

Introduction to R for

Social Scientists

Chapman & Hall/CRC
Statistics in the Social and Behavioral Sciences Series
Series Editors
Jeff Gill, Steven Heeringa, Wim J. van der Linden, Tom Snijders
Recently Published Titles

Multilevel Modelling Using Mplus
Holmes Finch and Jocelyn Bolin

Bayesian Psychometric Modeling
Roy Levy and Robert J. Mislevy

Applied Survey Data Analysis, Second Edition
Steven G. Heering, Brady T. West, and Patricia A. Berglund

Adaptive Survey Design
Barry Schouten, Andy Peytchev, and James Wagner

Handbook of Item Response Theory, Volume One: Models
Wim J. van der Linden

Handbook of Item Response Theory, Volume Two: Statistical Tools
Wim J. van der Linden

Handbook of Item Response Theory, Volume Three: Applications
Wim J. van der Linden
Bayesian Demographic Estimation and Forecasting
John Bryant and Junni L. Zhang

Multivariate Analysis in the Behavioral Sciences, Second Edition
Kimmo Vehkalahti and Brian S. Everitt

Analysis of Integrated Data
Li-Chun Zhang and Raymond L. Chambers

Multilevel Modeling Using R, Second Edition
W. Holmes Finch, Joselyn E. Bolin, and Ken Kelley

Modelling Spatial and Spatial-Temporal Data: A Bayesian Approach
Robert Haining and Guangquan Li

Handbook of Automated Scoring: Theory into Practice
Duanli Yan, André A. Rupp, and Peter W. Foltz

Interviewer Effects from a Total Survey Error Perspective
Kristen Olson, Jolene D. Smyth, Jennifer Dykema, Allyson Holbrook, Frauke Kreuter, and Brady T. West

Measurement Models for Psychological Attributes
Klaas Sijtsma and Andries van der Ark

Big Data and Social Science: Data Science Methods and Tools for Research and Practice,
Second Edition
Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter and Julia Lane

Understanding Elections through Statistics: Polling, Prediction, and Testing
Ole J. Forsberg

Analyzing Spatial Models of Choice and Judgment, Second Edition
David A. Armstrong II, Ryan Bakker, Royce Carroll, Christopher Hare, Keith T. Poole and Howard
Rosenthal

Introduction to R for Social Scientists: A Tidy Programming Approach
Ryan Kennedy and Philip Waggoner

For more information about this series, please visit: https://www.routledge.com/Chapman--Hall-
CRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/CHSTSOBESCI

https://www.routledge.com/Chapman--Hall-CRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/CHSTSOBESCI
https://www.routledge.com/Chapman--Hall-CRC-Statistics-in-the-Social-and-Behavioral-Sciences/book-series/CHSTSOBESCI

Introduction to R for

Social Scientists

A Tidy Programming Approach

by

Ryan Kennedy

Philip Waggoner

First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Ryan Kennedy and Philip Waggoner to be identified as authors of this work has been
asserted by him/her/them in accordance with sections 77 and 78 of the Copyright, Designs and
Patents Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and pub
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

ISBN: 9780367460709 (hbk)
ISBN: 9780367460723 (pbk)
ISBN: 9781003030669 (ebk)

Typeset in Computer Modern font
by KnowledgeWorks Global Ltd.

http://www.copyright.com
mailto:mpkbookspermis�sions@tandf.co.uk
http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermis�sions@tandf.co.uk

�
�

“intro_to_R” — 2021/1/11 — 19:20 — page v — #5 �
�

�
�

�
�

Contents

Preface vii

Overview of Chapters
Acknowledgements

.

.
viii

ix

About the Authors . ix

1 Introduction 1

1.1 Why R? . 2

1.2
1.3

Why This Book?
Why the Tidyverse?

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

4

6

1.4 What Tools Are Needed? . 7

1.5 How This Book Can be Used in a Class 9

1.6 Plan for the Book . 10

2 Foundations 13

2.1
2.2

Scripting with R
Understanding R

. . .

. . .
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

13

17

2.3
2.4

Working Directories
Setting Up an R Project .

. . .

. . .
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

. 21

22

2.5 Loading and Using Packages and Libraries 24

2.6
2.7

Where to Get Help
Concluding Remarks . . .

. . .

. . .
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
. .

29

31

3 Data Management and Manipulation 33

3.1
3.2

Loading the Data .
Data Wrangling .

34

39

3.3 Grouping and Summarizing Your Data 45

3.4
3.5

Creating New Variables .
Combining Data Sets .

48

55

3.6
3.7

Basic Descriptive Analysis
Tidying a Data Set .

57

62

3.8 Saving Your Data Set for Later Use 64

3.9 Saving Your Data Set Details for Presentation 65

4 Visualizing Your Data 69

4.1 The Global Data Set . 69

4.2 The Data and Preliminaries 70

v

�
�

“intro_to_R” — 2021/1/11 — 19:20 — page vi — #6 �
�

�
�

�
�

vi Contents

4.3 Histograms . 72

4.4 Bar Plots . 81

4.5
4.6

Scatterplots
Combining Multiple Plots . .

.

.
84

90

4.7 Saving Your Plots
4.8 Advanced Visualizations . .

.

.
94

95

4.9 Concluding Remarks . 99

5 Essential Programming
5.1 Data Classes .

101

101

5.2 Data Structures . 104

5.3 Operators
5.4 Conditional Logic

.

.
110

112

5.5 User-Defined Functions . 114

5.6 Making Your Code Modular 119

5.7 Loops . 120

5.8 Mapping with purrr
5.9 Concluding Remarks

.

.
132

135

6 Exploratory Data Analysis 137

6.1
6.2

Visual Exploration . . .
Numeric Exploration .

.

.
. . .
. . .

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

138

145

6.3 Putting it All Together: Skimming Data 149

6.4 Concluding Remarks . 151

7 Essential Statistical Modeling 153

7.1
7.2

Loading and Inspecting the Data 153

t-statistics . 155

7.3 Chi-square Test for Contingency Tables 158

7.4 Correlation . 159

7.5 Ordinary Least Squares Regression 161

7.6 Binary Response Models . 171

7.7 Concluding Remarks . 183

8 Parting Thoughts 185

8.1
8.2

Continuing to Learn with R
Where To Go from Here . .

.

.
185

186

8.3 A Final Word . 187

Bibliography 189

Index 193

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page vii — #7 �
�

�
�

�
�

Preface

This book is a distillation of our approach to programming in R for exploring
and explaining a variety of social science behavior. It is the product of our
own notes from teaching R to many groups of people, from undergraduates
and graduates to faculty members and practitioners. Indeed, this book would
be impossible without the support from and engagement by many students,
colleagues, and folks generally interested in our work. We are deeply grateful
to these people and are excited to share our work in this form.

In this book, we have two primary goals:

1.	 To introduce social scientists, both in and out of academia, to R. R is
at the same time a programming language as well as an environment
to do statistics and data science. As R is open source (meaning
open contribution of packages via the Comprehensive R Archive
Network (CRAN)), there are many powerful tools available to users
in virtually any discipline or domain to accomplish virtually any
statistical or data science task. Our goal, then, is to cover the tools
we find most helpful in our research as social scientists.

2.	 As the subtitle of the book suggests, we are interested in exposing
social scientists to the “tidy” approach to coding, which is also
referred to as the Tidyverse. Though we expound on this in much
greater detail throughout, the Tidyverse is a collection of packages
all built around consistency and making tasks in R streamlined,
with the product being a clean, clear rendering of the quantity or
object of interest. And as this is an introductory text, we suggest
it is most valuable to start from the Tidyverse framework, rather
than base R, to reduce the steepness of the learning curve as much
as possible.

vii

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page viii — #8 �
�

�
�

�
�

viii	 Preface

Overview of Chapters

In the book, we cover the following topics for a full introduction to tidy R
programming for social scientists:

1.	 Introduction: Motivation for the book, getting and using R
2.	 Foundations: Packages, libraries, and object-oriented programming
3.	 Data Management: Getting your data into workable, tidy form
4.	 Visualization: Visual presentations using ggplot2 and the gram

mar of graphics
5.	 Essential Programming: Interacting with base R to learn func

tional programming
6.	 Exploratory Data Analysis: Exploring relationships and data in

the Tidyverse
7.	 Essential Statistical Modeling: Fitting and diagnosing widely

used models in the Tidyverse
8.	 Parting Thoughts: Conclusion and wrap-up

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page ix — #9 �
�

�
�

�
�

Preface ix

Acknowledgements

Though the final product we present in this book is our own (wherein we
accept full responsibility for any errors), we could not have produced this
book without the help and influence of many other excellent social scientists
and programmers. Thus, in the same open-source spirit, we would like to
acknowledge the following people for sharing and/or making code available:
Ling Zhu, Scott Basinger, Thomas Leeper, Max Kuhn, and Hadley Wickham.

About the Authors

Dr. Ryan Kennedy is an associate professor of political science at the University
of Houston and a research associate for the Hobby Center for Public Policy.
His work in computational social science has dealt with issues of forecasting
elections, political participation, international conflicts, protests, state failure,
and disease spread. He has published in Science, the American Political Science
Review, Journal of Politics, and International Studies Quarterly, among others.
These articles have won several awards, including best paper in the American
Political Science Review, and have been cited over 1,700 times since 2013.
They have also drawn attention from media outlets like Time, The New York
Times, and Smithsonian Magazine, among others. For more information, visit
https://ryanpkennedy.weebly.com/.

Dr. Philip Waggoner is an assistant instructional professor of computational
social science at the University of Chicago and a visiting research scholar at the
Institute for Social and Economic Research and Policy at Columbia University.
He is also an Editorial Board Member at the Journal of Mathematical Sociology
and an Associate Editor at the Journal of Open Research Software, as well as a
member of easystats (a software group that tends to an ecosystem of packages
making statistics in R easy). He is the author of the recent book, Unsupervised
Machine Learning for Clustering in Political and Social Research (Cambridge
University Press, 2020). And in addition to authoring and co-authoring several
R packages, his work has appeared or is forthcoming in numerous peer-reviewed
journals including the Journal of Politics, Journal of Mathematical Sociology,
Journal of Statistical Theory and Practice, Journal of Open Source Software,
among others. For more information, visit https://pdwaggoner.github.io/.

https://www.ryanpkennedy.weebly.com
https://www.pdwaggoner.github.io

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 1 — #11 �
�

�
�

�
�

1

Introduction

R is a widely used statistical environment that has become very popular in the
social sciences because of its power and extensibility. However, the way that R
is taught to many social scientists is, we think, less than ideal. Many social
scientists come to R after learning another statistical program (e.g. SAS, SPSS,
or Stata). There are a variety of reasons they do this, such as finding there
are some tasks they cannot do in these other programs, collaborating with
colleagues who work in R, and/or being told that they need to learn R. For
others, R may be the first statistical program they encounter, but they come
to it without any kind of experience with programming (or even, increasingly,
using a text interface).

This is part of why “learning R” can be frustrating. Learning R for the first
time, most students are shown how to undertake particular tasks in the style
of a cookbook (i.e., here is how you conduct a regression analysis in R), with
little effort dedicated to developing an underlying intuition of how R works as
a language. As a result, for those who have experience with other statistical
programs, R comes across as a harder way to do the same things they can do
more easily in another program. This cookbook approach can also produce
frustration for those who are coming to R as their first statistical analysis
environment. Working with R in such a way becomes a process of copying and
pasting, with only a shallow understanding of why things have a particular
structure and, thus, difficulty moving beyond the demonstrated examples.

Finally, the cookbook approach is, in many ways, a holdover from the pre-
internet era, when large coding manuals were a critical reference for finding out
how to do anything in a complex program. These books had to be exhaustive,
since they were needed as much for reference as for learning the environment.
Today, however, there is a plethora of online materials to demonstrate how
to perform specific tasks in R, and exhaustiveness can come at a cost to
comprehension. What most beginners with R need is a concrete introduction
to the fundamentals, which will allow them to fully leverage the tools available
online.

This book is focused on equipping readers with the tools and knowledge to
overcome their initial frustration and fully engage with R. We introduce a
modern approach to programming in R – the Tidyverse. This set of tools
introduces a consistent grammar for working with R that allows users to

1

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 2 — #12 �
�

�
�

�
�

2 Introduction

quickly develop intuitions of how their code works and how to conduct new
tasks. We have found this increases the speed of learning and encourages
creativity in programming.

This book is based on an intensive 3-day workshop introducing R, taught by
one of the authors at the Inter-University Consortium for Political and Social
Research (ICPSR), as well as numerous workshops and classes (at both the
undergraduate and graduate levels) conducted by both authors. The goal is to
have the reader: (1) understand and feel comfortable using R for data analysis
tasks, (2) have the skills necessary to approach just about any task or program
in R with confidence, and (3) have an appreciation for that which R allows a
researcher to do and a desire to further their knowledge.

1.1 Why R?

If you have picked up this book, chances are that you already have a reason
for learning R. But let’s go through some of the more common reasons why
conducting your research in R is a good idea.

One of the major attractions of R is that it is free and open source. R was
created by Ross Ihaka and Robert Gentleman, of the Department of Statistics
at the University of Auckland, in the early 1990s (Ihaka and Gentleman, 1996).
It was designed to be a dialect of the popular S-PLUS statistical language
that was developed for Bell Labs. Unlike S-PLUS, however, R was released
under the GNU General Public License, which allows users to freely download,
alter, and redistribute it.

The result of this open source license is that R is accessible to everyone, without
exorbitant licensing fees. It is also regularly updated and maintained, with
frequent releases that allow for quick fixing of bugs and the addition of new
features.1 Perhaps most importantly, the open source nature allows users to
contribute their own additions to R in the form of “packages.” You will often
hear R users say, in response to a question about how to do something in
R, “There is a package for that.” From running advanced statistical models
to ordering an Uber (the ubeR package) or making a scatterplot with cats
instead of points (the CatterPlots package), it is likely that someone has
developed a way to do it in R. As of 2015, there were over 10,000 packages
on the Comprehensive R Archive Network (CRAN), with scores more being
created all the time. Indeed, the book you are reading now was originally
written completely in R using R Markdown and the bookdown package (Xie,
2019).

1The major new release usually comes around October, so you should, at a minimum,
update your R system around this time.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 3 — #13 �
�

�
�

�
�

3 Why R?

Another reason for learning R is flexibility. R is both a language and an
“environment” where users can do statistics and analysis. This covers a lot of
ground – from data visualization and exploratory data analysis, to complex
modeling, advanced programming and computation. R allows you to scrape
data from websites, interact with APIs, and even create your own online
(“Shiny”) applications. This flexibility, in turn, allows you as a researcher to
undertake a wider variety of research tasks, some of which you might not even
have considered previously.

Though R is wonderfully flexible, fast, and efficient, the learning curve can
be quite steep, as users must learn to write code. For example, in some other
popular statistics programs, users can point-and-click on the models they
want with little to no interface with the mechanics behind what is going on.
This is both good and bad. It is good in that the learning curve in point
and-click interfaces is much gentler and accommodating. However, it is not a
great thing in that it restricts user interface with the process of coding and
statistical analysis. Point-and-click encourages minimal interaction with the
data and tasks, and ultimately following the well-trod path of others, rather
than creating your own path.

The coding process required by R is also increasingly becoming the standard
in the social sciences. The “replication revolution” in the social sciences has
encouraged/required scholars to not only think about how they will share their
results, but also how they will share the way they got those results (King,
1995; Collaboration et al., 2015; Freese and Peterson, 2017). Indeed, several
of the top social science journals – including American Economic Review,
Journal of Political Economy, PLOS ONE, American Journal of Political
Science, and Sociological Methods and Research, among others – now require
submission of replication code and/or data prior to publication. Still others
strongly encourage the submission of replication code. R code is ideal for this
purpose – there are almost no obstacles to other scholars downloading and
running your R code. The same cannot be said about programs that require
licenses and point-and-click interaction.

This replication process can also be useful for your own work. There is a
common refrain among computer programmers that, “If you do not look at
your code for a month, and have not included enough comments to explain what
the commands do, it might as well have been written by someone else.” The
same is true of point-and-click software. If you have a process that is reasonably
complex and you do not work with it for a while, you might completely forget
how to do it. By writing an R script, you have a written record of how you
did each task, which you can easily execute again.

Additionally, we recommend the use of R in a variety of applied research
settings because of the high-quality options for visualization. Broadly, R uses
layers to build plots. This layering provides many flexible options for users
to interact directly with their visual tools to produce high-quality graphical

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 4 — #14 �
�

�
�

�
�

4 Introduction

depictions of quantities of interest. Further, some packages, e.g., ggplot2, use
something called the “grammar of graphics” (Wilkinson, 2012), which is a
process of streamlining the building of sophisticated plots and figures in R
(Wickham et al., 2019b; Wickham, 2009; Healy, 2018). This and other similar
packages offer users even more advanced tools for generating high-quality,
publication-ready visualizations (Lüdecke et al., 2020).

And finally, we highly recommend R, because of the community. From blogs
and local “R User” community groups in cities throughout the world to a
host of conferences (e.g., UseR, EARL, rstudio::conf), the R community is
a welcoming place. Further, the open source nature of R contributes to a
communal atmosphere, where innovation and sophistication in programming
and practice are highly prioritized. Put simply, R users want R to be the best it
can be. The result is an inclusive community filled with creative programmers
and applied users all contributing to this broader goal of a superior computing
platform and language. And in the words of one of the most influential modern
R developers, Hadley Wickham (a name you will see a lot in this book)
(Waggoner, 2018a),

. . . When you talk about choosing programming languages, I always say
you shouldn’t pick them based on technical merits, but rather pick them
based on the community. And I think the R community is like really, really
strong, vibrant, free, welcoming, and embraces a wide range of domains.
So, if there are people like you using R, then your life is going to be much
easier.

Therefore, though tricky to learn, if users are engaged in any way with data,
whether working for an NGO, attending graduate school, or even legal work
in many cases, users will be glad they opted to begin in R and endured the
hard, but vastly rewarding work up front.

1.2 Why This Book?

There are many good introductions to R (Monogan III, 2015; Li, 2018; Wick-
ham and Grolemund, 2017), and we will point you towards several of them
throughout. Yet, this book provides a unique and beneficial starting place,
particularly for social scientists. There are several features of this book that
lead us to this conclusion.

First, it is written specifically for social scientists. Many of the best intro
ductions to R are written for those who are coming from other programming
languages (e.g. Python, C++, Java) or from database design (e.g., Spark,
SQL). The assumption is that the reader will already be pretty familiar with
programming concepts, like objects, functions, scope, or even with R itself.
This, however, does not apply to most social scientists, who usually do not

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 5 — #15 �
�

�
�

�
�

5 Why This Book?

come in with experience in either programming or database management, and
will, therefore, find these concepts unfamiliar, and often quite vexing. We also
include details that are likely to be particularly relevant to social scientists,
such as how to automatically generate tables using R.

Second, we write this as a genuine introduction course, not as a cookbook.
Cookbooks have their place for learning R. They provide handy guides to
completing particular tasks, and are indispensable as you go through your work.
But, just as following the steps to make bread is not the same as understanding
how bread is made, copying code from a book or online resource is not the
same as developing the skill base to flourish as a data analyst who uses R. For
a similar reason, unlike some other introductions, we do not create any special
software specifically for this book – you are here to learn R, not a software we
design. This book concentrates on helping you to understand what you are
doing and why. After working your way through this book, you should be able
to undertake a range of tasks in R and more easily learn new ones and even
troubleshoot your own errors.

Third, we provide a thoroughly modern introduction to R. While using the
word “modern” in any book is a risky proposition, we mean this in terms
of using the latest tools as of this writing to help you be as productive as
possible. This means using the RStudio integrated development environment
(IDE) to assist you in writing and running code, R projects to keep track of
and organize your work, and the Tidyverse set of tools to make your code
more modular and comprehensible.

Fourth, we concentrate on the areas of learning R that you will use the most
often and are typically the most frustrating for beginners. Many people have
heard of the “Dunning-Kruger effect”, which is the tendency for people with low
ability to overestimate their ability (Kruger and Dunning, 1999). Many people
forget about the inverse part of the Kruger-Dunning effect – the tendency for
experts to underestimate the difficulty of tasks for which they are an expert.
This sometimes exhibits itself in R introductions that attempt to introduce
quite advanced statistical models, but give little to no attention to issues like
file systems and data management. Yet, things like setting working directories
are some of the most common stumbling blocks for students and data scientists
will often say that 80% of their job is managing and shaping data, but this is
almost never reflected in introductory texts. We try to correct this by giving a
significant focus in the beginning to these fundamental skills.

Fifth, this is a very concise introduction to R. We do not intend to cover, nor
do you need to know, everything about the internal workings of R or all of the
different options and functions in the Tidyverse. For a working social scientist,
the goal is to learn the parts you are likely to use most often, and gain enough
understanding of how R functions to get help with the unique situations. We
would argue that many “introductions” suffer from too much detail, where
what is important is buried under an avalanche of options you are unlikely to
use and will promptly forget.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 6 — #16 �
�

�
�

�
�

6 Introduction

Finally, the analysis demonstrated throughout is based on real survey data
from the American National Election Study (ANES) and a large cross-country
data set created by Professor Pippa Norris at Harvard University. We selected
these examples because they are real social science data, thus allowing users to
get their hands dirty in a very practical way, mirroring many contexts they are
more likely to see in their future work, rather than conducting a demonstration
using either pre-cleaned data or data about which the reader will have no
intuition. We have not cleaned or processed the data in any way, so it provides
a good example of what you will encounter in the “real world.” You will be
using the exact same data you would get from downloading these data sets
from the internet.

1.3 Why the Tidyverse?

As was mentioned in the last section, this book is somewhat unique among
social science introductions in our reliance on tools related to the “Tidyverse.”
This is a set of tools that have been collected and curated to make your work
in R more productive. The Tidyverse is actually a collection of R packages
(which we will discuss later), which all share an underlying design philosophy,
grammar and structure (Wickham, 2017; Wickham and Grolemund, 2017;
Wickham et al., 2019a).

