
Colin Gillespie & Robin Lovelace

Efficient R
Programming
A PRACTICAL GUIDE TO SMARTER PROGRAMMING

Colin Gillespie and Robin Lovelace

Efficient R Programming
A Practical Guide to Smarter Programming

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95078-4

[LSI]

Efficient R Programming
by Colin Gillespie and Robin Lovelace

Copyright © 2017 Colin Gillespie, Robin Lovelace. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Nicole Tache
Production Editor: Nicholas Adams
Copyeditor: Gillian McGarvey
Proofreader: Christina Edwards

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

December 2016: First Edition

Revision History for the First Edition
2016-11-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491950784 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Efficient R Programming, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491950784

Table of Contents

Preface. ix

1. Introduction. 1
Prerequisites 2
Who This Book Is for and How to Use It 2
What Is Efficiency? 4
What Is Efficient R Programming? 4
Why Efficiency? 6
Cross-Transferable Skills for Efficiency 7

Touch Typing 7
Consistent Style and Code Conventions 8

Benchmarking and Profiling 9
Benchmarking 9
Benchmarking Example 10
Profiling 11

Book Resources 14
R Package 14
Online Version 14

References 14

2. Efficient Setup. 17
Prerequisites 18
Top Five Tips for an Efficient R Setup 18
Operating System 18

Operating System and Resource Monitoring 19
R Version 21

Installing R 21
Updating R 23

iii

Installing R Packages 23
Installing R Packages with Dependencies 24
Updating R Packages 24

R Startup 25
R Startup Arguments 25
An Overview of R’s Startup Files 26
The Location of Startup Files 26
The .Rprofile File 28
Example .Rprofile File 28
The .Renviron File 32

RStudio 34
Installing and Updating RStudio 35
Window Pane Layout 35
RStudio Options 38
Autocompletion 38
Keyboard Shortcuts 40
Object Display and Output Table 40
Project Management 41

BLAS and Alternative R Interpreters 43
Testing Performance Gains from BLAS 43
Other Interpreters 44
Useful BLAS/Benchmarking Resources 45

References 45

3. Efficient Programming. 47
Prerequisites 47
Top Five Tips for Efficient Programming 47
General Advice 48

Memory Allocation 49
Vectorized Code 50

Communicating with the User 53
Fatal Errors: stop() 53
Warnings: warning() 54
Informative Output: message() and cat() 55
Invisible Returns 55

Factors 56
Inherent Order 56
Fixed Set of Categories 57

The Apply Family 57
Example: Movies Dataset 59
Type Consistency 60

Caching Variables 61

iv | Table of Contents

Function Closures 63
The Byte Compiler 64

Example: The Mean Function 65
Compiling Code 66

References 67

4. Efficient Workflow. 69
Prerequisites 69
Top Five Tips for Efficient Workflow 70
A Project Planning Typology 70
Project Planning and Management 72

Chunking Your Work 73
Making Your Workflow SMART 74
Visualizing Plans with R 75

Package Selection 76
Searching for R Packages 78
How to Select a Package 78

Publication 80
Dynamic Documents with R Markdown 81
R Packages 83

Reference 84

5. Efficient Input/Output. 85
Prerequisites 86
Top Five Tips for Efficient Data I/O 86
Versatile Data Import with rio 86
Plain-Text Formats 88

Differences Between fread() and read_csv() 90
Preprocessing Text Outside R 92

Binary File Formats 93
Native Binary Formats: Rdata or Rds? 94
The Feather File Format 94
Benchmarking Binary File Formats 94
Protocol Buffers 96

Getting Data from the Internet 96
Accessing Data Stored in Packages 97
References 98

6. Efficient Data Carpentry. 99
Prerequisites 100
Top Five Tips for Efficient Data Carpentry 100
Efficient Data Frames with tibble 100

Table of Contents | v

Tidying Data with tidyr and Regular Expressions 102
Make Wide Tables Long with gather() 103
Split Joint Variables with separate() 104
Other tidyr Functions 105
Regular Expressions 106

Efficient Data Processing with dplyr 108
Renaming Columns 110
Changing Column Classes 110
Filtering Rows 111
Chaining Operations 112
Data Aggregation 114
Nonstandard Evaluation 117

Combining Datasets 118
Working with Databases 119

Databases and dplyr 121
Data Processing with data.table 123
References 125

7. Efficient Optimization. 127
Prerequisites 128
Top Five Tips for Efficient Optimization 128
Code Profiling 128

Getting Started with profvis 129
Example: Monopoly Simulation 130

Efficient Base R 131
The if() Versus ifelse() Functions 131
Sorting and Ordering 132
Reversing Elements 133
Which Indices are TRUE? 133
Converting Factors to Numerics 133
Logical AND and OR 134
Row and Column Operations 134
is.na() and anyNA() 135
Matrices 135

Example: Optimizing the move_square() Function 138
Parallel Computing 139

Parallel Versions of Apply Functions 140
Example: Snakes and Ladders 140
Exit Functions with Care 141
Parallel Code under Linux and OS X 141

Rcpp 142
A Simple C++ Function 143

vi | Table of Contents

The cppFunction() Command 144
C++ Data Types 145
The sourceCpp() Function 145
Vectors and Loops 146
Matrices 149
C++ with Sugar on Top 149
Rcpp Resources 150

References 151

8. Efficient Hardware. 153
Prerequisites 153
Top Five Tips for Efficient Hardware 153
Background: What Is a Byte? 154
Random Access Memory 155
Hard Drives: HDD Versus SSD 158
Operating Systems: 32-Bit or 64-Bit 159
Central Processing Unit 160
Cloud Computing 162

Amazon EC2 162

9. Efficient Collaboration. 163
Prerequisites 164
Top Five Tips for Efficient Collaboration 164
Coding Style 164

Reformatting Code with RStudio 165
Filenames 165
Loading Packages 166
Commenting 166
Object Names 167
Example Package 167
Assignment 168
Spacing 168
Indentation 168
Curly Braces 169

Version Control 169
Commits 170
Git Integration in RStudio 170
GitHub 171
Branches, Forks, Pulls, and Clones 172

Code Review 173
References 174

Table of Contents | vii

10. Efficient Learning. 175
Prerequisties 175
Top Five Tips for Efficient Learning 175
Using R’s Internal Help 176

Searching R for Topics 177
Finding and Using Vignettes 178
Getting Help on Functions 179
Reading R Source Code 181
swirl 182

Online Resources 182
Stack Overflow 183
Mailing Lists and Groups 183

Asking a Question 184
Minimal Dataset 184
Minimal Example 185

Learning In Depth 185
Spread the Knowledge 187
References 187

A. Package Dependencies. 189

B. References. 191

Index. 197

viii | Table of Contents

Preface

Efficient R Programming is about increasing the amount of work you can do with R in
a given amount of time. It’s about both computational and programmer efficiency.
There are many excellent R resources about topics such as visualization (e.g., Chang
2012), data science (e.g., Grolemund and Wickham 2016), and package development
(e.g., Wickham 2015). There are even more resources on how to use R in particular
domains, including Bayesian statistics, machine learning, and geographic information
systems. However, there are very few unified resources on how to simply make R
work effectively. Hints, tips, and decades of community knowledge on the subject are
scattered across hundreds of internet pages, email threads, and discussion forums,
making it challenging for R users to understand how to write efficient code.

In our teaching we have found that this issue applies to beginners and experienced
users alike. Whether it’s a question of understanding how to use R’s vector objects to
avoid for loops, knowing how to set up your .Rprofile and .Renviron files, or the abil‐
ity to harness R’s excellent C++ interface to do the heavy lifting, the concept of effi‐
ciency is key. The book aims to distill tips, warnings, and tricks of the trade into a
single, cohesive whole that provides a useful resource to R programmers of all stripes
for years to come.

The content of the book reflects the questions that our students from a range of disci‐
plines, skill levels, and industries have asked over the years to make their R work
faster. How to set up my system optimally for R programming work? How can one
apply general principles from computer science (such as do not repeat yourself, aka
DRY) to the specifics of an R script? How can R code be incorporated into an efficient
workflow, including project inception, collaboration, and write-up? And how can one
quickly learn how to use new packages and functions?

The book answers these questions and more in 10 self-contained chapters. Each
chapter starts with the basics and gets progressively more advanced, so there is some‐
thing for everyone in each one. While more advanced topics such as parallel pro‐
gramming and C++ may not be immediately relevant to R beginners, the book helps

ix

to navigate R’s infamously steep learning curve with a commitment to starting slow
and building on strong foundations. Thus even experienced R users are likely to find
previously hidden gems of advice. While teaching this material, we commonly hear
“Why didn’t anyone tell me that before?”

Efficient programming should not be seen as an optional extra, and the importance
of efficiency grows with the size of projects and datasets. In fact, this book was
devised while teaching a course called R for Big Data, when it quickly became appa‐
rent that if you want to work with large datasets, your code must work efficiently.
Even with small datasets, efficient code that is both fast to write and fast to run is a
vital component of successful R projects. We found that the concept of efficient pro‐
gramming is important in all branches of the R community. Whether you are a spora‐
dic user of R (e.g., for its unbeatable range of statistical packages), looking to develop
a package, or working on a large collaborative project in which efficiency is mission-
critical, code efficiency will have a major impact on your productivity.

Ultimately, efficiency is about getting more output for less work input. To take the
analogy of a car, would you rather drive 1,000 km on a single tank (or a single charge
of batteries) or refuel a heavy, clunky, ugly car every 50 km? Or would you prefer to
choose an altogether more efficient vehicle and cycle? In the same way, efficient R
code is better than inefficient R code in almost every way: it is easier to read, write,
run, share, and maintain. This book cannot provide all the answers about how to pro‐
duce such code, but it certainly can provide ideas, example code, and tips to make a
start in the right direction of travel.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Bold
Indicates the names of R packages.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

x | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/csgillespie/efficient.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Efficient R Programming by Colin
Gillespie and Robin Lovelace (O’Reilly). Copyright 2017 Colin Gillespie, Robin Love‐
lace, 978-1-491-95078-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xi

https://github.com/csgillespie/efficient
mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based training and reference
platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/efficient-r-programming.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book was written in the open, and many people contributed pull requests to fix
minor problems. Special thanks goes to O’Reilly who allowed this process and every‐
one who contributed via GitHub: @Delvis, @richelbilderbeek, @adamryczkowski,

xii | Preface

http://oreilly.com/safari
http://bit.ly/efficient-r-programming
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

@CSJCampbell, @tktan, @nachti, Conor Lawless, @timcdlucas, Dirk Eddelbuettel,
@wolfganglederer, @HenrikBengtsson, @giocomai, and @daattali.

Many thanks also to the detailed feedback from the technical reviewers, Richard Cot‐
ton and Garrett Grolemund.

Colin
To Esther, Nathan, and Niamh. Thanks for your patience.

Robin
Thanks to my housemates in Cornerstone Housing Cooperative for putting up with
me being antisocial while in book mode. To everyone at the University of Leeds for
encouraging me to pursue projects outside the usual academic pursuits of journal
articles and conferences. And thanks to everyone involved in the community of open
source developers, users, and communicators who made all this possible.

Preface | xiii

CHAPTER 1

Introduction

This chapter describes the wide range of people this book was written for, in terms of
R and programming experience, and how you can get the most out of it. Anyone set‐
ting out to improve efficiency should have an understanding of precisely what they
mean by the term, and this is discussed with reference to algorithmic and programmer
efficiency in “What Is Efficiency?” on page 4, and with reference to R in particular in
“What Is Efficient R Programming?” on the same page. It may seem obvious, but it’s
also worth thinking about why anyone would bother with efficient code now that
powerful computers are cheap and accessible. This is covered in “Why Efficiency?”
on page 6.

This book happily is not completely R-specific. Non R–programming skills that are
needed for efficient R programming, which you will develop during the course of fol‐
lowing this book, are covered in “Cross-Transferable Skills for Efficiency” on page 7.
Atypically for a book about programming, this section introduces touch typing and
consistency, cross-transferable skills that should improve your efficiency beyond pro‐
gramming. However, this is first and foremost a book about programming and it
wouldn’t be so without code examples in every chapter. Despite being more concep‐
tual and discursive, this opening chapter is no exception: its penultimate section
(“Benchmarking and Profiling” on page 9) describes two essential tools in the effi‐
cient R programmer’s toolbox and how to use them with a couple of illustrative
examples. The final thing to say at the outset is how to use this book in conjunction
with the book’s associated package and its source code. This is covered in “Book
Resources” on page 14.

1

Prerequisites
As emphasized in the next section, it’s useful to run code and experiment as you read.
This section, found at the beginning of each chapter, ensures that you have the neces‐
sary packages for each chapter. The prerequisites for this chapter are:

• A working installation of R on your computer (see “Installing and Updating
RStudio” on page 35).

• Install and load the microbenchmark, profvis, and ggplot2 packages (see
“Installing R Packages” on page 23 for tips on installing packages and keeping
them up-to-date). You can ensure that these packages are installed by loading
them as follows:

library("microbenchmark")
library("profvis")
library("ggplot2")

The prerequisites needed to run the code contained in the entire book are covered in
“Book Resources” on page 14 at the end of this chapter.

Who This Book Is for and How to Use It
This book is for anyone who wants to make their R code faster to type, faster to run,
and more scalable. These considerations generally come after learning the very basics
of R for data analysis; we assume you are either accustomed to R or proficient at pro‐
gramming in other languages, although this book could still be of use for beginners.
Thus the book should be useful to people with a range of skill levels, who can broadly
be divided into three groups:

For programmers with little experience with R
This book will help you navigate the quirks of R to make it work efficiently: it is
easy to write slow R code if you treat it as if it were another language.

For R users with little experience in programming
This book will show you many concepts and tricks of the trade, some of which
are borrowed from computer science, that will make your work more time
effective.

For R beginners with little experience in programming
This book can steer you to get things right (or at least less wrong) at the outset.
Bad habits are easy to gain but hard to lose. Reading this book at the outset of
your programming career could save you many hours in the future searching the
web for issues covered in this book.

2 | Chapter 1: Introduction

Identifying which group you best fit into will help you get the most out of it. For
everyone, we recommend reading Efficient R Programming while you have an active R
project on the go, whether it’s a collaborative task at work or simply a personal project
at home. Why? The scope of this book is wider than most programming textbooks
(Chapter 4 covers project management, for example) and working on a project out‐
side the confines of it will help put the concepts, recommendations, and code into
practice. Going directly from words into action in this way will help ensure that the
information is consolidated: learn by doing.

If you’re an R novice and fit into the final category, we recommend that this active R
project not be an important deliverable, but another R resource. Though this book is
generic, it is likely that your usage of R will be largely domain-specific. For this rea‐
son, we recommend reading it alongside teaching material in your chosen area. Fur‐
thermore, we advocate that all readers use this book alongside other R resources such
as the numerous vignettes, tutorials, and online articles that the R community has
produced (described in the following tip). At a bare minimum, you should be familiar
with data frames, looping, and simple plots, which you will learn from these resour‐
ces.

Resources for Learning R
There are many places to find generic and domain-specific R teaching materials. For
complete beginners, there are a number of introductory resources, such as the excel‐
lent Student’s Guide to R and the more technical IcebreakeR tutorial.

R also comes preinstalled with guidance, revealed by entering help.start() into the
R console, including the classic official guide An Introduction to R, which is excellent,
but daunting to many. Entering vignette() will display a list of guides packaged
within your R installation (and hence do not require an internet connection). To see
the vignette for a specific topic, just enter the vignette’s name into the same command
(e.g., vignette(package = "dplyr", "introduction")) to see the introductory
vignette for the dplyr package.

Another early port of call should be the Comprehensive R Archive Network (CRAN)
website. The Contributed Documentation page contains a list of contributed resour‐
ces, mainly tutorials, on subjects ranging from map making to econometrics. The new
bookdown website contains a list of complete (or near complete) books that cover
domains such as R for Data Science and Authoring Books with R Markdown. We rec‐
ommend keeping your eye on the R-o-sphere via the R-Bloggers website, popular
Twitter feeds, and CRAN-affiliated email lists for up-to-date materials that can be
used in conjunction with this book.

Who This Book Is for and How to Use It | 3

http://bit.ly/studentguider
http://bit.ly/icebreakR
https://cran.r-project.org/index.html
https://cran.r-project.org/other-docs.html
http://bit.ly/mapsinR
http://bit.ly/econometricR
https://bookdown.org/
http://r4ds.had.co.nz/
https://bookdown.org/yihui/bookdown/
http://r-bloggers.com/
https://www.r-project.org/mail.html

What Is Efficiency?
In everyday life, efficiency roughly means working well. An efficient vehicle goes far
without guzzling gas. An efficient worker gets the job done fast without stress. And
an efficient light shines brightly with a minimum of energy consumption. In this final
sense, efficiency (η) has a formal definition as the ratio of work done (W, light out‐
put) per unit effort (Q, energy consumption in this case):

η = W
Q

How does this translate into programming? Efficient code can be defined narrowly or
broadly. The first, more narrow definition is algorithmic efficiency: how fast the com‐
puter can undertake a piece of work given a particular piece of code. This concept
dates back to the very origins of computing, as illustrated by the following quote by
Ada Lovelace (1842) in her notes on the work of Charles Babbage:

In almost every computation a great variety of arrangements for the succession of the
processes is possible, and various considerations must influence the selections amongst
them for the purposes of a calculating engine. One essential object is to choose that
arrangement which shall tend to reduce to a minimum the time necessary for complet‐
ing the calculation.

The second, broader definition of efficient computing is programmer productivity.
This is the amount of useful work a person (not a computer) can do per unit time. It
may be possible to rewrite your code base in C to make it 100 times faster. But if this
takes 100 human hours, it may not be worth it. Computers can chug away day and
night. People cannot. Human productivity is the subject of Chapter 4.

By the end of this book, you should know how to write code that is efficient from
both algorithmic and productivity perspectives. Efficient code is also concise, elegant,
and easy to maintain, which is vital when working on large projects. But this raises
the wider question: what is different about efficient R code compared with efficient
code in any other language?

What Is Efficient R Programming?
The issue flagged by Ada of having a great variety of ways to solve a problem is key to
understanding how efficient R programming differs from efficient programming in
other languages. R is notorious for allowing users to solve problems in many ways.
This is due to R’s inherent flexibility, in which almost “anything can be modified after
it is created” (Wickham 2014). R’s inventors, Ross Ihaka and Robert Gentleman,
designed it to be this way: a cell in a data frame can be selected in multiple ways in
base R alone (three of which are illustrated later in this chapter, in “Benchmarking
Example” on page 10). This is useful because it allows programmers to use the lan‐

4 | Chapter 1: Introduction

guage as best suits their needs, but it can be confusing for people looking for the right
way of doing things and can cause inefficiencies if you don’t fully understand the lan‐
guage.

R’s notoriety for being able to solve a problem in multiple ways has grown with the
proliferation of community-contributed packages. In this book, we focus on the best
way of solving problems from an efficiency perspective. Often it is instructive to dis‐
cover why a certain way of doing things is faster than other ways. However, if your
aim is simply to get stuff done, you only need to know what is likely to be the most
efficient way. In this way, R’s flexibility can be inefficient: although it may be easier to
find a way of solving any given problem in R than other languages, solving the prob‐
lem with R may make it harder to find the best way to solve that problem, as there are
so many. This book tackles this issue head on by recommending what we believe are
the most efficient approaches. We hope you trust our views, based on years of using
and teaching R, but we also hope that you challenge them at times and test them with
benchmarks if you suspect there’s a better way of doing things (thanks to R’s flexibility
and ability to interface with other languages, there may well be).

It is well known that R code can lack algorithmic efficiency compared with low-level
languages for certain tasks, especially if it was written by someone who doesn’t fully
understand the language. But it is worth highlighting the numerous ways that R
encourages and guides efficiency, especially programmer efficiency:

• R is not compiled, but it calls compiled code. This means that you get the best of
both worlds: thankfully, R removes the laborious stage of compiling your code
before being able to run it, but provides impressive speed gains by calling com‐
piled C, FORTRAN, and other language behind the scenes.

• R is a functional and object-orientated language (Wickham 2014). This means
that it is possible to write complex and flexible functions in R that get a huge
amount of work done with a single line of code.

• R uses RAM for memory. This may seem obvious, but it’s worth saying: RAM is
much faster than any hard disk system. Compared with databases, R is therefore
very fast at common data manipulation, processing, and modeling operations.
RAM is now cheaper than ever, meaning the potential downsides of this feature
are further away than ever.

• R is supported by excellent integrated development environments (IDEs). The
environment in which you program can have a huge impact on programmer effi‐
ciency as it can provide help quickly, allow for interactive plotting, and allow
your R projects to be tightly integrated with other aspects of your project such as
file management, version management, and interactive visualization systems, as
discussed in “RStudio” on page 34.

What Is Efficient R Programming? | 5

• R has a strong user community. This boosts efficiency because if you encounter a
problem that has not yet been solved, you can simply ask the community. If it is a
new, clearly stated, and reproducible question asked on a popular forum such as
Stack Overflow or an appropriate R list, you are likely to get a response from an
accomplished R programmer within minutes. The obvious benefit of this crowd-
sourced support system is that the efficiency benefits of the answer will, from that
moment on, be available to everyone.

Efficient R programming is the implementation of efficient programming practices in
R. All languages are different, so efficient R code does not look like efficient code in
another language. Many packages have been optimized for performance so, for some
operations, achieving maximum computational efficiency may simply be a case of
selecting the appropriate package and using it correctly. There are many ways to get
the same result in R, and some are very slow. Therefore, not writing slow code should
be prioritized over writing fast code.

Returning to the analogy of the two cars sketched in the preface, efficient R program‐
ming for some use cases can simply mean trading in your old, heavy, gas-guzzling
SUV function for a lightweight velomobile. The search for optimal performance often
has diminishing returns, so it is important to find bottlenecks in your code to priori‐
tize work for maximum increases in computational efficiency. Linking back to R’s
notoriety as a flexible language, efficient R programming can be interpreted as find‐
ing a solution that is fast enough in terms of computational efficiency but as fast as
possible in terms of programmer efficiency. After all, you and your coworkers proba‐
bly have better and more valuable things to do outside work, so it is important that
you get the job done quickly and take time off for other interesting pursuits.

Why Efficiency?
Computers are always getting more powerful. Does this not reduce the need for effi‐
cient computing? The answer is simple: no. In an age of Big Data and stagnating com‐
puter clock speeds (see Chapter 8), computational bottlenecks are more likely than
ever before to hamper your work. An efficient programmer can “solve more complex
tasks, ask more ambitious questions, and include more sophisticated analyses in their
research” (Visser et al. 2015).

A concrete example illustrates the importance of efficiency in mission-critical situa‐
tions. Robin was working on a tight contract for the UK’s Department for Transport
to build the Propensity to Cycle Tool, an online application that had to be ready for
national deployment in less than four months. For this work, he developed the func‐
tion line2route() in the stplanr package to generate routes via the (CycleStreets)
API. Hundreds of thousands of routes were needed, but, to his dismay, code slowed
to a standstill after only a few thousand routes. This endangered the contract. After
eliminating other issues and via code profiling (covered in “Code Profiling” on page

6 | Chapter 1: Introduction

https://stackoverflow.com/
https://www.r-project.org/mail.html
http://www.cyclestreets.net/

128), it was found that the slowdown was due to a bug in line2route(): it suffered
from the vector growing problem, discussed in “Memory Allocation” on page 49.

The solution was simple. A single commit made line2route() more than ten times
faster and substantially shorter. This potentially saved the project from failure. The
moral of this story is that efficient programming is not merely a desirable skill—it can
be essential.

There are many concepts and skills that are language-agnostic. Much of the knowl‐
edge imparted in this book should be relevant to programming in other languages
(and other technical activities beyond programming). There are strong reasons for
focusing on efficiency in one language, however. In R, simply using replacement
functions from a different package can greatly improve efficiency, as discussed in
relation to reading text files in Chapter 5. This level of detail, with reproducible
examples, would not be possible in a general-purpose efficient programming book.
Skills for efficient working, which apply beyond R programming, are covered in the
next section.

Cross-Transferable Skills for Efficiency
The meaning of efficient R code, as opposed to generic efficient code, should be clear
from reading the preceding two sections. However, that does not mean that the skills
and concepts covered in this book are not transferable to other languages and non-
programming tasks. Likewise, working on these cross-transferable skills will improve
your R programming (as well as other aspects of your working life). Two of these
skills are especially important: touch typing and use of a consistent style.

Touch Typing
The other side of the efficiency coin is programmer efficiency. There are many things
that will help increase the productivity of you and your collaborators, not least fol‐
lowing the advice of Philipp Janert to “think more, work less” (Janert 2010). The evi‐
dence suggests that good diet, physical activity, plenty of sleep, and a healthy work-
life balance can all boost your speed and effectiveness at work (Jensen 2011; Pereira et
al. 2015; Grant, Spurgeon, and Wallace 2013).

While we recommend that the reader reflect on this evidence and their own well-
being, this is not a self-help book. It is a book about programming. However, there is
one nonprogramming skill that can have a huge impact on productivity: touch typ‐
ing. This skill can be relatively painless to learn, and can have a huge impact on your
ability to write, modify, and test R code quickly. Learning to touch type properly will
pay off in small increments throughout the rest of your programming life (of course,
the benefits are not constrained to R programming).

Cross-Transferable Skills for Efficiency | 7

http://bit.ly/refactorline2route

The key difference between a touch typist and someone who constantly looks down
at the keyboard, or who uses only two or three fingers for typing, is hand placement.
Touch typing involves positioning your hands on the keyboard with each finger of
both hands touching or hovering over a specific letter (Figure 1-1). This takes time
and some discipline to learn. Fortunately there are many resources that will help you
get in the habit early, including the open source software projects Klavaro and Type‐
Faster.

Figure 1-1. The starting position for touch typing, with the fingers over the home keys.
Source: Wikipedia under the Creative Commons license.

Consistent Style and Code Conventions
Getting into the habit of clear and consistent style when writing anything, be it code
or poetry, will have benefits in many other projects, programming or non-
programming. As outlined in “Coding Style” on page 164, style is to some extent a
personal preference. However, it is worth noting the conventions we use at the outset
of this book, to maximize its readability. Throughout this book we use a consistent set
of conventions to refer to code.

• Package names are in bold, e.g., dplyr.
• Functions are in a code font, followed by parentheses, like plot() or median().
• Other R objects, such as data or function arguments, are in a code font without

parentheses, like x and name.

8 | Chapter 1: Introduction

https://sourceforge.net/projects/klavaro/
https://sourceforge.net/projects/typefaster/
https://sourceforge.net/projects/typefaster/
https://commons.wikimedia.org/wiki/File:QWERTY-home-keys-position.svg

• Occasionally, we’ll highlight the package of the function using two colons, like
microbenchmark::microbenchmark(). Note that this notation can be efficient if
you only need to use a package’s function once, as it avoids attaching the package.

The concepts of benchmarking and profiling are not R-specific. However, they are
done in a particular way in R, as outlined in the next section.

Benchmarking and Profiling
Benchmarking and profiling are key to efficient programming, especially in R.
Benchmarking is the process of testing the performance of specific operations repeat‐
edly. Profiling involves running many lines of code to find bottlenecks. Both are vital
for understanding efficiency, and we use them throughout the book. Their centrality
to efficient programming practice means they must be covered in this introductory
chapter, despite being seen by many as an intermediate or advanced R programming
topic.

In some ways, benchmarks can be seen as the building blocks of profiles. Profiling
can be understood as automatically running many benchmarks for every line in a
script and comparing the results line by line. Because benchmarks are smaller, easier,
and more modular, we cover them first.

Benchmarking
Modifying elements from one benchmark to the next and recording the results after
the modification enables us to determine the fastest piece of code. Benchmarking is
important in the efficient programmer’s toolkit: you may think that your code is faster
than mine, but benchmarking allows you to prove it. The easiest way to benchmark a
function is to use system.time(). However, it is important to remember that we are
taking a sample. We wouldn’t expect a single person in London to be representative of
the entire UK population; similarly, a single benchmark provides us with a single
observation on our function’s behavior. Therefore, we’ll need to repeat the timing
many times with a loop.

An alternative way of benchmarking is via the flexible microbenchmark package.
This allows us to easily run each function multiple times (by default, 100) in order to
detect microsecond differences in code performance. We then get a convenient sum‐
mary of the results: the minimum/maximum and lower/upper quartiles, and the
mean/median times. We suggest focusing on the median time to get a feel for the
standard time and the quartiles to understand the variability.

Benchmarking and Profiling | 9

Benchmarking Example
A good example is testing different methods to look up a single value in a data frame.
Note that each argument in the following benchmark is a term to be evaluated (for
multi-line benchmarks, the term to be evaluated can be surrounded by curly brackets,
{}).

library("microbenchmark")
df = data.frame(v = 1:4, name = letters[1:4])
microbenchmark(df[3, 2], df[3, "name"], df$name[3])
Unit: microseconds
expr min lq mean median uq max neval cld
df[3, 2] 17.99 18.96 20.16 19.38 19.77 35.14 100 b
df[3, "name"] 17.97 19.13 21.45 19.64 20.15 74.00 100 b
df$name[3] 12.48 13.81 15.81 14.48 15.14 67.24 100 a

The results summarize how long each query took: the minimum (min); lower and
upper quartiles (lq and uq, respectively); and the mean, median, and maximum (max)
for each of the number of evaluations (neval, with the default value of 100 used in
this case). cld reports the relative rank of each row in the form of compact letter dis‐
play: in this case, df$name[3] performs best, with a rank of a and a mean time of
around 25% lower than the other two functions.

When using microbenchmark(), you should pay careful attention to the units. In the
previous example, each function call takes approximately 20 microseconds, implying
around 50,000 function calls could be done in a second. When comparing quick
functions, the standard units are:

milliseconds (ms)
One thousand functions takes a second;

microseconds (µs)
one million function calls takes a second;

nanoseconds (ns)
one billion calls takes a second.

We can set the units we want to use with the unit argument (e.g., the results are
reported in seconds if we set unit = "s").

When thinking about computational efficiency, there are (at least) two in measures:

Relative time
df$name[3] is 25% faster than df[3, "name"];

Absolute time
df$name[3] is five microseconds faster than df[3, "name"].

10 | Chapter 1: Introduction

Both measures are useful, but it is important not to forget the underlying time scale.
It makes little sense to optimize a function that takes microseconds if there are opera‐
tions that take seconds to complete in your code.

Profiling
Benchmarking generally tests the execution time of one function against another.
Profiling, on the other hand, is about testing large chunks of code.

It is difficult to overemphasize the importance of profiling for efficient R program‐
ming. Without a profile of what took longest, you will have only a vague idea of why
your code is taking so long to run. The following example (which generates
Figure 1-2, an image of ice-sheet retreat from 1985 to 2015) shows how profiling can
be used to identify bottlenecks in your R scripts:

library("profvis")
profvis(expr = {

 # Stage 1: load packages
 # library("rnoaa") # not necessary as data pre-saved
 library("ggplot2")

 # Stage 2: load and process data
 out = readRDS("extdata/out-ice.Rds")
 df = dplyr::rbind_all(out, id = "Year")

 # Stage 3: visualize output
 ggplot(df, aes(long, lat, group = paste(group, Year))) +
 geom_path(aes(colour = Year))
 ggsave("figures/icesheet-test.png")
}, interval = 0.01, prof_output = "ice-prof")

The results of this profiling exercise are displayed in Figure 1-3.

For more information about profiling and benchmarking, please refer to the Opti‐
mising code chapter in Advanced R by Hadley Wickham (CRC Press), and “Code
Profiling” on page 128 in this book. We recommend reading these additional resour‐
ces while performing benchmarks and profiles on your own code, perhaps based on
the following exercises.

Benchmarking and Profiling | 11

http://adv-r.had.co.nz/Profiling.html
http://adv-r.had.co.nz/Profiling.html

Figure 1-2. Visualization of North Pole ice-sheet decline, generated using the code pro‐
filed using the profvis package

Figure 1-3. Profiling results of loading and plotting NASA data on ice-sheet retreat

Exercises
Consider the following benchmark to evaluate different functions for calculating the
cumulative sum of all the whole numbers from 1 to 100:

x = 1:100 # initiate vector to cumulatively sum

Method 1: with a for loop (10 lines)

12 | Chapter 1: Introduction

cs_for = function(x){
 for(i in x){
 if(i == 1){
 xc = x[i]
 } else {
 xc = c(xc, sum(x[1:i]))
 }
 }
 xc
}

Method 2: with apply (3 lines)
cs_apply = function(x){
 sapply(x, function(x) sum(1:x))
}

Method 3: cumsum (1 line, not shown)
microbenchmark(cs_for(x), cs_apply(x), cumsum(x))
#> Unit: nanoseconds
#> expr min lq mean median uq max neval
#> cs_for(x) 248145 316292 386893 370505 436382 697258 100
#> cs_apply(x) 157610 198157 255241 233324 306013 478394 100
#> cumsum(x) 561 1131 1796 1422 2075 18284 100

1. Which method is fastest and how many times faster is it?
2. Run the same benchmark, but with the results reported in seconds, on a vector of

all the whole numbers from 1 to 50,000. Hint: also use the argument neval = 1
so that each command is only run once to ensure that the results complete (even
with a single evaluation, the benchmark may take up to or more than a minute to
complete, depending on your system). Does the relative time difference increase
or decrease? By how much?

3. Test how long the different methods for subsetting the data frame df, presented
in “Benchmarking Example” on page 10, take on your computer. Is it faster or
slower at subsetting than the computer on which this book was compiled?

4. Use system.time() and a for() loop to test how long it takes to perform the
subsetting operation 50,000 times. Before testing this, do you think it will be
more or less than one second for each subsetting method? Hint: the test for the
first method is shown in the following code:

Test how long it takes to subset the data frame 50,000 times:
system.time(
 for(i in 1:50000) {
 df[3, 2]
 }
)

Benchmarking and Profiling | 13

5. Bonus exercise: try profiling a section of code you have written using profvis.
Where are the bottlenecks? Were they where you expected?

Book Resources
R Package
This book has an associated R package that contains datasets and functions refer‐
enced in the book. The package is hosted on GitHub and can be installed using the
devtools package:

devtools::install_github("csgillespie/efficient")

The package also contains solutions (as vignettes) to the exercises found in this book.
They can be browsed with the following command:

browseVignettes(package = "efficient")

The following command will install all packages used to generate this book:

devtools::install_github("csgillespie/efficientR")

Online Version
We are grateful to O’Reilly for allowing us to develop this book online. The online
version constitutes a substantial additional resource to supplement this book, and will
continue to evolve in between reprints of the physical book. The book’s code also rep‐
resents a substantial learning opportunity in itself as it was written using R Mark‐
down and the bookdown package, allowing us to run the R code each time we
compile the book to ensure that it works, and allowing others to contribute to its lon‐
gevity. To edit this chapter, for example, simply navigate to https://github.com/csgilles‐
pie/efficientR/edit/master/01-introduction.Rmd while logged into a GitHub account.
The full source of the book is available at https://github.com/csgillespie/efficientR
where we welcome comments/questions on the Issue Tracker and Pull Requests.

References
Wickham, Hadley. 2014a. Advanced R. CRC Press.

Visser, Marco D., Sean M. McMahon, Cory Merow, Philip M. Dixon, Sydne Record,
and Eelke Jongejans. 2015. “Speeding Up Ecological and Evolutionary Computations
in R; Essentials of High Performance Computing for Biologists.” Edited by Francis
Ouellette. PLOS Computational Biology 11 (3): e1004140. doi:10.1371/journal.pcbi.
1004140.

14 | Chapter 1: Introduction

https://github.com/csgillespie/efficient
https://csgillespie.github.io/efficientR/
https://github.com/csgillespie/efficientR/edit/master/01-introduction.Rmd
https://github.com/csgillespie/efficientR/edit/master/01-introduction.Rmd
http://bit.ly/newgithub
https://github.com/csgillespie/efficientR
https://github.com/csgillespie/efficientR/issues
http://bit.ly/speedupR
http://bit.ly/speedupR

Janert, Philipp K. 2010. Data Analysis with Open Source Tools. O’Reilly Media.

Jensen, Jørgen Dejgård. 2011. “Can Worksite Nutritional Interventions Improve Pro‐
ductivity and Firm Profitability? A Literature Review.” Perspectives in Public Health
131 (4). SAGE Publications: 184–92.

Pereira, Michelle Jessica, Brooke Kaye Coombes, Tracy Anne Comans, and Venerina
Johnston. 2015. “The Impact of Onsite Workplace Health-Enhancing Physical Activ‐
ity Interventions on Worker Productivity: A Systematic Review.” Occupational and
Environmental Medicine 72 (6). BMJ Publishing Group Ltd: 401–12.

Grant, Christine A, Louise M Wallace, and Peter C Spurgeon. 2013. “An Exploration
of the Psychological Factors Affecting Remote E-Worker’s Job Effectiveness, Well-
Being and Work-Life Balance.” Employee Relations 35 (5). Emerald Group Publishing
Limited: 527–46.

References | 15

CHAPTER 2

Efficient Setup

An efficient computer setup is analogous to a well-tuned vehicle. Its components
work in harmony. It is well serviced. It’s fast!

This chapter describes the setup that will enable a productive workflow. It explores
how the operating system, R version, startup files, and IDE can make your R work
faster. Understanding and at times changing these setup options can have many addi‐
tional benefits. That’s why we cover them at this early stage (hardware is covered in
Chapter 3). By the end of this chapter, you should understand how to set up your
computer and R installation for optimal efficiency. It covers the following topics:

R and the operating systems
System monitoring on Linux, Mac, and Windows

R version
How to keep your base R installation and packages up-to-date

R start-up
How and why to adjust your .Rprofile and .Renviron files

RStudio
An IDE to boost your programming productivity

BLAS and alternative R interpreters
Looks at ways to make R faster

Efficient programming is more than a series of tips: there is no substitute for in-depth
understanding. However, to help remember the key messages buried among the
details, each chapter from now on contains a Top Five Tips section after the pre-
requisites.

Efficient Setup | 17

1 All CRAN packages are automatically tested on these systems, in addition to Solaris. R has also been reported
to run on more exotic operating systems, including those used in smartphones and game consoles (Peng
2014).

Prerequisites
Only one package needs to be installed to run the code in this chapter:

library("benchmarkme")

Top Five Tips for an Efficient R Setup
1. Use system monitoring to identify bottlenecks in your hardware/code.
2. Keep your R installation and packages up-to-date.
3. Make use of RStudio’s powerful autocompletion capabilities and shortcuts.
4. Store API keys in the .Renviron file.
5. Consider changing your BLAS library.

Operating System
R supports all three major operating system (OS) types: Linux, Mac, and Windows.1 R
is platform-independent, although there are some OS-specific quirks, such as in rela‐
tion to file-path notation (see “The Location of Startup Files” on page 26).

Basic OS-specific information can be queried from within R using Sys.info():

Sys.info()
#> sysname release machine user
#> "Linux" "4.2.0-35-generic" "x86_64" "robin"

Translated into English, the preceding output means that R is running on a 64-bit
(x86_64) Linux distribution (4.2.0-35-generic is the Linux version) and that the
current user is robin. Four other pieces of information (not shown) are also pro‐
duced by the command, the meaning of which is well documented in a help file
revealed by entering ?Sys.info in the R console.

18 | Chapter 2: Efficient Setup

2 Benchmarking conducted for the presentation “R on Different Platforms” at useR! 2006 found that R was
marginally faster on Windows than on Linux setups. Similar results were reported in an academic paper, with
R completing statistical analyses faster on a Linux than on a Mac (Sekhon 2006). In 2015 Revolution R sup‐
ported these results with slightly faster run times for certain benchmarks on Ubuntu than Mac systems. The
data from the benchmarkme package also suggests that running code under the Linux OS is marginally faster.

The assertive.reflection package can be used to report additional
information about your computer’s operating system and R setup
with functions for asserting operating system and other system
characteristics. The assert_*() functions work by testing the
truth of the statement and erroring if the statement is untrue. On a
Linux system assert_is_linux() will run silently, whereas
assert_is_windows() will cause an error. The package can also
test for the IDE you are using (e.g., assert_is_rstudio()), the
capabilities of R (assert_r_has_libcurl_capability(), etc.), and
what OS tools are available (e.g., assert_r_can_compile_code()).
These functions can be useful for running code that is designed
only to run on one type of setup.

Operating System and Resource Monitoring
Minor differences aside, R’s computational efficiency is broadly the same across dif‐
ferent operating systems.2 Beyond the 32-bit versus 64-bit issue (covered in Chap‐
ter 3) and process forking (covered in Chapter 7) another OS-related issue to consider
is external dependencies: programs that R packages depend on. Sometimes external
package dependencies must be installed manually (i.e., not using install.pack
ages()). This is especially common on Unix-based systems (Linux and Mac). On
Debian-based operating systems such as Ubuntu, many R packages can be installed at
the OS level to ensure that external dependencies are also installed (see “Installing R
Packages with Dependencies” on page 24).

Resource monitoring is the process of checking the status of key OS variables. For
computationally intensive work, it is sensible to monitor system resources in this way.
Resource monitoring can help identify computational bottlenecks. Alongside R
profiling functions such as profvis (see “Code Profiling” on page 128), system moni‐
toring provides a useful tool for understanding how R is performing in relation to
variables reporting the OS state, such as how much RAM is in use, which relates to
the wider question of whether more is needed (covered in Chapter 3).

CPU resources allocated over time is another common OS variable that is worth
monitoring. A basic use case is to check whether your code is running in parallel (see
Figure 2-1), and whether there is spare CPU capacity on the OS that could be har‐
nessed by parallel code.

19

http://bit.ly/benchmarkRRO

Figure 2-1. Output from a system monitor (gnome-system-monitor running on Ubuntu)
showing the resources consumed by running the code presented in the second of the
Exercises at the end of this section. The first increases RAM use, the second is single-
threaded, and the third is multithreaded.

System monitoring is a complex topic that spills over into system administration and
server management. Fortunately, there are many tools designed to ease monitoring
on all major operating systems.

• On Linux, the shell command top displays key resource use figures for most dis‐
tributions. htop and Gnome’s System Monitor (gnome-system-monitor; see
Figure 2-1) are more refined alternatives, which use command-line and graphical
user interfaces, respectively. A number of options, such as nethogs, monitor
internet usage.

