records the MD5 checksum of .

On any system in the class , the permissions on are

checked because that is the standard web- content directory across all hosts at our site.

Your site might (and probably will) differ. The directory is scanned recursively and all files

and directories are made publicly readable. The execute bits on directories will also be set

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 73

according to the read bits; because we requested files to be publicly readable, directories

will also be publicly executable.

The option requires a little more explanation. The file’s checksum is stored,

so the administrator will be warned if it changes later. In fact, the administrator will be

warned every hour unless you configure cfengine to update the checksum database. In

that case, the administrator will be notified only once, and then the database will be mod-

ified. You can enable this preference by adding the following command in the

section:

Here are some other options you might want to use in the section:

: You can set this option to to follow symbolic links pointing to directo-

ries. Alternatively, you can set it to to remove any dead symbolic links (links that

do not point to valid files or directories).

: You can specify the option multiple times. Cfengine version 2

requires a pattern or a simple string, but not a regular expression. Cfengine version

3 repairs this inconsistency (look for more information on cfengine 3 at the end of

this chapter). Any file or directory matching this pattern is ignored. For instance,

 would ignore all hidden files and directories.

: If any options are listed, any files must match one of these regular

expressions in order to be processed.

: Any file matching any of the regular expressions will not be pro-

cessed by cfengine.

: If the directives in this section result in changes being made to any listed

files, a new class will be defined. You can also list several classes, separated by colons.

: Similar to define, but here new classes are defined if no changes are made

to the listed files. You can also list several classes, separated by colons.

: When set to , cfengine will log any changes to the system log.

: When set to , cfengine will log any changes to the screen (or send them by

 e-mail if is executed by).

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE74

The links Section

With the section, can create symbolic links:

In this example, the first command creates a symbolic link (if it doesn’t already exist)

from to (relative to).

The second command creates a symbolic link from to

 even if there is already a file located at . The bang () overrides

the default safety mechanism built into cfengine around creating symbolic links.

The third command creates one link in pointing to each file in

. Using this technique, you could install applications in separate

directories and create links to those binaries in the directory.

The section offers plenty of possible options, but they are rarely used in prac-

tice so we won’t cover them in this book. See the cfengine reference manual for more

information.

The processes Section

You can monitor and manipulate system processes in the section. Here is an

example from earlier in this chapter:

For the section, cfengine runs the command with either the or

switch (as appropriate for the specific system). This output is cached and the first part of

each command in the section is interpreted as a regular expression against this

output. If there are no matches, the command is executed.

You can specify the following options when using the facility: , ,

, , and/or . These affect the execution environment of the new process as

started by the command.

You can also send a signal to a process:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 75

This signal would be sent on every execution to any processes matching the regular

expression , so you probably don’t want to use it as is. It is also possible to specify

limits on the number of processes that can match the regular expression. If you wanted

to ensure there were no more than ten processes running at any given time, for

example, you would use this code:

The shellcommands Section

For some custom and/or complex operations, you will need to execute one or more exter-

nal scripts from cfengine. You can accomplish this with the section. Here is

an example:

On all systems, the command is executed to synchronize the system’s clock.

Cfengine terminates this command in 30 seconds if it has not completed. On systems

running Red Hat Linux, a script runs between 2:00 a.m. and 2:15 a.m. to log the currently

installed packages. This command is placed in the background and cfengine does not

wait for it to complete. This way, cfengine can perform other tasks or exit while the com-

mand is still running.

You can specify the following options to control the environment in which the com-

mand is executed: , , , , and/or .

If these scripts want to access the list of currently defined classes, they can look in the

 environment variable. Each active class will be listed, separated by colons.

Scripts, by default, are ignored when cfengine is performing a dry run (with

specified). You can override this setting by specifying . The script should not,

however, make any changes when the class is defined.

Using cfrun
The command allows you to execute on any number of systems on the net-

work. It requires a configuration file in the current directory named (or a file

specified with the option). The file can be as simple as this:

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE76

Apart from the domain setting, this file is just a list of every host, including the con-

figuration server. You can also have the output logged to a series of files (instead of being

displayed to the screen) by adding these options to the top of the file:

This code tells to fork up to ten processes and place the output for each host in

a separate file in the specified directory. You can normally run without arguments.

If you do want to specify arguments, use this format:

 is, quite literally, optional, and can contain any number of options for

the command. Next, you can specify an optional list of hostnames. If some host-

names are specified, only those hosts will be contacted. If no hosts are specified, every

host in the file will be contacted.

After the first - , you must place all options you want to pass to the com-

mand run on each remote system. After the second is an optional list of classes. If

some classes are specified, only hosts that match one of these classes will execute

(although each host is contacted because each host must decide if it matches one of the

classes).

Looking Forward to Cfengine 3
Cfengine 3 has been in the design phase for several years. It is a complete rewrite of

the cfengine suite, but more important, it involves a new way of thinking about system

management.

Cfengine 3 is built around a concept called “Promise Theory.” This concept might

sound difficult to grasp, but it’s actually quite intuitive. With cfengine 3, you’ll describe

the desired state of your systems instead of the changes to your systems. The desired state

is expressed as a collection of promises, and in the words of the cfengine author Mark

Burgess, allows us to focus on the good instead of the bad.

The Cfengine.org web site has a thorough introduction to cfengine 3, as well as

source code to the current snapshot of cfengine 3 development:

.

CHAPTER 4 N CONFIGURING SYSTEMS WITH CFENGINE 77

We encourage you to familiarize yourself with the next evolutionary steps in cfengine

for two reasons:

 1. Familiarity with the new concepts and syntax will make it easier to migrate from

version 2 to version 3 when the time comes.

 2. Experimenting with the current feature set and implementation allows you to sug-

gest enhancements or bug fixes. Making suggestions helps the people working on

cfengine 3 and “gives back” to the people who gave us cfengine in the first place.

Using cfengine in the Real World
In this chapter, we covered the core concepts of cfengine and demonstrated basic usage

with a collection of artificial configuration files. This information arms you with the

knowledge you need to work through the remainder of this book.

The use of demonstration configuration files and imaginary scenarios ends here.

Throughout the rest of this book, we will operate on a real- world infrastructure that we

build from scratch. Every configuration setting and modification that we undertake will

be one more building block in the construction of a completely automated and fully func-

tional UNIX infrastructure.

79

C H A P T E R 5

Bootstrapping
a New Infrastructure

How would you feel if you were offered the opportunity to install and configure all the

systems and applications at a new startup company? On one hand you’d probably be

pleased, because you would finally be able to fix all the things you’ve criticized about

other infrastructures. On the other hand you’d be apprehensive, because you have only

one chance to build it before it goes into production, and you might be blamed (with

good reason) if things don’t work well.

We would expect most people to admit to feelings on both ends of the spectrum. If

you’re anything like us, you’ll be thrilled to have the opportunity! Radically changing the

design of your cfengine master, system upgrade, and patching procedures is easy before

the systems and procedures are put into use. Once you’ve been deploying and updating

systems using automated means, reorganizing and rebuilding the automation framework

is much more difficult and risky. You can rebuild some or all of your environment later if

you employ development and/or staging systems, but any time you spend now on plan-

ning and design will certainly pay off in the form of fewer headaches later.

We’ll show you how to build systems for a fictional startup company called “campin.

net,” a purveyor of quality camping equipment. The project: to deploy a web- based appli-

cation that utilizes data over NFS. The web servers run Linux, and the NFS server hosts

run Solaris.

One of the major goals of this project is to rapidly deploy and configure the systems

hosting the site, as well as to deploy application and OS updates soon after the need

becomes apparent. Deploying and managing systems by automated means will meet

these goals.

You should set up a management infrastructure before you image or deploy any sys-

tems, because you need to be prepared to manage the new hosts from the very beginning.

We’re using cfengine for system management, so we need to have cfengine configured

and running on each host upon completion of the imaging process.

We must perform this sequence of steps to configure a fully functional cfengine

infrastructure:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE80

 1. Manually install a Linux system to be used as the central cfengine host.

 2. Create a “master” directory structure on the central cfengine host. This central

directory structure is where cfengine configuration files as well as UNIX/Linux

configuration files and binaries will be copied from. We’ll illustrate an example

layout that we’ll continue to develop in later chapters.

 3. Populate the directory structure with cfengine configuration files. You’ll use these

configuration files to perform initial client configuration, keep clients up to date

with the configuration files hosted on the central cfengine host, and start up the

cfengine daemons.

 4. Choose a trust model for cfengine key distribution. We’re using a model that

resembles the way key trusts are done with SSH hosts—where we trust a host’s

cfengine keys the first time we see them. After the initial exchange, we’ll use that

trusted key (and only that key) to verify that host’s identity.

This procedure is highly technical and fast paced. We recommend reading through it

once before undertaking it at your site.

Installing the Central cfengine Host
We decided to use virtualization for the initial master system, specifically VMware

Server. This decision makes sense because once the guest system is working, we can

bring it into the datacenter and run it on anything from a laptop running Windows or

Linux to a dedicated VMware ESX platform. VMware probably isn’t what we’d choose for

 enterprise- wide virtualization, mainly because of the license fees. This isn’t a book on vir-

tualization, however, so we won’t go into detail on virtualization technologies.

We installed a 32- bit Debian GNU/Linux 4.0 (“Etch”) system as a VMware guest.

We’re not going to cover manual Debian installations, although we should mention

that on the “software selection” screen, we selected “standard system” and none of the

other software collections. This kept the base system very small. From there we manually

installed the package as the user:

The default Debian package installation does not put any files in place in

the directory. We won’t place any there yet either. Cfengine

supplies a pre- configuration script feature that we’ll use to bootstrap systems once our

master repository is set up.

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 81

Setting Up the cfengine Master Repository
The design goals of our cfengine master repository are:

 s Simplicity: The framework should be simple and intuitive. It should follow UNIX

conventions as frequently as possible.

 s Transparency: The design should provide for easy inspection and debugging.

 s Flexibility: The system will be used for purposes we can’t imagine now, so we need

to make it extensible. UNIX is built on the idea that users know better than design-

ers what their needs are, and we’ll honor that tradition.

It pays to think about how you want to lay out your cfengine master host’s files before

you get started. Once you’ve put it into use and have many different types of systems

copying files from many different locations on the server, reorganizing things will be

much trickier.

We’re using a Debian host as our master, so we’ll use the direc-

tory as our base for our cfengine “masterfiles” directory. There is nothing special about

the name “masterfiles” except that it’s used in the cfengine sample configurations. We

use the convention as well.

First, as the user, we create the directory , then

the directories we need inside it:

In the preceding commands, we’ve created directories that mimic files inside the

UNIX filesystem, underneath . The

directory is meant for files that are pulled or “replicated” from the master system out to

client systems. Using a tree that resembles where files live on client systems is very intui-

tive to SAs.

In later chapters we will illustrate how to use the and directory trees for test-

ing new cfengine settings in a testing and/or staging environment. For now we’re only

populating the branch since we have only production hosts (and only one at that!).

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE82

Creating the cfengine Config Files
As previously mentioned, cfengine looks for configuration files in a directory called

, usually located at (or on Debian).

In our initial configuration, as well as our configurations going forward, will

be made up entirely of statements. You’ll find that statements in cfengine

resemble includes in most programming languages—the imported file is read in and used

as if it were content in the original file. For the cfengine configuration file sections such as

 and , will import files in the and

We’ll create the directories first (as):

Here’s how these directories will function:

 s will import other files for all of its configuration entries. These files

will be in the , , and directories.

 s -ODULESWILLBEPLACEDINTHE directory. In cfengine, you use modules to

extend functionality (we illustrate modules in the Appendix).

 s !TTHEENDOF are what we call “hostgroup” imports. Each

file comprises further imports of files in the directory. The files in the

directory contain actual work for cfengine, such as copying files, killing processes,

and editing files. Each task accomplishes a single goal, such as distributing

 and restarting the daemon when the change is made.

We’ll separate tasks that focus on applications from OS- specific tasks or tasks that

focus on the core OS. We do this by splitting “task” files between the , , and

subdirectories. This division will make it easier to remove entire applications from the

cfengine configuration once they are unnecessary. We’re trying to build a system that will

manage the systems at our site for the next five to ten years (or more).

The cf.preconf Script

Cfengine provides initial bootstrap capability through the script, which gets

the system to the point where it can parse and utilize the cfengine configuration files.

In our case we use it to ensure the host has generated a cfengine key, to generate

initial configuration files, and to create the required directories. Cfengine looks for the

 script before it parses the configuration files, and executes it. Cfengine feeds

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 83

it one argument: the hard class of the system (e.g., . Our site’s script

doesn’t make use of this argument.

The script is entirely optional, and you can write it in any language sup-

ported on the local system. No problems or errors will result from a site choosing not to

implement it.

Here’s our version for our new environment, explained section by section. We

assume basic shell- scripting expertise on the part of the reader and focus on the intent

of the script instead of the mechanics of each line. And comments intended for future

maintainers of the script are always useful:

This next line starting with the command will place the script contents up until

the line starting with “EOF” into the two cfengine config files and

 (thanks to the invocation). You’ll find it convenient to embed a file in a script

because it means you can maintain one file instead of two:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE84

Up to this point in the and files, we simply define some vari-

ables, i.e., the locations of important files across the different platforms we support. How

these are used will become clear further in the file.

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 85

The controls which cfengine actions are executed and the order in

which they’re run:

Because generated these and files, we’re wor-

ried only about the basics: , , and . Each action’s appended

works around cfengine’s built- in denial-of- service protections (or “spamming,” as it’s

called in the cfengine documentation). Cfengine uses a time- based locking mechanism

that prevents actions from being executed unless a certain minimum time has elapsed

since the last time they were executed. The modifier sets the lock time to zero,

disabling it. We put this there simply to be sure that the copies are attempted each time

 is run. We want to do everything possible to get the system past the initial boot-

strap phase.

The variable becomes important as our site grows:

If hundreds of systems start at the same time, contention or load issues might

result when all systems simultaneously request a file from the cfengine master system.

If this number is nonzero, goes to sleep after parsing its configuration file and

reading the clock. Every machine will go to sleep for a different length of time, which is

no longer than the time you specify in minutes. For our bootstrap configuration, we don’t

need the functionality, and we set it to zero.

Items declared under the global section affect the and actions of our

initial bootstrap configuration files:

The section prunes directories, meaning that any Subversion, RCS, or CVS

(which uses RCS for its base functionality) metafiles will not be copied. We don’t have

such things in place yet, but intend to implement them later.

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE86

We always want the cfengine daemons to be running. Here’s where our earlier

 per- platform variables come into play—on each of our three future UNIX/Linux plat-

forms, this single stanza will properly start the cfengine daemons:

Note that we need to escape the dollar sign on the variables in order

to keep the shell script from attempting to expand them as shell variables. This

process continues for the rest of the embedded cfengine configuration inside .

We make sure here that the cfengine base directory always has a directory with

a working symlink inside it:

The Debian package already sets up a symlink from

to so no changes are required, and the class is left out of this section.

On all cfengine clients, everything in (which is

) and everything in its subdirectories is copied to

 on every host:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 87

This is the main focus of our initial bootstrap cfengine configuration: simply to get

the latest configuration files from the master. Once that is done, the cfengine daemons

are started.

Remember that the is:

 1.

 2.

 3.

This means that even though comes after and in the configura-

tion file, the runs last. This is the correct and intended order.

This ends the embedded cfengine configuration file(s):

Now we make sure important directories are in place, and that they’re protected from

snooping by non users:

This next code is site- specific:

We ensure that on Red Hat Linux we have a symlink to the latest installed version of

cfengine (see Chapter 6 for a discussion of Kickstart, the automated installation system

for Red Hat Linux). Our installation scripts will take care of the same thing, but extra

checking is prudent.

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE88

If the file is missing, generate it using the subrou-

tine from earlier in the script:

If the host’s cfengine key is missing, generate it. This is the final line of :

The update.conf file

When the scheduler daemon executes , the configuration file

is read before . It contains private classes and variables from the rest of the

cfengine configuration files, and ensures that the local configuration files are up to date.

We also utilize it to make sure certain important actions happen early, such as enforcing

the existence and permissions of certain directories, confirming that cfengine daemons

are running, and performing some basic cleanup.

Here’s our campin.net file, starting with the warning comments for

future maintainers:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 89

The following section is the same content we embedded in the file:

We have additional actions in our file, compared to the one embedded in

:

We’ll describe the new sections as we get to them. Always double check that your

ordering is still correct any time that you add or remove items from the .

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE90

We use this line to let cfengine know that we might define a new class

at runtime:

Cfengine is a one- pass interpreter, and it allocates internal space for classes that it

determines it might need during the current run.

We set to , meaning that will sleep a random interval between zero

and five minutes before taking any action:

This is the same cfengine configuration- file directory copy that we embedded in

. It keeps our local cfengine configuration files up to date, by copying the mas-

ter tree every time runs:

We use the action to enforce the existence and proper permissions of

important cfengine directories:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 91

If you later decided to allow access to a UNIX group made up of cfengine admin-

istrators, you could easily change the group permissions and ownership to match this

selective access. For security reasons, don’t allow global access to these directories (even

read access).

The daemon stores output from in the directory

and e-mails the output if configured to do so. We don’t want the directory to grow with-

out bounds, so we delete files older than seven days:

We have the same process monitoring for cfengine daemons as before:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE92

But now when the class is defined in the section, cfengine

will send a HUP signal to the and processes. It works like this:

 1. If the symlink in pointing to is

missing, will create it.

 2. When the symlink is created, the class is defined.

 3. The section has a stanza for systems with the class

defined knows it’s supposed to run this section, so it sends a HUP

signal to the and processes.

You’ll notice that this looks quite a bit like the and that

 creates. The main difference is that the ones created by were

intended only to get updated cfengine configuration files pulled to the client. Any time

spent making other changes to the system from is unnecessary because the

latest policies for the site will be pulled from the master and applied to the local sys-

tem. We’ll continuously update the main configuration files on the cfengine master, but

 will see infrequent edits. You’ll need less maintenance this way.

The cfagent.conf file

As you’ll remember from Chapter 4, is the main cfengine configuration file.

The program looks there for its important settings, and expects the entirety of

your policy declarations to be made inside it (or inside files imported from

using the directive, to be covered shortly).

Here is our :

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 93

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE94

First, notice that the file has more lines of comments than lines of cfengine con-

figuration. This is because is where most SAs will start with cfengine

modifications, and we want future users of our system to be constantly reminded of how

things are organized at our site. Document your configuration as if you’re setting it up

for others, and assume that you won’t be personally available for questions. Doing so will

help you bring on new staff quickly, as well as let you take time off without constantly

answering basic questions.

Second, notice that our is made up entirely of statements. You

could put your entire configuration into a single file, but that’s generally

considered a bad idea. If we had done that at our last employers, would have

been more than 30,000 lines long. Making sense of such a huge configuration file is too

difficult, and you’d face extra overhead by having all systems process the configuration

directives meant for themselves as well as all other hosts. If you split it up from the start,

you won’t have to go through the pain of reorganization later. In the world of system

administration, many (if not most) temporary configurations end up being permanent.

It pays to do things correctly and in a scalable manner from the start.

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 95

Here are the contents of :

(You can refer to our explanation of cfengine classes in Chapter 4.) Right now we

have very few classes, but that will change. We’ll eventually have multiple files with many

different types of classes.

Here are the contents of :

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE96

We will use the variable for easy switching between production and non-

production variants of our cfengine configurations in later chapters. For now, we’re

simply setting up the mechanism to enable this:

We’ll set all hosts to use the directory path, then selectively set it again on par-

ticular hosts to use either the or directory. Cfengine will consider it an error to

redefine a variable if the variable isn’t listed in .

The parameter controls the minimum time that must elapse before an

action in the will execute again. Remember that you can also set it on

a per- action basis as we did in with the syntax

.

The repository setting defines a directory where you can place backup and junk files:

These are files affected by , , , and . When cfengine replaces

or disables a file, the previous contents of that file are placed in the directory.

The setting is a safety check that the action uses:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 97

By default, cfengine won’t attempt to edit a file larger than 10,000 bytes. We set that

value to a much larger size, because some of our config files will exceed the default size

by a considerable margin. We don’t make much use of , but it comes in handy

occasionally.

These are security- related settings:

If is set to , will import only files owned by the user running

the program. When is set to , cfengine will automatically disable any

nonalphanumeric files it finds during file sweeps, under the assumption that these files

might be deliberately concealed. The directive will generate warnings

when it finds any directories with the extensions listed. The assumption here, again, is

that an attempt is being made to hide directories. The directive generates

warnings for any files found with the listed file extensions during file sweeps. Note that

the file sweeps happen only when cfengine scans a directory in connection with a com-

mand such as , , or .

The here has comments around it in the file, once again intended for

future cfengine configuration- file maintainers:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE98

Not all the actions are used immediately, but in Chapter 7 we plan to demonstrate all

of the listed actions as we begin setting up our example infrastructure.

We define some variables that are used in later file copies, namely and

. We keep them separate so we can split the file copies between two differ-

ent cfengine master hosts without having to modify every copy task. We would need to

change the variables only in .

Here are the contents of :

(You can find more about the setting in Chapter 4.) We think that running

 from every 20 minutes will be the proper frequency for our new site.

Many sites run only once an hour, but we like the increased frequency because we will

use cfengine to make sure that important processes are running. The actions or tasks

that don’t need to be performed this often will be set to run only when certain time- or

 day- based classes are set, such as to make an action happen between 1:00

a.m. and 1:05 a.m. The reason for the range is that we’ve set a five- minute and

 will run at a random time inside that range. We will have extensive examples of

 time- based classes in later chapters.

Here are the configuration directives pertaining to the e-mail sent from ; they

are self- explanatory:

This final line in tells where to find the

binary:

NWarning The variable is meant for the daemon according to the cfengine

documentation, but in the past we’ve found that doesn’t function correctly without this variable

set up. This might be fixed in recent versions of cfengine, but it’s another area where we’re paranoid, so we

keep fixes in place indefinitely.

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 99

Here are the contents of :

This file is also made up only of imports—for a very important reason. Once we have

spent some time developing and maintaining our cfengine configurations, we’ll end up

with many actions being done to particular groups of hosts. Using this layout, we’ll have

a file for each role or group of hosts performing similar duties that shows the collection of

tasks that are performed for that role or group. This is an easy way to document what we

do to configure a certain type of host. The alternative is a very long list of imports for each

role or group directly out of , and eventually the file gets so large it is difficult

for humans to read and understand easily.

We already have two task files used on all hosts at our site. We want every host that

we set up at our site to have some special cron entries, as well as a standard message of

the day to greet users when they log in.

The cf.motd Task

We think it’s important to maintain a standard message-of-the- day file for all hosts that

we administer. We like to greet authorized users with a message about where to find help

and greet unauthorized users with a warning.

We also like each host to have entries specific to itself. In cfengine we set up support

for local message-of-the- day contents using a file at the location al.

We’ll now list the contents of . Here we test for the existence of the

local file. If it exists, it alters the behavior of this task:

In the section we define some variables:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE100

In the section we copy the site- wide file from the host:

In the section, cfengine will evaluate the edit actions in the three groups if

the file exists on the system:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 101

The first two groups will trigger when either of the or files are

newer than the file. If that’s the case, you must update .

You accomplish the update by merging the two files together, with the

file inserted first. This behavior resembles the utility’s functionality.

The third group is triggered when the string “campin.net” isn’t found in .

We know that our file contains that string, so this is a way to update

for the first time. After that, will be newer than and al, and

won’t be re-edited until one of the two input files is updated.

This section is similar to the previous section, but will be evaluated if the file

 does not exist on the system:

The master file is inserted when it’s newer than , or if the string

“campin.net” isn’t found in .

The file is copied

from the host to on all systems.

These are the contents of er:

This is a good way to send a standard message on login, but still allow for local modi-

fications. A great secondary benefit is that once a host is imaged and configured to use

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE102

cfengine, it should automatically update this file. This means that we should be greeted

with our site’s message of the day upon our first login to a newly imaged host, giving us

instant validation of the host’s cfengine configuration.

The cf.cfengine_cron_entries Task

The second entry in is , and it has

these contents:

In the section we specify a definable class that we define later in the file, if

and when the edits defined are performed. The following edits are performed only if the

required entries aren’t there:

With these cron entries, we make sure all our hosts run the command once

per day. This isn’t meant to handle the “normal” scheduled runs; for that we will use

. These cron entries are meant to restore our systems to a working state when

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 103

all other startup and scheduling mechanisms fail. Our file specifies

the startup of the cfengine daemons, so if we manage somehow to kill off our cfengine

daemons or fail to start them upon boot, the daemons will start back up again within 24

hours when is called again from cron.

When cron files are updated on Linux, the cron program will notice the file update

and reread the files automatically:

Based on this behavior, we never actually do anything with the class on

Linux. The cron daemon on Solaris has no such feature, and needs to be restarted. That’s

what we do in the section when is defined.

The task ensures that is run at least once per day.

This will get to update the inputs directories and start up , , and

 if they’re not already running.

These cron entries are our emergency measure intended to get cfengine back up and

running if all other measures fail and we either don’t know that it’s broken or we can’t

access the host in order to fix it manually.

cfservd.conf

One other important file needs to be created: . We need to allow client sys-

tems to pull files from the goldmaster host, and also set up the access and proper path to

the program for remote invocations through . This file is used on all systems,

because we choose to run on all systems.

Here are the contents of :

Trust in cfengine is done by private keys, so the directive gives access

only to the key for the named users. For this to happen, the key must already be in

place, so there’s a race condition when a new host is imaged (although for a short period).

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE104

NWarning You should be aware that the only way to prevent a malicious user from spoofing the key of

a new host (and the only trusted user,) is to turn off key trust and to install keys using some other

mechanism outside the cfengine trusted key exchange. See the online cfengine documentation for further

details. We utilize cfengine initial trusts in this book, because the added security from manual or out-of- band

cfengine key distribution is negligible.

The feature is also built into :

You use it to prevent clients from forcing to reread its configuration too often.

The default is one hour.

Once again we define the location of important directories and binaries:

CHAPTER 5 N BOOTSTRAPPING A NEW INFRASTRUCTURE 105

Eventually we plan to run many hosts at our site, and often a single host will make

more than one connection to our master host. We want this limit to be higher than we

think we’ll need:

Prior experience shows that this number needs to be approximately twice the num-

ber of actual cfengine clients that will simultaneously connect to the daemon.

Note that only our goldmaster host is sharing files via . That’s where our

 and variables currently point. All the other hosts simply allow

 invocations via the tool:

Ready for Action
This is a good time to step back and look at what we’ve accomplished, because we’ve cov-

ered quite a bit in this chapter.

We’ve set up and configured a fully functional cfengine master, ready for use by cli-

ent systems to pull configuration files. We have also set up a small amount of system

configuration, namely editing of cron files and message-of-the- day files. We now have

what we need to manage newly installed hosts at our site using cfengine.

107

C H A P T E R 6

Setting Up Automated
Installation

It is critically important that you use unattended operating- system installation tools for

every system you deploy. If you were to load the OS manually, you would rarely (if ever)

get the same configuration on all your systems. It would be nearly impossible to config-

ure your systems properly from that point forward.

Automated installation systems offer several key benefits:

 s 7HENALLSYSTEMSAREINITIALLYCONFIGUREDINANIDENTICALMANNER�AUTOMATED
 system- configuration tools such as cfengine don’t have to account for varying ini-

tial system state. This minimizes the complexity of the automation system itself.

 s -ANYSYSTEMSCANBEINSTALLEDANDDEPLOYEDATONCE�EVENBYAJUNIOR3!ORDATA-

center technician. Once the automated installation system is configured, very little

work is required to add new installation clients.

 s !NAUTOMATEDPROCEDUREFOR/3INSTALLATIONCANBECONSIDEREDAFORMOFDOCU-

mentation. A manual OS installation process might be documented, but you have

no proof that the final system state is really the result of the documented steps.

 s 9OUCANUSEABACKUPOFTHEAUTOMATIONSYSTEMTODEPLOYMANYSYSTEMSINANEW
location with confidence that the resulting systems are properly installed.

7EHOPETHISCHAPTERREMOVESANYFEARYOUMIGHTHAVEAROUNDSETTINGUPAUTOMATED
INSTALLATIONSYSTEMS�7E�REWELLAWARETHATVENDORDOCUMENTATIONFORSYSTEMSSUCHAS
3UN�S#USTOM*UMP3TARTCANBEINTIMIDATING�7EFIRMLYBELIEVETHATEVENSITESWITHAVERY
small number of UNIX or Linux systems need to use automated OS installation tech-

niques for every new host.

7EAREN�TGOINGTOEXPLAINHOWSUCHAUTOMATEDINSTALLATIONSYSTEMScould work;

we’re going to show you how they reallyWORK�7E�REGOINGTOSETUPAUTOMATEDINSTALLA-

tion systems to deploy real systems, and document the procedure from start to finish.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION108

Introducing the Example Environment
7E�REgoing to deploy systems into a completely new environment for the fictional

STARTUPCOMPANYWEDESCRIBEDIN#HAPTER��7E�LLBERUNNINGX��BASED2ED(AT%NTER-

PRISE,INUX���SYSTEMSHOSTINGAWEBAPPLICATION�WITH5LTRA30!2#BASED3OLARIS��
SYSTEMSSHARINGAPPLICATIONDATAOVER.&3�)NADDITION�WE�LLDEPLOYX��BASED$EBIAN
'.5�,INUX���SYSTEMSTOPROVIDEINFRASTRUCTURESERVICES�E�G��CFENGINE�$.3�.ETWORK
Time Protocol, etc.).

7EMADETHEDECISIONTORUNTWODIFFERENT,INUXDISTRIBUTIONS�

 1. 7EFIND$EBIAN'.5�,INUXTOBEEASYTOADMINISTER�MAKINGITAGOODFITFORINFRA-

structure roles.

 2. 4HE�FICTIONAL	BUSINESSDECIDEDTOUSE2ED(ATFORSUPPORTREASONS�SOWE�LLUSE
2ED(ATONSYSTEMSWHEREVENDORSUPPORTISIMPORTANT�E�G��OURWEBSERVERS	�

The network in our new environment is flat: a single subnet utilizing a private

�2&#����)0RANGE�7E�LLINITIALLYUSETHISSINGLESUBNETFORIMAGINGASWELLASPRODUCTION
SERVICE�7EWON�TDISCUSSNETWORKADMINISTRATIONDETAILSSUCHASROUTINGANDSWITCHING�

To deploy our three different OS platforms, we’ll create three different

 system- imaging servers:

 s 4OIMAGEOUR$EBIANSYSTEMS�WE�LLUSE&!)�OR&ULLY!UTOMATIC)NSTALLATION�SEE
).

 s 7E�LLUSE3UN�S#USTOM*UMP3TARTTOIMAGEOUR3OLARISMACHINES�SEE
).

 s 7E�LLUSE+ICKSTARTTOIMAGEOUR2ED(ATSYSTEMS�SEE
).

%ACHOFOURIMAGINGSYSTEMSWILLUTILIZEPOSTINSTALLATIONSCRIPTSTHATWEDEVELOP�
These scripts will cause the system to utilize our new campin.net cfengine infrastruc-

ture from Chapter 5. All our new systems will be booted from the network, and during

the imaging process they will have cfengine installed and configured to use our cfengine

master system. Cfengine will handle all system configuration from the very first bootup of

our hosts.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 109

FAI for Debian

FAI is ANUNATTENDEDIMAGINGSYSTEMBUILTFOR$EBIAN,INUX�(ERE�SADEFINITIONFROM
the FAI Guide at :

FAI is a noninteractive system to install a Debian GNU/Linux operating system on

a single computer or a whole cluster. You can take one or more virgin PCs, turn

on the power and after a few minutes Linux is installed, configured, and run-

ning on the whole cluster, without any interaction necessary. Thus, it’s a scalable

method for installing and updating a cluster unattended with little effort involved.

FAI uses the Debian GNU/Linux distribution and a collection of shell and Perl

scripts for the installation process. Changes to the configuration files of the operat-

ing system can be made by cfengine, shell, Perl, and Expect scripts.

Note the mention of cfengine scripts used during the installation process. Those

familiar with cfengine can easily understand FAI configuration and usage. FAI also has

the concept of classes at its core, and uses assignment to classes and the definitions

assigned to those classes to determine how a host is installed and configured.

(EREARETHESTEPSREQUIREDTOSETUP&!)FROMSCRATCHANDIMAGEOURFIRST$EBIAN
system:

 1.)NSTALLA$EBIANSYSTEMMANUALLYFORUSEASTHEINSTALLATIONSERVER�

 2. Install the FAI packages along with dependent packages on the new system.

 3. Configure FAI.

 4. 2UN to create the NFS root filesystem for installation clients.

 5. Configure network booting for installation clients.

 6. Customize the installation process for all systems, as well as special configuration

particular to our first installation client.

 7. Boot and install our first FAI client system.

Once again we find ourselves in need of a host, in order to configure other hosts. Our

cfengine master system (named goldmaster) will function as our FAI installation host.

4HISHOSTISRUNNINGTHECURRENTSTABLEBRANCH�$EBIAN����4HE)0ADDRESSOFTHISHOSTON
our example network is .

If you encounter any problems with the examples and commands in this section,

refer to the online FAI documentation here:

�"YTHETIMEYOUREADTHIS�$EBIAN����h,ENNYv	WILLSURELY
be out, and there’s a chance that you’ll need to update this procedure.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION110

Installing and Configuring the FAI Packages

Install the needed packages by using or to install the

metapackage:

This code will install all the needed packages, such as and , as

well as the and packages.

Now that you have the required packages, edit . This

file controls the creation of the nfsroot filesystem in �9OUNEEDTOMAKE
only these minor changes from the default:

"ESURETOSUBSTITUTETHEPROPERVALUESFORYOURNETWORK�(EREISTHEFILEINITSENTIRETY�

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 111

The configuration for the FAI package (but not the configuration for installation cli-

ents) is stored in �7EDIDN�TCHANGEANYTHINGIN �(EREISTHE
complete file from our goldmaster system:

FAI uses to create the nfsroot filesystem. Once and

 are configured to your liking, run :

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION112

A lot of information will scroll by, but you need to look for these two lines that indi-

cate success:

)FYOUDON�TSEETHEM�YOU�LLNEEDTOTROUBLESHOOTYOURCONFIGURATION�-OSTPROBLEMS
result from improper settings in or simply insufficient

disk space on your host.

The nfsroot creation aspect of is done when invokes the

 command. In order to troubleshoot, you can call your-

self with the flag to see more verbose (and useful) output. This is the best way to find

OUTWHATCAUSEDTHEFAILURE�2EFERTOTHEONLINE&!)GUIDEFORUPTODATETROUBLESHOOTING
information.

Configuring Network Booting

7EINTENDTOBOOTOURHOSTSFROMTHENETWORKUSING08%�08%�WHICHSTANDSFOR
0REE8ECUTION%NVIRONMENT�ISAMETHODTOBOOTCOMPUTERSUSINGANETWORKINTERFACE
INDEPENDENTOFANYAVAILABLESTORAGEDEVICESORINSTALLEDOPERATINGSYSTEMS�-OSTNET-

WORKCARDSMANUFACTUREDINTHELASTSEVERALYEARSSUPPORT08%BOOT�
$(#0ISASTANDARDMETHODFORASSIGNING)0NETWORKINFORMATIONTOHOSTS�$(#0

SERVERSCANHANDOUTTHEREQUIREDINFORMATIONFOR08%CLIENTSTOBOOTFROMTHENETWORK�
The metapackage installed software that we can use to boot network cli-

ENTSUSING08%�4HESEARETHEREQUIRED$EBIANPACKAGES� , , ,

, and . If any of these are missing from your system, install them

using or .

Copy the sample file from the FAI directory into place for your

$(#0SERVER�

The file on our goldmaster system looks like this after editing:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 113

One of the most important settings is the first line in the file: .

4HISSETTINGENSURESYOUBOOTONLYHOSTSTHATARESPECIFICALLYCONFIGUREDTODOSO�7E�VE
GATHEREDTHE%THERNET-!#ADDRESSOFOURFIRST$EBIANSYSTEMTOBEINSTALLEDWITH&!)�
and put it in this configuration file at the end.

In addition, we placed this new host, named etchlamp�INTOOURSITE�S$.3�7E
ALREADYCONVENIENTLYHOST$.3WITHA$.3HOSTINGPROVIDER�SOWEMANAGEDTOAVOID
SETTINGITUPINITIALLYATOURNEWSITE�7E�LLSETUPOUROWNINTERNAL$.3IN#HAPTER��

The daemon runs from the super server, so make sure you have a line like

this in :

)FYOUADDIT�BESURETO(50THERUNNING process.

To configure an FAI install client, use the command �7HENYOU�REUSING
08%�THISINVOCATIONTELLSTHEINSTALLCLIENTTOBOOTTHEINSTALLKERNELANDPERFORMANINSTAL-
lation during the next boot:

"ECAUSETHEHOSTNAMEISALREADYIN$.3�YOUCANUSEYOUR file if you’re

COMPLETELYLACKING$.3ATTHESTART	�ANDTHEHOST�S%THERNET-!#ADDRESSISINTHE
 file, CANSETUPTHEPROPER08%BOOTCONFIGURATIONFILEin

.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION114

Customizing the Install Client

Now we can boot a host, but we’ll want some customization before we attempt an instal-

LATION�7E�LLWANTTOBESUREAWEBSERVERISPRECONFIGUREDONTHEFIRST$EBIANHOSTWE
IMAGE�7E�LLENDUPUSINGITASANINFRASTRUCTUREWEBSERVERFOR3UBVERSION�.AGIOS�AND
OTHERAPPLICATIONS�7E�LLGETTOTHOSEAPPLICATIONSINLATERCHAPTERS�BUTFORNOWWE�LLJUST
worry about getting Apache 2 up and running.

To define a new class of our own in FAI, create a script called

and place it in the / directory. This new script sets a class called

for our new host that denotes :

Setting a new class in FAI is as easy as creating the preceding script. That class is then

used in other scripts within FAI that install packages, run scripts, and configure the sys-

tem’s disk drives. FAI’s use of classes resembles the way cfengine uses classes.

NNote The numbers prepended to the script names in the FAI script directory are used for the same pur-

pose as the numbers in the names of run- control scripts such as those in on Red Hat, Debian,

and Solaris systems. They’re used to order the execution of scripts in a directory. Under FAI, though, the start

of a file name contains no S or K—only a number.

7Ealready have a file that is installed by default with FAI in the same

directory, and it resembles the new FILE�9OUWANTTOMAKESUREYOUR
CUSTOMIZATIONSARECONTAINEDINDISCRETEFILESASOFTENASPOSSIBLE�7HENYOULATERCHOOSE
to build an FAI server automatically, you won’t have to edit files programmatically. This

means you’ll only have to copy a new file into place, which is always less error- prone, and

also means that the FAI authors’ updates to the scripts don’t need to be merged back into

your copy of the file.

Also in the directory is a file called . This file con-

tains settings for all hosts installed using FAI, because FAI applies the class to all

installation clients. Some variables in this file need modification: the time zone is wrong

FOROURSITE�ASISTHEKEYMAP�9OU�LLALSONEEDTOCHANGETHE password from the

DEFAULT�INTHISSAMEFILE	BYPUTTINGANEW-$�ORCRYPTENTRYINTHISFILEFORTHE

variable.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 115

(ERE�STHE file after our modifications:

7E�VEalready decided that our new host etchlamp will belong to the class.

Let’s set up a custom package list for the class in a new file in the

 directory. As you’ve probably guessed, FAI uses this directory to define

the packages installed for classes of hosts. All hosts will by default use the package

configuration, but our new host needs some additional packages.

(EREare the contents of :

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION116

This takes care of our wishes for the packages installed for the class.

It is so easy to configure exactly which packages should go onto a system that we

decided we wanted to modify the base system. Namely, we changed

 to use and instead of and �7E
added these lines:

and we removed this line:

4HENEXTSTEPISCONFIGURATIONOFOURFIRSTHOST�SDISKLAYOUT�7ESETUPCUSTOMPARTI-
tioning for the class in the file :

Finally, you want to make sure cfengine is configured properly and that it’s pulling

configuration files from the master system after installation. The first step is to make sure

THATCFENGINEDAEMONSARESTARTEDATBOOTTIME�7EHANDLETHISBYCREATINGACFENGINE
script and placing it at :

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 117

The edit of the mounted root filesystem’s in this cfengine

script changes the lines:

to these:

At BOOTTIMEORIFMANUALLYEXECUTED�THE$EBIANCFENGINE�INITSCRIPTWILLSTARTTHE
cfengine daemons only if the values of the variables are set to . This

script also ensures that contains a alias before installation is complete.

Now we need to get the files and in place for when cfengine

STARTSUPUPONOURNEWHOST�SFIRSTBOOT�7E�LLuse FAI’s command to move the

 and FILESINTOPLACEDURINGINSTALLATION�7E�LLCREATE
, with these contents:

The command works on files placed under in the FAI directory,

in a directory named after the file you need to copy. The files in the directory, which are

named after FAI classes, contain the appropriate contents for hosts matching the class

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION118

contained in the file name. According to the FAI docs, if multiple classes match, then the

class with the highest matching priority gets its file copied.

7E�REusing the class because we want all hosts to get the basic

and files.

The contents of the identical

 and files are:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 119

9OU�VEseen this file before; we’re simply getting it into place without

using this time. The convenience of FAI’s command makes

unnecessary here.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION120

Finally, we had to override an error from the installation involving a missing

 alias. In the file , we changed:

to:

This change allows the host to fully install without having to stop for this error.

Installing Your First Debian Host

Now we’re ready to boot our host etchlamp�7ENEEDTOSTARTA08%BOOTONTHEHOSTITSELF�
WHICHNORMALLYINVOLVESHITTINGTHEPROPERKEYONTHEKEYBOARDDURINGBOOT�7EDON�T
RECOMMENDSETTINGTHE")/3ONYOURHOSTTOBOOTUSING08%BYDEFAULT�ATLEASTNOTAT
a higher preference than booting from the hard disk. The last thing you want is an acci-

dental reinstallation the next time you reboot the host! If you really prefer to boot from

08%ASTHEFIRSTOPTION�YOUCANALWAYSREMOVETHEENTRYFORTHEHOST�S-!#ADDRESSIN
 after successful installation.

9OUKNOWTHAT08%BOOTISWORKINGWHENYOUSEEINITIALOUTPUTLIKETHIS�THISOUTPUT
comes from the FAI Guide; we couldn’t capture this information directly from our exam-

ple systems):

9OU�LLKNOWTHAT&!)ISWORKINGWHENYOUSEEOUTPUTONTHESCREENLIKETHIS�AGAIN�
taken from the FAI Guide):

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 121

Once you’ve done the imaging and reboots, you should be able to into the host:

The host has the cfengine- configured , and the disk is partitioned according

to our custom settings. In addition, the command shows that the Apache server is run-

NING�-ISSIONACCOMPLISHED�
Overall, FAI is a pleasure to work with. The directory names and scripts are self-

explanatory, the class mechanism is intuitive and easy to work with, and the packages put

useful starting configuration files into place. In addition, the package includes sam-

ple configurations for the and DAEMONSONTHESYSTEM�%VENFORANEWBIE�GOING
from no automated installation system to a fully automated mass- installation system using

FAI can happen in a matter of hours.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION122

Employing JumpStart for Solaris

JumpStart, or Custom JumpStart as it’s called by Sun, is an automatic installation system

for the Solaris OS. It’s based on profiles, allowing a system to match installation profiles

USINGSPECIFICCRITERIASUCHAS%THERNET-!#ADDRESSESORGENERALCRITERIASUCHASTHESYS-

tem’s CPU architecture. (For more information on the general JumpStart architecture,

see .)

Using JumpStart can be an entirely hands- off process, although an unattended

INSTALLATIONMIGHTTAKEPLACEOFF#OR6$MEDIAANDUSECONFIGURATIONFILESSTOREDON
THE#$�)NTHISSECTIONWECONFIGUREOURSYSTEMSFORAHANDSFREEINSTALLATION�BUTWE�LL
boot from the network, as well as use profiles and install media from the network.

In getting started, we again have a chicken-and- egg problem: we need a host to con-

FIGUREASOUR*UMP3TARTHOSTBEFOREWECANAUTOMATICALLYIMAGEOTHERHOSTS�7E�LLUSEONE
3OLARIS��HOSTTOHANDLETHETHREENETWORKBASED*UMP3TARTROLES�

 1. Boot server: This system provides network clients with the information they need

to boot and install the operating system.

 2. Profile server: This system hosts what the JumpStart documentation calls the

h*UMP3TART$IRECTORY�v4HISHOSTSHARESTHE file for networked installation

clients. The file contains information on the profile to be used, as well as pre-

INSTALLATIONANDPOSTINSTALLATIONSCRIPTS�9OUCANALSOSTOREPROFILEINFORMATIONON
a local floppy or optical media, if that’s a better option at your site.

 3. Install server: This system contains the Solaris disk images used to install the

Solaris operating system. One install server can support many different hardware

PLATFORMSAND/3RELEASES�SUCHAS30!2#ANDX���PLUS3OLARIS�AND3OLARIS���

Follow these steps to set up a new JumpStart installation host on our network:

 1. -ANUALLYINSTALLA3OLARISSYSTEMTOUSEASTHE*UMP3TARTSERVER�

 2. Set up the installation server role.

 a. Copy the Solaris installation media to the local disk.

 b. Share the installation media via NFS.

 3. Set up the profile server.

 a. Copy the sample profiles from the Solaris installation media to a new profile

directory.

 b. %XPORTTHEPROFILEDIRECTORYTREEVIA.&3�

 c. Customize the profile information for your first installation client.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 123

 4. Add an installation client.

 5. Boot the installation client and watch as unattended installation commences.

7EPICKEDUPA3UN%NTERPRISE���23ERVER�ANOLDER0#)BUS�3UN30!2#nBASED
SERVERSYSTEM�7EINSTALLED3OLARIS��ONITUSING#$INSTALLMEDIA�ANDPATCHEDITUPWITH
THELATEST����PATCHBUNDLE�7ENAMEDTHEHOSThemingway (after the famous author),

ADDEDITTOTHECAMPIN�NET$.3�ANDGAVEITTHE)0ADDRESS .

7EAREGOINGTOIMAGEA30!2#BASEDSYSTEMNAMEDaurora, with the IP address

ANDTHE%THERNET-!#ADDRESS �7Ehave placed aurora

INTOOUR$.3ASWELL�

Setting Up the Install Server

The first thing we’ll set up is the install server, which will host the Solaris installation files

ANDPACKAGES�(ERE�SHOWTOSETUPANINSTALLDIRECTORYUSINGA3OLARIS��6)3/THATWE
copied over using :

)FYOUHAVEA6DRIVEINTHESYSTEMANDYOU�REUSINGTHE6OLUME-ANAGERTOMAN-

age removable media (the default), simply change the directory to

.

7HETHERUSINGALOOPBACKMOUNTED)3/ORAREAL6�ISSUETHESECOMMANDSTO
COPYTHE6IMAGETOTHESERVER�SHARDDISK�

9OU�LLNEEDTOVERIFYTHATTHISNEWINSTALLDIRECTORYISEXPORTEDOVER.&3�2UNTHE

command and the pathname:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION124

9OUSHOULDSEETHEPRECEDINGOUTPUT�)FNOT�CHECKTHE file for an

entry like this:

Add the entry it if it’s missing. Once that entry is in place, verify that the NFS service

ISRUNNING�)SSUETHISCOMMANDON3OLARIS���

If it’s not running, enable it with this command:

%NSURETHEINSTALLSERVERDIRECTORYISSHARED�

If you encounter problems, see the Sun docs here:

ew. The documentation is thorough, so you should be able to

work out any problems.

Setting Up the Profile Server

The directory containing the file, the file, and the profiles is called the

JumpStart directory, and the server that hosts the JumpStart directory is called the profile

server. First create the directories we’ll use:

Next, copy over the sample profiles, which you’ll need to validate the new file

(they’re also useful as a reference):

Next, share out this directory over NFS by adding this line to :

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 125

2ESTARTTHE daemon:

Now validate the addition:

Creating the Profile

The file is a text file that describes the software to be installed on a system. A pro-

file describes aspects of the configuration such as the software group to install and the

disk partition (slice) layout. The format is easy to understand, and because we’re taking

advantage of the sample configuration files included with the Solaris installation media,

we can simply modify an existing profile to suit our needs.

