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Preface 
 Google AutoML and AI Platform are power tools offered by Google Compute Platform for developers to create a compelling AI and Machine Learning applications with ease. Machine learning and deep-learning models are getting mature and accurate with a large amount of data that is being used into these models every day. With easier availability of out of the box functionality on a cloud platform, more and more developers are shifting their focus on developing analytics and machine learning based applications on the cloud platforms. 
 Google’s AI technologies are continuously learning through enormous amounts of data such as Wikipedia Articles for Question–Answering Systems, Text Classification Systems, and so on. 
 The trickiest parts of developing and testing machine learning models and selecting the best ones that work in a particular use case are simplified by GCP for the developer community. 
 With the advent of Google’s Architecture search algorithms that enable AutoML to automatically search and find the best model for your dataset, it is possible for a developer to design AI systems by providing an abstraction over data scientist activities such as Data Analysis, Model Identification, Training, Evaluation, and so on. 
 Google AutoML is one of the services from Google Cloud Platform that makes it easy for the developers to design and build machine learning models and use them across various applications. As an example, Text Classification can be used for Intent identification while designing conversation systems. 
 
This book is relevant for programmers who have an interest in designing and developing the AI-based systems. It also acts as a guide for the development of AI systems using Google AutoML and AI Platform. It also enables you to design an end-to-end machine learning pipeline using Google’s BigQuery, Dataprep, and Dataproc. This book provides a step-by-step guidance to the readers that helps them to build machine learning and Natural Language Processing models. This book will help the readers through practical examples as well as challenges and best practices. 
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CHAPTER 1 
 Introduction to Artificial Intelligence 
 The digital revolution in the 1980s brought with it a wide spectrum of options, where machines or computers could ease out the life of humans in ways that had not been imagined earlier. Using machines for different tasks by programming them, made them problem-solvers in all sorts of domains that were earlier reserved for specific tasks. This ease of programmability also opened the doors for self-programming or rather Intelligent Systems and, hence, the idea of Artificial Intelligence (AI) got started. 
 With Artificial Intelligence, several human characteristics of Decision-Making, Trends’ Analysis, and Problem-Solving ” are being done by computer systems or integrated machines. Artificial Intelligence has now created a mark in almost every arena where smart or intelligent solutions can be integrated. Machine Learning and Artificial Intelligence algorithms are helping computing machines to adopt to human-like intelligence and decision-making skills in tasks like medical diagnosis, proving mathematical theorems, search engines, and voice recognition. 





 Structure 
 In this chapter, we will cover the following topics: 
  Machine Learning 
  Supervised Learning 
 Unsupervised Learning 
 Reinforcement Learning 
 Applications of Machine Learning 
 Natural Language Processing 
  Pre-processing 
 Parts of Speech (POS) Tagging 
 Entity Extraction 
 Sentiment Analysis 
 Document Summarization 
 Topic Modeling 





 Objectives 
 After studying this chapter, you should be able to: 
  Understand the basics of Machine Learning and Natural Language Processing 
 Understand the applications of Machine Learning and Natural Language Processing 





 Machine Learning 
 Machine Learning can be easily defined as a branch of Artificial Intelligence that deals with self-training or programing and adapting according to the given data that speaks of the problem statement. The problem statements can range from mere identification of entities to a tag or class to decision-making if the given input favors an expected output. Some algorithms can help one identify if a fruit is Tomato or Persimmon, which are pretty similar looking; such algorithms classify an entity in different classes. Another example can be predicting the stock market trends based on historical behaviors and real-time variables. 
 The major difference from traditional computer software is that the developer does not write the code that instructs the system the way to tell the difference between the two objects. Instead, an algorithm has been taught the way to generate these decisions by being trained on an oversized amount of data. One thing that has to be understood is that if any Machine Learning Algorithm is a solution for a problem statement, a relevant and considerably sized dataset is always a prerequisite to start with. 
 Machine learning is categorized into three main types, namely, Supervised Learning, Unsupervised Learning, and Semi-Supervised Learning. We are going to look at an overview of these categories in this chapter. 





 Supervised Learning 
 Supervised Learning is a term used for algorithms where we have training data with accurate labels against them. The significance of such algorithms is the accuracy of labeled data or prediction as input helps in having crisp decision boundaries with the training of algorithm. The labeled data provides the guidance or knowledge to the system to understand and map the data. The labeling of the data is done by human subject matter experts. 
 Another advantage with having a labeled dataset is when the training dataset trains the algorithm, the testing dataset can help in better accuracy judgment, as error can be easily identified and propagated. The training data needs to be carefully chosen because an imbalanced training dataset can cause imperfect decision boundaries by straining them due to lack of proper examples. Hence, the training dataset should be similar to the final dataset in its characteristics and should provide the algorithm with the labeled parameters required. An imbalance in this scenario would mean much more records for a particular type and very less records for another type. 
 The algorithm then finds connections between the parameters provided and essentially establishes a cause and effect relationship between the variables in the dataset. At the end of the training, the algorithm develops a draft of how the data works and the relationship between the input and the output. 
 Another important factor is to identify important features in the training data because irrelevant features can possibly influence the training of the algorithm. A few examples of supervised learning are regression, classification, and more. 





 Unsupervised Learning 
 Having a labeled dataset may not be possible in many cases. There is a cost of getting labeled data as well, as humans need to label the data. In the problem statements, where such constraints cannot be met, Unsupervised Machine Learning is the solution. 
 Unsupervised machine learning holds many advantages by being able to work with unlabeled data. Firstly, human effort is not required to make the dataset machine-readable that allows much larger datasets to be used by the program. Also, with the unlabeled data the algorithm has a better scope to draw conclusions and relationships in the feature set available. Another huge advantage can be its usage in real-time data, where input is analyzed and labeled with the learners. 
 The labels generated in the unsupervised learning work differently from the labels in supervised learning. In supervised learning, the decision boundaries have to be intently drafted based on the labels, whereas in unsupervised learning, the labels are an evolving space that can get updated with the drift of decision boundaries at a given time based on the hidden correlation it deduces. 
 The creation of these hidden structures makes the unsupervised learning algorithms versatile. Instead of a defined and set statement, the unsupervised learning algorithms can adapt to the data by dynamically changing hidden structures. These offer more post-deployment development than the supervised learning algorithms. 
 
Clustering is one of the famous unsupervised learning algorithms, to split the data according to similarity, clustering can also help in identifying the anomalies in our dataset. 





 Reinforcement Learning 
 Reinforcement Learning is another Machine Learning domain that solves problem statements that are more of a path traversal rather than definitive output. Games and robotic movements can be a great example of using Reinforcement Learning. Tracing a set of paths such that system would provide reward for every correct path and penalize for every wrong path. 
 Reinforcement learning is all about learning and inspiring from experience and interaction. It features an algorithm that improves upon itself and learns from new situations like trial and error methods. 
 The rules of the game are not suggestive of the steps but rather a system learning of what kind of actions are a reward and what is the penalty. Such rules that are called Policy are often the most important part of such algorithms, where an agent is interacting with an environment. At each time step, the agent receives the environment’s current state, and the agent must choose an appropriate action in response. After the agent executes the action, the agent receives a reward and a new state. Basically, each iteration of the agent is analyzed by the interpreter to judge whether a penalty or reward is called for. 
 
 
Figure 1.1: Reinforcement Learning 





 Applications of Machine Learning 
 Adaptability, versatility, and effectivity are the key features to sell any Machine Learning algorithm. The dynamic and high-powered nature of the versatile Machine Learning solutions is a feature utilized in situations where the answer is required to continue improving post-deployment. 
 Machine Learning algorithms and solutions are versatile and can be used to support and scale business teams. Be it image recognition, weather predictor, spam email filtering, fraud detection, and so on, Machine Learning has a huge scope in solving such problems. Cognitive assistants or virtual chatbots are another such example. Making any customer interaction a personal experience can significantly improve a business, so these chatbots analyze customer queries, preferences, and short context to curate an instant preset answer to assist the customer. 
 The customer profiling is another important application of Machine Learning. Streaming services like Netflix or Hulu curate a “You may also like this,” where they push suggestions based on the profile they have analyzed per customer. Finding items relative to each customer can be based on n number of parameters. The streaming services often consider the likes and interests of customers, whereas ecommerce services often curate “You may also like this” mostly based on the common preferences of similar customer profiles or rather the customers with similar wish lists or shopping patterns. Social Media on the other hand, curate advertisements, and news-feeds based on tentative likeability and revisits to certain domains of information. 





 Natural Language Processing 
 Natural Language Processing (NLP) is an important part of Computer Science in Artificial Intelligence (AI) that deals with how computers analyze, understand, and derive meaning from human language in a smart and practical way. Thus, enabling computers to understand and process human language. 
 With the help of NLP, we can build models and processes to analyze text. NLP has its application in numerous real-world scenarios like speech to text, language translation, text generation, summarization, sentiment analysis, topic modeling, text mining, automatic question answering, and so on. 
 Any language data, if deconstructed, is a mere stored stream of Unicode characters or entities for a system that consumes some physical space in bits and bytes all because machines do not understand any human language at the root level. NLP to a machine is bringing out sense in some stream of characters, purely by analyzing its constraints, rules, and patterns against some training data. The training helps in understanding of language syntax and semantics and generating complying information similar to that of the data that is trained. 
 Example: The word “ACT” has no isolated meaning by itself to a machine; it is not a keyword and clearly only consuming some memory. By analyzing English language documents and rules for its form and relative meaning to other words, we get that this English word “ACT” can have numerous word forms with several meanings in multiple contexts. 
 
Each and every human language entity like the preceding example is holding a chain of information that makes NLP capable of many useful jobs like correcting grammar, converting speech to text, and automatically translating between languages. 





 NLP algorithms 
 Human languages are pretty complicated that make NLP difficult to learn and implement. In spite of that, NLP offers some techniques such as Word/Sentence Embeddings, Syntactic and semantic analysis, and so on that enables organizations to develop software that understands human language. Some of the heavily used NLP algorithms/steps are as follows: 
  Pre-processing: The text that is received as human language often requires some sanitation, and there are several steps that can be incorporated. 
  Stop-words Removal: Removes redundant characters and words of the text that hold little meaningful information. 
 Stemming and Lemmatization: Converts words into their root form. 
 Tokenizer: Extracts token or phrases out of text (document or sentence). 
 Parts of Speech Tagging: Parts of Speech (POS) tagging is an NLP technique that identifies or extracts structure of a sentence. For semantic analysis, POS tags or Parts of Speech Tags can determine what entities or tokens hold importance across the text. As an example, for a sentence “There is a seminar on Neurons and Neural Networks in Sydney,” the POS tagging for each of extracted tokens are as follows: 
 “There(/EX) is(/VBZ) a(/DT) seminar(/NN) on(/IN) Neurons(/NNS) and(/CC) Neural(/NNP) networks(/NNS) in(/IN) Sydney(/NNP)” 
 
Entity Extraction: Named Entity Recognition (NER) is one of the most useful techniques in NLP that helps in extracting the entities from the text. It is generally based on grammar rules and supervised models. It highlights the essential concepts and references within the text. The NER labels classify atomic elements and important phrases within the sentence into categories like people, locations, organizations, dates, and more. Many cloud vendors such as IBM, Amazon, Google, Microsoft, and more provide NER feature as a service such that same can be leveraged in any application or product without a need for development from scratch. The Entity Recognition feature provided by these vendors have been trained on general English text or document such as Wikipedia articles.. Therefore, these models work best for identification of generic entities such as Person, Location etc. However, Google has released AutoML Natural Language service that enables developers or data scientists to train custom entity model domain specific dataset provided by them. It may be possible that token or phrase can have different meaning in different domain or context, and, hence, refers to different entities. As an example, if you run entity recognition system over a sentence that has been trained on different domains then you would see different results as follows: 
 Sentence: “There is a seminar on Neurons and Neural Networks in Sydney”, 
  
Generic NER: There is a seminar (\ Activity) on Neurons and Neural Networks in Sydney(\ Location).” 
 IT Domain NER: There is a seminar (\ Activity) on Neurons and Neural Networks (\ Artificial Neural Networks) in Sydney(\ Location).” 
 Medical Domain NER: There is a seminar (\ Activity) on Neurons and Neural Networks (\ Biological Neural Networks) in Sydney(\ Location).” 
  As you can see, if you use Generic NER, it won’t recognize Neurons and Neural Networks as an entity. However, IT domain and Medical domain NER recognizes it as an entity, but entity type is different. For IT domain, Neurons and Neural Networks have been identified as Artificial Neural Network, but in Medical domain, it was recognized as Biological Neural Networks. Therefore, it is quite important to use entity recognition system that is close to your domain. 
  
Sentiment Analysis: Sentiment analysis/opinion mining uses NLP techniques to identify the context and subtle projection of “feelings” of a text. The sentiment or opinion can be the features that extract the emotion of the given text. Identifying this emotion on a scale of positive, negative, and neutral is the simplest categorization of sentiments; the relative score is also generated on a scale implying the same. The number of emotions or sentiments can be more in numbers, likely emoting all human emotions as anger, sad, happy, overwhelmed, and more. A single data input can have an n number of sentiments to be deduced. Keeping a mark of all such emotions, connotations, and sub-text is essential to sketch out the dominant sentiment and, hence, generate a score accordingly. The statement “Abandonment of Chernobyl has proved to make the place far more beautiful” has multiple sentiments in reflection; abandonment specifies a negative connotation even when the beauty of a place is being discussed which is a positive sentiment, and, hence, the score generated will be a factor of both sentiments. Strong unilateral sentiments tend to generate better score predictions as shown in the following examples: 
 For example: 
  (Negative statement): The staff members in this hotel are extremely rude and totally ignorant. 
 Sentiment Score: -1.17232 
 (Positive statement): The ABC Health insurance is affordable as compared with the other insurance companies. 
 Sentiment Score: 0.19836 
  Sentiments are often a virtual feature that can extensively help in deducing the delivery and meaning of a text. Sentiment analysis can also help guide the text generation engines to be more appropriate and human like. As an example, refer the following two cases of a Cognitive Assistant and user interaction to see how sentiments can direct the Chat Bots’ response. 
  Case 1: Positive Sentiment 
 User:- “Excellent Services provided” 
 
Chat Bot:- “Glad to hear that! Would you Like to give your feedback to boost our employees’ morale?” 
 Case 2: Negative Sentiment 
 User:- “Worst Services ever, will never order from you people again” 
 Chat Bot:- “Deeply regret about your experience. Please detail your issue in the feedback segment, so that we can help with issue redressal at the earliest.” 
 Document Summarization: Summarizers can greatly help in identifying crux information of a text. Summarization can be a very handy service in cases where large collection of documents is to be analysed. Summarization can be of the following two types: extractive and abstractive summarization. In Extractive we pull out segments of text to generate the summary. In Abstractive the summary of document is generated based on the important phrases, named entities and extracted topics and other feature sets that are provided for the given documents. Few algorithms that are used for text summarization are LexRank, TextRank, and Latent Semantic Analysis. 
 
Topic Modelling: Topic modelling is an NLP technique that is used to extract an important token or word or phrases out of a text (document or sentence). It is based on an unsupervised machine learning method where collections of documents can be provided, and it can extract important topics out of it. It has major applications in Question–Answering Systems to find out answers with relevant information and in Document summarization to generate summary that should contain tokens or words or phrases that defines crux of document. Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and so on are some of the topic modelling algorithms. 
 With the advent of technology, implementation of the aforementioned NLP tasks are quite feasible now. Even some of these capabilities are available as a service that can be leveraged by any application or system. In the next few chapters, we will see in detail how Google AutoML and AI Platform can help us quickly put together AI solutions to different types of business needs and create compelling products using the power of Google AutoML. 





 Conclusion 
 In this chapter, we have discussed about basics of machine learning and Natural Language Processing (NLP) including Supervised and Unsupervised learning, Natural Language Processing, Sentiment Analysis, Document Summarization, Entity Recognition, and so on. In the next chapter, we will deep dive into Google AutoML services. 





CHAPTER 2 
 Introducing the Google Cloud Platform 
 Today, Artificial Intelligence is everywhere from social media sites, shopping websites, to content providers. From being used in state-of-the-art systems built by Silicon Valley companies, AI and Machine Learning are now being leveraged by most products and solutions across the globe. In some cases, it is quite easy to develop and build machine learning capability in these systems, and sometimes, it is very difficult to do it due to lack of skilled resources on Machine Learning. There is a general dearth of resources in the areas of Data Science and Machine Learning in the industry today. 
 However, Google came up with an innovative solution where developers can also develop and build Artificial Intelligence capabilities in their products and solutions using Tensorflow and AutoML. AutoML enables developers to use AI algorithms as a service that allows them to integrate with any system. Developers can now provide data as per their business requirement and AutoML will automatically train the AI model for you. AutoML has completely revolutionized the way AI is being consumed by developers and architects. AutoML takes the complexity away while integrating and using Machine Learning in products and solutions. 
 In this chapter, we will go through the different Machine Learning services/APIs provided by Google Cloud Platform such as AutoML, AI Platform, Tensorflow, and so on. 





 Structure 
 In this chapter, we will cover the following topics: 
  AutoML Natural Language and it's applications in Document Classification, Entity Extraction, and Sentiment Analysis 
 AutoML Tables 
 AutoML Translation 
 AutoML Video Intelligence and Vision 
 AI platform 
 TensorFlow 
 Creation of an account in GCP 
 Creation of Google Cloud Storage Bucket 





 Objectives 
 By learning this chapter, we will be able to: 
  Understand the basics of AutoML Natural Language, Video Intelligence, Vision, and Google AI platform. 
 Understand GCP and Google Cloud Storage Bucket. 





 Introduction 
 also known as Automated Machine is defined as a process of automated generation of Machine Learning or NLP (Natural Language Processing) models, thereby, reducing development efforts and time that is being spent in testing and validation. It provides easy-to-use interface to train, test, and validate Artificial Intelligence based models. This helps developers and Data scientists to build machine learning models with high efficiency, scalability, and productivity while preserving model quality. 
 Earlier development of machine learning models required people of the following different skillset: 
  Data Engineer: Responsible for data collection and transformation as per business requirement 
 Data Scientist: Responsible for data analysis, identification of models to be used as per business requirement, validation, and testing 
 Developer: Responsible for development of module that will enable machine learning model to be consumed by other applications 
 
As an example, if you are planning to develop a Spam blog classification system where it will flag blog as spam or not spam, an organization would need a Data Engineer, to crawl spam and not-spam blogs and transform them into features as per requirement of Artificial Intelligence algorithms and Data Scientist, to decide on type of AI algorithms to be used; validated, and tested. Apart from this, it also requires a developer to release this as feature to other systems such as Plugin in a user's browser such that whenever a user opens any blog, it should flag it as spam or not-spam. 
 Now, with AutoML, the developer gets most of the things as out of the box available through API calls and simple applications and use cases can be done without getting into much complexity. As an example, developers can leverage translation services from various cloud vendors such as IBM, Microsoft, and so on to enable language translation capability in their product or solution by using REST APIs without the need to develop language translation system from scratch. 
 AutoML offers various services such as AutoML Natural Language, AutoML Tables, AutoML Translation, and so on that can be leveraged to enable AI features in your applications as shown in Figure 
 
 Figure 2.1: AutoML Services 
 Now, we will discuss each of these services in detail. 





