Architecting
and Operating
OpenShift Clusters

OpenShift for Infrastructure
and Operations Teams

William Caban

Apress’

Architecting and
Operating OpenShift
Clusters

OpenShift for Infrastructure and
Operations Teams

William Caban

Apress’

Architecting and Operating OpenShift Clusters

William Caban
Columbia, MD, USA

ISBN-13 (pbk): 978-1-4842-4984-0 ISBN-13 (electronic): 978-1-4842-4985-7
https://doi.org/10.1007/978-1-4842-4985-7

Copyright © 2019 by William Caban

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249840. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4985-7

To my wife, Maria, who has always supported my constantly
traveling job and my urge to drive technical excellence.
You are, and always will be, my perfect wife and the
supermom to our wonderful children.

To my son Seth and to my daughter Juliette for their patience
with the many days and weekends I had to unplug from
everything to stay home writing. Thank you for your
understanding and support. You two are the greatest son
and the greatest daughter a father can have.

To my parents, Willie and Annie, without whom none of
my success would be possible.

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccsssssnsssassssassssnsssassssassssassssnsssasssssssssnsssansssannsas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: The OpenShift Architectureccccuummmmmmmnmminnmmmssssn i ————— 1
[T Q0] g v 11 T P 1
Linux Container: Under the HOOU............cccoceeerrnnicnnersse e se s 2
Container SPECIfICALIONS........ccvverierrrrrrerer s s sa e e s ae s a e e e e nnenaes 5
Container Runtime and KUDEIMETES...........ccovrricnnire s 7
Introduction to OpenShift Architecture COMPONENTS.........ccccvvereverrrrerene s e snees 8
KUDEINEtES CONSLIUCES........ccoveeeerererecr et 9
0PenSIft CONSIIUCTScocieiiir s s e s 16
MASTEE NOUES......ccvieeerreerrse s e e s e p e e n s 17
INFrasStruCTUIE NOGEScovveircerree e e 20
DY] ¢ B[00 T ST PR 21
(0TS 5] T 0L 22
OPENSNIfE ROULEIS ...ttt e s ne e 25
OPENSNITE REGISIIY ... e n e 29
SUMIMAIY....cevierreese s s e s e e e s e R e e e e e e e R e e R e e ne e e e nRe e re e nen e e nrnnnns 29
Chapter 2: High Availabilityccucecmmmmmssmmnmmnsssnsnmmmssssnmmsssssnmmssssssmmmssssmssssnms 31
Control Plane and Data Plane............c.courininnssssssse s sesnns 3
HA fOr CONTIOI PIANE........ccieeeiercciirin e s s 32
HA TOF ETCDcucecvctecesiseseess st se s se st sns s snsnens 32

HA fOr MASTEI SEIVICES.......cuceccrerirreee e 36

TABLE OF CONTENTS

HA for OpenShift CONSOIESccccevereererrereriesersese e sessessessessesesse s ssesassessesaessssessesaesssssssessees 44

HA for Logging, Metrics, and Monitoringcccoccverininnnnininsinses s s s ssessens 45
g 0T D U W o T S 52
HA for OpenShift ROULEEcccviereverrirreresessessese e sessessessessssssessesesssssessesaesssssssessessssessessees 53

HA for Container REgiStry......c.ccuviiniinn s s 53
SUIMIMANY....eteertecrere s e e s R e e e e e e s e e Re e r e e se e e e nRe e s se e nen e nnrnnens 54
Chapter 3: NetWOrking......ccussenmessssnnnsmssssssnsessssnsnsssssssnssessssnnnssssssnnnssssssnnnsssssnnnnsssss 55
EaSt-WESTE TraffiC........cccueerrrrerrrinernse s 56
OPENSHITE SDN ..ot e r e nr e 57

o 0 T RS 69
OpenShift with Third-Party SDNc.ccccvvinminnnn s ssssssessssesenns 71
NOrth-SOUth TraffiC.......ccccrrerrrrcr e ——— 73
HAProxy Template ROULETc.ceveiiiree et sn e s 74
11114 7R 76
Chapter 4: STOrage.......ccccrrmmsmnnmmsssssnnmssssssnnsessssnsssessssnsssessssnnsesssssnnnsssssnnnnsssssnnnnssss 77
L]0 Te N 1T (0] U - SRS 77
Kubernetes Storage CONSTIIUCTSc.cccoeeeererererere s 80
PersistentVolume SEAtUS ..o s 81
RECIAIM POLICYcveriircrcric st s p e e s 82
ACCESS MOUESecereeereecreecre e e e e s e s e s e e re e e e e e nnnnnas 82
OpenShift PersistentVolume PIUGINS........c.coocorerrenernesere s sessesessenens 83
L (=) 0] 1TSS 84
With Master-Initiated Attach/Detachccccvvervcrniennese s 86
Without Master-Initiated Attach/Detach ..o 86
13 SRR 87
0penShift EPREMEIALccccvviirierererinre s s sr s s e sa e s e s e nne e 88
0penShift ContaiNEr STOrAQE.......cuceveririrrrererr s sa e e e ae s 89
OCS CoNVErged MOUEeoeriererrererrerersessesessessessesessersessessessssessessessssessessesssssssessessesssssnsessens 90
OCS INAEPENAENT MOUEccevereerrererrerere e sere e e s se e sr e e s e ssesrese s e ssesaesaesessesaesaessssensesaens 91
OCS Storage ProViSIONING.......cceevererrerserersesersersessessssessessessessssessessesssssssessesssssssessessesssssssessens 92

TABLE OF CONTENTS

STOFAQE ClASSES .euververrrerersersessrsersessessssssessesssssssessessessssessessesssssssessessessesessessessessssensessessessnsessenes 93
OpenShift with Third-Party STOrage ... s sessenens 94
DriveScale Composable Platform ... 95
HPE BPAR.......ootititiiitiiiesese s e bbb npnp e 95
HPE NIMDIE......octcicicictcirisesesese e b 96
123 7Y 0] 0 T =] S 96
OpenEBS (0SS, MaYaDaAta)cccevrrererrerrersererserersersssersessessessssessessessssessessesssssssessessessssensesaens 97
1] 1= OSSOSO 98
Chapter 5: Load BalanCersccccuuseesmmmsssssnmmssssssnmsssssssnssssssnsssssssssnnssssssnnnsssssnnnnsssss 99
Load BalanCer OVEIVIBWccueerresmrrnsesessesessesssrssesssssssssssssessssesssssssssssssssnssssnsssssssssssssssnsssnssssnns 99
Load Balancer CoNSidErationsc..ccviverenesesrinmsrnsessnsesssesessssessssessssssessssesssssssssssssssssssssessnns 100
Considerations for Master NOUESccovermrnnmnrnesnnese s s ssssssessases 100
Considerations for Infrastructure NOAEScccvvrerresrnssns s 101
Considerations for Specialized ProtoColsc.ccoouvrvnininnnnnnnensnsese s 104
L1134 RS 108

Chapter 6: Deployment Architectures.........ccounmmmmmmmmnnnnnmmmssssssssnnsssssssssssssssseeenns 109

MINISNITE......vcvcece e bbb e 110
OCP 3.11 Deployment ArChiteCLUIEScccvueeerirrerire et sa e 112
Prer@QUISITES ...cvueiveiecrcce st e 112
Activate and Assign OpenShift SUDSCHPLIONS........ccccvvcrncrnicrr e, 116
Prepare OCP 3.11.x Installer on Bastion..........cccccvvvvnennnnnnsnncsine s sessnns 117
Enable Password-18SS SSH...........coonnrn e 117
OpenShift AnSible INVENTOrY File.......ccvcvevererierere s sere e sse s sse s sessessessessssessesaeses 117
Sample Deployment SCENANIOS.ccvvererrererreriererersersesessesessesessessssesessessessssessesssssssessessens 130
Single Node Deployment (All-iN-0NE)........ccuerrerererrerseriesesessessesessssessessessesessessessessssessessens 131
Non-HA Control Plane DepIOYMENt........ccccevvrrreriernrensereresessesessessssessessesssssssessesssssssessesaes 140
Full-HA Control Plane DeployMeNtccoevvvrrerernnensereresessesessessssessessessssessessesasssssessesaes 142
DL o110} [0 00 T=T 1 1 O 154
Uninstalling OPenShifl........ccccvriiririne s s s sa e s sne s 154
Bastion Node as Admin JUMPROSL..........ccoiiinininirr e 155

vii

TABLE OF CONTENTS

OpenShift 4.X DeployMeENtS (AWS)ccvcrvererrnrerrereressssesesessssessessesssssssessesssssssessessesssssssessens 156
o (T (= |11 (=SSP 156
OpenShift 4.x Deployment ArchiteCtUre.ccccvevvverrri e 157
O0CP4 Deployment t0 AWS (IP] MOUE).......covrerrererererserseressssessessessesessessessessssessessessessssesseses 157
INStAlliNg OCP4 0N AWS ..ot re e a e s a e s e snesa e e s nae s 159
DeploYMENT PrOgIESSccceiiriiriiererieres e s s s e ss e s s a e s s sa e s s nan s 162
Configuring the l1dentity PrOVIAEr.......cccvevvrrirerenenserse s sss e s ssssessessessssessessees 164

£ 1134 7P 167

Chapter 7: Administrationccccusemmrnnsssnnmnmsssnmmsssss s ———— 169

USEE @NA GIOUPS ..oveveiiireresie e s sse s s e s s s st s s s b st st s st s e s s be st st s aeebe st e e nnennens 169

Virtual Groups and Virtual USEISccrerinnnne st sesse s sssssssessessessssessesse s 170

Authentication, Authorization, and OpenShift RBAC.........c.ccocevrririenieesiessesses e sessesseessessessenaas 171
RBAG........cuiuititititissisiss e ss s bbb e bbb 172
Default ClUSTEr ROIES.......ccvveerrirerese s s se s s 173
Security Context CONSIIAINTSccoveevvreresrisernse s 174
SECCOMP ProOfilES.....uccerreereriserseersnsesessesessessssssssesssssssassnsssanes 177
ENabling Unsafe SYSCTLcccoveimrenmrnsesrsesese s sessesesss e s sesse e e s ssssesesssssssssessnses 178
1deNtity PrOVIAEIS.......ccerveerirerereer s 179

Managing USErs and GrOUPScucueerrereremsesessesessasessssessssessssssesssssssssessssssesssssssssssssssnssssssssssssnns 181
USING SErviCe ACCOUNTScocveierrierinesrne s sr e 182

Quotas and Limit RANQESccvvrerieririerierieree s s sesse s sssssssessessssessessessessssessesssssssessessesses 184

0penShift SErVICE Catalogs.cuuverrrerrerreriersrserseresessssersessesse s s ssessssessessessssessessesssssssessesses 187
0PENShIft TEMPIALES....ccveireceriererererrere s s sae e s s re e e e s nne s 188

31111117 o OO S 193

Chapter 8: Architecting OpenShift Jenkins Pipelines......ccuureeemmmmmrrsssssssssssssnnnnnas 195

CI/CD Pipelines As a Service with OpenShift ..., 195

Jenkins Pipeline Build STrategyccoucvmerrnenmrnnernsesssessssse s s ssssssessssesesssssssenens 197
Creating the Pipeline BUildCONTig......c.ccovrunrnnesnesnnese s ss e s sessssessnses 199
Deploying the Pipeline BUildConfig..........ccuvrerrinernnesnesssessssse s s sessssessssssesenses 202

viii

TABLE OF CONTENTS

Jenkinsfile With SOUICE COEcovrriiienrir s 208
Multiproject PIPEIINES ..o s 210
0penShift CIENt PIUGINcovciirne st sesesens 218
Custom JEnkKins IMAQGES........cuurrrerininiinieniesn e s s s st ss e s s e s s ae e s nnas 218
Integrating External CI/CD PIpeliNeSccovererrenernserenerenesesesse s sessesenns 220
B30T 111 T o ST 220
Chapter 9: Day-2 Operationsccuceummmssssssmmmsssssnnmssssssnsmssssssnssssssssnsssssssnnssssssnnnnss 221
Managing LEftoVEr ODJECTSccvceriererirrerere st se e s e sa s e s e s sre e s e saesaesa e e saesnens 221
[T4 o T L= I T (0 224
Node OptimMIZALIONS........ccociiriirr e 225
Node ReSoUrce AlIOCALION..........cccoeruererrrererese e 225
Setting Max PodS PEr NOUEcvvrerierererrerserersssessesessessessssessesssssssessessesssssssessesssssssessessens 226
Using the TUNE Profile.........cocvirreririirsee e s s se e a e s se s sn e sne e s 227
EVICHON POLICY ...ccuciuciieieir ettt e s p s e 228
o010 IS 1= o T o S 229
o010 I 0] OSSO 230
11T 111 1T o OSSOSO 231
Chapter 10: Advanced Network Operations........ccseeesmssmsmmsssssssssssssssssssssssssssssssnnes 233
NetWOrk Optimizations.......c.ccvvvrvevierenrsrere s s se e sae e s e saesre e e e saenaees 233
Jumbo Frames and VXLAN ACCeleration...........ccccorrrrninmrnnennssssssessse s s 233
Tuning NetWOrk DEVICEScocvvereririrree s 235
Routing Optimizations.........ccoviinc e e 236
Route-Specific Optimizations AnNNOtations ... 237

IP WRITBIISES ... 238
OpenShift Router SNArding..........ocvvvvrererererierieresesserere s s e sse s saessssessessesssssssessees 238
Supporting Non-HTTP/HTTPS/TLS Applications..........cccucvvrerinninienn s ses e sessennes 239
Using IngressIP and EXErnallP............ccoooiinininennsne s se s sne s 240
Using NodePorts and HOSTPOIS.........c.ccoevrinineninnsnc s sss s 243

ix

TABLE OF CONTENTS

MUIEIPIE NIC PEF POD......ccerrerreierereresessersessessssesessessesssessesaessssessessesssssssessesssssssessessesssssnsennens 244
0penShift SEIVICEMESK........coiiirercrr e e e 246
SUMIMANY ..ttt b e e e e e bR e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrn 250
Chapter 11: OCP 4.1 UPI Mode Bare-Metal with PXE Boot Deployment 253
0] oI o SR 253
Bare-Metal with PXE BOOt EXAMPIE.......ccccevvvrierennirsne s sas s sessesnes 254

UPI Bare-Metal with PXE BOOL..........cccccvnrmnnennnssmssse e sssse s ssssssessssesessesenns 255
Prer@QUISITES ...vvueriiriiirerc st et e e e s e 255
Preparing the INStallation...........ccccveverrininennsrsere s s sae e se s snens 266
Considerations with UPI Mode with PXE BOOLccovmmnnmnnns s 267
Downloading RHCOS and Installation Binaries..........ccccverernnnienennsnsessensssssessessesessessesses 268
Preparing the PXE BOOT IMAQES.......ccucvierierinniniere s sese s e s ssssessessesasssssessesnes 268
INSTAALION ... ——————————— 269
Creating the Configuration...........cvvvvierennsnine s s s sr s e sae s 270
Generating the Ignition FIleS........cvvvvrinnrnine s ssssessesneees 271
Bootstrap and Master NOGESccccvverieririniinsie s 272
WOTKE NOGES ... s e 276

£ 1134 7P 280
1T - 281

About the Author

William Caban has more than 25 years of experience in

IT and has been consulting and designing large-scale
datacenter solutions in multiple vertical markets. He

has worked for diverse customers ranging from financial
institutions, healthcare institutions, and service providers.
His personal motto is “Changing the world one ‘bit” at a
time.” He has written several courses and training guides in
the past. This is his first book with Apress.

About the Technical Reviewer

James Cryer is a Lead Principal Engineer with over 8 years
of experience working with Cloud-native solutions on
AWS, GCP, and Azure. James has a passion for architecting
and developing highly available, fault-tolerant, and secure
systems. James’ experience is broad; he has worked in a
variety of sectors with companies such as the BBC, Investec

Asset Management, and, more recently, Sophos. When away
_ from his laptop, James loves to travel with his wife and child,
get outdoors, and read.

xiii

Acknowledgments

This book is the result of my quest to find a way to provide additional technical
information about OpenShift Container Platform (OCP) and OKD to answer the type of
questions I see from the operations teams in our customers today. The same questions
my former self had many years ago when I started migrating from upstream Kubernetes
into a supported Kubernetes distribution.

This book has been possible thanks to the support from a brilliant Red Hat
OpenShift-SME community, the Red Hat OpenShift Business Unit, and each one of the
product managers and their teams which are the ones that make the OpenShift magic
happen. From these, I would like to give a special thank you to Marc Curry, Ben Breard,
Brian Harrington, Paul Morie, and William Oliveira. Thank you for the times you took to
reply an e-mail or hop in a call to answer my many questions trying to understand the
behind-the-scenes plumbing of the many features.

Also, some of the information in this book has been possible thanks to the extended
community from which I would like to give a special thank you to Salah Chaou and
Alpika Singh (DriveScale Inc.), Christopher Kurka (HPE), and Bin Zhou (Lenovo).

Introduction

The rapid evolution of the Kubernetes platform and the ecosystem around it represents
an excellent opportunity to drive modernization inside an organization while defining
new operational paradigms.

This book is for the architects and operations teams of those organizations using
OpensShift as one of their tools in their transformation. This is for the organization’s
hidden heroes that need to have a good understanding of how different elements
interact in such a platform to be able to optimize it for their organization’s specific
workloads. This is not a book listing all the existing commands for every possible option,
but a book explaining how the platform comes together to understand the possible
locations in features into where to apply fine-tunings for their optimization.

xvii

CHAPTER 1

The OpenShift
Architecture

To properly architect an OpenShift cluster, we need to understand the different
components of the platform, their roles, and how they interact with each other. This
base knowledge is important to be able to fine-tune OpenShift cluster design to your
organization’s need beyond what is covered in this book.

Before going into each main component of OpenShift, it is important to understand
how it relates to Linux Containers and Kubernetes.

Linux Containers

Nowadays, when we see the term Linux Containers, it is easy to think it only refers

to Docker, but that is not the case. The term Linux Containers denotes a group of
technologies used to package and isolate applications, their dependencies, and their
runtimes, in a portable way so it can be moved between environments while retaining
full functionality.

A source of confusion is because the term Docker refers to various elements of a
technology that popularized the Linux Containers.

First, there is Docker Inc., the name of the company that popularized the Linux
Containers technology with the Docker platform. The Docker platform was originally
built as a series of enhancements on top of the LXC technology to bring better isolation
and portability to the containers.

Second, there is Docker Daemon which is the daemon or service that serves the
Docker API, handles the API requests, and manages images, containers, networks,

and volumes.

© William Caban 2019
W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_1

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

Finally, there are Images and Containers respectively referred to as the Docker Images
and Docker Containers. The Image is the read-only template containing the application,
the application dependencies, and the required runtime environment. All this packaged
in a standard format used by the Docker Daemon. The Container refers to a runnable
instance of an Image.

As it can be seen in Figure 1-1, Docker is a client-server application to build and run
containers following a standardized container format. The docker client is the tool used
to interact with the docker server over the API exposed by the Docker Daemon.

Docker Daemon REST API
(docker server)

Docker Client (docker CLI)

Figure 1-1. The Docker client-server architecture

Note The terms Docker Daemon and Docker Engine are used interchangeably to
refer to the docker server.

Linux Container: Under the Hood

Beyond the conceptual definitions of containers as an artifact containing an application
and all its dependencies, or as an artifact that is built once and deployed “anywhere,’
what is a Linux Container?

To understand containers and how they work, we must explore some important
building blocks at the Linux Kernel: namespaces and cgroups.

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

Linux namespaces provide process isolation. There are seven' kinds of Kernel namespaces:

e Mount: The mount namespace isolates the set of filesystem mount
points. This enables the creation of different views of the filesystem
hierarchy or making certain mount points read-only for processes in
different mount namespaces.

o UTC: This namespace enables for each container to have its own
hostname and NIS domain name.

o IPC: This isolates interprocess communication (IPC) resources
between namespaces. This enables more than one container to
create shared memory segments and semaphores with the same
name but is not able to interact with other containers’ memory
segments or shared memory.

o PID: Each process receives PID namespace provided. The container
only sees the processes within the container and not any processes
on the host or other containers.

¢ Network: This allows the container to only communicate with
internal or external networks. This provides a loopback interface as
the initial network interface. Additional physical or virtual network
interfaces can be added to the namespace. Each namespace
maintains a set of IP addresses and its own routing table.

o User: This isolates the user IDs between namespaces providing
privilege isolation and user ID segregation.

o Control Group (cgroup) (the namespace): This virtualizes the view
of cgroups for a set of processes enabling better confinement of
containerized processes.

The namespaces are Kernel-level capabilities. As such, each namespace has visibility
about all the host capabilities and system resources. Namespaces isolate system

'In some documentation, you may find a statement about the existence of six namespaces, and

in other documentations, you will find seven namespaces listed. Those lists do not count the
cgroup namespace which virtualizes the cgroup capabilities as a namespace. For details about the
namespace vs. the capability, refer to the Linux man page cgroup_namespaces, the Linux man
page for cgroups, and the Linux man page for namespaces.

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

resources by providing an abstraction layer for the processes inside the namespaces. It
does this by creating a view where it appears as the processes have the global resources.

A way to think about namespaces is going back to our science fiction world of parallel
universes. Each namespace is a parallel reality or a parallel universe inside the universe
represented by the host. These parallel universes do not know of the existence of any
other universe and cannot interfere with them.

Now, if each namespace has a full view of the host system resources, by default, it
could assume it can consume all the resources it detects, for example, all the memory
and all the CPU resources. To limit the access to the system resources is the functionality
of the next building block: Control Groups or cgroups.

Control Groups (cgroups), the Kernel feature, are used for limiting, accounting,
and controlling resources (i.e., memory, CPU, I/0, check pointing) of a collection of
processes. A container is a collection of processes under a PID namespace. To control
and limit resources for a container, we use cgroups.

Bringing all these concepts together, we can visualize containers as illustrated in
Figure 1-2.

Services
Container 1

~ o
| . 1
o o
c
Sps
c <
o o
Q o

Linux Server

Infrastructure % &

Figure 1-2. Linux namespaces and Containers

4

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

To explain the details of Figure 1-2, follow the numbers from the illustration with the

numbers of this list:

1.

Each Container has a unique PID namespace running its

group of process. Inside the Container, the first process is seen as
PID 1. From the host perspective, the Container PID is a regular
process ID.

The Namespaces exist at the Kernel level. Namespaces provide the
isolation for the system resource but are part of the same Kernel.

Control Groups or cgroups, the feature, are used to limit the access
to system resources by a group of processes.

In addition to the PID namespace, Containers will have other
dedicated namespaces which provide their view of system
resources or they can use the default namespace which is shared
with the host.

Container Specifications

As can be seen from the previous section, from the technical perspective, in its core,

Linux containers are a group of Linux processes existing in namespaces using cgroups to

control and limit the access to system resources.

The core building blocks for Linux Containers are simple but powerful. Following

the popularity of Docker containers, the industry recognized the need for a set of

specifications (Figure 1-3) supported by open communities to maintain compatibility

while enabling innovation and creation of solutions on top of the capabilities provided

by Linux Containers.

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

[_i OPEN Sonraner OCI: Open Container Initiative
oL s STORAGE - CSI: Container Storage Interface

CNI: Container Network Interface
CN|

CRI: Container Runtime Interface
(specs container runtimes to
integrate with kubelet)

KUBERNETES CRI

Figure 1-3. The Container specifications

Today, the widely recognized container specifications are

1. Open Container Initiative (OCI): The OCI specification defines
a standard container format. This is what is usually referred as the
Docker format (Figure 1-4).

A7 + [

Application Application
Binary Dependencies

|
@

Container

Figure 1-4. The OCI-compliant container image

Note Demystifying containers—An OCI-compliant image, or an image following
the Docker format, can be seen as a TAR file of a filesystem layout containing

the application binaries, its dependencies, and some XML formatted files with
metadata describing the container namespaces. A container with multiple layers is
a TAR file of TAR files, each representing a particular layer of the container.

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

2. Container Storage Interface (CSI): The CSI specification
describes a standardized interface to present storage resources to
a container. Prior to this specification, each storage vendor had
to create, certify, and maintain their own storage plugin for every
container solution. With CSI, vendors maintain a single plugin
which can be used by any container solution supporting the
specification.

3. Container Network Interface (CNI): The CNI specification
standardizes an interface to provide networking services
to containers. This helped in reducing the proliferation of
networking plugins which were incompatible among themselves.

Container Runtime and Kubernetes

The creation of the OCI specification also provided the freedom to replace the container
runtime beyond the Docker Daemon. A container runtime only needs to understand the
OCI format to be able to run the container.

Traditionally, by default, container runtime like the Docker Daemon handles
containers in a single host. Over time, some of these tools evolved into fat daemons or
services trying to include container orchestration and to solve and handle too many
things (resource consumptions, scheduling, control, etc.).

Note For the remaining of this book, we use the term Linux Container,
Containers, and Container Images to refer to a Linux Container following the OCI
specification.

With Kubernetes, Google provided a way to orchestrate, manage, and operate
containers at scale across thousands of nodes. Kubernetes abstracted the management
of individual containers with the notion of managing Pods and Services. Kubernetes,
as the container orchestration platform, requires minimal actions to be handled by the
container runtimes: create Pod, start Pod, stop Pod, and remove Pod.

With this new understanding, the Kubernetes community explored ways to replace
traditional fat daemons with purpose built container runtimes. The community defined

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

the Container Runtime Interface (CRI). CRI? provides a specification for integrating
container runtimes with the kubelet service at each Kubernetes worker node. Since
then, there has been a proliferation of CRI-compliant container runtimes for Kubernetes
optimizing for speed, isolation, and breaking dependencies to a runtime daemon.
Among these new options, we can find containerd, Kata Containers, and CRI-O.

Note OpenShift 3.x supports the Docker Daemon as the default container
runtime. Starting with OpenShift 3.10, it also supports CRI-0 as the container
runtime. With OpenShift 4.0, CRI-0 will be the default container runtime.

Introduction to OpenShift Architecture Components

OpenShift is built on top of Kubernetes. While Kubernetes provides the container
orchestration capabilities, Pod resiliency, Services definitions, and Deployment
constructs to describe the desire state of a microservice-based application, there are
many other components required to make it work. For example, Kubernetes does not
provide a default Software-Defined Networking (SDN) or a default method to steer
traffic into the applications running on Kubernetes clusters. It is up to the cluster admin
to bring additional tools and projects to operate and manage the Kubernetes cluster
and any application running on it. For the developers it also means they need to learn a
new CLI or YAML specification to be able to deploy and test their applications. For the
security teams, it means figuring out ways to map the organization’s policies into new
constructs and identifying additional projects to enforce additional ones not provided by
the default capabilities of Kubernetes.

These additional capabilities are part of what is provided out of the box
with OpenShift Container Platform or OKD (the upstream community project)
(see Figure 1-5). In fact, at the time of this writing, OpenShift is a Kubernetes superset
combining over 200 open source projects into a fully integrated solution with strong
focus on a developer experience, operational capabilities, monitoring, and management
with strong and secure defaults. All these while being pluggable so platform admins

*The CRI specification defines four actions: CreatePod, StartPod, StopPod, and RemovePod.

8

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

can replace out of the box components and services with their own. For example, using
third-party SDN to provide the networking capabilities or third-party storage solutions to
provide persistent storage for the applications running in the environment.

RED HAT

OPENSHIFT |<d

Container Platform

The OKD based commercial The Origin community
distribution productized and distribution of Kubernetes that
supported by Red Hat. powers Red Hat OpenShift.
http://openshift.com http://okd.io

Figure 1-5. OpenShift Container Platform (OCP) vs. OKD (formerly OpenShift
Origin)

Note In this book the term OpenShift is used to denote both the OpenShift
Container Platform (OCP), which is the Red Hat—supported product, and OKD, the
upstream community project. Unless otherwise specified, everything in this book
applies to OCP and OKD.

Kubernetes Constructs

Having Kubernetes as its foundation, OpenShift inherits all the base constructs for the
Containers’ orchestration from Kubernetes and, in addition, extends them. A great deal
of these extensions come from adding the capabilities or functionalities that are

not part of the base of Kubernetes but that are required to successfully operate the
platform. Other extensions come from enforcing prescriptive best practices designed to
comply with the stability and regulations required on enterprise environments

(i.e., RBAC, CI/CD Pipelines, etc.).

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

Some of the important Kubernetes constructs inherited by OpenShift (not an
exhaustive list) are

o Pods: A Pod is a group of one or more tightly coupled Containers
sharing a set of Linux namespaces and cgroups (Figure 1-6). Among
those, the Containers inside the Pod share the same Mount and
Network namespace (i.e., same IP address and TCP/UDP ports)

(see per-Pod IP addresses in Figure 1-6). Within a Pod each Container
may have further sub-isolations (i.e., different UTC namespaces).
Pods communicate with each other using localhost.

IP: 10.5.1.20 IP: 10.5.1.73 IP:10.5.1.42
Pod with single App Container. Pod with primary App Container Pod with App Container
This is the most common and and helper sidecar Container and Sidecar Container
preferred type of Pod. (i.e. using helper as data change watcher) (i.e. when using Envoy Proxy)

% Container Volumes: The Volumes can be shared among Containers in the same Pod

Figure 1-6. Example of Pod configurations

o Services: A Service is a Kubernetes object that maps one or more
incoming ports to targetPorts at a selected set of target of Pods.
These represent a microservice or an application running on the
cluster. The Services are discoverable by Pods running on the cluster.
Generally, Pods interact with other applications or microservice on
the cluster through the Service object (Figure 1-7).

10

CHAPTER 1 THE OPENSHIFT ARCHITECTURE
backend
Pod 1
backend
Pod 2
backend
Pod 3

Figure 1-7. The Kubernetes Service object abstracts one or more Pods running an
application or microservice

Service: backend.cluster.local
ClusterlP: 172.30.199.183

Service: myapp.cluster.local

ClusterlP: 172.30.199.183

e ReplicationController (RC): The ReplicationController (the object)
ensures the requested number of Pods are running at any given time.
If there are too many Pods, the ReplicationController terminates
any number of Pods in excess of the specified amount. If there are
too few, the ReplicationController starts additional Pods until the
specified amount. In case of a Pod failure, or if Pods are deleted or
terminated, the ReplicationController takes care of re-creating the
failed, deleted, or terminated Pods to match the requested number of
Pods.

e ReplicaSets: The ReplicaSets are considered the next generation of
ReplicationControllers. From the high-level perspective, ReplicaSets
provide the same functionalities as the ReplicationControllers
with the difference being these are intended to be managed by
Deployments.

e Deployment (the object): The Deployment object is a declarative
configuration describing the desired state, quantity, and version of
Pods to deploy. The Deployment controller defines a ReplicaSet that
creates new Pods or executes a rolling upgrade with the new version
of the Pods. The Deployment Controller changes and maintains the
state of the Pod and ReplicaSet to match the desire state (Figure 1-8).

11

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

node1 myapp
» Pod 1
name: myapp Yz Y

labels: app=myapp #
replicas: 2 TR
container image: gquay/myapp T el m
ports: 8080 -
T node 2
@)

Q:D node 3

nodel

h"-qode2

node 3

Figure 1-8. Deployment and ReplicaSet

o The steps illustrated by the pseudocode in Figure 1-8 are as follows:

1. The Deployment object creates a ReplicaSet with the
information of the desired state.

2. The ReplicaSet deploys the requested version and total
number of Pods.

3. In case of Pod failure (i.e., because of node failure), the
total number of Pods will be less than the desired amount.

4. The ReplicaSet will deploy additional Pods until the
number of desired replicas specified by the Deployment.

o Volumes: The Volumes provide persistent storage for the Containers
inside a Pod. Data in a Volume is preserved across Container restarts.
Volumes outlive Containers and remain in existence for the lifetime of
a Pod.

e PersistentVolume (PV): The PersistentVolume represents the actual
storage resource provisioned for the cluster. PVs are Volume plugins
with a lifecycle independent of any Pod that uses the PV.

12

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

e PersistentVolumeClaim (PVC): The PersistentVolumeClaim is the
storage request for the PV storage resources. A PVCis bind to a PV
matching the requested storage characteristics and access mode.
Refer to Figure 1-9.

PersistentVolumeClaim (PVC)
name: www—vol-pvcl

* storage: 50Gi

storageClassName: nfs
mode: ReadWriteMany

Pod with volume mount i

PersistentVolume (PV) am

name: www—vol-pv N———
capacity: 506G _’ %
storageClassName: nfs —_———
accessModes: ReadWriteMany b———
server: 192.168.20.55 Né /
path: /vol/www —

NFS Server

IP Address: 192.168.20.55

NFS path: /vol/www

Figure 1-9. Relationship between Volume, PersistentVolumeClaim, and
PersistentVolume

The Kubernetes architecture is comprised of the following core elements (not an
exhaustive list):

o Master Nodes: The master nodes are the nodes hosting core
elements of the control plane like (not an exhaustive list) the kube-
api-server, kube-scheduler, kube-controller-manager, and in many
instances the efcd database.

o kube-api-server: This component is what is commonly referred
as the Kubernetes API. This is the frontend API to the control
plane of the Kubernetes cluster.

o kube-scheduler: This component takes care of handling the
scheduling of Pods into nodes, taking into account resource
requirements, policy constraints, affinity or anti-affinity rules,
and other filters.

13

CHAPTER 1

14

THE OPENSHIFT ARCHITECTURE

kube-controller-manager: This component runs multiple
controller services at the master. Among these controllers, we can
find (not an exhaustive list)

e Node Controller: This controller is responsible for detecting
node failures and triggering the appropriate response.

e Replication Controller (the controller): This controller is
responsible for ensuring the correct number of Pods are
running as requested by a replication controller (the object) in
the system.

e Endpoints Controller: This manages the Endpoint objects by
associating the correct Services and Pods.

etcd: This component is a key-value store database used
extensively by Kubernetes to store configuration data of the
cluster representing the state of the cluster (i.e., nodes, pods state,
etc.) as well as for service discovery, among other things.

e Worker Nodes: The worker nodes (formerly known as minions) host

elements like the kubelet, kube-proxy, and the container runtime.

kubelet: Also known as the node agent, is the Kubernetes agent
that runs on each node. The kubelet ensures containers are
started and continue to run as specified by the container manifest
(a YAML file describing a Pod) and updates the node accordingly.

kube-proxy: A simple Kubernetes network proxy agent running
on each node. The kube-proxy abstracts network services defined
on the host, forwards traffic to the appropriate Service, and
provides traffic load balancing. It does this by managing iptables
rules of the host.

A Container Runtime: Any CRI-compliant runtime capable of
running OCI-compliant Containers (i.e., Docker Daemon, CRI-O,
containerd, etc.).

CHAPTER 1

THE OPENSHIFT ARCHITECTURE

e Ancillary Services: Services required for the proper operation of

the Kubernetes cluster but that are not technically considered to be

part of the Kubernetes components. These services may be running
as part of the Master Nodes, Worker Nodes, or dedicated Nodes, or
even be services external to the cluster. Among these services, we can
find DNS (i.e., SkyDNS or KubeDNS), Web UI Dashboards, container
resource monitoring services, and cluster-level monitoring and

logging services.

Figure 1-10 illustrates how all these elements integrate and interact to form the

Kubernetes architecture.

Master Node

ancillary services

(i.e. DNS, Web UL, etc.)

e
o D

kube-controller-manager

(other dedicated nodes)i::

Figure 1-10. The elements of the Kubernetes architecture

CHI comptiant SON plugin
0. Bridge, VS, Flannel, Calics, etc.

15

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

OpenShift Constructs

The OpenShift architecture builds on top of Kubernetes and is comprised of three types
of nodes:

o Master Nodes: These nodes are Kubernetes Master Nodes which may
be providing additional functionalities like the web console with the

self-service portal as well as the developers and operations-focused
dashboards.

o Infrastructure Nodes: These are Kubernetes Worker Nodes dedicated
to host functionalities like the OpenShift Routes and the OpenShift
internal registry.

o App Nodes or Nodes: These are the Kubernetes Worker Nodes used
to run the microservices and containerized applications deployed on
OpenShift.

Note The App Nodes are also referred to just as Nodes and you will find them as
such in some documentation. To avoid confusion, the book uses App Nodes.

As a superset of Kubernetes, within these nodes, beyond the Kubernetes elements,
there can be multiple integrated components from other Open Source projects that
work together to augment Kubernetes features and capabilities and form the OpenShift
Container Platform. A special focus of this integration is toward the ease of use for
developers and application owners.

A high-level view of the OpenShift node types is shown in Figure 1-11, and more
details are going to be covered in subsequent sections.

16

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

¥ 0 O &

AUTOMATION CLUSTER DEVELOPERS APP OWNERS) () (=
&CUCD TOOLS ADMIN \U) \-:.‘) O

\ / APP USERS
lll\

\ S L =L

x I/ i M\

APP NODES !

.55! ‘I‘ZIEIH El“[EIHE'I o)
! MASTER :I i ‘EEH E EEW i i‘ INFRASTRUCTURE |
Q. "= @J%%% s

Figure 1-11. The OpenShift node types

Master Nodes

The Master Nodes are the main control elements of the OpenShift control plane.
These are Kubernetes Master Nodes and they provide the services expected from any
Kubernetes Master and additionally provide a series of functionalities built on top of
Kubernetes which create OpenShift. See Figure 1-12 for reference.

17

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

EOpenShiﬁ Master Node
OCP Master Services

OCP All Nodes Services

kube-controller-manager

etcd kube-scheduler
o

Figure 1-12. OpenShift Master Node details

From Figure 1-12 we can see the Kubernetes Master Node elements are present in
the OpenShift Master Nodes. The actual list of these will be dependent on the services
enabled for the cluster as many are optional services.

e Kubernetes DNS: The OpenShift 3.x releases are using SkyDNS as
part of Kube-DNS. As of the writing of this book, this is transitioning
to CoreDNS. By default, this DNS service listens on port 8053.

o OpenShift Web Console: This is the microservice providing the self-
service portal or developer console.

e OpenShift Console: This is the microservice providing the
operations console (former Tectonic console).

o Registry Console: This is the microservice providing a basic web Ul
to interact with the internal container registry.

18

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

o Additional APIs and Consoles: Many optional cluster services
have their own API interfaces and web frontends. These APIs and
frontends are provided as containers which, by default, will be hosted
in the Master Nodes. Some examples are Template Service Brokers
and the OpenShift Container Storage (glusterfs).

In addition, in Figure 1-12 we can see a partial list of services that may be present in
every OpenShift Node. Their presence depends on the services enabled for the cluster.
Let’s go into the details of some of them (the actual service names may have slightly
variations from the containers or Pods name):

o Fluentd: The Fluentd service runs in every node. It aggregates logs
from the host Node, including logs from Pods and Projects, and sends
them to the Elasticsearch (ES) database running on the Infrastructure
Nodes.

e node-exporter and kube-state-metrics: These services are part of
the OpenShift cluster monitoring solution based on Prometheus.
The node-exporter® agent collects node hardware and OS metrics and
makes them available for Prometheus. The kube-state-metrics agent
converts metrics from Kubernetes objects (i.e., from the kubelet) into
metrics consumable by Prometheus.

e node-problem-detector: This is a service that runs in each node to
detect multiple problems* on the node and reports them to the API

Server.

o dnsmasq: As part of the Kube-DNS service, this service is
automatically configured on all nodes. Pods use the node hosting
them as their default DNS. When receiving a name resolution
request, dnsmasq will send the query to the Kubernetes DNS at the
Master Nodes, and if not a resolution, it will try recursive DNS to the
upstream DNS server originally configured on the node.

3For more details, visit https://github.com/prometheus/node_exporter
*For more details, visit https://github.com/kubernetes/node-problem-detector

19

https://github.com/prometheus/node_exporter
https://github.com/kubernetes/node-problem-detector

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

Note Every node is running dnsmasq listening on port 53. For this reason, nodes
cannot run any other type of DNS application.

o openshift-sdn: This consists of a series of privileged containers
providing the Software-Defined Network (SDN) of the OpenShift

cluster using Open vSwitch (OVS).

Infrastructure Nodes

These are dedicated Kubernetes Worker Nodes hosting important elements for the proper
operation of the OpenShift Cluster. Among these, we have the Container Registry and
the OpenShift Router. Figure 1-13 illustrates some additional services running on the

Infrastructure Nodes.

kube-proxy OCP Infrastructure Nodes Services
l ntainer registr hawkular, cassandra & heapster

iptables

OCP All Nodes Services

container runtime interface
((o131)]

B &y &

CNI compliant SDN plugin
(Le. Bridge, OVS, Flannel, Calico, etc.) {POd 3)

OpensShift Infrastructure Node

Figure 1-13. OpenShift Infrastructure Node details

20

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

From the diagram in Figure 1-13, we can deduce on Infrastructure Nodes there are
some services which seem to overlap in functionalities. This is the case with services like
Hawkular, Cassandra, and Heapster which are being deprecated in OpenShift 3.11 and
being replaced by the Prometheus-based monitoring solution which is deployed and
managed by the Prometheus Operator.

As with the Master Nodes, the exact list of services running on the Infrastructure
Nodes is completely dependent on the services enabled for the cluster. Out of the
services shown in the illustration, only few deserve mention at this point:

e OpenShift Container Registry (OCR): The OpenShift Container
Registry is a containerized Docker Registry service used internally
by the cluster. Additional details are covered in the corresponding
section.

e OpenShift Router: The OpenShift Router is used to expose a
Kubernetes Service to external clients by a FQDN. Additional details
are covered in the corresponding section.

o Elasticsearch (ES) and Kibana: Elasticsearch is used to collect
all the logs sent by the Fluentd service running in every node.
The Kibana Web Ul is used to interact with the data and create
visualization and dashboards of the aggregated data.

o Prometheus, Grafana, and the Prometheus Operator: These are the
components of the new OpenShift Monitoring and Metrics solution.
These are used to collect information about the health of the cluster
and all the services and components running on it. The Grafana Web
Ul is used to create dashboards visualizing the status of the elements
being monitored.

App Nodes

The OpenShift App Nodes, or simply OpenShift Nodes, are Kubernetes Worker Nodes
dedicated to running the workloads deployed to an OpenShift cluster. These include
applications, microservices, or containerized applications.

As it can be seen in Figure 1-14, the OpenShift App Nodes are dedicated to running
the applications deployed on the OpenShift cluster. Beyond the elements of the

21

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

Kubernetes Nodes, it contains the common OpenShift Services to provide the network
connectivity for the Pods, the DNS resolution, node monitoring, and log aggregation.

kube-proxy

l container runtime interface
. CRI
iptables { :]

OCP All Nodes Services {

i
s
28
gl
s

e ssssassssss, sesssssssas

B OB B OBEY |

i

BB B E B

=
=

CNI compliant SDN plugin
(Le. Bridge, OVS, Flannel, Galico, etc.) (POdS}

Figure 1-14. OpenShift App Node details

OpenShift Consoles

OpenShift provides developer-centric consoles and operations-centric consoles.

The first console a user of the platforms receives is the Service Catalog console

(see Figure 1-15) which contains the self-service catalog of pre-approved container
images and templates (see #2 of Figure 1-15) available for the particular user. These
catalogs can be cluster-wide catalogs or project-specific catalogs. From this initial
console, the user can choose from a drop-down menu (see #1 of Figure 1-15) to switch to
the operations Cluster Console.

22

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

OPENSHIFT CONTAINER PLATFORM

My Projects

Browse Catalog Deploy Image Import YAML/JSON Select from Project

5 of 24 Projects
Languages Databases Middleware (alf /] Other

2

130 Items

Filter ~

NET NET NET NET

-NET Core

.NET Core + PostgreSQL
(Persistent) Example

O O /

3scale-gateway amp-apicast-wildcard- amp-pvc Apache HTTP Server
router

.NET Core Example .NET Core Runtime

Recently Viewed

Apache HTTP Server CakePHP + MySQL CakePHP + MySQL Dancer + MySQL
(httpd) (Ephemeral) kL f Python

Figure 1-15. The OpenShift self-service portal also known as the developer
console

The Cluster Console (Figure 1-16), sometimes referred to as the Cluster Administrator
Console, provides access to cluster operations and functions. At first glance it provides a
cluster health and status view (see #1 and #2 of Figure 1-16).

23

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

OPENSHIFT CONTA

2 Project: all pro

¥ Home

Stat
Cluster Status

Health

Operators Kubernetes API Openshift Console Alerts Firing Crashlooping Pods

LIP P (] 0
Worklcads U J

Networking

Control Plane Status

Storage
APl Servers Up Controller Managers Up Schedulers Up APl Request Success Rate

Monitoring

Administration

Capacity Planning

CPU Usage Memory Usage Disk Usage Pod Usage

'/" S, -1 S, /,--' B, - Y
£ ﬁ f /

Figure 1-16. The OpenShift Cluster Console also known as the cluster admin
console

For users with deep understanding of the Kubernetes, this console also exposes the
Kubernetes objects with a more traditional Container as a Service (CaaS) experience
(see #1 of Figure 1-17). From here, a cluster admin has an aggregated view into the
Kubernetes and OpenShift objects like Namespaces, Pods, Deployments, Secrets,
Deployment Configs, and ConfigMaps.

24

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

OPENSHIFT CONTAINER PLATFORM

Project: all proj

Operator Catalog Sources

Certified Operators o

MNAME LATEST VERSION SUBSCRIPTIONS

Couchbase O to :
Q s i Dparstar 1.0.0 (preview) : Create Subscription
natrace OneAgent i
'Ava oy € 0.2.0 (preview) Create Subscription
MongoDB =
. & 0.3.2 (preview) Create Subscription

Figure 1-17. The OpenShift Cluster Console managing subscriptions to
Kubernetes Operators

In addition, the Cluster Console provides a graphical interface for interacting with
Kubernetes Operators (see #2 of Figure 1-17).

OpenShift Routers

Steering traffic to applications running on a Kubernetes cluster, until this day with
Kubernetes 1.13, it is still highly dependent on where the Kubernetes cluster is running
(i.e., on-premise vs. at a Cloud provider). When using a Kubernetes offering from a
Cloud provider, they will provide a network service that maps to the LoadBalancer object
in Kubernetes. Those load balancers provided by the Cloud infrastructure are what is
used to steer traffic to the Service objects or Pods in the cluster.

Outside these options, it is up to the cluster operator to combine Kubernetes
constructs with third-party solutions or other Open Source projects to bring the traffic
into the cluster. Until now, the options are limited to NodePort, HostPort, and Ingress
with an Ingress Controllers. The particular implementation details for each one of these
objects are beyond the scope of this book, but it’s worth having a general overview of

25

CHAPTER 1

THE OPENSHIFT ARCHITECTURE

these concepts to properly understand the OpenShift Router. Figure 1-18 showcases

the main difference between using OpenShift Routes or Kubernetes Ingress and using

NodePorts or HostPorts to steer traffic into the cluster.

OpenShift Router or
Kubernetes Ingress Controller

Ingress or OpenShift Route: myapp.cluster.local

Dynamic provisioning of Route or Ingress

+

ClusterlP: 172.30.199.183, Port: 80, targetPort:8080

Kubernetes NodePorts or HostPorts

Software or Hardware Load Balancer: myapp.cluster.local

Requires manual configuration of Load Balancer to send traffic
directly to the specific port in all nodes when using NodePort or a
subset of nodes when using HostPort:

nodel port 31230

node2 port 31230

node3 port 31230

P
A
b T,
I || G
. Port:8080 Port:8080
- 4
i . |
= - B
AL, - i
Node 1 Node 2 Noded

Figure 1-18. OpenShift Routes, Kubernetes Ingress, NodePorts, and HostPorts

Note OpenShift supports OpenShift Routes and the native Kubernetes Ingress,
NodePort, and HostPort resources.

The main difference to keep in mind is that when using NodePorts® or HostPorts,®

the user is responsible for the configuration and updates to the configuration of the

SWhen using NodePorts, the requested or dynamically assigned port is allocated in all the nodes
of the particular cluster. Additional details are available at https://kubernetes.io/docs/
concepts/services-networking/service/#nodeport

°In general the use of HostPort is discouraged. Acceptable use cases are DaemonSets or some

networking services. Upstream HostPort documentation is scarce, but functionality is similar to
NodePorts but for a subset of Nodes.

26

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

external load balancer or proxy used to steer the traffic toward all the Nodes or subset of
Nodes when using HostPorts.

The OpenShift Router and the OpenShift Routes are a predecessor of the Ingress
Controller and the Ingress object. Even when Ingress and Ingress Controllers are still
available since Kubernetes 1.1, they are still considered Beta in Kubernetes 1.13.” There is
still no feature parity between Routes® and Ingress objects as it can be seen from Table 1-1.

Table 1-1. OpenShift Routes vs. Kubernetes Ingress®

Feature Ingress Route

Standard Kubernetes object
External access to services
Persistent (sticky) sessions
Load-balancing strategies
Rate-limit and throttling

IP whitelisting

<X X X X X X X

TLS edge termination

TLS re-encryption

TLS passthrough

Multiple weighted backends (split traffic)

Pattern-based hostname

<X X X X X X X X X X X

Wildcard domains

When using the Ingress object in OpenShift, internally, the Ingress Controller creates
one or more Route objects to satisfy the conditions specified by the Ingress configuration
file. Listing 1-1 represents the Ingress configuration file, and Listing 1-2 is the resulting
Route configuration.

"Kubernetes Ingress feature state: https://kubernetes.io/docs/concepts/
services-networking/ingress/#prerequisites

80penShift Routes: https://docs.openshift.com/container-platform/3.11/architecture/
networking/routes.html

Reference https://blog.openshift.com/kubernetes-ingress-vs-openshift-route/

27

https://kubernetes.io/docs/concepts/services-networking/ingress/#prerequisites
https://kubernetes.io/docs/concepts/services-networking/ingress/#prerequisites
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://blog.openshift.com/kubernetes-ingress-vs-openshift-route/

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

Listing 1-1. Define an Ingress object for example.com

kind: Ingress
apiVersion: extensions/vibetal
metadata:
name: example
spec:
rules:
- host: example.com
http:
paths:
- path: /example
backend:
serviceName: example-svc
servicePort: 80

Listing 1-2. Resulting Route object for example.com

kind: Route
apiVersion: route.openshift.io/vi1
metadata:
Note: The Route name is auto generated by route object
using the Ingress name as prefix
name: example-a24dc
ownerReferences:
- apiVersion: extensions/vibetal
kind: Ingress
name: example
controller: true
spec:
host: example.com
path: /example
to:
name: example-svc
port:
targetPort: 80

28

CHAPTER 1 THE OPENSHIFT ARCHITECTURE

OpenShift Registry

One of the ancillary services required by Kubernetes is a container registry where the
OCI-compliant container runtime can pull the container images. OpenShift provides an
integrated container registry known as the OpenShift Container Registry (OCR). This is
not a replacement to the organization’s enterprise container registries. The purpose of the
OCR s to provide a built-in location to store images that are deployed into the cluster or
images build by the cluster using the native build strategies' like Source-to-Image (S2I)."
The OpenShift Container Registry is hosted on the Infrastructure Nodes (refer to
Figure 1-13). Among the additional capabilities available with the OCR is the ability to trigger
redeployments if a new version of the container image becomes available in the registry.

Summary

In this chapter we provided a map between the Kubernetes architecture and constructs
and the OpenShift architecture. We saw how OpenShift is built on top of the Kubernetes
primitives and then augment its capabilities by integrating additional Open Source
projects. The result is an integrated multitenant Kubernetes platform which enables
developers to deploy applications into a Kubernetes cluster without understanding or
learning the specifics of Kubernetes while providing the operations teams the ability
to manage Kubernetes with a low learning curve. All of this while being a pluggable
architecture in which any of the components can be swapped by other projects or
software providing the specific capabilities.

Chapter 2 goes into the details on how high availability is achieved for the OpenShift
platform and in each one of the core components.

YFor information about build strategies, visit https://docs.openshift.com/container-
platform/3.11/architecture/core _concepts/builds_and image streams.html

"Source-to-Image (S2I) is an Open Source project (https://github.com/openshift/source-
to-image) to create container images from source code. For information on how to use S2I
in OpenShift, refer to https://docs.openshift.com/container-platform/3.11/creating
images/s2i.html

29

https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html
https://github.com/openshift/source-to-image
https://github.com/openshift/source-to-image
https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html
https://docs.openshift.com/container-platform/3.11/creating_images/s2i.html

CHAPTER 2

High Availability

As we saw from Chapter 1, OpenShift Container Platform is comprised of multiple
elements build on top of Kubernetes. When designing production environments, we
should understand the high availability (HA) built into the different elements of the
platform. Each one of the HA elements can be scaled independently.

The desired level of HA for each platform element and how a cluster will be scaled
out over time may have a direct influence in the initial design considerations.

In this chapter, we will cover the HA configurations, what may be considered the
most relevant elements of the OCP architecture, but the reader should keep in mind
there might be many other components which are not covered here.

Control Plane and Data Plane

From the OpenShift and Kubernetes perspective, there is a clear definition of the Control
Plane, but, when it comes to the Data Plane, it is loosely defined and its definition is
normally based on the context it is being used. To avoid confusion, this is the way we use
the terms here:

e OpenShift Control Plane: The OCP Control Plane is comprised
of the Kubernetes Control Plane' (Kubernetes Master? and the
kubelet process in each node). For the purpose of this book, we are
considering the OpenShift consoles, logging, metrics, and cluster
monitoring services as part of this plane.

!See official definition here: https://kubernetes.io/docs/concepts/#kubernetes-
control-plane

2API Server, Controllers, Scheduler, and etcd database

31
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_2

https://kubernetes.io/docs/concepts/#kubernetes-control-plane
https://kubernetes.io/docs/concepts/#kubernetes-control-plane

CHAPTER 2 HIGH AVAILABILITY

e OpenShift Data Plane: The term OCP Data Plane, even when not
officially defined in the OKD and OCP documentation, is normally
used to describe the traffic forwarding plane of the SDN layer.

Note The terms Control Plane, Management Plane, and Data Plane have

a clear separation of concerns when used in computing, networking, and
telecommunications systems. There is no direct mapping of the Kubernetes
constructs into these concepts. Kubernetes, as a project, does not provide a clear
separation of concerns between the functions that would normally go into the
Control Plane and those that go into the Management Plane. When considering
the OpenShift architecture, we could clearly map OpenShift components for
each one of these planes. For example, the OpenShift Cluster Console is what
would normally be considered part of the Management Plane. Unfortunately, for
those of us used to architecting solutions with these differentiations, the terms
Management Plane and Data Plane have not been officially adopted by the OKD
and OpenShift community.

HA for Control Plane

The elements of the OpenShift Control Plane are protected in different ways, and as
such, to achieve high availability differs for each one.

HA for ETCD

The etcd database is one of the critical components of the Kubernetes. It is used to store
status and details of the Kubernetes objects, store information and status of the Nodes,
scheduler results, and much more.

From the technical point of view, efcd is a distributed key-value store using the RAFT
consensus algorithm.

Because of the consensus required by the RAFT algorithm (see details in section
“RAFT Consensus Algorithm”), the etcd service must be deployed in odd numbers
to maintain quorum. For this reason, the minimum number of efcd instances for

production environments is three.

32

CHAPTER 2 HIGH AVAILABILITY

Note Using one instance is considered a testing or demo environment as it is a
single point of failure.

From the operational aspects of etcd, the etcd service is considered an active-active
cluster. Meaning, an etcd Client can write to any of the efcd nodes and the cluster will
replicate the data and maintain consistency of the data across the instances.

Failures of the etcd database can be classified under one of the following scenarios:

1. Losing the etcd Leader or losing less than (N-1)/2 nodes of an
N size etcd cluster: These are considered temporary failures from
which the cluster recovers automatically.

2. Losing etcd quorum: This failure happens when the cluster loses
more than (N-1)/2 nodes of the etcd cluster. This is a major failure
as once the quorum is lost, the cluster is incapable of reaching
consensus and cannot accept any additional update. When
this failure happens, applications already running on OCP are
unaffected. However, the platform functionality is limited to read-
only operations. Under this failure scenario, it is not possible to
take actions such as scaling an application up or down, changing
deployment objects, and running or modifying builds.

3. Losing the data of etcd cluster: Losing the data from the etcd
cluster will render the Kubernetes and OCP cluster unusable. The
only way to recover from this failure scenario is by restoring the
etcd data from backup.

From the deployment aspect, the etcd service can be colocated in the Master Nodes
with other master services. It is a common practice to colocate the efcd service in the
Master Nodes. In this case, a minimum of three Master nodes is required. The minimum
of three Masters is because the etcd deployment must guarantee quorum so the etcd
RAFT protocol can reach consensus in the case of a Node failure.