The Sun online documentation is very good. For the complete syntax and all possible

options for JumpStart profiles, please refer to

.

7E�LLSTARTOURPROFILEWITHANEXAMPLEPROFILEFROMTHE directory:

%DITTHEFILE TOSUITYOURNEEDS�7ECHOSETOINSTALLTHEENTIRE3OLARIS��
distribution with the package , and we set up two filesystems and a swap slice.

(EREARETHECONTENTSOF :

The keyword is required in every profile. Besides , other

possible values for that keyword include and for upgrades and

installations via a flash archive, respectively (a flash archive is a system image, not unlike

a tarball snapshot of a system). The keyword specifies that the system is to be

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION126

INSTALLEDASASTANDALONESYSTEM�7EEXPLICITLYLAYOUTTHEDISKWITHA������-"ROOTSLICE
ANDA�����-"SWAPSLICE�ANDWEALLOCATETHEREMAININGSPACETOTHE filesystem.

Next, we’ll test our profile. This step is optional but recommended. In place of

�GIVETHEBASEPATHTOYOUR3OLARIS6�

For this to work, you need to be on a system running the same OS version and hard-

ware platform as the system for which you’re setting up the profile. See

 for more details.

The output of goes on for many, many screens, but eventually should end

with this:

Successful completion of means that our profile is ready.

Creating the sysidcfg File

The file is a preconfiguration file you use to configure a wide variety of basic sys-

tem settings, including but not limited to:

 s 4IMEZONEINFORMATION

 s)0ADDRESSANDROUTESETTING

 s $IRECTORYSETTINGS�E�G��$.3�,IGHTWEIGHT$IRECTORY!CCESS0ROTOCOL�.ETWORK
Information Service)

 s 'RAPHICSANDKEYBOARDSETTINGS

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 127

 s 3ECURITYPOLICY

 s ,ANGUAGEINFORMATION

 s 2OOTPASSWORD

The file isn’t technically part of the profile (because it’s not included in the

 file); it’s used earlier than profile information in the JumpStart installation process.

7EDOSTOREITINTHESAMEPROFILEDIRECTORYWHERETHERESTOFaurora’s JumpStart configu-

ration files are kept, simply because it is convenient to do so. (For this reason, we describe

it here in the section about setting up your profile server.)

Like the rest of our JumpStart files, ISATEXTFILE�7ECREATEDITFORTHEHOST
aurora in the directory, with these contents:

SYSIDCFG AND IP ADDRESS ASSIGNMENT

Note that you cannot specify the IP address of a Solaris system in the file after the system

gets its IP address from Reverse Address Resolution Protocol (RARP) and the network- boot process

(as we’re configuring here). The installation will fail when the host tries to find a matching rule in the

 file—you’ll get an error that no matching rules were found.

7ESPECIFIED so that the installation would assume that the

LOCALTIMEWASOKAY�7E�LLCONFIGURENETWORKBASEDTIMESYNCHRONIZATIONUSINGCFENGINE
AFTERINITIALHOSTINSTALLATION�IN#HAPTER�	�

%XPERIENCED3OLARIS3!SWILLRECOGNIZETHESESYSTEMSETTINGSASTHEEARLIESTPROMPTS
in an interactive Solaris installation. The Custom JumpStart process uses the file

to answer these questions automatically.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION128

For more information on the file, see the man page or

ew.

Creating the postinstall Script

7Eneed to customize our system after the JumpStart installation is complete, but before

the host boots for the first time. In many JumpStart scenarios, the system doesn’t boot all

the way to the console login prompt, but pauses when partially done with the first boot

and prompts the user for information about power management settings or the NFSv4

default domain setting. Our script works around those two issues, and also sets up cfen-

GINEWHENTHESYSTEMBOOTSFORTHEFIRSTTIME�7EPROVIDEDETAILSONHOWTOACCOMPLISH
this in the following explanation of our SCRIPT�7EEXPLAINTHESCRIPTSECTION
by section:

(EREWEPUTAN3!�SPERSONAL33(PUBLICKEYINTOTHE account’s

file. This allows for secure and easy login to the system.

NNote The public key placed into the user’s authorized_keys file is shortened for the purposes of this

book. You can find the code samples for this chapter, including the unabbreviated version of this script, in

the Downloads section of the Apress web site ().

Note that JumpStart mounts the future root filesystem at �7E�LLUSETHISPATHFOR
the rest of this script.

The next section of code is used to detect the version of Solaris that the system is

running:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 129

7EEXPECTTOBEINSTALLINGONLY3OLARIS��SYSTEMS�BUTIT�SWISETOENSURETHATWE
effect changes only on the system types where we’ve tested this procedure. The settings

FOR3OLARIS�WOULDSURELYDIFFER�ANDWEDON�TYETKNOWIF3OLARIS��WILLBECONFIGUREDTHE
SAMEWAY�7EAVOIDERRORSTHROUGHDEFENSIVESCRIPTING�

(EREWE�RECREATINGANINITSCRIPTTHATWILLBERUNWHENTHESYSTEMISFIRSTBOOTED�

The following procedure simply won’t work from within a JumpStart installation

environment, so we make it happen when the real system comes up after JumpStart. The

script continues, with the contents of the script:

A software repository hosted at contains prepackaged

freeware for Solaris systems. It resembles the popular site,

but we prefer Blastwave. It is a community of capable developers and users adhering to

 high- quality standards for the software they upload to the site. In addition, you accom-

plish installation of packages from the repository through a command- line interface

SIMILARTO$EBIAN�S tool. The Blastwave tool is called ET�(ERE�UPONOUR
host’s first boot, we use to install several useful freeware tools, the most impor-

tant of which is cfengine:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION130

This next code snippet is basically our script from Chapter 5, integrated

into the JumpStart script. In it, we set up the initial bootstrap and

 files for the first run:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 131

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION132

The script runs only once, and upon completion it moves itself

to a file name that won’t be executed by Solaris upon subsequent boots:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 133

The rest of the entries are well commented, and shouldn’t need any additional expla-

nation. This concludes our JumpStart script.

Creating the rules File

The file is a text file that contains a rule for each system or group of systems on

WHICHYOUINTENDTOINSTALL3OLARIS�%ACHRULEUSESSYSTEMATTRIBUTESTOMATCHAPROFILE
to the system being installed. A file entry can match a profile to a system based

on the system’s hostname or hardware attributes, or it can simply match all hosts to

a default profile. (For more information, see

).

A file has four basic fields:

 1. 2ULEKEYWORDSANDRULEVALUE

 2. Begin script

 3. Profile

 4. Finish script

7E�LLBEGINOUR file using the sample file in the directory:

%DITTHE FILETOUTILIZETHEFILESWE�VECREATEDFOROURFIRSTSYSTEM�(ERE�SOUR
 file, excluding comments:

This will match any system because of the keyword. For now there’s nothing

SYSTEMSPECIFICINOUR*UMPSTARTSETUP�SOHAVINGTHEFILEAPPLYTOALLSYSTEMSISFINE�7E
LEAVETHEhBEGINSCRIPTvFIELDESSENTIALLYEMPTYBYPUTTINGINAHYPHEN�WESPECIFYTHE

PROFILEFORTHETHIRDFIELD�ANDWESETTHEhFINISHSCRIPTvFIELDTOBEOURRECENTLY
created script (documented earlier).

Now we need to validate the file, which will create the FILE�THEFILE
actually used during installation:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION134

(If you encounter problems during validation, refer to the Sun documentation

for troubleshooting help:

ew.) After successful validation, you now have the file

in the same directory as the file:

Adding an Installation Client

Installation clients get access to the profile- server files when you run the

 command as , which will add entries to the file. The settings in

the file are handed out when clients boot using �9OUDON�TNEEDTOTAKE
manual steps beyond the step.

Our host aurora, whose IP address is �ISALREADYCONFIGUREDINTHE$.3
WITHFORWARDANDREVERSEENTRIES�7ECOLLECTTHEHOST�S%THERNET-!#ADDRESSBYCONNECT-

ing to its serial port and watching the boot messages:

Now that our host aurora has all that it needs, we’ll boot it from the network. Issue

this command at the prompt:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 135

7ITHour carefully configured postinstallation script, the system should boot back up

into Solaris without prompts at the console for information such as power management

settings or the NFSv4 default domain. It’s entirely possible that your list of packages, if

it differs from the ones in the profile used here, could generate inter active

prompts during the first boot. If so, you’ll need to take steps in either the JumpStart config-

uration files or the postinstallation script to configure the host properly during installation.

The host aurora booted up into multiuser mode (runlevel 3) without any problems,

ANDWHENWEFIRSTCONNECTEDVIA33(WEWEREGREETEDWITHOURSITESPECIFICMESSAGEOF
the day as configured by cfengine:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION136

Success!

)FYOURSYSTEMDOESN�TBOOTFROMTHENETWORK�CHECKYOUR-!#AND)0ADDRESSESUSED
in the command. If those settings appear to be correct, check that

you have RUNNINGUNDER)0V��NOTJUST)0V��/N3OLARIS���EDIT and

make sure this line is there:

If you have to add it, make sure that you run this code afterward to convert the

ENTRYTOAPROPER3ERVICE-ANAGEMENT&ACILITY�3-&	SERVICE�

At this point, we’ve set up the three Custom JumpStart roles on our single Solaris

INSTALLATIONHOST�ANDWE�VEIMAGEDANEWSYSTEM�7EREALIZETHAT*UMP3TARTHAS
a steeper learning curve than FAI, but stick with it if you encounter problems. Once you

have profiles and postinstallation scripts working to your liking, JumpStart will prove

invaluable due to the unattended and consistent imaging it provides for all new Solaris

hosts at your site.

Kickstart for Red Hat

The AUTOMATEDINSTALLATIONSYSTEMFOR2ED(AT,INUXISCALLED+ICKSTART�4HISSYSTEMUSES
a single configuration file, called a kickstart file, to answer all the questions that would

normally be asked during interactive installation.

+ICKSTARTRESEMBLES&!)AND*UMP3TARTINTHATITSUPPORTSNETWORKBOOTING�08%�IN
this case), followed by a fully unattended installation. One of its main strengths is that

2ED(ATMAKESAVAILABLEAGRAPHICALUTILITYTOCREATEORMODIFYKICKSTARTFILES�CALLED+ICK-

start Configurator. This tool helps reduce errors and explain the meaning of fields in the

file. It further proves its friendliness toward the SA by displaying the raw textual content

OFTHEFILEFORTHE3!�SINSPECTION�OREVENFURTHERMODIFICATION	�3O+ICKSTARTAPPEALSTO
 first- time users as well as seasoned veterans.

7ECOVER+ICKSTARTFOR2ED(AT%NTERPRISE,INUXVERSION����&EDORAAND#ENT/3
JumpStart configuration should be similar, but we make no attempt here to cover the

differences.

2ED(ATHASVERYGOODDOCUMENTATIONON+ICKSTARTINITSINSTALLATIONGUIDE�

�7E�LLCOVERJUSTTHEBASICSREQUIREDTOGET+ICKSTARTRUNNINGANDTOINSTALLAPARTICU-

lar host configuration.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 137

Performing a PXE- Boot Kickstart Installation

Follow THESESTEPSTOPERFORMA+ICKSTARTINSTALLATIONFROMTHENETWORK�

 1. Create the kickstart file.

 2. Create and share the installation tree via NFS.

 3. Place the kickstart file in the NFS share.

 4. #ONFIGURE4&40FOR08%BOOTING�

 5. Start the TFTP service.

 6. Configure one or more hosts for network boot.

 7. #ONFIGURE$(#0�

 8. "OOTYOURCLIENTFROMTHENETWORKUSING08%BOOTANDLETTHEINSTALLATION
commence.

Getting the Kickstart Host

Once again, we’re faced with the chicken-and- egg problem of where to get our instal-

LATIONHOST�INTHISCASEFOR2ED(AT,INUX�7ECHOSEAGAINTOUSE6-WARE�ANDWE
PERFORMEDANINTERACTIVEINSTALLATIONFROM6�)NSTEADOFCOVERINGTHEENTIREINSTALLA-

TION�WE�LLJUSTMENTIONACOUPLEOFIMPORTANTPOINTS�

 s !TTHEFIREWALLSCREENDURINGTHEINSTALLATION�WECHOSETOALLOW.&3V�AND33(
traffic.

 s !TTHE3%,INUXSCREENWECHOSETODISABLE3%,INUX�

7ENAMEDTHESYSTEMrhmaster and gave it the IP address .

Creating the Kickstart File

The kickstart file is a text file containing a series of keywords. Order is important in the

FILE�WHICHISONEOFTHEMAINREASONSFORUSINGTHEGRAPHICAL+ICKSTART#ONFIGURATOR
application.

%VERY2ED(AT,INUXINSTALLATION�WHETHERPERFORMEDINTERACTIVELYORVIA+ICKSTART�
stores a kickstart file at documenting the way the system was

INSTALLED�9OUCANUSETHISFILETOCHOOSETHESAMEINSTALLATIONOPTIONSAGAINONMANY
hosts, or to restore the host’s OS installation in the event that it fails (assuming the file

was saved in a safe place!).

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION138

4HE+ICKSTART#ONFIGURATORapplication can open a preexisting kickstart file for edit-

ing, or start a new file from scratch. To use the application, you’ll need to run a graphical

DESKTOP�/FCOURSEIT�SPOSSIBLETODISPLAY87INDOW3YSTEMAPPLICATIONSONAREMOTEDIS-

play, but we won’t illustrate how to do that here.

7ERECOMMENDSTARTING+ICKSTART#ONFIGURATORFROMATERMINALWINDOW�4HISIS
because the documentation claims that the application path is

rt, but on our system it is installed in . Try executing both paths inside

a terminal window.

If you don’t have either, install the package and try again.

Basic Configuration Screen

Launching +ICKSTART#ONFIGURATORLANDSYOUATTHE"ASIC#ONFIGURATIONSCREEN�3ELECT
° ° in the USER�SHOMEDIRECTORY�3TARTINGOUTYOUR+ICKSTART
configuration with the settings from your existing system will make this process easier.

9OUSHOULDNOTSPECIFYTHESAMEINSTALLATIONKEYASYOUREXISTINGSYSTEM�9OUMIGHTWANT
to change the password used for the new system. The single most important setting

ONTHISSCREENISPROBABLYTHEh2EBOOTSYSTEMAFTERINSTALLATIONvBOX�)FYOUDON�TCHECK
THISBOX�YOURSYSTEMWILLSIMPLYPAUSEAFTERCOMPLETIONOFTHE+ICKSTARTINSTALLATION�
That’s probably not what you want.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 139

Installation Method Screen

Select THE)NSTALLATION-ETHODITEMINTHELEFTHANDPANE�KEEPh0ERFORMNEWINSTALLA-

TIONvSELECTED�ANDSELECTh.&3vUNDERh#HOOSETHEINSTALLATIONMETHOD�v7HENYOUDO
THAT�YOU�LLSEETWONEWTEXTBOXESTHATREQUIREENTRIES�h.&33ERVERvANDh.&3$IRECTORY�v
!CCORDINGTOTHE2ED(ATINSTALLATIONDOCUMENTATION�THELATTERNEEDSTOBETHEhDIRECTORY
CONTAININGTHEVARIANTDIRECTORYOFTHEINSTALLATIONTREE�v)NOURCASE�WE�REINSTALLINGTHE
Server variant, and the Server directory we’ll set up is . In the

h.&33ERVERvBOX�ENTEROUR+ICKSTARTSERVER�rhmaster) host’s IP (), and in

THEh.&3$IRECTORYvBOX�ENTERTHEFILESYSTEMLOCATIONWHEREYOUPLANTOCOPYTHE6
for later installation (in our case it is).

Boot Loader Options Screen

Next, select Boot Loader Options in the left- hand pane. This panel will be disabled if you

SELECTEDANARCHITECTUREOTHERTHANX��ORX��?���5NCHECKh5SE'25"PASSWORD�v
!SFORTHEh+ERNELPARAMETERSvFIELD�KEEPTHE parameter. It filters kernel mes-

sages during boot to show only warning and higher- severity kernel messages. The

PARAMETERISA2ED(ATnSPECIFICOPTIONTOENABLETHE2ED(ATGRAPHICALBOOTFACILITY�SO
we’ll keep it.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION140

Partition Information Screen

Next, CLICKTHE0ARTITION)NFORMATIONENTRYINTHELEFTHANDPANE�7E�REINSTALLINGONNEW
MACHINES�SOSELECTh#LEAR-ASTER"OOT2ECORD�vh2EMOVEALLEXISTINGPARTITIONS�vAND
h)NITIALIZETHEDISKLABEL�v)TISALWAYSWISETOTAKECONTROLOFTHEENTIREDISKFORASERVER
installation to fully utilize disk space and to clear the drive of any previous contents.

4OADDAPARTITION�CLICKTHEh!DDvBUTTON�9OU�LLGETAPOPUPWINDOWTHATLETSYOU
configure the first partition.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 141

Configure SWAPFIRSTTOBEAFIXEDSIZE�THENCLICKh/+�v4HISWILLSENDYOUBACKTOTHE
MAIN0ARTITION)NFORMATIONSCREEN�/NCETHERE�CLICKh!DDvAGAINTOADDAROOTPARTITION
that fills up the rest of the disk.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION142

Once you’ve configured those two partitions, your Partition Information screen will

look like this:

Network Configuration Screen

Select THE.ETWORK#ONFIGURATIONSCREENANDSETUPANETWORKDEVICE�%DITYOURNETWORK
interfaces as appropriate.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 143

#LICKTHEh%DIT.ETWORK$EVICEvBUTTONANDUPDATETHEh)0!DDRESSvSETTINGTOADIF-
FERENTSTATIC)0�THEONEFORTHENEWHOST�

Authentication Screen

Select THE!UTHENTICATIONENTRYINTHELEFTHANDPANE�9OUDON�TNEEDTOCHANGEANYSET-

TINGS�h5SE3HADOW0ASSWORDSvANDh5SE-$�vSHOULDALREADYBECHECKED�

Firewall Configuration Screen

Select THE&IREWALL#ONFIGURATIONENTRYINTHELEFTHANDPANE�+EEPTHEh%NABLEFIREWALLv
SECURITYSETTINGANDSET3%,INUXTOh$ISABLED�v$ON�TSETANYTRUSTEDDEVICES�5NDER
h4RUSTEDSERVICES�vCHECKh777�(440	vANDKEEP33(CHECKED�

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION144

Display Configuration Screen

In THE$ISPLAY#ONFIGURATIONSCREEN�UNCHECKh#ONFIGURETHE87INDOW3YSTEM�vWHICH
GRAYSOUTTHERESTOFTHESCREEN�9OUSHOULDSTILLBEABLETODISPLAY8APPSREMOTELYON
another system if you need to, but otherwise you probably won’t need X on the host.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 145

Package Selection Screen

Select the Package Selection entry in the left- hand pane. The middle pane will already be

ONh$ESKTOP%NVIRONMENTS�vANDITHASh'./-%$ESKTOP%NVIRONMENTvSELECTEDINTHE
RIGHTHANDPANE�9OUCANUNCHECKIT�HOWEVER�BECAUSEWEDON�TNEEDITONASERVER�

.OWSELECTh!PPLICATIONSvINTHEMIDDLEPANE�)NTHERIGHTHANDPANE�KEEPONLY
h%DITORSvANDh4EXTBASED)NTERNETvCHECKED�

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION146

Under h$EVELOPMENTvINTHEMIDDLEPANE�DON�TSELECTANYCHECKBOXES�

5NDERh3ERVERSvINTHEMIDDLEPANE�SELECTONLYh7EB3ERVERv�

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 147

Under h"ASE3YSTEMvINTHEMIDDLEPANE�SELECTh!DMINISTRATION4OOLS�vh"ASE�vAND
h,EGACY3OFTWARE3UPPORTv�

.OWSELECTh6IRTUALIZATIONvINTHEMIDDLEPANEANDUNCHECKh6IRTUALIZATIONvINTHE
 right- hand pane:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION148

7HENYOUSELECTh,ANGUAGESvINTHEMIDDLEPANE�YOU�LLSEETHATNONEOFTHELAN-

GUAGESLISTEDINTHERIGHTHANDPANEARESELECTED�+EEPITTHATway:

Preinstallation Script Screen

Select Pre- Installation Script in the left- hand pane and leave the screen’s text box blank:

Postinstallation Script Screen

Select Post- Installation Script in the left- hand pane and paste in this small script to copy

over some cfengine binaries and to run at boot:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 149

7E�REdone! Save the file to .

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION150

Kickstart File Contents

(ERE�Sthe full file:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 151

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION152

Creating the Installation Tree and Making It Available

7E�LLUSEA2ED(AT%NTERPRISE,INUX���6)3/TOCREATEOURINSTALLATIONTREE�&IRST�
MOUNTTHE6ASALOOPBACKFILESYSTEM�

Use the command to verify that it is mounted properly:

Now you can create the installation tree directory:

Next, we need to set up the NFS server. Navigate to System ° Administration °

Server Settings to configure NFS:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 153

Use the applet (found in the graphical desktop at °

°) to share the directory over NFS. Allow

 read- only access to the subnet:

Copy the previously created kickstart file to our new NFS share.

4HISISTHELOCATIONWE�LLREFERENCEINTHE08%BOOTCONFIGURATION�DESCRIBEDINTHE
NEXTSECTION�h3ETTING5P.ETWORK"OOTv	�

4OINSTALLCFENGINEONYOUR2ED(ATSYSTEMS�COMPILECFENGINE�����ANDINSTALLITTO
 on the rhmaster machine. Copy the installation to

SOTHAT+ICKSTARTCLIENTSCANMOUNTANDCOPYTHEFILES�4HENPLACE
 in so that it can be copied over with the rest of the

installation.

4HE+ICKSTART file is the same file from

ONTHECFENGINEMASTER�)TISALREADYWRITTENTOBOOTSTRAP2ED(AT
systems, so our script simply needs to copy the cfengine binary directory to

the correct location on the local system, and run upon boot. The

script takes care of all of this.

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION154

Setting Up Network Boot

Now that we have our kickstart file ready, we need to set up network booting.

Trivial File Transfer Protocol (TFTP)

7E�LLneed the and packages, which aren’t installed by default,

ACCORDINGTOTHE2ED(AT)NSTALLATION'UIDE�5SE to install the packages.

Interestingly, our rhmaster system did already have the package installed.

It had even placed the files required for boot into :

That saves some steps. If the packages aren’t on your system, here’s how to popu-

late it: the package creates the DIRECTORY�7E�LLNEEDTOCREATETHE
 directory:

Create gs:

Copy the .msg files from the directory on the installation tree:

.OWITISTIMETOSETUPSUPPORTFORTHERELEASEANDVARIANTOF2ED(ATWE�REPLANNING
TOUSE�7ECANSUPPORTDIFFERENTVARIANTS�SERVERVS�WORKSTATION	ANDVERSIONS�2ED(AT
���VS�2ED(AT���	FROMTHESAME08%SERVER�/NOURSYSTEM�WE�LLBESETTINGUPONLY���
Server, although we can extend it later if we need to.

7ENEEDTOSETUPAN/3SPECIFICDIRECTORYUNDERNEATH ll:

Copy the and files from the directory of your instal-

lation tree to the OS- specific directory:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 155

.EXT�WENEEDTOSETUP08%CONFIGFILES�#REATETHE
 directory:

The directory will need a file for each system

to be installed. The file’s name is either the hostname or IP address of the system to be

booted/installed. If no matching file is found (based on IP or hostname), the config file

named is used. This is standard 08%�4&40SERVERCONFIGURATION�ANDIS
NOT2ED(ATnSPECIFIC�

4HE08%CONFIGFILEFOROURSYSTEMWITH-!#ADDRESS will be

���ANDTHEFILECONTENTSARE�

Next, enable and , the latter of which starts the daemon upon con-

nections from clients:

If was already running, restart it:

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION156

DHCP

If YOUR+ICKSTARTSERVERDOESN�TALREADYHAVE$(#0INSTALLEDANDRUNNING�OPENTHE!DD�
2EMOVE3OFTWAREMENUITEMONTHE!PPLICATIONSMENU�

5NDERTHE"ROWSETAB�SELECTh3ERVERSvINTHELEFTHANDPANE�THENh.ETWORK3ERVERSv
INTHERIGHTHANDPANE�.OWCLICKTHEh/PTIONALPACKAGESvBUTTON�

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 157

Then CLICKTHECHECKBOXFORhDHCPv�

#LICKTHEh#LOSEvBUTTON�THENTHEh!PPLYvBUTTON�4HENSELECTh#ONTINUEvUNDERTHE
h0ACKAGE3ELECTIONSvDIALOGBOXTHATPOPSUP�

(EREis the FILEFROMOUR+ICKSTARTSERVER�

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION158

7Eset up the host rhlampASOURFIRSTINSTALLATIONCLIENT�7EGATHEREDITS-!#
ADDRESSDURINGANATTEMPTED08%BOOTANDPUTTHErhlamp.campin.net forward and

REVERSEENTRIESINTOTHE$.3�

Installing a Host Using Kickstart

Set the BIOS on your installation client to boot from the network first, or press whatever

KEYISNECESSARYTOINTERRUPTTHENORMALBOOTSEQUENCEANDBOOTUSING08%�
)TWILLBEIMMEDIATELYAPPARENTIFTHE+ICKSTARTCONFIGURATIONISFULLYFUNCTIONAL�)FTHE

HOSTBOOTSPROPERLYUSING08%BUTCAN�TFINDOROTHERWISEGETALLTHEINFORMATIONITNEEDS
from the file, it will go into an interactive installation. If it doesn’t boot at all, then

YOUNEEDTOTROUBLESHOOTYOUR$(#0�TFTPDCONFIGURATION�
7HENITREBOOTSAFTER+ICKSTARTCOMPLETION�ITWILLNOTBEREGISTEREDWITH2(.�

WHICHISREQUIREDTOUSETHE2ED(ATSOFTWARECHANNELS�4HETOOL

WASDESIGNEDTOREGISTERHOSTSNONINTERACTIVELY�SUCHASFROM+ICKSTARTINSTALLATION
SCRIPTS�9OU�LLFINDANEXAMPLEINTHE2ED(AT)NSTALLATION'UIDE�

.

The Proper Foundation
Our site now has the two most critical pieces of core infrastructure:

 1. Automated installation

 2. Automated configuration

CHAPTER 6 N SETTING UP AUTOMATED INSTALLATION 159

7EHAVETHEABILITYTODEPLOYNEW2ED(AT�$EBIAN�AND3OLARISSYSTEMSRAPIDLY�
4HESESYSTEMSWILLJOINOURINFRASTRUCTUREANDWILLBEAUTOMATICALLYMANAGEDBYCFENGINE�
This puts us in the enviable position of not needing to manually log into any systems to

MAKECHANGES�7E�LLMAKECHANGESCENTRALLY�ANDALLOWCHANGESTOTAKEPLACEVIAAUTO-

MATEDMEANS�ANDAUTOMATEDMEANSonly.

In the next chapter, we’ll take advantage of this foundation to start configuring

important infrastructure services, with almost all of our activity actually taking place on

the cfengine master instead of on the hosts running those services.

161

C H A P T E R 7

Automating a New System
Infrastructure

Every UNIX- based site requires a similar list of infrastructure services in order to func-

tion. All sites need to keep the correct time, route e-mail from system processes (such

as cron jobs, and in our case) to the correct place, convert hostnames into IP

addresses, and control user accounts.

We think it’s only fair to warn you that this chapter won’t go into great detail on the

protocols and server software that we’ll configure. If we had to explain DNS, NTP, SMTP,

NFS, the automounter, and UNIX authentication files in great detail, the chapter would

never end. Additionally, it would draw focus away from our goal of automating a new

infrastructure using cfengine. We’ll recommend other sources of information for the pro-

tocols and server software as we progress though the chapter.

When we refer to files in the cfengine repository on our central host

(goldmaster), we’ll use paths relative to . This means that

the full path to is

.

Implementing Time Synchronization
Many programs and network protocols fail to function properly when the clock on two

systems differ by more than a small amount.

The lack of time synchronization can cause extensive problems at a site. These are

the most common:

 s %MAILMESSAGESHAVETHEINCORRECTTIME�

 s ,OGENTRIESCANNOTBECORRELATEDACROSSDIFFERENTSYSTEMS�

 s -ONITORINGALERTSSPECIFYTHEINCORRECTTIMEFOROUTAGES�

 s !UTHENTICATIONTRANSACTIONSFAIL�

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE162

 s !UTOMATIONSYSTEMCHANGESBASEDONFILEMODIFICATIONTIMESWORKIMPROPERLY�

 s 3OFTWAREBUILDTOOLSSUCHASmake (which depend on file- modification times)

break.

We’ll tackle Network Time Protocol (NTP) configuration before any other infra-

structure setup tasks. We won’t go into the level of detail that you’ll want if you’re

deploying NTP across hundreds or thousands of systems. If that’s the case, accept our

apologies and proceed over to to browse the online documentation,

or head to your nearest bookseller and pick up a copy of Expert Network Time Protocol

by Peter Rybaczyk (Apress, 2005).

The fact that we already have six hosts at our example site without synchronized

clocks is a potential problem. The daemon will refuse to serve files to clients if

the clocks on the systems differ by more than one hour. You can turn off this behavior

with this setting in :

It might make sense to turn it off during the initial bootstrapping phase at your site,

before you deploy NTP.

NTP is the Internet standard for time synchronization. Interestingly, it’s one of the

oldest Internet standards still in widespread use. NTP is a mechanism for transmitting

the universal time (UTC, or Coordinated Universal Time) between systems on a network.

It is up to the local system to determine the local time zone and Daylight Saving settings,

if applicable. NTP has built- in algorithms for dealing with variable network latency, and

can achieve rather impressive accuracy even over the public Internet.

External NTP Synchronization

The ntp.org web site has a list of public NTP servers here:

. These are groups of public NTP servers that use round- robin DNS

to enable clients to make a random selection from the group. Both Red Hat and Debian

have NTP pools set up this way, and the NTP packages from those distributions utilize

these pools by default.

Our intention is to have two of our internal servers synchronize to an external source,

and have the rest of our systems synchronize from those two. This is the polite way to

utilize a public NTP source: placing as little load as possible on it. We don’t want a single

system to perform off- site synchronization for our entire network because it becomes

a single point of failure. We generally want to set up DNS aliases for system roles such as

NTP service, but NTP configuration files use IP addresses. This actually works out well

because we have yet to set up internal DNS.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 163

Internal NTP Masters

We’ll use our cfengine master host (goldmaster.campin.net) and our Red Hat Kickstart

system (rhmaster.campin.net) as the two systems that sync to an external NTP source.

NNote There is no reason to choose Linux over Solaris systems to handle this role. You should find it

quite easy to modify this procedure to use one or more Solaris systems to synchronize off site instead, and

have all other systems synchronize to the internal Solaris NTP servers.

The Red Hat system already had installed (the RPM package). If you wish

to graphically configure NTP on Red Hat, you’ll need to have the

RPM installed. Basic NTP configuration is straightforward, so we’ll stick with text- based

methods of configuration.

The Debian system didn’t have the required packages installed, so we used to

install the package. We went back to our FAI configuration and added the line to

the file so that all future Debian installs have the

package by default. Our Kickstart installation process already installs the RPM, so we

don’t have to make any Kickstart modifications.

Here is the file that we’ll use on our systems that synchronize to

 off- site NTP sources:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE164

Both Red Hat and Debian have a dedicated user to run the NTP daemon process.

The user account, named “ntp,” will need write access to the directory.

When you name a subnet using the keyword and omit the keyword,

the server allows NTP client connections from that subnet.

Configuring the NTP Clients

Now that we have working NTP servers on our network, we need configuration files for

THE,INUX�BOTH2ED(ATAND$EBIAN	AND3OLARISSYSTEMSONOURNETWORK�7EREFERTOTHE
systems running NTP to synchronize only with internal hosts as NTP “clients.”

Solaris 10 NTP Client

You’ll find it easy to configure a single Solaris 10 system to synchronize its time using

NTP. We will automate the configuration across all our Solaris systems later, but will first

test our configuration on a single host to validate it. Simply copy to

, and comment out these lines:

Add lines for our internal NTP servers:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 165

Create the file as using the command, and enable the

 service:

It’s really that easy. Check the log file for lines like this, indicating

success:

Red Hat and Debian NTP Client

We use the same NTP configuration- file contents for all the remaining Debian and

Red Hat hosts at our site, shown here:

You’ll notice that these file contents resemble the contents of the configuration file

used on the hosts that sync off site. The difference here is that we have no lines,

and we added new lines specifying our local NTP server systems.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE166

Copying the Configuration Files with cfengine

Now we will distribute the NTP configuration file using cfengine, including automatic

daemon restarts when the configuration file is updated. First, put the files into a suitable

place in the cfengine master repository (on the host goldmaster):

You might remember that we created the directory back when we first set up the

 repository. The file is meant for rhmaster and goldmaster,

the hosts that synchronize NTP using off- site sources. The file is for all remain-

ING,INUXHOSTS�AND is our Solaris 10 NTP configuration file.

We’ll create a task file at the location on the cfengine

master (goldmaster). Once the task is written, we’ll import it into the

 file for inclusion across our entire site. Here is the task file:

Now we define a simple group of two hosts, the machines that sync off site:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 167

In the section, you define class- specific variables for use in the and

actions:

If we didn’t use variables for the location of the NTP drift file and the owner of the

 process, we would have to write multiple stanzas. When the entry is duplicated

with a small change made for the second class of systems, you face a greater risk of mak-

ing errors when both entries have to be updated later. We avoid such duplication.

We also manage to write only a single stanza, again through the use of variables:

Here we copy out the applicable NTP configuration file to the correct location for

each operating system. When the file is successfully copied, the class is

defined. This triggers actions in the following section:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE168

When the file is updated, the class is defined, and it causes the

 daemon process to restart. Based on the classes a system matches, the

class causes cfengine to take the appropriate restart action.

Note that we have two almost identical restart commands for the and

classes. We could have reduced that to a single stanza, as we did for the and

actions. Combining those into one action is left as an exercise for the

reader.

Now let’s look at the section:

In this section, we could have used the classes to trigger the delivery of

a HUP signal to the running process. We don’t do that because a HUP signal causes

the PROCESSTODIE�&ORTHISREASON�WEUSETHEINITSCRIPTSON,INUXANDTHE3-&ON
Solaris.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 169

THE SOLARIS SERVICE MANAGEMENT FACILITY

The Service Management Facility, or SMF, is a feature introduced in Solaris 10 that drastically changed

the way that services are started. We consider it a huge step forward in Solaris, because it allows ser-

vices to start in parallel by default. Plus, through the use of service dependencies, the SMF will start

services only when the services that they depend on have been properly started.

Most of the services that Solaris traditionally started using scripts in run- level directories (e.g.,

) are now started by the SMF. The SMF adds several other improvements over simple

startup scripts:

s 3ERVICESTHATEXITWILLBERESTARTEDAUTOMATICALLYSEVERALTIMES�!FTERALIMITISREACHED�THE3-&
performs no further restarts and the service enters a “maintenance” state.

s 9OUCANUSECOMMANDLINEUTILITIESTOQUERYTHESTATEOFANY3-&MANAGEDSERVICE�INCLUDINGTHE
reason why a service failed to start.

s 9OU�LLEXPERIENCEFASTERBOOTUPTIME�

s 4HE3-&TAKESSNAPSHOTSOFSERVICECONFIGURATIONSAUTOMATICALLY�MAKINGSERVICERESTORATION
easier when errors are introduced.

4OLEARNMOREABOUTTHE3-&�READ3UN�S"IG!DMININTRODUCTIONHERE�
.

This task represents how we’ll write many of our future cfengine tasks. We’ll define

variables to handle different configuration files for different system types, then use

actions that utilize those variables.

The required entry in to get all our hosts to import the

task is the file path relative to the directory:

If you decide that more hosts should synchronize off site, you’d simply configure

ANADDITIONAL,INUXHOSTTOCOPYTHE file instead of the file.

You’d need to write a slightly modified Solaris config file if you choose to have

a Solaris host function in this role. We haven’t done so in this book—not because Solaris

isn’t suited for the task, but because we needed only two hosts in this role. You’d then

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE170

add a new LINETOTHE.40CLIENTCONFIGURATIONFILEON,INUX�ORANEW line

for Solaris NTP clients. That’s three easy steps to make our site utilize an additional local

NTP server.

An Alternate Approach to Time Synchronization

We can perform time synchronization at our site using a much simpler procedure than

running the NTP infrastructure previously described. We can simply utilize the

utility to perform one- time clock synchronization against a remote NTP source. To man-

ually use once, run this at the command line as

Note that will fail if a local process is running, due to contention for the

local NTP TCP/IP port (UDP/123). Temporarily stop any running processes if you

want to test out .

We consider this method of time sychronization to be useful only on a temporary

basis. The reason for this is that will immediately force the local time to be identi-

cal to the remote NTP source’s time. This can (and often does) result in a major change to

the local system’s time, basically a jump forward or backward in the system’s clock.

By contrast, when sees a gap between the local system’s time and the remote

time source(s), it will gradually decrease the difference between the two times until they

match. We prefer the approach that uses because any logs, e-mail, or other infor-

mation sources where the time is important won’t contain misleading times around and

during the clock jump.

Because we discourage the use of , we won’t demonstrate how to automate its

usage. That said, if you decide to use at your site, you could easily run it from cron

or a cfengine section on a regular basis.

Incorporating DNS
The Domain Name System (DNS) is a globally distributed database containing domain

names and associated information. Calling it a “name-to-IP- address mapping service”

is overly simplistic, although it’s often described that way. It also contains the list of mail

servers for a domain as well as their relative priority, among other things. We don’t go

into great detail on how the DNS works or the finer details of DNS server administration,

but you can get more information from DNS and BIND, Fifth EditionBY#RICKET,IUAND
Paul Albitz (O’Reilly Media Inc., 2006), and the Wikipedia entry at

.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 171

Choosing a DNS Architecture

Standard practice with DNS is to make only certain hostnames visible to the general pub-

lic. This means that we wouldn’t make records such as those for goldmaster.campin.net

available to systems that aren’t on our private network. When we need mail to route to

us from other sites properly or get our web site up and running, we’ll publish MX records

(used to map a name to a list of mail exchangers, along with relative preference) and an

A record (used to map a name to an IPv4 address) for our web site in the public DNS.

This sort of setup is usually called a “split horizon,” or simply “split” DNS. We

have the internal hostnames for the hosts we’ve already set up (goldmaster, etchlamp,

rhmaster, rhlamp, hemingway, and aurora) loaded into our campin.net domain with

a DNS- hosting company. We’ll want to remove those records at some point because they

reference private IP addresses. They’re of no use to anyone outside our local network and

therefore should be visible only on our internal network. We’ll enable this record removal

by setting up a new private DNS configuration and moving the private records into it.

Right about now you’re thinking “Wait! You’ve been telling your installation clients to

use for both DNS and as a default gateway. What gives? Where did that host

or device come from?” Good, that was observant of you. When we mentioned that this

book doesn’t cover the network- device administration in our example environment, we

meant our single existing piece of network infrastructure: a Cisco router at

that handles routing, Network Address Translation (NAT), and DNS- caching services.

After we get DNS up and running on one or more of our UNIX systems, we’ll have cfen-

gine configure the rest of our systems to start using our new DNS server(s) instead.

Setting Up Private DNS

We’ll configure an internal DNS service that is utilized only from internal hosts. This will

be an entirely stand- alone DNS infrastructure not linked in any way to the public DNS for

campin.net.

This architecture choice means we need to synchronize any public records (currently

hosted with a DNS- hosting company) to the private DNS infrastructure. We currently

have only mail (MX) records and the hostnames for our web site (http://www.campin.net

and campin.net) hosted in the public DNS. Keeping this short list of records synchronized

isn’t going to be difficult or time- consuming.

We’ll use Berkeley Internet Name Domain (BIND) to handle our internal DNS needs.

NNote "ESURETHATTHE").$SOFTWAREYOUINSTALLISRESISTANTTOTHE$.3PROTOCOLFLAWMADEPUBLICIN
*ULY�����!LSO�IFYOUR$.3SERVERSAREBEHIND.!4�MAKESUREYOUR.!4DEVICEDOESN�TDEFEATTHEPORT
RANDOMIZATIONTHATWORKSAROUNDTHEFLAW�&ORMOREINFORMATION�SEETHE#%24ADVISORYHERE�

.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE172

BIND Configuration

We’ll use the etchlamp system that was installed via FAI as our internal DNS server.

Once it’s working there, we can easily deploy a second system just like it using FAI and

cfengine.

First, we need to install the package, as well as add it to the set of packages that

FAI installs on the class.

In order to install the package without having to reinstall using FAI, run this

command as the user on the system etchlamp:

The package depends on other packages such as (and several more),

but will resolve the dependencies and install everything required. Because FAI

uses et, it will work the same way, so we can just add the line “bind9” to the file

 on our FAI host goldmaster. This will ensure that the pre-

ceding manual step never needs to be performed when the host is reimaged.

We’ll continue setting up etchlamp manually to ensure that we know the exact steps

to configure an internal DNS server. Once we’re done, we’ll automate the process using

cfengine. Note that the package creates a user account named “bind.” Add the lines

from your , , and files to your standardized Debian account files in

cfengine. We’ll also have to set up file- permission enforcement using cfengine. The BIND

installation process might pick different user ID (UID) or group ID (GID) settings from

the ones we’ll copy out using cfengine.

The Debian package stores its configuration in the directory. The

package maintainer set things up in a flexible manner, where the installation already has

the standard and required entries in , and the configuration files use

an directive to read two additional files meant for site- specific settings:

 s : You use this file to configure the options section

of . The options section is used to configure settings such as the name

server’s working directory, recursion settings, authentication- key options, and

more. See the relevant section of the BIND 9 Administrator’s Reference Manual for

more information: .

 s : This file is meant to list the local zones that this BIND

instance will load and serve to clients. These can be zone files on local disk, zones

slaved from another DNS server, forward zones, or stub zones. We’re simply going

to load local zones, making this server the “master” for the zones in question.

The existence of these files means that we don’t need to develop the configura-

tion files for the standard zones needed on a BIND server; we need only to synchronize

 site- specific zones. Here is the file as distributed by Debian:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 173

The only modification we’ll make to this file is to change the line to this:

Because we don’t intend to utilize IPv6, we won’t have BIND utilize it either.

The default Debian file has these contents:

Note the file. It is a list of “private” IP address ranges specified in

RFC1918. The file has these contents:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE174

It is a good idea to include this configuration file, with an important caveat we’ll

cover later. When you use this file, the zone file is loaded for all the RFC1918

address ranges. And because those are valid zone files with no entries for individual

reverse DNS records (i.e., PTR records), the DNS traffic for those lookups won’t go out to

the public DNS. A “host not found” response will be returned to applications looking up

the PTR records for IPs in those ranges. Those IP ranges are intended only for private use,

so the DNS traffic for these networks should stay on private networks. Most sites utilize

those ranges, so the public DNS doesn’t have a set of delegated servers that serves mean-

ingful information for these zones.

The caveat mentioned earlier is that we will not want to serve the file for

the range that we use at our site. This means we’ll delete this line from

:

Then we’ll uncomment this line in by deleting the two

slashes at the start of the line:

Next, you’ll need to create the campin.net and zone files. The

file has these contents:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 175

We created entries for our six hosts, our local gateway address, and some records

from our public zone.

Next, you need to create the “reverse” zone, in the file :

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE176

The keyword set all the following records to the subnet’s

 reverse DNS range. This made the records simpler to type in. Be sure to ter-

minate the names on the right- hand side of all your records with a dot (period character)

when you specify the fully qualified domain name.

Next, populate the file with these contents, to utilize our

new zone files:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 177

Restart BIND using the included init script:

,OOKfor errors from the init script, as well as in the log file. If the

init script successfully loaded the zones, you’ll see lines like this in the log file:

Test resolution from another host on the local subnet using the command:

This query returns the correct results. In addition, the flags section of the response

has the bit set, meaning that the remote server considers itself authoritative for the

records it returns. Do the same thing again, but this time query for a reverse record:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE178

Again, we have successful results. We had to modify only three included files (

, , and), and create two new ones (

 and). Now we know the file locations and file contents that we need in

order to host our private DNS on a Debian system running BIND.

Automating the BIND Configuration

We’ll create a cfengine task to distribute our BIND configuration, and as usual it will

restart the BIND daemon when the configuration files are updated.

Here are the steps to automate this process:

 1. Copy the BIND configuration files and zone files (that we created during the devel-

opment process on etchlamp) to the cfengine master.

 2. Create a cfengine task that copies the BIND configuration files and zones, and

restarts the BIND daemon when the files are copied.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 179

 3. Define a new “DNS server” role in cfengine using a class.

 4. Create a new hostgroup file for this new server role in cfengine.

 5. Import the new task into the new DNS server hostgroup file in cfengine.

 6. Import the new hostgroup file into , so that the hostgroup and task

are used.

 7. Test out the entire automation process for the DNS server role by reimaging the

DNS server host.

The first step is to get our files from etchlamp onto the cfengine master, in the correct

location. Create the directory on goldmaster:

Now copy those five files from etchlamp to the new directory on goldmaster:

Name the task and start the

task with these contents:

,ATERINTHISTASKWE�LLPERFORMPERMISSIONFIXESONTHE file, but we like to

make sure it’s actually there before we do it.

We’ll continue explaining the task. In the section

we tell cfengine about some classes that we dynamically define, and put in an entry for

:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE180

which is required when we use the action:

We use the action simply to detect whether the package is installed,

ANDWEGOWITHTHEVERSIONINSTALLEDBY$EBIAN����h%TCHv	ASTHEMINIMUMINSTALLEDVER-

sion. Assumptions will only lead to errors, so we double- check even basic assumptions

such as whether BIND has been installed on the system at all.

Here we use the action to start up BIND when it is missing from the process

list, but only if it’s one of our external caches, and only if the package is installed:

There’s no point in even trying to start BIND if it isn’t installed.

Here we copy the five files we placed into the directory to the host’s

 directory:

We carefully named the source directory because we might end up

deploying BIND to our Debian hosts later in some other configuration. Having a com-

plete source directory to copy makes the stanza simpler. We know that only the files

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 181

we want to overwrite are in the source directory on the cfengine master—so be careful

not to add files into the source that you don’t want automatically copied out. You also

have to be careful not to purge during your copy, or you’ll lose all the default Debian

 configuration files you depend on.

This section uses the class to trigger a restart of the BIND

daemon:

The class is defined when files are copied from the master, via the

line.

These file and directory settings fix the important BIND files and directory permis-

sions in the unlikely event that the bind user’s UID and GID change:

Such an event happens if and when we later synchronize all the user accounts across

our site. Now we’ll take steps to recover properly from a bind- user UID/GID change. Set

up an section to issue a warning when you designate a host as an

 but don’t actually have the package installed:

We use the action in this task, so we need to add packages to the

 in the file for cfengine to run it:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE182

Now we need to add the task to a hostgroup file, but it certainly isn’t a good fit for

the hostgroup. Create a new hostgroup file for the task and place it at

. That name was chosen carefully; we won’t assume that

all our caching DNS servers will be running Debian, or even BIND for that matter. The

role is to serve DNS to our network, and the hostgroup name is clear about that. The con-

tents of this new hostgroup file are:

Now we need to define an alias for the hosts that serve this role. We’ll edit

 and add this line:

Then we’ll edit and add an import for the new hostgroup file for the

 class:

Wait! If you were to run on etchlamp at this point, the file

 would not be imported, even though ’s

“Defined Classes” output shows that the class is set. Most people

learn this important lesson the hard way, and we wanted you to learn it the hard way as

well, so it will be more likely to stick.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 183

IMPORTS IN CFENGINE

)FAcfengine configuration file uses imports, then the entire file needs to be made up of imports. You

cannot use classes in the importing file that are defined in the imported file.