• On Mac, the Activity Monitor provides similar functionality. This can be initiated
from the Utilities folder in Launchpad.

• On Windows, the Task Manager provides key information on RAM and CPU use
by process. This can be started in modern Windows versions by pressing Ctrl-
Alt-Del or by clicking the taskbar and Start Task Manager.

Exercises

1. What is the exact version of your computer’s operating system?
2. Start an activity monitor, then execute the following code chunk. In it, lapply()

(or its parallel version, mclapply()) is used to apply the function median() over
every column in the data frame object X (see “The Apply Family” on page 57 for
more on the apply family of functions). The reason this works is that a data frame
is really a list of vectors, with each vector forming a column. How do the system
output log results on your system compare to those presented in Figure 2-1?

Note: uses 2+ GB RAM and takes several seconds depending on hardware
1: Create large dataset

20 | Chapter 2: Efficient Setup

X = as.data.frame(matrix(rnorm(1e8), nrow = 1e7))
2: Find the median of each column using a single core
r1 = lapply(X, median)
3: Find the median of each column using many cores
r2 = parallel::mclapply(X, median)

mclapply only works in parallel on Mac and Linux. In Chap‐
ter 7 you’ll learn about the equivalent function parLapply()
that works in parallel on Windows.

3. What do you notice regarding CPU usage, RAM, and system time during and
after each of the three operations?

4. Bonus question: how would the results change depending on operating system?

R Version
It is important to be aware that R is an evolving software project, whose behavior
changes over time. In general, base R is very conservative about making changes that
break backwards compatibility. However, packages occasionally change substantially
from one release to the next; typically it depends on the age of the package. For most
use cases, we recommend always using the most up-to-date version of R and pack‐
ages so you have the latest code. In some circumstances (e.g., on a production server
or working in a team), you may alternatively want to use specific versions that have
been tested to ensure stability. Keeping packages up-to-date is desirable because new
code tends to be more efficient, intuitive, robust, and feature-rich. This section
explains how.

Previous R versions can be installed from CRAN’s archive or previ‐
ous R releases. The binary versions for all OSes can be found at
cran.r-project.org/bin/. To download binary versions for Ubuntu
Wily, for example, see https://cran.r-project.org/bin/linux/ubuntu/
wily/. To pin specific versions of R packages you can use the pack‐
rat package. For more on pinning R versions and R packages, see
the following articles on RStudio’s website: Using-Different-
Versions-of-R and rstudio.github.io/packrat/.

Installing R
The method of installing R varies for Windows, Linux, and Mac.

On Windows, a single .exe file (hosted at cran.r-project.org/bin/windows/base/) will
install the base R package.

R Version | 21

https://cran.r-project.org/bin/
https://cran.r-project.org/bin/linux/ubuntu/wily/
https://cran.r-project.org/bin/linux/ubuntu/wily/
http://bit.ly/usingdiffR
http://bit.ly/usingdiffR
https://rstudio.github.io/packrat/
https://cran.r-project.org/bin/windows/base/

3 See Jason French’s “Installing R in Linux” for more information on installing R on a variety of Linux distribu‐
tions.

On a Mac, the latest version should be installed by downloading the .pkg files hosted
at https://cran.r-project.org/bin/macosx/.

On Linux, the installation method depends on the distribution of Linux installed,
though the principles are the same. We’ll cover how to install R on Debian-based sys‐
tems, with links at the end for details on other Linux distributions. The first stage is
to add the CRAN repository to ensure that the latest version is installed. If you are
running Ubuntu 16.04, for example, append the following line to the file /etc/apt/
sources.list:

deb http://cran.rstudio.com/bin/linux/ubuntu xenial/

http://cran.rstudio.com is the mirror (which can be replaced by any of those listed
at https://cran.r-project.org/mirrors.html) and xenial is the release. See the Debian
and Ubuntu installation pages on CRAN for further details.

Once the appropriate repository has been added and the system updated (e.g., with
sudo apt-get update), r-base and other r- packages can be installed using the apt
system. The following two commands, for example, would install the base R package
(a barebones install) and the package RCurl, which has an external dependency:

sudo apt-get install r-cran-base # install base R
sudo apt-get install r-cran-rcurl # install the rcurl package

apt-cache search "^r-.*" | sort will display all R packages that can be installed
from apt in Debian-based systems. In Fedora-based systems, the equivalent com‐
mand is yum list R-*.

Typical output from the second command is illustrated in the following example:

The following extra packages will be installed:
 libcurl3-nss
The following NEW packages will be installed
 libcurl3-nss r-cran-rcurl
0 to upgrade, 2 to newly install, 0 to remove and 16 not to upgrade.
Need to get 699 kB of archives.
After this operation, 2,132 kB of additional disk space will be used.
Do you want to continue? [Y/n]

Further details are provided at https://cran.r-project.org/bin/linux/ for Debian, Redhat,
and Suse OSs. R also works on FreeBSD and other Unix-based systems.3

Once R is installed, it should be kept up-to-date.

22 | Chapter 2: Efficient Setup

http://bit.ly/installRlinux
https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/linux/ubuntu/
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/bin/linux/debian/
https://cran.r-project.org/bin/linux/ubuntu/
https://cran.r-project.org/bin/linux/

Updating R
R is a mature and stable language, so well-written code in base R should work on
most versions. However, it is important to keep your R version relatively up-to-date
for the following reasons:

• Bug fixes are introduced in each version, making errors less likely.
• Performance enhancements are made from one version to the next, meaning

your code may run faster in later versions.
• Many R packages only work on recent versions on R.

Release notes with details on each of these issues are hosted at https://cran.r-
project.org/src/base/NEWS. R release versions have three components corresponding
to major.minor.patch changes. Generally, two or three patches are released before the
next minor increment, each patch is released roughly every three months. R 3.2, for
example, has consisted of three versions: 3.2.0, 3.2.1, and 3.2.2.

• On Ubuntu-based systems, new versions of R should be automatically detected
through the software management system, and can be installed with apt-get
upgrade.

• On Mac, the latest version should be installed by the user from the .pkg files men‐
tioned previously.

• On Windows, the installr package makes updating easy:
check and install the latest R version
installr::updateR()

For information about changes to expect in the next version, you can subscribe to R’s
NEWS RSS feed. It’s a good way of keeping up-to-date.

Installing R Packages
Large projects may need several packages to be installed. In this case, the required
packages can be installed at once. Using the example of packages for handling spatial
data, this can be done quickly and concisely with the following code:

pkgs = c("raster", "leaflet", "rgeos") # package names
install.packages(pkgs)

In the previous code, all the required packages are installed with two—not three—
lines, which reduces typing. Note that we can now reuse the pkgs object to load them
all:

inst = lapply(pkgs, library, character.only = TRUE) # load them

R Version | 23

https://cran.r-project.org/src/base/NEWS
https://cran.r-project.org/src/base/NEWS
http://bit.ly/RnewsRSS

In the previous code, library(pkg[i]) is executed for every package stored in the
text string vector. We use library() here instead of require() because the former
produces an error if the package is not available.

Loading all packages at the beginning of a script is good practice as it ensures that all
dependencies have been installed before time is spent executing code. Storing pack‐
age names in a character vector object such as pkgs is also useful because it allows us
to refer back to them again and again.

Installing R Packages with Dependencies
Some packages have external dependencies (i.e., they call libraries outside R). On
Unix-like systems, these are best installed onto the operating system, bypassing
install.packages. This will ensure that the necessary dependencies are installed and
set up correctly alongside the R package. On Debian-based distributions such as
Ubuntu, for example, packages with names starting with r-cran- can be searched for
and installed as follows (see https://cran.r-project.org/bin/linux/ubuntu/ for a list of
these):

apt-cache search r-cran- # search for available cran Debian packages
sudo apt-get-install r-cran-rgdal # install the rgdal package (with dependencies)

On Windows, the installr package helps manage and update R packages with system-
level dependencies. For example, the Rtools package for compiling C/C++ code on
Windows can be installed with the following command:

installr::install.rtools()

Updating R Packages
An efficient R setup will contain up-to-date packages. This can be done for all pack‐
ages by using:

update.packages()

The default for this function is for the ask argument to be set to TRUE, giving control
over what is downloaded onto your system. This is generally desirable because updat‐
ing dozens of large packages can consume a large proportion of available system
resources.

To update packages automatically, you can add the line
utils::update.packages(ask = FALSE) to the .Last function in
the .Rprofile startup file (see the next section for more on .Rprofile).
Thanks to Richard Cotton for this tip.

24 | Chapter 2: Efficient Setup

https://cran.r-project.org/bin/linux/ubuntu/

An even more interactive method for updating packages in R is provided by RStudio
via Tools → Check for Package Updates. Many such time-saving tricks are enabled by
RStudio, as described in “Installing and Updating RStudio” on page 35. Next (after
the exercises), we take a look at how to configure R using startup files.

Exercises

1. What version of R are you using? Is it the most up-to-date?
2. Do any of your packages need updating?

R Startup
Every time R starts, a couple of file scripts are run by default, as documented
in ?Startup. This section explains how to customize these files, allowing you to save
API keys or load frequently used functions. Before learning how to modify these files,
we’ll take a look at how to ignore them, with R’s startup arguments. If you want to
turn custom setup on, it’s useful to be able to turn it off (e.g., for debugging).

Some of R’s startup arguments can be controlled interactively in
RStudio. See the online help file Customizing RStudio for more on
this.

R Startup Arguments
A number of arguments that relate to startup can be appended to the R startup com‐
mand (R in a shell environment). The following are particularly important:

--no-environ and --no-init
Tell R to only look for startup files (described in the next section) in the current
working directory.

--no-restore

Tells R not to load a file called .RData (the default name for R session files) that
may be present in the current working directory.

--no-save

Tells R not to ask the user if they want to save objects saved in RAM when the
session is ended with q().

Adding each of these will make R load slightly faster, meaning that slightly less user
input is needed when you quit. R’s default setting of loading data from the last session

R Startup | 25

http://bit.ly/customizeRstudio

automatically is potentially problematic in this context. See Appendix B of An Intro‐
duction to R for more startup arguments.

A concise way to load a vanilla version of R with all of the preced‐
ing options enabled is with an option of the same name:

R --vanilla

An Overview of R’s Startup Files
Two files are read each time R starts (unless one of the command-line options out‐
lined previously is used):

.Renviron
The primary purpose of which is to set environment variables. These tell R where
to find external programs, and can hold user-specific information that needs to
be kept secret, typically API keys.

.Rprofile
A plain text file (which is always called .Rprofile, hence its name) that simply runs
lines of R code every time R starts. If you want R to check for package updates
each time it starts (as explained in the previous section), you simply add the rele‐
vant line somewhere in this file.

When R starts (unless it was launched with --no-environ), it first searches
for .Renviron and then .Rprofile, in that order. Although .Renviron is searched for
first, we will look at .Rprofile first as it is simpler and, for many setup tasks, more fre‐
quently useful. Both files can exist in three directories on your computer.

Modification of R’s startup files should not be taken lightly. This is
an advanced topic. If you modify your startup files in the wrong
way, it can cause problems: a seemingly innocent call to setwd()
in .Rprofile, for example, will break devtools build and check
functions.
Proceed with caution and, if you mess things up, just delete the
offending files!

The Location of Startup Files
Confusingly, multiple versions of startup files can exist on the same computer, only
one of which will be used per session. Note also that these files should only be
changed with caution and if you know what you are doing. This is because they can
make your R version behave differently than other R installations, potentially reduc‐
ing the reproducibility of your code.

26 | Chapter 2: Efficient Setup

https://cran.r-project.org/doc/manuals/R-intro.pdf
https://cran.r-project.org/doc/manuals/R-intro.pdf

Files in three folders are important in this process:

R_HOME

The directory in which R is installed. The etc subdirectory can contain startup
files read early on in the startup process. Find out where your R_HOME is with the
R.home() command.

HOME

The user’s home directory. Typically, this is /home/username on Unix machines
or C:\Users\username on Windows (since Windows 7). Ask R where your home
directory is with Sys.getenv("HOME").

R’s current working directory
This is reported by getwd().

It is important to know the location of the .Rprofile and .Renviron setup files that are
being used out of these three options. R only uses one .Rprofile and one .Renviron in
any session; if you have an .Rprofile file in your current project, R will ignore .Rprofile
in R_HOME and HOME. Likewise, .Rprofile in HOME overrides .Rprofile in R_HOME. The
same applies to .Renviron: you should remember that adding project-specific envi‐
ronment variables with .Renviron will deactivate other .Renviron files.

To create a project-specific startup script, simply create an .Rprofile file in the project’s
root directory and start adding R code (e.g., via file.edit(".Rprofile")). Remem‐
ber that this will make .Rprofile in the home directory be ignored. The following
commands will open your .Rprofile from within an R editor:

file.edit("~/.Rprofile") # edit .Rprofile in HOME
file.edit(".Rprofile") # edit project-specific .Rprofile

File paths provided by Windows operating systems will not always
work in R. Specifically, if you use a path that contains single back‐
slashes, such as C:\\DATA\\data.csv, as provided by Windows,
this will generate the error: Error: unexpected input in "C:\\".
To overcome this issue, R provides two functions, file.path()
and normalizePath(). The former can be used to specify file loca‐
tions without having to use symbols to represent relative file paths,
as follows: file.path("C:", "DATA", "data.csv"). The latter
takes any input string for a filename and outputs a text string that
is standard (canonical) for the operating system. normalize
Path("C:/DATA/data.csv"), for example, outputs C:\\DATA\

\data.csv on a Windows machine but C:/DATA/data.csv on
Unix-based platforms. Note that only the latter would work on
both platforms, so standard Unix file path notation is safe for all
operating systems.

R Startup | 27

Editing the .Renviron file in the same locations will have the same effect. The follow‐
ing code will create a user-specific .Renviron file (where API keys and other cross-
project environment variables can be stored) without overwriting any existing file.

user_renviron = path.expand(file.path("~", ".Renviron"))
file.edit(user_renviron) # open with another text editor if this fails

The pathological package can help find where .Rprofile
and .Renviron files are located on your system, thanks to the
os_path() function. The output of example(Startup) is also
instructive.

The location, contents, and uses of each is outlined in more detail in the next section.

The .Rprofile File
By default, R looks for and runs .Rprofile files in the three locations described previ‐
ously, in a specific order. .Rprofile files are simply R scripts that run each time R runs.
They can be found within R_HOME, HOME, and the project’s home directory by using
getwd(). To check if you have a sitewide .Rprofile, which will run for all users on
startup, run:

site_path = R.home(component = "home")
fname = file.path(site_path, "etc", "Rprofile.site")
file.exists(fname)

The preceding code code checks for the presence of Rprofile.site in that directory. As
outlined previously, the .Rprofile located in your home directory is user-specific.
Again, we can test whether this file exists using:

file.exists("~/.Rprofile")

We can use R to create and edit .Rprofile (warning: do not overwrite your previ‐
ous .Rprofile—we suggest you try project-specific .Rprofile first):

file.edit("~/.Rprofile")

Example .Rprofile File
Example 2-1 provides a taste of what goes into .Rprofile. Note that this is simply a
usual R script, but with an unusual name. The best way to understand what is going
on is to create this same script, save it as .Rprofile in your current working directory,
and then restart your R session to observe what changes. To restart your R session
from within RStudio, you can click Session → Restart R or use the keyboard shortcut
Ctrl-Shift-F10.

28 | Chapter 2: Efficient Setup

Example 2-1. Example contents of .Rprofile

A fun welcome message
message("Hi Robin, welcome to R")
Customize the R prompt that prefixes every command
(use " " for a blank prompt)
options(prompt = "R4geo> ")

Let’s quickly explain each line of code. The first simply prints a message in the con‐
sole each time a new R session is started. The latter modifies the console prompt in
the console (set to > by default). Note that simply adding more lines to the .Rprofile
will set more features. An important aspect of .Rprofile (and .Renviron) is that each
line is run once and only once for each R session. That means that the options set
within .Rprofile can easily be changed during the session. The following command
run midsession, for example, will return the default prompt:

options(prompt = "> ")

More details on these and other potentially useful .Rprofile options are described sub‐
sequently. For more suggestions of useful startup settings, see examples in
help("Startup") and online resources such as those at statmethods.net. The help
pages for R options (accessible with ?options) are also worth a read before writing
your own .Rprofile.

Ever been frustrated by unwanted + symbols that prevent copied and pasted multiline
functions from working? These potentially annoying +s can be eradicated by adding
options(continue = " ") to your .Rprofile.

Setting options

The function options used previously contains a number of default settings. Execut‐
ing options() provides a good indication of what can be configured. The settings
that can be configured with options() are often related to personal preference (with
few implications for reproducibility) so the .Rprofile in your home directory is a sen‐
sible places to set them if you want them to be set for all your projects that have no
project-specific .Rprofile file. Other illustrative options are shown here:

With a customized prompt
options(prompt = "R> ", digits = 4, show.signif.stars = FALSE, continue = " ")
With a longer prompt and empty 'continue' indent (default is "+ ")
options(prompt = "R4Geo> ", digits = 3, continue = " ")

The first option changes four default options in a single line:

• The R prompt, from the boring > to the exciting R>
• The number of digits displayed
• Removing the stars after significant p-values

R Startup | 29

http://www.statmethods.net/interface/customizing.html

• Removing the + in multiline functions

Try to avoid adding options that make your code nonportable to the startup file. For
example, adding options(stringsAsFactors = FALSE) to your startup script has
additional effects for read.table() and related functions, including read.csv(),
making them convert text strings into characters rather than into factors, as is the
default. This may be useful for you, but it can also make your code less portable, so be
warned.

Setting the CRAN mirror

To avoid setting the CRAN mirror each time you run install.packages(), you can
permanently set the mirror in your .Rprofile.

`local` creates a new, empty environment
This avoids polluting .GlobalEnv with the object r
local({
 r = getOption("repos")
 r["CRAN"] = "https://cran.rstudio.com/"
 options(repos = r)
})

The RStudio mirror is a virtual machine run by Amazon’s EC2 service, and it syncs
with the main CRAN mirror in Austria once per day. Since RStudio is using Ama‐
zon’s CloudFront, the repository is automatically distributed around the world, so no
matter where you are in the world, the data doesn’t need to travel very far, and is
therefore fast to download.

The fortunes package
This section illustrates the power of .Rprofile customization with reference to a pack‐
age that was developed for fun. The following code could easily be altered to auto‐
matically connect to a database, or to ensure that the latest packages have been
downloaded.

The fortunes package contains a number of memorable quotes, called R fortunes,
that the community has collected over many years. Each fortune has a number. To get
fortune number 50, for example, enter:

fortunes::fortune(50)
#>
#> To paraphrase provocatively, 'machine learning is statistics minus any
#> checking of models and assumptions'.
#> -- Brian D. Ripley (about the difference between machine learning and
#> statistics)
#> useR! 2004, Vienna (May 2004)

It is easy to make R print out one of these nuggets of truth each time you start a ses‐
sion by adding the following to .Rprofile:

30 | Chapter 2: Efficient Setup

if(interactive())
 try(fortunes::fortune(), silent = TRUE)

The interactive() function tests whether R is being used interactively in a terminal.
The fortune() function is called within try(). If the fortunes package is not avail‐
able, we avoid raising an error and move on. By using ::, we avoid adding the for‐
tunes package to our list of attached packages.

Typing search() gives the list of attached packages. By using for
tunes::fortune(), we avoid adding the fortunes package to that
list. The function .Last(), if it exists in the .Rprofile, is always run
at the end of the session. We can use it to install the fortunes pack‐
age if needed. To load the package, we use require(), because if
the package isn’t installed, the require() function returns FALSE
and raises a warning.

.Last = function() {
 cond = suppressWarnings(!require(fortunes, quietly = TRUE))
 if(cond)
 try(install.packages("fortunes"), silent = TRUE)
 message("Goodbye at ", date(), "\n")
}

Useful functions
You can use .Rprofile to define new helper functions or redefine existing ones so that
they’re faster to type. For example, we could load the following two functions for
examining data frames:

ht == headtail
ht = function(d, n = 6) rbind(head(d, n), tail(d, n))
Show the first 5 rows & first 5 columns of a data frame
hh = function(d) d[1:5, 1:5]

and a function for setting a nice plotting window:

nice_par = function(mar = c(3, 3, 2, 1), mgp = c(2, 0.4, 0), tck = -0.01,
 cex.axis = 0.9, las = 1, mfrow = c(1, 1), ...) {
 par(mar = mar, mgp = mgp, tck = tck, cex.axis = cex.axis, las = las,
 mfrow = mfrow, ...)
}

Note that these functions are for personal use and are unlikely to interfere with code
from other people. For this reason, even if you use a certain package every day, we
don’t recommend loading it in your .Rprofile. Shortening long function names for
interactive (but not reproducible code writing) is another option for using .Rprofile to
increase efficiency. If you frequently use View(), for example, you may be able to save
time by referring to it in abbreviated form. This is illustrated in the following line of

R Startup | 31

code, which makes it faster to view datasets (although with IDE-driven autocomple‐
tion, outlined in the next section, the time savings is less).

v = utils::View

Also beware of the dangers of loading many functions by default as it may make your
code less portable. Another potentially useful setting to change in .Rprofile is R’s cur‐
rent working directory. If you want R to automatically set the working directory to
the R folder of your project, for example, you would add the following line of code to
the project-specific .Rprofile:

setwd("R")

Creating hidden environments with .Rprofile
Beyond making your code less portable, another downside of putting functions in
your .Rprofile is that it can clutter up your workspace: when you run the ls() com‐
mand, your .Rprofile functions will appear. Also, if you run rm(list = ls()), your
functions will be deleted. One neat trick to overcome this issue is to use hidden
objects and environments. When an object name starts with ., by default it doesn’t
appear in the output of the ls() function:

.obj = 1
".obj" %in% ls()
#> [1] FALSE

This concept also works with environments. In the .Rprofile file, we can create a hid‐
den environment:

.env = new.env()

And then add functions to this environment:

.env$ht = function(d, n = 6) rbind(head(d, n), tail(d, n))

At the end of the .Rprofile file, we use attach, which makes it possible to refer to
objects in the environment by their names alone:

attach(.env)

The .Renviron File
The .Renviron file is used to store system variables. It follows a similar startup routine
to the .Rprofile file: R first looks for a global .Renviron file, then for local versions. A
typical use of the .Renviron file is to specify the R_LIBS path, which determines where
new packages are installed:

Linux
R_LIBS=~/R/library
Windows
R_LIBS=C:/R/library

32 | Chapter 2: Efficient Setup

4 See vignette("api-packages") from the httr package for more on this.

After setting this, install.packages() saves packages in the directory specified by
R_LIBS. The location of this directory can be referred back to subsequently as follows:

Sys.getenv("R_LIBS")

All currently stored environment variables can be seen by calling Sys.getenv() with
no arguments. Note that many environment variables are already preset and do not
need to be specified in .Renviron. HOME, for example, which can be seen with
Sys.getenv("HOME"), is taken from the operating system’s list of environment vari‐
ables. A list of the most important environment variables that can affect R’s behavior
is documented in the little-known help page help("environment variables").

To set or unset an environment variable for the duration of a session, use the follow‐
ing commands:

Sys.setenv("TEST" = "test-string") # set an environment variable for the session
Sys.unsetenv("TEST") # unset it

Another common use of .Renviron is to store API keys and authentication tokens that
will be available from one session to another.4 A common use case is setting the envi‐
ronment variable GITHUB_PAT, which will be detected by the devtools package via the
function github_pat(). To take another example, the following line in .Renviron sets
the ZEIT_KEY environment variable, which is used in the diezeit package:

ZEIT_KEY=PUT_YOUR_KEY_HERE

You will need to sign in and start a new R session for the environment variable
(accessed by Sys.getenv()) to be visible. To test if the example API key has been suc‐
cessfully added as an environment variable, run the following:

Sys.getenv("ZEIT_KEY")

Using the .Renviron file for storing settings such as library paths and API keys is effi‐
cient because it reduces the need to update your settings for every R session. Further‐
more, the same .Renviron file will work across different platforms, so keep it stored
safely.

Example .Renviron file
My .Renviron file has grown over the years. I often switch between my desktop and
laptop computers, so to maintain a consistent working environment, I have the
same .Renviron file on all of my machines. As well as containing an R_LIBS entry and
some API keys, my .Renviron has a few other lines:

R Startup | 33

https://cran.r-project.org/web/packages/httr/vignettes/api-packages.html
https://cran.r-project.org/web/packages/diezeit/

TMPDIR=/data/R_tmp/

When R is running, it creates temporary copies. On my work machine, the
default directory is a network drive.

R_COMPILE_PKGS=3

Byte compile all packages (covered in Chapter 3).

R_LIBS_SITE=/usr/lib/R/site-library:/usr/lib/R/library

I explicitly state where to look for packages. My university has a sitewide direc‐
tory that contains outdated packages. I want to avoiding using this directory.

R_DEFAULT_PACKAGES=utils,grDevices,graphics,stats,methods

Explicitly state the packages to load. Note that I don’t load the datasets package,
but I ensure that methods is always loaded. Due to historical reasons, the meth‐
ods package isn’t loaded by default in certain applications (e.g., Rscript).

Exercises

1. What are the three locations where the startup files are stored? Where are these
locations on your computer?

2. For each location, does a .Rprofile or .Renviron file exist?
3. Create a .Rprofile file in your current working directory that prints the message

Happy efficient R programming each time you start R at this location.
4. What happens to the startup files in R_HOME if you create them in HOME or local

project directories?

RStudio
RStudio is an IDE for R. It makes life easy for R users and developers with its intuitive
and flexible interface. RStudio encourages good programming practice. Through its
wide range of features, RStudio can help make you a more efficient and productive R
programmer. RStudio can, for example, greatly reduce the amount of time spent
remembering and typing function names thanks to intelligent autocompletion. Some
of the most important features of RStudio include:

• Flexible window pane layouts to optimize use of screen space and enable fast
interactive visual feedback

• Intelligent autocompletion of function names, packages, and R objects
• A wide range of keyboard shortcuts
• Visual display of objects, including a searchable data display table
• Real-time code checking, debugging, and error detection

34 | Chapter 2: Efficient Setup

5 Other open source R IDEs exist, including RKWard, Tinn-R, and JGR. emacs is another popular software
environment. However, it has a very steep learning curve.

• Menus to install and update packages
• Project management and integration with version control
• Quick display of function source code and help documents

The preceding list of features should make it clear that a well set-up IDE can be as
important as a well set-up R installation for becoming an efficient R programmer.5 As
with R itself, the best way to learn about RStudio is by using it. It is therefore worth
reading through this section in parallel with using RStudio to boost your productiv‐
ity.

Installing and Updating RStudio
RStudio is a mature, feature-rich, and powerful IDE optimized for R programming,
which has become popular among R developers. The Open Source Edition is com‐
pletely open source (as can be seen from the project’s GitHub rep). It can be installed
on all major OSs from the RStudio website.

If you already have RStudio and would like to update it, simply click Help → Check
for Updates in the menu. For fast and efficient work, keyboard shortcuts should be
used wherever possible, reducing the reliance on the mouse. RStudio has many key‐
board shortcuts that will help with this. To get into good habits early, try accessing the
RStudio Update interface without touching the mouse. On Linux and Windows,
drop-down menus are activated with the Alt key, so the menu item can be found
with: Alt-H-U.

On Mac, it works differently. Cmd-? should activate a search across menu items,
allowing the same operation to be achieved with Cmd-? update.

In RStudio, the keyboard shortcuts differ between Linux and Win‐
dows versions on one hand and Mac on the other. In this section,
we generally only use the Windows/Linux shortcut keys for brevity.
The Mac equivalent is usually found by simply replacing Ctrl and
Alt with the Mac-specific Cmd button.

Window Pane Layout
RStudio has four main window panes (see Figure 2-2), each of which serves a range of
purposes:

RStudio | 35

https://rkward.kde.org/
http://sourceforge.net/projects/tinn-r/
https://www.rforge.net/JGR/
https://www.gnu.org/software/emacs/
https://www.rstudio.com/products/rstudio/download/

The Source pane
For editing, saving, and dispatching R code to the console (top left). Note that
this pane does not exist by default when you start RStudio: it appears when you
open an R script (e.g., via File → New File → R Script). A common task in this
pane is to send code on the current line to the console, via Ctrl/Cmd-Enter.

The Console pane
Any code entered here is processed by R, line by line. This pane is ideal for inter‐
actively testing ideas before saving the final results in the Source pane above.

The Environment pane (top right)
Contains information about the current objects loaded in the workspace, includ‐
ing their class, dimension (if they are a data frame), and name. This pane also
contains tabbed subpanes with a searchable history that was dispatched to the
console and (if applicable to the project) Build and Git options.

The Files pane (bottom right)
Contains a simple file browser, a Plots tab, Help and Package tabs, and a Viewer
for visualizing interactive R output such as those produced by the leaflet package
and HTML widgets.

Figure 2-2. RStudio panels

Using each of the panels effectively and navigating between them quickly is a skill
that will develop over time, and will only improve with practice.

36 | Chapter 2: Efficient Setup

Exercises
You are developing a project to visualize data. Test out the multipanel RStudio work‐
flow by following these steps:

1. Create a new folder for the input data using the Files pane.
2. Type downl in the Source pane and hit Enter to make the function down

load.file() autocomplete. Then type ", which will autocomplete to "", paste the
URL of a file to download (e.g., https://www.census.gov/2010census/csv/
pop_change.csv) and a filename (e.g., pop_change.csv).

3. Execute the full command with Ctrl-Enter:
download.file("https://www.census.gov/2010census/csv/pop_change.csv",
 "extdata/pop_change.csv")

4. Write and execute a command to read the data, such as
pop_change = read.csv("extdata/pop_change.csv", skip = 2)

5. Use the Environment pane to click on the data object pop_change. Note that this
runs the command View(pop_change), which launches a data viewing tab in the
top left panel, for interactively exploring data frames (see Figure 2-3).

Figure 2-3. The data viewing tab in RStudio

6. Use the console to test different plot commands to visualize the data, saving the
code you want to keep back into the Source pane as pop_change.R.

7. Use the Plots tab in the Files pane to scroll through past plots. Save the best using
the Export drop-down button.

RStudio | 37

The previous example shows how understanding of these panes and how to use them
interactively can help with the speed and productivity of your R programming. Fur‐
ther, there are a number of RStudio settings that can help ensure that it works for
your needs.

RStudio Options
A range of project options and global options are available in RStudio from the Tools
menu (accessible in Linux and Windows from the keyboard via Alt-T). Most of these
are self-explanatory, but it is worth mentioning a few that can boost your program‐
ming efficiency:

• GIT/SVN project settings allow RStudio to provide a graphical interface to your
version-control system, described in Chapter 9.

• R version settings allow RStudio to point to different R versions/interpreters,
which may be faster for some projects.

• Restore .RData: untick this default to prevent loading previously created R
objects. This will make R start more quickly and also reduce the chance of bugs
due to previously created objects. For this reason, we recommend you untick this
box.

• Code-editing options can make RStudio adapt to your coding style, for example,
by preventing the autocompletion of braces, which some experienced program‐
mers may find annoying. Enabling Vim mode makes RStudio act as a (partial)
Vim emulator.

• Diagnostic settings can make RStudio more efficient by adding additional diag‐
nostics or by removing diagnostics if they are slowing down your work. This may
be an issue for people using RStudio to analyze large datasets on older low-spec
computers.

• Appearance: if you are struggling to see the source code, changing the default
font size may make you a more efficient programmer by reducing the time over‐
head associated with squinting at the screen. Other options in this area relate
more to aesthetics. Settings such as font type and background color are also
important because feeling comfortable in your programming environment can
boost productivity. Go to Tools → Global Options to modify these.

Autocompletion
R provides some basic autocompletion functionality. Typing the beginning of a func‐
tion name, such as rn (short for rnorm()), and pressing the Tab key twice will result
in the full function names associated with this text string being printed. In this case,
two options would be displayed: rnbinom and rnorm, providing a useful reminder to

38 | Chapter 2: Efficient Setup

6 Slots are elements of an object (specifically, S4 objects) analogous to a column in a data.frame but referred to
with @ not $.

the user about what is available. The same applies to filenames enclosed in quotation
marks: typing te in the console in a project that contains a file called test.R should
result in the full name "test.R" being autocompleted. RStudio builds on this func‐
tionality and takes it to a new level.

The default settings for autocompletion in RStudio work well. They
are intuitive and are likely to work for many users, especially begin‐
ners. However, RStudio’s autocompletion options can be modified
by navigating to Tools → Global Options → Code → Completion in
RStudio’s top-level menu.

Instead of only autocompleting options when Tab is pressed, RStudio autocompletes
them at any point. Building on the previous example, RStudio’s autocompletion trig‐
gers when the first three characters are typed: rno. The same functionality works
when only the first characters are typed, followed by Tab: automatic autocompletion
does not replace Tab autocompletion but supplements it. Note that in RStudio, two
more options are provided to the user after entering rn and pressing the Tab key
compared with entering the same text into base R’s console described in the previous
paragraph: RNGkind and RNGversion. This illustrates that RStudio’s autocompletion
functionality is not case-sensitive in the same way that R is. This is a good thing
because R has no consistent function name style!

RStudio also has more intelligent autocompletion of objects and filenames than R’s
built-in command line. To test this functionality, try typing US, followed by the Tab
key. After pressing down until USArrests is selected, press Enter so it autocompletes.
Finally, typing $ should leave the following text on the screen and the four columns
should be shown in a dropdown box, ready for you to select the variable of interest
with the down arrow.

USArrests$ # a drop-down menu of columns should appear in RStudio

To take a more complex example, variable names stored in the data slot of the class
SpatialPolygonsDataFrame (a class defined by the foundational spatial package sp)
are referred to in the long form spdf@data$varname.6 In this case, spdf is the object
name, data is the slot, and varname is the variable name. RStudio makes such S4
objects easier to use by enabling autocompletion of the short form spdf$varname.
Another example is RStudio’s ability to find files hidden away in subfolders. Typing
"te will find test.R even if it is located in a subfolder such as R/test.R. There are a
number of other clever autocompletion tricks that can boost R’s productivity when

RStudio | 39

using RStudio, which are best found by experimenting and pressing the Tab key fre‐
quently during your R programming work.

Keyboard Shortcuts
RStudio has many useful shortcuts that can help make your programming more effi‐
cient by reducing the need to reach for the mouse and point and click your way
around code and RStudio. These can be viewed by using a little known but extremely
useful keyboard shortcut (this can also be accessed via the Tools menu): Alt-Shift-K.

This will display the default shortcuts in RStudio. It is worth spending time identify‐
ing which of these could be useful in your work and practicing interacting with RStu‐
dio rapidly with minimal reliance on the mouse. The power of these autocompletion
capabilities can be further enhanced by setting your own keyboard shortcuts. How‐
ever, as with setting .Rprofile and .Renviron settings, this risks reducing the portability
of your workflow.

Some more useful shortcuts are listed here. There are many more gems to find that
could boost your R writing productivity:

Ctrl-Z/Shift-Z
Undo/Redo

Ctrl-Enter
Execute the current line or code selection in the Source pane

Ctrl-Alt-R
Execute all the R code in the currently open file in the Source pane

Ctrl-Left/Right
Navigate code quickly, word by word

Home/End
Navigate to the beginning/end of the current line

Alt-Shift-Up/Down
Duplicate the current line up or down

Ctrl-D
Delete the current line

To set your own RStudio keyboard shortcuts, navigate to Tools → Modify Keyboard
Shortcuts.

Object Display and Output Table
It is useful to know what is in your current R environment. This information can be
revealed with ls(), but this function only provides object names. RStudio provides

40 | Chapter 2: Efficient Setup

http://bit.ly/Rstudioshortcuts

an efficient mechanism to show currently loaded objects and their details in real-
time: the Environment tab in the top-right corner. It makes sense to keep an eye on
which objects are loaded and to delete objects that are no longer useful. Doing so will
minimize the probability of confusion in your workflow (e.g., by using the wrong
version of an object) and reduce the amount of RAM R needs. The details provided in
the Environment tab include the object’s dimension and some additional details
depending on the object’s class (e.g., size in MB for large datasets).

A very useful feature of RStudio is its advanced viewing functionality. This is trig‐
gered either by executing View(object) or by double-clicking on the object name in
the Environment tab. Although you cannot edit data in the Viewer (this should be
considered a good thing from a data integrity perspective), recent versions of RStudio
provide an efficient search mechanism to rapidly filter and view the records that are
of most interest (see Figure 2-3).

Project Management
In the far top-right of RStudio there is a diminutive drop-down menu illustrated with
R inside a transparent box. This menu may be small and simple, but it is hugely effi‐
cient in terms of organizing large, complex, and long-term projects.

The idea of RStudio projects is that the bulk of R programming work is part of a
wider task, which will likely consist of input data, R code, graphical and numerical
outputs, and documents describing the work. It is possible to scatter each of these ele‐
ments at random across your hard disks, but this is not recommended. Instead, the
concept of projects encourages reproducible working, such that anyone who opens
the particular project folder that you are working from should be able to repeat your
analyses and replicate your results.

It is therefore highly recommended that you use projects to organize your work. It
could save hours in the long run. Organizing data, code, and outputs also makes
sense from a portability perspective: if you copy the folder (e.g., via GitHub), you can
work on it from any computer without worrying about having the right files on your
current machine. These tasks are implemented using RStudio’s simple project system,
in which the following things happen every time you open an existing project:

• The working directory automatically switches to the project’s folder. This enables
data and script files to be referred to using relative file paths, which are much
shorter than absolute file paths. This means that switching directories using
setwd(), a common source of error for R users, is rarely, if ever, needed.

• The last previously open file is loaded into the Source pane. The history of R
commands executed in previous sessions is also loaded into the History tab. This
assists with continuity between one session and the next.

RStudio | 41

• The File tab displays the associated files and folders in the project, allowing you
to quickly find your previous work.

• Any settings associated with the project, such as Git settings, are loaded. This
assists with collaboration and project-specific setup.

Each project is different, but most contain input data, R code, and outputs. To keep
things tidy, we recommend a subdirectory structure resembling the following:

project/
 - README.Rmd # Project description
 - set-up.R # Required packages
 - R/ # For R code
 - input # Data files
 - graphics/
 - output/ # Results

Proper use of projects ensures that all R source files are neatly stashed in one folder
with a meaningful structure. This way, data and documentation can be found where
one would expect them. Under this system, figures and project outputs are first-class
citizens within the project’s design, each with their own folder.

Another approach to project management is to treat projects as R packages. This is
not recommended for most use cases, as it places restrictions on where you can put
files. However, if the aim is code development and sharing, creating a small R package
may be the way forward, even if you never intend to submit it on CRAN. Creating R
packages is easier than ever before, as documented in Learning R by Richard Cotton
(O’Reilly) and, more recently, in R Packages by Hadley Wickham (O’Reilly). The dev‐
tools package helps manage R’s quirks, making the process much less painful. If you
use GitHub, the advantage of this approach is that anyone should be able to repro‐
duce your work using devtools::install_github("username/projectname"),
although the administrative overhead of creating an entire package for each small
project will outweigh the benefits for many.

Note that a set-up.R or even a .Rprofile file in the project’s root directory enables
project-specific settings to be loaded each time people work on the project. As
described in the previous section, .Rprofile can be used to tweak how R works at
startup. It is also a portable way to manage R’s configuration on a project-by-project
basis.

Another capability that RStudio has is excellent debugging support. Rather than re-
invent the wheel, I would like to direct interested readers to the RStudio website.

Exercises

1. Try modifying the look and appearance of your RStudio setup.

42 | Chapter 2: Efficient Setup

http://shop.oreilly.com/product/0636920028352.do
http://shop.oreilly.com/product/0636920034421.do
http://bit.ly/debugRstudio

7 OpenBLAS was installed on the computer via sudo apt-get install libopenblas-base, which is automati‐
cally detected and used by R.

2. What is the keyboard shortcut to show the other shortcut? (Hint: it begins with
Alt-Shift on Linux and Windows.)

3. Try as many of the shortcuts revealed by the previous step as you like. Write
down the ones that you think will save you time, perhaps on a Post-it note to go
on your computer.

BLAS and Alternative R Interpreters
In this section, we cover a few system-level options available to speed up R’s perfor‐
mance. Note that for many applications, stability rather than speed is a priority, so
these should only be considered if a) you have exhausted options for writing your R
code more efficiently and b) you are confident tweaking system-level settings. This
should therefore be seen as an advanced section: if you are not interested in speeding
up base R, feel free to skip to the next section.

Many statistical algorithms manipulate matrices. R uses the Basic Linear Algebra Sys‐
tem (BLAS) framework for linear algebra operations. Whenever we carry out a
matrix operation, such as transpose or finding the inverse, we use the underlying
BLAS library. By switching to a different BLAS library, it may be possible to speed up
your R code. Changing your BLAS library is straightforward if you are using Linux,
but can be tricky for Windows users.

The two open source alternative BLAS libraries are ATLAS and OpenBLAS. The Intel
MKL is another implementation, designed for Intel processors by Intel and used in
Revolution R (described in the next section), but it requires licensing fees. The MKL
library is provided with the Revolution analytics system. Depending on your applica‐
tion, by switching your BLAS library, linear algebra operations can run several times
faster than with the base BLAS routines.

If you use Linux, you can find whether you have a BLAS library setting with the fol‐
lowing function, from benchmarkme:

library("benchmarkme")
get_linear_algebra()

Testing Performance Gains from BLAS
As an illustrative test of the performance gains offered by BLAS, the following test
was run on a new laptop running Ubuntu 15.10 on a sixth-generation Core i7 pro‐
cessor, before and after OpenBLAS was installed.7

BLAS and Alternative R Interpreters | 43

http://math-atlas.sourceforge.net/
https://github.com/xianyi/OpenBLAS
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl

res = benchmark_std() # run a suite of tests to test R's performance

It was found that the installation of OpenBLAS led to a two-fold speed-up (from
around 150 to 70 seconds). The majority of the speed gain was from the matrix alge‐
bra tests, as can be seen in Figure 2-4. Note that the results of such tests are highly
dependent on the particularities of each computer. However, it clearly shows that pro‐
gramming benchmarks (e.g., the calculation of 3,500,000 Fibonacci numbers) are now
much faster, whereas matrix calculations and functions receive a substantial speed
boost. This demonstrates that the speed-up you can expect from BLAS depends heav‐
ily on the type of computations you are undertaking.