Note Up to OpenShift 3.11, there is the option to have external dedicated etcd
Nodes. Starting with OpenShift 4.0, the etcd service will always be on the cluster.

33

CHAPTER 2 HIGH AVAILABILITY

From the implementation perspective, in OpenShift 3.11 the etcd instances
are deployed as a series of privileged Pods running in the kube-system project® or
namespace.* Additional details are covered in “HA for Masters Services” section.

RAFT Consensus Algorithm

The basis of the RAFT algorithm states that for any action (add, remove, update, etc.)
to be accepted, there needs to be quorum. Quorum is decided by having a number of
voting members greater than 50% of the total number of efcd instances or Nodes. For
example, with three etcd Nodes, a minimum of two etcd Nodes are required to have
quorum and achieve consensus.

The RAFT Consensus Algorithm consists of three states:

1. Follower
2. Candidate
3. Leader

There are two timeout settings which control the process of the election of a Leader
node in the RAFT algorithm:

1. Election Timeout: The time a Follower waits before becoming a
Candidate. This is a random number between 150ms and 300ms.

2. Heartbeat Timeout: Regular interval of time a Leader sends
Append Entries messages to Followers to replicate logs.

All nodes start in the Follower state (see Step 1 of Figure 2-1). The nodes wait for
Election Timeout. If a Follower doesn’t hear from a Leader in Election Timeout, they
can become Candidate (see Step 2 of Figure 2-1) and initiate new Election Term. The
Candidate node votes for itself and Request Votes from the other nodes. If the receiving
node hasn’t voted yet in this Election Term, then it votes for the candidate and resets its

30penShift Projects are Kubernetes Namespaces used to organize and manage content in
isolation for a community of users. https://docs.openshift.com/container-platform/3.11/
dev_guide/projects.html

“Kubernetes Namespaces are used to divide cluster resources among multiple projects and users.
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

34

https://docs.openshift.com/container-platform/3.11/dev_guide/projects.html
https://docs.openshift.com/container-platform/3.11/dev_guide/projects.html
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

CHAPTER 2 HIGH AVAILABILITY

Election Timeout. A Candidate becomes Leader if it gets the majority of the votes from
the nodes (see Step 3 of Figure 2-1).

AN A
@ O0 & & @ ()

Step 1 Step 2 Step 3
- Nodes start in Follower state - A node becomes Candidate - Nodes send votes
- Wait for Election Timeout - Candidate request votes - Candidate becomes Leader

° Follower ° Candidate o Leader

Figure 2-1. The RAFT algorithm Leader election process

Once a Leader is elected, all changes to the system go through the Leader. A client
sends a change to the Leader. The Leader appends this to the Replication Log (see Step 1
of Figure 2-2). The change is sent to the Followers on the next Heartbeat (see Step 2
of Figure 2-2). Once an entry is committed and acknowledged by the majority of the
Followers (see Step 3 of Figure 2-2), the cluster has reached Consensus. A response is sent
to the client (see Step 4 of Figure 2-2).

35

CHAPTER 2 HIGH AVAILABILITY

A=5 |
]”5 L]
Leader Log |Okay: A=5 | Okay: A=5
A=5 7 \
® @ Step 3
- Followers acknowledge change
Step 1 - Once an update is acknowledge by the

majority of the nodes it is committed

- Client send change to Leader
- Leader append to Log

- Leader wait for next Heartbeat
>,

Leader Log Okay
A=5

(5]

]| \
A8 A5 Commit: A=5 Commit: A=5 |
@ 06 Y
o o . ° Follower
A'=5f ﬂ=5]

Step 2 _
At next Heartbeat the Leader ° Chreln
sends Replication Log to nodes Step 4
- Leader respond to Client o Leader
- Leader notify commit to Followers

Figure 2-2. Update value in RAFT algorithm

HA for Master Services

When we talk about Master services, we are referring mainly to the API Server, the
Controllers, and the etcd service. In OpenShift these services are deployed as privileged

containers and pods (see Figure 2-3).

36

CHAPTER 2 HIGH AVAILABILITY

1

2 [root@bastion ~]# kubectl get pods -n kube-system -o wide |1

3 NAME READY STATUS RESTARTS AGE IP NODE

4 master-api-masterl.demo.internal 1/1 Running 1 22h 192.168.0.93 masterl.demo.internal
5 master-api-master2.demo.internal | 2 141 Running 1 21h 192,168.0.2380 masterZ.demo. internal
6 master-api-master3.demo. internal 1/1 Running 1 22h 192.168.08.63 master3.demo. internal
7 master-controllers-masterl.demo.internal 1/1 Running 1 22h 192.168.0.93 masterl.demo. internal
8 master-controllers-master2.demo.interna 3 1/1 Running 1 22h 192.168.08.230 master2.demo. internal
9 master-controllers-master3.demo.internal 1/1 Running 1 22h 192.168.0.63 master3.demo. internal
1@ master-etcd-masterl.demo. internal 1/1 Running 1 22h 192.168.0.93 masterl.demo. internal
11 master-etcd-master2.demo. internal 4 1/1 Running 1 21h 192,168.0.230 masterZ.demo.internal
12 master-etcd-master3.demo. internal 1/1 Running 1 21h 192.168.0.63 master3.demo. internal
13

14 [root@bastion ~]# oc get pods -n kube-system -o wide 1

15 NAME READY STATUS RESTARTS AGE 1P NODE

16 master-api-masterl.demo. internal 1/1 Running 1 22h 192.168.0.93 masterl.demo. internal
17 master-api-master2.demo.internal | 2 1/1 Running 1 22h 192.168.0.230 masterZ.demo. internal
18 master-api-master3.demo.internal 1/1 Running 1 22h 192.168.0.63 master3.demo. internal
19 master-controllers-masterl.demo.internal 1/1 Running 1 22h 192.168.0.93 masterl.demo. internal
20 master-controllers-master2.demo.interna 3 1/1 Running 1 22h 192.168.0.238 masterZ.demo.internal
21 master-controllers-master3,demo. internal 1/1 Running 1 22h 192.168.0.63 master3.demo. internal
22 master-etcd-masterl.demo. internal 1/1 Running 1 22h 192.168.0.93 masterl.demo. internal
23 master-etcd-master.demo. internal 4 1/1 Running 1 22h 192.168.0.230 masterZ.demo.internal
24 master-etcd-master3.demo. internal 1/1 Running 1 22h 192.168.0.63 master3.demo. internal
25 [root@bastion ~]#

Figure 2-3. The kube-system namespace or project

From what can be seen in Figure 2-3, the kube-system namespace or project host
the containers Pods for the API Server (see #2 of Figure 2-3), the Controllers (see #3 of
Figure 2-3), and the etcd (see #4 of Figure 2-3) instances. Each Master Node contains an
API Server Pod, a Controller Pods and an etcd Pods.

Note The reader may notice the output in Figure 2-3 is the same when using
the kubect! or the oc® command-line interfaces. The kubect/ is the official
Kubernetes CLI and oc is the OpenShift CLI. The oc CLI includes the kubect/ and
shares the same syntax. In addition to the standard features, the oc CLI extends
capabilities and brings native support to OCP features like authentication, routes,
DeploymentConfigs, ImageStreams, and others.

Looking into the details of one of these Pods, the etcd Pods, we can clearly see they
are running as privileged containers (see #3 of Figure 2-4), and they are running in the
kube-system (see #2 of Figure 2-4) namespace or project.

°For details about the differences between oc and kubectl, visit https://docs.openshift.com/
container-platform/3.11/cli_reference/differences_oc_kubectl.html

37

https://docs.openshift.com/container-platform/3.11/cli_reference/differences_oc_kubectl.html
https://docs.openshift.com/container-platform/3.11/cli_reference/differences_oc_kubectl.html

CHAPTER 2 HIGH AVAILABILITY

1 [root@bastion ~]# oc get pod master-etcd-masterl.demo.internal -n kube-system -o yaml
2 apiVersion: vl

3 kind: Pod 4

4 metadata:

5 S

6 labels:

7 openshift.io/component: etcd

8 openshift.io/control-plane: "true"
9 name: master-etcd-masterl.demo.internal
10 namespace: kube-system ',

11

12 spec:

13 containers:

14

15 name: etcd

16 resources: {}

17 securityContext:

18 privileged: true '3

19

Figure 2-4. Details of the etcd Pod definition highlighting the privileged mode

One of the reasons these Pods need the privileged access is because they access host
resources. As we can see in Figures 2-5, 2-6, and 2-7, some host resources are mapped as
volumes to the containers.

The details of the efcd Pod in Figure 2-5 highlight how paths from the Master Node
(see #1 and #3) are mapped as volumes for the container (see #1).

38

CHAPTER 2 HIGH AVAILABILITY

1 [root@bastion ~]# oc get pod master-etcd-masterl.demo.internal -n kube-system —o yaml
7 aen

3 volumeMounts: @1

4 - mountPath: /etc/etcd/

5 name: master-config

6 readOnly: true

7 - mountPath: /fvar/lib/etcd/

8 name: master-data

9 workingDir: /var/lib/etcd

10 dnsPolicy: ClusterFirst
11 hostNetwork: true

12 nodeName: masterl.demo.internal @2
13 e

14 volumes:

15 - hostPath: '3

16 path: /etc/etcd/

17 type: ""

18 name: master-config
19 - hostPath:

20 path: /var/lib/etcd
21 type: ""

22 name: master-data

23

Figure 2-5. Details of etcd Pod highlighting host path mounts as volumes

Figure 2-6 (see #4 and #5) provides the detail of the host paths mounted by the
API server Pod from the Master Nodes.

1 apiversion: vl 30

2 kind: Pod it volumes:

3 metadata: 32 - hostPath: 5

4 33 path: /etc/origin/master/
5 labels: 34 type: ""

6 openshift.io/component: api 35 name: master—config

T openshift.io/control-plane: "true" 36 - hostPath:

8 name: master-api-masterl.demo.internal 37 path: /jetc/origin/cloudprovider
9 namespace: kube-system 1 38 type: "

10 e 39 name: master—cloud-provider
11 spec: 48 - hostPath:

12 containers: 41 path: /var/libjorigin

13 sen +n 42 type: ""

14 name: api | 2 43 name: master-data

15 ... 44 - hostPath:
16 resources: {} 45 path: /etc/pki
17 securityContext: 458 type: "
18 privileged: true 3 47 name: master-pki
19 terminationMessagePath: /dev/termination-log 48
20 terminationMessagePolicy: File 49
21 volumeMounts: 58
22 - mountPath: /fetc/origin/master/ | 4 51
23 name: master-config 52
24 - mountPath: /etc/origin/cloudprovider/ 53
25 name: master-cloud-provider 54
26 - mountPath: /var/lib/origin/ 55
27 name: master-data 56
28 = mountPath: /etc/pki 57
29 name: master-pki 58
30 e 59

Figure 2-6. Details of API server Pod highlighting host path mounts as volumes
39

CHAPTER 2 HIGH AVAILABILITY

Similarly, Figure 2-7 highlights the host paths from the Master Node (see #4 and #5)
mounted by the Controllers Pod.

apiVersion: vl

volumes: 5

kind: Pod
3 metadata: - hostPath:
4 path: /etc/origin/master/
5 labels: type: ""
B openshift. io/component: controllers 1 name: master-config
7 openshift.io/control-plane: "true" - hostPath:
B nane: master-controllers-masterl.deme.internal path: /etc/origin/cloudprovider
namespace: kube-system type: "
18 name: master—clovd-provider
1 spec: - hostPath:
12 containers: path: /etc/containers/registries.d
13 . type: "™
14 name: controllers name: signature-import
15 resources: {} - hostPath:
16 securityContext: 3 path: fusr/libexec/kubernetes/kubelet-plugins
17 privileged: true type: ""

18 terminationMessagePath: /dev/termination-log name: kubelet-plugins
19 terminaticnMessagePolicy: File - hostPath:
20 volumeMounts: 1 path: fetc/pki
21 - mountPath: /etc/origin/master/ 4 type: **
name: master-config 53 name: master-pki

- mountPath: /fetc/origin/cloudprovider/
name: master=cloud-provider
- mountPath: fetc/containers/registries.d/ 56
26 name: signature-import 57
= mountPath: fusr/libexec/kubernetes/kubelet-plugins
mountPropagation: HostToContainer
name: kubelet-plugins]
- mountPath: fetc/pki 61
31 name: master=phi '

Figure 2-7. Details of Controllers Pod highlighting host path mounts as volumes

In all these cases, the configuration files, certificates, and other information reside
on the Master Node but are consumed directly by these privileged Pods which are core
components of the Control Plane.

One of the missing elements of the Control Plane not running as a Pod or as
privileged Container is the kubelet service. The kubelet service runs as a traditional
privileged process on the Master Node (see Figure 2-8).

Note The reader may notice the hyperkube binary used to invoke the kubelet
service (see #1 of Figure 2-8). The hyperkube® is the all-in-one binary with all the
Kubernetes server components: kube-apiproxy, kubelet, kube-scheduler,
Kube-controller-manager, kube-proxy.

SRefer to the GitHub project for additional details: https://github.com/kubernetes/
kubernetes/tree/master/cluster/images/hyperkube

40

https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube
https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube

CHAPTER 2 HIGH AVAILABILITY

root 6353 5.4 0.7 1459828 126880 ? Ssl 12:08@ 2:26|fusrfbin}hyperkuhe kubeletl --v=2 --address=0.0.0.0
——allow-privileged=true --anonymous-auth=true --authentication-token-webhook=true ——authent | tion-token-webhook-cache-tt1=5m
—-authorization-mode=Webhook --authorization-webhook-cache-ay ‘orized-ttl=5m --authorization-webhook-cache-unaut horized-ttl=5m

—-bootstrap-kubeconfig=/etc/origin/node/bootstrap. kubeconfig “-cadvisor-port=0 --cert-dirs/etc/origin/node/certificates
--cgroup-driver=systemd --client-ca-file=/etc/origin/node/client-ca.crt_.—cluster-dns=192.168.0.93
--cluster-domain=cluster.local ——container-runtime-endpoint=/var/run/dc = .rshim.sock —containerized=false
—--enable-controller-attach-detach=true ——experimental-dockershim-root-directory=/var/1lib/dockershim —fail-swap-on=false
——feature-gates=RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true —-healthz-bind-address=
==healthz-port=0 —host-ipc-sources=api —-host-ipc-sources=file --host-network-sources=api --host-network-sources=file
—-host-pid-sources=api --host-pid-sources=file --hostname-override= —-http-check-frequency=0s 2
—-image-service-endpoint=/var/run/dockershim.sock —-iptables querade-bit=0 --kubeconfig=/etc/origin/node/node.kubeconfig
==max-pods=25@0 --network-plugin=cni =--node-ip= --node-labels=node-role.kubernetes,io/master=true, runtime=docker
——pod-infra-container-image=registry.redhat.io/openshift3/ose-pod:v3.11.51 ——pod-manifest-path=/etc/origin/node/pods
==port=10250 --read-only-port=0 --register-node=true --root=dir=/var/lib/origin/openshift.local.volumes
—--rotate-certificates=true --rotate-server-certificates=true —tls-cert-file=
——tls-cipher-suites=TL5_ECDHE_ECDSA_WITH_CHACHA20_POLY1385 —tls—cipher-suites=TLS_ECDHE_RSA_WITH_CHACHAZ0_POLY1305
—-tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 --tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
--tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 --tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
—-tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA256 --tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_128_CBC_SHAZ56
——tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA —-tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
—=tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA --tls-cipher-suites=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
——tls—cipher-suites=TLS_RSA_WITH_AES_128 GCM_SHA256 --tls-cipher-suites=TLS_RSA_WITH_AES_256_GCM_SHA384
—=tls-cipher-suites=TLS_RSA_WITH_AES_128 CBC_SHA —tls-cipher-suites=TLS_RSA_WITH_AES_256_CBC_SHA
——tls-min-version=VersionTLS12 ——tls-private-key-file=

Figure 2-8. Details of the kubelet process running in a node

In a multimaster deployment, the default is to use native high availability (HA) to
determine how to load balance the API requests across the Master Nodes. This native HA
method takes advantage of the built-in native HA master capabilities in OCP and can be
used with any load balancing solution.

Each Master Node runs all the master server components. Accessing the API server
at Master Nodes does not require session awareness or stickiness. Each Master Node
answers to the cluster internal name, the cluster external name, and its own hostname.

The OpenShift advanced installation using openshift-ansible supports the definition
of an [Ib] section in the inventory file which automatically installs and configures an
HAProxy to act as the load balancing solution for the Master Nodes.

Note The [Ib] definition ONLY manages or load balances traffic toward the
Master Nodes. It does NOT load balance traffic toward the Infrastructure Nodes or
applications running on the OpenShift cluster.

To better illustrate this configuration, refer to Figure 2-9. As seen in Figure 2-9, there
is the concept of an External Cluster Name and Internal Cluster Name, and each Master
Node has their own assigned FQDN.

41

CHAPTER 2 HIGH AVAILABILITY

The External Cluster Name is defined in the advanced installation inventory file by
the openshift_master_cluster_public_hostname variable. Similarly, the internal cluster
name is specified by the openshift_master_cluster_hostname variable.

mEe

AUTOMATION CLUSTER DEVELOPERS APP OWNERS
& CHCD TOOLS ADMIN

\
\ .
\\\ // et EXTERNAL CLUSTER NAME: ocp.example.com
\
i i

[LB] host definition or External Load Balancer

MASTER NODES:
* master1.demo.internal

INTERNAL CLUSTER NAME: ocp.demo.internal

openshift_master_cluster public_hostname=ocp.example.com
openshift master_ cluster_ hostname=ocp.demo.internal

[masters]

¢ master2.demo.internal masterl.demo.internal
+ master3.demo.internal master2.demo.internal

master3.demo.internal
[1b]
loadbalancer.demo.internal

Figure 2-9. The native HA and load balancing for Master Nodes
Any external load balancer can be used to load balance the traffic among the Master
Nodes. The requirements for using external load balancer are simple:
1. Define a virtual IP or VIP to represent the cluster.
2. Configure the VIP for SSL passthrough.

3. Configure the VIP to listen to the port specified by the openshift_
master_api_port variable of the inventory file. If no port is specified,
the API server will listen in port 8443 in every Master Node.

Note In some load balancer might require a different external VIP and an internal
VIP. Other load balancers will handle both external and internal cluster names with
a single VIP.

42

CHAPTER 2 HIGH AVAILABILITY

4. Configure the DNS to resolve the External Cluster Name to the
external VIP and the Internal Cluster Name to the internal VIP.

The HA styles for each of the master services can be summarized as in Table 2-1.
Some services handle their internal HA, while others are completely active-active HA.

Table 2-1. The Native HA of Master Services

Role HA Style Notes

etcd Active-Active The etcd service is highly redundant and using the RAFT algorithm
to maintain data replication and consistency. By default, in
OpenShift, this is only accessible from within the cluster. There is no
external access or exposure to the efed service.

API Server Active-Active Any Master Node can handle requests to the API Server. The
external load balancer can choose the preferred method to
distributing the load.

When using the [Ib] host, the HAProxy distributes the traffic using
the source balancing mode which is based on the hash of the
source IP address making the request.

Controllers Active- One Controller instance is elected as the cluster leader at a time.
and Passive Each API Server handling a request interacts with their local
Schedulers Controller instance. The local Controller instance is aware and

communicates with the leader Controller which is the only instance
scheduling and controlling Pods in the cluster at any given time.

The specific configuration for the [Ib] hosts is shown in Figure 2-10. As it can be seen,
the HAProxy is deployed to listen on openshift_master_api_port, in this example port 443
(#2 of Figure 2-10). The load balancing is a simple TCP passthrough (#3 of Figure 2-10)
toward the Master Nodes. The load balancing mode is a source (#4 of Figure 2-10) which
balances based on the resulting hash of the source IP address making the request.

43

CHAPTER 2 HIGH AVAILABILITY

37 listen stats (1

38 bind :9000

39 mode http

40 stats enable

41 stats uri /

42

43 frontend atomic-openshift-api (2

44 bind *:443

45 default_backend atomic-openshift-api

46 mode tcp

47 option tcplog

48

49 backend atomic-openshift-api (s

50 balance source (4

51 mode tcp

52 server master® 192.168.08.93:443 check
53 server masterl 192.168.0.230:443 check
54 server master2 192.168.0.63:443 check

Figure 2-10. Relevant HAProxy configuration for the [Ib] host

Beyond what can be achieved by the load balancers, the system takes care of
restarting any of the Containers and Pods providing the master services just like it will
do to remediate deviations from the desired configuration or state for any other Pod
running an application in Kubernetes.

HA for OpenShift Consoles

The OpenShift consoles are deployed as Kubernetes objects and use Services,
ReplicationController, or Deployment objects to maintain HA. Consider the output
shown in Figure 2-11. #1 of Figure 2-11 lists the Pods corresponding to each of the
Consoles: registry-console, openshift-web-console, and openshift-console.

The HA for the Container Registry Console is achieved by the Service named
registry-console and the ReplicationController named registry-console-1 (see #2 of
Figure 2-11). The HA for the developer console (openshift-web-console) is achieved
by a Service named webconsole and a Deployment object named webconsole with its
corresponding ReplicaSet (see #3 of Figure 2-11). Finally, the HA for the OpenShift
operations console (openshift-console) is achieved by a Service named console and a
Deployment object named console with its corresponding ReplicaSet (see #4 of
Figure 2-11).

44

CHAPTER 2 HIGH AVAILABILITY

1 NAMESPACE 1 NAME READY STATUS NODE

2 default registry-console-1-ghmz8 1/1 Running e masterl.demo.internal
3 openshift-console console-6f5f4bd585-hrpf6 171 Running Al master3.demo.internal
4 openshift-console console-6f5f4bd585-1mq64 1yl Running e master2.demo.internal
5 openshift-console console-6f5f4bd585-2d5ve 1541 Running ... masterl.demo.internal
6 openshift-web-console webconsole-7d6bd48dcd-19sch B/ Running ... master3.demo.internal
7 openshift-web-console webconsole-7d6bd48dcd-rqz9k 1l Running e master2.demo.internal
8 openshift-web-console webconsole-7d6bd48dcd-whl62 1/1 Running ... masterl.demo.internal
9

11 [root@bastion ~]# oc get rc registry-console-1 -n default | 2
117 NAME DESIRED CURRENT READY AGE
13 registry-console-1 1 1 1 1d

16 [root@bastion ~]# oc get deployment,rs -n openshift-web-console 8

17 NAME DESIRED CURRENT UP-TO-DATE AVAILABELE AGE
1 deployment.extensions/webconsole 3 3 3 3 1d
19

20 NAME DESIRED CURRENT READY AGE

21 replicaset.extensions/webconsole-7débd48dcd 3 3 3 1d

22 [root@bastion ~]#

23

24

25 [root@bastion ~]# oc get deployment,rs -n openshift-console -

26 NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
27 deployment.extensions/console 3 3 3 3 1d

28

29 NAME DESIRED CURRENT READY AGE

30 replicaset.extensions/console-6f5f4bd585 3 3 3 1d

31 [root@bastion ~]#

Figure 2-11. OpenShift Console Pods, ReplicationControllers, and
Deployments

With the use of the native Kubernetes constructs to protect these Consoles, there is
no additional configuration required for its HA.

HA for Logging, Metrics, and Monitoring

The OpenShift Monitoring, Logging, and Metrics services are comprised of multiple
elements, all of which are deployed and managed as Kubernetes objects: Service,
DaemonSet, Deployment, ReplicationController, and DeploymentConfig. As such, these
mechanisms take care of maintaining the high availability for each one of these services.
The OpenShift Monitoring components are deployed on the openshift-monitoring
Namespace or Project.

45

CHAPTER 2 HIGH AVAILABILITY

Note A DeploymentConfig or OpenShift Deployment Configuration’ is

an OpenShift-specific object that predates Kubernetes Deployment. The
DeploymentConfig was built on ReplicationController to support the development
and deployment lifecycle of an application. In addition to the capabilities of the
Deployment, the DeploymentConfig provides the ability to specify deployment
strategies (i.e., rolling strategy, recreate strategy, etc.) to change or upgrade an
application; ability to set up triggers to automatically change, redeploy, or upgrade
an application and the deployment strategy to use during the transition; and the
ability to define hooks to be run before or after creating the ReplicationController.

Even when the system takes care of maintaining the availability of these services,
itis good to understand how these services are deployed should there be a need for

troubleshooting.

OpenShift Monitoring

The OpenShift Monitoring is a cluster monitoring solution comprised of Prometheus®
with its plugin ecosystem and Grafana for the dashboards. OpenShift uses the Cluster
Monitoring Operator® to configure, deploy, and maintain the OpenShift Monitoring stack.

The elements of OpenShift Monitoring are illustrated in Figure 2-12. The details of
each component are described in the following list:

e Prometheus: Prometheus itself is an Open Source project for
monitoring and alerting.

"For more information about Deployments and deployment strategies, visit https://docs.
openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.
html

8Prometheus is an Open Source project for monitoring and alerting. Additional information can
be found at https://prometheus.io/docs/introduction/overview/

9The Cluster Monitoring Operator is an Open Source Kubernetes Operator to manage a
Prometheus-based cluster monitoring stack. More information can be found here:
https://github.com/openshift/cluster-monitoring-operator

46

https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html
https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html
https://docs.openshift.com/container-platform/3.11/dev_guide/deployments/how_deployments_work.html
https://prometheus.io/docs/introduction/overview/
https://github.com/openshift/cluster-monitoring-operator

CHAPTER 2 HIGH AVAILABILITY

e Prometheus Operator: A Kubernetes Operator to create, configure,
and manage Prometheus and Alertmanager instances. In OpenShift
Monitoring, this component is deployed as a Deployment which
creates a ReplicaSet (RC). The RC maintains one prometheus-operator
Pod running in any of the Infrastructure Nodes.

e Cluster Monitoring Operator: Watches the deployed monitoring
components and resources of the OpenShift Monitoring and ensures
they are up to date. This element is deployed as a Deployment
which creates the ReplicaSet (RC). The RC maintains one cluster-
monitoring-operator Pod running in any of the Infrastructure Nodes.

o prometheus-k8s: The actual Prometheus instances responsible for
monitoring and alerting on cluster and OpenShift components. This
component is deployed as a StatefulSet and maintains a copy in every
Infrastructure Node.

e Alertmanager: A global cluster component for handling alerts
generated by all the Prometheus instances in the particular cluster.
This element is deployed as a StatefulSet and maintains two
prometheus-k8s Pods across any of the Infrastructure Nodes.

o node-exporter: Prometheus exporter or agent deployed on every
Node to collect metrics from its hardware and Operating System. This
element is deployed as a DaemonSet. There is one node-exporter Pod
in every Node of the cluster.

o kube-state-metrics'”: Prometheus exporter or plugin to convert
metrics from Kubernetes objects into metrics consumable by
Prometheus. This is deployed as a Deployment which creates
a ReplicaSet and runs a kube-state-metric Pod in any of the
Infrastructure Nodes.

%Additional details about the metrics collected by this agent can be found at https://github.
com/prometheus/node_exporter

47

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter

CHAPTER 2 HIGH AVAILABILITY

o Grafana'': An extensible Open Source metrics analytics and visualization
suite. This element is deployed as a Deployment which creates a
ReplicaSet and runs a Grafana Pod in any of the Infrastructure Nodes.

.......

{Infrastructure Nodes s Master Nodes
i Cluster Monitoring " *
Operator o, o API Server
Grafana — i
A] i .
e T
Prometheus Operator A Pprometheus-k8s - -

Figure 2-12. The OpenShift Monitoring architecture

Metrics

What is considered OpenShift Metrics are the original OpenShift components used to collect
metrics information from Containers, Pods, and Nodes across the entire OpenShift cluster.
These collected metrics are then available over the OpenShift Console or can be exported

to an external system. These metrics can also be used for the Horizontal Pod Autoscaler
(HPA)" to scale the number of Pods in a ReplicationController or ReplicaSet based.

Additional information can be found at https://grafana.com/grafana

2Kubernetes Horizontal Pod Autoscaler (HPA) automatically scales the number of Pods.
For more information, visit https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

48

https://grafana.com/grafana
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

CHAPTER 2 HIGH AVAILABILITY

Note OpenShift 3.11 is the last version supporting the traditional OpenShift
Metrics service.' These are being deprecated in OpenShift 4.0. Most of the
functionalities are replaced by the OpenShift Monitoring solution based on
the Prometheus project, and the remaining functionality is superseded by the
Kubernetes Metrics Server.

All the components of the traditional OpenShift Metrics are deployed as Kubernetes
ReplicationControllers on the openshift-infra Namespace or Project. This service consists
of the following components:

1. Heapster'': A service for the monitoring and analysis of compute,
memory, and network resource utilization and performance for
Kubernetes. Collects the information from the Kubelet APIs.

Note Kubernetes kubelet embeds cAdvisor'® which autodiscovers all containers
in the machine and collects CPU, memory, filesystem, and network usage statistics.
cAavisor also provides the overall machine usage by analyzing the “root” Container
on the machine.

2. Hawkular Metrics: This is the metric storage engine for Hawkular.
It uses the Cassandra database as the metric datastore.

3. Cassandra: The Cassandra database is used to store the
metrics data.

"“See Release Notes for OpenShift 3.11 at https://docs.openshift.com/
container-platform/3.11/release_notes/ocp 3_11 release notes.
html#ocp-311-major-changes-in-40

“Heapster was deprecated in Kubernetes 1.11 in favor of Metrics Server and has been retired
in Kubernetes 1.13. Additional details are available here: https://github.com/kubernetes-
retired/heapster/blob/master/docs/deprecation.md

Additional information on how cAdvisors are embedded in kubelet is available
athttps://kubernetes.io/docs/tasks/debug-application-cluster/
Tesource-usage-monitoring/#cadvisor

49

https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-311-major-changes-in-40
https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md
https://github.com/kubernetes-retired/heapster/blob/master/docs/deprecation.md
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

CHAPTER 2 HIGH AVAILABILITY

The interaction between all these components is illustrated in Figure 2-13.

Expose metrics over
APl for OCP Web UI

Store metrics
in Hawkular

Store metrics
in persistent

dalasmre""“—wg cassandra

Collects metrics
from Kubelet API

{ - {Infrastructure Nodes

kubelet
(embeds cAdvisor)

cAdvisor auto-discovers
all containers in the node.

(Pods)

EApp Nodes

Figure 2-13. The OpenShift Metrics architecture (deprecated in OCP 4.0)

Metrics Server

Metrics Server'® is a cluster-wide aggregator of resource usage data like Container CPU
and memory utilization. The Metrics Server collects metrics from the Kubelet API of
each node. The resource usage metrics are made available in Kubernetes through the
Metrics APL. It supersedes the Heapster service in OpenShift 4.0 and beyond.

The Metrics Server is considered the prerequisite for some advanced Kubernetes
features or capabilities like the Horizontal Pod Autoscaler (HPA), the Kubernetes
scheduler, and other functionalities that require access to metrics'” from nodes and
Pods. In OpenShift, this service runs as a Deployment which creates a ReplicaSet to
maintain a metrics-server Pod in one of the Master Nodes.

!SFor more details about the Kubernetes Metrics Server, visit https://kubernetes.io/docs/
tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server

"Additional information on use cases and scalability of the Metrics Server is available at https://
github.com/kubernetes/community/blob/master/contributors/design-proposals/
instrumentation/metrics-server.md

50

https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server
https://kubernetes.io/docs/tasks/debug-application-cluster/core-metrics-pipeline/#metrics-server
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/instrumentation/metrics-server.md

CHAPTER 2 HIGH AVAILABILITY

Logging

The OpenShift Logging service aggregates logs for the OpenShift platform services,

Nodes, Containers, and applications. The OpenShift Logging service shown in

Figure 2-14 is comprised of the following components:

Elasticsearch (ES): A NoSQL database with multitenant full-text
search and analytics engine. This component is deployed in the
openshift-logging Namespace or Project as DeploymentConfig which
creates a ReplicationController to run the requested number of
Pods. The cluster administrator should rightsize'® the Elasticsearch
deployment to the requirements of the specific environment.

FluentD: Data collection software that gathers logs from the Nodes
and feeds them to the Elasticsearch database. This element is
deployed in the openshift-logging Namespace as a DaemonSet. There
is a logging-fluentd Pod in every Node of the cluster.

Kibana: An analytics and visualization Web UI for Elasticsearch. It
enables the creation of visualizations and dashboards for monitoring
Container and Pods logs by Deployment, Namespace, Pod, and
Container. Kibana is deployed in the openshift-logging Namespace as
a DeploymentConfig which creates a ReplicationController to run and
maintain the logging-kibana Pod running on an Infrastructure Node.

Curator": Allows administrators to configure scheduled maintenance
operations for the Elasticsearch database. These are performed
automatically on per-project basis. This component is deployed into
the openshift-logging Namespace as a Kubernetes Cronjob object and
runs the logging-curator Pod on one of the Infrastructure Nodes.

8For guidelines on rightsizing the Elasticsearch database, visit https://docs.openshift.com/
container-platform/3.11/install_config/aggregate logging sizing.html

YFor details on how to configure and use Curator, visit https://docs.openshift.com/
container-platform/3.11/install_config/aggregate logging.html#configuring-curator

51

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging_sizing.html
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging_sizing.html
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#configuring-curator
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#configuring-curator

CHAPTER 2 HIGH AVAILABILITY

« Eventrouter: Watches Kubernetes events, formats them to JSON,
and outputs them to STDOUT to be ingested by FluentD.
The logging-eventrouter Pod is deployed to default Namespace
or Project as a DeploymentConfig where it creates a
ReplicationController and runs the Pod on an Infrastructure Node.

The first three components together (Elasticsearch, FluentD, and Kibana) are known
as the EFK stack.

Visualize Logs

Feeds Logs to
Elasticsearch

fluentD

~— logging-eventmuter\'g
! Pod i

Lo i Infrastructure Nodes

4

Node Log files, journald,
‘Container Logs, Syslog
and audit files .~

{Pods)

Figure 2-14. The OpenShift Logging Service

HA for Data Plane

As mentioned before, there is no official definition of the OpenShift Data Plane even
though the term is normally used to refer to the traffic forwarding plane of the SDN layer.

As with any other networking architecture, from the SDN layer perspective, we can
talk about north-south traffic and east-west traffic. From the OpenShift perspective, the
north-south traffic refers to the external traffic arriving into the cluster or the inbound
traffic toward the applications hosted on the platform. The east-west traffic refers to the
traffic within the cluster.

In a future chapter, we will go into details on how the different SDN options and
capabilities move traffic within the cluster (east-west traffic) and the specific features
they may provide. For now, this section focuses on the inbound traffic (north-south

52

CHAPTER 2 HIGH AVAILABILITY

traffic) arriving to the applications deployed on the cluster. By default, the traffic toward
the applications running on the cluster goes through the OpenShift Routers.

HA for OpenShift Router

The OpenShift Router is an OpenShift component used to expose Services running on
the cluster to external clients. It does this by generating a unique FQDN and handling
requests to it by steering the traffic to the appropriate Service. The OpenShift Routers
are deployed in the default Namespace or Project as a DeploymentConfig which creates
a ReplicationController. The ReplicationController maintains the number of router Pod
specified by openshift_hosted_router_replicas in the inventory file. These Routers are
deployed to the Infrastructure Nodes. This behavior can be modified by specifying a
different Node label selector for the Pods using the openshift_router_selector variable in
the inventory file. If not specified, the default number of replicas is set to one.

In case of failure of a Router, the DeploymentConfig takes care of correcting the
environment by creating a new one.

In a later chapter, we will cover the OpenShift Router Sharding capabilities, and we
are going to see some of the advanced techniques that can be used to distribute Routes
among different Routers or even dedicate Routers to specific Namespaces or Projects.

HA for Container Registry

The OpenShift Container Registry (OCR) is the default internal Container image registry
used by the cluster to store Container images built with one of the supported build
strategies, or among other things, to maintain a copy of Container images running in the
environment.

The OpenShift Container Registry is deployed into the default Namespace or Project
using a DeploymentConfig which creates a ReplicationController used to run and
maintain the desired number of docker-registry Pod running. Alternatively, the cluster
admin can choose to deploy the OCR as a DaemonSet.?

2Deploying the Registry as a DaemonSet:https://docs.openshift.com/container-
platform/3.11/install config/registry/deploy registry existing clusters.
html#registry-daemonset

53

https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#registry-daemonset

CHAPTER 2 HIGH AVAILABILITY

When not specified, by default, the installer will deploy one docker-registry Pod
running on the Infrastructure Nodes. The number of docker-registry Pods to deploy and
the Nodes selectors to use to deploy the Pod can be specified by using the openshift_
hosted_registry_replicas and openshift_registry_selector variables, respectively, in the
advanced installer inventory file.

If no persistent storage options are specified for the registry, the default is to use
ephemeral storage and all data will be lost when the Pod is restarted.

When using multiple replicas, the persistent storage must support the
ReadWriteMany*' storage access mode. The supported storage®* backends for the
Registry range from GlusterFS to S3 compatible services.

Caution In production environments, the OpenShift Container Registry should
NOT use NFS as the storage backend.

Summary

The OpenShift architecture is designed for high availability of every one of its
components. Since these elements are built on top of Kubernetes using the Kubernetes
constructs, they benefit from the resiliency provided by these. As it can be seen from this
chapter, when the OpenShift cluster is deployed with multiple Master, Infrastructure,
and Application Nodes, the availability of all the other internal elements of the platform
is achieved with Kubernetes itself.

With the abstraction layers created by Kubernetes and the OpenShift platform,
Chapter 3 describes the traffic flow with different overlay SDNs when components
communicate inside the platform vs. when applications communicate outside the
platform.

ZPersistent volume access modes supported by OpenShift are described here: https://docs.
openshift.com/container-platform/3.11/architecture/additional concepts/storage.
html#pv-access-modes

2The full list of supported storage for registry is available at https://docs.openshift.com/
container-platform/3.11/install config/registry/deploy registry existing
clusters.html#storage-for-the-registry

54

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/storage.html#pv-access-modes
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry
https://docs.openshift.com/container-platform/3.11/install_config/registry/deploy_registry_existing_clusters.html#storage-for-the-registry

CHAPTER 3

Networking

Chapter 2 covers how high availability is achieved for the core components of

the platform. The communication for specific control plane components like the
synchronization of the efcd database, external connections to the OpenShift Console

(in OCP 3.11.x), the communication from the Kubelet to the Kubernetes APIs, and
external connections to the cluster’s Kubernetes API goes directly to Master’s Nodes IPs.
Any other intercommunication among components in the cluster uses the OpenShift
Networking service.

When considering the OpenShift Networking as a whole, there are the OpenShift SDN
plugins to handle the east-west traffic or the traffic within the cluster and the OpenShift
Router plugins to handle the north-south traffic, or the inbound traffic destined to
Services in the cluster.

The default OpenShift software-defined networking (SDN) solution is built on top
of Open vSwitch (OVS). With OpenShift, the cluster admin is free to choose to deploy
with one of the OpenShift native SDN plugins or they can opt to deploy the cluster using
a third-party SDN from the supported ecosystem. Should a different SDN is desired,
OpenShift supports Kubernetes CNI-compliant SDN solutions.

There are multiple Kubernetes CNI-compliant SDN solutions in the market. If
considering a third-party SDN, something to keep in mind is the alignment of the release
cycle between OpenShift and the third-party SDN solution. The alignment or lack
thereof, between the two, will have a direct impact in the supported upgrade cycle for the
whole platform.

This chapter provides an overview of the main OpenShift SDN solutions and
documents the traffic flow among Pods inside the cluster as well as how these
communicate to destination outside the cluster.

55
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_3

CHAPTER 3 NETWORKING

East-West Traffic

For the east-west traffic, out of the box, OpenShift provides the following SDN plugins:
¢ OpenShift ovs-subnet
e OpenShift ovs-multitenant
e OpenShift ovs-networkpolicy
e OpenShift OVN! (future)
o Flannel? (limited)

In addition to the native SDN options, at the time of this writing, the following SDN
solutions are validated and supported on OpenShift directly by the third-party vendors*:

o Big Switch*

e Cisco Contiv

e Cisco ACICNP®
e Juniper Contrail
o Nokia Nuage

o Tigera Calico

e VMware NSX-T

e Kuryr SDN® (or Kuryr-Kubernetes)

'The OpenShift Open Virtual Networking (OVN) plugin is considered a development preview.
The current capabilities for OCP OVN are similar to the ovs-networkpolicy. More information
about OVN can be found at the Kubernetes OVN upstream project under the Open vSwitch
project: https://github.com/openvswitch/ovn-kubernetes

Flannel is only supported when OCP is deployed over OpenStack environments which are
using a VXLAN-based SDN to work around issues with the possible VXLAN over VXLAN
encapsulation.

3For an updated list of the supported third-party vendor, visit https://docs.
openshift.com/container-platform/3.11/install_config/configuring_sdn.
html#admin-guide-configuring-sdn-available-sdn-providers

*Additional information about Big Switch Big Cloud Fabric Enterprise Cloud (BCF-EC) integration
with OpenShift is available here: www.bigswitch.com/tech-partner/red-hat

*For more information about the Cisco ACI CNI Plugin for OCP, refer to www.cisco.com/c/en/
us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-
OpenShift-Architecture-and-Design-Guide.pdf

56

https://github.com/openvswitch/ovn-kubernetes
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#admin-guide-configuring-sdn-available-sdn-providers
http://www.bigswitch.com/tech-partner/red-hat
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/white_papers/Cisco-ACI-CNI-Plugin-for-OpenShift-Architecture-and-Design-Guide.pdf

CHAPTER 3 NETWORKING

OpenShift SDN

The native OpenShift Software-Defined Networking (SDN) configures an Open
vSwitch (OVS)-based overlay network to provide communication between Pods in
the cluster. This overlay network uses the VXLAN protocol as the SDN encapsulation
protocol.

Tip Standard VLANSs provide up to 4094 VLAN IDs to segregate Ethernet traffic,
but it requires for every device between two endpoints to be Layer2 devices
supporting the IEEE 802.1Q protocol and maintaining the same configuration;
hence its support in Cloud and hyperscaled datacenter environments is limited.

By default, VLANs cannot work over the Internet, and stretched Layer2 networks
are limited. On the other hand, the VXLAN protocol provides 2 or 16,777,216
VXLAN Network IDs (VNIs or VNIDs) and works over any Layer2 or Layer3 transport
(including the Internet). It only requires IP reachability between the two endpoints.
Because of this and other properties, VXLAN has become the preferred transport
protocol for SDN solutions.

Independent from the OpenShift SDN plugin in use, there are some default
behaviors. For every node registered into the cluster, OpenShift SDN allocates
a /23 subnet (see #2 of Figure 3-1) from the cluster network specified by the osm_
cluster_network_cidr variable in the inventory file of the openshift-ansible advanced
installer. If not specified, the default cluster network is 10.128.0.0/14.
The cluster network subnet assigned to each node is used to assign IPs to the Pods
at the node.

At the time of this writing, the Kuryr SDN is considered Technology Preview; for more
information, refer to https://docs.openshift.com/container-platform/3.11/install
config/configuring kuryrsdn.html

57

https://docs.openshift.com/container-platform/3.11/install_config/configuring_kuryrsdn.html
https://docs.openshift.com/container-platform/3.11/install_config/configuring_kuryrsdn.html

CHAPTER 3 NETWORKING

Caution When considering the value for osm_cluster_network_cidr, keep in
mind that once a cluster is deployed, the cluster network cannot be arbitrarily
reconfigured.

Tip The osm_host_subnet_length variable in the inventory file can be used to
specify a different subnet length size, in bits, for the subnets to allocate to each
registered node. The default subnet length is 9 which is a subnet of size /23. This
is why, by default, OpenShift SDN allocates /23 per node, equivalent to two /24, to
each node.

Caution The host subnet length is one of the attributes that has a direct impact
in the maximum number of Pods that can run per node, and its value cannot be
reconfigured after deployment.

To identify the cluster network subnet allocated to each Node, execute the “oc get
hostsubnet” command with a user with cluster-admin privilege. The resulting output will
be similar to Figure 3-1. The Host IP column (#1 in Figure 3-1) is the Nodes physical IP
address (i.e., the IP Address of eth0 in the Node) and the Subnet column (#2 in Figure 3-1)
is the cluster network subnet allocated to the corresponding Node.

$ oc get hostsubnet

NAME HOST " HosT 1P SUBNET — .es

infranodel.demo.internal infranodel.demo.internal 192.168.0.217 10.1.10.0/23
infranode2.demo.internal infranode2.demo.internal 192.168.0.30 10.1.8.0/23
masterl.demo.internal masterl.demo.internal 192.168.0.176 10.1.4.0/23
master2.demo.internal master2.demo.internal 192.168.0.201 10.1.2.0/23
master3. demo.internal master3.demo.internal 192.168.0.10 10.1.0.0/23
nodel .demo.internal nodel.demo.internal 192.168.0.5 10.1.6.0/23
node2.demo.internal node2.demo.internal 192.168.0.40 10.1.12.0/23
node3.demo.internal node3.demo.internal 192.168.0.48 10.1.14.0/23

Figure 3-1. Sample output showing the cluster network subnet allocation

58

CHAPTER 3 NETWORKING

When removing or deleting a node from the cluster, the OpenShift SDN frees
the corresponding cluster network subnet. This subnet becomes available for future

allocations to new nodes.

Note Unless Master Nodes are also configured as Nodes, the OpenShift SDN
will not configure or allocate a cluster network subnet for the Master Nodes. If the

Master Nodes are not configured as Nodes, they do not have access to Pods via
the SDN.

In every Node that is registered as part of a cluster, the OpenShift SDN registers
the Node with the SDN Master. The SDN Master allocates a cluster network subnet for
the new Node (see #2 in Figure 3-1). This subnet is stored in the etcd database of the
cluster (see #2 in Figure 3-2). The OpenShift SDN at the Node creates the local host Open
vSwitch (OVS) named br0 with two interfaces: the vxlan_sys 4789 in port 1 and tun0 in
port 2 of the OVS br0 (refer to #4, #5, #8, #9, and #10 in Figure 3-2).

For each Pod in the Node, the local OpenShift SDN creates a vethXX interface and

assigns it to the OVS br0 (refer to #6 and #8 in Figure 3-2).

OpenShift Master Node

sm_cluster_network_cide = 10.128.0.0/14
st_subnet_length = §

Apphodel = 10.128.0.0/23
Apphode2 = 10.128.2.0/23
3 = 10.128.4.0/23

o Appliode:
H InfNodel = 10.128.6.0/23
etcd i

..

ovs-vsctl -- --colunns=name,cfport list Interface
name “wathdfT7b2al" 8
ofport s 3

name ¢ "veath63TedB9a"

ofport B]

name : "wath74133Thd"

efport : 8

name : "bro®

ofport : 65534

name : “tung*]

ofport s 2

name “wxlan0™

efport 1

Figure 3-2. Diagram of the OpenShift SDN

59

CHAPTER 3 NETWORKING

During the initialization, the local OpenShift SDN instance injects an OpenFlow
entry for every cluster network subnet that has been allocated by the SDN Master. After
this, the local OpenShift SDN of each Node monitors the SDN Master for subnet updates.
Upon detecting an update (i.e., new subnet allocation or deletion of a subnet), the local
OpenShift SDN injects or removes a corresponding OpenFlow entry in the ovsdb in br0.

The vxlan_sys_4789 of br0 is the interface that defines the VXLAN tunnels, or the
overlay network, that enables the communication between local Pods with Pods in
remote Nodes (refer to #1 of Figure 3-3). This interface is known as vxlan0 interface
inside the OVS and that is the name used in the OpenFlow entries.

Nodes ‘ Nodes i|’

o B B B e

Figure 3-3. Details of the vxlan0 and tun0 interfaces of OpenShift SDN

The tun0 interface gets the local cluster network subnet gateway address (see #4 of
Figure 3-4). This is the interface (see #2 of Figure 3-3) that provides NAT access from the
cluster network subnet to the external network (see #2 of Figure 3-4).

In addition to the local cluster network subnet gateway address, on each Node
the Kubernetes Service objects network is also pointed to the tun0 interface (see #1 of
Figure 3-4).

60

CHAPTER 3 NETWORKING

[rootRnedel ~]# ip route
default via 192.168.0.1 dev ethl prote dhcp metric 100
10.1.0.0/16 dev tunl scope link

172.30.0.0/16 dev tuno| | 1
192.168.0.0/24 dev eth0 proto kernel scope link src 192.168.0.5 metric 100

[rooténodel ~]# § iptables -t nat -L OPENSHIFT-MASQUERADE
Chain OPENSHIFT-MASQUERADE (1 references)

target prot opt source destination
MASQUERADE all =-- ip-10-1-0-0.demo.i 1/16 ywh . g de pod-to-service and pod-to-external traffic */
5 ip addr

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 5001 gdisc mg state UP group default glen 1000 3
link/ether 16:30:3c:26:30:9%4 brd ff:ff:ff:FF . FF:FF
inet 192.168.0.5/24 brd 1%2.168.0.255 scope glcbal noprefixroute dynamic eth0
valid 1ft 3428sec preferred_lft 3428sec
inet6 feB80::1430:3cff:fe26:3094/64 scope link
valid_1ft forever preferred_ lft forever

11: tund: <BROADCAST, MULTICAST,UP,LOWER_UP> mtu 8951 gdisc noqueue state UNKNOWN group default gqlen 1000
link/ether Be:b9%:4d:1c:85:8a brd ff.ff.ff:fE . ££:£F
inet 10.1.6.1/23 brd 10.1.7.255 scope glcbal tun0 4
valid_lft pref d_1ft £
ineté fedD::Bcb9:4dff:felc:B58a/64 scope link
valid_1ft forever preferred lft forever

Figure 3-4. Details of routes and NAT for tun0

In OpenShift, the Service network configuration is set by the openshift_portal_net
variable in the inventory file. If this variable is not defined, the default Service network is

172.30.0.0/16.

Tip After the initial installation of the cluster, the service network can be
expanded as long as the existing network is at the beginning of the new network

range.’

As new Pods are created on a host, the local OpenShift SDN allocates and assigns
an IP Address from the cluster network subnet assigned to the Node and connects the
vethXX interface to a port in the br0 switch. At the same time, the OpenShift SDN injects
new OpenFlow entries into the ovsdb of br0 to route traffic addressed to the newly
allocated IP Address to the correct OVS port connecting the Pod.

"For details on expanding the Service network, refer to https://docs.openshift.
com/container-platform/3.11/install_config/configuring_sdn.
html#expanding-the-service-network

61

https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#expanding-the-service-network

CHAPTER 3 NETWORKING

OpenShift ovs-subnet

The OpenShift ovs-subnet is the original OpenShift SDN plugin. This plugin provides
basic connectivity for the Pods. In the OpenShift official documentation, this network
connectivity is sometimes referred to as a “flat” Pod network. That may cause some
confusion with season network engineers. For any network engineer, the term “flat”
network will be interpreted as a network where there are no subnetting and sharing of
the same broadcast domain. That would be a very bad network design and would be
prone to constant broadcast storms. Fortunately, that is not the case with ovs-subnet.

With the OpenShift SDN ovs-subnet plugin, each Node still receives a dedicated /23
cluster network subnet (see #1, #2, and #3 of Figure 3-5). Then, the local OpenShift SDN
instance sets up OpenFlow entries for each cluster network subnet defined by the SDN
Master (#4, #5, and #6 of Figure 3-5 provide a conceptual representation of these).

The reason it is described as a “flat” Pod network is because there are no filters or
restrictions and every Pod can communicate with every other Pod and Service in the
cluster. So, from the networking perspective, this will be a fully meshed and unfiltered
network. In this case, any Pod in Node 1 (#8 of Figure 3-5) will have reachability to the
Pods in Node 2 and Node 3 (see #9 and #10 in Figure 3-5) and vice versa.

Note Even when Pods may have reachability to any other Pod in the cluster, they
will only see open the Ports explicitly enabled by the destination Pod definition. For
example, a Pod definition opening TCP Port 8080 will only allow traffic to TCP 8080
to arrive to the container inside the Pod and will block everything else.

62

CHAPTER 3 NETWORKING

OpenFlow entries for Node 2:

10.128.4.0/23 > vxlan(dst Node3 5 e, 4
OpenFlow entries for Node 1: 10.128.0.0/23 > wxlan(dst Node1 e OpenShift STH
10.128.2.0/23 > vxlan0 dst Node2 4 T ovedh
10.128.4.0/22 > vxlan0 d=t Nodes 0.0.0.0/0 > tun0 dst Node2 external gateway
S N B subnet: 10. 1123
Open vSwitch (brd) 2

0.0.0.0/0 > tun0 dst Nodel external gateway | et

Subnﬁtm“'::;:1o'1mu1 o EE%} @ @

Pod 2A Pod 2B Pod 2C

° Node 2

subnet: 10.1
Open vSwitch (

OponShitt SON

!%g j%g %5 o2 subnet: 10.128.4.0/23
e Ll | H ° A Opan vswitch (oro)

Pod 14 Pod 1B Pod 1C LT

‘B B B

OpenFlow entries for Node 3: o Pod 3A Pod 3B Pod 3C
10.128.2.0/23 > vxlan0 dst Node2 6
10.128.0.0/23 > vxlan0 dst Node1 Node 3 @

0.0.0.0/0 > tunD dst Node3 external gateway

Figure 3-5. Representation of OpenShift SDN ovs-subnet plugin

OpenShift ovs-multitenant

With OpenShift ovs-multitenant plugin, each Project receives a unique VXLAN ID, also
known as a Virtual Network ID (VNID). All the Pods and Services of a Project are assigned
to the corresponding VNID. By doing this, it maintains project-level traffic isolation.
Meaning, Pods and Services of one Project can only communicate with Pods and Services
in the same Project. By definition, there is no way for Pods or Services from one Project to
send traffic into another Project.

The underlying cluster network subnet allocation remains the same. Each Node
receives a dedicated /23 cluster network subnet (see #1, #2, and #3 of Figure 3-6). After
this, the local OpenShift SDN instance sets up the OpenFlow entries for each cluster
network subnet defined by the SDN Master (see #4, #5, and #6 of Figure 3-6).

After this point, it starts differencing from the other plugins. When using
ovs-multitenant, the OpenShift SDN Master monitors the creation and deletion of
Projects. Upon the creation of a new Project, it allocates and assigns a VXLAN ID to the
Project. This VXLAN ID is the one used to isolate the traffic of the Project (see #11 of
Figure 3-6).

63

CHAPTER 3 NETWORKING

OpenFlow entries for Node 2:
10.128.4.0/23 > vxlan0 dst Node3 5 e -

OpenFlow entries for Node 1: 10.128.0.0/23 = vxlanD dst Nodel OpenShitt SON
10.128.2.0/23 > vxlan0 dst Node2 4 O‘CI' D o o Nodez ovad
. 99 - ' .0.0. = tun0 dst Node2 external gateway
10.128.4.0/23 = vxlan0 dst Node3 L galeway : subnet: 10.128.2.0/23
e ; Open vSwiteh (brg)
|0.0.0.0/0 = tunD dst Node1 external gateway o - 789 e Por

Subnet gateway: 10.128.0.1 &P

Pod 2A Pod 2B
OpenShift SO

D v ; Node 2
subnet: 10.128.0.0v23 sy '-: 1
Open vSwitch (bro)

OpenShift SDM
ovadn
K Lt subnet: 10.128.4.0/23
e = - ' - i Open vSwitch (orl)
e o ot

5 oc get netnamespace o

NAME NETID OpenFlow entries for Node 3: ..-".. Pod 3A Pod 3B >od 3C
tenant-a 3859724 10.128.2.0/23 > vxlan0 dst Node? 6

tenant-b 1245836 10.128.0.0/23 > vxlan® dst Node1 Node 3

tenant-c 2874297 ces

default 0 0.0.0.0/0 > tun0 dst Node3 external gateway

Figure 3-6. Representation of OpenShift SDN ovs-multitenant plugin

When a new Pod is instantiated in a cluster using the ovs-multitenant plugin, during
the process of injecting the OpenFlow entries into br0, the OpenShift SDN includes
OpenFlow rules to tag traffic coming from the br0 port connecting the Pod with the VNID
corresponding to its Project. In addition, it adds explicit rules to only allow traffic into the
Pod if traffic’s VNID matches the Pod’s VNID or is coming from a privileged VNID 0.