There are several reasons we prefer to concentrate on the Tidyverse. First, it
will allow us to get started with real data analysis, quickly. For those who do
not start with a programming background, one of the more intimidating things
about R is the introduction of programming concepts that usually comes with
it. The basis of the R language was designed for Bell Labs engineers more than
50 years ago. The Tidyverse grammar was designed for data analysts from
a wide range of backgrounds. The tools in the Tidyverse allow you to start
getting meaningful data analysis right away.

Just as importantly, the shared design strategy of Tidyverse packages means
that you will have an easier time learning how to do new things. The consistent
design means that the intuitions you develop in this book should serve you
well as you use new functions in the Tidyverse, allowing you to expand your
knowledge more quickly.

Second, the Tidyverse grammar is more comprehensible for people coming
from other statistical packages. The use of characters like $ or [[]] is often
one of the most intimidating parts of learning R for beginners. We will learn
these things in this book, but we will only do so after learning a range of
consistent and simple functions that will achieve the main tasks you wish to
accomplish in data analysis.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 7 — #17 �
�

�
�

�
�

7 What Tools Are Needed?

Third, the Tidyverse usually has a single obvious method for achieving a goal.
This draws from the philosophy that there should be one, and preferably only
one, obvious way to do a task. This is very useful for being able to learn quickly
and to understand what is being done in any example. A simple illustration of
this is creating a new variable that is our original variable times 1,000. In base
R, there are at least three ways to do this.
dataset$new_variable <- dataset$old_variable * 1000

dataset[["new_variable"]] <- dataset[["old_variable"]] * 1000

dataset[, "new_variable"] <- dataset[, "old_variable"] * 1000

Since there is no right way to do it, you will often find different preferences
within the same group of scholars (and sometimes within the same code). In
contrast, there is only one way to create this variable in the Tidyverse:
dataset <- dataset %>%

mutate(new_variable = old_variable * 1000)

From our experience, this makes it much easier to keep track of what is being
done, share your code with others, and avoid frustration spending hours finding
out what may have gone wrong with your analysis.

Fourth, while this book is intended primarily as an introduction to R, those
who already know some R will find it useful for learning how to write “tidy”
code in R. Many utilities in R are moving towards the Tidyverse structure
and grammar, and this book will provide the familiarity with the Tidyverse
needed to leverage these tools effectively.

Finally, the tools provided in the Tidyverse are extremely powerful. The
ggplot2 package, for example, has become the standard for most data visual
ization in R. The use of a consistent grammar makes it much easier to extend
and develop than traditional R packages. Think about it like learning a foreign
language. If the rules about, for example, how nouns are used changes from
situation to situation, this makes it more difficult to learn the language and
create your own statements. If, on the other hand, there is consistency in the
rules, you can apply those rules to extend to new situations much more easily.

1.4 What Tools Are Needed?

Hopefully, if you are reading this book and have made it to this point, you
are sufficiently convinced of R’s value for both programming and statistical
analysis, if you were not already convinced. So at this point we transition

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 8 — #18 �
�

�
�

�
�

8 Introduction

slightly away from a high-level discussion of R, and toward more practical
aspects of how to get started with R.

1.4.1 Downloading R and RStudio

Before getting to into the environment, we first need to introduce precisely how
to access the environment. It is undeniably daunting to open up R for the first
time, and see a blank screen. Thus, we highly recommend the use of RStudio,
which is a user-friendly integrated development environment (IDE) that directly
interacts with the language of R (RStudio Team, 2015). In RStudio you can do
all kind of things, from practicing writing code before running it (e.g., scripts),
to writing reports (e.g., using markdown), to hopefully someday developing
and releasing your own R packages. All of these and more are possible within
RStudio directly.

Moreover, RStudio includes a number of useful features that make working
in R easier. This includes automatically closing parentheses and brackets
for you, highlighting which closed parentheses correspond with a particular
open parenthesis, providing hints on how to complete the command you are
writing, color-coding of your scripts, providing keyboard shortcuts for common
commands, and marking likely errors. Other than perhaps the Emacs Speaks
Statistics (ESS) suite for Emacs (which we do not recommend unless you
already use and like Emacs), RStudio is the most complete IDE for users of R.

So where and how can users get R and RStudio? As mentioned earlier, perhaps
one of the best things about R is that it is free. Users simply need to go to
the R-Project page, http://www.r-project.org/, to first download R. Then,
once R is successfully installed, go to the RStudio page, http://rstudio.com,
to download RStudio onto your machine. For step-by-step download and
installation procedures, with illustrations, you can go to the companion website,
https://i2rss.weebly.com.

For those of you who have already downloaded and installed R and RStudio,
we recommend you take some time to check whether you are working with
the latest version, and, if not, to update both systems. To check your version
of R, simply run the command ,version (or for those of you working at the
command line, R --version).2 To check your version of RStudio, simply run
the command, rstudioapi::getVersion() to return only the version number,
or rstudioapi::versionInfo() to get the version number, mode (desktop,
cloud, etc.), and the citation format for properly citing the use of RStudio.3

2A simpler tip is, when you open a new RStudio session, the version of R currently
running will appear automatically in the open console window.

3Note that when reading a version number for any software, the first value is the major
release, the middle value is more minor release, and subsequent values (3rd and 4th, e.g.,
“9000”) reflect the most minor changes to the software. For example, upon writing this book,
the latest release of R is 3.6.1, meaning there have been 3 major releases of R, 6 slightly
minor releases, and 1 minor fix/release for the current version.

http://www.r-project.org
http://www.rstudio.com
https://www.i2rss.weebly.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 9 — #19 �
�

�
�

�
�

9 How This Book Can be Used in a Class

1.5 How This Book Can be Used in a Class

In addition to aiding the applied researcher in individual tasks and contexts,
we also envision this book being used as a complementary text in the classroom.
Whether in substantive social science classes that include a computational
component, or in computationally intensive classes within the social sciences,
we encourage widespread use of this book for the purpose of developing more
efficient coding and programming practices.

To assist in classroom use, we design each chapter as a fully self-contained R
session. This means that there are no parts of the online code sets that are left
unexplained, no need to refer to earlier chapters to check whether a step is
missed, no conflicts with earlier code, and no concerns about losing information
for later if you shut down your R session. This does result in a certain amount
of repetition in the code, which is a strategic choice on our part. As the Russian
proverb states, “Repetition is the mother of learning.” Similarly, there is strong
scientific evidence that timed repetition is critical for mastery of tasks like
mathematics, foreign languages, and computer programming (Oakley, 2014).
For certain steps that are a part of any R session – setting a working directory,
loading data, loading libraries – we want them to become automatic for the
reader. Once this book is finished, this repetition should allow the user to
immediately begin their given task without having to remind themselves of
basic steps.

We also embed practice questions throughout the chapters for readers to
work through and keep in mind as they code. Given our goal of efficient
programming and deeper understanding of rigorous technical process, we will
also include many conceptual high-level questions in these exercises. These
“substantive pauses” in chapters reinforce our main goal in this book, rather
than providing just a technical manual with a list of useful functions. Exercises
are usually divided into “basic”, “intermediate”, and “advanced.” The basic
problems usually ask for modifications of code already introduced and require
minimal understanding of what is happening and/or the relationship between
concepts. These are for those who just want to do the things introduced in
the book quickly. The intermediate problems will usually ask for some deeper
understanding of what is happening in the introduced processes and may
ask the reader to find new information. Finally, the advanced problems ask
readers to undertake either a more complex task or to find some information
on a related process not formally introduced in the chapter. Completing these
exercises should result in the reader becoming comfortable with undertaking
unfamiliar tasks on their own.

Finally, we provide a range of online documentation to assist in classroom
instruction. Many of the most difficult challenges that instructors face are

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 10 — #20 �
�

�
�

�
�

10 Introduction

completely ignored by introductory textbooks, usually because they are consid
ered “too basic” for inclusion. We provide things like step-by-step installation
instructions for R and RStudio, additional tutorials on basic statistics, and
script versions of all the chapters that can be downloaded, directly updated (if
so desired), and used in classes. This collection is ever expanding, so instructors
can check to see if we have a resource for their particular needs (and contact
the authors with requests for materials that are not yet covered). All of these
resources are free to use or modify for the instructor’s needs, and, in the same
open spirit, we encourage direct communication with students, researchers and
instructors. The book website is at https://i2rss.weebly.com.

Instructors will probably choose to emphasize some parts of the text over others.
For example, undergraduates may not need the introduction to programming
that is included later in the book, and this can be safely skipped. Similarly,
institutions that have a separate data visualization course may decide to focus
elsewhere and have students use a more specialized text to learn visualization.
We have tried to make each chapter relatively self-contained so that instructors
can pick and choose if that fits with what they are trying to accomplish in
their courses.

1.6 Plan for the Book

Here is the plan for the rest of the book.

Foundations: Chapter 2 provides the building blocks for the rest of the book.
It starts with using R as an interactive environment. It then discusses the
foundations of R – objects and functions. This sets up everything that follows,
and will allow readers to understand how R is functioning throughout. Next,
we introduce the process of setting working directories and working with R
packages, both necessary for any work with R. Finally, we introduce the reader
to the packages used in the book and where they can go for extra help.

Data Management: More than 80% of data analysis is data management. This
chapter provides details of how to conduct most major data management
tasks using a tidy approach. This includes selecting variables, filtering data,
summarizing data, conducting summaries by groups, combining commands
with the pipe (%>%), reshaping data, and combining data sets. Within this
context, the chapter will also introduce how to create cross-tabulations and
comparisons of means, since these types of analysis are a natural extension
of data management. This chapter also introduces the stargazer package
to automatically generate publication-quality tables in R (Hlavac, 2018). We
have found this to be an entry point that is easy to understand for beginners,
building confidence in their use of R throughout the rest of the learning process.

https://www.i2rss.weebly.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 11 — #21 �
�

�
�

�
�

11 Plan for the Book

This chapter also serves as a practical introduction to the philosophy and
structure of the Tidyverse.

Visualization: The next chapter deals with visualization and graphics in R,
introducing the ggplot2 package (Wickham et al., 2019b). This chapter focuses
on the structure of graphics objects using the “grammar of graphics,” which
is at the heart of ggplot (hence, “gg”). It also introduces concepts like the
scope of a variable through examples in graphing, mapping aesthetics, and
layering plot objects. The chapter does not go into nearly the detail of other
books focused on graphics, but it provides a general entry point to creating
basic and advanced graphics in a tidy manner.

Programming: While base R is only used sparingly throughout the rest of
the book, this chapter gets into much greater depth. We introduce the data
structures of R (vectors, matrices, lists, data.frames), as well as the attributes
of basic classes (character, numeric, factor). Students learn about indexing
for each data structure, as well as some of their unique behaviors. This leads
into a discussion of how to use conditions and loops to automate repetitive
tasks, and how to save those programs as user-defined functions. We end by
discussing the creation of modular code and providing some examples of useful
functions.

Exploratory Data Analysis: One of the first steps in any data analysis is getting
to know your data through exploratory data analysis (EDA). In this chapter,
we begin discussion of statistical analysis in R by introducing some of the tools,
especially the skimr package, for conducting this type of analysis (McNamara
et al., 2019). We demonstrate how to visually and numerically analyze data
using R, as well as how to “skim” the data to provide powerful extensions
beyond the traditional summary() command in base R.

Essential Statistical Modeling: The final substantive chapter takes the reader
through an introduction to correlation and regression in R, demonstrating how
to conduct some of the most common types of analysis in the social sciences.
We demonstrate t-tests, chi-squared tests, and regression, as well as a range
of diagnostic tests, all based in the tidy R approach. For example, we use
the broom package (Robinson, 2014) for tidy inspection of model output, and
the tidy-friendly performance (Lüdecke et al., 2019) and see (Lüdecke et al.,
2020) packages from easystats to diagnose and visualize influential observations.
We also introduce logistic and probit regression and offer a demonstration of
how they differ from OLS regression in R. We also show the reader how to
automatically create publication-quality tables of their regression models.

Finally, we will conclude with a few thoughts on where the reader can go from
here, as well as some parting tips for making the most of your R analysis.

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 13 — #23 �
�

�
�

�
�

2

Foundations

The goal of this chapter is to introduce you to key concepts used throughout
the book. The first part will focus on philosophy and terminology of R. The
second part of this chapter will focus on setting up the packages and libraries
you need and how to download useful additional tools. The third part will
introduce some of the resources you can use to help you out as you develop
your R skills.

We will not be going into any kind of depth about the underlying design
philosophy of R or some of the deeper programming principles of Base R.
There are plenty of other resources for readers to obtain this kind of knowledge
(Matloff, 2011; Leemis, 2016). Our goal here is to construct a solid platform for
you to conduct a wide range of social science work. After reading this chapter,
you should find it relatively easy to follow the subsequent chapters, as well as
to utilize online tutorials. We are assuming absolutely no previous experience
with R and RStudio. For those of you who have some previous background
with using R and RStudio, you can safely skim through some of the parts
that might already be familiar, but we do recommend at least taking a casual
glance at the subsections of this chapter to make sure we are not leveraging
something with which you may not have previously worked.

Before you start this chapter, be sure you have R and RStudio downloaded
and installed, since we will be using both. If you need help with this process,
or would like to start by having a more detailed understanding of the various
parts of RStudio, you can consult with the online resources before moving on.

2.1 Scripting with R

When you open RStudio for the first time, it will look like the picture in Figure
2.1. You will see that it splits your screen into three parts. On the left, you
will see a window that has the R console. Think of this like the command line
for R. Inside the window is a > which shows you that R is ready to accept a
command. When you type something into this window and hit enter, R will
execute (or “run”) that command.

13

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 14 — #24 �
�

�
�

�
�

14 Foundations

FIGURE 2.1
A View of RStudio Opened for the First Time

Give it a try. Type 1 + 1 in the console and hit Enter.1 You will see that R
prints the result, 2, on the screen.
1 + 1

[1] 2

This interaction within the console is one of the key features of R. R is what
computer scientists call a “scripting” language. This means that, when a
command is passed to R, it is evaluated immediately. In contrast, “compiled”
languages, like C or C++, are ones where there is an intermediate step
between writing the command and running the command. The code is compiled
into native machine language before being run. While programs in compiled
languages tend to run faster, the advantage of scripting languages is that they
are usually easier to learn and allow for closer interaction in the context of
data analysis. Moreover, as computers have become more powerful, the speed
advantages of compiled languages (except for very intensive tasks) has tended
to dissipate.2

1Note that you can either include or omit spaces between values. While the command will
run either way, we recommend spaces between values in a function call to allow for easier
reading of the code. E.g., 1 + 1 is cleaner and easier to read than 1+1; this will become
clearer as functions and commands get more complicated later in the book.

2Note that recent efforts have been made to combine the efficiency and speed of scripting
and compiled languages. For example, there are R packages that will allow you to interact
with C++, Java, Python and other languages and tools. Indeed, many of the functions in
base R are actually written in C!

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 15 — #25 �
�

�
�

�
�

15 Scripting with R

Another feature of R that many users notice immediately is the ubiquity of
parentheses. R uses parentheses to show where commands begin and end. A
common problem users will experience is forgetting to close the parentheses on
a command. If you do this, the > on the left will turn into a +, indicating that
R is expecting more from the command. It will not return to the > until you
have finished the command you are on. To demonstrate this to yourself, try
typing (1 + 1, without closing the parentheses. Then, hit Enter/Return as
many times as you would like. You will notice it will not give you the answer
until you close the parentheses.
(1 + 1

)

[1] 2

On the right-hand side of our screen when you first open RStudio, you will
see two windows. On the upper-right-hand side, you will see a series of tabs,
labeled “Environment”, “History”, “Connections”, and (sometimes) “Build.”
We will only be using two of those tabs in this book. The Environment tab
shows all the objects you have stored in memory for use in your R session. So,
for example, if you load a data set, you will see it show up in the Environment
tab. The History tab records all the commands you have made recently. If you
ever want to enter one of these commands into the Console, you can simply
double-click on it.

On the lower-right-hand side, you will see five tabs. The “Files” tab shows
all the files in your working directory. You can use this interactively to see
what you have in your working directory, as well as any other areas of your file
system. The “Plots” tab will show you any graphs that you make, and allow you
to export them for use in your publications. We will use this extensively in our
chapter on producing plots. The “Packages” tab shows you all the packages you
have installed, and will check any that you have loaded into your environment
(more on this below). The “Help” tab can be used whenever you call for the
R documentation on a function. For example, if you type help("cor") or
?cor, it will show you the R documentation for the cor() function (which,
as you might guess, calculates the correlation between variables). The Viewer
tab is for viewing local web content. We will be using this when we design
three-dimensional plots later in the book.

Once you have opened RStudio, you can open the script containing your code
for an analysis by either selecting File » Open File in the dropdown menus, or
by clicking on the folder icon. You can create a new script by selecting “File”
» “New File” » “R Script” from the dropdown menu or by clicking on the
blank page icon and choosing R Script. You will also notice that beside the

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 16 — #26 �
�

�
�

�
�

16 Foundations

option to open a new R Script, it says “Ctrl+Shift+N.” This is a keyboard
shortcut. It means that if you want to open a new R script, you can do so by
holding down the Ctrl key, the Shift key, and the N key at the same time (your
keyboard shortcuts might be different, depending on the operating system you
are using).

When you open an existing script or create a new one, a new box will appear
above the console with the script. If you open more than one script at a time,
you will see that it creates new tabs for each additional script.

We have provided scripts containing all the code from this book on the
companion website.

Once you open a script with R commands in it, you will want to send those
commands to the R console to run. You can do this either by clicking the Run
button in the upper-left-hand corner of your script or by using the keyboard
shortcut Ctrl+Enter (this may be different on your operating system; hover
over the “Run” button to see how it is labeled on your system).

By default, RStudio will run only the line where the cursor is located. If you
wish to run more than one line, you can highlight all the lines you wish to run.

Take some time to explore RStudio before you proceed to make sure you are
comfortable with its operation. A more detailed version of the instructions
above, with illustrations, is available on the companion website.

Exercises

2.1.0.0.1 Easy

•	 Practice interacting with the console. What happens when you type
"Hello World" into the console and press Enter? What happens when
you type 3492 / 12 and press Enter?

•	 Open a new blank script in three ways: by going to File » New File » R
Script, using the “Ctrl+Shift+N” keyboard shortcut, and clicking on the
new script icon. In one of these scripts, type the commands from questions
1 and 2. Run them from the script file.

•	 To paste (“concatenate”) together more than one string, you can use the
paste() function. Try this. Type in paste("Hello", "World!"). What
happens when you put in a number, like paste("Hole in", 1, "!")?

2.1.0.0.2 Intermediate

•	 What happens when you type the following command into the command
line, round(sqrt(122.563ˆ2, 2)? How would you correct this?

•	 What error message do you get when you type in "two" + 2 (be sure to
include the quotation marks)? What do you think this means?

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 17 — #27 �
�

�
�

�
�

17 Understanding R

•	 In problem #3 above you might have noticed that paste("Hole in", 1,
"!") produced a sentence with a space between the “1” and the “!”. Why
do you think this happened?

2.1.0.0.3 Advanced

•	 Previewing what we will see below, type "two" * 2 into the console. What
error message do you receive? What do you think this means? Feel free to
look up the error message online to help.

•	 We will not discuss all the possible mathematical operators for R in
this book, but there are a number of additional operators about which
you might be interested. What do **, %%, and %/% do? You can look for
information online.

2.2 Understanding R

The foundations of R are pretty simple, but are often a stumbling block for
new users. Two general rules that we will often return to are:

1. Everything in R is an object.
2. Anything that does something is a function.

2.2.1 Objects

Just like objects in the real world, objects in R have “attributes.” For example,
the number 1 and the string “one” are both objects in R, but they have
different attributes. These attributes determine what you can do with them.
For example, adding two numbers makes sense, so running 1 + 1 in the R
console will produce an outcome. Adding two strings does not make sense, so
running "one" + "one" in the R console will return an error message.3

We will often use the class() function to get some information about the
objects. For example, if you run class(1) in the console, it will return numeric.
Alternatively, if you run class("1"), it will return that it is a character.
class(1)

[1] "numeric"

3Some programming languages, like Python, will allow you to use mathematical operators
with non-numeric values. For example, in Python, "one" + "one" would produce “oneone”
(the same outcome as paste("one", "one") in R) or "one" * 3 would produce “oneoneone”
(the same as rep("one", 3) in R).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 18 — #28 �
�

�
�

�
�

18 Foundations

class("1")

[1] "character"

There are times when we will simply want the objects printed in the console,
and other times when we will want to save those objects for later use. To save
an object to memory in your R session, you can use assignment operators,
which are either <- or =. When you do this, it will appear in the Environment
tab in the upper-right-hand corner of RStudio. The <- and = are synonymous,
but most R users, by convention, use <- for object assignment.4 In RStudio,
you can also use the keyboard shortcut “Alt + -” to create <- (“Option + -”
in Mac OS).

So, in the example that follows, the first line will simply print the results of 1
+ 1 to the console. The second saves the object to memory and calls it two.
To print this in the console, we simply run two in the console and it prints the
object on the screen.
1 + 1

[1] 2

two <- 1 + 1
two

[1] 2

R is what is called a strongly typed language. This means that capitalization
and punctuation are important. The object Two is not the same as the object
two. Getting an error returned saying that an object does not exist is often
due to spelling or capitalization mistakes. Here is a quick example.
two <- 2
Two <- 2.2
two

[1] 2

Two

[1] 2.2

two == Two

[1] FALSE

4The original computers used by Bell Labs in creating R had a single key that produced
this assignment operator. Most users still prefer it today both for style reasons and because
of some rare situations where the = may demonstrate unexpected behavior.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 19 — #29 �
�

�
�

�
�

Understanding R 19

2.2.2 Functions

Functions in R work the same way as the functions you learned about in
elementary school math. They take an object, do something to it, and return
another object. Functions in R are usually denoted by their use of parentheses.
As we mentioned, everything that does something in R is a function, making
R a “functional programming language.”

As you might have guessed from the last paragraph, you have already learned
a function in this book. The class() function takes an object as its input and
returns the name of the class of the object as a character string.