We encountered the second point when we imported the file from

, then tried to use the class in �4HISDOESN�T
WORK�BECAUSECFENGINEREADSINTHEIMPORTEDFILESONLYAFTERTHEMAINFILEISCOMPLETELYPARSED�7E�LL
NEEDTODOOURHOSTGROUPMAPPINGSINANIMPORTEDFILEASWELL�ANDWE�LLREORGANIZEOUR

directory just a little bit to compensate.

To reorganize in a way that will work with cfengine’s issues around imports but pre-

serve our hostgroup system, delete these two lines from :

Place the line in a new file, , with these contents:

Remember that any lines added below the import will apply

only to the class, unless a new class is specified. That is a common

error made by inexperienced cfengine- configuration authors, and often even experi-

enced ones.

We need to add the file to , by adding this line at

the end:

We don’t need to specify the class because it’s already inherent in all of this

task’s imports. In fact, unless otherwise specified, it’s inherent in every cfengine action.

Now we should validate that our hostgroup is being imported properly—by running

 on etchlamp�,OOKFORTHISLINEINTHEOUTPUT�

Success! All future hostgroup imports will happen from the

file. We’ll mention one last thing while on the subject of imports. Note that we don’t do

any imports in any of our task files. Any file containing actions other than should

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE184

not use the action at all. You can get away with this if you do it carefully, but we’ll

avoid it like the plague.

Remember that every host that ever matches the class

will import the file, and therefore will also import

the task. If a Solaris host is specified as a member of the

 class, it will not do anything unintended when it reads the

 task. This is because we specify the class for safety in

the class settings for all our actions. You could further protect non- Debian hosts by

importing the task only for Debian hosts from the file:

Importing the task this way is safer, but even if you do, you should make sure that

your cfengine configuration files perform actions only on the hosts you intend. Always

be defensive with your configurations, and you’ll avoid unintended changes. Up until

this point, we have purposely made our task files safe to run on any operating system and

hardware architecture by limiting the cases when an action will actually trigger, and we

will continue to do so.

Now it’s time to reimage etchlamp via FAI, and make sure that the DNS service is fully

configured and working when we set up etchlamp from scratch. Always ensure that your

automation system works from start to finish. The etchlamp host’s minimal install and

configuration work will take under an hour, so the effort and time is well worth it.

While etchlamp is reimaging, remove the old installation’s cfengine public key on

the cfengine master because the reimaging process will generate a new key. The host

etchlamp has the IP , so run this command on goldmaster as the user:

When etchlamp reboots after installation, the cfengine daemons don’t start up

because we have only the bootstrap and files in

. We need to make sure that runs once upon every reboot. Mod-

ify on the FAI server to add a line that will

run upon every boot, mainly to help on the first boot after installation:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 185

This configures the program to run from the file at

boot time. So, to recap: We started another reimage of etchlamp and removed

 again on the cfengine master while the host was

reimaging.

The host etchlamp returned from reimaging fully configured, with cfengine running.

Now every time a Debian host boots at our site after FAI installs it, it will run dur-

ing boot. Without logging into the host (i.e., without manual intervention), you can run

a DNS query against etchlamp successfully:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE186

What we have accomplished here is worth celebrating. If you suffer total system

failure on the host etchlamp, you can simply reimage a new host with the same host-

name and bring it back onto the network as a DNS server. This is exactly what we

want of all hosts at our site. As you deploy web servers, NFS servers, and other system

roles, you should test that the host can be reimaged and properly configured to serve

its designated function again without any human intervention. The extent of human

involvement should be to identify hardware and do any Kickstart/FAI/JumpStart con-

figuration needed to support imaging that piece of hardware.

We have a private DNS server now, and although it’s the only one, we’ll configure the

 files across all our hosts to utilize the new DNS server before any other

DNS servers. We’ll still list our existing DNS server, , as the second nameserver

in in case etchlamp becomes unreachable.

Cfengine has a action that you can use to configure the file.

We’ll create a task called and test whether we have in

a directory where postfix is ed by default on Debian:

Here’s something we’ve never done before—change the in a task file:

The preceding code adds to the . We can add it to the global

 defined in the file that’s imported

directly from , but there’s really no need. We’ll generally add

items there, but we wanted to demonstrate that we still have some flexibility in our cfen-

gine configurations.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 187

The order of the IP addresses and comment is preserved in the file:

We added the comment so that if any SAs want to change directly

with a text editor, they’ll realize that the file is under cfengine control.

We use the local copy to keep postfix name resolution working properly after cfen-

gine updates the file and to restart postfix when we do the copy:

Next, add the task to . Once the task is enabled, we

connect to the host aurora and inspect the new :

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE188

Then test name resolution:

We’re done with the DNS for now. When we get more hardware to deploy another

 Debian- based DNS server system, we’ll add it to the class, let

cfengine set up BIND, then update to add another entry to

all our site’s files.

Taking Control of User Account Files
We NEEDTOTAKECONTROLOFTHEUSERACCOUNTSATOURSITE�%VERYSITEEVENTUALLYNEEDSACEN-

tralized mechanism the SA staff can use to create and delete accounts, lock them out after

a designated number of failed logins, and log user access. This will be usually a system

SUCHAS.)3�.)3��,$!0�ORPERHAPS,$!0COMBINEDWITH+ERBEROS�
At this point, we’re not talking about setting up a network- based authentication

system—we’re not ready for that yet. First, we need to take control of our local account

files: , , and �%VENIFWEALREADYHAD,$!0DEPLOYED
ATOURSITEANDALLOURUSERSHADACCOUNTSONLYINTHE,$!0DIRECTORY�WEWOULDNEEDTO
be able to change the local account password across all our systems on a regular

basis. In addition, we normally change the default shell on many system accounts that

come with the system, for added security. Allowing local account files to go unmanaged

is a security risk.

Standardizing the Local Account Files

We have three different sets of local account files at our site: those for Red Hat, Solaris,

and Debian. We’re going to standardize the files for each system type, and synchronize

those files to each system from our central cfengine server on a regular basis. Over time,

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 189

we’ll need to add accounts to the standard files to support new software (e.g., a “mysql”

USERTORUNTHE-Y31,DATABASESOFTWARE	�7EWILLNEVERADDTHEMDIRECTLYONTOTHECLIENT
systems; instead, we will add them to the centralized files.

We have only two installed instances of each OS type, so it’s easy to copy all the files

to a safe location and consolidate them. Because we’re copying the files, the loca-

tion should be a directory with restrictive permissions:

These commands will iterate over all our hosts and copy the three files we need to

a per- file subdirectory, with a file name that includes the hostname of the system that

the file is from. We will illustrate standardization of account files for our two Solaris hosts

only, to keep this section brief. Assume that we will perform the same process for Debian

and Red Hat.

Now you can go into each directory and compare the files from the two Solaris hosts:

The hemingway host has two accounts that weren’t created on aurora. We won’t

need the account, used to run the freeware Postgres database package. We will

keep the account because the Solaris serial port–monitoring facilities use it.

%DIT and remove the line starting with . Now the

 file contains the accounts we need on both systems. We will use this as our

master Solaris password file.

Go through the same procedure for the Solaris files:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE190

Use a text editor to remove the line from as well.

Here’s the procedure for the file:

We have a group on hemingway that we’ll remove, and a group on

auroraTHATWE�LLKEEP�3!3,ISTHE3IMPLE!UTHENTICATIONAND3ECURITY,AYER�WHICHYOU
use to insert authentication into network protocols. We might end up needing this if we

set up authenticated Simple Mail Transfer Protocol (SMTP) or another authenticated net-

work protocol later on.

Now we’ll move our new files into the directories we created for these files (back

when we originally created our directory in Chapter 5).

Now perform the same decision- making process for the Red Hat and Debian account

files. When you’re done, move them into the proper place in the directories

as you did for the Solaris account files. You need to be careful during this stage that you

don’t change the UID or GID of system processes without setting up some remediation

steps in cfengine.

Our two Debian systems ended up with different UID and GID numbers for the post-

fix user and group, as well as for the group (also used by postfix). We chose to

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 191

stick with the UID and GID from the goldmaster host, and to add some permission fixes

in a cfengine task that will fix the ownership of the installed postfix files and directories.

THE VARYING UID AND GID NUMBERS IN DEBIAN LINUX

We REALLYWISH$EBIANHADDESIGNATED5)$�')$NUMBERSFORALLSYSTEMUSERACCOUNTS�ANDTHEREFORE
CONSISTENT5)$SACROSSALLINSTALLATIONS�)NOUROPINION�WESHOULDN�THAVETOFIXTHISPROBLEM�THE/3
VENDORSHOULDDEALWITHITFORUS�4OBEFAIR�THE$EBIAN0OLICY-ANUALSPECIFIESSOMESTANDARDAND
GLOBALLYIDENTICAL5)$�')$SETTINGSFORALIMITEDSETOFBASESYSTEMACCOUNTS�ANDADYNAMICRANGEFOR
OTHERSYSTEMACCOUNTSSUCHASTHE").$AND.40USERS�4HISSURELYMEANSLESSMAINTENANCEFORAPROJ-
ECTASLARGEAS$EBIAN�BUTITMEANSAFAIRAMOUNTOFPAINFORUSTODEALWITHIT�

Once we’ve standardized all our files, we have these files on the cfengine master

system:

Distributing the Files with cfengine

We’ll develop a cfengine task to distribute our new master account files. We will add some

safety checks into this task because we need to treat these files with the utmost caution.

We’ll place the file in a task called , with these contents:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE192

We create a group to control which classes of systems get the account- file syn-

chronization. These three classes encompass all the systems we’re currently running

ATOURSITE�7EDOTHISBECAUSEWEKNOWOURACCOUNTFILESWILLWORKONTHE5.)8�,INUX
versions that we’re currently running, but we don’t know if they will work on older or

newer versions. In fact, if you don’t know for sure that something will work, you should

assume that it won’t.

So if you deploy a new type of system at your site, you run the risk that the new

system type won’t have local account files synchronized by cfengine. Take measures to

detect this situation in the task, and alert the site administrators:

Here you’ll recognize the standardized files we created earlier.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 193

The keyword in these stanzas adds file- size minimums for the ,

, and file copies. We use this keyword so we don’t copy out empty or errone-

ously stripped down files. The minimums should be around half the size of the smallest

version that we have of that particular file. You might need to adjust the minimums if the

files happen to shrink later on. Usually these files grow in size.

Here we define an alert for hosts that don’t have local account files to synchronize:

The action simply prints text used to alert the system administrator. The

 daemon will e-mail this output.

Next, put the task into the hostgroup:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE194

When performs a copy, and the variable is defined, the version of

the file before the copy is backed up to the directory. Define like

this in :

This means you can see the old local account files in the backup directory on each

client after the copy. On Debian the directory is , and on the

rest of our hosts it’s .

If you encounter any problems, compare the previous and new versions of the

files, and see if you left out any needed accounts. Be aware that each performed copy

overwrites previous backup files in the directory. This means you’ll want to

validate soon after the initial sync. We also saved the original files in the home directory

for the user. It’s a good idea to store them for at least a few days in case you need to

inspect them again.

Our etchlamp system had the postfix account’s UID and GID change with this local

account sync. The GID of the group also changed. We can fix that with cfengine,

in a task we call :

Here we have some classes based on whether files or directories are present on the

system. We don’t want to assume that postfix is installed on the system. We previously

added postfix into the list of FAI base packages, but we can’t guarantee with absolute cer-

tainty that every Debian system we ever manage will be running postfix.

We could use a more sophisticated test, such as verifying that the postfix Debian

package is installed, but a simple directory test suffices and happens quickly:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 195

Here we make sure that all the postfix spool directories have the correct ownership

and permissions. If you blindly create the directories without verifying that

 is already there, it’ll appear as if postfix is installed when it isn’t. This might seem

like a minor detail, but the life of an SA comprises a large collection of minor details such

as this. Creating confusing situations such as unused postfix spool directories is just plain

sloppy, and you should avoid doing so.

Here we ensure that two important postfix binaries have the SetGID bit set, as well as

proper ownership:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE196

At any time you can validate that postfix has the proper permissions by executing

this line:

You’ll also want to restart any daemons that had their process- owner UID change

after you fixed file and directory permissions.

Now we’ll put the task into the hostgroup:

You’re probably wondering why we put the task into the

 hostgroup, when it performs actions only on Debian hosts. We did this because

we might end up having to set postfix permissions on other platforms later. The task does

nothing on host types for which it’s not intended, so you face little risk of damage.

From this point on, when you install new packages at your site that require additional

local system accounts, manually install on one host (of each platform) as a test. When

you (or the package) find the next available UID and GID for the account, you can add

the account settings into your master , , and files for synchronization

to the rest of your hosts. That way, when you deploy the package to all hosts via cfengine,

the needed account will be in place with the proper UID and GID settings. This is another

example of how the first step in automating a procedure is to make manual changes on

test systems.

Adding New User Accounts

Now you can add user accounts at your site. We didn’t want to add a single user account

before we had a mechanism to standardize UIDs across the site. The last thing we need

ISTODEPLOY,$!0ORASIMILARSERVICELATERON�ANDHAVEADIFFERENT5)$FOREACHUSER
account—on many systems. We have avoided that mess entirely.

At this point, you can simply add users into the centralized account files stored on the

cfengine master. New users won’t automatically have a home directory created, but later

in the chapter we’ll address that issue using a custom script, an NFS- mounted

home directory, and the automounter.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 197

Using Scripts to Create User Accounts

You shouldn’t ever create user accounts manually by hand- editing the centralized ,

, and files at your site. We’ll create a simple shell script that chooses the next

available UID and GID, prompts for a password, and properly appends the account infor-

mation into the account files.

We’ll make the script simple because we don’t intend to use it for long. Before

we even write it, we need to consider where we’ll put it. We know that it is the first of

what will surely be many administrative scripts at our site. When we first created the

 directory structure, we created the directory s/, which

we’ll put into use now.

We’ll copy the contents of this directory to all hosts at our site, at a standard location.

We’ve created a cfengine task to do this, called :

We’re copying every file in that directory, making sure each is protected from

 non users and executable only for members of the group. Because we haven’t

set up special group memberships yet, SA staff will need to become to execute these

scripts—for now, anyway. Remember that our specifies that

runs before , so the directory will be properly created before the copy is attempted.

Add this entry to the end of the hostgroup:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE198

You place the task in the directory because it’s not application- specific and

it doesn’t affect part of the core operating system. Now you can utilize a collection of

administrative scripts that is accessible across the site. You can create the new user script

and place it in there. The script itself will have checks to make sure it is running on the

appropriate master host.

We call the script , and we don’t append a file suffix such as . This

way, we can rewrite it later in Perl or Python and not worry about a misleading file suffix.

UNIX doesn’t care about file extensions, and neither should you.

We have only one cfengine master host that has the centralized files, so make sure

we’re running on the correct host before moving on. We also define a file, which we’ll use

later, to store usernames for accounts that we create:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 199

We define a file to use for locking to ensure that we run only one instance of this

script at a time. We use methods that should prevent files from getting corrupted, but if

two script instances copy an account file at the same time, update it, then copy it back

into place, one of those instances will have its update overwritten.

Now collect some important information about the user account:

,ATERwe should add some logic to test that the password meets certain criteria. The

 eight- character UNIX username limit hasn’t applied for years on any systems that we run,

but we observe the old limits just to be safe.

Here we generate an encrypted password hash for our files:

You can add to generate an MD5 hash, which is more secure. We’ve chosen

to use the lowest common denominator here, in case we inherit some old system. Which

type of hash you choose is up to you.

Now create the file containing the next available UID, if it doesn’t already exist:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE200

Collect the UID and GID to use for the account. Always use the same number for

both:

Test that the value inside the file is numerically valid. We would hate to create

an account with an invalid UID:

±

Here we set up the formatting of our account- file entries, to be used in the next

section:

If you use this script, you need to set values for the fields that make sense at

your site. The meanings are:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 201

The script continues:

±

Update each of the files in the , , and directories. Make a copy

of the file (i.e.,), update it (i.e.,

), then use the command to put it back into place (i.e.,

).

The command makes an atomic update when moving files within the same

filesystem. This means you face no risk of file corruption from the system losing power or

our process getting killed. The command will either move the file into place, or it won’t

work at all. SAs must make file updates this way. The script will exit with an error if any

part of the file- update process fails:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE202

Update the file used to track the next available UID:

We store all new user accounts in a text file on the cfengine master system. We’ll

write another script from the next section) that

uses this file to create central home directories. The script ends with a cleanup step:

Put this script in the previously mentioned directory, and run it from

there on the goldmaster host when a new account is needed.

We’ve left one exercise for the reader: the task of removing accounts from the

centralized account files. You’ll probably want to use the procedure in which you edit

a temporary file and it into place for that task. If the process or system crashes during

an update of the account files, corrupted files could copy out during the next scheduled

cfengine run. Our size minimums might catch this, but in such a scenario the corrupted files

might end up being large, resulting in a successful copy and major problems.

NFS-Automounted Home Directories

We installed the host aurora to function as the NFS server for our future web application.

We should also configure the host to export user home directories over NFS.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 203

Configuring NFS- Mounted Home Directories

We’ll configure the NFS- share export and the individual user’s home directory creation

with a combination of cfengine configuration and a script that’s used by cfengine.

Put this line into :

Create the file with these contents:

Create the file with these contents:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE204

This should all be pretty familiar by now. The interesting part is that we sync the

 file, and when it is updated we call a script that creates the needed accounts.

This is the first NFS share for the host aurora, so we enable the NFS service when the

share is added to .

Create a file at to create the home

directories:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 205

Now that the task is done, enable it in the file

 with this entry:

Our home- directory server is ready for use by the rest of the hosts on the network.

Configuring the Automounter

Sites often utilize the automounter to mount user home directories. Instead of mounting

the home NFS share from all client systems, the automounter mounts individual users’

home directories on demand. After a period of no access (normally after the user is logged

out for a while), the share is unmounted. Automatic share unmounting results in less

maintenance, and it doesn’t tax the NFS server as much. Note that most automounter

packages can mount remote filesystem types other than NFS.

We’re missing the package in our base Debian installation. At this point, we

add the package to the list of packages, so

that future Debian installations have the required software. The package already exists on

our Red Hat and Solaris installations.

4HEFILENAMESFORTHEAUTOMOUNTERCONFIGURATIONFILESVARYSLIGHTLYBETWEEN,INUX
and Solaris. We’ll create the needed configuration files and put them into our

repository. We created an directory at when we first set

up our file repository in Chapter 5.

4HEFILESWE�LLUTILIZEANDCONFIGUREON,INUXARE and .

On Solaris, the files are and . The and

 files map filesystem paths to files that contain the commands to mount a remote

share at that path. The and files have the actual mount commands.

Our and files each contain only a single line:

Our and files are identical, and contain only a single line:

NNote The single line in the and files is shown as two lines due to publishing

LINELENGTHLIMITATIONS�)TISIMPORTANTTHATYOUCREATETHEENTRYASASINGLELINEINYOURENVIRONMENT�9OUCAN
DOWNLOADALLTHECODEFORTHISBOOKFROMTHE$OWNLOADSSECTIONOFTHE!PRESSWEBSITEAT

.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE206

We have a number of mount options listed, but the important thing to note is that we

use a wildcard pattern on the left to match all paths requested under . The wildcard

makes the file match as well as , and look for the same path (either

 or) in the share on aurora, using the ampersand at the end of the line.

Next, we create a task to distribute the files at

. This task follows what is becoming a common procedure for us, in which we define

some variables to hold different file names appropriate for different hosts or operating

systems, then synchronize the files, then restart the daemon(s) as appropriate:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 207

We start the automounter when the process isn’t found in the process list. We

attempt to enable the NFS service on Solaris when it’s not running, then we try to restart

it. We don’t know what the problem is when it’s not running on Solaris, so the step

seems like a logical solution to one possible cause.

Import this task into to give all your hosts a working

automounter configuration.

We now have a system to add users, and we also have a shared home- directory

server. This should suffice until you can implement a network- enabled authentication

scheme later.

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE208

Routing Mail
Mail is the primary message- passing mechanism at UNIX- based sites. You use mail to

notify users of cron- job output, sends output via e-mail, and many appli-

cation developers and SAs utilize e-mail to send information directly from applications

and scripts.

Mail relays on internal networks route e-mail and queue it up for the rest of the hosts

on the network when remote destinations become unreachable. You should centralize

disk space and CPU resources needed for mail queuing and processing. In addition, it’s

simpler to configure a centralized set of mail relays to handle special mail- routing tables

and aliases than it is to configure all the mail- transfer agents on all machines at a site.

We’ll use our etchlamp Debian host as our site’s mail relay. We’ve built this host

entirely using automation, so it’s the sensible place to continue to focus infrastructure

services.

7EADDA#.!-%FORrelayhost.campin.net to

et, and it’ll simply go out to etchlamp on the next run:

Be sure to increment the serial number in the zone file.

We run postfix on all our Debian hosts, and we’ll stick with postfix as our mail- relay

Mail Transfer Agent (MTA). The default postfix configuration on etchlamp needs some

modifications from the original file placed in . Modify the file like

this:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 209

Next, create a file that we’ll copy to on the mail relay:

We use the virtual- domain functionality of postfix to alias the entire campin.net

domain to one e-mail address: sysadmins@foo.bar. This ensures that any mail sent will

ARRIVEINTHE3!TEAM�SMAILBOX�HOSTEDWITHANEMAILnHOSTINGPROVIDER	�,ATER�WECAN
use the same virtual table to forward specific e-mail addresses to other destinations,

instead of the single catch- all address we’re using now.

When the source file is updated, we need to run this command

as root:

This builds a new file, which is what postfix actually uses.

We’ll configure cfengine to perform that step for us automatically.

Place the two files in a replication directory on the cfengine master (goldmaster), and

also create a new directory under the tasks hierarchy intended for postfix:

First, create a class called , and place the host etchlamp in it. Place this line

in :

Now create the task with these

contents:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE210

We define variables for the and files, and copy them individu-

ally. They’re set up individually because different actions are required when the files

are updated. We are careful to copy the configuration files that we’ve prepared only to

Debian 4.0, using the �7HEN$EBIAN����h,ENNYv	ISRELEASED�WE�LLHAVE
to test our config files against the postfix version that it uses. We might have to develop

ANEWhRELAYHOSTvPOSTFIXCONFIGURATIONFILESPECIFICALLYFOR,ENNYWHENWEUPGRADEOR
reimage the “relayhost” system to use the newer Debian version. Once again, we assume

that something won’t work until we can prove that it will.

Here we use the action to rebuild the virtual map when it is updated:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE 211

Now we need another hostgroup file for the “relayhost” role. We create

 with these contents:

Then to finish the job, map the new class to the hostgroup file by adding this line to

:

Now etchlamp is properly set up as our mail- relay host. When our network is larger,

we can simply add another Debian 4.0 host to the class in

, thus properly configuring it as another mail relay. Then we just update

the DNS to have two A records for relayhost.campin.net, so that the load is shared

between the two. An additional benefit of having two hosts serving in the “relayhost” sys-

tem role is that if one host fails, mail will still make it off our end systems.

You have several options to accomplish the task of configuring systems across

the site to utilize the mail relay. For example, you can configure Sendmail, qmail, and

postfix in a “nullclient” configuration where they blindly forward all mail off the local

system. Or you could use the local aliases file to forward mail as well. The method, and

automation of that method, is left up to the reader. You should now have a solid under-

standing of how to use cfengine to automate these configuration changes once you’ve

worked out the procedure on one or more test systems.

Looking Back
In a rather short amount of time, we’ve gone from having no systems at all to having

ABASIC5.)8�,INUXINFRASTRUCTUREUPANDRUNNING�4HISBYITSELFMIGHTNOTBEVERYINTER-

esting, but what is noteworthy is that everything we’ve done to set up our infrastructure

was accomplished using automation.

If our DNS server (and mail- relay) host suffers a hard- drive crash, we will simply

replace the drive and reimage the host using FAI and the original hostname. Cfengine

will configure a fully functional replacement system automatically, with no intervention

required by the SA staff. The benefits of this are obvious:

CHAPTER 7 N AUTOMATING A NEW SYSTEM INFRASTRUCTURE212

 s 4HERISKOFERRORSINTRODUCEDDURINGCONFIGURATIONOFTHEREPLACEMENTHOSTIS
reduced to zero (or near zero). Any errors would be the result of further hardware

issues.

 s 4HEADDITIONOFNEWHOSTSTOSHARETHELOADOFEXISTINGSERVICESISEQUALLYTRIVIAL�
you need only to add additional hosts to the role- based classes in cfengine, and

cfengine will configure the new host properly for you. From that point, the only

steps are to update DNS records or configure applications to use the additional

host(s).

 s 4HEDIFFICULTYOFTRAININGNEW3!STAFFISREDUCED�4HEAPPLICATIONSINUSEATYOUR
site, along with the configurations used, are centralized in cfengine. The new SAs

can simply read the cfengine and application- configuration files to get a complete

picture of how things run at your site.

We now have sufficient core services in place at our site to support customer- facing

applications. In the next chapter, we’ll take advantage of that fact, and deploy a web site.

213

C H A P T E R 8

Deploying Your First Application

The first application in our new environment is a web site, the campin.net shopping web

site mentioned in earlier chapters. Our company is going to launch a PHP- based web

site where customers can purchase camping equipment. In keeping with our focus on

automation, we provide only basic information about the services and protocols that we

configure. We will refer you to sources of in- depth information as appropriate.

Deploying and Configuring the Apache Web Server
The Apache web server is the reference implementation of the HTTP protocol, and it has

been the most widely deployed web server on the Internet since 1996. It is an open source

project, and it is included or available with most Linux distributions. See

 for more information.

Apache is relatively easy to configure, and it supports all common languages that web

developers need. We’ll use it to host our web site.

The Apache Package from Red Hat

Back in Chapter 6, we imaged the system rhlamp with the packages it needed to function

as a web server. We did this by selecting the check box for “Web Server” when we selected

server packages from within the Kickstart Configurator application.

The default installation of Apache on Red Hat Enterprise Linux 5.2 is version 2.2.3.

Utilizing the Red Hat package means you won’t have to manually build and redeploy

when security and bug- fix releases for Apache become available. As long as Red Hat still

supports our system, we can simply install the updated package from Red Hat.

By default, Red Hat’s Apache package supports PHP, and it configures an empty

directory that’s ready to be populated with content. This is the directory .

Red Hat provides a fully functional web server upon installation of the package, and you’ll

have little reason to redo all the work that the kind folks at Red Hat have done for us.

Many experienced SAs like to build Apache from source on their own, often for per-

formance reasons. Performance tuning isn’t needed for most web sites at the early stages,

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION214

and most of the tuning is done with configuration directives rather than build options.

This means many sites don’t need to use another Apache package or build their own.

We will configure Red Hat Apache for our http://shop.campin.net web site. The

configuration files for the Red Hat Apache package reside in the directory.

You’ll find several directories and files inside that directory:

Inside the directory, all the files are processed in alphabetical order. Until we

do something to change it, the absence of any files in the directory causes

Apache to serve a default page with the text “Red Hat Enterprise Linux Test Page” dis-

played prominently at the top.

To have Apache serve our own content, we simply have to put our web content into

the directory. You can do this in cfengine with a simple file copy. Edit the

file on rhlamp and change the line:

to this:

We’ll have a load balancer on a public IP, which forwards traffic to rhlamp on port 80

in order to serve our web site. If we require additional web servers later on, we’ll image

more Red Hat web servers and simply add the additional hosts into the load- balancer

configuration. We’ll make an entry in the public DNS when we’re ready, and the IP will

be on the load balancer, not on any of our web- server hosts. We won’t cover that in this

book, however. For more information on load balancing, see

.

Save the file with the modified directive on the cfengine master

at the location . Next, create a class for the web

servers at our site (with only one member for now) by adding this line to

:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 215

Create a new directory for Apache in the directory:

Put these contents in the task :

We stick with the same Apache , and everything else configured in the

 directory. We wish to change only the parameter at this

point.

Create a hostgroup file at the location :

Then activate it as usual in the file

with this line:

We can add web content to at any time, but we’ll hold off on that until

after we look at building and deploying Apache ourselves.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION216

The final step is to make sure that Apache is running on your web servers. Create the

task with these contents:

Then place this line into :

The file is easy to modify if we decide to run a different Apache, i.e.,

one that we build and deploy ourselves.

Building Apache from Source

There is one very good reason to build your own Apache and PHP from the initial stage:

a security problem or new feature that your web developers need might require a newer

version of Apache or PHP than the ones bundled with Red Hat 5.2. If you install Apache

and PHP from source from the start, you won’t have to learn to build and deploy Apache

on a rushed schedule later. We’ll install Apache and PHP to version- specific directo-

ries—the same way we deployed cfengine on Red Hat during the Kickstart installation

process—and use a symlink to maintain a consistent path to our Apache installation.

We’ll keep the configuration files and web content in a directory separate from the

Apache program binaries, which will simplify later upgrades. Check with your site’s

web developers to see which Apache and PHP options are required, and enable only the

needed functionality. Doing this will limit your exposure to potential security issues.

We’ll demonstrate how to build a basic PHP- enabled Apache server. You’ll need to have

C development packages installed, such as , , and so on. In Chapter 5, we installed

these on the rhmaster system in order to compile cfengine.

First we’ll download the latest Apache and PHP sources, place them in , and

extract the tarballs:

Next we build Apache, making sure to enable shared modules with the “enable- so”

option:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 217

Use these commands to test whether the binary works:

You should be able to access the web server at http://rhmaster/ and see the text, “It

works!” Now shut down the web server with this command:

We’re done with Apache for now. Next, we build PHP:

Edit the file to suit your site’s needs (refer to

 for assistance). Next, we need to enable PHP in the Apache configuration file.

Verify that has this line:

Now you need to configure Apache to treat certain file types as PHP files and invoke

the PHP module to process and serve them. You can do this by adding this line to

:

Afterward, start Apache with this line:

Once Apache is running again, create a file named

 with these contents:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION218

Use this command to make sure the file is publicly readable:

Visit your new web server in a web browser at the URL http://rhmaster/index.php

(substitute your host’s hostname as applicable); you should see a page with the PHP logo,

the PHP version you’ve compiled, and HTML tables filled with information on your PHP

installation.

Shut down Apache because we won’t use it again on this system. You should also

remove the file with the call in it because it gives away information that might

be useful to attackers:

We now have an Apache build ready to be deployed to Red Hat 5.2 (32- bit, x86- based)

systems. We’ll want to distribute the binaries using one of several options: rsync,

cfengine, Network File System (NFS), or perhaps even Subversion.

If you encounter issues building Apache or PHP, see the INSTALL file included with

the source distribution for each. It contains a wealth of information on installation and

configuration, as does each of their respective web sites: and

.

Sharing Data Between Systems
Our web developers have created a large collection of web content, which should work

on any Apache server running PHP 5. We’ll explore several ways to distribute the content,

and discuss the benefits of each method.

Synchronizing Data with rsync

Rsync is a wonderful program that allows you to transfer files and directories from one

host to another. It might not sound very impressive; you are probably thinking you can

do all of this yourself with or cfengine. You could—rsync, in fact, can use the SSH pro-

tocol to do its work—but you probably couldn’t do it as well as rsync does.

What rsync adds to the mix is the ability to efficiently mirror files between two hosts.

The files are compared using their timestamps or checksums, and only the necessary files

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 219

are transferred. In fact, when files do change, only the portions that have changed are

sent over the network. This makes rsync very efficient. We regularly use rsync to synchro-

nize about 1GB of data; it takes only a couple seconds when there are no (or few) changes.

You can also use rsync to delete files and modify permissions to achieve an exact

copy. It can copy device files, create symbolic links, preserve ownership, and synchronize

timestamps. Rsync also supports both include and exclude patterns that allow you to

specify exactly which files you want synchronized.

NNote It is important to remember that the rsync program must be installed on both the remote and local

systems to synchronize data between those systems.

Possible Uses of rsync

You’ll find rsync very useful for synchronizing applications and their data. You could,

for example, use rsync to synchronize across several systems. In most envi-

ronments, doesn’t change often, so using rsync once per day can prove

significantly more efficient than using network filesystems. In addition, using rsync

reduces network use and improves application access time. However, not surprisingly, it

uses much more disk space because each system has its own complete copy of the appli-

cation directory.

Clusters of web servers have become commonplace in the modern web- enabled

world. You might have anywhere from 200 to 500 web servers behind a set of load bal-

ancers. Each of these web servers might need to access a large amount of web content.

Creating an efficient and reliable network filesystem to store the web- server software and

content can be expensive, but because hard drives are so inexpensive these days, each

system can simply store all its content on its local drive and update it daily with rsync. For

quicker updates, you can even combine a pull and push method—the servers can check

for changes daily (the pull portion), and you could also push new content on demand to

update the servers quickly.

One potential drawback to using rsync is that it has real trouble showing any respect

for changes made on the system being updated. This means that any files that were

locally modified will be replaced with the copy from the server, and any deleted files will

be added again. Also, if you use the switch, any new files will be erased. This

means you must make all changes on the master server and never make them on the cli-

ent systems. You should properly train anybody who needs to make changes if you don’t

want them to learn the lesson the hard way.

Some would consider this potential drawback a benefit—when you have ten copies

of what is supposed to be identical data, the last thing you want is people making changes

in one place and forgetting to propagate that change to other systems. Another benefit

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION220

is that you can add debugging; yet another, that you can try something on a system and

erase all the temporary changes by resyncing the data.

You can also tell rsync to dereference symbolic links when copying (using the

switch). If you do, rsync creates a copy of any symbolic link in the source directory as

a regular file (or directory) in the destination directory. The destination tree will take up

more space as a result, but eliminating symbolic links can be useful in some situations.

If, for example, you need to replicate data regularly, but the application using that data

does not work with symbolic links, you can use rsync to solve your problems. You can

also use symbolic links to make managing the original copy easier and then use rsync

to make a useable copy (you can even make the copy from and to the same system).

Some examples in which dereferencing symbolic links might be useful are

environments, anonymous FTP sites, and directories that are exported via NFS. Although

symbolic links work fine within the anonymous FTP directory, for example, they cannot

reference files below the root of the anonymous directory. If you were to use rsync to

transfer some or all of your FTP content into your anonymous FTP directory, however,

any symbolic links would be dereferenced during that process (if the switch is used).

Deciding Which rsync Transport Protocol to Use

We are pleased to report, in this book’s second edition, that rsync now uses the SSH

protocol by default to communicate with a remote system, allowing it to use all the

standard SSH authentication methods and perform encrypted file transfers. We recom-

mend using SSH if at all possible. You can tell rsync to use RSH by setting the

environment variable to the location of your binary (such as), but this

would be unwise on all but the most private and secure networks.

If you want to include extra options for the SSH program, you can specify them with

the argument to rsync:

The option specifies that protocol version 2 should be used for this encrypted

connection. The option provides a special location for your private- key file. Agent for-

warding is not necessary for file transfers, so you can turn off the option.

With the options and disabled, never prompts

you for a host’s public key. This is fine, in some cases. For instance, if the information you

are pushing is not sensitive, it doesn’t matter if you push it to an attacker’s system. If you

are pulling from a server, however, you might not want these options because somebody

could spoof your server and push out their own data to your systems.

We should mention that all the preceding SSH client settings could be set in the

user’s file, with the configuration based on the remote host’s name. The

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 221

reason a user might choose to use the command line instead is that they don’t want those

options applied to all SSH connections to that particular host.

Basic Use of rsync

By our estimate, rsync offers approximately 50 command- line options. Rather than

cover each option, we’ll show you some useful examples. When trying out these com-

mands, you might find it useful to use the verbose switch and/or the dry- run

switch . You should also be careful when trying out rsync because you could acci-

dentally copy large amounts of data to places it does not need to be. The switch

can help with the debugging process because it will prevent rsync from transferring

any files. So you can see what would have happened without actually making any file

modifications.

Here is a simple example that copies to a remote system (recursively, in

archive mode, using the switch):

If you were to run this command, you would see that it doesn’t quite work as

expected. The directory on the local system is pushed as

 on the remote system. The reason this happens is that we forgot the slash on

the end of the source directory. We asked rsync to copy the file (or directory)

into the remote directory .

Any of the following commands will work the way you might have expected the previ-

ous command to operate. Personally, we prefer to use the first one listed here because we

think it is the most readable. We would not recommend running any of these other com-

mands unless you really want to copy all of to another system (just in case

you didn’t learn your lesson when you tried the last example):

The switch tells rsync to operate in archive mode. This causes it to operate recur-

sively and preserve permissions, ownership, symbolic links, device files, access times, and

so on. In fact, using the switch works the same as using the options .

By default, rsync leaves a file alone if it has exactly the same timestamp and size

as the source file. You must specify the switch or the switch to preserve file time-

stamps. If you do not use either of these options, every file will be transmitted every time

you execute rsync. This is fine if you are using rsync for a one- time transfer, but it is not

very efficient when you run rsync multiple times.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION222

If you previously used a different method to transfer files and you are not sure the

timestamps are correct, but you know that most of the files are already identical, you

can use the option along with the switch for the first transfer. This option

causes rsync to ignore the timestamps and use only the file sizes to find differences. It

then sets all timestamps properly (because of the switch) so that future runs on the

same file do not need the switch. For a small amount of files this doesn’t

matter, but if you are transferring lots of data or using a slow connection, this can make

the first synchronization less painful.

The only problem with this example is that it does not delete any files on the remote

system. Suppose you used to have 0/, but now you have

. You might have deleted on the server, but it

has not been deleted on the other systems.

This is where the switch becomes useful. This switch tells rsync to delete any

files in the destination directory that are not in the source directory. You must be very

careful with the switch because it has the potential to do major damage. You

could, for example, accidentally run this command:

which would wipe out everything on the entire remote host and replace it with the con-

tents of the local directory. We have a feeling this is not something you would like

to do for fun (in fact, we feel a bit guilty for including it as an example in the book—please

let us know if you use that command to accidentally destroy one of your systems!). How-

ever, as long as you are careful when you use this option, you will find that it can be very

useful. As a minimal safeguard, rsync will never delete files if any errors occur during the

synchronization process.

You could expand the preceding example to remove files that shouldn’t be on the

destination system. This allows you to create an exact copy of the source files on the des-

tination system. Here’s the command you would run to accomplish this:

After this command runs, the remote system will have exactly the same files in its

 directory as the local system—no less, and no more.

Don’t forget that rsync works equally well when the source and destination are on the

same system. If you’re about to upgrade an important binary- only, third- party software

package in the directory , you can make a perfect copy of the old installa-

tion like this:

This allows you to attempt the upgrade with less risk. If anything goes wrong, simply

move the directory to , and move to . As long as

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 223

your original copy operation succeeded (you had the required privileges to read and write

the files, and there was adequate disk space), then this fallback plan will enable you to

attempt many risky operations with a safety net in place.

Synchronizing Web Content with rsync and cfengine

In the previous section, you saw how to push out to another system. You

could easily extend this practice to pull your web content to the necessary system. Per-

forming the synchronization is actually quite easy, but automating the procedure in

a secure manner is another matter. Cfengine handles two- way authentication for us, and

in this book we always use encryption in our cfengine copies. In addition to those bene-

fits, cfengine allows you to define classes based on changes made, which allow you to run

further actions, such as restarting Apache when the configuration files are updated. We

don’t, however, need to restart Apache when the web content is updated, so this should

be a good and simple problem for us to solve with rsync.

We’ll set up a dedicated rsync server on our cfengine master. A major reason for

choosing to use an rsync server is that we don’t want to use system accounts for access.

You could use forced commands with SSH public- key authentication to force secure

authentication and limited system access, but that will unnecessarily complicate this

section. We’ll keep it as simple as possible.

As always, we automate this process. Even though we’re not using cfengine for this

copy, we will use it to set up and run rsync. We won’t ever have to wonder how the rsync

daemon was set up or how the client is run; it will be thoroughly documented in our

cfengine configuration files for later reference or for application to another system.

NNote We are running Debian GNU/Linux on our cfengine master, so the examples work properly only on

Debian. Modifying this procedure to work on Red Hat Linux or Solaris wouldn’t be very difficult, but it would

complicate the examples unnecessarily. We hope that you learn enough about the procedure from this exam-

ple to get it working on your own systems.

Place the web content in a directory in your master cfengine replication tree. We’ll

use the directory . Create a new class for the role of the

 web- content master by adding these lines in :

Next, add these lines to create a variable in

:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION224

We use both the variable and the class to abstract the hostname away from the role

name. You could use a DNS alias here instead of the variable, but the variable is really

just another way to create an alias. In this case, we keep the alias creation contained to

cfengine itself. We added those comments in the files as reminders to ourselves about

the two places in cfengine where we need to keep the role name synchronized.

Next, place a file at with these contents:

We’ll use this rsync configuration file to share our master web- repository directory to

rsync clients. We’ll create a task for starting an rsync server that utilizes this configuration

file, in the task . Create that file now

with these contents (you’ll need to create the rsync directory where it resides):

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 225

±

NCaution You’ll see the code- continuation character (±) in the entry in the pre-

ceding section. This character signifies that the line in which it appears is actually a single line,

but could not be represented as such because of print- publishing restrictions. It is important that you create

the entry as a single line in your environment. You can download all the code for this book from the Down-

loads section of the Apress web site at .

Now add a hostgroup for the web master, a file at

 with the contents:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION226

To finish up, add a line to the hostgroup mappings file (

) like this:

If you don’t observe updates being made to , check whether rsync is

installed. Feel free to install it using et, but make sure all future Debian installations

have rsync installed by adding the line to the FAI base packages list on goldmaster at

. In our case, we already have it there.

Now we can synchronize over rsync from a client in a read- only manner. We can use

a simple section from a cfengine task to perform the synchronization. Cre-

ate a task at with these contents:

The preceding action will result in a copy of the direc-

tory, using rsync, at the top of the hour. Remember that we run (from) at

the top of the hour, 20 minutes after the hour, and 40 minutes after the hour. Because we

use a 5- minute , we need to specify the 5- minute range between minute 00 and

minute 05. We also set the umask to be less restrictive than the cfengine default, so that

the Apache process can read the files that are copied. The rsync flag should take care of

the file permissions for us, but we are extremely cautious.

Note that it’s necessary to escape the colons in the rsync command because cfengine

interprets a colon as a list- iteration operator. If you’re curious, see

 for more information on using

list variables in cfengine. We avoid utilizing that feature in this book for simplicity.

Activate the task with this line in :

Now all we have to do to update our web site is to update the master web reposi-

tory on the cfengine master. If we add more web servers, we simply add them to the

 group in , and all the appropriate tasks

will execute on the host and bring it up to date with our Apache configuration and web

content.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 227

Synchronizing Apache and PHP with rsync

To use rsync to synchronize the Apache and PHP binaries that we built, we can use the

same method we used for synchronizing the web content. We’ll need additional steps

here that the web- content copy didn’t need, such as handling Apache configuration and

startup.

If you’re following along with the examples in the book and you want to utilize an

Apache server that you built from source, you must disable the Apache startup script and

the cfengine task to start it up when it isn’t running. This means you should comment out

this line in :

You’ll also want to run this manually on your Red Hat web server before doing any

more automation:

Here’s the reason we do this manually: that daemon wasn’t enabled upon installa-

tion; we previously turned it on. Turning it off now restores the system to its default state.

We have a strong feeling that we’ll stick with the Apache that we compiled ourselves, so

we’ll act as if we never turned on the Red Hat version of Apache in the first place.

Let’s add three new sections for Apache to our “web master” role’s rsync daemon

configuration file at :

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION228

Now create the version- specific Apache and PHP master directories on the “web

master” system (goldmaster, the cfengine master):

Now we’ll rsync our Apache and PHP binaries over from the rhmaster system where

we built it. Run this command on the host goldmaster:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 229

(Note: we’ve truncated the output for simplicity.)

The options that we gave are:

 s 4HE flag designates archive- copy mode.

 s 4HE flag provides increased verbosity about what rsync is doing. We won’t sup-

ply this argument in our automated rsync copies.

 s 4HE flag, for compression, helps on low- bandwidth or heavily utilized network

links. The extra CPU overhead probably increases the transfer time on a LAN.

 s 4HE flag gives continuous status information about the number of files

copied, the network throughput, and the amount of time until the copy completes.

We won’t supply this argument in our automated rsync copies.

 s 4HE flag tells rsync to keep partially downloaded files. When the copy of

a large file is interrupted, rsync will continue upon the next invocation to pick up

where it left off. If you’re copying DVDs or other such large single files, you should

use this every time in case the transfer is interrupted.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION230

This rsync command uses SSH as the transport and requires us to log into the remote

host. For our automated web updates, we use the rsync daemon to avoid exposing system

accounts to potential attacks. We want as few trusts as possible that could potentially lead

to an attacker gaining shell access to our servers—especially our cfengine master system.

When the rsync completes, immediately run the same rsync command again simply

to see how long it takes this time. It will complete quickly because the two directories are

already synchronized. In general, it will complete quickly when only a few files or only

some contents in the files themselves change.

We also need to copy over our PHP build to the master system from where we built it

on rhmaster:

Now move the directory out of and up one directory into the

 directory, and rename it to . This will prevent the

Apache configuration directory from being copied along with our binaries. We’ll have

continuity with the configuration files by separating the two. In addition, we’ll have our

rsync or cfengine copies ignore the directory so it can appear in the Apache directory

tree without causing problems (but it’s probably best to remove it, in order to avoid con-

fusion later):

In the file we set these values:

The comments were in the file already. We left them in this example to

help you find the appropriate lines to modify. When you change the set-

ting, you need to modify this directory section to reflect the same name. It sets the proper

 access- control settings, default- directory index names, and some other settings that basi-

cally make your web contents visible to remote clients.

To automate the copy of the Apache binaries, copy the task to

a new one called :

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 231

Edit the task so that it has these contents:

We check for updated binaries only once per day, at midnight. We do check for

updated Apache config files, however, every time is run. To put this task into

action, add it to the hostgroup file.

Now we’ll configure cfengine to automatically start up our newly distributed Apache

server. Edit the task and modify it to look like this:

NNote If you enabled SELinux on your Red Hat web- server systems, Apache will not work properly without

SELinux modifications. We do not cover SELinux configuration in this book, but instead refer you to the Red

Hat online documentation at

.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION232

Can you think of anything that might be lacking in this method of synchronizing the

Apache, PHP binaries, and Apache configuration files? We hope you guessed it: when

our Apache configuration files update, we don’t automatically restart Apache. If we used

cfengine for the copy, we could easily set a class that triggers a restart via a

or action.

So we have two choices:

 s 0ROCESSthe output of the rsync command when called by cfengine, and look for

strings that signal success. Exit codes from rsync aren’t very meaningful; only out-

put from the program can help you.

 s #ONTINUEUSINGTHEBINARYSYNCHRONIZATIONWITHRSYNC�BUTMOVETHECONFIGFILE
copy into a cfengine section. This is probably the wiser option, and more

robust because we don’t have to hack together a script to parse the rsync output.

Now we have Apache up and running with automated configuration updates, but

without automated restarts when the configuration files are updated. Next, we’ll explore

other data- sharing options without this problem.

Sharing Data with NFS

Network filesystems can be very convenient, but they can also give you headaches. When

the server is up and running and the network is operating properly, network filesystems

are good for many situations. You can access the same applications and data from mul-

tiple systems. You can modify the files on any system, and the changes become instantly

available on all other systems.

Problems with network filesystems begin to appear when you have server or network

problems. Network filesystems do not operate at 100 percent efficiency when these prob-

lems occur. In many cases, the network filesystem might not work at all and could even

hang the UNIX/Linux host.

We previously put NFS into use in our example environment in Chapter 7, although

without much discussion of which situations tend to be a good fit for NFS. In this chapter,

we discuss the pros and cons of using NFS for storing program data as well as program

executables.

The NFS is one of the oldest network filesystems still in common use today. Its single

greatest advantage is its native support in most, if not all, UNIX variants. It is also gener-

ally easier to configure and use than other network filesystems. As with just about any

network filesystem, you can make changes on the server or on any client and have them

be immediately available on all other systems.