Note When using ovs-multitenant, the VNID=0 is considered privileged traffic
that can communicate with any Project, and any Project can send traffic to a
Project with VNID=0. OpenShift assigns Project “default” to VNID=0 (see #11 of
Figure 3-6). Among other Pods and Services, Project “default” contains the Pods
and Services for the internal Container Registry (OCR) and the OpenShift Router.

When sending traffic across the vxlan0 interface to a remote Node, the traffic is
tagged with the correct VNID matching the source Pod Project VNID. The VNID is used
as the VXLAN Tunnel ID (see #7 of Figure 3-6 where the colors represent the different
VNIDs). The receiving Node uses the VXLAN Tunnel ID as the VNID tag for the traffic.
This guarantees end-to-end isolation of traffic from different projects.

64

CHAPTER 3 NETWORKING

OpenShift ovs-networkpolicy

The OpenShift ovs-networkpolicy plugin, fully supported since OpenShift 3.7, is a
modern SND that implements the Kubernetes Network Policies® capabilities. In the
default configuration, all Pods have reachability to any other Pod or Service in the cluster.

To restrict traffic to or from a Pod or to isolate Pods, a NetworkPolicy resource must
be defined (see #8 in Figure 3-7). Once a NetworkPolicy is configured in a Project or
Namespace selecting a particular Pod, there will be an implicit deny-all rule rejecting all
the traffic to that Pod and only allowing traffic from connections explicitly allowed by
the NetworkPolicy. These policies will not impact or affect any other Pods in the same
Project, and those will continue to receive all traffic directed to them.

Only allow HTTP and HTTPS traffic based on Pod labels |
kind: NetworkPolicy

apiversion: networking.kBs.io/vl 8
metadata:
name: allow-http-and-https-froa-and-to-blue
spec:
podSelector:
OpenFlow entries for Node 1: ma‘: :'I‘I; :“b:uc OpenFlow entries for Node 2:
Pod 1A <-= vxlan0 dst Node2 [Pod 24 sttt Pod 24 <= vxlan0 dst Node1 [Pod 14]
Pod 1B <-> uxland dst Node2 [Pod 28] Angress: Pod 2B <-> valan(dst Node1 [Pod 18]
Pod 1C <-> vxland dst Node2 [Pod 2C] = from: Pod 2C <-> vxlan dst Node1 [Pod 1C]
- podSelector;
0.0.0.0/0 - tun0 dst Node1 external gateway matchLabels: 0.0.0.0/0 -> tun0 dst Node? external gateway
T calor: blue 0
- ports: Y
- = protocol: TCP E
o port: 80

subnet: 10.128.0.0/23
Open vSwitch (br0)

Subnet gateway: 10.128.0.1

- protocol: TCP
port: 443

',8ubl|et gateway: 10.128.2.1

subnet: 10.128.2.0/23

Open vSwitch [brl)
789 (wdany
é

el =] 1

&Y LW W

1) L i L)
Ref ion of W licy:

Fod 1B - Allew traffic from/to Pod 1A from/to Pod 2A Pod 2A Z
- Allew traffic from/to Pod 1B from/te Pod 2B
- Allow traffic from/to Pod 1C from/tc Pod 2C Node 2

Allow traffic from any Pod to external networks
Deny any other traffic

Figure 3-7. Representation of the OpenShift SDN ovs-networkpolicy plugin

For each Node, these network policies are enforced by OpenFlow entries in the bro0
switch (see #1 in Figure 3-7 for representation).

8Additional detail of Kubernetes Network Policies is available at https://kubernetes.io/docs/
concepts/services-networking/network-policies/

65

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

CHAPTER 3 NETWORKING

The NetworkPolicy resource provides robust network policy mechanisms. As such,
itis up to the cluster-admin or Project admin to define the desired policies for a Project.
The additive property of these objects enables for multiple NetworkPolicy objects to be
combined together to create advanced and complex network policies.

As with any other Kubernetes resource, the NetworkPolicy resource is expressed in
YAML format.

Consider Listing 3-1 for an example NetworkPolicy definition to deny all traffic from
and to any Pod in a Project or Namespace. After applying this policy, all Pods in the
particular Project become isolated.

Listing 3-1. NetworkPolicy to deny all traffic and isolate Pods

Deny All Traffic (isolate all Pods in namespace)
oc create -f 3.1 _deny-all.yaml -n <your-namespace>
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-all
spec:
podSelector:
ingress: []

Figure 3-8 shows the process of applying this NetworkPolicy. On #1 in
Figure 3-8, the output shows there are two Pods. In #2 in Figure 3-8, a tcpping Python
function is used to demonstrate a TCP connection to the PostgreSQL Pod is possible.
Then the policy is applied in #3 in Figure 3-8. On #4 and #5 in Figure 3-8, there is a
validation that the NetworkPolicy has been created. Finally, #6 in Figure 3-8 shows the
execution of tcpping, and this time the connection is blocked.

66

CHAPTER 3 NETWORKING

% oc get pods -o wide --show-labals

NAME ... IR wope | 1 ... LABELS

podeoecl-1-glisg ... 10.128.2.9 ocp-n3.shift.zone ... app=podcool,deploy podeool-1,deploy £ig=podcool
postgresql-1-5s54b ... 10.129.0.8 ocp-n2.shift.zone ... deploy E g j1-1,deploy fig=p g: 31, ¥ g 31

§ oc exec podcool-1l-gl86g -- python -c "from tepping import tepping | tepping(d_host='postgresgl®',d port=5432, maxCount=3, DEBUG=True)"
Connected to postgresqgl[5432]: tep seq=0 time=2 92 ms

Connected to postgresql[5432]: tcp_seq=l time=1.41 ms 2

Connected to postgresgl[5432]: tep seqe? times=1.22 ms

TCP Ping Results: Connections (Tetal/Pass/Fail/Awg): [3/3/0/1.85) (Failed: 0%)

% oc create -f deny-all.yaml -n demo-policy

licy ing.k8s.io/deny-all 3
% oc get networkpolicy 4
HAME FOD-SELECTOR AGE
deny-all <none> im

% oc describe networkpolicy deny-all 5

Hame : deny-all
Hamespace : demo-policy
Created on: 2019-01-17 18:40:52 -0500 EST
Labels: <none>
Annotations: <none>
Spec:
PodSelector: <none> (Allowing the specific traffic to all peds in this namespace)

Allewing ingress traffic:

<none> [Selected pods are isolated for ingress connectivity)
Allewing egress traffic:

<none> (Selected pods are isolated for egress connectivity)
Policy Types: Ingress

$ oc exec pedccol-1-gl86g -- python -c "from tcpping impert tepping ; tepping(d_host='peostgresql',d port=5432, maxCount=3, DEBUG=True)"
Connection timed out!

Connection timed out! [

Connection timed out!

TCP Ping Results: Connections (Total/Pass/Fail/fAvg): [3/0/3/1001.993] (Failed: 100.00%)

Figure 3-8. Applying NetworkPolicy to isolate Pods by blocking all traffic to them

Following the same exercise, consider Listing 3-2. This NetworkPolicy allows every
Pod to communicate to any other Pod in the same Project and enables access to the
default Project.

Note When using NetworkPolicy resources, the communication with Project
“default” is required to get to the OpenShift Routers. This rule must be explicitly
allowed by the defined policy.

Listing 3-2. NetworkPolicy to allow traffic within Pods in the Project and with
the default Namespace

Allow traffic between Pods in the same Project and with the default
project (i.e. to access the routers)

oc label namespace default name=default

oc create -f 3.2 _allow-same-project-and-default.yaml -n <your-namespace>
kind: NetworkPolicy

apiVersion: extensions/vibeta1

67

CHAPTER 3 NETWORKING

metadata:
name: allow-same-and-default-namespace

spec:
ingress:
- from:
- podSelector: {}
- from:
- namespaceSelector:

matchlLabels:
name: default

Figure 3-9 documents the application of Listing 3-2 NetworkPolicy (#1) to restore the
communication with the PostgreSQL Pod (#3).

$ oc create -f allow-same-and-default-ns.yml -n demo-policy

licy. /allow-same-and-defaul P 1

$ oc describe networkpelicy allow-same-and-default-namespace
Hame : allow-same-and-default-namespace
Hamespace: demo=-policy 2
Created on: 2019-01-17 18:47:50 -0500 EST
Labels: <none>
Annotations: <none>
Spec:

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)

Allowing ingress traffic:

Te Port: <any> (traffic allowed teo all ports)

From:

PodSelector: <none>
To Port: <any> (traffic allowed to all ports)
From:
P Selector: 1t

Allowing egress traffic:

<none> (Selected pods are isolated for egress connectivity)
Policy Types: Ingress

% oc exec podecoccl-l-glBég -- python -c "from tepping impert tepping ; tepping(d_host='postgresgl',d port=5432, maxCount=3, DEBUG=True)"
Connected te postgresgl[5432)]: tcp sege=0 time=3.34 ms

Connected to postgresql[5432]: tcp seg=l time=d4_88 ms 3

Connected to postgresql[5432)]: tcp seg=2 time=1.09 ms

TCP Ping Results: Connections (Total/Pass/FailfAwvg): [3/3/0/3.103] (Failed: 0%)
3

Figure 3-9. Applying NetworkPolicy to allow traffic among Pods and with Project
default

68

CHAPTER 3 NETWORKING

Flannel

Flannel is one of the simplest SDN implementations of the Kubernetes network model.
It supports various overlay protocols (or backends) ranging from VXLAN to host-gw,
and many others.? The OpenShift-supported Flannel configuration uses the host-gw
backend."

Note In OpenShift, the support of the Flannel plugin is limited to deployments of
OpenShift Container Platform over the Red Hat OpenStack Platform."

The host-gw backend requires Layer2 connectivity between the Nodes so flanneld
can forward the packets to the corresponding Node as next-hop. The Flannel SDN
initialization in OpenShift is as follows:

o Each Node runs a flanneld agent which reads the configuration from
the etcd database (see #11 of Figure 3-10).

o The flanneld agent allocates a unique /24 subnet from the configured
Network and registers the allocated Node host subnet into the etcd
database (see #12 of Figure 3-10).

o The first IP of the subnet is assigned as the interface docker0 (#1 of
Figure 3-10) which becomes the default gateway for the local Pods.

o For each allocated host subnet in efcd, Flannel host-gw backend
injects a subnet route with the remote Node eth0 IP Address as the
next-hop gateway address to reach that subnet (see #2 of Figure 3-10).

9For a complete list of the backend protocols supported by the Flannel SDN, refer to
https://github.com/coreos/flannel/blob/master/Documentation/backends.md

%Additional details about OpenShift and Flannel are available at the following URL
(note: a valid Red Hat support subscription is required to access this link): https://
access.redhat.com/documentation/en-us/reference architectures/2018/html/
deploying and_managing openshift 3.9 on_red hat_openstack platform 10/
components_and_considerations#key considerations

""For more information of OpenShift Flannel, see https://docs.openshift.com/container-
platform/3.11/install_config/configuring_sdn.html#using-flannel

69

https://github.com/coreos/flannel/blob/master/Documentation/backends.md
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html/deploying_and_managing_openshift_3.9_on_red_hat_openstack_platform_10/components_and_considerations#key_considerations
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#using-flannel
https://docs.openshift.com/container-platform/3.11/install_config/configuring_sdn.html#using-flannel

CHAPTER 3

NETWORKING

With Flannel host-gw backend, the traffic flow from a Pod in one Node to a Pod in
another Pod is as follows:

1.

"Hetwork":

"SubnetLlen":
"SubnetMin®:
"SubnetMax" :

"Backend" :

The Pod sends traffic to its default gateway. For example, Pod 1A
in Node 1 sends traffic to Pod 2C in Node 2 (Figure 3-10). Pod
1A sends traffic to its default gateway, which happens to be the
docker0 interface (#1 of Node 1 in Figure 3-10).

From the docker0 interface, the traffic is routed by the host routing
table (#5 in Figure 3-10). Since there is a specific route for the
destination subnet (#2 in Figure 3-10), the traffic is sent to the
registered next-hop address (#7 in Figure 3-10) which, in this
example, happens to be Node 2 eth0 IP Address.

Once the traffic is received by the remote Node (Node 2), the
destination IP Address is evaluated by the host routing table (#9 in
Figure 3-10) so the traffic is sent to docker0 interface which finally
forwards the traffic to Pod 2C (#10 in Figure 3-10).

"10.1.0.0/16",
24,

"10.1.0.1",
*10.1.250.100%,

{Openshift Master Node i}

docker0 — IP: 10.1.20.1/24

L]

Eth0 IP: 192.168.5.11 Eth0 IP: 192.168.5.22

Fod 24
Node 2

Pod 2B

$ ip route
default via 192

10.1.15.8/24 dev docker@ prote kernel scope link src 1€.1.15.1
19.1.20.8/24 via 192.168.5.22 dev etheo

Figure 3-

70

.168.5.11 dev eth® proto static metric 188

$ ip route

default via 192.168.5.22 dev eth® proto static metric 100
19.1.20.08/24 dev docker® proto kernel scope link src 18.1.20.1
18.1.15.8/24 via 192.168.5.11 dev Dthee

10. Flannel SDN with host-gw backend in OpenShift

CHAPTER 3 NETWORKING

Because Flannel with the host-gw backend does not use additional encapsulations,
it maintains certain level of performance, and the host-gw backend is considered a good
option when deploying Kubernetes over virtualized platforms that have their own SDN
solutions. This is to avoid the performance penalties which might be experienced when
using SDNs over SDNs, resulting in what is known as double encapsulation.

OpenShift with Third-Party SDN

OpenShift configurations with third-party SDN are maintained by their respective
third-party vendors. To illustrate the use of third-party SDNs with OpenShift in this
section, we focus on the Open Source Calico'* SDN solution.

OpenShift with Calico SDN

The Calico SDN CNI provides another SDN alternative supporting NetworkPolicy
resources for ingress and egress policy rules. Calico can be used with or without an
encapsulated overlay network. In OpenShift, by default it uses IP over IP encapsulation.

Calico relies on routing principles from the native Linux network stack to move
traffic from one Node to another. It can be used with Nodes using Layer2 or Layer3
connectivity.

As with other Kubernetes SDN solutions, Calico maintains its configuration and state
in the cluster etcd database and relies on the BGP protocol at each Node to communicate
the routing information.

Tip A best practice for large-scale cluster deployments with Calico is to have a
dedicated efcd instance for it, different from the cluster etcd.

Note If BGP is supported by the fop-of-rack (TOR) switches interconnecting the
cluster, Calico can peer with the TOR over BGP. The default BGP ASN is 64512. This
ASN value is configurable by CLI.™

2Additional information about project Calico can be found at www.projectcalico.org

For information on customizing the BGP ASN number, visit https://docs.projectcalico.org/
v3.4/usage/configuration/bgp#configuring-the-default-node-as-number

71

http://www.projectcalico.org
https://docs.projectcalico.org/v3.4/usage/configuration/bgp#configuring-the-default-node-as-number
https://docs.projectcalico.org/v3.4/usage/configuration/bgp#configuring-the-default-node-as-number

CHAPTER 3 NETWORKING

By default, Calico allocates a /26 subnet to each Node, and as IPs are consumed by
the Node, it dynamically allocates additional blocks to the Node. This is possible thanks
to the use of a dynamic routing protocol, in this case BGP, on each Node.

Various components come together to create the Calico architecture (see Figure 3-11):

1. CNI Plugin:
a. Calico-CNI: The Calico CNI plugin implements the Kubernetes CNI
specification.
b. Calico-IPAM: The Calico IPAM assigns IP address to the Pods.

2. calico-node: The calico-node is a privileged container running as
DaemonSet in every Node (see #1 of Figure 3-11). This container
has three elements:

a. confd: Monitors the etcd database for state updates and generates the
corresponding new BGP configuration for BIRD.

b. BIRD and BIRD6: BGP agents running at each Node and distribute the
routes across. BIRD is for IPv4 addresses and BIRD6 for IPv6 IP addresses.

c. Felix: Agent doing the routing and policy calculation. It writes the
corresponding routes and ACLs to the Node host routing table and iptables,
respectively.

3. calico-kube-controller: This container runs as a Pod on top of
Kubernetes and maintains Calico in sync with Kubernetes when
using NetworkPolicy.

72

CHAPTER 3 NETWORKING

“eniversion”: "0.3.0",
“plugins®: [

i

"type”: "calice”,

{OpenShift Master Node

“ipam; {
"type": "calico-ipam"

tunl0 — IP: 10.1.20.1/26

eth 1

Eth0 IP: 192.168.5.11 Eth0 IP: 192.168.5.22

e Jr— =
B OB
s b b
H . Pod 2A Pod 2B
‘Node 2
% ip route e % ip route o
default via 192.168.5.11 dev eth® proto static metric 188 default via 192.168.5.22 dev eth® proto static metric 108
blackhole 18.1.15.1/26 proto bird Blackhole 1@.1.20.1/26 proc bird
18.1.20.8/26 dev tunlé proto bird onlink 18.1.15.8/26 dev tunld proto bird onlink

Figure 3-11. Representation of Calico SDN in OpenShift

From #3 in Figure 3-11, we can see an extract of the resulting host routing table
when using Calico. Local Pod-to-Pod traffic has direct communication inside the host.
To reach a Pod in a remote Node, the traffic from a Pod gets to the local tunl0 interface
(#4 in Figure 3-11) and gets routed by the host routing table to the next-hop IP Address
which is the remote Node. At the remote Node, the packet is routed by the host routing
table and delivered to the tunl0 interface (#6 in Figure 3-11) where it finally reaches the
remote Pod.

North-South Traffic

When considering the north-south traffic, out of the box, the available OpenShift Router
plugins' are

o HAProxy Template Router (default plugin)

o F5 BIG-IP Router plugin

For an updated list of available Router plugins, visit https://docs.openshift.com/container-
platform/3.11/architecture/networking/assembly available router plugins.html

73

https://docs.openshift.com/container-platform/3.11/architecture/networking/assembly_available_router_plugins.html
https://docs.openshift.com/container-platform/3.11/architecture/networking/assembly_available_router_plugins.html

CHAPTER 3 NETWORKING

In addition to the official supported plugins, at the time of this writing, a third-party
supported OpenShift Router plugin is

¢ NGINX and NGINX Plus Router'®

HAProxy Template Router

The default OpenShift Router is one or more Router Pods running on Infrastructure
Nodes (see #1 of output shown in Figure 3-12) and is deployed as a Deployment Config
(see #5 of output shown in Figure 3-12).

§ oc get all --selectors'routersrouter' -n default -o wide

HAME READY STATOS .. (oo~ —a

pod/router-1-8nsqg 1/1 Running ... | infranodel.demo.internal |

pod/router-l-pxsge 1/1 Running ... | infranode?. demo.internal |

HAME DESIRED CURRENT READY AGE cowrawers ... [seLEcvex =
replicationcontroller/router-1 2 2 2 1d router «.. | depl 1.d

BE 3 TYee CLUSTER-1P EXTERNAL-1P [PORT(S) 4 ... seuscrom

service/route. | ClusterIP 172.30.117.14 <none> | BO/TCR 443/TCP,1936/TCF | ... router=router

———— / —

WAME . o 5 REvISION DESIRED CURRENT TRIGGERED BY

1d-plnya-ntum fig.apps.cpenshift. iofrouter | 1 2 2 config
e

Figure 3-12. Output showing the elements comprising the OpenShift Router service

These Router container images are based on HAProxy (see #6 of Pod definition
extract shown in Figure 3-13). These Pods are defined to share the Network Namespace
with the host Infrastructure Node (see #5 and #8 of extract shown in Figure 3-13).

"Additional details about the NGINX and NGINX Plus OpenShift Routers are available at NGINX
Inc Gitrepo: https://github.com/nginxinc/nginx-openshift-router

74

https://github.com/nginxinc/nginx-openshift-router

apiVersion: vl

kind: Serv1ce, 1
metadata:

(1abels: =
router: router

’name router

namespace dafault

| SO—

spec:
clusterIP: 172.30.117.14
ports:
(- name: 80- tcp o
port: 80

protocol: TCP
targetPort: 80
' - name: 443-tcp
| port: 443
| protocol: TCP
| targetPort: 443
| - name: 1936-tcp
port: 1936
| protocol: TCP
| targetPort: 1936
‘selector:

router: router
sessionAffinity: None
type: ClusterIP

CHAPTER 3 NETWORKING

apiVersion: vl
chnﬁ Pod
metadata:
annotations:
openshift.io/deployment- conflg latest-version: "1"
"Et :.n,f‘ ploy ig.name: router

opnuEl’EEE"fé'?;i:c" h"éi':"ﬂ'n?ﬁ?i""
) e hmamenn s
lahela :
deployment: router-1
deploymentconfig: router
router: router
spec:
containers: 6

1naqa registry.redhat. 1o!apenah1£t3fcae-hap:oxy-rauter v3 11 51
aungo?ull?blacy IEINStPEasent
livenessProbe:
failureThreshold: 3
httpGet:
host: localhost
path: /fhealthz
port: 1936
scheme: HTTP
";aam router 7
|ports:
E- containerPort: 80
hostPort: 80
proteocel: TCP 1
| - containerPort: 443
| hostPort: 443
| protecol: TCP 1
| - containerPort: 1936 |
| hostPort: 1936

| nodeName: infranodel. deno lnterml ;
“nodeSelector: B
node-role.kubernetes.io/infra: "true"

Figure 3-13. Extract of an OpenShift Router Service and Pod definition

Sharing the Network Namespace enables these Router Pods to receive traffic over
the host-network. By default, the OpenShift Router listens on TCP ports 80 (HTTP),
443 (HTTPS), and 1936 (HAProxy Stats) (see #3 and #7 in Figure 3-13). Once the traffic
arrives to the Pod, it will match the corresponding Route object (see #1 and #2 of

Figure 3-14).

During the creation of the Route resource (#1 in Figure 3-14) and at the addition or

removal of a Pod, the OpenShift Router queries the Service resource (#3 in Figure 3-14)

for the Endpoints associated to the Service based on label selectors (#5 in Figure 3-14).

From here it obtains Endpoint information like name and IP of the Pods. The OpenShift

Router uses this information to create the corresponding HAProxy configuration to load

balance the traffic (#6 in Figure 3-14) destined to the particular Route (i.e., myapp-demo-
app.example.com) across the available Pods.

75

CHAPTER 3 NETWORKING

1 Route: myapp-demo-app.example.com

OpenShift Router

Egggersion: route.openshift.io/vl
ind: Route } 1
metadata:
labels:
app: myappl
name: myroute
namespace: demo-app
a: 2
o
host: myapp-demo-app.example.com

targetPort: 8080-tcp
to:

kind: Service
name : appl
welght:
wildcardPolicy: None

2] iVersion: vl
kind: Service
metadata:

namespace: demo-app

E-) -
clusterIP: 172.30.247.42
ports:

name: 8080-tcp 4
t pert: 8080

protocol: TCP

targetPort: 8080
selector:

~(__app: myappl) §

type: ClusterIP
status:

—

Figure 3-14. OpenShift Route to Service details

Summary

lcadBalancer: {)

OpenShift Networking is comprised of multiple elements that can be grouped into two
types of solutions: the solutions that provide the Software-Defined Networking (SDN)
to move the east-west traffic, or traffic within the cluster, and the solutions that handle

the north-south traffic, or the inbound traffic to applications hosted on the OpenShift

cluster.

For both cases, for the east-west traffic and for the north-south traffic, there are the

OpenShift native supported plugins and third-party validated plugins supported by

those third-party vendors.

The next chapter, Chapter 4, explores the available options for providing storage to

components and applications running on the platform.

76

CHAPTER 4

Storage

Once the networking options are defined for Containers as described in Chapter 3,
another essential service is storage. Container storage is ephemeral by design. Initially,
Containers were designed for immutable and stateless workloads. Later, the advantages
of containerizing stateful applications became apparent. With that came the need to
support persistent storage. A similar paradigm happened with Kubernetes; initially, it
was designed for stateless applications, but it was rapidly extended to support stateful
workloads. Supporting these new types of workloads drove the need to support multiple
storage options. The storage options for Kubernetes and OpenShift environments are
grouped under two classifications: ephemeral storage and persistent storage.

OpenShift Storage

With Kubernetes and OpenShift, the on-disk files representing the instance of a Container
are ephemeral. Meaning, once the Pod is destroyed or reinstantiated (i.e., during rolling
upgrade), any changes to files or data stored inside those Container are destroyed.

The default mount point for the ephemeral storage representing the filesystem and
the data inside the Containers is determined by the Container Runtime in use. See
Tables 4-1 and 4-2 for the default mount points used by OpenShift when using Docker
runtime or CRI-O runtime.

77
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_4

CHAPTER 4 STORAGE

Table 4-1. OpenShift Mount Points for OpenShift 3.11

Directory Notes

/var/lib/docker When using Docker runtime, this mount point is used by active Containers
and Pods. This is the local storage where the Node maintains a copy of
Container images pulled from a Container Registry. This mount point is
managed by docker-storage.
It uses the following naming format:

/var/lib/docker/overlay2/<layer-id>
/var/1lib/docker/containers/<container-id>

Note: When using the CRI-0 runtime, this folder is a symbolic link to /var/lib/

containers.
/var/lib/ When using the CRI-0 runtime, this is the mount point used by active
containers Containers and Pods. This is the local storage where the Node maintains a

copy of Containerimages pulled from a Container Registry.
It uses the following naming format:

/var/run/containers/storage/overlay-containers/<layer-id>
/var/lib/containers/<container-name>/<container-id>

/var/lib/ This is the mount point of the ephemeral volume storage for Pods including
origin/ anything external that is mounted into a Container at runtime. This is also the
openshift. mount point for environment variables, kube secrets, and any data volumes

local.volumes not backed by a persistent storage volume (PV).
It uses the following naming format:

/var/lib/origin/openshift.local.volumes/pods/<pod-id>/
containers/<container-name>/<container-id>

/var/lib/origin/openshift.local.volumes/pods/<pod-id>/
volumes/<volume-type>/<volume-name>

78

CHAPTER 4 STORAGE

Table 4-2. OpenShift Mount Points for OpenShift 4.0

Directory Notes

/var/lib/ When using the CRI-0 runtime with Red Hat Core0S (RHCOS), this is the mount

containers point used by active Containers and Pods. This is the local storage where the
Node maintains a copy of Containerimages pulled from a Container Registry.
It uses the following naming format:
/run/containers/storage/overlay-containers/<pod-id>
/var/lib/containers/storage/overlay/<layer-id>

/var/1lib/ With Red Hat CoreQS (RHCOS), this is the mount point of the ephemeral volume

kubelet/pods storage for Pods including anything external that is mounted into a Container at

runtime. This is also the mount point for environment variables, kube secrets,
and any data volumes not backed by a persistent storage volume (PV).
It uses the following naming format:

/var/lib/kubelet/pods/<pod-uid>/volumes/<volume-
type>/<volume-name>

Beyond the default ephemeral storage of the on-disk files representing the instance

of a Container, Kubernetes has the concept of a Volume.> A Kubernetes Volume is an

object that provides a mechanism to provide persistent storage for the Containers. A

Volume and the data on it are preserved across Container restarts and it even outlives

any Containers within a Pod.

Note A lolumeis created to provide persistent storage for Containersin a Pod.
There is a special Volume type, emptyDir,® that is ephemeral in nature as it is
created when a Pod is assigned to a Node but is deleted when the Pod is removed
from the Node.

'This information applies to OpenShift 4.0 Beta release. Paths may be subject to change during
development and may be different for final release.

2Additional information and definitions of Volume from the upstream Kubernetes community are
available at https://kubernetes.io/docs/concepts/storage/volumes/

3For use cases and details about emptyDir, refer to the Kubernetes upstream documentation at
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

79

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

CHAPTER 4 STORAGE

Kubernetes Storage Constructs

Kubernetes maintains strict separations of concerns between the definitions

of a PersistentVolume (PV), making it available to the Cluster (see #1 and #12 in
Figure 4-1), to the moment the PVis associated to a Project or Namespace through a
PersistentVolumeClaim (PVC) (see #6 and #13 in Figure 4-1). Once the PVC is created
associating the PV to the Project or Namespace, it then can be associated as a Volume
and binds to a mount point in the Container (see #10 and #14 in Figure 4-1).

Note A PersistentVolume (PV)is not tied to any Namespace.
A PersistentVolumeClaim (PVC) is associated and created inside a Project or
Namespace.

apiVersion: vl

kind: PersistentVoluze | 1
metadata: apiVersion: vl

name: nfs-pvll kind: PersistentVeolumeClaiw

labels: 2 metadata:
PY: NES-PYOL d-ueeennn..,., name: nfs-pvell | 7 e
spec: e . spec:
capacity: T, accasaModes:
storage: 10Mi - ReadWriteMany
accessModes : 3 storageClassName: “"

ReadWriteMany . rescurces: apiVersion: appa/vl
persistentVolumeReclaimPolicy: Muxno requests: kind: Deployment
nfs: storage: 10Mi metadata:

° server: 192.168.1.15 selector: 9 llm.lbnl:. podooal
: - - - matchLabels: .:
path: "/ocp-nfs/pvll R e — spp: podessl
spec:
zeplicas: 3

selector:

matchLabals:
app: podcool
- template:

metadata:
labels:
app: pedcool

containers:
- name: pedeool
image: guay.io/williamcaban/podcool
ports:
- containerPort: 8080
imagePullPolicy: IfNotPresent
veolumeMounts:
name must match the volume name balow
= name: nfs-pve

mountPath: "/mnt" 10
VOLUMBE
- name: nfs-pve
NFS Server persistentVolumeClaim: = ahesosrrommmnnens?
TP Address: 192.168.1.15 o glaimang: nfs-pve0l

MFS path: focp-nfs/pvil

Figure 4-1. PersistentVolume, PersistentVolumeClaim, and Volumes

PersistentVolumes (PV) can be provisioned manually by the cluster administrator
or the cluster administrator can enable dynamic provisioner plugins which take care of
dynamically creating PVs for any PVC'’s definition configured in a Namespace.

80

CHAPTER 4 STORAGE

Tip A PVC storage size request (see #9 in Figure 4-1) can bind to a PV with equal
or larger storage size (see #3 in Figure 4-1) defined by a PV.

Caution If there is no PV capable of fulfilling the PVC storage size request, the
PVC remain unbound indefinitely.

When the Volume is disconnected from the Container, the PVC is available for any
other Container in the same Namespace to use. The data remains on the Volume and will
be available to any future Container using the PVC.

When the PVC definition is deleted, the PV is considered to be released. The data is
handled based on the reclaimPolicy of the PV.

PersistentVolume Status

A PersistentVolume (PV) will be in one of the following status (see #5 in Figure 4-2):
e Available: The PV has not been claimed by a PVC.
e Bound: The PV is associated and claimed by a PVC.

¢ Released: The PVC was deleted but the resource has not been
reclaimed by the cluster according to the reclaimPolicy.

o Failed: The automatic reclamation of the PV has failed.

$ oc get pv o o ° e

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS
nfs-pv0l 1 10Mi RWX Retain Bound
nfs-pv02 10Mi RWX Retain Available
pvc-04ec0d5e-2721-11e9-8 . - 111a4al60101 20Gi RWO Delete Bound
pve-1bb8a09c-2721-11e9-8 = ~#111ad4al60101 2Gi RWO Delete Bound

Figure 4-2. Output showing PV’s Access Modes, reclaimPolicy, and Status

81

CHAPTER 4 STORAGE

Reclaim Policy

PersistentVolumes (PV) have an associated Reclaim Policy (see #4 in Figure 4-2) which
dictates how to handle data after the PV is not Bound to a PVC. Kubernetes supports the
following Reclaim Policies®:

o Retain: With this policy the PV is kept after the PV is no longer Bound
to a PVC and enables manual reclamation of the resources.

o Recycle: (Depreciated in favor of dynamic provisioning) This policy
performs a basic scrub doinga "rm -rf /<volume-path>/*" on the
Volume, then makes the Volume available again for new PVCs.

e Delete: This policy removes the PV and the associated storage asset
(i.e., AWS EBS, GCE PD, Cinder Volume, Gluster Volume, etc.) when
the PV is no longer Bound to a PVC.

Note When no reclaimPolicy is specified or when using dynamically provisioned
Volumes, the default reclaim policy is Delete.

Access Modes

The access mode (see #3 in Figure 4-2) capabilities of a PersistentVolume (PV) are
dependent on the modes supported by the provider of the storage resource. For example,
NFS supports the three available access modes, while AWS EBS only supports one.

The available access modes are detailed in Table 4-3.

Note A lolume Access Mode describes the Volume’s capability but does not
enforce constraints. It is up to the storage provider to enforce this at runtime.

*Additional details and utilization of the Reclaim Policies are available at the upstream
Kubernetes documentation: https://kubernetes.io/docs/concepts/storage/persistent-
volumes/#reclaiming

82

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming

CHAPTER 4 STORAGE

Table 4-3. Volume Access Modes

Access Mode Abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write only by a single Node
at a time.

ReadOnlyMany ROX The volume can be mounted as read-only by many Nodes at a time.

ReadWriteMany RWX The volume can be mounted as read-write by many Nodes at a time.

OpenShift PersistentVolume Plugins

OpenShift supports multiple storage plugins.® Some of these plugins and the access
modes are listed in Table 4-4.

Table 4-4. OpenShift PersistentVolume (PV) Plugins and Supported Access Modes

PV Plugin Name Access Mode Mount Options
NFS RWO, ROX, RWX Yes
HostPath RWO No
GlusterFS RWO, ROX, RWX Yes
Ceph RBD RWO, ROX Yes
OpenStack Cinder RWO Yes
AWS EBS RWO Yes
GCE Persistent Disk RWO Yes
iSCSI RWO, ROX Yes
FibreChannel RWO, ROX No
Azure Disk RWO Yes
Azure File RWO, ROX, RWX Yes
VMWare vSphere RWO Yes

(continued)

SFor an updated list of the supported plugins, visit https://docs.openshift.com/container-
platform/3.11/install config/persistent storage/index.html#install-config-
persistent-storage-index

83

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html#install-config-persistent-storage-index

CHAPTER 4 STORAGE

Table 4-4. (continued)

PV Plugin Name Access Mode Mount Options
Local RWO No
FlexVolume FlexVolume is an out-of-tree plugin interface that enables users to write

their own drivers. Because of this, the supported Access Modes and
Mount Options are implementation specific.

Container Storage CSlis an industry standard that enables vendors to develop storage

Interface (CSI) plugins for container orchestration systems (i.e., Kubernetes) in a way
that it is portable across CSI-compliant container orchestration systems.
Because of this, the supported Access Modes and Mount Options are
implementation specific.

Since Kubernetes 1.8, the upstream Kubernetes project decided to stop accepting
in-tree storage Volume plugins. Before this, Volume plugins were linked and distributed
as part of the core binaries of Kubernetes. To enable vendors to develop Volume plugins
independently from Kubernetes and with their own release cadence, nowadays, instead,
it promoted the use of the FlexVolume plugin interface or the use of the Container
Storage Interface (CSI) plugin.

The FlexVolume plugin interface has been available since Kubernetes 1.2. The
Container Storage Interface (CSI) plugin was introduced in Kubernetes 1.9 and GA in
1.13. These two options are covered in detail in the following sections.

FlexVolume

FlexVolume is known as an out-of-tree plugin interface because it is developed outside
the main Kubernetes source code. The FlexVolume interface enables users to write their
own drivers. These drivers can be written in any programming or scripting language.

User-provided driver binaries must be installed in a predefined Volume plugin path®
in every Node of the cluster (see #1 in Figure 4-3). The FlexVolume driver performing
the attach and detach operations must be a self-contained executable with no external
dependencies.

The standard path for FlexVolume is /usr/1libexec/kubernetes/kubelet-plugins/volume/
exec/<vendor>~<driver>/<driver>.

84

CHAPTER 4 STORAGE

Kubernetes is shipped with a FlexVolume in-tree plugin that kubelet uses to interact
with the user-provided drivers using an exec-based model (see #2 in Figure 4-3). When
invoking the binary of the driver, the first command-line argument is an operation name
followed by parameters for the operation.

attach/detach
mount/unmount

Storage
/usr/libexec/kubernetes/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver>
(i.e. /usr/libexec/kubernetes/kubelet-plugins/volume/exec/example.com~mydriver/mydriver)

Figure 4-3. FlexVolume plugin architecture

The FlexVolume driver works in one of two modes:
o FlexVolume driver with master-initiated attach/detach operation

o FlexVolume driver without the master-initiated attach/detach
operation

85

CHAPTER 4 STORAGE

With Master-Initiated Attach/Detach

A FlexVolume driver with master-initiated attach/detach operation” must implement the
following operations:

e init: Initializes the driver
o getvolumename: Returns the unique name of the volume
o attach: Attaches a volume to a given Node

« waitforattach: Waits until the Volume is attached to a Node and the
device is recognized by the OS

e detach: Detaches the Volume from a Node
o isattached: Checks if a particular Volume is attached to a Node
« mountdevice: Mounts a Volume device to a directory in a Node

o umountdevice: Unmounts a Volume’s device from a directory in
a Node

Without Master-Initiated Attach/Detach

A FlexVolume driver that does not support master-initiated attach/detach operations? is
only executing at the specific target Node and must implement the following operations:

e init: Initializes the driver.

e mount: Mounts a Volume to a directory in the Node. This operation is
responsible for finding the device, attaching the device to the Node,
and mounting the device to the correct mount point.

e umount: Unmounts a Volume from a directory in the Node. This
operation should take care of cleaning up the Volume and detaching
the device from the Node.

"Additional details can be found at https://docs.openshift.com/container-platform/3.11/
install config/persistent storage/persistent storage flex volume.html#flex-
volume-drivers-with-master-initiated-attach-detach

8Additional details can be found at https://docs.openshift.com/container-
platform/3.11/install config/persistent storage/persistent storage flex volume.
html#flex-volume-drivers-without-master-initiated-attach-detach

86

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-with-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_flex_volume.html#flex-volume-drivers-without-master-initiated-attach-detach

CHAPTER 4 STORAGE

CSI

The Container Storage Interface (CSI) was designed to provide a way for vendors to
develop storage plugins for any container orchestration platform following the CSI
specification. This means these plugins are not tied to Kubernetes but any CSI-compliant
platform. CSTwas introduced into Kubernetes as a way to decouple plugin development
from Kubernetes releases and prevent bugs from a plugin from affecting other
Kubernetes critical components.

Contrary to FlexVolume plugins that use an exec-based API and assume plugins have
access to the root filesystem, the CSI plugins use a gRPC interface over a unix domain
socket.

To support CSI plugins, a CSI-compliant plugin interface recommended?®
architecture was defined (Figure 4-4). The CSI plugin interface was included starting in
Kubernetes 1.9 and was made GA in Kubernetes 1.13.

Infrastructure Nodes .

Master Node

etcd kubr.—: scheduler

“*/

kube-controlle-manager \

App Nodes i

Figure 4-4. CSI plugin recommended architecture

Details about recommended deployment mechanisms for CSI plugin on Kubernetes are
available at https://github.com/kubernetes/community/blob/master/contributors/design-
proposals/storage/container-storage-interface.md#recommended-mechanism-for-
deploying-csi-drivers-on-kubernetes

87

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/storage/container-storage-interface.md#recommended-mechanism-for-deploying-csi-drivers-on-kubernetes

CHAPTER 4 STORAGE

The Kubernetes CSI volume plugin implements the following internal volume
interfaces:

¢ VolumePlugin: Mount and unmount of a Volume to a specific path.
During the mount operation, Kubernetes generates a unique path
and passes it to the CSI Driver DaemonSet (see #4, #5, and #8 in
Figure 4-4) for the CSI plugin to mount the volume (see #9 and #11 in
Figure 4-4).

e AttachableVolumePlugin: Attach and detach of a volume to a given
node. This action is handled by the CSI External Controller (see
#2, #3, and #6 in Figure 4-4). It is up to the CSI external controller
to determine when a CSI Volume must be attached or detached
from a particular Node (see #7 and #10 in Figure 4-4). Once the CSI
controller determines a Volume should be attached to a Node, it
generates a PersistentVolume (PV) and eventually the corresponding
PersistentVolumeClaim (PVC) to be consumed by the container
(see #12 in Figure 4-4).

OpenShift Ephemeral

The OpenShift Ephemeral framework is a Technology Preview (TechPreview) capability to
allow administrators to limit and manage the ephemeral local storage consumed by Pods
and Containers running in the particular Node.

Without the Ephemeral framework, Pods are not aware how much local storage is
available to be consumed by the Container’s writable layers or EmptyDir Volumes, and
the Pod cannot request guaranteed local storage. Because of this, if the Node runs out of
local storage, Pods can be evicted, losing all the data stored in the ephemeral volumes.

Enabling this capability requires manually enabling the feature on the Master Nodes
configurations and the ConfigMaps associated with all the other Nodes. The feature-
specific capabilities require to set LocalStorageCapacitylsolation=true.*

%For the specific steps toward enabling the LocalStorageCapacityIsolation, refer to https://
docs.openshift.com/container-platform/3.11/install config/configuring ephemeral.
html#ephemeral-storage-enabling-ephemeral-storage

88

https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage
https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage
https://docs.openshift.com/container-platform/3.11/install_config/configuring_ephemeral.html#ephemeral-storage-enabling-ephemeral-storage

CHAPTER 4 STORAGE

OpenShift Container Storage

The OpenShift Container Storage (OCS)"* brings the software-defined storage
capabilities of the Gluster'? and Heketi'* open source projects as a native storage solution
into Containers environments. It does this by adding a REST API interface to front end
the Gluster services.

The OpenShift Container Storage (OCS) supports two deployment modes: converged
mode and independent mode (see Figure 4-5).

CONVERGED MODE INDEPENDENT MODE
WITH CONVERGED NODES WITH DEDICATED NODES | APP NODES GLUSTER
a|l a|= oen|] 8| = EE -
an :
BB HE \ | T

e @D =

Figure 4-5. OpenShift Container Storage deployment modes

Note During the installation of OCS using the OpenShift advanced installer
(openshift-ansible), only one of the OCS modes can be specified. Should both
modes be required in a cluster, one of the modes can be installed with the Ansible
workflow and the other must be manually configured.™

Additional information about OCS is available at (an active Red Hat subscription is
required to access this link) https://access.redhat.com/documentation/en-us/
red hat_openshift container storage/3.11/
12The upstream Gluster project is available at www.gluster.org
The Heketi RESTful API for Gluster project is available at https://github.com/heketi/heketi
“The Red Hat OpenShift Container Storage (OCS) Deployment Guide provides step-by-
step instructions for manual installation of the OCS deployment modes (an active Red Hat
subscription is required to access this link): https://access.redhat.com/documentation/
en-us/red_hat_openshift container_ storage/3.11/html/deployment guide/

89

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/
http://www.gluster.org
https://github.com/heketi/heketi
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/deployment_guide/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/deployment_guide/

CHAPTER 4 STORAGE

0CS Converged Mode

The OCS Converged Mode deploys a hyperconverged environment with an end result
where the Nodes are providing Compute and storage services to the cluster.

From the technical perspective, OCS Converged Mode deploys an environment
where the Gluster storage Containers reside in Nodes where it mounts raw disks attached
to these Nodes that are then used for the Gluster service (see #1 and #2 in Figure 4-5).

There are two common deployment patterns with OCS Converged Mode:

1. Worker Nodes running OCS Pods and also running application
Pods (#1 in Figure 4-5)

2. Dedicated OCS worker Nodes (#2 in Figure 4-5)

In both of these deployment patterns, the Gluster services are deployed as Containers
(see Figure 4-6). A minimum of three nodes are required for the Converged deployment.

i Master Node Master Node
e

I I /r |=LT‘;r API

kube-api-server *’{
t w

kube-controller-manager

App Nodes Converged Nodes

fuszfabinig pt. <gl lume> <path-for-velume>

Figure 4-6. OCS Converged Mode

Tip OCS Converged Mode is commonly illustrated using Application Nodes
as the Converged Nodes, but it is not limited to those. With the proper planning
and design considerations, another option is to deploy OCS Converged Mode to
Infrastructure Nodes instead.

90

Raw Disks for OCS Converged Mode

The raw block devices for the Gluster service Pods can be provided by Kernel using any

CHAPTER 4 STORAGE

supported technology to provide raw block devices to the Node (see Figure 4-7).

g
—
= O
=
il
a
P
0
=
—
4]

Figure 4-7. OCS Converged Mode block device

0CS Independent Mode

OCS Independent Mode uses an external or standalone Gluster cluster managed by an
instance of Heketi REST API (#3 and #8 Figure 4-8).

Master Node

kube-scheduler

! «—

kube-api-server

!

_t

kube-controller-manager

0

Master Node

5 REST API

App Nodes

"

fuszfabin/gl

<epticna> <gl

Figure 4-8. OCS Independent Mode

-volume> <path-for-volume>

(i.e. BLOCK DEVICES/RAW DISKS)
* Local Physical Disk
*Fibre-Channel Block Device
«iSCSI SAN Block Device

*DAS Disk (i.e.

shared SAS)

~ External Gluster Cluster

Gluster Volumes |

(A

91

CHAPTER 4 STORAGE

Note Even when the Heketi service can run either as a regular system service
or as a Container, the recommendation is for Heketito be deployed as a Pod on
OpenShift so it can benefit from the HA capabilities of the platform.

0CS Storage Provisioning

OCS supports static or dynamic GlusterES storage volume provisioning. The desired
provisioning mode is configured during the deployment of OCS. The PVC and PV
provisioning workflow varies the configured provisioning mode. With static storage
provisioning":

1. The GlusterFS administrator creates a GlusterFS volume.

2. Auser with cluster-admin privileges creates the corresponding
GlusterFS Kubernetes Endpoints in the cluster.

3. A user with cluster-admin privileges creates a PV definition.
4. A user creates the corresponding PVC request.
With dynamic provisioning'®:

1. (If dynamic provisioning was not selected during the deployment
of OCS or if doing a manual OCS deployment.) A cluster
administrator creates a GlusterFS StorageClass.

2. Auser creates a PVC request.

With dynamic provisioning enabled, when there is a creation of a PVCrequest,
the kube-api-server sends a request for a new volume to the Heketi REST API (#2 in
Figure 4-6 or Figure 4-8) which communicates with the Gluster service (#3 in Figure 4-6
or Figure 4-8) to create a new Gluster Volume. With the confirmation of the volume, the
creation of the kube-api-server generates a PV which is bound to the PVCrequest.

15Step-by-step instructions on how to configure OCS static provisioning are available at
https://docs.openshift.com/container-platform/3.11/install _config/persistent
storage/persistent_storage glusterfs.html#provisioning-static

“Instructions for configuring OCS dynamic provisioning on an existing cluster are available at
https://docs.openshift.com/container-platform/3.11/install config/persistent_
storage/persistent storage glusterfs.html#provisioning-dynamic

92

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-static
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-static
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-dynamic
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/persistent_storage_glusterfs.html#provisioning-dynamic

CHAPTER 4 STORAGE

When the Kubelet service (#4 in Figure 4-6 or Figure 4-8) receives the mount request,
it invokes the mount.glusterfs system command (#5 and #6 in Figure 4-6 or Figure 4-8)
with the appropriate parameters to mount the volume to the Container. When the
Kubelet receives an unmount volume request, it uses the umount system command.

When the PVCis deleted, the PVis destroyed and a notification is sent to the Heketi
service (#2 in Figure 4-6 or Figure 4-8) which in turn notifies Gluster service (#3 in
Figure 4-6 or Figure 4-8).

Note After the PI/Cand PV objects are destroyed and do not exist in the Kubernetes
environment, from the Gluster cluster perspective, it might not be the case as the
action of completely deleting and recycling a Gluster volume may take additional time.

Storage Classes

A StorageClass is a Kubernetes construct for cluster administrators to create storage
profiles describing the storage options available for the platform. Cluster administrators
are free to use the StorageClass to represent storage types, or backup policies, or quality-
of-service levels, or replication policies, or encryption policies, or any other arbitrary
characteristic or service determined relevant for the organization.

A StorageClass'” configuration consists of a YAML file with the following options:

e Provisioner: (#3 in Figure 4-9) Determines the volume plugin to use
for provisioning PVs under the specified StorageClass.

o Reclaim Policy: (#5 in Figure 4-9) Tells the cluster what to do with
the Volume after it is released. The policy can be either Delete, Retain,
or Recycle.'* With dynamically provisioned volumes, the Reclaim
Policy is Delete.

e Mount Options (optional): (#6 in Figure 4-9) Mount options for
dynamically created PVs.

"The details of StorageClass resources are described in the upstream Kubernetes documentation:
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-
resource

The Recycle Reclaim Policy is considered deprecated. https://kubernetes.io/docs/
concepts/storage/persistent-volumes/#recycle

93

https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recycle
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#recycle

CHAPTER 4 STORAGE

o Volume Binding Mode: (#7 in Figure 4-9) This parameter controls
the Volume binding and dynamic Volume provisioning.

o Allowed Topologies (optional): Used to restrict provisioning to
specific topologies.

o Parameters (optional): (#4 in Figure 4-9) This section is used to set
Provisioner-specific parameters.

kind: StorageClass| 1
apiVersion: storage.k8s.io/vl

metadata:
name: mystorageclass | 2
annotations:
e 3
provisioner: kubernetes.io/plug-in-type
parameters:

paraml: wvalue 4

paramN: value
reclaimPolicy: Delete [§
mountOptions:

- debug S
volumeBindingMode: Immediate |7

Figure 4-9. Sample StorageClass definition

Note A StorageClass definition is required for enabling dynamic storage provisioning.

OpenShift with Third-Party Storage

Beyond the list" of supported OpenShift software-defined storage (SDS) plugins,
because of the availability of the FlexVolume and CSI plugins, there are many third-
party traditional or modern storage solutions supported for OpenShift. This section is
a reference (nonexhaustive) list of additional third-party storage vendors. Additional
vendors can be found at the OpenShift Primed?® web site.

9OpenShift Persistent Volume plugins: https://docs.openshift.com/container-platform/
3.11/install config/persistent storage/index.html

20penShift Primed technical readiness: www.openshift.com/learn/partners/primed/

94

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/index.html
http://www.openshift.com/learn/partners/primed/

CHAPTER 4 STORAGE

DriveScale Composable Platform

The DriveScale Composable Platform?' by DriveScale is a composable storage platform
that aggregates JBOD chassis behind the DriveScale Composer. From there, the raw disks
are presented as iSCSI targets.

DriveScale supports dynamic storage provisioning in OpenShift. At the moment of this
writing, DriveScale has a FlexVolume and a CSI plugin. The DriveScale FlexVolume plugin
is available at the Red Hat ISV registry** and the CSI* plugin is provided directly by them.

From the OpenShift perspective, at the creation of a new PVC, the DriveScale
FlexVolume plugin interacts with the DriveScale Composer and dynamically allocates
disks from the JBOD. It then proceeds to present them directly to the Node running the
Container and mount them as a Volume into the Container. If the Pod is reinstantiated
into another Node, the plugin takes care of unmounting the disk from the Node and
mounting it into the new Node.

HPE 3PAR

The HPE 3PAR* storage by HPE is an all-flash or hybrid storage array platform with
support for data services and quality of services guaranteed for the storage. The LUNs
are presented to the Nodes over FibreChannel (FC) or iSCSI protocols.

HPE 3PAR supports dynamic storage provisioning in OpenShift. At the time of this
writing, HPE provides a FlexVolume plugin® for OpenShift. The HPE FlexVolume driver
is named Dory, and the dynamic provisioner is named Doryd. The configuration for
the plugin can either be set for FibreChannel (FC) or iSCSI, not both at the time. The
FibreChannel (FC) protocol is supported for OpenShift bare-metal deployments, and
the iSCSI protocol is supported for OpenShift bare-metal or OpenShift over virtualization
environments.

Z1Additional information about the DriveScale Composable Platform is available at
https://drivescale.com/composable-platform/

2DriveScale Composable Platform FlexVolume plugin: https://access.redhat.com/
containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume

»DriveScale CSI plugin: https://github.com/DriveScale/k8s-plugins

24Additional information about the HPE 3PAR storage is available at
www . hpe.com/us/en/storage/3par.html

*Additional information about the HPE 3PAR FlexVolume plugin is available at
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible 3par
docker_plugin/README .md

95

https://drivescale.com/composable-platform/
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/drivescale/flexvolume
https://github.com/DriveScale/k8s-plugins
http://www.hpe.com/us/en/storage/3par.html
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md

CHAPTER 4 STORAGE

From the OpenShift perspective, at the creation of a new PVC, the HPE 3PAR
FlexVolume plugin interacts with the Doryd and dynamically allocates LUNs from
the HPE 3PAR storage array. Dory presents them directly to the Node running the
Container and mounts them as a Volume into the Container. If the Pod is reinstantiated
into another Node, the plugin takes care of unmounting the disk from the Node and
mounting it into the new Node.

HPE Nimble

The HPE Nimble?*® storage by HPE is an all-flash high-performance storage platform with
support for data-at-rest encryption, extreme availability, and sub-millisecond response
time. The LUNSs are presented to the Nodes over the iSCSI protocol.

HPE Nimble supports dynamic storage provisioning in OpenShift. At the time of
this writing, HPE provides a FlexVolume plugin® for OpenShift. The HPE FlexVolume is
available from the Red Hat ISV registry.?®

From the OpenShift perspective, at the creation of a new PVC, the HPE Nimble
FlexVolume plugin interacts with the Nimble Dynamic Provisioner and dynamically
allocates LUNs from the HPE Nimble storage. This LUN is presented directly to the
Node running the Container and mounts as a Volume into the Container. If the Pod is
reinstantiated into another Node, the plugin takes care of unmounting the disk from the
Node and mounting it into the new Node.

NetApp Trident

NetApp Trident® is an open source project maintained by NetApp designed to support
the NetApp storage portfolio in Docker and Kubernetes environments. The plugin
supports the NES or iSCSI protocols.

2Additional information about the HPE 3PAR storage is available at www.hpe.com/us/en/
storage/3par.html

*’Additional information about the HPE 3PAR FlexVolume plugin is available at https://github.
com/hpe-storage/python-hpedockerplugin/blob/master/ansible 3par_docker plugin/
README .md

#The HPE Nimble Kube Storage Controller is available at https://access.redhat.
com/containers/?tab=overview#/registry.connect.redhat.com/nimble/
kube-storage-controller

*Additional information about NetApp Trident is available in the upstream documentation:
https://netapp-trident.readthedocs.io/en/stable-v19.01/

96

http://www.hpe.com/us/en/storage/3par.html
http://www.hpe.com/us/en/storage/3par.html
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://github.com/hpe-storage/python-hpedockerplugin/blob/master/ansible_3par_docker_plugin/README.md
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller
https://access.redhat.com/containers/?tab=overview#/registry.connect.redhat.com/nimble/kube-storage-controller
https://netapp-trident.readthedocs.io/en/stable-v19.01/

CHAPTER 4 STORAGE

NetApp Trident supports dynamic storage provisioning in OpenShift. At the
time of this writing, by default, NetApp Trident provides a plugin which uses the
native Kubernetes iSCSI and NFS plugins and provides an experimental CSI plugin®
implementation.

From the OpenShift perspective at the creation of a new PVC, the NetApp Trident
plugin provisions the corresponding LUN or Volume in the storage array and relies in the
native Kubernetes iSCSI or NFS plugins for mounting the Volume into the Container.

OpenEBS (0SS, MayaData)

OpenEBS?! is an open source project supported by MayaData to provide block storage
with tiering and replica policies. While it can use any block devices as the backend
storage, the OpenEBS Volumes are presented to the Nodes over the iSCSI protocol.

OpenEBS supports dynamic storage provisioning in OpenShift. At the time of this
writing, OpenEBS provides a FlexVolume plugin available from the Red Hat ISV registry**
or directly from the upstream?* project.

From the OpenShift perspective at the creation of a PVC, the OpenEBS plugin creates
avolume. A volume is represented by a series of Pods. First there is Pod that works as the
iSCSI target* for the particular volume. This is the target that is presented to the Node
running the Container and mounts as a Volume into the Container. Supporting the iSCSI
target volume, there is one Pod per replica. For example, if the configuration is set to
have three replicas, there will be three Pods, each one representing one of the replicas.
This replica Pods provide the actual backend storage for the Volume. The backend
storage can be supported by any block device.