The inputs into a function are called “arguments.” And running the function
is called a “function call.” Some functions take a single argument and return a
single object. Other functions can take on many arguments, and can return
many objects. Some functions will have “default” arguments and behavior,
so you do not need to type every input. For example, if you type help()
into the console (with no argument), the Help tab in the lower-right side
of RStudio will bring up the documentation for the help() function. If you
type help("lm"), you have passed an argument to it (labeled “topic” in the
help() documentation) asking for the help documentation on fitting a linear
regression model (lm), and returns this documentation instead of the default.

So, you might be wondering how functions fit within the rule that everything
is an object in R. . .

Functions are also objects.

For example, if we look at the class of the help() function, we will see that it re
turns an object class – in this case it is a special class help_files_with_topic.

2.2.3 Commenting with #

Comments are invaluable when working in R. Comments allow for a variety
of tasks including saving some code for later, altering a chunk in the script
editor, or including notes to yourself to reference in future runs of code in an
R script.

To include a comment or to “comment-out” a chunk of code, simply place
before the text or code to be commented which equates to not running
whatever may follow the #.

For example, suppose you wanted to use the Pythagorean Theorem (a2 + b2 =
c2) to solve for the hypotenuse, c, of a triangle. To solve for c, you take the
square root of the sum of the other two sides of the triangle, c =

√
a2 + b2.

You could build a function to solve for this based on any two values supplied
for sides a and b by starting with the following:

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 20 — #30 �
�

�
�

�
�

20 Foundations

solve_for_c <- function(a, b){
sqrt(a^2 + b^2)

}

Though this function technically does the job, suppose you wanted to follow
best practices of function-writing, and wanted to make this function defensive.5

To do so, you might be interested in testing out various warning messages
based on a mistake on the part of the user. So you might update the function
to be:
solve_for_c <- function(a, b){

sqrt(a^2 + b^2)
if (!is.numeric(a)) {

stop('"a" must be numeric\n',
'You have provided an object of class: ', class(a)[1])

}
}

This warning would let the user know 1) whether a non-numeric value was
supplied to the function, and 2) the class of the object(s) supplied. Though
these ideas and terms are covered in depth later in the book, the point here is
that you could use the # to comment-out the warning message and redefine
the function to test it in real-time, e.g.,
solve_for_c <- function(a, b){

sqrt(a^2 + b^2)
#if (!is.numeric(a)) {

stop('"a" must be numeric\n',

'You have provided an object of class: ', class(a)[1])

#}

}

When you call your function solve_for_c() with the warning commented
out, the call will ignore all of the code following each # and simply run the
calculation included at the outset in the simplest version of the function.

A few things to note when using the #. First, when commenting multiple
lines, you must include the # before each line; otherwise, calling the function
will throw an error. Second, especially in larger chunks of code, be sure that
only the parts you intend to comment-out are indeed commented out. The
most common error in this regard is commenting out a chunk of code as
in the example above, but forgetting to also comment out the closing } on
the penultimate line of the function. Here again, failing to do so and then
attempting to call the function will throw an error. And finally, we recommend

5Note: we cover defensive programming in the context of user-defined functions in the
Essential Programming chapter.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 21 — #31 �
�

�
�

�
�

21 Working Directories

liberal use of comments, especially when writing large chunks of code or writing
code in real-time (e.g., during class or a lab session). Comments in this context
are exceedingly valuable for annotating complex code that you may forget
when you return to the script. You will see us including comments in code
throughout this book.

Exercises

2.2.3.0.1 Easy

•	 In the previous exercises we used the paste() function to paste (con
catenate) words and symbols together. You may have noticed that it
automatically added a space between the items we are pasting together.
For example paste("Hole in", 1, "!") places a space between “1” and
“!”. Type in ?paste().

–	 Reading the help, what argument sets this?
–	 What is its default?
–	 How can you eliminate the space (or add something different)?

2.2.3.0.2 Intermediate

•	 Technically, in question 9, there are two ways to eliminate the space
between words. What is the other way to do this?

2.2.3.0.3 Advanced

•	 In this section, we said that functions are usually denoted by parentheses,
but you have seen symbols that do things without parentheses. Specifically
mathematical operators, like +, -, /, and *. Type ?'+' into the console.
What does it tell you about these operators?

•	 Try typing '+'(1, 1) into the console. What does it produce? How does
it show that these operators are, in fact, similar to other functions?

2.3 Working Directories

One of the first obstacles new users of R often face is understanding and setting
a “working directory.” The working directory is the place on your computer
from which you want R to work. Setting a working directory ensures you know
from where you are navigating to find files and to where the objects you want
to save are being placed.

Whenever R is opened, a working directory is automatically assigned. To see
where this is, users simply need to run the function getwd(), with no argument
in the parentheses. This will return a single line in the output console with a

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 22 — #32 �
�

�
�

�
�

22 Foundations

file path for the location of the currently assigned working directory. If users
are happy with this location, no further action is needed.

But if you want to change this, then they need a slightly different
command, setwd(), with the name of the new file path included in
quotation marks in the parentheses. For example, typing the following,
setwd("/Users/username/Desktop"), will set the working directory to be on
the desktop of a Macintosh computer for user, username. For Windows users,
the command will take the form setwd("C:/Users/username/Desktop/").

While we recommend users become familiar with their file system and set
their working directory by command, those who are less familiar with their
computer’s file system may also set their working directory using an interactive
browser. This can be accessed through the dropdown menu by going to Session
» Set Working Directory » Choose Directory (or using the “Ctrl+Shift+H”
keyboard shortcut). In the examples in the following chapters, we will use the
command setwd(choose.dir()), which also allows the user to interactively
set the working directory if using Windows or Mac OSX, but we strongly
recommend you become used to setting your working directory using one of
the other methods, or that you start using R projects, which are explained in
the next section.

2.4 Setting Up an R Project

In the previous section, we explained how to set up your working directory
using the setwd() command. While setting working directories is a funda
mental part of many computer programs, doing so often causes unnecessary
problems. Effectively using the command requires that you understand how
your directories are organized on your computer, and this tends to vary by
whether your operating system is Windows, Linux, or OSX. For example, in
the last section, we showed how to set the working directory to the Desktop
folder on a Mac using the command setwd("/Users/username/Desktop").
But, for a Windows user, this command will not work, and will gen
erate an error, Error in setwd("/Users/username/Desktop") : cannot
change working directory. This is because Windows starts in a different
area of the computer – the C drive. To do the same in Windows, the command
becomes setwd("C:/Users/username/Desktop").

If you use more than one computer for your work, this can also cause issues.
If, for example, your computer at work has the username rkennedy, but your
laptop has the username Ryan, you will have to change your directory every
time you try to use your code.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 23 — #33 �
�

�
�

�
�

23 Setting Up an R Project

Things get a lot worse when you start working with other people. Their
directories are likely to be structured differently than yours, meaning that
they cannot just run your code – they must find where you make reference to
a directory and change it. This can get so annoying that one Twitter post to
the #rstats discussion thread threatened to set a user’s computer on fire if
their code included the setwd() command.6

While threatening to set someone’s computer on fire may be a little extreme,
the reality is that including information that will only work on your computer
is inconvenient for you (at least if you ever plan on doing work on a different
computer) and discourteous to anyone with whom you work.

Luckily, there is another way to do things. In RStudio, you can set up a
“project.” The project stores information needed to run your code and find
your files, without you always having to tell it where to look. It also makes
sure that those with whom you are working do not revolt when working with
your code.

To create a project, just go to the Project menu in the upper-right-hand corner
of RStudio, and select New Project. Once you have done this, you will be
asked if you would like to create the project in a new directory or an existing
directory. If you already have a folder containing your data, you might choose
an existing folder. If you are starting from scratch, or simply want a new folder
with which to do your work, choose a new directory. Locate the area into which
you want to put your project, and, if it is a new directory, give it a name. For
step-by-step instructions with illustrations, you can go to the book’s support
website.

RStudio will create a new file with a .Rproj extension. Whenever you open
this file, either by double-clicking on it or navigating to it using the Project
menu, it will automatically set your working directory to the location of the
.Rproj file. If you copy the folder to a new computer - no problem, all your
code will still work. If you work with a co-author through Dropbox or another
shared system - no problem, they can simply open the .Rproj folder and it
will work. (Note: If using Dropbox, you may want to pause syncing while you
are working on a project to avoid error messages.)

In subsequent chapters, we will use the setwd(choose.dir()) command to set
the working directory so that each chapter is self-contained, but in some of the
online scripts we provide examples of .Rproj files as well, and we recommend
you get used to using and creating these.

6https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

http://www.tidyverse.org

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 24 — #34 �
�

�
�

�
�

24 Foundations

2.5 Loading and Using Packages and Libraries

Packages are a fundamental part of R. Packages contain many useful libraries
of functions that you will need for your work in R. In 2017, the Comprehensive
R Archive Network (CRAN) surpassed the 10,000 packages mark and it is still
growing. R users worldwide find solutions to the data and analysis challenges
they face, and they share these solutions on CRAN, GitHub, Zenodo, and
other sites.

This aspect of working in R is incredibly valuable for a couple of reasons. First,
for almost any task you can think of, someone has likely written a package
to make your life easier. This is one of the main advantages to R being open
source. Some of these packages you will use all the time – indeed, they may
become a default heading on your code. Others you may just use for one
project.

R often has capabilities years before other statistical programs. In fact, a
common reason why people learn R is that they find out that a particular
task has already been developed as a package in R, while it has not been
implemented in the statistical package they usually use.

Second, the use of packages means that you only have to install what you need
for your current project. This can seem a little odd for those used to working
in other statistical programs that automatically load everything the program
can do every time it is opened. The reality is that R simply has too much that
it can do to load everything every time (remember, there are more than 10,000
packages available, containing millions of functions). By only loading what
you need, you ensure that your projects are only using the resources that you
actually need.

2.5.1 Installing Packages

To access packages, users must first install the package, and then
load the library to be able to use the functions stored within the
package source files. The basic function for installing any package is
install.packages("PACKAGE_NAME").

For example, to install all of the Tidyverse packages that are used throughout
this book, users would install the tidyverse package (yes, that includes many
packages in a package):
install.packages("tidyverse")

RStudio provides an additional way to do this. In the lower-right hand window,
in the “Packages” tab, you can click the “Install” button. Once you have done

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 25 — #35 �
�

�
�

�
�

25 Loading and Using Packages and Libraries

this, you can type in the packages you want and click “Install” to install them.
This can be useful because RStudio will list the packages that match your
search as you type, avoiding common errors in spelling or capitalization.

Once you have installed a package, it is on your computer and you do not need
to install it again when you restart R or start a new project, though you may
need to reinstall packages when you update your R and/or RStudio versions.

2.5.2 Loading Packages

Once you have the package installed, you need to load the library of func
tions into your workspace using the command library(PACKAGE_NAME). Note
the quotation marks in the install.packages() command, but the lack of
quotation marks in the library() command. You will run up against error
messages if you reverse these.

Here is an example of how to load the tidyverse package, now that it is
installed (per the above line):
library(tidyverse)

To use a package, you will need to load it using the library() function every
time you restart R or start a new project.7

Now that you know the general use of packages and libraries, we will provide
an overview of some of the main packages we will use throughout the book.

2.5.3 The here Package

An example of a very simple package we will be using throughout the book is the
here package. When you are navigating through your file system, it is usually
done using a string like Users/username/Desktop. These can sometimes get
very long and annoying to type, especially if the file we are looking for is deep
in our file system.

The here package is incredibly simple, but also incredibly powerful, especially
when combined with an R project. After installing the package, you can load
it into the workspace using library(here), and you will see it print out a
message that reads, here() starts at <DIRECTORY>, where the directory is
the current working directory.
library(here)

The here package allows you to use the here() function to create a string
with the information you need to point R to a particular file. For example, if

7Note: alternatively, you can save libraries to your R profile, but we do not recommend
doing this because your needs will likely change over time.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 26 — #36 �
�

�
�

�
�

26 Foundations

we have set our working directory to the desktop and we want R to access
the dataset.csv file in the Data folder on the desktop, would simply use
here("Data", "dataset.csv"). As you can see in the code block that follows,
this simply outputs a string with that location.
here("Data", "dataset.csv")

[1] "/Users/waggoner/Dropbox/.../Data/dataset.csv

Whenever we use a function to load our data, we can place this here() call
into the function to load the data.
read_csv(here("Data", "dataset.csv"))

The beauty of the here() function is that if we use a different computer,
with a different file structure, we can use the same exact command on both
computers. This is very nice when you are working on multiple computers or
with collaborators on a project. We will be using it in this book so that the
code we provide will work on your computer without modification.

2.5.4 The tidyverse Package

Another package we will be using regularly in this book is the tidyverse
package. As noted above, the Tidyverse is actually a set of packages that share
a common philosophy and grammar. This includes the ggplot2 package for
creating graphics (used extensively in the Visualization chapter), the tibble
package for producing a tibble data structure that has some useful properties
compared to R’s default data.frames, the dplyr package that allows for quick
and readable data manipulation, the tidyr package to reshape your data into
a “tidy” format that is useful for analysis, the readr package for quickly
parsing a range of “rectangular” data structures that are common in the social
sciences (these four packages are introduced and used extensively in the Data
Management chapter), and the purrr package for functional programming
that makes some repetitive tasks much simpler.

You could install and load all of these packages individually, but since these
packages are commonly used together, they have been bundled in a single
tidyverse package to make it easier to load.

While we strongly advocate the Tidyverse approach to programming and
working in R, it is still useful to understand some parts of base R. You can do
just about any basic data analysis task in the Tidyverse, but there may be
some situations that require you to program in base R, you may see an example
that uses base R, or you may encounter a package you want to use that follows
base R conventions. Thus, we will introduce some base R throughout the book.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 27 — #37 �
�

�
�

�
�

27 Loading and Using Packages and Libraries

2.5.5 Overlapping Functions

In some cases, different packages will use the same name to do different things.
For example, in the next chapter, we will be using the dplyr package that is
included in the tidyverse, and we will be making use of one of its component
functions, select(), which selects named columns from a data set.

Perhaps unsurprisingly, there are other packages that also have select()
functions. One of them is the MASS package and another is the skimr package.
If you load all of these packages and try using the select() function from
dplyr, the system will not know which one to use. If this occurs (usually
indicated by an “unused argument” error), you need to specify which package’s
function you want to use, separating the package and function name with ::.
For example, by running dplyr::select(), you are stating "use the select()
function from (::) the dplyr package.

2.5.6 Other Packages Used in This Book

There are a number of other packages we will be using in this book. Here is a
list of all of them, along with a short explanation of what they do.

here is a package that allows you to interactively search your working directory.
For example, if you want to navigate to the “Data” folder in your working
directory and find the “raw_data.csv” file, you would use here("Data",
"raw_data.csv").

readxl is a package for opening Excel spreadsheets (.xls or .xlsx) in R.

haven has functions for opening Stata (.dta), SPSS (.sav), and SAS (.sas7bdat)
data.

stargazer is a package for producing professional tables that can be imported
into other common word processing software like Microsoft Word or LaTeX.

forcats is a package that provides a set of functions for handling “factor”
variables.

corrr provides functions for analyzing the correlation between variables that
is more detailed and intuitive than base R’s traditional cor() function.

janitor is a package to make nice-looking cross-tabulations, with many options
for customization and calculation.

purrr is a Tidyverse package housing, among many other useful functional
programming tools, the map family of functions covered in the Essential
Programming chapter. Mapping functions are important Tidyverse innovations,
allowing social scientists a streamlined bypass of for loops and the base R
apply family of functions.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 28 — #38 �
�

�
�

�
�

28 Foundations

amerika supplies a color scheme that mimics traditional colors for graphics
about American politics (i.e., red for Republicans and blue for Democrats)
(Waggoner, 2019).

arm is a compilation of many useful packages for analysis associated with
Andrew Gelman and Jennifer Hill’s popular book, “Data Analysis Using
Regression and Multilevel/Hierarchical Models” (Gelman and Hill, 2006).

faraway is a compilation of data sets and functions from Julian Faraway’s
book, Extending the Linear Model with R: Generalized Linear, Mixed Effects
and Nonparametric Regression Models (Faraway, 2016).

MASS is a compilation of data sets and functions from Bill Venables and Brian
Ripley’s book, Modern Applied Statistics with S-PLUS (Venables and Ripley,
2013).

OOmisc contains a set of useful miscellaneous functions produced by Ozgur
Asar and Ozlem Ilk.

pROC is a package of functions to produce and analyze receiver operating
characteristic (ROC) curves.

lmtest is a package of functions for analyzing regression models, including
likelihood-ratio tests.

rstatix is a package for evaluating basic statistical functions such as t-tests.

car provides functions utilized in John Fox and Sanford Weisberg’s book, An
R Companion to Applied Regression (Fox and Weisberg, 2018).

plotly is a powerful package for advanced plotting, including interactive plots.

broom is a Tidyverse-complementary package for inspection of model objects,
which is much more thorough than the summary() function in base R.

patchwork is a Tidyverse-complementary package for placing ggplot objects
in a single pane with minimal code.

performance is a package from the easystats software group that includes a
host of performance checks for regression models.

see is a Tidyverse-complementary visualization package from the easystats
software group that complements ggplot2, and also allows for plotting objects
created using the performance package.

You can install all of the packages needed for this book by running the following
code chunk in your console. Alternatively, you can click on the “Packages”
tab in the lower-right-hand corner of RStudio, click “Install,” type in all the
packages you want (separated with a comma or space), and click “Install.”

install.packages(c("tidyverse", "here", "readxl", "haven",
"janitor", "stargazer", "forcats", "skimr",

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 29 — #39 �
�

�
�

�
�

29 Where to Get Help

"corrr", "amerika", "purrr", "arm",
"faraway", "MASS", "OOmisc", "pROC",
"lmtest", "car", "rstatix", "plotly",
"broom", "patchwork", "performance", "see")

)

Exercises

2.5.6.0.1 Easy

•	 Try installing and loading the arm package from Gelman and Hill’s book
(Gelman and Hill, 2006). Make sure you understand this process.

•	 Install the other packages needed for this book. Try loading tidyverse
and here.

2.5.6.0.2 Intermediate

•	 You may have noticed that we used the c() function to create a vector of
packages we wanted to install. Run ?c(). What does this tell you about
the c() function? What happens when you type c(1, 2, 3) into the
console? Why?

•	 Set up an R project called “R Code” somewhere on your system. You can
either create the folder and then create the project, or you can create the
folder by creating a project. What happens when you open the project?
Now create subfolders in the project location for “Data” and “Code”. Use
the here() function to create a string that indicates these subfolders.

2.5.6.0.3 Advanced

•	 Some even newer packages are available on GitHub, a repository for
programs and packages that is open to anyone. How would you install a
package from GitHub? Try installing the package fliptime, which might
be useful for those of you working with data with calendar dates, from
the GitHub address "Displayr/flipTime".

2.6 Where to Get Help

We all need help every now and again. Even after more than a two and a half
combined decades of using R between the authors, we still often seek help
with how to do some tasks. The reason is not so much that R is difficult to
use, but rather that, when you try to do something new in any system, you
will run into unfamiliar challenges. Even Hadley Wickham, the designer of the
Tidyverse, is there with you (Waggoner, 2018a). . .

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 30 — #40 �
�

�
�

�
�

30 Foundations

It’s easy when you start out programming to get really frustrated and
think, “Oh it’s me, I’m really stupid,” or, “I’m not made out to program.”
But, that is absolutely not the case. Everyone gets frustrated. I still get
frustrated occasionally when writing R code. It’s just a natural part of
programming. So, it happens to everyone and gets less and less over time.
Don’t blame yourself. Just take a break, do something fun, and then come
back and try again later.

This is where R’s amazing user community comes in. Our experience is that,
because of R’s large user base of people who are trying all sorts of creative
projects, it is usually easier to find help with the challenges that arise in R
than it is in other statistics packages. There are several ways to find help.

If you just need a reminder of how a function works or what options are
available for a command, you can use R’s official documentation. Within
RStudio, as we previously noted, this can be accessed simply by typing a
? followed by the command about which you have a question, or by typing
help() with the command you would like help with in the parentheses in
quotation marks. For example, to quickly remind yourself of the arguments
and options available for regression models, you could type either ?lm or
help("lm") and the official documentation for the function will show up in
the help tab in the lower-right-hand corner.

Beyond the official documentation, there is a vibrant R users community that
is very willing to help people learn and deal with new situations. As the Beatles
would say, “I get by with a little help from my friends.” In R, you have tens of
thousands of friends willing to help you out. A good place to start is R-Bloggers
or the “#rstats” hashtag on Twitter (https://twitter.com/hashtag/rstats).
R-bloggers compiles blog posts from a range of authors. It is a great place
to find announcements about new R packages and books, available courses,
tutorials for different tasks, and just about anything else you can do with R.
You can subscribe to receive daily emails that are usually filled with interesting
tidbits about what you can do with R.

“Coding by search engine” is really a thing. We have heard tenured computer
science faculty at highly prestigious institutions who have described their
process using this phrase. If you want to learn how to do something new or if
you get an error message, going to your preferred search engine and typing it
in is usually not a bad place to start. For example, typing “regression analysis
in R” into Google, will produce a number of tutorials to take you through
examples. Often your searches will be more effective if you know the package
you want to use. So, for example, we often use “tidyverse” or “dplyr” in our
searches for data management questions. Similarly, if you get an error message
and copy it into a search engine, chances are you will be directed to a site where
someone has posted the question and someone else has answered it. We have
almost always found that when we encounter an issue, someone else has also

https://www.twitter.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 31 — #41 �
�

�
�

�
�

31 Concluding Remarks

encountered it and has posted a solution. The largest repository of solutions
posted by R users just like you is Stack Overflow (https://stackoverflow.com/).

The main thing to remember is that you are not alone. If you are running into
a problem, chances are that there are many others out there who have had
the same problem, and, because of this, have probably put the information
you need in the help files or posted a solution online. Nothing worth doing is
going to be without some frustrations, but there are plenty of places to help
you when you struggle. Now, let’s move on to the first step in almost any data
analysis – data management.

2.7 Concluding Remarks

If you haven’t been working through the problems in this section or following
along with the examples, we suggest you take some time to do so before you
move on. The online resources will take you through some code examples
and will also provide you with illustrations of some of the procedures in this
chapter. Just as a building is only as good as its foundation, you will have
difficulty proceeding if you do not understand what we have done so far. You
do not need to have everything mastered, but you do need to have a basic idea
of what we are talking about.