The data on an NFS filesystem is physically located on only one server. Every client

mounts the filesystem directly from that server. If you have a significant number of clients

or if they’re highly active, you might run into performance problems. You will either have

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 233

to upgrade the server or move a portion of the data into separate NFS shares on separate

servers to alleviate these problems. All NFS clients have some amount of caching capa-

bilities to help increase performance and reduce the load on the server. Some operating

systems, however, will have better caching support than others.

NTip We provide a brief introduction to NFS in this book. For more information, check out Managing NFS

and NIS, Second Edition by Hal Stern, Mike Eisler, and Ricardo Labiaga (O’Reilly Media Inc., 2001).

The biggest disadvantage of NFS is that it relies on the network and a single server.

Depending on the client’s implementation and mount options used, any network or

server downtime can cause the client system to hang, particularly when a process is using

the network filesystem. If critical data is shared via NFS, a problem with the server might

make all client systems inoperable.

With NFS, a user should have the same user ID on all systems. All file ownership on

an NFS filesystem—well, any filesystem, really—is assigned by user IDs (UIDs) and group

IDs (GIDs). If a user has a different UID on each system, then he or she will not be able to

modify his or her own files, and possibly will able to modify somebody else’s. This is one

of the reasons that we unified the UIDs in our example environment early on.

NFS uses Remote Procedure Calls (RPCs), so the server and all clients need to run

the portmap daemon at all times. The portmap daemon allows RPC connections to

be initiated between systems. The use of RPCs makes it difficult to use NFS through

most firewalls. NFS also uses a variety of helper programs, such as and a locking

daemon.

For these reasons, you might find it difficult to configure NFS and use it in your envi-

ronment. The Internet Engineering Task Force’s version 4 of the NFS protocol (NFSv4)

addresses most of the protocol’s deficiencies (see). For example, it

specifies mandatory access- control lists and other security settings such as encryption,

it’s stateful, and it operates over a single TCP port. Our experience with it in production

environments tells us that it’s still a good idea to stick with a single code base for client

and server systems; for example, we recommend using Solaris systems only or another

single OS- vendor configuration. In mixed environments, we have had to force all systems

back to NFS version 3. This doesn’t mean you can’t make NFSv4 work with some careful

testing and research on Internet mailing lists and newsgroups, but the effort is not trivial.

Configuring the NFS Server

The NFS server usually needs to run one or more daemons. Exactly what daemons need

to run depends on the operating system, so you need to consult your OS’s documentation

for details.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION234

Any server, however, needs to specify what portion of its local filesystem needs to be

shared, or exported, to NFS clients. You accomplish this on Linux systems with the

 file.

Here is a simple example:

For this example, we assume that some home directories reside under the

 directory. So, to allow systems to mount users’ home directories remotely, we

export the directory (and everything under it) to the host foobar.example.

com. The CD- ROM on this system is also exported to all systems that have an IP address

beginning with .

Each line ends with one or more options in parentheses. The available options are

different on every operating system, but here are a few basic ones you can expect to find

almost everywhere:

: Clients can only read from this filesystem, which is the default.

: Clients can read and write to this filesystem.

: The user on the client system does not have privileges on the

network filesystem. So, if a file is owned by , a client cannot delete it. If a file

is not publicly readable, it cannot be read by on the client system. This is the

default.

: The users on clients do have special access on the filesystem.

The option is very important for system security. If a user has access

to a client system, but not the server, he or she can still bypass system security. A user

could simply copy the bash shell, for example, onto the network filesystem and make it

setuid (which means anybody who runs the program runs it as). The user can

do this because the copy is taking place on the client and the user has access on that

system. This user can now log in to the NFS server with a regular user account, execute

that Bash shell, and gain full access to the server. So, you should use the

option whenever possible, especially if not-so- trusted users have access on any sys-

tems that are allowed to mount your NFS resources.

Configuring the NFS Client

Once portmap is running, any client with appropriate permission can mount an NFS par-

tition from a server with the following command:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 235

On some systems, you might need to specify a or switch to the

command. See the man page on your system for more details.

A client can also automatically mount NFS filesystems at startup by placing entries in

the standard filesystem table (on Solaris).

Sharing Program Binaries with NFS

We can share over NFS the Apache binaries that we built for Red Hat, or any other com-

piled programs that we might need. Advantages of this approach include less need for

local storage on application systems and rapid distribution of software updates. As soon

as the NFS server is updated, all the clients are updated as well.

These reasons aren’t very compelling in modern environments. Most SAs remember

when a large hard disk had less (sometimes far, far less) than 10GB of storage, while a rel-

atively inexpensive new system today will have at least 100GB of local storage or perhaps

a half terabyte. You should store frequently used program binaries locally, as disk space is

cheap and a network interruption shouldn’t block access to important binaries.

You might need to keep application data in sync across many systems, so NFS is

a good fit in such a scenario. In addition, you might want to place infrequently used

applications on an NFS share so that users can run it only on occasion, and thereby

save disk space on other systems.

Server Setup

We’ve already set up NFS exports in our example network for NFS- mounted home direc-

tories. Let’s set up a system of application shares meant for different hardware and OS

platforms to utilize a collection of binary applications. We’ll utilize the same NFS server

as before, the host named aurora (named after the Spacer planet in Isaac Asimov’s Robot

Series; see).

We’ll want to automate the NFS export of . Add this line to

 so that we have a new server role:

Next, create a new task at the location

 with these contents:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION236

On our NFS server aurora, we created a collection of directories in meant

for each of our three platforms:

 s : Solaris hosts running on SPARC hardware

 s : Red Hat hosts running on 32- bit, x86- based hardware

 s : Debian hosts running on 32- bit, x86- based hardware

Create a file called with these contents:

Then set up the import for the role in the file

 by adding this line:

The next time runs (always within the next 20 minutes, at our exam-

ple site), the NFS share will be configured on aurora.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 237

Client Setup

Once again, we’ll utilize the automounter daemon on our clients to handle mounting NFS

shares. Using the automounter gives us much more flexibility than any scheme we invent

using static mounts, whether using cfengine’s direct NFS- mounting abilities or cfengine

edits to or files.

NCaution You’ll see the code- continuation character (±) within this section’s code. This character signi-

fies that the line in which it appears is actually a single line, but could not be represented as such because

of print- publishing restrictions. It is important that you incorporate the line in question as a single line in your

environment. You can download all the code for this book from the Downloads section of the Apress web site

at .

We’ll modify our master automounter files (on Linux and on

Solaris) to import a new map file, and use cfengine to automatically create the file with

the appropriate contents for that type of system. First, add this line to the master auto-

mounter files on the cfengine master:

We use the same map file name on both Linux and Solaris, to make the cfengine con-

fig files slightly shorter. Next, create a task that uses to create the map file, a file

at with these contents:

±

±

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION238

±

±

±

±

±

±

±

±

±

±

Remember that the class triggers an automounter restart in the task

, so we don’t need to re- create the restart logic

in this task. We can simply define the class in this task, and the restart happens via the

other task ().

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 239

We set up support for moving the duties to another host, even though

we have no immediate plans to perform such a move. It makes sense to be ready in case

the host aurora fails and can’t be replaced. We could use a DNS alias to perform this with

much less complexity, but we wanted to explore usage more fully in this sec-

tion. The actions in this task handle the deletion of old entries that are identical

to the entries to mount our current NFS server aurora, but only if the entry contains the

string contained in the variable .

To activate this task, add it to the file.

The choice of what to put on the binary server is entirely site- dependent. It’s a good

idea to copy the files there using cfengine (or perhaps Subversion, as demonstrated

later in the chapter), so that if you have to rebuild the binary server, cfengine can pull

the needed files back again through a cfengine copy or a Subversion checkout. And

you might want to use rsync’s mirroring capabilities to keep the binary server updated.

Again, the choice is yours, but we wanted to inform you of the pros and cons of different

 data- sharing methods so that you can make informed decisions on your own.

Once you place files and directories into the binary server’s shared directories, you

can utilize them as though they are local files, to be mounted on demand by the auto-

mounter. We created the directory on aurora, and placed

the programs and there. We copied them from

on the host etchlamp, as they are part of the package. You’ll benefit from utilizing

these programs from other hosts, especially the cfengine master system. This way, when

we add entries to the BIND zone files, we can syntax- check them:

The is usually used with only two arguments: the name of the DNS

zone, and the name of the zone file.

This syntax check lets us know that the zone file we edited won’t be rejected by BIND

when it’s distributed by cfengine and loaded by the nameserver host. We recommend

that you run this check every time you make zone- file edits. The program

performs the same role, but for BIND configuration files.

If you place Apache and PHP in this directory, you’ll need to modify the startup and

restart definitions in your task files appropriately. We won’t demonstrate this because

we don’t think running such important programs from an NFS mount is the best idea.

You should copy the programs to the system’s local drive, for one simple reason: an SA

shouldn’t have to get up at night to respond to an NFS- related problem with the pro-

duction web server. As we said before, disk space is cheap, so take advantage of it. NFS

mounts are usually a better fit for user home directories and utility programs.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION240

Sharing Data with cfengine

We intend to copy the Apache and PHP programs to our Red Hat web server using

cfengine. We’ve used cfengine quite a bit at this point, so we don’t think you’ll see any

surprises in this chapter regarding its general use. Let’s use the same file layout from the

 rsync- based copy of Apache that we configured in the last section. Simply change these

lines in :

to these:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 241

We trigger a class that reloads Apache when the configuration files are updated. In

this setup, we set a class that fully restarts Apache when the binaries for Apache or PHP

are updated, because we don’t want to copy new programs out and not start using them

right away.

Note that we set the synchronization of the Apache and PHP directories to occur

hourly. In all likelihood, you’ll upgrade Apache only a few times per year. Having cfengine

crawl all 1,600 files in the PHP and Apache master directories as well as the destination

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION242

directories every hour seems wasteful. We recommend adding an hour class, so that it

reads like this:

The new setting will make the synchronization run once per day at midnight. You

should realize that the performance of your cfengine runs will matter quite a bit in the

long run. Right now, a run completes in a short amount of time. If we keep adding

unnecessary file copies across large directories, we’ll slow down the cfengine runs need-

lessly, and steal CPU time away from processes that might really need it.

Sharing Data with Subversion

The first edition of this book utilized CVS for revision control–based file distribution. In

this edition, we use Subversion, a revision- control system written to replace CVS. It is not

the only option out there, but it’s a solid choice for several reasons:

 s 3YSTEMACCOUNTSARENOTREQUIREDFORACCESSTOTHE3UBVERSIONREPOSITORY�WHEN
paired with Apache.

 s)THASSTRONGACCESSCONTROLOPTIONSWHENPAIREDWITH!PACHE�

 s #63TRACKSONLYTHEVERSIONINGOFFILES�WHILE3UBVERSIONTRACKSANDFULLYVERSION
controls everything in the repository—both files and directories (and even

symlinks on UNIX).

 s 3UBVERSIONSUPPORTSATOMICCOMMITS�ACOLLECTIONOFFILESISEITHERFULLYCHECKEDIN
as a group, or not committed at all.

 s 3UBVERSIONDEALSWELLWITHBINARYFILES�#63CANDOIT�BUTNOTASGRACEFULLY�

The authoritative reference book on Subversion is available for free on the web:

.

Automating Deployment of Your Subversion Server

We’ll set up our main infrastructure host, etchlamp.campin.net, as our network’s Subver-

sion server. You’ll recall that it is running Debian GNU/Linux. To get Subversion installed

at initial- system installation time, add these packages to the class package list in FAI

():

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 243

It is up to you whether to manually install the preceding packages, or reimage the

host. You'll need them installed before moving on. On the cfengine master, create the

directory . All the files that we need will be copied from

this directory. Before we do anything else, we need to add this line to

 so that we can refer to our Subversion server as

“svn.campin.net”:

Then run against the zone file to check for errors:

Then we just have to wait up to 20 minutes for the new DNS zone to go live. We’re

not in a hurry, because we’re doing this a little while before we will access our new

Subversion server. We’ll work on other things while waiting.

We need to set up the Secure Sockets Layer (SSL) certificate for Apache ahead of time

with an interactive command. Run to generate the key, and we’ll

copy the certificate using cfengine later—after generating it with this command:

This will put the two SSL key files generated in etchlamp’s directory

into a new directory on the cfengine master system:

.

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION244

Next, we’ll run the command on etchlamp to set up our first user account,

and copy the file to the cfengine master as well (to the directory

):

Choose a password when prompted. You want to use the argument only the very

first time you use a file controlled by . It initializes a new file, and will overwrite

an existing one. Be careful.

Next, we’ll create a file at the location

et. This is an Apache configuration file with these contents:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 245

We also place a modified file in , with this

single line of content:

Our Subversion Apache server will support HTTPS only. The final file to create is

, with these contents:

This file is used to grant fine- grained access to the repositories on the server. For

now, we grant full access to the nate and kirk accounts. The portion in square brackets

where we specify only the / character can specify paths in each repository, and set precise

controls on the sort of access allowed. This might come in handy later.

Next, create with these

contents:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION246

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 247

This task is fairly straightforward. We have a directory structure on the cfengine

master that’s copied out recursively, overwriting any files with the same names that exist

prior to the copy. We have already shown the contents of all the files that we copy out.

We disable the default Apache added by the Debian package, and use

only our svn.campin.net configuration.

We take additional steps in the task to enable the Apache module, and to cre-

ate the two Subversion repositories that we want right away. We don’t do anything with

the “cfengine” repository now, but we’ll make use of it in later chapters.

It was necessary to use the command to create the missing repositories because

when we used cfengine’s feature to set the user that commands run as (see commented

entries), the utility attempted—and failed—to source configuration files in ,

the root user’s home directory. Executing the command under the

command fixed this error.

Finally, we link the svn.campin.net into the directory,

which activates the configuration in Apache.

We need to define the class in the file

with this line:

Create and put this in it:

Finally, add the hostgroup import to the

 file by adding this line:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION248

Now wait for to configure Subversion and Apache on etchlamp at the next

scheduled run, or log in and run yourself to hurry things up.

Now that cfengine has set up the repositories and Apache for us, you can use Subver-

sion over HTTPS from anywhere on our network.

Using Subversion

The basic usage of Subversion is easy to learn. For our initial walkthrough, we’ll cover

only basic tasks—adding files and file trees, and working with those files once they’re

under Subversion control. In later chapters, we’ll cover more advanced topics such as

branching and merging.

To place the Subversion client on all future Solaris installs, add the string

to the list of packages installed by in the “run- once” script that’s put in place by

the JumpStart script.

For the host aurora we can simply run:

Importing files is the first task to perform with a new repository. We import the

 binary- server tree from the NFS server aurora using this procedure:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 249

You use the command when you have a group of files that you want to

begin tracking in Subversion. After the import is finished, the original files still aren’t

under Subversion control. We need to check out the repository in order to start working

with the files in the repository, as shown here:

We move the original directory out of the way and check out the “binary- server”

repository—in its entirety; we have a dead- simple repository layout for it—to a direc-

tory named . Afterward, we need to restart the NFS server so that it serves out the

 re- created directory. Now when we add or change any files or directories in this tree,

we’ll want to let Subversion know about it.

After we create the file , the command shows us that we have files not

found in the repository. It signals this condition by showing the symbol to the left of the

file name:

We can add and commit the new file to the repository with these commands:

We aren’t required to add files to Subversion that we add into this directory tree, but

if we don’t, the file will be lost if we set up a new server. From this point on, we can dis-

tribute this directory tree using Subversion inside cfengine , probably as the

final step in setting up the NFS server role in cfengine. If we end up doing

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION250

automated checkouts, a read- only user should be set up for automated access to the

repository (for security reasons).

Revision control of these binaries will be useful in case any upgrades to the files cause

problems later. As long as each version is checked into Subversion, we can easily roll back

the change.

The svn.campin.net Subversion configuration is fully automated, although it will of

course lack any actual repository data when initially configured.

If you completely lose your Subversion server (e.g., due to hardware failure) and you

don’t have any backups, you can reimage it and you’ll get the bare repositories back again

due to cfengine’s configuration. At that point, you could import a previously checked- out

copy (from before the crash), and Subversion will ignore all the .svn directories when the

import is done. It will simply create a new “revision 1” based on what you import, just like

our initial import of the tree.

This somewhat workable disaster- recovery scenario isn’t a substitute for proper back-

ups because you’ll lose all your revision history. At least you can get going again without

having to configure your Subversion server manually. We’ll briefly address backups in

a later chapter, although not nearly with the treatment they deserve. We recommend UNIX

Backup and Recovery by W. Curtis Preston (O’Reilly Media Inc., 1999).

We’ll finish up this chapter by showing a way to get the Subversion client installed on

all your Red Hat hosts. We won’t install it when the host is initially imaged; instead, we’ll

have cfengine use to install it. We have used the cfengine action to determine

if our site’s DNS server has the Debian package installed, but we haven’t used it to

actually install any packages.

Cfengine requires that an installation command be defined for each platform on

which the action is used. For Red Hat, we’ll use this entry:

This command will utilize the package- installation tool to install packages from

cfengine. The tool can use multiple network repositories to find packages, and will

automatically resolve package dependencies and install packages to satisfy those depen-

dencies. We’ll add these entries to the file .

We already have a Red Hat section that looks like this:

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION 251

We’ll add our entries into the section, so that it looks like this:

We will create a task to install the Subversion client. The task file is named

, with these contents:

We’ll add the task to the hostgroup, so that we can easily support Subversion

installation for other platforms that we’ll add to our environment later. The next time

 runs on our Red Hat hosts, the Subversion RPM will be installed if it’s not present

on the system. If you run on a Red Hat system without the Subversion RPM,

you’ll see output like this (along with a lot of other output):

NFS and rsync and cfengine, Oh My!
In this chapter, we’ve covered many different ways to share and copy data. Along the way,

we managed to configure a web site at our example site. We’ve made it fairly clear which

way we like to copy program binaries to clients (cfengine), but our intention is never to

make your choices for you.

We want you to know all the common ways to move data around on a network, and

to make the choice that best suits your needs. Even sites running similar operating sys-

tems and applications might have very different requirements around performance and

CHAPTER 8 N DEPLOYING YOUR F IRST APPLICATION252

security, as well as differences in how much time they’re willing to spend investigating

new file- distribution methods.

System administrators end up becoming very adept at copying files from many dif-

ferent sources to many different destinations. If you’re at or near the beginning of your SA

career, study the options and tools in this chapter on your own and learn them well. The

time will be well spent.

At this stage in the construction of our example infrastructure, it might seem like

we’re almost finished. After all, we had the required infrastructure to deploy our first

application, right? Well, yes, we have a functional infrastructure, but it’s still in its early

stages. We’re lacking in several key areas, and we’ll address some of our basic reporting

needs in the next chapter.

253

C H A P T E R 9

Generating Reports and
Analyzing Logs

You need to know about errors on the systems in your environment before they turn

into major problems. You also need the ability to see the actions your automation system

is performing. This means you’ll need two types of reporting:

 s ,OGREPORTSTHATCAPTUREBADSTRINGS�REPORTTHEMIMMEDIATELY�ANDIGNORETHEREST

 s ,OGREPORTSTHATIGNOREhOKAYvSTRINGSANDREPORTONWHAT�SLEFT

You want to know right away if a system has serious hardware issues or major appli-

cation issues. We’re going to run a reporting system that looks for unwanted words or

phrases. Here is one such unwanted message:

This particular message means that you’re running a version of BIND that works

AROUNDASERIOUSVULNERABILITY�BUTTHATACONFIGURATIONDIRECTIVEOVERRIDESTHEWORK-

AROUND�)FTHISWEREGOINGONINYOURNETWORK�YOU�DWANTTOKNOWASSOONASPOSSIBLE�
We’ll use real- time alerting to pick up on this condition as well as others.

Reporting on cfengine Status
You have two main ways of tracking the actions and changes that cfengine makes across

YOURINFRASTRUCTURE�&IRST�YOUSET GLOBALLYATYOURSITE�SOTHATCFENGINELOGSALL
ACTIONSTOSYSLOG�3ECOND�you have the output of ITSELF�WHICHIS�OFCOURSE	NOT
included in the syslog entries. When runs �ASITDOESATOURSITE	�ITALWAYS
STORESTHEOUTPUT�INCLUDINGTHEoutput of any commands run by �INTHE

DIRECTORY�!LSO� e-mails the output of to the e-mail address

as defined in �ORASINOURCASE�AFILEIMPORTEDFROM 	�

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS254

We are very interested in the contents of �ANDWOULDLIKETOAGGRE-

gate them centrally. We can later run interactive checks such as simple SEARCHES�OR
DIRECTLYVIEWTHEFILESWHENWENEEDTODOSOMEINVESTIGATION�&ORMONITORINGPURPOSES�
we can write scripts to flag and e-mail particular output- file contents to the administra-

tors. This sort of scheme is useful if you’d rather use custom reporting instead of the

 e-mail functionality of .

The first step is to get the directory contents from all hosts aggregated to

ASINGLEHOST�4HISPRESENTSSOMETHINGOFACHALLENGE�BECAUSECFENGINEUSESAPULLMODEL�
You don’t want to keep an explicit list of all your systems and have one system try to pull

the directory contents from each. You’d rather have each system be responsible

for pushing its directory contents to a central location. We can take advantage of

the rsync daemon that we placed on our cfengine master to accomplish this.

This approach brings with it some important security considerations:

 s 7ENEEDTOGRANTACCESSVIAAMECHANISMTHATWON�TALLOWAMALICIOUSUSERTO
access or destroy parts of the filesystem on the cfengine master.

 s 7ENEEDTOPREVENTHOSTSFROMOVERWRITINGONEANOTHER�SFILES�WHETHERACCIDEN-

tally or maliciously.

We can THEINCOMINGCOPYWITHAFEATUREOFRSYNC�BUTTHATWON�TWORKINOUR
case because we run our rsync daemon as a non USER�&URTHERMORE�WEdon’t want

to start running it as root because software bugs such as buffer overflows would result in

remote attackers’ ability to execute code as root on our system. We’d rather run the dae-

mon as a non user and protect ourselves another way. Rsync allows a script

TOBERUNBEFORETHECOPYISINITIATED�ANDWE�LLUSETHATFUNCTIONALITYTODOSOMEBASIC
security checks.

NCaution You’ll see the code- continuation character (±) in some of this chapter’s code sections. This

character signifies that the line in which it appears is actually a single line, but could not be represented

as such because of print- publishing restrictions. It is important that you incorporate the line in question as

a single line in your environment. You can download all the code for this book from the Downloads section

of the Apress web site at .

&IRST�WEadd this section to the goldmaster �LOCATEDINOUR

repository at :

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 255

We define the SCRIPTLOCATION�ALLOWINCOMINGCOPIESVIATHE

SETTING�ANDSETRESTRICTIVEPERMISSIONSONTHECOPIEDFILESVIATHE setting.

NNote The option allows you to specify a space- separated list of rsync command- line

options that will be refused by your rsync daemon. We utilize it to keep clients from deleting files or from

leaving partially copied files.

On goldmaster we create the directory �ANDPUTASCRIPT
into it named �WITHthese contents:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS256

4HISSCRIPTPERFORMSASIMPLECHECK�USINGACASESTATEMENT	TOMAKESURETHEPATH
that the client is copying to matches what we expect. We allow a client to copy only to

a directory matching either its short or fully qualified name. Note that this scheme relies

on the security and integrity of the DNS. You could easily modify this technique to use IP

ADDRESSESINSTEAD�&EELFREETOIMPLEMENTITTHATWAYATYOURSITE�ESPECIALLYIFYOUDON�T
control your DNS servers.

.EXT�we’ll enhance our current rsync server task at

 so it looks like this:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 257

±

In THISTASK�WEDISTRIBUTETHE script as well as create the directory where

we’ll upload the files from clients. We also include a action to remove files older than

60 days from this new directory. The directory will grow without bounds if we don’t do

THIS�ANDAFILLEDDISKWILLSURELYCOMEBACKTOBITEUSLATER�
We don’t currently have the action defined in our �,ET�SADDITTO

�SOTHATITHASTHISFORTHE :

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS258

To upload the DIRECTORYTOTHECENTRALHOST�CREATEATASKAT
 with these contents:

±

Add this task to the HOSTGROUP�SOALLHOSTSUPLOADTHEIR directory on

every run.

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 259

USING RED HAT AS THE AGGREGATOR HOST

If you run Red Hat Linux on the host where you’d like to aggregate your directories, you need

to be aware of two things:

s 2ED(ATUSES instead of , so will need to be modified to start rsync as

a daemon.

s 2ED(ATRUNSTHERSYNCDAEMONASTHEUSERNOBODY�SOTHEPERMISSIONSON

will need to be changed to be owned by the nobody user.

We don’t cover automation of Red Hat systems for this role, but wanted to point out the obvious

modifications in case you want to try it on your own.

7EDOHAVEASMALLPROBLEM�THOUGH�7E�REMISSINGTHERSYNCPROGRAMINOURBASE
Solaris installation process. We’ll want to install it from the Blastwave repository as part

OFTHE*UMP3TARTPROCESS�ASWEDOFORTHERESTOFOUROPENSOURCESOFTWAREADDITIONS�
Modify the JumpStart script so that rsync is installed by ET�BYCHANGING
this line on hemingway�THE*UMP3TARTHOST	INTHESCRIPT

:

±

We simply want to append rsync to the list:

±

Now that the central host goldmaster is getting populated with the directory

OUTPUTFROMALLCLIENTS�YOU�REFREETOUSEITASASOURCEFORREPORTS�!TTHISEARLYSTAGEIN
OURENVIRONMENT�SHISTORY�WESTILLLIKEGETTINGTHEDIRECTEMAILFROM from all runs

ONEACHHOST�/NCEOURSITEGROWSBEYONDAFEWHUNDREDSYSTEMSRUNNINGCFENGINE�WE�LL
probably find it difficult to keep up with and make sense of the e-mails as a whole.

A simple hourly or daily script to summarize and e-mail the aggregated

directory contents would make more sense at that point. Create a simple script for this

purpose at with these contents:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS260

This shell script simply looks for any new files created in the centralized

DIRECTORYDURINGTHELAST��MINUTES�ITASSUMES'.5 ISINTHEPATH�WHICHISTHE

COMMANDINCLUDEDWITH$EBIAN'.5�,INUX	�)TOUTPUTSTHEFILECONTENTSTOTHEMAIL
command using the command.

NNote The pipe to the mail command is outside the for loop, so we don’t get a separate mail for each

directory under . If you’re not sure you understand why this is necessary, try moving

the pipe to the mail command to the same line as the find command. Experimenting with shell scripts is one

of the best ways to increase your shell- scripting knowledge.

The contents of are already synchronized to all hosts at

the location TS�SOWEDON�TNEEDTOMAKEANYCHANGESFORTHESCRIPTTO
be copied to the goldmasterHOST�"ECAUSETHISSCRIPTWILLBEONEVERYHOSTATOURSITE�WE
make sure that it attempts to run only when invoked on the correct host.

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 261

#REATEASIMPLETASKTORUNTHESCRIPTONANHOURLYBASIS�INAFILECALLED
�WITHTHESECONTENTS�

The directory is stored on the host serving the role of —because

THAT�SWHEREWERUNTHERSYNCDAEMON�4OHAVETHETASKUSED�ADDthis line to the file

:

The e-mail output of the script is very basic:

This is a good way to report on output from . When you have new

REPORTINGNEEDS�YOUCANBUILDONTHISSHORTEXAMPLESCRIPT�.OTETHAT offers this

useful feature: it doesn’t send a new e-mail when the output of the current run matches

that of the previous run. Our example script doesn’t implement this functionality; this is

left as an exercise for the reader.

7HENALLSYSTEMSAREFUNCTIONINGPROPERLY�WESHOULDSEESYSLOGLOGMESSAGESLIKE
THISONTHECFENGINEMASTER�REGARDINGALLCLIENTS�

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS262

This lets us know that the host with the IP address is connected to

OURCFENGINEMASTER�4HISISSOMETHINGWEEXPECTANDREQUIRE�ANDIFITSTOPSHAPPEN-

ING�SOMETHINGISWRONG�7EWON�TUSELOGREPORTSTOTELLUSIFHOSTSSTOPCONTACTINGTHE
CFENGINEMASTER�INSTEAD�WE�LLUSEANOTHERMETHODTHATLEVERAGESCFENGINEITSELF�

Add a file at the location with these contents:

7EDEFINEACLASSFORTHEhPOLICYHOSTvMACHINEBECAUSEWECURRENTLYHAVEONLY
AVARIABLEBYTHATNAME�USEDINCOPYACTIONS	�!DDTHISLINETO

:

Then import the file into by adding this line:

.OWIFAHOSTSTOPSCONTACTINGTHECFENGINEMASTERFORMORETHANFOURHOURS�YOU�LL
see syslog messages and alerts in the e-mails from the cfengine master host

goldmaster.

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 263

Doing General syslog Log Analysis
Syslog daemons make it easy to centralize syslog messages. They universally have the

ability to forward some or all log messages to other hosts on the network.

We’ll use this functionality to send the syslog output from all of our hosts to a single

SYSTEM�5SINGTHESYSLOGNGOPENSOURCESYSLOGDAEMON�WE�LLSTOREALLLOGSINADIRECTORY
STRUCTURESORTEDBYHOSTNAMESANDTHELOGMESSAGEDATE�%ARLIERINTHECHAPTER�WESET

GLOBALLYATOURSITE�SOWECANUSESYSLOGLOGENTRIESTOKEEPTRACKOFTHEACTIONS
that cfengine takes. Between the DIRECTORYANDTHESYSLOGMESSAGES�WEHAVE
a complete history and output of the cfengine activity at our site.

Configuring the syslog Server

We’ll SETUPANEWROLEONOURNETWORK�THATOFTHESYSLOGLOGHOST�7E�LLUSEA$.3ALIAS
TOREFERTOTHEHOST�INSTEADOFUSINGITSACTUALHOSTNAME	�ASWELLASAROLEBASEDCLASS
in cfengine to control which host collects all the logs. We’ll call the role �AND
add a new physical host for this role. All of our Debian hosts are already imaged with

THESYSLOGNGPACKAGEINSTALLED�BUTWE�LLNEEDTOINSTALLASMALLAMOUNTOFADDITIONAL
software.

We need to make some additions to FAI on the host goldmaster to support this new

installation class. Modify so that it has these

contents:

Then set up disk partitioning so that it resembles the setup for the CLASS�BYCOPY-

ing to �.EXT�SETUP
packages for this class in the file :

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS264

!DDTHENEWSYSTEMINTOTHE$.3�USINGTHE)0ADDRESS . The entry for

 is:

Here’s the entry for et:

Add an entry to on goldmasterLIKETHIS�SUBSTITUTEYOURHOST�S
-!#ADDRESS	�ANDRESTART :

Now we need to set up the imaging job in FAI with this command:

"OOTTHESYSTEMUSING08%�AFTERWHICH&!)WILLSETUPTHEHOSTASOURSITE�SSYSLOG
SERVER�)N��OR��MINUTES�YOUCANLOGINTOTHEHOSTloghost1IFYOU�DLIKE�.ONEEDTO�
THOUGH�ASWE�LLDOEVERYTHINGFROMTHECFENGINEMASTER�ASUSUAL�9OUMIGHTBENOTICING
that pattern by now.

We’ll create a syslog- ng configuration file for the syslog server role first. Place a file

at by copying the Debian

 file to that location. We first need to make sure that this file

has the desired and listen lines enabled. Here’s our SECTION�WITHTHE
additions in bold:

Now that we have syslog- ng on the syslog host configured to listen for syslog connec-

TIONSONTHENETWORK�WENEEDTOADDTHESELINESTOTHEENDOFTHEFILETOSTORETHELOGSIN
a sorted manner:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 265

±

±

Now create a file at for all our

$EBIANHOSTS�AGAINBYCOPYING to this new file name. Add

these lines to the end of the file:

Now we’ll create a task for syslog configuration across all systems at our site. Create

a file on the cfengine master at the location

with these contents:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS266

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 267

In THISTASK�WECOPYACOMPLETE FILETO$EBIANHOSTS�ANDEDITTHE
 file on Solaris and Red Hat to send all syslog messages from the default syslog

daemon. Be sure to insert Tab characters into the file when editing it. Put-

ting Tab characters directly into the entry will do the right thing. We remove

some configuration files that get left behind when the Debian postfix package

REPLACES%XIM�THEDEFAULT$EBIANMAILTRANSFERPROGRAM�7HENTHE configura-

TIONFILESAREINPLACEANDTHEUSERACCOUNTSFOR%XIMAREMISSING�ASTHEYAREATOURSITE	�
the program fails to run. We remove the files to work around this problem.

Outputting Summary Log Reports

We want to keep a general eye on the syslog messages at our site. Programs like logcheck

compile a summary of the message traffic: they ignore particular messages and display

THEREST�4HISMEANSTHATOVERTIME�WE�LLHAVETOADDMESSAGESTOANIGNOREFILEIFWEWANT
to stop seeing them in the reports.

The useful nature of such reports becomes apparent when you see new sorts of mes-

SAGESTHATINDICATEPROBLEMSORISSUES�/NCEYOUFINDTHESEISSUES�YOUCANPROGRAMTHEM
INTOYOURREALTIMEnALERTINGLOGTOOL�SUCHAS3IMPLE%VENT#ORRELATOR�OR3%#�COVEREDIN
THENEXTSECTION	TOSEETHEMIMMEDIATELYIFTHEYRECUR�4HEPROBLEMISTHATYOUHAVETO
LEARNABOUTTHEERRORSFIRST�ANDTHAT�SWHERELOGCHECKCOMESIN�

We’ll UTILIZENEWLOGCHECK�AMODIFICATIONONTHELOGCHECKTOOLTHATREPORTSFROM
a central loghost instead of on stand-alone hosts. A second feature of newlogcheck is

THATITSUMMARIZESENTRIESTOREPORTHOWMANYTIMESEACHHAPPENED�ASOPPOSEDTOTHE
LOGCHECKDEFAULT�WHICHSHOWSEACHANDEVERYMESSAGEINITSENTIRETY�

The first step is to download logcheck from

�5NTARIT�ANDMOVETHE directory to

 on your cfengine master. Then download newlogcheck

from and place the and

 scripts into your directory. They’ll be distributed by cfengine and

ready to run from .

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS268

Create a task at with these contents:

Add this line to :

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 269

Create the hostgroup file for the syslog host role with this file at the location

:

5SETHISENTRYTOADDTHENEWHOSTGROUPINTOTHEHOSTGROUPMAPPINGSFILE
:

This will get logcheck copied to loghost1�ANDITWILLSTARTRUNNINGREPORTSATTHETIMES
LISTEDINTHETASK�9OUSHOULDRUNITMANUALLYONCE�TOMAKESUREITWORKSPROPERLY�AND
you should get a good start on adding entries to the ignore files.

/NCEYOUGETYOURFIRSTREPORT�NOTETHELOGENTRIESTHATYOUDON�TWANTTOSEEIN
THEREPORTSANYLONGER�ANDNOTETHEIGNOREPATTERNSTOTHE

 files. The command PROVIDESTHEIGNOREFUNCTIONALITY�SOTHE
patterns in the files are extended patterns.

Doing Real- Time Log Reporting

We will utilize our centralized syslog loghost to alert the SA staff when particularly impor-

tant or notable syslog messages appear. These might be alert messages sent to a pager

ABOUT$.3SERVERPROBLEMSORFULLDISKS�ORTHEYMIGHTSIMPLYBEINFORMATIONALMESSAGES
sent to the administrator’s inbox about how many SSH logins occurred that day.

4HE3IMPLE%VENT#ORRELATOR�3%#	CANDOALLOFTHATANDMORE�)TISANOPENSOURCE
program intended to perform event- correlation duties with network- management sys-

TEMSSUCHAS(0/PEN6IEWOR-ICROMUSE�NOW)"-	/-.)BUS�3%#ALLOWSYOUTOUSE
MESSAGESTOSETAPARTICULARSTATE�ANDSUBSEQUENTLYOTHERSTATES�DEPENDINGONFURTHER
EVENTSORTHEPASSAGEOFTIME�!TANYONEOFTHESESTATECHANGES�3%#CANSENDEMAILOR
EXECUTEOTHERCOMMANDS�ORSIMPLYDROPTHECURRENTSTATE��6ISIT3%#�SHOMEPAGEAT

�	
3%#WILLEASILYHANDLEOURSIMPLELOGALERTINGNEEDS�SUCHASEMAILINGWHENITSEES

a particular event. It will also handle more advanced reporting such as tracking the pro-

CESSIDENTIFIER�0)$	OFAPROCESSSERVICINGAPARTICULARUSER�S&40LOGIN�RECORDINGALLLOG
MESSAGESFROMTHATPROCESS�ANDFINALLYEMAILINGALLTHOSEEVENTSWHENTHEUSERLOGSOUT�

7EWILLCALL3%#DIRECTLYFROMSYSLOGNGONTHELOGHOST�BYPIPINGALLMESSAGESDIRECTLY
into it. Note that the SEC program itself is located in because we installed the

$EBIAN3%#PACKAGEATINSTALLATIONTIME�USING&!)	�ANDTHAT�SWHERE$EBIANPLACESIT�
&IRST�WE�LLNEEDACONFIGURATIONFILE�,ET�S place a file at

 with these contents:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS270

±

±

±

±

±

±

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS 271

±

±

The lines EXECUTEANACTIONBASEDONAMATCH�INTHISCASE�SENDING
the message to the mail command—and the rule simply ends there. The

LINEISMOREINTERESTING�INTHATIT�SBASICALLYATHROTTLINGMECHANISM�
It uses a unique key to identify the uniqueness of the message that it’s throttling. The key

ISCOMPOSEDOFTHERULEFILENAME�THERULE)$�ANDTHEEVENTDESCRIPTIONSTRINGDERIVED
from the parameter of the rule definition. This means that if you want to throttle

AMESSAGEACROSSDIFFERENTHOSTS�ORACROSSMULTIPLEMESSAGESTHATMIGHTDIFFERINFIELDS
OTHERTHANTHEHOSTNAME�YOU�LLNEEDTOMANIPULATETHE field in order to normalize

the key. Read the SEC man page for more information.

Place a task at with these contents to

copy the SEC configuration directory:

CHAPTER 9 N GENERATING REPORTS AND ANALYZING LOGS272

Add this task to the file with this entry:

Make the syslog host utilize SEC by adding these lines to

st:

±

.OWYOU�LLGETEMAILALERTSWHENANYOFTHOSEhBADvMESSAGESCOMETHROUGH�2EAD
THE3%#MANPAGETOLEARNMOREABOUTWHATITCANDO�ANDEXAMINETHEMANYEXAMPLE
rules that are distributed with the package from the web site.

Seeing the Light
!TTHESTARTOFTHISCHAPTER�WEHADANINFRASTRUCTUREWITHMANYAPPLICATIONSRUNNINGINIT�
SUCHASMAIL�CFENGINE�!PACHE�$(#0�$.3�ANDMORE�BUTWEHADNOVISIBILITYINTOANY
log messages sent from any of those applications.

Now our infrastructure is in good shape with regard to reporting:

 s 7EHAVEREGULAREMAILSSUMMARIZINGSYSLOGMESSAGESFROMALLOURSYSTEMS�

 s 7EHAVETHECAPABILITYTOALERTBASEDONPARTICULARMESSAGES�

 s 7EHAVEALERTSFROMCFENGINEWHENCLIENTSSTOPCONTACTINGTHECFENGINEMASTER�

 s 7EHAVEFULL OUTPUT�ASCOLLECTEDBY 	AUTOMATICALLYPUSHEDTOOUR
cfengine master system for troubleshooting and custom reporting.

One very important area where we’re still blind: the availability of the network ser-

VICESATOURSITE�7EHAVENOAUTOMATEDMETHODOFFINDINGOUTIFOURWEBSITEGOESDOWN�
IF33(STOPSWORKING�ORIFTHEDISKSFILLUPONANYOFOURHOSTS�7E�LLADDRESSNETWORKAND
host monitoring in the next chapter.

273

C H A P T E R 1 0

Monitoring

We use automation to configure systems and applications in accordance with our

wishes. In a perfect world, we would automate all changes to our hosts, and at the end of

the workday, we would go home and not have to do any work again until the next morn-

ing. SAs will be the first to tell you that the world isn’t perfect. Disk drives fill up; power

supplies fail; CPUs overheat; software has bugs; and all manner of issues crop up that

cause hosts and applications to fail. System and service monitoring is automation’s com-

panion tool, used to notify us when systems and applications fail to operate properly.

Right now, we are unaware of any hardware or software problems in our example

environment. There are many key failure situations that administrators wish to know

about immediately. Some of these are

 s 7HENAHOSTISUNREACHABLEONTHENETWORK

 s 7HENANETWORKAPPLICATIONFAILS�E�G��THE!PACHEINSTANCEFOROURPUBLICWEBSITE
doesn’t serve content properly)

 s 7HENANIMPORTANTPROCESSISNOTRUNNINGONASYSTEM

 s 7HENRESOURCESAREOVERUTILIZED�E�G��HIGHSYSTEMLOAD�HIGH#05UTILIZATION�AND
low disk space)

7ITHOUTan automated mechanism to detect these situations and notify the

administrator, problem notification will be performed by users or even customers!

4HEPROBLEM�ORPROBLEMS	MIGHTHAVEBEENGOINGONFORANEXTENDEDPERIODOFTIME
before the administrator is alerted, which is embarrassing for the administrator and,

when reported by a customer, embarrassing for the business as a whole. Clearly, we

need a better solution than relying on users or waiting for the administrators to notice

anomalies during the normal course of their work.

Aside from immediate errors or failures, we’d like to be aware of general trends in the

PERFORMANCEANDRESOURCEUTILIZATIONOFOURSYSTEMS�7EDON�TWANTTOFINDOUTTHATWE
LACKSUFFICIENT#05CAPACITYFOROURPUBLICWEBSITEWHENTHE#05UTILIZATIONEXCEEDS��
percent and rarely comes down! Conversely, we don’t want to receive an automated noti-

FICATIONEVERYTIMETHE#05UTILIZATIONEXCEEDSAMUCHLOWERPERCENTAGEASASORTOFEARLY

CHAPTER 10 N MONITORING274

warning system—this will result in excessive alerts and isn’t even an accurate indication

OFINSUFFICIENT#05CAPACITY�)NSTEAD�WEWOULDLIKEAWAYTOVISUALIZERESOURCEUTILIZA-

TIONTRENDSOVERTIME�WHICHALLOWSUSTOMAKEAPREDICTIONABOUTUTILIZATIONLEVELSINTHE
future. Armed with this information, we can deploy additional systems or install hard-

ware upgrades before they are needed.

An entire software industry exists around automated system and network moni-

TORING�ANDMANYOPENSOURCEPROGRAMSEXISTASWELL�7EAREFORTUNATETHATSOMEVERY
HIGHQUALITYOPENSOURCEMONITORINGSOFTWAREEXISTS�7EWILLFOCUSONOPENSOURCE
monitoring software in this chapter, and we believe that our choices will scale with your

environment as it grows.

7Ehave chosen Nagios for our system and service monitoring system. Nagios is flex-

ible and mature, and help is widely available on Internet mailing lists and newsgroups.

7EFEELTHATWEARELEAVINGYOUINGOODHANDSWITH.AGIOSONCEYOU�VECOMPLETEDTHIS
chapter.

7EHAVECHOSEN'ANGLIAFORSYSTEMRESOURCEVISUALIZATION�'ANGLIAWASDEVELOPED
for monitoring large-scale clusters, and we have found it to be very easy to work with. It is

also very flexible and should be able to support any custom system graphing required at

your site.

As with automation systems, work is always being done on a site’s monitoring sys-

tems. Applications and hosts are added; applications change and need to be monitored

differently; hosts fail permanently; and critical thresholds change. You need to know your

monitoring systems inside and out, both the monitoring software itself as well as exactly

what is being monitored at your site.

Nagios
Nagios is a system and network monitoring application. It is used to monitor network

CLIENT�SERVERAPPLICATIONSSUCHAS0/0�(440�AND3-40�ASWELLASHOSTRESOURCEUTILIZA-

tion such as disk and CPU usage. Users usually interact with it though an optional web

interface included with the source distribution.

Here is the list of features as documented on :

 s -ONITORINGOFNETWORKSERVICES�3-40�0/0��(440�..40�0).'�ETC�	

 s -ONITORINGOFHOSTRESOURCES�PROCESSORLOAD�DISKUSAGE�ETC�	

 s 3IMPLEPLUGINDESIGNTHATALLOWSUSERSTOEASILYDEVELOPTHEIROWNSERVICECHECKS

 s 0ARALLELIZEDSERVICECHECKS

 s !BILITYTODEFINENETWORKHOSTHIERARCHYUSINGhPARENTvHOSTS�ALLOWINGDETECTION
of and distinction between hosts that are down and those that are unreachable

CHAPTER 10 N MONITORING 275

 s #ONTACTNOTIFICATIONSWHENSERVICEORHOSTPROBLEMSOCCURANDGETRESOLVED�VIA
e-mail, pager, or user-defined method)

 s !BILITYTODEFINEEVENTHANDLERSTOBERUNDURINGSERVICEORHOSTEVENTSFORPRO
active problem resolution

 s !UTOMATICLOGFILEROTATION

 s 3UPPORTFORIMPLEMENTINGREDUNDANTMONITORINGHOSTS

 s /PTIONALWEBINTERFACEFORVIEWINGCURRENTNETWORKSTATUS�NOTIFICATIONANDPROB-

lem history, log file, and so on

Nagios is widely used and has an active user community. Good support is available

on Internet mailing lists and on the web site. Also, several books

are available on the subject, and one of our favorites is Building a Monitoring Infrastruc-

ture with NagiosBY$AVID*OSEPHSEN�0RENTICE(ALL�����	�7ELIKEITBECAUSEITFOCUSES
not just on the Nagios application itself but also on real-world monitoring scenarios.

7Ealso recommend Pro Nagios 2.0BY*AMES4URNBULL�!PRESS�����	�"OTHBOOKSCOVER
.AGIOSVERSION�BUTTHEMAJORITYOFTHECONTENTSTILLAPPLIES�ASDOESTHEGOODADVICEFROM
each on general monitoring system design.

7ITHMANYOFTHEAPPLICATIONSDEPLOYEDSOFARINOUREXAMPLEENVIRONMENT�THE
whirlwind introduction that we provide is enough to give you a good understanding of

the software and technologies you’re deploying. Nagios is different in that it will definitely

REQUIREFURTHERREADINGANDEXPERIMENTATIONONYOURPART�7EENCOURAGEYOUTOUSE
Nagios, and we provide a working configuration to get it up and running quickly at your

site so that you can leverage its feature set. In order to make full use of it, though, you will

need to learn more about it on your own.

Nagios Components

"EFOREwe go deeply into the configuration of Nagios, we will explain the different parts of

the monitoring system that we’re going to deploy. The Nagios program itself is only one

part of our overall monitoring system. There are four components:

 s The Nagios plug-ins are utilities designed to be executed by Nagios to report on the

status of hosts or services. A standard set of open source plug-ins is available at the

 web site, and many additional plug-ins are freely available

on the web. Extending Nagios through the use of custom plug-ins is simple, easy,

and encouraged.

 s The Nagios daemon is a scheduler for plug-ins that perform service and host

checks.

CHAPTER 10 N MONITORING276

 s The web interface is a SETOF#OMMON'ATEWAY)NTERFACE�#')	PROGRAMSTHAT
are included in the Nagios source distribution. The CGI interface is completely

optional, but it is extremely useful, and we consider it a mandatory part of a com-

plete monitoring infrastructure.

 s Remote plug-in execution via the Nagios Remote Plug-in Executor (NRPE) is also

provided. In order to check local system resources on remote hosts, a mechanism

FORREMOTECHECKINGISNEEDED�3OMESITESUTILIZE3IMPLE.ETWORK-ANAGEMENT
0ROTOCOL�3.-0	AGENTSFORTHISPURPOSE�4HE.20%ADDONTO.AGIOSISAVAIL-
able at the web site and is designed for remote execution of

Nagios plug-ins.