3CSI Trident for Kubernetes: https://netapp-trident.readthedocs.io/en/stable-v19.01/
kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes

30penEBS: www.openebs.io

320penEBS API Server and volume exporter: https://access.redhat.com/containers/#/
product/54cd9ct908d9t6b7

30penEBS project documentation: https://docs.openebs.io/docs/next/installation.html

3For additional information around the constructs of OpenEBS, refer to the upstream
documentation in GitHub: https://github.com/openebs/openebs/blob/master/contribute/
design/README.md#openebs-volume-container-aka-jiva-aka-data-plane

97

https://netapp-trident.readthedocs.io/en/stable-v19.01/kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes
https://netapp-trident.readthedocs.io/en/stable-v19.01/kubernetes/trident-csi.html?highlight=CSI#csi-trident-for-kubernetes
http://www.openebs.io
https://access.redhat.com/containers/#/product/54cd9cf908d9f6b7
https://access.redhat.com/containers/#/product/54cd9cf908d9f6b7
https://docs.openebs.io/docs/next/installation.html
https://github.com/openebs/openebs/blob/master/contribute/design/README.md#openebs-volume-container-aka-jiva-aka-data-plane
https://github.com/openebs/openebs/blob/master/contribute/design/README.md#openebs-volume-container-aka-jiva-aka-data-plane

CHAPTER 4 STORAGE

Summary

The use of storage in Kubernetes and OpenShift environments can be grouped under
two classifications: ephemeral storage and persistent storage. The different use cases of
ephemeral storage rely on the underlying Node filesystem. When working with persistent
storage, there are new constructs in play. OpenShift and Kubernetes provide an
extensible plugin framework that enables third-party storage providers to onboard their
solutions developing plugins at their own phase and independently, without having to
coordinate releases with the Kubernetes core project.

There are many more persistent storage providers and plugins for OpenShift. The
OpenShift Primed web site is good place to find additional ones understanding the
ecosystem supporting OpenShift and Kubernetes is much larger than the list there.

Once the Containers have networking and storage services, containerized
applications can start serving requests. To benefit from the HA capabilities of the
platform, the traffic to these applications should consider the use of load balancers.
Chapter 5 explores various configuration options to steer traffic to the cluster using load
balancers.

98

CHAPTER 5

Load Balancers

As seen in Chapters 1 through 4, the OpenShift platform integrates and builds on top

of Kubernetes to provide an environment to run and scale containerized applications
reliably. To maintain the most resiliency and benefit the most from the HA capabilities
of the platform, the infrastructure hosting the cluster should use load balancers to steer
the traffic to the Nodes in the cluster serving the application at a given time. This chapter
explores various configuration options when using load balancers with OpenShift.

Load Balancer Overview

When considering the use of external Load Balancers with the OpenShift platform,

there are general target areas or traffic types. Each type of traffic will have different
requirements based on the desired outcome and the capabilities of the external device or
virtual appliance used at load balancing. The use cases for load balancer can be grouped
in, at least, the following three types:

e Load balancing traffic to the Master Nodes (#1 in Figure 5-1): This
load balancer should be present for any highly available deployment.
For small deployments and lab environments, OpenShift provides the
option to deploy a software load balancer based on HAProxy. (Refer
to “HA for Masters Services” section in Chapter 2).

o Load balancing traffic to the Infrastructure Nodes (#2 in Figure 5-1):
This is the load balancer handling the traffic to applications running
on the cluster and using the OpenShift Router as their ingress endpoint.
This load balancer is recommended for any highly available deployment
even though it can be as simple as a round-robin DNS resolution for the
apps wildcard subdomain.

99
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_5

CHAPTER 5 LOAD BALANCERS

e Load balancing traffic directly to Application Nodes or Pods (#3, #4,
and #5 in Figure 5-1): This load balancer only exists in nonstandard
deployments requiring specialized networking interaction between
the client and the application Nodes or directly with the Pods.

S
AUTOMATION CLUSTER DEVELOPERS APP OWNERS 'F} '/__\) (’._\\"
& CICD TOOLS ADMIN el S =

. A

\'\I /}(/ APP USERS
"\I / ,/
L APP NODES

o [LB] or External Load Balancer
N

MASTER
NODES

INFRASTRUCTURE
NODES

ADVANCED SPECIALIZED
NETWORKING PROTOCOLS

Figure 5-1. OpenShift and Load Balancers

Load Balancer Considerations

There are many load balancer options in the market. Instead of focusing on a particular
software or hardware solution, let’s focus on the basic requirements for each type of
traffic and destination in an OpenShift cluster.

Considerations for Master Nodes

As presented during the discussion of High Availability for Master Nodes in Chapter 2,
these Nodes are the ones exposing the Kubernetes APIs, the web interface for the Developer
or Application Console, the Service Portal, and the Operations Console (see #1 in

Figure 5-1). From the perspective of web sessions, the Master Nodes are stateless, meaning
it does not matter which Master receives the request during interactions with the API.
There are no special requirements for persistent sessions or sticky sessions. Because of

100

CHAPTER5 LOAD BALANCERS

this, the load balancing service functioning as the front end for the Master Nodes can use
simple load balancing algorithms (i.e., source IP, round-robin, etc.) to distribute the load
among the Master Nodes.

Refer to Chapter 2 for details on the requirements for load balancers for Master Nodes.

Considerations for Infrastructure Nodes

Traffic load balancing for the Infrastructure Nodes refers to a load balancer handling the
traffic destined to the OpenShift Routers (see #2 in Figure 5-1) which serve as the main
ingress point for any external traffic destined to applications and services running on
the cluster. A simple DNS round-robin resolution can be used to spread traffic across
Infrastructure Nodes and, from that perspective, an external load balancer for traffic
destined to these Nodes is optional. Normally, production environments prefer to have
more advanced load balancing capabilities to distribute the traffic among the OpenShift
Routers. In those cases, an external load balancer is used.

This external load balancer for the OpenShift Routers should be configured in
passthrough mode (see Listings 5-1 and 5-2). This means the load balancer will do
connection tracking and Network Address Translation (NAT), but the TCP connections
are not terminated by the load balancer; instead, they are forwarded to one of the Router
instances at the Infrastructure Nodes (see #1 in Figure 5-2).

Listing 5-1. Passthrough configuration example with NGINX

NOTE: extract from nginx.conf
<snip>
stream {
Passthrough required for the routers
upstream ocp-http {
Worker Nodes running OCP Router
server worker-0.ocp.example.com:80;
server worker-1.ocp.example.com:80;
}
upstream ocp-https {
Worker Nodes running OCP Router
server worker-0.ocp.example.com:443;
server worker-1.ocp.example.com:443;

101

CHAPTER5 LOAD BALANCERS

server {
listen 443;
proxy pass ocp-https;

}
server {
listen 80;
proxy pass ocp-http;
}
}
<snip>

Listing 5-2. Passthrough configuration example with HAProxy

NOTE: extract from haproxy.cfg
<snip>
frontend ocp-http
bind *:8080
default_backend ocp-http
mode tcp
option tcplog

backend ocp-http
balance source
mode tcp
server worker-0 192.168.1.15:80 check
server worker-1 192.168.1.16:80 check

frontend ocp-https
bind *:443
default _backend ocp-https
mode tcp
option tcplog

backend ocp-https
balance source
mode tcp

102

CHAPTER5 LOAD BALANCERS

server worker-0 192.168.1.15:443 check
server worker-1 192.168.1.16:443 check
<snip>

At the OpenShift Router, this traffic is matched with a Route (see #3 in Figure 5-2), and it
isload balanced among the Pods of the corresponding Service object (see #4 in Figure 5-2).

The OpenShift Router supports roundrobin, leastconn, and source as the load
balancing algorithms or load balancing strategies.! The source is considered the default
load balancing strategy.

The default load balancing strategy and other OpenShift Router parameters can be
configured by setting the corresponding Environment Variable for the OpenShift Router
DeploymentConfig.*

APP USERS

' ' ' l
v ' ' '
[. ' '
M "

.
' '
' '
" '
'

' "
" ' ’

External App Load Balancer o

INFRASTRUCTURE NODES

Node 1 Node 2 Node 3

Figure 5-2. Traffic flow from external load balancers to OpenShift Routers

'The supported load balancing strategies are described here: https://docs.openshift.com/
container-platform/3.11/architecture/networking/routes.html#load-balancing
%A list of available Environment Variables to fine-tune the OpenShift Router is available at

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.
html#env-variables

103

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#load-balancing
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#load-balancing
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#env-variables
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#env-variables

CHAPTER 5 LOAD BALANCERS

Note The specific behavior of the traffic at the Router level may be different if
using third-party Router plugins.

The OpenShift Router supports the following protocols:
e HTTP
e HTTPS with SNT®
o WebSockets

e TLS with SNI
Any traffic for protocols outside these web protocols cannot make use of the
OpenShift Router and Routes capabilities. Those cases are covered in the following
section.

Considerations for Specialized Protocols

As we saw in the previous section, the OpenShift Router cannot be used with traffic using
non-web-based protocols or with traffic using the UDP protocol. This book aggregates
all these cases under the “specialized protocols” category. The details on how to
provide load balancing to these protocols are highly dependent on the Kubernetes and
OpenShift options used to expose these services.

As illustrated in Figure 5-3, some configuration options will rely on the native
capabilities of kube-proxy, while others may depend on the capabilities provided by the
specific SDN solution used in the cluster.

Standard Name Indication (SNI) is an extension of the TLS protocol. With this extension, the
client indicates the hostname it is trying to contact at the start of the handshaking process.

104

CHAPTER5 LOAD BALANCERS

ADVANCED SPECIALIZED
NETWORKING PROTOCOLS

Figure 5-3. Representation of load balancer for non-HTTP/HTTPS/TLS protocols

105

CHAPTER 5 LOAD BALANCERS

OpenShift provides several options to support non-web-based or UDP-based traffic.
The following list provides a general description of the options and their functionalities:

o Service External IP: This option allocates an External IP for the
Service from the CIDR defined by externallPNetworkCIDRs in the
Master Nodes configuration.* When using this option, the ExternallP
is defined and managed by the kube-proxy agent in each node (see
#2 in Figure 5-3). From a load balancer perspective, the traffic can be
directed to any of the Application or Infrastructure Nodes. Once the
traffic arrives to the Node, the incoming traffic is forwarded internally
by kube-proxy to the corresponding Pods as it does for any other
Service communication.

o LoadBalancer: The LoadBalancer option behaves differently
when used in a Cloud provider vs. when used locally. At a Public
Cloud provider, this option will allocate an ExternalIP for the
Cloud provider Load Balancing service. When this option is used
in non-Cloud environments, it allocates an ExternallP from the
ingressIPNetworkCIDR network. When this variable is not specified in
the Master Nodes configuration,® the default network for this type of
Service is 172.29.0.0/16. From a load balancer perspective, the traffic
can be directed to any of the Application or Infrastructure Nodes. The
incoming traffic to the Nodes is forwarded by the kube-proxy to the
selected Pods (see #2 in Figure 5-3).

o nodePort: This option allows the user to specify a port for the Service
from the default nodePort range of 30000-32767. When the Service
is created with this option, kube-proxy starts listening to that port
in every Node. From a load balancer perspective, the traffic can

*To use this option, the externallPNetworkCDIRs must be configured and enabled:
https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/
expose_internal ip service.html

To customize the ExternallPs for this option, use the ingressIPNetworkCIDR variable in the
Master Node configuration: https://docs.openshift.com/container-platform/3.11/
admin_guide/tcp_ingress external ports.html#funique-external-ips-ingress-traffic-
configure-cluster

106

https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/expose_internal_ip_service.html
https://docs.openshift.com/container-platform/3.11/dev_guide/expose_service/expose_internal_ip_service.html
https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster
https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster
https://docs.openshift.com/container-platform/3.11/admin_guide/tcp_ingress_external_ports.html#unique-external-ips-ingress-traffic-configure-cluster

CHAPTER5 LOAD BALANCERS

be directed to any of the Application or Infrastructure Nodes. The
incoming traffic to the Nodes is forwarded by the kube-proxy to the
selected Pods (see #2 in Figure 5-3).

o hostPort: This option allows the user to bind a Pod to any Port of
the Node, and the Container will be exposed to the external network
as <hostIP>:<hostPort>, where hostIP is the physical IP of the Node
running the particular Pod, and hostPort is the port number specified
in the Pod definition. The load balancer for this option needs to be
configured to send traffic to the physical IP of the Node running the
Pod (see #3 in Figure 5-3). A consideration when using this option is
that the hostIP of the <hostIP>:<hostPort> pair will change if the Pod
recreated in another Node.

o hostNetwork: This option enables the Pod to have full visibility of the
Node network interfaces. This is the equivalent of the Pod sharing the
network namespace with the Node. This option is not recommended
for running application. It is normally used by SDN plugins and other
network functions deployed as DaemonSets or privileged containers.

o IP Failover: The IP Failover® option is an OpenShift-specific
capability which enables the creation of a Virtual IP address (VIP)
for the applications. When this configuration is enabled, OpenShift
deploys Keepalived privileged containers to handle the particular
VIP. These Keepalived Pods for the IP Failover capability can be
deployed cluster-wide or in a subset of Nodes matching a particular
label. These Pods use the VRRP protocol to maintain the VIP address
active. Only one of the Keepalived Pods will be active or in MASTER
state serving the VIP address at a time; the others will be on standby
or in BACKUP state. The VRRP protocol is used to determine which
Pod gets to be active for a particular VIP. From a load balancer
perspective, the Node with the active Pod serving the VIP address
is the only one capable of handling the traffic destined to that VIP
address.

SFor configuration requirements for the OpenShift IP Failover capability, refer to
https://docs.openshift.com/container-platform/3.11/admin_guide/high availability.
html#configuring-ip-failover

107

https://docs.openshift.com/container-platform/3.11/admin_guide/high_availability.html#configuring-ip-failover
https://docs.openshift.com/container-platform/3.11/admin_guide/high_availability.html#configuring-ip-failover

CHAPTER 5 LOAD BALANCERS

In addition to the options described here, there are other techniques which are
more relevant to Cloud environments. One of these options is the LoadBalancer which
requires external support by a Cloud provider. In this case, Kubernetes interacts with the
Cloud platform to provision a Cloud Load Balancer with an External IP for the Service.
Another option are SDNs like Calico or MacVLAN which can be configured to expose the
Pods IPs to the upstream networking equipment enabling direct access to the Pods from
the external networks (see #4 in Figure 5-3). In this case, it is up to the networking team
to manage the network traffic directed to the Pods.

Summary

Configuring a load balancer service in OpenShift for Master Nodes and OpenShift Routers
at the Infrastructure Nodes can be a simple pass-through load balancing configuration.
These can be considered web-friendly protocols: HTTP, HTTPS, TLS, and WebSockets.
Supporting UDP or non-web-friendly protocols with Kubernetes and OpenShift requires
the use of a different set of objects and capabilities. The particular load balancer
configuration for these use cases requires an understanding of the workload, the option
being used, and the level of exposure of the Services and Pods to the external networks.

Having a base understanding of how the networking, storage, and traffic routing
options work for OpenShift, Chapter 6 will focus on putting all this knowledge together
for a successful deployment of a cluster.

108

CHAPTER 6

Deployment Architectures

Having an understanding of the OpenShift components and platform as seen in the
previous chapters provides the basis for understanding some of the configuration
options that are set during the installation.

OpenShift (OCP) provides the ability to customize the deployment architecture. The
exact customization is highly dependent on the version and release, so it is necessary to
group the deployment process in two main categories:

e OCP 3.11 release: This is considered a long-term release. At the time
of this writing, the latest subrelease is 3.11.99.' The 3.11.x advanced
deployment methodology uses the OpenShift Ansible installer, and it
is supported in any x86 platform where RHEL is supported.

Note At the time of this writing, version 3.11.x is considered to be Technology
Preview or Development Preview for Microsoft Windows Server 2019, Power

8 and Power 9. This book does not cover any of these operating systems and
architectures.

¢ OCP 4.0release: This is considered the new major release of
OpensShift that brings a new deployment and management paradigm.
At the time of this writing, the latest version is 4.0 Beta 3. This means
OCP 4.0 is still in active development and has not reached the general
availability (GA).

'For details about the latest 3.11.x release, visit https://docs.openshift.com/container-
platform/3.11/release notes/ocp 3 11 release notes.html#ocp-3-11-98

109
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_6

https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-3-11-98
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html#ocp-3-11-98

CHAPTER6 DEPLOYMENT ARCHITECTURES

Note At the time of this writing, 4.0 is considered beta and it is available for AWS
with minimal customization. This book covers the AWS deployment architecture.

This chapter presents the most common scenarios that can be used to start
deploying OpenShift clusters, and as you'll see, both versions have their advantages and
disadvantages, and independent from the deployment methodology, each one provides
ways to highly customize the environment to fit the organization’s need.

Before going into the two deployment approaches, let’s quickly review Minishift, a
development tool for Windows, MacOS, and Linux that enables developers to run an
OpenShift environment in their workstations.

Minishift
Currently the Minishift development tool is a distribution based on OCP 3.11.x or OKD
3.11.x that runs as a Virtual Machine (VM).

Minishift can be downloaded as part of the Red Hat Container Development Kit
(CDK),? which includes additional Red Hat development tools and middleware.
Alternatively, the upstream Minishift from the OKD community can be obtained from
the Minishift Gif® repository.

Visit the Minishift documentation* for installation details for a specific platform.
The following are common steps to fine-tune Minishift:

e Allocate a minimum of two vCPUs to Minishift (see #2 in Figure 6-1).
o Allocate at least 8 GB to Minishift (see #2 in Figure 6-1).

o To access additional software from the Red Hat Subscription, define and
export the corresponding environment variables (see #4 in Figure 6-1).

*For information of and to download the Red Hat CDK, refer to https://developers.redhat.
com/products/cdk/overview/

’The upstream Minishift project documentation is available at https://github.com/minishift/
minishift/releases

The Red Hat CDK documentation is available at (requires access to the Red Hat portal) https://

access.redhat.com/documentation/en-us/red_hat_container_development kit/3.7/

*Upstream Minishift documentation: https://docs.okd.io/latest/minishift/getting-
started/index.html

110

https://developers.redhat.com/products/cdk/overview/
https://developers.redhat.com/products/cdk/overview/
https://github.com/minishift/minishift/releases
https://github.com/minishift/minishift/releases
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.7/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.7/
https://docs.okd.io/latest/minishift/getting-started/index.html
https://docs.okd.io/latest/minishift/getting-started/index.html

CHAPTER 6 DEPLOYMENT ARCHITECTURES

e Activate additional add-ons as needed (see #5 in Figure 6-1).

minishift setup-cdk' _1 ;

$

$ minishift config set cpus 2 '2:

$ minishift config set memory 8GB

$ minishift config view xas

- cpus 2

- image-caching ¢ true

- iso-url : file:///your/home/ minishift/cache/iso/minishift-rhel7.iso
- memory : BGB

- ocp-tag : vlatest
- openshift-version : vlatest
- vm-driver : xhyve

$

$ export MINISHIFT PASSWORD=<RED_HAT PASSWORD> -
$ minishift addons list (8

- admin-user : enabled

- anyuid : enabled

- eap-cd : enabled

- registry-route : enabled

- Xpaas : enabled

- che : disabled

- htpasswd-identity-provider : disabled

$ minishift start

Figure 6-1. Minishift configuration

export MINISHIFT USERNAME=<RED_ HAT USERNAME> (7))

P(0)
P(0)
P(0)
P(0)
P(0)
P(0)
P(0)

Minishift provides the developer experience similar to OCP (see Figure 6-2). From

the platform perspective, there are certain Minishift defaults and characteristics that

are different from an actual OCP cluster. For example, by default, Minishift enables

any user to run Containers in privilege mode. In OCP, this behavior is discouraged

and the cluster administrator must disable security for a user or group to allow them

to run Containers in privilege mode. Another distinct characteristic is that the default

identity provider with Minishift allows users to log in with any username and using any

password. If the username does not exist, Minishift will automatically provision that user

in the environment. In an OCP cluster, the user authentication is handled by the identity

provider, and when the access is granted, if the functionality is enabled, it proceeds to

create the user.

111

CHAPTER6 DEPLOYMENT ARCHITECTURES

OPENSHIFT(

Apache HTTP Server CakePHP + MySQL Dancer + MySQL Djange + PostgresQL JBoss A-MQ 63
(httpd) (Ephemeral with 551)

= =) O O

JBoss AMQ 63 (N0 S5L) JBoss A-MQ 6.3 (with S5L) JBoss BPM Suite 6.4 JBoss BPM Suite 6.4 JBoss BPM Suite 6.4
intelligent process server intelligent process server intelligent process server
(no https) + A-MIQ + MySQL [wit + AMQ + Postgre5QL

O o o)

JBoss BPM Suite 6.4 JBoss BPM Suite 6.4 JBoss BRMS 6.4 decision JBoss BRMS 6.4 decision JBoss Data Grid 6.5 +
intelligent process server intelligent process server server (with https) server + A-MQ [with MySQL (with https)
+ MySQL [with hitps) + PastgreSOL (with hitps) hittps)

© © © o

JBoss Data Grid 7.1 JBoss Data Grid 7.1 + JBoss Data Grid 7.1 + JBoss Data Virtualization JBoss Data Virtualization
(Ephemeral, no https) MySQL (with hitps) PostgreSQL (with hitps) 6.3 (no 55L) 6.3 (with 55L and
Extensions)

Figure 6-2. Minishift developer experience

OCP 3.11 Deployment Architectures

The examples in this section have been tested and validated with OpenShift (OCP)
3.11.69, 3.11.82, and 3.11.98. To identify the latest subrelease of 3.11, refer to the last
section of the Release Notes® as these are updated regularly with any new subrelease.

Prerequisites

OpenShift requires certain preparation of the infrastructure and configuration of
ancillary datacenter services before deployment. Refer to Table 6-1 for a summary of a
prescribed VM configuration used by this section. This table is a recommendation and
it does not represent the minimum requirements. The list of minimum requirements is

available at the official OpenShift prerequisites® documentation.

SFor details about the latest 3.11.x releases, visit https://docs.openshift.com/container-
platform/3.11/release notes/ocp 3 11 release notes.html

*OpenShift prerequisites: https://docs.openshift.com/container-platform/3.11/install/
prerequisites.html

112

https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html
https://docs.openshift.com/container-platform/3.11/release_notes/ocp_3_11_release_notes.html
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html
https://docs.openshift.com/container-platform/3.11/install/prerequisites.html

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Table 6-1. OpenShift 3.11 Nodes Configurations (Recommendation)

Node Node Requirements

8 vCPUs

Minimum 16GB RAM (recommended 32GB RAM)
Disk 100GB

e /var should have 80GB free

8 vCPUs

32GB RAM (recommended 64GB RAM)
Disk 100GB

e /var should have 80GB free

Masters

App Nodes

A Converged or Hyperconverged App Nodes must include at least a dedicated disk
for OCS:
e (OCS Disk 500GB Raw/Unformatted (any block device)

Note: A minimum of three hyperconverged or converged nodes are required for
OpenShift Container Storage (OCS)

Infrastructure e 8 vCPUs
e 32GB RAM
e Disk 100GB
e /var should have 80GB free

Bastion e 2 vCPUs
e 3GB RAM
e Disk 40GB

LB e 2VvCPUs
8GB RAM
Disk 40GB

113

CHAPTER6 DEPLOYMENT ARCHITECTURES

Operating System—Minimal Installation

All Nodes must be configured with the following setup:
e RHEL 7.6 Minimum installation (using Red Hat standard image).
e Recommended “Minimum” profile installation

e RHEL image should not have customizations from post-installation
scripts.

o SELinux must be set to enforcing.
o Firewall should be enabled and running.

o Time synchronization enabled.

General Requirements for the Cluster

e All Nodes should” be on the same network.

e All Nodes must have identical MTU.

e All Nodes must have unfiltered communication to each other.
e All Nodes require Internet access during the installation.?

¢ Nodes access and download RPMs and Containers from the Red
Hat repository and Red Hat Container registries.

¢ Nodes must use static IP address.

e Nodes must have an FQDN resolvable to their IP by the DNS servers
in /etc/resolv.conf.

“OpenShift supports deployment across multiple networks. There must be unrestricted
reachability among the nodes for a deployment across networks. To avoid issues with external
routing or firewalls, this section assumes the nodes are in the same network.

®Disconnected install is possible following the official documentation: https://docs.openshift.
com/container-platform/3.11/install/disconnected install.html

114

https://docs.openshift.com/container-platform/3.11/install/disconnected_install.html
https://docs.openshift.com/container-platform/3.11/install/disconnected_install.html

CHAPTER 6 DEPLOYMENT ARCHITECTURES

e Allocate a wildcard subdomain for application (i.e., *.apps.ocp.
example.com). DNS servers in /etc/resolv.conf must be able to
resolve any name under the application subdomain (i.e., test.apps.
ocp.example.com) to the Infrastructure Nodes or the Nodes hosting
the OpenShift Router.

Note Installation requires root or sudo SSH access to Nodes from Bastion (or
Master Node when not using Bastion Node).

SDN Subnets

OpenShift SDN uses an internal default network address. Validate there are no conflicts
with the default IP address range of the internal SDN networks:

o Containers Network (osm_cluster network cidr):10.1.0.0/16
o Services Network (openshift portal net):172.30.0.0/16

These subnets are internal to the OCP cluster. These are NOT visible outside the
cluster. Should there be an existing IP subnet within the range of any of these two
subnets, a new set of private /16 networks should be designated for these purposes.

(Optional) Subnets for Hosting Apps with Non-Web-Based or
Specialized Protocols

If the cluster will be hosting applications that need to present non-HTTP/HTTPS/TLS
protocols to services outside the cluster, there are two additional CIDR network ranges to
consider:

o 172.29.0.0/16 (ingressIPNetworkCIDR)
o <undefined CIDR> (external[PNetworkCIDR)

These subnets are NOT internal to the OCP cluster. When deploying on-premise, the
external network devices must be configured to route them to the OCP Nodes.

115

CHAPTER6 DEPLOYMENT ARCHITECTURES

Registry Service Account and Token

When deploying the Red Hat OpenShift Container Platform (OCP), the installation
requires a Service Account and a Token to access and download OCP containers from
registry.redhat.io. Before the installation, create a new Registry Service Account and
generate a Token at https://access.redhat.com/terms-based-registry/

The username will have the format "<number> | <custom string>" and a
corresponding Token string will be generated. These credentials are required for the
installation.

Note This step is not necessary when deploying the OKD upstream project.

Activate and Assign OpenShift Subscriptions

Each Node must have an active RHEL and OpenShift subscription. Register each Node
with a subscription following the steps in Listing 6-1.

Listing 6-1. Register RHEL and OpenShift subscriptions

Register each Node with RHSM

$ subscription-manager register --username=<user_name>

--password=<password>

Pull subscriptions

$ subscription-manager refresh

Identify the available OpenShift subscriptions

$ subscription-manager list --available --matches 'xOpenShiftx'

Assign a subscription to the node

$ subscription-manager attach --pool=<pool id>

Disable all RHSM repositories

$ subscription-manager repos --disable="x"

Enable only repositories required by OpenShift

$ subscription-manager repos \
--enable="rhel-7-server-rpms" \
--enable="rhel-7-server-extras-rpms" \
--enable="rhel-7-server-ose-3.11-rpms" \

116

https://access.redhat.com/terms-based-registry/

CHAPTER 6 DEPLOYMENT ARCHITECTURES

--enable="rhel-7-server-ansible-2.6-rpms"
Upgrade each Node to the latest version of the 0S
$ yum -y update

Prepare OCP 3.11.x Installer on Bastion

Install the OpenShift Ansible installer on the Bastion Node as per Listing 6-2.

Listing 6-2. Install OpenShift Ansible installer on Bastion

$ yum -y install atomic-openshift-clients openshift-ansible

Enable Password-less SSH

Enable password-less SSH for the OpenShift Ansible installer from the Bastion Node to
all the other Nodes as per Listing 6-3.

Listing 6-3. (Example) Enable password-less SSH from Bastion

Generate key pair at Bastion Node

$ ssh-keygen

Install public key to all Nodes

$ for host in master.ocp.example.com \
inf1.ocp.example.com \
inf2.ocp.example.com

app2.ocp.example.com
app3.ocp.example.com
do ssh-copy-id -i ~/.ssh/id_rsa.pub $host; \

\
appl.ocp.example.com \
\
\

Done

OpenShift Ansible Inventory File

The OpenShift Ansible installer uses a series of Ansible Playbooks to deploy an OpenShift
Cluster. Ansible uses a hosts inventory file to group managed target and set variables for
Ansible Roles and Playbooks.

117

CHAPTER6 DEPLOYMENT ARCHITECTURES

This provides the ability to highly customize the deployment of an OpenShift cluster.
The official OpenShift inventory?® file documentation provides a list of variables available
for the customization of the inventory file. There are far more variables than the ones
documented in the referenced document. These are additional variables that can be
used to fine-tune an inventory file. These additional customizations are documented in
the corresponding section of each one of the feature or capabilities.

The fact that there cannot be a single page with all the possible variables available for
customization speaks to the degree of fine-tuning that can be achieved for an OpenShift
cluster. At the same time, having too many options may be cumbersome for someone
new to OpenShift.

This book describes the configurations for the most common features and the most
relevant variables that may be used in the organizations starting with OpenShift. There
are multiple approaches for deploying these—from starting with a bare minimum
deployment of OCP and enabling features over time to the option of doing a deployment
enabling all the desired features at the install time.

The following subsections use a single inventory file enabling the most common
features in an OCP cluster at install time. During production configurations, the
infrastructure and operations teams can choose a more layered approach for the
deployment.

Defining the OpenShift Release

The inventory_file is an Ansible inventory configuration. The first part of it is used

to configure some basic information for Ansible itself and for the openshift-ansible
playbooks. Lines 13-15 on Figure 6-3 are Ansible parameters to identify the username
Ansible will use to connect to the Nodes. This user should be root or have sudo privileges.
When using a regular user with sudo privileges, line 15 on Figure 6-3 configures Ansible
to use sudo when connecting to the target Node.

9For additional details on how to configure the inventory file, visit the official documentation at
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory
file.html

118

https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html
https://docs.openshift.com/container-platform/3.11/install/configuring_inventory_file.html

8

9
10
11
12
d3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
cil
32
33
34

CHAPTER 6 DEPLOYMENT ARCHITECTURES

[0SEv3:vars]

B S R R I R R S I S S A R R R I S R S S R I S
Ansible Vars
B S S
timeout=60

ansible_user={{CHANGEME_ANSIBLE_SSH_USER}}

ansible_become=yes

B R R R R R S R R R S R R R A
OpenShift Basic Vars

B S R S B B S R R R R R R S R R S S R R R I
Deployment type

openshift_deployment_type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments
#openshift_disable_check="disk_availability,memory_availability"

OpenShift Version:
openshift_release=3.11.98

Deploy Operator Lifecycle Manager (OLM)
openshift_enable_olm=true

firewalld recommended for new installations (default is iptables)
#os_firewall_use_firewalld=true

Figure 6-3. Inventory file—defining OpenShift Type and Release

Line 21 on Figure 6-3 is identifying the deployment as OpenShift Container Platform

(OCP) by setting the value to openshift-enterprise. When using OKD, this value is set

toorigin.

Line 27 on Figure 6-3 is identifying the exact subrelease to use. In this example, it is

using OCP 3.11.98. This value should be as specific as possible to ease cluster upgrades

among minor releases.

Tip When specifying the OpenShift release, avoid the use of generic version
numbers (i.e., 3.11) or generic tags like latest.

119

CHAPTER6 DEPLOYMENT ARCHITECTURES

Even when considered Technology Preview in OCP 3.11.x, it is recommended to
enable the OpenShift Operator Lifecycle Manager (Line 30 on Figure 6-3) to take full
advantage of the benefits from the Kubernetes Operators capabilities.

By default OpenShift uses iptables for internal functionalities and Kubernetes
resources like firewall, kube-proxy, and Services, among others. By enabling the
configuration in line 33 on Figure 6-3, OpenShift can use firewallD instead.

Registry Definitions and Access

During the installation, the openshift-ansible installer pulls a series of Container Images
from Red Hat repositories. To access these repositories requires a valid subscription, a
service account and subscription (see “Registry Service Account and Token” section at the
beginning of this chapter).

35
36
37
38
39

‘l=registry.redhat.io/openshift3/ose-${component}:${version}

40 oreg,

41 oreg_auth_user={{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}

42 oreg_auth_password={{CHANGEME_SERVICE_KEY}}

43

44 # For Operator Framework Images

45 openshift_additional_registry_credentials=[{'host": 'registry.connect.redhat.com*, ‘user":'{{CHANGEME_REGISTRY_SERVICE_ACCOUNT}}',
‘password’: ' {{CHANGEME_SERVICE_KEY}}','test_image': 'mongodb/enterprise-operator:8.3.2'}]

46

47 # NOTE: accept insecure registries and registries with self-signed certs

48 & setup for lab environment

49 ope nsted_registry_insecure=strue

50 #o,

51 #u

52

53

54

55

56

57

58

59 & DCS . Open o ig/persistent storage/dynamically p] _pvs.html

60 # g: required for OCS dynamic provisioning

61

62 openshift_master_dynamic_provisioning_enabled=true

63

Figure 6-4. Inventory file—Container Registries and Registry Service Account

The Registry Service Account and the corresponding token should be set in the
variables shown in lines 41, 42, and 45 on Figure 6-4.

To support dynamic storage provisioning with OCS or any other supported storage
plugin, the configuration in line 62 on Figure 6-4 must be enabled. When dynamic
provisioning is not enabled, a user with cluster-admin privileges must manually create
and define the Persistent Volumes (PV) resources.

120

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Red Hat OpenShift Container Storage

The Red Hat OpenShift Container Storage (RHOCS or OCS) provides Container-native
Gluster-based storage. OCS can be deployed during the OCP installation as the default

storage class (see line 74 on Figure 6-5).

64
65
66
67
68
69
70
71
72
73
74
75
76
i
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

[S e S e R e R S R A e A e s XS A R s L s R R E A R L R e
OpenShift Container Storage (0CS)

BREBRE B # BHBRBERRS # BERERRR BB et

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage glusterfs

Deploy 0CS glusterfs and create StorageClass
Note: default namespace = glusterfs
#openshift_storage_glusterfs_namespace=openshift-storage

openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=true

Enable Glusterfs Block Storageclass

openshift_storage_glusterfs_block_deploy=false
#openshift_storage_glusterfs_block_host_vol_create=true

NOTE: host_vol_size is effectively an upper limit on the size of glusterblock volumes
unless you manually create larger GlusterFS block-hosting volumes
#openshift_storage_glusterfs_block_host_vol_size=100
#openshift_storage_glusterfs_block_storageclass=true
#openshift_storage_glusterfs_block_storageclass_default=false

#
Enable Glusterfs 53 (Tech Preview)
#

#openshift_storage_glusterfs_s3_deploy=true
#openshift_storage_glusterfs_s3_account=s3testvolume
#openshift_storage_glusterfs_s3_user=s3adminuser
#openshift_storage_glusterfs_s3_password=s3adminpass
#openshift_storage_glusterfs_s3_pvc=dynamic

Size (Gi) of glusterfs backed PVC used for S3 object data storage
#openshift_storage_glusterfs_s3_pvc_size=2

Size (Gi) of glusterfs backed PVC used for 53 object metadata storage
#openshift_storage_glusterfs_s3_meta_pvc_size=1

GlusterFS version
openshift_storage_glusterfs_version=v3.11
openshift_storage_glusterfs_block_version=v3.11
openshift_storage_glusterfs_s3_version=v3.11
openshift_storage_glusterfs_heketi_version=v3.11

Figure 6-5. Inventory file—Red Hat OpenShift Container Storage (RHOCS or

0CS)

121

CHAPTER6 DEPLOYMENT ARCHITECTURES

OCS can be deployed supporting GlusterFS (line 73 on Figure 6-5), Gluster-Block
(line 77 on Figure 6-5), and Glusterfs S3 (line 89 on Figure 6-5).

Note The Gluster-Block and Glusterfs S3 modes require GlusterFS.

The release cadence of OCS is not tied to OCP. When deploying OCS as part of the
deployment, it is highly recommended to specify the exact subrelease tag to use for the
corresponding service containers (lines 111, 114, 117, and 120 on Figure 6-6).

185 # NOTE: https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/
persistent_storage glusterfs,html#install-advanced-installer

106

107 # NOTE: Using specific sub-releases tags for fixed bugs

108 # https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/rhgs3/rhgs-server-rhel7

109

118 # Container image to use for glusterfs pods

111 openshift_storage_glusterfs_image="registry.access.redhat.com/rhgs3/rhgs-server-rhel7:v3.11.2"

112

113 # Container image to use for glusterblock-provisioner pod

114 openshift_storage_glusterfs_block_image="registry.access.redhat.com/rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.2"
115

116 # Container image to use for Gluster S3

117 openshift_storage_glusterfs_s3_image="registry.redhat.io/rhgs3/rhgs-s3-server-rhel7:v3.11.2"

118

119 # Container image to use for heketi pods

120 openshift_storage_glusterfs_heketi_image="registry.access.redhat.com/rhgs3/rhgs-volmanager-rhel7:v3.11.2"
121

122 ## If using a dedicated glusterfs_registry storage cluster
123 # openshift_storage_glusterfs_registry_version=v3.11
124 # openshift_storage_glusterfs_registry_block version=v3.11

125 # openshift_storage_glusterfs_registry_s3_version=v3.11
126 # openshift_storage_glusterfs_registry_heketi_version=v3.11
127

Figure 6-6. Inventory file—setting up specific subrelease tag for OCS containers

Web Console Access and Wildcard Apps Domain

The default setup in OCP is for the web console and the Kubernetes API to listen on port
8443 on each Master node. This can be modified to match the standard HTTPS port (see
lines 132 and 133 on Figure 6-7).

In addition to the listening port, the Master configuration requires an FQDN the
Master Node or cluster of Master Nodes (if using multimaster configuration) will answer
to handle requests to the API or web consoles. This variable is the openshift master
cluster_hostname (see line 136 on Figure 6-7). When using a single Master, this value
can be the FQDN of the Master Node. When using multimaster configuration, this value
must be set to an FQDN that represents all the Masters (usually this can be a Virtual IP or
VIP address load balancing the traffic toward the Master Nodes).

122

CHAPTER 6 DEPLOYMENT ARCHITECTURES

When using an external Load Balancer service or device, the FQDN of the
northbound VIP address must be specified in the inventory file using the variable
openshift master cluster public_hostname (see line 140 on Figure 6-7).

128 R R R R R R R R R R R R R R R R R R e R e R
129 ### OpenShift Master Vars

138 AW NI AT T T A A AT T AT T S AT I I T A T T A I T A A I TR T 3 TR AT I AR T A S A A T T 1
131

132 openshift_master_api_port=443

133 openshift_master_console_port=443

134

135 # Internal cluster name

136 openshift_master_cluster_hostname=ocp-int.example.com

137

138 # Note: use if using different internal & external FQDN (ie. using LB)
139 # set the external cluster name here

148 openshift_master_cluster_public_hostname=ocp-ext.example.com

141

142 # NOTE: Specify default wildcard domain for applications

143 openshift_master_default_subdomain=apps.example.com

144

145 # Configure custom certificates

146 # https://docs.openshift.com/container-platform/3.11/install_config/certificate_customization.html

147

148 # Audit log

149 # https://docs.openshift.com/container-platform/3.11/install_config/
master_node_configuration.html#master-node-config-audit-config

150 openshift_master_audit_config={"enabled": true, "auditFilePath": "/var/lib/origin/audit-ocp.log",
“maximumFileRetentionDays": 7, "maximumFileSizeMegabytes": 18, "maximumRetainedFiles": 3}

151

Figure 6-7. Inventory file—web console and wildcard domains

The OpenShift Routers at Infrastructure Nodes require a wildcard subdomain it will
use to dynamically build a URL or Route for applications running on the platform and
exposing a service outside the cluster (see line 143 on Figure 6-7).

Audit Logs

When audit logs are required as part of the deployment, the inventory file provides a
way to enable this functionality with the desired specific configuration (see line 150 on
Figure 6-7).

Configuring the SDN

The OpenShift SDN default configuration uses the 10.1.0.0/16 network as the overlay
network and 172.30.0.0/16 as the network for the Service Kubernetes resources. These
networks can be set to something different before the installation by defining the

123

CHAPTER6 DEPLOYMENT ARCHITECTURES

variables osm_cluster network cidr and openshift portal net (see lines 156 and 157
on Figure 6-8).

152 BRI R R R e e R R i i
153 ### OpenShift Network Vars

154 B R R R R R SRR R AR i Rt e g i i e it
155 # Defaults

156 #osm_cluster_network_cidr=10.1.0.08/16

157 #openshift_portal_net=172.30.0.0/16

158

159 # OpenShift SDN with NetworkPolicy

160 os_sdn_network_plugin_name='redhat/openshift-ovs-networkpolicy'

161

162 # If using Calico SDN

163 #os_sdn_network_plugin_name=cni

164 #openshift_use_calico=true

165 #openshift_use_openshift_sdn=false

166

Figure 6-8. Inventory file—OpenShift SDN parameters

OpenShift SDN supports multiple modes. The recommended OpenShift SDN mode
is the OVS with NetworkPolicy support (see line 160 on Figure 6-8).

Alternatively, there are other CNI plugins, like Calico SDN, which can be enabled as
the SDN provider (see lines 163-165 on Figure 6-8).

Identity Providers

OpenShift supports multiple identity providers. To prevent installation failures due to
missing parameters or configurations with external identity providers, the deployment
can use the htpasswd identity provider (line 177 on Figure 6-9) with inline user
definitions (line 181 on Figure 6-9) or using an external htpassword file (see line 184 on
Figure 6-9).

124

CHAPTER 6 DEPLOYMENT ARCHITECTURES

167 R #HHH HEHH IR HHE R R #AHHH
168 ###% OpenShift Authentication Vars

169 3
170 # Available Identity Providers

171 # https://docs.openshift.com/container-platform/3.11/install_config/configuring authentication.html
172

173 REFHRAREAREARB R IR ARE R
174 # htpasswd Authentication
175

176 # NOTE: read initial identities in htpasswd format from /root/htpasswd.openshift

177 openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': ‘'true', ‘'challenge': 'true', 'kind':
'HTPasswdPasswordIdentityProvider'}]

178

179 # To define initial users directly in the inventory file:

18@ # Note: user==password for this example

181 openshift_master_htpasswd_users={'ocpadmin’:'$apr1$ZullQr.Y$6abuePAhKGOiYSQDNWoqgse',
'developer': '$apri$QE2hKzLx$4ZeptR1hHNPS382Rh/Pew. '}

182

183 # To use external htpassword file:

184 #openshift_master_htpasswd_file=/root/htpasswd.openshift

185

Figure 6-9. Inventory file—configuration for identity providers

Cluster Monitoring (Prometheus)

To enable Cluster Monitoring using the Prometheus Operator, set the openshift
cluster_monitoring operator install variable (see line 196 on Figure 6-10).

190 S s
191 # Cluster Monitoring
192 BB R FHBRABHBE

193 # https://docs.openshift.com/container-platform/3.11/install_config/prometheus_cluster_monitoring.html
194

195 # Enable Prometheus, Grafana & Alertmanager

196 openshift_cluster_monitoring_operator_install=true

197 openshift_cluster_monitoring_operator_node_selector={"node-role.kubernetes.io/infra":"true"}

198

199 # Setup storage allocation for Prometheus services

2080 openshift_cluster_monitoring_operator_prometheus_storage_capacity=2061i

201 openshift_cluster_monitoring_operator_alertmanager_storage_capacity=2Gi

202

203 # Enable persistent dynamic storage for Prometheus services

204 openshift_cluster_monitoring_operator_prometheus_storage_enabled=true
205 openshift_cluster_monitoring_operator_alertmanager_storage_enabled=true
206

207 # Storage class to use if persistent storage enabled

208 # NOTE: it will use storageclass default if storage class not specified

209 #openshift_cluster_monitoring_operator_prometheus_storage_class_name='glusterfs-storage-block'

218 #openshift_cluster_monitoring_operator_alertmanager_storage_class_name='glusterfs-storage-block'

211

212 # For custom config Alertmanager

213 # https://docs.openshift.com/container-platform/3.11/install_config/
prometheus_cluster_monitoring.html#configuring-alertmanager

214

Figure 6-10. Inventory file—Cluster Monitoring with Prometheus Operator

125

CHAPTER6 DEPLOYMENT ARCHITECTURES

Cluster Metrics (EFK Stack) and Logging

The traditional OpenShift Cluster Metrics are collected by the EFK Stack (ElasticSearch,
FluentD, and Kibana). After OCP 3.11, the Hawkular API functionality (see line 225 on
Figure 6-11) is being superseded by the Prometheus API.

The Horizontal Pod Autoscaler (HPA) functionality depends on the openshift-
metrics-server which is deployed by enabling the metrics install in the inventory file
(see line 220 on Figure 6-11).

Note In OCP 4.x releases, the metrics-server uses metrics from Prometheus
instead.

215 AHHHHHHE

216 # Cluster Metrics

217 T

218

219 # Deploy Metrics Server (used by HPA)

220 openshift_metrics_install_metrics=true

221

222 # Start metrics cluster after deploying the components
223 openshift_metrics_start_cluster=true

224

225 openshift_metrics_hawkular_nodeselector={"node-role.kubernetes.io/infra": "true"}
226 openshift_metrics_cassandra_nodeselector={"node-role.kubernetes.io/infra": "true"}
227 openshift_metrics_heapster_nodeselector={"node-role.kubernetes.io/infra": "true"}
228

229 # Store Metrics for 2 days

230 openshift_metrics_duration=2

231

232 # Settings for Lab environment

233 openshift_metrics_cassandra_pvc_size=18Gi

234 openshift_metrics_cassandra_replicas=1

235 openshift_metrics_cassandra_limits_memory=2Gi
236 openshift_metrics_cassandra_limits_cpu=1000m

237

238 # User gluster-block or glusterfs (dynamic)

239 #openshift_metrics_cassandra_pvc_storage_class_name='glusterfs-storage-block’
240 openshift_metrics_cassandra_storage_type=dynamic

241

Figure 6-11. Inventory file—Cluster Metrics (with EFK Stack)

Installing the Cluster logging capabilities (line 246 on Figure 6-12) also provides the
ability to enable the event-router (line 247 on Figure 6-12) which watches for Kubernetes
events and streams them into the ElasticSearch in the EFK Stack.

126

CHAPTER 6 DEPLOYMENT ARCHITECTURES

242 HEBBBBR IR LR B UL 044

243 # Cluster Logging

244

245

246 openshift_logging_install_logging=true

247 openshift_logging_install_eventrouter=true
248

249 openshift_logging_es_pvec_dynamic=true

250 openshift_logging_es_pvc_size=206i
251 #openshift_logging_es_pvc_storage_class_name='glusterfs-storage-block

252

253 openshift_logging_es_memory_Llimit=4Gi

254 openshift_logging_es_cluster_size=1

255

256 # minimum age (in days) Curator uses for deleting log records

257 openshift_logging_curator_default_days=1

258

259 openshift_logging_kibana_nodeselector={"node-role.kubernetes.io/infra": "true"}
260 openshift_logging_curator_nodeselector={"node-role.kubernetes.io/infra": “true"}
261 openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra": "true"}

262 openshift_logging_eventrouter_nodeselector={"node-role.kubernetes.io/infra": "“true"}
263

264 # NOTE: If want to config a dedicated Elasticsearch for operation logs
265 # https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html#aggregated-ops
266

Figure 6-12. Inventory file—Cluster Logging

By default, the backend components of the metrics and logging services are
deployed to the Infrastructure Nodes. Configuring the variables in lines 225 to 227 and
the variables in lines 259 to 262 on Figure 6-12, these components can be deployed to
other Nodes.

OpenShift Router and OpenShift Container Registry

The OpenShift Router and the OpenShift Container Registries are deployed to the
Infrastructure Nodes. To select different Nodes, specify different Node selectors (see
lines 272, 273, and 285 on Figure 6-13).

For the default OpenShift Router configurations, the number of Routers should be
equal to the number of Infrastructure Nodes (see line 276 on Figure 6-13).

To determine the number of Container Registry replicas, consult the documentation
as it should take the Container backend storage into consideration. If unsure, set it to
one (see line 278 on Figure 6-13).

Note In this case (see line 283 on Figure 6-13), when using Glusterfs as the
storage backend for the Container Registry, the storage stores three copies of
every container stored in the Registry.

127

CHAPTER6 DEPLOYMENT ARCHITECTURES

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

FRdpppigpagdpigpriypeiir e gaippd s patp e pp i ppdtdppntip adyaa g apiiga sy
OpenShift Router and Registry Vars
ARt e g i g A R A R AR A St L i e et g i g g

default selectors for router and registry services
openshift_router_selector='node-role.kubernetes.io/infra=true'
openshift_registry_selector='node-role.kubernetes.io/infra=true'

NOTE: Qty should match number of infra nodes
openshift_hosted_router_replicas=3

openshift_hosted_registry_replicas=1
openshift_hosted_registry_pullthrough=true
openshift_hosted_registry_acceptschema2=true
openshift_hosted_registry_enforcequota=true

openshift_hosted_registry_storage_kind=glusterfs
openshift_hosted_registry_storage_volume_size=18Gi
openshift_hosted_registry_selector="node-role.kubernetes. io/infra=true"

Figure 6-13. Inventory file—OpenShift Router and Registry

OpenShift Service Catalog and Service Brokers

The Service Catalog (line 292 on Figure 6-14) is required for the Template Service
Broker (TSB) (line 296 on Figure 6-14) and the Ansible Service Broker (ASB) (line 301 on

Figure 6-14).

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

OpenShift Service Catalog
B S R s

Servie Catalog
openshift_enable_service_catalog=true

Template Service Broker (TSB)

Note: requires Service Catalog
template_service_broker_install=true
openshift_template_service_broker_namespaces=['openshift’]

Ansible Service Broker (ASB)

Note: requires TSB

ansible_service_broker_install=true
ansible_service_broker_local_registry_whitelist=['.*-apb$']

Figure 6-14. Inventory file—OpenShift Service Catalog and Template Service

Broker

128

CHAPTER 6 DEPLOYMENT ARCHITECTURES

OpenShift Nodes

The core definition of the inventory file is the definition of the Nodes and their respective
roles. Each Node type configuration is invoked by the definition of the groups in lines
309 to 313 on Figure 6-15. The required section or group definitions are masters, etcd,

and nodes.
304
3085 ##% OpenShift Hosts
306
307
308 [0SEv3:children]
309 b
310 masters
311 etcd
312 nodes
313 glusterfs
314
315 [1b]
316 1bl.example.com
317

318 [masters]

319 masterl.example.com

320 master2.example.com

321 master3.example.com

322

323 [etecd]

324 masterl.example.com

325 master2.example.com

326 master3.example.com

327

328 [nodes]

329 ## Master Nodes

330 masterl.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true

33 master2.example.com openshift_node_group_name='node-config-master"' openshift_node_problem_detector_install=true

332 master3.example.com openshift_node_group_name='node-config-master' openshift_node_problem_detector_install=true

333

334 ## Infrastructure Nodes

335 infranodel.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true

336 infranode2.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true

337 infranode3.example.com openshift_node_group_name='node-config-infra' openshift_node_problem_detector_install=true

338

339 ## App/Worker nodes

340 nodel.example.com openshift_node_group_name='node-config-compute' openshift_node_problem_detector_install=true

341 node2.example.com openshift_node_group_name='node-config-compute" openshift_node_problem_detector_install=true

342 node3.example.com openshift_node_group_name='node-config-compute’ openshift_node_problem_detector_install=true

343

344 ## Node Groups and custom Node Groups

345 # https://docs.openshift.com/container-platform/3.11/install/
configuring_inventory_file.html#configuring-inventory—node-group-configmaps

346

347 [glusterfs]

348 ## App/Worker nodes with 0CS hyperconverged

349 nodel.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'
358 node2.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ... 1°'
351 node3.example.com glusterfs_devices='["/dev/xvdd", "dev/xvde", ...]'

Figure 6-15. Inventory file—OpenShift Node definition

129

CHAPTER6 DEPLOYMENT ARCHITECTURES

The [Ib] section and group (lines 309, 315, and 316 on Figure 6-15) are required when
deploying a multimaster configuration and using openshift-ansible to deploy and configure
the optional software load balancer for the cluster of Master Nodes. Comment this section
when using a third-party load balancer or deploying a single Master configuration.

The [masters] and [etcd] sections (lines 318 to 326 on Figure 6-15) must list all the
Master Nodes.

Note The most common configurations use the Master Nodes as the etcd Nodes.
Should dedicated etcd Nodes required, they should be listed in the [efcd] section.

The [nodes] section should list all the Master, Infrastructure, and Application Nodes
in the cluster. The Master Nodes should be tagged with the node-config-master group
name (see details in lines 330 to 332 on Figure 6-15). The Infrastructure Nodes should
be tagged with the node-config-infra group name (see details in lines 335 to 337 on
Figure 6-15). The Application Nodes should be tagged with the node-config-compute
group name (see details in lines 340 to 342 on Figure 6-15).

When deploying OCS in converged or hyperconverged mode, the [glusterfs] section
should be defined (see lines 313 and 347 to 351 on Figure 6-15) listing the Nodes
providing the raw devices or disks, to be used by OCS (see details in lines 349 to 351 on
Figure 6-15).

Sample Deployment Scenarios

Note This section will focus on three common infrastructure setups (see Table 6-2)
and document a prescribed deployment configuration for each one of them. There
are many other possible configurations not covered in this book.

Table 6-2. Sample OpenShift 3.11 Deployment Architectures in This Section

Masters App Nodes Infr Nodes LB
All-in-One 1 N/A N/A N/A
Non-HA 1 3 or more 1 N/A
Full HA 3 3 or more 20r3 1 or more

130

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Single Node Deployment (All-in-One)

Note This All-in-One (AlO) (see Figure 6-16) is not an officially supported

OCP deployment. The AlO configuration is considered a testing or development
environment. The Master, Infrastructure and Application Roles are deployed to a
single node (see Table 6-3).

Table 6-3. Sample OpenShift 3.11 All-in-One

Node Role FQDN Node IP Address
Master, Infra., and App Nodes ocp.example.com 192.168.1.10
Bastion bastion.ocp.example.com 192.168.1.5
Apps wildcard domain *.apps.ocp.example.com CNAME MASTER

HEe

@) ® ®
AUTOMATION CLUSTER DEVELOPERS APP OWNERS
& CI/CD TOOLS ADMIN

\ / http://<myapp>.apps.ocp.example.com « Q

Web Console :8443 - ROU 13 O
1 APP USERS
https:/focp.example.com:8443
1

LI [
LI A6

ALL-IN-ONE
NODE

Figure 6-16. OCP 3.11.x All-in-One configuration

131

CHAPTER6 DEPLOYMENT ARCHITECTURES

The All-in-One configuration executes all the OCP roles in a single Node. This particular
example is using an internal NFS server as the persistent storage. The openshift-ansible
installer will configure additional exports for the NFS based on the inventory file.

The corresponding Ansible inventory file for the All-in-One deployment will be
similar to Listing 6-4.

Note Using NFS as the persistent storage for infrastructure components like
Registry, Metrics, Logging, and so on is an unsupported configuration.