If you feel like we have been giving you a lot of information, do not worry. In
subsequent chapters, as well as in the online resources, we will give you plenty
of examples. Many of the things in this chapter, like setting a working directory,
will be repeated in each chapter, both to make the chapters self-contained and
to provide you with review. As numerous studies have demonstrated, learning
skills like coding requires this type of repetition and reminders to promote
mastery (Oakley, 2014). If you keep working through this, you will likely look
back on this chapter in a few years and think it is too simple.

https://www.stackoverflow.com

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 33 — #43 �
�

�
�

�
�

3

Data Management and Manipulation

One of the first tasks most users will encounter when they receive a new data
set is to get the data in the form they want. This may involve a range of
tasks such as reading data sets from different formats, combining multiple
data sets, summarizing the data, creating new variables from the old variables,
and a range of additional tasks. Data rarely comes in a form that is ready to
use. There are often errors, improper formatting, missing data and a range
of other issues researchers must address. As scholars have started leveraging
less structured and more complex data, like “big data” and text data, the
importance of data management and manipulation (“munging” or “wrangling”
as it is sometimes called) has become even more important (Radford and
Lazer, 2019). InfoWorld identified this as the 80/20 dilemma, where most data
analysts spend 80% of their time in data management and manipulation, while
spending 20% of their time in actual analysis.1

Yet, most introductions to computational statistical analysis might give a very
short introduction to data manipulation. In some ways, this is not terribly
surprising. We all got into the social sciences to make discoveries, not necessarily
to spend our time shaping and cleaning data. Why can’t we just skip to fitting
statistical models that provide support for our research question?

We hope to convince you that good data management and manipulation is not
only necessary, but can also be quite rewarding. Building strong skills in data
management and manipulation will allow you to get to your answers faster,
and will allow you to create data for answering novel questions. If all you ever
learn is how to work with clean data created by others, you will only be able
to answer questions addressed in others’ data. This is not where you want to
be as a social scientist.

This chapter will teach you the basics of managing your data, from loading
the data into R to exporting the data to other programs and reporting the
information about your data. It will cover all of these tasks using the Tidyverse,
along with a few useful utilities in base R.

1https://www.infoworld.com/article/3228245/the-80-20-data-science-dilemma.html

33

http://www.infoworld.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 34 — #44 �
�

�
�

�
�

34 Data Management and Manipulation

3.1 Loading the Data

The first task is taking the data you have and reading it into R for analysis. In
some programs, this can be an initial source of frustration. Statistical software
programs usually want you to use their format for your data and may make it
difficult to use data from another source (or even from different versions of
the same program).2 Because R has such a large user community, who also
use data in a variety of formats, there are packages that will allow you to read
data from a wide variety of sources.

Go ahead and open a new session of RStudio and set your working directory to
the folder for your project. If you are working with R projects (the .Rproj files
provided in the online code or a project you have created yourself), you can
simply open the .Rproj file and it will automatically set your working directory
to the location of the .Rproj file. You can then skip the following command.
If you need a reminder about how R projects work, see the “Foundations”
chapter.
Set your working directory
setwd(choose.dir())

Let’s start with one of the most common and simple formats. Comma-separated
values (CSV, with the extension .csv) files are used for storing a lot of social
science data, and is a standard format for programs like Microsoft Excel. This
type of data stores everything as text, with commas separating the columns.
The reason it is commonly used is that it does not require a lot of space to
save and it works with almost any kind of statistical program. In addition,
it never becomes out-of-date – while the ability to open particular types of
data files may fall by the wayside with time, the ability to open and parse
text files will not. To load a data set that is in .csv format, you can use the
read_csv() function from the readr package that is included when you load
tidyverse. We also use the here() function to tell the computer to look in
the “data” subfolder of our working directory. If your data is already in your
working directory, you can just use read_csv("anes_pilot_2016.csv").
Load the libraries needed for this session.
library(tidyverse)
library(here)

2Programs that charge for upgrades are particularly notorious for changing their default
data format. The goal is to force users to upgrade to the newest version. Even worse,
sometimes they will not provide backward compatibility with previous data formats. It
is always a good idea to keep at least one version of your data in a plain text format
(comma-separated or tab-separated) so you will not find your data unreadable in the future.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 35 — #45 �
�

�
�

�
�

35 Loading the Data

Load the NES data using the read_csv() and here() functions
NESdta <- read_csv(here("data", "anes_pilot_2016.csv"))

While CSV files are quite common, sometimes you will find data in a variety
of other formats. For example, since Microsoft Excel is often used to store
data, especially by people who work in business and public policy, you may
also encounter data that is stored in its default format (.xls or .xlsx). Since
other researchers have encountered this, there is an R package specifically for
loading this kind of data called readxl. Here is how to load the same data if
it were saved in this format.
Load the additional library needed for this task.
library(readxl)

Load the NES data using the read_excel() and here() functions
NESdata <- read_excel(here("data", "anes_pilot_2016.xlsx"))

Similarly, if we had a data set that had been saved using SAS (.sas7bdat),
SPSS (.sav), or Stata (.dta) – three popular statistical packages in the social
sciences – you can use the haven package.
Load the additional library needed for this task.
library(haven)

Use read_dta() and here() functions for Stata file
NESdata <- read_dta(here("data", "anes_pilot_2016.dta"))

Use read_sav() and here() functions for SPSS file
NESdata <- read_sav(here("data", "anes_pilot_2016.sav"))

Use read_sas() and here() functions for SAS file
NESdata <- read_sas(here("data", "anes_pilot_2016.sas7bdat"))

As we have already noted, one of the real powers of R is the ability for users
to write their own solutions to address problems that are often encountered by
researchers. In a number of other software programs, it can be quite difficult
to read certain types of data unless you have access to that specific program.
An (in)famous example of this occurred in 2013, when Stata changed its data
format, such that older versions of the program could not open files saved by
the new version of Stata. Anyone with older versions of the program found
their system was rendered functionally illiterate overnight. R can handle all of
these data types (plus many more) because its global user base has made it
relatively easy to do so.

R also has the capacity to open files from database programs, like SQL, or
from online APIs that usually report results in JSON format. We will not

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 36 — #46 �
�

�
�

�
�

36 Data Management and Manipulation

cover all of these here, but it is worthwhile to note that just about any kind of
data structure can be handled by R with the use of packages.

3.1.1 The American National Election Survey (ANES)

For this chapter, and several of the subsequent chapters, we will be using the
American National Election Survey (ANES) for demonstration. The ANES
project is one of the longest running in political science in the U.S. While it
was formally created by the U.S. National Science Foundation (NSF) in 1977,
the University of Michigan had been conducting surveys around midterm and
presidential elections going back to 1952.3 The rich results from these surveys
have been the raw material for countless books, dissertations, and published
articles (Campbell et al., 1960; Lewis-Beck et al., 2008; Aldrich and McGraw,
2012).

We specifically look at the 2016 pilot study, which was collected between
January 22 and January 28, 2016. 1,200 individuals were interviewed in a 32
minute online questionnaire. The survey included questions covering a range
of topics among U.S. eligible voters: preferences in the presidential primary,
stereotyping, the economy, discrimination, race and racial consciousness, police
use of force, and numerous policy issues.

We choose this survey for several reasons. First, we want readers to see and
practice with real data, warts and all. This is especially important for this
chapter. Well-manicured data sets encourage spending more time learning
specific statistical models, when a large portion of most researchers’ time will
be spent getting the data into the condition that is needed for the analysis.
Second, we wanted to give researchers experience with data they might actually
be interested in using later. Experience with this data set will allow the
reader to work with other ANES data sets, which have many of the same
characteristics. Updated ANES data is regularly becoming available and can
be downloaded for use in research projects from the ANES website.4 Third,
the tasks demonstrated are similar to those readers will commonly see on the
news, evaluating candidate support and popularity, giving a common reference
point for readers from a variety of fields. Indeed, in just the first three months
of 2020, there were 15 news articles about ANES data – more than one per
week. Finally, it covers an interesting period of U.S. politics, e.g., a few days
before Senator Ted Cruz and Secretary Hillary Clinton would win the Iowa
Caucus, and a couple of weeks before Donald Trump and Senator Bernie
Sanders would win the New Hampshire primary. While some of you may be
reading this when all these events are a distant memory, this is a critical
juncture in an election that would eventually lead to the election of Donald
Trump as President, with very large consequences for U.S. domestic politics

3https://electionstudies.org/about-us/history/

4https://electionstudies.org/

https://www.electionstudies.org
https://www.electionstudies.org

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 37 — #47 �
�

�
�

�
�

37 Loading the Data

(Pierson, 2017), the global political system (Giani and Méon, 2017; Ikenberry,
2017), and our understanding of how politicians win elections (MacWilliams,
2016; Sides et al., 2017).

3.1.2 A Short Note on Data Structures

In the examples above, we are loading the data using packages that are included
by default in the Tidyverse or in packages that are designed in accordance with
Tidyverse standards. Technically, this means that the files are being loaded as
tibbles (class tbl).
Check the class of the NESdta tibble.
class(NESdta)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

A tibble is one data structure in R, but it is not the only one.

The default data structure in base R is called a data.frame. A CSV file, for

example, can be loaded using the read.csv() function as demonstrated below.

NESdata_df <- read.csv(here("data", "anes_pilot_2016.csv"))

Tibbles work in the same way as data.frames, but with some important mod
ifications. In some ways they do less. For example, they will not automatically
change your variable names or types. At the same time, tibbles also provide
some nice additional options. For example, tibbles will complain more when
there are issues with the data. While warning messages might be annoying,
they can also be quite useful for flagging problems with data and helping to
avoid problems down the line.

Tibbles also provide more information in an easier to understand format. If
we try to print the NES data on our screen by typing NESdata_df, the results
will be very long and almost impossible to read (indeed, we will not show it in
the book because it is so messy). If we type in NESdata (our tibble), we get
something much more comprehensible, providing only the first ten rows of the
first few variables, along with the type of data, and then a printout of the rest
of the variables available with their type.
Show the structure of our NES tibble
NESdta

Some functions still require that you use the data.frame format. You
can easily convert between tibbles and data.frames using as_tibble() or
as.data.frame(), respectively. The following code chunk shows conversion
from a data frame to a tibble.
Convert data.frame to tibble

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 38 — #48 �
�

�
�

�
�

38 Data Management and Manipulation

NESdata_df_tibble <- as_tibble(NESdata_df)
class(NESdata_df_tibble)

We can of course go the other direction from a tibble to a data frame.
Convert tible back to data.frame
NESdata_df_tibble_df <- as.data.frame(NESdata_df_tibble)
class(NESdata_df_tibble_df)

Before we leave this discussion, a more general pattern is worth highlighting.
You can see us using the “as” prefix to convert between different types of data.
This is a more general pattern in R. If we want to convert a numeric data to
factor variable, for example, we would use as.factor(). You will see several
versions of this prefix as we continue through the book.

Exercises

3.1.2.0.1 Easy

•	 On the webpage for this book, we also provide a data set with information
about the 50 U.S. states. How would you load the states.csv file and
save it in memory as an object named states?

•	 Type in NESdta to see the tibble structure. What type of variables are
there in this data set?

•	 Sometimes it is useful just to get a vector of names for variables. Use the
names() function to get these for NESdta.

3.1.2.0.2 Intermediate

•	 We noted in the previous chapter that everything in R is an object and
anything that does something is a function. How is the here() function
an example of this? As a function, what does it do? As an object what
attributes does it have? Run class(here()). What does this tell you?

•	 class() is also a function. Run class(NESdta$fttrump). What does this
tell you? How does the behavior of class() change?

3.1.2.0.3 Advanced

•	 We saw how to see the structure of a tibble. How would you do the same
with a data.frame? [Note: You can look this up online.]

•	 The names() function gets the names of the variables in a data.frame
or tibble. It can also be used to change the names of the variables. How
would you do this?

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 39 — #49 �
�

�
�

�
�

39 Data Wrangling

3.2 Data Wrangling

With the data loaded, we need to start doing things with it. Data “munging”
or “wrangling” is the process of getting your data into the form you need for
analysis (i.e., data management). The Tidyverse offers a myriad of functions for
effectively, efficiently and consistently managing data. Most of these functions
are in the dplyr package, which is one of the main components of the Tidyverse.
We will cover eight of these functions:

• select() - choose specific variables you wish to keep
• filter() - filter your data by selected values
• group_by()- group your data by categorical values
• summarize() - create summary statistics of data
• join() - merge different data sets
• mutate() - create new variables

As with almost any data set, the NES data has many more variables than
we could ever really plan on using in a single analysis. So, we might want to
limit ourselves to just those in which we have some interest. Let us create
a new object, called NESdta_short, which includes only the variables we
will need for this section. You will notice that throughout the book, we
use dplyr::select() instead of just select(). As noted previously, several
packages used in this book have their own versions of the select() function,
so this ensures we are using the select() function associated with the dplyr
package.
Select particular variables
NESdta_short <- NESdta %>%

dplyr::select(fttrump, pid3, birthyr,
ftobama, state, gender, pid7)

NESdta_short

A tibble: 1,200 x 7
fttrump pid3 birthyr ftobama state gender pid7
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1960 100 6 1 1
2 28 3 1957 39 13 2 4
3 100 2 1963 1 24 1 6
4 0 1 1980 89 35 1 1
5 13 4 1974 1 27 1 5
6 61 3 1958 0 18 1 4
7 5 1 1978 73 23 1 1
8 85 2 1951 0 53 1 7
9 70 3 1973 12 18 1 4
10 5 1 1936 87 12 1 1

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 40 — #50 �
�

�
�

�
�

40 Data Management and Manipulation

... with 1,190 more rows

This creates a new tibble that only includes five variables: fttrump - a “feeling
thermometer” where people rate their feelings of then primary candidate
Donald Trump from 0 to 100; pid3 - a three point rating of political identity,
where 1 means Democrat, 2 means Independent, and 3 means Republican;
the respondent’s year of birth, which we will use to establish their age; the
respondent’s gender, which is 1 if male and 2 if female; and the feeling
thermometer for then-President Barack Obama (ftobama), again from 0 to
100.

The select() function in the Tidyverse is very versatile. It can be combined
with other functions like starts_with(), ends_with(), and contains() to
select more than one variable at a time. We can also use the : to select more
than one variable that are consecutive in the data set.

For example, if we wanted to select all of the feeling thermometer variables,
and we know that they all start with the prefix ft, we could simply put the
following.
Select using starts_with()
NESdta %>%

dplyr::select(starts_with("ft"))

Alternatively, since they are next to each other in the original data set, we
could have done it like this.
Selecting using a range
NESdta %>%

dplyr::select(ftobama:ftsci)

We can also combine all of these tools. Let’s say we wanted political party
affiliation, year of birth, gender, and all of the feeling thermometer variables
(with the prefix ft*).
Combining selection procedures
NESdta %>%

dplyr::select(pid3, birthyr, gender, starts_with("ft"))

A tibble: 1,200 x 21
pid3 birthyr gender ftobama ftblack ftwhite fthisp ftgay
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1960 1 100 100 100 100 96
2 3 1957 2 39 6 74 6 75
3 2 1963 1 1 50 50 50 16
4 1 1980 1 89 61 64 61 62
5 4 1974 1 1 61 58 71 55
6 3 1958 1 0 50 51 51 46
7 1 1978 1 73 100 70 100 100

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 41 — #51 �
�

�
�

�
�

41 Data Wrangling

8 2 1951 1 0 70 70 69 49
9 3 1973 1 12 50 50 50 5
10 1 1936 1 87 75 90 51 85
... with 1,190 more rows, and 13 more variables:
ftjeb <dbl>, fttrump <dbl>, ftcarson <dbl>,
fthrc <dbl>, ftrubio <dbl>, ftcruz <dbl>,
ftsanders <dbl>, ftfiorina <dbl>, ftpolice <dbl>,
ftfem <dbl>, fttrans <dbl>, ftmuslim <dbl>, ftsci <dbl>

Finally, we can also use select() to remove columns by placing - in front of
them. For example, if we decide we do not want to keep the 7 point political
ID scale, we can remove it from the data set with the following code.
NESdta_short <- NESdta_short %>%

dplyr::select(-pid7)

NESdta_short

A tibble: 1,200 x 6
fttrump pid3 birthyr ftobama state gender
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1960 100 6 1
2 28 3 1957 39 13 2
3 100 2 1963 1 24 1
4 0 1 1980 89 35 1
5 13 4 1974 1 27 1
6 61 3 1958 0 18 1
7 5 1 1978 73 23 1
8 85 2 1951 0 53 1
9 70 3 1973 12 18 1
10 5 1 1936 87 12 1
... with 1,190 more rows

The filter() function works similarly to the select() function, but instead
of selecting columns by their names, filter() allows you to select rows by
their values. If, for example, we wanted to find only the respondents who gave
Donald Trump the highest possible rating, we could do this easily using this
function. In this case, there were 54 people in the survey who matched this
criterion. As with the select() function, we indicate that we want to use
the filter() function from the dplyr package to avoid conflicts with other
packages, dplyr::filter().
Select only those respondents who give Trump a 100
NESdta_short %>%

dplyr::filter(fttrump == 100)

A tibble: 54 x 6

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 42 — #52 �
�

�
�

�
�

42 Data Management and Manipulation

fttrump pid3 birthyr ftobama state gender

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 100 2 1963 1 24 1

2 100 4 1974 0 17 1

3 100 4 1947 3 6 2

4 100 3 1958 0 31 1

5 100 2 1936 6 48 1

6 100 2 1962 0 42 2

7 100 3 1957 1 45 1

8 100 2 1959 4 13 1

9 100 4 1952 0 4 2

10 100 2 1951 6 36 1

... with 44 more rows

Let’s say that we only want to see those respondents who give Donald Trump
the highest possible rating (100) and Barack Obama the lowest possible rating
(1). We can combine these conditions using the & (“and”) operator.
Filter respondents who give Trump a 100 and Obama a 1

NESdta_short %>%

dplyr::filter(fttrump == 100 & ftobama == 1)

We could also look for those who either give Donald Trump the highest possible
rating or give Barack Obama the highest possible rating by using the | (“or”)
operator. There are 144 respondents who match one of these two criterion.
Filter respondents who give Trump a 100 or Obama a 100

NESdta_short %>%

dplyr::filter(fttrump == 100 | ftobama == 100)

A tibble: 144 x 6

fttrump pid3 birthyr ftobama state gender

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1960 100 6 1

2 100 2 1963 1 24 1

3 59 1 1945 100 42 2

4 16 1 1951 100 36 2

5 18 2 1994 100 40 2

6 1 1 1960 100 55 2

7 100 4 1974 0 17 1

8 0 1 1969 100 48 1

9 0 1 1936 100 4 1

10 6 3 1959 100 47 1

... with 134 more rows

We can also combine these logical operators. Let’s say that we want all the
people who have either given both Donald Trump and Barack Obama scores

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 43 — #53 �
�

�
�

�
�

43 Data Wrangling

of 100 or have given them both scores of 1. We can do this using parentheses,
just like we would in a mathematical equation. This tells R to first find all the
people who match the first criterion, then find all the people who match the
second criterion, and select the people who match either one criterion or the
other. Perhaps unsurprisingly, there are only four people who match one of
these two criteria.
Filter respondents for Trump and Obama 100s or 1s
NESdta_short %>%

dplyr::filter((fttrump == 100 & ftobama == 100) |
(fttrump == 1 & ftobama == 1))

A tibble: 4 x 6

fttrump pid3 birthyr ftobama state gender

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 100 1 1961 100 24 2

2 1 3 1981 1 26 1

3 100 1 1994 100 34 2

4 1 2 1981 1 45 2

Finally, we can also filter using ranges and other mathematical operators. If,
for example, we wanted only those people whose approval of Donald Trump is
greater than 50, we can do this much as you would expect.
Filter respondents for Trump greater than 50

NESdta_short %>%

dplyr::filter(fttrump > 50)

A tibble: 472 x 6

fttrump pid3 birthyr ftobama state gender

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 100 2 1963 1 24 1

2 61 3 1958 0 18 1

3 85 2 1951 0 53 1

4 70 3 1973 12 18 1

5 74 2 1978 32 51 1

6 95 3 1943 10 36 2

7 82 2 1938 80 21 2

8 91 2 1956 4 6 2

9 51 3 1984 0 8 1

10 51 1 1981 66 39 1

... with 462 more rows

This also applies to finding values that are related to the summary statistics
for the full data. For example, if we wanted all of those who give a higher than
average approval of Donald Trump, we could run the following.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 44 — #54 �
�

�
�

�
�

44 Data Management and Manipulation

NESdta_short %>%
dplyr::filter(fttrump > mean(fttrump, na.rm = TRUE))

A tibble: 537 x 6

fttrump pid3 birthyr ftobama state gender

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 100 2 1963 1 24 1

2 61 3 1958 0 18 1

3 85 2 1951 0 53 1

4 70 3 1973 12 18 1

5 74 2 1978 32 51 1

6 95 3 1943 10 36 2

7 82 2 1938 80 21 2

8 91 2 1956 4 6 2

9 51 3 1984 0 8 1

10 51 1 1981 66 39 1

... with 527 more rows

Exercises

3.2.0.0.1 Easy

•	 Using the NESdta tibble, create a new tibble called NESdta_practice that
only includes pid3 and fttrump.

•	 Using the NESdta tibble, create a new tibble that overwrites
NESdta_practice that only includes variables containing the string pid.

•	 Filter the rows to only those respondents who give Donald Trump a higher
approval than the median.

•	 How many people give Trump a score above 50 and Obama a score below
50?

3.2.0.0.2 Intermediate

•	 You can see that in some cases, we ran commands that actually change
NESdta_short and in other cases we just printed what the data would
look like. Why was the behavior different between these blocks of code?
Explain how to change a data set in the computer’s memory, how to create
a new data set, and how to just print the results in the console.

•	 How would you select only variables in the NESdta data set that end with
the number 3? Contains the string “id”?

•	 Type ?filter into the console. What do you get? Which help file would
you choose, and why?