 AutoMLNatural Language 
 AutoML Natural Language is a natural language service that provides capability to syntactically and semantically parse the content (text, sentence, or document) to generate knowledge out of it. The generated knowledge can be used in NLP-based applications or systems such as Question–Answering systems, Document Summarization systems, Search Engine, Recommendation system, and so on. Some of the NLP tasks such as stop-word removal, POS tagging, parse trees, Contextual grammars, dependency trees, and so on that have been used to perform pre-processing steps as a part of an NLP pipeline, now, can be implemented using this service without any significant coding effort. 
 There are two modes in which AutoML Natural Language can be used: 
  Out-of-Box Model: In this mode, an organization can use out-of-box model provided by AutoML without a need to train the system with your own data. As an example, we can leverage Entity Extraction feature of this service to identify entities such as Place, Location, etc. out of the sentence without providing the training data. 
 Custom Model: In this mode, an organization needs to provide their task specific data. As an example, if you want to implement a document classification system that would classify your documents into particular categories, then you should go with this mode. 
 AutoML Natural Language API provides the following important features that can be leveraged easily in any application. 





 AutoML Text & Document Classification 
 AutoML Text & Document Classification feature is used to classify content (text, sentence, or document) into relevant categories that can be defined during the training phase. It employs Google's state-of-art technology for Neural Architecture search to find out a relevant Neural Network architecture that will fit perfectly for your dataset. This feature can be used in tasks such as Document classification, Text classification, Intent Classification (for conversation systems), and so on. 





 AutoML Entity Extraction 
 AutoML Entity Extraction feature is used to extract entities such as location, place, contact number, and more from the text. AutoML enables you to provide your tagged data where each of the sentences should be tagged with relevant entities for the training. This in-turn will train custom entity extraction model where a Neural Network architecture will be identified using Google's Neural Network Architecture search technology. This feature can be used in NLP tasks such as Question Answering, Document Summarization, Conversation Systems, and so on. 





 AutoML Sentiment Analysis 
 AutoML Sentiment Analysis feature is used to identify sentiments from text or audio. This feature has been gaining popularity in design of conversation systems where responses to a user's question will be given depending on sentiment presented by the user via text or audio. This feature enables you to train your sentiment model over your own dataset that should have been tagged via Language Expert, or you can also leverage the out-of-box model provided by AutoML for sentiment identification. 





 AutoML Tables 
 Building an end-to-end machine learning pipeline is always a challenging and time-consuming task for structured datasets such as Stock Market Dataset. It includes lot of tasks such as normalization, type of feature it contains, column or feature encoding, missing value identification etc. Most of the efforts and time of data scientists and analysts is spent on this, as nature of data plays a major role for the selection of models to be used. As an example, for regression problems, if features are independent, then the problem is linear regression problem otherwise non-linear. 
 AutoML Tables eases design of end-to-end machine learning pipelines by providing an automated way to perform the following operations. 
  Missing Value Computation 
 Identification of type of values in feature 
 Data Normalization 
 Feature Encoding 
 
Apart from this, it can automatically identify the best model for your dataset from Google's model repositories. It varies from traditional models like linear regression, Tree-based models, etc. to Neural Network based models for complex tasks. Due to this, the total time required for building production ready machine learning models has been reduced drastically. It provides an intuitive user interface where all of these steps can be performed and monitored. As an example, a developer or data scientist can see what all actions have been performed over the dataset and their results. This way, the developers or data scientists can ensure that the trained machine learning model is of high efficiency and accuracy. The following are two types of problems that can generally be solved using AutoML Tables: 
  Regression Problems: A regression problem is a type of problem where final prediction will be numeric. As an example, if you want to predict share price of a particular company, then you would go with regression models, as predicted price will be a numerical value. 
 Classification Problems: In classification problem, each of the data point should be classified into a particular category. As an example, in Spam Blog Classification System, each blog should be classified as a spam or not-spam. This type of classification system is known as a binary classification. If there are more than two classes, then it is known as multi-class classification. However, in some cases, each data point may belong to multiple classes at a time. This type of classification problem is known as a multi-label classification. As an example, the document may have content related to both sports and politics, in this case, the document will be classified into both sports and politics. 





 AutoML Translation 
 Machine or language translation has been gaining popularity day by day, as it enables an organization to build multi-lingual capabilities into their products and applications. The following are some of the examples of such systems: 
  Search Engine: The search engine can understand a user's query in various languages and returns list of documents relevant to query. In this system, all the documents will always be in their base language, and if a user asks query in some other language, then language translator first detects language in which query was asked and then converts it to target language to fetch relevant documents. 
 Conversation System: With the advent of the translation technology, now, it is very easy to build multi-lingual capabilities in conversation systems. Here, a user can ask query in various languages, and these systems can leverage the language translation service from Google as a REST API to convert it into base language to fetch relevant response from the conversation system. 
 AutoML Translation service from Google enables you to implement multi-lingual capability in multiple products or applications. Similarly, this works in two ways, namely, the out-of-box and custom model as follows: 
  
Out-of-Box Model: In this mode, an organization can use the out-of-box model provided by AutoML without the need to train the system with your own data. As, the out-of-Box model has been trained on the benchmark dataset; therefore, it works for most of the scenarios/implementations. But, sometimes, it may forget domain specific knowledge after conversion. As an example, if you are building closed domain multi-lingual conversation system that answers IT related questions such as "Facing an issue with Outlook," and a user enters this query in other language (say in German) then "Outlook" might be understood as Outlook of something and not Microsoft Outlook. In such a case, the conversation system won't be able to recognize it correctly as issues with Microsoft Outlook. 
 Custom Model: In this mode, an organization needs to provide their domain specific data for training to recognize domain specific words during the conversion process. As an example, in our closed-domain conversation system for IT domain example, if we train custom translation model on IT related dataset then during conversion, the translation service would know that "Outlook" has nothing to do with outlook of something, but Microsoft Outlook is an email service from Microsoft. To generate the training set, this mode requires human language translators for required languages. It introduces extra cost that makes this mode expensive as compared with the out-of-box model. 
 
These features of AutoML translation service enables an organization to either use the out-of-box model or even train the model over a custom dataset. This motivates them to decide upon which mode to use according to their budget and requirements. Google provides feature of AutoML translation service via REST API. It means it is very easy and convenient for an organization to integrate and use with their existing systems. 





 AutoML Video Intelligence 
 AutoML Video Intelligence provides a set of services to generate insight or knowledge out of the video. This knowledge can be used to develop a system such as Video search engine. This enables a user to enter the query and search over a corpus of videos that was unimaginable earlier. It provides two services that are as explained follows: 





 AutoML Video Intelligence Classification 
 AutoML video Intelligence Classification service classifies video segment or shot into a particular action. As an example, if you want to develop a classification system that can classify one of the shots or segments from the recorded video from any games such as Football, Cricket, Chess etc. into particular actions ("goal" for football or "check"), then you should go with this. 
 In this service, you would need to provide a video corpus along with associated actions to train it. Then, it will automatically identify which model to be used based on your data using Google's architecture search capability and train a model for you. It is a very important feature that lets you generate an insight out of the video. As an example, output of this system can be provided as training data to any search engine that can be retrieved later on if a user wants to see all videos or shots or segments containing goals from a Football game. 





 AutoML Video Intelligence Object Tracking 
 Object tracking is a sub-branch of computer vision that tracks position of an object over a different time frame; for example, tracking suspicious moving vehicle for security issues over a period of time. Nowadays, it has been used in surveillance for security purpose, monitoring of traffic to avoid congestion, and more. Google has released this feature as a service. It means anyone who has access to Google Cloud can leverage this feature by enabling the service from the cloud console. 





 AutoML Vision 
 AutoML Vision is a service from Google that provides image classification and object detection as a service. AutoML vision service enables us to train a custom model specific to your dataset. For example, imagine you have millions of images that have been tagged by human experts into various categories of animals such as Cat, Dog, and more, then you can use this tagged data to develop an image classification system for your application or product. In other words, it implements supervised machine learning to train the custom models. 
 Google has also released Vision API that uses the out-of-box model to detect landmarks, faces, optical character recognition, and more. This can be easily integrated with your application or website via REST API to enable these features. 
 AutoML provides four services which are Vision Classification, Vision Edge - classification, Object Detection, and Vision Edge -Object Detection. 





 AutoML Vision Classification 
 AutoML Vision Classification service classifies an object or image into defined categories that have been provided during the training phase. As an example, if you are developing an image classification system that classifies image into categories then you should go with this. 
 In this service, you would need to provide a corpus of images along with associated labels or category to train it. Then, it will automatically identify which model to be used based on your data using Google's architecture search capability and train a model for you. It is a very important feature and lets you detect and identify the category of the images. You can develop a search engine on the top of the result of this service. This helps a user if he wants to see a list of images of products or animals or landmarks, and more. 
 AutoML Vision Edge - Classification 
 AutoML Vision Edge – Classification service is similar to Vision classification service, but Edge variation is for implementing at IOT or edge devices. As an example, consider a scenario where you have installed a camera in the forest to record the movements of the animals, and you also want to count the number of animals of a particular category such as Lion, Tiger, and so on. So, for identification of animals in real-time, image classification system using Vision Edge Classification service can be developed and implemented at camera end only. This way, the classification system installed at the camera will identify a category of animals such as Lion or Tiger, as soon as an animal passes through the camera and send this information to the server connected to it. 





 AutoML Vision Object Detection 
 AutoML Vision Object Detection service detects an object or multiple objects from an image. It enables you to train your own custom model with your own data. 
 In this service, you would need to provide a corpus of images tagged with objects such as tomatoes and cucumber in a salad to train it. Then it will automatically identify which model to be used based on your data using Google's architecture search capability and train a model for you. It is a very important feature and lets you detect and identify objects from a given image. You can develop a search engine on the top of the result of this service. This helps a user to fetch list of dishes across restaurants that may contain specific toppings. 
 AutoML Vision Edge – Object Detection 
 AutoML Vision Edge – Object Detection service is similar to Vision Object Detection service, but Edge variation of this service is only for implementing at IOT or edge devices. As an example, in self-driving cars, it is necessary that all objects such as road signs, traffic lights, incoming vehicles, and more should be detected in real-time to decide upon an optimal path to be followed by a vehicle. For the same purpose, the Edge version of object detection service is of a great importance, as it performs a task with low-latency and high accuracy. 





 AI platform 
 Designing an end-to-end AI product has always been challenging and difficult for an organization whether it is hardware requirement or resource with adequate skillset. Not every organization or company can afford high computing devices such as GPU, TPU etc., high storage requirements and more, as these are quite expensive. In order to solve all these problems, Google came up with a service known as the AI Platform; a framework that helps an organization to build any machine learning model with any data size of any type. The AI platform integrates with the following Google services to build an end-to-end AI based system: 
  Google BigQuery: It is a data warehouse provided by Google over which we can perform analysis. You can store your dataset in Google BigQuery and later on the same data can be accessed by the AI platform for training and testing purposes. 
 Google Cloud Dataflow: It is a data-processing service from Google. It enables developers to develop any processing tasks such as missing value computation as a part of developing machine learning system. Google's AI platform provides an integration with Cloud dataflow for any pre-processing tasks that need to be applied over dataset. 
 
Google Cloud Object Storage: It is a storage service provided by Google. You can store your dataset in the cloud storage for training and testing purposes. This is a file storage service, although Google BigQuery is mainly used for analysis purpose. A model can be trained locally or over the cloud that can be stored in the cloud storage. This stored model can be accessed during prediction or inference step. 
 TensorFlow: The AI platform also provides an integration with Google's deep-learning library i.e. TensorFlow, if you want to develop or code your own model from scratch and use it on the AI platform. 





 TensorFlow 
 TensorFlow (TF) is a deep-learning library developed by Google. It is one of the most widely used library for developing machine learning, Natural Language Processing, and deep-learning models. It offers out of the box trained models such as BERT, Universal Sentence Encoder for sentence embeddings that will be used for implementation of the state-of-art machine learning and Natural Language Processing tasks such as Machine Translation, Question–Answering System etc. 
 TensorFlow has been designed in such a way that it will be useful for the developers as well as data scientists. As an example, data scientists can use the out of the box trained models to check the performance of the models on a new dataset, whereas the developers can directly use them in applications or products as a module or package. However, if the data scientist feels that the out of the box trained model is not good for their task in-hand, then they can change the model architecture by writing their own custom code. So, TensorFlow has greatly reduced the time required to develop machine learning or deep-learning models by providing an out-of-box trained model for some of the common pre-processing tasks such as sentence embedding for Question–Answering System. TensorFlow provides you the flexibility to train your model across various computation platforms such as CPUs, GPUs, and TPUs. 
 There are two modes in which TensorFlow runs, namely, Eager and Graph execution which is explained as follows: 





 Eager Execution 
 In Eager all operations are executed immediately as soon as they are called from python. It lets the developers and data scientists to execute their TensorFlow code without getting into hassle of designing or creating graphs. In this mode of execution, actions return actual values instead of generating a computation graph that will run later on. This mode of execution is quite useful and easy if you want to do hands-on TensorFlow, and this also makes debugging a little bit easier. 
 Eager execution in TensorFlow provides the following: 
  An instinctive interface: It uses Python data structure and can structure your TensorFlow code automatically as well. 
 Fast debugging: It can be integrated with Python debugging tools for fast debugging purpose. 
 Out-of-box control flow: Uses basic Python programming control flow instead of graph computation flow, thereby, simplifying the model training process. 





 Graph Execution 
 Graph as the name suggests, represents all operations in your model in the form of a computational graph. All the non-leaf nodes represent operations, whereas the leaf nodes represent variable and constant. A computation graph is an arrangement of nodes along with operations in your model. Therefore, in this type of execution, TensorFlow first creates a computation graph and then executes them with the values later on. As an example, if you want to implement an expression such as f(x,y)=x^2y+y+2, then TensorFlow will first build a graph similar to as shown in Figure 
 
 Figure 2.2: Graph Execution 
 We have discussed previously about the usage of the pre-trained models directly in your code. Let's now discuss about Estimators that provide a way to use these models. 





 Estimators 
 Estimators provide high-level APIs to access pre-trained machine learning models instead of going into low-level details of TensorFlow. The idea of the difference between high-level and low-level APIs of TensorFlow is quite similar to what we have with programming languages. As an example, developers are more comfortable with high level languages such as Java, Python etc. as compared with the assembly language. Due to this reason, it is always advisable for beginners to use high-level APIs that enables them to use pre-defined estimators directly in their Python code. 
 There are two following ways of working with Estimators: 
  Pre-made Estimators: Pre-made estimators are much easier to use as they provide much higher-level APIs than the base TensorFlow APIs. With the pre-made estimators, there is no need to create graphs or sessions explicitly. The pre-made estimators take care of all the initializations of the graphs and sessions behind the scenes. With the pre-made Estimators, now it is easy to test various model architectures and can be easily tested with minimal code changes. As an example, estimator tf.estimator.DNNClassifier can be used to develop a classification model. 
 Custom Estimators: Customer estimators are the ones that have to be developed explicitly if the required model is not available in the pre-made estimators. It makes use of low-level APIs of TensorFlow to develop estimators. 
 
Next, we will see account creation steps on Google Cloud Platform. We will begin by creating an account and setting up the Google Cloud as a foundation for our hands-on practice on the Google AutoML services. 





 Creation of GCP account 
 This section shows how to set up an account on Google Cloud platform. Go to the URL https://console.cloud.google.com and follow the following steps: 
  Click on TRY FOR FREE button as shown in Figure 
 
 Figure 2.3: GCP – Account Creation 
 This will redirect you to Google sign-in page as shown in Figure Please provide credentials of your Gmail account. 
 

 Figure 2.4: Google Sign-in 
 Select your country, agree to the Terms of and click on AGREE AND CONTINUE button as shown in Figure 
 

 Figure 2.5: Google Sign-in – Step 1 
 This will take you to the second step as shown in Figure 
 

 Figure 2.6: Google Sign-in – Step 2 (Part -I) 
 Scroll down and provide payment method of your choice as shown in Figure Fill in the required details such as Name, Address, and the Payment information. 
 

 Figure 2.7: Google Sign-in – Step 2 (Part -II) 
  For every new account, Google provides $330 credit with a validity of 12 months, which is enough to explore all the exercises in the book. Please ensure that you stop the services after doing the exercises and keep a tab on the total spend. An excessive usage of the cloud account would incur charges beyond the free limit. 
  
Click on START MY FREE TRIAL button once you have provided all the required details. Please note that this will take some time for the registration to be completed. 
 
 Figure 2.8: GCP Home Page 
 New project with a name My First Project will be created automatically as soon as a user signs-in. 
 Dashboard tab will give you the details about the selected project. This view is further divided into cards wherein each provides specific information. As an example, Project info card gives details about the project such as Project name, Project and Project 
 

 Figure 2.9: Project info 
 Google Cloud Platform status card as seen in Figure 2.10 gives a quick service status check. Green indicates everything is working fine. 
 
 Figure 2.10: Google Cloud Platform status 
 The Billing card shows the billing period for the selected project as shown in Figure 
 
 
Figure 2.11: Billing Information 
 We also have a card for Quick Starts for various services of GCP as shown in Figure Have a look at these and go through the service details if you are interested in knowing more about a particular service. 
 
 Figure 2.12: Getting Started 
 In the left-hand side of the top-most panel is the navigation button as shown in Figure On clicking this button, it opens the navigation menu where all the GCP services are categorized and listed. 
 