Figure 2-4. Performance gains obtained by changing the underlying BLAS library (tests
from benchmark_std())

Other Interpreters
The R language can be separated from the R interpreter. The former refers to the
meaning of R commands, and the latter refers to how the computer executes the
commands. Alternative interpreters have been developed to try to make R faster and,
while promising, none of the following options has fully taken off.

• Microsoft R Open, formerly known as Revolution R Open (RRO), is the
enhanced distribution of R from Microsoft. The key enhancement is that it uses
multithreaded mathematics libraries, which can improve performance.

44 | Chapter 2: Efficient Setup

http://www.revolutionanalytics.com/microsoft-r-open

• Rho (previously called CXXR, short for C++), a reimplementation of the R inter‐
preter for speed and efficiency. Of the new interpreters, this is the one that has
the most recent development activity (as of April 2016).

• pqrR (pretty quick R) is a new version of the R interpreter. One major downside
is that it is based on R-2.15.0. The developer (Radford Neal) has made many
improvements, some of which have now been incorporated into base R. pqR is
an open source project licensed under the GPL. One notable improvement in
pqR is that it is able to do some numeric computations in parallel with each
other, and with other operations of the interpreter, on systems with multiple pro‐
cessors or processor cores.

• Renjin reimplements the R interpreter in Java, so it can run on the Java Virtual
Machine (JVM). Since R will be pure Java, it can run anywhere.

• Tibco created a C++ based interpreter called TERR.
• Oracle also offers an R interpreter that uses Intel’s mathematics library and there‐

fore achieves higher performance without changing R’s core.

At the time of writing, switching interpreters is something to consider carefully. But
in the future, it may become more routine.

Useful BLAS/Benchmarking Resources
• The gcbd package benchmarks performance of a few standard linear algebra

operations across a number of different BLAS libraries as well as a GPU imple‐
mentation. It has an excellent vignette summarizing the results.

• Brett Klamer provides a nice comparison of ATLAS, OpenBLAS, and Intel MKL
BLAS libraries. He also gives a description of how to install the different libraries.

• The official R manual section on BLAS.

Exercise

1. What BLAS system is your version of R using?

References
Cotton, Richard. 2013. Learning R. O’Reilly Media.

Wickham, Hadley. 2015c. R Packages. O’Reilly Media.

References | 45

https://github.com/rho-devel/rho
http://www.pqr-project.org/
http://www.renjin.org/
http://spotfire.tibco.com/
https://cran.r-project.org/web/packages/gcbd/
http://brettklamer.com/diversions/statistical/faster-blas-in-r/
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#BLAS

CHAPTER 3

Efficient Programming

Many people who use R would not describe themselves as programmers. Instead,
they tend to have advanced domain-level knowledge and understand standard R data
structures such as vectors and data frames, but have little formal training in comput‐
ing. Sound familiar? In that case, this chapter is for you.

In this chapter, we will discuss “big picture” programming techniques. We cover gen‐
eral concepts and R programming techniques about code optimization, before
describing idiomatic programming structures. We conclude the chapter by examining
relatively easy ways of speeding up code using the compiler package and parallel pro‐
cessing using multiple CPUs.

Prerequisites
In this chapter, we introduce two new packages, compiler and memoise. The com‐
piler package comes with R, so it will already be installed.

library("compiler")
library("memoise")

We also use the pryr and microbenchmark packages in the exercises.

Top Five Tips for Efficient Programming
1. Be careful never to grow vectors.
2. Vectorize code whenever possible.
3. Use factors when appropriate.

47

4. Avoid unnecessary computation by caching variables.
5. Byte compile packages for an easy performance boost.

General Advice
Low-level languages like C and Fortran demand more from the programmer. They
force you to declare the type of every variable used, give you the burdensome respon‐
sibility of memory management, and have to be compiled. The advantage of such lan‐
guages, compared with R, is that they are faster to run. The disadvantage is that they
take longer to learn and cannot be run interactively.

The Wikipedia page on compiler optimizations gives a nice over‐
view of standard optimization techniques.

R users don’t tend to worry about data types. This is advantageous in terms of creat‐
ing concise code, but can result in R programs that are slow. While optimizations
such as going parallel can double speed, poor code can easily run hundreds of times
slower, so it’s important to understand the causes of slow code. These are covered in
The R Inferno by Patrick Burns (Lulu.com), which should be considered essential
reading for any aspiring R programmer.

Ultimately, calling an R function always ends up calling some underlying C/Fortran
code. For example, the base R function runif() only contains a single line that con‐
sists of a call to C_runif().

function (n, min = 0, max = 1)
 .Call(C_runif, n, min, max)

A golden rule in R programming is to access the underlying C/Fortran routines as
quickly as possible; the fewer function calls required to achieve this, the better. For
example, suppose x is a standard vector of length n. Then

x = x + 1

involves a single function call to the + function. Whereas the for loop

for(i in seq_len(n))
 x[i] = x[i] + 1

has

• n function calls to +
• n function calls to the [function

48 | Chapter 3: Efficient Programming

https://en.wikipedia.org/wiki/Optimizing_compiler

• n function calls to the [<- function (used in the assignment operation)
• A function call to for and to the : operator

It isn’t that the for loop is slow; rather it is because we have many more function calls.
Each individual function call is quick, but the total combination is slow.

Everything in R is a function call. When we execute 1 + 1, we are
actually executing +(1, 1).

Exercise

1. Use the microbenchmark package to compare the vectorized construct x = x +
1 to the for loop version. Try varying the size of the input vector.

Memory Allocation
Another general technique is to be careful with memory allocation. If possible, pre-
allocate your vector and then fill in the values.

You should also consider preallocating memory for data frames
and lists. Never grow an object. A good rule of thumb is to com‐
pare your objects before and after a for loop; have they increased
in length?

Let’s consider three methods of creating a sequence of numbers. Method 1 creates an
empty vector and gradually increases (or grows) the length of the vector:

method1 = function(n) {
 vec = NULL # Or vec = c()
 for(i in seq_len(n))
 vec = c(vec, i)
 vec
}

Method 2 creates an object of the final length and then changes the values in the
object by subscripting:

method2 = function(n) {
 vec = numeric(n)
 for(i in seq_len(n))
 vec[i] = i
 vec
}

General Advice | 49

Method 3 directly creates the final object:

method3 = function(n) seq_len(n)

To compare the three methods, we use the microbenchmark() function from the pre‐
vious chapter:

microbenchmark(times = 100, unit = "s",
 method1(n), method2(n), method3(n))

Table 3-1 shows the timing in seconds on my machine for these three methods for a
selection of values of n. The relationships for varying n are all roughly linear on a log-
log scale, but the timings between methods are drastically different. Notice that the
timings are no longer trivial. When n = 107, method 1 takes around an hour whereas
method 2 takes two seconds and method 3 is almost instantaneous. Remember the
golden rule: access the underlying C/Fortran code as quickly as possible.

Table 3-1. Time in seconds to create sequences. When n = 107, method 1 takes around an
hour while the other methods take less than three seconds.

n Method 1 Method 2 Method 3
105 0.21 0.02 0.00

106 25.50 0.22 0.00

107 3827.00 2.21 0.00

Vectorized Code

Technically x = 1 creates a vector of length 1. In this section, we
use vectorized to indicate that functions work with vectors of all
lengths.

Recall the golden rule in R programming: access the underlying C/Fortran routines as
quickly as possible—the fewer functions calls required to achieve this, the better.
With this mind, many R functions are vectorized; that is, the function’s inputs and/or
outputs naturally work with vectors, reducing the number of function calls required.
For example, the code

x = runif(n) + 1

performs two vectorized operations. First, runif() returns n random numbers. Sec‐
ond, we add 1 to each element of the vector. In general, it is a good idea to exploit
vectorized functions. Consider this piece of R code that calculates the sum of log (x):

log_sum = 0
for(i in 1:length(x))
 log_sum = log_sum + log(x[i])

50 | Chapter 3: Efficient Programming

Using 1:length(x) can lead to hard-to-find bugs when x has
length zero. Instead, use seq_along(x) or seq_len(length(x)).

This code could easily be vectorized via

log_sum = sum(log(x))

Writing code this way has a number of benefits:

• It’s faster. When n = 107 the R way is about 40 times faster.
• It’s neater.
• It doesn’t contain a bug when x is of length 0.

As with the general example in “General Advice” on page 48, the slowdown isn’t due
to the for loop. Instead, it’s because there are many more functions calls.

Exercises

1. Time the two methods for calculating the log sum.
2. What happens when the length(x) = 0 (i.e., we have an empty vector)?

Example: Monte Carlo integration
It’s also important to make full use of R functions that use vectors. For example, sup‐
pose we wish to estimate the integral ∫0

1 x2 dx using a Monte Carlo method. Essen‐
tially, we throw darts at the curve and count the number of darts that fall below the
curve (as in Figure 3-1).

Monte Carlo integration

1. Initialize: hits = 0
2. for i in 1:N

a. Generate two random numbers, U1, U2, between 0 and 1
b. If U2 < U1

2, then hits = hits + 1
3. end for
4. Area estimate = hits/N

General Advice | 51

Implementing this Monte Carlo algorithm in R would typically lead to something
like:

monte_carlo = function(N) {
 hits = 0
 for (i in seq_len(N)) {
 u1 = runif(1)
 u2 = runif(1)
 if (u1 ^ 2 > u2)
 hits = hits + 1
 }
 return(hits / N)
}

In R, this takes a few seconds:

N = 500000
system.time(monte_carlo(N))
#> user system elapsed
#> 2.828 0.008 2.842

In contrast, a more R-centric approach would be:

monte_carlo_vec = function(N) mean(runif(N)^2 > runif(N))

The monte_carlo_vec() function contains (at least) four aspects of vectorization:

• The runif() function call is now fully vectorized.
• We raise entire vectors to a power via ^.
• Comparisons using > are vectorized.
• Using mean() is quicker than an equivalent for loop.

The function monte_carlo_vec() is around 30 times faster than monte_carlo().

52 | Chapter 3: Efficient Programming

Figure 3-1. Example of Monte Carlo integration. To estimate the area under the curve,
throw random points at the graph and count the number of points that lie under the
curve.

Exercise

1. Verify that monte_carlo_vec() is faster than monte_carlo(). How does this
relate to the number of darts (i.e., the size of N) that is used?

Communicating with the User
When we create a function, we often want the function to give efficient feedback on
the current state. For example, are there missing arguments or has a numerical calcu‐
lation failed? There are three main techniques for communicating with the user.

Fatal Errors: stop()
Fatal errors are raised by calling stop() (i.e., execution is terminated). When stop()
is called, there is no way for a function to continue. For instance, when we generate
random numbers using rnorm(), the first argument is the sample size, n. If the num‐
ber of observations to return is less than 1, an error is raised. When we need to raise
an error, we should do so as quickly as possible; otherwise, it’s a waste of resources.
Hence, the first few lines of a function typically perform argument checking.

Communicating with the User | 53

Suppose we call a function that raises an error. What then? Efficient, robust code
catches the error and handles it appropriately. Errors can be caught using try() and
tryCatch(). For example,

Suppress the error message
good = try(1 + 1, silent = TRUE)
bad = try(1 + "1", silent = TRUE)

When we inspect the objects, the variable good just contains the number 2:

good
#> [1] 2

However, the bad object is a character string with class try-error and a condition
attribute that contains the error message:

bad
#> [1] "Error in 1 + \"1\" : non-numeric argument to binary operator\n"
#> attr(,"class")
#> [1] "try-error"
#> attr(,"condition")
#> <simpleError in 1 + "1": non-numeric argument to binary operator>

We can use this information in a standard conditional statement:

if(class(bad) == "try-error")
 # Do something

Further details on error handling, as well as some excellent advice on general debug‐
ging techniques, are given in Advanced R by Hadley Wickham (CRC Press).

Warnings: warning()
Warnings are generated using the warning() function. When a warning is raised, it
indicates potential problems. For example, mean(NULL) returns NA and also raises a
warning.

When we come across a warning in our code, it is important to solve the problem and
not just ignore the issue. While ignoring warnings saves time in the short term, warn‐
ings can often mask deeper issues that have crept into our code.

Warnings can be hidden using suppressWarnings().

54 | Chapter 3: Efficient Programming

Informative Output: message() and cat()
To give informative output, use the message() function. For example, in the poweR‐
law package, the message() function is used to give the user an estimate of expected
run time. Providing a rough estimate of how long the function takes allows the user
to optimize their time. Similar to warnings, messages can be suppressed with sup
pressMessages().

Another function used for printing messages is cat(). In general, cat() should only
be used in print()/show() methods. For example, look at the function definition of
the S3 print method for difftime objects: getS3method("print", "difftime").

Exercise

1. The stop() function has an argument call. that indicates if the function call
should be part of the error message. Create a function and experiment with this
option.

Invisible Returns
The invisible() function allows you to return a temporarily invisible copy of an
object. This is particularly useful for functions that return values that can be assigned,
but are not printed when they are not assigned. For example, suppose we have a func‐
tion that plots the data and fits a straight line:

regression_plot = function(x, y, ...) {
 # Plot and pass additional arguments to default plot method
 plot(x, y, ...)

 # Fit regression model
 model = lm(y ~ x)

 # Add line of best fit to the plot
 abline(model)
 invisible(model)
}

When the function is called, a scattergraph is plotted with the line of best fit, but the
output is invisible. However, when we assign the function to an object (i.e., out =
regression_plot(x, y)), the variable out contains the output of the lm() call.

Another example is hist(). Typically, we don’t want anything displayed in the con‐
sole when we call the function:

hist(x)

Communicating with the User | 55

However, if we assign the output to an object, out = hist(x), the object out is
actually a list containing, inter alia, information on the midpoints, breaks, and
counts.

Factors
Factors are much maligned objects. While at times they are awkward, they do have
their uses. A factor is used to store categorical variables. This data type is unique to R
(or at least not common among programming languages). The difference between
factors and strings is important because R treats factors and strings differently.
Although factors look similar to character vectors, they are actually integers. This
leads to initially surprising behavior:

x = 4:6
c(x)
#> [1] 4 5 6
c(factor(x))
#> [1] 1 2 3

In this case, the c() function is using the underlying integer representation of the fac‐
tor. Dealing with the wrong case of behavior is a common source of inefficiency for R
users.

Often, categorical variables get stored as 1, 2, 3, 4, and 5, with associated documenta‐
tion elsewhere that explains what each number means. This is clearly a pain. Alterna‐
tively, we store the data as a character vector. While this is fine, the semantics are
wrong because it doesn’t convey that this is a categorical variable. It’s not sensible to
say that you should always or never use factors, since factors have both positive and
negative features. Instead, we need to examine each case individually.

As a general rule, if your variable has an inherent order (e.g., small versus large) or
you have a fixed set of categories, then you should consider using a factor.

Inherent Order
Factors can be used for ordering in graphics. For instance, suppose we have a dataset
where the variable type takes one of three values, small, medium, or large. Clearly,
there is an ordering. Using a standard boxplot() call,

boxplot(y ~ type)

would create a boxplot where the x-axis was alphabetically ordered. By converting
type into a factor, we can easily specify the correct ordering.

boxplot(y ~ factor(type, levels = c("Small", "Medium", "Large")))

56 | Chapter 3: Efficient Programming

Most users interact with factors via the read.csv() function, where
character columns are automatically converted to factors. This fea‐
ture can be irritating if our data is messy and we want to clean and
recode variables. Typically when reading in data via read.csv(),
we use the stringsAsFactors = FALSE argument. Although this
argument can be added to the global options() list and placed in
the .Rprofile, this leads to nonportable code, so should be avoided.

Fixed Set of Categories
Suppose our dataset relates to months of the year:

m = c("January", "December", "March")

If we sort m in the usual way, sort(m), we perform standard alphanumeric ordering;
placing December first. This is technically correct, but not that helpful. We can use
factors to remedy this problem by specifying the admissible levels:

month.name contains the 12 months
fac_m = factor(m, levels = month.name)
sort(fac_m)
#> [1] January March December
#> 12 Levels: January February March April May June July August ... December

Exercise

1. Factors are slightly more space-efficient than characters. Create a character vec‐
tor and corresponding factor, and use pryr::object_size() to calculate the
space needed for each object.

The Apply Family
The apply functions can be an alternative to writing for loops. The general idea is to
apply (or map) a function to each element of an object. For example, you can apply a
function to each row or column of a matrix. A list of available functions and their
descriptions is given in Table 3-2. In general, all apply functions have similar proper‐
ties:

• Each function takes at least two arguments: an object and another function. The
function is passed as an argument.

• Every apply function has the dots (...) argument, which is used to pass on argu‐
ments to the function provided to the FUN argument. sapply(list((1:3)^2,
2:7), mean, trim = 0.4), for example, passes the trip argument to the mean
function call for each vector in the list.

The Apply Family | 57

Using apply functions when possible can lead to shorter, more succinct, idiomatic R
code. In this section, we will cover the three main functions, apply(), lapply(), and
sapply(). Since the apply functions are covered in most R textbooks, we just give a
brief introduction to the topic and provide pointers to other resources at the end of
this section.

Most people rarely use the other apply functions. For example, I
have only used eapply() once. Students in my class uploaded R
scripts. Using source(), I was able to read in the scripts to a sepa‐
rate environment. I then applied a marking scheme to each envi‐
ronment using eapply(). Using separate environments, I avoided
object name clashes.

Table 3-2. The apply family of functions from base R

Function Description

apply Apply functions over array margins

by Apply a function to a data frame split by factors

eapply Apply a function over values in an environment

lapply Apply a function over a list or vector

mapply Apply a function to multiple list or vector arguments

rapply Recursively apply a function to a list

tapply Apply a function over a ragged array

The apply() function is used to apply a function to each row or column of a matrix.
In many data science problems, this is a common task. For example, to calculate the
standard deviation of the row:

data("ex_mat", package = "efficient")
MARGIN=1: corresponds to rows
row_sd = apply(ex_mat, 1, sd)

The first argument of apply() is the object of interest. The second argument is the
MARGIN. This is a vector giving the subscripts that the function (the third argument)
will be applied over. When the object is a matrix, a margin of 1 indicates rows, and 2
indicates columns. So to calculate the column standard deviations, the second argu‐
ment is changed to 2:

col_med = apply(ex_mat, 2, sd)

Additional arguments can be passed to the function that is to be applied to the data.
For example, to pass the na.rm argument to the sd() function, we have:

row_sd = apply(ex_mat, 1, sd, na.rm = TRUE)

58 | Chapter 3: Efficient Programming

The apply() function also works on higher dimensional arrays; a one-dimensional
array is a vector, a two-dimensional array is a matrix.

The lapply() function is similar to apply(). The main differences are that the input
types are vectors or lists and the return type is a list. Essentially, we apply a function
to each element of a list or vector. The functions sapply() and vapply() are similar
to lapply(), but the return type is not necessarily a list.

Example: Movies Dataset
The internet movie database is a website that collects movie data supplied by studios
and fans. It is one of the largest movie databases on the web and is maintained by
Amazon. The ggplot2movies package contains about 60,000 movies stored as a data
frame:

data(movies, package = "ggplot2movies")

Movies are rated between 1 and 10 by fans. Columns 7 to 16 of the movies dataset
gives the percentage of voters for a particular rating.

ratings = movies[, 7:16]

For example, 4.5% of voters rated the first movie a 1:

ratings[1,]
#> r1 r2 r3 r4 r5 r6 r7 r8 r9 r10
#> 1 4.5 4.5 4.5 4.5 14.5 24.5 24.5 14.5 4.5 4.5

We can use the apply() function to investigate voting patterns. The function
nnet::which.is.max() finds the maximum position in a vector, but breaks ties at
random; which.max() just returns the first value. Using apply(), we can easily deter‐
mine the most popular rating for each movie and plot the results:

popular = apply(ratings, 1, nnet::which.is.max)
plot(table(popular))

Figure 3-2 highlights the fact that voting patterns are clearly not uniform between 1
and 10. The most popular vote is the highest rating, 10. Clearly if you went to the
trouble of voting for a movie, it was either very good or very bad (there is also a peak
at 1). Rating a movie 7 is also a popular choice (search the web for “most popular
number” and you will see that 7 dominates the rankings.)

The Apply Family | 59

http://imdb.com/

Figure 3-2. Movie voting preferences

Type Consistency
When programming, it is helpful if the return value from a function always takes the
same form. Unfortunately, not all base R functions follow this idiom. For example,
the functions sapply() and [.data.frame() aren’t type-consistent:

two_cols = data.frame(x = 1:5, y = letters[1:5])
zero_cols = data.frame()
sapply(two_cols, class) # a character vector
sapply(zero_cols, class) # a list
two_cols[, 1:2] # a data.frame
two_cols[, 1] # an integer vector

This can cause unexpected problems. The functions lapply() and vapply() are type-
consistent, as are dplyr::select() and dplyr:filter(). The purrr package has
some type-consistent alternatives to base R functions. For example, you can use
map_dbl() to replace Map(), and flatten_df() to replace unlist().

Other resources
Almost every R book has a section on the apply function. Here are resources we feel
are most helpful:

60 | Chapter 3: Efficient Programming

• Each function has a number of examples in the associated help page. You can
directly access the examples using the example() function. For example, to run
the apply() examples, use example("apply").

• There is a very detailed Stack Overflow answer description of when, where, and
how to use each of the functions.

• In a similar vein, Neil Saunders has a nice blog post giving an overview of the
functions.

• The apply functions are an example of functional programming. Chapter 16 of R
for Data Science by Grolemund and Wickham (O’Reilly) describes the interplay
between loops and functional programming in more detail, whereas Advanced R
by Hadley Wickham (CRC Press) gives a more in-depth description of the topic.

Exercises

1. Rewrite the sapply() preceding function calls using vapply() to ensure type
consistency.

2. How would you make subsetting data frames with [type consistent? Hint: look at
the drop argument.

Caching Variables
A straightforward method for speeding up code is to calculate objects once and reuse
the value when necessary. This could be as simple as replacing sd(x) in multiple
function calls with the object sd_x, which is defined once and reused. For example,
suppose we wish to normalize each column of a matrix. However, instead of using the
standard deviation of each column, we will use the standard deviation of the entire
dataset:

apply(x, 2, function(i) mean(i) / sd(x))

This is inefficient because the value of sd(x) is constant, so recalculating the standard
deviation for every column is unnecessary. Instead, we should evaluate once and store
the result:

sd_x = sd(x)
apply(x, 2, function(i) mean(i) / sd_x)

If we compare the two methods on a 100 row by 1,000 column matrix, the cached
version is around 100 times faster (Figure 3-3).

Caching Variables | 61

http://bit.ly/sapplyvlapply
http://bit.ly/introapplyR
http://shop.oreilly.com/product/0636920034407.do
http://shop.oreilly.com/product/0636920034407.do

Figure 3-3. Performance gains obtained from caching the standard deviation in a 100 by
1000 matrix

A more advanced form of caching is to use the memoise package. If a function is
called multiple times with the same input, it may be possible to speed things up by
keeping a cache of known answers that it can retrieve. The memoise package allows
us to easily store the value of a function call and returns the cached result when the
function is called again with the same arguments. This package trades off memory
versus speed, since the memoised function stores all previous inputs and outputs. To
cache a function, we simply pass the function to the memoise function.

The classic memoise example is the factorial function. Another example is to limit
use to a web resource. For example, suppose we are developing a Shiny (an interactive
graphic) application in which the user can fit the regression line to data. The user can
remove points and refit the line. An example function would be:

Argument indicates row to remove
plot_mpg = function(row_to_remove) {
 data(mpg, package = "ggplot2")
 mpg = mpg[-row_to_remove,]
 plot(mpgcty, mpghwy)
 lines(lowess(mpgcty, mpghwy), col = 2)
}

We can use memoise to speed up by caching results. A quick benchmark

62 | Chapter 3: Efficient Programming

m_plot_mpg = memoise(plot_mpg)
microbenchmark(times = 10, unit = "ms", m_plot_mpg(10), plot_mpg(10))
#> Unit: milliseconds
#> expr min lq mean median uq max neval cld
#> m_plot_mpg(10) 0.04 4e-02 0.07 8e-02 8e-02 0.1 10 a
#> plot_mpg(10) 40.20 1e+02 95.52 1e+02 1e+02 107.1 10 b

suggests that we can obtain a 100-fold speed-up.

Exercise

1. Construct a box plot of timings for the standard plotting function and the
memoised version.

Function Closures

The following section is meant to provide an introduction to func‐
tion closures with example use cases. See Advanced R by Hadley
Wickham (CRC Press) for a detailed introduction.

More advanced caching is available using function closures. A closure in R is an
object that contains functions bound to the environment the closure was created in.
Technically, all functions in R have this property, but we use the term function closure
to denote functions where the environment is not in .GlobalEnv. One of the environ‐
ments associated with a function is known as the enclosing environment; that is,
where the function was created. This allows us to store values between function calls.
Suppose we want to create a stopwatch type function. This is easily achieved with a
function closure:

<<- assigns values to the parent environment
stop_watch = function() {
 start_time = NULL
 start = function() start_time <<- Sys.time()
 stop = function() {
 stop_time = Sys.time()
 difftime(stop_time, start_time)
 }
 list(start = start, stop = stop)
}
watch = stop_watch()

The object watch is a list that contains two functions. One function for starting the
timer:

watch$start()

Caching Variables | 63

1 The authors have yet to find a situation where byte-compiled code runs significantly slower.

and the other for stopping the timer:

watch$stop()

Without using function closures, the stopwatch function would be longer, more com‐
plex, and therefore more inefficient. When used properly, function closures are very
useful programming tools for writing concise code.

Exercises

1. Write a stopwatch function without using function closures.
2. Many stopwatches have the ability to measure not only your overall time but also

your individual laps. Add a lap() function to the stop_watch() function that
will record individual times, while still keeping track of the overall time.

A related idea to function closures is nonstandard evaluation
(NSE), or programming on the language. NSE crops up all the time
in R. For example, when we execute plot(height, weight), R
automatically labels the x- and y-axis of the plot with height and
weight. This is a powerful concept that enables us to simplify code.
More detail is given in the “Nonstandard evaluation” section of
Advanced R by Hadley Wickham.

The Byte Compiler
The compiler package, written by R Core member Luke Tierney, has been part of R
since version 2.13.0. The compiler package allows R functions to be compiled, result‐
ing in a byte code version that may run faster.1 The compilation process eliminates a
number of costly operations the interpreter has to perform, such as variable lookup.

Since R 2.14.0, all of the standard functions and packages in base R are precompiled
into byte code. This is illustrated by the base function mean():

getFunction("mean")
#> function (x, ...)
#> UseMethod("mean")
#> <bytecode: 0x48eec88>
#> <environment: namespace:base>

The third line contains the bytecode of the function. This means that the compiler
package has translated the R function into another language that can be interpreted

64 | Chapter 3: Efficient Programming

by a very fast interpreter. Amazingly, the compiler package is almost entirely pure R,
with just a few C support routines.

Example: The Mean Function
The compiler package comes with R, so we just need to load the package in the usual
way:

library("compiler")

Next, we create an inefficient function for calculating the mean. This function takes
in a vector, calculates the length, and then updates the m variable.

mean_r = function(x) {
 m = 0
 n = length(x)
 for(i in seq_len(n))
 m = m + x[i] / n
 m
}

This is clearly a bad function and we should just use the mean() function, but it’s a
useful comparison. Compiling the function is straightforward:

cmp_mean_r = cmpfun(mean_r)

Then we use the microbenchmark() function to compare the three variants:

Generate some data
x = rnorm(1000)
microbenchmark(times = 10, unit = "ms", # milliseconds
 mean_r(x), cmp_mean_r(x), mean(x))
#> Unit: milliseconds
#> expr min lq mean median uq max neval cld
#> mean_r(x) 0.358 0.361 0.370 0.363 0.367 0.43 10 c
#> cmp_mean_r(x) 0.050 0.051 0.052 0.051 0.051 0.07 10 b
#> mean(x) 0.005 0.005 0.008 0.007 0.008 0.03 10 a

The compiled function is around seven times faster than the uncompiled function. Of
course, the native mean() function is faster, but compiling does make a significant dif‐
ference (Figure 3-4).

The Byte Compiler | 65

Figure 3-4. Comparsion of mean functions

Compiling Code
There are a number of ways to compile code. The easiest is to compile individual
functions using cmpfun(), but this obviously doesn’t scale. If you create a package,
you can automatically compile the package on installation by adding

ByteCompile: true

to the DESCRIPTION file. Most R packages installed using install.packages() are not
compiled. We can enable (or force) packages to be compiled by starting R with the
environment variable R_COMPILE_PKGS set to a positive integer value and specify that
we install the package from source:

Windows users will need Rtools
install.packages("ggplot2", type = "source")

Or, if we want to avoid altering the .Renviron file, we can specify an additional argu‐
ment:

install.packages("ggplot2", type = "source", INSTALL_opts = "--byte-compile")

66 | Chapter 3: Efficient Programming

2 It appears that in R 3.4, this optimization will be enabled by default.

A final option is to use just-in-time (JIT) compilation.2 The enableJIT() function
disables JIT compilation if the argument is 0. Arguments 1, 2, or 3 implement differ‐
ent levels of optimization. JIT can also be enabled by setting the environment variable
R_ENABLE_JIT to one of these values.

We recommend setting the compile level to the maximum value of
3.

The impact of compiling on install will vary from package to package. For packages
that already have lots of precompiled code, speed gains will be small (R Core Team
2016).

Not all packages work when compiled on installation.

References
Burns, Patrick. 2011. The R Inferno. Lulu.com.

Wickham, Hadley. 2014a. Advanced R. CRC Press.

Grolemund, G., and H. Wickham. 2016. R for Data Science. O’Reilly Media.

R Core Team. 2016. “R Installation and Administration.” R Foundation for Statistical
Computing. https://cran.r-project.org/doc/manuals/r-release/R-admin.html.

References | 67

https://cran.r-project.org/doc/manuals/r-release/R-admin.html

1 The Oxford Dictionary’s definition of workflow is similar, with a more industrial feel: “The sequence of
industrial, administrative, or other processes through which a piece of work passes from initiation to
completion.”

CHAPTER 4

Efficient Workflow

Efficient programming is an important skill for generating the correct result, on time.
Yet coding is only one part of a wider skillset needed for successful outcomes for
projects involving R programming. Unless your project is to write generic R code
(i.e., unless you are on the R Core Team), the project will probably transcend the con‐
fines of the R world; it must engage with a whole range of other factors. In this con‐
text, we define workflow as the sum of practices, habits, and systems that enable
productivity.1 To some extent, workflow is about personal preferences. Everyone’s
mind works differently so the most appropriate workflow varies from person to per‐
son and from one project to the next. Project management practices will also vary
depending on the scale and type of the project. It’s a big topic, but it can usefully be
condensed into five top tips.

Prerequisites
This chapter focuses on workflow. For project planning and management, we’ll use
the DiagrammeR package. For project reporting, we’ll focus on R Markdown and
knitr, which are bundled with RStudio (but can be installed independently if
needed). We’ll suggest other packages that are worth investigating, but are not
required for this particular chapter.

library("DiagrammeR")

69

2 Thanks to Richard Cotton for suggesting this typology.

Top Five Tips for Efficient Workflow
1. Start without writing code but with a clear mind and perhaps a pen and paper.

This will ensure that you keep your objectives at the forefront of your mind
without getting lost in the technology.

2. Make a plan. The size and nature will depend on the project but timelines,
resources, and chunking the work will make you more effective when you start.

3. Select the packages you will use for implementing the plan early. Minutes spent
researching and selecting from the available options could save hours in the
future.

4. Document your work at every stage: work can only be effective if it’s communica‐
ted clearly and code can only be efficiently understood if it’s commented.

5. Make your entire workflow as reproducible as possible. knitr can help with this
in the phase of documentation.

A Project Planning Typology
Appropriate project management structures and workflow depend on the type of
project you are undertaking. The following typology demonstrates the links between
project type and project management requirements.2

Data analysis
Here, you are trying to explore datasets to discover something interesting/answer
some questions. The emphasis is on speed of manipulating your data to generate
interesting results. Formality is less important in this type of project. Sometimes
this analysis project may only be part of a larger project (the data may have to be
created in a lab, for example). How the data analysts interact with the rest of the
team may be as important for the project’s success as how they interact with each
other.

Package creation
Here you want to create code that can be reused across projects, possibly by peo‐
ple whose use cases you don’t know (if you make it publicly available). The
emphasis in this case will be on clarity of user interface and documentation,
meaning style and code review are important. Robustness and testing are impor‐
tant in this type of project, too.

70 | Chapter 4: Efficient Workflow

3 The importance of workflow has not gone unnoticed by the R community, and there are a number of different
suggestions to boost R productivity. Rob Hyndman, for example, advocates the strategy of using four self-
contained scripts to break up R work into manageable chunks: load.R, clean.R, func.R, and do.R.

Reporting and publishing
Here you are writing a report, journal paper, or book. The level of formality
varies depending upon the audience, but you have additional worries like how
much code it takes to arrive at the conclusions, and how much output the code
creates.

Software applications
This could range from a simple Shiny app to R being embedded in the server of a
much larger piece of software. Either way, since there is limited opportunity for
human interaction, the emphasis is on robust code and gracefully dealing with
failure.

Based on these observations, we recommend thinking about which type of workflow,
file structure, and project management system suits your project best. Sometimes it’s
best not to be prescriptive, so we recommend trying different working practices to
discover which works best, time permitting.3

There are, however, concrete steps that can be taken to improve workflow in most
projects that involve R programming. Learning them will, in the long run, improve
productivity and reproducibility. With these motivations in mind, the purpose of this
chapter is simple: to highlight some key ingredients of an efficient R workflow. It
builds on the concept of an R/RStudio project, introduced in Chapter 2, and is
ordered chronologically throughout the stages involved in a typical project’s lifespan,
from inception to publication:

Project planning
This should happen before any code has been written, to avoid time wasted using
a mistaken analysis strategy. Project management is the art of making project
plans happen.

Package selection
After planning your project, you should identify which packages are most suit‐
able to getting the work done quickly and effectively. With rapid increases in the
number and performance of packages, it is more important than ever to consider
the range of options at the outset. For example, *_join() from dplyr is often
more appropriate than merge(), as we’ll see in Chapter 6.

Publication
This final stage is relevant if you want your R code to be useful for others in the
long term. To this end, “Publication” on page 80 touches on documentation using

A Project Planning Typology | 71

http://robjhyndman.com/hyndsight/workflow-in-r/

knitr and the much stricter approach to code publication of package develop‐
ment.

Project Planning and Management
Good programmers working on a complex project will rarely just start typing code.
Instead, they will plan the steps needed to complete the task as efficiently as possible:
“smart preparation minimizes work” (Berkun 2005). Although search engines are
useful for identifying the appropriate strategy, trial-and-error approaches (e.g., typing
code at random and Googling the inevitable error messages) are usually highly ineffi‐
cient.

Strategic thinking is especially important during a project’s inception: if you make a
bad decision early on, it will have cascading negative impacts throughout the project’s
entire lifespan. So detrimental and ubiquitous is this phenomenon in software devel‐
opment that a term has been coined to describe it: technical debt. This has been
defined as “not quite right code which we postpone making right” (Kruchten, Nord,
and Ozkaya 2012). Dozens of academic papers have been written on the subject, but
from the perspective of beginning a project (i.e., in the planning stage, where we are
now), all you need to know is that it is absolutely vital to make sensible decisions at
the outset. If you do not, your project may be doomed to failure of incessant rounds
of refactoring.

To minimize technical debt at the outset, the best place to start may be with a pen and
paper and an open mind. Sketching out your ideas and deciding precisely what you
want to do, free from the constraints of a particular piece of technology, can be a
rewarding exercise before you begin. Project planning and visioning can be a creative
process not always well-suited to the linear logic of computing, despite recent advan‐
ces in project management software, some of which are outlined in the bullet points
that follow.

Scale can loosely be defined as the number of people working on a project. It should
be considered at the outset because the importance of project management increases
exponentially with the number of people involved. Project management may be triv‐
ial for a small project, but if you expect it to grow, implementing a structured work‐
flow early on could avoid problems later. On small projects consisting of a one-off
script, project management may be a distracting waste of time. Large projects involv‐
ing dozens of people, on the other hand, require much effort dedicated to project
management: regular meetings, division of labor, and a scalable project management
system to track progress, issues, and priorities will inevitably consume a large propor‐
tion of the project’s time. Fortunately, a multitude of dedicated project management
systems have been developed to cater to projects across a range of scales. These
include, in rough ascending order of scale and complexity, the following:

72 | Chapter 4: Efficient Workflow

• The interactive code-sharing site GitHub, which is described in more detail in
Chapter 9

• ZenHub, a browser plugin that is “the first and only project management suite
that works natively within GitHub”

• Web-based and easy-to-use tools such as Trello
• Dedicated desktop project management software such as ProjectLibre and Gantt‐

Project
• Fully featured, enterprise scale, open source project management systems such as

OpenProject and redmine

Regardless of the software (or lack thereof) used for project management, it involves
considering the project’s aims in the context of available resources (e.g., computa‐
tional and programmer resources), project scope, time scales, and suitable software.
And these things should be considered together. To take one example, is it worth the
investment of time needed to learn a particular R package that is not essential to com‐
pleting the project but which will make the code run faster? Does it make more sense
to hire another programmer or invest in more computational resources to complete
an urgent deadline?

Minutes spent thinking through such issues before writing a single line can save
hours in the future. This is emphasized in books such as The Art of Project Manage‐
ment by Scott Berkun (O’Reilly) and the “Guide to the Project Management Body of
Knowledge” by PMBoK and useful online resources such those by teamgantt.com
and lasa.org.uk, which focus exclusively on project planning. This section condenses
some of the most important lessons from this literature in the context of typical R
projects (i.e., those that involve data analysis, modeling, and visualization).

Chunking Your Work
Once a project overview has been devised and stored, in mind (for small projects, if
you trust that as storage medium!) or written, a plan with a timeline can be drawn up.
The up-to-date visualization of this plan can be a powerful reminder to you and col‐
laborators of the progress on the project so far. More importantly, the timeline pro‐
vides an overview of what needs to be done next. Setting start dates and deadlines for
each task will help prioritize the work and ensure that you are on track. Breaking a
large project into smaller chunks is highly recommended, making huge, complex
tasks more achievable and modular (PMBoK 2000). Chunking the work will also
make collaboration easier, as we shall see in Chapter 5.

The tasks that a project should be split into will depend on the nature of the work.
The phases illustrated in Figure 4-1 represent a rough starting point, not a template.

Project Planning and Management | 73

https://github.com/
https://www.zenhub.io/
https://trello.com/
http://bit.ly/Projectlibre
http://bit.ly/ganttProject
http://bit.ly/ganttProject
http://bit.ly/openpro
http://www.redmine.org/
http://teamgantt.com/guide-to-project-management/
http://bit.ly/lasaprojman

The programming phase will usually need to be split into at least data tidying, process‐
ing, and visualization.

Figure 4-1. Schematic illustrations of key project phases and levels of activity over time,
based on the “Guide to the Project Management Body of Knowledge” (PMBoK 2000)

Making Your Workflow SMART
A more rigorous (but potentially onerous) way to project plan is to divide the work
into a series of objectives and track their progress throughout the project’s duration.
One way to check if an objective is appropriate for action and review is by using the
SMART criteria:

• Specific: is the objective clearly defined and self-contained?
• Measurable: is there a clear indication of its completion?
• Attainable: can the target be achieved?
• Realistic: have sufficient resources been allocated to the task?
• Time-bound: is there an associated completion date or milestone?

If the answer to each of these questions is yes, the task is likely to be suitable to
include in the project’s plan. Note that this does not mean all project plans need to be
uniform. A project plan can take many forms, including a short document, a Gantt
chart (see Figure 4-2), or simply a clear vision of the project’s steps in mind.

74 | Chapter 4: Efficient Workflow

4 For a more comprehensive discussion of Gantt charts in R, please refer to stackoverflow.com/questions/
3550341.

Figure 4-2. A Gantt chart created using DiagrammeR illustrating the steps needed to
complete this book at an early stage of its development

Visualizing Plans with R
Various R packages can help visualize the project plan. Though these are useful, they
cannot compete with the dedicated project management software outlined at the out‐
set of this section. However, if you are working on a relatively simple project, it is use‐
ful to know that R can help represent and keep track of your work. Packages for
plotting project progress include:4

plan
Provides basic tools to create burndown charts (which concisely show whether a
project is on time or not) and Gantt charts.

plotrix
A general-purpose plotting package, provides basic Gantt chart-plotting func‐
tionality. Enter example(gantt.chart) for details.

DiagrammeR
A new package for creating network graphs and other schematic diagrams in R.
This package provides an R interface to simple flowchart file formats such as
mermaid and GraphViz.

Project Planning and Management | 75

http://bit.ly/ganttchartsR
http://bit.ly/ganttchartsR
https://cran.r-project.org/web/packages/plan/
https://cran.r-project.org/web/packages/plotrix/index.html
http://rich-iannone.github.io/DiagrammeR/
https://github.com/knsv/mermaid
https://github.com/ellson/graphviz

The small example that follows (which provides the basis for creating charts like
Figure 4-2) illustrates how DiagrammeR can take simple text inputs to create infor‐
mative up-to-date Gantt charts. Such charts can greatly help with the planning and
task management of long and complex R projects, as long as they do not take away
valuable programming time from core project objectives.

library("DiagrammeR")
Define the Gantt chart and plot the result (not shown)
mermaid("gantt
 Section Initiation
 Planning :a1, 2016-01-01, 10d
 Data processing :after a1 , 30d")

In this example, gantt defines the subsequent data layout. Section refers to the proj‐
ect’s section (useful for large projects, with milestones), and each new line refers to a
discrete task. Planning, for example, has the code a, begins on the first day of 2016,
and lasts for 10 days. See knsv.github.io/mermaid/gantt.html for more detailed docu‐
mentation.

Exercises

1. What are the three most important work chunks of your current R project?
2. What is the meaning of SMART objectives (see Making Your Workflow

SMART)?
3. Run the code chunk at the end of this section to see the output.
4. Bonus exercise: modify this code to create a basic Gantt chart of an R project you

are working on.