Listing 6-4. Ansible inventory file for All-in-One deployment

A A R A S e A S e A R A R e
#

All-in-One (AIO) SERVER WITH EMBEDDED NFS:

assume AIO node name: ocp.example.com

assume app wildcard name: *.apps.ocp.example.com

assume NFS server configure to export /srv/nfs

using docker or CRI-O

HOoH = OHF R

NOTE 2: Some services have been set to use xephemeralx storage

#
A
Configuring your inventory file

https://docs.openshift.com/container-platform/3.11/install/configuring
inventory file.html

[OSEv3:vars]

Hb B s B e A e e A D L B L
Ansible Vars

HAH A R R R T R A e R
timeout=60

ansible user=root

#ansible become=yes

132

CHAPTER 6 DEPLOYMENT ARCHITECTURES

S R S R R
OpenShift Basic Vars

R R R R N R e R N R e R N R e R R R R RSB IR R
Deployment type

openshift deployment type=openshift-enterprise

#openshift _deployment type=origin

WARNING: only disable these checks in LAB/TEST environments(Do not use in
production)
openshift disable check="disk availability,memory availability"

OpenShift Version(Always use sub-release for smoother upgrades):
openshift release=3.11.98

Deploy Operator Lifecycle Manager (Tech Preview)
openshift_enable olm=true

Enable NFS support for infrastructure components (unsupported)
openshift_enable unsupported configurations=true

T
Enable CRI-O
T T

#openshift_use crio=True
#fopenshift _use crio only=False
#openshift_crio_enable docker gc=True

A
OpenShift Registries Locations
S A A e A e S e e e e e

NOTE: Need credentials from: https://access.redhat.com/terms-based-
registry/

oreg url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg _auth _user={{REGISTY USER}}

oreg_auth_password={{REGISTRY_TOKEN}}

133

CHAPTER6 DEPLOYMENT ARCHITECTURES

For Operator Framework Images

openshift additional registry credentials=[{'host':'registry.connect.
redhat.com', 'user':'{{REGISTY USER}}', 'password’:'{{REGISTRY
TOKEN}}', 'test image':'mongodb/enterprise-operator:0.3.2"'}]

Update examples to point to oreg url
NOTE: change this if using disconnected install
openshift _examples modify imagestreams=false

NOTE: accept insecure registries and registries with self-signed certs
setup for lab environment
openshift_docker hosted registry insecure=true

S R R A R e A R e A S e R R e e
OpenShift Master Vars
e A A A R B A A B B A A B B A A L B B A A B B A A

openshift _master api port=8443
openshift _master console port=8443

Internal cluster name
openshift master cluster hostname=ocp.example.com

Default wildcard domain for applications
openshift_master default subdomain=apps.ocp.example.com

R
OpenShift Network Vars
A
Defaults

#osm_cluster_network cidr=10.1.0.0/16

#openshift_portal net=172.30.0.0/16

os_sdn_network plugin _name='redhat/openshift-ovs-networkpolicy'

S A S A D e A B e o e e e
OpenShift Authentication Vars
A A A R A A B A A S S B A A G B A A S B A R

134

CHAPTER 6 DEPLOYMENT ARCHITECTURES

htpasswd Authentication(Non-Priviledge UI User until formal identity
provider is used. For now htpasswd identity provider)

NOTE: read initial identities in htpasswd format from /root/htpasswd.
openshift

openshift master identity providers=[{'name': 'htpasswd_auth', 'login':
"true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

Using an external htpasswd file use this:

#fopenshift _master htpasswd file=/home/cloud-user/htpasswd.openshift

Embedding users in the configuration file use this syntax

Note: user==password for this example

openshift master htpasswd users={'ocpadmin':'$apr1$ZullQr.Y$6abuePAhKG0OiY8Q
DNWoq80"', 'developer ' : ' $apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew. '}

S A S A T A e A S e A A T R e
OpenShift Metrics and Logging Vars
e A A A B A A B B A A B B A A B B A A B B A A

ot B A A A

Prometheus Cluster Monitoring

HHEH R

https://github.com/openshift/openshift-docs/blob/master/install config/
monitoring/configuring-openshift-cluster-monitoring.adoc

https://github.com/openshift/openshift-docs/tree/enterprise-3.11/install _
config/monitoring

openshift cluster monitoring operator install=true
#openshift_prometheus_node selector={"node-role.kubernetes.io/
infra":"true"}

NOTE: Setup for lab environment

Enable persistent storage of Prometheus time-series data (default false)
openshift _cluster monitoring operator prometheus storage enabled=false

Enable persistent storage of Alertmanager notifications (default false)
openshift cluster monitoring operator alertmanager storage enabled=false

135

CHAPTER6 DEPLOYMENT ARCHITECTURES

R e

Cluster Metrics

HHHHHHHHHHHHHHHHHHH

https://github.com/openshift/openshift-docs/blob/enterprise-3.11/install
config/cluster metrics.adoc

openshift metrics install metrics=true

Store Metrics for 1 days
openshift metrics duration=1

openshift metrics storage kind=nfs

openshift metrics storage access modes=['ReadWriteOnce']
openshift_metrics_storage nfs_directory=/srv/nfs
openshift metrics storage nfs options="*(rw,root squash)’
openshift metrics storage volume name=metrics
openshift_metrics storage volume size=10Gi

openshift metrics storage labels={'storage': 'metrics'}

cassandra -- ephemeral storage (for testing)

openshift metrics cassandra_storage type=emptydir

openshift metrics cassandra_replicas=1

openshift metrics cassandra limits memory=2Gi

openshift metrics cassandra limits cpu=800m

openshift metrics cassandra nodeselector={"node-role.kubernetes.io/infra":
"true"}

hawkular

openshift metrics hawkular limits memory=2Gi

openshift _metrics hawkular limits_ cpu=800m

openshift metrics hawkular replicas=1

openshift metrics_hawkular nodeselector={"node-role.kubernetes.io/infra":
"true"}

heapster

openshift metrics heapster limits memory=2Gi

openshift metrics heapster limits cpu=800m

openshift metrics heapster nodeselector={"node-role.kubernetes.io/infra":
"true"}

136

CHAPTER 6 DEPLOYMENT ARCHITECTURES

R

Cluster Logging

HHEHHHHHHHHHHHHHHHHHH

https://github.com/openshift/openshift-docs/blob/enterprise-3.11/install
config/aggregate logging.adoc

install logging
openshift logging install logging=true

logging curator

openshift logging curator default days=1
openshift_logging curator cpu_limit=500m

openshift logging curator memory limit=1GCi

openshift logging curator nodeselector={"node-role.kubernetes.io/infra":
"true"}

Configure a second ES+Kibana cluster for operations logs
Fluend splits the logs accordingly
openshift logging use ops=false

Fluentd

openshift logging fluentd cpu_limit=500m
openshift_logging fluentd memory limit=1Gi

collect audit.log to ES

openshift _logging fluentd audit container engine=false

persistent storage for logs
openshift_logging storage kind=nfs

openshift logging storage access modes=['ReadWriteOnce']
openshift logging storage nfs_directory=/srv/nfs
openshift logging storage nfs_options='*(rw,root squash)’
openshift logging storage volume name=logging

openshift logging storage volume size=10Gi

openshift logging storage labels={'storage': 'logging'}

eventrouter
openshift logging install eventrouter=true

137

CHAPTER6 DEPLOYMENT ARCHITECTURES

openshift logging eventrouter nodeselector={"node-role.kubernetes.io/
infra": "true"}

Elasticsearch (ES)

ES cluster size (HA ES >= 3)
openshift logging es cluster size=1

replicas per shard

#openshift logging es number of replicas=1

shards per index
#fopenshift logging es number of shards=1
openshift logging es cpu limit=500m
openshift_logging es memory limit=1Gi

PVC size omitted == ephemeral vols are used
#openshift logging es pvc siz=10G

openshift logging es nodeselector={"node-role.kubernetes.io/infra": "true"}

Kibana

openshift logging kibana_ cpu_limit=500m

openshift logging kibana memory limit=1GCi

openshift_logging kibana_replica_count=1

expose ES? (default false)

openshift_logging es allow_external=false

openshift logging kibana_nodeselector={"node-role.kubernetes.io/infra":
"true"}

A A R B A R B A A G B A A G B A A G B A R
OpenShift Router and Registry Vars
AR

NOTE: Qty should NOT exceed the number of infra nodes
openshift _hosted router replicas=1

openshift_hosted registry replicas=1
openshift_hosted registry pullthrough=true
openshift hosted registry acceptschema2=true
openshift_hosted registry enforcequota=true

138

CHAPTER 6 DEPLOYMENT ARCHITECTURES

openshift_hosted registry storage kind=nfs

openshift _hosted registry storage access modes=['ReadWriteMany']
openshift_hosted registry storage nfs_directory=/srv/nfs

openshift _hosted registry storage nfs options="*(rw,root squash)'
openshift_hosted registry storage volume_name=registry
openshift_hosted registry storage volume size=10Gi

openshift _hosted registry selector="node-role.kubernetes.io/infra=true"

A
OpenShift Service Catalog Vars
HHEHHEHE A

default=true
openshift_enable service catalog=true

default=true
template service broker install=true
openshift template service broker namespaces=['openshift']

default=true
ansible_service broker install=true
ansible service broker local registry whitelist=['.*-apb$']

S R S A e e S e e e e e e
OpenShift Cockpit Vars and plugins
S A e A T A e A e A e A e e

Disable cockpit
osm_use_cockpit=false

T S A A
OpenShift Hosts

R e R P e A s A A e A e e
[OSEv3:children]

nfs

masters

etcd

nodes

139

CHAPTER6 DEPLOYMENT ARCHITECTURES

[nfs]
ocp.example.com

[masters]
ocp.example.com

[etcd]
ocp.example.com

[nodes]

All-In-One with CRI-O

#ocp.example.com openshift node group name='node-config-all-in-one-crio’
openshift node problem detector install=true

ocp.example.com openshift node_group name='node-config-all-in-one'
openshift node problem detector install=true

#
END OF FILE
#

Non-HA Control Plane Deployment

Table 6-4. Sample OpenShift 3.11 Non-HA Control Plane

Node Role FQDN Node IP Address
Master ocp.example.com 192.168.1.10

Infr Node inf1.ocp.example.com 192.168.1.15

App Node nodel.ocp.example.com 192.168.1.21

App Node node2.ocp.example.com 192.168.1.22

App Node node3.ocp.example.com 192.168.1.23
Bastion bastion.ocp.example.com 192.168.1.5

Apps wildcard domain *.apps.ocp.example.com CNAME INFR NODE

140

CHAPTER 6 DEPLOYMENT ARCHITECTURES

i Q e e‘ C(\/J\
D ©O O

AUTOMATION CLUSTER DEVELOPERS AP OWNERS APPUSERS

& CVCD TOOLS MIN '
,\\ _- _ — ‘,/‘7/ B hrp ff<myapp= apps.ocp. e:ample com

b ~
\ v - ROUTER \
1 B 1 1
I
]
[
. ! I I
]
]
I 1
]
1
]

MASTER \ E_/kg—/ . INFRASTRUCTURE !
o NODE K . \ NODE /

Figure 6-17. OCP 3.11.x Non-HA Control Plane configuration

i hitps:ilocp. example com:443 v ;
Web Console :443

Listing 6-5. Ansible Inventory file for Non-HA Control Plane deployment
(fragment)

Use the inventory file from Listing 6-6 with the following modifications
#<snip>

S A S A e A D A e o S e A e e e e
OpenShift Master Vars

A A R A A G B A A e B A A G B A A B A R
#<snip>

Internal cluster name

openshift _master cluster hostname=ocp.example.com

#<snip>
#openshift master cluster public hostname=ocp-ext.example.com

#<snip>
NOTE: Qty should match number of infra nodes
openshift_hosted router replicas=1

#<snip>
[OSEv3:children]
#1b

masters

etcd

nodes

glusterfs

141

CHAPTER6 DEPLOYMENT ARCHITECTURES

#[1b]
#1b1.example.com

[masters]

ocp.example.com

[etcd]

ocp.example.com

[nodes]

Master Nodes

ocp.example.com openshift node_group name='node-config-master' openshift_
node_problem detector install=true

Infrastructure Nodes

inf1.example.com openshift node_group name='node-config-infra' openshift_
node problem detector install=true

#<snip>

#

END OF FILE
#

Full-HA Control Plane Deployment

Table 6-5. Sample OpenShift 3.11 Full-HA Control Plane

Node Role FQDN Node IP Address
LB Ib.ocp.example.com 192.168.1.10
(public_hostname) console.ocp.example.com CNAME LB (outside)
(cluster_hostname) ocp-int.ocp.example.com CNAME LB (inside)
Master Node master1.ocp.example.com 192.168.1.11
Master Node master2.ocp.example.com 192.168.1.12
Master Node master3.ocp.example.com 192.168.1.13
Infr Node inf1.ocp.example.com 192.168.1.15
Infr Node inf2.0cp.example.com 192.168.1.16
(continued)

142

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Table 6-5. (continued)

Node Role FQDN Node IP Address
Infr Node inf3.ocp.example.com 192.168.1.17
App Node nodel.ocp.example.com 192.168.1.21
App Node node2.ocp.example.com 192.168.1.22
App Node node3.ocp.example.com 192.168.1.23
App Node nodeX.ocp.example.com 192.168.1.XX
Bastion bastion.ocp.example.com 192.168.1.5
Apps wildcard domain *.apps.ocp.example.com CNAME ENT LB
D O & SeLe)
AUTOWATION CLUSTER DEVELOPERS AP OWNERS APP USERS

& CI'CD TDOLS

\ /7 . \

https:lconsale ocp example com 443

’ hnps:ﬂocp-inl.ocp.auma.com:mé‘\
]

1
1
]
1
1
]
1
1

Figure 6-18. OCP 3.11.x Full-HA Control Plane configuration

Listing 6-6. Ansible inventory file for Full-HA Control Plane deployment

#

openshift-ansible inventory file for OpenShift Container
Platform 3.11.98

#

Details on configuring your inventory file
https://docs.openshift.com/container-platform/3.11/install/configuring
inventory file.html

[OSEv3:vars]
143

CHAPTER6 DEPLOYMENT ARCHITECTURES

S R e A e e R e e
Ansible Vars

HHHHHH
timeout=60

ansible user={{CHANGEME ANSIBLE SSH USER}}

ansible become=yes

R R
OpenShift Basic Vars

S R R A R A e A S A e R R e A R
Deployment type

openshift_deployment type=openshift-enterprise

WARNING: only disable these checks in LAB/TEST environments
#openshift_disable check="disk availability,memory availability"

OpenShift Version:
openshift release=3.11.98

Deploy Operator Lifecycle Manager (OLM)
openshift_enable olm=true

firewalld recommended for new installations (default is iptables)
#fos_firewall use firewalld=true

A
OpenShift Registries Locations
SHEEEAET ISP S PRS0 PSSR0 RS S E AR A 0 i

NOTE: Need credentials from: https://access.redhat.com/terms-based-
registry/

oreg url=registry.redhat.io/openshift3/ose-${component}:${version}
oreg auth user={{CHANGEME_REGISTRY SERVICE_ ACCOUNT}}
oreg_auth_password={{CHANGEME_SERVICE KEY}}

For Operator Framework Images

openshift additional registry credentials=[{'host':'registry.connect.
redhat.com', 'user':'{{CHANGEME REGISTRY SERVICE ACCOUNT}}', 'password’:'{{CH
ANGEME_SERVICE KEY}}','test image':'mongodb/enterprise-operator:0.3.2'}]

144

CHAPTER 6 DEPLOYMENT ARCHITECTURES

NOTE: accept insecure registries and registries with self-signed certs
setup for lab environment

openshift _docker hosted registry insecure=true
#fopenshift_docker insecure registries=<registry hostname>
#openshift_docker blocked registries=<registry hostname>

Update examples to point to oreg url -- enable if using disconnected
install
#openshift_examples_modify imagestreams=false

A A G A A e B A A G B A A G B A A G B A R
Enable dynamic storage provisioning

HHHHH A R
https://docs.openshift.com/container-platform/3.11/install config/
persistent storage/dynamically provisioning pvs.html

Note: required for OCS dynamic provisioning

openshift master dynamic_provisioning enabled=true

A
OpenShift Container Storage (0CS)

S R R A e e
https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/
openshift storage glusterfs

Deploy OCS glusterfs and create StorageClass
Note: default namespace = glusterfs
#openshift_storage glusterfs namespace=openshift-storage

openshift_storage glusterfs_storageclass=true
openshift storage glusterfs storageclass default=true

Enable Glusterfs Block Storageclass

openshift storage glusterfs block deploy=false
#openshift_storage glusterfs block host vol create=true

NOTE: host vol size is effectively an upper limit on the size of
glusterblock volumes

unless you manually create larger GlusterFS block-hosting volumes
#openshift storage glusterfs block host vol size=100

145

CHAPTER6 DEPLOYMENT ARCHITECTURES

#fopenshift_storage glusterfs block storageclass=true
#openshift_storage glusterfs block storageclass_default=false

#
Enable Glusterfs S3 (Tech Preview)
#

#fopenshift storage glusterfs s3 deploy=true
#openshift_storage glusterfs s3_account=s3testvolume

#openshift storage glusterfs s3 user=s3adminuser

#fopenshift storage glusterfs s3 password=s3adminpass
#openshift_storage glusterfs s3 pvc=dynamic

Size (Gi) of glusterfs backed PVC used for S3 object data storage
#openshift _storage glusterfs s3 pvc size=2

Size (Gi) of glusterfs backed PVC used for S3 object metadata storage
#openshift storage glusterfs s3 meta pvc size=1

GlusterFS version

openshift storage glusterfs version=v3.11
openshift storage glusterfs block version=v3.11
openshift storage glusterfs s3 version=v3.11
openshift storage glusterfs heketi version=v3.11

NOTE: https://docs.openshift.com/container-platform/3.11/install config/
persistent_storage/persistent storage glusterfs.html#install-advanced-
installer

NOTE: Using specific sub-releases tags for fixed bugs
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.
com/rhgs3/rhgs-server-rhel7

Container image to use for glusterfs pods
openshift_storage glusterfs_image="registry.access.redhat.com/rhgs3/rhgs-
server-rhel7:v3.11.2"

Container image to use for glusterblock-provisioner pod
openshift storage glusterfs block image="registry.access.redhat.com/rhgs3/
rhgs-gluster-block-prov-rhel7:v3.11.2"

146

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Container image to use for Gluster S3
openshift_storage glusterfs_s3_image="registry.redhat.io/rhgs3/rhgs-s3-
server-rhel7:v3.11.2"

Container image to use for heketi pods
openshift storage glusterfs heketi image="registry.access.redhat.com/rhgs3/
rhgs-volmanager-rhel7:v3.11.2"

If using a dedicated glusterfs registry storage cluster
openshift storage glusterfs registry version=v3.11

openshift storage glusterfs registry block version=v3.11
openshift storage glusterfs registry s3 version=v3.11

openshift storage glusterfs registry heketi version=v3.11

BHH R R
OpenShift Master Vars
S

openshift master api port=443
openshift master console port=443

Internal cluster name
openshift_master cluster hostname=ocp-int.example.com

Note: use if using different internal & external FQDN (i.e. using LB)
set the external cluster name here
openshift master cluster public_hostname=ocp-ext.example.com

NOTE: Specify default wildcard domain for applications
openshift master default subdomain=apps.example.com

Configure custom certificates
https://docs.openshift.com/container-platform/3.11/install config/
certificate customization.html

Audit log
https://docs.openshift.com/container-platform/3.11/install _config/master_
node_configuration.html#master-node-config-audit-config

147

CHAPTER6 DEPLOYMENT ARCHITECTURES

openshift master audit config={"enabled": true, "auditFilePath": "/
var/lib/origin/audit-ocp.log", "maximumFileRetentionDays": 7,
"maximumFileSizeMegabytes": 10, "maximumRetainedFiles": 3}

SHHHEHEIE TSRS SR
OpenShift Network Vars

S A S A e e D o e e T e
Defaults

#osm_cluster_network cidr=10.1.0.0/16

#fopenshift_portal net=172.30.0.0/16

OpenShift SDN with NetworkPolicy
os_sdn_network plugin_name='redhat/openshift-ovs-networkpolicy'

If using Calico SDN
#os_sdn_network_plugin_name=cni
#openshift use calico=true
#openshift _use openshift sdn=false

HHHH A R R
OpenShift Authentication Vars

S e A e e e e
Available Identity Providers

https://docs.openshift.com/container-platform/3.11/install config/
configuring authentication.html

B A A

htpasswd Authentication

FH

NOTE: read initial identities in htpasswd format from /root/htpasswd.
openshift

openshift master identity providers=[{'name': 'htpasswd auth', 'login':
"true', 'challenge': 'true', 'kind': 'HTPasswdPasswordIdentityProvider'}]

To define initial users directly in the inventory file:

Note: user==password for this example

openshift master htpasswd users={'ocpadmin':'$apr1$ZullQr.Y$6abuePAhKGOiY8Q
DNWoq80"', 'developer ' : ' $apr1$QE2hKzLx$4ZeptR1hHNP538zRh/Pew. '}

148

CHAPTER 6 DEPLOYMENT ARCHITECTURES

To use external htpassword file:
#openshift_master htpasswd _file=/root/htpasswd.openshift

A

OpenShift Cluster Monitoring, Metrics and Logging Vars

S A A A A e

R S iy

Cluster Monitoring

HHHHHHH R

https://docs.openshift.com/container-platform/3.11/install config/
prometheus cluster monitoring.html

Enable Prometheus, Grafana & Alertmanager
openshift cluster monitoring operator install=true

openshift cluster monitoring operator node selector={"node-role.kubernetes.

io/infra":"true"}

Setup storage allocation for Prometheus services
openshift cluster monitoring operator prometheus storage capacity=20Gi
openshift _cluster monitoring operator alertmanager storage capacity=2Gi

Enable persistent dynamic storage for Prometheus services
openshift _cluster monitoring operator_ prometheus storage enabled=true
openshift_cluster monitoring operator_alertmanager_ storage enabled=true

Storage class to use if persistent storage enabled

NOTE: it will use storageclass default if storage class not specified
#openshift_cluster monitoring operator prometheus storage class_
name="'glusterfs-storage-block"

#openshift cluster monitoring operator alertmanager storage class
name="'glusterfs-storage-block'

For custom config Alertmanager
https://docs.openshift.com/container-platform/3.11/install config/
prometheus cluster monitoring.html#fconfiguring-alertmanager

149

CHAPTER6 DEPLOYMENT ARCHITECTURES

T
Cluster Metrics
I A A

Deploy Metrics Server (used by HPA)
openshift metrics install metrics=true

Start metrics cluster after deploying the components
openshift metrics start cluster=true

openshift metrics hawkular nodeselector={"node-role.kubernetes.io/infra":
"true"}
openshift metrics cassandra nodeselector={"node-role.kubernetes.io/infra":
"true"}
openshift metrics heapster nodeselector={"node-role.kubernetes.io/infra":
"true"}

Store Metrics for 2 days
openshift metrics duration=2

Settings for Lab environment

openshift metrics cassandra pvc_size=10Gi
openshift metrics cassandra_replicas=1
openshift metrics cassandra_limits memory=2Gi
openshift metrics cassandra limits cpu=1000m

User gluster-block or glusterfs (dynamic)
#openshift metrics cassandra pvc_storage class name='glusterfs-storage-block'
openshift_metrics cassandra_storage type=dynamic

HHHH
Cluster Logging
FHEHHEHH

openshift logging install logging=true
openshift logging install eventrouter=true

openshift logging es pvc_dynamic=true
openshift_logging es pvc_size=20Gi
#openshift logging es pvc_storage class name='glusterfs-storage-block'

150

CHAPTER 6 DEPLOYMENT ARCHITECTURES

openshift logging es memory limit=4Gi
openshift_logging es cluster_ size=1

minimum age (in days) Curator uses for deleting log records
openshift logging curator default days=1

openshift_logging kibana_nodeselector={"node-role.kubernetes.io/infra":
"true"}

openshift logging curator nodeselector={"node-role.kubernetes.io/infra":
"true"}

openshift logging es nodeselector={"node-role.kubernetes.io/infra": "true"}
openshift logging eventrouter nodeselector={"node-role.kubernetes.io/
infra": "true"}

NOTE: If want to config a dedicated Elasticsearch for operation logs
https://docs.openshift.com/container-platform/3.11/install config/
aggregate logging.html#aggregated-ops

S A S T A A e A S A e A A A e
OpenShift Router and Registry Vars
A A A A B A A B B A AR B B A A B B A A B B A A

default selectors for router and registry services
openshift_router selector='node-role.kubernetes.io/infra=true’
openshift_registry selector="node-role.kubernetes.io/infra=true’

NOTE: Qty should match number of infra nodes
openshift_hosted router replicas=3

openshift_hosted registry replicas=1
openshift_hosted registry pullthrough=true
openshift_hosted registry acceptschema2=true
openshift_hosted registry enforcequota=true

openshift hosted registry storage kind=glusterfs
openshift _hosted registry storage volume size=10Gi
openshift_hosted registry selector="node-role.kubernetes.io/infra=true"

151

CHAPTER6 DEPLOYMENT ARCHITECTURES

A
OpenShift Service Catalog
SHEEEE I IS PSS PRS0 T SRS RSB 0EE AR A 0 i

Servie Catalog
openshift_enable service catalog=true

Template Service Broker (TSB)

Note: requires Service Catalog

template service broker install=true

openshift template service broker namespaces=['openshift']

Ansible Service Broker (ASB)

Note: requires TSB

ansible service broker install=true

ansible service broker local registry whitelist=['.*-apb$']

At A A A R B A A B B A A B B A A B B A A B B A A
OpenShift Hosts
HHHH A R R

[OSEv3:children]
1b

masters

etcd

nodes

glusterfs

[1b]
1b1.example.com

[masters]

masteri.example.com
master2.example.com
master3.example.com

[etcd]

masteri.example.com
master2.example.com
master3.example.com

152

CHAPTER 6 DEPLOYMENT ARCHITECTURES

[nodes]

Master Nodes

masteri.example.com openshift node group name='node-config-master’
openshift _node problem detector install=true

master2.example.com openshift node_group name='node-config-master'
openshift _node problem detector install=true

master3.example.com openshift node group name='node-config-master'
openshift node problem detector install=true

Infrastructure Nodes

infi.example.com openshift node group name='node-config-infra' openshift
node_problem_detector_install=true

inf2.example.com openshift node_group name='node-config-infra' openshift_
node problem detector install=true

inf3.example.com openshift node group name='node-config-infra' openshift_
node_problem detector install=true

App/Worker nodes

nodel.example.com openshift node group name='node-config-compute’
openshift _node problem detector install=true

node2.example.com openshift node_group name='node-config-compute’
openshift node problem detector install=true

node3.example.com openshift node group name='node-config-compute’
openshift _node problem detector install=true

Node Groups and custom Node Groups
https://docs.openshift.com/container-platform/3.11/install/configuring_
inventory file.html#configuring-inventory--node-group-configmaps

[glusterfs]

App/Worker nodes with OCS hyperconverged

nodel.example.com glusterfs devices='["/dev/xvdd", "dev/xvde", ...]'
node2.example.com glusterfs devices='["/dev/xvdd", "dev/xvde", ...]'
node3.example.com glusterfs devices='["/dev/xvdd", "dev/xvde", ...]'

#
END OF FILE
#

153

CHAPTER6 DEPLOYMENT ARCHITECTURES

Deploying OpenShift

Once the openshift-ansible inventory file is defined, the process to install OpenShift from
the Bastion Node is as shown in Listing 6-7.

Listing 6-7. Deploying OpenShift

The following steps assume the openshift-inventory file configuration is
saved as ./inventory_file in the local directory

Step 1: Validate Bastion Node can reach all the Nodes
$ ansible all -i inventory file -m ping

Step 2: Once Step 1 completes without errors, install pre-requisites
$ ansible-playbook -i inventory file /usr/share/ansible/openshift-ansible/
playbooks/prerequisites.yml

Step: 3: Once Step 2 completes without errors, deploy the OpenShift
cluster

$ansible-playbook -i inventory file /usr/share/ansible/openshift-ansible/
playbooks/deploy cluster.yml

Tip If the installation process fails during the initial deployment, it is
recommended to follow the uninstall procedure, correct the inventory file, and
redeploy again.

Uninstalling OpenShift

The openshift-ansible provides playbooks to uninstall an OpenShift deployment. To
remove any traces of OpenShift, follow the steps described in Listing 6-8.

Tip If the installation process fails during the initial deployment, it is
recommended to uninstall and redeploy again.

154

CHAPTER 6 DEPLOYMENT ARCHITECTURES
Listing 6-8. Uninstalling OpenShift

The following steps assume the openshift-inventory file configuration is
saved as ./inventory_file in the local directory

Step 1: Uninstall the OpenShift deployment and delete data on OCS disks.
ansible-playbook -i inventory file -e "openshift storage glusterfs wipe=true"
/usr/share/ansible/openshift-ansible/playbooks/adhoc/uninstall.yml

Step 2: Remove any leftovers configuration files
ansible nodes -i inventory file -m file -a "dest=/etc/origin state=absent"

#(optional): If the installation was using 3rd party CNI plugins remove any
leftovers from the CNI configuration
ansible nodes -i inventory file -m file -a "dest=/etc/cni state=absent”

Bastion Node as Admin Jumphost

Once the deployment is completed, OpenShift has a special account “system:admin”
with cluster-admin privileges that can be used to configure the platform. By default, this
privileged account is only available when logged in as root to a Master Node.

To use the Bastion Node for cluster-admin configurations, it is possible to copy the
certificate credentials (/root/.kube/config) from a Master Node into the Bastion Node
to enable the use of the “system:admin” account from the Bastion Node. Listing 6-9
documents a way to copy these credentials to the Bastion Node using the information
from the inventory file.

Listing 6-9. Bastion Node

The following step assume the openshift-inventory file configuration is
saved as ./inventory_file in the local directory

$ ansible -i inventory file masters[0] -b -m fetch -a "src=/root/.kube/
config dest=/root/.kube/config flat=yes"

155

CHAPTER6 DEPLOYMENT ARCHITECTURES

OpenShift 4.x Deployments (AWS)

The examples in this section have been tested and validated with OpenShift (OCP) 4.0
Developer Preview 3 on AWS.

Prerequisites

OpenShift 4.0 on AWS requires minimum preparation of the AWS environment.
1. Create a new DNS zone for OCP in AWS Route53' service.

a. Note: Entries created in the Route53 zone are expected to have
full resolution from the Nodes.

2. Prepare Bastion Node.

a. Configure the AWS credentials in the Bastion Node as per AWS
CLI"! documentation.

b. Testthe AWS configuration executing a query to validate the
DNS zone is listed of the following command:

i. aws route53 list-hosted-zones

c. Download the OpenShift 4 installer'” from the OpenShift
portal.

i. Atthe time of this writing, the official portal to download
the installer is https://cloud.openshift.com/clusters/
install

ii. Note: The OpenShift 4 installer is a single Go binary that
can be executed from any Linux or MacOS machine.

'YAWS Route53: https://console.aws.amazon.com/route53

"TAWS CLI Configuration: https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-
configure.html#cli-quick-configuration

"“The latest beta installer is available at https://github.com/openshift/installer/releases

156

https://cloud.openshift.com/clusters/install
https://cloud.openshift.com/clusters/install
https://console.aws.amazon.com/route53
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration
https://github.com/openshift/installer/releases

CHAPTER 6 DEPLOYMENT ARCHITECTURES

d. Download the Pull Secret for the OpenShift subscriptions.

i. Atthe time of this writing, the Pull Secret is generated and
available at the Developer Preview site:
https://cloud.openshift.com/clusters/install

e. Download and install the OpenShift 4 client (the oc client)
from the official mirror!s site.

OpenShift 4.x Deployment Architecture

The OpenShift 4.x deployment architecture uses the openshift-install command to
deploy OCP 4.x to the desired environment using one of two modes:

¢ User Provisioned Infrastructure (UPI): In this mode, the Nodes
are manually provisioned with a set of prerequisites. Then, by
a configuration process that has not been published, feed this
information to the openshift-install for it to deploy the OpenShift cluster.

o Atthe time of this writing, this mode is not yet available under the
Developer Preview release.

o Installer Provisioned Infrastructure (IPI): In this mode, the Nodes
are provisioned by the installer, and OpenShift is deployed as a series
of Kubernetes Operators on top of the provisioned Nodes.

o During the IPI installation, the installer provisions a bootstrap Node
it will use to instantiate the Master Nodes and the Worker Nodes.
Once the cluster is instantiated, the bootstrap Node is destroyed.

OCP4 Deployment to AWS (IPI Mode)

When deploying OCP4 into AWS, it uses the IPI mode. By default, this process deploys
an architecture of three Master Nodes and three Worker Nodes. The deployment
automatically distributes these Nodes across different AWS Availability Zones (AZ) in the
same AWS Region (see Figure 6-19).

30penShift 4 client can be downloaded from https://mirror.openshift.com/pub/
openshift-v4/clients/oc/4.1/

157

https://cloud.openshift.com/clusters/install
https://mirror.openshift.com/pub/openshift-v4/clients/oc/4.1/
https://mirror.openshift.com/pub/openshift-v4/clients/oc/4.1/

CHAPTER6 DEPLOYMENT ARCHITECTURES

C d O & OB

)@
AUTOMATION OC & KUBECTL H APP USERS
& CUCH TOOLS {CLIENT TOOLS) CLUSTER DEVELOPERS APP DWNERS H

, ADMIN) i

\ / \ /
Y / \ / H

\ / i

¢ H
. ¢ = hilpui<myapp>.apps.ocp.example.com
https:ffapi.ocp.example.com:6443 - hitp B 2pps.ocp.example.com

- hHpsiemyapp2>. apps.ocp.example.com
apps.cop.example.com ¢ <glher-urls> apps.ocp.example.com

*.apps.ocp.example.com (:80 & :443)

hittps:ifapi.ocp.example.com
(AP Server) 6443 & (Conlfig Server) 22623

Availability : Availability G Availability

Zone 2a Zone2b ° Zone2c _)
Zone 2a : Zone 2b ' Zone 2c

N MASTER NODES o
' WORKER NODES °

Figure 6-19. OCP4 Deployment to AWS (IPI Mode)

]
I
I
I
I
I
I
I
I
I
1

Note In OCP4 the Application Nodes are known as Worker Nodes. Both terms are
interchangeable.

As seen in Figure 6-19, the basic deployment does not use dedicated Infrastructure
Nodes and instead deploys two OpenShift Router instances into the Worker Nodes. The
Service resource definition for the Routers uses the Kubernetes LoadBalancer resource to
provision a classic AWS ELB load balancer to distribute the traffic among the OpenShift
Routers. This ELB receives the HTTP and HTTPS traffic to applications served by the
wildcard subdomain.

Note The wildcard subdomain is automatically configured by the installer
following the format *.apps.<ocp-route53-dns-zone>

Another difference from the OCP 3.11.x architecture is that only the Kubernetes API
server is exposed to the outside world directly from the Master Nodes. All other services,
including the Web Consoles, are published as Routes.

158

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Note There is an openshift-config-server service that is accessible directly on
Master Nodes but, when using IPl mode, this is not exposed outside the cluster.

Installing OCP4 on AWS
Standard Deployment

The standard OCP4 deployment is the single liner described in Listing 6-10 which will
prompt for basic information and proceed with the deployment.

Listing 6-10. Installing OpenShift 4 (standard)

Assuming prerequisites in place.

$ openshift-install create cluster

? SSH Public Key /Users/wcabanba/.ssh/id_rsa.pub

? Platform aws

? Region us-west-2

? Base Domain example.com

? Cluster Name ocp4demol

? Pull Secret [? for help] ssxx<Snip>sssss*x*

INFO Creating infrastructure resources...

INFO Waiting up to 30mOs for the Kubernetes API at https://api.ocp.example.
com:6443...

INFO API v1.12.4+0ba40le up

INFO Waiting up to 30m0s for the bootstrap-complete event...

INFO Destroying the bootstrap resources...

INFO Waiting up to 30m0s for the cluster at https://api.ocp.example.
com:6443 to initialize...

INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!

INFO Run 'export KUBECONFIG=/path/to/ocp4demo1l/auth/kubeconfig’ to manage
the cluster with 'oc', the OpenShift CLI.

INFO The cluster is ready when 'oc login -u kubeadmin -p <snip>' succeeds
(wait a few minutes).

159

CHAPTER6 DEPLOYMENT ARCHITECTURES

INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.ocp.example.com
INFO Login to the console with user: kubeadmin, password: <snip>

Customizing Standard Deployment

There is some minor customization possible by generating the installer configuration file
and editing parameters on it before running the installation.

The OCP4 installer provides the --dir flag to read or write the configuration
parameters to it. This provides a way to maintain multiple configurations on different
folders. To generate the installation configuration, follow the steps in Listing 6-11.

Listing 6-11. Generating the OCP4 installation file

Assuming prerequisites in place.

$ openshift-install create install-config --dir ocp4demol
? SSH Public Key /Users/wcabanba/.ssh/id_rsa.pub

Platform aws

Region us-west-2

Base Domain example.com

Cluster Name ocp

Pull Secret [? for help] ***x<snip>kkksxxx

N NV VW VYV

This command will prompt for any missing information it requires to generate the

configuration. The resulting configuration is similar to Listing 6-12.

Listing 6-12. The OCP4 installation file

apiVersion: vibeta4

baseDomain: example.com

compute:

- name: worker
platform: {}
replicas: 3

controlPlane:
name: master
platform: {}
replicas: 3

160

CHAPTER 6 DEPLOYMENT ARCHITECTURES

metadata:
creationTimestamp: null
name: ocp
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineCIDR: 10.0.0.0/16
networkType: OpenShiftSDN
serviceNetwork:
- 172.30.0.0/16
platform:
aws:
region: us-west-2
type: m4.large
pullSecret: <snip>
sshKey: |
ssh-rsa <snip>

From the output shown in Listing 6-12, it is relatively easy to identify core areas that
can be modified. From the output, it is clear where to change the number of replicas
to have more workers or change the Workers instance type. Additional customization
attributes can be found in the official OCP4 documentation.'.

To deploy using the customization, point the installer to the directory when executing
the installation. The exact flags when invoking the command are shown in Listing 6-13.

Listing 6-13. The deploying OCP4 with customizations

Assuming prerequisites are in place

$ openshift-install create cluster --dir ocp4demol
INFO Consuming "Install Config" from target directory
INFO Creating infrastructure resources.

<snip>

The rest of the output and process is similar to the one shown in Listing 6-10.

“AWS Customizations: https://docs.openshift.com/container-platform/4.0/installing/
installing_aws/installing-aws-customizations.html

161

https://docs.openshift.com/container-platform/4.0/installing/installing_aws/installing-aws-customizations.html
https://docs.openshift.com/container-platform/4.0/installing/installing_aws/installing-aws-customizations.html

CHAPTER6 DEPLOYMENT ARCHITECTURES

Deployment Progress

As part of the initial configuration for the environment, the installer extends the
DNS zone on AWS Route53 designated for OCP (see #1 on Figure 6-20) and creates a
subdomain for the new cluster using the cluster name as the subdomain (see #2 on

Figure 6-20).

In addition to the default AWS resources in the VPC (see #3 on Figure 6-20), the
installer allocates Elastic IPs, creates an ELB load balancer, and creates security groups
for the Nodes (see #4 on Figure 6-20).

1 Key Pairs

Instances
0 Placement Groups

Lawnch Tamplates

B Security Groups

Croate Hosted Zone o0
Dushboand
| Hosted zones Q X | | Al Types ' 4 Oinphapiog 110 2 wut of 2 Hosted Zones + 3
ith
F ek Dosmain Name o - Typs - Record SetCount- Comment Hasted Zone 1D
. ey Coudbrdge ok Pubic 2
Tramc poicies
Dep4cemaT Cloudbridge ink. ate & Maraged by Tomatom
Pokcy rocons é
Resources ' Account Attributes ¢
You are using the folowing Amizon EC2 resources in the US West (Oregon) regicn: Supported Puattorms
0 Running Instances 0 Hastic IPs e
0 Dedicated Hosts 0 Snapshots Dttt VPC
0 Volumes 0 Load Balancars
1 [S
Key Pairs 2 Security Groups. Rescurcs 1D length management
0 Placement Groups Console sxperiments
ECZ Dashbcard Resources ¢ Account Attributes g
Events.
‘You ane using the faiowing Amazon EC2 nesources in the US West (Onegon) region: Supported Pratfors
Tage e L ik
= 0 Runining Instances 4 Elastic IPs
Limits 0 Dedicated Hosts 1 Snapshots Default WPT
0 Volumes 2 Load Balancers

Fasource 10 length management
Corachs axperiments

Figure 6-20. OCP4 installation—allocating subdomain and EC2 resources

The installer continues by creating the Bootstrap and Master Nodes (see #1 on

Figure 6-21). The process takes several minutes.

162

CHAPTER 6 DEPLOYMENT ARCHITECTURES

e -
Events
Tags 4 [IQ Fne
Fieports
Hame. istance 1D - instanceType - Avadlability Zono -
umns
G ccpidemot.sph-master.1 LODBOSEBSESIATIS . b xlarge e
%) # i xlarge uswest2c
Laurch Terpisies £ 1B HOSEAMS0MEATOEZ i e [r—s
5pot Roauests i ocpidemal-wEh-bootvap HOZCOTISASERACE mlarge weweni2s
e
Everits
Tags « A
Reports
Name Instance B * Instance Type
Limits
i HIBRESREEE2ITIS... mAdarge g
| HOB4TaAOTRostnd) mddarge z
Lauren Tempiates |OSEAS0RBATOSCIEZ mé.darge g
Spot Requests HI2cTO5aSELRE00 i laege S
EC2 Dashboard - e
Evenits
Togs Q
s Name - instance 1D ~ ioatance Typs -
Limits
acpidema - ISh-master- 1 FODBUSELBHOTY I BE ™AL darge s west Jb
I- L ccphdemo!ABj6h-master-2 OBATAZIOTEee 883 A darge [Pa——
Launch T . HOSREAS0ARATOSCA0Z md darge L -weal-7 8
OZch TetaSsbdbr0s ™ large S -west-2a
Spot Requests

EC2 Dashboand =
RS S Lose
Evants
Tags A [agp (7] < 1to8ol8 o
Anports
Name Instance IO + imstance Typs - Avaliabllity Zone - Instance State - Status Checks - Alarm Status
Limits
o . o1 ABEh mnastor 1 | DREDSEBGESIITIE. . md Lo wesl 3t @ roeng @ 202 chacks ... None "
|) (ocpAdemo B Bh worker s weal- 2o-, . HORCTaSTI06E0004C mi large Lawest-Za @ rurming Z ingaizeg Mone L) 3
Ingtances S -
LOURCH TAMEA0S e s ocpldares | fh-satlar-2 I S T YT .-,,.-\....—::“-\..:.'?.E-..,—,._, & rusing : 212 chacky f_.\lnn; .
et L8 —-4”-:‘-:“ - £l ..._.._.,,_.. L 3 i large sl -_.‘_..: rrsing E initaliring Moo ,._.;f...,.}
ocpdder -1k h-masier0 HOSSA0aRATORCHIE md shuge el @ ruming O Hichecks.. Noow)
ocpdemo 118 Eh-bootsirap. HOZCOTISASGLRAE md lrge s-wesl-2a @ rursing © 22checks .. MNone ™
— — 1o0e
«ja @ 1io8als
Name = Instance 0 = Instance Type - Avallabiity Zome - I State - -
ocpadomo . i8h-maser. 1 LOnBOSELESSIITIL . md warge L 2 & running & 22checks .. None %
excpddima 1B o el 25 HOBcc IaSTIISNR0NGE el lnige i3 @ running O 22 echeckn Nore - .)
ocpddema | gh-masier OB4TaZ00TGen1ad) . xange UB-wesic @ running 22 checks . Mone -
i L I e e T T T L WL IN)
ocpddema 1 185h-master O OS9BI50BBAT0SCEAZ A angs uswest2a & runneg 22 checks ... None 1]
B aed Hoste ecpddemal-Bh-bootsirap HIZETISASE00LM08 mdlarge u-wertZe @ running O Nlchecks.. None %
ECZ Dashboard =
= [i P)
Tags « 19 @ 1t ¢ 108018
Faports
Nams Instanes O « instanco Type - Avallabiity Zoes - Inetance State - Stwtus Checks - Alwm Status
Limits
o 1.18/EM-master-1 a7 md st Ty @ rionieg 2 22 chucks None)
I- C oopd LI 2. md lage uswesh-Za @ running @ 2chwecks... None =
Lot PRipiatia ecpddemol -IBEN-master2 __HOBTIRTEeelatd . carge us-weal-3e & runneg © 22checks.. Moo Rl
R {: acphdema - 1Bh-wokar-us- wesl-2o- wﬂ:;!iﬁ!ﬂn _#ml s = e @ running _: E:Th r«::* “.'._.. .,}
‘acpddema (B 6h-master-0 T0HOBISonbaTca0] md marge swealia @ runneg © 22checks., None
e Hmuo (cphdnmat IBEN-bootuirap HOMBTHSASELANE md lge -l @ serminated Nore]

Figure 6-22. OCP4 installation—Worker Nodes

163

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Once the Checks under Status Checks are successful and all the instances in running
state (see #3 on Figure 6-21), the installer proceeds with the instantiation of the Worker
Nodes (see #1 on Figure 6-22).

After the Worker Nodes are in running state and have passed the Status Checks (see
#3 on Figure 6-22), it proceeds to terminate the Bootstrap Node (see #4 on Figure 6-22).

Configuring the Identity Provider

Once the cluster is successfully deployed, the installer displays the credentials for

the kubeadmin user (see Listing 6-10). This is a cluster-admin user equivalent to the
system:admin user in the OCP3.11 x clusters, but the kubeadmin user can log in to the
web console.

In OCP4, this is the user that configures and sets up the environment to enable other
services or functionalities. To enable other users to access the new OCP cluster, the
kubeadmin user must define a new identity provider.

Identify the console URL returned by the installer (see Listing 6-10) and access it
using a browser (see Figure 6-23).

RED HAT
OPENSHIFT

OPENSHIFT CONTAINER PLATFORM

Username [EIEEEREL] Welcome to the OpenShift Container Platform.

Login

Figure 6-23. OCP4 login screen—kubeadmin

While no identity provider is configured, when logged in as kubeadmin, there will be
a message indicating the need to configure an identity provider (see #2 on Figure 6-24).

164

CHAPTER 6 DEPLOYMENT ARCHITECTURES

Home

Projects

Figure 6-24. OCP4 OAuth configuration

From the same message, there is a link to the OAuth configuration (see #3 on
Figure 6-24).

At the OAuth configuration, the existing identity provider can be modified or a
new identity provider can be added (see Figure 6-25). At the time of this writing, the
Developer Preview version provides a wizard to configure the htpasswd and the OpenID
identity providers.

e 1. vl et e
ey

i iosa iy,
TR S - LTI

Identity Providers

i S roese cament & Downiond
2=

Identity Providers

o loentiny Provicers Found

Figure 6-25. OCP4 adding identity provider

165

CHAPTER6 DEPLOYMENT ARCHITECTURES

To add the htpasswd identity provider, select from the dropdown options (see
Figure 6-25), and a simple screen will provide a way to set up the name for the identity
provider and to upload the htpasswd file with the new user identities (see Figure 6-26).

The uploaded htpasswd file is converted into a Secret object and associated to the

corresponding identity provider resource definition (see Figure 6-26).

Add Identity Provider; HTPasswd

Figure 6-26. OCP4 configuring htpasswd identity provider

After a new identity provider is added to the system, the login screen will present
the options for a user to choose the identity provider they want to use to log in to the

platform.

166

CHAPTER 6 DEPLOYMENT ARCHITECTURES

RED HAT
QRENZHIFT

OPENSHIFT CONTAINER PLATFORM

Figure 6-27. OCP4 login screen with htpasswd identity provider

Summary

There are many ways to deploy OpenShift 3.11.x and OpenShift 4 clusters. This chapter
presented the most common scenarios that can be used to start deploying OpenShift
clusters.

With OCP 3.11.x, there is the option of using a huge single inventory file to set up the
parameters and features required for the deployment. The deployment model of OCP
3.11.x requires the pre-provisioning of the Nodes before starting a deployment. This
model allows for the cluster administrators to have fine control of the deployment and
features to enable since the very beginning.

OCP 4.x brings a paradigm shift which focuses on deploying the core components
in an HA configuration without much customization during the installation. Once the
cluster is operational, the cluster-admin user kubeadmin can be used to configure and
set up the parameters for all the features and elements required by the implementation.

Both deployment approaches have their advantages and disadvantages.
Independent from the deployment methodology, both provide ways to highly customize
the environment to fit the organization’s need.

Once the cluster is deployed, new users can be created, and further tuning of
the platform is possible. OpenShift supports granular role-based access control
(RBAC) capabilities while supporting self-service for regular users. These and other
administrative tasks are covered in Chapter 7.

167

CHAPTER 7

Administration

After deploying OpenShift platform as presented in Chapter 6, the administrative tasks
of the platform start. The interaction with an OpenShift cluster is governed by the
role-based access control (RBAC) objects. The RBAC determines whether a User is
authorized to perform a given action within a Project. A User is an account that is used to
interact with the OpenShift API. A User will be associated to one or more Groups that are
used to assign privileges to multiple users at the same time.

This chapter focuses on the main tasks of user management (basic user
management, groups, virtual users, and service accounts), security, quotas, and
templates, which are powerful features for enabling self-service capabilities.

User and Groups

There are several types of users in OpenShift. The default user types are documented in
Table 7-1.

169
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_7

CHAPTER 7 ADMINISTRATION

Table 7-1. OpenShift Virtual Groups

User Type Description

Regular Regular users are represented by the User object. This is the most common way users
users interact with OpenShift.

System This type of user is usually created automatically during the deployment and is used
users by the platform to interact with the OpenShift API.

Service The service accounts users are represented by the ServiceAccount object. These are

accounts special system users associated with projects. The service accounts can be created
automatically during Project creation or by a Project administrator.

Examples of some of the system users created during the deployment of OpenShift are
o Cluster administrators (i.e., system:admin)
e Per-node users (i.e., system:node:nodel.ocp.example.com)
e An anonymous user (system:anonymous)

During the creation of a new Project, OpenShift creates three service accounts that
are used when executing certain actions in the Project:

e system:serviceaccount:<project-name>:deployer
e system:serviceaccount:<project-name>:builder
e system:serviceaccount:<project-name>:default

To access OpenShift, every user must be authenticated (i.e., using access tokens,
certificates, etc.). The policy associated to the User object determines what the user is
authorized to do in the cluster. When the user is authenticated, the policy associated
to the User dictates the authorizations. When the API receives a request with no
authentication or invalid authentication, these requests are processed as a request by the
anonymous user system:anonymous.

Virtual Groups and Virtual Users

OpenShift provisions a series of system groups as the base classification for any user
interacting with the platform. These special groups are referred to as Virtual Groups.
Similarly, there is a special Virtual User used to identify for anonymous interactions.
Table 7-2 lists the Virtual Groups and Virtual Users.

170

http://node1.ocp.example.com

CHAPTER 7 ADMINISTRATION

Table 7-2. OpenShift Virtual Groups

Virtual Group or Virtual User Description

system:authenticated This Virtual Group represents all the authenticated users.

system:authenticated:oauth This Virtual Group represents authenticated users with an OAuth
access token.

system:unauthenticated This Virtual Group represents all the unauthenticated users.

system:anonymous This Virtual User is used in conjunction with the

system:unauthenticated Virtual Group to represent an
unauthenticated user interacting with the OpenShift API.

Authentication, Authorization, and OpenShift RBAC

The OpenShift Master has a built-in OAuth server' used by the users to obtain an access
token to interact with the API. The request for an OAuth token must specify the OAuth
client that will receive and use the token (see Table 7-3).

Table 7-3. OpenShift OAuth Clients

OAuth Clients Description
openshift-web-console Request tokens to use for the web console
openshift-browser-client Token requests at https://<master>/oauth/token/request with a

user-agent that can handle interactive logins

openshift-challenging-client Token requests with a user-agent that supports OAuth
WWW-Authenticate challenges.

When a new OAuth Token request arrives to the OAuth server (#2 on Figure 7-1), the
OAuth server uses the identity provider to determine the identity of the user making the
request (#3 on Figure 7-1). Once the user identity is established, it maps the identity to
the corresponding User (#4 on Figure 7-1). After successfully mapping the identity to the
User, the OAuth server creates a token for that User and returns it to the original requester.

'OpenShift OAuth Server: https://docs.openshift.com/container-platform/3.11/
architecture/additional concepts/authentication.html#oauth

171

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth

CHAPTER 7 ADMINISTRATION

e request_auth_token —
[2) web-console OAuth Server "“9,
@ ' return_auth_token ° :
PLATFORM '

ADMIN OR USER

¥
Authorization

_ (Openshift RBAC) [
'-,_‘__OpenShlft Master Node

Figure 7-1. Sample flow for an OAuth Token request

Note OpenShift supports the use of Service Account as OAuth clients? and the
addition of OAuth client? definitions.

RBAC

The RBAC objects determine if a user is allowed to perform a specific action within a
Project. The RBAC authorization is comprised of Rules, Roles, and Bindings (see Table 7-4
for more details).

Table 7-4. Authorization Constructs

Construct Description

Rules Represent the Verbs permitted on a set of Kubernetes and OpenShift objects.
Roles Represent a collection of policy Rules. Users and Groups can be associated to multiple
Roles at the same time.

Bindings Represent the association of Users or Groups with a Role.
Verb The Verbs are get, list, create, update, delete, delete collection, or watch.

[dentity Represents the User Name and the list of Groups the User belongs to.

2Using Service Account as OAuth client: https://docs.openshift.com/container-platform/
3.11/architecture/additional concepts/authentication.html#service-accounts-as-
oauth-clients

To define additional OAuth clients, refer to https://docs.openshift.com/container-
platform/3.11/architecture/additional concepts/authentication.html#oauth-clients

172

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth-clients
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authentication.html#oauth-clients

CHAPTER 7 ADMINISTRATION

There are two levels of RBAC authorization in an OpenShift Cluster (see Table 7-5 for
details).

Table 7-5. Levels of RBAC Authorizations

Construct Description

Cluster Refers to Roles and Bindings that are applicable cluster-wide and not scoped to a
RBAC particular Project. Cluster Role Bindings can only reference Cluster Roles (Roles that
exist cluster-wide).

Local RBAC Refers to Roles and Bindings scoped to a particular Project. Local Role Bindings can
reference Cluster Roles or Local Roles (Roles that only exist in a Project).

Default Cluster Roles

OpenShift predefines a series of default Cluster Roles (see Table 7-6) that can be bound to
Users or Groups. In addition, a cluster-admin user can define additional Roles.

Table 7-6. Default Cluster Roles

Default Cluster Role Description

cluster-admin A super-user that can perform any action on any Project.
Note: When the cluster-admin Role is bound to a User with a Local Binding, that
user will have full control over quota and actions on every resource in the Project.

admin A Project manager.
Note: When used in a Local Binding, a User with admin Role will have rights
to view and modify any resource in the Project (except for Quota).

basic-user A user that can get basic information about Projects and Users.

cluster-status A user that can get basic cluster status information.

edit A user that can modify most objects in a Project but does not have rights to
view or modify Roles or Bindings.

self-provisioner A user that can create their own Projects.

view A user who can see, but not modify, most objects in a Project. They cannot

view or modify Roles or Bindings.

cluster-reader A user who can read, but not view, objects in the cluster.

173

CHAPTER 7 ADMINISTRATION

Security Context Constraints

OpenShift provides granular control of the actions and access of a Pod with the
capabilities provided by the Security Context Constraints (SCC).

The SCC objects define the conditions that a Pod must met in order to be accepted
into the system. The SCC controls the following:

1. Ability to run privileged Containers

2. Additional capabilities that can be requested by a Container
3. Ability to use Host directories as Volumes

4. SELinux context of the Container

5. The User ID

The use of Host namespaces and networking

Allocating an FSGroup* that owns the Pod’s Volumes

® N @

Configuring allowable supplemental Groups

9. Requiring the use of a read-only root filesystem
10. Controlling the usage of Volume types
11. Configuring allowable SECCOMP profiles

OpenShift defines seven default SCC in a cluster. These default SCC are listed on
Figure 7-2.

Figure 7-2. List of default SCC

By default, authenticated users are granted access to the restricted SCC (line #10 on
Figures 7-2 and 7-3), while cluster administrators, Nodes, and the build controller are
granted the privileged SCC (line #9 on Figure 7-2).

“The FSGroup defines Pod’s “file system group” ID, for more information refer to the
documentation at https://docs.openshift.com/container-platform/3.11/install config/
persistent storage/pod_security context.html#fsgroup

174

https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/pod_security_context.html#fsgroup
https://docs.openshift.com/container-platform/3.11/install_config/persistent_storage/pod_security_context.html#fsgroup

16

44
45

$ oc get --export scc/restricted -o yaml
allowHostDirVolumePlugin: false
allowHostIPC: false
allowHostNetwork: false
allowHostPID: false
allowHostPorts: false
allowPrivilegeEscalation: true
allowPrivilegedContainer: false
allowedCapabilities: null
apiVersion: security.openshift.io/vl
defaultAddCapabilities: null
fsGroup:

type: MustRunAs
groups:
- system:authenticated
kind: SecurityContextConstraints
metadata:

annotations:

CHAPTER 7 ADMINISTRATION

kubernetes.io/description: restricted denies access to all host features and requires
pods to be run with a UID, and SELinux context that are allocated to the namespace. This
is the most restrictive SCC and it is used by default for authenticated users.

creationTimestamp: null
name: restricted

selflink: /apis/security.openshift.io/vl/securitycontextconstraints/restricted

priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities:
- KILL
- MKNOD
- SETUID
- SETGID
runAsUser:
type: MustRunAsRange
seLinuxContext:
type: MustRunAs
supplementalGroups:
type: RunAsAny
users: []
volumes:
- configMap
- downwardAPI
- emptyDir
- persistentVolumeClaim
- projected
- secret

Figure 7-3. The “restricted SCC” definition

175

CHAPTER 7 ADMINISTRATION

As it can be seen from the restricted SCC definition (Figure 7-3), this SCC enforces
the following restrictions:

e Pods cannot run as privileged (line #8 on Figure 7-3).
e Pods cannot use Host directory Volumes (lines #39 to #45 on Figure 7-3).

e Podsrun as a user in a preallocated range of UID (lines #32 and #33
on Figure 7-3).

o Pods run with a preallocated SELinux MCS label (lines #34 and #35
on Figure 7-3).

e Pods can use any supplemental Group (lines #36 and #37 on
Figure 7-3).