 Figure 2.13: GCP Catalogue 





 Creating a Google Cloud Storage bucket 
 Cloud storage is a storage service offered by Google Cloud. You can upload the data in any file format. It stores the data in a Storage Bucket. All the storage buckets are associated with a project. 
 After a project has been created, you can create Cloud Storage buckets, upload data to your buckets, and download the data from your buckets. All the GCP services would use the data from this Google Cloud Storage bucket. 
 Let's see the following steps to create a Google Cloud Storage bucket. 
 Go to the Google storage URL https://console.cloud.google.com/storage/browser 
 Click on the Create Bucket button to open the Bucket creation form as shown in Figure 
 
 Figure 2.14: Create a Bucket - I 
 Fill in the Bucket information as follows: 
  Name your bucket 
 Choose the Location where you want to create a bucket 
 
Select a Default storage class for the bucket. The default storage class is best for short term storage and frequently accessed data. 
 Select an Access control model to determine how you control access to the bucket's objects. 
 Select Advanced settings This allows you to add bucket labels, set a retention policy, and choose an encryption method. 
 Click the CREATE button. 
 
 Figure 2.15: Create a Bucket - II 
  After clicking the CREATE button, a bucket will be successfully created. You will be redirected to a page as shown in Figure 
 

 Figure 2.16: Bucket details 
 Let's see how to upload data inside a bucket. 
 You can upload files/folders or use Drag & Drop files option from your system as shown in Figure 
 
 Figure 2.17: Bucket - List of Files 
 In the overview section, it gives details about bucket and bucket Link URL and Link for gsutil that will be used to access the bucket from outside whenever required. 
 

 Figure 2.18: Bucket Overview 





 Conclusion 
 In this chapter, we have discussed about the various services offered by Google AutoML. We have also discussed about the creation of an account in Google Cloud platform and creation of Google Cloud Storage bucket. In the next chapter, we will discuss about how an AutoML Natural Language Service can be used to train the custom models as per your dataset. 





CHAPTER 3 
 AutoML Natural Language 
 AutoML enables developers or data scientists to build machine learning models over a custom dataset in a simplistic way. It implements all the stages of machine learning pipeline such as data preparation, feature engineering, model selection, hyper parameter tuning, and selection of evaluation metrics. 
 AutoML Natural Language uses Google’s model architecture search algorithm to find best model and its architecture for your dataset. AutoML Natural Language analyzes and performs syntactic analysis (structure) and semantic analysis (meaning of text) to generate knowledge out of it. This knowledge or information can be used as a pre-requisite for the development of the state-of-art NLP technologies such as Question–Answering System, Document Summarization, Recommendation systems, and so on. In this chapter, we will see how an AutoML Natural Language service can be used for implementation of a classification system. 





 Structure 
 In this chapter, we will cover the following topics: 
  Design and implementation of an Issue Categorization System using AutoML 
  Description and analysis of the dataset 
 Machine Learning model training, evaluation, and prediction for Issue Categorization System 
 REST API configuration to release features of this system for other applications 
 Design and implementation of Sentiment Analysis System using AutoML 
  Description and analysis of the dataset 
 Machine Learning model training, evaluation, and prediction for Sentiment Analysis System 
 REST API configuration to release the features of this system for other applications 





 Objectives 
 After studying this chapter, you should be able to: 
  Understand the problem formulation for machine learning tasks 
 Understand the importance of data analysis 
 Understand Model training, evaluation, and prediction using Google AutoML 
 Understand how a machine learning model that has trained on AutoML can be used for prediction in your application via REST API 





 Issue Categorization System 
 In this use case, we will simulate a service desk team of an organization responsible for solving users’ issues. If an organization has a large user base, then it increases operational cost as well as load on the service teams supporting the end users. The example of a service desk is an end user computing service desk that provides support to end users on issues faced on desktops, laptops, mail, messaging, and so on. As an example, if a user is facing some issues with his printer or wants to know about the insurance policy, then the user will reach out to the service desk team of an organization. In such case, someone from the service desk team tries to understand a user’s query or issue and accordingly reply based on the Standard Operating Procedures (SOPs) that have been drafted as per the organization standards. However, some of these queries or issues are quite common and consumes lot of time and efforts of the service desk teams to provide a resolution. What if there is a system that can automatically identify or categorize a user’s query or issue to a particular category and provide a required SOP document or can work as an input to a system that automatically assigns an issue to a concerned person in the support team. For an example, if a user is facing an issue while resetting a password in Microsoft Outlook, then either the user will get an SOP, or it may get assigned to a support person who is an expert in solving Outlook related issues to solve it. 
 
Categorization of issues or queries from a user is known as an Issue Categorization system. We have formulated this problem as a classification problem in machine learning where the issue categories are classes. So, the Issue Categorization system will receive an issue or a query description and categorize the same to a category to which it should belong. 
 Therefore, in this book, we will walk through the implementation of the Issue Categorization system using the state-of-art technologies used by Google AutoML. For this use case, we have used the Natural Language service of AutoML where we will upload our labeled dataset that contains issue description along with their category. Here, AutoML will automatically find the best model architecture using Google’s architecture search algorithms to be used based on our dataset. Following are the complete details of the implementation of a system: 
  Prepare Training Data: In this step, feature engineering such as missing value imputation, data validation, one-hot encoding, and more will be performed over a raw dataset. 
 Create and import Dataset: In this step, prepared data will be uploaded, and a dataset will be created as required by AutoML. This dataset works as an input to the model training process. 
 Model Training: In this step, AutoML uses Google’s architecture search algorithm to analyze your dataset and find the best model to train. 
 Evaluate Model: In this step, trained model will be evaluated over the test data. If it is not efficient, then it also offers you to train different version of the same model but with different values of hyperparameter. 
 
Model Prediction: In this step, the trained model will be used to predict the category for any new issue or query raised by the user. Applications such as an Automated Ticket Assignation System can be integrated with it to predict the category for any new issue or query and accordingly assign it to a relevant support person. 
 The following diagram gives a complete overview of the different stages of an Auto ML Workflow: 
 
 Figure 3.1: AutoML Workflow 





 Data Analysis 
 For this implementation, the dataset file (Name: can be downloaded from GitHub URL In this dataset, each and every query would belong to only and only one category. So, we will go with the training of a single-labeled multi-class classification model. A dataset contains 4965 records distributed across three categories, namely, CPU, memory, and password reset related issues; and classes are named as CPU_Utilization, and Each class is having different number of variations as shown in the following table: 
 table: table: table: 
table: 
table: 
table: 
table: 
 However, as per the best practices, training data should contain equal or nearly-equal number of variations for each class. But in our use case, each class contains different number of variations. As the class Password_Reset has almost 20 times a greater number of queries as compared with class this dataset suffers from class-imbalance problem and would degrade the performance of the class with a smaller number of variations. However, AutoML identifies class imbalance problem in a dataset and solves this automatically. This is an important feature of the AutoML, where it provides a guided way to the engineers to evaluate and solve the data science problems. 
 
In the next section, we will see how the aforementioned discussed dataset will be uploaded to build an Issue Categorization System using an AutoML Natural Language Service on Google Cloud Platform. 





 Model Training 
 We will first enable an AutoML Natural Language service from Google Cloud. Follow the following steps to enable an AutoML Natural Language service. 
  Go to URL https://cloud.google.com/ and login with your credentials. 
 Click on burger Menu and select the Natural Language option as shown in Figure 
 
 Figure 3.2: Selection of Natural Language Service 
 
This will populate the screen as shown in Figure Next, click on the ENABLE API button to enable the AutoML Natural Language API. 
 
 Figure 3.3: Natural Language Models 
 Once enabled, it will populate the screen that shows details of the features provided by the Natural Language Service as shown in Figure 
 
 Figure 3.4: Natural Language Products 
 Following are the names and details of the features provided by the Natural Language Service. 
  AutoML text and document classification: Build a machine learning model to classify the content (text or document or sentence) into categories defined during the model training. 
 
AutoML sentiment analysis: Build a machine learning model to analyze sentiments out of the text (document or sentence). It also enables you to train the model on your dataset. 
 AutoML entity extraction: Build a machine learning model to extract entities out of the text (document or sentence). It also enables you to train the model on your dataset for custom entities. 
 Cloud Natural Language API: Enables you to use the pre-trained models for classification, sentiment, and entity recognition system over textual content (document or text). It can be integrated directly to your applications or products via REST API. 
 Next, click on the card named as AutoML text and document classification option to build a custom model for the Issue Categorization System. You will be redirected to a Dataset page as shown in Figure 
 
 Figure 3.5: Natural Language - Dataset 
 Now, to upload your dataset, click on the NEW DATA SET link, and you will be redirected to a screen as shown in Figure 
 

 Figure 3.6: Issue Categorization System – Create Dataset 
 Next, enter the values for various fields as follows: 
  Data set name: Name of the dataset. For this use case, value will be 
 Location: Defines the geographical region in which your data will be stored. You can select Global or European. For this use case, select Global as a value of the location. 
 Model Objective: Defines what type of model you want to train. It offers the following types of models: 
  Single-Label Classification: Select this if the text (document or sentence) belongs to only one category or group. As an example, issue such as “Not able to send an email via Microsoft Outlook,” as you can see that a user is facing an issue while sending an email. Therefore, it belongs to the “Email Issues” category. 
 
Multi-Label Classification: Select this if the text (document or sentence) belongs to more than one category. As an example, a document talks about Politics as well as Sports; therefore, it will be categorized to Politics and Sports. 
 Entity Extraction: Select this if you want to extract entities out of text (document or sentence). 
 Sentiment Analysis: Select this if you want to identity sentiments out of text (document or sentence). 
  For our use case, select the Single-Label classification option as all ticket descriptions corresponding to issues categorized to only single category in our dataset, and then click on the CREATE DATA SET button. 
 Next, AutoML provides the following three options depending upon your dataset file format and location to upload. 
  Upload CSV file from your system: If the dataset file is in CSV format and resides in your system, then select this option. For our use case, we will go with this option. 
 Upload TXT, PDF, or ZIP files from your system: If the dataset file is in TXT, PDF, or ZIP format and resides in your system, then select this option. 
 
Select a CSV file from cloud storage: If the dataset file is in CSV format and stored in cloud storage service such as Object storage, then select this option. 
 Click on the SELECT FILES button, it will open up browse files box. Select your dataset file and upload it. 
 Define destination on cloud storage as gs://sinkdontdelete/Ticket_data (or bucket name that you have defined during the creation of the bucket)as created in Chapter and click on the IMPORT button as shown in Figure 
 
 Figure 3.7: Issue Categorization System – Upload Data 
 Once you click on IMPORT button then you will be able to see progress of your dataset as shown in Figure 
 

 Figure 3.8: Issue Categorization System – Data Import 
 This process may take few minutes. You will receive an email on your registered email address associated with your project as soon as the upload process has successfully completed as shown in Figure 
 
 Figure 3.9: Issue Categorization System – Data Upload Email Confirmation 
 
Once the data has been successfully uploaded, then you can see the following details about your dataset under the ITEMS tab as shown in Figure 
  ALL items: shows the total number of records in your dataset 
 Labeled: This shows the total number of labeled records in your dataset. In our dataset, all records or variations have already been labeled. So, it is equal to All items. 
 Unlabeled: This shows the total number of unlabeled records in your dataset. In our dataset, not even a single record is unlabeled. So, its value is 0. 
 Training: Shows the number of records to be used during model training 
 Validation: Shows the number of records to be used during the validation step 
 Testing: Shows the number of records to be used during testing phase 
 
 Figure 3.10: Issue Categorization System – Data Analysis 
 
During the training of any Artificial Intelligence models, the dataset has to be divided into three parts as follows: 
  Training Set: The number of records to be used for training a model 
 Validation Set: The number of records to be used for validating a model and hyperparameter tuning 
 Hyperparameter tuning can be defined as a process of identifying optimal values of parameters that defines model architecture. For an example, if you are working on any Neural Network based approach such as an LSTM (Long Short Term Memory), then you need to find optimal values of the parameters such as the number of layers, number of nodes, and so on which would work best for your architecture. 
 Test Set: Number of records to be used for testing a trained model. 
 This set contains records that have not been seen during the training and validation phase. 
 By default, the AutoML Natural Language service uses 80% of the records for training, 10% for validation set, and the rest 10% for the testing set. It also takes care of the class imbalance problem (if any) in the dataset. As per AutoML, the minority class should have at least 100 records in the training set as shown in the following table, where minority class i.e. CPU_Utilization has more than 100 records. 
 records. 
records. 

records. 
records. 
 However, you can also define your custom splitting criteria where you can tag individual record as TRAIN, VALIDATE, and UNASSIGNED by defining them in a new column as follows: 
  TRAIN: This tag defines that record belongs to a training set. 
 VALIDATE: This tag defines that record belongs to a validation set. 
 TEST: This tag defines that record belongs to a testing set. 
 UNASSIGNED: This tag defines that record will be assigned automatically to a training or validation or testing set. 
 In this case, splitting into a training, validation, and testing set will be performed on the basis of tags only. 
 For our use case, we will go with the automated splitting offered by AutoML. Next, click on the TRAIN tab, and then click on the START TRAINING button as shown in Figure 
 
 
Figure 3.11: Issue Categorization System – Model Training 
 It will be redirected to the page as shown in Figure 
 
 Figure 3.12: Issue Categorization System – Train Model 
 Define the Model name and check the box against the Deploy model after training is finished if you want to deploy the model automatically as soon as training is finished. Then click on the START TRAINING button to start the model training. 
 The model training process may take several hours depending on the size of the dataset. You will receive an email on your registered email address as soon as the model training is completed as shown in Figure 
 

 Figure 3.13: Issue Categorization System – Email Confirmation for Model Training 
 Please note that AutoML automatically uses a validation set to optimize the model hyperparameter values and select the best model for you. You will receive an email only once the AutoML has trained the best model for you. 
 Click on the link mentioned in an email body that you must have received after completion of the model training to check the performance of the model. As aforementioned, AutoML uses a test dataset to evaluate the performance and quality of the trained model. 





 Model Evaluation 
 AutoML uses performance metrices such as Precision and Recall to measure the performance of a model as follows: 
  Precision: It is defined as the ratio of the number of relevant variations or records of a particular class that have been classified to same class by the model to the total number of records in a dataset that have been classified to the same class by the model. As an example, in our use case, precision can be defined as the ratio of the number of records from category CPU_Utilization that are classified to CPU_Utilization by the model to the total number of records that have been classified to CPU_Utilization by the model. Mathematically, it can be defined as follows: 
 Precision = Number of True Positive/(Number of True Positive + Number of False Positive) 
 Recall: It is defined as the ratio of the number of relevant variations or records of a particular class that have been classified to the same class to the total number of records that belong to the category if the same class in the dataset. As an example, in our use case, recall can be defined as the ratio of the number of records from the category CPU_Utilization that are classified to CPU_Utilization by the model to the total number of records that belong to the category CPU_Utilization in the training dataset. Mathematically, it can be defined as follows: 
 Recall = Number of True Positive/(Number of True Positive + Number of False Negative) 
 
where, True Positive, False Positive, and False Negative can be defined as follows: 
  True Positive: The number of records for the category CPU_Utilization from the dataset that have been classified to the category CPU_Utilization by the model. 
 False Positive: The number of records that have been classified incorrectly to the category CPU_utilization by the model. 
 False Negative: The number of records that should have been classified to the category CPU_Utilization by the model, but these have been classified incorrectly to another category such as Memory_Utilization and Password_Reset by model. 
  The confidence score plays a major role in evaluating the performance of a classification model. It is a probabilistic score that tells us how much confident the model is in categorizing an issue or query from the user to a particular category. As an example, for an issue description such as CPU utilization is high the model categorizes it into category CPU_Utilization with a confidence score of 0.98. It means that the model is 98% sure that the given issue description belongs to the category It can take any value between 0 and 1. 
 
However, an analyst or a data scientist has to define after what value of the confidence score for a query or an issue description should be considered as relevant. This value of confidence score is known as the Threshold value. It can take any value between 0 and 1; and all the predictions from the model with confidence score greater than threshold value are considered as relevant. As an example, if the threshold value is 0.70, then all the predictions from the model with the confidence score greater than 0.70 will be considered as relevant else considered as irrelevant. 
 The selection of the threshold value must be done with utmost care to avoid any negative impact on the performance of a model. As an example, if you choose large value of the threshold value near to 1, then most of the issues or queries that belongs to the category CPU_Utilization will be classified to other categories in our dataset. This increases False Negative that will have a negative impact on the recall. However, if you choose a low value of the threshold value near to 0, then most of the issues or queries that don’t belong to the category CPU_Utilization will be classified to the category CPU_Utilization in our dataset. This increases False Positive that will have a negative impact on the precision. 
 As you can see, precision and recall has a trade-off with each other. As soon as the recall increases, precision decreases and vice-versa. It is completely dependent on the business requirement which one, i.e. precision or recall, to prioritize. However, our use case is an Issue Categorization system, where we want the model to classify an issue or a query to correct the category in most of the cases. Therefore, we would prefer precision over recall, but we will not compromise more on recall as well. Thus, every use case is a balancing act between precision and recall using the confidence score. 
 
However, an AutoML Natural Language service provides a feature to change the threshold value known as the confidence threshold score bar. It helps an analyst or a data scientist to see how recall and precision will affect with changes in the threshold value as shown in the following Figure For our use case, we have selected the threshold value as 0.52, as this gives a decent value of recall and precision, which is acceptable for our use case. 
 
 Figure 3.14: Issue Categorization System – Model Evaluation 





 Model Prediction 
 Once the model has been trained and evaluated, you can check the prediction from the model on a new query or issue by clicking on the TEST & USE tab as shown in Figure 
 
 Figure 3.15: Issue Categorization System – Model Prediction - I 
 Define a query or an issue description as CPU Utilization is high on Please suggest in the input text in the following field as shown in Figure Next, click on the PREDICT button to see the model results. 
 