Package Selection
A good example of the importance of prior planning to minimize effort and reduce
technical debt is package selection. An inefficient, poorly supported, or simply outda‐
ted package can waste hours. When a more appropriate alternative is available, this
waste can be prevented by prior planning. There are many poor packages on CRAN
and much duplication so it’s easy to go wrong. Just because a certain package can
solve a particular problem doesn’t mean that it should.

Used well, however, packages can greatly improve productivity: not reinventing the
wheel is part of the ethos of open source software. If someone has already solved a
particular technical problem, you don’t have to rewrite their code, which allows you
to focus on solving the applied problem. Furthermore, because R packages are gener‐
ally (but not always) written by competent programmers and subject to user feed‐
back, they may work faster and more effectively than the hastily prepared code you

76 | Chapter 4: Efficient Workflow

http://knsv.github.io/mermaid/gantt.html

may have written. All R code is open source and potentially subject to peer review. A
prerequisite of publishing an R package is that developer contact details must be pro‐
vided, and many packages provide a site for issue tracking. Furthermore, R packages
can increase programmer productivity by dramatically reducing the amount of code
they need to write because all the code is packaged in functions behind the scenes.

Let’s look at an example. Imagine a project for which you would like to find the dis‐
tance between sets of points (origins, o, and destinations, d) on the Earth’s surface.
Background reading shows that a good approximation of great circle distance, which
accounts for the curvature of the Earth, can be made by using the Haversine formula,
which you duly implement, involving much trial and error:

Function to convert degrees to radians
deg2rad = function(deg) deg * pi / 180

Create origins and destinations
o = c(lon = -1.55, lat = 53.80)
d = c(lon = -1.61, lat = 54.98)

Convert to radians
o_rad = deg2rad(o)
d_rad = deg2rad(d)

Find difference in degrees
delta_lon = (o_rad[1] - d_rad[1])
delta_lat = (o_rad[2] - d_rad[2])

Calculate distance with Haversine formula
a = sin(delta_lat / 2)^2 + cos(o_rad[2]) * cos(d_rad[2]) * sin(delta_lon / 2)^2
c = 2 * asin(min(1, sqrt(a)))
(d_hav1 = 6371 * c) # multiply by Earth's diameter
#> [1] 131

This method works but it takes time to write, test, and debug. It would be much bet‐
ter to package it up into a function. Or even better, use a function that someone else
has written and put in a package:

Find great circle distance with geosphere
(d_hav2 = geosphere::distHaversine(o, d))
#> [1] 131415

The difference between the hardcoded method and the package method is striking.
One is seven lines of tricky R code involving many subsetting stages and small, simi‐
lar functions (e.g., sin and asin), which are easy to confuse. The other is one line of
simple code. The package method using geosphere took perhaps 100th of the time
and gave a more accurate result (because it uses a more accurate estimate of the diam‐
eter of the Earth). This means that a couple of minutes searching for a package to
estimate great circle distances would have been time well spent at the outset of this
project. But how do you search for packages?

Package Selection | 77

5 An excellent overview of the tidyverse, formerly known as the hadleyverse, and its benefits is available from
barryrowlingson.github.io/hadleyverse.

Searching for R Packages
Building on the preceding example, how can you find out if there is a package to
solve your particular problem? The first stage is to guess: if it is a common problem,
someone has probably tried to solve it. The second stage is to search. A simple Google
query, haversine formula R, returned a link to the geosphere package in the second
result (a hardcoded implementation was first).

Beyond Google, there are also several sites for searching for packages and functions.
rdocumentation.org provides a multifield search environment to pinpoint the func‐
tion or package you need. Amazingly, the search for haversine in the Description
field yielded 10 results from eight packages: R has at least eight implementations of
the Haversine formula! This shows the importance of careful package selection as
there are often many packages that do the same job, as we will see in the next section.
There is also a way to find the function from within R, with RSiteSearch(), which
opens a URL in your browser linking to a number of functions (40) and vignettes (2)
that mention the text string:

Search CRAN for mentions of haversine
RSiteSearch("haversine")

How to Select a Package
Due to the conservative nature of base R development, which rightly prioritizes sta‐
bility over innovation, much of the innovation and performance gains in the R ecosys‐
tem have occurred in recent years in the packages. The increased ease of package
development (Wickham 2015c) and interfacing with other languages (Eddelbuettel et
al. 2011) has accelerated their number, quality, and efficiency. An additional factor
has been the growth in collaboration and peer review in package development, driven
by code-sharing websites such as GitHub and online communities such as ROpenSci
for peer reviewing code.

Performance, stability, and ease of use should be high on the priority list when choos‐
ing which package to use. Another more subtle factor is that some packages work bet‐
ter together than others. The R package ecosystem is composed of interrelated
packages. Knowing something of these interdependencies can help you select a pack‐
age suite when the project demands a number of diverse yet interrelated program‐
ming tasks. The tidyverse, for example, contains many interrelated packages that work
well together, such as readr, tidyr, and dplyr.5 These may be used together to read,
tidy, and then process the data, as outlined in the subsequent sections.

78 | Chapter 4: Efficient Workflow

https://barryrowlingson.github.io/hadleyverse
http://www.r-bloggers.com/great-circle-distance-calculations-in-r/
http://www.rdocumentation.org/
https://ropensci.org/

There is no hard and fast rule about which package you should use and new packages
are emerging all the time. The ultimate test will be empirical evidence: does it get the
job done on your data? However, the following criteria should provide a good indica‐
tion of whether a package is worth an investment of your precious time, or even
installing on your computer:

Is it mature?
The more time a package is available, the more time it will have for obvious bugs
to be ironed out. The age of a package on CRAN can be seen from its Archive
page on CRAN. We can see from the ggplot2 archive, for example, that ggplot2
was first released on the June 10, 2007 and that it has had 29 releases. The most
recent of these at the time of writing was ggplot2 2.1.0; reaching 1 or 2 in the first
digit of package versions is usually an indication from the package author that
the package has reached a high level of stability.

Is it actively developed?
It is a good sign if packages are frequently updated. A frequently updated package
will have its latest version published recently on CRAN. The CRAN package page
for ggplot2, for example, said Published: 2016-03-01, which was less than six
months old at the time of writing.

Is it well documented?
This is not only an indication of how much thought, care, and attention has gone
into the package, it also has a direct impact on its ease of use. Using a poorly doc‐
umented package can be inefficient due to the hours spent trying to work out
how to use it! To check if the package is well documented, look at the help pages
associated with its key functions (e.g., ?ggplot), try the examples (e.g., exam
ple(ggplot)), and search for package vignettes (e.g., vignette(package =

"ggplot2")).

Is it well used?
This can be seen by searching for the package name online. Most packages that
have a strong user base will produce thousands of results when typed into a
generic search engine such as Google. More specific (and potentially useful) indi‐
cations of use will narrow down the search to particular users. A package widely
used by the programming community will likely be visible on GitHub. At the
time of writing, a search for ggplot2 on GitHub yielded over 400 repositories and
almost 200,000 matches in committed code! Likewise, a package that has been
adopted for use in academia will tend to be mentioned in Google Scholar (again,
ggplot2 scores extremely well in this measure, with over 5,000 hits).

An article in simplystats discusses this issue with reference to the proliferation of Git‐
Hub packages (those that are not available on CRAN). In this context, well-regarded

Package Selection | 79

http://bit.ly/ggplot2archive
http://bit.ly/ggplot2GH
http://bit.ly/trustRpackage

and experienced package creators and indirect data such as the amount of GitHub
activity are also highlighted as reasons to trust a package.

The websites of MRAN and METACRAN can help the package-selection process by
providing further information on each package uploaded to CRAN. METACRAN,
for example, provides metadata about R packages via a simple API and the provision
of badges to show how many downloads a particular package has per month. Return‐
ing to the Haversine example given previously, we could find out how many times
two packages that implement the formula are downloaded each month with the fol‐
lowing URLs:

• http://cranlogs.r-pkg.org/badges/last-month/geosphere, downloads of
geosphere:

• http://cranlogs.r-pkg.org/badges/last-month/geoPlot, downloads of geo‐
Plot:

It is clear from the results reported that geosphere is by far the more popular pack‐
age, so is a sensible and mature choice for dealing with distances on the Earth’s sur‐
face.

Publication
The final stage in a typical project workflow is publication. Although it’s the final
stage to be worked on, that does not mean you should only document after the other
stages are complete: making documentation integral to your overall workflow will
make this stage much easier and more efficient.

Whether the final output is a report containing graphics produced by R, an online
platform for exploring results, or well-documented code that colleagues can use to
improve their workflow, starting it early is a good plan. In every case, the program‐
ming principles of reproducibility, modularity, and DRY (don’t repeat yourself) will
make your publications faster to write, easier to maintain, and more useful to others.

Instead of attempting a comprehensive treatment of the topic, we will touch briefly
on a couple of ways of documenting your work in R: dynamic reports and R pack‐
ages. There is a wealth of material on each of these online. A wealth of online resour‐

80 | Chapter 4: Efficient Workflow

https://mran.revolutionanalytics.com/packages
http://www.r-pkg.org
http://www.r-pkg.org

ces exists on each of these; to avoid duplication of effort, the focus is on
documentation from a workflow-efficiency perspective.

Dynamic Documents with R Markdown
When writing a report using R outputs, a typical workflow has historically been to 1)
do the analysis, 2) save the resulting graphics and record the main results outside the
R project, and 3) open a program unrelated to R such as LibreOffice to import and
communicate the results in prose. This is inefficient: it makes updating and maintain‐
ing the outputs difficult (when the data changes, steps 1 to 3 will have to be done
again) and there is overhead involved in jumping between incompatible computing
environments.

To overcome this inefficiency in the documentation of R outputs, the R Markdown
framework was developed. Used in conjunction with the knitr package, we have:

• The ability to process code chunks (via knitr)
• A notebook interface for R (via RStudio)
• The ability to render output to multiple formats (via pandoc)

R Markdown documents are plain text and have the file extension .Rmd. This frame‐
work allows for documents to be generated automatically. Furthermore, nothing is
efficient unless you can quickly redo it. Documenting your code inside dynamic
documents in this way ensures that analysis can be quickly rerun.

This note briefly explains R Markdown for the uninitiated. R mark‐
down is a form of Markdown. Markdown is a pure text document
format that has become a standard for documentation for software.
It is the default format for displaying text on GitHub. R Markdown
allows the user to embed R code in a Markdown document. This is
a powerful addition to Markdown, as it allows custom images,
tables, and even interactive visualizations to be included in your R
documents. R Markdown is an efficient file format to write in
because it is lightweight, human, and computer-readable, and is
much less verbose than HTML and LaTeX. The first draft of this
book was written in R Markdown.

In an R Markdown document, results are generated on the fly by including code
chunks. Code chunks are R code that are preceded by ```{r, options} on the line
before the R code, and ``` at the end of the chunk. For example, suppose we have the
code chunk

```{r eval = TRUE, echo = TRUE}
(1:5)^2
```

Publication | 81

in an R Markdown document. The eval = TRUE in the code indicates that the code
should be evaluated, while echo = TRUE controls whether the R code is displayed.
When we compile the document, we get

(1:5)^2
#> [1] 1 4 9 16 25

R Markdown via knitr provides a wide range of options to customize what is dis‐
played and evaluated. When you adapt to this workflow, it is highly efficient, espe‐
cially as RStudio provides a number of shortcuts that make it easy to create and
modify code chunks. To create a chunk while editing an .Rmd file, for example, sim‐
ply enter Ctrl/Cmd-Alt-I on Windows or Linux or select the option from the Code
drop-down menu.

Once your document has compiled, it should appear on your screen into the file for‐
mat requested. If an HTML file has been generated (as is the default), RStudio pro‐
vides a feature that allows you to put it up online rapidly. This is done using the rpubs
website, a store of a huge number of dynamic documents (which could be a good
source of inspiration for your publications). Assuming you have an RStudio account,
clicking the Publish button at the top of the HTML output window will instantly
publish your work online, with a minimum of effort, enabling fast and efficient com‐
munication with many collaborators and the public.

An important advantage of dynamically documenting work this way is that when the
data or analysis code changes, the results will be updated in the document automati‐
cally. This can save hours of fiddly copying and pasting of R output between different
programs. Also, if your client wants pages and pages of documented output, knitr can
provide them with a minimum of typing (e.g., by creating slightly different versions
of the same plot over and over again). From a delivery of content perspective, that is
certainly an efficiency gain compared with hours of copying and pasting figures!

If your R Markdown documents include time-consuming processing stages, a speed
boost can be attained after the first build by setting opts_chunk$set(cache = TRUE)
in the first chunk of the document. This setting was used to reduce the build times of
this book, as can be seen on GitHub.

Furthermore, dynamic documents written in R Markdown can compile into a range
of output formats including HTML, PDF, and Microsoft’s docx. There is a wealth of
information on the details of dynamic report writing that is not worth replicating
here. Key references are RStudio’s excellent website on R Markdown hosted at rmark‐
down.rstudio.com and, for a more detailed account of dynamic documents with R,
Dynamic Documents with R and Knitr by Yihui Xie (CRC Press).

82 | Chapter 4: Efficient Workflow

https://rpubs.com
http://bit.ly/before_scriptR
http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/

R Packages
A strict approach to project management and workflow is treating your projects as R
packages. This approach has advantages and limitations. The major risk with treating
a project as a package is that the package is quite a strict way of organizing work.
Packages are suited for code-intensive projects where code documentation is impor‐
tant. An intermediate approach is to use a dummy package that includes a DESCRIP‐
TION file in the root directory telling project users which packages must be installed
for the code to work. This book is based on a dummy package so that we can easily
keep the dependencies up-to-date (see the book’s DESCRIPTION file online for
insight into how this works).

Creating packages is good practice in terms of learning to correctly document your
code, store example data, and even (via vignettes) ensure reproducibility. But it can
take a lot of extra time so should not be taken lightly. This approach to R workflow is
appropriate for managing complex projects that repeatedly use the same routines that
can be converted into functions. Creating project packages can provide a foundation
for generalizing your code for use by others, e.g., via publication on GitHub or
CRAN. And R package development has been made much easier in recent years by
the development of the devtools package, which is highly recommended for anyone
attempting to write an R package.

The number of essential elements of R packages differentiates them from other R
projects. Three of these are outlined here from an efficiency perspective:

• The DESCRIPTION file contains key information about the package, including
which packages are required for the code contained in your package to work
(e.g., using Imports:). This is efficient because it means that anyone who installs
your package will automatically install the other packages it depends on.

• The R/ folder contains all the R code that defines your package’s functions. Plac‐
ing your code in a single place and encouraging you to make your code modular
in this way can greatly reduce duplication of code on large projects. Furthermore,
the documentation of R packages through Roxygen tags such as #' This func
tion does this... makes it easy for others to use your work. This form of effi‐
cient documentation is facilitated by the roxygen2 package.

• The data/ folder contains example code for demonstrating to others how the
functions work and transporting datasets that will be frequently used in your
workflow. Data can be added automatically to your package project using the
devtools package, with devtools::use_data(). This can increase efficiency by
providing a way of distributing small-to-medium-sized datasets and making
them available when the package is loaded with the function
data("data_set_name").

Publication | 83

http://bit.ly/efficientRDESC
http://r-pkgs.had.co.nz/description.html
http://r-pkgs.had.co.nz/man.html#man-workflow

The package testthat makes it easier than ever to test your R code as you go, ensuring
that nothing breaks. This, combined with continuous integration services such as that
provided by Travis, makes updating your code base as efficient and robust as possible.
This, and more, is described in Testing R Code by Richard Cotton (CRC Press).

As with dynamic documents, package development is a large topic. For small one-off
projects, the time taken in learning how to set up a package may not be worth the
savings. However, packages provide a rigorous way of storing code, data, and docu‐
mentation that can greatly boost productivity in the long run. For more on R pack‐
ages, see R Packages by Hadley Wickham (O’Reilly); the online version provides all
you need to know about writing R packages for free.

Reference
Berkun, Scott. 2005. The Art of Project Management. O’Reilly Media.

Kruchten, Philippe, Robert L Nord, and Ipek Ozkaya. 2012. “Technical Debt: From
Metaphor to Theory and Practice.” IEEE Software, no. 6. IEEE: 18–21.

PMBoK, A. 2000. “Guide to the Project Management Body of Knowledge.” Project
Management Institute, Pennsylvania USA.

Wickham, Hadley. 2015c. R Packages. O’Reilly Media.

Eddelbuettel, Dirk, Romain François, J. Allaire, John Chambers, Douglas Bates, and
Kevin Ushey. 2011. “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software 40 (8): 1–18.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. Vol. 29. CRC Press.

Cotton, Richard. 2016b. Testing R Code.

84 | Chapter 4: Efficient Workflow

http://r-pkgs.had.co.nz/

CHAPTER 5

Efficient Input/Output

This chapter explains how to efficiently read and write data in R. Input/output (I/O) is
the technical term for reading and writing data: the process of getting information
into a particular computer system (in this case, R) and then exporting it to the out‐
side world again (in this case, as a file format that other software can read). Data I/O
will be needed on projects where data comes from, or goes to, external sources. How‐
ever, the majority of R resources and documentation start with the optimistic
assumption that your data has already been loaded, ignoring the fact that importing
datasets into R and exporting them to the world outside the R ecosystem can be a
time-consuming and frustrating process. Tricky, slow, or ultimately unsuccessful data
I/O can cripple efficiency right at the outset of a project. Conversely, reading and
writing your data efficiently will make your R projects more likely to succeed in the
outside world.

The first section introduces rio, a meta package for efficiently reading and writing
data in a range of file formats. rio requires only two intuitive functions for data I/O,
making it efficient to learn and use. Next, we explore in more detail efficient func‐
tions for reading files stored in common plain text file formats from the readr and
data.table packages. Binary formats, which can dramatically reduce file sizes and
read/write times, are covered next.

With the accelerating digital revolution and growth in open data, an increasing pro‐
portion of the world’s data can be downloaded from the internet. This trend is set to
continue, making “Getting Data from the Internet” on page 96 on downloading and
importing data from the web important for future-proofing your I/O skills. The
benchmarks in this chapter demonstrate that choice of file format and packages for
data I/O can have a huge impact on computational efficiency.

Before reading in a single line of data, it is worth considering a general principle for
reproducible data management: never modify raw data files. Raw data should be seen

85

as read-only, and contain information about its provenance. Keeping the original file
name and commenting on its source are a couple of ways to improve reproducibility,
even when the data are not publicly available.

Prerequisites
R can read data from a variety of sources. We begin by discussing the generic package
rio that handles a wide variety of data types. Special attention is paid to CSV files,
which leads to the readr and data.table packages. The relatively new package feather
is introduced as a binary file format that has cross-language support.

library("rio")
library("readr")
library("data.table")
library("feather")

We also use the WDI package to illustrate accessing online datasets:

library("WDI")

Top Five Tips for Efficient Data I/O
1. If possible, keep the names of local files downloaded from the internet or copied

onto your computer unchanged. This will help you trace the provenance of the
data in the future.

2. R’s native file format is .Rds. These files can be imported and exported using
readRDS() and saveRDS() for fast and space-efficient data storage.

3. Use import() from the rio package to efficiently import data from a wide range
of formats, avoiding the hassle of loading format-specific libraries.

4. Use readr or data.table equivalents of read.table() to efficiently import large
text files.

5. Use file.size() and object.size() to keep track of the size of files and R
objects and take action if they get too big.

Versatile Data Import with rio
rio is a veritable multitool for data I/O. rio provides easy-to-use and computationally
efficient functions for importing and exporting tabular data in a range of file formats.
As stated in the package’s vignette, rio aims to “simplify the process of importing data
into R and exporting data from R.” The vignette goes on to to explain how many of
the functions for data I/O described in R’s Data Import/Export manual are outdated

86 | Chapter 5: Efficient Input/Output

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://cran.r-project.org/doc/manuals/r-release/R-data.html

(e.g., referring to WriteXLS but not the more recent readxl package) and difficult to
learn.

This is why rio is covered at the outset of this chapter: if you just want to get data into
R with a minimum of time learning new functions, there is a fair chance that rio
can help for many common file formats. At the time of writing, these
include .csv, .feather, .json, .dta, .xls, .xlsx, and Google Sheets (see the package’s Git‐
Hub page for up-to-date information). In the following example, we illustrate the key
rio functions of import() and export():

library("rio")
Specify a file
fname = system.file("extdata/voc_voyages.tsv", package = "efficient")
Import the file (uses the fread function from data.table)
voyages = import(fname)
Export the file as an Excel spreadsheet
export(voyages, "voc_voyages.xlsx")

There was no need to specify the optional format argument for data import and
export functions because this is inferred by the suffix, which, in the previous example,
is .tsv and .xlsx, respectively. You can override the inferred file format for both func‐
tions with the format argument. You could, for example, create a comma-delimited
file called voc_voyages.xlsx with export(voyages, "voc_voyages.xlsx", format =
"csv"). However, this would not be a good idea because it is important to ensure that
a file’s suffix matches its format.

To provide another example, the following code chunk downloads and imports as a
data frame information about the countries of the world stored in .json (downloading
data from the internet is covered in more detail in “Getting Data from the Internet”
on page 96):

caps = import("https://github.com/mledoze/countries/raw/master/countries.json")

The ability to import and use .json data is becoming increasingly
common as it is a standard output format for many APIs. The
jsonlite and geojsonio packages have been developed to make this
as easy as possible.

Exercises

1. The final line in the preceding code chunk shows a neat feature of rio and some
other packages: the output format is determined by the suffix of the filename,
which makes for concise code. Try opening the voc_voyages.xlsx file with an edi‐
tor such as LibreOffice Calc or Microsoft Excel to ensure that the export worked,
before removing this rather inefficient file format from your system:

file.remove("voc_voyages.xlsx")

Versatile Data Import with rio | 87

https://github.com/leeper/rio
https://github.com/leeper/rio

2. Try saving the the voyages data frames into three other file formats of your
choosing (see vignette("rio") for supported formats). Try opening these in
external programs. Which file formats are more portable?

3. As a bonus exercise, create a simple benchmark to compare the write times for
the different file formats used to complete the previous exercise. Which is fastest?
Which is the most space-efficient?

Plain-Text Formats
Plain-text data files are encoded in a format (typically UTF-8) that can be read by
humans and computers alike. The great thing about plain text is its simplicity and
ease of use: any programming language can read a plain-text file. The most common
plain-text format is .csv, comma-separated values, in which columns are separated by
commas and rows are separated by line breaks. This is illustrated in the simple exam‐
ple here:

Person, Nationality, Country of Birth
Robin, British, England
Colin, British, Scotland

There is often more than one way to read data into R, and .csv files are no exception.
The method you choose has implications for computational efficiency. This section
investigates methods for getting plain-text files into R, with a focus on three
approaches: base R’s plain-text reading functions such as read.csv(); the data.table
approach, which uses the function fread(); and the newer readr package, which pro‐
vides read_csv() and other read_*() functions such as read_tsv(). Although these
functions perform differently, they are largely cross-compatible, as illustrated in the
following code chunk, which loads data on the concentration of CO2 in the atmos‐
phere over time:

In general, you should never “hand-write” a CSV file. Instead, you
should use write.csv() or an equivalent function. The Internet
Engineering Task Force has the CSV definition that facilitates shar‐
ing CSV files between tools and operating systems.

df_co2 = read.csv("extdata/co2.csv")
df_co2_dt = readr::read_csv("extdata/co2.csv")
#> Warning: Missing column names filled in: 'X1' [1]
#> Parsed with column specification:
#> cols(
#> X1 = col_integer(),
#> time = col_double(),
#> co2 = col_double()

88 | Chapter 5: Efficient Input/Output

https://www.ietf.org/rfc/rfc4180.txt

#>)
df_co2_readr = data.table::fread("extdata/co2.csv")

Note that a function derived from another in this context means
that it calls another function. The functions such as read.csv()
and read.delim(), in fact, are wrappers around read.table().
This can be seen in the source code of read.csv(), for example,
which shows that the function is roughly the equivalent of
read.table(file, header = TRUE, sep = ",").

Although this section is focused on reading text files, it demonstrates the wider prin‐
ciple that the speed and flexibility advantages of additional read functions can be off‐
set by the disadvantages of additional package dependency (in terms of complexity
and maintaining the code) for small datasets. The real benefits kick in on large data‐
sets. Of course, there are some data types that require a certain package to load in R:
the readstata13 package, for example, was developed solely to read in .dta files gener‐
ated by versions of Stata 13 and above.

Figure 5-1 demonstrates that the relative performance gains of the data.table and
readr approaches increase with data size, especially for data with many rows. Below
around 1 MB, read.csv() is actually faster than read_csv(), while fread() is much
faster than both, although these savings are likely to be inconsequential for such
smaller datasets.

For files above 100 MB in size, fread() and read_csv() can be expected to be
around five times faster than read.csv(). This efficiency gain may be inconsequential
for a one-off file of 100 MB running on a fast computer (which still takes less than a
minute with read.csv()), but could represent an important speed-up if you fre‐
quently load large text files.

When tested on a large (4 GB) .csv file, it was found that fread() and read_csv()
were almost identical in load times and that read.csv() took about five times longer.
This consumed more than 10 GB of RAM, making it unsuitable to run on many com‐
puters (see “Random Access Memory” on page 155 for more on memory). Note that
both readr and base methods can be made significantly faster by prespecifying the
column types at the outset (see the following code chunk). Further details are pro‐
vided by the help in ?read.table.

read.csv(file_name, colClasses = c("numeric", "numeric"))

In some cases with R programming, there is a trade-off between speed and robust‐
ness. This is illustrated here with reference to differences in how readr, data.table,
and base R handle unexpected values. Figure 5-1 highlights the benefit of switching to
fread() and (eventually) to read_csv() as the dataset size increases. For a small (1
MB) dataset, fread() is about five times faster than base R.

Plain-Text Formats | 89

Figure 5-1. Benchmarks of base, data.table, and readr approaches for reading CSV files,
using the functions read.csv(), fread(), and read_csv(), respectively. The facets ranging
from 2 to 200 represent the number of columns in the CSV file.

Differences Between fread() and read_csv()
The file voc_voyages was taken from a dataset on Dutch naval expeditions and used
with permission from the CWI Database Architectures Group. The data is described
more fully at monetdb.org. From this dataset, we primarily use the voyages table,
which lists Dutch shipping expeditions by their date of departure.

fname = system.file("extdata/voc_voyages.tsv", package = "efficient")
voyages_base = read.delim(fname)

When we run the equivalent operation using readr,

voyages_readr = readr::read_tsv(fname)
#> Parsed with column specification:
#> cols(
#> .default = col_character(),
#> number = col_integer(),
#> trip = col_integer(),
#> tonnage = col_integer(),
#> departure_date = col_date(format = ""),
#> cape_arrival = col_date(format = ""),
#> cape_departure = col_date(format = ""),

90 | Chapter 5: Efficient Input/Output

http://bit.ly/monetDBR

#> arrival_date = col_date(format = ""),
#> next_voyage = col_integer()
#>)
#> See spec(...) for full column specifications.
#> Warning: 2 parsing failures.
#> row col expected actual
#> 4403 cape_arrival date like 2-01-01
#> 4592 cape_departure date like 8-05-17

a warning is raised regarding row 2841 in the built variable. This is because
read_*() decides what class each variable is based on the first 1,000 rows, rather than
all rows, as base read.*() functions do. Printing the offending element:

voyages_base$built[2841] # a factor.
#> [1] 1721-01-01
#> 182 Levels: 1 784 1,86 1135 1594 1600 1612 1613 1614 1615 1619 ... taken 1672
voyages_readr$built[2841] # an NA: text cannot be converted to numeric
#> [1] "1721-01-01"

Reading the file using data.table:

Verbose warnings not shown
voyages_dt = data.table::fread(fname)

generates five warning messages stating that columns 2, 4, 9, 10, and 11 were Bumped
to type character on data row ..., with the offending rows printed in place
of Instead of changing the offending values to NA, as readr does for the built
column (9), fread() automatically converts any columns it considers as numeric into
characters. An additional feature of fread() is that it can read-in a selection of the
columns, either by their index or name, using the select argument. This is illustrated
in the following code by reading in only half (the first 11) columns from the voyages
dataset and comparing the result to using fread() on all columns.

microbenchmark(times = 5,
 with_select = data.table::fread(fname, select = 1:11),
 without_select = data.table::fread(fname)
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> with_select 9.52 9.58 9.68 9.71 9.74 9.86 5
#> without_select 16.02 16.45 16.57 16.64 16.76 16.98 5

To summarize, the differences between base, readr, and data.table functions for
reading in data go beyond code execution times. The functions read_csv() and
fread() boost speed partially at the expense of robustness because they decide col‐
umn classes based on a small sample of available data. The similarities and differences
between the approaches are summarized for the Dutch shipping data in Table 5-1.

Plain-Text Formats | 91

Table 5-1. Comparison of the classes created by base, readr, and data.table for a selection of
variables in the voyages dataset

Packages number boatname built departure_date
base integer factor factor factor

readr integer character character date

data.table integer character character character

Table 5-1 shows four main similarities and differences between the three types of read
functions:

• For uniform data such as the number variable in Table 5-1, all reading methods
yield the same result (integer, in this case).

• For columns that are obviously characters such as boatname, the base method
results in factors (unless stringsAsFactors is set to TRUE), whereas fread() and
read_csv() functions return characters.

• For columns in which the first 1,000 rows are of one type but which contain
anomalies, such as built and departure_data in the shipping example, fread()
coerces the result to characters. read_csv() and siblings, by contrast, keep the
class that is correct for the first 1,000 rows and sets the anomalous records to NA.
This is illustrated in Table 5-1, where read_tsv() produces a numeric class for
the built variable, ignoring the nonnumeric text in row 2841.

• read_*() functions generate objects of class tbl_df, an extension of the
data.frame class, as discussed in “Efficient Data Processing with dplyr” on page
108. fread() generates objects of class data.table(). These can be used as stan‐
dard data frames but differ subtly in their behavior.

An additional difference is that read_csv() creates data frames of class tbl_df and
the data.frame. This makes no practical difference, unless the tibble package is
loaded, as described in “Efficient Data Frames with tibble” on page 100 in the next
chapter.

The wider point associated with these tests is that functions that save time can also
lead to additional considerations or complexities in your workflow. Taking a look at
what is going on under the hood of fast functions to increase speed, as we have done
in this section, can help you understand the additional consequences of choosing fast
functions over slower functions from base R.

Preprocessing Text Outside R
There are circumstances when datasets become too large to read directly into R.
Reading in a 4 GB text file using the functions tested previously, for example,

92 | Chapter 5: Efficient Input/Output

1 Geographical data, for example, can be slow to read in external formats. A large .shp or .geojson file can take
more than 100 times longer to load than an equivalent .Rds or .Rdata file.

consumes all available RAM on a 16 GB machine. To overcome this limitation, exter‐
nal stream processing tools can be used to preprocess large text files. The following
command, using the Linux command line shell (or Windows-based Linux shell emu‐
lator Cygwin) command split, for example, will break a large multi-GB file into
many 1 GB chunks, each of which is more manageable for R:

split -b100m bigfile.csv

The result is a series of files, set to 100 MB each, with the -b100m argument in the
previous code. By default, these will be called xaa, xab and could be read in one chunk
at a time (e.g., using read.csv(), fread(), or read_csv(), described in the previous
section) without crashing most modern computers.

Splitting a large file into individual chunks may allow it to be read into R. This is not
an efficient way to import large datasets, however, because it results in a nonrandom
sample of the data this way. A more efficient, robust, and scalable way to work with
large datasets is via databases, covered in “Working with Databases” on page 119 in
the next chapter.

Binary File Formats
There are limitations to plain-text files. Even the trusty CSV format is “restricted to
tabular data, lacks type-safety, and has limited precision for numeric values” (Eddel‐
buettel, Stokely, and Ooms 2016). Once you have read in the raw data (e.g., from a
plain-text file) and tidied it (covered in the next chapter), it is common to want to
save it for future use. Saving it after tidying is recommended to reduce the chance of
having to run all the data-cleaning code again. We recommend saving tidied versions
of large datasets in one of the binary formats covered in this section as this will
decrease read/write times and file sizes, making your data more portable.1

Unlike plain-text files, data stored in binary formats cannot be read by humans. This
allows space-efficient data compression, but means that the files will be less language-
agnostic. R’s native file format, .Rds, for example, may be difficult to read and write
using external programs such as Python or LibreOffice Calc. This section provides an
overview of binary file formats in R, with benchmarks to show how they compare
with the plain-text format .csv covered in the previous section.

Binary File Formats | 93

https://cygwin.com/install.html

Native Binary Formats: Rdata or Rds?
.Rds and .RData are R’s native binary file formats. These formats are optimized for
speed and compression ratios. But what is the difference between them? The follow‐
ing code chunk demonstrates the key difference between them:

save(df_co2, file = "extdata/co2.RData")
saveRDS(df_co2, "extdata/co2.Rds")
load("extdata/co2.RData")
df_co2_rds = readRDS("extdata/co2.Rds")
identical(df_co2, df_co2_rds)
#> [1] TRUE

The first method is the most widely used. It uses the save() function, which takes any
number of R objects and writes them to a file, which must be specified by the file =
argument. save() is like save.image(), which saves all the objects currently loaded
in R.

The second method is slightly less used, but we recommend it. Apart from being
slightly more concise for saving single R objects, the readRDS() function is more flex‐
ible; as shown in the subsequent line, the resulting object can be assigned to any
name. In this case, we called it df_co2_rds (which we show to be identical to df_co2,
loaded with the load() command), but we could have called it anything or simply
printed it to the console.

Using saveRDS() is good practice because it forces you to specify object names. If you
use save() without care, you could forget the names of the objects you saved and
accidentally overwrite objects that already exist.

The Feather File Format
Feather was developed as a collaboration between R and Python developers to create
a fast, light, and language-agnostic format for storing data frames. The following code
chunk shows how it can be used to save and then reload the df_co2 dataset loaded
previously in both R and Python:

library("feather")
write_feather(df_co2, "extdata/co2.feather")
df_co2_feather = read_feather("extdata/co2.feather")

import feather
import feather
path = 'data/co2.feather'
df_co2_feather = feather.read_dataframe(path)

Benchmarking Binary File Formats
We know that binary formats are advantageous from space and read/write time per‐
spectives, but how much so? The benchmarks in this section, based on large matrices

94 | Chapter 5: Efficient Input/Output

containing random numbers, are designed to help answer this question. Figure 5-2
shows that the relative efficiency gains of feather and Rds formats, compared with
base CSV. From left to right, Figure 5-2 shows benefits in terms of file size, read
times, and write times.

In terms of write times, Rds files perform the best, occupying just over a quarter of
the hard disk space compared with the equivalent CSV files. The equivalent feather
format also outperformed the CSV format, occupying around half the disk space.

The results of this simple disk usage benchmark show that saving data in a com‐
pressed binary format can save space and, if your data will be shared online, data
download time and bandwidth usage perspectives. But how does each method com‐
pare from a computational efficiency perceptive? The read and write times for each
file format are illustrated in the middle and right-hand panels of Figure 5-2.

Figure 5-2. Comparison of the performance of binary formats for reading and writing
datasets with 20 columns with the plain-text format CSV; the functions used to read the
files were read.csv(), readRDS(), and feather::read_feather(), respectively. The functions
used to write the files were write.csv(), saveRDS(), and feather::write_feather().

The results show that file size is not a reliable predictor of data read and write times.
This is due to the computational overheads of compression. Although feather files
occupied more disk space, they were roughly equivalent in terms of read times: the

Binary File Formats | 95

2 Since R 3.2.3 the base function download.file() can be used to download from secure (https://) connections
on any operating system.

functions read_feather() and readRDS() were consistently around 10 times faster
than read.csv(). In terms of write times, feather excels: write_feather() was
around 10 times faster than write.csv(), whereas saveRDS() was only around 1.2
times faster.

Note that the performance of different file formats depends on the
content of the data being saved. The benchmarks here showed sav‐
ings for matrices of random numbers. For real-life data, the results
would be quite different. The voyages dataset, saved as an Rds file,
occupied less than a quarter the disk space as the original TSV file,
whereas the file size was larger than the original when saved as a
feather file!

Protocol Buffers
Google’s Protocol Buffers offer a portable, efficient, and scalable solution to binary
data storage. A recent package, RProtoBuf, provides an R interface. This approach is
not covered in this book, as it is new, advanced, and not (at the time of writing)
widely used in the R community. The approach is discussed in detail in a paper on the
subject, which also provides an excellent overview of the issues associated with differ‐
ent file formats (Eddelbuettel, Stokely, and Ooms 2016).

Getting Data from the Internet
The following code chunk shows how the functions download.file2 and unzip can
be used to download and unzip a dataset from the internet. R can automate processes
that are often performed manually (e.g., through the graphical user interface of a web
browser) with potential advantages for reproducibility and programmer efficiency.
The result is data stored neatly in the data directory ready to be imported. Note that
we deliberately kept the filename intact to help with documentation, enhancing
understanding of the data’s provenance, so future users can quickly find out where the
data came from. Note also that part of the dataset is stored in the efficient package.
Using R for basic file management can help create a reproducible workflow, as illus‐
trated here:

url = "https://www.monetdb.org/sites/default/files/voc_tsvs.zip"
download.file(url, "voc_tsvs.zip") # download file
unzip("voc_tsvs.zip", exdir = "data") # unzip files
file.remove("voc_tsvs.zip") # tidy up by removing the zip file

96 | Chapter 5: Efficient Input/Output

https://developers.google.com/protocol-buffers/
http://bit.ly/RProtoBufapproach

This workflow equally applies to downloading and loading single files. Note that one
could make the code more concise by replacing the second line with df =

read.csv(url). However, we recommend downloading the file to disk so that if for
some reason it fails (e.g., if you would like to skip the first few lines), you don’t have
to keep downloading the file over and over again. The following code downloads and
loads data on atmospheric concentrations of CO2. Note that this dataset is also avail‐
able from the datasets package.

url = "https://vincentarelbundock.github.io/Rdatasets/csv/datasets/co2.csv"
download.file(url, "extdata/co2.csv")
df_co2 = read_csv("extdata/co2.csv")

There are now many R packages to assist with the download and import of data. The
organization rOpenSci supports a number of these. The following example illustrates
this using the WDI package (not supported by rOpenSci) to accesses World Bank
data on CO2 emissions in the transport sector:

library("WDI")
WDIsearch("CO2") # search for data on a topic
co2_transport = WDI(indicator = "EN.CO2.TRAN.ZS") # import data

There will be situations where you cannot download the data directly or when the
data cannot be made available. In this case, simply providing a comment relating to
the data’s origin (e.g., # Downloaded from http://example.com) before referring to
the dataset can greatly improve the utility of the code to yourself and others.

There are a number of R packages that provide more advanced functionality than
simply downloading files. The CRAN task view on web technologies provides a com‐
prehensive list. The two packages for interacting with web pages are httr and RCurl.
The former package provides (a relatively) user-friendly interface for executing stan‐
dard HTTP methods such as GET and POST. It also provides support for web authenti‐
cation protocols and returns HTTP status codes that are essential for debugging. The
RCurl package focuses on lower-level support and is particularly useful for web-
based XML support or FTP operations.

Accessing Data Stored in Packages
Most well-documented packages provide some example data for you to play with.
This can help demonstrate use cases in specific domains that use a particular data for‐
mat. The command data(package = "package_name") will show the datasets in a
package. Datasets provided by dplyr, for example, can be viewed with data(package
= "dplyr").

Raw data (i.e., data that has not been converted into R’s native .Rds format) is usually
located within the subfolder extdata in R, which corresponds to inst/extdata when
developing packages. The function system.file() outputs file paths associated with

Accessing Data Stored in Packages | 97

https://ropensci.org/
https://cran.r-project.org/web/views/WebTechnologies.html

specific packages. To see all the external files within the readr package, for example,
you could use the following command:

list.files(system.file("extdata", package = "readr"))
#> [1] "challenge.csv" "compound.log" "epa78.txt"
#> [4] "example.log" "fwf-sample.txt" "massey-rating.txt"
#> [7] "mtcars.csv" "mtcars.csv.bz2" "mtcars.csv.zip"

Further, to look around to see what files are stored in a particular package, you could
type the following, taking advantage of RStudio’s intellisense file completion capabili‐
ties (using copy and paste to enter the file path):

system.file(package = "readr")
#> [1] "/home/robin/R/x86_64-pc-linux-gnu-library/3.3/readr"

Hitting Tab after the second command should trigger RStudio to create a miniature
pop-up box listing the files within the folder, as illustrated in Figure 5-3.

Figure 5-3. Discovering files in R packages using RStudio’s intellisense

References
Eddelbuettel, Dirk, Murray Stokely, and Jeroen Ooms. 2016. “RProtoBuf: Efficient
Cross-Language Data Serialization in R.” Journal of Statistical Software 71 (1): 1–24.
doi:10.18637/jss.v071.i02.

98 | Chapter 5: Efficient Input/Output

http://bit.ly/RProtoBufapproach

CHAPTER 6

Efficient Data Carpentry

There are many words for data processing. You can clean, hack, manipulate, munge,
refine, and tidy your dataset, ready for the next stage. Each word says something
about perceptions that people have about the process: data processing is often seen as
dirty work, an unpleasant necessity that must be endured before the real fun and
important work begins. This perception is wrong. Getting your data ship-shape is a
respectable and in some cases vital skill. For this reason, we use the more admirable
term data carpentry.

This metaphor is not accidental. Carpentry is the process of taking rough pieces of
wood and working with care, diligence, and precision to create a finished product. A
carpenter does not hack at the wood at random. He or she will inspect the raw mate‐
rial and select the right tool for the job. In the same way, data carpentry is the process
of taking rough, raw, and to some extent randomly arranged input data and creating
neatly organized and tidy data. Learning the skill of data carpentry early will yield
benefits for years to come. “Give me six hours to chop down a tree and I will spend
the first four sharpening the axe,” as the saying goes.

Data processing is a critical stage in any project involving datasets from external
sources (i.e., most real-world applications). In the same way that technical debt, dis‐
cussed in Chapter 5, can cripple your workflow, working with messy data can lead to
project management hell.