7EWILLGOINTOGREATERDEPTHONTHE.AGIOSDAEMONITSELFINTHENEXTSECTION�&IRST�
we want you to be aware that when administrators talk about Nagios, they’re usually talk-

ing about all the parts that form the complete monitoring system, because every site is

required to add plug-ins in order for Nagios to perform service/host checking at all, mak-

ing for two monitoring system components right away. Most sites also deploy the Nagios

WEBINTERFACE�ALONGWITHAFACILITYTOCHECKREMOTESYSTEMRESOURCES�E�G��.20%�3.-0�
or the Nagios add-on).

At our example site, we’ll use Nagios to schedule plug-ins and handle notifications,

plug-ins to perform host and service checks, NRPE to run plug-ins on remote hosts, and

the Nagios CGI web interface to display status and to interact with users.

Nagios Overview

At its core, Nagios is simply a plug-in scheduling and execution program. The Nagios

source distribution itself does not include monitoring scripts or programs, though an

open source set of plug-ins is available for download from the Nagios web site. Through

the use of plug-ins, Nagios becomes a true monitoring system, as the plug-ins check and

report on the availability of hosts and services. Nagios really only understands that exit

codes from plug-ins dictate the actions it takes.

Nagios has four types of configuration files:

 s 4HEMAINCONFIGURATIONfile is . This file contains settings and directives

that affect the Nagios daemon itself, as well as the CGI programs. These are set-

tings such as log file locations, whether or not notifications are globally enabled,

and so on. This file doesn’t directly set up any monitored services.

 s 2ESOURCEFILE�S	AREUSEDTODEFINEMACROS�I�E��STRINGSTHATAREREPLACEDATRUNTIME
by the Nagios daemon with the values defined in the resource file). These are used

to abstract the locations of plug-ins, as well as to store private information such

as passwords. The contents of these files won’t be exposed to the CGI programs;

therefore, the files can be protected with restrictive file permissions.

CHAPTER 10 N MONITORING 277

 s 9OUWILLSPENDMOSTOFYOURTIMEINTHEOBJECTDEFINITIONFILES�4HESEFILESDEFINE
hosts, hostgroups, contacts, services to be monitored, commands used for service

and host checks, and more. The sample configuration that we put in place when

we build Nagios will automatically configure object definitions to monitor the

MONITORINGHOSTITSELF�7EWILLADDFURTHERDEFINITIONSTOMONITORTHEHOSTSAND
services on our network.

 s 4HE#')CONFIGURATIONFILE�OBVIOUSLY�CONFIGURESTHE#')�WEBINTERFACE	PRO-

grams. It contains a reference to the main configuration file, so that the Nagios

daemon configuration and object definition file locations made available to the

CGI programs.

4HEEXAMPLE.AGIOSCONFIGURATIONFROMTHESOURCEDISTRIBUTION�ASINSTALLEDBY
 later in this chapter) uses different files to store different parts of its con-

FIGURATION�7EUSETHISSAMEAPPROACHINOURCFENGINECONFIGURATIONFILES�ANDITLEADSTO
EASIERCOMPREHENSIONANDDEBUGGINGONCETHEFILESGROWLARGE�7EUSETHE direc-

TIVEINTHEMAIN.AGIOSCONFIGURATIONFILE�) to include all files with a .cfg suffix

in a specified directory as object definition files. The directive also recursively

includes .cfg files in all subdirectories.

Nagios uses templates to implement object inheritance. This allows us to define

default settings for objects that can be overridden as needed in host and service defini-

tions. The Nagios example configuration makes use of templates, so we’ll already be

UTILIZINGTHEMWHENWEGETOUR.AGIOSINSTALLATIONUPANDRUNNING�
The fundamental building blocks in the Nagios configuration files are host and ser-

vice definitions. Each is defined as a Nagios object. Host and service definitions are just

two examples of the several types of objects.

Here is the complete list of Nagios object types:

 s Hosts: Hosts contain definitions of hosts or devices. These are usually physical

machines, but they might be virtual systems as well. Nagios doesn’t know or care

about the difference.

 s Hostgroups�4HESEDEFINEONEORMOREHOSTSANDAREPRIMARILYUSEDTOORGANIZE
and simplify the service definitions, as well as the Nagios web interface.

 s Services�3ERVICEOBJECTSDEFINEASERVICERUNNINGONAHOST�E�G��THE(440SERVICE
running on a web server).

 s Service groups: These objects define one or more services grouped together and

AREUSEFULFORORGANIZINGTHE.AGIOSWEBINTERFACE�3ERVICEGROUPSAREALSOUSEFUL
�THOUGHSTILLSTRICTLYOPTIONAL	IFYOULATERDECIDETOUSE.AGIOSNOTIFICATIONESCALA-

TIONRULES�7EWON�TCOVERHOSTANDSERVICENOTIFICATIONESCALATIONINTHISBOOK�
however.

CHAPTER 10 N MONITORING278

 s Contacts�4HISOBJECTDEFINESTHERECIPIENTSOFNOTIFICATIONS�I�E��PEOPLETONOTIFY	�

 s Contact groups: Contact groups define groups of one or more contacts. Nagios

objects that send notifications always reference contact groups.

 s Time periods: These objects define blocks of time and are used by other definitions

to determine when checks are run, notifications are sent, or blackout periods.

 s Commands: These objects define command macros, which are used to send notifi-

cations and execute plug-ins.

CONTACTS VS. CONTACT GROUPS

Be aware that contacts aren’t used directly by Nagios when notifications are sent. Service definitions, as

well as escalation rules (not covered in this book) utilize contact groups instead. This is probably for the

best, since the grouping will allow easy expansion of recipient lists later on. This is not always obvious

to new users, however.

The knowledge of Nagios object types, in tandem with the example configuration

that we deploy later in this chapter should be enough to get you started with Nagios.

0LEASEPICKUPAGOODBOOKON.AGIOS�WERECOMMENDEDTWOGOODBOOKSEARLIERINTHE
chapter), join the nagios-usersMAILINGLIST�), and read

the online documentation in order to build on your installation from the point where this

book leaves off.

Deploying Nagios with cfengine

In this section, we move step by step through the process of building, configuring, and

DEPLOYING.AGIOSUSINGAUTOMATION�7EKNOWHOWHARDFOLLOWINGSUCHAPROCESSCANBE�
so we’re attempting to make it as easy on you as possible.

Steps in Deploying Our Nagios Framework

Many steps will be required to deploy a fully functional Nagios framework in an auto-

mated fashion. Here are the steps, in order:

 1. 7EADDSYSTEMUSERACCOUNTSTORUNTHE.AGIOSAND.20%PROGRAMS�

 2. 7EBUILD.AGIOSFROMSOURCEFOR$EBIANI���ANDCOPYTHEPROGRAMSTOTHE
cfengine master for later automated copying.

CHAPTER 10 N MONITORING 279

 3. 7EBUILDTHE.AGIOSPLUGINSFOR$EBIANI����2ED(ATI����AND3OLARIS30!2#AND
manually copy them to the cfengine master for later automated copying to clients.

 4. 7EMANUALLYCOPYTHE.AGIOSDAEMONSTARTUPSCRIPTTOTHECFENGINEMASTERFOR
later automated copying to cfengine clients.

 5. 7ESEPARATETHE.AGIOSPROGRAMDIRECTORYANDCONFIGURATIONDIRECTORYONTHE
cfengine master so that our example site can easily support automated updates of

only the Nagios binaries.

 6. 7EMANUALLYGENERATEAN33,CERTIFICATEFORTHE.AGIOSWEBINTERFACEANDCOPYIT
to the cfengine master for later automated copying to cfengine clients.

 7. 7EMANUALLYCREATETHE!PACHEVIRTUALHOSTCONFIGURATIONONTHECFENGINEMASTER�
also for later automated copying to cfengine clients.

 8. 7ECREATETHE.AGIOSWEBINTERFACEAUTHORIZATIONFILEANDMANUALLYCOPYITTOTHE
cfengine master for later automated copying to cfengine clients.

 9. 7ECREATEACFENGINETASKTOCOPYFILESTOOURSITE�SMONITORINGHOST�

 a. The core Nagios programs

 b. The directory containing the Nagios configuration files

 c. The Apache configuration file

 d. 4HE!PACHEAUTHORIZATIONFILE

 e. 4HE!PACHE33,CERTIFICATEUSEDFORTHE.AGIOSWEBINTERFACE

 10. 7ECONFIGUREA.AGIOSMONITORINGHOSTROLEINCFENGINEUSINGACLASS�

 11. 7ECREATEAHOSTGROUPFILEFORTHENEWMONITORINGHOSTROLEINCFENGINE�

 12. 7ECREATEACFENGINETASKTODISTRIBUTETHE.AGIOSPLUGINSTOALLPLATFORMSATOUR
example site.

 13. 7ECREATEAHOSTNAMEINTHE$.3FORTHEMONITORINGHOST�

 14. 7EMODIFYTHEDEFAULTLOCALHOSTONLYMONITORINGDONEBY.AGIOSSOTHATTHEMON-

itoring host itself is properly monitored.

 15. 7EBUILD.20%FOR$EBIANI����2ED(ATI����AND3OLARIS30!2#�

 16. 7ECREATEAN.20%CONFIGURATIONFILEFOROURSITEONTHECFENGINEMASTER�FORLATER
automated copying by cfengine clients.

 17. 7ECREATEAN.20%STARTUPSCRIPTONTHECFENGINEMASTER�FORLATERAUTOMATED
copying by cfengine clients.

CHAPTER 10 N MONITORING280

 18. 7ECREATEACFENGINETASKTOCOPYTHE.20%PROGRAMS�CONFIGURATIONFILEANDSTART
up script to all hosts.

 19. 7ECONFIGURETHEHOSTBASEDFIREWALLON2ED(ATTOALLOWINCOMING.20%CONNEC-

tions and then copy the firewall configuration file via a cfengine task.

 20. 7EFINALLYHAVEACOMPLETEFRAMEWORKTOWORKWITH�WEADDNEWHOSTANDSERVICE
definitions to the Nagios configuration files on the cfengine master in order to

monitor all the hosts at our site.

4HEREARE��STEPSREQUIREDJUSTTOSETUP.AGIOS�4HISISPROBABLYTHEMOSTDIF-
FICULTCHAPTERINTHISBOOKTOFOLLOW�7HENDESCRIBINGTHECFENGINECONFIGURATIONSIN
this chapter, we will focus on the results in regard to setting up Nagios. The actions

taken in cfengine should be quite familiar to you by now; they consist mainly of ,

, , and actions.

Step 1: Creating User Accounts

Using DEDICATEDUSERACCOUNTSFORDAEMONSON5.)8SYSTEMSISGOODPRACTICE�&IRST�YOU
want the daemon to run as a nonroot user so that security vulnerabilities don’t grant

immediate root privileges to attackers. Second, you want the compromise of one daemon

to only affect the files writeable by that user and for any investigation to point quickly

back to the daemon at fault. If the same user account is used for many daemons, it could

be harder to determine the program that was compromised by an attacker.

7E�LLUSEOUREXISTINGINTERNALWEBSERVERHOSTNAMEDetchlamp as our monitoring

HOST�&IRST�CREATETHENEEDEDUSERANDGROUPSMANUALLYONetchlamp�WHICHISRUNNING
$EBIAN���ONTHEI���PLATFORM	ASTHEROOTUSER�

7EADDEDTHEACCOUNTFILEENTRIESFORTHE user to the master Debian, Red Hat,

and Solaris , , and FILESONTHECFENGINEMASTER�IN),

and we added the group entry to the group files for all three platforms.

Step 2: Building Nagios

The next step was to download the stable version of Nagios from

�!TTHETIMEOFTHISWRITING�THELATESTSTABLE.AGIOSVERSIONIS�����/NCEDOWN-

LOADED�WEHADTOUNTARANDUNGZIPITANDTHENBUILDITASFOLLOWS�

CHAPTER 10 N MONITORING 281

"UILDING.AGIOSISRATHEREASY�ANDITWOULDBEUNUSUALTOENCOUNTERANYERRORSAT
build time because of the relative lack of compile-time dependencies. Now that we have

built Nagios, we’ll need to copy it to our cfengine master for later deployment:

±

Step 3: Building the Nagios Plug-ins

Now, we have Nagios compiled, but it won’t be useful without plug-ins. To compile the

.AGIOSPLUGINSFOR$EBIAN�I���	�WERANTHESECOMMANDSONA$EBIAN���I���SYSTEM
WITHA#DEVELOPMENTENVIRONMENTINSTALLED�THELATEST.AGIOSPLUGINSVERSIONATTHE
TIMEOFTHISWRITINGIS������	�

Then, we copied the programs over to the cfengine master:

±

CHAPTER 10 N MONITORING282

3OFAR�WEONLYHAVETHE.AGIOSPLUGINSFOR$EBIAN�I���	�7E�REGOINGTONEEDTHE
plug-ins compiled for all platforms at our site for use with NRPE, covered later in this

CHAPTER�4OCOMPILETHE.AGIOSPLUGINSFOR2ED(AT�I���	�WERANTHESECOMMANDSON
the rhmaster system, where we have a C development environment:

Then, from the cfengine master, we copied the programs:

.OW�ALLWEHAVELEFTIS3OLARIS�4OCOMPILETHE.AGIOSPLUGINSFOR3OLARIS���30!2#	�
THEPROCEDUREISTHESAME�EXCEPTTHATTHEUNTARANDUNGZIPCOMMANDSAREDIFFERENT�

Again, we copied the programs over to the cfengine master:

Step 4: Copying the Nagios Start-up Script on the cfengine Master

Next, we created a directory named on the cfengine master and

copied the script from on the system where we built Nagios for

CHAPTER 10 N MONITORING 283

$EBIANINTOIT�INSTALLEDBYTHEEARLIER command that we ran when

BUILDING.AGIOS	�7E�LLUSECFENGINETOCREATETHEPROPERLINKSINTHE directo-

ries later in this chapter.

Step 5: Separating the Nagios Configuration Directory from the Program Directory

7E�LLplace the Nagios daemon configuration files at

by moving the directory up one directory level and into :

The directory layout inside , as set up by the com-

MANDINTHE.AGIOSSOURCEDIRECTORY�WHICHWERANEARLIERINTHECHAPTER	�LOOKSLIKETHIS�

Notice the directory named : it is where the example configuration places all

THE.AGIOSOBJECTSUSEDTOCONFIGUREMONITOREDHOSTSANDSERVICES�7E�LLCONTINUETOUSE
this directory for the objects that we define.

7HILEWE�REHEREINTHE.AGIOSCONFIGURATIONFILEDIRECTORY�WE�LLMODIFYTHE
FILE�7ENEEDTOCHANGETHE line from this:

to this:

The MACROSETSTHELOCATIONOFOUR.AGIOSPLUGINS�7EINSTALLEDTHEMTOA
directory outside of the main Nagios directory in step three, so we need to have Nagios

look for them in the new directory.

CHAPTER 10 N MONITORING284

Create the Nagios Web Interface Configuration Files

In this section, we’ll cover steps six through eight, which are the creation of Apache con-

FIGURATIONANDAUTHORIZATIONFILESANDAN33,CERTIFICATE�

Step 6: Generating an SSL Certificate for the Nagios Web Interface

7EGENERATEDTHE33,CERTIFICATEFOROUR.AGIOSWEBINTERFACEWITHTHISCOMMAND�ASTHE
root user on the host etchlamp):

.OTETHAT�AFTERGENERATINGTHECERTIFICATE�WECOPIEDITTOTHECFENGINEMASTER�7EWILL
automate the distribution of this file using cfengine, as usual.

Step 7: Creating the Apache VirtualHost Configuration for the Nagios Web Interface

7E�LLneed to configure Apache with the required directives to serve our Nagios web

interface using the Nagios CGI programs. In addition, we need to make sure that authen-

tication is used, since the Nagios web interface contains information we only want

AUTHORIZEDSTAFFTOVIEWANDMODIFY�
Modification operations are those that stop alerts for some or all systems, send man-

UALALERTS�ORMANUALLYCHANGETHESTATUSOFAHOSTCHECK�7EWANTTOPROTECTTHEINTEGRITY
of our Nagios framework by controlling access.

Here is our Apache configuration file, which we’ve placed on the cfengine master at

the location :

CHAPTER 10 N MONITORING 285

7EHAVEBEENAVOIDINGINDEPTHEXPLANATIONSOF!PACHECONFIGURATIONFILES�AND
we continue the trend here. Just be aware that you shouldn’t remove the authentication

requirements if you have trouble making user accounts work. Take the time to do it right.

0ROTECTINGYOURMONITORINGWEBINTERFACEFROMUNAUTHORIZEDACCESSISimportant.

Step 8: Create the Nagios Web Interface Authentication File

7ECREATEDTHE!PACHEUSERAUTHENTICATIONFILEONTHESAMESYSTEM�etchlamp), and cop-

ied it to the directory on the cfengine master:

CHAPTER 10 N MONITORING286

The user is special, in that it will have all the required access to the

Nagios web interface that you will require. Always create this user account.

Once you have Nagios up and running properly, read the online Nagios authentica-

TIONDOCUMENTATIONATTHE52, to

learn to configure additional users.

Step 9: Copying the Nagios Daemon and Configuration Files with cfengine

In steps one through eight, we put together all the building blocks to set up a working

Nagios instance. The bare minimum setup is in place:

 s 4HE.AGIOSDAEMON

 s 4HE.AGIOSPLUGINS

 s !WEBINTERFACE

7EDON�TYETHAVEEVERYTHINGTHATWEWILLWANTINOURFINALFRAMEWORK�BUTWEDO
have everything that we need to automate the copy and setup of Nagios and the Nagios

WEBINTERFACETOOURMONITORINGSERVER�7E�LLSETTHATUPNOWINCFENGINE�
&IRST�WECREATEDTHEDIRECTORY on the cfengine master

and put a task named INTOITWITHTHESECONTENTS�EXPLAINEDSECTIONBY
section):

&IRST�WEDEFINEAVARIABLECONTAININGOURCURRENT.AGIOSVERSION�5SINGAVARIABLEIN
all the places that the version-specific directory name is needed will make it much easier

TOUPGRADE.AGIOSINTHEFUTURE�7E�LLONLYNEEDTOBUILDTHENEWVERSION�PLACEITONTHE
cfengine master and update the variable in this task:

CHAPTER 10 N MONITORING 287

Here, we set up a class based on the existence of the current Nagios directory to be

used in the next section.

Here, we copy the Nagios programs when the directory meant to hold the current

.AGIOSVERSIONDOESN�TALREADYEXIST�4HISISDONEWITHTHEBANG�) class negation opera-

TOR�I�E�� 	�4HE.AGIOSBINARIESWEREBUILTFORTHE$EBIANI���PLATFORM�
so we also make use of the and classes to make sure that we only copy the

binaries to the correct platform:

CHAPTER 10 N MONITORING288

Next, we copy the entire DIRECTORYFROMTHEMASTERTOTHECLIENT�7EMAY
end up deploying several versions of Nagios at once, but we’d like the path to the configu-

ration files should always remain constant. This is easy to ensure when the configuration

files are maintained separately from the programs themselves:

!FTERTHAT�WECOPYTHE.AGIOSSTARTUPSCRIPTINTOPLACE�,ATERINTHISTASK�WE�LLCRE-

ate the proper symlinks in the directories. Notice that two different classes

AREDEFINEDWHENTHEINITSCRIPTISCOPIEDINTOPLACE�"OTHTRIGGERACTIONSLATERINTHETASK�
ONEISMEANTTORESTART.AGIOSSINCENEWSTARTUPOPTIONSMAYBEINUSE�),

and the other is meant to ensure that the start-up script symlinks are properly created

�):

CHAPTER 10 N MONITORING 289

The three copies in the preceding code are used to place web interface files in place:

the CONFIGURATIONFOROUR.AGIOSWEBSITEANDTHE33,CERTIFICATEWEGENERATED
for nagios.campin.net:

The preceding restarts are triggered when configuration file or program file updates

are made in earlier SECTIONS�7EALWAYSWANTTOPUTNEWCONFIGURATIONSORPROGRAMS
into immediate use, and these take care of that for us:

4HEPRECEDINGSECTIONBEARSALITTLEEXPLANATION�7ECALLTHE$EBIAN

utility which is used to create links in the DIRECTORIES�7ECOULDADDALISTOF
symlinks to create in the cfengine configuration, but frankly, this is easier. The rest of the

task follows:

CHAPTER 10 N MONITORING290

Here, we create a directory used by Nagios to store state information. It is critical

that the ownership of the directory and permissions allow the user running the Nagios

DAEMONTOWRITEFILESINIT�7EUSECFENGINETOREGULARLYENSURETHATTHISISTHECASE�

These are simple process monitors that cause Apache and Nagios to be started up

if they’re not running on the SYSTEM�7E�LLDEFINETHATCLASSINCFENGINEIN
step ten.

This is the end of the cfengine task. Notice that we’re careful to copy

THEI���BINARIESonly to appropriate hosts by specifying the class in the copy. It obvi-

OUSLYWOULDN�TDOANYGOODTOCOPYI���,INUXBINARIESTOA3OLARIS30!2#SYSTEMORA
$EBIANX����SYSTEM�ONEWITHOUTCOMPATIBILITYLIBRARIES	�SOWEAREDEFENSIVEINOUR
cfengine tasks and allow copies to happen only when conditions exactly match what we

are expecting.

In the action in the preceding task, we copy the Nagios binaries only when the

DIRECTORYDOESN�TEXIST�7EDON�TTHINKTHERE�SANYREASONTOREGU-

larly sync the files. If you’re worried about something outside of cfengine changing those

files, you could remove the portion from the action and always

enforce the proper directory contents.

CHAPTER 10 N MONITORING 291

Step 10: Configuring a Nagios Monitoring Host Role in cfengine

7E�REmaking the host etchlamp the machine mentioned in the task in step

nine, and to set it, we added this line to :

Step 11: Creating a Hostgroup File for the Monitoring Host Role in cfengine

To complete our Nagios role configuration in cfengine, we added this line to

:

Then, we created a file on the cfengine master at the location

 with these contents:

Step 12: Copying the Nagios Plug-ins with cfengine

7Ewill handle the distribution of the Nagios plug-ins in a second task, which we will now

DESCRIBE�7ECREATEDATASKONTHECFENGINEMASTERATTHELOCATION
WITHTHESECONTENTS�EXPLAINEDSECTIONBYSECTION	�

As we did in , we use a variable to contain the version-specific direc-

tory name, which makes it extremely easy to deploy updates later on but still keep a copy

of the previous build.

The rest of this task simply copies the proper plug-in binaries to each platform at our

site and has special single file copies that enforce the setuid bit on binaries that require it

�FOREXECUTIONWITHELEVATEDSYSTEMPRIVILEGES	�

CHAPTER 10 N MONITORING292

CHAPTER 10 N MONITORING 293

CHAPTER 10 N MONITORING294

CHAPTER 10 N MONITORING 295

7EUSETHE variable in this task to create version-specific directories on our

hosts and have cfengine create a symlink so that we always have a single filesystem path to

OURCURRENTINSTALLATION�SOTHATTHEPATH will always work).

7EWANTTHEPLUGINSINSTALLEDONALLOFOURHOSTS�SOWEADDEDTHISTASKTO
 with this line:

Step 13: Creating a DNS Entry for the Monitoring Host

7Ethen added an alias to our DNS so that we can use the hostname nagios.campin.net

when accessing the Nagios server. Using the alias will allow us to easily migrate Nagios to

ANOTHERSERVERINTHEFUTUREWITHOUTANYUSERSNOTICINGORNEEDINGTOACCESSANEW52,�
)NORDERFORTHISTOBEEFFECTIVE�WENEEDTOBESURETOONLYGIVEOUTTHE52,https://nagios.

campin.net and never refer to the system’s real hostname.

To create the DNS alias, we added this line to

�ANDOFCOURSE�WEINCREMENTEDTHEZONE�SSERIALNUMBER
and ran):

/NCECFENGINERANAGAIN�ACCORDINGTOTHESCHEDULEDEFINEDFOR), we visited

THE52,https://nagios.campin.netINAWEBBROWSER�7EWEREPLEASEDTOBEPROMPTEDTO
LOGINTO.AGIOSWITHAUSERNAME�PASSWORDPROMPT�7EUSEDTHE account we

created, and we were presented with the Nagios web interface.

If you click Service Detail in the left-hand frame, you’ll see details for the system

hLOCALHOSTvINTHEright-hand frame. It should look like this screenshot:

CHAPTER 10 N MONITORING296

Figure 10-1. Nagios service detail screen for the system localhost

"YDEFAULT�.AGIOSASSUMESTHATTHESTANDARDPLUGINSAREINSTALLED�WHICHISTRUE
in our case), and it has an object configuration file called that sets up the

checks you see on that page.

.OTETHATTHEREISAFAILEDCHECK� state) for the HTTP service, because we

ONLYRUNAN33,ENABLED!PACHESERVERATOURSITEFOR.AGIOS�ANDWEHAVENO(440SER-

VICEATALL�7E�LLTAKESTEPSTOMAKE.AGIOSMONITORTHECORRECTSERVICEINstep 14.

Step 14: Modifying the Nagios Localhost-Only Monitoring to Check HTTPS

The ONLYSYSTEMMONITOREDATTHISPOINTISTHEACTUALHOSTRUNNING.AGIOS�etchlamp),

since only the host localhost has checks defined in the default Nagios configuration files.

7EHADTOCHANGETHESELINESIN
 in order to properly monitor HTTPS on this host:

CHAPTER 10 N MONITORING 297

7ECHANGEDTHEMTOTHIS�

If you’re following along with the book in an environment of your own, you’ll notice

a problem—there isn’t a COMMANDDEFINITION�7EHADTOCREATEITWITHTHIS
addition to :

This new object definition calls the plug-in with the appropriate

arguments to test an HTTPS-enabled web site. Once this was copied to our Nagios server

AND.AGIOSAUTOMATICALLYRESTARTED�BYCFENGINE	�THEPROPERCOMMANDWASEXECUTEDAND
the check cleared in Nagios.

Nagios is now in a fully functional state in our environment, but we don’t find it very

useful to only monitor a single machine. Next, we’ll take steps to monitor the rest of the

hosts at our site. The first step will be to deploy a local monitoring agent called NRPE to

all our systems.

NRPE

NRPE is the Nagios Remote Plug-in Executor. It is used in place of agents and protocols

such as SNMP for remotely monitoring hosts. It grants access to remote hosts to execute

plug-ins such as those in the Nagios plug-ins distribution. NRPE has two components: a

daemon called and a plug-in to the Nagios daemon called .

CHAPTER 10 N MONITORING298

The NRPE documentation points out that there are other ways to accomplish remote

plug-in execution, such as the Nagios PLUGIN�7HILE33(ACCESSTOAREMOTE
host seems attractive for security reasons, it imposes more overhead on remote hosts

than the NRPE program does. In addition, a site’s security policy may expressly forbid

REMOTELOGINACCESSBYACCOUNTSNOTOWNEDBYAREALPERSON�7ELIKE.20%BECAUSEITIS
lightweight, flexible, and fast.

Step 15: Building NRPE

The NRPE source distribution does not include an installation facility. Once it is built, it

ISUPTOUSTOINSTALLITPROPERLY�WHICHWE�LLHANDLEWITHCFENGINE�7EWILLBUILDTHE.20%
BINARIESANDPLACETHEMONTHECFENGINEMASTERFORDISTRIBUTIONTOALLOURHOSTS�7ECRE-

ated a single new directory under to house the NRPE binaries for

each of our platforms: .

Now we need to build NRPE so that we have something to place in this new directory.

7EUSEDTHESECOMMANDSTODOWNLOADANDCOMPILETHEPROGRAMON$EBIAN�I���	�

±

±

7ECOPIED to the preexisting directory for the

architecture and copied the program itself into the single shared

 directory.

4OBUILDONOUR2ED(ATI���SYSTEMS�THECOMMANDSWERETHESAMEASFOR$EBIAN�
except that we copied the plug-ins to the directory and the

 binary to .

4OBUILD.20%ON3OLARIS�WEHADTOCOMMENTOUTLINES���THOUGH���IN ,

because the code assumes that all UNIX-like systems have the same syslog facilities as

,INUX�AND3OLARISDOESN�T	�

CHAPTER 10 N MONITORING 299

!FTERTHATWEWEREABLETOBUILDON3OLARIS��ANDCOPYTHEPROGRAMSTOTHECFENGINE
master with these commands:

±

±

The preceding LINEMAKES.20%COMPILEAGAINSTTHE3OLARIS��/PEN33,
LIBRARIES�7ETHENPLACEDTHETWORESULTINGBINARIESINTODIRECTORIESONTHECFENGINE
master as shown.

Step 16: Creating an NRPE Configuration File

7ECOPIEDTHESAMPLE.20%CONFIGURATIONFROMTHESOURCEDISTRIBUTION�IN
) to the cfengine master at �7E

then edited the file to use the directory for all

the paths and allow access from our etchlamp system as shown:

±

±

±

At this point, we have the NRPE programs built and ready for distribution from the

cfengine master, along with a configuration file. The last thing we need to prepare for

NRPE is a start-up script.

CHAPTER 10 N MONITORING300

Step 17: Creating an NRPE Start-up Script

7Ecreated a simple init script for NRPE at on the

cfengine master with these contents:

This is a very simple init script, but it suffices because NRPE is a very simple daemon.

7EADDEDTHE command, because in writing this chapter, we found that occasion-

ally the PID of the process wasn’t properly stored in the file. Occasionally,

daemons have bugs such as this, so we simply work around it with some extra measures

to kill the daemon with the command.

Step 18: Copying NRPE Using cfengine

7Enow have everything we need to deploy NRPE at our site. To distribute NRPE with

cfengine, we created a task to distribute the configuration file, init script, and binaries in

a file named . Here’s the file, which we will

describe only briefly after showing the complete contents, because we’re not introducing

any new cfengine functionality in this task:

CHAPTER 10 N MONITORING 301

CHAPTER 10 N MONITORING302

CHAPTER 10 N MONITORING 303

7HENWELINKTHE start-up script into the runlevel-specific directo-

ries in the preceding section, we avoid creating a link in on Solaris hosts.

4HISISBECAUSE3OLARISEXECUTESTHESCRIPTSSTARTINGWITHACAPITALh3vINTHEDIRECTORIES
 and WHENBOOTINGINTORUNLEVEL��7EDON�TWANTTHESCRIPTTO

execute twice. No damage would result, but we don’t want to be sloppy. &URTHERMORE�THE

directories , , and don't exist on Solaris, so we won't attempt to create sym-

links in them.

Note that we make it easy to move to a newer version of NRPE later on, using version

numbers and a symlink at to point to the current version. The use of a vari-

able means only the single entry in this task will need to change once a new NRPE version

is built and placed in the appropriate directories on the cfengine master.

To activate this new task, we placed the following line in

:

Step 19: Configuring the Red Hat Local Firewall to Allow NRPE

The next-to-last step we had to take was to allow NRPE connections through the Red Hat

firewall. To do so, we added rules directly to the file on the sys-

tem rhlamp and restarted with . Here are the complete

contents of the file, with the newly added line in bold:

CHAPTER 10 N MONITORING304

7HENTHISCHANGESTARTEDALLOWINGCONNECTIONSTOOURLOCAL.20%DAEMON�WE
decided to enforce the contents of this file using cfengine. This decision will disallow the

future use of utilities such as to manage the host’s firewall

rules, but that’s good. Stringent enforcement of the iptables file contents will force the

FIREWALLRULESTOBECONFIGUREDACCORDINGTOOURWISHESEVERYTIMECFENGINERUNS�7ECAN
always use the Red Hat command to make changes and then

feed the resulting changes back into the copy that we distribute

with cfengine. This is just another example of how manual changes are often needed to

determine how to automate something. It’s always OK as long as we feed the resulting

changes and steps back into cfengine for long-term enforcement.

7EPLACEDTHE file on our cfengine master at

 and placed a task with these contents at the location

:

CHAPTER 10 N MONITORING 305

7EACTIVATEDANEW for Red Hat systems by adding this line to

:

Then, we created a file at with these

contents:

It might seem strange to use the class in the hostgroup file, but if you

think about it, the task doesn’t apply to all hosts on our network, only to the hosts that

import this file. That means that this class will actually apply to only Red

Hat systems.

Now, sit back and let NRPE go out to your network. If you encounter any issues while

building NRPE, refer to the file included in the directory of the NRPE source

distribution.

CHAPTER 10 N MONITORING306

Monitoring Remote Systems

So far, we’re simply using the example configuration included with Nagios to monitor

only the system that is actually running Nagios. To make Nagios generally useful, we need

to monitor remote systems.

!SWEPROGRESSTHROUGH.AGIOSCONFIGURATIONINSTEP���THEINFORMATIONWILLCOME
ATYOUVERYQUICKLY�7ERECOMMENDTHATYOUIMMEDIATELYREFERTOTHEDOCUMENTATIONON
THE.AGIOSWEBSITEORONEOFTHERECOMMENDED.AGIOSBOOKSIFANYTHINGISUNCLEAR�7E
wish to remind you that Nagios is very flexible, and perhaps because of that, it is rather

complicated. There is no substitute for experience, so dig in with us and start becoming

familiar with it right away!

Step 20: Configuring Nagios to Monitor All Hosts at Our Example Site

&IRST�WENEEDTOCREATEADIRECTORYFORSERVERHOSTANDSERVICEOBJECTSONTHECFENGINE
master and have Nagios look for configuration files in this new directory:

Edit , and uncomment this line:

 Then, change it so that it looks like this:

You should also change the default and addresses in

 to something appropriate for your site:

7ETHENTURNEDONREGULAREXPRESSIONMATCHINGIN WITHTHISLINE�NEEDED
for the regular expressions that we use later in service object definitions):

7ECOPIEDTHE template in

 to a second similar section to create a new template that is set

TOISSUEALARMSONA����SCHEDULE�(EREISTHENEW template definition:

CHAPTER 10 N MONITORING 307

Templates are used in Nagios to avoid repeating the same values for every service

and host object. These objects have many required entries, but Nagios allows the use of

TEMPLATESTHATCONTAINALLTHEREQUIREDVALUES�7ECANUSETHETEMPLATEINSTEADOFLISTING
every required value in the objects that we define. Template definitions are very similar

to the host or service definitions that they are meant for, but templates contain the line

 to keep Nagios from loading it as a real object. Any or all values can be over-

RIDDENINANOBJECTDEFINITIONTHATUTILIZESATEMPLATE�

NNote Be aware that settings override the setting in service definitions.

We have no settings and won’t configure it in this chapter, but keep them in mind for your own

configurations.

Now that we have a template that suits our needs, we can inherit from it in our ser-

vice definitions and specify only important values or those that we wish to override from

the template’s values.

In the directory , we have four

files to define the objects to monitor on our network:

 s

 s

 s

 s

CHAPTER 10 N MONITORING308

&IRST�WEDEFINEthe hosts at our site in the file :

.AGIOSHOSTDEFINITIONSALLOWTHESPECIFICATIONOFTHEHOST�S)0ADDRESS�7EPUR-

posely leave out that IP address because we want Nagios to use the DNS to find it, for

two reasons:

 s)FWECHANGETHEHOST�S)0ADDRESS�WEWANTTOONLYHAVETOCHANGEITINTHE$.3�
NOTIN.AGIOSASWELL�7EMIGHTFORGETANDCAUSECONFUSINGALARMS�

 s 7ENORMALLYRELYONTHE$.3FORNORMALFUNCTIONATOURSITE�SOIFTHEREARE$.3
PROBLEMS�WEWILLALLOWITTOCAUSEFAILEDCHECKSINMONITORINGASWELL�7EDON�T
want to mask broken DNS in Nagios by avoiding it, we want to always use the DNS

and see the problems.

CHAPTER 10 N MONITORING 309

Now that we have host definitions for all the hosts that we want to monitor at our

site, we will set up groups in the file :

Using this way allows us to easily add additional systems to Nagios that

PERFORMTHESAMEFUNCTIONSASEXISTINGHOSTS�7EWILLHAVETOADDONLYTHENEWHOSTTO
an existing and immediately have the proper checks performed against it.

Next, we set up some system level monitoring using NRPE, configured in the file

:

CHAPTER 10 N MONITORING310

In the FIELDOFTHEPRECEDINGSERVICEDEFINITION�THEBANGCHARACTER�) is

USEDTOPASSARGUMENTSTOACOMMAND�7EDEFINEDTHE command definition in

the file with this entry:

This entry means that the command is passed the argument

for the SERVICE�7HENYOULOOKATTHECOMMANDDEFINITIONFOR
, you can now see that what is run on the monitoring host is:

"EINGABLETOUNDERSTANDANDTESTWHAT.AGIOSISACTUALLYRUNNING�ASWEWORKEDOUT
previously, will be useful in the future when a remote NRPE check malfunctions. Moni-

toring systems are complicated, and a failure might happen in the monitoring system

ITSELF�"EINGABLETOMANUALLYTESTTHECOMMANDSTHAT.AGIOSRUNSWILLPROVEUSEFUL�
Next, we set up some web server checks in the file :

CHAPTER 10 N MONITORING 311

7EDEFINEDTHE check earlier to test the web server on localhost, so here

we simply set it up for a remote host and it works properly.

Each time we update the Nagios configuration files, cfengine gets the files to the cor-

RECTLOCATIONONOURMONITORINGHOST�etchlamp) and restarts the Nagios daemon.

7ECANRESTEASYKNOWINGTHATIFTHEetchlamp system fails due to hardware issues, we

will simply need to reimage the host, and without any manual intervention cfengine will

SETTHEHOSTUPFORUSAGAIN�7HATAGREATfeeling!

Step 21: Party!

That was a lot of work, but now that it’s complete, we think that some celebration is

APPROPRIATE�,ET�SLOOKATWHATWE�VEACCOMPLISHED�
7E�VEDEPLOYEDAVERYCOMPLEXSOFTWAREFRAMEWORKACROSSANENVIRONMENTWITH

THREEDIFFERENTPLATFORMSINANAUTOMATEDMANNER�7EAREENJOYINGTHEFULLBENEFITSOF
automation:

 s %ASYUPDATESTOANYMONITORINGCOMPONENT�SCONFIGURATIONFILES

 s %ASYPROGRAMFILEUPDATESFOR.AGIOS�.20%�ORTHE.AGIOSPLUGINS

 s %ASYRESTORATIONTOFULLFUNCTIONALITYIFANYHOSTSSUFFERFULLSYSTEMFAILURE�EVENTHE
central monitoring host

At this point, we have the four components of Nagios deployed, as planned: Nagios

ITSELF�THE.AGIOSPLUGINS�THE.AGIOSWEBINTERFACE�AND.20%�7ECANEXTENDTHESYSTEM
to run plug-ins that we define, either locally on systems via NRPE or across the network to

test client/server applications.

7ESHOULDN�TNEEDTOCHANGEANYTHINGABOUTTHEFRAMEWORKINTHENEARFUTURE�ONLY
add checks and perhaps new plug-ins. Our monitoring infrastructure choice really shines

in the easy addition of new plug-ins; it should be able to support us for quite a while with-

out any core modifications.

CHAPTER 10 N MONITORING312

What Nagios Alerts Really Mean

7HENNOTIFICATIONS�I�E��ALERTS	ARESENTFROM.AGIOS�ORFORTHATMATTERFROMANYMONITOR-

ing system, what does it really mean?

4HEIMMEDIATEANSWERFROMMOST3!SISSIMILARTOhITMEANSAHOSTORSERVICE
FAILED�v4HISISN�TREALLYTRUE�4HETRUTHOFTHEMATTERISTHATa monitoring program or

script signaled failure�7HEN.AGIOSSENDSANOTIFICATION�ITMEANSTHATAPLUGINSCRIPT
EXITEDWITHANEXITCODETHATWASSOMETHINGOTHERTHANEXITCODEZERO�EXITCODEZERO
MEANShOKAYvTO.AGIOS	�

If the plug-in is , you might assume that it means that a remote web server

ISDOWN�BUTWHATIFASTATICFILEATTHE52,THAT ISREQUESTINGWASMOVED�7ILL
A���(440STATUS�WHICHMEANShDOCUMENTNOTFOUNDv	CAUSE to fail? Do you

EVENKNOWTHEANSWERTOTHAT�)FNOT�YOUSHOULDFINDOUT�7HATIFTHEMONITORINGHOSTHAS
a bad route entry that causes traffic to the web server to timeout but doesn’t stop notifica-

tions from reaching you? The web server itself is probably fine and is probably reachable

by all systems except the monitoring host.

Don’t jump to the conclusion that a notification means that a service or host has

failed. You need to understand exactly what each service definition is checking and vali-

date that the service is really failing with some checks of your own before undertaking any

remediation steps.

Ganglia
Ganglia is a distributed monitoring system that uses graphs to display the data it collects.

Nagios will let us know if an application or host is failing a check, but Ganglia is there to

SHOWUSLONGTERMTRENDSINHOSTRESOURCEUTILIZATIONANDPERFORMANCE�9OUCANALSOFEED
site-specific metrics into Ganglia, though we don’t demonstrate doing so in this book.

If a host intermittently triggers a load alarm in Nagios, with no clear cause immedi-

ately visible, looking at graphs of the system’s load over time can be useful in helping you

see when the load increase began. Armed with this information, we can check if the alarm

correlates to a system change or application update. Ganglia is extremely useful in such

SITUATIONS�ASITGENERATESGRAPHSSHOWINGIMPORTANTHOSTMETRICSSUCHAS#05UTILIZATION�
SYSTEMLOAD�ANDDISKANDNETWORKUTILIZATION�

'ANGLIAISALSOUSEFULTOVISUALIZETRENDSINRESOURCEUSAGEWITHANEYETOWARDCAPAC-

ITYPLANNING�)FYOUOBSERVEASTEADYRISEIN#05ORMEMORYUTILIZATIONONYOURWEB
server, you can use this information to justify hardware upgrades or the purchase of more

systems to share the load.

7ECOULDUSEMANYOTHEROPENSOURCESOFTWAREPACKAGESFORHOSTRESOURCEGRAPH-

ING�ANDWEHAVEINTHEPAST	�3OMEOFTHEMAREMOREGENERALPURPOSETHAN'ANGLIAAND

CHAPTER 10 N MONITORING 313

SOMEEVENPLUGDIRECTLYINTO.AGIOS�7ELIKE'ANGLIABECAUSEITISFASTANDEFFICIENT�SCALES
incredibly well, and adding new custom metrics to the Ganglia graphs is extremely easy.

The core functionality of Ganglia is provided by two main daemons, along with a web

front end:

 s : This multithreaded daemon runs on each host you want to monitor.

keeps track of state on the system, relays the state changes on to other systems via

TCP or multicast UDP, listens for and gathers the state of other daemons in

the local cluster, and answers request for all the collected information. The

configuration will cause hosts to join a cluster group. A site might contain many

different clusters, depending on how the administrator wants to group systems for

display in the Ganglia web interface.

 s : This daemon is used to aggregate Ganglia data and can even be used to

aggregate information from multiple Ganglia clusters. polls one or many

 daemons or other DAEMONS�PARSESTHECOLLECTED8-,�STORESTHE
INFORMATIONIN22$FILES�ROUNDROBINDATABASES	�ANDEXPORTSTHE8-,OVER4#0
sockets to clients.

 s Web interface�7RITTENIN0(0�ITCONNECTSTOALOCAL daemon to receive the

8-,TREENEEDEDTODISPLAYTHE'ANGLIADATA�)NFORMATIONCANBEVIEWEDSITEWIDE�
clusterwide, or for a single host over periods of time such as the last hour, day,

week, or month. The web interface uses graphs generated by to display his-

torical information.

Ganglia’s daemon can communicate using TCP with explicit connections to

other hosts that aggregate a cluster’s state, or it can use multicast UDP to broadcast the

CLUSTERSTATETOALLLISTENINGHOSTS�7EGOWITH4#0ANDEXPLICITLYNAMEAGGREGATORHOSTS
and then poll those hosts explicitly with . The configuration file still has UDP

port configuration settings, but they won’t be used at our example site.

Building and Distributing the Ganglia Programs

Ganglia NEEDSTOBECOMPILEDFOREACHPLATFORMATOURSITE�7EBUILT'ANGLIAON3OLARIS�
2ED(AT�AND$EBIAN,INUXBYDOWNLOADINGANDINSTALLINGWITHTHEFOLLOWINGSEQUENCE
of commands. Note that a C++ compiler will need to be present on the system, as well

as development libraries for RRDtool�ANDTHEPACKAGE ON$EBIAN	�7ITHOUT
the RRDtool libraries the build will seem successful, but the program will fail to

be built.

CHAPTER 10 N MONITORING314

±

As shown in the preceding set of commands, we copied the resulting

 binaries from each platform to the appropriate directory in the master

FILESTREEONTHECFENGINEMASTER�THOUGHTHEPRECEDINGCOMMANDONLYDEMONSTRATESTHE
$EBIANI���BUILD	�(EREARETHETHREEDIRECTORIES�

The binary will use a built-in configuration if it can’t find its default configu-

ration file at �ORITISN�TSTARTEDWITHTHECOMMANDLINEOPTION to

manually specify a configuration file). To see the default configuration run with this

argument:

9OUCANTHENREDIRECTTHEOUTPUTTOAFILE�NAMED), edit as appropriate for

your site, and then place the file on the cfengine master. The beautiful thing

about this option is that it even emits comments describing each configuration section!

Ganglia was clearly written by system administrators.

7EDIDPRECISELYTHISTOGETSTARTEDONOURCONFIGURATIONANDTHENCHANGEDTHEFILETO
suit our needs. Here are the portions of that we changed:

CHAPTER 10 N MONITORING 315

7EKEPTTHEDEFAULT'ANGLIAPORTOF�����WHICHSPELLSh5.)8vONA4�PHONEKEY-

PAD	�7ESETTHEHOSTSgoldmaster and etchlamp to be the cluster data aggregators via the

SECTIONS�7E�LLUSE to poll the cluster state from these two hosts.

The section allows our host running ��������������FORetch-

lamp) to poll state over TCP from any host running . The rest of the configuration

file is unchanged.

CHAPTER 10 N MONITORING316

7EGOTSTARTEDWITHTHEEXAMPLE file from the Ganglia source distribution

at the location �7EPLACEDTHE'ANGLIACONFIGURATIONFILES�

and) into the directory on the cfengine

MASTER�7E�LLMODIFYTHECONTENTSOFTHEEXAMPLE later in the chapter.

7EADDEDA5.)8�,INUXUSERACCOUNTCALLED to the

 files with these entries:

 s

 s

 s

Next, we created a cfengine task for copying out the binaries at the location

 on the cfengine master:

CHAPTER 10 N MONITORING 317

±

±

CHAPTER 10 N MONITORING318

Next, add this line to so that all of our hosts get the

Ganglia programs copied over:

.OTETHATWEDON�TPLACEASTARTUPSCRIPTONTOTHESYSTEMSFOR'ANGLIA�7ESIMPLY
have cfengine start the appropriate daemons if they aren’t found in the system’s process

list. This places an obvious dependency on having running, calling regu-

LARLY�7EALWAYSSTARTUPCFENGINEATBOOTONALLSYSTEMSATOURSITE�SOTHISSHOULDN�TBEA
problem.

Configuring the Ganglia Web Interface

Our central Ganglia machine will run the web interface for displaying graphs, as well as

the program that collects the information from the daemons on our network.

Ganglia’s web interface is written in PHP and distributed in the source package. Copy

the PHP files from the Ganglia source package’s web directory to this location on the

cfengine master:

7EWILLUSECFENGINETOCOPYTHISDIRECTORYTOOURHOSTNAMEDetchlamp, which

already has a web server will serve as our network’s Ganglia console. Again, we used

the directory on the cfengine master and put the task

 in it with these contents:

CHAPTER 10 N MONITORING 319

CHAPTER 10 N MONITORING320

This task causes the daemon to be started on the host if it isn’t

RUNNING�WEDEFINE in the next section). Our configuration for the

DAEMON�) follows:

7EREMOVEDALLCOMMENTSTOMAKETHEFILEEASYTOREAD�4HECOMMENTSINTHEEXAM-

PLECONFIGURATIONINTHE'ANGLIASOURCEDIRECTORY�) are extensive and

serve as sufficient documentation to get most users going with a working configuration.