 Figure 3.16: Issue Categorization System – Model Prediction - II 
 
The prediction from the model for an issue description shows the probability distribution amongst the three classes or categories with the probability score as follows: 
 CPU_Utilization 1.0 
 Password_Reset 0.00 
 Memory_Utilization 0.00 
 Amongst these classes or categories, the CPU_Utilization is the only one whose confidence score is greater than the threshold value i.e. 0.52. Hence, a query or an issue description is correctly classified to the category CPU_Utilization by the model as shown in Figure 
 
 Figure 3.17: Issue Categorization System – Model Prediction Result 





 REST API configuration 
 Now, consider a scenario where you want to expose this model to an external application. As an example, an organization is working on the development of an Automated Issue Assignation System, where one step is to categorize a user’s issue or query into a particular category. Once the category has been identified then the issue or query will be assigned to the concerned person in the support team of an organization. 
 Now, in order to use this feature in an Issue Assignation system, the Issue Categorization model has to be exposed as a REST API such that whenever a user submits his query or an issue, it will make an API call to fetch a relevant category for that query or issue description. It involves the following steps: 
  Creation of service account for accessing an AutoML Natural Language Service 
 Installation and configuration of Google Cloud SDK 
 Code development, to get the model prediction for a query or an issue description 
 Create REST API to get the model prediction 
 Follow the following steps to create a service account for accessing an AutoML Natural Language Service: 
  Go to URL https://cloud.google.com/ and login with your credentials. 
 Select the option IAM & admin from the left side navigation menu 
 Then, click on the service accounts link as shown in Figure 
 

 Figure 3.18: IAM Service Account Creation 
 You will be redirected to a page as shown in Figure 
 
 
Figure 3.19: List of Service Accounts 
 Click on the CREATE SERVICE ACCOUNT link and provide the following details: 
  Service account name: Defines name of the service account 
 Service account ID: Defines ID of the service account 
 Service account Description: Defines the description for this service account. 
 Then, click on the CREATE button as shown in Figure 
 
 Figure 3.20: Define details for new Account 
 After the creation of the service account, it will be listed in the service account page as shown in Figure 
 
Now, go to the Action column and select an option Create Key after clicking on the burger menu against recently created service account as shown in the following figure. 
 Then, select the Key type as JSON and click on the Create button. It will automatically download the key file in your system. 
 
 Figure 3.21: IAM Service Accounts List 
 With this, we are done with the creation of the service account for using an AutoML Natural Language service via Google Cloud SDK. Next, please follow the following steps to install and configure python SDK of Google Cloud: 
  Pre-requisite: Python 3.6.x and Pip are required to be installed in your system. 
 Go to URL https://cloud.google.com/sdk/docs/downloads-versioned-archives and download the archive relevant to your platform as shown in Figure For this book, we will go with Windows platform. 
  Note: To check version of windows, go to Control Panel | System | System Type and download corresponding versions as shown in Figure 
  

 Figure 3.22: Download SDK 
 Then, extract the downloaded archive file to any location on your file system 
 Launch the google-cloud-sdk\install.bat script and follow the installation instructions 
 Open the command prompt and go to the folder or path where the extracted folder with a name google-cloud-sdk is present 
 Run the following command: 
 Install.bat 
 This will install all the required command line tools necessary to work with any resource of Google Cloud platform. 
 
 Figure 3.23: Install SDK 
 
After the installation of Google cloud SDK, we need to initialize SDK using the gcloud init command. It performs the following: 
  Authorizes cloud SDK to use your account to access Google Cloud Platform 
 Setup cloud SDK configuration and setup the base properties such as the current project, Google compute engine region, and zone 
 Open the command prompt and run the following command: 
 gcloud init 
 This will initialize a new configuration with the default values. To change the configuration, select either one of the following options as shown in Figure 
  Re-initialize this configuration[default] with new settings. 
 Create a new configuration 
 
 Figure 3.24: SDK Configuration –Select Configuration 
 Next, it prompts you with two following options for the account login as shown in Figure 
  
Log in with a new account 
 of logged-in account> 
 If you want to use the previously logged-in settings, then select the same otherwise login with a new account. 
 Then, it sets an account related properties in configuration to the specified account. 
 
 Figure 3.25: SDK Configuration - Login 
  Next, it shows list of all projects associated with selected account as shown in Figure 
 
 Figure 3.26: SDK Configuration –Select Project 
  However, you have an option to create a new project or select an existing one. For this book, we will go with the already created project. Please enter the numeric 1 to proceed. 
 Next, it will prompt you to select the values for regions and zones as shown in Figure 
 

 Figure 3.27: SDK Configuration –Select Region 
 Once completed, it shows a message that your Google Cloud SDK is configured and ready to use. It also shows the current configuration of the selected project. 
 
 Figure 3.28: SDK Configuration - Confirmation 
 With this, we are done with the setup of SDK of Google cloud. Next, we will see how model prediction can be accessed or fetched programmatically in Python. Please follow the following steps to configure the code to test the deployed model. 
  
Note: The complete codebase for this exercise can be downloaded from GitHub URL 
   Import automl package from google.cloud library 
 Define the values for following parameters: 
  project_id: Define the value as automlgcp 
 model_id: Define value as 'TCN14567890876540944' 
 content: Define the text that needs to be classified i.e. Utilization is high on server. Please 
from google.cloud import automl 
 project_id = automlgcp 
model_id = 'TCN14567890876540944' 
issue_description= "System Utilization is high on server. Please Suggest " 
  Note: You need to define a value of your project-id as per your configured project, and model_id will be the id of your trained model. 
  Create an instance of automl.PredictionServiceClient class This class enables the Python code to make remote calls to AutoML services that maps to Google Cloud API. 
 Next, call a function model_path with model_id, project_id and Google Compute engine zone value as 
 Set the content type of issue description as text/plain to generate snippets to be sent via APIs as follows: 
 prediction_obj = automl.PredictionServiceClient() 
 
# Retrieves path of the model 
model_details = automl.AutoMlClient.model_path( 
project_id, 'us-central1', model_id 
) 
 issue_snippet = automl.TextSnippet( 
content=issue_description, 
mime_type='text/plain') 
payload_data = automl.ExamplePayload(text_snippet=issue_snippet) 
 Now, call the predict method of AutoML with parameters as model_details and Here, model_details contains the information about model, whereas payload_data contains details about the issue to be classified. 
 As the model provides multiple categories with their probability distribution, you need to iterate through all responses and accordingly show them to the user. In other words, you can either show the category with the highest confidence score or all the categories with their respective confidence score as follows: 
 predicted_response = prediction_obj.predict(name=model_details, payload=payload_data) 
 for result_payload in predicted_response.payload: 
print(u'Predicted class name: {}'.format( 
result_payload.display_name)) 
print(u'Predicted class score: {}'.format( 
result_payload.classification.score)) 
 The complete code is as follows: 
 
from google.cloud import automl 
 project_id = ‘automlgcp’ 
model_id = ' 'TCN14567890876540944' 
issue_description = "System Utilization is high on server. Please Suggest " 
 def classification(): 
prediction_obj = automl.PredictionServiceClient() 
 # Retrieves path of the model 
model_details = automl.AutoMlClient.model_path(project_id, 'us-central1', model_id) 
 issue_snippet = automl.TextSnippet(content=issue_description, 
mime_type='text/plain') 
payload_data = automl.ExamplePayload(text_snippet=issue_snippet) 
 predicted_response = prediction_obj.predict(name=model_details, payload= payload_data) 
 for result_payload in predicted_response.payload: 
print(u'Predicted class name: {}'.format(result_payload.display_name)) 
print(u'Predicted class score: {}'.format(result_payload.classification.score)) 
 if __name__==’__main__’: classification() 
 Set an environment variable GOOGLE_APPLICATION_CREDENTIALS value to the location of the downloaded service account key file. 
 Open the command prompt and run the following command: 
 
set GOOGLE_APPLICATION_CREDENTIALS=key-file-path 
 where the key-file-path is the path of the file containing the details of the service account for an AutoML Natural Language service created earlier as shown in Figure 
 
 Figure 3.29: Environment Configuration 
 Now, open the command prompt and run the following command to execute the previously discussed Python code. 
 python automl_book.py 
 It shows a list of categories along with the confidence score for an issue description as shown in Figure 
 
 Figure 3.30: Issue Categorization System – Model Prediction using Python 
  
We have seen how prediction from model that have been trained on an AutoML Natural Language service can be accessed by Python code. Next, we will see how this feature can be released as a REST API such that any application that can consume REST API can easily integrate with this and use the feature of categorization of a user’s issue or query. 
 In order to create REST API for an Issue Categorization System, flask-restful package needs to be installed. Let us follow the following steps to configure flask-restful in Windows as well Linux operating system. 





 For Windows server 
 Pre-requisite: Python 3.6.x and Pip needs to be installed in your system. 
 Creation of REST API: 
 Step 1: Install Flask-RESTful 
 Open the command prompt and run the following command as shown in Figure 
 pip install flask-restful 
 
 Figure 3.31: Installation of flask-restful 
 This will install the package and all their dependencies. 
 Step 2: build the REST API 
 Go to GitHub URL https://github.com/automl-book/AutoML/blob/master/chapter%203/ and download file named as classification.py 
 Step 3: Deploy Flask REST API 
 Using flask, deploy the REST API service. 
 Open the command prompt and run the following command as shown in Figure 
 python classification.py 
 

 Figure 3.32: Service Deployment 
 Step 4: Response from REST API 
 Now, service has been hosted in the following URL 
 http://127.0.0.1:5000/classification 
 Now, you can use URL as generated in previous steps i.e. http://127.0.0.1:5000/ classification. Flask is good for development of an environment but not for production. For Production environment, REST API should be hosted on Apache Server. Refer the following URL to deploy a service on Apache Server in Windows. 
 https://medium.com/@madumalt/flask-app-deployment-in-windows-apache-server-mod-wsgi-82e1cfeeb2ed 





 For Linux server 
 Pre-requisite: Python 3.6.x and Pip needs to be installed in your system. 
 Creation of REST API: 
 Step 1: install Flask-RESTful 
 To install, run the following command on Linux Shell as shown in Figure 
 $ pip install flask-restful 
 
 Figure 3.33: Installation of flask-restful 
 This will install the package and their dependencies. 
 Step 2: Build the REST API 
 Go to GitHub URL https://github.com/automl-book/AutoML/blob/master/chapter%203/ and download file named as 
 Step 3: deploy Flask REST API 
 To deploy the REST API service using flask, run the following command on Linux Shell as shown in Figure 
 $ python3classification.py 
 
 
Figure 3.34: Service Deployment – An Example 
 Step 4: Using REST API 
 Now, the service has been hosted in the following URL: 
 http://127.0.0.1:5000/classification 
 Now, you can use the URL as generated in the previous step i.e. Flask is good for the development of an environment but not for production. For Production environment, API should be hosted on Apache Server. Refer the following URL to deploy a service on Apache Server in Linux. 
 https://www.codementor.io/abhishake/minimal-apache-configuration-for-deploying-a-flask-app-ubuntu-18-04-phu50a7ft 
 Please follow the following steps to release the feature of an Issue Categorization system as REST API. 
  Note: The complete codebase for this exercise can be downloaded from Github URL 
   Create a file with the name 
 Copy the following code and paste in the file created in the first step and save it. 
 from google.cloud import automl 
from flask import Flask, request 
import json 
 app=Flask(__name__) 
 @app.route ("/classification", methods=['POST']) 
def Classification(): 
try: 
json_data = request.get_json(force=True) 

project_id = json_data["project_id"] 
location = json_data["location"] 
model_id = json_data["model_id"] 
issue_description = json_data["content"] 
result = [] 
prediction_obj = automl.PredictionServiceClient() 
model_details = automl.AutoMlClient.model_path( 
project_id, location, model_id) 
issue_snippet = automl.TextSnippet(content=issue_description,mime_type='text/plain') 
payload_data = automl.ExamplePayload(text_snippet=issue_snippet) 
predicted_response = prediction_obj.predict(name=model_details, payload=payload_data) 
classification = {} 
for result_payload in predicted_response.payload: 
classification["Class_Name"] = result_payload.display_name 
classification["Class_Score"] = result_payload.classification.score 
result.append(classification) 
result = {"results" : result} 
result = json.dumps(result) 
return result 
except Exception as e: 
return {"Error": str(e)} 
if __name__ == "__main__" : 
app.run(port="5000") 
 
The previous code processes an input passed to an API, calls a function to fetch prediction from the model that has been trained in an AutoML Natural Language Service, and sends the response as an API response. 
 Open the command prompt and run the following command: 
 python classification.py 
 This will start a service on http://127.0.0.1:5000/ as follows: 
 
 Figure 3.35: Service Deployment - Issue Categorization System 
  Now, to test the REST API, we are going to use Postman. This is a REST API client that is used to test the API URL. 
 First, go to the following URL to download the Postman Tool and install on your system: 
 
 After the installation, Test the foll owing URL and sample request JSON that is being sent to Classification API and response JSON that will be received as a response from the API as shown in the following Figure 
 URL: http://127.0.0.1:5000/classification 
 Classification System – Sample Input Request json: 
 
{ 
"project_id": “automlgcp", 
"location": "us-central1", 
"model_id": "TCN1928046415863349248", 
"content": "System Utilization is high on server. Please Suggest " 
} 
Classification System – Sample Output Response json: 
{ 
"results": [ 
{ 
"class": "CPU_Utilization", 
"score": 0.906587421890735 
}, 
{ 
"class": "Password_Reset", 
"score": 0.08454164862632751 
}, 
{ 
"class": "Memory_Utilization", 
"score": 0.008870942518115044 
} 
] 
} 
 

 Figure 3.36: Issue Categorization System –API Results 
  This brings us to a conclusion of the Categorization system use case. Lets now move forward with other use cases starting with Sentiment Analysis System. 





 Sentiment Analysis System 
 Sentiment Analysis is a sub-field of NLP that identifies opinion or sentiments of the given text across blogs, reviews, news, and so on. It actually helps organization to know about the acceptance of their products and their sentiments toward the same. It is also useful to identify the hate text on social media sites such as Twitter to know the population’s mood toward the topic of discussion. 
 Sentiment Analysis can even help companies to plan for their product releases based on the mood and sentiment of people from particular demographics. Sentiment analysis is being used majorly in conversation systems to generate a response to be given to a user based on the way a question or query has been raised by the user. 
 Therefore, in this book, we will walk through the implementation of Sentiment Analysis system using the state-of-art technologies used by Google AutoML. For this use case, we have used Natural Language service of AutoML, where we will upload our labeled dataset that contains sentences and corresponding sentiment value. Here, AutoML will automatically find the best model architecture using Google’s architecture search algorithms to be used based on our dataset. The following are the complete details of the implementation of such a system. 
 This implementation would also go through the stages of AutoML workflow as follows: 
  Prepare Training Data: In this step, feature engineering such as missing value imputation, data validation, one-hot encoding, and more will be performed over a raw dataset. 
 
Create and import Dataset: In this step, prepared data will be uploaded, and a dataset will be created as required by AutoML. This dataset works as an input to model the training process. 
 Model Training: In this step, AutoML uses Google’s architecture search algorithm to analyze your dataset and find the best model to train. 
 Evaluate Model: In this step, trained model will be evaluated over the test data. If it is not efficient, then it also offers you to train the different version of the same model but with different values of hyperparameter. 
 Model Prediction: In this step, the trained model will be used to predict the category for any new issue or query raised by the user. Applications such as an Automated Ticket Assignation System can be integrated with it to predict the category for any new issue or query and accordingly assign it to a relevant support person. 





 Data Analysis 
 For this implementation, the sentiment analysis dataset (Name: can be downloaded from GitHub URL 
 This dataset has phrases that have been extracted from Rotten Tomatoes dataset. In this dataset, each individual sentence has already been converted into multiple phrases. These phrases have been labeled with various sentiment values such as negative, positive, neutral, and so on. However, each and every phrase belongs to only single sentiment value. A dataset contains 29999 records which are distributed across five categories, namely, negative, somewhat negative, neutral, somewhat positive and positive. Each of these categories has been converted into their numeric form as follows: 
  0: Negative 
 1: Somewhat negative 
 2: Neutral 
 3: Somewhat positive 
 4: Positive 
 Each class is having different number of variations as shown in the following table: 
 table: table: table: 
table: 
table: 
table: 
table: 
table: 
table: 
 
However, as per the best practices, the training data should contain equal or nearly equal number of variations for each class. But in our use case, each class contains different number of variations. As the class neutral has almost 15 times a greater number of phrases as compared with the class negative. Therefore, this dataset suffers from class-imbalance problem and would degrade the performance of class with a smaller number of variations. However, AutoML identifies class imbalance problem in a dataset and solves it automatically. This is an important feature of AutoML, where it provides a guided way to engineers to evaluate and solve the data science problems. For this use case, we will upload the dataset file into Google Cloud Storage bucket that has been created in Chapter 2 as shown in Figure 
 
 Figure 3.37: Sentiment Analysis –Data Upload 
 In the next section, we will see how the previously discussed dataset will be used to build the sentiment analysis System using an AutoML Natural Language Service on Google Cloud Platform. 





 Model Training 
 Initially, we will first enable an AutoML Natural Language service from Google cloud. Follow the following steps to enable an AutoML Natural Language service: 
  Go to URL https://cloud.google.com/ and login with your credentials. 
 Click on the burger Menu and select the Natural Language option as shown in Figure 
 
 Figure 3.38: Sentiment Analysis – Natural Language Service 
 
This will populate the screen as shown in Figure Next, click on the ENABLE API button to enable the AutoML Natural Language API. 
 