Fortunately, done efficiently, at the outset of your project (rather than halfway
through when it may be too late) and using appropriate tools, this data processing
stage can be highly rewarding. More importantly, from an efficiency perspective,
working with clean data will be beneficial for every subsequent stage of your R
project. So, for data-intensive applications, this could be the most important chapter
in this book. In it, we cover the following topics:

99

• Tidying data with tidyr
• Processing data with dplyr
• Working with databases
• Data processing with data.table

Prerequisites
This chapter relies on a number of packages for data cleaning and processing. Check
that they are installed on your computer and load them with:

library("tibble")
library("tidyr")
library("stringr")
library("readr")
library("dplyr")
library("data.table")

RSQLite and ggmap are also used in a couple of examples, though they are not cen‐
tral to the chapter’s content.

Top Five Tips for Efficient Data Carpentry
1. Time spent preparing your data at the beginning can save hours of frustration in

the long run.
2. Tidy data provides a concept for organizing data, and the package tidyr provides

some functions for this work.
3. The data_frame class defined by the tibble package makes datasets efficient to

print and easy to work with.
4. dplyr provides fast and intuitive data processing functions; data.table has

unmatched speed for some data processing applications.
5. The %>% pipe operator can help clarify complex data processing workflows.

Efficient Data Frames with tibble
tibble is a package that defines a new data frame class for R, the tbl_df. These tibble
diffs (as their inventor suggests they should be pronounced) are like the base class
data.frame but with more user-friendly printing, subsetting, and factor handling.

100 | Chapter 6: Efficient Data Carpentry

https://github.com/hadley/tibble

A tibble data frame is an S3 object with three classes, tbl_df, tbl,
and data.frame. Since the object has the data.frame tag, this
means that if a tbl_df or tbl method isn’t available, the object will
be passed on to the appropriate data.frame function.

To create a tibble data frame, we use the tibble function:

library("tibble")
tibble(x = 1:3, y = c("A", "B", "C"))
#> # A tibble: 3 × 2
#> x y
#> <int> <chr>
#> 1 1 A
#> 2 2 B
#> 3 3 C

The previous example illustrates the main differences between the tibble and base R
approaches to data frames:

• When printed, the tibble diff reports the class of each variable. data.frame
objects do not.

• Character vectors are not coerced into factors when they are incorporated into a
tbl_df, as can be seen by the <chr> heading between the variable name and the
second column. By contrast, data.frame() coerces characters into factors, which
can cause problems further down the line.

• When printing a tibble diff to screen, only the first 10 rows are displayed. The
number of columns printed depends on the window size.

Other differences can be found in the associated help page: help("tibble").

You can create a tibble data frame row by row using the tribble()
function.

Exercise

1. Create the following data frame:
df_base = data.frame(colA = "A")

Try and guess the output of the following commands:
print(df_base)
df_base$colA
df_base$col
df_base$colB

Efficient Data Frames with tibble | 101

Now create a tibble data frame and repeat the preceding commands.

Tidying Data with tidyr and Regular Expressions
A key skill in data analysis is understanding the structure of datasets and being able
to reshape them. This is important from a workflow efficiency perspective: more than
half of a data analyst’s time can be spent reformatting datasets (Wickham 2014b), so
getting it into a suitable form early could save hours in the future. Converting data
into a tidy form is also advantageous from a computational efficiency perspective
because it is usually faster to run analysis and plotting commands on tidy data.

Data tidying includes data cleaning and data reshaping. Data cleaning is the process
of reformatting and labeling messy data. Packages including stringi and stringr can
help update messy character strings using regular expressions; assertive and assertr
packages can perform diagnostic checks for data integrity at the outset of a data anal‐
ysis project. A common data-cleaning task is the conversion of nonstandard text
strings into date formats as described in the lubridate vignette (see vignette("lubri
date")). Tidying is a broader concept, however, and also includes reshaping data so
that it is in a form more conducive to data analysis and modeling. The process of
reshaping is illustrated by Tables 6-1 and 6-2, provided by Hadley Wickham and
loaded using the following code:

library("efficient")
data(pew) # see ?pew - dataset from the efficient package
pew[1:3, 1:4] # take a look at the data
#> # A tibble: 3 × 4
#> religion `<$10k` `$10--20k` `$20--30k`
#> <chr> <int> <int> <int>
#> 1 Agnostic 27 34 60
#> 2 Atheist 12 27 37
#> 3 Buddhist 27 21 30

Tables 6-1 and 6-2 show a subset of the wide pew and long (tidy) pewt datasets, respec‐
tively. They have different dimensions, but they contain precisely the same informa‐
tion. Column names in the wide form in Table 6-1 became a new variable in the long
form in Table 6-2. According to the concept of tidy data, the long form is correct.
Note that correct here is used in the context of data analysis and graphical visualiza‐
tion. Because R is a vector-based language, tidy data also has an efficiency advantage:
it’s often faster to operate on a few long columns than several short ones. Further‐
more, the powerful and efficient packages dplyr and ggplot2 were designed around
tidy data. Wide data, however, can be space efficient, and is common for presentation
in summary tables, so it’s useful to be able to transfer between wide (or otherwise
untidy) and tidy formats.

102 | Chapter 6: Efficient Data Carpentry

Tidy data has the following characteristics (Wickham 2014b):

• Each variable forms a column.
• Each observation forms a row.
• Each type of observational unit forms a table.

Because there is only one observational unit in the example (religions), it can be
described in a single table. Large and complex datasets are usually represented by
multiple tables, with unique identifiers or keys to join them together (Codd 1979).

Two common operations facilitated by tidyr are gathering and splitting columns.

Make Wide Tables Long with gather()
Gathering means making wide tables long by converting column names to a new vari‐
able. This is done with the function gather() (the inverse of which is spread()). The
process is illustrated in Tables 6-1 and 6-2. The code that performs this operation is
provided in the following code block. This converts a table with 18 rows and 10 col‐
umns into a tidy dataset with 162 rows and 3 columns (compare the output with the
output of pew, shown previously):

dim(pew)
#> [1] 18 10
pewt = gather(data = pew, key = Income, value = Count, -religion)
dim(pewt)
#> [1] 162 3
pewt[c(1:3, 50),]
#> # A tibble: 4 × 3
#> religion Income Count
#> <chr> <chr> <int>
#> 1 Agnostic <$10k 27
#> 2 Atheist <$10k 12
#> 3 Buddhist <$10k 27
#> 4 Orthodox $20--30k 23

The previous code demonstrates the three arguments that gather() requires:

1. data, a data frame in which column names will become row values.
2. key, the name of the categorical variable into which the column names in the

original datasets are converted.
3. value, the name of cell value columns.

As with other functions in the tidyverse, all arguments are given using bare names,
rather than character strings. Arguments 2 and 3 can be specified by the user, and
have no relation to the existing data. Furthermore, an additional argument, set as
-religion, was used to remove the religion variable from the gathering, ensuring

Tidying Data with tidyr and Regular Expressions | 103

that the values in these columns are the first column in the output. If no -religion
argument is specified, all column names are used in the key, meaning the results sim‐
ply report all 180 column/value pairs resulting from the input dataset with 10 col‐
umns by 18 rows:

gather(pew)
#> # A tibble: 180 × 2
#> key value
#> <chr> <chr>
#> 1 religion Agnostic
#> 2 religion Atheist
#> 3 religion Buddhist
#> 4 religion Catholic
#> # ... with 176 more rows

Table 6-1. First six rows of the aggregated Pew dataset from Wickham (2014a) in an untidy
form

Religion <$10k $10–20k $20–30k
Agnostic 27 34 60

Atheist 12 27 37

Buddhist 27 21 30

Table 6-2. Long form of the Pew dataset represented in the previous table showing the
minimum values for annual incomes (includes part-time work)

Religion Income Count
Agnostic <$10k 27

Atheist <$10k 12

Buddhist <$10k 27

Agnostic $10–20k 34

Atheist $10–20k 27

Buddhist $10–20k 21

Agnostic $20–30k 60

Atheist $20–30k 37

Buddhist $20–30k 30

Split Joint Variables with separate()
Splitting means taking a variable that is really two variables combined and creating
two separate columns from it. A classic example is age-sex variables (e.g., m0-10 and
f0-10 to represent males and females in the 0 to 10 age band). Splitting such variables
can be done with the separate() function, as illustrated in Tables 6-3 and 6-4 and in
the following code chunk. See ?separate for more information on this function.

104 | Chapter 6: Efficient Data Carpentry

agesex = c("m0-10", "f0-10") # create compound variable
n = c(3, 5) # create a value for each observation
agesex_df = tibble(agesex, n) # create a data frame
separate(agesex_df, col = agesex, into = c("age", "sex"))
#> # A tibble: 2 × 3
#> age sex n
#> * <chr> <chr> <dbl>
#> 1 m0 10 3
#> 2 f0 10 5

Table 6-3. Joined age and sex variables in one column

agesex n
m0-10 3

f0-10 5

Table 6-4. Age and sex variables separated by the function separate

sex age n
m 0-10 3

f 0-10 5

Other tidyr Functions
There are other tidying operations that tidyr can perform, as described in the pack‐
age’s vignette (vignette("tidy-data")). The wider issue of manipulation is a large
topic with major potential implications for efficiency (Spector 2008) and this section
only covers some of the key operations. More important is understanding the princi‐
ples behind converting messy data into standard output forms.

These same principles can also be applied to the representation of model results. The
broom package provides a standard output format for model results, easing interpre‐
tation (see the broom vignette). The function broom::tidy() can be applied to a wide
range of model objects and return the model’s output in a standardized data frame
output.

Usually, it is more efficient to use the nonstandard evaluation version of variable
names, as these can be autocompleted by RStudio. In some cases, you may want to
use standard evaluation and refer to variable names using quotation marks. To do
this, _ can be added to dplyr and tidyr function names to allow the use of standard
evaluation. Thus the standard evaluation version of separate(agesex_df, agesex,
c("sex", "age"), 1) is separate_(agesex_df, "agesex", c("sex", "age"), 1).

Tidying Data with tidyr and Regular Expressions | 105

http://bit.ly/broomvignette

Regular Expressions
Regular expressions (commonly known as regex) is a language for describing and
manipulating text strings. There are books on the subject, and several good tutorials
on regex in R, such as Handling and Processing Strings in R by Gaston Sanchez (Trow‐
chez Editions), so we’ll just scratch the surface of the topic, and provide a taste of
what is possible. Regex is a deep topic. However, knowing the basics can save a huge
amount of time from a data-tidying perspective, by automating the cleaning of messy
strings.

In this section, we teach both stringr and base R ways of doing pattern matching. The
former provides easy-to-remember function names and consistency. The latter is use‐
ful to know as you’ll find lots of base R regex code in other people’s code because
stringr is relatively new and not installed by default. The foundational regex opera‐
tion is to detect whether a particular text string exists in an element, which is done
with grepl() and str_detect() in base R and stringr, respectively:

library("stringr")
x = c("Hi I'm Robin.", "DoB 1985")

grepl(pattern = "9", x = x)
#> [1] FALSE TRUE
str_detect(string = x, pattern = "9")
#> [1] FALSE TRUE

stringr does not include a direct replacement for grep(). You can
use which(str_detect()) instead.

Notice that str_detect() begins with str_. This is a common feature of all stringr
functions. This can be efficient because if you want to do some regex work, you just
need to type str_ and then press the Tab key to see a list of all the options. The vari‐
ous base R regex function names, by contrast, are hard to remember, including
regmatches(), strsplit(), and gsub(). The stringr equivalents have more intuitive
names that relate to the intention of the functions: str_match_all(), str_split(),
and str_replace_all(), respectively.

There is more to say on the topic, but rather than repeat what has been said else‐
where, we feel it is more efficient to direct the interested reader toward existing excel‐
lent resources for learning regex in R. We recommend reading, in order:

• The Strings chapter of R for Data Science by Grolemund and Wickham (O’Reilly)
• The stringr vignette (vignette("stringr"))

106 | Chapter 6: Efficient Data Carpentry

http://r4ds.had.co.nz/strings.html

• The detailed tutorial on regex in base R (Sanchez 2013)
• For more advanced topics, reading the documentation and online articles about

the stringi package, on which stringr depends

Exercises

1. What are the three criteria of tidy data?
2. Load and look at subsets of these datasets. The first is the Pew datasets we’ve been

using already. The second reports the points that define, roughly, the geographi‐
cal boundaries of different London boroughs. What is untidy about each?

head(pew, 10)
#> # A tibble: 10 × 10
#> religion <$10k $10-20k $20-30k $30-40k $40-50k $50-75
#> <chr> <int> <int> <int> <int> <int> <int>
#> 1 Agnostic 27 34 60 81 76 137
#> 2 Atheist 12 27 37 52 35 70
#> 3 Buddhist 27 21 30 34 33 58
#> 4 Catholic 418 617 732 670 638 1116
#> # ... with 6 more rows, and 3 more variables: `$75--100k` <int>,
#> # `$100--150k` <int>, `>150k` <int>
data(lnd_geo_df)
head(lnd_geo_df, 10)
#> name_date population x y
#> 1 Bromley-2001 295535 544362 172379
#> 2 Bromley-2001 295535 549546 169911
#> 3 Bromley-2001 295535 539596 160796
#> 4 Bromley-2001 295535 533693 170730
#> 5 Bromley-2001 295535 533718 170814
#> 6 Bromley-2001 295535 534004 171442
#> 7 Bromley-2001 295535 541105 173356
#> 8 Bromley-2001 295535 544362 172379
#> 9 Richmond upon Thames-2001 172330 523605 176321
#> 10 Richmond upon Thames-2001 172330 521455 172362

3. Convert each of the preceding datasets into tidy form.
4. Consider the following string of phone numbers and fruits from “Stringr:

Modern, Consistent String Processing” by Hadley Wickham (The R Journal):
strings = c("219 733 8965", "329-293-8753 ", "banana", "595 794 7569",
 "387 287 6718", "apple", "233.398.9187 ",
 "482 952 3315", "239 923 8115", "842 566 4692",
 "Work: 579-499-7527", "$1000", "Home: 543.355.3679")

Write functions in stringr and base R that return:

• A logical vector reporting whether or not each string contains a number

Tidying Data with tidyr and Regular Expressions | 107

http://www.rexamine.com/blog/

• Complete words only, without extraneous nonletter characters
str_detect(string = strings, pattern = "[0-9]")
#> [1] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
#> [12] TRUE TRUE
str_extract(strings, pattern = "[A-z]+")
#> [1] NA NA "banana" NA NA "apple" NA
#> [8] NA NA NA "Work" NA "Home"

Efficient Data Processing with dplyr
After tidying your data, the next stage is typically data processing. This includes the
creation of new data, such as a new column that is some function of existing columns,
or data analysis, the process of asking directed questions of the data and exporting
the results in a user-readable form.

Following the advice in “Package Selection” on page 76, we have carefully selected an
appropriate package for these tasks: dplyr, which roughly means data frame pliers.
dplyr has a number of advantages over base R and data.table approaches to data pro‐
cessing:

• dplyr is fast to run (due to its C++ backend) and intuitive to type.
• dplyr works well with tidy data, as described previously.
• dplyr works well with databases, providing efficiency gains on large datasets.

Furthermore, dplyr is efficient to learn (see Chapter 10). It has a small number of
intuitively named functions, or verbs. These were partly inspired by SQL, one of the
longest established languages for data analysis, which combines multiple simple func‐
tions (such as SELECT and WHERE, roughly analogous to dplyr::select() and
dplyr::filter()) to create powerful analysis workflows. Likewise, dplyr functions
were designed to be used together to solve a wide range of data processing challenges
(see Table 6-5).

Table 6-5. dplyr verb functions

dplyr function(s) Description Base R functions

filter(), slice() Subset rows by attribute (filter) or position (slice) subset(), [

arrange() Return data ordered by variable(s) order()

select() Subset columns subset(), [, [[

rename() Rename columns colnames()

distinct() Return unique rows !duplicated()

mutate() Create new variables (transmute drops existing variables) transform(), [[

108 | Chapter 6: Efficient Data Carpentry

dplyr function(s) Description Base R functions

summarize() Collapse data into a single row aggregate(), tapply()

sample_n() Return a sample of the data sample()

Unlike the base R analogues, dplyr’s data processing functions work in a consistent
way. Each function takes a data frame object as its first argument and creates another
data frame. Variables can be called directly without using the $ operator. dplyr was
designed to be used with the pipe operator %>% provided by the magrittr package,
allowing each data processing stage to be represented as a new line. This is illustrated
in the following code chunk, which loads a tidy country-level dataset of greenhouse
gas emissions from the efficient package, and then identifies the countries with the
greatest absolute growth in emissions from 1971 to 2012:

library("dplyr")
data("ghg_ems", package = "efficient")
top_table =
 ghg_ems %>%
 filter(!grepl("World|Europe", Country)) %>%
 group_by(Country) %>%
 summarize(Mean = mean(Transportation),
 Growth = diff(range(Transportation))) %>%
 top_n(3, Growth) %>%
 arrange(desc(Growth))

The results, illustrated in Table 6-6, show that the US has the highest growth and
average emissions from the transport sector, followed closely by China. The aim of
this code chunk is not for you to somehow read it and understand it; it is to provide a
taster of dplyr’s unique syntax, which is described in more detail throughout the
duration of this section.

Table 6-6. The top three countries in terms of average CO2 emissions from transport since
1971, and growth in transport emissions over that period (MTCO2e/yr)

Country Mean Growth
United States 1462 709

China 214 656

India 85 170

Building on the learning by doing ethic, the remainder of this section works through
these functions to process and begin to analyze a dataset on economic equality pro‐
vided by the World Bank. The input dataset can be loaded as follows:

Load global inequality data
data(wb_ineq)

dplyr is a large package and can be seen as a language in its own right. Following the
walk before you run principle, we’ll start simply, by filtering and aggregating rows.

Efficient Data Processing with dplyr | 109

1 str(wb_ineq) is another way to see the contents of an object, but produces more verbose output.

Renaming Columns
Renaming data columns is a common task that can make writing code faster by using
short, intuitive names. The dplyr function rename() makes this easy.

Note that in this code block the variable name is surrounded by back-quotes (`). This
allows R to refer to column names that are nonstandard. Note also the syntax: rename
takes the data frame as the first object and then creates new variables by specifying
new_variable_name = original_name.

library("dplyr")
wb_ineq = rename(wb_ineq, code = `Country Code`)

To rename multiple columns, the variable names are simply separated by commas.
The base R and dplyr way of doing this is illustrated in an older version of the dataset
(not run) to show how long, clunky, and inefficient names can be converted into
short and lean ones.

The dplyr way (rename two variables)
wb_ineq = rename(wb_ineq,
 top10 = `Income share held by highest 10% [SI.DST.10TH.10]`,
 bot10 = `Income share held by lowest 10% [SI.DST.FRST.10]`)
The base R way (rename five variables)
names(wb_ineq)[5:9] = c("top10", "bot10", "gini", "b40_cons", "gdp_percap")

Changing Column Classes
The class of R objects is critical to performance. If a class is incorrectly specified (e.g.,
if numbers are treated as factors or characters), this will lead to incorrect results. The
class of all columns in a data frame can be queried using the function str() (short for
display the structure of an object), as illustrated in the following code, with the
inequality data loaded previously.1

vapply(wb_ineq, class, character(1))
#> Country code Year Year Code top10 bot10
#> "character" "character" "integer" "character" "numeric" "numeric"
#> gini b40_cons gdp_percap
#> "numeric" "numeric" "numeric"

This shows that although we loaded the data correctly, all columns are seen by R as
characters. This means we cannot perform numerical calculations on the dataset:
mean(wb_ineq$gini) fails.

Visual inspection of the data (e.g., via View(wb_ineq)) clearly shows that all columns
except for 1 to 4 (Country, Country Code, Year, and Year Code) should be numeric.
We can reassign the classes of the numeric variables one by one:

110 | Chapter 6: Efficient Data Carpentry

2 Note that filter is also the name of a function used in the base stats library. Typically, packages avoid using
names already taken in base R, but this is an exception.

wb_ineq$gini = as.numeric(wb_ineq$gini)
mean(wb_ineq$gini, na.rm = TRUE) # now the mean is calculated
#> [1] 40.5

However, the purpose of programming languages is to automate tasks and reduce
typing. The following code chunk reclassifies all of the numeric variables using
data.matrix(), which converts the data frame to a numeric matrix:

cols_to_change= 5:9 # column ids to change
wb_ineq[cols_to_change] = data.matrix(wb_ineq[cols_to_change])
vapply(wb_ineq, class, character(1))
#> Country code Year Year Code top10 bot10
#> "character" "character" "integer" "character" "numeric" "numeric"
#> gini b40_cons gdp_percap
#> "numeric" "numeric" "numeric"

As is so often the case with R, there are many ways to solve the problem. The follow‐
ing code is a one-liner using unlist(), which converts list objects into vectors:

wb_ineq[cols_to_change] = as.numeric(unlist(wb_ineq[cols_to_change]))

Another one-liner to achieve the same result uses dplyr’s mutate_each function:

wb_ineq = mutate_each(wb_ineq, "as.numeric", cols_to_change)

As with other operations, there are other ways of achieving the same result in R,
including the use of loops via apply() and for(). These are shown in the chapter’s
source code.

Filtering Rows
dplyr offers an alternative way of filtering data, using filter().

Base R: wb_ineq[wb_ineq$Country == "Australia",]
aus2 = filter(wb_ineq, Country == "Australia")

filter() is slightly more flexible than [: filter(wb_ineq, code == "AUS", Year
== 1974), works as well as filter(wb_ineq, code == "AUS" & Year == 1974),
and takes any number of conditions (see ?filter). filter() is slightly faster than
base R.2 By avoiding the $ symbol, dplyr makes subsetting code concise and consis‐
tent with other dplyr functions. The first argument is a data frame and subsequent
raw variable names can be treated as vector objects, which are a defining feature of
dplyr. In the next section, we’ll learn how this syntax can be used alongside the %>%
pipe command to write clear data manipulation commands.

Efficient Data Processing with dplyr | 111

https://github.com/csgillespie/efficientR

There are dplyr equivalents of many base R functions, but these usually work slightly
different. The dplyr equivalent of aggregate, for example, is to use the grouping
function group_by in combination with the general-purpose function summarize (not
to be confused with summary in base R), as we shall see in “Data Aggregation” on page
114.

Chaining Operations
Another interesting feature of dplyr is its ability to chain operations together. This
overcomes one of the aesthetic issues with R code: you can end up with very long
commands with many functions nested inside one another to answer relatively sim‐
ple questions. Combined with the group_by() function, pipes can help condense
thousands of lines of data into something human-readable. Here’s how you could use
the chains to summarize average Gini indexes per decade, for example:

wb_ineq %>%
 select(Year, gini) %>%
 mutate(decade = floor(Year / 10) * 10) %>%
 group_by(decade) %>%
 summarize(mean(gini, na.rm = TRUE))
#> # A tibble: 6 × 2
#> decade `mean(gini, na.rm = TRUE)`
#> <dbl> <dbl>
#> 1 1970 40.1
#> 2 1980 37.8
#> 3 1990 42.0
#> 4 2000 40.5
#> # ... with 2 more rows

Often the best way to learn is to try and break something, so try running the preced‐
ing commands with different dplyr verbs. By way of explanation, this is what hap‐
pened:

1. Only the columns Year and gini were selected, using select().
2. A new variable, decade, was created (e.g., 1989 becomes 1980).
3. This new variable was used to group rows in the data frame with the same dec‐

ade.
4. The mean value per decade was calculated, illustrating how average income

inequality was greatest in 1992 but has since decreased slightly.

Let’s ask another question to see how dplyr chaining workflow can be used to answer
questions interactively: what are the five most unequal years for countries containing
the letter g? Here’s how chains can help organize the analysis needed to answer this
question step by step:

112 | Chapter 6: Efficient Data Carpentry

wb_ineq %>%
 filter(grepl("g", Country)) %>%
 group_by(Year) %>%
 summarize(gini = mean(gini, na.rm = TRUE)) %>%
 arrange(desc(gini)) %>%
 top_n(n = 5)
#> Selecting by gini
#> # A tibble: 5 × 2
#> Year gini
#> <int> <dbl>
#> 1 1980 46.9
#> 2 1993 46.0
#> 3 2013 44.5
#> 4 1981 43.6
#> # ... with 1 more rows

The preceding function consists of six stages, each of which corresponds to a new line
and dplyr function:

1. Filter out the countries we’re interested in (any selection criteria could be used in
place of grepl("g", Country)).

2. Group the output by year.
3. Summarize, for each year, the mean Gini index.
4. Arrange the results by average Gini index.
5. Select only the top five most unequal years.

To see why this method is preferable to the nested function approach, take a look at
the latter. Even after indenting properly, it looks terrible and is almost impossible to
understand!

top_n(
 arrange(
 summarize(
 group_by(
 filter(wb_ineq, grepl("g", Country)),
 Year),
 gini = mean(gini, na.rm = TRUE)),
 desc(gini)),
 n = 5)

This section has provided only a taste of what is possible with dplyr and why it makes
sense from code-writing and computational-efficiency perspectives. For a more
detailed account of data processing with R using this approach, we recommend R for
Data Science by Grolemund and Wickham (O’Reilly).

Efficient Data Processing with dplyr | 113

Exercises

1. Try running each of the preceding chaining examples line by line, so the first two
entries for the first example look like this:

wb_ineq
#> # A tibble: 6,925 × 9
#> Country code Year `Year Code` top10 bot10 gini b40_cons
#> <chr> <chr> <int> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan AFG 1974 YR1974 NA NA NA NA
#> 2 Afghanistan AFG 1975 YR1975 NA NA NA NA
#> 3 Afghanistan AFG 1976 YR1976 NA NA NA NA
#> 4 Afghanistan AFG 1977 YR1977 NA NA NA NA
#> # ... with 6,921 more rows, and 1 more variables: gdp_percap <dbl>

followed by:
wb_ineq %>%
 select(Year, gini)
#> # A tibble: 6,925 × 2
#> Year gini
#> <int> <dbl>
#> 1 1974 NA
#> 2 1975 NA
#> 3 1976 NA
#> 4 1977 NA
#> # ... with 6,921 more rows

Explain in your own words what changes each time.
2. Use chained dplyr functions to answer the following question: in which year did

countries without an a in their name have the lowest level of inequality?

Data Aggregation
Data aggregation involves creating summaries of data based on a grouping variable, in
a process that has been referred to as split-apply-combine. The end result usually has
the same number of rows as there are groups. Because aggregation is a way of con‐
densing datasets, it can be a very useful technique for making sense of large datasets.
The following code finds the number of unique countries (country being the group‐
ing variable) from the ghg_ems dataset stored in the efficient package:

Package available from github.com/csgillespie/efficient
data(ghg_ems, package = "efficient")
names(ghg_ems)
#> [1] "Country" "Year" "Electricity" "Manufacturing"
#> [5] "Transportation" "Other" "Fugitive"
nrow(ghg_ems)
#> [1] 7896

114 | Chapter 6: Efficient Data Carpentry

3 The equivalent code in base R is e_ems = aggregate(ghg_ems$Electricity, list(ghg_ems$Country),
mean, na.rm = TRUE, data = ghg_ems); nrow(ghg_ems).

length(unique(ghg_ems$Country))
#> [1] 188

Note that while there are almost 8,000 rows, there are fewer than 200 countries. Thus
factors would have been a more space-efficient way of storing the country data.

To aggregate the dataset using dplyr, you divide the task in to two parts: group the
dataset first and then summarize, as illustrated next.3

library("dplyr")
group_by(ghg_ems, Country) %>%
 summarize(mean_eco2 = mean(Electricity, na.rm = TRUE))
#> # A tibble: 188 × 2
#> Country mean_eco2
#> <chr> <dbl>
#> 1 Afghanistan NaN
#> 2 Albania 0.641
#> 3 Algeria 23.015
#> 4 Angola 0.791
#> # ... with 184 more rows

The previous example relates to wider programming: how much
work should one function do? The work could have been done
with a single aggregate() call. However, the Unix philosophy
states that programs should “do one thing well,” which is how
dplyr’s functions were designed. Shorter functions are easier to
understand and debug. But having too many functions can also
make your call stack confusing.

To reinforce the point, this operation is also performed in the following code on the
wb_ineq dataset:

data(wb_ineq, package = "efficient")
countries = group_by(wb_ineq, Country)
summarize(countries, gini = mean(gini, na.rm = TRUE))
#> # A tibble: 176 × 2
#> Country gini
#> <chr> <dbl>
#> 1 Afghanistan NaN
#> 2 Albania 30.4
#> 3 Algeria 37.8
#> 4 Angola 50.6
#> # ... with 172 more rows

Note that summarize is highly versatile, and can be used to return a customized range
of summary statistics:

Efficient Data Processing with dplyr | 115

http://bit.ly/basicsofunix

summarize(countries,
 # number of rows per country
 obs = n(),
 med_t10 = median(top10, na.rm = TRUE),
 # standard deviation
 sdev = sd(gini, na.rm = TRUE),
 # number with gini > 30
 n30 = sum(gini > 30, na.rm = TRUE),
 sdn30 = sd(gini[gini > 30], na.rm = TRUE),
 # range
 dif = max(gini, na.rm = TRUE) - min(gini, na.rm = TRUE)
)
#> # A tibble: 176 × 7
#> Country obs med_t10 sdev n30 sdn30 dif
#> <chr> <int> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 Afghanistan 40 NA NaN 0 NA NA
#> 2 Albania 40 24.4 1.25 3 0.364 2.78
#> 3 Algeria 40 29.8 3.44 2 3.437 4.86
#> 4 Angola 40 38.6 11.30 2 11.300 15.98
#> # ... with 172 more rows

To showcase the power of summarize() used on a grouped_df, the previous code
reports a wide range of customized summary statistics per country:

• The number of rows in each country group
• Standard deviation of Gini indices
• Median proportion of income earned by the top 10%
• The number of years in which the Gini index was greater than 30
• The standard deviation of Gini index values over 30
• The range of Gini index values reported for each country

Exercises

1. Refer back to the greenhouse gas emissions example at the outset of section “Effi‐
cient Data Processing with dplyr” on page 108, in which we found the top three
countries in terms of emissions growth in the transport sector.
a. Explain in words what is going on in each line.
b. Try to find the top three countries in terms of emissions in 2012—how is the

list different?
2. Explore dplyr’s documentation, starting with the introductory vignette, accessed

by entering vignette("introduction").

116 | Chapter 6: Efficient Data Carpentry

https://cran.rstudio.com/web/packages/dplyr/vignettes/introduction.html

3. Test additional dplyr verbs on the wb_ineq dataset. (More vignette names can be
discovered by typing vignette(package = "dplyr").)

Nonstandard Evaluation
The final thing to say about dplyr does not relate to the data but to the syntax of the
functions. Note that many of the arguments in the code examples in this section are
provided as raw names; they are raw variable names not surrounded by quotation
marks (e.g., Country rather than "Country"). This is called nonstandard evaluation
(NSE) (see vignette("nse")). NSE was used deliberately, with the aim of making the
functions more efficient for interactive use. NSE reduces typing and allows autocom‐
pletion in RStudio.

This is fine when using R interactively. But when you’d like to use R noninteractively,
code is generally more robust using standard evaluation because it minimizes the
chance of creating obscure scope-related bugs. Using standing evaluation also avoids
having to declare global variables if you include the code in a package. For this rea‐
son, most functions in tidyr and dplyr have two versions: one that uses NSE (the
default) and another that uses standard evaluation and requires the variable names to
be provided in quotation marks. The standard evaluation versions of functions are
denoted with the affix _. This is illustrated in the following code with the gather()
function, used previously:

1: Default NSE function
group_by(cars, cut(speed, c(0, 10, 100))) %>% summarize(mean(dist))
#> # A tibble: 2 × 2
#> `cut(speed, c(0, 10, 100))` `mean(dist)`
#> <fctr> <dbl>
#> 1 (0,10] 15.8
#> 2 (10,100] 49.0
2: Standard evaluation using quote marks
group_by_(cars, "cut(speed, c(0, 10, 100))") %>% summarize_("mean(dist)")
#> # A tibble: 2 × 2
#> `cut(speed, c(0, 10, 100))` `mean(dist)`
#> <fctr> <dbl>
#> 1 (0,10] 15.8
#> 2 (10,100] 49.0
3: Standard evaluation using formula, tilde notation
(recommended standard evaluation method)
group_by_(cars, ~cut(speed, c(0, 10, 100))) %>% summarize_(~mean(dist))
#> # A tibble: 2 × 2
#> `cut(speed, c(0, 10, 100))` `mean(dist)`
#> <fctr> <dbl>
#> 1 (0,10] 15.8
#> 2 (10,100] 49.0

Efficient Data Processing with dplyr | 117

Combining Datasets
The usefulness of a dataset can sometimes be greatly enhanced by combining it with
other data. If we could merge the global ghg_ems dataset with geographic data, for
example, we could visualize the spatial distribution of climate pollution. For the pur‐
poses of this section, we join ghg_ems to the world data provided by ggmap to illus‐
trate the concepts and methods of data joining (also referred to as merging).

library("ggmap")
world = map_data("world")
names(world)
#> [1] "long" "lat" "group" "order" "region" "subregion"

Visually compare this new dataset of the world with ghg_ems (e.g., via View(world);
View(ghg_ems)). It is clear that the column region in the former contains the same
information as Country in the latter. This will be the joining variable; renaming it in
world will make the join more efficient.

world = rename(world, Country = region)
ghg_ems$All = rowSums(ghg_ems[3:7])

Ensure that both joining variables have the same class (combining
character and factor columns can cause havoc).

How large is the overlap between ghg_ems$Country and world$Country? We can find
out using the %in% operator, which finds out how many elements in one vector match
those in another vector. Specifically, we will find out how many unique country
names from ghg_ems are present in the world dataset:

unique_countries_ghg_ems = unique(ghg_ems$Country)
unique_countries_world = unique(world$Country)
matched = unique_countries_ghg_ems %in% unique_countries_world
table(matched)
#> matched
#> FALSE TRUE
#> 20 168

This comparison exercise has been fruitful: most of the countries in the co2 dataset
exist in the world dataset. But what about the 20 country names that do not match?
We can identify these as follows:

(unmatched_countries_ghg_ems = unique_countries_ghg_ems[!matched])
#> [1] "Antigua & Barbuda" "Bahamas, The"
#> [3] "Bosnia & Herzegovina" "Congo, Dem. Rep."
#> [5] "Congo, Rep." "Cote d'Ivoire"
#> [7] "European Union (15)" "European Union (28)"

118 | Chapter 6: Efficient Data Carpentry

#> [9] "Gambia, The" "Korea, Dem. Rep. (North)"
#> [11] "Korea, Rep. (South)" "Macedonia, FYR"
#> [13] "Russian Federation" "Saint Kitts & Nevis"
#> [15] "Saint Vincent & Grenadines" "Sao Tome & Principe"
#> [17] "Trinidad & Tobago" "United Kingdom"
#> [19] "United States" "World"

It is clear from the output that some of the nonmatches (e.g., the European Union)
are not countries at all. However, others such as Gambia and the United States clearly
should have matches. Fuzzy matching can help find which countries do match, as
illustrated by the first nonmatching country here:

(unmatched_country = unmatched_countries_ghg_ems[1])
#> [1] "Antigua & Barbuda"
unmatched_world_selection = agrep(pattern = unmatched_country,
 unique_countries_world, max.distance = 10)
unmatched_world_countries = unique_countries_world[unmatched_world_selection]

What just happened? We verified that the first unmatching country in the ghg_ems
dataset was not in the world country names. So we used the more powerful agrep to
search for fuzzy matches (with the max.distance argument set to 10). The results
show that the country Antigua & Barbuda from the ghg_ems data matches two coun‐
tries in the world dataset. We can update the names in the dataset we are joining to
accordingly:

world$Country[world$Country %in% unmatched_world_countries] =
 unmatched_countries_ghg_ems[1]

This code reduces the number of country names in the world dataset by replacing
both “Antigua” and “Barbuda” with “Antigua & Barbuda”. This would not work the
other way around: how would one know whether to change “Antigua & Barbuda” to
“Antigua” or to “Barbuda”?

Thus fuzzy matching is still a laborious process that must be complemented by
human judgment. It takes a human to know for sure that United States is repre‐
sented as USA in the world dataset, without risking false matches via agrep.

Working with Databases
Instead of loading all the data into RAM, as R does, databases query data from the
hard disk. This can allow a subset of a very large dataset to be defined and read into R
quickly, without having to load it first. R can connect to databases in a number of
ways, which are briefly touched on below. The subject of databases is a large area
undergoing rapid evolution. Rather than aiming at comprehensive coverage, we will
provide pointers to developments that enable efficient access to a wide range of data‐
base types. An up-to-date history of R’s interfaces to databases can be found in the
README of the DBI package, which provides a common interface and set of classes
for driver packages (such as RSQLite).

Working with Databases | 119

http://bit.ly/DBIREADME

RODBC is a veteran package for querying external databases from within R, using
the Open Database Connectivity (ODBC) API. The functionality of RODBC is
described in the package’s vignette (see vignette("RODBC")), and today its main use
is to provide an R interface to SQL Server databases, which lack a DBI interface.

The DBI package is a unified framework for accessing databases that allows for other
drivers to be added as modular packages. Thus new packages that build on DBI can
be seen partly as a replacements of RODBC (RMySQL, RPostgreSQL, and RSQLite)
(see vignette("backend") for more on how DBI drivers work). Because the DBI
syntax applies to a wide range of database types, we use it here with a worked exam‐
ple.

Imagine you have access to a database that contains the ghg_ems dataset.

Connect to a database driver
library("RSQLite")
con = dbConnect(SQLite(), dbname = ghg_db) # Also username & password arguments
dbListTables(con)
rs = dbSendQuery(con, "SELECT * FROM `ghg_ems` WHERE (`Country` != 'World')")
df_head = dbFetch(rs, n = 6) # extract first 6 row

The preceding code chunk shows how the function dbConnect connects to an exter‐
nal database—in this case, a MySQL database. The username and password argu‐
ments are used to establish the connection. Next, we query which tables are available
with dbListTables, query the database (without yet extracting the results to R) with
dbSendQuery, and, finally, load the results into R with dbFetch.

Be sure never to release your password by entering it directly into
the command. Instead, we recommend saving sensitive informa‐
tion such as database passwords and API keys in .Renviron,
described in Chapter 2. Assuming you had saved your password as
the environment variable PSWRD, you could enter pwd =

Sys.getenv("PSWRD") to minimize the risk of exposing your pass‐
word through accidentally releasing the code or your session
history.

Recently there has been a shift to the noSQL approach to storing large datasets. This
is illustrated by the emergence and uptake of software such as MongoDB and Apache
Cassandra that have R interfaces via packages mongolite and RJDBC, which can
connect to Apache Cassandra data stores and any source compliant with the Java
Database Connectivity (JDBC) API.

MonetDB is a recent alternative to relational and noSQL approaches that offers sub‐
stantial efficiency advantages for handling large datasets (Kersten et al. 2011). A tuto‐
rial on the MonetDB website provides an excellent introduction to handling
databases from within R.

120 | Chapter 6: Efficient Data Carpentry

http://bit.ly/mongoliteR
http://bit.ly/RJDBCpackage
http://bit.ly/monetDBR

There are many wider considerations in relation to databases that we will not cover
here: who will manage and maintain the database? How will it be backed up locally
(local copies should be stored to reduce reliance on the network)? What is the appro‐
priate database for your project? These issues can have major effects on efficiency,
especially on large, data-intensive projects. However, we will not cover them here
because it is a fast-moving field. Instead, we direct the interested reader toward
resources on the subject, including:

• The website for sparklyr, a recently created package for efficiently interfacing
with the Apache Spark stack.

• db-engines.com/en/, a website comparing the relative merits of different data‐
bases.

• The databases vignette from the dplyr package.
• Getting started with MongoDB in R, an introductory vignette on nonrelational

databases and map reduce from the mongolite package.

Databases and dplyr
To access a database in R via dplyr, you must use one of the src_*() functions to
create a source. Continuing with the SQLite example previously given, you would
create a tbl object that can be queried by dplyr as follows:

library("dplyr")
ghg_db = src_sqlite(ghg_db)
ghg_tbl = tbl(ghg_db, "ghg_ems")

The ghg_tbl object can then be queried in a similar way as a standard data frame. For
example, suppose we wished to filter by Country. Then we use the filter() function
as before:

rm_world = ghg_tbl %>%
 filter(Country != "World")

In this code, dplyr has actually generated the necessary SQL command, which can be
examined using explain(rm_world). When working with databases, dplyr uses lazy
evaluation: the data is only fetched at the last moment when it’s needed. The SQL
command associated with rm_world hasn’t yet been executed; this is why
tail(rm_world) doesn’t work. By using lazy evaluation, dplyr is more efficient at
handling large data structures because it avoids unnecessary copying. When you want
your SQL command to be executed, use collect(rm_world).

The final stage when working with databases in R is to disconnect:

dbDisconnect(conn = con)

Working with Databases | 121

http://spark.rstudio.com/
http://db-engines.com/en/
http://bit.ly/MongoDBR

Exercises
Follow the worked example here to create and query a database on land prices in the
UK using dplyr as a frontend to an SQLite database. The first stage is to read in the
data:

See help("land_df", package="efficient") for details
data(land_df, package = "efficient")

The next stage is to create an SQLite database to hold the data:

install.packages("RSQLite") # Requires RSQLite package
my_db = src_sqlite("land.sqlite3", create = TRUE)
land_sqlite = copy_to(my_db, land_df, indexes = list("postcode", "price"))

1. What class is the new object land_sqlite?
2. Why did we use the indexes argument?

From the preceding code, we can see that we have created a tbl. This can be
accessed using dplyr in the same way as any data frame can. Now we can query
the data. You can use SQL code to query the database directly or use standard
dplyr verbs on the table.

Method 1: using sql
tbl(my_db, sql('SELECT "price", "postcode", "old/new" FROM land_df'))
#> Source: query [?? x 3]
#> Database: sqlite 3.8.6 [land.sqlite3]
#>
#> price postcode `old/new`
#> <int> <chr> <chr>
#> 1 84000 CW9 5EU N
#> 2 123500 TR13 8JH N
#> 3 217950 PL33 9DL N
#> 4 147000 EX39 5XT N
#> # ... with more rows

3. How would you perform the same query using select()? Try it to see if you get
the same result (hint: use backticks for the old/new variable name).