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 45 — #55 �
�

�
�

�
�

45 Grouping and Summarizing Your Data

3.2.0.0.3 Advanced

•	 Go through the data set and put together a tibble that selects five variables
you would use to predict support for Trump. Check to make sure that the
coding of these questions matches with what you would expect, and use
filter() to remove missing values. [You will need to reference the data
set codebook available online.]

3.3 Grouping and Summarizing Your Data

You may have noticed the strange symbol in a few of the previous commands,
%>%. This is called a “pipe,” which is read as “then,” and it was originally
developed by Stefan Milton Bache for the R package magrittr. The pipe
allows you to declare at the very beginning the data on which you want to
work and stack a number of operations onto that data without having to
declare the data you want to use each time you issue a command (or, worse,
only work with one data set at a time - yes, people really do this).

To show you how the pipe allows you to stack commands, let’s look at two
other functions - the group_by() and summarize() functions. Let’s say that
we think that Republicans will be most positively disposed to Donald Trump
as a candidate, followed by Independents, and then by Democrats - not an
earth-shaking hypothesis, but it works for demonstration. We can use the
group_by() function to tell R what groups we want to make, and follow this
with the summarize() command to create the needed summaries.5

Using group_by() and summarize()
NESdta_short %>%

group_by(pid3) %>%
summarize(average_fttrump = mean(fttrump, na.rm = TRUE),

median_fttrump = median(fttrump, na.rm = TRUE),
variance_fttrump = var(fttrump, na.rm = TRUE),
stddev_fttrump = sd(fttrump, na.rm = TRUE),
max_fttrump = max(fttrump, na.rm = TRUE),
min_fttrump = min(fttrump, na.rm = TRUE),
n_fttrump = n()) %>%

ungroup()

A tibble: 5 x 8

5The warning message about ungrouping output is a recent behavior change to the
summarize() function. By default, the .group argument is set to “drop_last”, meaning that
the last, in this case only, grouping is dropped. We still use the ungroup() function at the
end to avoid any unanticipated behavior.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 46 — #56 �
�

�
�

�
�

46 Data Management and Manipulation

pid3 average_fttrump median_fttrump variance_fttrump
<dbl> <dbl> <dbl> <dbl>
1 1 22.1 4 4878.
2 2 65.1 72 1028.
3 3 44.5 41 3675.
4 4 45.7 41 1346.
5 5 28.8 26 874.
... with 4 more variables: stddev_fttrump <dbl>,
max_fttrump <dbl>, min_fttrump <dbl>, n_fttrump <int>

As you can see from the output, the group_by(pid3) function has de
clared that we want R to group respondents together by their party affilia
tion. The summarize(average_fttrump = mean(fttrump, na.rm = TRUE),
...) command is a little more complex. We are telling R that we are going to
have it create a new variable, average_fttrump, that is the mean value of the
variable for each group. The mean() function is a part of the base R system.
The command na.rm = TRUE is necessary to tell R that we do not want it to
include any missing values - “NA”. Why is this needed? Well, technically the
average of anything including a missing value is going to be missing. So we
need to tell R explicitly that we do not want them to be included. The other
functions - e.g. max(), min(), median() - work in a similar manner. Finally,
since we are done with these groups, we run the ungroup() function. This
ensures that the grouping does not persist past these commands.

Another useful function, but from base R, is the summary() function. This
function takes an object as its input and outputs an adaptive display of
summary statistics.
Using the summary() function with a data set
summary(NESdta_short)

Similarly, we can use the summary() function on single variables using the $,
where the data set is placed before the $ and the variable of interest is placed
after, as shown below.
Using the summary function with a variable
summary(NESdta_short$fttrump)

The group_by() command is also useful in a number of other conditions. In
the last section, we filtered responses to only those who gave Donald Trump a
higher than average approval score. This time, let’s say that we are interested
in finding the respondents of each gender who give him a higher than average
score than other people of the same gender. In this case, we can tell R to group
the responses by gender and then filter to those respondents who score higher
than average in each group.
Filter for Trump higher than average approval by gender
NESdta_short %>%

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 47 — #57 �
�

�
�

�
�

47 Grouping and Summarizing Your Data

group_by(gender) %>%
dplyr::filter(fttrump > mean(fttrump, na.rm = T))

A tibble: 531 x 6

Groups: gender [2]

fttrump pid3 birthyr ftobama state gender

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 100 2 1963 1 24 1

2 61 3 1958 0 18 1

3 85 2 1951 0 53 1

4 70 3 1973 12 18 1

5 74 2 1978 32 51 1

6 95 3 1943 10 36 2

7 82 2 1938 80 21 2

8 91 2 1956 4 6 2

9 51 3 1984 0 8 1

10 51 1 1981 66 39 1

... with 521 more rows

Finally, we can create the groups for any number of conditions. Extending
our first example, let’s say we want the mean approval of Donald Trump
broken down by party affiliation and gender. This can be accomplished by just
including both conditions, separated by a comma.
Summarizing mean approval of Trump by party and gender
NESdta_short %>%

group_by(pid3, gender) %>%
summarize(average_fttrump = mean(fttrump, na.rm = TRUE),

n_fttrump = n()) %>%
ungroup()

A tibble: 9 x 4

pid3 gender average_fttrump n_fttrump

<dbl> <dbl> <dbl> <int>

1 1 1 17.5 189

2 1 2 25.3 270

3 2 1 70.3 129

4 2 2 60.6 151

5 3 1 44.0 208

6 3 2 45.2 172

7 4 1 43.1 44

8 4 2 49.2 33

9 5 2 28.8 4

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 48 — #58 �
�

�
�

�
�

48 Data Management and Manipulation

Exercises

3.3.0.0.1 Easy

•	 Using the summary() function, give the summary statistics for ftobama.
•	 Sometimes it is more useful to find out how many respondents fall within

a category. Using the base R table() function find out how many people
are in each category of the pid3 variable.

•	 Using group_by() and summarize() find the summary statistics for
ftobama by gender.

•	 When combining commands, we use the %>% (pipe). Try to put in your
own words what it means to pipe data from one command to another.
From the last example, what is being piped into each command? How is
the data changed at each step?

3.3.0.0.2 Intermediate

•	 How would you do what you did in #18 using group_by() and
summarize()?

•	 You have now seen the $ in a couple of situations. How would you describe
(in words) the use of $?

3.3.0.0.3 Advanced

•	 Group the NESdta_short data object accordingly:
–	 group_by_all() (all variables)
–	 group_by_at() (using pid3 and gender)
–	 group_by_if() (for all numeric variables)

3.4 Creating New Variables

Another task that you will often find yourself doing is adding new variables to
your data set. This is usually done with the mutate() function from the dplyr
package in the Tidyverse. Let’s start with a very simple variable transformation.
The birthyr variable does not directly represent the concept we really want,
age. To do this, we should create a new variable that calculates the age of a
respondent by subtracting their birth year from the year of the survey.
Create a new variable giving the respondent's age
NESdta_short <- NESdta_short %>%

mutate(age = 2016 - birthyr)

NESdta_short

A tibble: 1,200 x 7

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 49 — #59 �
�

�
�

�
�

49 Creating New Variables

fttrump pid3 birthyr ftobama state gender age
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1960 100 6 1 56
2 28 3 1957 39 13 2 59
3 100 2 1963 1 24 1 53
4 0 1 1980 89 35 1 36
5 13 4 1974 1 27 1 42
6 61 3 1958 0 18 1 58
7 5 1 1978 73 23 1 38
8 85 2 1951 0 53 1 65
9 70 3 1973 12 18 1 43
10 5 1 1936 87 12 1 80
... with 1,190 more rows

This works for any number of different operations on variables. For example,
if we wanted to get the square of the respondent’s age, we could simply do the
following.
Create a new variable for squared respondent's age
NESdta_short <- NESdta_short %>%

mutate(age2 = age^2)

NESdta_short

A tibble: 1,200 x 8
fttrump pid3 birthyr ftobama state gender age age2
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1960 100 6 1 56 3136
2 28 3 1957 39 13 2 59 3481
3 100 2 1963 1 24 1 53 2809
4 0 1 1980 89 35 1 36 1296
5 13 4 1974 1 27 1 42 1764
6 61 3 1958 0 18 1 58 3364
7 5 1 1978 73 23 1 38 1444
8 85 2 1951 0 53 1 65 4225
9 70 3 1973 12 18 1 43 1849
10 5 1 1936 87 12 1 80 6400
... with 1,190 more rows

And, if we wanted to get rid of that same variable later, we could do that by
setting its value to NULL.
Remove variable with square of age from data set
NESdta_short <- NESdta_short %>%

mutate(age2 = NULL)

NESdta_short

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 50 — #60 �
�

�
�

�
�

50 Data Management and Manipulation

A tibble: 1,200 x 7
fttrump pid3 birthyr ftobama state gender age
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 1960 100 6 1 56
2 28 3 1957 39 13 2 59
3 100 2 1963 1 24 1 53
4 0 1 1980 89 35 1 36
5 13 4 1974 1 27 1 42
6 61 3 1958 0 18 1 58
7 5 1 1978 73 23 1 38
8 85 2 1951 0 53 1 65
9 70 3 1973 12 18 1 43
10 5 1 1936 87 12 1 80
... with 1,190 more rows

In the last section, we summarized support for then-candidate Donald Trump
by party affiliation. But what if we want these summaries to be a part of the
NESdta_short data set? This is where the mutate() function comes in. Run
the same functions as above, but this time let us use the mutate() function
instead of the summarize() function.
Creating a new variable using group_by() and mutate()
NESdta_short <- NESdta_short %>%

group_by(pid3) %>%
mutate(average_fttrump = mean(fttrump, na.rm = TRUE)) %>%
ungroup()

NESdta_short

As you can see, a sixth column has been added to our data set, with the
average values for each political ID added to the data set. From here, we can
take other actions. For example, we can subtract the average for each group
from the individual respondent’s evaluation of candidate Donald Trump by
using the mutate() function again.
Using mutate to create a new variable
NESdta_short <- NESdta_short %>%

mutate(deviation_fttrump = fttrump - average_fttrump)
NESdta_short

A new column has been added showing how far away each respondent is from
the average for those who share their party affiliation. Respondent 1, shown
in the first row, gives Donald Trump a rating about 21 points lower than the
average for those who share their party affiliation.

Note that while the feeling thermometers for Donald Trump and Barack

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 51 — #61 �
�

�
�

�
�

51 Creating New Variables

Obama are only supposed to go from 0 to 100, the summary statistics said
the maximum values were 998. What is happening here?

Many data sets try not to leave blank spaces or mix strings and numeric values.
The reason is that some programs might behave unexpectedly when loading
this data. So, instead, they represent missing values by highly improbable
numeric values – in this case 998 (other data sets will use unexpected negative
values like -999). We need to tell R that these are actually missing values,
denoted as NA in R, as opposed to actual numbers.

To do this, we can again use the mutate() function. This time, we combine it
with the replace() function. replace() takes three values as its input. The
first is the variable on which we are making the replacement, the second is
a logical test. This can be read as, “Where the variable is. . . ” For example,
the second part of the first replacement asks it to make the replacement
where the variable fttrump is greater than 100. As you can see, within the
mutate() function, we have asked for our original variable to be equal to the
specified replacement (i.e., we have redefined the original variable to drop these
nonsensical values).
Using replace() to recode values
NESdta_short <- NESdta_short %>%

mutate(fttrump = replace(fttrump, fttrump > 100, NA),
ftobama = replace(ftobama, ftobama == 998, NA))

summary(NESdta_short)

fttrump pid3 birthyr
Min. : 0.00 Min. :1.000 Min. :1921
1st Qu.: 2.00 1st Qu.:1.000 1st Qu.:1955
Median : 30.00 Median :2.000 Median :1968
Mean : 38.38 Mean :2.072 Mean :1968
3rd Qu.: 72.00 3rd Qu.:3.000 3rd Qu.:1982
Max. :100.00 Max. :5.000 Max. :1997
NA's :3
ftobama state gender
Min. : 0.00 Min. : 1.00 Min. :1.000
1st Qu.: 5.00 1st Qu.:12.00 1st Qu.:1.000
Median : 52.50 Median :29.00 Median :2.000
Mean : 48.62 Mean :28.32 Mean :1.525
3rd Qu.: 87.00 3rd Qu.:42.00 3rd Qu.:2.000
Max. :100.00 Max. :56.00 Max. :2.000
NA's :2
age
Min. :19.00
1st Qu.:34.00
Median :48.00

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 52 — #62 �
�

�
�

�
�

52 Data Management and Manipulation

Mean :48.06
3rd Qu.:61.25
Max. :95.00

Another variable we will likely want to change is the state variable. Right
now, it has numbers that represent the states, but we will probably want
strings with the state names as well. We can look up the numbers associated
with each state in the ANES and create a new variable called state_name
that contains the name of the state.

There are a lot of values we will need to replace, so we will use a different
function, the case_when() function, which allows us to change a large number
of values within a variable.
Create state_name with the string names of states
NESdta_short <- NESdta_short %>%

mutate(state_name = case_when(state == 1~"Alabama",
state == 2~"Alaska",
state == 4~"Arizona",
state == 5~"Arkansas",
state == 6~"California",
state == 8~"Colorado",
state == 9~"Connecticut",
state == 10~"Delaware",
state == 11~"DC",
state == 12~"Florida",
state == 13~"Georgia",
state == 15~"Hawaii",
state == 16~"Idaho",
state == 17~"Illinois",
state == 18~"Indiana",
state == 19~"Iowa",
state == 20~"Kansas",
state == 21~"Kentucky",
state == 22~"Louisiana",
state == 23~"Maine",
state == 24~"Maryland",
state == 25~"Massachusetts",
state == 26~"Michigan",
state == 27~"Minnesota",
state == 28~"Mississippi",
state == 29~"Missouri",
state == 30~"Montana",
state == 31~"Nebraska",
state == 32~"Nevada",

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 53 — #63 �
�

�
�

�
�

53 Creating New Variables

state == 33~"New Hampshire",
state == 34~"New Jersey",
state == 35~"New Mexico",
state == 36~"New York",
state == 37~"North Carolina",
state == 38~"North Dakota",
state == 39~"Ohio",
state == 40~"Oklahoma",
state == 41~"Oregon",
state == 42~"Pennsylvania",
state == 44~"Rhode Island",
state == 45~"South Carolina",
state == 46~"South Dakota",
state == 47~"Tennessee",
state == 48~"Texas",
state == 49~"Utah",
state == 50~"Vermont",
state == 51~"Virginia",
state == 53~"Washington",
state == 54~"West Virginia",
state == 55~"Wisconsin",
state == 56~"Wyoming"))

A final note: you might have noticed the double equal sign, ==. This is a
relatively common logical operator used in many statistical packages and
programming languages. A single equal sign, =, is used to set one object equal
to another. So, in the command above, when we type fttrump = ..., this
tells R to change the object fttrump into what follows the equal sign. A double
equal sign, ==, is used for comparison, and it returns a value of TRUE if the
item on the left-hand side is equal to the item on the right-hand side, and
FALSE otherwise.

You will use this a lot, especially as we start discussing the use of logic. A type
of logical command you will find yourself using a lot is ifelse(condition,
outcome if true, outcome if false). Let’s take, for example, the gender
variable in the ANES data. Here, we are interested in recoding the gender
variable (currently 2 = female and 1 = male) to be more descriptive and also
on the more common 0,1 scale. Using mutate() and ifelse() from base R, we
create a new variable female, where 1 equals cases when gender = 2 (female),
and 0 otherwise (previously, gender = 1).
Gender is currently coded 1 for male 2 for female
unique(NESdta_short$gender)

[1] 1 2

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 54 — #64 �
�

�
�

�
�

54 Data Management and Manipulation

Use ifelse() to create a dichotomous variable if female
NESdta_short <- NESdta_short %>%

mutate(female = ifelse(gender == 2, 1, 0))

ifelse() is a very flexible function. It can be used to execute multiple logical
statements by nesting those statements (an approach we will see again later in
the Essential Programming chapter). To nest these functions, we simply tell
the computer that if the outcome is false, it is to execute another ifelse()
function. Let’s say we wish to split the age variable into three categories young,
middle aged, and old. We can do this using nested ifelse() functions.
#Using nested ifelse() functions
NESdta_short %>%

mutate(age_categories = ifelse(age <= 35, "Young",
ifelse(age > 35 & age < 65,

"Middle Age", "Old"))) %>%
group_by(age_categories) %>%
summarize(n = n())

A tibble: 3 x 2
age_categories n
<chr> <int>
1 Middle Age 649
## 2 Old	 210
3 Young 341

In the above code block, we nest two ifelse() functions. The first tests if
the respondent’s age is less than or equal to 35. If true, it assigns a value of
“Young”; if false it goes to the next test. The second ifelse() function asks if
the respondent’s age is between 35 and 65. If it is, the respondent is assigned
a value of “Middle Age”, and, if not, they must be “Old”. The last two lines
utilize the group_by() and summarize() functions you learned about above
to show how many people in our survey fall into each category.

Exercises

3.4.0.0.1 Easy

•	 Create a new variable called Republican that is 1 if the respondent is a
Republican (pid3 == 2) and 0 otherwise.

•	 Create a new variable called pid_text that gives the text labels for pid3
(1 = Democrat, 2 = Republican, 3 = Independent, 4 = Other).

3.4.0.0.2 Intermediate

•	 Use replace() to change those who are labeled “Independent” in your
pid_text variable to “Other.”

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 55 — #65 �
�

�
�

�
�

55 Combining Data Sets

•	 Create a new variable that is the de-meaned version of ftobama. Try to
do it in one step using %>%.

3.4.0.0.3 Advanced

•	 Mutate a new variable of your choice, but it must be the combination of
three other variables. Consider using case_when(), among other useful
dplyr functions.

•	 Create a tibble and a tribble of the most recent NESdta_short data ob
ject. What are the differences, and what do these differences substantively
point to in the Tidyverse? How might they compare to a data.frame?

3.5 Combining Data Sets

One area where R really shines is in its ability to handle multiple data sets at
the same time. In many other common statistical programs, you are limited to
working on one data set at a time within a particular session. In R, you can
work with many more. Actually, right now we are already working with more
than one data set. When we created the NESdta_short data set, we added a
second data set to our session. If you look in the upper-right hand window
of RStudio, under the Environment tab, you will see that both NESdta and
NESdta_short are listed as “Data.” This means that at any time you can go
back to working on the original NESdta data set at any time.

Suppose we forgot a variable we wanted when we created the NESdta_short
data set. All we would need to do is go back to the line where we did the
subsetting above and run it with the additional variable name. No harm, no
foul. For those of you who have worked with other statistics programs, you
have probably seen what a pain similar operations can be.

But the primary use you will have for this is to work with different data
sets. Say we suspect that where a person lives affects their approval of then-
candidate Donald Trump - there were certainly differences in his voteshare
in different states during the primary, and we know that people’s political
opinions are not independent of those around them. We can load a data set
with a few state-level attributes and combine it with our individual-level ANES
data.
Read states data set into a tribble
states <- read_csv(here("Data","statescsv.csv"))

To merge two data sets, we need to find a common key. This key is a variable
that links cases in one data set to another. In this case, we have the state_name

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 56 — #66 �
�

�
�

�
�

56 Data Management and Manipulation

variable we created in the ANES data set and the variable state in our states
data set. Both contain strings with the name of the state in them.

It will be useful to have the variables we are using as the common key to have
the same name. If we ever need to do this, we can use the rename() function,
with the new name on the left and the old name on the right. For this data,
we need to rename the state variable to state_name to match with the ANES
data we just created.6

Change "state" to "state_name" to match ANES data set
states <- states %>%

rename(state_name = state)

Now we will join the data sets together. There are several options for joining
data together. These differ in how they handle situations in which the data
sets have somewhat different values in the common key. Let’s say, for example,
that data set #1 includes Puerto Rico and data set #2 does not. Conversely,
data set #2 includes Guam and data set #1 does not.

We can decide:

1.	 To only keep those cases where the territory is common to both data
sets, thereby excluding both Puerto Rico and Guam. This is an
inner_join().

2.	 To keep all the values in data set #1 and drop the values that do
not match in data set #2 - in this case to keep Puerto Rico and
drop Guam. This is a left_join().

3.	 To keep all the values in data set #2 and drop the values that do
not match in data set #1 - in this case to keep Guam and drop
Puerto Rico. This is a right_join().

4.	 To keep all the values from both data set #1 and data set #2
keeping both Puerto Rico and Guam. This is a full_join().

5.	 To drop all values that match in data set #1 and data set #2 - in this
case, only keeping Puerto Rico and Guam. This is an anti_join().

For this case, we will use an inner_join(), only keeping the values for the
states that match in both data sets, and putting them into a new data set
called NESdta_states.
Create new data set by inner joining the NES and states data
NESdta_states <- NESdta_short %>%

inner_join(states, by = "state_name")
Display the variable names of the resulting data set
names(NESdta_states)

[1] "fttrump" "pid3" "birthyr" "ftobama"

6We can also do this without renaming the key variable.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 57 — #67 �
�

�
�

�
�

Basic Descriptive Analysis 57

[5] "state"
[9] "female"
[13] "unemploy"

"gender"
"college"
"union"

"age"
"over64"
"urban"

"state_name"
"south"

As we can see, the resulting data set has all the variables from both data sets.

Exercises

3.5.0.0.1 Easy

•	 Another way to combine two data sets with different names for their
key, instead of renaming one of them, is to use by = c("key_name_1" =
"key_name_2"). Reload the state data set and try this out. What happens
with the key names?

•	 What is anti_join(), and when might you use this?

3.5.0.0.2 Intermediate

•	 Reload the states data set. What happens when you use outer_join()
instead of inner_join()? Why? How might this behavior change in
different circumstances?

3.5.0.0.3 Advanced

•	 Sometimes two data sets will have the same name for a non-key variable.
What do you think happens in this case? Reload the states data set, change
the name of demstate in the data to pid3. Merge the data sets and use
the name() function to see what happened, and report your results with
some brief discussion.

3.6 Basic Descriptive Analysis

Now that we have seen how to load our data and do some basic manipulation,
you might be interested in describing your data in a few different ways that
facilitate testing of hypotheses. In this section, we will cover some common
descriptive methods for characterizing relationships in your data. This will
also give us an opportunity to play around with some of the data manipulation
commands you learned above. We will start with a discussion of cross-tabulation
and then move into some variations of comparisons of means.