 Figure 3.39: Sentiment Analysis – Natural Language Models 
 Once enabled, it will populate the screen that shows details of features provided by Natural Language Service as shown in Figure 
 
 Figure 3.40: Sentiment Analysis – Natural Language Products 
 Next, click on the card named as AutoML sentiment analysis option to build a custom model for Sentiment Analysis You will be redirected to a Dataset page as shown in Figure 
 

 Figure 3.41: Sentiment Analysis – Dataset 
 Now, to upload your dataset click on the NEW DATA SET link and you will be redirected to a screen as shown in Figure 
 Next, enter the values for various fields as follows: 
  Data set name: name of the dataset. 
 For this use case, value will be 
 Location: define the geographical region in which your data will be stored 
 You can select Global or European. For this use case, select Global as a value of the location. 
 Model Objective: select model objective as Sentiment Analysis 
 
 
Figure 3.42: Sentiment Analysis – Create Dataset 
 Sentiment analysis of an AutoML Natural Language service automatically selects the value of parameter minimum sentiment score as 0. However, the value of parameter maximum sentiment score should be equal to the largest number assigned to any category in your dataset. In our case, the category positive has been mapped to Value 4. Therefore, the value of this field will be 4. Please note that these values cannot be modified later on. If you want to modify them, then you need to go with the new configuration of sentiment analysis feature with the new values. 
 Click on the CREATE DATA SET button. 
 Next, AutoML provides the following three options depending upon your dataset file format and location to upload. 
  Upload CSV file from your system: If the dataset file is in CSV format and resides in your system, then select this option. 
 Upload TXT, PDF, or ZIP files from your system: If the dataset file is in TXT, PDF, or ZIP format and resides in your system, then select this option. 
 Select a CSV file from cloud storage: If the dataset file is in CSV format and stored in cloud storage service such as object storage. For this use case, we will go with this option. 
 Then, choose Select a CSV file on Cloud Storage and click on the IMPORT button as shown in Figure 
 

 Figure 3.43: Sentiment Analysis – File Upload 
 Once you click on the IMPORT button, then you will be able to see the progress of your dataset as shown in Figure 
 

 Figure 3.44: Sentiment Analysis – File Upload Process 
 This process may take a few minutes. You will receive an email on your registered email address associated with your project as soon as the upload process has successfully completed. 
 Once the data has been successfully uploaded, then you can see the following details about your dataset under ITEMS tab as shown in Figure 
  ALL items: shows the total number of records in your dataset 
 Labeled: shows the total number of labeled records in your dataset 
 In our dataset, all records or variations has already been labeled. So, it is equal to All items. 
 Unlabeled: shows the total number of unlabeled records in your dataset 
 In our dataset, not even a single record is unlabeled. So, its value is 0. 
  Training: Shows the number of records to be used during the model training 
 
Validation: Shows the number of records to be used during the validation step 
 Testing: Shows the number of records to be used during the testing phase 
 
 Figure 3.45: Sentiment Analysis – Data Analysis 
 During the training of Artificial Intelligence models, the dataset has to be divided into three parts, namely, training, validation, and test set. By default, an AutoML Natural Language service uses 80% of the records for training, 10% for validation set, and the rest 10% for testing the set. It also takes care of the class imbalance problem (if any) in the dataset. 
 Next, click on the TRAIN tab to start the model training process as shown in Figure 
 

 Figure 3.46: Sentiment Analysis – Model Training 
 Define the Model name as Sentiment_model and check the box against the Deploy model after the training gets finished if you want to deploy the model automatically as soon as the training is finished. 
 Then, click on the START TRAINING button to start model training. 
 The model training process may take several hours depending on the size of the dataset. You will receive an email on your registered email address as soon as the model training is completed as shown in the Figure 
 
 
Figure 3.47: Sentiment Analysis – Model Training Confirmation 
  Please note that AutoML automatically uses the validation set to optimize the model hyperparameter values and selects the best model for you. You will receive an email only once AutoML has trained the best model for you. 
 Click on the link mentioned in the email body that you must have received after the completion of model training to check the performance of the model. As mentioned earlier, AutoML uses the test dataset to evaluate the performance and quality of the trained model. 





 Model Evaluation 
  Go to the TRAIN tab to check your model’s performance once the training has been completed as shown in Figure 
 
 Figure 3.48: Sentiment Analysis – Model Training Results 
 Click on the See full evaluation link or go to the EVALUATE tab to see the model’s performance for each of the sentiment category as shown in Figure 
 
Sentiment analysis model is also being evaluated using the performance metrics such as precision and recall. We have already discussed these two things in detail in our previous use case. 
 For sentiment analysis, AutoML automatically selects the confidence threshold value to calculate recall and precision based on their best model and nature of the data. In this use case, precision and recall both are equal to 69.7%. It means that our trained model is almost 70% precise while doing prediction and able to classify 70% of data points i.e. phrases correctly. 
 
 Figure 3.49: Sentiment Analysis – Model Evaluation 
 The preceding matrix tells us how frequently each of the sentiment label has been predicted correctly and incorrectly by a model. This is being highlighted with a different color coding as follows: 
  
Blue, represents sentiment label that has been predicted correctly by a model. This is being represented in intensity of color. As an example, for label Sentiment score 2, intensity of color blue is higher than for the label Sentiment score 0, as former has been predicted correctly for most of the cases than latter one. 
 Grey, represents sentiment label that has been predicted incorrectly by a model. As an example, for the label Sentiment score 0, intensity of color grey is higher than for the label Sentiment score 2, as former has been predicted incorrectly for most of the cases than latter one. 





 Model Prediction 
 Once the model has been trained and evaluated, you can check the prediction from the model on a new query or issue by clicking on the TEST & USE tab as shown in Figure 
 
 Figure 3.50: Sentiment Analysis – Model Prediction 
 Define a query or phrase as An intermittently pleasing but mostly routine effort in input text in the following field as shown in Figure 
 Next, click on the PREDICT button to see the model results. 
 As a query or feedback from a user is not showing that highly positive sentiments from a user, that’s why for this statement, model has returned score as three i.e. somewhat positive. 
 

 Figure 3.51: Sentiment Analysis – Model Prediction Results 





 REST API configuration 
 Now, consider a scenario where you want to expose this model to an external application. Next, consider a scenario where you need to enable the sentiment analysis for the conversation system such that our model can identify sentiments of a user based on a query or response given by the user. This enables the conversation system to respond back to the user based on the sentiments of a user. 
 Now, in order to use this feature in the conversation system, a sentiment analysis model has to be exposed as a REST API such that whenever a user submits his query or issue, it will make an API call to identify the sentiments of a user. It involves following steps: 
  Creation of service account for accessing an AutoML Natural Language Service. 
 Installation and configuration of Google Cloud SDK 
 Code development to get a model prediction for a query or an issue description. 
 Create REST API to get a model prediction 
 However, we have already discussed about the service account creation and Google Cloud SDK installation and configuration in our previous use case. Therefore, we will go with the code development and REST API creation for the sentiment analysis model. Please follow the following steps to configure the code to test the deployed model. 
  Note: The complete codebase for this exercise can be downloaded from Github URL 
   Import automl package from google.cloud library 

 Define the values for the following parameters: 
  project_id: Define the value as automlgcp 
 model_id: Define the value as TST8344486213285052416 
 content: Define the text for the sentiment analysis i.e. An intermittently pleasing but mostly routine effort 
 from google.cloud import automl 
project_id = ‘automlgcp’ 
model_id = 'TST8344486213285052416’ 
"Anintermittently pleasing but mostly routine effort" 
  Note: You need to define the value of project-id as per your configured project, and model_id will be the ID of your trained model. 
  Create an instance of automl.PredictionServiceClient class. This class enables Python code to make remote calls to AutoML services that maps to Google Cloud API. 
 Next, call a function model_path with model_id, project_id and Google Compute engine zone value as 
 Set the content type of the issue description as ‘text/plain’ to generate snippets to be sent via APIs as follows: 
 sentiment_prediction_model = automl.PredictionServiceClient() 
 # Retrieves path of the model 

model_details = automl.AutoMlClient.model_path( 
project_id, 'us-central1', model_id 
) 
 sentence_snippet = automl.TextSnippet( 
content=sentence, 
mime_type='text/plain') 
payload_data = automl.ExamplePayload(text_snippet=sentence_snippet) 
 Now, call a predict method of AutoML with parameters as model_details and payload_data 
 Here, model_details contains the information about the model while the payload_data contains details about the sentence for which the sentiment needs to be identified. 
 = sentiment_prediction_model.predict(name=model_details, payload=payload_data) 
for payload_result in predicted_response.payload: 
result = "Predicted sentiment score:{}".format(payload_result.text_sentiment.sentiment) 
return (result) 
 The complete code is as follows: 
 from google.cloud import automl 
project_id = ‘automlgcp’ 
model_id = ' TST8344486213285052416’ 
sentence = "An intermittently pleasing but mostly routine effort" 
 def predictSentiment(): 
 sentiment_prediction_model = automl.PredictionServiceClient() 
 
# Retrieves path of the model 
model_details = automl.AutoMlClient.model_path( 
project_id, 'us-central1', model_id) 
 sentence_snippet = automl.TextSnippet(content=sentence, 
mime_type='text/plain') 
payload_data = automl.ExamplePayload(text_snippet=sentence_snippet) 
predicted_response=sentiment_prediction_model.predict (name=model_details, payload=payload_data) 
 for payload_result in predicted_response.payload: 
result= "Predicted sentimentscore:{}".format(payload_result.text_sentiment.sentiment) 
return (result) 
 if __name__==’__main__’: predictSentim ent() 
 Set an environment variable GOOGLE_APPLICATION_CREDENTIALS value to the location of the downloaded service account key file. 
 Open the command prompt and run the following command: 
 set GOOGLE_APPLICATION_CREDENTIALS=key-file-path 
 where key-file-path is the path of the file containing the details of the service account for an AutoML Natural Language service created earlier. 
 
 
Figure 3.52: Sentiment Analysis – Environment Readiness 
 Now, open the command prompt and run the following command to execute the previously discussed Python code. 
 python3sentiment.py 
 It shows an identified sentiment score for a sentence as shown in Figure 
 
 Figure 3.53: Sentiment Analysis – Model Prediction using Python 
  We have seen how the prediction from the model that have been trained on an AutoML Natural Language service can be accessed by Python code. Next, we will see how this feature can be released as a REST API such that any application that can consume REST API can easily integrate with this and use the feature of the sentiment analysis for sentences. 
 In order to create REST API for Sentiment Analysis System, flask-restful package needs to be installed that we have already discussed in our previous use case. Now, please follow the following steps to release the features of the sentiment analysis system as REST API. 
  Note: The complete codebase for this exercise can be downloaded from Github URL 
   Create a file with the name 
 
Copy the following code and paste in the file created the first step and save it: 
 from google.cloud import automl 
from flask import Flask, request 
import json 
 app=Flask(__name__) 
 @app.route ("/sentiment", methods=['POST']) 
def predictSentiment(): 
try: 
json_data = request.get_json(force=True) 
project_id = json_data["project_id"] 
model_id = json_data["model_id"] 
sentence = json_data["content"] 
result = [] 
sentiment_prediction_model = automl.PredictionServiceClient() 
 # Retrieves path of the model 
 model_details = automl.AutoMlClient.model_path( 
project_id, 'us-central1', model_id) 
sentence_snippet = automl.TextSnippet(content=sentence, 
mime_type='text/plain') 
payload_data = automl.ExamplePayload(text_snippet=sentence_snippet) 
predicted_response=sentiment_prediction_model.predict (name=model_details, payload=payload_data) 
for payload_result in predicted_response.payload: 

result= "Predicted sentiment score: {}" .format(payload_result.text_sentiment.sentiment) 
return (result) 
 except Exception as e: 
 return {"Error": str(e)} 
 if __name__ == "__main__" : 
app.run(port="5000") 
 The preceding code processes an input passed to an API, calls a function to fetch prediction from the model that has been trained in an AutoML Natural Language Service, and sends the response as an API response. 
 Open the command prompt and run the following command: 
 Python3 predict.py 
 This will start a service on http://127.0.0.1:5000/ as shown in Figure 
 
 Figure 3.54: Service Deployment - Sentiment Analysis 
 Now, to test the REST API, we are going to use Postman. This is a REST API client that is used to test the API URL. 
 First, go to the following URL to download the Postman Tool and install on your system https://www.postman.com/downloads/ 
 
After the installation, test the following URL and sample request JSON that is being sent to the Classification API and response JSON that will be received as a response from the API as shown in the following Figure 
 URL: http://127.0.0.1:5000/sentiment 
 Sentiment Analysis System – Sample Input Request json: 
{ 
"project_id": “automlgcp", 
"model_id": "TCN1928046415863349248", 
"content": "An intermittently pleasing but mostly routine effort" 
} 
 Sentiment Analysis System – Sample Output Response json: 
{ 
“Predicted sentiment score”: 3 
} 
 
 Figure 3.55: Sentiment Analysis – Model Prediction using API 





 Conclusion 
 In this chapter, we have discussed about how an AutoML Natural Language service can be used to train the custom model for an Issue Categorization System and Sentiment Analysis System with our dataset. We have also seen how features of this system can be released as REST API to be used by other applications or systems. In the next chapter, we will discuss on how Google’s AI Platform can be used to train custom model developed by you. 





CHAPTER 4 
 Google AI Platform 
 Google’s AI platform provides a framework for the developers and data scientist to build an end-to-end machine learning pipeline. It enables them to define their own algorithms or model architecture or even code it for their own tasks and datasets. It uses TensorFlow, a Google’s deep-learning library for custom model development. In this chapter, we will explain how Google’s AI platform can be used for training a custom model for tasks that can’t be implemented using AutoML. 





 Structure 
 In this chapter, we will cover the following topics: 
  Design and implementation of an Issue Categorization system using Google’s AI platform 
  Data analysis for an Issue Categorization system 
 Model training using Local Machine and AI platform 
 REST API configuration to release the features of this system for other applications 





 Objectives 
 After studying this chapter, you should be able to: 
  Understand how Google’s AI platform can be used for training of machine learning models 
 Understand how TensorFlow can be used to develop custom machine learning model 
 Understand how a machine learning model that has been trained on Google’s AI platform can be used for prediction in your application via REST API 





 Introduction 
 In the previous chapter, we discussed about how an AutoML Natural Language service can be used for implementing various tasks such as Single-Label Classification, Multi-Label Classification, Entity Recognition, and Sentiment Analysis. AutoML also enables you to train a custom model on a dataset provided by you. Here, AutoML uses Google’s model architecture search algorithm to find the best model according to your dataset. As an example, if you are developing a text classification system, then you just need to provide your dataset containing text along with their associated labels. Rest is being done by an AutoML Natural Language service starting from identification of model architecture to actual model training to version of model that can be used in production. 
 However, model architecture search algorithm only searches through repositories of models available with Google. What if you want to include some custom features as well in your dataset? An AutoML Natural Language service doesn’t allow you to modify your model architecture. As an example, in our Issue Categorization System, we want to generate embedding of tokens extracted from an issue or a query description using GloVE embedding method, then we can’t do that with AutoML. In this case, we can leverage Google’s AI platform, where we can add this feature for our Issue Categorization System that will be developed using TensorFlow. 





 Design of an Issue Categorization system using Google’s AI platform 
 In this section, we will cover an implementation of an Issue Categorization system using Google’s AI platform. This is the same use case that we have implemented in Chapter 3 using AutoML. 
 Google’s AI platform is quite flexible in terms of model training, accessing training, validation and test dataset from various sources such as BigQuery, and Cloud Storage service. Also, you can develop and build models in your system, provided you have sufficient computing resources available with you, alternatively you can train it into AI platform directly. 
 In Chapter we have seen how AutoML selects a model automatically based on your dataset. However, with Google AI platform, we will see how we can train a custom model for an Issue Categorization system and use it to classify new issues or queries. 
 An end-to-end machine learning pipeline involves the following steps: 
  Data Gathering: It involves gathering required data from various sources such as database, File repositories such as Dropbox, Google Drive, and so on. As an example, for our Issue Categorization system, data can be gathered or sourced from any database that stores an issue or a query description asked by the users. 
 
Data Processing and Splitting: Gathered data generally contains some unwanted issues such as missing values, noisy information, and more. In this step, feature engineering will be done over the dataset and splitting of dataset into train, validation, and test set. 
 Model Training: In this step, a model will be trained over training dataset. Size and nature of your dataset affects the time required to train a model. It varies from a few minutes to hours to days or weeks as well. 
 Test Model: In this step, a trained model will be tested over a validation set. If a system identifies that there is an overfitting or underfitting in the model, then it again goes to model training step with new values of hyperparameters. The objective of this step is to ensure that trained model should generalize well over dataset. 
 Evaluate Model: In this step, a trained model will be evaluated over a test set that has not been seen during the model training and validation step. 
 Deploy Model: In this step, a trained model will be deployed for the production use. 
 Each of these steps can be aligned with each other as shown in Figure 
 
 Figure 4.1: Workflow for Model Deployment 





 Data Analysis 
 Next, we will see an implementation of our Issue Categorization System using GloVE for vector generation of token extracted from an issue or a query description. GloVE is an unsupervised technique for representing words into low-dimensional vector space. It is one of the most widely used method of word embedding (representing word or token in lower dimensional space). It takes into consideration global and local statistics of a corpus as compared with the other word embedding methods like word2vec. As an example, words i.e. man and woman are similar in context, as they both are talking about human being. However, in the same context, they are opposite to each other and require knowledge of an entire corpus such as brother–sister etc. to deduce the difference between them. 
 For training a GloVE model, all the variations of query or issue descriptions will be used to generate a vector representation of all the words or token or phrases. 





 Model Training 
 Please follow the following steps to install the required pre-requisites for an Issue Categorization system: 
  Make sure python3 is installed on your system 
 Open the command prompt and run the following command to check if python is installed or not 
 Python 
 
 Figure 4.2: Python Console 
 This will start Python console in the command prompt. If Python is not installed in your system, then download and install Python as per your Operating System using the following link: https://www.python.org/downloads/ 
 Next, install Jupyter Notebook that we will use to code. 
 Open the command prompt and run the following command: 
 pip install notebook 
 To start the jupyter notebook, open the command prompt and run the following command: 
 jupyter notebook 
 
The notebook will start in your default browser with the host address as localhost and port number as 8888 along with a unique token id. Now, you can start writing the code as mentioned in the subsequent steps. 
 
 Figure 4.3: Jupyter Notebook Console 
 You can also use Google Colab Notebook for the development of a model. It provides a fast and free environment to run your python code in case your system doesn’t have sufficient resources available. You can also use the GPU’s and TPU’s with no cost but for a limited time (12hrs) in Google Colab. You just need a Google account to login to Google Colab Notebook. For this book, we will be using Google Colab Notebook to demonstrate an Issue Categorization system. 
 Go to URL https://cloud.google.com/ and login with your credentials 
 Select an AI platform option from the left side menu bar 
 Then, you will be redirected to a page as shown in Figure 
 

 Figure 4.4: Enable API for AI platform 
 Next, click on the ENABLE API button to enable AI platform 
 Login to your Google account and click on you will see a page as shown in Figure 
 Next, click on the NEW NOTEBOOK button to start a new notebook 
 
 
Figure 4.5: Google Colab 
 As mentioned in the previous chapter as well, Google cloud authentication must be done first before using any services of Google Cloud Platform. 
 Use Google Colab’s in-built module named as for authentication and authorization to Google Cloud Platform. 
 Next, run the following commands in Google’s Colab notebook to install gcloud and google cloud 
pip install google-cloud-automl 
pip install gcloud 
 Import the auth package from google.colab and call the function authenticate_user () as shown in Figure 
 
 Figure 4.6: Google Colab – Authenticate User 
 Next, open the link in a new tab as shown in figure. This redirects a user to the registered Google account for the verification code. 
 Copy the verification code that you can see in the new tab and paste in the text box against the label Enter Verification Code and press the Enter key. 
 Run the following command in Google Colab to define your project as follows: 
 
!gcloud config set project  
 For this use case, the project name will be Categorization 
  Note: Please provide a name of your project that you have created in Google Cloud Platform. 
  Upload your own dataset for this use case. However, Colab provides few datasets by default. These are present in the folder named as sample_data under the Files tab as shown in Figure 
 
 Figure 4.7: Upload Data Google Colab - I 
 Now, we will first upload the data to Google colab. 
 Go to the Upload button under the Files tab as shown in Figure 
 

 Figure 4.8: Upload Data Google Colab - II 
 You can also mount Google drive attached to your Gmail account. This enables storage of all of your dataset files in Google Drive and avoids loss of data due to environment reset. Please ensure that each column in your dataset file should have a header. 
 Download the dataset file named as Dataset.csv for this use case from GitHub URL https://github.com/automl-book/AutoML 
 Our dataset file has two columns namely, Text and where the Text represents an issue or a query description raised by a user, and the Category shows a category to which an issue or a query has been categorized. 
 