#> Source: query [?? x 3]
#> Database: sqlite 3.8.6 [land.sqlite3]
#>
#> price postcode `old/new`
#> <int> <chr> <chr>
#> 1 84000 CW9 5EU N
#> 2 123500 TR13 8JH N
#> 3 217950 PL33 9DL N
#> 4 147000 EX39 5XT N
#> # ... with more rows

122 | Chapter 6: Efficient Data Carpentry

4 One question on the Stack Overflow website titled “data.table vs dplyr” illustrates this controversy and delves
into the philosophy underlying each approach.

Data Processing with data.table
data.table is a mature package for fast data processing that presents an alternative
to dplyr. There is some controversy about which is more appropriate for different
tasks.4 Which is more efficient to some extent depends on personal preferences and
what you are used to. Both are powerful and efficient packages that take time to learn,
so it is best to learn one and stick with it, rather than have the duality of using two for
similar purposes. There are situations in which one works better than another: dplyr
provides a more consistent and flexible interface (e.g., with its interface to databases,
demonstrated in the previous section), so for most purposes we recommend learning
dplyr first if you are new to both packages. dplyr can also be used to work with the
data.table class used by the data.table package so you can get the best of both
worlds.

data.table is faster than dplyr for some operations and offers some functionality
unavailable in other packages, however, and has a mature and advanced user commu‐
nity. data.table supports rolling joins, which allow rows in one table to be selected
based on proximity between shared variables (typically time) and non-equi joins
where join criteria can be inequalities rather than equal to.

This section provides a few examples to illustrate how data.table is unique and (at
the risk of inflaming the debate further) some benchmarks you can use to explore
which is more efficient. As emphasized throughout the book, efficient code writing is
often more important than efficient execution on many everyday tasks, so to some
extent it’s a matter of preference.

The foundational object class of data.table is the data.table. Like dplyr’s tbl_df,
data.table’s data.table objects behave in the same way as the base data.frame class.
However, the data.table paradigm has some unique features that make it highly com‐
putationally efficient for many common tasks in data analysis. Building on subsetting
methods using [and filter(), mentioned previously, we’ll see data.tables’s unique
approach to subsetting. Like base R, data.table uses square brackets but (unlike base
R but like dplyr) uses nonstandard evaluation, so you need not refer to the object
name inside the brackets:

library("data.table")
data(wb_ineq_renamed) # from the efficient package
wb_ineq_dt = data.table(wb_ineq_renamed) # convert to data.table class
aus3a = wb_ineq_dt[Country == "Australia"]

Data Processing with data.table | 123

http://bit.ly/datatablevsdplyr
http://bit.ly/datatablerollingjoins
http://bit.ly/non-equijoins

Note that the square brackets do not need a comma to refer to rows
with data.table objects; in base R, you would write
wb_ineq_renamed[wb_ineq_renamed$Country == "Australia",].

To boost performance, you can set keys, analogous to primary keys in databases.
These are supercharged rownames that order the table based on one or more variables.
This allows a binary search algorithm to subset the rows of interest, which is much,
much faster than the vector scan approach used in base R (see vignette("datatable-
keys-fast-subset")). data.table uses the key values for subsetting by default so the
variable does not need to be mentioned again. Instead, using keys, the search criteria
is provided as a list (invoked in the following code chunk with the concise .() syntax,
which is synonymous with list()).

setkey(wb_ineq_dt, Country)
aus3b = wb_ineq_dt[.("Australia")]

The result is the same, so why add the extra stage of setting the key? The reason is
that this one-off sorting operation can lead to substantial performance gains in situa‐
tions where repeatedly subsetting rows on large datasets consumes a large proportion
of computational time in your workflow. This is illustrated in Figure 6-1, which com‐
pares four methods of subsetting incrementally larger versions of the wb_ineq data‐
set.

Figure 6-1 demonstrates that data.table is much faster than base R and dplyr at sub‐
setting. As with using external packages used to read in data (see “Plain-Text For‐
mats” on page 88), the relative benefits of data.table improve with dataset size,
approaching a ~70-fold improvement on base R and a ~50-fold improvement on
dplyr as the dataset size reaches half a gigabyte. Interestingly, even the nonkey imple‐
mentation of the data.table subset method is faster than the alternatives. This is
because data.table creates a key internally by default before subsetting. The process
of creating the key accounts for the ~10 fold speed-up in cases where the key has been
pregenerated.

This section has introduced data.table as a complimentary approach to base and
dplyr methods for data processing. It offers performance gains due to its implemen‐
tation in C and the use of keys for subsetting tables. data.table offers much more,
however, including: highly efficient data reshaping, dataset merging (also known as
joining, as with left_join() in dplyr), and grouping. For further information on
data.table, we recommend reading the package’s datatable-intro, datatable-
reshape, and datatable-reference-semantics vignettes.

124 | Chapter 6: Efficient Data Carpentry

http://bit.ly/keysfastbinary
http://bit.ly/datatableintro
http://bit.ly/datatablereshape
http://bit.ly/datatablereshape
http://bit.ly/datatablerefsem

Figure 6-1. Benchmark illustrating the performance gains to be expected for different
dataset sizes

References
Wickham, Hadley. 2014b. “Tidy Data.” The Journal of Statistical Software 14 (5).

Codd, E. F. 1979. “Extending the database relational model to capture more meaning.”
ACM Transactions on Database Systems 4 (4): 397–434. doi:10.1145/320107.320109.

Spector, Phil. 2008. Data Manipulation with R. Springer Science & Business Media.

Sanchez, Gaston. 2013. “Handling and Processing Strings in R.” Trowchez Editions.
http://bit.ly/handlingstringsR.

Grolemund, G., and H. Wickham. 2016. R for Data Science. O’Reilly Media.

Wickham, Hadley. 2010. “Stringr: Modern, Consistent String Processing.” The R Jour‐
nal 2 (2): 38–40.

Kersten, Martin L, Stratos Idreos, Stefan Manegold, Erietta Liarou, and others. 2011.
“The Researcher’s Guide to the Data Deluge: Querying a Scientific Database in Just a
Few Seconds.” PVLDB Challenges and Visions 3.

References | 125

http://bit.ly/extenddbmodel
http://bit.ly/handlingstringsR

CHAPTER 7

Efficient Optimization

Donald Knuth is a legendary American computer scientist who developed a number
of the key algorithms that we use today (see, for example, ?Random). On the subject of
optimization, he gave this advice:

The real problem is that programmers have spent far too much time worrying about
efficiency in the wrong places and at the wrong times; premature optimization is the
root of all evil (or at least most of it) in programming.

Knuth’s point is that it is easy to undertake code optimization inefficiently. When
developing code, the causes of inefficiencies may shift so that what originally caused
slowness at the beginning of your work may not be relevant at a later stage. This
means that time spent optimizing code early in the developmental stage could be
wasted. Even worse, there is a trade-off between code speed and code readability;
we’ve already made this trade-off once by using readable (but slow) R compared with
verbose C code!

For this reason, this chapter is part of the latter half of the book. The previous chap‐
ters deliberately focused on concepts, packages, and functions to increase efficiency.
These are (relatively) easy ways of saving time that, once implemented, will work for
future projects. Code optimization, by contrast, is an advanced topic that should only
be tackled once low hanging fruit for efficiency gains have been taken.

In this chapter we assume that you already have well-developed code that is mature
conceptually and has been tried and tested. Now you want to optimize this code, but
not prematurely. The chapter is organized as follows. First, we begin with general
hints and tips about optimizing base R code. Code profiling can identify key bottle‐
necks in the code in need of optimization, and this is covered in the next section.
“Parallel Computing” on page 139 discusses how parallel code can overcome effi‐
ciency bottlenecks for some problems. The final section explains how Rcpp can be
used to efficiently incorporate C++ code into an R analysis.

127

https://en.wikiquote.org/wiki/Donald_Knuth

Prerequisites
In this chapter, some of the examples require a working C++ compiler. The installa‐
tion method depends on your operating system:

Linux
A compiler should already be installed. Otherwise, install r-base and a compiler
will be installed as a dependency.

Mac
Install Xcode.

Windows
Install Rtools. Make sure you select the version that corresponds to your version
of R.

The packages used in this chapter are:

library("microbenchmark")
library("ggplot2movies")
library("profvis")
library("Rcpp")

Top Five Tips for Efficient Optimization
1. Before you start to optimize you code, ensure that you know where the bottle‐

neck lies; use a code profiler.
2. If the data in your data frame is all of the same type, consider converting it to a

matrix for a speed boost.
3. Use specialized row and column functions whenever possible.
4. The parallel package is ideal for Monte Carlo simulations.
5. For optimal performance, consider rewriting key parts of your code in C++.

Code Profiling
Often you will have working code, but simply want it to run faster. In some cases, it’s
obvious where the bottleneck lies. Sometimes you will guess, relying on intuition. A
drawback of this is that you could be wrong and waste time optimizing the wrong
piece of code. To make slow code run faster, it is important to first determine where
the slow code lives. This is the purpose of code profiling.

The Rprof() function is a built-in tool for profiling the execution of R expressions.
At regular time intervals, the profiler stops the R interpreter, records the current

128 | Chapter 7: Efficient Optimization

http://cran.r-project.org/bin/windows/

function call stack, and saves the information to a file. The results from Rprof() are
stochastic. Each time we run a function R, the conditions have changed. Hence, each
time you profile your code, the result will be slightly different.

Unfortunately, Rprof() is not user-friendly. For this reason, we recommend using the
profvis package for profiling your R code. profvis provides an interactive graphical
interface for visualizing code-profiling data from Rprof().

Getting Started with profvis
After installing profvis (e.g., with install.packages("profvis")), it can be used to
profile R code. As a simple example, we will use the movies dataset, which contains
information on about 60,000 movies. First, we’ll select movies that are classed as
comedies, then plot the year the movie was made verus the movie rating and draw a
local polynomial regression line to pick out the trend. The main function from the
profvis package is profvis(), which profiles the code and creates an interactive
HTML page of the results. The first argument of profvis() is the R expression of
interest. This can be many lines long:

library("profvis")
profvis({
 data(movies, package = "ggplot2movies") # Load data
 movies = movies[movies$Comedy == 1,]
 plot(movies$year, movies$rating)
 model = loess(rating ~ year, data = movies) # loess regression line
 j = order(movies$year)
 lines(movies$year[j], model$fitted[j]) # Add line to the plot
})

The previous code provides an interactive HTML page (the Figure 7-1). On the left
side is the code and on the right is a flame graph (the horizontal direction is time in
milliseconds and the vertical direction is the call stack).

Figure 7-1. Output from profvis

The left-hand panel gives the amount of time spent on each line of code. It shows that
the majority of time is spent calculating the loess() smoothing line. The bottom line
of the right panel also highlights that most of the execution time is spent on the

Code Profiling | 129

loess() function. Traveling up the function, we see that loess() calls simpleLo
ess(), which in turn calls the .C() function.

The conclusion from this graph is that if optimization were required, it would make
sense to focus on the loess() and possibly the order() function calls.

Example: Monopoly Simulation
Monopoly is a board game that originated in the United States over 100 years ago.
The objective of the game is to go around the board and purchase squares (proper‐
ties). If other players land on your properties, they have to pay a tax. The player with
the most money at the end of the game wins. To make things more interesting, there
are Chance and Community Chest squares. If you land on one of these squares, you
draw a card, which may send you to other parts of the board. The other special square
is Jail. One way of entering Jail is to roll three successive doubles.

The efficient package contains a Monte Carlo function for simulating a simplified
game of monopoly. By keeping track of where a person lands when going around the
board, we obtain an estimate of the probability of landing on a certain square. The
entire code is around 100 lines long. In order for profvis to fully profile the code, the
efficient package needs to be installed from source:

devtools::install_github("csgillespie/efficient", args = "--with-keep.source")

The function can then be profiled via the following code, which results in Figure 7-2.

library("efficient")
profvis(simulate_monopoly(10000))

Figure 7-2. Code profiling for simulating the game of Monopoly

130 | Chapter 7: Efficient Optimization

The output from profvis shows that the vast majority of time (around 65%) is spent
in the move_square() function.

In Monopoly, moving around the board is complicated by the fact that rolling a dou‐
ble (a pair of 1s, 2s, …, 6s) is special:

• Roll two dice (total1): total_score = total1.
• If you get a double, roll again (total2) and total_score = total1 + total2.
• If you get a double, roll again (total3) and total_score = total1 + total2 +
total3.

• If roll three is a double, go to Jail; otherwise, move total_score.

The function move_square() captures this logic. Now that we know where the code is
slow, how can we speed up the computation? In the next section, we will discuss stan‐
dard techniques that can be used. We will then revisit this example.

Efficient Base R
In R, there is often more than one way to solve a problem. In this section, we high‐
light standard tricks or alternative methods that may improve performance.

The if() Versus ifelse() Functions
ifelse() is a vectorized version of the standard control-flow function if(test)
if_yes else if_no that works as follows:

ifelse(test, if_yes, if_no)

In the preceding imaginary example, the return value is filled with elements from the
if_yes and if_no arguments that are determined by whether the element of test is
TRUE or FALSE. For example, suppose we have a vector of exam marks. ifelse()
could be used to classify them as pass or fail:

marks = c(25, 55, 75)
ifelse(marks >= 40, "pass", "fail")
#> [1] "fail" "pass" "pass"

If the length of the test condition is equal to 1 (i.e., length(test) == 1), then the
standard conditional statement

mark = 25
if(mark >= 40) {
 "pass"
} else {
 "fail"
}

Efficient Base R | 131

is around five to ten times faster than ifelse(mark >= 40, "pass", "fail").

An additional quirk of ifelse() is that although it is more programmer efficient, as it
is more concise and understandable than multiline alternatives, it is often less compu‐
tationally efficient than a more verbose alternative. This is illustrated with the follow‐
ing benchmark, in which the second option runs about 20 times faster, despite the
results being identical:

marks = runif(n = 10e6, min = 30, max = 99)
system.time({
 result1 = ifelse(marks >= 40, "pass", "fail")
})
#> user system elapsed
#> 4.293 0.351 4.667
system.time({
 result2 = rep("fail", length(marks))
 result2[marks >= 40] = "pass"
})
#> user system elapsed
#> 0.192 0.052 0.244
identical(result1, result2)
#> [1] TRUE

There is talk on the R-devel email list of speeding up ifelse() in base R. A simple
solution is to use the if_else() function from dplyr, although, as discussed in the
same thread, it cannot replace ifelse() in all situations. For our exam result test
example, if_else() works fine and is much faster than base R’s implementation
(although it is still around three times slower than the hardcoded solution):

system.time({
 result3 = dplyr::if_else(marks >= 40, "pass", "fail")
})
#> user system elapsed
#> 1.065 0.188 1.253
identical(result1, result3)
#> [1] TRUE

Sorting and Ordering
Sorting a vector is relatively quick; sorting a vector of length 107 takes around 0.01
seconds. If you only sort a vector once at the top of a script, then don’t worry too
much about this. However, if you are sorting inside a loop or in a Shiny application,
then it can be worthwhile thinking about how to optimize this operation.

There are currently three sorting algorithms, c("shell", "quick", "radix"), that
can be specified in the sort() function, with radix being a new addition to R 3.3.
Typically, the radix (the nondefault option) is the most computationally efficient
option for most situations (it is around 20% faster when sorting a large vector of dou‐
bles).

132 | Chapter 7: Efficient Optimization

http://bit.ly/ifelsespeed

Another useful trick is to partially order the results. For example, if you only want to
display the top 10 results, then use the partial argument (i.e., sort(x, partial =
1:10)). For very large vectors, this can give a three-fold speed increase.

Reversing Elements
The rev() function provides a reversed version of its argument. If you wish to sort in
increasing order, sort(x, decreasing = TRUE) is marginally (around 10%) faster
than rev(sort(x)).

Which Indices are TRUE?
To determine which index of a vector or array is TRUE, we would typically use the
which() function. If we want to find the index of just the minimum or maximum
value (i.e., which(x == min(x))), then using the efficient which.min()/which.max()
variants can be orders of magnitude faster (see Figure 7-3).

Figure 7-3. Comparison of which.min() with which()

Converting Factors to Numerics
A factor is just a vector of integers with associated levels. Occasionally, we want to
convert a factor into its numerical equivalent. The most efficient way of doing this
(especially for long factors) is:

Efficient Base R | 133

as.numeric(levels(f))[f]

Logical AND and OR
The logical AND (&) and OR (|) operators are vectorized functions and are typically
used during multicriteria subsetting operations. The following code, for example,
returns TRUE for all elements of x greater than 0.4 or less than 0.6:

x < 0.4 | x > 0.6
#> [1] TRUE FALSE TRUE

When R executes this comparison, it will always calculate x > 0.6 regardless of the
value of x < 0.4. In contrast, the nonvectorized version, &&, only executes the second
component if needed. This is efficient and leads to neater code:

We only calculate the mean if data doesn't contain NAs
if(!anyNA(x) && mean(x) > 0) {
 # Do something
}

compared to

if(!anyNA(x)) {
 if(mean(x) > 0) {
 # do something
 }
}

However, care must be taken not to use && or || on vectors because it only evaluates
the first element of the vector, giving the incorrect answer. This is illustrated here:

x < 0.4 || x > 0.6
#> [1] TRUE

Row and Column Operations
In data analysis, we often want to apply a function to each column or row of a dataset.
For example, we might want to calculate the column or row sums. The apply() func‐
tion makes this type of operation straightforward.

Second argument: 1 -> rows. 2 -> columns
apply(data_set, 1, function_name)

There are optimized functions for calculating row and column sums/means (row
Sums(), colSums(), rowMeans(), and colMeans()) that should be used whenever pos‐
sible. The package matrixStats contains many optimized row/column functions.

134 | Chapter 7: Efficient Optimization

is.na() and anyNA()
To test whether a vector (or other object) contains missing values, we use the is.na()
function. Often we are interested in whether a vector contains any missing values. In
this case, anyNA(x) is more efficient than any(is.na(x)).

Matrices
A matrix is similar to a data frame: it is a two-dimensional object and subsetting, and
other functions work in the same way. However, all matrix elements must have the
same type. Matrices tend to be used during statistical calculations. The lm() function,
for example, internally converts the data to a matrix before calculating the results; any
characters are thus recoded as numeric dummy variables.

Matrices are generally faster than data frames. For example, the datasets ex_mat and
ex_df from the efficient package each have 1,000 rows and 100 columns and contain
the same random numbers. However, selecting rows from the data frame is about 150
times slower than a matrix, as illustrated here:

data(ex_mat, ex_df, package = "efficient")
microbenchmark(times = 100, unit = "ms", ex_mat[1,], ex_df[1,])
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> ex_mat[1,] 0.00252 0.00368 0.0565 0.00531 0.00593 5.08 100
#> ex_df[1,] 0.77058 0.87406 1.0894 0.96771 1.10045 6.36 100

Use the data.matrix() function to efficiently convert a data frame
into a matrix.

The integer data type
Numbers in R are usually stored in double-precision floating-point format, which is
described in detail in A First Course in Statistical Programming with R (Braun and
Murdoch 2007) and “What Every Computer Scientist Should Know About Floating-
Point Arithmetic” (Goldberg). The term double refers to the fact that on 32-bit sys‐
tems (for which the format was developed) two memory locations are used to store a
single number. Each double-precision number is accurate to about 17 decimal places.

When comparing floating-point numbers, we should be particu‐
larly careful because y = sqrt(2) * sqrt(2) is not exactly 2—it’s
almost 2. Using sprintf("%.17f", y) will give you the true value
of y (to 17 decimal places).

Efficient Base R | 135

https://goo.gl/ZA5R8a

Integers are another numeric data type. Integers primarily exist to be passed to C or
Fortran code. You will not need to create integers for most applications. However,
they are occasionally used to optimize subsetting operations. When we subset a data
frame or matrix, we are interacting with C code and might be tempted to use integers
with the purpose of speeding up our code. For example, if we look at the arguments
for the head function

args(head.matrix)
#> function (x, n = 6L, ...)
#> NULL

Using the : operator automatically creates a vector of integers.

we see that the default argument for n is 6L rather than simply 6 (the L is short for
literal and is used to create an integer). This gives a tiny speed boost (around 0.1
microseconds!).

x = runif(10)
microbenchmark(head(x, 6.0), head(x, 6L), times = 1000000)
Unit: microseconds
expr min lq mean median uq max neval cld
head(x, 6) 7.067 8.309 9.058 8.686 9.098 105266 1e+06 a
head(x, 6L) 6.947 8.219 8.933 8.594 9.007 106307 1e+06 a

Because this function is ubiquitous, this low-level optimization is useful. In general, if
you are worried about shaving microseconds off your R code run time, you should
probably consider switching to another language.

Integers are more space-efficient. The following code compares the size of an integer
vector to that of a standard numeric vector:

pryr::object_size(1:10000)
#> 40 kB
pryr::object_size(seq(1, 10000, by = 1.0))
#> 80 kB

The results show that the integer version is roughly half the size. However, most
mathematical operations will convert the integer vector into a standard numerical
vector, as illustrated in the following code chunk:

is.integer(1L + 1)
#> [1] FALSE

Further storage savings can be obtained using the bit package.

136 | Chapter 7: Efficient Optimization

1 Technically this isn’t in base R; it’s a recommended package.

Sparse matrices
Another data structure that can be stored efficiently is a sparse matrix. This is simply
a matrix where most of the elements are zero. Conversely, if most elements are non‐
zero, the matrix is considered dense. The proportion of nonzero elements is called the
sparsity. Large, sparse matrices often crop up when performing numerical calcula‐
tions. Typically, our data isn’t sparse, but the resulting data structures we create may
be sparse. There are a number of techniques/methods used to store sparse matrices.
Methods for creating sparse matrices can be found in the Matrix package.1

As an example, suppose we have a large matrix in which the diagonal elements are
nonzero:

library("Matrix")
N = 10000
sp = sparseMatrix(1:N, 1:N, x = 1)
m = diag(1, N, N)

Both objects contain the same information, but the data is stored differently. Because
we have the same value multiple times in the matrix, we only need to store the value
once and link it to multiple matrix locations. The matrix object stores each individual
element, whereas the sparse matrix object only stores the location of the nonzero ele‐
ments. This is much more memory-efficient, as illustrated in the following code:

pryr::object_size(sp)
#> 161 kB
pryr::object_size(m)
#> 800 MB

Exercises

1. Create a vector, x. Benchmark any(is.na(x)) against anyNA(). Do the results
vary with the size of the vector?

2. Examine the following function definitions to give you an idea of how integers
are used:

• tail.matrix()

• lm()

3. Construct a matrix of integers and a matrix of numerics. Using
pryr::object_size(), compare the objects.

Efficient Base R | 137

2 Solutions are available in the efficient package vignette.

4. How does the function seq.int(), which was used in the tail.matrix() func‐
tion, differ from the standard seq() function?

A related memory-saving idea is to replace logical vectors with
vectors from the bit package, which take up just over 1/30th of the
space (but you can’t use NAs).

Example: Optimizing the move_square() Function
Figure 7-2 shows that our main bottleneck in simulating the game of Monopoly is the
move_square() function. Within this function, we spend around 50% of the time cre‐
ating a data frame, 20% calculating row sums, and the remainder on comparison
operations. This piece of code can be optimized fairly easily (while still retaining the
same overall structure) by incorporating the following improvements:2

• Instead of using seq(1, 6) to generate the six possible values of rolling a die, use
1:6. Also, instead of a data frame, use a matrix and perform a single call to the
sample() function:

matrix(sample(1:6, 6, replace = TRUE), ncol = 2)

Overall, this revised line is around 25 times faster; most of the speed boost came
from switching to a matrix.

• Use rowSums() instead of apply(). The apply() function call is already faster
because we switched from a data frame to a matrix (around three times). Using
rowSums() with a matrix gives a 10-fold speed boost.

• Use && in the if condition; this is about twice as fast as &.

Impressively, the refactored code runs 20 times faster than the original code. Com‐
pare Figures 7-2 and 7-4 with the main speed boost coming from using a matrix
instead of a data frame.

138 | Chapter 7: Efficient Optimization

Figure 7-4. Code profiling of the optimized code

Exercise

1. The move_square() function shown in Figure 7-4 uses a vectorized solution.
Whenever we move, we always roll six dice, then examine the outcome and
determine the number of doubles. However, this is potentially wasteful, since the
probability of getting one double is 1/6 and two doubles is 1/36. Another method
is to only roll additional dice if and when they are needed. Implement and time
this solution.

Parallel Computing
This section provides a brief foray into the word of parallel computing. It only looks
at methods for parallel computing on shared memory systems. This simply means
computers in which multiple CPU cores can access the same block (i.e., most laptops
and desktops sold worldwide). This section provides a flavor of what is possible; for a
fuller account of parallel processing in R, see Parallel R by McCallum and Weston
(O’Reilly).

The foundational package for parallel computing in R is parallel. In recent R versions
(since R 2.14.0), this comes preinstalled with base R. The parallel package must still
be loaded before use, however, and you must manually determine the number of
available cores manually as illustrated in the following code:

library("parallel")
no_of_cores = detectCores()

Parallel Computing | 139

http://shop.oreilly.com/product/0636920021421.do

3 The idea for this example came to one of the authors after a particularly long and dull game of Snakes and
Ladders with his son.

The value returned by detectCores() turns out to be operating-
system and chip-maker dependent; see help("detectCores") for
full details. For most standard machines, detectCores() returns
the number of simultaneous threads.

Parallel Versions of Apply Functions
The most commonly used parallel applications are parallelized replacements of lap
ply(), sapply(), and apply(). The parallel implementations and their arguments are
shown in the following code example:

parLapply(cl, x, FUN, ...)
parApply(cl = NULL, X, MARGIN, FUN, ...)
parSapply(cl = NULL, X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

The key point is that there is very little difference in arguments between parLap
ply(), and apply(), so the barrier to using (this form) of parallel computing is low,
assuming you are proficient with the apply family of functions. Each of these func‐
tions has an argument cl, which is created by a makeCluster() call. This function,
among other things, specifies the number of processors to use.

Example: Snakes and Ladders
Parallel computing is ideal for Monte Carlo simulations. Each core independently
simulates a realization from the model. At the end, we gather up the results. In the
efficient package, there is a function that simulates a single game of Snakes and Lad‐
ders: snakes_ladders().3

The following code illustrates how to simulate N games using sapply():

N = 10^4
sapply(1:N, snakes_ladders)

Rewriting this code to make use of the parallel package is straightforward. Begin by
making a cluster object:

library("parallel")
cl = makeCluster(4)

Then simply swap sapply() for parSapply():

parSapply(cl, 1:N, snakes_ladders)

140 | Chapter 7: Efficient Optimization

4 See github.com/npct/pct-shiny/issues/292 for a real-world example of the dangers of not stopping created
cores.

It is important to stop the created clusters, as this can lead to memory leaks,4 as illus‐
trated in the following code:

stopCluster(cl)

If we achieved perfect parallelization and used a four (or more) core, then we would
obtain a four-fold speed up (we set makeCluster(4)). However, we rarely get this.

On a multiprocessor computer, this can lead to a four-fold speed-up. However, it is
rare to achieve this optimal speed-up since there is always communication between
threads.

Exit Functions with Care
Always call stopCluster() to free resources when you finish with the cluster object.
However, if the parallel code is within a function call that results in an error, the
StopCluster() command would be omitted.

The on.exit() function handles this problem with a minimum of fuss; regardless of
how the function ends, on.exit() is always called. In the context of parallel pro‐
gramming, we will have something similar to:

simulate = function(cores) {
 cl = makeCluster(cores)
 on.exit(stopCluster(cl))
 # Do something
}

Another common use of on.exit() is with the par() function. If
you use par() to change graphical parameters within a function,
on.exit() ensures that these parameters are reset to their previous
value when the function ends.

Parallel Code under Linux and OS X
If you are using Linux or OS X, then another way of running code in parallel is to use
the mclapply() and mcmapply() functions:

This will run on Windows, but will only use 1 core
mclapply(1:N, snakes_ladders)

These functions use forking; that is, creating a new copy of a process running on the
CPU. However, Windows does not support this low-level functionality in the way that
Linux does. The main advantage of mclapply() is that you don’t have to start and

Parallel Computing | 141

https://github.com/npct/pct-shiny/issues/292

stop cluster objects. The big disadvantage is that on Windows machines, you are limi‐
ted to a single core.

Rcpp
Sometimes R is just slow. You’ve tried every trick you know, and your code is still
crawling along. At this point, you could consider rewriting key parts of your code in
another, faster language. R has interfaces to other languages via packages, such as
Rcpp, rJava, rPython, and recently V8. These provide R interfaces to C++, Java,
Python, and JavaScript, respectively. Rcpp is the most popular of these (Figure 7-5).

Figure 7-5. Downloads per day from the RStudio CRAN mirror of packages that provide
R interfaces to other languages

C++ is a modern, fast, and very well-supported language with libraries for perform‐
ing many kinds of computational tasks. Rcpp makes incorporating C++ code into
your R workflow easy.

Although C/Fortran routines can be used using the .Call() function, this is not rec‐
ommended because using .Call() can be a painful experience. Rcpp provides a
friendly API that lets you write high-performance code, bypassing R’s tricky C API.
Typical bottlenecks that C++ addresses are loops and recursive functions.

142 | Chapter 7: Efficient Optimization

C++ is a powerful programming language about which entire books have been writ‐
ten. This section therefore is focused on getting started and providing a flavor of what
is possible. It is structured as follows. After ensuring that your computer is set up for
Rcpp, we proceed by = creating a simple C++ function, to show how C++ compares
with R (“A Simple C++ Function”). This is converted into an R function using
cppFunction() in “The cppFunction() Command” on page 144.

The remainder of the chapter explains C++ data types (“C++ Data Types” on page
145), illustrates how to source C++ code directly (“The sourceCpp() Function” on
page 145), explains vectors (“Vectors and Loops” on page 146) and Rcpp sugar (“C++
with Sugar on Top” on page 149), and finally provides guidance on further resources
on the subject (“Rcpp Resources” on page 150).

A Simple C++ Function
To write and compile C++ functions, you need a working C++ compiler (see “Prereq‐
uisites” on page 128). The code in this chapter was generated using version 0.12.7 of
Rcpp.

Rcpp is well documented, as illustrated by the number of vignettes on the package’s
CRAN page. In addition to its popularity, many other packages depend on Rcpp,
which can be seen by looking at the Reverse Imports section.

To check that you have everything needed for this chapter, run the following piece of
code from the course R package:

efficient::test_rcpp()

A C++ function is similar to an R function: you pass a set of inputs to a function,
some code is run, and a single object is returned. However, there are some key differ‐
ences:

• In the C++ function, each line must be terminated with ;. In R, we use ; only
when we have multiple statements on the same line.

• We must declare object types in the C++ version. In particular, we need to
declare the types of the function arguments, the return values, and any inter‐
mediate objects we create.

• The function must have an explicit return statement. Similar to R, there can be
multiple returns, but the function will terminate when it hits its first return
statement.

• You do not use assignment when creating a function.
• Object assignment must use the = sign. The <- operator isn’t valid.

Rcpp | 143

https://cran.r-project.org/web/packages/Rcpp/

• One-line comments can be created using //. Multiline comments are created
using /*...*/.

Suppose we want to create a function that adds two numbers together. In R, this
would be a simple one-line affair:

add_r = function(x, y) x + y

In C++, it is a bit more long-winded:

/* Return type double
 * Two arguments, also doubles
 */
double add_cpp(double x, double y) {
 double value = x + y;
 return value;
}

If we were writing a C++ program, we would also need another function called
main(). We would then compile the code to obtain an executable. The executable is
platform-dependent. The beauty of using Rcpp is that it makes it very easy to call
C++ functions from R and the user doesn’t have to worry about the platform, compil‐
ers, or the R/C++ interface.

The cppFunction() Command
If we pass the C++ function created in the previous section as a text string argument
to cppFunction()

library("Rcpp")
cppFunction('
 double add_cpp(double x, double y) {
 double value = x + y;
 return value;
 }
')

Rcpp will magically compile the C++ code and construct a function that bridges the
gap between R and C++. After running the code shown previously, we now have
access to the add_cpp() function

add_cpp
#> function (x, y)
#> .Primitive(".Call")(<pointer: 0x2b9e590670e0>, x, y)

and can call the add_cpp() function in the usual way:

add_cpp(1, 2)
#> [1] 3

We don’t have to worry about compilers. Also, if you include this function in a pack‐
age, users don’t have to worry about any of the Rcpp magic. It just works.

144 | Chapter 7: Efficient Optimization

C++ Data Types
The most basic type of variable is an integer, int. An int variable can store a value in
the range –32768 to +32767. To store floating-point numbers, there are single-
precision numbers (float) and double-precision numbers (double). A double takes
twice as much memory as a float (in general, we should always work with double-
precision numbers unless we have a compiling reason to switch to floats). For single
characters, we use the char data type.

There is also something called an unsigned int, which goes from 0
to 65,535 and a long int that ranges from 0 to 231 − 1.

A pointer object is a variable that points to an area of memory that has been given a
name. Pointers are a very powerful—but primitive—facility contained in the C++
language. They can be very efficient because since rather than passing large objects
around, we pass a pointer to the memory location; in other words, rather than pass
the house, we just give the address. We won’t use pointers in this chapter, but mention
them for completeness. Table 7-1 gives an overview.

Table 7-1. Overview of key C++ object types

Type Description
char A single character

int An integer

float A single-precision floating-point number

double A double-precision floating-point number

void A valueless quantity

The sourceCpp() Function
The cppFunction() is great for getting small examples up and running. But it is bet‐
ter practice to put your C++ code in a separate file (with file extension .cpp) and use
the function call sourceCpp("path/to/file.cpp") to compile them. However, we do
need to include a few headers at the top of the file. The first line we add gives us
access to the Rcpp functions. The file Rcpp.h contains a list of function and class defi‐
nitions supplied by Rcpp. This file will be located where Rcpp is installed. The
include line

#include <Rcpp.h>

causes the compiler to replace that line with the contents of the named source file.
This means that we can access the functions defined by Rcpp. To access the Rcpp

Rcpp | 145

functions, we would have to type Rcpp::function_1. To avoid typing Rcpp::, we use
the namespace facility:

using namespace Rcpp;

Now we can just type function_1(); this is the same concept that R uses for manag‐
ing function name collisions when loading packages. Above each function we want to
export/use in R, we add the tag:

// [[Rcpp::export]]

Similar to packages and the library() function in R, we access
additional functions via #include. A standard header to include is
#include <math.h>, which contains standard mathematics func‐
tions.

This would give the complete file:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double add_cpp(double x, double y) {
 double value = x + y;
 return value;
}

There are two main benefits with putting your C++ functions in separate files. First,
we have the benefit of syntax highlighting (RStudio has great support for C++ edit‐
ing). Second, it’s easier to make syntax errors when the switching between R and C++
in the same file. To save space, we’ll omit the headers for the remainder of the chapter.

Vectors and Loops
Let’s now consider a slightly more complicated example. Here we want to write our
own function that calculates the mean. This is just an illustrative example: R’s version
is much better and more robust to scale differences in our data. For comparison, let’s
create a corresponding R function—this is the same function we used in Chapter 3.
The function takes a single vector x as input and returns the mean value, m:

mean_r = function(x) {
 m = 0
 n = length(x)
 for(i in 1:n)
 m = m + x[i] / n
 m
}

146 | Chapter 7: Efficient Optimization

This is a very bad R function; we should just use the base function mean() for real-
world applications. However, the purpose of mean_r() is to provide a comparison for
the C++ version, which we will write in a similar way.

In this example, we will let Rcpp smooth the interface between C++ and R by using
the NumericVector data type. This Rcpp data type mirrors the R vector object type.
Other common classes are IntegerVector, CharacterVector, and LogicalVector.

In the C++ version of the mean function, we specify the argument types: x (Numeric
Vector) and the return value (double). The C++ version of the mean() function is a
few lines longer. Almost always, the corresponding C++ version will be, possibly
much, longer. In general, R optimizes for reduced development time; C++ optimizes
for fast execution time. The corresponding C++ function for calculating the mean is:

double mean_cpp(NumericVector x) {
 int i;
 int n = x.size();
 double mean = 0;

 for(i=0; i<n; i++) {
 mean = mean + x[i] / n;
 }
 return mean;
}

To use the C++ function, we need to source the file (remember to put the necessary
headers in):

sourceCpp("src/mean_cpp.cpp")

Although the C++ version is similar, there are a few crucial differences.

1. We use the .size() method to find the length of x.
2. The for loop has a more complicated syntax.

for (variable initialisation; condition; variable update) {
 // Code to execute
}

In this example, the loop initializes i = 0 and will continue running until i < n
is false. The statement i++ increases the value of i by 1; essentially it’s just a
shortcut for i = i + 1.

3. Similar to i++, C++ provides other operators to modify variables in place. For
example, we could rewrite part of the loop as

mean += x[i] / n;

The previous code adds x[i] / n to the value of mean. Other similar operators
are -=, *=, /=, and i--.

Rcpp | 147

4. A C++ vector starts at 0, not 1.

To compare the C++ and R functions, we’ll generate some normal random numbers:

x = rnorm(1e4)

Then call the microbenchmark() function (the results are plotted in Figure 7-6).

com_mean_r is the compiled version of mean_r
z = microbenchmark(
 mean(x), mean_r(x), com_mean_r(x), mean_cpp(x),
 times = 1000
)

In this simple example, the Rcpp variant is around 100 times faster than the corre‐
sponding pure R version. This sort of speed-up is not uncommon when switching to
an Rcpp solution. Notice that the Rcpp version and standard base function mean()
run at roughly the same speed; after all, the base R function is written in C. However,
mean() uses a more sophisticated algorithm when calculating the mean to ensure
accuracy.

Figure 7-6. Comparison of mean functions

148 | Chapter 7: Efficient Optimization

Exercises
Consider the following piece of code:

double test1() {
 double a = 1.0 / 81;
 double b = 0;
 for (int i = 0; i < 729; ++ i)
 b = b + a;
 return b;
}

1. Save the function test1() in a separate file. Make sure it works.
2. Write a similar function in R and compare the speed of the C++ and R versions.
3. Create a function called test2(), in which the double variables have been

replaced by float. Do you still get the correct answer?
4. Change b = b + a to b += a to make your code more like C++.
5. (Difficult!) What’s the difference between i++ and ++i?

Matrices
Each vector type has a corresponding matrix equivalent: NumericMatrix, IntegerMa
trix, CharacterMatrix, and LogicalMatrix. We use these types in a similar way to
how we used NumericVectors. The main differences are:

• When we initialize, we need to specify the number of rows and columns:
// 10 rows, 5 columns
NumericMatrix mat(10, 5);
// Length 10
NumericVector v(10);

• We subset using ()—i.e., mat(5, 4).
• The first element in a matrix is mat(0, 0)—remember that indexes start with 0,

not 1.
• To determine the number of rows and columns, we use the .nrow() and .ncol()

methods.

C++ with Sugar on Top
Rcpp sugar brings a higher level of abstraction to C++ code written using the Rcpp
API. What this means in practice is that we can write C++ code in the style of R. For

Rcpp | 149

example, suppose we wanted to find the squared difference of two vectors; a squared
residual in regression. In R, we would use

sq_diff_r = function(x, y) (x - y)^2

Rewriting the function in standard C++ would give

NumericVector res_c(NumericVector x, NumericVector y) {
 int i;
 int n = x.size();
 NumericVector residuals(n);
 for(i = 0; i < n; i++) {
 residuals[i] = pow(x[i] - y[i], 2);
 }
 return residuals;
}

With Rcpp sugar, we can rewrite this code to be more succinct and have more of an R
feel:

NumericVector res_sugar(NumericVector x, NumericVector y) {
 return pow(x - y, 2);
}

In the previous C++ code, the pow() function and x-y are valid due to Rcpp sugar.
Other functions that are available include the d/q/p/r statistical functions, such as
rnorm() and pnorm(). The sweetened versions aren’t usually faster than the C++ ver‐
sions, but typically there’s very little difference between the two. However, with the
sugared variety, the code is shorter and is constantly being improved.

Exercises

1. Construct an R version (using a for loop rather than the vectorized solution),
res_r(), and compare the three function variants.

2. In the previous example, res_sugar() is faster than res_c(). Do you know why?

Rcpp Resources
The aim of this section was to provide an introduction to Rcpp. One of the selling
points of Rcpp is that there is a great deal of documentation available.

• The Rcpp website.
• The original Journal of Statistical Software paper describing Rcpp and the follow-

up book Seamless R and C++ Integration with Rcpp by Eddelbuettel and Francois.
• Hadley Wickham provides a very readable chapter on Rcpp in Advanced R that

goes into a bit more detail than this section.

150 | Chapter 7: Efficient Optimization

http://www.rcpp.org/

• The Rcpp section on the Stack Overflow website. Questions are often answered
by the Rcpp authors.

References
Braun, John, and Duncan J Murdoch. 2007. A First Course in Statistical Programming
with R. Vol. 25. Cambridge University Press Cambridge.

Goldberg, David. 1991. “What Every Computer Scientist Should Know About
Floating-Point Arithmetic.” ACM Computing Surveys (CSUR) 23 (1). ACM: 5–48.

McCallum, Ethan, and Stephen Weston. 2011. Parallel R. O’Reilly Media.

Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integra‐
tion.” Journal of Statistical Software 40 (8): 1–18.

Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. Springer.

Wickham, Hadley. 2014a. Advanced R. CRC Press.

References | 151

https://stackoverflow.com/questions/tagged/rcpp

CHAPTER 8

Efficient Hardware

This chapter is odd for a book on R programming. It contains very little code, and yet
the chapter has the potential to speed up your algorithms by orders of magnitude.
This chapter considers the impact that your computer has on your time.

Your hardware is crucial. It will not only determine how fast you can solve your prob‐
lem, but also whether you can even tackle the problem of interest. This is because
everything is loaded in RAM. Of course, having a more powerful computer costs
money. The goal is to help you decide whether the benefits of upgrading your hard‐
ware are worth that extra cost.

We begin this chapter with a background section on computer storage and memory
and how it is measured. Then we consider individual computer components, and
conclude with renting machines in the cloud.