Before beginning this analysis, let’s make a few changes to the data using the
tools we learned above to make our results more interpretable. Take some time
to look at this block to make sure you understand what we have covered so
far.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 58 — #68 �
�

�
�

�
�

58 Data Management and Manipulation

NESdta_states <- NESdta_states %>%
mutate(gender_name = ifelse(gender == 1, "male", "female"),

pid_name = case_when(pid3 == 1 ~ "Democrat",
pid3 == 2 ~ "Republican",
pid3 == 3 ~ "Other"),

south_name = ifelse(south == 1, "South", "Not South"),
age_categories = case_when(age <= 35 ~ "Young",

age > 35 & age <= 65 ~
"Middle Age",

age > 65 ~ "Older"))

Cross-tabulations simply compare how many cases fall into different groups
with two categorical or ordered variables. In our current data set, we have
two categorical variables about which we might want information, gender
and political ID. Suppose we expected women to be more likely than men to
support Democrats. Let’s see if this holds true in the NES data set.

There are several ways we might try to accomplish this. One is to use the
same summary tools that we used above. We can simply use the group_by()
function to find out how many fall into each category of these variables.
NESdta_states %>%

group_by(gender_name, pid_name) %>%
summarize(n = n())

A tibble: 8 x 3
Groups: gender_name [2]
gender_name pid_name n
<chr> <chr> <int>
1 female Democrat 270
2 female Other 172
3 female Republican 151
4 female <NA> 37
5 male Democrat 189
6 male Other 208
7 male Republican 129
8 male <NA> 44

This process produces all of the information that we would expect in a cross-
tabulation (although not exactly in the format we might expect). For example,
we can see that there are 129 men who are Republicans in this survey. But this
does not necessarily answer our main question, since there are also 151 women
who are Republicans. If we go by raw numbers, we might assume women are
more likely to be Republicans, missing the fact that there are also more women
in the survey overall.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 59 — #69 �
�

�
�

�
�

59 Basic Descriptive Analysis

To get this, we will need to figure out how many men and women are in
this survey, and then divide the numbers above by the total number of men
and women. This is a straightforward combination of the commands we have
already used above – first grouping by gender and getting the number in each
category, then grouping by both gender and political ID and getting those
numbers, and finally dividing the former by the latter. The only last piece
is that, since we do not want to lose our other variables, we will use mutate
for the first grouping. We will also use mean() to get total number by each
gender (technically, we could have used min(), max() or any other summary
function because the values are all the same within this grouping). Finally, we
divide the number of observations in each gender/political ID pair by the total
number of respondents of each gender to get the proportion.
NESdta_states %>%

group_by(gender_name) %>%
mutate(sum_gender = n()) %>%
group_by(gender_name, pid_name) %>%
summarize(n = n(),

n_gender = mean(sum_gender),

p = n/n_gender)

A tibble: 8 x 5
Groups: gender_name [2]
gender_name pid_name n n_gender p
<chr> <chr> <int> <dbl> <dbl>
1 female Democrat 270 630 0.429
2 female Other 172 630 0.273
3 female Republican 151 630 0.240
4 female <NA> 37 630 0.0587
5 male Democrat 189 570 0.332
6 male Other 208 570 0.365
7 male Republican 129 570 0.226
8 male <NA> 44 570 0.0772

The results confirm that there is a gender difference, but, at least in this
sample, the main difference appears to be in terms of the proportion of each
gender that identifies as Democrat versus as a member of neither party. About
43% of women identify as Democrats, while only 33% of men do the same.
Conversely, 36% of men say they do not identify with either party, whereas
27% of women say the same. The proportion of Republicans in both groups
is pretty similar, with only a 1.3 point difference. We can repeat this process
with three or more variables if desired.

While the above provides all the information you need for a cross-tabulation, we
will admit that it is not the prettiest way to do things. Perhaps not surprisingly,
then, a package has been built to make this process even easier. The janitor

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 60 — #70 �
�

�
�

�
�

60 Data Management and Manipulation

package gives us the ability to create these types of cross-tabulations very easily.
We use three simple functions: tabyl() is where we put the variables we want
cross-tabulated, adorn_percentages() allows us to choose if we want “row”
or “column” proportions, adorn_pct_formatting() converts the proportions
into percents and allows us to set the number of digits, and adorn_ns() results
in the inclusion of the raw counts.

In the block below, we load the janitor package and create a simple cross-
tabulation of the number of outcomes in each category.
library(janitor)

NESdta_states %>%
tabyl(pid_name, gender_name)

pid_name female male
Democrat 270 189
Other 172 208
Republican 151 129
<NA> 37 44

In
give us “col” (column) proportions.
NESdta_states %>%

tabyl(pid_name, gender_name) %>%
adorn_percentages("col")

pid_name female male
Democrat 0.42857143 0.33157895
Other 0.27301587 0.36491228
Republican 0.23968254 0.22631579
<NA> 0.05873016 0.07719298

the next block, we add in the adorn_percentages() function and tell it to

Finally, we convert the proportions into percentages and include the counts to
create a nicely formatted cross-tabulation.
NESdta_states %>%

tabyl(pid_name, gender_name) %>%
adorn_percentages("col") %>%
adorn_pct_formatting(digits = 2) %>%
adorn_ns()

pid_name female male
Democrat 42.86% (270) 33.16% (189)
Other 27.30% (172) 36.49% (208)
Republican 23.97% (151) 22.63% (129)
<NA> 5.87% (37) 7.72% (44)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 61 — #71 �
�

�
�

�
�

61 Basic Descriptive Analysis

The functions in the janitor package for creating cross-tabulations are quite
flexible. If we want to create a three-way table, we can do this by simply
adding the third variable we wish to include. For example, we can generate a
cross-tabulation splitting the relationship between gender and partisan ID by
whether respondents live in a southern or non-southern state.
NESdta_states %>%

tabyl(pid_name, gender_name, south_name) %>%
adorn_percentages("col") %>%
adorn_pct_formatting(digits = 2) %>%
adorn_ns()

$`Not South`

pid_name female male

Democrat 45.70% (186) 34.85% (130)

Other 26.29% (107) 37.00% (138)

Republican 20.88% (85) 18.77% (70)

<NA> 7.13% (29) 9.38% (35)

##

$South

pid_name female male

Democrat 37.67% (84) 29.95% (59)

Other 29.15% (65) 35.53% (70)

Republican 29.60% (66) 29.95% (59)

<NA> 3.59% (8) 4.57% (9)

Now, let’s look at how to create tables to compare the means of a continuous
variable within a category. This is very easy to do using the data manipulation
functions we learned above. We can use group_by() to set our categories and
summarize() to calculate the means of our target variable. Let’s, for example,
look at the differences between men and women in their approval of Donald
Trump.
NESdta_states %>%

group_by(gender_name) %>%
summarize(averge_Trump_approval = mean(fttrump, na.rm = T))

A tibble: 2 x 2
gender_name averge_Trump_approval
<chr> <dbl>
1 female 35.9
2 male 41.1

Surprisingly, we do not see much difference in average ratings. Still, it should
be noted that this poll took place prior to numerous allegations of sexual
harassment and assault being lodged against then-candidate Donald Trump.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 62 — #72 �
�

�
�

�
�

62 Data Management and Manipulation

Again, this can easily be extended to more than one category by adding more
than one group. Let’s demonstrate this using by comparing women and men
in different age categories.
NESdta_states %>%

group_by(age_categories, gender_name) %>%
summarize(averge_Trump_approval = mean(fttrump, na.rm = T))

A tibble: 6 x 3
Groups: age_categories [3]
age_categories gender_name averge_Trump_approval
<chr> <chr> <dbl>
1 Middle Age female 36.3
2 Middle Age male 43.2
3 Older female 46.3
4 Older male 52.4
5 Young female 28.7
6 Young male 31.2

This shows a very interesting pattern at this point in the election cycle. There
are relatively large gender differences, but they seem to be dependent on age
categories. The gap between men and women is quite apparent, with young
women being more approving than their male counterparts, while middle-aged
and older women are less approving than their male counterparts. As noted
above, this likely changed later in the election cycle as more information came
to light, but, in this relatively early period, it seems to be the women who
remember Trump’s tabloid history with women in the 1980s who have a lower
approval than males in their age cohort.

3.7 Tidying a Data Set

So far we have primarily looked at the Tidyverse functions associated with the
dplyr package. Another important data munging package in the Tidyverse
is tidyr. The tidyr package is meant to assist in creating a “tidy” data set.
Formulated by Hadley Wickham (Wickham, 2014), there are three rules that
make a data set tidy: (1) each variable must have its own column, (2) each
observation must have its own row, and (3) each value must have its own cell.

A commonly used, and very untidy, dataset is the World Development
Indicators from the World Bank. We will load a raw output from the World
Development Indicators in the same form you would receive if you used
their interactive website.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 63 — #73 �
�

�
�

�
�

63 Tidying a Data Set

Read in World Development Indicators data set
wdi_data <- read_csv(here("data","wdi_data.csv"))
wdi_data

This very short data is very untidy for a number of reasons. First, our main
variables, access to electricity and agricultural land, are not given their own
columns, but are rather separate rows for each country. Second, each observa
tion does not have its own row. Instead, we have the yearly observations in
separate columns. Indeed, the only rule of tidy data sets that this data set
follows is that each value has its own cell.

To begin the process of tidying this data, we make some changes to get it ready
to reshape. First, we give it more usable variable names using the rename()
function. You will notice that when we have variable names that are more
than one word or start with numeric values, we have to surround them with
“‘”, this is to indicate that these are not numeric or separate values. After we
have renamed the columns we want, we also create a new variable with the
variable names in the rows using the mutate() function. Finally, we get rid of
the original row variable labels by deselecting them.
Prepare WDI data for reshaping
wdi_data2 <- wdi_data %>%

rename(country = `Country Name`, code = `Country Code`,
series = `Series Name`, series_code = `Series Code`,
`2010` = `2010 [YR2010]`, `2013` = `2013 [YR2013]`) %>%

mutate(variable_name=case_when(series_code=="EG.ELC.ACCS.ZS"~
"electricity_access",

series_code=="AG.LND.AGRI.ZS"~
"pct_agriculture")) %>%

dplyr::select(-series, -series_code)

To get the years into their own column, we will take those two columns and
use the gather() function on them. The key will be the name given to the
new variable containing the column names and the value will be the name for
the values in those columns. A common way to describe this process is that
we have taken a “wide” data set and made it “long”.
Reshape the data wide to long
wdi_data2 <- wdi_data2 %>%

gather(`2010`,`2013`, key = "year", value = "levels")
wdi_data2

We could also have indicated a range of columns to be gathered by using a
colon (:) as an operator indicating, “from here to there.” This is useful if we
have a large number of columns to be gathered (as long as they are sequential
in the data set).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 64 — #74 �
�

�
�

�
�

64 Data Management and Manipulation

Reshape the data wide to long
wdi_data2 <- wdi_data2 %>%

gather(`2010`:`2013`, key = "year", value = "levels")
wdi_data2

Now we want to give each variable its own column. To do this, we will use
the spread() function. In this case, the key is he column we want to spread
and the value is the variable level for those keys. This is the opposite of what
we did with gather(). We are now taking a “long” data set and making it
“wide”.
Reshape data long to wide
wdi_data2 <- wdi_data2 %>%

spread(key = variable_name, value = levels)
wdi_data2

Now we have a tidy data set with which to work.

Exercises

3.7.0.0.1 Easy

•	 Explain/think about the differences between spread() and gather().
What are some common features? Unique features? When should one be
used over the other and why?

3.7.0.0.2 Intermediate

•	 The spread() function can also be used to organize the summary analyses
(cross-tabulations and comparison of means) that we created above using
group_by(). Take the cross-tabulation created using group_by() into a
format closer to what we created using the janitor package’s tabyl()
function using spread().

•	 Do the same as in #1, but with the comparison of means.

3.7.0.0.3 Advanced

•	 Can you undo what we just did with the WDI data?

3.8 Saving Your Data Set for Later Use

After all the work you have done to get your data into the shape you want,
you will probably want to save this data set to your hard drive so you do not

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 65 — #75 �
�

�
�

�
�

65 Saving Your Data Set Details for Presentation

have to start over in your next session. To do this, we recommend using the
write_csv() function from the readr package in Tidyverse.

There are several reasons we recommend saving your data. First, we suggest
saving data as a .csv file because text-based storage files like this are quite
compact, can be opened by a range of programs and languages, and will not
become obsolete in the future. Older users of Stata or SPSS can attest that
using proprietary storage can results in loss of data once the program manager
decides to update the software and not maintain backward compatibility.
Second, much like the difference between read_csv() from readr and base
R’s read.csv() function, the Tidyverse version has some defaults that users
are likely to prefer. For example, the base R command (write.csv()) adds
row names to the data set by default with no variable name. We have yet
to encounter a situation in which this adds value to the data set and can
sometimes cause problems, especially on data sets that are repeatedly opened
and modified.

Saving your data set is relatively simple. You simply add two arguments to the
write_csv() function. The first is the tibble or data.frame you wish to save.
The second is where you want it saved, including the file name you wish to
use. Here we are going to save our NESdta_short tibble as a .csv file called
ANES_short.csv in our data folder.
Save the NESdta_short tibble as a .csv file
write_csv(NESdta_short, here("data", "ANES_short.csv"))

As you might expect, there are write_* versions of all of the read_* commands
used earlier for loading data. This makes R very flexible for opening and
converting a wide variety of data sources.

Exercises

3.8.0.0.1 Easy

•	 Can you save this in .dta (Stata) format? Which package would you use?
•	 Can you save this in .sav (SPSS) format? Which package would you use?
•	 Can you save this in .xlsx (Excel) format? Which package would you

use?

3.9 Saving Your Data Set Details for Presentation

Once you have all the data you need for your analysis in the format that
you want, it is time to save that information in a format that you can use
to present it in a paper or book. We have all been in the situation where we
have put in a ton of work putting together a data set and a reviewer catches a

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 66 — #76 �
�

�
�

�
�

66 Data Management and Manipulation

small error or suggests the addition of a new variable. At one point in time,
we would have manually typed in all the numbers and formatting, requiring
that even some relatively minor changes resulted in hours of extra work. As
you might already suspect, when there are problems like these, R users have
likely written a package for dealing with the issue.

The stargazer package was designed so that you can easily take your analyses
and turn them into professional tables that can be inserted into a word
processing document (e.g. Word, LibreOffice, LATEX). It will take care of
formatting, updating, and most of the other tasks with little work on your part.
Not only that, but stargazer is extremely flexible – able to accommodate
a wide range of table formats, custom standard errors, and other quirks you
may encounter in particular journals or with particular reviewers.

Here we will show how stargazer produces a table of summary statistics that
can be inserted into a Microsoft Word document. Later, we will show how to
generate a table for regression models.

We will start by making sure we have an object that only includes the columns
we wish to summarize. In this case, let’s just pick 3 variables: fttrump, age, and
whether the respondent is female. We create the age variable by subtracting
the year of the survey the respondent’s year of birth (birthyr) from the year
of the survey, 2016. We will create a dummy variable indicating whether the
respondent is female using the same ifelse() statement we used above. The
we will use select() to pick just those three columns.
Create and select variable to be summarized
NESdta_summary <- NESdta_short %>%

mutate(age = 2016 - birthyr,
female = ifelse(gender == 2, 1, 0),
fttrump = replace(fttrump, fttrump > 100, NA)) %>%

dplyr::select(fttrump, age, female)

Now that we have the data set to be summarized, we can load the stargazer
library and run the stargazer() function on the data set. Note that we need
to convert our tibble to a data.frame for stargazer.
Load stargazer package into workspace
library(stargazer)

Create LaTeX-style table to print to console
stargazer(data.frame(NESdta_summary))

For those of you not familiar with LATEX, the output might look a little strange.
LATEX is a document preparation system to produce high-quality typesetting.
It is commonly used by academics because of its ability to automate some
parts of the writing process (e.g. creating a formatted bibliography). It can also

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 67 — #77 �
�

�
�

�
�

67 Saving Your Data Set Details for Presentation

be used to automatically update tables and figures from R. It also, however,
has a somewhat steep learning curve, so we will not assume you use it here.

Instead, let’s create an HTML table. These can be opened natively in Microsoft
Word and simply copied and pasted into any document. To do this, we will
set the type of chart to HTML.
Create stargazer table in .html format
stargazer(data.frame(NESdta_summary),

type = "html")

This still looks confusing, but Microsoft Word (and most other visual word
processing programs) knows how to read this to form a table. All we need to
do is save it and open it using Word and it will look like a well-formatted
table. To do this, we simply specify where to put the output and save it as a
.doc file. In this case, we have created a sub-directory in our working directory
for tables, and we will call our file “summary_table.doc”.
Save the table as a summary_table.doc
stargazer(data.frame(NESdta_summary),

type = "html",
out = here("tables","summary_table.doc"))

Now we have a well-formatted, easy to modify and read table. But there is one
last thing we might want to change. The variable names in our data set are
not very informative. We might want to make them a little clearer in meaning.
We can do this by adding a vector of covariate labels, which is a collection of
names bound together by the function c().
Add informative variable labels
stargazer(data.frame(NESdta_summary),

type = "html",
covariate.labels = c("Approval of Trump",

"Age",
"Female"),

out = here("tables","summary_table.doc"))

If you open “summary_table.doc” in Microsoft Word, you will see an output
like that in the Figure 3.1. This output can be modified using Word’s standard
table manipulation tools and can be copied and pasted into any other Word
document. For users of LATEX, the process is even simpler. The user can save
the table as a .tex file and add \input{./Tables/summary_table.tex} to
their document. This will also allow for tables to be automatically updated as
updates are made to your R code.

stargazer is very flexible and rich, with many options for customizing your
tables. And once you have written the code for your table once, all you need
to do in order to update it is make a small modification and re-run the code.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 68 — #78 �
�

�
�

�
�

68 Data Management and Manipulation

FIGURE 3.1
An Example of a Microsoft Word Summary Statistics Table Created by
Stargazer

To learn more about the types of table stargazer can make and how to vary
features, check out the package’s online documentation.

Exercises

3.9.0.0.1 Easy

•	 List the arguments in the stargazer() function, and highlight a few that
seem particularly useful and briefly describe how you might use this in
your own research.

•	 Change the variable names in the stargazer() function and re-write a
new table. Save the table on your Desktop as a .html file.

3.9.0.0.2 Intermediate

•	 Select all the feeling thermometer questions (they start with ft) from the
ANES survey. Create a table of summary statistics from this for Microsoft
Word. What do these tell you?

3.9.0.0.3 Advanced

•	 Replicate the stargazer output without calling the function.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 69 — #79 �
�

�
�

�
�

4

Visualizing Your Data

Creating effective visual representations of data is arguably one of the most
important parts of presenting research. Major social science journals, such as the
American Journal of Political Science, have issued recent statements strongly
recommending authors offer visual output in lieu of redundant numerical
output whenever possible. Further, the importance of findings and novelty of
design can be lost (or at best limited) if the researcher fails to offer simple,
clear visualization of findings. As a group of scholars argued in the Proceedings
of the National Academy of Sciences, the ability to read and construct data
visualizations is “as important as the ability to read and write text” (Börner
et al., 2019).

Given this importance, this chapter focuses on moving from creating “less
than-exciting” plots to exciting plots using the powerful ggplot2 package,
which is a core part of the Tidyverse. We will be covering all the basic plots
and showing how, by learning the “grammar of visualization” associated with
ggplot2, you can build quite complex and informative plots. We will also give
you a taste of how to produce plots that are interactive and can be placed, for
example, on a website to promote your research.

Throughout this chapter, we will also be providing examples of how plots are
created in base R. The idea is to give you an idea of how plots are usually
generated, and why associating a grammar with your plots is useful.

4.1 The Global Data Set

While the previous chapter focused on understanding political behavior in
the 2016 American presidential primary, this chapter shifts its focus to un
derstanding the relationship between economic development and democracy
from 1972 to 2014. The idea that economic development, usually measured
as the log of per-capita gross domestic product (GDP), is related to the level
of democracy in a country is highly influential in economics, sociology and
political science (Lerner, 1958; Lipset, 1959; Kennedy, 2010; Inglehart and
Welzel, 2009). This argument, usually labeled modernization theory, also has

69

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 70 — #80 �
�

�
�

�
�

70 Visualizing Your Data

had many critics since it was first propounded almost 70 years ago (O’donnell,
1973; Robinson, 2006).

To analyze both this relationship, and some of the reasons it has been so
controversial over the last sixty plus years, we will be using a data set compiled
by Dr. Pippa Norris of Harvard University.

In this chapter, we will present some basic plots of this relationship that help
explain both the endurance of modernization theory and why it has been so
controversial. If you follow along in the exercises, you will gain additional
insight.

4.2 The Data and Preliminaries

Let’s start by focusing on two of the most commonly used plots in social
science research: histograms and scatterplots. As always, you should start this
section by opening a new session in RStudio and setting your working directory
to the folder from which you will be working or open the R project, .Rproj,
file located in the directory from which you wish to work.
Set your working directory
setwd(choose.dir())

After you have started a new R session, load the tidyverse library (be sure to
first install tidyverse using the install.packages command if not already
done), which includes the ggplot2 library for plotting data. We will also load
our country dataset.

And let’s do some simple data manipulation to get our variables into the
format we would like. There are several major changes that we make. First,
the original data set has almost 3,000 variables. Working with so much data
can quickly become unwieldy, so we use the select() function to narrow the
data set to just the variables we will use in the examples and exercises. Next,
we use the filter() function to keep only the cases that have an assigned
region. As a review, this is an example of combining commands. !is.na() is
a logical test that evaluates to TRUE when the row is not missing a value for
region and FALSE when it is missing (remember the ! means NOT). filter()
removes rows that do not meet the criteria in its parentheses.