Next, the dataset will be divided into training, validation, and test set. As a best practice, 80% of the records will go to the training set, 10% will go to the validation, and the rest 10% will go to the test set as follows: 
  Note: The codebase for this exercise can be downloaded from GitHub URL https://github.com/automl-book/AutoML/tree/master/chapter%204 
  import pandas aspd 
 data_set = pd.read_csv('Dataset.csv', header = None) 
data_set.columns = ['Text', 'Category'] 
train_set = data_set.sample(frac=0.8) 
data_set.drop(train_set.index, axis=0, inplace=True) 
valid_set = data_set.sample(frac=0.5) 
data_set.drop(valid_set.index, axis=0, inplace=True) 
test_set = data_set 
 
Then, classes or categories in your dataset should be converted into the numeric form. As an example, the category CPU_Utilization will be mapped to Password_Reset will be mapped 1 and Memory_Utilization will be mapped to 2. You can also limit the number of tokens out of the vocabulary to be considered during training. This is generally being done to reduce the computation requirement during the model training with very less effect on the accuracy of model. However, you can also use the entire vocabulary set for the training. For our use case, we have used 20000 words from the token vocabulary. Next, each query or issue description should not be more than a specific length. This is required as a pre-requisite for the model training. For our use case, we have restricted it to 50 as follows: 
 CLASSES = {'CPU_Utilization': 0, 'Password_Reset': 1, 'Memory_Utilization': 2} 
top_tokens = 20000 
max_len = 50 
 So, if the length of an issue or a query description is greater than then it will be truncated and the system will use the truncated description as an input. However, if the length of the description is less than 50, then it will add do padding to the description with the token  to make it a length of Please note that you should select pad token such that it shouldn’t interfere with words or tokens from your vocabulary. Otherwise, this will have a negative impact on the model performance. For our use case, we will append the token  at the end of each of the descriptions if the length is less than 
 Now, import numpy package. This will be used to convert categories into numpy array as follows: 
 import numpy as np 
def data_map(df): 
return list(df['Text']), np.array(df['Category'].map(CLASSES)) 
 train_text, train_labels = data_map(train_set) 
valid_text, valid_labels = data_map(valid_set) 
test_text, test_labels = data_map(test_set) 
  
Next, the embedded representation of each of these description text will be generated using the GloVE method. As GloVE generates a vector representation of word or token. Therefore, each description must be tokenized first into tokens or words before generating the embeddings. Once a word or token embeddings are available, then we can generate sentence embeddings using any methods as follows: 
  Average of word vector: One of the common approach is to perform average on a vector representation of words in a description. For this book, we will go with this approach. 
 Sentence Embeddings: You can also use sentence embedding methods such as Universal Sentence Encoder, BERT (Bidirectional Encoder Representations from Transformers), and so on to generate a vector representation of the description. 
 Import necessary packages as follows: 
 import tensorflow as tf 
from tensorflow.keras.preprocessing import sequence, text 
from tensorflow.keras ensorflow.kera 
from tensorflow.keras. layers import Dense, Dropout, 
Embedding, Conv1D, MaxPooling1D, GlobalAveragePooling1D 
  
For this book, we will use a pre-trained GloVE vector from Stanford. Go to URL https://nlp.stanford.edu/projects/glove/ and download the pre-trained model of your choice. However, for our use case, we have downloaded Wikipedia 2014 + Gigaword five datasets where each token or word would be represented in 200 dimensions. This will be downloaded to your local system. However, you can also upload the same to Google Colab as explained earlier. GloVe vector file will be available with a name as glove.6B.200d.txt in our Google Colab environment. 
 Next, we need to generate an embedding matrix where a vector representation of each of the tokens or words from the description will be stored. Please note that the vector representation is being generated using the GloVE method as follows: 
 def embedding_matrix_conv(word_index, embedding_file_path, embedding_dimension): 
embedding_matrix_comb = {} 
with open(embedding_file_path, ‘r’) as embed_file: 
for token_entry in embed_file: 
values = token_entry.split() 
word = values[0] 
coefs = np.asarray(values[1:], dtype='float32') 
embedding_matrix_comb[word] = coefs 
num_words = min(len(word_index) + 1, top_tokens) 
embedding_matrix = np.zeros((num_words, embedding_dimension)) 
for word, word_position in word_index.items(): 
if word_position >= top_tokens: 
continue 
embedding_vector = embedding_matrix_comb.get(word) 
if embedding_vector is not None: 
embedding_matrix[word_position] = embedding_vector 
 return embedding_matrix 
  
Now, we will proceed with the model training. For our use case, we will train the Convolution Neural Network (CNN) model that will categorize an issue or a query description to a particular category. As an example, for an issue description CPU Utilization is very high, please suggest, this model will classify it to the 
 The CNN is used in an image processing and computer vision domain, as it captures the spatial and temporal dependencies in an image clearly by applying relevant filters. As an example, you can leverage the CNN to classify the images of animals to their particular category i.e. image of a Cat or Dog will be classified to Cat and Dog classes, respectively. 
 The CNN reduces the number of parameters to be trained as compared with the other neural network architecture by using the concept of filters. Figure 4.9 shows one of the applications of the CNN in images where the input image is masked with a filter to generate features out of it. 
 
 Figure 4.9: Convolution Neural Network – An Example 
 The CNN plays a crucial role by reducing it into a form that will be used for prediction while preserving all the features of an image. This enables the CNN to be scalable with large datasets. 
 
In the CNN, we have a convolutional layer that extracts the high-level features such as edges from the input image. This layer is the building block of the CNN. It consists of a set of independent filters that are convolved with the image giving us the feature maps. These filters are randomly initialized, and they become parameters on subsequent learning by the network. 
 Each of the neuron is connected to an input image’s small chunk for a particular feature map. There is also a parameter sharing in a particular feature map. All the neurons have the same connection weights in a particular feature map. The parameter sharing and local connectivity helps in the reduction of the number of parameters in the whole system and ensures better computational efficiency. 
 There is also a concept of pooling that makes the CNN differ from other counterparts. 
 It is a function to reduce the spatial size of the representation progressively in order to reduce the number of parameters and computation. The pooling layer operates independently on each of the feature map. 
 After the pooling layer, the flattened output is fed to the next layer in the network and then back propagation is applied to every iteration of the training. Over a series of epochs, the model is able to classify the images using the Softmax Classification technique. 
 

 Figure 4.10: Convolution Neural Network 
 From last few years, the Convolution Neural Network has been used in implementation of NLP related tasks such as Text (document or sentence) classification, Entity Recognition, and so on. This is due to the similarity in processing of a vector representation of a description or text with the images. As an example, in case of images, the CNN slides over various parts of images such as objects, contours etc., and for textual data, it will slide over the rows of embedding matrix to go deeper to find hidden meaning out of the text (document or sentence). 
 The CNN has some following hyperparameters that have to be defined before training a model: 
  filters: Defines the number of filters (64) to be used 
 dropout_rate: To avoid overfitting in a model. Value will be 
 embedding_dimension: Defines the number of dimensions for each of issue or query description. The number of input nodes in the CNN will be equal to the embedding_dimension value. 
 
kernel_size: It is similar to n-gram where group of words are being selected as one of the features. In this case, kernel value will be 3. 
 filters=64 
dropout_rate=0.2 
embedding_dimension=200 
kernel_size=3 
pool_size=3 
tokenizer=text.Tokenizer (num_words=top_tokens) 
tokenizer.fit_on_texts(train_text) 
word_index=tokenizer.word_index 
embedding_file_path = 'glove.6B.200d.txt' 
 Next, we will start with training of the Convolution Neural Network (CNN) over our dataset, where each query or issue description has been converted to a vector representation using GloVE as a word representation method. For our use case, the architecture of the CNN contains the following sequence of layers: 
  Input Layer: In this layer, an embedded representation of description would come as an input. Here, the number of nodes at the input layer will be equal to the size of the embedding dimension. 
 One-Dimensional Convolution Layer: In this layer, a filter runs through a vector representation of the description to extract a feature such as N-grams etc. 
 Max-Pooling Layer: In this layer, the most relevant feature will be selected. For this use case, we have used Max-Pooling. However, you can also use other pooling methods such as Average Pooling, Min-Pooling, or even a neural network can be used at the pooling layer. 
 
One-Dimensional Convolution Layer: In this layer, a convolution will be performed over the result from Max-Pooling layer to find the combination of n-grams that may come together. 
 Fully Connected Layer: In this layer, flatting of weight matrix is being done and sent to the SoftMax layer. 
 SoftMax Layer: The input to this layer will be a vector representation of the features that have been extracted in the previous layer. Then this layer uses an activation function i.e. SoftMax to find the probability distribution across categories or classes. 
 def create_model(): 
model = models.Sequential() 
features = min(len(word_index) + 1, top_tokens) 
model.add(Embedding(input_dim=features, 
output_dim=embedding_dimension, 
input_length=max_len, 
weights=[embedding_matrix_conv(index_word, embedding_file_path, embedding_dimension)],trainable=True)) 
model.add(Dropout(rate=dropout_rate)) 
model.add(Conv1D(filters=filters, 
kernel_size=kernel_size, 
activation='relu', 
bias_initializer='he_normal', 
padding='same')) 
model.add(MaxPooling1D(pool_size=pool_size)) 
model.add(Conv1D(filters=filters * 2, 
kernel_size=kernel_size, 

activation='relu', 
bias_initializer='he_normal', 
padding='same')) 
model.add(GlobalAveragePooling1D()) 
model.add(Dropout(rate=dropout_rate)) 
model.add(Dense(len(CLASSES), activation='softmax')) 
optimizer = tf.keras.optimizers.Adam(lr=0.001) 
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['acc']) 
return model 
 Now, we have defined an architecture of our CNN model. Next, we need to convert the issue or query descriptions’ into a sequence of integers, where each number or integer will be an index of token extracted from the description. 
 train_process = tokenizer.texts_to_sequences(train_text) 
train_process = sequence.pad_sequences(train_process, maxlen=max_len) 
 valid_process = tokenizer.texts_to_sequences(valid_text) 
valid_process = sequence.pad_sequences(valid_process, maxlen=max_len) 
 test_process = tokenizer.texts_to_sequences(test_text) 
test_process = sequence.pad_sequences(test_process, maxlen=max_len) 
 The next step is to start the actual training process. However, there are two following ways by which a model can be trained: 
  
Using your local machine: If you have a sufficient storage and compute resources such as GPU, TPU available with you, then you should go with this option. In this case, you will train a model in your local system and use it on the AI platform for prediction. 
 Using AI platform: If you don’t have a sufficient storage and compute resources such as GPU, TPU available with you, then you should go with this option only. In this case, the model training and prediction both will happen on the AI platform. 





 Using your local machine 
 In this book, we will discuss both the methods of model training. Please follow the following steps to train a model using your local machine: 
  Create an instance of a model architecture that has been created earlier 
 You can also display the summary of your model if you want as follows: 
 model =create_model() 
model.summary() 
 Next, we will define the model checkpoint directory where the model checkpoints will be stored as follows. The model checkpoints are the state of a model at a particular time. This helps to restart the model training from where it left off, otherwise this would lead to a model training from scratch every time. 
 import os 
checkpoint_path = "training_path/cp.ckpt" 
checkpoint_directory = os.path.dirname(checkpoint_path) 
callback_path = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_path,save_weights_only=True,verbose=1) 
 Fit the model architecture over the training set with the following arguments: 
  train_process: Processed form of training data 
 train_labels: Set of labels for each of the descriptions in the training set 
 
epochs: Number of times or instances a model went through the entire training set 
 validation_data: Set of records from the validation dataset 
 callbacks: Defines TensorFlow callback path 
 This is required to perform the model checkpoints after a successful completion of each epoch. 
 model.fit(train_process, 
train_labels, 
epochs=10, 
validation_data=(test_process,test_labels), 
callbacks=[callback_path]) 
 Model training would take some time depending on the size of the dataset. You can perform the prediction as soon as a model is available to use. 
 Next, create a folder named as model_saved and store all the model files in that folder as follows: 
 !mkdir -p model_saved 
model.save('model_saved/model') 
 You can also save the model in Google drive mounted on your Google Colab environment. 
 
Now, we have trained the CNN model for our Issue Categorization System in Google Colab, and the trained model is available in local or Google drive mounted on the Colab account. However, in order to use this model for prediction or inference, this has to be stored in some storage service such as an Object Storage, where all the model file will be stored as an object and can be accessed easily by Google AI Platform whenever required. Please follow the steps to upload the model files in Google’s Object Storage service. 
 Go to URL https://cloud.google.com/ and login with your credentials 
 In the left side menu, select Storage and click on the Browser option as shown in Figure 
 
 Figure 4.11: Google Storage Service 
 Click on the CREATE BUCKET link to create a bucket as shown in Figure 
 

 Figure 4.12: Bucket Creation 
 Run the following command in Colab to copy the model to the bucket created in the previous step, where  is the name of bucket that will be created. 
 !gsutil cp -r saved_model/my_model/ gs:///text_classification/export_tensorflow 
 We are done with the training of the CNN model in Colab environment and also the trained model has been stored in Google’s Storage service. 





 Using AI platform 
 Now, we will see the training of the same model on the AI Platform. Please follow the following steps: 
  Upload your dataset file i.e. Dataset.csv from Google’s Colab environment to Google’s Storage service. 
 Run the following command to copy the file from Colab to Storage service, where  is the name of the bucket created in this service, and  is the name of the folder that will be created inside the bucket for your dataset. 
 !gsutil cp Dataset.csv gs:/// 
 Upload the pre-trained GloVe vector embedding the file to the same bucket. 
 Run the following command: 
 !gsutil cp glove.6B.200d.txt gs:// / 
 Install gcsfs library to enable the pandas library that will read data from the bucket that has been created in Google’s storage service. But to install the external dependencies on the AI platform, you would need to create a setup.py file in the root folder of your project in Colab environment as follows: 
 from setuptools import find_packages 
from setuptools import setup 
 REQUIRED_PACKAGES = ['gcsfs==0.5.1'] 
 setup( 
name='trainer', 
version='0.1', 

install_requires=REQUIRED_PACKAGES, 
packages=find_packages(), 
include_package_data=True, 
description='Pandas library to read data from files stored in GCS.' 
) 
  Note: If you want to install other external libraries, then you can define the same in the REQUIRED_PACKAGES list in the setup.py file. 
  Go to the Upload button under the Files tab to upload or create the setup.py file as shown in Figure 
 
 Figure 4.13: File Upload – setup.py 
 Create a python package named trainer in Colab environment and create a file named 
 
Copy the entire code that we have discussed earlier, paste it in this file, and save it. Figure 4.13 shows the complete project structure for this use case. 
 In this mode i.e. using an AI platform, the model training process has to be submitted as a job to AI platform, and all the model files will be stored automatically to the bucket created in Google Storage Service. 
 All the codebase would remain the same except reading the pre-trained GloVe vector file. In this case, it will be done by using the following package 
 embedding_matrix_comb = {} 
with tf.io.gfile.GFile('gs://ai-test-tensorflow/Dataset/glove.6B.200d.txt', mode='r') as embed_file: 
for token_entryin embed_file: 
values = token_entry.split() 
word = values[0] 
coefs = np.asarray(values[1:], dtype='float32') 
embedding_matrix_comb[word] = coefs 
 Define the following parameters: 
  MODEL_DIR: directory, where the trained model will be stored. 
 JOB_NAME: name of the training model job 
 %env MODEL_DIR=TO GCS BUCKET> 
%env JOB_NAME= 
  Run the following command to create a job on AI platform and submit the model code: 
 
!gcloud ai-platform jobs submit training $JOB_NAME --module-name=trainer.task --package-path=trainer --region=us-central1 --job-dir=$MODEL_DIR --runtime-version=2.1 --python-version=3.7 
 The parameters package-path and module-name will determine the location of the python project and file, respectively. 
 You can monitor the status of your submitted jobs from AI platform console as shown in Figure You may see a green mark against the job ID if it was successfully completed. 
 
 Figure 4.14: Job List 
 We have seen the training of the Convolution Neural Network (CNN) model for our Issue Categorization System. We have also discussed about the two ways of training the model as follows: 
  Using your local machine: In this mode, the model has been trained and stored locally and copied to the bucket created in the storage service. 
 Using AI Platform: In this mode, the model has been trained on AI platform and stored automatically to the bucket created in the storage service. 





 Model Prediction 
 Now, our trained model is available in the bucket of Google Storage Service. As a next step, we need to deploy the trained model on AI platform for the prediction or inference task. Please follow the following steps: 
  Set the following environment variables: 
  MODEL_NAME: define the user-defined name of a model. For our use case, the MODEL_NAME will be 
 REGION: define the region where the trained model will be deployed. You need to select a model region of deployment with the utmost care to avoid the conflict with data privacy policies across regions. As an example, as per the GDPR policy, data for a European user shouldn’t go outside the European region. For our use case, the region will be 
 %env MODEL_NAME text_classification 
%env REGION us-central1 
  Run the following command in Google’s Colab to create an empty model: 
 !gcloud ai-platform models create $MODEL_NAME --regions $REGION 
 You can see one row has been created with the model name Please note that the model version will not be displayed till you deploy a model. 
 