The SCC strategies® are settings and strategies that fall into three categories:
o Controlled by a boolean (default to the most restrictive value)
o Controlled by an allowable set specifying the allowed values

o Controlled by a strategy in which a mechanism generates the value
and ensures the value is allowed (see Table 7-7)

Table 7-7. SCC Strategies

SCC Strategy Options

RUNASUSER MustRunAs, MustRunAsRange, MustRunAsNonRoot, RunAsAny
SELINUXCONTEXT MustRunAs, RunAsAny

SUPPLEMENTALGROUPS MustRunAs, RunAsAny

FSGROUP MustRunAs, RunAsAny

volumes azureFile, azureDisk, flocker, flexVolume, hostPath, emptyDir,

gcePersistentDisk, awsElasticBlockStore, gitRepo, secret, nfs, iscsi,
glusterfs, persistentVolumeClaim, rbd, cinder, cephFS, downwardAPI, fc,
configMap, vsphereVolume, quo byte, photonPersistenDisk, projected,
portworxVolume, scalelO, storageos, “*”, none

*Details about the SCC Strategies: https://docs.openshift.com/container-platform/3.11/
architecture/additional concepts/authorization.html#fauthorization-SCC-strategies

176

https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authorization.html#authorization-SCC-strategies
https://docs.openshift.com/container-platform/3.11/architecture/additional_concepts/authorization.html#authorization-SCC-strategies

CHAPTER 7 ADMINISTRATION

SECCOMP Profiles

SECCOMP (secure computing mode) is a security facility in the Linux Kernel that
allows a system administrator to limit access by Containers to the system features. The
combination of restricted and allowed calls are arranged in profiles. Different profiles
can be passed to different Containers. This provides a fine-grained control over the
syscalls available from a Container.

Note SECCOMP is a Kernel feature, and as such, it must be enabled® on the
system.

To enable SECCOMP for a Pod, the following annotations are required in the Pod
configuration:

e seccomp.security.alpha.kubernetes.io/pod: <unconfined>

o container.seccomp.security.alpha.kubernetes.io/<container_
name>: <localhost/profile name>

In addition, edit the /etc/origin/node/node-config.yaml to define the seccomp-
profile-root directory where the local SECCOMP profiles will be stored. (See Listing 7-1.)

Listing 7-1. Defining SECCOMP profiles directory

Edit /etc/origin/node/node-config.yaml
kubeletArguments:

seccomp-profile-root:
- "/path/to/seccomp/profiles”
Restart the Node services
$ sudo systemctl restart atomic-openshift-node

To control the SECCOMP profiles that may be used in the OpenShift platform and
to set the default SECCOMP profile, configure the SCC with the seccompProfiles field.
When using a custom SECCOMP profile, the format for the field is localhost/<profile-
name>. (See Listing 7-2.)

To check if SECCOMP is enabled, consult the documentation at https://docs.openshift.com/
container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp

177

https://docs.openshift.com/container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp
https://docs.openshift.com/container-platform/3.11/admin_guide/seccomp.html#seccomp-enabling-seccomp

CHAPTER 7 ADMINISTRATION

Listing 7-2. Configuring SECCOMP in SCC profiles

seccompProfiles:
- localhost/<profile-name>

Enabling Unsafe SYSCTL

When SYSCTL are namespaced, their value can be set independently for each Pod. This
is arequirement for SYSCTLS to be accessible in a Pod within Kubernetes.
A SYSCTL is considered safe for a Pod if

¢ Does not influence any other Pod on the Node
e Does not harm the Node’s health

e Does not gain CPU or memory resources outside the resource limits
of a Pod

All safe” SYSCTLS are enabled by default. All other SYSCTLS are considered unsafe
and are disabled by default. A user with cluster-admin privileges can manually enable
unsafe SYSCTLS on a per-node basis.

Enabling unsafe sysctls requires modifying the kubeletArguments on the /etc/
origin/node/node-config.yaml in the Nodes that will be supporting the unsafe
SYSCTLS (see Listing 7-3).

Listing 7-3. Enabling unsafe SYSCTLS

Edit /etc/origin/node/node-config.yaml
kubeletArguments:

allowed-unsafe-sysctls:
- "kernel.msgx,net.ipv4.route.min_pmtu"
Restart the Node services
$ sudo systemctl restart atomic-openshift-node

The configuration of SYSCTLS for a Pod is done by setting the values under the
securityContext in the Pod configuration (see Listing 7-4).

"For additional information of safe vs. unsafe sysctls, refer to https://docs.openshift.com/
container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts

178

https://docs.openshift.com/container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts
https://docs.openshift.com/container-platform/3.11/admin_guide/sysctls.html#safe-vs-unsafe-sysclts

CHAPTER 7 ADMINISTRATION

Note There is no distinction between safe and unsafe sysctls in the Pod
configuration.

Listing 7-4. Example setting SYSCTLS for Pod

apiVersion: vi
kind: Pod
metadata:
name: sysctl-example
spec:
securityContext:
sysctls:
- name: kernel.shm rmid forced
value: "0"
- name: net.ipv4.route.min_pmtu
value: "552"
- name: kernel.msgmax
value: "65536"

Note A Pod using unsafe SYSCTLS will fail to run on any Node where the unsafe
SYSCTLS have not been explicitly enabled.

Identity Providers

Configuring the identity provider® for the built-in OAuth server can be done during the
installation or after the installation.

8Additional details on configuring identity providers: https://docs.openshift.com/container-
platform/3.11/install_config/configuring authentication.html#identity-providers-
configuring

179

https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring
https://docs.openshift.com/container-platform/3.11/install_config/configuring_authentication.html#identity-providers-configuring

CHAPTER 7 ADMINISTRATION

The OpenShift 3.11.x supported identity providers are

Deny All: Default identity provider. Denies access for all usernames
and passwords.

Allow All: Allows access to any non-empty username with any non-
empty password to log in. Used for testing purposes. (Used as default
if running without a master configuration file.)

HTPasswd: Validates usernames and passwords against a flat file
generated using hipasswd.

Keystone: Uses the OpenStack identity project for authentication.

LDAP: Validates usernames and password against an LDAPv3 server
using simple bind authentication.

Basic Authentication (remote): Allows users to log in to OpenShift
with credentials validated against a remote identity provider. (Must
use an HTTPS connection to remote server.)

Request Header: Identifies users from request header values like
X-Remote-User.

GitHub: Uses the OAuth authentication from GitHub.

GitLab: Uses the OAuth authentication from GitLab (versions 7.7.0 to
11.0). If using GitLab version 11.1 or later, use the OpenID Connect.

Google: Uses Google’s OpenID Connect integration.

OpenlID Connect: Integrates with an OpenID Connect identity
provider.

The configuration of the identity provider uses a mappingMethod to define how new

identities are mapped to users when they log in to OpenShift. The value will be one of the

following:

180

claim: Provisions a user with the identity’s preferred user name. Fails
if a user with that user name is already mapped to another identity.
(This is the default configuration.)

CHAPTER 7 ADMINISTRATION

o lookup: Looks up an existing identity, user identity mapping, and
user. It does not provision users or identities if they don’t exist. Using
this method requires cluster administrators to set up identities and
users manually or by an external process.

o generate: Provisions a user with the identity’s preferred user name.
If a user with the preferred user name already exists, a unique user
name is generated (i.e., username2).

e add: Provisions a user with the identity’s preferred user name. If a
user with that user name already exists, the identity is mapped to
the existing user. (Required when multiple identity providers are
configured that identify the same set of users.)

Managing Users and Groups

The creation of a user depends on the configuration of the mappingMethod in the identity
provider. The manual creation of a user is as shown in Listing 7-5.

Listing 7-5. Manual creation of a user
$ oc create user <username> --full-name="User Name"

Managing the roles, groups, and SCC for a user can be done with the oc client
command with the options as shown in Figure 7-4.

181

CHAPTER 7 ADMINISTRATION

1 % oc adm policy
2 Manage policy on the cluster

4 These commands allow you to assign and manage the roles and policies that apply to users. The reconcile commands allow

you to reset and upgrade your system policies to the latest default policies.

5
6
7 To see more information on roles and policies, use the ‘get' and 'describe' commands on the following resources:
8 ‘clusterroles’, 'clusterpolicy', 'clusterrolebindings', 'roles', 'policy', ‘rolebindings', and 'scc'.

9

18 Usage:

11 oc adm policy [flagsl .

12

13 Discover: .

14 who-can List who can perform the specified action on a resource
15 scc-subject-review Check whether a user or a ServiceAccount can create a Pod.
16 scc-review Checks which ServiceAccount can create a Pod

17

18 Manage project membership: .

19 remove-user Remove user from the current project

20 remove-group Remove group from the current project

21
22 Assign roles to users and groups: .

23 add-role-to-user Add a role to users or serviceaccounts for the current project
24 add-role-to-group Add a role to groups for the current project

25 remove-role-from-user Remove a role from users for the current project

26 remove-role-from-group Remove a role from groups for the current project

27
28 Assign cluster roles to users and groups: .

29 add-cluster-role-to-user Add a role to users for all projects in the cluster

30 add-cluster-role-to-group Add a role to groups for all projects in the cluster

3 remove-cluster-role-from-user Remove a role from users for all projects in the cluster

32 remove-cluster-role-from—-group Remove a role from groups for all projects in the cluster

33

34 Manage policy on pods and containers: .

35 add-scc-to-user Add security context constraint to users or a service account
36 add-scc-to-group Add security context constraint to groups

37 remove-scc-from-user Remove user from scc

38 remove-scc-from-group Remove group from scc

39

48 Upgrade and repair system policy: .

41 reconcile-cluster-roles Update cluster roles to match the recommended bootstrap policy
42 reconcile-cluster-role-bindings Update cluster role bindings to match the recommended bootstrap policy
43 reconcile-sccs Replace cluster SCCs to match the recommended bootstrap policy
44

45 Use “oc adm policy <command> --help" for more information about a given command.
46 Use "oc adm options" for a list of global command-line options (applies to all commands).

Figure 7-4. Manage user roles, groups, and SCC

Using Service Accounts

Service Accounts (SA) provide a flexible way to control API access without sharing a
regular User credential.

The user name of a Service Account (SA) is derived from its Project and name (see
Listing 7-6). The Service Account can be granted Roles (see Listing 7-6) as any other user
in the system.

182

CHAPTER 7 ADMINISTRATION
Listing 7-6. Assigning Roles to Service Account

Format of a Service Account name
system:serviceaccount:<project-name>:<name>

Assigning Role to a Service Account

$ oc policy add-role-to-user <role-name> system:serviceaccount:<project-
name>:<name>

Assigning Role to a Service Account from the Project it belongs to

$ oc policy add-role-to-user <role-name> -z <SA-name>

Each Service Account belongs to two groups:
o system:serviceaccount
o system:serviceaccount:<project-name>

During the creation of a new Service Account,® the system ensures to add two secrets
to it (see Listing 7-7):

e An API token

o Credentials for the OpenShift Container Registry

Note The generated API token and registry credentials do not expire. If the secret
is deleted, a new one is automatically generated to replace it.

Listing 7-7. Creating a Service Account

Creating a Service Account name

$ oc create sa sa-demo (or) oc create serviceaccount sa-demo
serviceaccount/sa-demo created

$ oc describe sa sa-demo

Name: sa-demo
Namespace: demo
Labels: <none>
Annotations: <none>

Additional information about Service Accounts https://docs.openshift.com/container-
platform/3.11/dev_guide/service _accounts.html

183

https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html
https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html

CHAPTER 7 ADMINISTRATION

Image pull secrets: sa-demo-dockercfg-rj875
Mountable secrets: sa-demo-token-xph4v
sa-demo-dockercfg-rj875
Tokens: sa-demo-token-txlcq
sa-demo-token-xph4v
Events: <none>

To associate a ServiceAccount to a Pod, use the serviceAccountName under the Pod’s
spec definition (see Listing 7-8).

Listing 7-8. Creating a Service Account

apiVersion: vi
kind: Pod
metadata:
name: demo-pod
spec:
serviceAccountName: sa-demo

The API tokens from the ServiceAccount associated to the Pod are mounted as a file
at /var/run/secrets/kubernetes.io/serviceaccount/token inside the Container.

Note The default ServiceAccountis used when no explicit ServiceAccount is
specified in the Pod definition.

Quotas and Limit Ranges

Quotas and Limit Ranges are objects that can be set by a cluster administrator to limit the
number of objects or amount of compute resources that are used by a particular Project.
While LimitRanges specify the limits of compute resources in a Project on per-object
basis, Quotas act as the upper limit for the total compute resources or number of objects
in the Project.

184

CHAPTER 7 ADMINISTRATION

LimitRange object can set up compute resource constraints in a Project at the

following level:
e Pod
o Container
o Image
e ImageStream

e PersistentVolumeClaim

To apply a LimitRange'® to a Project, create the object definition with the
specification (see definition in Figure 7-5).

5 oc create -f demo-limit-range.yaml -n demo

limit=-range created

imitrange/demo
$ oc describe limitrange demo-limit-range
Name: demo-limit-range
Namespace: demo

Type Resource

cp

memo

nemory

Cpu
t.io/Image stor
ft.io/ImageStream £ o/ ima

Min

108

Max Default Request Default Limit Max Limit/Request Ratio

161 18eMi 200M1
2 20em 308m
161

20

30

Figure 7-5. Creating and verifying LimitRange

All resource creation or modification requests are checked against the LimitRange in
the Project. The resource creation or modification is rejected if it violates the constraints

(see Figure 7-6).

%Additional information about creating LimitRange: https://docs.openshift.com/container-
platform/3.11/admin_guide/limits.html#creating-a-limit-range

185

https://docs.openshift.com/container-platform/3.11/admin_guide/limits.html#creating-a-limit-range
https://docs.openshift.com/container-platform/3.11/admin_guide/limits.html#creating-a-limit-range

CHAPTER 7 ADMINISTRATION

1 apiVersion: "v1" ple pockod

2 kind: "LimitRange"

S et adnie: Resource Limits: podcool

4 name: "deno-linit-range" o e e

5 spec: Learn Mocecr

6 limits: =

7 - type: “Pod"

8 max: [""‘"“‘

9 cpu: "2 L : [rscores]
10 memory: “1Gi* The i ameunt of CPU 1 container i fuarantied
11 min: Can't b s than 100 rill ganes,
12 cpu: “2é0m" Lkt
B memory: “6M1" (= 3
14 = type: "Container" Thie FuiTum Smeunt of CPL tha Santaine: | Mowed 15 USe whn nunming
15 max: Can't be greater than 2 cores.
16 cpu: "2 e Limit canret e more than 10 Emnes request value. (Reguess: 1 milicare, it 3000 miicores)
17 memory: “16i" A —
18 min: Memony
19 cpu: "180m"
20 memory: "4Mi® anacas
21 default: B : Jue
2 cpu: "30&" The minimoum amcunt of memony the containes & guaranteed.
2 memory: "208Mi" Can't be less than 4 ME.
24 defaultRequest: Ly
25 cpu: “2008" \\ [_ _ e -]
26 memory: “100Mi" * The maxmum amount of MEmony the cantsner s akwed 10 L3¢ when running
27 maxLimitRequestRatio: Conv ba grwrens than 1 GI8,
28 cpu: "18" What are M7
29 X “"M: Dp!ﬂsnlft.loﬂlaﬂe CFU reques: total for all containers is iess than pod minimum (200 milicores).
30 max: el e g .

. Miemory request 10tal for 3 containers is et than pod minimum {5 MEL

:;;l e tf;:?r::l.ﬁ:g:t.ioﬂlaﬂehma Memary liric total for all containers ks graater than ped masdmum {1 GE)
33 max: Pause routs for this Sepioymert contiy
34 openshift. io/image-tags: 20 Pausing hets you ke charges without {riggering rolou. You can resunme rolouts o any bene. if unchecked. o new
35 openshift.io/images: 3@ ralout will start on save.
26

Figure 7-6. LimitRange and its effect on Pod requests

The ResourceQuota object is used to set up Project-level Quota to limit the number of
objects in a Project or the total Limits for a Project. Figure 7-7 shows an example defining
and verifying the creation of a ResourceQuota.

1 apiVersion: vl 1 $ oc create -f demo-quota.yaml -n demo
2 kind: ResourceQuota 2 resourcequota/demo-quota created
3 metadata: 3 ;
4 name: demo-guota 4 $ oc describe resourcequota demo-quota
5 Name: demo-quota
5 spec:
6 R 6 Namespace: demo
i 7 Resource Used Hard
i pods: "“3" i et TN
8 requests.cpu: "300m" 9 limits.cpu 0 2
9 requests.memory: 512Mi 10 limits.memory '] 2G1
10 limits.cpu: “2" 11 pods 1 3
11 Limits.memory: 2Gi 12 requests.cpu 8 300m
12 13 requests.memory @ 512Mi

Figure 7-7. Definition and creation of ResourceQuota

When a particular request for creation or modification of a resource violates a Quota,
the system will prevent the creation or modification of the resource (see Figure 7-8).

186

CHAPTER 7 ADMINISTRATION

[

[3 1 podeosl,.150a12) " DeploymentConfig i Mormal ReplicationControllerScaled deploymentconfig-cont
1ler Scoled replication controller "podcool- 1érun to 4 g
3m f Pod Mormal Scheduled defoult-scheduler

3m podcool - 1-whio) .
.Sucusi\‘ully asslmed demo/podocol -1-shimj to ocp-nd. shift.zone

3m podeeol-1.159a1212065F02 42 ReplicationContraller Hormal SuccessfulCreate replication-controlle

T P . v
3 Rieg \mtloﬂ:mtrnl'ler Warning FailedCreate replication-controll
forbiddenfl exceeded qwta. mo-quota, requested: requests.cpu-200e, ud reguests. cpu=200m, lisited: 5. Cpun=30@n

s et ar T T S e
Error creating: pods "podcool -1 ¢ exceeded quot,a dm -quota, requested: requests.cpu=200e, uscd requests. cpu=208m, limited: requests.cpu=398m

3m 3m podcool-1. 159a1212dabeal dé ReplicationController Warning FailedCreate replication-controlle:
Error creating: podi "podcool-1-26s7r" is forbidden: exceeded guota: demo-guota, r d: requests.cpu=208e, used: requests.cpu=200m, limited: requests.cpu=308n

Figure 7-8. Example of quota enforcement

OpenShift Service Catalogs

OpensShift includes a Service Catalog which implements the Open Service API'! (OSP
API) for Kubernetes. This capability allows users to connect applications deployed in
OpenShift to services instantiated through service brokers.

A user with cluster-admin privileges registers one or more Service Brokers with
OpenShift cluster. Each Service Broker defines a set of Cluster Service Classes and Service
Plans available to users.

Users request to provision or deprovision a resource provided by a Service Class.
When provisioning a new resource, the Users bind the service instance with their local
application Pods.

OpenShift provides two Service Brokers with the Service Catalog:

o Template Service Broker (TSB) gives the visibility into the Instant
App and Quickstart Templates' that are shipped with OpenShift. In
addition, the TSB makes available as a service any services defined as

an OpenShift Template.

e OpenShift Ansible Broker (OAB)" is an implementation of the OSB
API that manages application defined by Ansible Playbook Bundles
(APBs).

"Details about the Open Service Broker API are available at the project home page:
www.openservicebrokerapi.org

2Additional information on using Instant App and Quickstart Templates is available at
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.
html#using-the-instantapp-templates

SAdditional details about the Ansible Service Broker is available at https://docs.openshift.com/
container-platform/3.11/architecture/service catalog/ansible service broker.
html#arch-ansible-service-broker

187

https://www.openservicebrokerapi.org
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html#using-the-instantapp-templates
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html#using-the-instantapp-templates
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker
https://docs.openshift.com/container-platform/3.11/architecture/service_catalog/ansible_service_broker.html#arch-ansible-service-broker

CHAPTER 7 ADMINISTRATION

OpenShift Templates

OpenShift Templates provide a way to parameterize the creation of any OpenShift
and Kubernetes objects. A template can be processed to create anything the user
executing the Template has the permission to create within a Project (i.e., Services,
BuildConfig, Deployments, Routes, etc.).

Templates are one of the mechanisms used to provide self-service capabilities with
OpensShift. They provide a way for developers to deploy, on self-serve style, applications
or backend stacks, when needed, while administrators retain full control on how a
particular application or backend stack is implemented.

A Template can be executed from CLI or using the web console if the Template has
been uploaded to the Project or Global Template library. Installing a Template can be
done over GUI or CLI (see Figure 7-9).

Add Template x

N I NET \E '
1 Corvta P— e
<) B .
o Impert YAML / 50N x
..........
- YAML /50N Reaults
o (@ Template podeool-example has been imported in demo successfully

°1 $ oc create -f podcool-template.yaml -n demo
2 template.template.openshift. io/podcool-example created

Figure 7-9. Installing OpenShift Template

When using the GUI to install an OpenShift Template, there are two options: an
option to immediately process the Template (#3 on Figure 7-9) and another option to
save the template to the service catalog (#4 on Figure 7-9).

188

CHAPTER 7 ADMINISTRATION

Note When installing a Template, it needs to be associated to a namespace. To
make the Template available cluster-wide, it should be installed into the openshift
Project.

An example of an OpenShift Template is shown in Listing 7-9.

Listing 7-9. OpenShift Template example

apiVersion: template.openshift.io/vi
kind: Template
labels:

app: podcool-example
template: podcool-example

metadata:

annotations:
description: An simple Demo Flask Python application
iconClass: fa fa-leaf
openshift.io/display-name: Podcool Demo App
tags: quickstart,podcool
name: podcool-example

objects:

apiVersion: vi
kind: Service
metadata:
annotations:
description: Exposes and load balances the application pods
name: podcool-example
spec:
ports:
- name: web
port: 8080
targetPort: 8080
selector:
name: podcool-example
apiVersion: vi

189

CHAPTER 7 ADMINISTRATION

kind: ImageStream
metadata:
annotations:
description: Keeps track of changes in the application image
name: podcool-example
- apiVersion: vi1
kind: BuildConfig
metadata:
annotations:
description: Defines how to build the application
name: podcool-example
spec:
output:
to:
kind: ImageStreamTag
name: podcool-example:latest
source:
contextDir: ${CONTEXT DIR}
git:
ref: ${SOURCE_REPOSITORY REF}
uri: ${SOURCE_REPOSITORY URL}
type: Git
strategy:
sourceStrategy:
from:
kind: ImageStreamTag
name: python:3.6
namespace: openshift
type: Source
triggers:
- type: ConfigChange
- github:
secret: ${GITHUB WEBHOOK SECRET}
type: GitHub

190

CHAPTER 7 ADMINISTRATION

- apiVersion: vi1
kind: DeploymentConfig
metadata:
annotations:
description: Defines how to deploy the application server
name: podcool-example
spec:
replicas: 1
selector:
name: podcool-example
strategy:
type: Rolling
template:
metadata:

labels:
name: podcool-example

name: podcool-example

spec:

containers:

- image: podcool-example
name: podcool-example
ports:

- containerPort: 8080

env:
- name: APP_VERSION
value: vi

- name: APP_MESSAGE
value: Deployment from Template
triggers:
- imageChangeParams:
automatic: true
containerNames:
- podcool-example

191

CHAPTER 7 ADMINISTRATION

from:
kind: ImageStreamTag
name: podcool-example:latest
type: ImageChange
- type: ConfigChange
parameters:
- description: The URL of the repository with your application source code
name: SOURCE_REPOSITORY URL
value: https://github.com/williamcaban/podcool.git
- description: Set this to a branch name, tag or other ref of your
repository if you
are not using the default branch
name: SOURCE_REPOSITORY_REF
- description: Set this to the relative path to your project if it is not
in the root
of your repository
name: CONTEXT DIR
- description: Github trigger secret. A difficult to guess string encoded
as part
of the webhook URL. Not encrypted.
from: '[a-zA-Z0-9]{40}"
generate: expression
name: GITHUB_WEBHOOK SECRET

An OpenShift Template' can use or create any OpenShift and Kubernetes object the
user executing it has privileges to create in a Project. That is a wide range of options and
possible objects to create with a Template. As such, the process of writing OpenShift
Templates is beyond the scope of this book.

1“Additional information about writing OpenShift Templates: https://docs.openshift.com/
container-platform/3.11/dev_guide/templates.html

192

https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html
https://docs.openshift.com/container-platform/3.11/dev_guide/templates.html

CHAPTER 7 ADMINISTRATION

Summary

This chapter focused on the main tasks of user management, security, quotas,

and Templates. With respect to user management, this chapter covered basic user
management, groups, virtual users, and service accounts. The security topics covered
setting secure profiles, quotas, and limits. Finally, this chapter described using OpenShift
Templates with the service catalog as a mechanism to provide self-service capabilities to
the users.

The administration of OpenShift Clusters involves much more than what is covered
in the chapter, and the reader should explore additional topics that will enhance the
experience for the users while facilitating sustainable operations of the platform.

One of the OpenShift features designed to enhance the developer experience is the
native capability to support CI/CD pipelines. The OpenShift Pipelines are covered in
Chapter 8.

193

CHAPTER 8

Architecting OpenShift
Jenkins Pipelines

The OpenShift platform provides multiple features to enhance the developer experience.
These features are enabled and managed using the same RBAC and SCC options seen in
Chapter 7. This chapter focuses on the OpenShift Jenkins Pipelines capabilities.

The OpenShift Jenkins Pipelines capabilities in OpenShift Container Platform (OCP)
provide the ability to create advanced CI/CD pipelines that can be used to create new
CI/CD processes, or to integrate with existing organizations CI/CD processes.

OpenShift Jenkins Pipelines provide support for using CI/CD pipelines to build,
deploy, and promote applications on OpenShift. These Pipelines can use a combination
of the Jenkins Pipeline Build Strategy, Jenkinsfiles, and the OpenShift Jenkins Client
Plugin.

This chapter describes the basic configurations to start using the capabilities
provided by the OpenShift CI/CD feature.

CI/CD Pipelines As a Service with OpenShift

When using the Jenkins Pipeline Build Strategy or using a Jenkinsfile, OpenShift CI/CD
capabilities autoprovision a Jenkins Master for the Project and the Jenkins Slaves required
to complete the stages.

This Jenkins Master will be used to execute all the Jenkins Pipelines defined at the
Project.

By default, the Jenkins Master server uses the OpenShift Jenkins-ephemeral template
to instantiate the server. To deploy a Jenkins server with persistent storage for the data
and configuration stored in /var/lib/jenkins, the Project admin can manually deploy
a Jenkins Master using the Jenkins-persistent template from the self-service catalog.

195
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_8

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

To change the default Jenkins template, a cluster-admin can modify the Master Nodes
configuration' to set up the Jenkins-persistent template as the default template to use
when autoprovisioning a Jenkins server (see Listing 8-1).

Listing 8-1. Jenkins-persistent as default template for autoprovisioning of
Jenkins servers

Update /etc/origin/master/master-config.yaml to include
jenkinsPipelineConfig:

autoProvisionEnabled: true

templateNamespace: openshift

templateName: jenkins-persistent

serviceName: jenkins-persistent-svc

During the instantiation of the Jenkins Master, the process

o Deploys Jenkins into the Project using the official OpenShift Jenkins
image

¢ The Jenkins deployment can be done using ephemeral or
persistent storage.

o Creates Service and Route resources for the Jenkins Master
o Creates a jenkins Service Account (SA) in the Project
o Grant Project-level edit access to the new jenkins Service Account
When using an OpenShift Pipeline across Projects, the jenkins SA on the project

hosting the Jenkins Master requires edit access level on the Projects it will manage.

Listing 8-2. Grant ‘edit’ access to ‘jenkins’ Service Account

Option 1: Grant 'edit' access to 'jenkins' Service Account on specific
Projects

oc policy add-role-to-user edit system:serviceaccount:<cicd-
project>:jenkins -n <target-project>

'Using Jenkins-persistent template: https://docs.openshift.com/container-platform/3.11/
install_config/configuring pipeline_execution.html

196

https://docs.openshift.com/container-platform/3.11/install_config/configuring_pipeline_execution.html
https://docs.openshift.com/container-platform/3.11/install_config/configuring_pipeline_execution.html

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

Option 2: Grant 'edit' access to 'jenkins' Service Account on all
Projects

oc adm policy add-cluster-role-to-user edit system:serviceaccount:<cicd-
project>:jenkins

Jenkins Pipeline Build Strategy

OpenShift has the notion of build configurations or BuildConfigs. A BuildConfigis a
configuration describing a single build definition. This includes information like the
triggers that will provoke a new build and the build strategy to use. The build strategy
determines the process to be used to execute a build. One of the build strategies is the
Pipeline Build Strategy.?

The Pipeline Build Strategy is an OpenShift Build® type that enables developers to
define Jenkins pipeline workflows which are executed inside the OpenShift platform.

To use this Build Strategy, the Jenkins Pipeline is defined in a Jenkinsfile. This can
be embedded directly in the BuildConfig (see #3 on Figure 8-1) or provided on a Git
repository (see #2 on Figure 8-2) referenced by the BuildConfig (see #3 on Figure 8-2).

2OpenShift Pipeline Build Strategy https://docs.openshift.com/container-platform/3.11/
dev_guide/builds/build strategies.html#pipeline-strategy-options

30OpenShift Build process https://docs.openshift.com/container-platform/3.11/
architecture/core _concepts/builds_and image streams.html#builds

197

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/build_strategies.html#pipeline-strategy-options
https://docs.openshift.com/container-platform/3.11/dev_guide/builds/build_strategies.html#pipeline-strategy-options
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html#builds
https://docs.openshift.com/container-platform/3.11/architecture/core_concepts/builds_and_image_streams.html#builds

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

1 kind: "BuildConfig"

2 apiVersion: "v1" .

3 metadata:

4 name: "sample-pipeline"

5 spec:

6 strategy:

7 jenkinsPipelineStrategy:

8 env:

9 = name: "MY_STRATEGY_VAR"

10 value: "Demo Env Var from Pipeline Strategy"

11 type: JenkinsPipeline

12 jenkinsfile: |-

13 pipeline {

14 agent any

15

16 options {

17 // set a timeout of 5 minutes for this pipeline
18 timeout(time: 5, unit: 'MINUTES')

19 } //options

20

21 environment {

22 MY_PIPELINE_VAR = "Demo Env Var from Pipeline"
23 }

24

25 stages {

26 stage('Build') {

27 steps {

28 echo "Sample Build stage with variable from pipeline startegy >> ${MY_STRATEGY_VAR}"
29 }

30 } //stage

31

32 stage('Test') {

33 steps {

34 echo "Sample Test stage with variable from Jenkinsfile >> ${MY_PIPELINE_VAR}"
35 }

36 } //stage

37

38 stage('Promote') {

39 steps {

48 echo "Sample Promote stage with OpenShift Client Plugin DSL"
a1 script {

42 openshift.withCluster() {

43 openshift.withProject() {
44 echo "Using project: ${openshift.project()}"
45 b

46 +

47 } /4 script

48 } //steps

49 } //stage

50

51 } // stages

52 } // pipeline

53

Figure 8-1. OpenShift Pipeline Build Strategy with embedded Jenkinsfile
definition

The BuildConfig with the embedded Jenkins pipeline definition is a YAML formatted
configuration file specifying the Jenkins Pipeline Strategy (see #2 on Figure 8-1). The
content of the Jenkinsfile is included as a multiline string block (see #3 on Figure 8-1) in
the definition.

198

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

1 kind: "BuildConfig" .

2 apiVersion: "wv1"

3 metadata:

4 name: "sample-pipeline-2"

5 spec:

6 source: °

7 git:

8 uri: "https://git.example.com/demo/myapp"

9 strategy:

10 jenkinsPipelineStrategy:

15 env:

12 - name: "MY_STRATEGY_VAR"

13 value: "Demo Env Var from Pipeline Strategy"
14 ° jenkinsfilePath: path/to/jenkinsfile/filename
153

16

Figure 8-2. OpenShift Pipeline Build Strategy with Git Jenkinsfile definition

The other option for the Pipeline Strategy is the BuildConfig referencing a Jenkinsfile
(see #3 on Figure 8-2) on a Git repository (see #2 on Figure 8-2). In this particular case,
the Jenkinsfile can be in any directory of the referenced Git repository and can have any
name as long as the full path and filename are specified in the corresponding Jenkinsfile
Path variable. If this variable is not defined, it will retrieve a file named Jenkinsfile from
the root directory of the Git repo.

Creating the Pipeline BuildConfig

The BuildConfig on Figure 8-1 is for a sample pipeline that defines environment
variables at the pipeline strategy level (line 8 on Figure 8-1) and at the Jenkinsfile level
(line 21 on Figure 8-1). The embedded Jenkinsfile defines a Jenkins Pipeline (line 13
on Figure 8-1) with some sample stages (line 25 on Figure 8-1). For the purpose of this
example, there are three stages. To maintain a minimal structure to illustrate the use of
the pipeline, in this example, each stage simply displays a message.

The YAML configuration for the BuildConfig sample-pipeline from Figure 8-1 is
shown in Listing 8-3.

199

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

Listing 8-3. Sample Pipeline BuildConfig with embedded Jenkinsfile

kind: "BuildConfig"
apiVersion: "v1"
metadata:
name: "sample-pipeline"
spec:
strategy:
jenkinsPipelineStrategy:
env:
- name: "MY_STRATEGY VAR"
value: "Demo Env Var from Pipeline Strategy"
type: JenkinsPipeline
jenkinsfile: |-
pipeline {
agent any

options {
// set a timeout of 5 minutes for this pipeline
timeout(time: 5, unit: "MINUTES')

} //options

environment {
MY PIPELINE VAR = "Demo Env Var from Pipeline"

}

stages {
stage('Build") {
steps {
echo "Sample Build stage with variable from
pipeline startegy >> ${MY_STRATEGY VAR}"

}
} //stage

stage('Test") {

200

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

steps {
echo "Sample Test stage with variable from
Jenkinsfile >> ${MY_PIPELINE_VAR}"

}
} //stage
stage('Promote’) {
steps {
echo "Sample Promote stage with OpenShift Client
Plugin DSL"
script {
openshift.withCluster() {
openshift.withProject() {
echo "Using project: ${openshift.
project()}"
}
}
} // script
} //steps
} //stage

} // stages
} // pipeline

The YAML configuration for the BuildConfig sample-pipeline-2 from Figure 8-2 is

shown in Listing 8-4.

Listing 8-4. Sample Pipeline BuildConfig with Git referenced Jenkinsfile

kind: "BuildConfig"

apiVersion:

name: "sample-pipeline-2"

i: "https://git.example.com/demo/myapp"

201

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

strategy:
jenkinsPipelineStrategy:
env:
- name: "MY_STRATEGY_ VAR"
value: "Demo Env Var from Pipeline Strategy"
jenkinsfilePath: path/to/jenkinsfile/filename

Deploying the Pipeline BuildConfig

The BuildConfig is created at a Project level. It is up to the user to use a dedicated Project
for the Pipeline and another for the application or use the same Project for the Pipeline
and application.

From the OpenShift Application Console, import the YAML for the BuildConfig (see
#1 on Figure 8-3).

OPENSHIFT CONTAINER PLATFORM Application Console ~ @~ & admin v

CI/CD Pipeline Demo ~

B Owverview

Get started with your project.

Add content to your project from the catalog of web frameworks, databases, and other
camponents. You may also deplay an existing image, create or replace resaurces from their YAML or
JSON definitions, or select an item shared from another project.

Deploy Image Impeort YAML / JSON o Select from Project

Figure 8-3. Import BuildConfig YAML definition

The Import YAML window allows for uploading a YAML file from the local machine
or for the copy and paste of the BuildConfig at the editor window (see #1 on Figure 8-4).
On the successful upload or definition of the BuildConfig, a new Pipeline is created.

202

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

e YAML [[SON *®

WAML / JSON Roesults
emport VAML / JSON x
YAML / ISON Resuits

@ Build config sample-pipeline has been imported

a from Pisline Stroteqy” o

Figure 8-4. Importing the BuildConfig and creating the Pipeline

The first time a Pipeline strategy is defined for a Project, OpenShift instantiates
a Jenkins Master server in that Project (see Figure 8-5). This Jenkins server is used to
execute the Pipeline definition from the BuildConfig.

Note Additional Pipeline Build configurations or BuildConfigs, in the same project,
will share the same Jenkins server.

203

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

Figure 8-5. Instantiation of an embedded Jenkins server

Note The instantiation of the initial Jenkins server takes some time to complete.
After about 10 minutes after the instantiation, the system will be ready to receive
triggers to execute the Pipeline.

The Pipeline can be triggered by a Webhook, Image Change, Configuration Change,
or Manually. To execute a manual trigger from GUI, at the Application Console, go to
Builds » Pipelines (see #1 and #2 on Figure 8-6) or from CLI (see #3 on Figure 8-6).

204

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

OPENSHIFT

$ oc start-build sample-pipeline -n ciecd
build "sample-pipeline-11" started

OPENSHIFT CC

Pipelines

sample-pipelineg Start Pipeline

No pipeline bullds have run for sample-pipeling, View the jenkinsfile to see what stages will run, e

Figure 8-6. Executing the Pipeline Build Strategy

Avisual representation of the pipeline will be highlighting the step that is executing (see
#2 on Figure 8-7). As stages are successful, the stage representation will be colored green.

After several execution of the Pipeline, the History tab of the Pipeline pane will show
a histogram of the time it took to complete an execution and a color-coded view showing
failed and successful attempts (see #3 on Figure 8-7).

Pipelin@s Laum e

Recent funs

smple-pipeline

sample-pipeline

W raed W Compie

(<]
(4]
Q

(]
L B3
(4]

Figure 8-7. Pipeline Build History
205

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

The OpenShift integration with the Jenkins instance allows access to the logs
generated during the execution of the Pipeline Build.

Pipelines wumues

@ Jenkins O OPENSHIFT

Log in o jenking Lsing your Openshift credentials

Log in with OpenShift

Authorize Access

Saervice account jankins in project cicd is requesting permission 10 access your account (admin)

Figure 8-8. View Logs from Jenkins Console

To access the Logs for a particular Build execution, select the View Log link under the
execution number (see #1 on Figure 8-8). This will redirect to the Jenkins Console where

OpenShift credentials can be used to log in to the Jenkins server and see the logs (see
Figure 8-9).

206

Jenkins

Back to Project
L Status
" Changes
B Console Output
View as plain text
= Edit Build Information
(8 Delete Build
Parameters
wp Open Blue Ocean
@ Restart from Stage
* Replay
Pipeline Steps
B workspaces

4 Previous Build

(@ienkins @

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

) Console Output
o OpensShift Build ipal
0! et to expire 5 min 0 se

Sample Promote stage with OpenShift Client Plugin DSL

o Finished: SUCCESS

Figure 8-9. Build Logs at Jenkins Console

The logs for a particular Pipeline will include the actions and output from those

actions (see #2, #3, #4, and #5 on Figure 8-9), for each one of the Pipeline Stages defined

by the Jenkinsfile.

Note The Jenkins server must be manually deleted by the user. It will not be
automatically removed, even after deleting all Pipeline build configurations.

207

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

Jenkinsfile with Source Code

When using this option, the Jenkinsfile must be included with the application source
code at the root of the repository or at the root of the contextDir of the repository. When

deploying an application and referencing a repository containing a Jenkinsfile

o [Ifthere is not an existing Jenkins instance in the Project, OpenShift
creates a DeploymentConfig and deploys a Jenkins instance.

o OpensShift creates a BuildConfig (see #1 on Figure 8-10) with

e AjenkinsPipelineStrategy (see #5 on Figure 8-10) referring the
Jenkinsfile in the Git repository (see #5 on Figure 8-10)

o Aset of Webhook triggers: GitHub and Generic (see #6 and #7 on
Figure 8-10)

apiVersion: build.openshift.io/vl

kind: BuildConfig s

4 annotations: " posicd

s openshift.io/generated-by: OpenShiftNewApp

: poacica o
labels: -

8 app: podcicd

name: podcicd

namespace: cicd

spec: Detalls Triggers

12
1
12
13 failedBuildsHistorylimit: 5 pa——— [Eonlig Changs for:
14 nodeSelector: {} PR — S 3 o [S ———
15 output: {} sowcemst mauw
16 postCommit: {} st parc woniti o itk Webhook URL:
17 resources: {} @ el i @ Maal (U
18 runPolicy: Serial
19 source: T——
i) git:
21 ref: master
2 uri: https:/rgithub.com/willismcaban/podcicd.git
2 type: Git
24 strategy:
jenkinsPipelineStrategy:
26 jenkinsfilePath: Jenkinsfile

type: JenkinsPipeline
successfulBuildsHistoryLimit: 5

triggers:
= github: @,
secret: 34GASRAGrINadVrELOLr

type: GitHub
33 - generic:
4 secret: yPcOdeBFZTISQEWFnZ)r
35 type: Generic

36 = type: ConfigChange

Figure 8-10. Pipeline BuildConfig from Jenkinsfile on Git repository

208

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

The URL for the Webhook triggers will follow the format:

https://<ocp-cluster-fqdns/apis/build.openshift.io/vi/namespaces/<name-
of-projects/buildconfigs/<name-of-buildconfigs /webhooks/<trigger-
token»/<trigger-type>

These Webhook triggers* enable external tools to initiate a new pipeline execution.
Figure 8-11 shows a Webhook call (#1 on Figure 8-11) triggering a new Build for the
pipeline (#3 on Figure 8-11). #4 on Figure 8-11 clearly shows the CI/CD pipeline was
triggered by a Generic Webhook call.

% curl =X POST -k https:/focp.shift.zone:443/apis/build.openshift.do/vl Acd/buildeontigs /podeicd/webhooks/ yPedoeBFIf1S0EWFnd j rigeneric
{ o
“kind": “Status”,
“apiVersion": "v1",
“metadata”: {
n @
“status™: “Success”™,
“message”: “invalid Content-Type on payload, ignoring payload and continuing with build™,
“code™: 200

13

Figure 8-11. Using Webhook triggers to start a Pipeline execution

‘Additional information on using Webhooks to trigger builds is available from the official
documentation: https://docs.openshift.com/container-platform/3.11/dev_guide/builds/
triggering builds.html

209

https://docs.openshift.com/container-platform/3.11/dev_guide/builds/triggering_builds.html
https://docs.openshift.com/container-platform/3.11/dev_guide/builds/triggering_builds.html

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

Multiproject Pipelines

When using an OpenShift Jenkins Pipelines to promote an application build across
multiple projects, the jenkins Service Account must have edit access privileges on each of
the target Projects as shown in Listing 8-2.

The implementation of a CI/CD Pipeline like the one shown in Figure 8-12 involves
four different projects. In this example, the Jenkins Master is instantiated in the “cicd”
project (#2 on Figure 8-12) where it may be used by multiple Pipelines in the same

Project.
Webhook
Trigger
SCM or Dev Toel
Declarative: Checkout . CICO Projects. Buid Test Promote 1o Slaging Promete 1o Prod

—_—— —e— —a— —n— —o—

(4] l'(:ucl:b - Dev
BUILD STAGE
¥ s2i build
¥ Deploy App on Dev Project
¥ Tag Image with Build Number

TEST STAGE
¥ Test Deployment is working

Project: cicd-staging Project: cicd-prod

Figure 8-12. Multiproject Pipeline

In this case, “Pipeline C” (#3 on Figure 8-12) has multiple stages across three Projects.
A reference Jenkinsfile implementing this type of Pipeline is shown in Listing 8-5.

210

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES
Listing 8-5. Jenkinsfile—Multiproject Pipeline

pipeline {
agent any
options {
// set a timeout of 20 minutes for this pipeline
timeout(time: 20, unit: 'MINUTES')
} //options

environment {

APP_NAME = "podcicd"
GIT_REPO = "https://github.com/williamcaban/podcicd.git"
GIT BRANCH = "master"
CONTEXT _DIR = "myapp"
CICD PRJ = "cicd"
CICD DEV = "${CICD _PRJI}"+"-dev"
CICD PROD = "${CICD PRI}"+"-prod"
CICD_STAGE = "${CICD_PRJ}"+"-staging"
SVC_PORT = 8080
}
stages {
stage('CICD Projects'){
steps {
echo "Making sure CI/CD projects exist"
script {

openshift.withCluster() {

echo "Current Pipeline environment"

sh 'env | sort'

echo "Making sure required CI/CD projects

exist"

try {
openshift.selector("projects",CICD DEV).
exists()
echo "Good! Project ${CICD DEV} exist"

} catch (e) {

211

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

error "Missing ${CICD DEV} Project or RBAC
policy to work with Project”

}

try {
openshift.selector("projects",CICD_STAGE).
exists()

echo "Good! Project ${CICD STAGE} exist"
} catch (e) {

error "Missing ${CICD STAGE} Project or

RBAC policy to work with Project"

}

try {
openshift.selector("projects",CICD PROD).
exists()

echo "Good! Project ${CICD PROD} exist"

} catch (e) {
error "Missing ${CICD PROD} Project or RBAC
policy to work with Project”

}

} // cluster
} // script
} //steps
} // stage - projects

stage('Build") {

steps {
echo "Sample Build stage using project ${CICD DEV}"
script {

openshift.withCluster() {
openshift.withProject("${CICD DEV}")

{

if (openshift.selector("bc",APP_NAME).
exists()) {
echo "Using existing BuildConfig.
Running new Build"

212

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

def bc = openshift.startBuild(APP_NAME)

openshift.set("env dc/${APP_NAME}

BUILD NUMBER=${BUILD NUMBER}")

// output build logs to the Jenkins

conosole

echo "Logs from build"

def result = bc.logs('-f")

// actions that took place

echo "The logs operation require

${result.actions.size()} 'oc'

interactions"

// see exactly what oc command was

executed.

echo "Logs executed: ${result.

actions[0].cmd}"

} else {

echo "No proevious BuildConfig.

Creating new BuildConfig."

def myNewApp = openshift.newApp (
"${GIT_REPO}#${GIT_BRANCH}",
"--name=${APP_NAME}",
"--context-dir=${CONTEXT DIR}",
"-e BUILD NUMBER=${BUILD NUMBER}",
"-e BUILD ENV=${openshift.
project()}"
)

echo "new-app myNewApp ${myNewApp.

count()} objects named: ${myNewApp.

names()}"

myNewApp.describe()

// selects the build config

def bc = myNewApp.narrow('bc")

// output build logs to the Jenkins

conosole

echo "Logs from build"

213

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

def result = bc.logs('-f")
// actions that took place
echo "The logs operation require
${result.actions.size()} 'oc'
interactions"
// see exactly what oc command was
executed.
echo "Logs executed: ${result.
actions[0].cmd}"

} //else

echo "Tag Container image with 'build
number' as version"
openshift.tag("${APP_NAME}:latest",
"${APP_NAME}:v${BUILD NUMBER}")

echo "Validating Route for Service exist,

if Not create Route"

if (lopenshift.selector("route",APP_NAME).

exists()) {
openshift.selector("svc",APP_NAME).
expose()

}

} // project
} // cluster
} // script
} // steps
} //stage-build
stage('Test") {

steps {
echo "Testing if 'Service' resource is operational and
responding"
script {
openshift.withCluster() {
openshift.withProject() {

214

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

echo sh (script: "curl -I ${APP_
NAME}.${CICD DEV}.svc:${SVC_PORT}/
healthz", returnStdout: true)
} // withProject
} // withCluster
} // script
} // steps
} //stage

stage('Promote to Staging') {
steps {
echo "Setup for Staging"
script {
openshift.withCluster() {
openshift.withProject("${CICD STAGE}") {
echo "Tag new image for staging"

openshift.tag("${CICD DEV}/${APP_
NAME}:v${BUILD NUMBER}", "${CICD_
STAGE}/${APP_NAME}:v${BUILD NUMBER}")

//openshift.tag("${CICD_STAGE}/${APP_

NAME} :v${BUILD NUMBER}", "${CICD_

STAGE}/${APP_NAME}:latest")

echo "Deploying to project: ${openshift.

project()}"

def myStagingApp = openshift.newApp(
"${APP_NAME}:v${BUILD NUMBER}",
"_-name=${APP_NAME}-v${BUILD NUMBER}",
"_e BUILD NUMBER=${BUILD NUMBER}",
"-e BUILD ENV=${openshift.project()}"

)

myStagingApp.narrow("svc").expose()

}
} // script

} //steps
} //stage
215

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

stage('Promote to Prod'){
steps {
echo "Promote to production? Waiting for human input"
timeout(time:10, unit:'MINUTES'){
input message: "Promote to Production?", ok:
"Promote”
}
script {
openshift.withCluster() {
openshift.withProject("${CICD PROD}") {
echo "Tag Staging Image for Production”
openshift.tag("${CICD_STAGE}/${APP_
NAME} :v${BUILD NUMBER}", "${CICD_
PROD}/${APP_NAME}:v${BUILD NUMBER}")

echo "Deploying to project: ${openshift.

project()}"

def myProdApp = openshift.newApp(
"${APP_NAME}:v${BUILD NUMBER}",
"_-name=${APP_NAME}-v${BUILD NUMBER}",
"-e BUILD_NUMBER=${BUILD_NUMBER}",
"-e BUILD ENV=${openshift.project()}"

)

if (openshift.selector("route",APP_NAME).

exists()){
echo "Sending the traffic the the
latest version"
openshift.set("route-backends",APP_
NAME, "${APP_NAME }-v${BUILD
NUMBER}=100%")

} else {
echo "Creating new Route"
myProdApp.narrow("svc").expose("--
name=${APP_NAME}")

216

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

} // project
}
} // script
} // steps
} //stage

} // stages
} // pipeline

For the successful completion of the Pipeline shown in Figure 8-12 and documented
in Listing 8-5, the jenkins Service Account in the “cicd” Project must have edit privileges

” u

in the “cicd-dev,” “cicd-staging,” and “cicd-prod” Projects (see Listing 8-6).

Listing 8-6. Deploying a Multiproject Pipeline

Step 1: Create the CI/CD Project in the OpenShift cluster

oc new-project cicd --description="CI/CD Pipeline Demo"

oc new-project cicd-dev --description="CI/CD - Dev"

oc new-project cicd-prod --description="CI/CD - Prod"

oc new-project cicd-staging --description="CI/CD - Staging"

Step 2: Give jenkins Service Account edit access to the other Projects

oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd-dev
oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n cicd-prod
oc policy add-role-to-user edit system:serviceaccount:cicd:jenkins -n
cicd-staging

Step 3: Deploy the OpenShift Pipeline from a Git repository containing the
Jenkinsfile

oc new-app https://github.com/williamcaban/podcicd.git -n cicd

Deploying the example in the listing once the Jenkins Master is running and the
Pipeline BuildConfig is ready, executing a manual trigger or simulating a Webhook
trigger should yield results similar to the ones shown in Figure 8-11.

To start a new pipeline build from GUI, go to “Application Console” » Project “cicd”
» Builds » Pipelines and click the “Start Pipeline” button. To start a new pipeline build
from CLI, execute oc start-build podcicd -n cicd. The Pipeline logs and progress
are visible at the “Application Console.”

217

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

OpenShift Client Plugin

The OpenShift Client Plugin® or the OpenShift Jenkins Pipeline (DSL) Plugin is a Jenkins
Plugin that provides comprehensive Fluent-style syntax for use in Jenkins Pipelines
interacting with OpenShift clusters. The plugin leverages the OpenShift “oc” client binary
and integrates with Jenkins credentials and cluster.

The OpenShift Client Plugin exposes any option available with “oc” to the Jenkins
Pipeline.

Note The OpenShift Client Plugin for Jenkins supersedes the previous OpenShift
V3 Plugin for Jenkins which is now deprecated.5

Custom Jenkins Images

The Jenkins Images can be customized by using the traditional Docker layering
capabilities with a Dockerfile or by using the OpenShift native Source-to-Image
capabilities.

To use the Source-to-Image capabilities, create a Git repository following the
structure shown in Figure 8-13.

Figure 8-13. Git repository structure for custom Jenkins Image with s2i

SFor the latest documentation and features of the OpenShift Client Plugin, refer to
https://github.com/openshift/jenkins-client-plugin

For reference to the legacy OpenShift Jenkins Plugin, visit the Git repository:
https://github.com/openshift/jenkins-plugin

218

https://github.com/openshift/jenkins-client-plugin
https://github.com/openshift/jenkins-plugin

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

For the creation of the custom Jenkins Image from the structure defined in a Git
repository, create a BuildConfig similar to Listing 8-7.

Listing 8-7. BuildConfig for creating custom Jenkins Images

BuildConfig to customize the Jenkins Image
apiVersion: vi
kind: BuildConfig
metadata:
name: custom-jenkins-build
spec:
source:
git:
uri: https://github.com/williamcaban/openshift-custom-jenkins.git
type: Git
strategy:
sourceStrategy:
from:
kind: ImageStreamTag
name: jenkins:latest
namespace: openshift
type: Source
output:
to:
kind: ImageStreamTag
name: custom-jenkins:latest

219

CHAPTER 8 ARCHITECTING OPENSHIFT JENKINS PIPELINES

Integrating External CI/CD Pipelines

External Jenkins instances can be integrated with OpenShift in one of the following ways:

o Using the Jenkins Kubernetes Plugin’ which provides the ability for
Jenkins agents to be dynamically provisioned® on multiple Pods

e Using the OpenShift Client Plugin® and the OpenShift Sync Plugin®®

The level of integration provided by the OpenShift Client Plugin (i.e., embedding
pipeline status in the GUI) currently is only available with Jenkins, and it is maintained
by Red Hat. Other popular CI/CD tools like GitLab CI, Spinnaker, Bamboo, TeamCity,
and so on provide support for OpenShift Container Platform with a vendor-provided
plugin for OpenShift or by using their Kubernetes plugin.

Summary

The OpenShift Jenkins Pipelines capabilities enable development teams to continue the
adoption of modern development paradigms by providing CI/CD as a first-class service
into the platform. When using Jenkins Pipeline Build Strategy, or by having a Jenkinsfile
with the source code, or by using the OpenShift Jenkins Plugin, the OpenShift Jenkins
Pipelines ease the learning curve for using CI/CD and simplify the management and
operation of the Jenkins CI/CD Pipelines.

Beyond knowing how to do the initial administrative tasks or manage value-added
features like the CI/CD Pipelines, a cluster administrator should be aware of Day-2
operations and maintenance tasks for maintaining an optimized cluster. Some of these

Day-2 tasks are covered in Chapter 9.

"For details about the Jenkins Kubernetes Plugin, refer to https://wiki. jenkins-ci.org/
display/JENKINS/Kubernetes+Plugin

8For configuration details, refer to the OpenShift documentation at
https://docs.openshift.com/container-platform/3.11/using_images/other images/
jenkins.html#configuring-the-jenkins-kubernetes-plug-in

*OpenShift Client Plugin https://docs.openshift.com/container-platform/3.11/using_
images/other_images/jenkins.html#client-plug-in

"OpenShift Sync Plugin https://docs.openshift.com/container-platform/3.11/using_
images/other images/jenkins.html#sync-plug-in

220

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#configuring-the-jenkins-kubernetes-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#configuring-the-jenkins-kubernetes-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#client-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#client-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#sync-plug-in
https://docs.openshift.com/container-platform/3.11/using_images/other_images/jenkins.html#sync-plug-in

CHAPTER 9

Day-2 Operations

As seen in the previous chapter, OpenShift provides features or capabilities to enhance
developer experience like the CI/CD Pipelines covered in Chapter 8 and the self-service
Templates in Chapter 7. The day-to-day work of developers may leave a high number

of objects behind. In very active development environments, the garbage collection
processes might need tuning. For example, when executing CI/CD Pipelines or building
Containers using features like source to image (s2i), there might be intermediate
Containers or Image layers that get created and left behind, consuming the Node
ephemeral storage and increasing the size of the etcd database. To work with this, once
the OpenShift cluster is in operation, there are certain tasks required for the proper
maintenance, operations, and fine-tuning of the cluster. This chapter covers some of

these common tasks.