Finally, we use mutate() to create new variables, or new versions of our
variables. The first set of variables we will be using is the Freedom House
measures of democracy. Freedom House is a non-governmental organization
dedicated to spreading democracy worldwide. Every year since 1973, they have
produced a democracy score for every country on a 7-point scale, where 7
means the country is the least free on their scale and 1 indicates a country

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 71 — #81 �
�

�
�

�
�

71 The Data and Preliminaries

is the most free on the scale. In this data set, the variables containing the
Freedom House scores for 1972 (fhrate72), 1985 (fhrate1985), and 2008
(fhrate2008) are selected. But the data set saves these as a “string” because,
instead of placing a 7, the data set has “Least Free,” and instead of a 1, the
data set has “Most Free.” We convert these strings to their numeric values using
the replace() function, convert them to numeric using the as.numeric()
function, and, finally, subtract those values from 8 to reverse the scale – making
higher numbers represent higher levels of democracy. If this discussion of string
and numeric variables is a little confusing, do not worry. We will be covering
these concepts in greater detail in the Essential Programming chapter.

For region, we use our case_when() function to create a new variable called
“Region” that combines several categories. This will make our visualization
easier later on.

For per-capita GDP, we have three measurement time periods: 1971
(GDPPC1971), 1984 (GDPPC1984), and 2007 (GDPPC2007). We use the log()
function to place all three of these on a log scale, which is a common method
for dealing with this particular data.
Modify variables into the format we would like
ctydta_short <- ctydta %>%

dplyr::select(Nation, fhrate72, fhrate85, fhrate08,

Region8b, GDPPC1971, GDPPC1984, GDPPC2007,

Fragile2006, OECD) %>%

filter(!is.na(Region8b)) %>%
mutate(fhrate72 = replace(fhrate72,fhrate72=="Least free","7"),

fhrate72 = replace(fhrate72,fhrate72=="Most free","1"),
fhrate72 = 8 - as.numeric(fhrate72),
fhrate85 = replace(fhrate85,fhrate85=="Least free","7"),
fhrate85 = replace(fhrate85,fhrate85=="Most free","1"),
fhrate85 = 8 - as.numeric(fhrate85),
fhrate14 = replace(fhrate08,fhrate08=="Least free","7"),
fhrate14 = replace(fhrate08,fhrate08=="Most free","1"),
fhrate14 = 8 - as.numeric(fhrate08),
Region=case_when(Region8b=="industrial"~"Industrial",

Region8b=="latinameri"~"Latin America",
Region8b=="africa"~"Africa & M.E.",
Region8b=="arab state"~"Africa & M.E.",
Region8b=="c&eeurope"~"Eastern Europe",
Region8b=="se asia &"~"Asia",
Region8b=="south asia"~"Asia",
Region8b=="east asia"~"Asia"),

ln_gdppc_71 = log(GDPPC1971),

ln_gdppc_84 = log(GDPPC1984),

ln_gdppc_07 = log(GDPPC2007))

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 72 — #82 �
�

�
�

�
�

72 Visualizing Your Data

Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced
by coercion

Note that you will likely receive a warning message indicating that NAs were
introduced by coercion. This is normal when converting a string variable to
numeric, since empty strings - "" - will be automatically converted to missing
values. We use the tidy-friendly skim() function from the skimr package
addressed at length in the Exploratory Data Analysis chapter to check that
everything in our resulting data looks as expected, and it does.
library(skimr)

skim(ctydta_short)

We can also leverage the glimpse() function from the tidyverse tibble
package to get a printout of all features in wide format, which offers a helpful
quick look at the structure of the data.
glimpse(ctydta_short)

Rows: 193

Columns: 15

$ Nation <chr> "Afghanistan", "Albania", "Algeria"...

$ fhrate72 <dbl> 3.5, 1.0, 2.0, NA, NA, NA, 3.5, 2.0...

$ fhrate85 <dbl> 1.0, 1.0, 2.0, NA, 1.0, 5.5, 6.0, 1...

$ fhrate08 <chr> "5.5", "3", "5.5", "Most free", "5....

$ Region8b <chr> "arab state", "c&eeurope", "africa"...

$ GDPPC1971 <dbl> 883.4850, 2533.3756, 3699.2895, NA,...

$ GDPPC1984 <dbl> 1020.8060, 2994.4853, 5528.0921, NA...

$ GDPPC2007 <dbl> 752.4724, 4729.8822, 6421.2448, NA,...

$ Fragile2006 <chr> "Fragile", "Intermedia", "Fragile",...

$ OECD <chr> "Not member", "Not member", "Not me...

$ fhrate14 <dbl> 2.5, 5.0, 2.5, NA, 2.5, 6.0, 6.0, 3...

$ Region <chr> "Africa & M.E.", "Eastern Europe", ...

$ ln_gdppc_71 <dbl> 6.783874, 7.837308, 8.215896, NA, 8...

$ ln_gdppc_84 <dbl> 6.928348, 8.004528, 8.617598, NA, 7...

$ ln_gdppc_07 <dbl> 6.623364, 8.461656, 8.767367, NA, 8...

4.3 Histograms

Let’s start by making a simple historgram to show the density of different
democracy levels in 1972 in Figure 4.1. Histograms are a common starting
place for describing our data, giving us a general idea of what the dependent
variable of modernization theory looked like at the beginning of the period we

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 73 — #83 �
�

�
�

�
�

73 Histograms

are exploring. If we were doing this using base R, the commands might look
something like this.
Create the histogram
hist(ctydta_short$fhrate72,

xlab = "Level of Democracy",
ylab = "Number of Countries",
main = "Histogram of Democracy in 1972")

Histogram of Democracy in 1972

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

1 2 3 4 5 6 7

0
10

20
30

40

FIGURE 4.1
A Simple Histogram

There is nothing particularly wrong with this approach to plotting the his
togram, but using the base R plotting functions can quickly produce clunky
code that is difficult to remember, reproduce, and understand. Let’s say, for
example, we want to see separate histograms for the density of democracies by
region: “Industrial”, “Latin America”, “Africa and M.E.”, “Eastern Europe”,
and “Asia.” Here is what this might look like using R’s standard plots in Figure
4.2.
Subset the data into regions
industrial <- subset(ctydta_short,

Region == "Industrial")
latin_america <- subset(ctydta_short,

Region == "Latin America")
africa <- subset(ctydta_short,

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 74 — #84 �
�

�
�

�
�

74 Visualizing Your Data

Region == "Africa & M.E.")
eastern_europe <- subset(ctydta_short,

Region == "Eastern Europe")
asia <- subset(ctydta_short,

Region == "Asia")

par(mfrow = c(3, 2)) # places histograms in 3x2 plot
hist(industrial$fhrate72,

xlab = "Level of Democracy",
ylab = "Number of Countries",
main = "Industrial")

hist(latin_america$fhrate72,
xlab = "Level of Democracy",
ylab = "Number of Countries",
main = "Latin America")

hist(africa$fhrate72,
xlab = "Level of Democracy",
ylab = "Number of Countries",
main = "Africa & M.E.")

hist(eastern_europe$fhrate72,
xlab = "Level of Democracy",
ylab = "Number of Countries",
main = "Eastern Europe")

hist(asia$fhrate72,
xlab = "Level of Democracy",
ylab = "Number of Countries",
main = "Asia")

par(mfrow = c(1, 1)) # reset plot space

There are a number of reasons this code is less than appealing. Notice that
there is no overall “grammar” to how we construct the plots. We find ourselves
using $ and functions like par() that do not seem to fit with the tasks in
which we have the most interest. The names we are using for the tasks also
do not match easily with what we are trying to do. For example, mfrow is a
vector of length 2 that specifies the number of rows and columns. But trying
to remember what this command is and what it does is difficult, meaning that
you will probably have to look it up next time you want to do it. There is
also the issue of setting the global options. Notice that we have to use the
par() function twice. The second time is to make sure we do not accidentally
create a plot with 2 rows and 2 columns when we do not want to do so. It
would be far better if we could revert to this default without having to do so
explicitly every time. As we can attest, it is far too easy to miss this step and
very frustrating when it happens. Finally, notice that there is no overall title

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 75 — #85 �
�

�
�

�
�

75 Histograms

Industrial

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

2 3 4 5 6 7

0
15

Latin America

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

1 2 3 4 5 6 7

0
5

Africa & M.E.

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

1 2 3 4 5 6

0
25

Eastern Europe

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

1.0 1.2 1.4 1.6 1.8 2.0

0
20

Asia

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

1 2 3 4 5 6

0
6

FIGURE 4.2
Separate Histograms

for the figure. This is because this is created as three separate figures pasted
together.

The package ggplot2, included in the tidyverse, is designed to be a “grammar
of graphics” (Wilkinson, 2012) similar to the design of dplyr as a “grammar
of data manipulation.” It has a set of commands that are consistent across
different types of plots. It also, as we will see, allows you to make complex plots
without a lot of extra work. Put simply, it addresses some of the problems
of clunky code that has been built up over the extended period of R’s initial
development.

Let’s make do the same thing we did above, but using ggplot2. Start by
creating a simple histogram in Figure 4.3.1

ggplot version
ggplot(data = ctydta_short) +

geom_histogram(aes(x = fhrate72), binwidth = 1) +
labs(x = "Level of Democracy",

1Readers should note that there exist “quick” work-arounds in ggplot2 including both
qplot() and quickplot(), which are the same. These allow for quick base-R-flavored syntax
for plotting, but are more limited in certain ways than the main ggplot() function. Thus,
mostly throughout the book we will stick with ggplot(), but will occasionally use one of
the “quick” versions for demonstrative purposes.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 76 — #86 �
�

�
�

�
�

76 Visualizing Your Data

y = "Number of Countries",
title = "Histogram of Democracy in 1972") +

theme_minimal()

0

20

40

2 4 6
Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

Histogram of Democracy in 1972

FIGURE 4.3
A Simple Histogram via ggplot

You will immediately see a few differences in this way of writing the code. First,
we are combining different parts of the plot using a +. Just like the %>% we
used for data manipulation, this lets us add different parts to the chart as we
go.2 To more clearly demonstrate this point, we can build a plot piece-by-piece,
starting simply and adding to it to create something more complex that looks
exactly the way we want it. The result is a complete plot like the one shown
in Figure 4.4. Importantly, when building a plot one layer at a time like this,
the use of <- allows us to save our plot as an object, and add onto that object
as we go. We first save the basic histogram as an object called basic_hist,
and then add to it.
ggplot with additions version
basic_hist <- ggplot(data = ctydta_short)

basic_hist <- basic_hist +

2In fact, we can even combine the %>% and + in ggplot2 syntax, e.g., piping the data to
ggplot() and building accordingly.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 77 — #87 �
�

�
�

�
�

77 Histograms

geom_histogram(aes(x = fhrate72), binwidth = 1)

basic_hist <- basic_hist +
labs(x = "Level of Democracy",

y = "Number of Countries",
title = "Histogram of Democracy in 1972")

basic_hist <- basic_hist + theme_minimal()

basic_hist

0

20

40

2 4 6
Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s

Histogram of Democracy in 1972

FIGURE 4.4
Building Out a Histogram

By building out the plot in this way, the grammar is more explicit. The first
function is ggplot(), which tells R that we are using ggplot2 to create the
graph and to set up the system accordingly. In the function call, we declare
the data we will be using for this plot. Since we are using only one data source
for the entire plot, we can specify that data source here.

Once the system and data are declared, the next step is to tell R what type of
chart we want to use. This involves using a “geometry” function (or “geom”
for short). Here the geom is a histogram, so we will use geom_histogram().
As you might guess, other types of charts have similar functions: geom_bar()
for bar charts, geom_line() for line graphs, geom_point() for scatterplots,

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 78 — #88 �
�

�
�

�
�

78 Visualizing Your Data

etc. There may be some times when you want to use multiple data sources (for
example, overlaying a scatterplot of one source of data with a histogram from
another). To do this, simply set the data variable within the desired geometry,
rather than setting it in the ggplot() function.

Within the geom, we declare a mapping aesthetic (or “aes” for short). The
aesthetic tells the system what we want placed where. Since we are creating a
histogram with the count of cases in each bin, we only need to declare our x
axis (i.e. that we want the distribution of the variable fhrate72). Within the
geom, we can also change a number of the options for the chart. In this case,
we tell it how large we want the bins of the histogram to be (1 in this case).

There is also a function for naming the axes. We add in a set of labels for the
x-axis, y-axis and the main label using the labs() function.

Finally, we change the theme from the default to a black-and-white scheme by
adding the theme_minimal() function.

One thing that you will see when you run either of these code examples is a
warning saying that the program Removed 36 rows containing non-finite
values (stat_bin). This is simply telling you that there were 36 cases in
which the variable fhrate72 was missing data, i.e., Freedom House did not
provide them with ratings that year. This is another advantage to ggplot2; it
tells you more about your data than the base R functions.

To see how this creates cleaner code, it is useful to show a more complex
example. Let’s try breaking down the histograms by region again leveraging
ggplot2 and shown in Figure 4.5.
Plot differences between democracy by region
ggplot(data = ctydta_short) +

geom_histogram(aes(x = fhrate72), binwidth = 1) +
theme_minimal() +
facet_wrap(~ Region, ncol = 2) +
labs(x = "Level of Democracy",

y = "Number of Countries",
title = "Levels of Democracy by Region in 1972")

In this example, we simply added another function using the +, called
facet_wrap(), which tells the system to compile subgraphs as a function
of the region of the country.

And finally, ggplot2 is very flexible in allowing us to modify our charts to the
particular style we want. Let’s see another simple case, plotting the density of
democracy scores as a histogram to see how things change when you update
the bin size and colors in Figure 4.6.
Update binwidth and color
ggplot(data = ctydta_short) +

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 79 — #89 �
�

�
�

�
�

79 Histograms

Latin America

Eastern Europe Industrial

Africa & M.E. Asia

2 4 6

2 4 6

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s
Levels of Democracy by Region in 1972

FIGURE 4.5
A More Complex, Faceted Histogram

geom_histogram(aes(x = fhrate72),

binwidth = 2,

color = "white",

fill = "steelblue") +

theme_minimal() +
labs(x = "Level of Democracy",

y = "Number of Countries",

title = "Level of Democracy in 1972")

Warning: Removed 36 rows containing non-finite values
(stat_bin).

Plots created using ggplot are almost infinitely customizable. For those of
you looking for inspiration (as well as example code), the R Graph Gallery
provides hundreds of examples using the tools introduced here.

Exercises

4.3.0.0.1 Easy

•	 Create a histogram for the Freedom House democracy scores in 1985
and 2008. Modify the number of bins until it looks like what you want.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 80 — #90 �
�

�
�

�
�

80 Visualizing Your Data

0

25

50

75

2 4 6
Level of Democracy

N
um

be
r o

f C
ou

nt
rie

s
Level of Democracy in 1972

FIGURE 4.6
Updating Style and Color

What does this tell you about the progress of democracy over this time
period?

•	 Using facet_wrap(), break down the democracy scores for 1985 and 2008
down by region. Be sure to set the binwidth and make the labels accurate.
Has the progress of democracy been equally distributed across regions?

•	 ggplot2 includes many different themes that can fit your personal pref
erences. Try changing theme_minimal(). Re-create the final plot for
fhrate72 from the text above, and try out theme_bw() and theme_dark()
to see what some of these look like.

4.3.0.0.2 Intermediate

•	 In using the histogram to plot the density of fhrate72 above, you may
have noticed the warning message: Removed 36 rows containing non-finite
values (stat_bin). What does this mean?

•	 What is the difference between bins and binwidth for plotting histograms?
Consider exploring the ggplot documentation for the answer.

4.3.0.0.3 Advanced

•	 This data set is not tidy, as discussed in the previous chapter. Namely, a
tidy data set should have a single row for each country-year (or in this

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 81 — #91 �
�

�
�

�
�

81 Bar Plots

case, for every country-year pair, e.g., country observation of per-capita
GDP from 1984 should be paired with the Freedom House rating from
1985). Create this tidy data set. Once you have done so, how does this
change your commands to create the histogram for Freedom House scores
from 1972?

4.4 Bar Plots

Another very common plot for better understanding the distribution of your
data is the bar plot. Let’s say you wanted to plot the number of countries in
each region in your data. Since region is a categorical variable, a histogram
does not make a lot of sense.

Here is how you would need to create a bar plot in base R. There are some
elements of this that will likely seem strange to a beginning user. In particular,
it involves combining two disparate types of commands, creating a table and
then saving that table before you can plot it. See this in Figure 4.7.
First, create a table and save it as an object
region_table <- table(ctydta_short$Region)

Create a bar chart of the table
barplot(region_table,

xlab = "Region",
ylab = "Number of Countries",
main = "Distribution of Countries in Regions")

Now we will create the same plot using ggplot2 with the geom_bar() function.
Notice how we do not introduce any new concepts or steps beyond those from
the process for creating a histogram. Instead, we are using the same grammar,
just changing the verb (function) we use for the defining the geometry of plot.
See this ggplot() version in Figure 4.8.
ggplot(data = ctydta_short) +

geom_bar(aes(x = Region)) +
labs(x = "Region",

y = "Number of Countries",
title = "Distribution of Countries by Region") +

theme_minimal()

We can also combine the skills we learned for data management earlier to create
more complex plots. Let’s say we want to know the average democracy score
in 1972. This is easy to do using summarize() with our graphing functions.
We can even use the pipe, %>%, to link them together.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 82 — #92 �
�

�
�

�
�

82 Visualizing Your Data

Africa & M.E. Asia Eastern Europe Latin America

Distribution of Countries in Regions

Region

N
um

be
r o

f C
ou

nt
rie

s

0
10

20
30

40
50

60

FIGURE 4.7
A Basic Barplot

0

20

40

60

Africa & M.E. Asia Eastern Europe Industrial Latin America
Region

N
um

be
r o

f C
ou

nt
rie

s

Distribution of Countries by Region

FIGURE 4.8
A Barplot via ggplot

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 83 — #93 �
�

�
�

�
�

83 Bar Plots

The only new thing that we need to do is change the stat argument in the
geom_bar() function to “identity”. This tells the program to use the variable
we define for the y-axis as the height of the bars, rather than counting the
number of cases. The more complex version is now in Figure 4.9.
Combine data management and visualization
ctydta_short %>%

group_by(Region) %>%
summarize(mean_democracy_72 = mean(fhrate72, na.rm = TRUE)) %>%
ggplot() +
geom_bar(aes(x=Region, y=mean_democracy_72), stat="identity") +
labs(x = "Region",

y = "Mean Democracy Score in 1972",
title = "Mean Democracy Score By Region in 1972") +

theme_minimal()

0

2

4

6

Africa & M.E. Asia Eastern Europe Industrial Latin America
Region

M
ea

n
D

em
oc

ra
cy

 S
co

re
 in

 1
97

2

Mean Democracy Score By Region in 1972

FIGURE 4.9
Complicating a Barplot with ggplot

Hopefully by this point you can appreciate how powerful the linkage between
everything we have seen so far can be. The data management grammar we
learned in the last chapter fits almost seamlessly with the visualization grammar
we are learning in this chapter. And, in both cases, it is just a matter of putting
together the right nouns (arguments) with the right verbs (functions) to convey
informative statistical meaning.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 84 — #94 �
�

�
�

�
�

84 Visualizing Your Data

Exercises

4.4.0.0.1 Easy

•	 Make a barplot of the stability of countries in this data set in 2006 (variable
name Fragile2006).

•	 Governments that have faced political instability often struggle to subse
quently democratize. Let’s see if our data shows this. Create a barplot for
the average Freedom House score in 2014, given stability in 2006.

•	 There are many options to modify bar plots. One allows you to flip the x
and y axis, which is especially useful when you have long value labels for
a variable. Try doing this by adding the coord_flip() function.

4.4.0.0.2 Intermediate

•	 What is the difference between a barplot and histogram? When might one
be appropriate over the other?

•	 Update the barplot for mean democracy by region to instead summarize
democracy by it’s median. Then, render a new barplot with a different
color bar for each of the five regions.

4.4.0.0.3 Advanced

•	 Re-produce the barplot for mean level of democracy by region, but this
time using qplot() (“quick plot”). This is also from ggplot2 and has some
similar features, but the construction of the function, aesthetic mapping,
and process of layering are all a bit different than the ggplot() approach
we previously covered.

4.5 Scatterplots

Another very common plot in social science research is the scatterplot. This can
be useful for a variety of tasks, from viewing simple distributions of variables
to displaying relationships and predicted probabilities. We will discuss these
exploratory-type tools in greater depth in the chapter on exploratory data
analysis. As with histograms and barplots, there is a tradeoff between clunky
code and less-than-exciting output versus elegant, modular code and appealing
output. We start with the base R version using the plot command and get
Figure 4.10.
Scatterplot using Base R
plot(ctydta_short$ln_gdppc_71, ctydta_short$fhrate72,

main="Relationship Between Development and Democracy, 1972",

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 85 — #95 �
�

�
�

�
�

85 Scatterplots

xlab="log(per-capita GDP)",

ylab="Freedom House Level of Democracy")

6 7 8 9 10 11

1
2

3
4

5
6

7

Relationship Between Development and Democracy, 1972

log(per−capita GDP)

Fr
ee

do
m

 H
ou

se
 L

ev
el

 o
f D

em
oc

ra
cy

FIGURE 4.10
A Basic Scatterplot

Figure 4.10 shows a positive relationship between the log of per-capita GDP
and the level of democracy for a country in 1972. Substantively, this chart
shows that even in 1972, countries with a higher level of economic development
measured by per-capita GDP, were generally more democratic. The relationship,
however, can be a little difficult to pick out from this plot alone and there are
many additional parameters that contribute to a prettier and more descriptive
plot. Adding these is not very straightforward in base R.

As such, let’s start with a simple ggplot2 scatter plot with the command
ggplot(), shown in Figure 4.11, before progressing to some more descriptive
and advanced plots below.
ggplot version of scatterplot
ggplot(ctydta_short, aes(x = ln_gdppc_71, y = fhrate72)) +

geom_point() +
geom_smooth(method = lm, alpha = 0.1) +
labs(x="log(per-capita GDP)",

y="Freedom House Level of Democracy",
title="Relationship Between Development & Democracy, 1972")+

theme_minimal()

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 86 — #96 �
�

�
�

�
�

86 Visualizing Your Data

2

4

6

6 8 10

log(per−capita GDP)

F
re
e
d
o
m
 H
o
u
s
e
 L
e
ve
l
o
f
D
e
m
o
c
ra
c
y

Relationship Between Development & Democracy, 1972

FIGURE 4.11
A Nicer Scatterplot via ggplot

This is already a much prettier plot that is also more descriptive. There are
two things that we have changed from our previous plots. First, we declared
our aesthetic in the ggplot() function, rather than in our geometry functions.
Since we are using the same aesthetic for both geometries, we can declare it
earlier and not have to repeat it. This is a concept that computer scientists
call the “scope” of a variable. When we declare it in the ggplot() function,
the values for the aesthetic, aes(), are the same for all subsequent functions
and are communicated to those functions by the + operator. When we declare
the aesthetic in the individual geometries, for example in geom_point(), it
only applies to that geometry. This is very useful if we want to overlay charts
using different variables, or even different data sets as mentioned above.