Next, set a value of an environment variable i.e. MODEL_PATH to the location where the model files have been stored. For our use case, the model files are stored in one of the bucket of Google’s Storage Service. Hence, run the following command to set MODEL_PATH variable: 
 %env MODEL_PATH gs:///text_classification/export_tensorflow 
 !gcloud ai-platform versions create "v1" \ 
--model $MODEL_NAME \ 
--runtime-version 2.1 \ 
--python-version 3.7 \ 
--framework tensorflow \ 
--origin $MODEL_PATH 
 This will deploy the model on AI platform to be ready for prediction. Now, you can see the details of the model deployed along with its version and region information as shown in Figure 
 
 Figure 4.15: List of Models 
 
With this, we are done with the model training and deployment to Google’s AI platform. You can also deploy multiple versions of same model. As an example, in the real-life scenarios, machine learning models should continue to evolve to accommodate new data points as well. Hence, a new version of the same model would come up. In that case, you can deploy the latest trained version of a model, and during the prediction, you can define which version of model you want to use. 
 In the next step, we will see how a deployed model can be used during the prediction process. To demonstrate this, we have used the following record from the validation set: 
 import json 
input_dict={'embedding_9_input': valid_process[1:2]} 
with open(‘sample_instance.json', 'w') as prediction_file: 
json.dump(input_dict, prediction_file) 
 The previous code will take a record from the validation set and dump it as JSON file. The content of JSON file will look like as follows: 
 {"embedding_9_input": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 920, 453, 84, 1, 2]} 
 The downloaded JSON file serves as an input for the deployed model, and it will return the prediction results i.e. a set of categories along with their confidence score. 
 Run the following command in Google’s Colab to submit a JSON file as an input to get prediction: 
 !gcloud ai-platform predict \ 
--model $MODEL_NAME \ 
--version "v1" \ 
--json-instances sample_instance.json 
 This will return an array of confidence scores corresponding to each class or category as follows: 
 [9.673918611952104e-06, 0.9999891519546509, 1.2268571936147055e-06] 
 
The previous results were returned when you sent a query or an issue description directly using Gcloud via Google Colab. However, if you want to get the prediction results from this model using python code, then it is also possible. Please look at the following sample python code to fetch prediction results from the deployed model. 
 def predictClass(): 
try: 
content= [‘User requested to Change Password as expired’] 
result = {} 
pred_process = tokenizer.texts_to_sequences(content) 
pred_process = sequence.pad_sequences(pred_process, maxlen=max_len) 
new_model = tf.keras.models.load_model('model_saved/model') 
prediction = int(new_model.predict_classes(pred_process)) 
for key, value in CLASSES.items(): 
if value==prediction: 
category=key 
result["class"] = category 
result = {"results": result} 
result = json.dumps(result) 
return result 
 if __name__=='__main__': 
predictClass() 
 
In the previous code, for an issue description i.e. User requested to Change Password as expired, first the system will convert it into a sequence of integers followed by the padding if necessary. Next, the trained model will be loaded in the memory and will perform the prediction over the processed form of an issue description. 





 REST API configuration 
 Now, consider a scenario where you may need to release a feature of this system to another system or an application. As an example, the conversation system provides the Standard Operating Procedure (SOPs) document to the users for an issue or query raised by them. However, in this case, the conversation system should understand the query or issue raised by the user. What if the conversation system sends a query or an issue submitted by the user to our Issue Categorization system via REST API, and this system returns a relevant category? In this case, the conversation system can use the results from our Issue Categorization system and populate the SOPs accordingly. 
 In the previous chapter, we have already seen how to setup a pre-requisite for REST API either on Windows or Linux server. Now, we will see the steps to release the features of our Issue Categorization System as REST API. 
  Create a file with name ticketclass.py 
 Copy the following code and paste in the file created in the first step and save it 
 import pandas as pd 
import numpy as np 
import tensorflow as tf 
from tensorflow.keras.preprocessing import sequence, text 
from tensorflow.keras import models 
from tensorflow.keras.layers import Dense, Dropout, Embedding, Conv1D, MaxPooling1D, GlobalAveragePooling1D 
from flask import Flask, request 
import json 
 
app=Flask(__name__) 
 CLASSES = {'CPU_Utilization': 0, 'Password_Reset': 1, 'Memory_Utilization': 2} 
top_tokens = 20000 
max_len = 50 
def return_data(df): 
return list(df['Text']), np.array(df['Category'].map(CLASSES)) 
 data = pd.read_csv('Dataset.csv', header = None) 
data.columns = ['Text', 'Category'] 
train = data.sample(frac=0.8) 
 train_text, train_labels = return_data(train) 
 tokenizer = text.Tokenizer(num_words=top_tokens) 
tokenizer.fit_on_texts(train_text) 
 app=Flask(__name__) 
 @app.route ("/predictclass", methods=['POST']) 
def predictClass(): 
try: 
json_data = request.get_json(force=True) 
content= json_data["content"] 
text = list(content) 
result = {} 
pred_process = tokenizer.texts_to_sequences(text) 
pred_process = sequence.pad_sequences(pred_process, maxlen=max_len) 
new_model = tf.keras.models.load_model('model_saved/model') 
prediction = int(new_model.predict_classes(pred_process)) 
 
for key, value in CLASSES.items(): 
 if value==prediction: 
category=key 
result["class"] = category 
result = {"results": result} 
result = json.dumps(result) 
return result 
except Exception as e: 
return {"Error": str(e)} 
if __name__ == "__main__" : 
app.run(port="5000") 
 The previous code processes an input passed to an API, calls a function that predicts the category of the issue or query description, and sends the response as an API response. 
 Open the command prompt and run the following command; 
 python ticketclass.py 
 This will start a service on http://127.0.0.1:5000/ as shown in Figure 
 
 Figure 4.16: Service Deployment – Prediction System 
 Now to test the Rest API, we are going to use Postman. This is a REST API client that is used to test the API URL. 
 
First, go to the following URL to download the Postman client and install in your system https://www.postman.com/downloads/ 
 After the installation, test the following URL and sample request JSON that is being sent to the Issue Categorization System API and response JSON that will be received as a response from the API as shown in Figure 
 URL: http://127.0.0.1:5000/predictclass 
 Classification System – Sample Input Request json: 
 { 
"content": "User requested to Change Password as expired" 
} 
 Classification System – Sample Output Response json: 
 {"results": {"class": "Password_Reset"}} 
 
 Figure 4.17: Prediction System – REST API Result 





 Conclusion 
 In this chapter, we have discussed about how Google’s AI platform can be used for the custom model training and deployment. We have created a custom CNN model for an Issue categorization problem and used it in Google AI platform. We have also seen how predictions from trained model can be accessed by other system using REST API. 





CHAPTER 5 
 Google Data Analysis, Preparation, and Processing Services 
 In the previous chapter, we have implemented an Issue Categorization System where the Convolution Neural Network (CNN) based text classification system has been developed using Google AI Platform. In this implementation, we have written our own custom code for data analysis, preparation, and processing activities. However, Google provides their own services for data analysis and preparation activities. In this chapter, we are going to discuss on Google Data analysis, preparation, and processing services and their impact on the development of machine learning based systems. 





 Structure 
 In this chapter, we will cover the following topics: 
  Design and Implementation of Loan Defaulter Prediction system 
  Introduction and usage of Google BigQuery 
  Upload data using Google BigQuery 
 Introduction and usage of Google Dataprep 
  Data Analysis using Dataprep 
 Introduction and usage of Google Dataproc 
  Model Training and Evaluation 
 Model Prediction 





 Objectives 
 After studying this chapter, you should be able to: 
  Understand the basics and usage of Google BigQuery, Dataprep, and Dataproc 
 Understand how Google Dataprep can be used for data analysis 
 Understand how Dataproc can be used for training of machine learning models 
 Understand how Dataproc can be used for the prediction from a trained model 





 Introduction 
 From the last few years, Google has been actively working on solving problems of organizations that are focused towards the development of AI-based solutions with less effort. It has released several libraries, products, and services to reduce the development time for such systems. As an example, TensorFlow, a Google’s Deep learning library has completely revolutionized the way we see the development of deep learning or machine learning models, and AutoML, a framework that selects the best model from their set of model repositories. 
 In this chapter, we will see how other Google services such as Google BigQuery, Google Dataprep, and Google Dataproc can be used to support the building of machine learning models. In this chapter, we will work with the structured dataset as compared with the previous chapters, where we have worked with the unstructured ones. We will start our discussion with an explanation of a use case that will be implemented using these services. 





 Problem statement 
 Consider a scenario where a financial institution is struggling to find a list of customers who may default. A prediction system that can identify defaulters pro-actively can save the financial institutions from losses and can help them to decide on whether to onboard a customer or not. In this book, we have taken a dataset from a UCI machine learning repository Details of the dataset are as follows: 
  Dataset has 24 attributes out of which the payment variable (Yes = 1, No = 0) is a response variable. 
 Details of other attributes are as follows: 
  ID of each client 
 Amount of the given credit in NT dollars (includes individual and family/supplementary credit) 
 Gender (1=male, 2=female) 
 EDUCATION: (1 = graduate school, 2 = university, 3 = high school, 4 = others, 5 = unknown, and 6 = unknown) 
 Marital status (1 = married, 2 = single, and 3 = others) 
 AGE: Age in years 
 PAY_0: Repayment status in September, 2005 (-2 = no consumption, -1 = pay duly, 0 = the use of revolving credit, 1 = payment delay for one month, 2 = payment delay for two months, … 8 = payment delay for eight months, and 9 = payment delay for nine months and above) 
 
PAY_2: Repayment status in August, 2005 (scale, same as the previous one) 
 PAY_3: Repayment status in July, 2005 (scale, same as the previous one) 
 PAY_4: Repayment status in June, 2005 (scale, same as the previous one) 
 PAY_5: Repayment status in May, 2005 (scale, same as the previous one) 
 PAY_6: Repayment status in April, 2005 (scale, same as the previous one) 
 BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar) 
 BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar) 
 Amount of bill statement in July, 2005 (NT dollar) 
 BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar) 
 BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar) 
 BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar) 
 PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar) 
 Amount of previous payment in August, 2005 (NT dollar) 
 PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar) 
 
PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar) 
 PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar) 
 PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar) 
  As previously discussed, the problem is a binary classification problem where each customer or user can be classified into 0 or 1. Therefore, we will build Logistic Classifier over this dataset. As per machine learning pipeline, initially, data has to be analyzed followed by the preparation and then finally model training. Google BigQuery will be used for data analysis as discussed in the next section. 





 Google BigQuery 
 Google BigQuery is a cloud service that enables users to store and analyze a large amount of data. This has been designed specifically for analytics purpose. Due to this reason, tables in BigQuery can’t be updated (append or update). You will need to delete the previous data before uploading a new one. It is similar to the SQL databases in terms of schema i.e. all the data will be stored in the form of tables and rows. Also, this data can be accessed by an SQL-like query. Hence, it is much faster and can be used for analytics systems. Google BigQuery only works with a structured data. So, if you want to perform analytics on an unstructured data then first convert the unstructured data into a structured one; and then store in BigQuery. As an example, consider you have a corpus of documents and you want to implement Document Search engine on this corpus. In this case, extract a set of entities or phrases out of each document. You can then store the extracted information as follows: 
 follows: 
follows: 
follows: 
follows: 
follows: 
 
As you can see in the table, each of the documents will have a set of extracted entities. Therefore, we would have the same type of information for each document. Now, if a user asks a query, then first it will go to entity recognition system to extract entity from question and then to Google BigQuery to retrieve all documents that have extracted entity mapped to them. Later on, you can implement any Natural Language Processing (NLP) technique on top of this result. With this introduction to BigQuery let us start with our selected use case and see how we will use BigQuery in our scenario. 
 Please follow the following steps to upload and analyze credit card dataset: 
  Go to URL https://cloud.google.com/ and login with your credentials 
 Select an option BigQuery from the left side menu bar as shown in Figure 
 

 Figure 5.1: Google BigQuery 
 
This will redirect you to BigQuery console. You should be able see the project associated to your account. If the project is not visible to you then only follow the following steps: 
 
 Figure 5.2: ADD Data 
  Select an option Pin a project from the drop–down menu 
 This will open up a new window as shown in Figure 
 Select the project associated with your account 
 

 Figure 5.3: Pin a project 
 Select your project and click on the PIN button. Once done, you will be able to see your project in BigQuery console. 
 
 Figure 5.4: Google BigQuery Home Page 
    
Click on CREATE DATASET link to create the dataset in your project. This will open up a window to define the values of fields as shown in Figure 
 Fill up the values of following fields: 
  DatasetID: Defines the name of the dataset. For our use case, value is bigquery. 
 Data Location: Defines the location of your dataset. Please ensure that it should be in the same zone in which you want to leverage other Google services. For our use case, value is default. 
 Next, click on the Create dataset button to create a dataset as shown in Figure 
 
 
Figure 5.5: Google BigQuery – Create Dataset 
 In BigQuery console, you should be able to see the dataset that has been created in the previous step as shown in Figure 
 
 Figure 5.6: Google BigQuery – List of Datasets 
 Next, click on the link CREATE TABLE to create a table in your dataset as shown in Figure 
 

 Figure 5.7: Google BigQuery – Create Table 
 This will open up a new window as shown in Figure 
 Select any one of the following options as source: 
  Google Cloud Storage: Select this option if you want to use Google Cloud Storage Services such as an object storage, block storage, file storage, and archival storage. 
 Upload: Select this option if you want to upload a file from your local system. For our use case, we will go with this option. 
  Note: You can download the dataset from the following URL: https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clientsas mentioned earlier in the chapter. 
   Drive: Select this option if you want to upload a file from your Google Drive 
 
Google Cloud Bigtable: Select this option if you want to use Google’s NoSQL database service 
 
 Figure 5.8: Google BigQuery – Define Table details - I 
  Define the value of the following field under Destination as shown in Figure 
  Project Name: Select your current project 
 Dataset Name: Select a dataset basis which the table should be created 
 Table Name: Define the name of the table 
 

 Figure 5.9: Google BigQuery – Define Table details - II 
    Select a checkbox against the label Schema and input parameters under This will auto-detect schema for the table based on your dataset. However, you can also define your custom schema. 
 Click on the Create table button to create a table 
 Now, you can see the table with a name Table 1 has been created and visible in BigQuery console as shown in Figure 
 

 Figure 5.10: Google BigQuery – List of Tables 
  Now, we have successfully uploaded our dataset to Google BigQuery. In the next section, we will see how Google Dataprep service can be used for the data preparation tasks such as Noise Removal, Missing Value imputation, and so on. 





 Google Dataprep 
 Data pre-processing is an important step in machine learning pipeline where data is cleaned and converted to a form which is consumable by machine learning algorithms. There are a few following examples to illustrate the same: 
  For the text classification system, all the textual content should be converted into their respective vector representations and categories or classes should be encoded in one-hot representation. 
 The AI based prediction system that will predict the sales of a particular company for future years. If the revenue or sales data for a particular period are not available, then either this point will be rejected to be considered for training, or its value will be calculated using the traditional machine learning algorithms. 
 As you can see from the previous two examples that it may even use a machine learning algorithm as a part of the pre-processing step. Due to this reason, it consumes almost 70-80% of the development time of any application. Therefore, it is always advisable to reduce the development time at this step. Earlier Google had released Dataflow service to create a machine learning pipeline, but it requires you to manually code each and every stage of the pipeline. In order to solve this problem, Google has come up with another service known as Google Dataprep, a fully managed service of Trifacta software. It enables a user to perform data cleaning, analysis, or even visual exploration of data is also possible with it. 
 
Dataprep offers many benefits to the developers or data scientists who actually spend a considerable amount of time at this stage of machine learning pipeline. Some of the benefits can be listed as follows: 
  It can analyze structured as well as unstructured data. 
 It offers an integration with Google Cloud Storage service. Now, you just need to upload your dataset to the storage services and rest will be taken up by Dataprep. 
 It offers an integration with other sources such as Local File System, BigQuer, and so on. 
 It can leverage clean and convert data in AutoML and on AI platform for model training. 
 It can analyse multiple data files. 





 Data Analysis 
 Now, we will see how Google Dataprep service can be used for performing a pre-processing over our dataset. Please follow the following steps to configure Dataprep for our use case. 
  Go to URL https://cloud.google.com/ and login with your credentials 
 Select an option Dataprep from the left side menu bar 
 Next, agree to the terms of service of using Google Dataprep service and click on the ACCEPT button as shown in Figure 
 
 Figure 5.11: Google Dataprep – Service Creation 
 Next, subscribe to a plan as per your requirement from the list of available plans for this service. Click on the checkbox to agree to various terms and conditions and click on the SUBSCRIBE button. 
 
You will receive a notification from TRIFACTA. Click on the checkbox to agree to the Trifacta Terms of Service and click on the Accept button as shown in Figure 
 
 Figure 5.12: Service Creation – Terms and Condition 
 Next, you need to set a storage location for Dataprep jobs, otherwise it will create random buckets in your project which are difficult to manage. Therefore, it is advisable to perform this activity at an initial stage only as shown in Figure 
 
 Figure 5.13: Service Creation – Define Storage Bucket 
 
Click on the Change button and select your storage service as shown in Figure 
 Then click on the Continue button to complete the setup. You will be redirected to a screen as shown in Figure 
 
 Figure 5.14: Google Dataprep Dashboard 
 On the top-right corner, click on the Import Data button to upload your dataset. Dataprep offers the following three ways to upload the data: 
  Upload: Select this if you want to upload a file from your local system. For our use case, we will go with this option. 
 GCS: Select this if you want to upload a file from Google Cloud Storage services 
 BigQuery: Select this if you want to upload data from Google BigQuery table 
 Click on the upload link from the left menu bar. click on the Choose a file button to select and upload a file from your local system as shown in Figure You can also manage the upload location by clicking on the Change button. 
 

 Figure 5.15: Google Dataprep – Import Dataset - I 
 Click on the Import Datasets button on the right-side panel as shown in Figure 
 After the successful import, you can see a sample data in the preview section on the right-side panel as shown in Figure 
 
 Figure 5.16: Google Dataprep – Import Dataset - II 
 Click on the Import button in the right-side panel as shown in Figure This will redirect you to a screen as shown in Figure 5.17 where you can see your imported data. 
 

 Figure 5.17: Google Dataprep – List of Datasets 
 Click on the Flows option from the left-side panel to start the data processing as shown in Figure 
 
 Figure 5.18: Google Dataprep – Flows 
 After selecting you will be redirected to a page as shown in Figure Click on the Create Flow button as shown in Figure 
 
 Figure 5.19: Create Flows 
 
Enter the Flow Name as Bank_flow and Flow Description as Pre-process bank data as shown in Figure Click on the Create button to create a flow as shown in Figure 
 
 Figure 5.20: Define Flow Details 
 Next, add the dataset that you want to pre-process as shown in Figure 
 
 Figure 5.21: Google Dataprep – Add Datasets 
 Click on the Add Datasets button to add a dataset as shown in Figure 
 
Next, select a dataset from the list of available datasets and click on the Add button as shown in Figure 
 
 Figure 5.22: Google Dataprep – Import Datasets 
 You can see a preview of imported datasets on the right-side panel. It shows a data preview and location of the file in Google Cloud Storage. 
 