.EXT�WENEEDEDTOGENERATETHEGANGLIA33,CERTIFICATEFOROUR'ANGLIAWEBSITEAND
put it on the cfengine master:

To configure the role in cfengine, we added this line to

:

Our Debian-based Ganglia web system needs some additional packages. To install

them at initial system installation time, we added the packages and

CHAPTER 10 N MONITORING 321

INTOTHE&!)PACKAGELISTFORTHE CLASS�7EINSTALLEDTHEMMANUALLYUSING on

etchlamp in this case, so that we didn’t have to reimage the host just to add two packages.

Next, we created a new file for our new role on the cfengine

master at the location , with these contents:

Then, we added this to :

Once cfengine on etchlamp copies the PHP content and Apache configuration files,

we can visit in our web browser and view graphs for all the

hosts at our site, individually or as a whole. If you haven’t previously used a similar host

RESOURCEGRAPHINGSYSTEMASPARTOFYOURMONITORINGSUITE�YOU�LLBEAMAZEDATHOWOFTEN
you refer to the graphs during troubleshooting or for capacity planning.

Now You Can Rest Easy
At this POINT�WEHAVEAFULLMONITORINGSUITEATOURSITEWITH'ANGLIAAND.AGIOS�7E
CANUTILIZE.AGIOSFOR����ALERTINGONHOSTANDSERVICEAVAILABILITY�ANDWECANUTILIZE
'ANGLIATOVIEWSHORTANDLONGTERMSYSTEMRESOURCEUSAGE�"OTHAREEXTREMELYFLEXIBLE
and will grow and scale along with our new infrastructure.

As your site requires more and more monitoring, you might benefit from the dis-

TRIBUTEDMONITORINGCAPABILITIESOF.AGIOS�.AGIOSVERSION���ANDABOVEHASAMUCH
IMPROVEDABILITYTOOPERATEINSUCHAFASHION�5TILIZINGCFENGINE�YOUCANEASILYDEPLOY
a test instance of distributed Nagios in order to determine if the additional load sharing

and redundancy is a good fit for your site. Many sites simply purchase more powerful

HARDWAREINORDERTOUTILIZE.AGIOSAGAINSTMANYHOSTSANDSERVICES�BUTATSOMEPOINT�
this may no longer be feasible.

Ganglia will scale extremely well to large numbers of systems, and most of the follow-

on configuration will be around breaking up hosts into separate groups, and possibly

UTILIZINGMULTICAST�)FYOUDON�TUSEMULTICAST�YOU�LLWANTTOUTILIZEMANY instances

to aggregate the cluster’s state and simply configure to poll the cluster state from

a list of several hosts running . This allows one or more aggregators to fail and

STILLHAVE'ANGLIAFUNCTIONPROPERLY�7EONLYUSETWOATOUREXAMPLESITE�YOUMAYCHOOSE
to run with many more as the total number of systems at your site increases.

323

C H A P T E R 1 1

Infrastructure Enhancement

At this point, we have a fully functional infrastructure. We have automated all of the

changes to the hosts at our site from the point at which the initial imaging hosts and

cfengine server were set up.

We’re running a rather large risk, however, because if we make errors in our cfengine

configuration files, we won’t have an easy way to revert the changes. We run an even

greater risk if our cfengine server were to suffer hardware failure: we would have no way

of restoring the cfengine tree. The other hosts on our network will continue

running cfengine, and they will apply the last copied policies and configuration files, but

no updates will be possible until we restore our central host.

Subversion can help us out with both issues. Using version control, we can easily

track the changes to all the files hosted in our cfengine tree, and by making

backups of the Subversion repository, we can restore our cfengine server in the event of

system failure or even total site failure.

Cfengine Version Control with Subversion
With only a small network in place, we already have over 2,800 lines of configuration

code in over 55 files under the directory. We need to start tracking the dif-

ferent versions of those files as time goes on, as well as tracking any additional files that

are added. The workplace of one of this book’s authors has over 30,000 lines of cfengine

configuration in 971 files. Without version control, it is difficult to maintain any sem-

blance of control over your cfengine configuration files, as well as the files being copied

by cfengine.

We covered basic Subversion usage in Chapter 8 and included instructions on how

to set up a Subversion server with an Apache front end. We’ll utilize that infrastructure to

host version control for our cfengine master repository.

Importing the masterfiles Directory Tree

In order to import our cfengine directory into Subversion, we need to create

the repository on etchlamp, our Subversion host. Conveniently, we already created the

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT324

repository with cfengine back in Chapter 8 and granted read/write access to the and

 users.

Now, we want to set up a read-only user to be used to check out changes to produc-

tion hosts. Once we check out a copy of the production cfengine tree, we

don’t want to allow changes to be checked in directly from that tree. We want our admin-

istrators to edit a working copy of the configuration, check in their changes, and then

have the production working copy updated directly from Subversion.

To set up the read-only user, create it manually on the system etchlamp (as the root

user), and copy the access file to the cfengine master:

Now, we want to grant read-only access to the cfengine Subversion repository to this

new user. Change this section in

to this

Before we import into the Subversion repository, we’ll want to make sure that all the

 directories that get added into the tree don’t get copied out to clients

later on. These are unnecessary and are a bit of a security risk. We’ll accomplish this with

a global action. Create the directory on the cfengine master,

and place these contents in a new file at :

Import this file into . Since the file is made up entirely of imports, you

can place this entry anywhere after the line:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 325

At this point we’re ready to import the directory. On the cfengine

master goldmaster, run these commands:

The output went on for some time; it’s quite surprising just how many files we have

in there at this point. The large number of files highlights the importance of keeping our

files in Subversion, if only as a backup measure. The utility of version control for our

repository goes far beyond simple backups, as you will see in the next section.

Now, when you visit the URL

in a web browser, you’ll see your and directories in Subversion, with revision

1. To use our current tree from Subversion on our cfengine master, we’ll

need to check out a working copy in place of the current directory. Here are the com-

mands we ran (as the root user) on goldmaster:

The output went on for quite some time as all the files were checked out. In order to

edit those files, we can (and will) check out the tree somewhere else, such as in our home

directory. This way, we will be working on changes in an environment where they won’t

immediately be copied by the systems on our network.

NNote We should never again work directly on the files in the tree on the cfengine master and check

in our changes from there. It is bad practice to directly edit the live files used for configuration at our site.

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT326

If you attempt to check in files from the tree on

the cfengine master, you’ll get errors like this:

We got this error because we checked out the tree as the user, and that user

lacks the privileges to check back in. We could of course specify the argu-

ment to the Subversion client, which would allow the check-in, but that’s bad practice.

We want to carefully test our changes and have clients see our modifications only once

we’ve committed them. We also ensure that all files are properly checked into version

control this way. We don’t want administrators to copy files manually into the tree,

because if the cfengine server fails and we restore from Subversion, we would be missing

some of our configuration files! We need to avoid this at all costs. Always update the

 tree only with Subversion updates.

Another risk from working directly on the live tree is we might accidentally save

a working copy of a file such as without meaning to. If we’re working on an

offline working copy, we don’t have to worry about such accidents. Start developing good

habits now.

WORKING WITH A CFENGINE MASTERFILES WORKING COPY

If you check out a working copy of the tree to develop changes, your modifications

won’t be seen by the cfengine clients on your network immediately after you check in your changes.

To make the changes visible, you’ll need to check out the changes into the

 directory on your cfengine master.

We’ve created the user so that a nonprivileged Subversion account can be shared for

this checkout task. We don’t ever want to use a real person’s Subversion account for such a checkout,

since any other staff with root privileges could check in changes as that user, impersonating them.

You could certainly set up an automated check out of the latest version of the tree onto to

the cfengine master, but that’s probably not a good idea at this time. We’ll want to check out changes

manually, so that we can be sure that we really want the changes contained in those updates.

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 327

We would like to know when changes are checked into the repository so that we see

when other administrators make changes that might affect work we’re doing or catch

errors in their changes. Subversion has a feature called hooks that allows scripts to run

when different repository actions happen. You can see the actions for which hooks are

supported by inspecting the template hook scripts that the command

placed in the subdirectory in the cfengine repository:

Inspect the hook template files themselves to see what actions are supported.

To get e-mail notifications when a change is committed to our cfengine Subversion

repository, we’ll place a shell script at the location

.

But wait! We can’t do this directly on the cfengine master any longer. We’ll need to

check out our own personal working copy of the cfengine repository. We logged into the

system goldmaster as our own user account and checked out a working copy with these

commands:

These commands will give us a working copy at . Since our home direc-

tory is shared via NFS, we can work on our working copy of the cfengine tree

from any host on the network that we choose. All of our systems have a Subversion client,

so it’s a matter of personal preference.

It turns out to have been highly useful that so far in this book we have referenced the

path to files in the cfengine tree as relative to the directory, because from

now on, the files we’re working with will be a working copy, and the base directory will be

different for every user. We’ll continue referring to files as relative to the directory.

When we start working with the and directory trees, we’ll also refer to files and

directories stored within as relative to those directories.

Now, we need to create the file

 in our working copy of the cfengine tree. Create the directories with these

commands:

Then, create the file

with these contents:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT328

To have the program on our Debian-based Subversion server, we’ll

need to install the package . We added it to the file

 on goldmaster (our FAI installation host) back in Chapter 8, so it is

already installed.

Next, we needed to check our new hook script into Subversion. The way we handled

this is to add the highest level directory in the tree that isn’t yet checked in:

When you type without the argument (which automatically submits

the log entry), you’re dropped into an editor that allows you to enter a comment for the

commit, along with the files (and directories, if applicable) that are being modified in the

current commit. The editor screen for the preceding commit looked like this:

The cursor was at the top of the screen, where the comments belong. We could see

that all of our new directories were being committed, along with our new file. We entered

a comment about how this is to enable notifications for cfengine repository commits,

saved the file, and saw this Subversion client output:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 329

Now, we need to set up a task to copy out our new hook script. We’ll set it up as a

recursive copy of a directory, even though we currently have only one hook script.

This will allow us to develop other hook scripts later and simply place them into a direc-

tory in the tree to have the new hook script automatically copied to the

Subversion server by cfengine.

We created a task at with these contents:

We then added this new task to the repository as follows:

We still need to activate this task by importing it, so we added this line to

:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT330

We issued the command again, and now, our Subversion repository

should have all the changes required to copy out our new hook to our Subversion reposi-

tory. We still need to update our live working copy on the cfengine

master. As root on goldmaster, we issued these commands:

Now, we just need to wait for cfengine to run again on etchlamp (the Subversion

server) so that it gets the new hook script. After the next run (it runs every 20 min-

utes at our site), we committed a new version of

with a blank line added to the end, just to test the notifications. We got this e-mail shortly

thereafter:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 331

The output displays our new blank line with a simple plus sign, followed by nothing

(nothing but a character, of course).

You can see how useful these e-mail notifications will be when multiple people are

committing to the repository. It can also be used for peer review of changes. Standard

practice at your site could be to have a meeting where all commits are peer reviewed

before the working production copy is updated with the changes committed to the

repository.

The major problem with such a system is that there is no mechanism set up to test

the changes before they are pushed to the live environment. A typographical error can

easily be missed during peer review, causing cfengine to fail to execute properly on

all hosts at our site. Clearly a better mechanism is needed. In the next section, we’ll

explore a way to try out our changes in a nonproduction environment.

Using Subversion to Implement a Testing Environment

We initially set up our cfengine clients to use files under the directory. In this sec-

tion, we’ll start to make use of the directory, which is at the same level as in the

 tree.

To create a new branch in the repository, simply use the command with

two URL paths in the repository. First, we made sure the repository has the required base

paths; then, we created the branch:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT332

Now, we have a branch for development at inside the repository. In

order to work with it, we’ll need to check it out:

Note that inside the repository the branches don’t take up much extra space. Subver-

sion has a cheap copy mechanism where branches are really more like hard links to the

original copy. The branch really only starts taking up space as it is modified and added

to. Be aware that our checkout of the branch does take up the full amount of space in our

local filesystem.

Creating arbitrarily named branches in the version repository under is fine. We’ll

be able to check out multiple trees under on the cfengine master and point clients at

any tree of our choosing. Let’s set up that branch now. On the cfengine master host (as

the root user), check out the new development branch to the live tree where cfengine

clients pull files:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 333

Now that we have a development tree available on the cfengine master, we need a

nonproduction host to use it on. We don’t have any hosts that aren’t important to our

network, or more importantly to our business, so we’ll image a new one. We’ll call it

ops1, meaning that it belongs to the operations team, and use it for testing. We’ll create

a Debian i686 host, since that’s what we use for most of our system roles at this point.

Here are the summarized steps to create the new Debian host:

 1. Add entries for the new host to the DNS. We created a forward entry in the file

 and a reverse entry in the file . As is now the norm, we had

to commit the changes to Subversion and update the Subversion working copy on

the cfengine master.

 2. We’ll set up FAI on goldmaster to image the host, which means adding an entry to

boot the new host in and running the command

.

 3. Image the new host. We don’t need to do anything custom to it at this point, so we

didn’t add it to any special classes in FAI. We want it to be a very basic system.

Now, we needed to change some core files in cfengine in order to have ops1 utilize

the tree. In , we added these lines to the top:

Then, we added these lines to the section in :

and we removed this line from :

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT334

In , the section that looked like this

became this:

And in , we added these lines:

After all those updates are completed, we checked in the changes:

We’re all set. Update the cfengine master with in the tree, and now

ops1 should be using the tree. There is one problem: the tree hasn’t

been updated to point ops1 at itself! This is the perfect opportunity to perform our first

merge in Subversion.

MERGING CRASH COURSE

Most system administrators are familiar with the and commands. The command is

used to compare text files line by line and show the differences. The command takes a file con-

taining a difference listing produced by the program and applies those differences to one or more

original files, producing patched versions. These are the traditional tools used to distribute and apply

changes to files such as publicly available source code.

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 335

Revision control systems such as Subversion make the process of applying differences between files

in the repository easier using facilities to merge the files. The merge process is essentially a and

 procedure done within the repository, complete with revision history of the merge operation.

The advantage of merging over manual use of the and commands is that the history of the

merged files will show exactly where the new file contents came from, including the specific revision

and repository path of the source files.

If merging is entirely new to you and you’re still struggling to understand the concepts, you’re not

alone. Revision control system tools and concepts are best learned by working with them.

First, in our working copy, we ran from the directory to note

the revision at which we created the branch (revision 9):

The output went on, but the first entry was the important one, because it was

the last time that the branch was updated. The history beyond that point is actually the

history of the branch, because that’s where the branch was copied from. Up until

that point there was only the branch. We’ll want everything done to the production

branch from that point forward to be applied to the branch—synchronizing the two

branches completely.

We then changed directory to the directory to gather the latest revision of the

 branch, since we’ll want to apply everything done to the branch since revi-

sion 9 back to the branch. Then, we ran a merge as a dry run to see the files that have

changed and would be merged. The commands to do this follow:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT336

This looks good, since those are the files with changes that need to be migrated over

to the branch. We now need to go ahead and perform the merge against

our working copy and inspect the changes:

We inspected the changed files, and the expected changes are there. We’ll com-

mit our development branch with and update the tree on the

cfengine master.

When merging, be sure to specify the revisions you’re merging in the commit mes-

sage, so that later, when you merge again, you can find the revision at which to start your

new merge. You don’t ever want to attempt to merge the same changes twice. The lack of

detection and prevention of duplicated merges is an acknowledged weak spot in Subver-

sion, and you don’t want to get caught by it if you can avoid it.

MERGING FROM PROD TO DEV

Normally, when we merge between branches in our cfengine repository, we’ll want the changes to be

coming from the tree and merged into the tree. We want to test out changes in a nonproduc-

tion environment first. Sometimes, however, we won’t have a suitable test environment and changes

will go to the tree first and will subsequently need to be merged back to again.

Merging from to is okay here and there, but if you find yourself doing so on a regular

basis, you probably need to invest in more hardware for your development environment. Either that, or

you need to stop being so lazy and force yourself to test your changes first.

We’ll be the first to admit, however, that there are some notable exceptions to the rule of testing

first. Simple changes like DNS additions don’t need to go through the testing environment when a san-

ity check like is utilized. The additional overhead and delay of pushing the change

through the testing environment really isn’t justified. Also, when a site is in its infancy stages, as ours

is, there usually isn’t the hardware and time yet to set up the systems. Do yourself a favor, though,

and get a number of systems running against the tree as soon as possible. Testing changes there

first might just save your job at some point.

Our host ops1 is now utilizing a completely separate tree on the cfengine master,

using a Subversion tree that we can leverage to share code between development and

production. Setting up more hosts to use the tree is as simple as adding hosts to the

 class in and in both the and

 lines of development.

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 337

To make full use of the tree, you’ll want to specify a testing host for all of the pro-

duction roles that you’re using in the tree, some of which follow:

 s $EBIAN3UBVERSION�.AGIOS�AND'ANGLIAWEBHOST

 s 3OLARIS.&3HOMEDIRECTORYSERVER

 s 2ED(ATPUBLICWEBSERVER

 s $EBIAN$.3SERVER

 s $EBIANMAILRELAY

Since we don’t ever specify hostnames in the cfengine tasks, it’s simply a matter

of redefining some group memberships in the

 file for testing purposes. Notice how abstracting the hostnames away from role

names helps in yet another way. We’re now free to test out entirely new DNS mechanisms

or change anything else in our development environment, with no effect on production.

Additionally, setting up virtual hosts under a system such as VMware can help ensure that

not a lot of extra hardware is needed for testing purposes.

Note that we didn’t cover usage of the directory tree. Our network is still small

that we’re not making use of that tree yet. The idea is that once our network is large

enough, we’ll have separate hosts for testing configurations once they come out of the

initial development phase. Some changes might need days or weeks before they are

approved for promotion to the main production branch. You can always use the tree

this way as well, but it’s useful to give it a descriptive name such as if you intend to

use it as a longer-term testing ground.

The usage of the tree will technically be identical to usage of the tree. It is

the policies around usage that will differ, and those need to be defined on a per-site basis.

Backups
A substantial amount of work has now been put into our cfengine master, as well as

our three imaging systems. Since we set up Kickstart, Jumpstart, and FAI before we had

cfengine managing our systems, we have no backups of those systems. In addition, we

need to back up our cfengine Subversion repository. If we had automated the setup of the

configuration of all three imaging system hosts with cfengine, we would need to back up

only the Subversion repository.

We would like to have to back up only the Subversion repository. This would mean

that all of the configuration at our site is performed via cfengine, which is how we want

things. To use cfengine to perform all configuration at our site, we should go back and

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT338

automate the setup of our imaging systems as much as possible and then only back up

Subversion.

The automation of our imaging systems would include neither the Kickstart and

Jumpstart process of copying the installation image(s) to disk (for

Jumpstart and the DVD copy to on the Kickstart host) nor the instal-

lation client setup for those systems. We’re looking to automate the synchronization of

files that we had to manually create or manually edit.

Backing up only the Subversion repository obviously won’t work for application data

backups, but at this point, we don’t have any application data to be concerned about.

When we need to worry about application logs or other variable data, we’ll want to inves-

tigate an open source backup solution such as Amanda or a commercial backup product

such as Veritas NetBackup.

First, let’s grab the important configuration files from our imaging systems, check

them into Subversion, and distribute the files using cfengine.

Jumpstart

Jumpstart is great in that the setup is done entirely via scripts contained on the installa-

tion media. We don’t need to worry about backing up most of the files in the

directory tree. All we’ll need to copy using cfengine is the direc-

tory. Everything else that we need to re-create a functional Jumpstart server is contained

in Chapter 6. Those steps don’t lend themselves well to automation, since the steps to

recreate the Jumpstart environment depend on having some form of installation media

available—and it could be a series of CDs, a DVD, or an ISO file.

We copied the directory from our Jumpstart server hemingway

into our working copy:

Then, we added the directory to the cfengine Subversion repository:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 339

After that, we needed to distribute the directory to the Jumpstart host. We

created a class in cfengine for the role , and added hemingway to that

class. We used the class in a task located at

 with these contents:

We copy all the files with mode 775, since some of them need to be executable. It

won’t hurt anything if they’re all executable, just be aware that the executable bit being

set in this directory doesn’t mean that the file is necessarily a script.

We then added the directory to the Subversion

repository with this command:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT340

Next, we added this line to to create the new

class:

We then created a file for the class, with a new file at the

location with these contents:

Be sure to the file into the repository.

As usual, the last step is to set up the cfengine of this file in the

 mapping file at . We added this

line:

Since this was all done in our working copy, we needed to check in all these changes.

We then checked them out on the cfengine master with the command in

the directory.

We should now be able to restore what we need, if and when the hemingway host

dies and is subsequently reinstalled. All the rest of the configuration on the host is easily

reproducible, simply by referring to the Jumpstart section in Chapter 6.

Kickstart

To distribute the important files that would need restoration if the Kickstart host is

rebuilt, we first copied the important files into our cfengine repository working copy:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 341

After that, we needed to copy out these files to the directory on the host

rhmaster using cfengine. Once again in our working copy, we created the directory

, and created a task in the directory called

 with these contents:

We added the directory to Subversion with

once we had the task file inside it. Next, we needed to do the usual steps in order to make

this task get used by our Kickstart server. Here’s a summary of the steps:

 1. Create the class in .

 2. Create the hostgroup file at that

imports the task. Add the file to the Subversion repository.

 3. Set up the hostgroup import in the hostgroup mapping file

.

 4. Commit the changes to your working copy, and update the production working

copy on the cfengine master.

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT342

Now our important Kickstart files are contained in Subversion and will be restored by

cfengine via a copy if we ever have to rebuild our Kickstart server.

FAI

When we set up FAI, we were careful to modify the default FAI configuration files as little

as possible. We wanted to be able to push new files as much as possible, since we knew

that we would want to distribute those files using cfengine later on.

We collected all the files under the directory that we modified or

added back in Chapter 6 in our working copy of the repository:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 343

We’ll distribute all these as another recursive copy, this time into the

directory on the FAI server (goldmaster). We have some additional files that we modified

during the setup of our FAI server:

 s

 s

 s

There is a problem with : in the task

, we add a line to using the action.

This action must be changed or removed, since it makes no sense to have an

 action acting on a file that cfengine is also copying out. Two scenarios could

result, depending on the contents of the file that cfengine copies into place:

 s4HECOPIED file won’t have the entry that the task

 is looking for, and it will be added by the action. This

means that the next time cfengine runs, won’t match the check-

sum of the file in the tree, and will be copied again. After

that, the action will once again notice that the required entry isn’t there,

and it will add it yet again. This loop will continue on every time cfengine runs.

 s4HECOPIED file will already have the required entry, making the

 action unnecessary.

You can see that, either way, we don’t need the action. It either pro-

duces what we can only consider an error by constantly changing the file or is totally

unneeded. We’ll simply place the required entry in the file that we copy out

and remove the section from the task. We will add a

comment to the task, however, stating that the enable of the daemon is handled via a

static file copy in another task and provide the task file name in the comment.

After editing the task to com-

ment out the section and add the new comment, we placed these files into our

working copy of the cfengine tree:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT344

Note that the copies were local since we were working in our home directory from the

goldmaster system itself.

We created a task at with these

contents:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 345

We made sure to add the new directory to the repository. We need to

create the class, create a file for it, and import it in the

 file. Here’s a summary of the steps:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT346

 1. Create the class in .

 2. Create the hostgroup file at that imports the

 task. Add the file to the Subversion repository.

 3. Set up the hostgroup import in the hostgroup mapping file

.

 4. Commit the changes to your working copy, and update the production working

copy on the cfengine master.

Subversion Backups

The procedure to back up a Subversion repository is quite simple. We can use the

 command with the argument to properly lock the repository and per-

form a file-based backup. Backing up this way is much better than performing a or

 copy of the repository files, which might result in a corrupted backup.

Use the command like this:

The repository made by is fully functional; we are able to drop it in

place of our current repository should something go wrong. We can create periodic back-

ups of our repository this way and copy the backups to another host on our network or

even to an external site.

Be aware that each time a hot copy is made, it will use up the same amount of disk

space as the original repository. Backup scripts that make multiple copies using

 will need to be careful not to fill up the local disk with backups.

We’ll create a script at with these contents

(explained section by section):

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 347

Since we copied the script to all hosts on our network, we took steps to make sure

that it only runs on the proper host:

We’ll be using file locking to prevent two invocations of this script from running at

once.

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT348

We wrote a subroutine to manage our stored backup directories. It takes an argument

of a repository directory that needs to be backed up, and it moves any numbered backup

directories to a new backup directory with the number incremented by one. A backup

directory with the number 7 is removed, since we only save seven of them.

For example, the directory is removed, and

the directory is moved to the name

. The subroutine then progresses backward numerically

from 5 to 1, moving each directory to another directory with the same name except the

number incremented by 1. When it is done, there is no directory named

, which is the directory name we’ll use for a new Subversion

backup:

In this section, we perform these steps:

 1. Retrieve just the short portion of the directory name using the command

so that the variable contains the value or —the

two repository directory names.

 2. We then make sure that the directory used for the backups exists and create it if

necessary.

 3. Now that the directory is known to exist, we change directory to the proper backup

directory and use our subroutine that rotates the previous backup directories.

 4. Then we use the command to create a new backup of the reposi-

tory. This is done for each directory listed in the variable .

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 349

Finally, we removed the lock file that is used to prevent two of these from running at

once. We ran the script eight times in a row to demonstrate the output, here it is:

In order to use the command (contained in the script), the package

needs to be installed. Add the string on a line by itself to your working copy of

, and check in the modification so

that all future hosts get the package installed. For now, just install the package

using on the Subversion sever (the system etchlamp).

We’ll create a task to run the backup script once per day, in a file at the location

 with these contents (be sure to add it into the

Subversion repository):

We’re using cfengine to run the backups every day between midnight and five min-

utes after midnight. Remember that we set a five-minute , so will run

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT350

at some time in the five minutes after midnight. We need to specify the range so that our

 action will run. The absolute time class of probably wouldn’t match,

but the range definitely will.

Now, we need to add this line to :

Commit your changes to the repository, and update the production working copy.

Now, every night at midnight, a new backup will be created, and we’ll always have seven

day’s worth of backups on hand.

Copying the Subversion Backups to Another Host

We will copy the Subversion backup directories to another host on our local network

using cfengine, so we’ll be able to quickly restore our two Subversion repositories if the

Subversion server fails.

We’ll modify our site’s shared configuration file to grant access to the

backup directories on etchlamp from a designated backup host. We will use the cfengine

master as the backup host and always keep a complete backup of those directories.

We added these lines to in the section:

Then, we created a task to copy the directories, the file

 with these contents (and we added the file to the repository, of

course):

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT 351

We then added this line to so that we

could abstract the hostname of the Subversion server with a variable:

Next, we added a comment to so that this line:

became this:

We then needed a hostgroup file for the machine, so we created

 with these contents:

CHAPTER 11 N INFRASTRUCTURE ENHANCEMENT352

And we added this line to :

Commit your changes, and update the production tree on the cfengine master.

The next day (after 12:25 a.m.), you should have fully functional Subversion backups

stored in the directory on your cfengine master.

We’ll leave the task of copying the backup directories to an offsite host as an exercise

for you.

Enhancement Is an Understatement
This chapter took our site from being at a high risk due to system failure to being a fully

version controlled and backed up environment.

Many sites that utilize cfengine or other automated management software don’t have

the ability to easily manage a testing environment such as the one demonstrated here.

We have a real advantage in the existence of our cfengine branch, and we should use

it as much as possible to try out new configurations and applications.

Our backup measures are certainly minimal, but they’re effective. If we suffered total

system failure on any of our hosts, including the critical cfengine master, we can restore

the system to full functionality.

353

C H A P T E R 1 2

Improving System Security

Early in this book, we established that managing the contents and permission of files

is the core of UNIX/Linux system administration. UNIX/Linux security is also almost

entirely concerned with file contents and permissions. Even when configuring network

settings for security reasons, we’re usually configuring file contents. This means that, in

general, we’ll be performing very familiar operations when using cfengine to increase the

security of our UNIX and Linux hosts.

At various points in this book, we’ve taken security into account when configuring

our systems or when implementing some new functionality

 s 7ECENTRALIZEDOURUSERACCOUNTFILESRIGHTAWAYINOUREXAMPLESITE�INORDERTO
easily change passwords and add and remove accounts across our site.

 s 7ERUNALLOFOURINTERNALWEBSITESOVER(4403ONLY�.AGIOS�'ANGLIA�AND3UBVER-

sion).

 s 7ECOMPILEDOUROWN!PACHEFROMSOURCESOTHATOUREXTERNALLYFACINGWEBSITE
has the fewest features possible, which should decrease the likelihood of our site

being vulnerable to remote Apache exploits.

 s 7EDON�TALLOWROOTPRIVILEGESOVER.&3�

 s 7ESETUPACENTRALLOGHOSTALONGWITHAUTOMATEDLOGREPORTING�

 s 7EMADESUREOURCENTRALIZED log uploads were protected against mali-

cious users.

 s 7ECONFIGUREDVERSIONCONTROLANDBACKUPSATOURSITE�4HISMAYSEEMLIKE
more of a disaster recovery measure, but modern data security is just as con-

cerned with a disaster destroying information as it is about damage from

attackers.

In this chapter, we focus on security itself, but we don’t mean to give you the idea

that security is a separate duty from your normal ones. If treated as an afterthought, good

security is difficult to obtain and, in fact, becomes something of a burden if addressed

during the later phases of a project.

CHAPTER 12 N IMPROVING SYSTEM SECURITY354

3INCEWE�REworking only on the hosts on our network, we’re addressing host-based

SECURITY�7EFEELTHATTHEIMPORTANCEOFHOSTBASEDSECURITYMEASURESCANNOTBEOVER-

stated. Many sites implement network security through the use of firewalls and put very

LITTLEWORKINTOTHESECURITYOFTHEHOSTSONTHEIRNETWORK�3UCHANAPPROACHASSUMES�OR
naively hopes) that no threats exist on the internal network. Most firewalls by their very

nature allow particular traffic through to hosts on the internal network. This traffic could

BEUTILIZEDBYATTACKERSTOCOMPROMISEINTERNALHOSTS�WHICHCANTHENBEUSEDASAJUMP-

ing off point to attack other hosts.

7ENEEDTOremember that internal users are a major risk. Even if the users them-

selves aren’t malicious, their credentials or their computer systems can be compromised

ANDUSEDBYATTACKERSTOACCESSTHEINTERNALNETWORKVIAA60.OROTHERREMOTEACCESS
methods. No modern network should have a crunchy exterior and a chewy interior—

meaning perimeter network protection without internal protection mechanisms.

(OSTBASEDSECURITYMECHANISMSGOALONGWAYTOWARDHARDENINGTHEINTERNALNET-

WORK�3HUTTINGDOWNUNNEEDEDDAEMONS�REMOVINGUNNECESSARYACCOUNTS�REMOVINGOR
MINIMIZINGTRUSTBETWEENHOSTS�IMPLEMENTINGPROPERFILEPERMISSIONSANDHOSTBASED
firewalls, and frequently applying system patches and updated packages will address the

vast majority of local and remote vulnerabilities.

NNote As you might guess, we can’t provide a comprehensive security guide in just one chapter. What

we can do, however, is recommend the book Practical UNIX & Internet Security by Simson Garfinkel, Alan

Schwartz, and Gene Spafford (O’Reilly Media Inc., 2003).

Security Enhancement with cfengine
Cfengine CANIMPROVESYSTEMSECURITYINMANYWAYS�&IRST�ITALLOWSYOUTOAUTOMATICALLY
configure systems in a consistent manner. The cfengine configuration is general enough

that you can quickly apply your changes to other hosts in the same or different classes,

even to systems that haven’t been installed yet. This means that if you correct a security

problem on your Linux systems through cfengine, and then later install a new Linux sys-

TEM�THESECURITYPROBLEMWILLBEFIXEDTHEREASWELL�IFNECESSARY	�
3OMEOTHERWAYSCFENGINECANHELPWITHSYSTEMSECURITYAREILLUSTRATEDWITHINTHE

following sections. Just be aware that this is far from a comprehensive list. Your own sys-

tems will almost certainly have more areas where you can use cfengine to enhance their

SECURITY�9OUMAYCHOOSETORUNAPPLICATIONSLIKE&40SERVERSTHATCANBESERIOUSSECURITY
PROBLEMSIFNOTPROPERLYCONFIGURED�7ECAN�TCOVERALLOFTHESESITUATIONS�BUTAGOOD
security book will tell you what to configure, and cfengine can do the actual configuration

for you.

CHAPTER 12 N IMPROVING SYSTEM SECURITY 355

As always, we do all of our system administration in our example infrastructure using

cfengine, so this final chapter doesn’t look all that different from the earlier ones. The dif-

ference here is that we’re not focusing much on the cfengine configuration but more on

the security gains from the changes we make.

Removing the SUID Bit

One of the most common ways for a malicious user to gain privileged access is via flaws

INPROGRAMSWITHTHESETUID�OR35)$	BITSET�4HISPERMISSIONSETTINGCAUSESAPROGRAM
to be executed with the privileges of the file’s owner, not those of the user executing the

program. It is a UNIX mechanism that allows nonprivileged users to perform tasks that

REQUIREELEVATEDPRIVILEGES�USUALLY�THOUGHNOTALWAYS�ROOTPRIVILEGES	�!PROGRAMMING
error or flaw in such a program is often disastrous to local security. The two ways to

avoid becoming a victim of such a flaw are to keep your system up to date with security

and bug fixes and to limit the number of setuid binaries on your system that are owned

by the root user.

7ESHOULDFIRSTGIVEYOUANIDEAOFWHAT35)$BINARIESAREPRESENTONOURSYS-

tems, which will allow us to make educated decisions about what to exclude from a

FILESWEEPTHATREMOVESTHE35)$BIT�4HEfollowing command will work on all

systems at our example site, should be run as , and allows us to view the list and

determine what to allow:

This COMMANDWILLNOTDESCENDINTOFILESYSTEMSMOUNTEDOVER.&3ANDWILL
FINDPROGRAMSOWNEDBYTHEROOTUSERTHATHAVETHE35)$BITSET�)TTHENUSESTHE

command to save the output into a file for later investigation, while still displaying the

output to the screen.

/NOUR$EBIANSYSTEMS�WHICHWEIMAGEDWITH&!)ANDCONFIGUREDVIACFENGINE�THE
OUTPUTWASRATHERSHORT�ATOTALOF��PROGRAMS�0ARTOFTHEREASONFORTHATISBECAUSEWE
HAVEN�TINSTALLEDTHE87INDOW3YSTEM�BUTITMAINLYREFLECTSAVERYSECURITYCONSCIOUS
Linux distribution.

/NOUR3OLARISSYSTEMIMAGEDWITH*UMPSTART�WEGOTANASTONISHINGLYLONGLIST�WITH
75 total entries.

/NTHE2ED(ATSYSTEMTHATWEIMAGEDVIA+ICKSTART�WEFOUND��35)$ROOTOWNED
FILES�WHICHALSOISN�TTOOBAD�+UDOSGOTO2ED(ATFORCLEANINGUPTHESITUATION�INTHE
PAST�2ED(ATWASONEOFTHEWORSTOFFENDERSAMONG,INUXDISTRIBUTIONS�

4OREMOVETHE35)$BITFROMALLTHEBINARIESEXCEPTTHOSETHATWEDEEMEDIMPORTANT�
we created a task at with these contents:

CHAPTER 12 N IMPROVING SYSTEM SECURITY356

CHAPTER 12 N IMPROVING SYSTEM SECURITY 357

7Eset SOTHATCFENGINEDOESN�TCROSSFILESYSTEMBOUNDARIES�7EKNOWTHAT
we imaged all of our systems with a single root filesystem, so this keeps us from crawling

THE.&3DIRECTORIES�%VENIFWEWANTEDTOFIXTHEPERMISSIONSON.&3MOUNTS�WECOULDN�T
because the root user is mapped to the USEROVER.&3�UNLESSTHE

OPTIONISUSEDONTHE.&3SERVER�WHICHWEDON�TUSE�REFERTOTHE.&3SECTIONIN#HAPTER�	�
7EUTILIZEDTHE filter from the file ,

which is imported from . The file has these contents:

CHAPTER 12 N IMPROVING SYSTEM SECURITY358

&ILTERSINCFENGINECANGETVERYCOMPLICATEDANDAREABLETOLOOKFORSEVERALITEMSWITH
particular attributes in order to successfully match. The preceding filter is a very simple

file one that matches when a file is owned by root. In conjunction with these lines from

WETELLCFENGINETHATWEWANTTHEFILESTOLACKTHE35)$BIT�THATCFENGINESHOULDINFINITELY
recurse directories, and that the action to take is to fix the files. The final setting is to

ignore the files that we don’t want changed, using the lines.

To activate this task, we added this line to :

Be careful to test out these changes on just one host of each platform. As a tempo-

rary measure, you can override the hostgroups mechanism with lines like these in

:

Just be sure to set the class again at the end, since any entries added below

later on will apply only to the three hosts specified. It will help avoid issues if another

task needs to be imported to all hosts but is erroneously only imported for the three hosts

MENTIONEDPREVIOUSLY�7EDON�TWANTTOLEAVEANENTRYLIKETHISINPLACELONGTERM�SINCE
it circumvents our CFENGINECONFIGURATIONFILEORGANIZATIONMETHOD�!NY-

time that you specify hostnames as classes directly in any sort of actions, even imports,

YOU�REMAKINGITHARDERTOMAINTAINYOURINFRASTRUCTURE�3TICKINGWITHROLEBASEDCLASSES
aids maintainability in the long term. Ideally, hostnames should only show up in class

definitions.

7HENNEWSOFTWAREISINSTALLED�BEAWARETHATIFITINSTALLSAROOTOWNEDPROGRAMWITH
THESETUIDBITSET�THATTHESOFTWAREMAYBREAKDUETOTHISNIGHTLYRUNTASK�7ECONSIDER
this a feature, not a bug. No new programs will last more than a day with the setuid bit set

on our systems.

CHAPTER 12 N IMPROVING SYSTEM SECURITY 359

Protecting System Accounts

3TANDARDsystem accounts are commonly used for brute force login attempts to systems.

Every day, lists of common system accounts along with common passwords are used to

ATTEMPTUNAUTHORIZEDLOGINSBYATTACKERS�
7ECANPROTECTOURSELVESAGAINSTSUCHATTACKSINTHREEWAYS�

 s 3ETSYSTEMACCOUNTSTOUSENONWORKINGSHELLS�

 s 2EMOVEUNNEEDEDSYSTEMACCOUNTS�

 s ,OCKTHESYSTEMACCOUNTSPASSWORDS�

7EWILLATTEMPTTOMAKETHESYSTEMACCOUNTSONOURSYSTEMSUNUSABLEFORINTERACTIVE
LOGIN�7EHAVEALREADYSETUPOURNEWACCOUNTS�SUCHASTHE user) to not have a

valid shell:

7ENEEDTODUPLICATETHISSHELLENTRYFORALLSYSTEMACCOUNTS�WITHTHENOTABLEEXCEP-

tion of the root account.

NNote In the past, we’ve observed problems with daemons that utilized in start-up scripts.

If a daemon or script tries to execute a login shell this way, it won’t function in our environment. Such start-

up scripts don’t require us to give the account a working shell, we can simply modify the script to use the

 option to in order to make them work.

3INCEWEHAVEAUTOMATEDTHEDISTRIBUTIONOFCENTRALIZED files in our envi-

RONMENT�WESIMPLYNEEDTOEDITTHECOPIESINOUR3UBVERSION repository and test on

SOMENONPRODUCTIONHOSTS�7EFEELTHATANEXTRALEVELOFCAUTIONISNEEDEDWITHSUCH
changes. Once tested, merge the changed files back to the branch, and per-

FORMA3UBVERSIONCHECKOUTINTHEPRODUCTIONWORKINGCOPYONYOURCFENGINEMASTER�
7HILEEDITINGTHESYSTEMACCOUNTSTOCHANGETHESHELLTO , remove any

accounts that aren’t needed at your site. This may take some trial and error and should

also be tested in a nonproduction environment before the changes are used in the

branch.

Next, edit the shadow files for all your site’s platforms. Make sure that each account’s

encrypted password entry has an invalid string:

CHAPTER 12 N IMPROVING SYSTEM SECURITY360

4HEBANG�) character in the encrypted password field of the user account is

an invalid string, locking the account. You can validate this with the argument to the

 command on Linux:

The in the output shows that the account is locked. This is the desired state for all

OURSYSTEMACCOUNTS�BESIDESTHEROOTACCOUNT�OFCOURSE	�/N3OLARISTHE argument is

used:

The field denotes either “passworded” or “locked,” but we know our

ACCOUNTHASNOVALIDPASSWORD�4HE3OLARIS command expects a particular string

INTHEENCRYPTEDPASSWORDINORDERFORITTOREPORTTHE,+�LOCKED	STATUS�THESTRING .

7ECANLEAVETHEACCOUNTWITHJUSTTHEBANGANDKNOWTHATWE�RESAFEEVENTHROUGHTHE
3OLARIS command doesn’t understand it.

Applying Patches and Vendor Updates

Both $EBIANAND2ED(ATDISTRIBUTIONSMAKEKEEPINGSYSTEMSUPTODATEEXTREMELY
EASYWITHSECURITYPATCHESANDBUGFIXES�7HENUSING2ED(AT%NTERPRISEORTHESTABLE
$EBIANBRANCH�ASWEARE	�AUTOMATICALLYUPDATINGSYSTEMSOFTWAREISQUITESAFE�3IMPLE

SECTIONSTHATEXECUTETHESECOMMANDSWILLKEEPYOUR$EBIANAND2ED(AT
Enterprise systems fully patched and up to date:

 s Red Hat:

 s Debian:

3OLARISISANOTHERMATTERENTIRELY�!TTHESHOPSWHEREWEWORKFULLTIME�WESTILLUTILIZE
3UNRECOMMENDEDPATCHCLUSTERSANDINSTALLTHEMONAPERSYSTEMBASISINSINGLEUSER
MODE�%VERY3UNTOOLTHATCLAIMSTOAUTOMATESYSTEMPATCHESHASEITHERNOTWORKED
to our satisfaction or required major infrastructure changes to accommodate the suite

OF3UNTOOLSTHATAREREQUIRED�7EFINDITUSEFULTOHAVEACONSOLECONNECTIONTOVIEW
the patch cluster output before attempting a system reboot, as serious problems have

resulted that don’t allow a proper reboot without prior repair.

/NEOFTHEWISESTWAYSTOPATCH3UNSYSTEMSISPROBABLYTHE3UN,IVE5PGRADEPRO-

cedure, WHEREAPATCHED3OLARISOPERATINGSYSTEMISINSTALLEDTOANALTERNATESLICEONA
SYSTEM�SDISKS�ANDTHEHOSTISTHENBOOTEDINTOTHENEWLYPATCHED/3�)FTHEREAREPROB-

LEMS�THESYSTEMCANBEBOOTEDBACKINTOTHEORIGINAL/3INSTALLANDFULLFUNCTIONALITYIS
restored.

CHAPTER 12 N IMPROVING SYSTEM SECURITY 361

This approach requires some planning at initial installation time, since unused space

needs to be left on the drives. The system’s swap slice can be used, but this method isn’t

ideal, since the system is deprived of swap space and the swap slice often isn’t large

ENOUGHTOHOLDACOMPLETE3OLARISINSTALLATION�
At the time of this writing, we recommend Live Upgrade and look forward to devel-

oping a proper automated mechanism for the third edition of this book.

Shutting Down Unneeded Daemons

0ROGRAMSthat accept network connections are like a door into your systems. Those doors

might be locked, but most doors—like many network-enabled daemons—can be forced

open. If you don’t need the program, it should be shut down to reduce the overall expo-

sure of your systems to network-based intrusion.

In this section, we will develop a task that shuts down a single service on each of the

platforms in our example infrastructure to give you an example of how to do it on your

OWN�0LEASECAREFULLYEXAMINEALLRUNNINGPROCESSESONYOURSYSTEMS�ANDWHEREPOSSIBLE�
YOUSHOULDDISABLETHEUNNEEDEDDAEMONSATINSTALLATIONTIME�7EWILLWRITEOURCFENGINE
task in such a way that if the programs aren’t enabled, cfengine will do nothing.

7EPLACEDAtask at with these

contents:

CHAPTER 12 N IMPROVING SYSTEM SECURITY362

7ECHOSETOSHUTDOWNTWODIFFERENTDAEMONSUSEDFORTHE87INDOW3YSTEM�/N
3OLARIS�THE daemon handles graphical logins, which we don’t need on our server

SYSTEMS�/N2ED(AT�THE daemon is the X font server, also not needed on our server

systems.

&ORTUNATELYFOROURSECURITY�BUTUNFORTUNATELYFORTHISBOOK�NONEOFOUR$EBIAN
SYSTEMSWASRUNNINGANYUNNEEDEDDAEMONS�'OINGOFFTHEEXAMPLESHEREANDTHEEXPE-

rience gained so far in this book, you shouldn’t have a trouble working out how to shut

DOWN$EBIANSERVICES�)TCOULDBEDONETHESAMEWAYTHE3OLARIS daemon is shut

down, via a process kill along with a disable of the start-up script.

7EADDEDTHE task to the hostgroup, checked in our

changes, and updated the tree on the cfengine master.

Removing Unsafe Files

You CANUSECFENGINETODISABLEAVARIETYOFFILESANDPROGRAMSONYOURSYSTEM�IFTHEY
EXIST	�7HENEXECUTABLESANDANYOTHERFILESAREDISABLED�THEYARERENAMEDWITHA

 extension and their permissions are set to . In our example environ-

MENT�WEUSEAGLOBALBACKUPDIRECTORY�), so the files are moved there

for long-term storage.

(EREISANEXAMPLE�

This disables the files and ONALLSYSTEMS�CLASS)

BECAUSEUSINGTHESEFILESISOFTENCONSIDEREDASECURITYRISK�7EALSOREMOVESOMEFILES
that result from the installation of an old rootkit. Rootkits are ready-to-run code made

available on the Internet for attackers to maintain control of compromised hosts.

The entries will result in sending a message to standard output if

and when it disables the files. This message will show up in e-mails, as well as in

THECFOUTPUTSANDSYSLOGREPORTS�SEE#HAPTER�	�(ERE�SANEXAMPLEPAIROFSYSLOGENTRIES
�ONEFORTHEFILERENAMEANDONEFORTHEMOVETOTHECFENGINEBACKUPREPOSITORY	�

CHAPTER 12 N IMPROVING SYSTEM SECURITY 363

NNote Removing the example rootkit files with cfengine’s action doesn’t remove a rootkit from

your system. Look into rootkit detection programs such as chkrootkit. If you confirm that a rootkit is installed

on one of your systems, remove the system from the network, retrieve any important data, and reimage the

host. The follow-on actions are to confirm that your data isn’t compromised, that the attacker isn’t on any of

your other systems, and that your system is secured after reimaging (preferably during reimaging) so that the

attacker doesn’t get back in again.

File Checksum Monitoring

You can also use cfengine to monitor binary files on your system. Like any other file, the

PERMISSIONSOFABINARYFILECANBECHECKEDANDANYPROBLEMSCANBEFIXED�&ORBINARIES�
particularly those of the setuid root variety, this feature can be very useful. You can also

USECFENGINETOPROVIDESOMETRIPWIREFUNCTIONALITY�YOUCANUSEITTOMONITORTHE-$�
CHECKSUMOFAFILE�(EREISANEXAMPLE�

On many systems, the program has the setuid bit set and is owned by the

 user. This allows normal users to mount specific drives without superuser privi-

leges. The parameters given in this example tell cfengine to check the permissions on this

BINARY�ANDALLOTHERSTHATARESETUIDROOT	ANDTORECORDITSCHECKSUMINADATABASE�
If the checksum does change, you will be notified every time runs. This noti-

fication will continue until you execute with the following setting in the

section:

This setting will cause all stored file checksums to be updated to their current values.

CHAPTER 12 N IMPROVING SYSTEM SECURITY364

Using the Lightweight Directory Access Protocol
The ,IGHTWEIGHT$IRECTORY!CCESS0ROTOCOL�,$!0	ALLOWSYOUTOUSEACENTRALINFORMATION
repository for a variety of system and application uses. Although just about any infor-

MATIONCANBESTOREDINAN,$!0SERVER�THEMOSTCOMMONTHINGTOSTOREISYOURUSER
ACCOUNTINFORMATION�&OREACHUSER�YOUCANSPECIFYANACCOUNT�FULLNAME�PHONENUM-

ber, office location, and any other information you may need.