Managing Leftover Objects

During the normal operation and utilization of the cluster and cluster services, objects
created in OpenShift can accumulate. Maintaining all previous versions of all the objects
may end up consuming significant amount of storage which may have an impact on the
performance of elements of the platform. For example:

o High storage consumption of the etcd data store may add additional
pressure on efcd response time which leads to higher latency per request.

Note The upstream 0SS etcd project provides the benchmark' tool that can be
used to measure etcd performance.

'Measuring performance of efcd, refer to the documentation at https://github.com/etcd-io/
etcd/blob/master/Documentation/op-guide/performance.md

221
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_9

https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md
https://github.com/etcd-io/etcd/blob/master/Documentation/op-guide/performance.md

CHAPTER9 DAY-2 OPERATIONS

o Depending on the storage backend used by the internal Container
Registry, high storage consumption of the backend storage may yield
to slower upload (push) time for new images being build or onboard
into the platform.

Tip Using object storage as the storage backend for the internal Container Registry
regularly is the most resilient and cost-effective storage backend for this job.

o High storage utilization of /var/1ib/containers which is used by the
Container Runtime to cached Container Images and for the Container
ephemeral storage will have an impact on the ability to instantiate
new Containers in the node or the ability to download new Images.

Tip Use a dedicated disk or partition to map to the /var/1lib/containers
directory to avoid saturating the root disk of the Node.

The high storage consumptions can be the result of normal cluster operations by
users of the platform. This is particularly relevant when using objects like Deployments,
Builds, manipulating Images (i.e., tagging and keeping multiple releases, etc.), groups,
Cronjobs, and others.

The OpenShift client CLI provides a mechanism for cluster administrator to prune®
older versions of some of this resource (see Figure 9-1).

% oC adm prune
Remove older versions of resources from the serve
The commands here allow administrators to manage the older versions of resources on the system by removing them.

Usage:
oc adm prune [flags]

Available Commands:
auth Removes references to the specified roles, clusterroles, users, and groups.
builds Remove old completed and failed builds
deployments Remove old completed and failed deployments
groups Remove old OpenShift groups referencing missing records on an external provider
images Remove unreferenced images

Figure 9-1. Removing older version of resources

2Additional details on pruning object are available at the online documentation: https://docs.
openshift.com/container-platform/3.11/admin_guide/pruning resources.html

222

https://docs.openshift.com/container-platform/3.11/admin_guide/pruning_resources.html
https://docs.openshift.com/container-platform/3.11/admin_guide/pruning_resources.html

CHAPTER9 DAY-2 OPERATIONS

The execution of the prune command will perform a dry run by default (see line #2

on Figure 9-2). During the run it identifies the resources of the particular time that will

be removed (see line #4 on Figure 9-2) during the actual process.

1

W~ W s uu@a

10
11
1%
13
14

$ oc adm prune 1mages@

ry run;enabled - no modifications will be made. AddC--confirm o remove images

Deletlng
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting
Deleting

istags
istags
istags
istags
istags
istags
istags
istags
istags
istags
istags

openshift-sdn/node: v3.11
cicd-staging/podcicd-v4: v4
openshift-node/node: v3.11
cicd-staging/podcicd-v3: v3
cicd-staging/podcicd-vl: vl
cicd-staging/podcicd-v5: v5
cicd-prod/podcicd-v6: v6
cicd-prod/podcicd-vl: vi
cicd-staging/podcicd-v6: v6
cicd-prod/podcicd-v5: v5
cicd-staging/podcicd-v2: v2

Deleted 11 objects. &

Figure 9-2. Command to prune Images

3

The “confirm” flag must be appended to the prune command for the actual process

to be executed (see line #2 on Figure 9-3). Additional flags are available to provide higher

control and granularity of which objects should be removed or maintained (see lines #4

and #7 on Figure 9-3).

W o0~ U & Wk

To execute the actual prune operation the "confirm" flag must be appended
$ oc adm prune images ——keep-tag-revisions=3 --keep-younger-than=2h¢{-confirm>

—-keep-tag-revisions=3 Specify the number of image revisions for a tag in an image

stream that will be preserved

——keep-younger—-than=3h Specify the minimum age of an image and its referrers for it
to be considered a candidate for pruning.

Figure 9-3. Confirming the prune command

Note

Refer to the CLI command help for details.

The optional flags for the oc adm prune commands are object specific.

223

CHAPTER9 DAY-2 OPERATIONS

Garbage Collection

There are two types of garbage collection® performed by the OpenShift Nodes:

o Container garbage collection: Removes terminated containers.
This is enabled by default and it is executed automatically.

o Image garbage collection: Removes Images no longer referenced by
any running Pods. It relies on disk usage as reported by cAdvisor on
the Node to choose which Images to remove from the Node.

When the garbage collection is executed, the oldest images get deleted first until the
stopping threshold is met. Both of these garbage collection types are configurable by
modifying the Kubelet argument settings at the Node ConfigMap (see Figure 9-4).

1 # oc edit cm -n openshift-node node-config-compute

2 apiVersion: vl

3 kind: ConfigMap

4 data:

3 node-config.yaml: |

6 apiVersion: vl

f .

8 kind: NedeConfig

9 KubeletArguments:

18 minimum-container-ttl-duration: # Minimum age that a container is eligible for garbage collection

11 - "1@5"

12 m um-dead-containers-per-container: # Number of instances to retain per pod container

13 -

14 maximum-dead-containers: # Maximum number of total dead containers in the node

15 = "24q8"

16 image-gc-high-threshold: # Percent of disk usage which triggers image garbage collection
17 = "g5"

18 image-gc-low-threshold: # Percent of disk usage to which image garbage collection attempts to free
19 = "gg"

28 bootstrap-kubeconfig:

21 - fetc/origin/node/bootstrap. kubeconfig

22 cert-dir:

23 - /etc/origin/node/certificates

24 enable-controller-attach-detach:

25 = 'true’

feature-gates:

- RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true
node-labels:

- node-role.kubernetes.io/compute=true

pod-manifest-path:

- /etc/origin/node/pods

rotate-certificates:

33 = 1

Figure 9-4. Garbage collection settings in the Node ConfigMap

SAdditional details are available in the documentation at https://docs.openshift.com/
container-platform/3.11/admin_guide/garbage collection.html

224

https://docs.openshift.com/container-platform/3.11/admin_guide/garbage_collection.html
https://docs.openshift.com/container-platform/3.11/admin_guide/garbage_collection.html

CHAPTER9 DAY-2 OPERATIONS

Node Optimizations

There are multiple ways to optimize Nodes to deliver the performance required for the
workloads and the experience required by an organization. The specific settings to
modify to achieve certain optimization are tied to the specifications of the Hosts and the
characteristics of the workload that will be running in those Nodes.

OpenShift provides many settings to tune the performance of the Platform. The
following subtopics are some of the common settings available for cluster administrators
to configure to achieve desired Node optimizations.

Node Resource Allocation

OpenShift provides configuration? parameters to allocate per Node resources to maintain
reliable scheduling of workloads to a Node while minimizing overcommitting compute
and memory resources. There are two types of resource allocations:

¢ kube-reserved: Allocation of resources reserved for Node
components (i.e., kubelet, kube-proxy, Container Runtime, etc.).
The default is None.

o system-reserved: Allocation of resources reserved for Host system
components (i.e., sshd, NetworkManager, etc.). The default is None.

Both of these resource reservation types are configurable by modifying the Kubelet
argument settings at the Node ConfigMap (see Figure 9-5).

*Additional information about configuring Node resources is available at the online
documentation: https://docs.openshift.com/container-platform/3.11/admin_guide/
allocating node_resources.html

225

https://docs.openshift.com/container-platform/3.11/admin_guide/allocating_node_resources.html
https://docs.openshift.com/container-platform/3.11/admin_guide/allocating_node_resources.html

CHAPTER9 DAY-2 OPERATIONS

1 # oc edit cm -n openshift-node node-config-compute

2 apiVersion: vl

3 kind: ConfigMap

4 data:

5 node-config.yaml: |

(<] apiVersion: vl

7

8 kind: NodeConfig

9 kubeletArguments:
10 kube-reserved: # Resources reserved for node components.
11 = "cpu=200m,memory=512Mi"
12 system-reserved: # Resources reserved for the remaining system components.
13 - "cpu=200m,memory=512Mi"
14

Figure 9-5. Node resource reservation

Setting Max Pods Per Node

OpenShift provides two Kubelet configuration setting to control the maximum number of
Pods that can be scheduled into a Node:

e pods-per-core: Configures the maximum number of Pods the
Node can run per core on the Node. When using this parameter, the
maximum number of Pods allowed in the Node will be <pods-per-
core> x <number-of-cores-in-node>

Note To disable this limit, set pods-per-core to 0.

o max-pods: Configures a fixed number as the maximum number of
Pods that can run on the Node. The default value is 250.

Note When both of these settings are configured, the lower of the two is used.

These settings are configurable by modifying the Kubelet arguments at the Node
ConfigMap (see Figure 9-6).

226

W~ WU W N

e
(-~

(]

e
AW

CHAPTER9 DAY-2 OPERATIONS

oc edit cm -n openshift-node node-config-compute
apiVersion: vl
kind: ConfigMap
data:
node-config.yaml: |
apiVersion: vl

kind: NodeConfig
kuDeletArgumentS:

pods-per-core: # <max. number of running Pods> = <pods-per-core> % <num. cores on Node>
- u1g

max-pods: # explicit max. number of Pods running on Node

_ nzsgn

Figure 9-6. Maximum number of running Pods per Node

Using the Tuned Profile

Tuned" is a daemon that monitors devices connected to the Host and statically and

dynamically tunes system settings based on a selected Profile.

During the deployment of OpenShift, the installer configures the Nodes with Tuned

profiles® for OpenShift (see Figure 9-7) and assigns them to the Nodes based on their role.

[root@ocp ~1# tuned-adm active @I
Current active profile: openshift-control-plane

[reot@ocp ~1# tuned-adm list @
Available profiles:

= balanced - General non-specialized tuned profile

- desktop - Optimize for the desktop use-case

- latency-performance - Dptimize for deterministic performance at the cost of increased power consumption

= network-latency = Optimize for deterministic performance at the cost of increased power consumption, focused on low latency network performance
= network-throughput - Optimize for streaming network throughput, generally only necessary on older CPUs or 48G+ networks

- openshift - Optimize systems running OpenShift (parent profile)

= openshift-control-plane = Optimize systems running OpenShift control plane

= epenshift-node - Optimize systems running OpenShift nodes

= powersave - Optimize for low power consumption

= throughput=performance = Broadly applicable tuning that provides excellent performance across a variety of common server workloads
= virtual-guest = Optimize for running inside a virtual guest

= virtual-host = Optimize for running KVM guests

Current active profile: openshift-control=-plane

Figure 9-7. The tuned profiles for OpenShift

SAdditional information about Tuned is available at the RHEL documentation (requires a valid
RHN subscription): https://access.redhat.com/documentation/en-us/red hat enterprise
linux/7/html-single/performance_tuning_guide/index#chap-Red Hat Enterprise Linux-
Performance_Tuning Guide-Tuned

fAdditional information about the OpenShift Tuned profiles is available at the scaling and
performance documentation (Requires a valid RHN subscription) https://access.redhat.com/
documentation/en-us/openshift_container platform/3.11/html-single/scaling and_
performance_guide/index#fscaling-performance-capacity-tuned-profile

227

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/performance_tuning_guide/index#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/scaling_and_performance_guide/index#scaling-performance-capacity-tuned-profile

CHAPTER9 DAY-2 OPERATIONS

Eviction Policy

The Eviction Policy” enables the Node to reclaim needed resources by failing one or more
Pods when the Node is running low on available resources. OpenShift supports two types
of eviction policy:

e hard: The Node takes immediate action to reclaim resources from a

Pod that exceeds predefined thresholds (see #1 Figure 9-8).

o soft: The Node waits for a grace period (see #3 Figure 9-8) before
reclaiming resources from a Pod exceeding the thresholds (see #2
Figure 9-8).

1 # oc edit cm -n openshift-node node-config-compute i # oc edit cm -n openshift-node node-config-compute

2 apiVersion: vl 2 apiVersion: vl

3 kind: ConfigMap 3 kind: ConfigMap

4 data: 4 data:

5 node-config.yaml: | 5 node-config.yaml: |

6 apiVersion: vi 6 apiVersion: v1

7 & / .

8 kind: NodeConfig 8 kind: NodeConfig

9 kubeletArguments: 9 kubeletArguments:

18 eviction-hard: @ 18 eviction-soft:

11 - memory.available<10@Mi 11 - memory.available<506Mi

12 — nodefs.available<10% 12 - nodefs.available<5@8Mi1

13 - nodefs.inodesFree=5% 13 - nodefs.inodesFree<188Mi

14 - imagefs.available<15% 14 - imagefs.available<l68Mi

15 i 15 - imagefs. inodesFree<100Mi
16 eviction-soft-grace-period: @
17 - memory.available=1lm3@s
18 - nodefs.available=1m3@s
19 - nodefs.inodesFree=1m30s
20 - imagefs.available=1m30s
21 - imagefs.inodesFree=1m3@s

Figure 9-8. Eviction Policies

The Eviction Policy settings are configurable by modifying the Kubelet arguments at
the Node ConfigMap (see Figure 9-8).

"Additional information on OpenShift Eviction Policies is available online at
https://docs.openshift.com/container-platform/3.11/admin_guide/out_of resource
handling.html#out-of-resource-eviction-policy

228

https://docs.openshift.com/container-platform/3.11/admin_guide/out_of_resource_handling.html#out-of-resource-eviction-policy
https://docs.openshift.com/container-platform/3.11/admin_guide/out_of_resource_handling.html#out-of-resource-eviction-policy

CHAPTER9 DAY-2 OPERATIONS

Pod Scheduling

OpenShift Pod Scheduler® is an internal process responsible for determining the
placement of new Pods onto Nodes. It does this by identifying a Node that can provide
the Pod’s requirements while complying with configured policies.

The available Nodes are filtered by rules known as Predicates. The resulting list is
sorted by rules that rank Nodes according to preferences and determine a Priority.

The configuration for the default scheduler policy containing the default Predicates
and Priorities is on the Master Nodes at /etc/origin/master/scheduler. json.

In addition to the default scheduler, there are several ways to invoke advanced
scheduling of Pods using

e Pod Affinity and Anti-affinity®: Pods specify affinity or anti-affinity
toward a group of Pods (e.g., for an application’s latency requirement)
using labels on Nodes and label selectors on Pods to control where a
Pod can be placed.

o Node Affinity'’: Pods specify affinity or anti-affinity toward a group
of Nodes using labels on Nodes and label selectors on Pods to control
where a Pod can be placed.

¢« Node Selectors!': Use labels on Nodes and label selectors on Pods to
control the scheduling on where a Pod can be placed.

¢ Taints and Tolerations'*: Taints are labels on a Node to refuse
Pods to be scheduled onto the Node unless the Pod has a matching
Toleration. Tolerations are labels on a Pod. The Taints and Tolerations
labels on the Node and on the Pod must match in order to be able to
schedule the Pod onto the Node.

8The OpenShift default scheduler is described in more detail in the online documentation: https://
docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html
9Advanced Scheduling using Pod Affinity and Anti-Affinity: https://docs.openshift.com/
container-platform/3.11/admin_guide/scheduling/pod _affinity.html#admin-guide-
sched-pod-affinity
YAdvanced Scheduling using Node Affinity: https://docs.openshift.com/container-
platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity
Advanced Scheduling using Node Selector: https://docs.openshift.com/container-
platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector
2Advanced Scheduling using Taints and Tolerations: https://docs.openshift.com/container-
platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints

229

https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/scheduler.html
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/pod_affinity.html#admin-guide-sched-pod-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_affinity.html#admin-guide-sched-affinity
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/node_selector.html#admin-guide-sched-selector
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/taints_tolerations.html#admin-guide-taints

CHAPTER9 DAY-2 OPERATIONS

Pod Priority

Pod Priority™ is used to indicate the relative importance of a Pod compared to other
Pods. The Scheduler orders Pods in queues by their Priority with higher priority Pods
ahead of other lower priority Pods.

The PriorityClass are cluster-level (non-namespaced) objects defining a mapping
between a name and an integer representing the Priority of the class. The higher the
number, the higher the priority.

The priority number is any 32-bit integer with a value smaller than or equal to
1,000,000,000 (one billion). Higher values are reserved for critical Pods that should not
be preempted or evicted.

OpenShift has two reserved PriorityClasses for critical system Pods as seen in Table 9-1.

Table 9-1. OpenShift Reserved PriorityClasses

PriorityClass Name Priority Value = Description

system-node-critical 2,000,001,000 Used for all Pods that should never be evicted from a
Node. This includes Pods like sdn-ovs, sdn, and others.

system-cluster-critical 2,000,000,000 Used with Pods that are important for the normal
operations of the cluster. Pods with this priority include
fluentd, descheduler, and others.

The PriorityClass name field is used by the Priority Admission Controller to identify
the integer value of the priority. If the named PriorityClass is not found, the Pod is
rejected. An example of the definition and utilization of a PriorityClass can be seen in
Figure 9-9.

BAdditional information about Pod Priority is available at the online documentation:
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/
priority preemption.html#priority-priority-about priority-preemption

230

https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/priority_preemption.html#priority-priority-about_priority-preemption
https://docs.openshift.com/container-platform/3.11/admin_guide/scheduling/priority_preemption.html#priority-priority-about_priority-preemption

CHAPTER9 DAY-2 OPERATIONS

1 apiVersion: scheduling.k8s.io/vlbetal
kind: PriorityClass

2

3 metadata: e

4 name: demo-high-priority ™~ # name of the PriorityClass object

5 value: 10e8e0e # priority actual value

6 globalDefault: false # default for Pods not specifying a PriorityClass name?

description: "This is a demo priority class."

apiVersion: vl

1

2 kind: Pod @

3 metadata:

4 name: my-demo-app

5 spec:

6 containers:

I} - name: myy-demo-app

B image: my-demo-app

9 imagePullPolicy: IfNotPresent
10 (priorityClassNane: demo-high-priority

Figure 9-9. Defining and using a PriorityClass

When a high-priority Pod disrupts the Node resource budget, the scheduler attempts to
preempt Pods, starting with lower-priority Pods, avoiding violating the Pod disruption budget.
When the scheduling of a new high-priority Pod requires the eviction of a lower-
priority Pod that has a Pod Affinity rule with a high-priority Pod running in the Node, the

scheduler attempts to identify a different Node to schedule the new high-priority Pod.

Summary

This chapter documents some of the Day-2 operations tasks for the maintenance and
operation of OpenShift clusters. In addition, the chapter presents some of the settings a
cluster administrator can use to allocate resources for system or platform critical tasks.

There are many more settings available for the reader to discover from the official
OpenShift documentation. The settings covered in this chapter are applicable for the
most common scenarios.

The OpenShift platform provides sensible defaults optimized for what is sometimes
referred to as general Cloud-native workloads, meaning the workloads for which
Kubernetes has been designed which were expected to be TCP-based, web-enabled,
and entirely agnostic to the underlying hardware infrastructure. With the adoption of
Kubernetes outside the web-based application, there is the need to support hardware
acceleration (i.e., GPUs, FPGAs, etc.) or multiple NICs per Container, and much more.
Chapter 10 explores how some of these advanced compute and networking capabilities

are supported in OpenShift.
231

CHAPTER 10

Advanced Network
Operations

The OpenShift platform provides defaults optimized for Cloud-native workloads. These
have been covered throughout this book. As with many successful Open Source project,
Kubernetes is being used in setups for which it was never designed. With the adoption of
Kubernetes outside the web-based application, there is the need to support specialized
hardware acceleration (i.e., GPUs, FPGAs, etc.), multiple NICs per Container, and

much more. This chapter focuses on advanced networking features or capabilities for
increasing network performance and for the onboarding of applications or microservices
using nontraditional web protocols into OpenShift.

Network Optimizations

OpenShift SDN uses OpenvSwitch, VXLAN tunnels, OpenFlow rules, and iptables or
firewalld rules. Some possible optimizations to this overlay network are based on best
practices for fine-tuning a system in a high-performance environment.

Jumbo Frames and VXLAN Acceleration

The standard Ethernet Maximum Transmission Unit (MTU) is 1500 Bytes. A regular IP
UDP packet will consume 20 Bytes for the IP header (see #2 in Figure 10-1) and 8 Bytes
for the UDP header (see #3 in Figure 10-1), and the remaining 1472 Bytes are available
for payload (see #4 to #8 in Figure 10-1).

Note The outer Ethernet header (14 Bytes) (see #1 in Figure 10-1) is not counted
as part of the MTU.

233
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_10

CHAPTER 10 ADVANCED NETWORK OPERATIONS

In SDN networks using the VXLAN protocol, the whole Ethernet frame of traffic
from Pods in one Node destined to Pods in another Node is encapsulated as IP UDP
packets and forwarded to the Node running the destination Pods. For this, the VXLAN
header (see #4 in Figure 10-1) is added to the original Layer 2 Ethernet frame (see #5 in
Figure 10-1), minus its FCS, and all this content becomes the payload of the outer IP
UDP packets (see #2 and #3 in Figure 10-1) and is sent to the remote Node.

T‘ Maximum Transmission Unit (MTU) l

+ 4 Bytes when using VLAN
Fraze FCS (4 Bytes)

j
$
i

Outer MAC Header (14 Bytes)

Figure 10-1. Format of a VXLAN packet

From the diagram in Figure 10-1, the effective MTU for payload (see #8) is 1422
Bytes. When working with environments with large streams of data to transfer among
Pods on different Nodes, those streams of data need to be broken into very small chunks
of 1422 Bytes or less. Each one of these packets undergoes an encapsulation process.
Under high network utilization or high network throughput, this may lead to high CPU
utilization and high latency.

To reduce the CPU utilization and latency under such circumstances, the

recommendations are

e Use Jumbo frames (i.e., MTU 9000 or more) to be able to send more
data per packet and reduce the number of packets and overhead
required to move the data from one Node to the other.

e Use NIC cards supporting VXLAN acceleration so the encapsulation
process is offloaded to hardware and CPU.

234

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Caution Not all the VXLAN-accelerated NICs support Jumbo frames. Consult

the technical specification of your NIC provider. In those cases where VXLAN
acceleration is not supported with Jumbo frames, the cluster administrators should
avoid Jumbo frames as the NIC driver will determine the final behavior which may
have a negative impact in performance.

Tuning Network Devices

Advanced Linux system administrator with deep understanding of the Linux networking

stack and the available tuning options for high-performance computing may use similar

techniques with OpenShift clusters.

Caution Some of the following optimizations have limited availability or configuration
options in some NIC drivers. Consult your hardware and driver technical information.

Some of the optimizations that may be considered are

Adjusting the number and size of RX and TX queues: Improved
throughput, latency, and multi-queue techniques can be used to
distribute the processing of queues across multiple CPUs.

Interrupt coalescing: Prevents interrupt storms and increases
throughput or latency.

Adaptive RX and TX coalescing: Interrupt delivery is optimized to
improve latency or throughput based on packet rate.

Hardware-accelerated Receive Flow Steering (RFS): When
supported by the NIC’s driver, the NIC and the Kernel work together
to determine which flows to send to which CPU for processing.

Adjusting IRQ affinity: Optimizes for data locality for interrupts
generated by the NIC.

Adjusting UDP receive queue size: Increases throughput.
Generic Receive Offloading (GRO) and Large Receive Offloading (LRO)

Receive Packet Steering (RPS) and Receive Side Scaling (RSS)
235

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Some of the Linux commands used for these optimizations are sysct! and ethtool.

These levels of optimizations are unique to each hardware and driver combination.
As such, this book highlights the existence of these capabilities but leaves it to the reader
to explore and test the ones suitable for their environment.

Routing Optimizations

The OpenShift Router can handle the Routes for multiple applications. This can be anywhere
from one to thousands of applications. The actual number of Routes an OpenShift Router
can handle is determined by the technology in use by the applications behind the Routes.

As seen in previous chapters, the OpenShift Router is based on HAProxy. One of the
tunable parameters for HAProxy is the maxconn parameter which is configurable by
using the ROUTER_MAX_CONNECTION' environment variable of the OpenShift Router
DeploymentConfig. This parameter sets the per-process maximum number of concurrent
connections.

Note When configuring the maxconn parameter, consider HAProxy counts of
the frontend connection and backend connection as two different connections.
Because of this, a connection from an external client to an application load
balanced by HAProxy counts as two.

Additional parameters? for the optimization of the OpenShift Router are
o CPU and interrupt affinity
e Increasing number of threads

o Setting up connection timeouts

'Additional information about configuring the maximum number of connection is available at the
online documentation: https://docs.openshift.com/container-platform/3.11/scaling_
performance/routing optimization.html#scaling-performance-optimizing-router-
haproxy-maxconn

2OpenShift HAProxy optimization parameters: https://docs.openshift.com/container-
platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-
optimizing-router-haproxy

236

https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy-maxconn
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy
https://docs.openshift.com/container-platform/3.11/scaling_performance/routing_optimization.html#scaling-performance-optimizing-router-haproxy

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Note OpenShift Routers, by default, listen on ports 80 (HTTP) and 443 (HTTPS),
but they can be configured to listen for HTTP and HTTPS traffic on other ports. This
option is configured using the environment variable ROUTER_SERVICE HTTP
PORT and the environment variable ROUTER _SERVICE HTTPS PORT.

Route-Specific Optimizations Annotations

In addition to the global configuration parameters of the HAProxy, OpenShift provides

the ability to modify certain behavior on per-Route basis. This is done by using Route

Annotations (see Table 10-1).

Table 10-1. OpenShift Route Annotations®

Variable

Description

haproxy.router.openshift.io/balance

haproxy.router.openshift.io/disable_cookies

router.openshift.io/cookie_name

haproxy.router.openshift.io/pod-concurrent-
connections

haproxy.router.openshift.io/rate-limit-
connections.concurrent-tcp

haproxy.router.openshift.io/rate-limit-
connections.rate-http

haproxy.router.openshift.io/rate-limit-
connections.rate-tcp

Load balancing algorithm: source, roundrobin, or
leastconn

Disables the use of cookies to track related
connections

Optional cookie to use for Route

Sets the maximum number of connections allowed
for each backing Pod from a specific Router

Limits the number of concurrent TCP connections
by an IP address

Limits the rate at which an IP address can make
HTTP requests

Limits the rate at which an IP address can make
TCP connections

(continued)

*Additional information and the updated list of possible Route Annotations are available from
the online documentation: https://docs.openshift.com/container-platform/3.11/
architecture/networking/routes.html#route-specific-annotations

237

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#route-specific-annotations
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#route-specific-annotations

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Table 10-1. (continued)

Variable Description

haproxy.router.openshift.io/timeout Sets a server-side timeout for the Route
router.openshift.io/haproxy.health.check.interval Sets interval for the backend health checks
haproxy.router.openshift.io/ip_whitelist (See “IP Whitelists” section)

haproxy.router.openshift.io/hsts_header Sets a Strict-Transport-Security header for the
terminated or re-encrypt Route

IP Whitelists

OpenShift supports the use of special annotations to restrict which source IP address
or network can access a specific Route. The ip_whitelist annotation (see Figure 10-2) is
a space-separated list of whitelisted source IP addresses and CIDRs that are allowed to
access the particular Route.

metadata:
NI, T -
_' haproxy.router.openshift.io/ip_whitelist: 209.132.183.105 192.168.1.0/24 10.5.25.0/24

[, T S PR S Y

Figure 10-2. IP Whitelist annotations for a Route

OpenShift Router Sharding

To horizontally scale the routing layer, OpenShift provides the capability to define and
use Router Shards. In this case, the Routes are shared among a group of Routers based on
a selection expression defining the Shard. There are two levels of Route sharding:

e Cluster administrators configure and manage sharding at cluster-
wide level.

o Users can configure sharding for namespaces where they have admin
privileges.

When using sharding, each Router in the group handles a portion of the traffic based
on the assigned Shard.

238

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Note Based on the selection expression, the Router Shards can be unique, in
which case a Route belongs to only one Shard, or there can be overlapping in
which case some Routes can belong to more than one Shard.

When using Router Sharding, the first Route matching a particular Shard reserves the
right to exist on that Shard permanently and even across restarts. Figure 10-3 illustrates
both ways of configuring Router Sharding.

USING NAMESPACE LABELS USING ROUTE LABELS

Figure 10-3. Router Sharding using Namespace or Route labels

Note When using the Namespace labels, the Service Account assigned to
the Router must have cluster-reader permission to access the labels in the
Namespaces.

Supporting Non-HTTP/HTTPS/TLS Applications

There is a wide range of applications that cannot be classified as HTTP-, HTTPS-, or TLS-
based applications. For example:

e Applications using specialized TCP protocols (i.e., database
protocols)

e UDP-based applications

e Applications requiring direct access to the Pods IP

239

CHAPTER 10 ADVANCED NETWORK OPERATIONS
For these applications, OpenShift provides various mechanisms:

e Using IngressIP or ExternallP

o Using NodePorts or HostPorts

Using IngressIP and ExternallP

When using an ingressIP and externallP, OpenShift uses Kube-Proxy to configure all
Nodes into accepting traffic destined to the particular IP address. When traffic destined
for a particular ExternallP arrives to a Node, it forwards the traffic internally to the Pods
associated to the Service (see #2 and #5 on Figure 10-4).

NODES

ADVANCED SPECIALIZED
NETWORKING PROTOCOLS

Figure 10-4. Traffic flow for non-http/https traffic

240

CHAPTER 10 ADVANCED NETWORK OPERATIONS

At first sight, both of these objects behave similarly but have a different default or
intended purpose.

o IngressIP: This IP address is allocated from the
ingressIPNetworkCIDR (default to 172.29.0.0/16 when not defined)
for Service type LoadBalancer. This CIDR should not overlap with
other IP ranges used in the Cluster.

o ExternallP: This IP is allocated from a CIDR defined by the
externallPNetworkCIDRs variable in the master-config.yaml
(see Figure 10-5). This can be a public IP address range or an
organization-level visible and unique network CIDR.

Note IP Addresses from the externallP CIDR are not managed by OpenShift.
It is up to the network administrator to make sure the traffic destined to these IP
arrives to the Nodes.

vi /etc/origin/master/master—config.yaml

networkConfig:
externalIPNetworkCIDRs:
- 198.18.100.0/23
- <network_2>/<cidr>

Restart Master service for changes to get into effect
$ master-restart api
$ master-restart controllers

Figure 10-5. Defining an externallPNetworkCIDR

Creating a service type LoadBalancer (see Listing 10-1) gets an ingressIP by default
(see Figure 10-6).

241

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Listing 10-1. Creating a Service type LoadBalancer

apiVersion: vi
kind: Service
metadata:
name: pgsql-1b
spec:
ports:
- name: pgsql
port: 5432
type: LoadBalancer
selector:
name: pgsql

apiVersion: vl o
kind: Service
metadata:
name: pgsql-lb
spec:
ports:
- name: pgsgl
port: 5432
type: LoadBalancer
selector:
name: pgsgl

[root®ocp ~]# oc expose dc pgsql --type=LoodBalancer --names=pgsql-1b2
service/pgsql-1bZ2 exposed
[rootlocp ~]# oc get all

NAME READY STATUS RESTARTS AGE

pod/pgsql-1-vpmbt 1/1 Running @ 4m

RAME DESIRED CURRENT READY MGE
replicaticncentroller/pgsgl-1 1 1 1 am

NAME TYPE
service/pgsql ClusterIP
service/pgsql-1b LoadBalancer
service/pgsql-1b2 LoodBalancer

and $ oc expose dc pgsql --type=LoadBalancer --name=pgsql-1b2

psql -h f?z_2_9_223__16_lj sampledb pguser e

Password for user pguser:

psql (9.2.24, server 9.6.10)

WARNING: psql version 9.2, server version 9.6.
Some psql features might not work.

Type "help" for help.

sampledb=> ||

CLUSTER-IP EXTERNAL -1P @ PORT(S) AGE
172.30.240.202 _<nones)) _ 5432/TCP .
172.30.106.105 [172.29.121.102,172.29.121.102) 5432:30671/TCP 1m
172.30.106.248 | 172.29.223.161,172.29.223.161 | 5432:30318/TCP 4s

Figure 10-6. LoadBalancer Service, IngressIP, and ExternallP

The LoadBalancer resource can be created using a YAML file (see #1 in Figure 10-6)
or using the OpenShift client command (see #2 in Figure 10-6). The resulting
LoadBalancer object will be assigned an IP from the ingressIPNetworkCIDR.

Note The CIDR for ingressIPNetworkCIDR can be modified on the master-

config.yaml.

242

CHAPTER 10 ADVANCED NETWORK OPERATIONS

Assigning an externallP to a service is achieved by adding it to the spec.externalIPs

definitions of the services (see Figure 10-7).

[reotBocp ~]& oc get svc

MAME TYPE CLUSTER-IP EXTERNAL-IP PORTCSY AGE
glusterfs-dynomic-22a60850-Tefe-11e9-b815-00104al168101 ClusterIP 172.38.55.81 <nones> L/TCP 3Zm
posql ClusterIP 172.30.240.202 <nones 5432/TCP 3Zm
pasql-lb LoadBalancer 172.308.106.105 172.29.121.192,172.29.121.102 _ 5432:30671/TCF 30m

pasql-1b2 LoadBalancer 172.38.106.248 172.79.223.161,172.29.223.161 @432:1@51&,"{!’ 28m

[reot@ocp ~]# 4 @

service/pgsql
[rootBocp ~]# oc get svc

MAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
glusterfs-dynomic-22060850-Tefe-11e9-bE15-001040168101 ClusterIP 172.38.55.81 “nones 1/TCP 33m
pgsql ClusterIP 172.308.249.202 <none> 5432/TCP 34m
posql-1b LoadBalancer 172.30.106.105 172.29.121.102,172.29.121.182 5432:30671/TCP 31m
pasql-162 LoadBalancer 172.308.106.248 172.29.223.161,198.18.101.200)172.29.223.161 5432:30318/TCP 30m

[rootocp ~1#]

Figure 10-7. Assigning externallP to a Service

Using NodePorts and HostPorts

Another way to bring traffic into the Pods is by using a NodePort or HostPort. These two
objects are similar in their behavior with respect to allocating ports in the actual Nodes.
The difference is how the Ports are allocated in all Nodes from a range or allocated on

the Node where the Pod is running.

e NodePort: Will allocate a port from the range 30000-32767 in all
Nodes. (Note: It is possible to request a specific port in this range).
The NodePort can be allocated for a Service or a specific Pod (see
Figure 10-8).

o HostPort: Will allocate the specified port in the Node where it is

running (see Figure 10-9).

apiVersion: vl
kind: Service

metadata:
name: pgsql-nodeport
labels:
name: pgsql-nodeport [root@ocp ~]# oc get svc pgsql-nodeport
spec: NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) gB) AGE
type: NodePort pgsql-nodeport NodePort 172.30.72.157 <none> 54:32364_32/T FP 24m
ports: @ [root@ocp ~J# []
-|port: 5432

|nodePort: 30432
name: posal
selector:
name: pgsql-nodeport

Figure 10-8. Using NodePort

243

CHAPTER 10 ADVANCED NETWORK OPERATIONS

apiVersion: vl
kind: Pod
metadata:
name: podcool-hostport
labels:
name: podcool-hostport
spec:
containers:
- name: podcool-hostport
image: podcecol
ports: .
- containerPort: 8080
‘hostPort: 8080 @

[root@ocp ~]# oc get pod podcool-hostport -o wide
. NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
podcool-hostport 1/1 Running @ 9m 10.128.2.15 | ocp-n3.shift.zone™ <none>
[root@ocp ~]# curl locp-n3.shift.zone:8080/hello @ e
Hello from podcool-hostport vi-dockerfile
[root@ocp ~]# curl locp-n2.shift.zone:8080/hello @
curl: (7) Failed connect to ocp-nl.shift.zone:808@; No route to host
¢ [root@ocp ~]# U

Figure 10-9. Using HostPort

Multiple NIC per POD

OpenShift 4.1 and later support the ability to provide multiple network interfaces to
Pods. This capability is provided by the Multus CNI.*

Multus CNIis a meta plugin for Kubernetes which enables the creation of multiple
network interfaces per Pod. Each interface can be using a different CNI plugin.

As seen in Figure 10-9, when Multus CNI receives the request for the creation of a
new network interface for the Pod, it sends that request to the primary Kubernetes CNI
(see #4 in Figure 10-10) for the creation of the etho interface. In addition, it interprets the
Pod annotations to invoke additional CNIs to add other interfaces (see #6 in Figure 10-10)
to the Pod.

*Additional information on providing multiple network interface to Pods can be found at the
OCP 4.1 online documentation: https://docs.openshift.com/container-platform/4.1/
networking/managing-multinetworking.html

244

https://docs.openshift.com/container-platform/4.1/networking/managing-multinetworking.html
https://docs.openshift.com/container-platform/4.1/networking/managing-multinetworking.html

CHAPTER 10 ADVANCED NETWORK OPERATIONS

POD WITHOUT MULTUS POD WITH MULTUS

S—

(-o/ MULTUS \o\
CNI compliant SDN plugin CNI compliant SDN plugin
(i.e. OpenShift-SDN, Calico, etc) e (i.e. OpenShift-SDN, Calico, etc)

CNI compliant SDN plugin

! (i.e. OpenShift-SDN, Calico, etc)

o
2
°

©
....l.j.....

»- neta 4

Figure 10-10. Multus CNI logical diagram

Multus requires the creation of a NetworkAttachmentDefinition defining the
additional CNI (see #1 in Figure 10-11). The Pod must be annotated with the additional
CNIs to use to provide additional interfaces (see #2 in Figure 10-11). At the Pod level, the
new network interface is created (see #4 in Figure 10-11).

245

CHAPTER 10 ADVANCED NETWORK OPERATIONS

ion: “kBs.cni.cncf.io/v1l"

2 NetworkAttachmentDefinition @
3 2 1 apiVersion: vl
4 name: my-cni2-conf -
5 spec: 2 kind: Pod
6 config: '{ 3 metadata:
; teniVersion': 9.3, 4 name: podcool-multus
8 “type": “macvlan”, E
9 "master": "eth@", 5 annotations:
0 “mode": "bridge”, 6 |@ k8s.vl.cni.cncf.io/networks: my-cni2-conf
1 "ipaa": { 7 spec:
2 "type": "host-local”, . .
13 “subnet": “192,168.2.8/24", 8 containers:
14 "rangeStart": "192.168.2.18", 9 ~ name: podcool-multus
15 “rangeEnd": “192.168.2.200", 10 Mmﬁ“mw
(] "routes": ["“""""""‘""J"":""L""NW"“
7 { "dst": "0.0.0.0/0" } 11 Lo ports:
8 1. 12 - containerPort: 8080
9 "gateway": "192,168.2.1" 13 mmmmmmmmmssnsnannnnan s
20 b -
H
22
1 $ oc exec -ti podcool-multus sh @
2 fusr/src/app $ ip addr | grep -A2 “@"
3
4 3: eth@@ifl2: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue state UP
5 link/ether 0a:58:0a:80:02:0f brd ff:ff:ff:ff:ff:ff
6 inet 10.128.2.15/23 brd 10.128.3.255 scope global eth@
7
8 4: net@@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1580 gdisc noqueue state UNKNOWN group default
9 link/ether 00:1a:4a:16:01:01 brd ff:ff:ff:ff:ff:ff link-netnsid @
19 inet 192.168.2.17/24 scope global net®
11

Figure 10-11. Defining NetworkAttachmentDefinition and using Multus CNI

OpenShift ServiceMesh

The OpenShift ServiceMesh is based on the upstream project Maistra.> Some of the
components of OpenShift ServiceMesh are

o Istio: Based on the Istio® project; enables the intelligent control of
the flow of traffic; enables the authentication, authorization, and
encryption of communication between microservices; enforces
policies; and enables observability of the communication among the
microservices of an application

o Envoy: Service proxy used by Istio and based on Envoy Proxy’ project

*For more details of the Maistra project, refer to the online documentation at
https://maistra.io/docs/

SUpstream Istio project is available at https://istio.io
"Upstream Envoy Proxy project is available at waw.envoyproxy.io

246

https://maistra.io/docs/
https://istio.io
http://www.envoyproxy.io

CHAPTER 10 ADVANCED NETWORK OPERATIONS
o Jaeger: Distributed tracing capability based on the Jaeger® project
(see #2 in Figure 10-12)

o Kiali®: Graphical interface integrating the components of OpenShift
ServiceMesh (see #1 in Figure 10-12)

¢ Grafana: Used for the Istio mesh dashboards (see #3 and #4 in
Figure 10-12)

¢ Prometheus: Used to collect Istio mesh metrics

o Elasticsearch: Used as the backend storage for the Istio metrics

Note At the time of this writing, installing OpenShift ServiceMesh™ in OCP 3.11.x
is still considered a Technology Preview capability.

Some of the OpenShift ServiceMesh consoles are shown in Figure 10-12.

Figure 10-12. OpenShift ServiceMesh

8Upstream Jaeger project is available at www. jaegertracing.io
Upstream Kiali project is available at wuw.kiali.io

*The instructions for the installation and configuration of the OpenShift Service Mesh are available
at the online documentation: https://docs.openshift.com/container-platform/3.11/
servicemesh-install/servicemesh-install.html#installing-service-mesh

247

http://www.jaegertracing.io
http://www.kiali.io
https://docs.openshift.com/container-platform/3.11/servicemesh-install/servicemesh-install.html#installing-service-mesh
https://docs.openshift.com/container-platform/3.11/servicemesh-install/servicemesh-install.html#installing-service-mesh

CHAPTER 10 ADVANCED NETWORK OPERATIONS

The main functionality of the OpenShift ServiceMesh requires injecting the Istio
sidecar, the Envoy proxy, into the Pod. This requires the proper annotation of the
Deployment configuration (see #1 in Figure 10-13).

etals vl o Edit YAML

Edit Deployment details-v1

e: 1
ailasle: 1
Rallingpdate

L)
¥
™

Figure 10-13. OpenShift ServiceMesh annotations for Istio sidecar

Once the Istio proxy sidecar is injected into the Pod (see #5 in Figure 10-14), all traffic
incoming or outgoing to that Pod goes over the Istio-proxy sidecar container.

248

CHAPTER 10 ADVANCED NETWORK OPERATIONS

details-v1-Sc85859749-8cqh2

details-v1-5¢89899749-8cqb2 Actions ~
wnp pod-template-hash |1 wersion
Details Environment Metrics Logs Terminal Events
Status Template
Status: & Running Init Containers
" : etalls.ut-ScEOB99TAZ
i stio-init
" 10,126.0.18
Node: acpnl shift.zone (192.168.1.23) ® Image: openshift-istio-tech-preview proxy-init0, 10.0
Restart Pelicy: Abwarys Command: <izsge-entrypoint> —p 19091 —u 1937 -n REDIRECT -1 » -x -b 5088 —d 15828
- s CPU: 10 millcores to 100
| Init container istic-init completed successfully } o Show Deta e Memory: 10 Ml to S0 Ml
Container details Containers
State; Running since May 25, 2019 85716 PM Setoits
Ready: true
Restart Count:] = Image: stissexam phes-ookinfo-detalls-viz113.0
 Ports: 9080/TCP

Container istio-proxy B Mount defaut-token-gr = AR D/SENICRICCOUNE read ool
State: Running since May 25, 2019 RET17 PM

sto-proxy
Ready: g
Restart Count: a [W Image: openshift.istio-tech- previewsprom2-0.10.0

Comeman: .

<image-entrypoint proxy sidecar —-domain §{PO0_MAMESPACE).sve.cluster.local —c. See ALl
* Ports: 15090TCP fhatp-emvoy-proem)

- grikam - un/secrets/ubemetes JoiserAceaccount read sty

i CPU: 100 milkcores to 500 milicores
s Memory: 128 MIB to 128 MIB
€ Readiness Probe: GET /healtha/ready on port 15020 (HTTP) 15 celay, |

Figure 10-14. OpenShift ServiceMesh Istio-Proxy sidecar injection

From the OpenShift ServiceMesh perspective, when using OpenShift Routes in
conjunction with the Istio Gateway resources, the traffic flow will be as follows:

o External traffic arrives to the Route (see #1 in Figure 10-15) which
points to a LoadBalancer type Service (see #2 in Figure 10-15).

e A LoadBalancer resource gets allocated an IngressIP and the
cluster administrator could also assign an ExternallP.

o Trafficis then delivered to the Istio Gateway on the destination
Project or Namespace as seen in #3 on Figure 10-15.

e The Istio Gateway is considered the edge of the Mesh for
incoming and outgoing connections. It describes the ports and
protocol (HTTP/HTTPS/TCP) it will accept traffic for.

o Traffic accepted at the Istio Gateway is forwarded based on the
VirtualService definition (see #5 on Figure 10-15).

e The VirtualService defines one or more destinations where
the traffic should go inside the ServiceMesh to reach the actual
destination (i.e., a Service or Pod).

249

CHAPTER 10 ADVANCED NETWORK OPERATIONS

e Any Service or Pod annotated for the Istio Proxy will have the Istio
sidecar injected into the Pods (see yellow pentagon shapes in
Figure 10-15).

o After this point, the metrics and visibility provided by the Istio Proxy
are available over the Kiali console.

e (1] (> B Kind: Service
@ ey 4 OpenShift Route Rt 3l Type: LoadBalancer
Mame: istio-ingressgateway
APP USER
namespace: istio-system J

namespace: bookinfo-app

=2

Klnd VirtualService
Name bookinfo

L%

Kind: Gateway

Name: bookinfo-gateway

Kind: Ser\rice
/ Name: details

Kind: Semce
Name reviews

Kind: Service
Name: productpage

Figure 10-15. Traffic flow with OpenShift ServiceMesh

Kind: Service
P - rai

Caution At the moment of this writing, the Istio-Proxy (Envoy) has limited support
for non-TCP traffic. Applications relying on non-TCP protocols should investigate
the impact of these limitations to avoid service disruption.

Summary

This chapter covers some of the advanced network optimizations available in the
OpenShift Container Platform (OCP). Some of these optimizations, like hardware
acceleration, are dependent on the availability of underlying infrastructure supporting
the capability. Other optimizations are more in the fine-tuning of configuration

attributes to increase performance and scalability of the capability, like the
optimizations available for the OpenShift Routers.

250

CHAPTER 10 ADVANCED NETWORK OPERATIONS

In addition to the optimization, this chapter describes the use of IngressIP,
ExternallPs, NodePorts, and HostPorts to bring specialized IP protocols to Services and
Pods running on the platform.

Finally, the chapter explored advanced functionalities provided by OpenShift Multi-
Network capabilities with Multus and the OpenShift ServiceMesh with Istio, Jaeger, and
other upstream projects.

Some of the optimizations described in this chapter are intended for OpenShift bare-
metal deployments. Chapter 11 provides a glimpse of the installation of OpenShift 4.1
using the User Provisioned Infrastructure (UPI) deployment option. This new OpenShift
version provides the support for advanced networking capabilities like the multiple
network for Containers using Multus, OpenShift ServiceMesh, and many others.

251

CHAPTER 11

OCP 4.1 UPI Mode
Bare-Metal with PXE
Boot Deployment

Some of the advanced networking optimizations discussed in Chapter 10 are intended
to be used with bare-metal deployments of OpenShift. Furthermore, some of the
capabilities are now included in OpenShift 4.1.! This chapter provides supplementary
information that goes into the details of an installation of OpenShift 4.1 in bare-metal
deployment using the User Provisioned Infrastructure (UPI) mode that was discussed in
Chapter 6.

Note At the time of this writing, the UPI mode is still in beta, but it has been
validated to work with bare-metal deployments.

UPI Mode

With the Installer Provisioned Infrastructure (IPI) mode, covered in Chapter 6, the
openshift-installer takes care of configuring ancillary services like internal and external
load balancers, DNS records, and the provisioning of the base Operating System (OS);
with the UPI mode, all those ancillary configurations need to be in place before starting
the deployment.

"During the development of this book, Red Hat decided to keep OpenShift 4.0 as a Developer
Preview release and instead did the release of OpenShift 4.1 as the first General Availability (GA)
release of the 4.x major version.

253
© William Caban 2019

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7_11

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

The installation of OCP 4.1 with UPI mode varies based on the infrastructure target.
For example, using UPI mode in a VMware environment, vs. an AWS environment,
vs. Bare-Metal, has different steps. The core prerequisites are the same but the

infrastructure-specific requirements will vary.

Bare-Metal with PXE Boot Example

This chapter covers UPI mode for Bare-Metal using PXE Boot for provisioning the OS
during the installation. The diagram for the documented deployment is as shown in
Figure 11-1.

b & & o

AUTOMATION CLUSTER APP USERS
& CUCD TOOLS ADMiN DEVELOPERS APPOWNERS p
7
\ : ocpd) pg com
. .apps.ocpdpoc.example.
api.ocp4poc.example.com A

-

Al \
api-int. ocpdpoc.example.com

I]
1 |
1 I
| |
! API Server :
1

1 |
| |
1 |
I I

L o L L L_J J
DHCP DNS TIME RH Registries PXE Server RH Repos Installer

- DpenShift 4.x
ANCILLARY DEPENDENCIES Vol rza s lai) BASTION NODE

Figure 11-1. OCP 4.1 UPI standard deployment

The basic deployment for OCP 4.x is a high availability (HA) configuration with three
Master or Control Nodes and at least two Workers or Compute Nodes. The Bootstrap Node
is only used during the initial deployment of the Master or Control Nodes. See Table 11-1
for details on the reference environment.

254

CHAPTER 11

OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Note The reference configuration uses ocp4poc as the cluster name and

example.com as the base domain, hence the use of ocp4poc.example.comas

the domain for the cluster.

Table 11-1. Reference Environment

Node Name [P Address Mac Address

bootstrap 192.168.1.10 02:01:01:01:01:01
master-0 192.168.1.11 02:00:00:00:01:01
master-1 192.168.1.12 02:00:00:00:01:02
master-2 192.168.1.13 02:00:00:00:01:03
worker-0 192.168.1.15 02:00:00:00:02:01
worker-1 192.168.1.16 02:00:00:00:02:02

UPI Bare-Metal with PXE Boot

There are two ways to install the Red Hat Enterprise Linux CoreOS (RHCOS). One is

using an ISO image which then requires manual entry of parameters to load the Ignition

configuration files, and the other option is using the PXE Boot install in which case all
the Ignition parameters are passed using the PXE APPEND configuration fields.

Prerequisites

The deployment of OpenShift 4.1 using UPI mode with PXE Boot bare-metal has the

following prerequisites:

o Designate a cluster name (i.e., cluster name = ocp4poc).

o Designate a base domain (i.e., base domain = example.com) for the

subdomain dedicated to the cluster.

e The cluster subdomain will be composed of <cluster-

name>.<based-domain>.

» Thatis, ocp4poc.example.com

255

CHAPTER 11

o Fully resolvable FQDN forward and reverse DNS entries for all the

Nodes (including the Bootstrap node).

e Setup aLoad Balancer in pass-through mode for Kubernetes API

Special efcd service entries are required.

OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Special Kubernetes API internal and external entries.

(tcp/6443), Machine Server Config (tcp/22623), and OpenShift
Routers HTTP and HTTPS (tcp/80, tcp/443).

Note

for assigning the hostname to the Nodes.

At the moment of this writing, when using UPI mode in bare-metal with PXE
Boot, the Red Hat Enterprise Linux CoreOS (RHCOS) uses reverse DNS resolution

DNS Configuration (Example)

Following the reference information from Table 11-1, the corresponding DNS

configuration must include the entry layout in Table 11-2.

Table 11-2. Reference DNS Configuration

Role

FQDN

bootstrap
master-0
master-1
master-2
worker-0
worker-1

Kubernetes API
(tcp/6443)

etcd

bootstrap.<cluster_name>.<base_domain>
master-0.<cluster_name>.<base_domain>
master-1.<cluster_name>.<base_domain>
master-2.<cluster_name>.<base_domain>
worker-0.<cluster_name>.<base_domain>
worker-1.<cluster_name>.<base_domain>

api.<cluster_name>.<base_domain>

api-int.<cluster_name>.<base_domain>

etcd-0.<cluster_name>.<base_domain>

192.168.1.10
192.168.1.11
192.168.1.12
192.168.1.13
192.168.1.15
192.168.1.16

External Load Balancer for

Master Nodes

Internal Load Balancer for

Master Nodes
192.168.1.11

256

(continued)

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Table 11-2. (continued)

Role FQDN

etcd-1.<cluster_name>.<base _domain> 192.168.1.12

etcd-2.<cluster_name>.<base_domain> 192.168.1.13

etcd SRV etcd-server-ssl._tcp.<cluster_name>.<base_domain>
For each Master Node, OpenShift requires a SRV DNS record for etcd server
on that machine with priority 0, weight 10, and port 2380.

Wildcard x.apps.<cluster_name>.<base_domain> 192.168.1.15,192.168.1.16

Subdomain for Apps

The reference configurations in Listings 11-1 and 11-2 are for the Bind DNS server.

When using other DNS servers, a similar configuration is required.

Listing 11-1. Forward DNS Record

; /var/named/ocp4poc.example.com

$TTL 1D
@ 1IN SOA bastion.ocp4poc.example.com. root.ocp4poc.example.com. (
2019052001 ; serial
1D ; refresh
2H ; retry
W ; expiry
2D) 5 minimum
@ IN NS bastion.ocp4poc.example.com.
@ IN A 192.168.1.1
; Ancillary services
1b IN A 192.168.1.200
1b-ex IN A 10.10.10.10
; Bastion or Jumphost
bastion IN A 192.168.1.1
; OCP Cluster
bootstrap IN A 192.168.1.10

257

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

master-0 IN A 192.168.1.11
master-1 IN A 192.168.1.12
master-2 IN A 192.168.1.13
worker-0 IN A 192.168.1.15
worker-1 IN A 192.168.1.16
etcd-0 IN A 192.168.1.11
etcd-1 IN A 192.168.1.12
etcd-2 IN A 192.168.1.13

_etcd-server-ssl. tcp.ocp4poc.example.com. IN SRV 0 0 2380 etcd-0.
ocp4poc.example.com.

INSRV 0 o0 2380 etcd-1.
ocp4poc.example.com.

INSRv. 0 o0 2380 etcd-2.
ocp4poc.example.com.

api IN CNAME lb-ext ; external LB interface
api-int IN CNAME 1b ; internal LB interface
apps IN CNAME 1b-ext
*.apps IN CNAME 1b-ext

Note The configuration of the etcd server records is required for the OpenShift
installation. The api (external VIP pointing to the Control Nodes) and api-int (internal
VIP pointing to the Control Nodes) records must exist pointing to the correct VIP.

Listing 11-2. Reverse DNS Record

; /var/named/1.168.192.in-addr.arpa
$TTL 1h
$ORIGIN 1.168.192.IN-ADDR.ARPA.

@ 1h 1IN SOA bastion.ocp4poc.example.com. root.ocpdpoc.example.com. (
2019052901 ; serial
2H ; refresh

258

1

10

11
12
13

15
16

100

IN

IN

IN
IN
IN

IN
IN

IN

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

15 ; retry

W ; expiry

2H) 5 minimum

IN NS bastion.ocp4poc.example.com.

PTR bastion.ocp4poc.example.com.

PTR bootstrap.ocp4poc.example.com.

PTR master-0.ocp4poc.example.
PTR master-1.ocp4poc.example.
PTR master-2.ocp4poc.example.

PTR worker-0.ocp4poc.example.
PTR worker-1.ocp4poc.example.

PTR 1b.ocp4poc.example.com.

com.
com.
com.

com.
com.

Load Balancer Configuration (Examples)

The load balancer configuration is divided into external-facing configuration and cluster-

facing configuration. The external-facing configuration should resolve to the external IP of

the load balancer. The cluster-facing configuration should resolve to the internal IP of the

load balancer. All the ports must be configured in pass-through mode. The ports required
by OpenShift and that should be configured in the load balancer are listed in Table 11-3.