 Figure 5.23: Google Dataprep – Data Preview 
 Click on the Add new Recipe button to start data processing as shown in Figure 
 You can see a complete data along with different options to process them as soon as data import is completed as shown in Figure 
 

 Figure 5.24: Google Dataprep – Data View 
  Now, we have successfully imported our dataset into Dataprep. Next, we will perform some of data pre-processing steps over our dataset as follows: 
  Min-Max Normalization: Normalization is a process that converts each value of a particular column to be in fixed range. It is necessary that all columns or attributes of your dataset should be in similar range otherwise column or attribute with higher value introduces bias in the model. As an example, column that shows a revenue of the company will introduce higher biasing than the column that shows an age of an employee. Min-max normalization ensures that all values of columns should be in the range of (a, b) where b > a. 
 We will implement min-max normalization over one of the columns i.e. LIMIT_BAL in our dataset with the value of a and b as 0 and 1, respectively. Please follow the following steps to implement the same. 
  
Select the column with a name LIMIT_BAL and then select Custom formula under Calculate option as shown in Figure 
 
 Figure 5.25: Min Max Normalization – Custom Formula 
 Next, define the following values for following the fields: 
  Formula type: Select a value of this field as single row formula 
 Formula : Define min-max formula to convert values of LIMIT_BAL column as follows: 
 Min-Max_Normalization (LIMIT_BAL) = (LIMIT_BAL – MIN(LIMIT_BAL)) / (MAX(LIMIT_BAL) – MIN(LIMIT_BAL)) 
 New column name: Define a new column name as Balance_Norm 
 Next, click on the Add button to add the formula to column as shown in Figure 
 

 Figure 5.26: Min Max Normalization – Add Formula 
   Now, you can see a new column with a name Balance_Norm has been added to view and all the values of this column lie between 0 and 
 

 Figure 5.27: Min Max Normalization – Converted Data 
 Next, we will convert categorical columns into one-hot encoded columns. 
  One-hot Representation: In one-hot representation, categorical columns such as Gender will be converted into one-hot encoded columns. As an example, Gender may have two values (Male and Female), so in order to represent or encode this information correctly, two new columns will be added to (one for Male and other for Female) our dataset. And value for columns Male will be one if the row represents an entry for a Male or Female otherwise. 
 We will implement one-hot representation using Google Dataprep. Please follow the following steps: 
  Click on Search Transformations on the Flow page. 
 
Search for one-hot encode, and select it as shown in Figure 5.28 
 
 Figure 5.28: Select One hot Encode 
 Next, select the column onto which you want to apply the transformation 
 
Select the column as Gender and Maximum number of columns as This puts a capping on maximum number of columns we can have after transformations as shown in Figure This will add a new step in your current recipe. 
 
 Figure 5.29: One hot Encode – Configuration 
 Similarly, we can also apply the same transformations to the columns education_cat and marriage_cat as shown in Figure 
 
 Figure 5.30: One-hot Encode – Converted Data 
 
 All these transformations will be added to the recipe that will run over Google Dataflow. Please follow the following steps to configure job in Dataflow: 
 Click on the Run Job button on the top-right section in the recipe page to configure the job for Dataflow as shown in Figure 
 
 Figure 5.31: Dataflow Job Creation 
 Define the values for following Dataflow execution settings: 
  Region: Region in which Dataflow job will run 
 Zone: Zone in which the Dataflow job will run 
 Machine-Type: Type of machine to be used for execution of the tasks submitted to Dataflow 
 You can also change the publishing actions of the job. 
 
Click on the Create-Csv option to perform this. However, output format can be csv, json, or Avro. 
 We can also define if we want to create a new file after every run, or it should be appended to the previous file itself. 
 Click on the Update button to save the changes as shown in Figure 
 
 Figure 5.32: Dataflow Job Configuration 
 After defining the configuration of a job, click on Run Job to start the job in Dataflow 
 We can also see the status of jobs on the overview page as shown in Figure 
 

 Figure 5.33: Dataflow Job Overview 
 After the successful completion of the job, you can switch to the Output Destinations tab to check the location of the processed file as shown in Figure 
 
 Figure 5.34: Google Dataprep – Converted file in Bucket 
  With this, we are done with the pre-processing of our dataset that includes min-max normalization and one-hot encoding for categorical attributes or features. In the next section, we will see how this processed data will be used by Google Dataproc to train a prediction system that will identify if the customer is going to default or not. 





 Google Dataproc 
 Availability of an efficient and scalable computational engine is always a major concern for training the machine learning models. Google Dataproc tries to solve this problem by providing a fully managed Hadoop environment that enables the users to perform batch processing, stream processing, and building of machine learning models. It automates cluster management that provides features to the users to create and manage them easily. The important thing is you can switch on the cluster based on the requirement that in-turn reduces the cost. Google Dataproc scales up automatically whenever it is required. It has completely automated the task of managing Hadoop clusters such that the user can now focus more on the task of generating the jobs without worrying about the administrative overheads of managing clusters. 





 Model Training and Evaluation 
 We will see how Google Dataproc can be used for training a prediction model on our dataset. Please follow the following steps: 
  Go to URL https://cloud.google.com/ and login with your credentials 
 Select an option Clusters under Dataproc from the left-side menu bar as shown in Figure 5.35 
 
 Figure 5.35: Google Dataprep 
 Then, click on the link CREATE CLUSTER as shown in Figure 5.36 
 

 Figure 5.36: Google Dataprep – Create Cluster 
 This opens up the cluster configuration windows as shown in Figure 
 
 Figure 5.37: Define Cluster Details 
 Define the configuration for the cluster as per the following values: 
  Name: Define a name for your cluster 
 Region: Define a region in which the cluster will be deployed 
 Cluster Mode: Define the cluster model as Standard i.e. 1 master and multiple workers as shown in Figure 
 Set the Master node configuration as shown in Figure 
 

 Figure 5.38: Define Machine Family 
 Set the worker node configuration as shown in Figure define the number of workers required (minimum 2). For this use case, we will go with 2. 
 

 Figure 5.39: Worker Node Configuration 
 Next, select the version of Dataproc and Spark for your project. For our use case, Dataproc image version 1.4 and Spark version 2.4 will be used as shown in Figure 
 

 Figure 5.40: Google Dataproc – Select Storage Bucket 
 With this, we can now run a job in Hadoop cluster that has been created just now. Please follow the following steps to configure the code and job to run on the Hadoop cluster. 
  Note: The codebase for this exercise can be downloaded from GitHub URL https://github.com/automl-book/AutoML/tree/master/chapter%205 
  Create a file named as 
 Copy the following code and paste it into the file created in the previous step 
 from __future__ import print_function 
from pyspark.context import SparkContext 
from pyspark.ml.linalg import Vectors 

from pyspark.ml.classification import 
LogisticRegression 
from pyspark.sql.session import SparkSession 
from pyspark.ml.feature import StringIndexer, VectorAssembler 
from pyspark.ml import Pipeline 
from pyspark.ml.evaluation import BinaryClassificationEvaluator 
from pyspark.mllib.evaluation import MulticlassMetrics 
 sc = SparkContext() 
spark = SparkSession(sc) 
 # Read the data from BigQuery as a Spark Dataframe. 
bank_data = spark.read.format("bigquery").option("table", "Bank.Defaulters").load() 
 df = bank_data.select("LIMIT_BAL","SEX","EDUCATION","MARRIAGE","AGE","PAY_0"," PAY_2","PAY_3","PAY_4","PAY_5","PAY_6","BILL_AMT1"," BILL_AMT2","BILL_AMT3","BILL_AMT4","BILL_AMT5","BILL_AMT6","PAY_AMT1","PAY_AMT2","PAY_AMT3","PAY_AMT4"," PAY_AMT5","PAY_AMT6","payment") 
cols = df.columns 
stages = [] 
label_stringIdx = StringIndexer(inputCol = 'payment', outputCol = 'label') 
stages += [label_stringIdx] 

numericCols = ["LIMIT_BAL","SEX","EDUCATION","MARRIAGE"," AGE","PAY_0","PAY_2","PAY_3","PAY_4","PAY_5","PAY_6"," BILL_AMT1","BILL_AMT2","BILL_AMT3","BILL_AMT4","BILL_AMT5", "BILL_AMT6","PAY_AMT1","PAY_AMT2","PAY_AMT3","PAY_AMT4","PAY_AMT5","PAY_AMT6"] 
assembler_Inputs = numericCols 
assembler = VectorAssembler(inputCols=assembler_Inputs, outputCol="features") 
stages += [assembler] 
pipeline = Pipeline(stages = stages) 
pipelineModel = pipeline.fit(df) 
df = pipelineModel.transform(df) 
selectedCols = ['label', 'features'] + cols 
df = df.select(selectedCols) 
 train, test = df.randomSplit([0.8, 0.3], seed = 2018) 
 logistic = LogisticRegression(featuresCol = 'features', labelCol = 'label', maxIter=10) 
model_instance = logistic.fit(train) 
model_instance.write().save("gs://automl-1//model") 
 # To generate predictions from model 
 predictions = model_instance.transform(test) 
predictions.select("payment","prediction","probability").show(truncate=False) 
 predictions.show() 
 evaluator = BinaryClassificationEvaluator() 
print('Area Under ROC', evaluator.evaluate(predictions)) 
 
predictions_data = predictions.select("label","prediction").rdd.map(tuple) 
confusion_matrix = MulticlassMetrics(predictions_data) 
print("recall: ",confusion_matrix.recall()) 
print("precision: ",confusion_matrix.precision()) 
 The previous code uses the dataset from Google BigQuery table. The columns have been divided into two parts, namely, feature vector that serves as an input and class column that serves as a target column or variable. The training set of Logistic Regression model contains 80% of the records whereas the rest 20% will be used to evaluate a trained model. 
 We have also used Multiclass Metrics class to calculate the precision and recall of a trained model. 
 Run the following command to upload python file to Google Storage service where the name of python_file is modelTrain.py and  is the name of the bucket. 
 gsutil cp  gs:// 
 Now, you can run your job in Hadoop cluster managed by Google Dataproc. Please follow the following steps to run your job in Hadoop cluster. 
  Go to Dataproc Submit job page as shown in Figure 5.41 and define the following: 
  Cluster: Select the cluster from a list of available clusters 
 Region: Define region in which the job will run. For our use case, select global. 
 Job type: Pyspark 
 
Main python file: Define the path of a python file(i.e. stored in Google Storage service. 
 Jar files: Add gs://spark-lib/bigquery/spark-bigquery-latest.jar. This enables your code to integrate BigQuery a pisto spark environment. 
 
 Figure 5.41: Google Dataproc – Submit Model Training Job 
  Then, click on the Submit button to submit the job to Hadoop cluster managed by Google Dataproc. 
 
Go to Dataproc jobs console to view the progress of job as shown in Figure You will see a green tick before the job name if it was successful; red otherwise. 
 
 Figure 5.42: Google Dataproc – Job Overview 
 Click on the individual job ID to see the model prediction over the test data as shown in Figure The definition of each of the columns are as follows: 
  payment: Shows the actual value for each data points in the test set 
 prediction: Shows the prediction from model for each of data points in the test set 
 Probability: Shows the probability distribution for each data point across both classes i.e. Yes and No. Here, the Class label with higher probability value will be assigned to that data point. 
 

 Figure 5.43: Google Dataproc – Sample Model Result 
 The job details also include the performance metrices (recall, precision, and ROC) of the model over the test set as shown in Figure 
 

 Figure 5.44: Google Dataproc – Model Evaluation 
  Recall of the trained model is greater than 0.80; it means for 80% of the data points that belong to the label “Yes” in the test set; the model has correctly classified them as “Yes.” In other words, our trained model can identify non-legitimate customer for 80% of the cases. 
 Precision of trained model is greater than 0.80; it means for 80% of the data points that have been predicted by the model as “Yes” actually belong to the label “Yes.” In other words, our trained model can precisely identify non-legitimate customer with a precision of 80%. 
 
We have also calculated the ROC value for this model, as this is a binary classification problem. ROC stands for Receiver Operating Characteristics; it defines the model’s ability to clearly discriminate between the two classes, namely, Yes and No. Mathematically, it can be defined as the ratio of True Positive Rate to False Positive Rate as follows: 
 ROC = True Positive Rate/False Positive Rate, 
 where True Positive Rate is also known as Recall and False Positive Rate can be defined as 
 False Positive Rate = False Positive/ (False Positive + True Negative) 
 We have already discussed about False Positive and True Negative in Chapter ROC can take any value between 0 and 1. Different values of ROC can be defined as follows: 
  ROC=0: The ROC value of 0 means the model is performing prediction in the reverse direction i.e. classifying the data point that should belong to 0 to 1 and vice-versa. 
 ROC=1: The ROC value of 1 means the model has an excellent capability to clearly discriminate between the two classes. 
 ROC>0.5: The ROC value greater than 0.5 means that the model has good capability to discriminate between the two classes. 
 ROC<0.5: The ROC value less than 0.5 means that the model has bad capability to discriminate between the two classes. 
 ROC=0.5: The ROC value of 0.5 means that the model is not able to discriminate between the two classes. 
 
As the ROC value for our trained model is 0.714 which is greater than 0.5 and less than 1.0, it means the model has good capability to discriminate between the two classes, namely, Yes and No. However, you can increase the number of epochs to improve the ROC value. 
 The trained model will be stored in the bucket (i.e. created in Google Storage service as soon as the job execution has finished as shown in Figure 
 
 Figure 5.45: Google Dataproc – Model in Storage Bucket 





 Model Prediction 
 Now, consider a scenario where you want to use this trained model to get the prediction for a new customer or user who is being on boarded into the bank. We also need to a create job to get the prediction from the model. Please follow the following steps to configure the job for the prediction process. 
  Download a CSV file named as prediction.csv from GitHub 
 This file contains details of a new customer or user who is going to be on boarded to the bank. 
 Run the following command to upload this CSV file to the bucket i.e. 
 ! gsutil cp prediction.csv gs://automl-1 
 Next, we need to read the model file and prediction file that has been stored in the bucket and generate a prediction out of it. Please follow the following steps to configure the code and job to run on the Hadoop cluster. 
  Create a file named as 
 Copy the code as shown follows, and paste it into file created in previous step 
 from __future__ import print_function 
from pyspark.context import SparkContext 
from pyspark.ml.linalg import Vectors 
from pyspark.ml.classification import LogisticRegression 
from pyspark.sql.session import SparkSession 

from pyspark.ml.feature import StringIndexer, VectorAssembler 
from pyspark.ml import Pipeline 
from pyspark.ml.evaluation import BinaryClassificationEvaluator 
from pyspark.ml.classification import LogisticRegressionModel 
from pyspark.mllib.evaluation import MulticlassMetrics 
 sc = SparkContext() 
spark = SparkSession(sc) 
 df = spark.read.options(header='True', inferSchema= 'True', delimiter=',').csv("gs://automl-1/prediction.csv") 
cols = df.columns 
 stages = [] 
 label_stringIdx = StringIndexer(inputCol = 'payment', outputCol = 'label') 
stages += [label_stringIdx] 
numericCols = ["LIMIT_BAL","SEX","EDUCATION","MARRIAGE","AGE","PAY_0"," PAY_2","PAY_3","PAY_4","PAY_5","PAY_6","BILL_AMT1","BILL_AMT2","BILL_AMT3","BILL_AMT4","BILL_AMT5","BILL_AMT6","PAY_AMT1","PAY_AMT2","PAY_AMT3","PAY_AMT4","PAY_AMT5","PAY_AMT6"] 
assembler_Inputs = numericCols 
assembler = VectorAssembler(inputCols=assembler_Inputs, outputCol="features") 

stages += [assembler] 
 pipeline = Pipeline(stages = stages) 
pipelineModel = pipeline.fit(df) 
df = pipelineModel.transform(df) 
selectedCols = ['label', 'features'] + cols 
df = df.select(selectedCols) 
model = LogisticRegressionModel.load("gs://automl-1/model") 
 predictions = model.transform(df) 
predictions.select("prediction","probability").show(truncate=False) 
predictions.show() 
 # To dump prediction result as csv into Google Cloud Storage bucket 
 predictions.withColumn("probability", col("probability").cast("string")).select("ID","prediction","probability").write.csv('gs://automl-1/prediction') 
  Next, run the following command to upload python file to Google Storage service where the name of python_file is modelPredict.py and  is the name of the bucket. 
 ! gsutil cp modelPredict.py gs:// 
 Go to Dataproc Submit job page to configure the job to run on Hadoop cluster as shown in Figure 5.46 and define the following: 
  Cluster: Select the cluster from a list of available clusters 
 
Region: Define the region in which a job will run 
 For our use case, select global. 
  Job type: Pyspark 
 Main python file: Define the path of a python file stored in Google Storage service. For prediction, python file name is modelPredict.py 
 
 Figure 5.46: Google Dataproc – Prediction Job Configuration 
 
Then, click on the Submit button to submit the job to Hadoop cluster managed by Google Dataproc 
 Go to Dataproc jobs console to view the progress of the job as shown in Figure 
 
 Figure 5.47: Google Dataproc – Prediction Job Overview 
 Click on job ID to see the prediction from the trained model as shown in Figure 
  prediction: Shows the prediction from the model for each of the data point in the test set 
 probability: Shows probability distribution for each data point across both the classes, namely, Yes and No. Here, the class label with a higher probability value will be assigned to that data point. 
 

 Figure 5.48: Google Dataproc – Prediction Job Result 
  
Figure 5.48 shows the predictions for each of the data points corresponding to a new customer or user and provides us with a probability whether a new customer or user is going to be a legitimate customer or fraud one. There are many raw features for each customer that may not be possible to send via REST API for prediction. In such cases, new customers’ features should be included in CSV file and a separate job will be deployed over Hadoop cluster. This job will read the trained model and new CSV file from the cloud storage to generate the predictions. The current job also dumps the prediction results as CSV in Google Cloud Storage bucket as shown in Figure 
 
 Figure 5.49: Google Dataproc – Prediction Result in Storage Bucket 
 Click on the file with prefix as “part” to download predictions from model. Content of downloaded file would be as shown in Figure 
 

 Figure 5.50 





 Conclusion 
 In this chapter, we have seen how Google’s data analysis, preparation, and processing services can be used for training of machine learning models. With this, we are concluding our exciting journey of discussions on AutoML, Google’s AI Platform and Google’s data preparation and processing engines. With this, we conclude this book on Google AutoML and AI Platform. We sincerely hope that this would enable you to go further in your knowledge on GCP AutoML and AI Platform, and you will be able to use these features in your applications and projects. 
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