5SING,$!0FORUSERDIRECTORYANDAUTHENTICATIONATYOURSITECANINCREASEYOUR
SITE�SOVERALLSECURITY�BECAUSEACENTRALIZEDAUTHENTICATIONDIRECTORYSERVICEENABLESTHE
following:

 s 9OUCANSETUPUSERACCOUNTLOCKOUTWHENAUSERHASACERTAINNUMBEROFFAILED
logins across one or many systems. If the lockout settings are local to each system,

an attacker can attempt guesses against all systems at your site before the account

is totally locked out.

 s 0ASSWORDSCANBECENTRALIZEDACROSSMOREAPPLICATIONSTHANJUST5.)8�,INUX
logins, which allows the administrator to enable a single sign-on infrastructure.

4HEADMINISTRATORSCANTHENENFORCESTRONGPASSWORDPOLICIESINTHISCENTRALIZED
directory.

7EALREADYHAVEUSERACCOUNTINFORMATIONATOUREXAMPLESITECENTRALIZEDINTHE
ACCOUNTFILESONOURCFENGINEMASTER�7EHAVEMANYOFTHEBENEFITSOFUSING,$!0FOR
CENTRALIZEDAUTHENTICATION�SUCHASEASYACCOUNTAUDITING�EASYPASSWORDCHANGES�AND
UNIFIEDUSER)$SACROSSALLSYSTEMS�

!NY,$!0AWAREAPPLICATIONCANRETRIEVEDATAFROMTHE,$!0SERVER�4HE!PACHE
web server, for example, can use this information when it is authenticating users who are

VISITINGARESTRICTEDWEBSITE�)TISEVENMORECOMMONTOUSE,$!0TOSTORETHEACTUALUSER
ACCOUNTSFORYOURSYSTEMS�9OUROPERATINGSYSTEMCANPROBABLYUSEAREMOTE,$!0SERVER
INADDITIONTOTHELOCALUSERLIST�), since most modern UNIX systems support

0LUGGABLE!UTHENTICATION-ODULES�0!-	�
)FYOURSYSTEMDOESNOTCOMEWITHAN,$!0SERVERORYOUNEEDADDITIONAL,$!0CLI-

ents, take a LOOKAT/PEN,$!0� 	�)TPROVIDESAN,$!0SERVERAS
well as client libraries and compiles on a wide variety of systems. A second, newer alter-

native is THE&EDORA$IRECTORY3ERVER� 	�7EHAVEN�T
USEDIT�BUTTHEEXISTENCEOFAGRAPHICALUTILITYFOR&EDORA$IRECTORY3ERVERADMINISTRATION
WILLSURELYHELPMANYNEW,$!0ADMINISTRATORS�

7ETHINK,$!0ISAGREATSYSTEMFORAMEDIUMTOLARGECOMPANYOROTHERORGANIZA-

tion. It takes a bit of work to set up, and you have to make sure your systems can take

advantage of it, but it is worth it when you have a lot of account information to manage.

)FYOUDECIDETOUSE,$!0�TAKEAlook at LDAP System AdministrationBY'ERALD#ARTER
�/�2EILLY-EDIA)NC������	�

CHAPTER 12 N IMPROVING SYSTEM SECURITY 365

Security with Kerberos
+ERBEROSis an authentication system designed to be used between trusted hosts on an

UNTRUSTEDNETWORK�-OSTCOMMONLY�A+ERBEROSSERVERISUSEDTOAUTHENTICATEREMOTE
USERSWITHOUTSENDINGTHEIRPASSWORDSOVERTHENETWORK�+ERBEROSISAPRETTYCOMMON
security system and basic information can be found at .

+ERBEROSISTHEBESTOPTION�THATWEKNOWOF	AVAILABLETODAYFORAUTHENTICATINGTHE
same accounts across multiple systems. Unlike many other options, the users’ passwords

ARERARELYSENTOVERTHENETWORK�7HENTHEYARE�THEYARESTRONGLYENCRYPTED�
5SING+ERBEROSFORAUTHENTICATIONONYOURSYSTEMSISNOTALWAYSEASY�UNFORTUNATELY�

&IRSTOFALL�YOUNEEDTOSETUPA+ERBEROSSERVER�WHICHISBEYONDTHESCOPEOFTHISBOOK�
It isn’t the hardest thing in the world to do, but it will require a fairly serious time invest-

MENT�'OODDOCUMENTATIONCANBEFOUNDAT-)4�S+ERBEROSSITE�
.

You will also need to make sure any programs that require user authentication on

YOURSYSTEMSAREABLETOUSE+ERBEROS�-OSTSYSTEMSSUPPORT0!-�WHICHALLOWSYOUTO
USE+ERBEROSEASILYFORALLSYSTEMLEVELAUTHENTICATION�)FYOUDOHAVE0!-�PROBABLY
most of the applications that came with your systems and require authentication can also

USE0!-�/THERAPPLICATIONS�LIKE!PACHEAND3AMBA�MAYDIRECTLYSUPPORT+ERBEROSAS
WELL�WITHORWITHOUT0!-	�

!NOTHERADVANTAGEOF+ERBEROSISITSABILITYTOUSEONEAUTHENTICATIONSERVICEFROM
several unique software packages. It is not uncommon for each user to have a sepa-

RATEPASSWORDFORLOGGINGINTOSYSTEMSOVER33(�ACCESSINGARESTRICTEDWEBSERVER�AND
ACCESSINGA3AMBASHARE�7ITH+ERBEROS�YOUCANUSETHESAMEUSERPASSWORDFORALLOF
THESEDIFFERENTSERVICESANDANYOTHERSERVICESTHATSUPPORT+ERBEROS�

,IKE,$!0�+ERBEROSISANEXCELLENTCHOICEIFYOUHAVEALARGENUMBEROFUSER
accounts and a decent number of systems. In fact, if you have a large enough number

of systems, it can be worth the effort regardless of the number of accounts you use.

"ECAUSE+ERBEROSISALSOTHESAFESTWAYTOAUTHENTICATEUSERSOVERTHENETWORKANDCAN
be used from such a wide variety of software, it is something you should consider using

in almost any environment.

Implementing Host-Based Firewalls
&IREWALLSAREANYHARDWAREORSOFTWARETHATBLOCKSOROTHERWISEDISALLOWS)0TRAFFIC�BASED
ONRULESORPOLICYSETTINGS�$EPLOYINGFIREWALLSATTHEPERIPHERYOFANETWORK�USUALLYON
or near the links that connect to other networks or to the Internet, is common practice. In

recent years, it has become increasingly common for individual computers to run firewall

software.

Even if a host isn’t running any unneeded network daemons, a local firewall can help

in several ways:

CHAPTER 12 N IMPROVING SYSTEM SECURITY366

 s)FUNWANTEDTRAFFICMAKESITTHROUGHAPERIMETERFIREWALL�ALOCALFIREWALLCANSTILL
block it. The practice of running several, redundant security systems at once is

called defense in depth and is a wise way to handle security.

 s !SYSTEMCANPREVENTCONNECTIONSFROMUNWANTEDHOSTSONTHELOCALNETWORK
where there is no network-based firewall between the hosts.

 s 5.)8OPERATINGSYSTEMSSOMETIMESREQUIREDAEMONSTORUNANDLISTENONTHENET-

work in order for the base system to work properly. There may be no need for the

daemon to accept connections from remote hosts, so protecting the program with

a firewall is the only remaining option for protecting this service from the network.

This problem is less prevalent with base UNIX installs these days, but this issue

might still come up with third-party software.

3OFTWARETHATBLOCKS)0TRAFFICDIRECTLYINASYSTEM�S4#0�)0STACKISCALLEDPACKET
filtering software. True to their name, packet filters use attributes of an incoming packet

SUCHASSOURCE)0ANDDESTINATIONPORTTOBLOCKAND�ORALLOWNETWORKTRAFFIC�
3OFTWAREthat proxies connections and only allows permitted application protocol

OPERATIONSISALSOAFIREWALL�BUTWEDON�TCOVERPROXYINGINTHISBOOK�7Edo recommend

that you evaluate the use of proxy software for both inbound and outbound traffic at your

site, where appropriate.

3OFTWARETHATRUNSOUTSIDETHEOPERATINGSYSTEMKERNELTOBLOCKTRAFFICISALSOFIREWALL
SOFTWARE�THOUGHMOSTPEOPLEDON�TTHINKOFITASSUCH�3OFTWARESUCHAS4#07RAPPERS
�COVEREDINTHENEXTSECTION	FITSTHISdescription.

Using TCP Wrappers

You will always want some network services to remain active. If any of these services are

executed by �USING4#07RAPPERSISAGOODIDEA�4#07RAPPERSISAPROGRAM�USU-

ally named or) that can be executed by . It performs some checks on the

network connection, applies any access control rules, and ultimately launches the neces-

sary program.

!LLOFTHESYSTEMSINOUREXAMPLENETWORKCOMEWITH4#07RAPPERSINSTALLEDBY
default.

%VENTHOUGHTHE4#07RAPPERSPROGRAMISALREADYINSTALLED�INALOCATIONLIKE
	�YOUNEEDTOMAKESUREYOURSYSTEMSUSEIT�!SYSTEMWITHOUT4#07RAPPERS

enabled would have a WITHENTRIESLIKETHIS�YOURFILELOCATIONANDENTRY
format may vary):

CHAPTER 12 N IMPROVING SYSTEM SECURITY 367

4OACTIVATE4#07RAPPERS�YOUWANTTOMODIFYTHESEENTRIESTOCALLTHE program

as follows:

You can do this using the section:

4HISWILLCAUSEYOURSYSTEMTOUSE4#07RAPPERSFORBOTHTHE&40AND4ELNET
services.

NNote We don’t recommend using Telnet for remote system access; this is for demonstration purposes

only.

$ON�TFORGETTOSENDTHE signal to :

3IMPLYENABLING4#07RAPPERSENHANCESTHESECURITYOFTHESELECTEDNETWORKSER-

vices. You can gain additional benefits by restricting access to these services using

 and . A properly configured corporate firewall, a system-level

FIREWALLIFPOSSIBLE�ASDESCRIBEDINTHENEXTSECTION	�AND4#07RAPPERSWITHACCESSCON-

trol enabled provide three tiers of protection for your network services. Using all three

may seem like overkill, but when you can do all of this automatically, there really is little

reason not to be overly cautious. Any one of these security devices could fail or be mis-

configured, but probably not all three.

Using Host-Based Packet Filtering

As PREVIOUSLYMENTIONED�PACKETFILTERINGISAWAYOFALLOWINGORDISALLOWING)0TRAFFICASIT
comes into a system’s network interface, based on filtering rules. All three of our example

CHAPTER 12 N IMPROVING SYSTEM SECURITY368

operating systems at our site install packet-filtering software with the base system. On

BOTH,INUXDISTRIBUTIONS�$EBIANAND2ED(AT	�THEIPTABLESSOFTWAREISUSED�ANDON
3OLARISTHEIPFILTERSOFTWAREISUSED�

In this section, we’ll provide a quick introduction to iptables and demonstrate

HOWTOFULLYENFORCEALOCALHOSTPACKETFILTERINGPOLICY�&ROMTHERE�ITWILLBEUPTOYOU
to configure a firewall policy that’s appropriate for your site.

&ORHELPWITHIPFILTER�CONSULTTHEPROJECTHOMEPAGEAT
ANDTHE3UNONLINEDOCUMENTATIONat

.

Iptables on Debian

Iptables is the packet filtering framework used by the Linux kernel since major version

2.4. It consists of kernel code and user-space tools to set up, maintain, and inspect the

KERNELTABLESOF)0PACKETFILTERRULES�%ACHTABLECONTAINSSEVERALBUILTINCHAINSANDMAY
also contain user-defined chains.

A chain is simply a list of iptables rules with patterns to match particular packets.

%ACHRULESPECIFIESATARGET�WHICHDEFINESWHATTODOWITHTHEPACKET�I�E��ALLOWORDROP
the packet). A target can also be a jump to a user-defined chain in the same table.

/UR2ED(ATSYSTEMSHAVEANIPTABLESFIREWALLINSTALLEDANDCONFIGUREDATBOOT�AS
AUTOMATEDBYOUR+ICKSTARTCONFIGURATION�7EALSOAUTOMATEDTHEDISTRIBUTIONOFTHE
FIREWALLCONFIGURATIONFILETOOUR2ED(ATWEBSERVER�USINGCFENGINE	BACKIN#HAPTER���
SOTHATWECOULDREMOTELYCONNECTTOTHE.20%DAEMON�3INCEIPTABLESON2ED(ATIS
already configured and automated on our network, we’ll focus on setting up packet fil-

TERINGFOR$EBIAN�7E�LLFOCUSONOUR$EBIANBASEDLOGHOST�CALLEDloghost1. This host is

ideal because of its security-related duties.

)NORDERTOSETUPIPTABLESON$EBIAN�WE�LLNEEDTO

 1. $EFINEAFIREWALLPOLICY

 2. Create iptables rules that implement our policy.

 3. Copy the file to loghost1 using cfengine.

 4. Configure the system to start the firewall rules before the network interfaces are

brought up.

 5. Restart a network interface or reboot the host, and verify our firewall settings.

7ETHINKAVERYSIMPLEFIREWALLPOLICYISAPPROPRIATEFOROURLOGHOST�7EWILLALLOW
incoming network connections only for these daemons and disallow the rest:

CHAPTER 12 N IMPROVING SYSTEM SECURITY 369

 s

 s .20%

 s

 s CFENGINE�TOTHE daemon)

The daemons and processes on the local system that connect to services on remote

hosts will be allowed by our policy, as well as any return traffic for those connections. Any

incoming traffic to services other than those listed previously will be blocked.

The rules defined by iptables are enabled by the command line utility. Rules

apply to traffic as it comes into an interface, as it leaves an interface, or as it is forwarded

between interfaces.

An iptables rule set that implements our log host policy follows. The rules are evalu-

ated in order, and packets that fail to match any explicit rules will have the default policy

applied.

CHAPTER 12 N IMPROVING SYSTEM SECURITY370

Note that this is a shell script. It is possible to save currently active iptables rules

using the command, by redirecting the command’s output to a file and

loading the rules via the COMMAND�7ECONFIGUREOURHOSTUSINGASHELL
script because this setup is easy for you use and experiment with on your own.

7ECOPIEDTHISSCRIPTTOINTOTHEDIRECTORY on loghost1 and

MADESURETHESCRIPTWASEXECUTABLE�3CRIPTSINTHISDIRECTORYARERUNbefore the network

interfaces are brought up. Linux allows firewall rules to be defined for interfaces that

don’t exist, so with this configuration we never bring up interfaces without packet filter-

ing rules.

Note that we didn’t go into the details of how we copied the file using cfengine. By

this point in the book, we think that you are probably an expert at copying files using

cfengine and don’t need yet another example.

Once the iptables script was copied in place, we rebooted the host loghost1�7HENIT
came back up, we ran this command as root to inspect the current iptables rule set:

CHAPTER 12 N IMPROVING SYSTEM SECURITY 371

7ERAN WITHTHEOPTIONSTOLISTALLRULESINALLCHAINSANDTODISABLE$.3
RESOLUTIONFORTHE)0ADDRESSESLISTEDINTHERULES�4HELONGLINESWRAPAROUNDTHEPAGE�
making it harder to read, but the active rule set matches our policy. The host loghost1 will

not allow any inbound network traffic except that required for administration, monitor-

ing, and the one network service it offers to the network: syslog.

&ORFURTHERINFORMATIONONIPTABLESCONSULTTHEIPTABLESHOMEPAGEat

.

Enabling Sudo at Our Example Site
7Ediscussed EXTENSIVELYIN#HAPTER��BUTWEDIDN�THAVEANYSYSTEMSTODEPLOYITTO
BACKTHEN�7ENEEDTOSTARTUSING at our example site.

The file installed by the PACKAGEON2ED(ATHASARICHSETOFCOMMANDS
grouped into related tasks, which can be easily delegated to users with particular roles.

You might find it to be a good starting point for the global file at your site.

7EUSEDTHEDEFAULT2ED(AT file for a new file at the location

�PLUSWEADDEDITTOOUR3UBVERSIONREPOSITORY	�ANDSIMPLYADDED
this line:

CHAPTER 12 N IMPROVING SYSTEM SECURITY372

To have a good audit trail, we want administrators to execute commands that require

root privileges with single command like this:

This way, root commands are logged via syslog by the command, so our log host

gets the logs, and the regular logcheck reports will include all commands run as root.

There is a problem, though. Nothing stops our administrators from running a com-

mand that gives them a root shell:

7HENASHELLISEXECUTEDASROOT� WILLNOT�ANDCANNOT	LOGEACHCOMMANDRUN
inside the shell. This is a blind spot in our audit trail, and the way to avoid this is to not

give unlimited command access to administrators. Instead, you should build on

THEEXAMPLESPROVIDEDINTHE2ED(AT file to provide only the needed set of com-

MANDSTOYOURADMINISTRATORSTAFF�(EREARESOMEEXAMPLEENTRIESFROMTHE2ED(AT
 file that delegate PRIVILEGESINADESIRABLEMANNER�SLIGHTLYMODIFIEDFOREXAMPLE

purposes):

CHAPTER 12 N IMPROVING SYSTEM SECURITY 373

The TWOCOMMANDALIASES� and) are perfect examples of using

roles to delegate privileges. If a user or administrator needs access to only commands to

modify network settings or to install software, the preceding command aliases allow this.

The delegation of to a group of users is done via traditional UNIX group mem-

bership in this example, and the delegation of privileges is done via a list of users

in the file itself.

NNote Always check to make sure the commands you enable, especially the ones that grant root privi-

leges, don’t have shell escapes. Shell escapes are features that allow shell commands to be executed. Any

such commands will run with root privileges and completely circumvent the access limitations that we’re

using for in the first place.

To copy our new file to the hosts in our example environment, we added a

task to with these contents:

CHAPTER 12 N IMPROVING SYSTEM SECURITY374

7Eimported the task in , committed our change to

3UBVERSION�ANDCHECKEDITOUTTOTHELIVE tree on the cfengine master.

7EWEREDISMAYEDTOFINDTHATWEAREMISSINGTHE PACKAGEONOUR$EBIANHOSTS�
To get INSTALLEDVIA&!)ONFUTURE$EBIANINSTALLS�WEADDEDTHELINE to

�/UR3OLARIS*UMPSTARTPOSTINSTALLSCRIPTALREADY
installs �ANDOUR2ED(ATSYSTEMSCOMEWITHITASWELL�&ORNOW�YOUCANMANUALLYINSTALL

ONYOUR$EBIANSYSTEMSTOAVOIDREIMAGINGJUSTFORONEPACKAGETOGETINSTALLED�
Be sure to add TOTHE$EBIANSECTIONOFTHE

 task so that actually works for more than one day!

Security Is a Journey, Not a Destination
7ENEEDTOBEMINDFULTHATASECURESTATEISNEVERREACHED�7ECANONLYINCREASESECURITY
to where we feel that we have decreased the risk of successful penetration to a low level.

7ENEEDTOKEEPUPTODATEWITHSECURITYANNOUNCEMENTSANDHAVESECURITYINMINDWITH
all administrative activities at our site.

7EHAVENOWENHANCEDTHESECURITYATOURSITEBYREDUCINGTHEOVERALLEXPOSUREOF
our systems to the network, as well as to local threats. Even if an attacker gained access to

ONEOFOURSYSTEMSUSINGANONPRIVILEGEDACCOUNT�ONLYALIMITEDNUMBEROF35)$BINA-

ries owned by root can be used for privilege escalation, and local software should be up to

date and therefore free of publicly known vulnerabilities.

(OSTBASEDSECURITYMEASURESARETHEFINALLINEOFDEFENSEWHENNETWORKFIREWALLSFAIL
TOPROTECTOURINTERNALHOSTS�3YSTEMSTHATRUNDAEMONSTHATAREACCESSIBLEFROMOUTSIDE
NETWORKS�ORTHE)NTERNETATLARGE	SHOULDALSOBEFIREWALLEDOFFFROMINTERNALNETWORKS
such as workstation and internal server networks. These measures help prevent exposure

in the event that a remote attacker gains access to systems that have to be exposed to hos-

tile networks themselves.

The final weak spot that we didn’t cover is that of any internally developed software

INUSEATYOURSITE�3UCHSOFTWAREISESPECIALLYRISKYIFITISEXPOSEDTOOTHERNETWORKSORTHE
)NTERNETATLARGE�3ECURITYADVISORIESANDVENDORANNOUNCEMENTSADDRESSPROBLEMSWITH
vendor and open source software, but only source code audits by trusted third parties

and good coding practices can protect internally developed software. If you support such

software, be sure to take extra steps to firewall the hosts running the software from the

rest of the hosts on your network.

375

A P P E N D I X A

Introducing the Basic Tools

Because this book is written for an experienced administrator, we have made a good

number of assumptions about your knowledge and previous experience. In an effort to

provide a helping hand to some of you without boring others, we are providing a basic

introduction to several of the tools we have used throughout this book in this appendix.

This appendix only provides an introduction and usage examples for the basic tools

and technologies used throughout the main text. Many other tools are described in detail

as they are introduced in the chapters, and thus they won’t be discussed here. In addi-

tion, tools like cfengine are covered in numerous chapters as appropriate.

In this appendix, we provide enough information so that if you are unfamiliar with

the topic, you should still be able to understand the examples within this book. Hope-

fully, this appendix will also give you enough information to start exploring the tools on

your own. If you are not ready to do that, just refer to the additional resources we provide

in most sections.

Throughout this book, we have not attempted to cover every existing utility for

each task. We generally pick the most popular tool from each category. If a couple of the

options are different in scope or power, we try to cover both of them. The same is true for

this appendix: we talk about the most popular choice and try to mention other tools that

you could also use.

For each section in this appendix, we recommend reading the first few paragraphs

to get a feel for how that tool or technology is used in this book. At that point, if you are

already familiar with the topic being covered, you can skip to the next section.

The Bash Shell
The Bourne-Again Shell (Bash) seems to be the most common command interpreter in

use today. Many people use it for their interactive sessions as well as for creating shell

scripts.

We highly recommend that you basically understand shell scripting in at least one

shell before you read this book. If you are fairly good with another shell, you should do

fine with the Bash examples. If you have no experience with shell scripting, we would rec-

ommend that you become familiar with the Bash shell before you continue. This section

APPENDIX A N INTRODUCING THE BASIC TOOLS376

provides a basic introduction to Bash and mentions some resources for further reference.

Of course, nothing is better than using the shell and experimenting with scripts yourself.

Compatibility Issues with Bash

Bash executes scripts written for the original Bourne Shell () in addition to native Bash

scripts. In fact, on some systems, is actually a symbolic link to Bash. When run through

this symbolic link, Bash executes in a compatibility mode so that it operates similarly to

the original sh.

Of course, Bash has quite a number of features not available in the traditional Bourne

Shell. If you use any of these additional features, your script will no longer be compatible

with the original Bourne Shell. Even so, most of the Bash scripts used throughout this

book will work fine with the older Bourne Shell with few if any modifications.

If your environment contains systems that have only the Bourne Shell installed, you

need to keep that in mind when you write your own shell scripts. In most cases, however,

it is worth the effort to install Bash (or the shell of your choice) on every machine you are

administering. You will almost certainly need a method of installing software on all of

your systems, so installing a consistent shell across your systems is a good place to start.

NCaution Some systems, such as Solaris, always use when executing system initialization

scripts. Since replacing with Bash is not really a good idea, you probably want to write these types

of script in format so that they will operate on any system.

Creating Simple Bash Shell Scripts

You will primarily use the Bash shell as a command interpreter. Many people choose this

shell for their command-line interpreter because of features like command history, tab-

completion, and user-defined functions. In this book, however, we focus on its scripting

abilities.

In their simplest form, shell scripts are simply text files with a sequence of commands

to execute. Any command that can be executed at the command prompt can be placed

into a shell script. Here is a sample shell script that illustrates some basic activities with

bash:

APPENDIX A N INTRODUCING THE BASIC TOOLS 377

NNote You can find the code samples for this appendix in the Downloads section of the Apress web site

().

The first line, like any interpreted script, contains the characters followed by the

full path to the interpreter (in this case,). The rest of the script contains shell

commands, all of which could be typed directly at the command prompt that executes

when the script runs. You run the script like any other binary program, by making it exe-

cutable and then executing it. Assuming the file is named , you would run

it as follows:

Any command that you can run from the command line can be run in a shell script.

The shell also provides all of the traditional logic structures (, , blocks;

loops; etc.). Since there are so many example shell scripts in this book, and since we

explain the examples as we go along, we will not try to provide a comprehensive intro-

duction to them here.

Debugging Bash Scripts

If you have trouble understanding some of the scripts in the book, try simply running

the script yourself. Like in any other language, you can insert commands into exist-

ing scripts to see the values of variables at various points. You can also use the option

that Bash provides to see exactly what commands are running. Here is the example script

being run with that option:

APPENDIX A N INTRODUCING THE BASIC TOOLS378

Note that the lines starting with shows you the command that is about to run, right

before it runs. For a complex script, you may want to capture all of the output to a file and

then look through the results in a text editor:

You can also modify the line at the top of the script () to always enable

debugging: . You can even enable debugging at any time during a script’s

execution by using the command.

The option is only one of a variety of debugging options available to you. All of

these can be specified on the command line, on the interpreter line, or using the

command:

 s : This switch causes the script to be parsed and checked for syntax errors. No

commands are actually executed.

 s : This displays every line of code before execution, including comments. It is

similar to the switch, but in this case, the lines are printed before any parsing is

performed on them.

 s : This one causes an error message to be generated when an undefined variable

is used.

Other Shells

Many shells are available in addition to Bash. Although we think that we can safely say

that Bash has become the most common shell, choosing one shell as the “best” would be

a difficult task. In fact, even attempting such a feat would cause an immediate religious

war. So, the best we can do is list a few other popular shells and let you do your own

investigating if you so desire. Each shell has a different syntax for its scripts, but they also

have many similarities. Here are other popular shells that you may want to investigate:

APPENDIX A N INTRODUCING THE BASIC TOOLS 379

 s #SHELL�)

 s +ORNSHELL�)

 s

Bash Resources

The (large) man page for Bash contains a lot of information and can be useful for ref-

erence (you access it by running). Usually more helpful is the actual

command that provides information on all of the built-in Bash commands, including

control constructs often used in shell scripts, for example:

Finally, if you have never used the Bash shell before and you want to improve your

skills with the shell, or if you just want a nice reference, Learning the bash Shell�BY#AM-

eron Newham and Bill Rosenblatt (O’Reilly Media Inc., 2005), is a great book on the topic.

Perl
Perl is very popular in the system administration community and may very well be the

most popular scripting language in use today. The major disadvantage is that some com-

mercial UNIX variants may not come with Perl as standard software. However, most

administrators find that adding Perl to all of their UNIX systems is well worth the effort,

and it comes preinstalled on all major Linux distributions.

The advantages of Perl are plentiful. It is an extremely powerful scripting language

and significantly faster than shell scripts. It is (in our experience, at least) very reliable

and stable. You can find existing Perl scripts that can perform a wide variety of tasks—

these make great examples and starting places for your own scripts.

Perhaps the best resource for 0ERLISTHE#OMPREHENSIVE0ERL!RCHIVE.ETWORK
�#0!.	�WHICHCONTAINSHUGENUMBERSOFMODULESTHATCANADDALMOSTANYFUNCTIONALITY
to the language. You can find these modules at or .

These modules were contributed by thousands of Perl developers and systems admin-

istrators around the world. They can save you a lot of time, and if you upload your own

modules, you can save other people time as well.

The major complaint people have about Perl is that the source code is hard to read.

Part of the reason for this is that there are two camps in program language design: one

camp thinks the programming language should force programmers to write readable

APPENDIX A N INTRODUCING THE BASIC TOOLS380

and maintainable code; the other camp thinks programmers should be able to write code

any way they want to. Larry Wall (the main author of Perl) is in the latter camp. What this

means is that you can write Perl code any way you like—messy or clean. We, of course,

recommend that you write clean, clear, and well-documented code, and we attempt to do

so for all of the Perl examples within this book.

Basic Usage

The following is a very simple (and useless) program that lists the contents of a directory

using both the system’s command and internal Perl functions. It does illustrate some

basics about Perl, though.

APPENDIX A N INTRODUCING THE BASIC TOOLS 381

Just like in a shell script, the first line must contain the path to the Perl interpreter.

On most Linux machines, this will be . On many UNIX machines, it will be

.

One thing to note is our use of the option to the interpreter. This, combined with

the second line of the script (), causes Perl to require variables to be declared

before they are used and to provide useful compilation warnings and other valuable

information. It is considered good practice to use these settings for all Perl programs to

help avoid errors and aid in the debugging process.

The example script should be generally self explanatory. Here is the script being

executed:

Notice that this version of did not hide the hidden directories and (the single

dot and the double dots). It also did not do the listing in a space-efficient multicolumn

format. You could easily enhance this Perl script in this manner if you so desired. Provid-

ing all of the capabilities of the system command would, however, be more difficult

simply because it has such a wide variety of command-line options.

Like with the shell scripts in the previous section, our discussion of Perl cannot be

comprehensive. Hopefully, the examples and the accompanying explanations through-

out this book will be enough for you to gain a basic knowledge of Perl. If you have

problems, be sure to use the documentation provided with Perl and/or the great Perl

books available.

When using other people’s Perl programs, you may find that they require certain Perl

modules that you do not have installed on your system. You can find these modules at

. You can also try using the module to automatically install other

modules for you. You can do this by running the following command as :

There is one other complication you will always have with Perl scripts. If you down-

load a Perl script from somewhere, the first line is always the path to the Perl interpreter,

APPENDIX A N INTRODUCING THE BASIC TOOLS382

but it may not be the path to your Perl interpreter. You will see all kinds of paths in the

scripts that you download: , , , and

even .

Likewise, if you have a mix of systems, the path to your Perl interpreter might not be

fixed. Your Linux systems might have Perl in , but the rest of your systems might

have it in . You will save yourself a lot of time by standardizing the

location of Perl across your systems—create some symbolic links if necessary.

Now, all you have to do is make sure all of your Perl scripts are using the path to the

interpreter that is valid for your systems. Here is a simple shell script that takes care of

this for you for all files you provide as arguments:

You should obviously replace the string with the proper path for your

Perl interpreter.

Other Scripting Languages

Although SYSTEMADMINISTRATIONTOOLSCOULDBEWRITTENINTRADITIONALLANGUAGESSUCHAS#�
scripting languages are generally used. Scripting languages are nice, because they can be

DISTRIBUTEDINTHEIRORIGINALTEXTANDWILLWORKONANYSUPPORTEDPLATFORM�#ALLINGOTHER
shell utilities is also much easier with scripting languages than with compiled languages.

And, as you will find, plenty of shell utilities will make your life much easier.

Although Perl is used quite a bit within this book, several other scripting languages

can do many of the same tasks just as well. The most popular include these:

 s Python: Python is a language that has gained a lot of popularity with system

administrators. Python programs tend to be more structured than Perl programs,

so Python may be a better choice for more complicated programs as well as to

ensure easy understanding and debugging by other administrators.

 s Tcl: Tcl is a relatively old language that is especially popular for providing GUI

interfaces. You can use the Expect program, which is a Tcl extension, to automate

interaction with programs that are designed to be interactive.

 s AWK�!7+is not as powerful as Perl, Python, or Tcl for many tasks, but for text

processing, it can be very convenient and powerful. GNU’s extended version of

!7+�GAWK�ISALSOAPOPULARTEXTEDITINGtool.

APPENDIX A N INTRODUCING THE BASIC TOOLS 383

Perl Resources

The de facto Perl book is Programming Perl, by Larry Wall and others (O’Reilly Media

Inc., 2000). This book provides a great introduction as well as plenty of details on the

language. Even if you already know Perl, Perl for System Administration, by David N.

Blank-Edelman (O’Reilly Media Inc., 2000) would be a great companion to this book.

In addition to these books, Perl comes with quite a bit of documentation. For starters,

there is the man page (which refers you to additional man pages). Perl also comes

with a convenient command. provides documentation on the

 Perl module. provides help on the built-in system function.

Finally, searches the FAQ for the given term.

Basic Regular Expressions
On the command prompt, you can type a command like . The is expanded (by the

shell) to all file names beginning with the letter . This is called file globbing.

Regular expressions are very similar in concept, but they have many differences.

Instead of working with files, they work with text, usually on a per-line basis. They also

have a wider variety of operators than file globbing has.

There are many different implementations of regular expressions, which can some-

times lead to confusion. Some of the common programs that use regular expressions yet

have at least some differences in their implementations are , �!7+�GAWK� ,

and Perl. In this section, we present the basics of using regular expressions that are com-

monly found in most regular expression implementations. You will need to check the

documentation for each specific program to find out about its nuances.

Characters

The most basic representation in a regular expression is that of a character. Most char-

acters represent themselves—the character matches the letter , for example. Other

special characters need to be escaped with a backslash to represent themselves. To match

the character , for example, you need to write .

You might be tempted to backslash all nonalphanumeric characters just to be safe. In

some implementations (like Perl), this works pretty well. In other implementations (like

), unfortunately, this approach can backfire. You must use caution when you use cer-

tain characters in a new program. These often have a special meaning by themselves in

some implementations and when they are escaped in other languages. These include , ,

, , and .

The period character () is a special character that matches any single character (just

like the in file globbing). The regular expression will match the word “lake”. The

APPENDIX A N INTRODUCING THE BASIC TOOLS384

regular expression will also match the word “lake” in addition to the words “make”

and “take”. To match a literal period character, you must use

You can also use character classes, which allow you to match a selection of charac-

ters. The sequence matches any single character: , , or . You can create inverse

character lists by placing the special character first in the list: . This matches any

single character that is not , , or .

There is a common shortcut for placing many characters in a character class. The

sequences and both match any single numerical character. The

sequence matches any single alphanumeric character.

Many implementations have other shortcuts available. For example, you can use

 to match any digit in and to match any digit in Perl. Most implemen-

tations have several classes of characters that can be represented in this manner.

Matching Repeating Characters

You can use available tools to match sequences of characters. All of these must be pre-

ceded by a single character or character class that they allow to be matched multiple

times:

 s : Match zero or one of the character(s).

 s : Match the character(s) zero or more times.

 s : The character(s) must match one or more times. Note that this is not supported

in all implementations. The command does not traditionally recognize this

repetition operator, but the GNU version supports the operator with the same

results.

You will often find these characters preceded by a . The sequence , for example,

will match zero or more of any character (just like in file globbing).

There are lots of other possibilities. The sequence will match one or more of

the characters , , or . It will match the strings and . It will also match portions

of the strings and . It will not match the string , however, because at least one

match must be found.

You can find a few additional repetition operators in some implementations of regu-

lar expressions:

 s : The character(s) must be matched exactly times.

 s : The character(s) must be matched at least times.

 s : The character(s) must be matched at least times but not more than

times.

APPENDIX A N INTRODUCING THE BASIC TOOLS 385

So, the sequence will match the string but not . These operators are not pres-

ent in some implementations. In others, the curly braces must be backslashed ().

Note that the sequence (i.e., no more than times) does not usually work.

Other Special Characters

A few additional characters have special meanings:

 s : Match the beginning of a line or the beginning of the buffer.

 s : Match the end of a line or the end of the buffer.

 s : Join the expressions on the left and right with a logical .

So, given this information, you can see that the regular expression will match “mad”,

“made”, and “nomad”. The regular expression , however, will match only “mad”.

You can use the character to join two regular expressions together, allowing one or

the other to be matched. In some implementations (like), it must be backslashed. This

allows you to two different words (such as).

Sometimes, you may want to use parentheses to group the operator. The expression

 matches either a string of all s or a string with any number of s followed by

any number of s. The expression , on the other hand, only matches strings

ending in s but beginning with either s or s. In some implementations, the parenthe-

ses might need to be backslashed when used as grouping operators.

Marking and Back Referencing

Parentheses (or backslashed parentheses in implementations such as) mark

sequences in addition to their grouping functionality. These marked portions of the

string being searched can be referenced later in your regular expression.

Each marked string is assigned the next number in a series, starting with . If the reg-

ular expression is applied to the string , for example, would contain

, would contain , and would contain .

You can also nest parentheses, in which case the outermost set of parentheses come

first. So when the regular expression is applied against the string , will contain

 and will contain .

In most languages, you refer to a back reference with the sequence , where

is the number of the marked string you want to reference. The regular expression

, for example, will match any string that contains two identical words

separated by a hyphen; it will match “dog-dog” but will not match “cat-dog”.

APPENDIX A N INTRODUCING THE BASIC TOOLS386

Back references are most commonly used when you are using a regular expression

to make modifications (like with) or to retrieve information from a string (like with

Perl). In , the first marked string is and the entire matched string is . In Perl the

first marked string is and the entire matched string is . Here are a couple of quick

examples with (for more information on , see “The sed Stream Editor” later in this

appendix):

The second example illustrates one last concept—greediness. The sequence

matched as many characters as it could, so it matched both characters. The following

could also have matched both characters, but the came first in the regular expression.

The , on the other hand, could have matched all the way to the end of the expres-

sion, including the . If this would have happened, though, the entire expression would

have failed, because the final would have nothing left to match. For this reason, the

matched as many characters as it could while still allowing the entire expression to be

successful.

In some implementations, like Perl, a repetition operator can be followed by a to

make it nongreedy, which causes the repetition operator to match as few characters as

possible.

grep
 is a very old program that looks for the specified search string in each line of input.

Every line that it matches is displayed on . It can also take basic regular expres-

sions. You can find on just about any UNIX system.

The command is a newer version of that supports extended regular expres-

sions (such as the repetition operator). Some implementations even support the

repetition operators (and others support instead). The command can also be

found on many systems.

If you find yourself limited by the standard command and the differences

between the various implementations, consider installing a standard version

(such as GNU) on all of your systems. If your script is designed to run on your own

systems, this is a reasonable solution. If your script is designed to run on any arbitrary

system, you will have to stick with the lowest common denominator.

Many of the following examples will use this sample input file, called :

APPENDIX A N INTRODUCING THE BASIC TOOLS 387

Let’s start out with a simple example:

The command filtered the input file and displayed only the lines matching the

regular expression (or just a string in this case) . Here are two more ways the same

result could have been obtained:

You can even list multiple files on the command line—as long as your regular expres-

sion comes first. Here is a regular expression being processed by the command (we

must use because does not recognize the operator):

Here, we matched only lines that contained text before the string (where is

a single digit from to). We could also have used the switch to invert the output (i.e.,

display nonmatched lines) and used a simpler regular expression:

Within scripts, using to simply check for the presence of a line is common. The

 switch tells to hide all output but to indicate whether the pattern was found. An

exit code of (true) indicates the pattern was found on at least one line. An exit code of

means the pattern was not found on any line. Here are two examples:

APPENDIX A N INTRODUCING THE BASIC TOOLS388

You can also have indicate the number of lines that were matched:

One common command-line use of is to filter output from system commands.

This is often handy within shell scripts as well. To see only the processes being run by the

user , for example, you can try this:

Another common use is to remove certain lines from a file. To remove the user

from the file , you can do this:

We should mention that this is not the most robust method of removing a user. If the

 command failed for some reason (maybe the drive is full), you should not copy the

new file over the existing password file. A better way to run this command would be as

follows:

Now, the file move will not occur unless the first command was successful. The main

disadvantage of this method is that the permissions of the original file may be lost. You

could fix the permissions after the modification (never a bad idea), or you can expand the

command sequence to the following:

Now, the new file is copied over the original, preserving the permissions of the origi-

nal file. This still doesn’t do any file locking, though. Somebody or something else could

modify the password file during this process, and those changes would be lost. Usually,

other cleanup is also necessary when you are removing a user.

APPENDIX A N INTRODUCING THE BASIC TOOLS 389

Other command-line options are available. The switch makes the pattern match-

ing case-insensitive. The switch lists the file names containing matching lines instead

of printing the lines themselves. The switch available on some versions recursively fol-

lows directories.

The sed Stream Editor
 is a stream editor, which means it can take an input stream and make modifications

to that stream. As long as you understand the basics of regular expressions, a little bit of

tinkering and reading of the man page should go a long way to help you understand .

The power of the regular expression library is not as powerful as you have available to you

in Perl (or even), but it is sufficient to solve many problems.

Modifying a File

 can operate on either standard input () or on files specified as arguments. The

output of always comes out on the standard output (). If you want to use to

modify a file (a common task), you should first copy the file and then direct to the

original file. Once you are sure your command is correct, you can remove the copy.

However, you can very easily create a command that will result in no output, so leave

the copy there until you are absolutely sure nothing went wrong.

Here is an example of modifying a file with . We will first create a file containing

the word and then use to remove all characters:

The command itself deserves some explanation. The entire pattern is enclosed

in single quotes to avoid any problems with the shell modifying the pattern. The first

character, , is the command (substitute). The forward slash is used as a delimiter—it

separates the various components of the substitute command. The first component con-

tains the letter , or the search string (or the regular expression in most cases). The next

component contains the substitution string, which is empty in our case. Finally, the at

the end is a modifier for the substitute command that causes it to repeat the substitution

as many times as necessary on each line because, by default, only performs the com-

mand once per line of input. So, the final result is that every occurrence of the character

in the original file has been removed by in the new file.

APPENDIX A N INTRODUCING THE BASIC TOOLS390

Modifying stdin

More often than not, is used to modify a stream on the standard input. Instead of

specifying a file name, you simply pipe the text to be processed into using the shell

pipe character (). The previous example can be done in almost the same way using a

pipe:

Or, in this case, we could bypass the file altogether. We echo the word “hello” directly

into , and allow ’s output to go directly to the screen:

This is actually an excellent way to test commands. If a command within a

shell script is giving you problems, you can always run it on the command line to see if

the expression is working properly.

A more real-world use of would be to modify the first line of a Perl script to fix the

path to the Perl interpreter. Let’s say that your Perl interpreter is called as

. If a script is specified , then you could use this command to replace

that (or any other) path to the interpreter. It will also maintain any arguments to the

interpreter. In the real world, you would run this command on a file, but here is the actual

command with a few test cases that can be run directly on the command line:

As you can see, this command will change any path to the Perl interpreter to the cor-

rect one and also preserves arguments in the process. The period character () stands for

any character, so will match zero or more of any character (i.e., any path before the

string). Of more importance is the character that immediately follows the com-

mand—with , you can use any character as a delimiter. Since the replacement string

contained several characters (the standard delimiter), we chose another character to

make things simpler.

APPENDIX A N INTRODUCING THE BASIC TOOLS 391

Isolating Data

Within shell scripts, using to isolate certain portions of strings is common. If, for

example, you want to determine the system’s IP address from the output of the

command, you have to isolate the IP address from the following output:

The first step is to isolate the proper line. You can use the command-line option to

cause to not display any output, by default. You can then use the option to print out

only the lines that are matched:

You can then expand this command to also isolate only the data you desire:

Now, you have isolated the system’s IP address. If you were writing a shell script, you

would want to store that value in an environment variable:

Other Tools

 is not the only option for modifying streams of text. Other solutions are more power-

FULBUTGENERALLYMORECOMPLICATED�!7+CANDOEVERYTHING can do and more. Perl

CANDOEVERYTHING!7+CANDO�ANDMORE�3O�IFYOUALREADYKNOWONEOFTHOSELANGUAGES�
you can use them to do the same things you could do with .

APPENDIX A N INTRODUCING THE BASIC TOOLS392

sed Resources

You can find plenty of information on simply by reading the man page (by running

). You can also obtain a great reference for both AND!7+BYPURCHASINGsed

and awk, by Dale Dougherty and Arnold Robbins (O’Reilly Media Inc., 1997).

AWK
Although !7+ISAFULLFLEDGEDPROGRAMMINGLANGUAGEUSEDFORTEXTPROCESSING�WEONLY
use it for fairly simple tasks within this book. We prefer to use Perl for the more com-

plicated work. For that reason, we provide only a brief overview here. For additional

INFORMATION�EXPLORETHERESOURCESSUGGESTEDINTHEh!7+2ESOURCESvSECTION�
"ASIC!7+ISFAIRLYSTANDARDACROSSDIFFERENTOPERATINGSYSTEMS�4HEREISALSOTHE

GNU version, gawk, which provides additional functionality. Both versions can com-

monly be found on most Linux systems.

Very Basic Usage

We OFTENFINDOURSELVESUSING!7+ASAGLORIFIEDVERSIONOFTHE command. The

command can be used to isolate certain fields from each line of input. You can retrieve a

list of usernames, for example:

Here, we simply requested a delimiter of () and the first field (). We can also

DOTHEEXACTSAMETHING�USINGADIFFERENTSYNTAX�WITH!7+�

The switch overrides the default delimiter to . The sequence is an

ACTUAL!7+PROGRAM�SPECIFIEDDIRECTLYONTHECOMMANDLINE�)TISEXECUTEDONEACHLINE
of input and simply prints out the first field of each line.

!7+ISEVENMOREUSEFUL�THOUGH�WHENTHEFIELDSARESEPARATEDBYARBITRARYAMOUNTS
of whitespace. The command can only look for a single delimiter, whereas the

APPENDIX A N INTRODUCING THE BASIC TOOLS 393

command, by default, uses any sequence of whitespace as the delimiter (any number of

spaces and tabs). Here is some example output from the command :

Let’s say that we want a listing of all active process IDs:

We have one problem, however. The string is part of the header line and should

not be included in the output. We will address this issue in the next section.

Not-Quite-As-Basic Usage

#ONTINUINGfrom the example in the previous section, we will use a more complicated

!7+COMMANDTOELIMINATETHEHEADERFROMTHEPROCESS)$LISTING�

The command is now preceded by a regular expression. The command only operates

on lines that first satisfy the regular expression. In this case, the line must not begin with

the string . This will be true of all lines except for the header line.

Now, we will use some contrived examples to illustrate some more functionality. It

is standard practice on many systems to create a group for each user. Let’s say that we

wanted to know what system groups contained members other than the user who owns

the group. Here are a few entries from :

APPENDIX A N INTRODUCING THE BASIC TOOLS394

We want to ignore the group because the user is the only member. We want

to ignore the group, because there are no specified members. The and

groups should be included in the output. Here is the program:

We can simplify the program by using a program file and the option:

where the file contains the program:

All we are doing here is checking to see if field 4 contains something and that it is not

equal to field 1. If both of these conditions are true, field number 1 is printed.

-UCHMOREPOWERISAVAILABLETOYOUIN!7+�9OUWILLSEEABITOFTHATPOWERINTHE
examples throughout this book. You can learn even more by reading the resources avail-

able outside of this book.

AWK Resources

Apart FROMTHE!7+MANPAGE�YOUCANOBTAINAGREATREFERENCEBYPURCHASINGThe AWK

Programming Language�BY!LFRED6�!HO�"RIAN7�+ERNIGHAN�AND0ETER*�7EINBERGER

(Addison-Wesley, 1988).

395

A P P E N D I X B

Writing cfengine Modules

Cfengine automatically sets a large number of classes at runtime based on attributes of

the system. These are classes based on the IP address of the system, the operating system

(e.g., or), the date and time, and many other attributes. Many predefined

cfengine classes are shown and explained in Chapter 4.

Cfengine modules are designed for the definition of custom classes. Modules allow

you to write code to extend cfengine, so that it can detect new situations and site-specific

conditions. We say “designed for” because it’s possible to use modules to implement sys-

tem changes as well. We’ll focus on what modules are designed for and then briefly touch

on other uses. We’ll explain the requirements for using modules and then show you how

to create a simple module to get you started. Once you know how to create and use a

module, you’ll be able to build on the example in your own environment.