Prerequisites
This chapter will focus on assessing your hardware and the benefit of upgrading. We
will use the benchmarkme package to quantify the effect of changing your CPU.

library("benchmarkme")

Top Five Tips for Efficient Hardware
1. Use the package benchmarkme to assess your CPU’s number-crunching ability;

is it worth upgrading your hardware?
2. If possible, add more RAM.
3. Double-check that you have installed a 64-bit version of R.
4. Cloud computing is a cost-effective way of obtaining more computer power.

153

5. Solid-state drives typically won’t have much impact on the speed of your R code
but will increase your overall productivity because I/0 is much faster.

Background: What Is a Byte?
A computer cannot store “numbers” or “letters.” The only thing a computer can store
and work with is bits. A bit is binary; it is either a 0 or a 1. In fact, from a physics
perspective, a bit is just a blip of electricity that either is or isn’t there.

In the past, the ASCII character set dominated computing. This set defines 128 char‐
acters including 0 to 9, upper and lowercase alphanumeric, and a few control charac‐
ters such as a new line. Storing these characters required 7 bits because 27 = 128, but 8
bits were typically used for performance reasons. Table 8-1 gives the binary represen‐
tation of the first few characters.

Table 8-1. The bit representation of a few ASCII characters

Bit representation Character
01000001 A

01000010 B

01000011 C

01000100 D

01000101 E

01010010 R

The limitation of only having 256 characters led to the development of Unicode, a
standard framework aimed at creating a single character set for every reasonable
writing system. Typically, Unicode characters require 16 bits of storage.

Eight bits is one byte, or ASCII character. So two ASCII characters would use two
bytes or 16 bits. A pure text document containing 100 characters would use 100 bytes
(800 bits). Note that markup, such as font information or metadata, can impose a
substantial memory overhead: an empty .docx file requires about 3,700 bytes of stor‐
age.

When computer scientists first started to think about computer memory, they
noticed that 210 = 1024 ≃ 103 and 220 = 1,048,576 ≃ 106, so they adopted the short‐
hand of kilo- and megabytes. Of course, everyone knew that it was just a short hand,
and it was really a binary power. When computers became more widespread, foolish
people like you and me just assumed that kilo actually meant 103 bytes.

Fortunately, the IEEE Standards Board intervened and created conventional, interna‐
tionally adopted definitions of the International System of Units (SI) prefixes. So a
kilobyte (kB) is 103 = 1000 bytes and a megabyte (MB) is 106 bytes or 103 kilobytes

154 | Chapter 8: Efficient Hardware

http://bit.ly/asciicode8bit

(see Table 8-2). A petabyte is approximately 100 million drawers filled with text.
Astonishingly, Google processes around 20 petabytes of data every day.

Table 8-2. Data-conversion table. Source: http://physics.nist.gov/cuu/Units/binary.html

Factor Name Symbol Origin Derivation
210 kibi Ki Kilobinary: (210)1

220 mebi Mi Megabinary: (210)2

230 gibi Gi Gigabinary: (210)3

240 tebi Ti Terabinary: (210)4

250 pebi Pi Petabinary: (210)5

Even though there is now an agreed upon standard for discussing memory, not
everyone follows it. Microsoft Windows, for example, uses 1 MB to mean 220 B. Even
more confusing, the capacity of a 1.44 MB floppy disk is a mixture, 1 MB = 103 × 210

B. Typically RAM is specified in kibibytes, but hard-drive manufacturers follow the SI
standard!

Random Access Memory
Random access memory (RAM) is a type of computer memory that can be accessed
randomly: any byte of memory can be accessed without touching the preceding bytes.
RAM is found in computers, phones, tablets, and even printers. The amount of RAM
R has access to is incredibly important. Since R loads objects into RAM, the amount
of RAM you have available can limit the size of dataset you can analyze.

Even if the original dataset is relatively small, your analysis can generate large objects.
For example, suppose we want to perform standard cluster analysis. The built-in
dataset USAarrests is a data frame with 50 rows and four columns. Each row corre‐
sponds to a state in the US:

head(USArrests, 3)
#> Murder Assault UrbanPop Rape
#> Alabama 13.2 236 58 21.2
#> Alaska 10.0 263 48 44.5
#> Arizona 8.1 294 80 31.0

If we want to group states that have similar crime statistics, a standard first step is to
calculate the distance or similarity matrix:

d = dist(USArrests)

When we inspect the object size of the original dataset and the distance object using
the pryr package:

pryr::object_size(USArrests)
#> 5.23 kB

Random Access Memory | 155

http://physics.nist.gov/cuu/Units/binary.html

pryr::object_size(d)
#> 14.3 kB

We have managed to create an object that is three times larger than the original data‐
set.

The distance object d is actually a vector that contains the distances
in the upper triangular region.

In fact, the object d is a symmetric n × n matrix, where n is the number of rows in
USAarrests. Clearly, as n increases, the size of d increases at a rate of O(n2). So if our
original dataset contained 10,000 records, the associated distance matrix would con‐
tain almost 108 values. Of course, since the matrix is symmetrical, this corresponds to
around 50 million unique values.

A rough rule of thumb is that your RAM should be three times the
size of your dataset.

Another benefit of having more onboard RAM is that the garbage collector, a process
that runs periodically to free up system memory occupied by R, is called less often. It
is straightforward to determine how much RAM you have using the benchmarkme
package:

benchmarkme::get_ram()
#> 16.3 GB

It is sometimes possible to increase your computer’s RAM. On a computer mother‐
board, there are typically two to four RAM or memory slots. If you have free slots,
then you can add more memory. RAM comes in the form of dual in-line memory
modules (DIMMs) that can be slotted into the motherboard spaces (see Figure 8-1
for an example).

156 | Chapter 8: Efficient Hardware

Figure 8-1. Three DIMM slots on a computer motherboard used for increasing the
amount of available RAM. Source: Wikimedia

However, it is common that all slots are already taken. This means that to upgrade
your computer’s memory, some or all of the DIMMs will have to be removed. To go
from 8 GB to 16 GB, for example, you may have to discard the two 4 GB RAM cards
and replace them with two 8 GB cards. Increasing your laptop/desktop from 4 GB to
16 GB or 32 GB is cheap and should definitely be considered. As R Core member
Uwe Ligges states:

fortunes::fortune(192)
#>
#> RAM is cheap and thinking hurts.
#> -- Uwe Ligges (about memory requirements in R)
#> R-help (June 2007)

It is a testament to the design of R that it is still relevant and its popularity is growing.
Ross Ihaka, one of the originators of the R programming language, made a throw-
away comment in 2003:

fortunes::fortune(21)
#>
#> I seem to recall that we were targeting 512k Macintoshes. In our dreams
#> we might have seen 16Mb Sun.
#> -- Ross Ihaka (in reply to the question whether R&R thought when they
#> started out that they would see R using 16G memory on a dual Opteron
#> computer)
#> R-help (November 2003)

Considering that a standard smartphone now contains 1 GB of RAM, the fact that R
was designed for “basic” computers but can scale across clusters is impressive. R’s ori‐
gins on computers with limited resources helps explain its efficiency at dealing with
large datasets.

Exercises
The following two exercises aim to help you determine if it is worthwhile to upgrade
your RAM.

Random Access Memory | 157

https://www.wikimedia.org/

1. R loads everything into memory (i.e., your computer’s RAM). How much RAM
does your computer have?

2. Using your preferred search engine, how much does it cost to double the amount
of available RAM on your system?

Hard Drives: HDD Versus SSD
You are using R because you want to analyze data. The data is typically stored on your
hard drive, but not all hard drives are equal. Unless you have a fairly expensive lap‐
top, your computer probably has a standard hard disk drive (HDD). HDDs were first
introduced by IBM in 1956. Data is stored using magnetism on a rotating platter, as
shown in Figure 8-2. The faster the platter spins, the faster the HDD can perform.
Many laptop drives spin at either 5,400 or 7,200 RPM (revolutions per minute). The
major advantage of HDDs is that they are cheap, making a 1 TB laptop standard.

In the authors’ experience, having an SSD drive doesn’t make too
much of a difference to R. However, the reduction in boot time and
general tasks makes an SSD drive a wonderful purchase.

Figure 8-2. A standard 2.5” hard drive, found in most laptops. Source: Wikimedia

158 | Chapter 8: Efficient Hardware

https://en.wikipedia.org/wiki/Hard_disk_drive

Solid-state drives (SSDs) can be thought of as large but more sophisticated versions of
USB sticks. They have no moving parts, and information is stored in microchips.
Since there are no moving parts, reading/writing is much quicker. SSDs have other
benefits: they are quieter, allow faster boot time (no spin up time), and require less
power (more battery life).

The read/write speed for a standard HDD is usually in the region of 50 to 100 MB/s
(usually closer to 50 MB). For SSDs, speeds are typically over 200 MB/s. For top-of-
the-range models this can approach 500 MB/s. If you’re wondering, read/write speeds
for RAM are around 2 to 20 GB/s. So at best, SSDs are at least one order of magnitude
slower than RAM, but still faster than standard HDDs.

If you are unsure about what type of hard drive you have, then time
how long your computer takes to reach the login screen. If it is less
than five seconds, you probably have an SSD.

Operating Systems: 32-Bit or 64-Bit
R comes in two versions: 32-bit and 64-bit. Your operating system also comes in two
versions, 32-bit and 64-bit. Ideally, you want 64-bit versions of both R and the operat‐
ing system. Using a 32-bit version of either has severe limitations on the amount of
RAM R can access. So when we suggest that you should just buy more RAM, this
assumes that you are using a 64-bit operating system, with a 64-bit version of R.

If you are using an OS version from the last five years, it is unlikely
to be a 32-bit OS.

A 32-bit machine can access at most only 4 GB of RAM. Although some CPUs offer
solutions to this limitation, if you are running a 32-bit operating system, then R is
limited to around 3 GB of RAM. If you are running a 64-bit operating system but
only a 32-bit version of R, then you have access to slightly more memory (but not
much). Modern systems should run a 64-bit operating system, with a 64-bit version
of R. Your memory limit is now measured as 8 TB for Windows machines and 128
TB for Unix-based OSes. An easy method for determining if you are running a 64-bit
version of R is to run

.Machine$sizeof.pointer

which will return 8 if you a running a 64-bit version of R.

Operating Systems: 32-Bit or 64-Bit | 159

To find precise details, consult the R help pages help("Memory-limits") and
help("Memory").

Exercises
These exercises aim to condense the previous section into the key points.

1. Are you using a 32-bit or 64-bit version of R?
2. If you are using Windows, what are the results of running the command mem

ory.limit()?

Central Processing Unit
The central processing unit (CPU), or the processor, is the brain of a computer. The
CPU is responsible for performing numerical calculations. The faster the processor,
the faster R will run. The clock speed (or clock rate, measured in hertz) is the fre‐
quency with which the CPU executes instructions. The faster the clock speed, the
more instructions a CPU can execute in a section. CPU clock speed for a single CPU
has been fairly static in the last couple of years, hovering around 3.4 GHz (see
Figure 8-3).

Figure 8-3. CPU clock speed. The data for this figure was collected from web-forum and
Wikipedia. It is intended to indicate general trends in CPU speed.

160 | Chapter 8: Efficient Hardware

Unfortunately, we can’t simply use clock speeds to compare CPUs, since the internal
architecture of a CPU plays a crucial role in determining its performance. The R
package benchmarkme provides functions for benchmarking your system and con‐
tains data from previous benchmarks. Figure 8-4 shows the relative performance for
over 150 CPUs.

Figure 8-4. CPU benchmarks from the R package, benchmarkme. Each point represents
an individual CPU result.

Running the benchmarks and comparing your CPU to others is straightforward
using the benchmarkme package. After loading the package, we can benchmark your
CPU

res = benchmark_std()

and compare the results to other users:

plot(res)
Upload your benchmarks for future users
upload_results(res)

You get the model specifications of the top CPUs using get_datatable(res).

Central Processing Unit | 161

Cloud Computing
Cloud computing uses networks of remote servers, instead of a local computer, to
store and analyze data. It is now becoming increasingly popular to rent cloud com‐
puting resources.

Amazon EC2
Amazon Elastic Compute Cloud (EC2) is one of a number of providers of this ser‐
vice. EC2 makes it (relatively) easy to run R instances in the cloud. Users can config‐
ure the operating system, CPU, hard drive type, the amount of RAM, and where the
project is physically located.

If you want to run a server in the Amazon EC2 cloud, you have to select the system
you are going to boot up. There are a vast array of prepackaged system images. Some
of these images are just basic operating systems, such as Debian or Ubuntu, which
require further configuration. There is also an Amazon machine image that specifi‐
cally targets R and RStudio.

Exercise

1. To assess whether you should consider cloud computing, find out how much it
would cost to rent a machine comparable to your laptop in the cloud for one
year.

162 | Chapter 8: Efficient Hardware

http://www.louisaslett.com/RStudio_AMI/

CHAPTER 9

Efficient Collaboration

Large projects inevitably involve many people. This poses risks but also creates
opportunities for improving computational efficiency and productivity, especially if
project collaborators are reading and committing code. This chapter provides guid‐
ance on how to minimize the risks and maximize the benefits of collaborative R pro‐
gramming.

Collaborative working has a number of benefits. A team with a diverse skillset is usu‐
ally stronger than a team with a very narrow focus. It makes sense to specialize:
clearly defining roles such as statistician, frontend developer, system administrator,
and project manager will make your team stronger. Even if you are working alone,
dividing the work into discrete branches in this way can be useful, as discussed in
Chapter 4.

Collaborative programming provides an opportunity for people to review each oth‐
er’s code. This can be encouraged by using a uniform style with many comments, as
described in “Coding Style” on page 164. Like using a clear style in human language,
following a style guide has the additional advantage of making your code more
understandable to others.

When working on complex programming projects with multiple interdependencies,
version control is essential. Even on small projects, tracking the progress of your
project’s code base has many advantages and makes collaboration much easier. Fortu‐
nately, it is now easier than ever before to integrate version control into your project,
using RStudio’s interface to the version control software git and online code-sharing
websites such as GitHub. This is the subject of “Version Control” on page 169.

The final section, “Code Review” on page 173, addresses the question of working in a
team and performing code reviews.

163

Prerequisites
This chapter deals with coding standards and techniques. The only packages required
for this chapter are lubridate and dplyr. These packages are used to illustrate good
practices.

Top Five Tips for Efficient Collaboration
1. Maintain a consistent coding style.
2. Think carefully about your comments and keep them up to date.
3. Use version control whenever possible.
4. Use informative commit messages.
5. Don’t be afraid to elicit feedback from colleagues.

Coding Style
To be a successful programmer, you need to use a consistent programming style.
There is no single correct style, but using multiple styles in the same project is wrong
(Baath 2012). To some extent, good style is subjective and up to personal taste. There
are, however, general principles that most programmers agree on, such as:

• Use modular code
• Comment your code
• Don’t Repeat Yourself (DRY)
• Be concise, clear, and consistent

Good coding style will make you more efficient even if you are the only person who
reads it. When your code is read by multiple readers or you are developing code with
coworkers, having a consistent style is even more important. There are a number of R
style guides online that are broadly similar, including one by Google, Hadley Whick‐
ham, and Richie Cotton. The style followed in this book is based on a combination of
Hadley Wickham’s guide and our own preferences (we follow Yihui Xie in preferring
= to <- for assignment, for example).

In line with the principle of automation (automate any task that can save time by
automating), the easiest way to improve your code is to ask your computer to do it
using RStudio.

164 | Chapter 9: Efficient Collaboration

https://google.github.io/styleguide/Rguide.xml
http://adv-r.had.co.nz/Style.html
http://adv-r.had.co.nz/Style.html
http://bit.ly/Rcodestyle

Reformatting Code with RStudio
RStudio can automatically clean up poorly indented and formatted code. To do this,
select the lines that need to be formatted (e.g., via Ctrl-A to select the entire script),
then automatically indent it with Ctrl-I. The shortcut Ctrl-Shift-A will reformat the
code, adding spaces for maximum readability. An example is provided here:

Poorly indented/formatted code
if(!exists("x")){
x=c(3,5)
y=x[2]}

This code chunk works but is not pleasant to read. RStudio automatically indents the
code after the if statement as follows:

Automatically indented code (Ctrl-I in RStudio)
if(!exists("x")){
 x=c(3,5)
 y=x[2]}

This is a start, but it’s still not easy to read. This can be fixed in RStudio as illustrated
in the following code chunk (these options can be seen in the Code menu, accessed
with Alt-C on Windows/Linux computers):

Automatically reformat the code (Ctrl-Shift-A in RStudio)
if(!exists("x")) {
 x = c(3, 5)
 y = x[2]
}

Note that some aspects of style are subjective; for example, we would not leave a space
after the if and).

Filenames
Filenames should use the .R extension and should be lowercase (e.g., load.R). Avoid
spaces. Use a dash or underscore to separate words.

Good names
normalize.R
load.R
Bad names
Normalize.r
load data.R

Section 1.1 of Writing R Extensions provides more detailed guidance on filenames,
such as avoiding non-English alphabetic characters as they cannot be guaranteed to
work across locales. While the guidelines are strict, the guidance aids in making your
scripts more portable.

Coding Style | 165

http://bit.ly/Rpackstructure

Loading Packages
Library function calls should be at the top of your script. When loading an essential
package, use library instead of require since a missing package will then raise an
error. If a package isn’t essential, use require and appropriately capture the warning
raised. Package names should be surrounded with quotation marks.

Good
library("dplyr")
Non-standard evaluation
library(dplyr)

Avoid listing every package you may need; instead just include the packages you
actually use. If you find that you are loading many packages, consider putting all
packages in a file called packages.R and using source appropriately.

Commenting
Comments can greatly improve the efficiency of collaborative projects by helping
everyone to understand what each line of code is doing. However, comments should
be used carefully; plastering your script with comments does not necessarily make it
more efficient, and too many comments can be inefficient. Updating heavily com‐
mented code can be a pain—not only will you have to change all the R code, you’ll
also have to rewrite or delete all the comments!

Ensure that your comments are meaningful. Avoid using verbose English to explain
standard R code. The following comment, for example, adds no useful information
because it is obvious by reading the code that i is being set to 1:

Setting x equal to 1
x = 1

Instead, comments should provide context. Imagine that x was being used as a
counter (in which case it should probably have a more meaningful name, like
counter, but we’ll continue to use x for illustrative purposes). In that case, the com‐
ment could explain your intention for its future use:

Initialize counter
x = 1

The previous example illustrates that comments are more useful if they provide con‐
text and explain the programmer’s intention (McConnell 2004). Each comment line
should begin with a single hash (#), followed by a space. Comments can be toggled
(turned on and off) in this way with Ctrl-Shift-C in RStudio. The double hash (##)
can be reserved for R output. If you follow your comment with four dashes (# ----)
RStudio will enable code folding until the next instance of this.

166 | Chapter 9: Efficient Collaboration

1 One notable exception are packages in Bioconductor, where variable names are camelCase. In this case, you
should match the existing style.

Object Names
“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just
what I choose it to mean—neither more nor less.”

—Lewis Carroll, Through the Looking Glass, Chapter 6

It is important for objects and functions to be named consistently and sensibly. To
take a silly example, imagine if all objects in your projects were called x, xx, xxx, etc.
The code would run fine. However, it would be hard for other people, and a future
you, to figure out what was going on, especially when you got to the object
xxxxxxxxxx!

For this reason, giving a clear and consistent name to your objects, especially if they
are going to be used many times in your script, can boost project efficiency (if an
object is only used once, its name is less important, a case where x could be accepta‐
ble). Following discussion in “The State of Naming Conventions in R” by Rasmus
Baath and elsewhere, we suggest an underscore_separated style for function and
object names.1 Unless you are creating an S3 object, avoid using a . in the name (this
will help avoid confusing Python programmers!). Names should be concise yet
meaningful.

In functions, the required arguments should always be first, followed by optional
arguments. The special ... argument should come last. If your argument has a
boolean value, use TRUE/FALSE instead of T/F for clarity.

It’s tempting to use T/F as shortcuts. But it is easy to accidentally
redefine these variables (e.g., F = 10). R raises an error if you try to
redefine TRUE/FALSE.

While it’s possible to write arguments that depend on other arguments, try to avoid
using this idiom as it makes understanding the default behavior harder to under‐
stand. Typically, it’s easier to set an argument to have a default value of NULL and
check its value using is.null() than by using missing(). Where possible, avoid
using names of existing functions.

Example Package
The lubridate package is a good example of a package that has a consistent naming
system, which makes it easy for users to guess its features and behavior. Dates are

Coding Style | 167

http://bit.ly/Rnamingcon

encoded in a variety of ways, but the lubridate package has a neat set of functions
consisting of the three letters, year, month, and day. For example:

library("lubridate")
ymd("2012-01-02")
dmy("02-01-2012")
mdy("01-02-2012")

Assignment
The two most common ways of assigning objects to values in R is with <- and =. In
most (but not all) contexts, they can be used interchangeably. Regardless of which
operator you prefer, consistency is key, particularly when working in a group. In this
book we use the = operator for assignment, as it’s faster to type and more consistent
with other languages.

The one place where a difference occurs is during function calls. Consider the follow‐
ing piece of code used for timing random number generation:

system.time(expr1 <- rnorm(10e5))
system.time(expr2 = rnorm(10e5)) # error

The first lines will run correctly and create a variable called expr1. The second line
will raise an error. When we use = in a function call, it changes from an assignment
operator to an argument passing operator. For further information about assignment,
see ?assignOps.

Spacing
Consistent spacing is an easy way of making your code more readable. Even a simple
command such as x = x + 1 takes a bit more time to understand when the spacing is
removed (i.e., x=x+1). You should add a space around the operators +, -, \, and *.
Include a space around the assignment operators, <- and =. Additionally, add a space
around any comparison operators such as == and <. The latter rule helps avoid bugs:

Bug. x now equals 1
x[x<-1]
Correct. Selecting values less than -1
x[x < -1]

The exceptions to the space rule are :, ::, and :::, as well as $ and @ symbols for
selecting subparts of objects. As with English, add a space after a comma:

z[z$colA > 1990,]

Indentation
Use two spaces to indent code. Never mix tabs and spaces. RStudio can automatically
convert the tab character to spaces (see Tools -> Global options -> Code).

168 | Chapter 9: Efficient Collaboration

2 We recommend 10 Years of Git: An Interview with Git Creator Linus Torvalds from Linux.com for more infor‐
mation on this topic.

Curly Braces
Consider the following code:

Bad style, fails
if(x < 5)
{
y}
else {
 x}

Typing this straight into R will result in an error. An opening curly brace, {, should
not go on its own line and should always be followed by a line break. A closing curly
brace should always go on its own line (unless it’s followed by an else, in which case
the else should go on its own line). The code inside curly braces should be indented
(and RStudio will enforce this rule), as shown in the following code chunk:

Good style
if(x < 5){
 x
} else {
 y
}

Exercise

1. Look at the difference between your style and RStudio’s based on a representative
R script that you have written (see “Coding Style” on page 164). What are the
similarities? What are the differences? Are you consistent? Write these down and
think about how you can use the results to improve your coding style.

Version Control
When a project gets large, complicated, or mission critical, it is important to keep
track of how it evolves. In the same way that Dropbox saves a backup of your files,
version control systems keep a backup of your code. The only difference is that ver‐
sion control systems back up your code forever.

The version control system we recommend is Git, a command-line application cre‐
ated by Linus Torvalds, who also invented Linux.2 The easiest way to integrate your R
projects with Git, if you’re not accustomed to using a shell (e.g., the Unix command
line), is with RStudio’s Git tab in the top right-hand window (see Figure 9-1). This
shows that a number of files have been modified (as illustrated with the blue M sym‐

Version Control | 169

http://bit.ly/10yearsgit

3 For a more detailed account of this process, see GitHub’s help pages.

bol) and that some are new (as illustrated with the yellow ? symbol). Checking the
tick-box will enable these files to be committed.

Commits
Commits are the basic units of version control. Keep your commits atomic: each one
should only do one thing. Document your work with clear and concise commit mes‐
sages, and use the present tense (e.g., add analysis functions).

Committing code only updates the files on your local branch. To update the files
stored on a remote server (e.g., on GitHub), you mush push the commit. This can be
done using git push from a shell or using the green up arrow in RStudio, as illustra‐
ted in Figure 9-1. The blue down arrow will pull the latest version of the repository
from the remote.3

Figure 9-1. The Git tab in RStudio

Git Integration in RStudio
How do you enable this functionality on your installation of RStudio? RStudio can be
a GUI Git only if Git has been installed and RStudio can find it. You need a working
installation of Git (e.g., installed through apt-get install git Ubuntu/Debian or
via GitHub Desktop for Mac and Windows). RStudio can be linked to your Git instal‐
lation via Tools → Global Options in the Git/SVN tab. This tab also provides a link to
a help page on RStudio/Git.

Once Git has been linked to your RStudio installation, it can be used to track changes
in a new project by selecting Create a git repository when creating a new project.
The tab illustrated in Figure 9-1 will appear, allowing functionality for interacting
with Git via RStudio.

170 | Chapter 9: Efficient Collaboration

https://help.github.com/
http://bit.ly/installGHdesk
http://bit.ly/gitsvnrstudio
http://bit.ly/gitsvnrstudio

RStudio provides a useful GUI for navigating past commits. This allows you to see
the entire history of your project. To navigate and view the details of past commits,
click on the Diff button in the Git pane, as illustrated in Figure 9-2.

Figure 9-2. The Git history navigation interface

GitHub
GitHub is an online platform that makes sharing your work and collaborating on
code easy. There are alternatives such as GitLab. The focus here is on GitHub as it’s by
far the most popular among R developers. Also, through the command dev
tools::install_github(), preview versions of a package can be installed and upda‐
ted in an instant. This makes GitHub packages a great way to access the latest
functionality. And GitHub makes it easy to get your work out there to the world for
efficiently collaborating with others, without the restraints placed on CRAN pack‐
ages.

To install the GitHub version of the benchmarkme package, for example, you would
enter

devtools::install_github("csgillespie/benchmarkme")

Note that csgillespie is the GitHub user and benchmarkme is the package name.
Replacing csgillespie with robinlovelace in the previous code would install Rob‐
in’s version of the package. This is useful for fast collaboration with many people, but
you must remember that GitHub packages will not update automatically with the
command update.packages (see “Updating R Packages” on page 24).

Version Control | 171

https://about.gitlab.com/

Although GitHub is fantastic for collaboration, it can end up creat‐
ing more problems than it solves if your collaborators are not Git-
literate. In one project, Robin eventually abandoned using GitHub
after his collaborator found it impossible to work with. More time
was being spent debugging Git/GitHub than actually working. Our
advice therefore is to never impose Git and always ensure that
other lines of communication (e.g., phone calls, emails) are open
because different people prefer different ways of communicating.

Branches, Forks, Pulls, and Clones
Git is a large program that takes a long time to learn in-depth. However, getting to
grips with the basics of some of its more advanced functions can make you a more
efficient collaborator. Using and merging branches, for example, allows you to test
new features in a self-contained environment before they are used in production (e.g.,
when shifting to an updated version of a package that is not backwards compatible).
Instead of bogging you down with a comprehensive discussion of what is possible,
this section cuts to the most important features for collaboration: branches, forks,
pulls, and clones. For a more detailed description of Git’s powerful functionality, we
recommend the Jenny Bryan’s book, Happy Git and GitHub for the useR.

Branches are distinct versions of your repository. Git allows you jump seamlessly
between different versions of your entire project. To create a new branch called test,
you need to enter the shell and use the Git command line:

git checkout -b test

This is equivalent to entering two commands: git branch test to create the branch
and then git checkout test to checkout that branch. Checkout means switch into
that branch. Any changes will not affect your previous branch. In RStudio, you can
jump quickly between branches using the drop-down menu in the top right of the Git
pane. This is illustrated in Figure 9-1: see the master text followed by a down arrow.
Clicking on this will allow you to select other branches.

Forks are like branches, but they exist on other people’s computers. You can fork a
repository on GitHub easily, as described on the site’s help pages. If you want an exact
copy of this repository (including the commit history), you can clone this fork to your
computer using the command git clone or by using a Git GUI such as GitHub
Desktop. This is preferable from a collaboration perspective than cloning the reposi‐
tory directly, because any changes can be pushed back online easily if you are working
from your own fork. You cannot push to forks that you have not created, unless
someone has granted you access. If you want your work to be incorporated into the
original fork, you can use a pull request. Note: if you don’t need the project’s entire
commit history, you can simply download a zip file containing the latest version of
the repository from GitHub (at the top right of any GitHub repository).

172 | Chapter 9: Efficient Collaboration

http://happygitwithr.com/
https://help.github.com/articles/fork-a-repo/

4 This section is being written with small teams in mind. Larger teams should consult a more detailed text on
code review.

A pull request (PR) is a mechanism on GitHub by which your code can be added to an
existing project. One of the most useful features of a PR from a collaboration perspec‐
tive is that it provides an opportunity for others to comment on your code, line by
line, before it gets merged. This is all done online on GitHub, as discussed in GitHub’s
online help. Following feedback, you may want to refactor code written by you or
others.

Code Review
What is a code review?4 Simply put, when we have finished working on a piece of
code, a colleague reviews our work and considers questions such as:

• Is the code correct and properly documented?
• Could the code be improved?
• Does the code conform to existing style guidelines?
• Are there any automated tests? If so, are they sufficient?

A good code review shares knowledge and best practices.

A lightweight code review can take a variety of forms. For example, it could be as sim‐
ple as emailing around some code for comments, or “over the shoulder,” where some‐
one literally looks over your shoulder while you code. More formal techniques
include paired programming where two developers work side by side on the same
project.

Regardless of the review method being employed, there a number of points to
remember. First, as with all forms of feedback, be constructive. Rather than pointing
out flaws, give suggested improvements. Closely related is giving praise when appro‐
priate. Second, if you are reviewing a piece of code, set a timeframe or the number of
lines of code you will review. For example, you will spend one hour to review a piece
of code, or review a maximum of 400 lines. Third, a code review should be performed
before the code is merged into a larger code base; fix mistakes as soon as possible.

Many R users don’t work on a team or in a group; instead, they work by themselves.
Practically, there isn’t usually anyone nearby to review their code. However, there is
still the option of an unoffical code review. For example, if you have hosted code on
an online repository such as GitHub, users will naturally give feedback on our code
(especially if you make it clear that you welcome feedback). Another good place is
Stack Overflow (covered in detail in Chapter 10). This site allows you to post answers

Code Review | 173

https://help.github.com/articles/merging-a-pull-request/
https://help.github.com/articles/merging-a-pull-request/

to other users questions. When you post an answer, if your code is unclear, this will
be flagged in comments below your answer.

References
Bååth, Rasmus. 2012. “The State of Naming Conventions in R.” The R Journal 4 (2):
74–75. https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf.

McConnell, Steve. 2004. Code Complete. Pearson Education.

174 | Chapter 9: Efficient Collaboration

https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf

CHAPTER 10

Efficient Learning

As with any vibrant open source software community, R is fast moving. This can be
disorienting because it means that you can never finish learning R. On the other
hand, it makes R a fascinating subject because there is always more to learn. Even
experienced R users keep finding new functionality that helps solve problems more
quickly and elegantly. Therefore, learning how to learn is one of the most important
skills to have if you want to learn R in-depth. We emphasize depth of learning because
it is more efficient to learn something properly than to Google it repeatedly every
time you forget how it works.

This chapter aims to equip you with concepts, guidance, and tips that will accelerate
your transition from an R hacker to an R programmer. This inevitably involves effec‐
tive use of R’s help, reading R source code, and use of online material.

Prerequisties
The only package used in this section is swirl:

library("swirl")

Top Five Tips for Efficient Learning
1. Use R’s internal help (e.g., with ?, ??, vignette(), and apropos()). Try swirl.
2. Read about the latest developments in established outlets such as the Journal for

Statistical Software, the R Journal, R lists, and the blogosphere.
3. If stuck, ask for help! A clear question posted in an appropriate place, using

reproducible code, should get a quick and enlightening answer.

175

4. For more in-depth learning, nothing can beat immersive R books and tutorials.
Do some research and decide which resources you should use.

5. One of the best ways to consolidate learning is to write it up and pass on the
knowledge; telling the story of what you’ve learned with also help others.

Using R’s Internal Help
Sometimes the best place to look for help is within R itself. Using R’s help has three
main advantages from an efficiency perspective:

• It’s faster to query R from inside your IDE than to switch context and search for
help on a different platform (e.g., the internet, which has countless distractions).

• It works offline.
• Learning to read R’s documentation (and source code) is a powerful skill in itself

that will improve your R programming.

The main disadvantage of R’s internal help is that it is terse and in some cases sparse.
Do not expect to always be able to find the answer in R, so be prepared to look else‐
where for more detailed help and context. From a learning perspective, becoming
acquainted with R’s documentation is often better than finding the solution from a
different source because it was written by developers, largely for developers. There‐
fore, with R documentation you learn about functions from the horse’s mouth. R help
also sometimes sheds light on a function’s history through references to academic
papers.

As you look to learn about a topic or function in R, it is likely that you will have a
search strategy of your own, ranging from broad to narrow:

1. Searching R and installed packages for help on a specific topic.
2. Reading up on packages vignettes.
3. Getting help on a specific function.
4. Looking into the source code.

In many cases, you may already have gone through stages 1 and 2. Often you can stop
at stage 3 and simply use the function without worrying about exactly how it works.
In every case, it is useful to be aware of this hierarchical approach to learning from R’s
internal help, so you can start with the big picture (and avoid going down a misguided
route early on) and then quickly focus in on the functions that are most related to
your task.

176 | Chapter 10: Efficient Learning

To illustrate this approach in action, imagine that you are interested in a specific
topic: optimization. The remainder of this section will work through stages 1 to 4
outlined previously as if we wanted to find out more about this topic, with occasional
diversions from it to see how specific help functions work in more detail. The final
method of learning from R’s internal resources covered in this section is swirl, a pack‐
age for interactive learning.

Searching R for Topics
A wide boundary search for a topic in R will often begin with a search for instances of
a keyword in the documentation and function names. Using the example of optimiza‐
tion, you could start with a search for a text string related to the topic of interest:

help.search("optim") # or, more concisely
??optim

Note that the ?? symbol is simply a useful shorthand version of the function
help.search(). It is sometimes useful to use the full function rather than the short‐
hand version, because it allows you to specify a number of options. To search for all
help pages that mention the more specific term “optimization” in the title or alias of
the help pages, for example, the following command would be used:

help.search(pattern = "optimisation|optimization",
 fields = c("title", "concept"))

This will return a short (and potentially more efficiently focused) list of help pages
than the wide-ranging ??optim call. To make the search even more specific, we can
use the package argument to constrain the search to a single package. This can be
very useful when you know that a function exists in a specific package but you cannot
remember what it is called:

help.search(pattern = "optimisation|optimization",
 fields = c("title", "concept"), package = "stats")

Another function for searching R is apropos(). It prints to the console any R objects
(including hidden functions, those beginning with ., and datasets) whose name
matches a given text string. Because it does not search R’s documentation, it tends to
return fewer results than help.search(). Its use and typical outputs can be seen in
the following examples:

apropos("optim")
#> [1] "constrOptim" "optim" "optimHess" "optimise" "optimize"
apropos("lm")[1:6] # show only first six results
#> [1] ".__C__anova.glm" ".__C__anova.glm.null" ".__C__diagonalMatrix"
#> [4] ".__C__generalMatrix" ".__C__glm" ".__C__glm.null"

To search all R packages, including those you have not installed locally, for a specific
topic, there are a number of options. For obvious reasons, this requires internet
access. The most rudimentary way to see what packages are available from CRAN, if

Using R’s Internal Help | 177

you are using RStudio, is to use its autocompletion functionality for package names.
To take an example, if you are looking for a package for geospatial data analysis, you
could do worse than enter the text string geo as an argument into package installation
function (e.g., install.packages(geo)) and pressing the Tab key when the cursor is
between the o and the) in the example. The resulting options are shown in
Figure 10-1. Selecting one from the drop-down menu will result in it being completed
with surrounding quotation marks, as necessary.

Figure 10-1. Package name autocompletion in action in RStudio for packages beginning
with geo

Finding and Using Vignettes
Some packages contain vignettes. These are pieces of long-form documentation that
allow package authors to go into detail explaining how the package works (Wickham
2015c). In general, they are high quality. Because they can be used to illustrate real-
world use cases, vignettes can be the best way to understand functions in the context
of broader explanations and longer examples than are provided in function help
pages. Although many packages lack vignettes, they deserve a subsection of their own
because they can boost the efficiency with which package functions are used in an
integrated workflow.

If you are frustrated because a certain package lacks a vignette, you
can create one. This can be a great way of learning about and con‐
solidating your knowledge of a package. To create a vignette, first
download the source code of a package and then use dev
tools::use_vignette(). To add a vignette to the efficient package
used in this book, for example, you could clone the repo (e.g., using
the command git clone git@github.com:csgillespie/effi

cient). Once you have opened the repo as a project (e.g., in RStu‐
dio), you could create a vignette called “efficient-learning” with the
command use_vignette("efficient-learning").

To browse any vignettes associated with a particular package, we can use the handy
function browseVignettes():

178 | Chapter 10: Efficient Learning

http://r-pkgs.had.co.nz/vignettes.html

browseVignettes(package = "benchmarkme")

This is roughly equivalent to vignette(package = "benchmarkme") but opens a new
page in a browser and lets you navigate all the vignettes in that particular package.
For an overview of all vignettes available from R packages installed on your com‐
puter, try browsing all available vignettes with browseVignettes(). You may be sur‐
prised at how many hidden gems there are in there!

How best to use vignettes depends on the vignette in question and your aims. In gen‐
eral, you should expect to spend longer reading vignettes than other types of R
documentation. The Introduction to dplyr vignette (opened with vignette("introduc
tion", package = "dplyr")), for example, contains almost 4,000 words of prose,
example code, and outputs that illustrate how its functions work. We recommend
working through the examples and typing the example code in order to learn by
doing.

Another way to learn from package vignettes is to view their source code. You can
find where vignette source code lives by looking in the vignette/ folder of the pack‐
age’s source code. dplyr’s vignettes, for example, can be viewed (and edited) online. A
quick way to view a vignette’s R code is with the edit() function:

v = vignette("introduction", package = "dplyr")
edit(v)

Getting Help on Functions
All functions have help pages. These contain, at a minimum, a list of the input argu‐
ments and the nature of the output that can be expected. Once a function has been
identified (e.g., using one of the methods outlined in “Searching R for Topics” on
page 177), its help page can be displayed by prefixing the function name with ?. Con‐
tinuing with the previous example, the help page associated with the command
optim() (for general-purpose optimization) can be invoked as follows:

help("optim") # or, more concisely:
?optim

In general, help pages describe what functions do, not how they work. This is one of
the reasons that function help pages are thought (by some) to be difficult to under‐
stand. In practice, this means that the help page does not describe the underlying
mathematics or algorithm in detail—its aim is to describe the interface.

A help page is divided into a number of sections. The help for optim() is typical in
that it has a title (general-purpose optimization) followed by short Description,
Usage, and Arguments sections. The Description is usually just a sentence or two
explaining what it does. Usage shows the arguments that the function needs to work.
And Arguments describes what kind of objects the function expects. Longer sections
typically include Details and Examples, which provide some context and provide

Using R’s Internal Help | 179

https://github.com/hadley/dplyr/tree/master/vignettes

(usually reproducible) examples of how the function can be used, respectively. The
typically short Value, References, and See Also sections facilitate efficient learning by
explaining what the output means, where you can find academic literature on the
subject, and related functions.

optim() is a mature and heavily used function so it has a long help page; you’ll proba‐
bly be glad to know that not all help pages are this long! With so much potentially
overwhelming information in a single help page, the placement of the short, dense
sections at the beginning is efficient because it helps you to understand the funda‐
mentals of a function in few words. Learning how to read and quickly interpret such
help pages will greatly help your ability to learn R. Take some time to study the help
for optim() in detail.

It is worth discussing the contents of the Usage section in particular, because this con‐
tains information that may not be immediately obvious:

optim(par, fn, gr = NULL, ...,
 method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
 lower = -Inf, upper = Inf, control = list(), hessian = FALSE)

This contains two pieces of critical information:

1. The essential arguments that must be provided for the function to work (par and
fn in this case, as gr has a default value) before the ... symbol; and

2. optional arguments that control how the function works (method, lower, and hes
sian in this case). ... are optional arguments whose values depend on the other
arguments (which will be passed to the function represented by fn in this case).
Let’s see how this works in practice by trying to run optim() to find the mini‐
mum value of the function y = x4 - x2:

fn = function(x) {
 x^4 - x^2
}
optim(par = 0, fn = fn)
#> Warning in optim(par = 0, fn = fn): one-dimensional optimization
#> by Nelder-Mead is unreliable: use "Brent" or optimize() directly
#> $par
#> [1] 0.707
#>
#> $value
#> [1] -0.25
#>
#> $counts
#> function gradient
#> 58 NA
#>
#> $convergence
#> [1] 0

180 | Chapter 10: Efficient Learning

#>
#> $message
#> NULL

The results show that the minimum value of fn(x) is found when x = 0.707.. (1 /
√2), with a minimum value of -0.25. It took 58 iterations of the function call for
optim() to converge on this value. Each of these output values is described in the Val‐
ues section of the help pages. From the help pages, we could guess that providing the
function call without specifying par (i.e., optim(fn = fn)) would fail, which indeed
it does.

The most helpful section is often the Examples. These lie at the bottom of the help
page and show precisely how the function works. You can either copy and paste the
code, or actually run the example code using the example command (it is well worth
running these examples due to the graphics produced):

example(optim)

When a package is added to CRAN, the example part of the docu‐
mentation is run on all major platforms. This helps ensure that a
package works on multiple systems.

Another useful section in the help file is See Also:. In the optim() help page, it links
to optimize(), which may be more appropriate for this use case.

Reading R Source Code
R is open source. This means that we view the underlying source code and examine
any function. Of course the code is complex, and diving straight into the source code
won’t help that much. However, watching the GitHub R source code mirror will allow
you to monitor small changes that occur. This gives a nice entry point into a complex
code base. Likewise, examining the source of small functions such as NCOL is informa‐
tive (e.g., getFunction("NCOL")).