Table 11-3. Reference Load Balancer Configuration

Service VIP Backend Port

Kubernetes bootstrap.ocp4poc.example.com:6443 6443

API master-0.ocp4poc.example.com:6443 The entry for the Bootstrap Node should
master-1.ocp4poc.example.com:6443 be removed after the cluster bootstrap
master-2.ocp4poc.example.com:6443 installation process is completed

Machine bootstrap.ocp4poc.example.com:22623 22623

Server master-0.ocp4poc.example.com:22623 The entry for the Bootstrap Node should

master-1.ocp4poc.example.com:22623
master-2.ocp4poc.example.com:22623

be removed after the cluster bootstrap
installation process is completed

(continued)

259

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Table 11-3. (continued)

Service VIP Backend Port

Ingres HTTP worker-0.ocp4poc.example.com:80 80
worker-1.ocp4poc.example.com:80

worker-1.ocp4poc.example.com:80

Ingress worker-0.ocp4poc.example.com:443 443
HTTPS worker-1.ocp4poc.example.com:443

api-int.<cluster_name>.<base_domain> Internal Load Balancer for Master Nodes

NGINX and HAProxy are Open Source projects commonly used as load balancers.
A reference load balancer configuration using NGINX is presented in Listing 11-3.

Listing 11-3. Load Balancer with NGINX (Example)

ngnix.conf

user nginx;

worker processes auto;

error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

events {
worker connections 1024;

}

Pass-through
stream {
upstream ocp4poc-k8s-api {
Kubernetes API
server bootstrap.ocp4poc.example.com:6443;

server master-0.ocp4poc.example.com:6443;
server master-1.ocp4poc.example.com:6443;
server master-2.ocp4poc.example.com:6443;

260

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

upstream ocp4poc-machine-config {
Machine-Config
server bootstrap.ocp4poc.example.com:22623;

server master-0.ocp4poc.example.com:22623;
server master-1.ocp4poc.example.com:22623;
server master-2.ocp4poc.example.com:22623;

}
server {
listen 6443;
proxy pass ocp4poc-k8s-api;
}
server {
listen 22623 ;
proxy_pass ocp4poc-machine-config;
}

Passthrough required for the routers
upstream ocp4poc-http {
Worker Nodes running OCP Router
server worker-0.ocp4poc.example.com:80;
server worker-1.ocp4poc.example.com:80;
}
upstream ocp4poc-https {
Worker Nodes running OCP Router
server worker-0.ocp4poc.example.com:443;
server worker-1.ocp4poc.example.com:443;

}
server {

listen 443;

proxy_pass ocp4poc-http;
}

261

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

server {
listen 80 ;
proxy_pass ocpdpoc-https;

A reference load balancer configuration using HAProxy is presented in Listing 11-4.

Listing 11-4. Load Balancer with HAProxy (Example)

haproxy.cfg

defaults
mode http
log global
option httplog
option dontlognull
option forwardfor except 127.0.0.0/8
option redispatch
retries 3

timeout http-request 10s

timeout queue im
timeout connect 10s
timeout client 300s
timeout server 300s
timeout http-keep-alive 10s
timeout check 10s
maxconn 20000

frontend openshift-api-server
bind *:6443
default_backend openshift-api-server
mode tcp
option tcplog
backend openshift-api-server
balance source
mode tcp

262

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

server bootstrap 192.168.1.10:6443 check
server master-0 192.168.1.11:6443 check
server master-1 192.168.1.12:6443 check
server master-2 192.168.1.13:6443 check

frontend machine-config-server
bind %:22623
default backend machine-config-server
mode tcp
option tcplog

backend machine-config-server
balance source
mode tcp

server bootstrap 192.168.1.10:22623 check

server master-0 192.168.1.11:22623 check
server master-1 192.168.1.12:22623 check
server master-2 192.168.1.13:22623 check

frontend ingress-http
bind %:8080
default backend ingress-http
mode tcp
option tcplog

backend ingress-http
balance source
mode tcp
server worker-0 192.168.1.15:80 check
server worker-1 192.168.1.15:80 check

frontend ingress-https
bind %:8443
default_backend ingress-https
mode tcp
option tcplog

263

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

backend ingress-https
balance source
mode tcp
server worker-0 192.168.1.15:443 check
server worker-1 192.168.1.15:443 check

DHCP with PXE Boot Configuration (Example)

Listing 11-5 is a reference configuration of DHCP using DNSmasq, sending the PXE Boot
server information to the Nodes.

Listing 11-5. DHCP for PXE Boot with DNSmasq

OCP4 PXE BOOT Lab

dnsmasq configurations

disable DNS /etc/dnsmasq.conf set port=0
#

no-dhcp-interface=etho

interface=eth1

#domain=ocp4poc.example.com

DHCP (dnsmasq --help dhcp)
dhcp-range=eth1,192.168.1.10,192.168.1.200,24h
dhcp-option=option:netmask,255.255.255.0
dhcp-option=option:router,192.168.1.1
dhcp-option=option:dns-server,192.168.1.1
dhcp-option=option:ntp-server,204.11.201.10

Bootstrap
dhcp-host=02:01:01:01:01:01,192.168.1.10

master-0, master-1, master-2

dhcp-host=02:00:00:00:01:01,192.168.1.11
dhcp-host=02:00:00:00:01:02,192.168.1.12
dhcp-host=02:00:00:00:01:03,192.168.1.13

worker-0, worker-1
dhcp-host=02:00:00:00:02:01,192.168.1.15
dhcp-host=02:00:00:00:02:01,192.168.1.16

264

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

#it## PXE

enable-tftp
tftp-root=/var/lib/tftpboot,eth1
dhcp-boot=pxelinux.0

PXE Boot Configuration (Example)

Listing 11-6 is a reference configuration of using DNSmasq as the PXE Boot server.

Listing 11-6. DNSmasq as PXE Boot Server

UI vesamenu.c32
DEFAULT LOCAL
PROMPT 0
TIMEOUT 200
ONTIMEOUT LOCAL

MENU TITLE PXE BOOT MENU

LABEL WORKER-BIOS

MENU LABEL ~1 WORKER (BIOS)

KERNEL rhcos/rhcos-kernel

APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0
coreos.inst=yes coreos.inst.install dev=sda coreos.inst.
ignition_url=http://192.168.1.1:8000/worker.ign coreos.inst.image_
url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz
ip=eth1:dhcp

LABEL MASTER-BIOS

MENU LABEL "2 MASTER (BIOS)

KERNEL rhcos/rhcos-kernel

APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0
coreos.inst=yes coreos.inst.install dev=sda coreos.inst.
ignition_url=http://192.168.1.1:8000/master.ign coreos.inst.image_
url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz
ip=eth1:dhcp

265

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

LABEL BOOTSTRAP-BIOS

MENU LABEL ~3 BOOTSTRAP (BIOS)

KERNEL rhcos/rhcos-kernel

APPEND rd.neednet=1 initrd=rhcos/rhcos-initramfs.img console=tty0
coreos.inst=yes coreos.inst.install dev=sda coreos.inst.ignition_
url=http://192.168.1.1:8000/bootstrap.ign coreos.inst.image
url=http://192.168.1.1:8000/metal/rhcos-410.8.20190516.0-metal-bios.raw.gz
ip=eth1:dhcp

LABEL LOCAL
MENU LABEL "7 Boot from Local Disk
MENU DEFAULT
LOCALBOOT 0

LABEL RECOVERY1

MENU LABEL ~8 Recovery (initqueue)

KERNEL rhcos/rhcos-kernel

APPEND rd.break=initqueue rd.neednet=1 initrd=rhcos/rhcos-initramfs.img
console=tty0o ip=ethi:dhcp

LABEL RECOVERY2

MENU LABEL ~9 Recovery (pre-mount)

KERNEL rhcos/rhcos-kernel

APPEND rd.break=pre-mount rd.neednet=1 initrd=rhcos/rhcos-initramfs.img
console=tty0o ip=ethi1:dhcp

Preparing the Installation

The bare-metal deployment of OpenShift 4.1 using UPI mode with PXE Boot requires
special attention to the hardware configuration in use, especially the BIOS configuration
and NIC interface configured for the PXE Boot.

Note The examples in this chapter use a Bastion Node in the same network
as the Cluster Nodes, but this is not strictly necessary. They can be on different
networks as long as the reachability exists.

266

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Considerations with UPI Mode with PXE Boot

At the time of this writing, there are several considerations to have when using UPI Mode
with PXE Boot:

When using a physical server with multiple NICs

The PXE APPEND command must specify the exact NIC to
use during the PXE boot. For example, use a syntax similar to
ip=eth2:dhcp and NOT a generic DHCP entry like ip=dhcp.

If the PXE APPEND uses the ip=dhcp, the DNS information from
the last NIC to come up will be used as the entry for /etc/
resolv.conf.

If the last NIC to come up has a self-assigned IP and does not
receive a DNS, the resulting /etc/resolv.conf will be empty.
When this happens, the Node will attempt to use the localhost
[::1] as the DNS and the installation will fail. To work around

this, during the installation

= When possible, avoid having NICs with active link that are not
receiving valid IPs.

= Pass the nameserver=<nameserver_ip> with the PXE APPEND
command.

When the server has many NICs, it is possible for the
NetworkManager-wait-online.service to time out before the
DHCP request over each NIC timeout. When this happens,

a cascaded failure may be triggered. To avoid this situation,
arecommended patch is to increase the timeout of this
NetworkManager service and avoid the situation.

At the time of this writing, using the PXE APPEND to disable IPv6 using
the ipv6.disable is not supported.

When customizing Ignition files to write custom files or

configurations in the Node, the permissions must be specified in
OCTAL mode (i.e., 384), NOT in DECIMAL mode (i.e., 600).

267

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

o Ifthere is no valid reverse DNS resolution during the installation, the
Masters (and all the Nodes) will register as 1localhost.localdomain
into the Kubernetes etcd. When this happens, Kubernetes will fail to
identify the existence of multiple masters and the installation process
will fail.

Downloading RHCOS and Installation Binaries

The installation requires the download of the Red Hat Enterprise Linux CoreOS (RHCOS)
corresponding to the 4.1 version, the OpenShift 4.1 client, and the OCP 4.1 openshift-
installer. These are available from the corresponding mirror repositories:

o Obtain the latest RHCOS images from https://mirror.openshift.
com/pub/openshift-v4/dependencies/rhcos/4.1/latest/

¢ Obtain the latest OpenShift client and installer binaries from
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/

For the UPI mode using PXE Boot, the required images are as shown in Figure 11-2
(the specific subrelease and release will be different after GA).

images/

b— openshift-client-linux-4.1.0-rc.7.tar.gz

}— openshift-install-linux-4.1.0-rc.7.tar.gz

b— rhcos-410.8.20190516.0-installer-initramfs. img
b— rhcos-410.8.20190516.0-installer-kernel

b— rhcos-410.8.20190516.0-metal-bios. raw.gz

L— rhcos-410.8.20190516.0-metal-uefi. raw.gz

Figure 11-2. RHCOS and OCP 4.1 installation binaries (example)

Preparing the PXE Boot Images

Copy the RHCOS PXE Boot images to the PXE server similar to #1 on Figure 11-3.
Copy the RHCOS Operating System Images to the web server to be used by the PXE
installation similar to #2 on Figure 11-3.

268

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.1/latest/
https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.1/latest/
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

RHCOS PXE Boot Images (1)

mkdir /var/lib/tftpboot/rhcos

cp ./images/rhcos-410.8.20196516.08-installer-initramfs.img /var/lib/tftpboot/rhcos/rhcos-initramfs.img
cp ./images/rhcos-410.8.20190516.0-installer-kernel /var/lib/tftpboot/rhcos/rhcos-kernel

RHCOS 05 Images (2

mkdir fusr/share/nginx/html/metal/

cp -f ./images/rhcos-410.8.20190516.0-metal-bios.raw.gz /usr/share/nginx/html/metal/
cp =f ./images/rhcos-410.8.20198516.0-metal-uefi.raw.gz /usr/share/nginx/html/metal/

Figure 11-3. Installing RHCOS PXE Boot and OS Images

Installation

At high level, the installation process consists of creating the install-config.yaml

configuration, generating the Ignition files, and using those Ignition configurations to

bootstrap the cluster.

Any customization required for the initial installation of the cluster must be done to

those Ignition files. There are three initial Ignition files:

bootstrap.ign: This Ignition file contains all the information the
Bootstrap Node will use to render the cluster configuration and
generate the MachineConfig configuration files for the Master Nodes.

master.ign: This is the Ignition file the Master Nodes will use to
install the RHCOS image into the bare-metal server. It also contains
the information on how to obtain the Master Node configuration
from the Bootstrap Node.

worker.ign: This is the Ignition file the Worker Nodes will use to
install the RHCOS image into the bare-metal server. It also contains
the information on how to obtain the Worker Node configuration
from the Master Nodes.

The discovery of the Kubernetes API to retrieve the state of the deployment process,

the discovery of the API to retrieve the configuration for the Nodes, the discovery of the

etcd database, and other access required by the Ignition process are highly dependent

on the existence of the specific DNS entries discussed previously in this chapter.

269

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Creating the Configuration

The OpenShift 4.1 installer UPI mode requires the creation of the install-config.yaml file
which will be used to generate the Ignition files (Listing 11-7).

Listing 11-7. Sample install-config.yaml

apiVersion: vi
baseDomain: example.com
compute:
- hyperthreading: Enabled
name: worker
replicas: 0
controlPlane:
hyperthreading: Enabled
name: master
replicas: 3
metadata:
name: ocp4poc
networking:
clusterNetworks:
- cidr: 10.128.0.0/14
hostPrefix: 23
networkType: OpenShiftSDN
serviceNetwork:
- 172.30.0.0/16
platform:
none: {}
pullSecret: '{"auths": ...}’
sshKey: 'ssh-ed25519 AAAA...'

The pullSecret must be obtained from https://try.openshift.com. The SSH key
is the public SSH key from the key pair that is going to be used by the administration
during the installation.

270

https://try.openshift.com

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Generating the Ignition Files

Create a folder for the installation, copy the install-config.yaml file into it, and
proceed to generate the Ignition files, as shown in Figure 11-4.

Creating installation folder
mkdir ocpdpoc

Copy installation configuration
cp ./install-config.yaml ocpdpoc

Generating Ignition files
./openshift-install create ignition-configs --dir=ocpdpoc

Figure 11-4. Generating Ignition files

When using UPI PXE Boot with a system with multiple NIC, it is recommended to
increase the timeout of the NetworkManager-wait-online.service (see Listing 11-8).

Listing 11-8. Increase Network Manager timeout patch

{
"systemd": {
"units": [
{
"name": "NetworkManager-wait-online.service",
"dropins": [{
"name": "timeout.conf",
"contents": "[Service]\nExecStart=\nExecStart=/usr/bin/nm-online -s
-q --timeout=300"

By default, OCP 4.1 UPI only creates a local user in the Bootstrap Node. There is no
local user in Master and Worker Nodes. To create a local user, follow Listing 11-9.

271

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Listing 11-9. Adding local user
{

"passwd": {
"users": [
{
"name": "core",
"sshAuthorizedKeys": [
"ssh-rsa"

The patches from Listings 11-8 and 11-9 must be merged with the original Ignition
file of the corresponding Node.

Note At the moment of this writing, OpenShift does not provide a tool to edit the
Ignition files and apply customization. Currently the administrator must rely on
third-party tools to edit and merge the corresponding JSON files.

Copy the resulting Ignition files to the web server that will be used by the PXE Boot
process—for example, cp -f ./ocp4poc/x.ign /usr/share/nginx/html/

Bootstrap and Master Nodes

The first Node to be installed is the Bootstrap Node. When using the PXE configuration
from Listing 11-6, the PXE Boot menu will be similar to Figure 11-5.

272

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Figure 11-5. PXE Boot menu (example)

Select the Bootstrap from the menu and it will proceed with the installation of
RHCOS.

Once the RHCOS installation of Bootstrap Node completes, it will reboot. After the
Bootstrap is running, proceed to install RHCOS in the three Masters.

It is possible to use the . /openshift-install wait-for bootstrap-complete
--dir=ocp4poc --log-level debug command to have a high-level overview of the
progress of the Bootstrap process of the Master Nodes. For more granular view of the
progress, log in to the Bootstrap Node using the “core” user and the SSH key provided in
the install-config.yaml (see #1 on Figure 11-6).

273

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

[root#junphost ocpd]d slogin coredlds,164.1.10 |
The authenticity of host '192.168.1.10 (192, l!ﬁ!) can't be established.
ECDSA key fingerprint is SHAZSG:

ECDSA key fingerprint is ms:sx:z::ru.-nr:a:ea:3a:n:e1:aa:w.=1:an:¢s:u.s;-.
Are you sure you wont to continue comnecting (yes/no)? yes

Warning: Persanently odded '152.168.1.18' (ECDSA) to the list of known hosts.
Red Hat Enterprise Linu Core0S 410.3.29190516.9

WARNING: Direct 55H occess to mochines is not recomsended.

This node has been with t. 4 h d

|iivt's is the boctstrap node; it mill be destrayed when the moster is fully up.)

3 TOS3L 18:27:49.498303
1 19531 18:27:49.500299
1 T@531 18:27:49.502283
49 nootnrw oCpipoc. enmle com bootlmbe Sh[3617]: 10531 18:27:49.502412
43 boststrap,ocpépoc, example, com bootkube,sh[3617]: T0S31 18:27:49, 502584 go:141] pod-v2. yanl

248 bootstrop, ocpipoc . example. con bootiube, sh[3617]: T0S3L 18:27:42. 502090 go:141] igserver/csr 9.

249 bootstrop.ocpépoc. exarple.com bootiube. sh[3617]: 19531 18:27:49.503169 g0:141] h figserver/kube w\scrvcr serving-ca com‘\m yanl
248 bootstrop. eopdpoc. exanple. com bootkube.sh[3617]: Storting etcd certificate sipner

252 bootstrap. ocpipoc. exanple. com boatiube.sh{3617] s pjt_??l:{@pg?\'_!_c____ Bed291lc4Ealedseafasanl

252 bootstrap.ocpépoc.exarple.com boatkube . sh[3617]
54 bootstrop, ocpépoc, exarple, com bootkube, sh[3617]
254 bootstrap.ocpdpoc. example. com bootiube.sh[3617]:
254 bootstrop, ccpépoc, example. com bootiube, sh[3617]: |nmu //etcd-1.ocpdpoc. exomple. com: 2379 is unheclthy: failed to cormect: diol top 152.168.1.12:2373: connect: no route to host
:54 bootstrop.ocp4poc. example. com bootiabe.sh[3617]: Error: unheclthy cluster

154 bootstrop. ocpipoc. exarple.com bootiube. sh3617] | eu:dcu failed. Retrying in 5 seconds.. o

90:86] Varsion: 4.1.9 -dirty 6402
go:141] igeontroller/control Lerconfig. yaml

bootstrop.go:141]) monifests/master.mochineconf igpool . yosl

bootstrap.go:141] monifests/worker.mochineconfigpool . yaml

e

Wttps://etcd-8. ocpdpoc, example, com:2379 is unhealthy: folled to connect: diol tep 192.168,1.11:2379: conmect: mo route to hast
ttps://eted-2.ocpdpos. example. com: 2379 is unheclthy: failed to cormect: context deadline exceeded

Figure 11-6. Log in to the Bootstrap Node

Once logged in, the Bootstrap Node executes the journalctl -b -f -u bootkube.
service command to follow the detailed output messages about the progress of the
process (see #2 and #3 in Figure 11-6).

After the installation of a Master Node completes, the Node will reboot in the RHCOS
version used for the installation (see #1 on Figure 11-7). At this point, the Master requests
the Machine Configuration rendered by the Cluster Version Operator running in the
Bootstrap Node (see #2 on Figure 11-7). This will instruct the Node into downloading
and applying the latest RHCOS (see #3 on Figure 11-7) and to start downloading and
running the services corresponding to the Master Node.

274

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Red Hat Enterprise Linux Core0S/418.8.20198516.8 |(Dotpa) 4.1 o
SSH host key: SHAZS6:Q6t i 1VGsJg AlpCRewf Sxul ICQEMspJg julo BDJt:E (ED2S519)
SSH host key: SHAZS6: jI+DSaLstUef +K JHUL1THGO9GhDik1 jipyLncHs6YRB (RSA)

SSH host key: SHAZS6:FlayQsaylzpusgNDCm? jbNQzpng +40tK?T3ViheuRY (ECDSA)

enol: 192.168.1.11 feBf: :ebl 5966 cba : G5

enod:

enod:

enod:

enpBsZBulub: 169.254.95.120 feb: :2Bca:634c:33fa 4166

master-8 login: _

DoOtkLSY. SNLIB1/J: LFATEAS TWRO_1W_CONTL-Openator W1 et crd. yomL” %ong vabetal KL 10/ S0UERE ORI SPRRIRLIE. 15 <A 9
boathube, sh{IA17]: Created “0989.18_conf | g-operator_81_project .rd. y-l -wibetol s .conflg. apenshift. lo -n

beotiube. ShIGIT): Created "800 10_conflg-cperator. 0L scheduler .crd.yanl® 4 vlbetal s, config,sowshift. o -8

bootkabe. sh(3617): Created “0000_18_ a-op! " 02 i wl.rbac o g Auster-reader -

ootiae. sh[I617): Skipped ~00_10. r rd. yoml ™ vibetal s _quota.openshift. o -n as 1t alr
toatiabe, sh{M17]: (mmd -O1-crd.pal® wibetal loms. ks iwm operatar . mlh e -m

bootiube. Sh{3E17]: O g g Lyl b

bootiabe. sh(3617): (I‘!ﬂt“ Telistar-rala-iabe. .)vll' v, ric. ks o W -n

tmatiabe. sh{M17]: O rbac. s ap

Eoathube. sh{381T) - Craotad “steahurt-raraten: -endpalnts. youl* endooints.vi. host- i openshi fr-stcd
bootkube.sh[317): Created “etcd-hest-service.yoml™ services.vl./Most-etcd -n openahift-stcd

Bootiaie.sh(3617]: [#54] failed to create some manifests:

Bootkube. Sh{IELT]: “cluster-cns-B2-config.yml™: unctle to get REST mapolng for “Clustar-dna-02-conflg.yel™: no metches for kind "DNS® in version “conflg,openshife. losvl®

motkube. sh{MIT): “cluster-infrostructure-2-config.yml®: wcble to get REST mapping for “cluster-infrovtructure-82-config.yel™: no matches for kind “Infrostructers” in version “config.openshife

Bootkube.sh[3617): “cluster-ingress-&2-config.ml™: unsble to get REST mapping for “cluster-ingress-@2-config.yml™: no matches for kind “Ingresa” in version “config.cpemabife. iafi”

bootiube. sh[3617]: “cluster-netsork-82-config.yel”: uncble to get REST sappirg for “cluster-networ-82-config.yml™: no metches for kind “Netsork™ in versien “config.. ml‘t Aavl®

ootkbe. Sh[3617): "cvo-gverrides.yasl": unable to get REST mepping for "Cvp-overrides.yoel™: no motchss for kind "Clusterversion” im version “config. openshife.

rotibe, sh[M17]: trwmi “cluster-dm-#2-conflg, 1" drses. v, config. cpemiift. lur luster -n

bootiube. sh{3617]: G ig.yml" wl.config. eoenshife. lofcluster -n

Bootiabe. sh(3617): (m:u “eluster-trgress-82-cenfig. el lmmu v1.config npm& te/eluster

bootiame. sh{$617]: Created “cluster-network-02-conflg.ywl® metmorcs.vl. l‘ﬂ"ls opanthift. Lo/clustar 4 Red Hat Enterpr ise Linux Core0lS 410.8.28198528.8 (Dotpa) 4.1

oot s e eatos e - epsaeror et tans] SSH host key: SHAZS6:Q6ti 1U6sJgACRuf Sxul 10Q89MspJq juSo BDJtxA (ED25519)
bontube. LT Pod - schedulers L wesha SSH host key: !ﬂﬁZ*Ju:JIol‘lSaleU:l’ +K JHUL1 ThQO9GK0 i k1 jlpyLncHs6YRE (RSA)
raepeotieniy ot Snruncememni el nteeeers o ctororvecaton o peei| SSH host key: SHAZS6:FlayQsAyQzpusgHDCu? jhNQzpng +40tK7TIVIhcuRY (ECDSA)

enol: 192.168.1.11 2861:478:e455 a cchbB:?c15:daSd :dBIb

enod

enod:

enod:

enpBsZBuluS: 169.254.95.128 feBB: :26ca:634c:33fa: 4166

master-8 login: _

Figure 11-7. Master Node Boot and Upgrade

Once the three Master Nodes are fully operational, the openshift-install wait-
for bootstrap command will notify the Bootstrap Node has completed its job and it is
time to shut down the Bootstrap Node (see #1 in Figure 11-8).

Note At this point, it is safe to remove the Bootstrap Node from the Load
Balancer configuration.

The log message from the Bootstrap Node will also indicate the Bootstrap process
has been completed (see #2 on Figure 11-8).

275

CHAPTER 11

DEBUG SEITL walting for the Kubernetes APL:
DEBUG 5till waiting for the Kubermetes API:
DEBUG 5till waiting for the Kubernetes API:
DEBUG Still waiting for the Kubermetes API:
DEBUG 5till waiting for the Kubernmetes API:

the server could not find the requested resource
the server could not find the requested resource
the server could not find the requested resource
the server could not find the requested resource
the server could not find the requested resource

OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

DEBUG 5till waiting for the Kubernetes APL: Get https://api.ocpdpoc.example.com:6443/version?timeout-32s: unexpected EOF
DERYG 5till waiting for the Nbemnates APL: Get https:i//apl.ocpépoc.exawple. com: G443/ versionTtinsout=-32s: EOF
INFO APT v1.13.4+838b4Fa up]

3

TNFO Waiting up to 38mds for bootstrapping to complete. .
DEBUG Bootstrap stotus: complete

INFO Tt is now safe to remove the bootst: resources

Moy 31 18: il«mmww excmpie. com bootiube, sh{I817):

Sripped “etcc-host-ssrvice. yoml- services.vi. font-sted —-n openshift-stcd on it olready exists
Swipped

'ucwuﬂ/ op
_yaml” secrets.vl s - vl 18

May 31 15:30:44 bootstrop. acpipoc example. com bootiube. sh{3617]: S *exci-metric-client-secret. yoml” secrets vi./etcd-metric-clie] |
Moy 31 19:31:44 Bookatrop.ocppoc, ecmpls.com beotnke SNIELT]: Seipped “etcd-metric. sving-co-configna.yonL” conf e v1./atcd-of rvi

My 31 18 0.0 7): Scipped evci-metric-signar-secrat.yowl” pecrets V. etci-metric-sl gt}ppz “secret- toad{:;ancer S: ng-signer. {m‘l SG
May 31 19 Suipped “etoi-namespace. youl® nosespoces.vi ft-etcd -n as it yam

My 31 19 : Skigped "etcd-service.yusl” services.vl.feted -n eoenshift-sted os it _pp “secret-localhost-serving-signer. SECI“E
Moy 11 18, ; Sipped - 3 gocp.yml” confi < Skipped " ork-serving-signer.yaml’|
Moy 31 18 ¢ Selpped "etci-signar-sacret.yaml” secrets.vl./etcd-signer -n opensh s

My 3118 : Swipped “kuse-api server-sarving-co-conf|grep. yoml * configmeps. v /in

May 31 19 : Sxipped “kube-cloud-config.yoml” secrets.vl. fabe-cloud-cfy -n kube-

May 31 15, 2 Sipped “kube- syvten-configaap-root-ce. yanl® configmeps.vl./root-oa

May 31 15 J: Sicigped “maching-coRtig-Sarver-tls-Secret. yuml” SeCPets. vl Fig-Strvar-115 - OpEnanliL-ROCRING- CONT1§-0pRrator &5 11 Olready exists

Moy 31 18 Selpped “opmah t-config-sacret-pull-secret. youl~ secrats ::m..m -0 cpuahift-confip os 1t clready arists

May 31 18; 2 S-luee W!tﬂww -client-sigrer. yanl® secrets.vl apiserver-operator o3 it alresdy exists

May 31 15 iL-plore- client-signer. y«-"?f Fima-cankrol-plane-signer -n eperini e base-apl server-cperator & 1t elready eists

Moy 31 18 7 m”.a e e el e Signer-signar -a spenuhife-kuse-cantrallar-ansger-cparatar o it dlrecdy exiits

Moy 3118 : Sclpped * e o) e e N o S L STl
May 31 13 : Sclpped *secret-kube-opiserver-to- kel E;r Jyml® secrets.vl. us it already exists

May 31 19 : Scigped "secret-loadolancer- servi " secretavl.. mﬂ;r«mqahr T Pkl loe sl towator on F Sireadssists

Moy 31 18

y 31 15

= Scipped “sacrat-loceliost- s Bigrar. o8 it alresdy exists
~Seripped-trer s TR - sl - cpensni -t sarver-operator g5 it alrsas

exists

[root@jumphost ocpd]# export KUBECONFIG=./ocpdpoc/auth/kubeconfig

[root@jumphast ocp4]F oc get csr
NAME AGE

REQUESTOR 4

CONDITION

csr-Svtky 6mdSs system:node:master-1.ocpdpoc. m'le con Bporoved, Tssued

8ntsq Tmés Fig-op H op Aporoved, Issued
csr-fq@7f T system: servi hi Fig-ope Approved, Tssued
csr-nzr2é 6e51s system:node:master-@.ocpapoc. m'la com Approved, Issued
csr-vivbk Tmls system:ser Fig-aperator: Aporaved, Tssued
csr-wridh system:node:master-2.ocpdpoc. m'lc com Approved, Issued

EndEs
[rootejumshast oep4l# |

Figure 11-8. Bootstrap complete

During the bootstrap process, the Bootstrap Node takes care of signing the certificate
requests from the Masters so they can become a single cluster (see #3 and #4 on
Figure 11-8). After this point, adding workers or any other Node into the cluster requires
for the cluster administrator to manually accept the Certificate Signing Requests (CSR)
from the new Nodes.

After the Bootstrap Node has completed its purpose, the etcd and Kubernetes APIs
are online, but the installation of the OpenShift Master Nodes is still in progress. To
monitor this progress, use the command . /openshift-install wait-for install-
complete --dir=ocp4poc --log-level debug

Worker Nodes

Once the Bootstrap Node has been removed from the cluster, it is possible to install and
onboard the Worker Nodes.

Note Even when the installation of the OpenShift Master Nodes is still in
progress, the successful completion of the OCP cluster installation requires at least
two Worker Nodes to be online and be part of the cluster.

276

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

Boot and install RHCOS in the Worker Nodes using the same PXE Boot menu as
before. This time, select the Worker option. The installation will be similar as with
the Master Nodes. This time the Master Nodes are the ones providing the Machine
Configuration to the Worker Nodes. For a Worker to start this process, it generates a
Certificate Signing Request (CSR) for a node-bootstrapper Service Account which needs
to be accepted by the cluster administrator (see #1 and #2 on Figure 11-9). Then it
generates a system Node account CSR which needs to be approved for the Worker to join
the cluster (see #3 and #4 on Figure 11-9).

[rwt!juphust ocp4]# oc get csr
REQUESTOR CONDITION

csr- .'wttg 15@ system:node:master-1.ocpdpoc. example . com Approved, Issued
csr-Bntsq 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
csr-fgd7f 15m :serviceaccount:openshift-machine-config- -operator:node-bootstrapper Approved, Issued
csr-g5qqn s rviceaccount :openshi ft-machine-config-operator :node-bootstrapper Pending |
csr-nzr2é6 15m 1:node:mas ter-9. ocpdpoc. example . com Approved, Lssued
csr-vivbk 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
csr-wrkdh 15m -2.0cpd4poc. example. com Approved, Issued
csr-zkSvr 225 Tsystun serviceaccount:openshift-machine-config-operator

umphost o ﬁWWW :W‘im
ertificatesigningrequest.certificates.k8s.10/csr-g5qqn approved
certificetesigningreguest, certificates, ks, io/csr-zk9vr approved
[rootejumphost ocp4]#

~
o

[root®jumphost ocp4]# oc get csr

NAME AGE REQUESTOR CONDITION
csr-5vttg 16m system:node:master-1.ocpdpoc. example. com Approved, Issued
csr-8ntsg 16m system: serviceaccount 1shift-machine-config-operator:node-bootstrapper Approved, Issued
csr-bbdSg 85 [system:node:worker-@.ocpdpoc.example. com Pending

csr-fgd7f 16m system: serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved, Issued
csr-gSqgn 1155 system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved, Issued

csr-nzrZé 16m system:node:master-@.ocp4poc.example.com Approved, Issued
csr-tbc7w 45 [system:node:worker-1.ocpdpoc.example. com Pendi,

csr-vivbk 16m system:serviceaccount :openshift-machine-config-operator:node-bootstrapper Approved, Issued
csr-nrkdh 16m system:node:master-2.ocpdpoc. example. com Approved , Issued

csr-zk9vr 118s system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Approved,Issued
E.rwt.jwhost ocp4]# oc adm certificate approve csr-bbdSg csr-tbeiw|

ertificotesigningrequest.certificotes.kBs.io/csr-bbd5g approved | |
rt\Ftcates\g‘n.ngrequest r.er't\ﬂcntes k&. \ofcsr-tbcm approved _0
FooteTumphost TR W ST

Figure 11-9. OCP CSR signing

During this process, the Worker Nodes go over a RHCOS upgrade process and receive
information on which containers to download and which services to bring online.

With all the Master and Worker Nodes online (see #1 on Figure 11-10), the
installation will continue but will not complete to 100% until persistent storage is
assigned to the Image Registry (see #3 on Figure 11-10).

277

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

morier-1.ocphocs emmple.con Motheady morker 41 i1, 4ecoRNidiee
[nmmmwll'«onuau

STATUS ROLES MGE VERSION
-m-—-o.wrw.-—vl com Resdy motter 17 V1,13 Seche3nos
master-1.ocpipoc enomple.com Reody master 17w vl.13.echdSSdese
mostar-2.ocphoos eucmple.con Reody mester 17 vi.13.AechASSdE5A .

,w.cwt om Reedy worker Si3 w110 echiSSORE

1.ocplpod axomple.com Reody worker 535 w113 AecBASBORR
[mmm oepAl o gt nades -o wide

STATUS ROLES AGE VERSTON INTERNAL - 17 ll\‘!ﬂll L A

lnurl.lulnu le.com Resdy master 17w w113 4chSS0654 192,168,111 Med Hot Esterprise Linux CorelS 410.5.20190529.0 (Dotpa) 4.18.0-80.1.2.¢
mostar-1.ccpapoc enmple.com Rmody mester 1Mw vl 13.chS0664 100.164.1.12 i Mad ot Enterprise Linu CoredS 4108, 20190520.0 (Ootp) 4 .
moster-2.ccpipoc emomple.com Rmody moster 1Tw vl.1).GwchASSOGS 192164113 aones Red Hot Enterprive Linux Core3 410.0. 20180529, (Ootpa) 4. _elen. . 2

-B.ocpdooe enmple. com Reedy worker TIs vl13.AwchSSAES 192168105 wenes Med Hot Evterprise Linux CorelS 4188 28190529 8 (otpa) 410, X
wocier-1.ccpdpod exomple.com Meedy worker 668 vIL1D.echASSOEGA 12.168.1.16 cone Bed Hot [sterprise Linux (orelS 4105, 2IMG29. 8 (Dotpo) I.I.HI!!‘&_.M ﬁ*/ﬂﬂl\wlﬁtm s
Lrosteiumphast ocpdl# |
* Cluster operator openshift-somples (s still udating
% Could rot update sarvicesoniter “optrahl ft-apisarvar-aperotor/openshift-cplaarver-sperator” (346 of 330): the server doas not recogeire Wa nm—« check extension APT servers
* Could ret update = (3ZL of JS): the server does Not Fecoguize check extension AP1 servers
* Could rot updats “cpershi f B p—- -rorager-ooaretor” (349 ef 150): m mmam oy ‘unr\i o this resource, check extension AT servers
Could ret update “opershift-Lmoge eyl " (%7 of 358): mummmmi this resource, check estension AT servers
* Could rot update ser '—v hif

--m (07 of 358): u-urwdwmwhww rescurce, check extension API servers
* Could rot update qwmnr (340 of J58): the server does not recogrize this rescurce, check extension APD servers
 €hock extension AP servers
e \‘ 35 tha sarver dots not recegnize this resurce, check mxtension AT sarvers
7 Cotd oot et -_,. ag-ep o5 ops * (330 0f 350): the server dews rot recogrize this rescurce, check mxtesien AT servers
4t . i Log: x nager-aperator” (X33 of 350): the server does not recognize this resource, cneck extension APE servers
[uw;sam.nmmmu ater to initislize: Mw-.e-umu.«r BN complete o

[roct@jumphost ocpd]#

[root@jumphost ocpd4]# oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch "{"spec”:{"storage”:{"emptyDir":{}}}}"
config.imageregistry. operator.openshift.io/cluster patched

[root@jumphost ocpal# | .

Figure 11-10. Installation progress and Image Registry

Note Persistent storage for the /mage Registry should NOT be ephemeral in
nature (like emptyDir) as images may be lost during a reboot of the Node hosting

the registry. This type of ephemeral storage may only be used during testing or in
nonproduction environments.

Once the installation is successfully completed, all the Cluster Operators should be
shown as available (see Figure 11-11).

278

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

[rootéjumphost ocp4]# oc get co

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
authentication 4.1.8-rc.7 True False False 40m
cloud-credential 4.1.8-rc.7 True False False 63m
cluster-autoscaler 4.1.0-rc.7 True False False 64m
console 4.1.8-rc.7 True False False 43m
dns 4.1.0-rc.7 True False False 63m
image-registry 4.1.0-rc.7 True False False 22s
ingress 4.1.0-rc.7 True False False 47m
kube-apiserver 4.1.0-rc.7 True True False 61m
kube-controller-manager 4.1.0-rc.7 True False False 61m
kube-scheduler 4.1.0-rc.7 True False False 61m
machine-api 4.1.0-rc.7 True False False 63m
machine-config 4.1.0-rc.7 True False False 63m
marketplace 4.1.0-rc.7 True False False S58m
monitoring 4.1.0-rc.7 True False False 45m
network 4.1.0-rc.7 True False False 64m
node-tuning 4.1.0-rc.7 True False False 6@m
openshift-apiserver 4.1.0-rc.7 True False False 59m
openshift-controller-manager 4.1.0-rc.7 True False False 61m
openshift-samples 4.1.0-rc.7 True False False 47m
operator-lifecycle-manager 4.1.0-rc.7 True False False 63m
operator-lifecycle-manager-catalog 4.1.@-rc.7 True False False 63m
service-ca 4.1.0-rc.7 True False False 64m
service-catalog-apiserver 4.1.0-rc.7 True False False 60m
service-catalog-controller-manager 4.1.0-rc.7 True False False 60m
storage 4.1.0-rc.7 True False False 58m

[root@jumphost ocpal# |

Figure 11-11. Cluster Operators running after successful installation

The OpenShift console (see Figure 11-12) for the new environment will be available

athttps://console-openshift-console.apps.<cluster-name>.<base-domain>.

Figure 11-12. The OpenShift 4.1 Console

279

CHAPTER 11 OCP 4.1 UPI MODE BARE-METAL WITH PXE BOOT DEPLOYMENT

After the installation is completed, the system will have created the following Routes:

o https://console-openshift-console.apps.ocp4poc.example.
com—default URL for the OpenShift console

o https://oauth-openshift.apps.ocp4poc.example.com

o https://downloads-openshift-console.apps.ocp4poc.
example.com

o https://alertmanager-main-openshift-monitoring.apps.
ocp4poc.example.com

o https://grafana-openshift-monitoring.apps.ocp4poc.
example.com

o https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.
example.com

Summary

As seen in this chapter, the use of OpenShift User Provisioned Infrastructure (UPI) mode
for Bare-Metal deployment may provide a way for organizations looking to retain control
of the physical infrastructure while benefiting of a modern platform capable of auto-
upgrade itself to the latest code.

The lecturer should be aware this is only one way to use the UPI mode. There are
different ways in which UPI may be used to provision bare-metal or other types of
infrastructures.

280

https://console-openshift-console.apps.ocp4poc.example.com—default
https://console-openshift-console.apps.ocp4poc.example.com—default
https://oauth-openshift.apps.ocp4poc.example.com
https://downloads-openshift-console.apps.ocp4poc.example.com
https://downloads-openshift-console.apps.ocp4poc.example.com
https://alertmanager-main-openshift-monitoring.apps.ocp4poc.example.com
https://alertmanager-main-openshift-monitoring.apps.ocp4poc.example.com
https://grafana-openshift-monitoring.apps.ocp4poc.example.com
https://grafana-openshift-monitoring.apps.ocp4poc.example.com
https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.example.com
https://prometheus-k8s-openshift-monitoring.apps.ocp4poc.example.com

Index

A Container runtime interface (CRI), 8
Containers, 77

Ansible service broker (ASB), 128) .
Container storage interface (CSI), 7, 84,

Application nodes/Pods, 100

87,88
B
BuildConfig, 197 D
creation Day-2 operations
Jenkinsfile, Git, 199, 201 garbage collection, 224
sample Jenkinsfile, 200, 201 leftover objects
deployment cluster administrator, 222
access logs, 206 prune command, 223
Jenkins Console, 206, 207 storage, consume, 221, 222
Jenkins Master, 203, 204 Default cluster roles, 173
manual trigger, 204, 205 DriveScale composable platform, 95
new pipeline, 202, 203
pipeline history, 205
YAML, import, 202 E
East-west traffic
Calico SDN CN, 71-73
C Openshift SDN
Certificate signing request (CSR), 276, 277 cluster network subnet
CI/CD pipelines allocation, 58
external integration, 220 flannel, 69, 70
grant edit access, 196, 197 node, 59
Jenkins Master, 195 ovs-multitenant plugin, 63, 64
Jenkins-persistent template, 196 ovs-networkpolicy plugin, 65-68
Cluster Monitoring, 125 ovs-subnet plugin, 62, 63
Container network interface (CNI), 7, 72 routes, 61
Container runtime, 77 tunO interface, 60
© William Caban 2019 281

W. Caban, Architecting and Operating OpenShift Clusters, https://doi.org/10.1007/978-1-4842-4985-7

https://doi.org/10.1007/978-1-4842-4985-7

INDEX

East-west traffic (cont.)
VXLAN protocol, 57
SDN plugins, 56
Ephemeral framework, 88
Eviction policy, 228

F,G
Flannel, 69, 70
FlexVolume
architecture, 85
Volume plugin, 84
with attach/detach, 86
without attach/detach, 86

H

Hawkular metrics, 49
High availability (HA)
data plane, 52
Metrics Server, 50
OCP
consoles, 44, 45
etcd database, 32, 33
RAFT algorithm, 34
services (see Master services)
OCR, 53, 54
OpenShift logging services, 51, 52
OpenShift metrics, 48-50
OpenShift monitoring, 46-48
OpenShift router, 53
Horizontal Pod Autoscaler (HPA), 48,
50,126
HPE Nimble, 96
HPE 3PAR, 95, 96

282

Identity providers
mapping, value, 180
OpenShift 3.11.x, 180
Infrastructure nodes, 19-21, 99
Installer provisioned infrastructure
(IP1), 157, 253
Isolates interprocess communication
(IPC), 3

J

Jenkins-ephemeral template, 195
Jenkinsfile

BuildConfig, 208

CI/CD Pipeline, 210

edit access, 210

Git repository, 208

GUI, pipeline, 217

multiproject pipeline, 211-217

Webhook triggers, 209
Jenkins images, custom, 218, 219
Jenkins Kubernetes plugin, 220
Jenkins Master, 195, 210

K

Kubernetes constructs, 7, 77
core elements, 13-15
deployment, 12
Pod, 10
PVC, 13
replicaSet, 12
services, 10, 11

Kubernetes storage
access mode, 82
PV status, 81
reclaim policy, 82

Kubernetes volume, 79

L

LimitRanges
resource constraints, 185
resource creation or modification,

185, 186

Linux Containers
container specifications, 6, 7
Control Groups (cgroups), 4, 5
definition, 1
Docker Daemon, 1, 2
Docker platform, 1
Kubernetes, 7
namespaces, 3, 4

Load balancer
infrastructure nodes

OpenShift Router, 103, 104

passthrough configuration, 101, 102

master nodes, 100

non-HTTP/HTTPS/TLS protocols, 105

non-web-based/UDP-based traffic,
106, 107

types, 99, 100

Load balancer configuration

external-facing, 259

HAProxy, 262, 264

cluster-facing, 259

NGINX, 260, 261

ports, 259, 260

INDEX

Managing users and groups
oc client command, 181, 182
SA, 182-184
user, creation, 181
mappingMethod, 180, 181
Master nodes, 13, 17-20, 99
Master services
HAproxy, 43, 44
hyperkube binary, 40
kube-system namespace, 36, 37
Native HA, 43
nodes, 42
Pods, 38, 40
Maximum transmission unit
(MTU), 233, 234
Minishift, 110-112
Multus CNI, 244-246

N

NetApp Trident, 96-97
Networking
north-south traffic
HAProxy template router plugin,
73,74
NGINX and NGINX Plus router
plugin, 74, 76
traffic flow (see East-west traffic)
Network optimizations
jumbo frames and VXLAN
acceleration, 233, 234
tuning options, 235, 236
Node ConfigMap, 224-226

283

INDEX

Node optimizations
cluster administrators, 225
max Pods per node, 226, 227
resource allocations, 225, 226
tuned profile, 227
Non-HTTP/HTTPS/TLS applications
using ingressIP/externallP, 240-242
using NodePort/HostPort, 243, 244
Non-HTTP/HTTPS/TLS protocols, 115

O

OAuth
clients, 171
token request, 171
OCP 3.11 deployment architectures
active RHEL/subscriptions, 116
Ansible inventory file
All-in-One configuration, 131-140
ASB, 128
Bastion node, 155
Cluster Metrics, 126, 127
Cluster Monitoring, 125
deploying OpenShift, 154
Full-HA control plane, 142-153
htpasswd identity provider, 124, 125
nodes, 130
Non-HA control plane, 140, 141
OpenShift Router and Registry, 128
parameters, 118, 120
Registry Service Account, 120
RHOCS/0CS, 121, 122
SDN parameters, 123, 124
service catalog, 128
uninstalling OpenShift, 154, 155
web console access, 122, 123
wildcard apps domain, 122, 123
on Bastion node, 117

284

cluster requirements, 114, 115
nodes configurations, 113
non-HTTP/HTTPS/TLS protocols, 115
operating system, 114
password-less SSH, 117
Registry Service Account, 116
SDN subnets, 115
Open container initiative (OCI), 6
OpenEBS, 97
Open Service API (OSP API), 187
OpenShift ansible broker (OAB), 187
OpenShift architecture
components, 8,9
constructs
app nodes, 21, 22
cluster console, 23, 25
infrastructure nodes, 20, 21
Master nodes, 16-19
Kubernetes (see Kubernetes
constructs)
OCR, 29
routers, 25, 27, 28
routes vs. Kubernetes, 27
OpenShift Client Plugin, 218
OpenShift container platform (OCP), 9, 195
OpenShift container registry (OCR), 21, 29
OpenShift container storage (OCS)
converged Mode
deployment patterns, 90
Gluster service, 90
raw disks, 91
GlusterFES storage, 92
independent mode, 91
Kubelet service, 93
REST API, 89
OpenShift control plane (OCP), 31
OpenShift 4.x deployment architecture
AWS (IPI Mode), 158

identity provider, 165-167
login screen, 164

installing OCP4, 159-161

IPI, 157

prerequisites, 156

progress, 162, 163

UPI, 157
OpenShift Router, 21, 25-28, 53
OpenShift ServiceMesh

components, 246, 247

consoles, 247

Istio sidecar, 247-249

traffic flow, 250
OpenShift storage

OpensShift 3.11, mount points, 78

OpenShift 4.0, mount points, 79
Open vSwitch (OVS), 20, 55, 57, 59

P,Q

PersistentVolumeClaim (PVC), 13, 80
PersistentVolume (PV), 80
access mode, 82
cluster administrator, 80
plugins and access modes, 83, 84
reclaim policy, 82
Pipeline Build Strategy
BuildConfig, 197
defined, 197
Jenkinsfile, 198
Jenkinsfile, Git, 199
Pod priority
node resource budget, 231
PriorityClasses, 230
scheduler, 230
Pods, 10
scheduling, 229
prune command, 223
PXE Boot menu, 272

INDEX

R

RAFT consensus algorithm, 32, 34-36
RBAC authorization
constructs, 172
levels, 173
Receive flow steering (RFS), 235
Receive packet steering (RPS), 235
Red Hat Enterprise Linux CoreOS
(RHCOS), 255, 268
Red Hat OpenShift Container Storage
(RHOCS/ 0CS), 121
ReplicationController (RC), 11, 46, 53
ResourceQuota, 186, 187
Role-based access control (RBAC), 169
Routing optimizations
annotations, 237
IP Whitelist, 238
parameters, 236
Router Shards, 238, 239

S

SECCOMP, 177-178
Security context constraints (SCC)
control, objects, 174
default cluster, 174
restricted SCC, 174-176
strategies, 176
Service Account (SA), 182
API tokens, 184
creation, 183, 184
roles, 183
Service catalogs
OSP API, 187
service brokers, 187
Software-defined networking (SDN), 8, 55
Software-defined storage (SDS) plugins, 94
Source-to-Image (S2I), 29, 221

285

INDEX

StorageClass
cluster administrators, 93
sample definition, 94
YAML file, 93
SYSCTL, enable unsafe, 178, 179
System users, 170

T

Templates
defined, 188
example, 189-192
installation, 188

Template service broker (TSB), 128, 187

Tuned profile, 227

U

UPI Bare-Metal with PXE Boot
DHCP, 264, 265
DNS configuration
forward DNS record, 257, 258
reference information, 256, 257
reverse DNS record, 258
DNSmasq, 265, 266
load balancer (see Load balancer
configuration)
prerequisites, 255, 256
UPI mode with PXE Boot, installation
Bootstrap node, 272
login, 273, 274
log message, 275, 276
RHCOS, 273

286

cluster operators, 278, 279
CSR, 276
ignition files, 269
generation, 271
install-config.yaml configuration,
269, 270
Master node, 274
Network Manager timeout patch,
271,272
OpenShift console, 279
preparation
ignition files, 267
physical server, 267
RHCOS, download, 268
RHCOS PXE Boot images,
268, 269
routes, 280
worker nodes
Image Registry, 277, 278
PXE Boot menu, 277
User provisioned infrastructure (UPI)
mode, 157
Bare-Metal using PXE Boot, 254
OCP 4.1, 254
reference environment, 255
User types, 169, 170

VW, X, Y, 2

Virtual groups, 170, 171
Virtual Network ID (VNID), 63
Virtual user, 170, 171
Volumes, 79

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The OpenShift Architecture
	Linux Containers
	Linux Container: Under the Hood
	Container Specifications
	Container Runtime and Kubernetes

	Introduction to OpenShift Architecture Components
	Kubernetes Constructs
	OpenShift Constructs
	Master Nodes
	Infrastructure Nodes
	App Nodes
	OpenShift Consoles
	OpenShift Routers
	OpenShift Registry
	Summary

	Chapter 2: High Availability
	Control Plane and Data Plane
	HA for Control Plane
	HA for ETCD
	RAFT Consensus Algorithm

	HA for Master Services
	HA for OpenShift Consoles
	HA for Logging, Metrics, and Monitoring
	OpenShift Monitoring
	Metrics
	Metrics Server
	Logging

	HA for Data Plane
	HA for OpenShift Router

	HA for Container Registry
	Summary

	Chapter 3: Networking
	East-West Traffic
	OpenShift SDN
	OpenShift ovs-subnet
	OpenShift ovs-multitenant
	OpenShift ovs-networkpolicy

	Flannel
	OpenShift with Third-Party SDN
	OpenShift with Calico SDN

	North-South Traffic
	HAProxy Template Router

	Summary

	Chapter 4: Storage
	OpenShift Storage
	Kubernetes Storage Constructs
	PersistentVolume Status
	Reclaim Policy
	Access Modes

	OpenShift PersistentVolume Plugins
	FlexVolume
	With Master-Initiated Attach/Detach
	Without Master-Initiated Attach/Detach

	CSI
	OpenShift Ephemeral
	OpenShift Container Storage
	OCS Converged Mode
	Raw Disks for OCS Converged Mode

	OCS Independent Mode
	OCS Storage Provisioning

	Storage Classes
	OpenShift with Third-Party Storage
	DriveScale Composable Platform
	HPE 3PAR
	HPE Nimble
	NetApp Trident
	OpenEBS (OSS, MayaData)

	Summary

	Chapter 5: Load Balancers
	Load Balancer Overview
	Load Balancer Considerations
	Considerations for Master Nodes
	Considerations for Infrastructure Nodes
	Considerations for Specialized Protocols

	Summary

	Chapter 6: Deployment Architectures
	Minishift
	OCP 3.11 Deployment Architectures
	Prerequisites
	Operating System—Minimal Installation
	General Requirements for the Cluster
	SDN Subnets
	(Optional) Subnets for Hosting Apps with Non-Web-Based or Specialized Protocols
	Registry Service Account and Token

	Activate and Assign OpenShift Subscriptions
	Prepare OCP 3.11.x Installer on Bastion
	Enable Password-less SSH
	OpenShift Ansible Inventory File
	Defining the OpenShift Release
	Registry Definitions and Access
	Red Hat OpenShift Container Storage
	Web Console Access and Wildcard Apps Domain
	Audit Logs
	Configuring the SDN
	Identity Providers
	Cluster Monitoring (Prometheus)
	Cluster Metrics (EFK Stack) and Logging
	OpenShift Router and OpenShift Container Registry
	OpenShift Service Catalog and Service Brokers
	OpenShift Nodes

	Sample Deployment Scenarios
	Single Node Deployment (All-in-One)
	Non-HA Control Plane Deployment
	Full-HA Control Plane Deployment
	Deploying OpenShift
	Uninstalling OpenShift
	Bastion Node as Admin Jumphost

	OpenShift 4.x Deployments (AWS)
	Prerequisites
	OpenShift 4.x Deployment Architecture
	OCP4 Deployment to AWS (IPI Mode)
	Installing OCP4 on AWS
	Standard Deployment
	Customizing Standard Deployment

	Deployment Progress
	Configuring the Identity Provider

	Summary

	Chapter 7: Administration
	User and Groups
	Virtual Groups and Virtual Users
	Authentication, Authorization, and OpenShift RBAC
	RBAC
	Default Cluster Roles
	Security Context Constraints
	SECCOMP Profiles
	Enabling Unsafe SYSCTL
	Identity Providers

	Managing Users and Groups
	Using Service Accounts

	Quotas and Limit Ranges
	OpenShift Service Catalogs
	OpenShift Templates

	Summary

	Chapter 8: Architecting OpenShift Jenkins Pipelines
	CI/CD Pipelines As a Service with OpenShift
	Jenkins Pipeline Build Strategy
	Creating the Pipeline BuildConfig
	Deploying the Pipeline BuildConfig

	Jenkinsfile with Source Code
	Multiproject Pipelines

	OpenShift Client Plugin
	Custom Jenkins Images
	Integrating External CI/CD Pipelines
	Summary

	Chapter 9: Day-2 Operations
	Managing Leftover Objects
	Garbage Collection
	Node Optimizations
	Node Resource Allocation
	Setting Max Pods Per Node
	Using the Tuned Profile

	Eviction Policy
	Pod Scheduling
	Pod Priority
	Summary

	Chapter 10: Advanced Network Operations
	Network Optimizations
	Jumbo Frames and VXLAN Acceleration
	Tuning Network Devices

	Routing Optimizations
	Route-Specific Optimizations Annotations
	IP Whitelists
	OpenShift Router Sharding

	Supporting Non-HTTP/HTTPS/TLS Applications
	Using IngressIP and ExternalIP
	Using NodePorts and HostPorts

	Multiple NIC per POD
	OpenShift ServiceMesh
	Summary

	Chapter 11: OCP 4.1 UPI Mode Bare-Metal with PXE Boot Deployment
	UPI Mode
	Bare-Metal with PXE Boot Example

	UPI Bare-Metal with PXE Boot
	Prerequisites
	DNS Configuration (Example)
	Load Balancer Configuration (Examples)
	DHCP with PXE Boot Configuration (Example)
	PXE Boot Configuration (Example)

	Preparing the Installation
	Considerations with UPI Mode with PXE Boot
	Downloading RHCOS and Installation Binaries
	Preparing the PXE Boot Images

	Installation
	Creating the Configuration
	Generating the Ignition Files
	Bootstrap and Master Nodes
	Worker Nodes

	Summary

	Index