Requirements for Using Modules
Before we discuss modules in any detail, we’ll lay out the requirements for using them:

 s -ODULESMUSTBEPLACEDINTHEDIRECTORYDEFINEDBYTHEVARIABLE in

 (or a file imported from).

 s %ACHMODULEFILEMUSTHAVEANAMEFOLLOWINGTHECONVENTION .

 s will execute only modules

 s /WNEDBYROOT�ORTHEUSERRUNNINGCFAGENT	

 s 0LACEDINTHESPECIALDIRECTORY

 s 4HATFOLLOWTHENAMINGCONVENTION

APPENDIX B N WRIT ING CFENGINE MODULES396

 s -ODULESMAYBEWRITTENINANYLANGUAGESUPPORTEDONTHESYSTEM�ANDTHEYCAN
output anything you deem appropriate. The important things about module out-

put follow:

 s ,INESTHATBEGINWITHA sign are interpreted as classes to be defined.

 s ,INESTHATBEGINWITHA sign are interpreted as classes to be undefined.

 s ,INESSTARTINGWITH are interpreted as variables to be defined.

 s !NYOTHERLINESOFOUTPUTAREALSOPRINTEDBY , so modules should generally

be silent.

Defining Custom Classes Without Modules
Classes are used by cfengine to determine the appropriate actions to take, if any. Dur-

ing the development of our example environment used throughout this book, we only

needed classes based on simple tests. For example, the following section

will only be run if the class is set:

Sun hardware classified as has the processor class that we’re looking for but

not all systems of that class run a particular CPU called the Niagara T1 processor. In the

 section, we ran the command and piped the output into the com-

MANDLOOKINGFORTHESTRINGh5LTRA30!2#4�v�2UNNINGTHE and commands

enabled us to find the systems that are running the Niagara T1 processor and then

to set the class.

This very simple example of setting a custom class is well suited to the section

BECAUSEOFITSSIMPLICITY�!TSOMEPOINT�YOUMAYNEEDTOSETCLASSESBASEDONMUCHMORE
complex criteria. If you can write code in any language supported on your systems, you

can write a cfengine module to set your custom classes. We will use Bourne shell scripting

for our example module.

APPENDIX B N WRIT ING CFENGINE MODULES 397

Creating Your First cfengine Module
Making use of a module to set the class is a good way to get familiar

with creating your own modules. We will implement this simple module in our example

environment.

First, we created a module called , with these contents:

This script is very simple. It executes a command against the output of the

 command on line 4, and if a match is found, three things happen:

 1. On line 6, the command is run again—this time to capture the total num-

ber of CPU threads present on the system’s processor—using the command.

The command in the pipeline removes any leading whitespace placed in the

output by the command.

 2. The class is set using an echo statement on lines 7 and 8, so now,

the process running this module will have the class defined.

 3. !VARIABLENAMED will be passed back to the process running the

module, with the value set to the number of threads on the system from line 6.

We placed the file in the directory, which should exist if you fol-

lowed along with this book (this relative path convention has also been used throughout

this book; the full path on the cfengine master in our example environment is

). If not, you may need to create the directory.

We added this line to so our module could

be found by at runtime (make sure that it applies to the class):

APPENDIX B N WRIT ING CFENGINE MODULES398

We then created a task at with these

contents:

We needed the line so that cfengine knew that a custom class might

be defined. We set the to include this module on any hosts running the

 architecture—recall that modules are always called via the cfengine .

We run the command in the section when a host is a system and

when the class is set. When the command is run, the variable containing

the number of threads on the processor is returned.

To put the task into use, we added it to the file with

this entry:

Check the files into Subversion, and check them out onto your cfengine master, if

applicable and if you’ve followed along with the book to this point (if you’re not sure what

we mean, don’t worry about it). We don’t need take any extra measures in our example

environment to set the ownership or permissions on the files in our directory,

because the in our example environment copies all files inside the

 directory with (user and group) ownership and other permissions completely

absent (file permission mode 700 and owned by). If you haven’t followed along

with this book, here’s the pertinent section from :

APPENDIX B N WRIT ING CFENGINE MODULES 399

Our directory is under the directory (which is copied via),

and this action recursively copies all files and directories beneath the direc-

tory. The variables used aren’t pertinent to this section. What’s important is that the

module files are owned by , since we only run cfengine as at our example site.

On systems running a Niagara processor (such as a Sun T2000 system), you’ll see

output from like this:

This simple example puts all the pieces in place for you to successfully use cfengine

modules. You can use it to build a much more complicated module that sets classes and

variables that you can then use to take actions in a cfengine task file (as we did with the

 command in the section of).

Using modules, you can extend cfengine in ways never imagined by the author of

cfengine.

Using Modules in Place of shellcommands
Cfengine provides the section so you have an easy way to perform custom

actions. The commands defined in a section can be standard operating sys-

tem utilities or custom scripts. Cfengine makes every attempt to be as generic as possible,

and it directly supports only the most basic system administration actions (e.g., file cop-

ies, permission fixes, link creation, file editing, etc).

Nothing prevents the code in a module from making changes on a system. The entire

list of classes defined by cfengine on the host is passed to scripts or programs run by

 as well as to scripts or programs run as a module, so there is no technical

barrier to using a module instead of a section.

We don’t like to use modules this way, because they weren’t designed to replace

. We think that some sites choose to use modules in place of

since it’s easy to automate the copy of the directory and use that as a single loca-

tion for cfengine-specific scripts. In our example environment, we automated the copy

of an administrative script directory, so we have an easy location to place sitewide scripts

for execution by administrators, cfengine, or both.

APPENDIX B N WRIT ING CFENGINE MODULES400

Modules are sometimes recommended on Internet mailing lists when the quotes

used in actions get too complicated for the cfengine parser, resulting in

errors. Consider a section such as this:

This code is difficult to read and needs some escaping of double quotes, and some-

times, cfengine can get confused when parsing commands like this. However, we don’t

consider this a reason to put the commands in a cfengine module. Instead, use a shell

script, in a location such as our example site’s directory.

We could create with these contents:

We could then create a new section like this:

Now, the cfengine configuration is easy to read, and the script can be a simple shell

script with no special escaping rules, making it easy to read too. You can also easily add

extra niceties to the shell script, like a statement and a test for the file’s

existence before running AGAINSTIT�!TOUREXAMPLESITE�THECONTENTSOF
 on our cfengine master are copied to on all hosts, so

once we place a script into the central directory, the copy is automatic.

We definitely recommend using shell scripts—not modules—for complicated

 sections.

401

A
account files. See local account files

accounts, user, creating, 280

actionsequence controls

cfagent.conf file, 97

cf.preconf script, 85–87

add_install_client command, 134

add_local_user script, 198

administrative scripts, usage information

for, 22

administrators, definition of, 14

alerts

host stops contacting cfengine master,

262

sent from Nagios, 312

Apache binary, synchronizing with PHP

binary using rsync, 227–232

Apache package from Red Hat, configur-

ing, 213–216

Apache VirtualHost configuration for

Nagios web interface, 284–285

Apache web server

building from source, 216–218

description of, 213

Secure Sockets Layer certificate for, 243

applications. See campin.net shopping

web site; deploying applications

application service providers (ASPs), auto-

mation and, 5

Apress web site, 16

archive mode (rsync), 221

assumptions of automation system, 15

audit trail, 15

authentication

Kerberos and, 365

LDAP and, 364

public key

generating key pair, 31

key size, choosing, 31–32

overview of, 30–31

specifying authorized keys, 32–33

RSA

forwarding port between machines,

39–40

restricting, 37–38

authentication file for Nagios web inter-

face, 285–286

Authentication screen (Kickstart Configu-

rator), 143

authorized_keys file

common accounts and, 41–45

configuring to restrict access, 40

from directive, 36

limited command execution, allowing,

38

options, 37–38

untrusted hosts, dealing with, 38

authorized keys, specifying, 32–33

autofs package, 205

automated installation systems

benefits of, 107

example environment, 108

FAI for Debian

host, installing, 120–121

install client, customizing, 114–120

network booting, configuring,

112–113

packages, installing and configuring,

110–112

steps to set up, 109

JumpStart

install server, setting up, 123–124

profile server, setting up, 124–136

steps to set up, 122–123

Index

NINDEX402

Kickstart

host, getting, 137

host, installing, 158

installation tree, creating and making

available, 152–153

kickstart file, contents of, 150–152

kickstart file, creating, 137–149

network boot, setting up, 154–158

overview of, 136

steps for setting up, 137

automation

assessing need for, 2–4

benefits of, 7–10

first rule of, 20–21

size of company and, 4

automounter, configuring, 205–207

AWK language

advanced usage, 393–394

basic usage, 392–393

description of, 382, 392

resources, 394

B
back referencing, 385–386

backups

FAI and, 342–346

Jumpstart and, 338–340

Kickstart and, 340–342

of Subversion repository

copying to other host, 350–352

creating, 346–350

overview of, 337–338

Bash (Bourne-Again Shell)

compatibility issues with, 376

description of, 375

resources, 379

scripts

creating, 376–377

debugging, 377–378

scripting specifically for, 19

Basic Configuration screen (Kickstart Con-

figurator), 138

benefits of automation

documented system configuration poli-

cies, 8

error reduction, 7–8

overview of, 8–10

time savings, 7

Beowulf clusters, automation and, 6

Berkeley Internet Name Domain (BIND)

automating configuration, 178–188

configuring, 171–178

binary files, monitoring, 363

bind9 package, 172

Blastwave software repository, 129, 259

Boot Loader Options screen (Kickstart

Configurator), 139

bootstrapping, cf.preconf script and,

82–88

Bourne-Again Shell (Bash)

compatibility issues with, 376

description of, 375

resources, 379

scripts

creating, 376–377

debugging, 377–378

brute force login attempts, 359

Building a Monitoring Infrastructure with

Nagios (Josephsen), 275

building Ganglia programs, 313–318

Burgess, Mark, 6, 27, 52

C
campin.net shopping web site

central cfengine host, installing, 80

cfengine configuration files

cfagent.conf, 92–99

cf.cfengine_cron_entries task,

102–103

cfmotd.task, 99–102

cf.preconf, 82–88

cfservd.conf, 103–105

overview of, 82

update.conf, 88–92

cfengine master repository, setting up,

81

description of, 79, 213

Red Hat Apache package, configuring

for, 214

sudo, enabling at, 371–374

Carter, Gerald, 364

cf.account_sync task, 191

cfagent command, 52

cfagent.conf/FAIBASE file, 118–119

NINDEX 403

cfagent.conf file (cfengine)

campin.net example, 92–99

creating, 62–64

description of, 54

output of, 253

sections

classes, 56, 67

copy, 68–69

creating, 66–67

directories, 69

disable, 69–71

editfiles, 71–72

files, 72–73

links, 74

processes, 74–75

shellcommands, 75

cfagent robot, 49–53

cf.any hostgroup, 193

cf.central_home_dirs file, 203–204

cf.cfengine_cron_entries task, 102–103

cf.configure_syslog, 265–267

cf.copy_fai_files task, 344–345

cf.copy_sudoers task, 373–374

cf.copy_svn_backups task, 350–351

cf.create_autofs_mnt_pkg task, 237–238

cf.debian_external_cache task, 179

cf.enable_rsync_daemon task, 224–225,

256–257

cfengine

application service providers and, 5

basic setup for

cfexecd, running, 59

cfservd, running, 59–60

network, 58

benefits of, 51

central host, installing, 80

cfagent.conf sections

classes, 67

copy, 68–69

creating, 66–67

directories, 69

disable, 69–71

editfiles, 71–72

files, 72–73

links, 74

processes, 74–75

shellcommands, 75

cfrun command, 75–76

classes

custom, 56–57

predefined, 55–56

set at runtime, 395

client systems, preparing, 65

clusters and, 6

components of, 53

configuration files

cfagent.conf, 92–99

cf.cfengine_cron_entries task,

102–103

cfmotd task, 99–102

cf.preconf script, 82–88

cfservd.conf, 103–105

managing, 54–55

update.conf, 88–92

using, 50

configuration files, creating

cfagent.conf, 62–64

cfservd.conf, 60–61

overview of, 60, 82

update.conf, 61–62

configuration server, creating, 64

copying configuration files with,

166–170

cron daemon and, 3

debugging, 66

defining classes without modules, 396

deploying Nagios with

Apache VirtualHost configuration for,

284–285

authentication file, creating, 285–286

building Nagios, 280–281

building Nagios plug-ins, 281–282

building Nagios plug-ins, copying,

291–295

copying start-up script, 282

daemon and configuration files,

copying, 286–290

generating SSL certificate, 284

hostgroup file for monitoring host

role, creating, 291

localhost-only monitoring, monitor-

ing, 296–297

monitoring host role, configuring,

291

NINDEX404

monitoring host role, DNS entry for,

295–296

monitoring remote systems, 306–311

NRPE, building, 298–299

NRPE configuration file, creating, 299

NRPE, configuring Red Hat local

firewall to allow, 303–305

NRPE, copying, 300–303

NRPE start-up script, creating, 300

overview of, 311

separating configuration and pro-

gram directories, 283

steps in, 278–280

user accounts, creating, 280

description of, 49

directory structure, 53–54

distributing local account files with,

191–196

downloading, 57

fully functional infrastructure for, con-

figuring, 79–80

imports, 183

internal commands, 50

large companies and, 4

list-iteration operator, 226

masterfiles repository, 161

master repository, setting up, 81

pull model and, 254

as pulling from server, 51–52

reports on status of, 253–262

resolve action, 186

root privileges and, 65

rsync and, 223–226

security enhancement with

applying patches and updates,

360–361

file checksum monitoring, 363

overview of, 354–355

protecting system accounts, 359–360

removing SUID bit, 355–358

removing unsafe files, 362–363

shutting down daemons, 361–362

sharing data with, 240–242

SSH and, 27

testing environment, implementing,

331–337

version 3, looking forward to, 76–77

version control, 323–331

web server farms and, 5

cfengine modules

creating, 397–399

overview of, 395

requirements for using, 395–396

using in place of shellcommands,

399–400

Cfengine.org web site, 76

cfexecd

description of, 53

running, 59

cf.export_pkg_share task, 235

cf.friendstatus, 262

cfkey command, 53

cf.kill_unwanted_services task, 361

cf.logcheck task, 268

cfmotd task, 99–102

cf.postfix_permissions task, 194–196

cf.preconf script

integrated into postinstall script,

130–132

overview of, 82–88

cfrun command, 53, 75–76

cfservd, running, 59–60

cfservd.conf file (cfengine)

campin.net example, 103–105

creating, 60–61

description of, 54

cf.setup_svn_plus_apache task, 245–247

cf.suid_removal task, 355–357

cf.sync_admin_scripts task, 197

cf.sync_apache_binaries task

cfengine and, 240–241

rsync and, 230–231

cf.sync_autofs_maps task, 206–207

cf.sync_httpd_conf task, 215

cf.sync_postfix_config file, 209–210

cf.sync_sec_config task, 271–272

cf.upload_cfoutputs_dir task, 258

cf.web_master task, 261

change development process, 20–21

characters in regular expressions

matching repeating, 384–385

overview of, 383–384

special, 385

checksum monitoring, 363

NINDEX 405

checksum option (files section of cfagent.

conf file), 73

chmod command, 218

classes

cfengine

custom, 56–57

defining with modules, 397–399

defining without modules, 396

predefined, 55–56

hupcfexecdandcfservd, 92

reload_bind, 181

classes section (cfagent.conf file), 67

clients

install

FAI for Debian, customizing, 114–120

JumpStart for Solaris, adding,

134–136

NFS, configuring, 234

client systems, cfengine, preparing, 65

cluster repair, automation of, 9

clusters

Beowulf or computational, automation

and, 6

of web servers, 219

code-continuation character, 225

command execution, allowing limited, 38

commands

add_install_client, 134

cfagent, 52

cfkey, 53

cfrun, 53, 75–76

chmod, 218

consistency of across systems, 13

dd, 19

diff, 334

dig, 177

egrep, 269, 386

fai-chboot, 113

fai-setup, 111

fcopy, 117

find, 355

grep, 396

htpasswd, 244

iptables-restore, 370

iptables-save, 370

lockfile, 349

mv, 201

passwd -S, 360

patch, 334

prtdiag, 396

rdate, 75

rsh, 29

shell escapes and, 373

SSH, 28

svnadmin hotcopy, 346

svn commit, 330

svn copy, 331

svn import, 249

svn log, 335

svn status, 249

svn update, 334

telnet, 29

userdel, 24

visudo, 16

common accounts, using SSH for

monitoring, 45–47

overview of, 40

setup for, 41–45

compatibility issues with Bash, 376

components of cfengine, 53

Comprehensive Perl Archive Network

(CPAN), 379

configuration files

cfengine

cfagent.conf, 92–99

cf.cfengine_cron_entries task,

102–103

cfmotd task, 99–102

cf.preconf, 82–88

cfservd.conf, 103–105

creating, 82

overview of, 54–55

update.conf, 88–92

copying with cfengine, 166–170

Nagios, 276–277

configuration policies

description of, 18

documentation of, 8

configuration server, cfengine, creating, 64

configuring

See also configuration files

Apache package from Red Hat, 213–216

authorized_keys file to restrict access,

40

NINDEX406

automounter, 205–207

BIND

automating configuration, 178–188

overview of, 171–178

cfengine

cfagent.conf file, 62–64

cfexecd, running, 59

cfservd.conf file, 60–61

cfservd, running, 59–60

configuration files, 60

fully functional infrastructure, 79–80

master repository, 81

network for, 58

update.conf file, 61–62

FAI packages, 110–112

Ganglia web interface, 318–321

network booting

FAI for Debian, 112–113

Kickstart for Red Hat, 154–158

NFS-automounted home directories,

203–204

NFS client, 234

NFS server, 233–234

NTP clients

Red Hat and Debian, 165

Solaris 10, 164

syslog server, 263–267

content, distributing

cfengine, 240–242

NFS

client, configuring, 234

overview of, 232–233

program binaries, 235–239

server, configuring, 233–234

uses of, 235

overview of, 218

Subversion

automating server deployment,

242–248

basic tasks of, 248–251

synchronizing Apache and PHP with

rsync, 227–232

synchronizing data with rsync

cfengine and, 223–226

drawbacks of, 219–220

examples of, 221–223

overview of, 218–219

transport protocol for, 220–221

copying

files, automation and, 20

Nagios plug-ins with cfengine, 291–295

Subversion backups to other host,

350–352

copy section (cfagent.conf file), 68–69

CPAN (Comprehensive Perl Archive Net-

work), 379

cron daemon, cfengine and, 3

custom classes (cfengine), 56–57

customizing install client, 114–120

Custom JumpStart. See JumpStart for

Solaris

D
daemons

cron, cfengine and, 3

Ganglia, 313

Nagios, 275, 286–290

rsync, outputs directory and, 254–258

unneeded, shutting down, 361–362

data

isolating with sed, 391–392

sharing between systems

cfengine and, 240–242

NFS and, 232–239

overview of, 218

Subversion and, 242–251

synchronizing Apache and PHP with

rsync, 227–232

synchronizing with rsync

cfengine and, 223–226

drawbacks of, 219–220

examples of, 221–223

overview of, 218–219

transport protocol for, 220–221

db.192.168 file, 175

db.campin.net file, 174

db.empty zone file, 174

dd command, 19

Debian

See also FAI for Debian

host, installing, 120–121

iptables packet filtering framework,

368–371

NINDEX 407

named.conf.local file

contents, 173

populating, 176

named.conf.options file, 172

NTP client, configuring, 165

UID/GID numbers in, 191

Debian cfengine2 package, 80, 86

debugging

Bash scripts, 377–378

cfengine, 66

defining cfengine classes

with modules, 397–399

without modules, 396

delete switch (rsync), 222

deny unknown-clients setting, 113

dependencies, automation and, 12

deploying

applications

Apache package from Red Hat, con-

figuring, 213–216

Apache web server, 213, 216–218

Nagios with cfengine

Apache VirtualHost configuration for,

284–285

authentication file, creating, 285–286

building Nagios, 280–281

building Nagios plug-ins, 281–282

copying Nagios plug-ins, 291–295

copying start-up script, 282

daemon and configuration files,

copying, 286–290

generating SSL certificate, 284

hostgroup file for monitoring host

role, creating, 291

localhost-only monitoring, modify-

ing, 296–297

monitoring host role, configuring,

291

monitoring host role, DNS entry for,

295–296

monitoring remote systems, 306–311

NRPE, building, 298–299

NRPE configuration file, creating, 299

NRPE, configuring Red Hat local

firewall to allow, 303–305

NRPE, copying, 300–303

NRPE start-up script, creating, 300

overview of, 311

separating configuration and pro-

gram directories, 283

steps in, 278–280

user accounts, creating, 280

testing before, 12

DEV directory, 331–337

DHCP, Kickstart network boot and,

156–158

dhcpd.conf file

FAI for Debian, 112

Kickstart, 157

diff command, 334

dig command, 177

directories

DEV, 331–337

/etc/httpd, 214

NFS-automounted home

automounter, configuring, 205–207

configuring, 203–204

/srv/fai/config, 342–343

STAGE, 337

storing syslog messages in, 263–269

/var/www/html, 213–214

$workdir/outputs

aggregating contents from all hosts to

single host, 254–258

cfengine status reports and, 253

Red Hat Linux as aggregate host for,

259

summarizing and e-mailing aggre-

gated contents, 259

summarizing and e-mailing hourly,

261

uploading to central host, 258–259

directories section (cfagent.conf file), 69

directory structure of cfengine, 53–54

directory test verifying postfix Debian

package is installed, 194

disable action (cfengine), 362–363

disable section (cfagent.conf file), 69–71

Display Configuration screen (Kickstart

Configurator), 144

distributing content

cfengine, 240–242

NINDEX408

NFS

client, configuring, 234

overview of, 232–233

program binaries, 235–239

server, configuring, 233–234

uses of, 235

overview of, 218

Subversion

automating server deployment,

242–248

basic tasks of, 248–251

synchronizing Apache and PHP with

rsync, 227–232

synchronizing data with rsync

cfengine and, 223–226

drawbacks of, 219–220

examples of, 221–223

overview of, 218–219

transport protocol for, 220–221

distributing local account files with

cfengine, 191–196

DNS (Domain Name System)

architecture, choosing, 171

entry for Nagios monitoring host role,

creating, 295–296

overview of, 170

private, setting up

BIND configuration, 172–178

BIND configuration, automating,

178–188

overview, 171

query, running without logging into

host, 185

resources on, 170

documentation

of changes before making, 9

importance of, 12

repair script as, 9

of system configuration policies, 8

Domain Name System. See DNS

downloading

cfengine, 57

Nagios, 280

downtime, scheduling, 17

DSA public-key encryption, 30

DVD, creating ISO file on remote system

from, 19

E
editfiles section (cfagent.conf file), 71–72

egrep command, 269, 386

e-mail notifications, testing, 330

empty passphrases, 30

encrypting mail traffic, 40

encryption, public-key, 30

errors reduced by automation, 7, 8

/etc/bootparams file, 134–135

/etc/fai/fai.conf file, 111

/etc/fai/make-fai-nfsroot.conf file,

110–111

etchlamp, 323

/etc/httpd directory, 214

/etc/ntpd.conf file, 163

/etc/postfix/main.cf file, modifying, 208

/etc/rc2.d/S99runonce script, 132–133

example automation

prototyping before polishing, 22

scripting working procedure, 21–22

simplicity and, 25

step failure and, 24

turning script into robust automation,

23–24

example environment, explanation of, 10

external NTP synchronization, 162

F
FAIBASE.var file, 114, 115

fai-chboot command, 113

fai-doc package, 121

FAI (Fully Automatic Installation) for

Debian

backups and, 342–346

description of, 109

host, installing, 120–121

install client, customizing, 114–120

network booting, configuring, 112–113

packages, installing and configuring,

110–112

steps to set up, 109

failure of step, dealing with, 24

failure situations, 273

fai-setup command, 111

fcopy command, 117

Fedora Directory Server, 364

file globbing, 383

NINDEX 409

file locking, 347

files

checksum monitoring, 363

everything on system represented as,

19–20

modifying with sed, 389

unsafe, removing, 362–363

files section (cfagent.conf file), 72–73

filesystem layouts, consistency of across

systems, 13

filters, cfengine, 357

find command, 355

Firewall Configuration screen (Kickstart

Configurator), 143

firewalls

host-based, implementing

overview of, 365–366

TCP Wrappers, 366–367

packet filtering

iptables on Debian, 368–371

overview of, 367–368

first rule of automation, 20–21

forwarding

port between machines, 39–40

ssh-agent program, 36–37

G
Ganglia

building and distributing programs,

313–318

configuring web interface, 318–321

daemons, 313

overview of, 274, 312–313

Garfinkel, Simson, 354

GID numbers, Debian, 191

GNU Project, 13

goldmaster (central host), 103–105, 161

greediness, 386

grep command, 396

grep program, 386–389

group IDs, NFS and, 233

H
hacks, postinstall script and, 128

hemingway, 338

homogenizing systems, 13

hooks (Subversion), 327

host-based security

as journey, not destination, 374

cfengine and

applying patches and updates,

360–361

file checksum monitoring, 363

overview of, 354–355

protecting system accounts, 359–360

removing SUID bit, 355–358

removing unsafe files, 362–363

shutting down daemons, 361–362

firewalls and

overview of, 365–366

TCP Wrappers, 366–367

Kerberos and, 365

LDAP and, 364

overview of, 354

packet filtering

iptables on Debian, 368–371

overview of, 367–368

sudo and, 371–374

hostgroups.cfg file, defining, 309

host

See also monitoring host role for Nagios

alert, 262

copying repository backups to, 350–352

installing

cfengine central, 80

Debian, 120–121

Kickstart for Red Hat, 137, 158

running query without logging into, 185

untrusted, dealing with, 38

hosts.cfg file, defining, 308

htpasswd command, 244

hupcfexecdandcfservd class, 92

I
ignore section of cf.preconf script, 85

importing

binary server tree, 248

masterfiles/PROD directory, 325

imports, cfengine and, 183

import statements, cfagent.conf file and,

94

NINDEX410

infrastructure services

DNS

architecture, choosing, 171

overview of, 170

private, setting up, 171–188

resources on, 170

routing mail, 208–211

time synchronization

configuring NTP clients, 164–165

copying configuration files, 166–170

external NTP, 162

internal NTP masters, 163–164

ntpdate utility and, 170

overview of, 161–162

user account files

adding new, 196–202

distributing with cfengine, 191–196

NFS-automounted home directories,

203–207

standardizing local, 188–191

installation, automated systems for

benefits of, 107

example environment, 108

FAI for Debian

host, installing, 120–121

install client, customizing, 114–120

network booting, configuring,

112–113

packages, installing and configuring,

110–112

steps to set up, 109

JumpStart

install server, setting up, 123–124

profile server, setting up, 124–136

steps to set up, 122–123

Kickstart

host, getting, 137

host, installing, 158

installation tree, creating and making

available, 152–153

kickstart file, contents of, 150–152

kickstart file, creating, 137–149

network boot, setting up, 154–158

overview of, 136

steps for setting up, 137

Installation Method screen (Kickstart Con-

figurator), 139

install client

FAI for Debian, customizing, 114–120

JumpStart for Solaris, adding, 134–136

installing

See also installation, automated systems

for

cfengine central host, 80

Debian host, 120–121

FAI packages, 110

host using Kickstart, 158

logcheck program, 267

newlogcheck program, 267

rsync from Blastwave repository as part

of JumpStart process, 259

install server, setting up, 123–124

internal NTP masters, 163–164

Internet Service Providers (ISPs), automa-

tion and, 5

IP addresses, sysidcfg file and, 127

iptables packet filtering framework,

368–371

iptables-restore command, 370

iptables-save command, 370

ISO file, creating on remote system from

DVD, 19

isolating data with sed, 391–392

ISPs (Internet Service Providers), automa-

tion and, 5

J
Josephsen, David, 275

JumpStart for Solaris

backups and, 338–340

install server, setting up, 123–124

overview of, 122

profile server

install client, adding, 134–136

postinstall script, creating, 128–133

profile file, creating, 125–126

rules file, creating, 133–134

setting up, 124

sysidcfg file, creating, 126–128

rsync and, 259

steps to set up, 122–123

NINDEX 411

JumpStart process

rsync from Blastwave repository as part

of, 259

K
Keep It Simple, Stupid (KISS) principle, 25

Kerberos, security enhancement with, 365

key pair, generating, 31

key size, choosing, 31–32

keywords, size, 193

Kickstart for Red Hat

backups and, 340–342

host

getting, 137

installing, 158

installation tree, creating and making

available, 152–153

Kickstart Configurator

Authentication screen, 143

Basic Configuration screen, 138

Boot Loader Options screen, 139

Display Configuration screen, 144

Firewall Configuration screen, 143

Installation Method screen, 139

Network Configuration screen,

142–143

Package Selection screen, 145–148

Partition Information screen,

140–142

Postinstallation Script screen, 149

starting, 138

kickstart file

creating, 137–138

script, 150–152

network boot

DHCP and, 156–158

TFTP and, 154–155

overview of, 136

steps for setting up, 137

KISS (Keep It Simple, Stupid) principle, 25

L
languages, scripting, 382. See also AWK

language; Perl

LDAP (Lightweight Directory Access

Protocol), security enhancement

with, 364

LDAP System Administration (Carter), 364

links section (cfagent.conf file), 74

listings. See scripts

list-iteration operator (cfengine), 226

load balancing, 7, 214

local account files

adding new

overview of, 196

scripts, using, 197–201

distributing with cfengine, 191–196

NFS-automounted home directories

automounter, configuring, 205–207

configuring, 203–204

standardizing, 188, 191

lockfile command, 349

logcheck program, 267

log file rotation, 3

log reports

on cfengine status, 253–262

syslog messages

configuring server, 263–267

outputting summary reports, 267–269

overview of, 263

real-time reporting, 269–272

types of, 253

M
mail, routing, 208–211

mail traffic, encrypting, 40

marking sequences, 385–386

masterfiles directory tree (cfengine), im-

porting, 323–331

master repository, cfengine, setting up, 81

matching repeating characters in regular

expressions, 384–385

merging

commands for, 334

from PROD tree to DEV tree, 336

message-of-the-day file, 99–102

methodology, consistent, and automation,

11–12

mirroring files with rsync, 218

modifying files, automation and, 20

monitoring

automated mechanism for, 273

common accounts, 45–47

failure situations and, 273

full suite for, 321

NINDEX412

Ganglia and

building and distributing programs,

313–318

configuring web interface, 318–321

daemons, 313

overview of, 274, 312–313

immediate errors or failures, 273

Nagios and

alerts, 312

components of, 275–276

configuration files, 276–277

features of, 274–275

object types, 277–278

overview of, 274

remote systems, 306–311

resources on, 278

monitoring host role for Nagios

configuring, 291

DNS entry for, creating, 295–296

hostgroup file for, creating, 291

mv command, 201

N
Nagios

alerts, 312

components of, 275–276

configuration files, 276–277

deploying with cfengine

Apache VirtualHost configuration for,

284–285

authentication file, creating, 285–286

building Nagios, 280–281

building Nagios plug-ins, 281–282

building Nagios plug-ins, copying,

291–295

copying start-up script, 282

daemon and configuration files,

copying, 286–290

generating SSL certificate, 284

hostgroup file for monitoring host

role, creating, 291

localhost-only monitoring, modify-

ing, 296–297

monitoring host role, configuring,

291

monitoring host role, DNS entry for,

295–296

monitoring remote systems, 306–311

NRPE, building, 298–299

NRPE configuration file, creating, 299

NRPE, configuring Red Hat local

firewall to allow, 303–305

NRPE, copying, 300–303

NRPE start-up script, creating, 300

overview of, 311

separating configuration and pro-

gram directories, 283

steps in, 278–280

user accounts, creating, 280

features of, 274–275

object types, 277–278

overview of, 274

resources on, 278

service detail screen for system local-

host, 295

nagios.conf file, 276

Nagios daemon, copying with cfengine,

286–290

Nagios Remote Plug-in Executor (NRPE)

building, 298–299

configuration file, creating, 299

configuring Red Hat local firewall to al-

low, 303–305

copying, 300–303

description of, 276, 297

start-up script, creating, 300

named.conf.local file (Debian)

contents, 173

populating, 176

named.conf.options file (Debian), 172

NAT (Network Address Translation), ac-

cessing server behind, 39

network

security of, 29

setting up for cfengine, 58

network appliances, automation and, 7

network boot

FAI for Debian, configuring, 112–113

Kickstart for Red Hat

DHCP and, 156–158

TFTP and, 154–155

Network Configuration screen (Kickstart

Configurator), 142, 143

Network Time Protocol. See NTP

newlogcheck program, 267–269

NINDEX 413

NFS (Network File System), sharing data

with

client, configuring, 234

overview of, 232–233

program binaries, 235–239

server, configuring, 233–234

uses for, 235

NFS-automounted home directories

automounter, configuring, 205–207

configuring, 203–204

NRPE (Nagios Remote Plug-in Executor)

building, 298–299

configuration file, creating, 299

configuring Red Hat local firewall to al-

low, 303–305

copying with cfengine, 300–303

description of, 276, 297

start-up script, creating, 300

ntpdate utility, 170

NTP (Network Time Protocol)

clients, configuring

Red Hat and Debian, 165

Solaris 10, 164

configuration files, copying with

cfengine, 166–170

description of, 162

external synchronization, 162

internal masters, 163–164

resources on, 162

O
object types, Nagios, 277–278

OpenLDAP, 364

OpenSSH 4.x, 27

operating systems, homogenizing, 13

outputting syslog summary reports,

267–269

P
Package Selection screen (Kickstart Con-

figurator), 145–148

packet filtering software

iptables on Debian, 368–371

overview of, 366–368

Partition Information screen (Kickstart

Configurator), 140–142

passwd -S command, 360

passwords

automation and, 29

empty passphrases, 30

patch command, 334

patches, applying, 360–361

Perl

overview of, 379–380

resources, 383

using, 380–382

PHP binary, synchronizing with Apache

binary using rsync, 227–232

PHP-enabled Apache web server, building

from source, 216–218

pkg-get tool, 129

plug-ins. See Nagios

policies, system configuration

description of, 18

documentation of, 8

ports, forwarding between machines,

39–40

postfix, virtual-domain functionality of,

209

Postinstallation Script screen (Kickstart

Configurator), 149

postinstall script, creating, 128–133

Practical UNIX & Internet Security (Garfin-

kel, Schwartz, and Spafford), 354

predefined classes (cfengine), 55–56

pre-exec script (rsync), 254

Pre-eXecution Environment (PXE), 112

Preston, W. Curtis, 250

preventing problems, 3

Principles of Network and System Adminis-

tration, Second Edition (Burgess), 6

private DNS, setting up

BIND configuration

automating, 178–188

overview of, 172–178

overview, 171

private keys, trust in cfengine and, 103

procedure, understanding before auto-

mating, 20, 21

procedure example

prototyping before polishing, 22

scripting working, 21–22

simplicity and, 25

NINDEX414

step failure and, 24

turning script into robust automation,

23–24

process accounting, 15

processes section (cfagent.conf file), 74–75

PROD tree, 326

production, definition of, 8

profile server

install client, adding, 134–136

postinstall script, creating, 128–133

profile file, creating, 125–126

rules file, creating, 133–134

setting up, 124

sysidcfg file, creating, 126–128

program binaries

NFS and, 235–239

rsync and, 227–232

Pro Nagios 2.0 (Turnbull), 275

protecting system accounts, 359–360

prototyping procedure before polishing,

22

proxy software, 366

prtdiag command, 396

public key authentication

generating key pair, 31

key size, choosing, 31–32

overview of, 30–31

specifying authorized keys, 32–33

pulling from server, cfengine as, 51–52

pull method, 13–14

pull model, cfengine and, 254

push method, 13–14, 52

PXE boot, 120

PXE (Pre-eXecution Environment), 112

Python language, 382

R
rdate command, 75

read-only access, granting, 324

read-only user, setting up, 324

real-time reporting, syslog summary re-

ports, 269–272

Red Hat Linux

See also Kickstart for Red Hat

as aggregate host for outputs directo-

ries, 259

Apache package, configuring, 213–216

local firewall, configuring to allow

NRPE, 303–305

NTP client, configuring, 165

sudoers file example entries, 372–373

Red Hat Network (RHN), benefits of, 2

regular expressions

characters

matching repeating, 384–385

overview of, 383–384

special, 385

marking and back referencing, 385–386

overview of, 383

reload_bind class, 181

Remote Procedure Calls (RPCs), 233

remote systems

configuring Nagios to monitor, 306–311

creating ISO file on, 19

removing

SUID bit set, 355–358

unsafe files, 362–363

repetitive tasks, elimination of, with auto-

mation, 10

reports. See log reports

reproducibility of automated system, 11

resolve action (cfengine), 186

resources

See also web sites

AWK, 394

Bash, 379

Nagios, 278

Perl, 383

sed, 392

restricting RSA authentication

forwarding port between machines,

39–40

limited command execution, allowing,

38

overview of, 37–38

untrusted hosts, dealing with, 38

revision-control system. See Subversion

root account, access to, 15–17

root privileges, and cfengine, 65

routing mail, 208–211

RPCs (Remote Procedure Calls), 233

NINDEX 415

RSA authentication

forwarding port between machines,

39–40

restricting, 37–38

RSA public-key encryption, 30

rsh command, 29

RSH protocol, rsync and, 220

rsync

cfengine and, 223–226

daemon, outputs directory and,

254–258

drawbacks of, 219–220

examples of, 221–223

installing as part of JumpStart process,

259

overview of, 218–219

synchronizing Apache and PHP with,

227–232

transport protocol for, 220–221

rsyncd.conf-www file, 227–228, 254

rsync-outputs-dir-pre-exec, 255

rules file, creating, 133–134

S
S99runonce script, 129

SAs (system administrators)

multiple, dealing with, 15–17

tasks and responsibilities of, 10, 17–18

scheduling downtime, 17

Schwartz, Alan, 354

scripting languages, 382. See also Perl

scripting working procedure

example of, 21–22

turning into robust automation, 23–24

scripts

add_local_user, 198

administrative, usage information for,

22

for analyzing log file and summarizing

user logins, 45–47

cf.account_sync task, 191

cfagent.conf/FAIBASE and update.

conf/FAIBASE files, 118–119

cfagent.conf file, 63, 92–94

cf.any hostgroup, 193

cf.central_home_dirs file, 203–204

cf.cfengine_cron_entries task

editfiles section, 102

shellcommands section, 103

cf.configure_syslog, 265–267

cf.copy_fai_files task, 344–345

cf.copy_sudoers task, 373–374

cf.copy_svn_backups task, 350–351

cf.create_autofs_mnt_pkg task, 237–238

cf.enable_rsync_daemon task, 224–225,

256–257

cf.export_pkg_share task, 235

cf.kill_unwanted_services task, 361

cf.logcheck task, 268

cfmotd task

editfiles section, 100

motd_local section, 101

cf.postfix_permissions task, 194

cf.preconf, 83–88, 130–132

cf.setup_svn_plus_apache task, 245–247

cf.suid_removal task, 355–357

cf.sync_admin_scripts, 197

cf.sync_apache_binaries task

cfengine and, 240–241

rsync and, 230–231

cf.sync_autofs_maps task, 206–207

cf.sync_httpd_conf task, 215

cf.sync_postfix_config file, 209–210

cf.sync_sec_config task, 271–272

cf.upload_cfoutputs_dir task, 258

cf.web_master task, 261

classes/cf.main_classes contents, 95

control/cf.control_cfagent_conf con-

tents, 95

control/cf.control_cfexecd contents, 98

creating user accounts using, 197–201

creating with Bash, 376–377

db.192.168 file, 175

db.campin.net file, 174

debugging Bash, 377–378

dhcpd.conf file

FAI for Debian, 112

Kickstart, 157

directory test to verify postfix Debian

package is installed, 194

/etc/bootparams file, 134–135

/etc/fai/fai.conf file, 111

NINDEX416

/etc/fai/make-fai-nfsroot.conf file,

110–111

/etc/ntpd.conf file, 163

/etc/postfix/main.cf file, modifying, 208

/etc/rc2.d/S99runonce, 132–133

FAIBASE.var file, 114–115

f.friendstatus, 262

hostgroups/cf.any contents, 99

iptables rule set that implements log

host policy, 369–370

kickstart file (ks.cfg), 150–152

named.conf.local file (Debian)

contents, 173

populating, 176

named.conf.options file (Debian), 172

for processing configuration file and

generating authorized_keys files,

41–44

rsyncd.conf-www file, 227–228, 254

rsync-outputs-dir-pre-exec, 255

running Apache and PHP binaries,

228–229

S99runonce, 129

sec.conf file, 269–271

/srv/fai/config directory, 342–343

/srv/fai/config/package_config/WEB

file, 115

svn_access file, 245

svn.campin.net file, 244–245

update.conf file, 61, 89

zones.rfc1918 file, 173

search engines, automation and, 7

sec.conf file, 269–271

SEC (Simple Event Correlator), 269–272

Secure Shell (SSH) protocol

cfengine and, 27

common accounts

monitoring, 45–47

overview of, 40

setup for, 41–45

enhancing security with, 29

overview of, 27–28

public key authentication

generating key pair, 31

key size, choosing, 31–32

overview of, 30–31

specifying authorized keys, 32–33

rsync and, 220

Secure Sockets Layer certificate

for Apache web server, 243

for Nagios web interface, 284

security

as journey, not destination, 374

Apache web server, building from

source, 216

automation and, 12

cfengine and

applying patches and updates,

360–361

file checksum monitoring, 363

overview of, 354–355

protecting system accounts, 359–360

removing SUID bit, 355–358

removing unsafe files, 362–363

shutting down daemons, 361–362

enhancing with SSH, 29

firewalls and

overview of, 365–366

TCP Wrappers, 366–367

Kerberos and, 365

LDAP and, 364

outputs directory and rsync daemon,

254

overview of, 353–354

packet filtering

iptables on Debian, 368–371

overview of, 367–368

sudo and, 371–374

sed stream editor

files, modifying, 389

isolating data, 391

overview of, 389

resources, 392

stdin, modifying, 390

SELinux, Apache and, 231

server keys, generating, 64

servers

See also Apache web server; FAI for

Debian; JumpStart for Solaris;

Kickstart for Red Hat; profile server

accessing behind NAT, 39

cfengine as pulling from, 51–52

NINDEX 417

configuration (cfengine), creating, 64

install, setting up, 123–124

NFS, configuring, 233–234

Subversion, automating deployment of,

242–248

syslog, configuring, 263–267

web, clusters of, 219

Service Level Agreements (SLAs), 17

Service Management Facility (Solaris 10),

169

sharing data between systems

cfengine and, 240–242

NFS and

client, configuring, 234

overview of, 232–233

program binaries, 235–239

server, configuring, 233–234

uses of, 235

overview of, 218

Subversion and

automating server deployment,

242–248

basic tasks of, 248–251

overview of, 242

synchronizing Apache and PHP with

rsync, 227–232

synchronizing data with rsync

cfengine and, 223–226

drawbacks of, 219–220

examples of, 221–223

overview of, 218–219

transport protocol for, 220–221

shellcommands (cfengine), using modules

in place of, 399–400

shellcommands section (cfagent.conf file),

75

shell escapes, 373

shells, popular, 378. See also Bash shell

shutting down unneeded daemons,

361–362

Simple Event Correlator (SEC), 269–272

simplicity, opting for, 25

size keyword, 193

size of company, and automation, 4

SLAs (Service Level Agreements), 17

software

internally developed, 374

packet filtering, 366–371

proxy, 366

Solaris 10

See also JumpStart for Solaris

NTP client, configuring, 164

patching, 360

Service Management Facility, 169

Spafford, Gene, 354

SplayTime variable, 85

split horizon DNS setup, 171

/srv/fai/config directory script, 342–343

/srv/fai/config/package_config/WEB file,

115

ssh-agent program

description of, 29, 33–34

forwarding, 36–37

using without starting new process,

34–35

SSH (Secure Shell) protocol

cfengine and, 27

common accounts

monitoring, 45–47

overview of, 40

setup for, 41–45

enhancing security with, 29

overview of, 27–28

public key authentication

generating key pair, 31

key size, choosing, 31–32

overview of, 30–31

specifying authorized keys, 32–33

rsync and, 220

SSL certificate

for Apache web server, 243

for Nagios web interface, 284

STAGE directory, 337

startup company example

See also campin.net shopping web site

environment, description of, 108

installing and configuring systems for,

79–80

stdin, modifying with sed, 390

storing new user accounts, 202

NINDEX418

Subversion source-control system

cfengine version control with

masterfiles directory tree, importing,

323–331

overview of, 54, 323

repository backups

copying to other host, 350–352

creating, 346–350

sharing data with

automating server deployment,

242–248

basic tasks of, 248–251

testing environment, implementing,

331–337

sudo program

enabling, 371–374

using, 15–17

SUID bit set, removing, 355–358

Sun Live Upgrade procedure, 360

Sun systems, patching, 360

svn_access file, 245

svnadmin hotcopy command, 346

svn.campin.net file, 244–245

svn commit command, 330

svn copy command, 331

svn import command, 249

svn log command, 335

svn status command, 249

svn update command, 334

synchronizing

See also time synchronization

Apache and PHP using rsync, 227–232

data using rsync

cfengine and, 223–226

drawbacks of, 219–220

examples of, 221–223

overview of, 218–219

transport protocol for, 220–221

sysidcfg file, creating, 126–128

syslog messages

real-time reporting, 269–272

storing in directory

configuring syslog server, 263–267

outputting summary log reports,

267–269

system accounts, protecting, 359–360

system administrators (SAs)

multiple, dealing with, 15–17

tasks and responsibilities of, 10, 17–18

system.cfg file, defining, 309

system configuration policies

description of, 18

documentation of, 8

system drift documentation, 6

system-imaging servers, 108. See also FAI

for Debian; JumpStart for Solaris;

Kickstart for Red Hat

system status, verification of, 12

T
Tcl language, 382

TCP Wrappers, 366–367

tedious tasks, elimination of, with auto-

mation, 10

telnet command, 29

templates, Nagios, 277, 307

testing

before deploying, 12

e-mail notifications, 330

testing environment, implementing with

Subversion, 331–337

TFTP (Trivial File Transfer Protocol),

154–155

tidy action, 257

time saved by automation, 7

timestamp option (rsync), 221

time synchronization

configuring NTP clients

Red Hat and Debian, 165

Solaris 10, 164

copying configuration files, 166–170

external NTP, 162

internal NTP masters, 163–164

ntpdate utility and, 170

overview of, 161–162

tools

ntpdate, 170

pkg-get, 129

yum, 250

Trivial File Transfer Protocol (TFTP),

154–155

Turnbull, James, 275

NINDEX 419

U
UID numbers, Debian, 191

universal time (UTC), NTP and, 162

UNIX Backup and Recovery (Preston), 250

untrusted hosts, dealing with, 38

update.conf/FAIBASE file, 118–119

update.conf file (cfengine)

campin.net example, 88–92

creating, 61–62

description of, 54

usage information for administrative

scripts, 22

user account files

adding new

overview of, 196

scripts, using, 197–201

distributing with cfengine, 191–196

NFS-automounted home directories

automounter, configuring, 205–207

configuring, 203–204

overview of, 188

standardizing local, 188–191

user accounts, creating, 280

user IDs, NFS and, 233

users

automation and, 14

internal, as security risk, 354

UTC (universal time), NTP and, 162

utilities. See tools

V
/var/www/html directory, 213–214

vendor updates, applying, 360–361

verification of system status, 12

version control. See Subversion

visudo command, 16

VMware Server, 80

W
web_checks.cfg file, defining, 310

web interface

for Ganglia, 318–321

for Nagios, 276

web server farms, automation and, 5

web servers, clusters of, 219. See also

Apache web server

web sites

See also campin.net shopping web site

Apache web server information, 213

Apress, 16

Blastwave software repository, 129

Cfengine.org, 76

cfengine resources, 57

GNU Project, 13

load balancing information, 214

Subversion information, 242

system-imaging servers, 108

welcome e-mail, scripting procedure to

send, 21–24

$workdir/outputs directory

aggregating contents from all hosts to

single host, 254–258

cfengine status reports and, 253

Red Hat Linux as aggregate host for, 259

summarizing and e-mailing

aggregated contents, 259

hourly, 261

uploading to central host, 258–259

Y
yum tool, 250

Z
zones.rfc1918 file, 173