Subscribing to the R NEWS blog is an easy way of keeping track of
future changes.

Many R packages are developed in the open on GitHub or r-forge. Select a few well-
known packages and examine their sources. A good package to start with is drat.
This is a relatively simple package developed by Dirk Eddelbuettel (author of Rcpp)

Using R’s Internal Help | 181

https://github.com/wch/r-source/
https://developer.r-project.org/blosxom.cgi/R-devel/NEWS/
https://github.com/eddelbuettel/drat

that only contains a few functions. It gives you an excellent pointer into software
development by one of the key R package writers.

A shortcut for browsing R’s source code is provided by the RStudio IDE: clicking on a
function and then pressing the F2 key will open its source code in the file editor. This
works both for functions that exist in R and its packages and functions that you cre‐
ated in another R script (so long as it is within your project directory). Although
reading source code can be interesting in itself, it is probably best done in the context
of a specific question, such as “how can I use a function name as an argument in my
own function?” (looking at the source code of apply() may help here).

swirl
swirl is an interactive teaching platform for R. It offers a number of extensions and,
for the pioneering, the ability for others to create custom extensions. The learning
curve and method will not work for everyone, but this package is worth flagging as a
potent self-teaching resource. In some ways, swirl can be seen as the ultimate internal
R help as it allows dedicated learning sessions, based on multiple choice questions, all
within a usual R session. To enter the swirl world, just enter the following. The resul‐
tant instructions will explain the rest:

library("swirl")
swirl()

Online Resources
The R community has a strong online presence, providing many resources for learn‐
ing. Over time, there has fortunately been a tendency for R resources to become more
user friendly and up-to-date. Many resources that have been on CRAN for many
years are dated by now so it’s more efficient to navigate directly to the most up-to-
date and efficient-to-use resources.

Cheat sheets are short documents summarizing how to do certain things. RStudio, for
example, provides excellent cheat sheets on dplyr, rmarkdown, and the RStudio IDE
itself.

The R-project website contains six detailed official manuals, plus a giant PDF file
containing documentation for all recommended packages. These include An Intro‐
duction to R, The R Language Definition, and R Installation and Administration, all
of which are recommended for people wanting to learn general R skills. If you are
developing a package and want to submit it to CRAN, the Writing R Extensions man‐
ual is recommended reading, although it has to some extent been superseded by R
Packages by Hadley Wickham (O’Reilly), the source code of which is available online.
While these manuals are long, they contain important information written by experi‐
enced R programmers.

182 | Chapter 10: Efficient Learning

http://www.rstudio.com/resources/cheatsheets/
http://bit.ly/dplyrcheatsheet
http://bit.ly/rmdcheatsheet
http://bit.ly/rstudioidecheatsheet
https://cran.r-project.org/manuals.html
http://bit.ly/introtoR
http://bit.ly/introtoR
http://bit.ly/Rlangdef
http://bit.ly/Rinstalladmin
http://bit.ly/writingRextensions
https://github.com/hadley/r-pkgs

For more domain-specific and up-to-date information on developments in R, we rec‐
ommend checking out academic journals. The R Journal regularly publishes articles
describing new R packages, as well as general programming hints. Similarly, the arti‐
cles in the Journal of Statistical Software have a strong R bias. Publications in these
journals are generally of very high quality and have been rigorously peer reviewed.
However, they may be rather technical for R novices.

The wider community provides a much larger body of information, of more variable
quality, than the official R resources. The Contributed Documentation page on R’s
home page contains dozens of tutorials and other resources on a wide range of topics.
Some of these are excellent, although many are not kept up-to-date. An excellent
resource for browsing R help pages online is provided by rdocumentation.org.

Lower grade but more frequently released information can be found on the blogo‐
sphere. Central to this is R-bloggers, a blog aggregator of content contributed by blog‐
gers who write about R (in English). It is a great way to get exposed to new and
different packages. Similarly, monitoring the #rstats Twitter tag keeps you up-to-date
with the latest news.

There are also mailing lists, Google groups, and the Stack Exchange Q&A sites.
Before requesting help, read a few other questions to learn the format of the site.
Make sure you search previous questions so you are not duplicating work. Perhaps
the most important point is to remember that people aren’t under any obligation to
answer your question. One of the fantastic things about the open source community
is that you can ask questions and one of core developers may answer your question
for free—but remember, everyone is busy!

Stack Overflow
The number one place on the internet for getting help on programming is Stack
Overflow. This website provides a platform for asking and answering questions.
Through site membership, questions and answers are voted up or down. Users of
Stack Overflow earn reputation points when their question or answer is up-voted.
Anyone (with enough reputation) can edit a question or answer. This helps the con‐
tent remain relevant.

Questions are tagged. The R questions can be found under the R tag. The R page
contains links to official documentation, free resources, and various other links.
Members of the Stack Overflow R community have tagged, using r-faq, a few ques‐
tion that often crop up.

Mailing Lists and Groups
There are many mailing lists and Google groups focused on R and particular pack‐
ages. The main list for getting help is R-help. This is a high-volume mailing list, with

Online Resources | 183

https://journal.r-project.org/
https://www.jstatsoft.org/
https://cran.r-project.org/other-docs.html
http://www.rdocumentation.org
http://www.r-bloggers.com/
http://bit.ly/rstatshashtag
http://www.stackoverflow.com
http://www.stackoverflow.com
http://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/tags/r/info

around a dozen messages per day. A more technical mailing list is R-devel. This list is
intended for questions and discussion about code development in R. The discussion
on this list is very technical. It’s a good place to be introduced to new ideas, but it’s not
the place to ask about these ideas! There are many other special-interest mailing lists
covering topics such as high-performance computing to ecology. Many popular pack‐
ages also have their own mailing list or Google group (e.g., ggplot2 and shiny). The
key piece of advice is before mailing a list, read the relevant mailing archive and
check that your message is appropriate.

Asking a Question
A great way to get specific help on a difficult topic is to ask for help. However, asking
a good question is not easy. Three common mistakes, and ways to avoid them, are
outlined here:

1. Asking a question that has already been asked; make sure that you’ve properly
searched for the answer before posting.

2. The answer to the question can be found in R’s help: make sure that you’ve prop‐
erly read the relevant help pages before asking.

3. The question does not contain a reproducible example; create a simple version of
your data, show the code you’ve tried, and display the result you are hoping for.

Your question should contain just enough information that your problem is clear and
can be reproducible, while at the same time avoids unnecessary details. Fortunately
there is a Stack Overflow question—How to make a great R reproducible example?—
that provides excellent guidance. Additional guides that explain how to create good
programming questions are provided by Stack Overflow and the R mailing list post‐
ing guide.

Minimal Dataset
What is the smallest dataset you can construct that will reproduce your issue? Your
actual dataset may contain 105 rows and 104 columns, but to get your idea across you
might only need four rows and three columns. Making small example datasets is easy.
For example, to create a data frame with two numeric columns and a column of char‐
acters, use the following:

set.seed(1)
example_df = data.frame(x = rnorm(4), y = rnorm(4), z = sample(LETTERS, 4))

Note that the call to set.seed ensures that anyone who runs the code will get the
same random number stream. Alternatively, you can use one of the many datasets
that come with R - library(help = "datasets").

184 | Chapter 10: Efficient Learning

https://www.r-project.org/mail.html
http://bit.ly/Rreproducible
https://stackoverflow.com/help/how-to-ask
https://www.r-project.org/posting-guide.html
https://www.r-project.org/posting-guide.html

If creating an example dataset isn’t possible, then use dput on your actual dataset.
This will create an ASCII text representation of the object that will enable anyone to
recreate the object:

dput(example_df)
#> structure(list(
#> x = c(-0.626453810742332, 0.183643324222082, -0.835628612410047,
#> 1.59528080213779),
#> y = c(0.329507771815361, -0.820468384118015, 0.487429052428485,
#> 0.738324705129217),
#> z = structure(c(3L, 4L, 1L, 2L), .Label = c("J", "R", "S", "Y"),
#> class = "factor")),
#> .Names = c("x", "y", "z"), row.names = c(NA, -4L), class = "data.frame")

Minimal Example
What you should not do is simply copy and paste your entire function into your
question. It’s unlikely that your entire function doesn’t work, so just simplify it to the
bare minimum. The aim is to target your actual issue. Avoid copying and pasting
large blocks of code; remove superfluous lines that are not part of the problem.
Before asking your question, can you run your code in a clean R environment and
reproduce your error?

Learning In Depth
In the age of the internet and social media, many people feel lucky if they have time
to go for a walk, let alone sit down to read a book. But it is undeniable that learning R
in depth is a time-consuming activity. Reading a book or a large tutorial (and com‐
pleting the practical examples contained within) may not be the most efficient way to
solve a particular problem in the short term, but it can be one of the best ways to
learn R programming properly, especially in the long run.

In-depth learning differs from shallow, incremental learning because rather than dis‐
covering how a specific function works, you find out how systems of functions work
together. To take a metaphor from civil engineering, in-depth learning is about build‐
ing strong foundations on which a wide range of buildings can be constructed. In-
depth learning can be highly efficient in the long run because it will pay back over
many years, regardless of the domain-specific problem you want to use R to tackle.
Shallow learning, to continue the metaphor, is more like erecting many temporary
structures: they can solve a specific problem in the short term, but they will not be
durable. Flimsy dwellings can be swept away. Shallow memories can be forgotten.

Having established that time spent deep learning can, counterintuitively, be efficient, it
is worth thinking about how to deep learn. This varies from person to person. It does
not involve passively absorbing sacred information transmitted year after year by the
R gods. It is an active, participatory process. To ensure that memories are rapidly

Learning In Depth | 185

actionable you must learn by doing. Learning from a cohesive, systematic, and rela‐
tively comprehensive resource will help you to see the many interconnections
between the different elements of R programming and how they can be combined for
efficient work.

There are a number of such resources, including this book. Although the understand‐
able tendency will be to use it incrementally, dipping in and out of different sections
when different problems arise, we also recommend reading it systematically to see
how the different elements of efficiency fit together. It is likely that as you work pro‐
gressively through this book, in parallel with solving real-world problems, you will
realize that the solution is not to have the right resource at hand but to be able to use
the tools provided by R efficiently. Once you hit this level of proficiency, you should
have the confidence to address most problems encountered from first principles.
Over time, your first port of call should move away from Google and even R’s internal
help to simply giving it a try. Informed trial and error, and intelligent experimenta‐
tion, can be the best approach to both learning and solving problems quickly, once
you are equipped with the tools to do so. That’s why this is the last section in the
book.

If you have already worked through all the examples in this book, or if you want to
learn areas not covered in it, there are many excellent resources for extending and
deepening your knowledge of R programming for fast and effective work, and to do
new things with it. Because R is a large and ever-evolving language, there is no defini‐
tive list of resources for taking your R skills to new heights. However, the following
list, in rough ascending order of difficulty and depth, should provide plenty of mate‐
rial and motivation for in-depth learning of R.

1. Free webinars and online courses provided by RStudio and DataCamp. Both
organizations are well regarded and keep their content up-to-date, but there are
likely other sources of other online courses. We recommend that you test push‐
ing your abilities, rather than going over the same material covered in this book.

2. R for Data Science (Grolemund and Wickham 2016), a free book introducing
many concepts and tidy packages for working with data (a free online version is
available from r4ds.had.co.nz).

3. R Programming for Data Science (Peng 2014), which provides in-depth coverage
of analysis and visualization of datasets.

4. Advanced R Programming (Wickham 2014a), an advanced book that looks at the
internals of how R works (free from adv-r.had.co.nz).

186 | Chapter 10: Efficient Learning

http://www.rstudio.com/resources/webinars/
https://www.datacamp.com/community/open-courses
http://r4ds.had.co.nz/
http://adv-r.had.co.nz/

Spread the Knowledge
The final thing to say on the topic of efficient learning relates to the old (~2000 years
old!) saying docendo discimus:

by teaching we learn

This means that passing on information is one of the best ways to consolidate your
learning. It was largely by helping others learn R that we became proficient R users.

Demand for R skills is growing, so there are many opportunities to teach R. Whether
it’s helping your colleague use apply() or writing a blog post on solving certain prob‐
lems in R, teaching others R can be a rewarding experience. Furthermore, spreading
the knowledge can be efficient: it will improve your own understanding of the lan‐
guage and benefit the entire community, providing positive feedback to the move‐
ment toward open source software in data-driven computing.

Assuming you have completed this book, the only remaining thing to say is “Well
done! You are now an efficient R programmer.” We hope you direct your newly found
skills toward the greater good and pass on the wisdom to others along the way.

References
Wickham, Hadley. 2015c. R Packages. O’Reilly Media.

Grolemund, G., and H. Wickham. 2016. R for Data Science. O’Reilly Media.

Peng, Roger. 2014. R Programming for Data Science. Leanpub. https://leanpub.com/
rprogramming.

Wickham, Hadley. 2014a. Advanced R. CRC Press.

Spread the Knowledge | 187

https://en.wikipedia.org/wiki/Docendo_discimus
https://leanpub.com/rprogramming
https://leanpub.com/rprogramming

APPENDIX A

Package Dependencies

The book uses datasets stored in the efficient GitHub package, which can be installed
(after devtools has been installed) as follows:

devtools::install_github("csgillespie/efficient",
 args = "--with-keep.source")

The book depends on the following CRAN packages:

Name Title Version
assertive.reflection Assertions for Checking the State of R (Cotton 2016a) 0.0.3

benchmarkme Crowd Sourced System Benchmarks (Gillespie 2016) 0.3.0

bookdown Authoring Books with R Markdown (Xie 2016a) 0.1

cranlogs Download Logs from the RStudio CRAN Mirror (Csardi 2015) 2.1.0

data.table Extension of Data.frame (Dowle et al. 2015) 1.9.6

devtools Tools to Make Developing R Packages Easier (H. Wickham and Chang 2016a) 1.12.0

DiagrammeR Create Graph Diagrams and Flowcharts Using R (Sveidqvist et al. 2016) 0.8.4

dplyr A Grammar of Data Manipulation (Wickham and Francois 2016) 0.5.0

drat Drat R Archive Template (Carl Boettiger et al. 2016) 0.1.1

efficient Becoming an Efficient R Programmer (Gillespie and Lovelace 2016) 0.1.1

feather R Bindings to the Feather API (H. Wickham 2016a) 0.3.0

formatR Format R Code Automatically (Xie 2016b) 1.4

fortunes R Fortunes (Zeileis and R community 2016) 1.5.3

geosphere Spherical Trigonometry (Hijmans 2016) 1.5.5

ggmap Spatial Visualization with ggplot2 (Kahle and Wickham 2016) 2.6.1

ggplot2 An Implementation of the Grammar of Graphics (H. Wickham and Chang 2016b) 2.1.0

ggplot2movies Movies Data (H. Wickham 2015a) 0.0.1

knitr A General-Purpose Package for Dynamic Report Generation in R (Xie 2016c) 1.14

189

Name Title Version
lubridate Make Dealing with Dates a Little Easier (Grolemund, Spinu, and Wickham 2016) 1.5.6

microbenchmark Accurate Timing Functions (Mersmann 2015) 1.4.2.1

profvis Interactive Visualizations for Profiling R Code (Chang and Luraschi 2016) 0.3.2

pryr Tools for Computing on the Language (H. Wickham 2015b) 0.1.2

Rcpp Seamless R and C++ Integration (Eddelbuettel et al. 2016) 0.12.7

readr Read Tabular Data (Wickham, Hester, and Francois 2016) 1.0.0

rio A Swiss-Army Knife for Data I/O (Chan and Leeper 2016) 0.4.12

RSQLite SQLite Interface for R (Wickham, James, and Falcon 2014) 1.0.0

tibble Simple Data Frames (Wickham, Francois, and Müller 2016) 1.2

tidyr Easily Tidy Data with spread() and gather() Functions (H. Wickham 2016b) 0.6.0

190 | Appendix A: Package Dependencies

APPENDIX B

References

Bååth, Rasmus. 2012. “The State of Naming Conventions in R.” The R Journal 4 (2):
74–75. https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf.

Berkun, Scott. 2005. The Art of Project Management. O’Reilly Media.

Braun, John, and Duncan J Murdoch. 2007. A First Course in Statistical Programming
with R. Vol. 25. Cambridge University Press Cambridge.

Burns, Patrick. 2011. The R Inferno. Lulu.com.

Carl Boettiger, Dirk Eddelbuettel with contributions by, Sebastian Gibb, Colin Gilles‐
pie, Jan Górecki, Matt Jones, Thomas Leeper, Steven Pav, and Jan Schulz. 2016. Drat:
Drat R Archive Template. https://CRAN.R-project.org/package=drat.

Chan, Chung-hong, and Thomas J. Leeper. 2016. Rio: A Swiss-Army Knife for Data
I/O. https://CRAN.R-project.org/package=rio.

Chang, Winston. 2012. R Graphics Cookbook. O’Reilly Media.

Chang, Winston, and Javier Luraschi. 2016. Profvis: Interactive Visualizations for
Profiling R Code. https://CRAN.R-project.org/package=profvis.

Codd, E. F. 1979. “Extending the database relational model to capture more meaning.”
ACM Transactions on Database Systems 4 (4): 397–434. doi:10.1145/320107.320109.

Cotton, Richard. 2013. Learning R. O’Reilly Media.

———. 2016a. Assertive.reflection: Assertions for Checking the State of R. https://
CRAN.R-project.org/package=assertive.reflection.

———. 2016b. Testing R Code.

Csardi, Gabor. 2015. Cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror.
https://CRAN.R-project.org/package=cranlogs.

191

https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Baaaath.pdf
https://CRAN.R-project.org/package=drat
https://CRAN.R-project.org/package=rio
https://CRAN.R-project.org/package=profvis
https://doi.org/10.1145/320107.320109
https://CRAN.R-project.org/package=assertive.reflection
https://CRAN.R-project.org/package=assertive.reflection
https://CRAN.R-project.org/package=cranlogs

Dowle, M, A Srinivasan, T Short, S Lianoglou with contributions from R Saporta, and
E Antonyan. 2015. Data.table: Extension of Data.frame. https://CRAN.R-project.org/
package=data.table.

Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. Springer.

Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integra‐
tion.” Journal of Statistical Software 40 (8): 1–18.

Eddelbuettel, Dirk, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Douglas
Bates, and John Chambers. 2016. Rcpp: Seamless R and C++ Integration. https://
CRAN.R-project.org/package=Rcpp.

Eddelbuettel, Dirk, Romain François, J. Allaire, John Chambers, Douglas Bates, and
Kevin Ushey. 2011. “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software 40 (8): 1–18.

Eddelbuettel, Dirk, Murray Stokely, and Jeroen Ooms. 2016. “RProtoBuf: Efficient
Cross-Language Data Serialization in R.” Journal of Statistical Software 71 (1): 1–24.
doi:10.18637/jss.v071.i02.

Gillespie, Colin. 2016. Benchmarkme: Crowd Sourced System Benchmarks. https://
CRAN.R-project.org/package=benchmarkme.

Gillespie, Colin, and Robin Lovelace. 2016. Efficient: Becoming an Efficient R Pro‐
grammer.

Goldberg, David. 1991. “What Every Computer Scientist Should Know About
Floating-Point Arithmetic.” ACM Computing Surveys (CSUR) 23 (1). ACM: 5–48.

Grant, Christine A, Louise M Wallace, and Peter C Spurgeon. 2013. “An Exploration
of the Psychological Factors Affecting Remote E-Worker’s Job Effectiveness, Well-
Being and Work-Life Balance.” Employee Relations 35 (5). Emerald Group Publishing
Limited: 527–46.

Grolemund, G., and H. Wickham. 2016. R for Data Science. O’Reilly Media.

Grolemund, Garrett, Vitalie Spinu, and Hadley Wickham. 2016. Lubridate: Make
Dealing with Dates a Little Easier. https://CRAN.R-project.org/package=lubridate.

Hijmans, Robert J. 2016. Geosphere: Spherical Trigonometry. https://CRAN.R-
project.org/package=geosphere.

Janert, Philipp K. 2010. Data Analysis with Open Source Tools. “O’Reilly Media”.

Jensen, Jørgen Dejgård. 2011. “Can Worksite Nutritional Interventions Improve Pro‐
ductivity and Firm Profitability? A Literature Review.” Perspectives in Public Health
131 (4). SAGE Publications: 184–92.

192 | Appendix B: References

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=benchmarkme
https://CRAN.R-project.org/package=benchmarkme
https://CRAN.R-project.org/package=lubridate
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere

Kahle, David, and Hadley Wickham. 2016. Ggmap: Spatial Visualization with Ggplot2.
https://CRAN.R-project.org/package=ggmap.

Kersten, Martin L, Stratos Idreos, Stefan Manegold, Erietta Liarou, and others. 2011.
“The Researcher’s Guide to the Data Deluge: Querying a Scientific Database in Just a
Few Seconds.” PVLDB Challenges and Visions 3.

Kruchten, Philippe, Robert L Nord, and Ipek Ozkaya. 2012. “Technical Debt: From
Metaphor to Theory and Practice.” IEEE Software, no. 6. IEEE: 18–21.

Lovelace, Ada Countess. 1842. “Translators notes to an article on Babbages Analytical
Engine.” Scientific Memoirs 3. 691-731.

Lovelace, Robin, and Morgane Dumont. 2016. Spatial Microsimulation with R. CRC
Press. http://bit.ly/spatialmicrosimR.

McCallum, Ethan, and Stephen Weston. 2011. Parallel R. O’Reilly Media.

McConnell, Steve. 2004. Code Complete. Pearson Education.

Mersmann, Olaf. 2015. Microbenchmark: Accurate Timing Functions. https://CRAN.R-
project.org/package=microbenchmark.

Peng, Roger. 2014. R Programming for Data Science. Leanpub. https://leanpub.com/
rprogramming.

Pereira, Michelle Jessica, Brooke Kaye Coombes, Tracy Anne Comans, and Venerina
Johnston. 2015. “The Impact of Onsite Workplace Health-Enhancing Physical Activ‐
ity Interventions on Worker Productivity: A Systematic Review.” Occupational and
Environmental Medicine 72 (6). BMJ Publishing Group Ltd: 401–12.

PMBoK, A. 2000. “Guide to the Project Management Body of Knowledge.” Project
Management Institute, Pennsylvania USA.

R Core Team. 2016. “R Installation and Administration.” R Foundation for Statistical
Computing. https://cran.r-project.org/doc/manuals/r-release/R-admin.html.

Sanchez, Gaston. 2013. “Handling and Processing Strings in R.” Trowchez Editions.
http://bit.ly/handlingstringsR.

Sekhon, Jasjeet S. 2006. “The Art of Benchmarking: Evaluating the Performance of R
on Linux and OS X.” The Political Methodologist 14 (1): 15–19.

Spector, Phil. 2008. Data Manipulation with R. Springer Science & Business Media.

Sveidqvist, Knut, Mike Bostock, Chris Pettitt, Mike Daines, Andrei Kashcha, and
Richard Iannone. 2016. DiagrammeR: Create Graph Diagrams and Flowcharts Using
R. https://CRAN.R-project.org/package=DiagrammeR.

Visser, Marco D., Sean M. McMahon, Cory Merow, Philip M. Dixon, Sydne Record,
and Eelke Jongejans. 2015. “Speeding Up Ecological and Evolutionary Computations

References | 193

https://CRAN.R-project.org/package=ggmap
http://bit.ly/spatialmicrosimR
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://leanpub.com/rprogramming
https://leanpub.com/rprogramming
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
http://bit.ly/handlingstringsR
https://CRAN.R-project.org/package=DiagrammeR

in R; Essentials of High Performance Computing for Biologists.” Edited by Francis
Ouellette. PLOS Computational Biology 11 (3): e1004140. doi:10.1371/journal.pcbi.
1004140.

Wickham, Hadley. 2010. “Stringr: Modern, Consistent String Processing.” The R Jour‐
nal 2 (2): 38–40.

———. 2014a. Advanced R. CRC Press.

———. 2014b. “Tidy Data.” The Journal of Statistical Software 14 (5).

———. 2015a. Ggplot2movies: Movies Data. https://CRAN.R-project.org/pack
age=ggplot2movies.

———. 2015b. Pryr: Tools for Computing on the Language. https://CRAN.R-
project.org/package=pryr.

———. 2015c. R Packages. O’Reilly Media.

———. 2016a. Feather: R Bindings to the Feather ’API’. https://CRAN.R-project.org/
package=feather.

———. 2016b. Tidyr: Easily Tidy Data with spread() and gather() Functions. https://
CRAN.R-project.org/package=tidyr.

Wickham, Hadley, and Winston Chang. 2016a. Devtools: Tools to Make Developing R
Packages Easier. https://CRAN.R-project.org/package=devtools.

———. 2016b. Ggplot2: An Implementation of the Grammar of Graphics. https://
CRAN.R-project.org/package=ggplot2.

Wickham, Hadley, and Romain Francois. 2016. Dplyr: A Grammar of Data Manipula‐
tion. https://CRAN.R-project.org/package=dplyr.

Wickham, Hadley, Romain Francois, and Kirill Müller. 2016. Tibble: Simple Data
Frames. https://CRAN.R-project.org/package=tibble.

Wickham, Hadley, Jim Hester, and Romain Francois. 2016. Readr: Read Tabular Data.
https://CRAN.R-project.org/package=readr.

Wickham, Hadley, David A. James, and Seth Falcon. 2014. RSQLite: SQLite Interface
for R. https://CRAN.R-project.org/package=RSQLite.

Xie, Yihui. 2015. Dynamic Documents with R and Knitr. Vol. 29. CRC Press.

———. 2016a. Bookdown: Authoring Books with R Markdown. https://CRAN.R-
project.org/package=bookdown.

———. 2016b. FormatR: Format R Code Automatically. https://CRAN.R-project.org/
package=formatR.

194 | Appendix B: References

http://bit.ly/speedingupeco
http://bit.ly/speedingupeco
https://CRAN.R-project.org/package=ggplot2movies
https://CRAN.R-project.org/package=ggplot2movies
https://CRAN.R-project.org/package=pryr
https://CRAN.R-project.org/package=pryr
https://CRAN.R-project.org/package=feather
https://CRAN.R-project.org/package=feather
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=formatR
https://CRAN.R-project.org/package=formatR

———. 2016c. Knitr: A General-Purpose Package for Dynamic Report Generation in R.
https://CRAN.R-project.org/package=knitr.

Zeileis, Achim, and the R community. 2016. Fortunes: R Fortunes. https://CRAN.R-
project.org/package=fortunes.

References | 195

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=fortunes

Index

Symbols
&, && (AND operator), 134
.csv files, 88
.Rdata, 94
.Rds, 94
.Renviron file, 26, 32-34

location of, 27
storing passwords in, 120

.Rprofile, 26, 28-32, 30
hidden environments with, 32
location of, 27
setting CRAN mirror, 30
setting options, 29
useful functions, 31

? prefix, 179
?? symbol, 177
|, || (OR operator), 134

A
aggregation (see data aggregation)
algorithmic efficiency, 4
AND (&, &&) operator, 134
anyNA() function, 135
apply function family, 57-61

movies dataset example, 59
parallel versions of, 140
resources for, 60
type consistency and, 60

apply() function, 57-61, 134
apropos(), 177
argument passing, assignment vs., 168
ASCII character set, 154
assertive.reflection package, 19
autocompletion, 38-40

B
base R

converting factors to numerics, 133
determining which indices are TRUE, 133
if() vs. ifelse() functions, 131
integer data type, 135
is.na() and anyNA(), 135
logical AND and OR, 134
matrices, 135-137
pattern matching with, 106
reversing elements, 133
row and column operations, 134
sorting and ordering, 132

Basic Linear Algebra System (see BLAS)
benchmarking

binary file formats, 94-96
BLAS resources, 45
for efficient programming, 9-11

benchmarkme package, 156, 161
binary file formats

benchmarking, 94-96
feather, 94
for IO, 93-96
Protocol Buffers for, 96
Rds vs. Rdata, 94

BLAS framework, 43-45
benchmarking resources, 45
testing performance gains from, 43

braces, curly ({}), 169
branches, 172
broom package, 105
byte, 154

197

C
C++

cppFunction() command, 144
data types, 145
R functions vs., 143
Rcpp and, 143
Rcpp sugar and, 149
sourceCpp() function, 145

caching
function closures, 63
variables, 61-64

cat() function, 55
categorical variables, 56
central processing unit (CPU), 160
chaining, 112
cheat sheets, 182
chunking, 73
class, of columns, 110
clones, 172
closures, 63
cloud computing, 162
code profiling, 128-131

efficiency and, 9, 11-14
profvis, 129-131

code review, 173
coding style

assigning objects to values, 168
commenting, 166
curly braces, 169
filenames, 165
for efficient collaboration, 164-169
importance of consistency, 8
indentation, 168
loading packages, 166
lubridate package example, 167
object names, 167
reformatting code with RStudio, 165
spacing, 168

collaboration, 163-174
code review, 173
tips for, 164
version control, 169-173

columns
apply() function and, 134
changing class, 110
renaming, 110

comments/commenting, 166
commits, 170
compiler package, 64-67, 65

compiling code, 66
Comprehensive R Archive Network (see CRAN

entries)
CPU (central processing unit), 160
CRAN (Comprehensive R Archive Network), 3
CRAN mirror, 30
csv files, 88
curly braces, 169

D
data aggregation, 114-116
data carpentry, 99-124

combining datasets, 118-119
data frames with tibble, 100
data processing with data.table, 123-124
databases and, 119-121
dplyr for data processing, 108-113
tidyr for, 102-107
tips for, 100

data frames, 100
data input/output (see input/output (IO))
data processing, 108

(see also data carpentry)
data aggregation, 114-116
data.table for, 123-124
dplyr, 108-113
nonstandard evaluation, 117

data tidying, 102-105
gather(), 103
regular expressions and, 106
splitting joint variables with separate(), 104
tidyr for, 102-107

data.table package, 123-124
databases

data carpentry and, 119-121
dplyr and, 121

datasets
combining, 118-119
for illustrating questions, 184

DBI, 120
deep learning, 185
dependencies, R packages with, 24
documentation, R Markdown for, 81
double-precision floating-point format, 135
dplyr

chaining operations with, 112
changing column classes, 110
data aggregation, 114-116
data processing with, 108-113

198 | Index

database access via, 121
filtering rows, 111
nonstandard evaluation, 117
renaming columns, 110
verb functions, 108

drat package, 181
dual in-line memory modules (DIMMs), 156
dynamic documentation, 81

E
EC2 (Elastic Compute Cloud), 162
efficiency

about, 4-6
benchmarking, 9-11
consistent code style/conventions, 8
cross-transferable skills for, 7-9
defined, 4
importance of, 6
in R programming, 4-6
of programmer, 7
profiling, 9, 11-14
touch typing, 7
ways in which R encourages/guides, 5

efficient package, 130, 178
Elastic Compute Cloud (EC2), 162

F
factors, 56

converting to numerics, 133
for fixed set of categories, 57
inherent order, 56

fatal errors, 53
feather (file format), 94
file paths, 27
file.path() function, 27
filenames, consistent style for, 165
filter() function, 111
forks, 172
fread() function

read_csv() vs., 90-92
speed of, 89

function calls
assignment operator vs. argument passing

operator, 168
library, 166
minimizing, 48

function closures, 63
functions, help pages for, 179-181
fuzzy matching, 118

G
gather() function, 103
Gentleman, Robert, 4
Git

about, 169
branches, 172
clones, 172
forks, 172
pull requests, 173
RStudio and, 170

GitHub, 171
graphics, factors for ordering in, 56

H
hard disc drive (HDD), 158
hardware, 153-162

bits and bytes, 154
cloud computing, 162
CPU, 160
hard drives, 158
operating systems, 159
RAM, 155-157
tips for, 153

HDD (hard disc drive), 158
help, R

functions, 179-181
Rs internal help, 176-182
searching for topics in, 177
source code, 181
swirl, 182
vignettes, 178

help.start() function, 3
helper functions, 31
hidden environments, 32

I
IDE (integrated development environment)

(see RStudio)
if() function, ifelse() function vs., 131
Ihaka, Ross, 4, 157
indentation, 168
indices, determining which are TRUE, 133
input/output (IO), 85-98

accessing data stored in packages, 97
binary file formats, 93-96
data from internet, 96
plain-text formats, 88-93
rio, 86-87

Index | 199

tips for, 86
installation

R, 21
R packages, 14, 23
R packages with dependencies, 24

integer data type, 135
integrated development environment (IDE)

(see RStudio)
internal help, R, 176-182
International System of Units (SI) prefixes, 154
internet, data from, 96
interpreters, 44
invisible() function, 55
IO (see input/output)
is.na() function, 135

J
joining, 118-119
joining variable, 118

K
keyboard shortcuts, 35, 40
Knuth, Donald, 127

L
lapply() function, 59
learning, 175-187

asking questions efficiently, 184
in depth, 185
online resources, 3, 182-184
Rs internal help for, 3, 176-182
Stack Overflow site, 183
teaching, 187
tips for, 175

library function calls, 166
Linux

C++ compiler, 128
parallel code under, 141
R installation, 22
system monitoring on, 20

loops, Rcpp and, 146-149
lubridate package, 167

M
Mac OS

C++ compiler installation, 128
R installation, 22
R updates, 23

system monitoring on, 20
mailing lists, 183
matrices, 135-137

integer data type, 135
sparse, 137

memoise package, 62
memory allocation, 49
merging, 118-119
message() function, 55
METACRAN, 80
microbenchmark package, 9
Microsoft R Open, 44
missing values, 135
MonetDB, 120
Monopoly (game), 138
Monte Carlo simulation

code profiling, 130
parallel computing for, 140
vectorized code, 51

MRAN, 80

N
non-standard evaluation (NSE), 64, 117
normalizePath() function, 27
noSQL, 120

O
object display, 40
objects

assigning to values, 168
naming of, 167

online learning resources, 182-184, 183
mailing lists, 183
R-bloggers, 183
Stack Overflow, 183

operating system (OS)
32-bit vs. 64-bit, 159
R setup, 18-21
resource monitoring and, 19-21

optim() function, 179-181
optimization, 127-151

code profiling, 128-131
efficient base R, 131-138
movie_square() function, 138
parallel computing, 139-142
Rcpp, 142-151
tips for, 128

options() function, 29
OR (|, ||) operator, 134

200 | Index

Oracle, R-interpreter, 45
ordering, 56, 133
OS (see operating system)
OS X, parallel code under, 141

P
packages

loading, 166
(see also .Renviron file)

R (see R packages)
panes, RStudio layout, 35-38
parallel computing, 139-142

apply functions, 140
exit functions, 141
Snakes and Ladders simulation, 140
under Linux or OS X, 141

parallel package, 139, 140
passwords, storing in .Renviron, 120
pathological package, 28
plain-text data files

fread() vs. read_csv(), 90-92
I/O with, 88-93
limitations to, 93
preprocessing text outside R, 92

pointer object, 145
pqrR, 45
profiling (see code profiling)
profvis, 129-131

basics, 129
Monopoly simulation example, 130

programmer productivity/efficiency, 4
(see also workflow)

programming, 47-67
apply function family, 57-61
byte compiler, 64-67
caching variables, 61-64
communicating with user, 53-56
factors, 56
general advice, 48-53
memory allocation, 49
tips for, 47
vectorized code, 50-53

project management
chunking, 73
RStudio, 41
SMART criteria for objectives, 74
visualizing plans with R, 75

project planning
package selection, 76-80

project management and, 72-76
typology, 70-72
visualizing plans with R, 75

Protocol Buffers
binary data storage with, 96

pryr package, 155
publication, 80-84

R Markdown framework for documenta‐
tion, 81

treating projects as R packages, 83
pull request (PR), 173

Q
questions

asking efficiently, 184
avoiding redundant, 183
minimal dataset for illustrating, 184
minimal example for illustrating, 185

R
R

C++ functions vs., 143
installing, 21
updating, 23

R Markdown, 81
R package ecosystem, 78
R packages

accessing data stored in, 97
installation, 14, 23
installation with dependencies, 24
searching for, 78
selection as part of planning process, 76-80
selection criteria, 78
treating projects as, 42, 83
updating, 24

R startup, 25-34
arguments, 25
location of startup files, 26-28

R-bloggers, 183
R-project website, 182
random access memory (RAM), 155-157
Rcpp, 142-151

C++ data types, 145
C++ functions, 143
cppFunction() command, 144
matrices, 149
resources/documentation, 150
sourceCpp() function, 145
sugar, 149

Index | 201

vectors and loops, 146-149
Rdata, 94
Rds, 94
read.csv() function, 89
readr package, 86, 88-92
read_csv() function

factors and, 57
fread() vs., 90-92
speed of, 89

reformatting, 165
regular expressions, 106
rename() function, 110
Renjin, 45
Renviron file, 26, 32-34

location of, 27
storing passwords in, 120

resource monitoring, 19-21
rev() function, 133
Rho, 45
rio package, 86-87
RODBC, 120
rows, filtering with dplyr, 111
Rprof() function, 128
Rprofile, 26, 28-32, 30

hidden environments with, 32
location of, 27
setting CRAN mirror, 30
setting options, 29
useful functions, 31

RStudio
autocompletion, 38-40
Git integration in, 170
installing and updating, 35
keyboard shortcuts, 35, 40
object display and output table, 40
options, 38
project management, 41
R package updates, 25
reformatting code with, 165
setup, 34-42
window pane layout, 35-38

RStudio mirror, 30

S
separate() function, 104
setup, 17-45

alternative R interpreters, 44
BLAS framework, 43-45
installing R, 21

operating system, 18-21
R package installation, 23
R startup, 25-34
R version, 21-25
RStudio, 34-42
tips for, 18
updating R, 23
updating R packages, 24

shared memory systems (see parallel comput‐
ing)

shortcuts, keyboard, 35, 40
SI (International System of Units) prefixes, 154
SMART criteria, 74
solid state drive (SSD), 159
sorting, 132
source code, reading, 181
sourceCpp() function, 145
spacing, 168
sparse matrices, 137
SSD (solid state drive), 159
Stack Overflow (programming help site), 183
startup files, R, 26-34

.Renviron, 32-34

.Rprofile, 28-32
location of, 26-28

startup, R, 25-34
stop() function, 53
stream processing, 92
stringr, pattern matching with, 106
style (see coding style)
subsetting, 123, 136
sugar, 149
swirl, 182
Sys.getenv() function, 33
system variables (see .Renviron file)

T
tables, gather() function and, 103
tbl_df data frame class, 100
teaching, as form of learning, 187
technical debt, 72
TERR, 45
tibble, 100
Tibco, 45
tidy data, 103
tidyr package, 102-105

data tidying with, 102-105
splitting joint variables with separate(), 104
various functions, 105

202 | Index

touch typing, 7

U
Ubuntu

R packages with dependencies, 24
R updates, 23

updating
R, 23
R packages, 24

user, communicating with, 53-56
fatal errors, 53
informative output, 55
invisible returns, 55
warnings, 54

V
values, assigning objects to, 168
variables, caching, 61-64
vector

determining which indices are TRUE, 133
matrices and, 149
pre-allocating, 49
Rcpp and, 146-149
sorting, 132

vectorized code
efficient programming and, 50-53
Monte Carlo integration, 51

version control, 169-173
branches, 172
clones, 172
commits, 170

forks, 172
Git integration in RStudio, 170
GitHub, 171
pull requests, 173

vignette() function, 3
vignettes, finding/using, 3, 178

W
warning() function, 54
wide boundary search, 177
wide data, 102
window panes, in RStudio layout, 35-38
Windows

C++ compiler installation, 128
file paths in R, 27
R installation, 21
R packages with dependencies, 24
R updates, 23
system monitoring on, 20

workflow, 69-84
chunking, 73
defined, 69
package selection, 76-80
project management and, 72-76
project planning typology, 70-72
publication, 80-84
RStudio, 41
SMART criteria for objectives, 74
tips for, 70
typology, 70-72
visualizing plans with R, 75

Index | 203

About the Authors
Colin Gillespie is senior lecturer (associate professor) at Newcastle University, UK.
His research interests are high-performance statistical computing and Bayesian statis‐
tics. He is regularly employed as a consultant by Jumping Rivers and has been teach‐
ing R since 2005 at a variety of levels, ranging from beginners to advanced
programming.

Robin Lovelace is a researcher at the Leeds Institute for Transport Studies (ITS) and
the Leeds Institute for Data Analytics (LIDA). Robin has many years using R for aca‐
demic research and has taught numerous R courses at all levels. He has developed a
number of popular R resources, including Introduction to Visualising Spatial Data in
R and Spatial Microsimulation with R (Lovelace and Dumont 2016). These skills have
been applied on a number of projects with real-world applications, including the Pro‐
pensity to Cycle Tool, a nationally scalable interactive online mapping application,
and the stplanr package.

Colophon
The animal on the cover of Efficient R Programming is the grey heron (Ardea cinerea).
Grey herons are large wading birds, measuring up to 100 cm in height with a nearly
200 cm wingspan. They are long-legged, which lets them easily wade in the shallows
of their native wetland habitat. They hunt fish, amphibians, small mammals, and
insects by standing motionless in shallow water throughout the day, then striking
unsuspecting prey with their long bill. At night, they roost in trees or on cliffs, where
they also lay eggs and raise their young.

Grey herons can be found throughout Europe, Asia, and Africa. Most gray herons
live in the same region year round, but those living in colder northern regions
migrate south for the winter. They are mostly grey in color, with a white neck and
black streaks on the head and wings.

Grey herons have been a part of several ancient mythological systems. During the
New Kingdom period in Egypt, the deity Bennu, god of the sun, creation, and rebirth,
was represented as a grey heron. In pre-Christian Rome, the gray heron was a symbol
of divinination used by priests to predict the future.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://www.mas.ncl.ac.uk/~ncsg3/
http://www.jumpingrivers.com/
http://robinlovelace.net
http://www.its.leeds.ac.uk/
http://lida.leeds.ac.uk/about-lida/contact/
https://github.com/Robinlovelace/Creating-maps-in-R
https://github.com/Robinlovelace/Creating-maps-in-R
https://github.com/Robinlovelace/spatial-microsim-book
http://www.pct.bike/
http://www.pct.bike/
https://github.com/ropensci/stplanr
http://animals.oreilly.com