We also have declared two geometries, geom_point() and geom_smooth().
The first creates our scatter plot and the second creates our regression line,
showing the relationship, as well as the 95% confidence intervals.The method
= lm argument is used to specify that we are using a linear model to create the
line (the default if we do not specify a method is a non-linear LOESS model).

We can do a lot with these building blocks. Let’s say that we think that
the effect of economic development interacts with the region in which the
country is located. Indeed, some scholars have argued that the conclusions
of modernization theory may be strongly influenced by geography (Ward

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 87 — #97 �
�

�
�

�
�

87 Scatterplots

and Gleditsch, 2018) or that there may be common historical factors leading
to some countries becoming both rich and democratic, while leaving others
poor and authoritarian (Robinson, 2006). We can check this by adding to
the aesthetic of our plot, telling it to fill the plot components with colors
representing the values of region. See the result in Figure 4.12.
ggplot(ctydta_short, aes(x = ln_gdppc_71, y = fhrate72,

color = Region)) +

geom_point() +

geom_smooth(method = lm, alpha = 0.1) +

labs(x="log(per-capita GDP)",

y="Freedom House Level of Democracy",

title="Relationship Between Development & Democracy, 1972",

fill="Region") +

theme_minimal()

2

4

6

8

6 8 10

log(per−capita GDP)

F
re
e
d
o
m
 H
o
u
s
e
 L
e
ve
l
o
f
D
e
m
o
c
ra
c
y

Region

Africa & M.E.

Asia

Eastern Europe

Industrial

Latin America

Relationship Between Development & Democracy, 1972

FIGURE 4.12
A Scatterplot with Continuous and Categorical Features

Note the different colors associated with the country’s region. Now both the
points and the linear fit lines have been colored according to the country’s re
gion, showing the relationship between economic development and democracy,

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 88 — #98 �
�

�
�

�
�

88 Visualizing Your Data

conditional on region.3 Interestingly, it looks like the relationship between
economic development and democracy in 1972 is conditional on region. For
industrialized, Latin American, and, within a very limited range, Eastern
Euroepan countries, there seems to be a relationship between economic de
velopment and democracy. Within Asia and Africa, however, there appears
to be no real relationship. Moreover, it looks like much of what we observed
in the overall relationship among all countries is being driven by differences
in regions. Industrialized countries are both more economically prosperous
and democratic, while Asian countries at this time are both less economically
developed and less democratic. It is, perhaps, not surprising that this period
of time - the 1970s - was when the narrative around dependency became very
popular among scholars, arguing that the world economic system was set up in
such a way that the industrialized core became wealthy and democratic, while
countries in the periphery remained poor and authoritarian (Smith, 1979).

There are many more arguments and updates users can make to ggplot2 plots.
For example, users can also use the shape argument to change the shape of
the points (e.g., circles, triangles, etc.). Just run ?ggplot2 to view the many
parameters and customization options available.

As we have seen before, another way to show conditional distributions is using
a facet wrap, which separates each plot and places them in their own windows.
The facet_wrap() function allows any direction or combination of columns
and rows with separate plots based on the conditioning variable (input as
“~ variable”, where the “~” indicates that the charts are a function of the
conditioning variable). The numbers of columns and rows are denoted by
passing values to the nrow or ncol arguments in the facet_wrap() function.

Since some of the points in our plot overlap, it can be difficult to see where
the largest concentrations of countries lie, so we will also set alpha = 0.3,
which increases the transparency of points, making darker sections indicative
of higher concentrations (we could also use the geom_jitter() function to
add a small amount of noise that can make individual points more visible).
The updated plot is shown in Figure 4.13.
Use a facet wrap to display the regions
ggplot(ctydta_short, aes(x = ln_gdppc_71, y = fhrate72)) +

geom_point(alpha = 0.3) +
geom_smooth(method = lm, alpha = 0.1) +
theme_minimal() +
labs(x="ln(per-capita GDP)",

y="Freedom House Level of Democracy",
title="Relationship Between Development & Democracy, 1972")+

facet_wrap(~ Region, ncol = 2) # update "nrow" or "ncol"

3We will come back to linear models and regression fit lines in the statistical modeling
chapter later.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 89 — #99 �
�

�
�

�
�

89 Scatterplots

##	 `geom_smooth()` using formula 'y ~ x'

Latin America

Eastern Europe Industrial

Africa & M.E. Asia

6 8 10

6 8 10

2

4

6

8

2

4

6

8

2

4

6

8

ln(per−capita GDP)

F
re

e
d

o
m

 H
o

u
s
e

 L
e
v
e

l
o

f
D

e
m

o
c
ra

c
y

Relationship Between Development & Democracy, 1972

FIGURE 4.13
Faceting and Updating a Scatterplot

This set of figures tells a similar story to what we noticed above, but some of the
patterns are easier to identify. We can see why modernization theory has been
so controversial. While there appears to be a global pattern linking economic
development and democracy, the regional heterogeneity in this relationship is
such that it evokes suspicion, especially among those studying these regions.

Exercises

4.5.0.0.1 Easy

•	 What is the relationship between ln_gdppc_84 and fhrate85? Create a
scatterplot with a linear smoother to find this out.

•	 In the previous question, you used method = lm to show a linear fit line.
What if we expected a non-linear relationship? Type in ?geom_smooth()
and look at the help information for the methods. What other options
are available? What is the default? Try method = loess in one of your
charts. Does this suggest a non-linear relationship?

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 90 — #100 �
�

�
�

�
�

90 Visualizing Your Data

4.5.0.0.2 Intermediate

•	 What assumptions are we making about the data generating process when
we change the method argument in the geom_smooth() function from lm
to loess to gam to glm? Note: We will cover data generating processes
and model assumptions more in the Essential Statistical Modeling chapter.
Thus, answer this question based on your existing knowledge.

4.5.0.0.3 Advanced

•	 What does the note you get in the earlier scatterplot, geom_smooth()
using formula ‘y ~ x’, mean? And how does geom_smooth() differ from
stat_smooth()

4.6 Combining Multiple Plots

In some instances, you might want to combine multiple plots of different types.
While the facet_wrap() function allows you to combine plots of the same
type broken down by a grouping variable, it would not let you combine plots
of different kinds or with different data. Unfortunately, we can’t leverage the
par(mfrow) command for ggplot objects as we did for plot objects in base R.
As such, we demonstrate two packages for easily combining multiple ggplots:
the gridExtra package or the patchwork package.

First, we will cover the use of gridExtra. We start by creating and storing
four plots: a histogram of fhrate72, a bar plot for Region, a histogram for
ln_gdppc_71, and a scatter plot for economic development and Freedom House
democracy score. We will then paste them together using the grid.arrange()
function and present the results in Figure 4.14.
Combining plots with the gridExtra package
library(gridExtra)

plot1 <- ggplot(ctydta_short) +
geom_histogram(aes(x = fhrate72), binwidth = 1)

plot2 <- ggplot(ctydta_short) +
geom_bar(aes(x = Region)) +
theme(axis.text.x = element_text(angle = 75, hjust = 1))

plot3 <- ggplot(ctydta_short) +
geom_histogram(aes(x = ln_gdppc_71), binwidth = 2)

plot4 <- ggplot(ctydta_short) +

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 91 — #101 �
�

�
�

�
�

91 Combining Multiple Plots

geom_point(aes(x = ln_gdppc_71, y = fhrate72))

grid.arrange(plot1, plot2, plot3, plot4, ncol = 2)

0

20

40

2 4 6
fhrate72

co
un

t

0

20

40

60

Af
ric

a
&

M
.E

.

As
ia

Ea
st

er
n

Eu
ro

pe

In
du

st
ria

l

La
tin

 A
m

er
ic

a

Region
co

un
t

0

25

50

75

100

6 8 10 12
ln_gdppc_71

co
un

t

2

4

6

6 8 10
ln_gdppc_71

fh
ra

te
72

FIGURE 4.14
Combined Plots via grid.arrange

Now, let’s use the same four plots in the previous case using the patchwork
package. Results are in Figure 4.15.
Combining plots with the patchwork package
library(patchwork)

plot1 <- ggplot(ctydta_short) +
geom_histogram(aes(x = fhrate72), binwidth = 1)

plot2 <- ggplot(ctydta_short) +
geom_bar(aes(x = Region)) +
theme(axis.text.x = element_text(angle = 75, hjust = 1))

plot3 <- ggplot(ctydta_short) +
geom_histogram(aes(x = ln_gdppc_71), binwidth = 2)

plot4 <- ggplot(ctydta_short) +

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 92 — #102 �
�

�
�

�
�

92 Visualizing Your Data

geom_point(aes(x = ln_gdppc_71, y = fhrate72))

plot1 +
plot2 +
plot3 +
plot4

0

20

40

2 4 6

fhrate72

co
un

t

0

20

40

60

Af
ric

a
&

M
.E

.

As
ia

Ea
st

er
n

Eu
ro

pe

In
du

st
ria

l

La
tin

 A
m

er
ic

a

Region

co
un

t

0

25

50

75

100

6 8 10 12
ln_gdppc_71

co
un

t

2

4

6

6 8 10
ln_gdppc_71

fh
ra

te
72

FIGURE 4.15
Combined Plots via patchwork

Though the results look pretty much the same, the patchwork package
offers much more flexibility in both placement of plots (e.g., using \ for
top/bottom placement), as well as in annotating the plots (e.g., using the
plot_annotation() function to add titles, subtitles, captions, and more). Let’s
see these differences in action, all of which lead us to prefer the patchwork
solution over the gridExtra solution. See the customized result in Figure 4.16.
Combining plots with the patchwork package
library(patchwork)

plot1 <- ggplot(ctydta_short) +
geom_histogram(aes(x = fhrate72), binwidth = 1)

plot2 <- ggplot(ctydta_short) +
geom_bar(aes(x = Region)) +

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 93 — #103 �
�

�
�

�
�

93 Combining Multiple Plots

theme(axis.text.x = element_text(angle = 75,

vjust = 0.5))

plot3 <- ggplot(ctydta_short) +
geom_histogram(aes(x = ln_gdppc_71), binwidth = 2)

plot4 <- ggplot(ctydta_short) +
geom_point(aes(x = ln_gdppc_71, y = fhrate72))

four_plots <- plot2 /
(plot1 + plot3) /
plot4

four_plots + plot_annotation(
title = "Four slick plots with annotation",
subtitle = "Here is a great subtitle!")

0
20
40
60

Af
ric

a
&

M
.E

.

As
ia

Ea
st

er
n

Eu
ro

pe

In
du

st
ria

l

La
tin

 A
m

er
ic

a

Region

co
un

t

0
20
40

2 4 6
fhrate72

co
un

t

0
25
50
75

100

6 8 10 12
ln_gdppc_71

co
un

t

2
4
6

6 8 10
ln_gdppc_71

fh
ra

te
72

Here is a great subtitle!
Four slick plots with annotation

FIGURE 4.16
Customization via patchwork

Much more detail on customizing layouts, combinations of ggplot objects, and
annotation options including tagging and customizing plot labels is available
at the patchwork pkgdown site.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 94 — #104 �
�

�
�

�
�

94 Visualizing Your Data

Exercises

4.6.0.0.1 Easy

•	 Change the layout using the + and / operators using the patchwork
package. Create a few new layouts of the plots we previously created.

•	 Create four new plots from this data. Place them into a grid using
gridExtra. Then do the same with patchwork. Can you make them
look the same?

•	 What happens if you do not set the number of columns in the
grid.arrange() function?

4.6.0.0.2 Intermediate

•	 You can create grids of multiple grids. Try grid.arrange(g1, g1). What
happens? What about grid.arrange(g1, plot1)?

•	 Manually add a title and subtitle using the gridExtra solution (Note:
this is not as straightforward as with patchwork).

4.7 Saving Your Plots

Once you have spent so much time creating and cleaning your plots, it would be
good if we could automatically save the plot. That way, if you need to modify
it later, you can make the modifications and save them to a specified folder
without needing to go through the process of finding folders or remembering
how you set up the figure.

RStudio provides some tools for saving plots. When you create a plot, it will
show up in the Plots tab in the lower-right-hand part of RStudio. From here,
you can click on the Export menu and choose how to save your plot. You can
also preview how your plot will look in different sizes.

Once you figure out what size you want your figure to be and the type of file
you would like to save, you can use the ggsave() function to record how you
want to save the figure. Let’s say you want to save plot1 from the last section
as a 5x7 .png file (a standard format for Microsoft Word) in a subfolder called
“Figures” (make sure you have created this folder in your working directory).
Here is how you can do it using ggsave().
Save plot1 as a .png file
ggsave(here("Figures","plot1.png"),

plot = plot1,
device = "png",
width = 7, height = 5)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 95 — #105 �
�

�
�

�
�

95 Advanced Visualizations

Exercises

4.7.0.0.1 Easy

•	 Try to save another plot to the Figures folder.

4.7.0.0.2 Intermediate

•	 What happens if you remove “Figures” from the here() function? Where
does this save?

•	 How would you save to a particular folder without using the here()
function? (Try to do this with a command, rather than using the RStudio
dropdown menu.)

4.8 Advanced Visualizations

So far, we have created nice, clean visual descriptions of our data, but we have
barely scratched the surface of what is possible in ggplot2, and we will return
to some additional plots in the Exploratory Data Analysis chapter.

Before we conclude this chapter, we want to provide a few examples of advanced
visualization techniques – charts that you might be less likely to use, but
which demonstrate the range of R for producing visualizations. Hopefully
demonstrating the range of possibilities in R will help inspire you to create
your own stunning graphics.

The goal at this point, is to take that which you have learned in the comparative
cases presented above, and apply it to the more complex code. Importantly,
everything covered below is built using the same logic and syntax covered to
this point.

4.8.1 Bubble Plots

In 2010, Hans Rosling presented a series of data plots to show changes in
global population and health over time in a documentary on BBC Four, and
in a series of YouTube videos and TED talks. These videos became incredibly
popular, with just one of his videos on YouTube receiving more than 9 million
views (as of this writing).

Rosling made use of animation and several other techniques which we will not
cover (but, for which, there are libraries in R), but the core of his presentations
was a type of chart called a bubble plot. These plots combine color and size with
traditional scatter plots to present four dimensions of data in two dimensions.

The code below, resulting in Figure 4.17, demonstrates how, by simply speci
fying the size and color aesthetics, we can create a plot that shows how the

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 96 — #106 �
�

�
�

�
�

96 Visualizing Your Data

level of democracy in 2014 is related to a country’s change in per-capita GDP
from 1971 to 2007, region, and level of democracy in 1972.
ctydta_short %>%

mutate(change_gdppc = ln_gdppc_07 - ln_gdppc_71) %>%
ggplot(aes(x = fhrate72, y = fhrate14)) +
geom_point(aes(size = change_gdppc, color = Region),

position = "jitter") +
geom_abline(intercept = 0, slope = 1) +
scale_y_continuous(limits = c(0.5, 7.5, 1)) +
scale_x_continuous(limits = c(0.5, 7.5, 1)) +
labs(x = "Democracy Score 1972", y = "Democracy Score 2014",

size = "Per-capita GDP Growth") +

theme_minimal()

2

4

6

2 4 6

Democracy Score 1972

D
e

m
o

c
ra

c
y
 S

c
o

re
 2

0
1

4

Region

Africa & M.E.

Asia

Eastern Europe

Industrial

Latin America

Per−capita GDP Growth

−1

0

1

2

FIGURE 4.17
A Bubble Plot

There are a lot of options that have been specified in this plot, but, by now,
you can probably figure out what all of them do on your own. We started by
creating a new variable that records the change in the log of per-capita GDP
using the mutate function from the last chapter.

We fed the resulting data into ggplot with an aesthetic that places a country’s
1972 Freedom House score on the x-axis and their 2014 score on the y-axis.
We then added a scatterplot using the geom_point() geometry, specifying

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 97 — #107 �
�

�
�

�
�

97 Advanced Visualizations

that the color was determined by the country’s region and the point’s size was
determined by the country’s GDP growth. The position of the points is also
specified as “jitter”, which adds a small amount of noise to the data so the
points that overlap are not hidden.

Since we are looking at the change in democracy, it is useful to have a line
which indicates no change – in this case a 45 degree line – which we add
by creating with the geom_abline() geometry and specifying a line with a
y-intercept at zero and a slope of 1. The points above this line are the countries
that have increased their democracy scores, and the ones below this line have
decreased their scores.

Finally, we clean up the chart by specifying the axis marks on the x-axis and
y-axis using the scale_x_continuous() and scale_y_continuous() options
with the limits defined – in this case, we had the limits go from 0.5 to 7.5 by
steps of 1. And, as before, we specify informative axis and legend labels, and
change the theme to a black-and-white theme.

The results are somewhat more basic than Rosling’s famous plots, but not by
much. As you become more skilled with graphics, you will find that the sky is
the limit in creating your graphics.

4.8.2 Interactive Plots

In contemporary scholarship, an increasing number of scholars are posting
graphics online that can convey more information, through animation and
interaction, than on the printed page. These graphics allow readers to get a
better understanding of the data, as well as providing interesting summaries
of data that can be shared on social media to reach a broader audience. In
this subsection, we will demonstrate how to generate interactive plots.

There are many ways to generate interactive plots in R, such as iplot, Rggobi,
plotly, and so on. Though all of these have their strengths and weaknesses,
we will focus on plotly, which leverages ggplot2 and is a rapidly developing
platform for complex and impressive interactive plots. Further, plotly has a
host website that allows users to place interactive plots on the web, and also
offers a simple point-and-click interface at https://plot.ly/.

For interactive plots using plotly and ggplot2, we will need to install and
load the plotly R package. Also, in the code below we will be returning to the
pipe operator, %>%, which is a centerpiece of the Tidyverse. We will continue
to use our ctydta_short data object. For these plots, our key function is
plot_ly, where the argument type allows us to change the plot type (e.g.,
scatterplot, histogram, etc.). Run the following code locally for a simple
interactive scatterplot.

https://www.plot.ly

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 98 — #108 �
�

�
�

�
�

98 Visualizing Your Data

library(plotly)

simple scatterplot
scatter <- plot_ly(ctydta_short,

x = ~ ln_gdppc_71,
y = ~ fhrate72,
type = "scatter", # plot type
text = paste("Country: ",

ctydta_short$Nation), # hover
mode = "markers", # object type
color = ~ Region,
size = ~ ln_gdppc_71

) %>%
layout(title='Simple Scatterplot',

xaxis=list(title='ln(per-capita GDP)'),
yaxis=list(title='Freedom House Democracy Score, 1972'))

scatter

The plot you see in the Viewer tab in the lower right-hand corner of RStudio
allows you to hover over the points to see more information. You can save this
plot as an interactive HTML plot by going to the Export dropdown menu and
selecting “Save as Web Page. . . ”. (Note that, if it does not show up in the
Viewer window, this is likely just a result of the size of your screen. You can
save it as a web page and it will show up when you click the saved file.)

In the code chunk above, there are a few changes to syntax, but mostly the
intuition from ggplot2 remains the same. Note, though, that for axis titles,
we need to pipe in a new layer (layout). Further, take note of the fact that we
stored the plot in its own object, scatter, which is a requirement for building
interactive plots manually like this in R.4

Let’s try another interactive plot, but of a histogram.
Interactive histogram
hist <- plot_ly(ctydta_short,

x = ~ fhrate72,
type = "histogram",
text = paste("Region: ", ctydta_short$Region),
color = ~ Region

) %>%
layout(title='Simple Histogram',

xaxis=list(title='Freedom House Democracy Score, 1972'),
yaxis=list(title='Number of Countries'))

hist

4This is not necessary for building plots directly on Plotly’s website.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 99 — #109 �
�

�
�

�
�

99 Concluding Remarks

There is a ton of information in this plot! Inspect it all carefully. Try leveraging
the internal tools from plotly in the upper right, such as changing the number
of bars viewed at a time, the hover text, magnifying portions, and so on.
These are quite informative, powerful plots that do not require a great deal of
additional knowledge beyond our use of ggplot() above.

4.9 Concluding Remarks

This has been a whirlwind tour of visualization using ggplot2 and other related
packages in the broader Tidyverse. While we have covered a lot of ground, the
reality is that we have only scratched the surface of the visualization tools
available and what you can do with these tools. As you have probably figured
out by now, R is incredibly flexible for visualization, allowing for a wide range
of plot options that are basically impossible in statistical packages like SPSS,
SAS, and Stata.

If this sounds like the area of artists, you are not far off. While many social
scientists fall into the trap of re-creating the basic plots they learn in their
introductory classes over and over, truly great visualizations find ways to
convey information in a manner that is beautiful and meaningful (Tufte et al.,
1990; Tufte, 2001; Healy, 2018). You now have the fundamentals needed to
produce such plots, so continue learning visualization and let your imagination
run free.

4.9.1 More Resources

There are several nice resources that you can access online or in print to help
you with more specific plots. Here are two excellent resources to help you as
you continue to develop your skills with ggplot.

1.	 The Data Visualization Chapter in the R for Data Science, which is
a free book by Hadley Wickham and Garrett Grolemund (Wickham
and Grolemund, 2017). A version of this is available free online.

2.	 For a book length treatment of the subject, Kieran Healy’s book,
Data Visualization: A Practical Introduction (Healy, 2018), is an
excellent treatment of visualization generally, and visualization using
ggplot2 in particular.

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 101 — #111 �
�

�
�

�
�

5

Essential Programming

In this chapter we are depart from the Tidyverse for a while to introduce
readers to core programming concepts in (mostly, base) R. These tools are
invaluable for efficiently engaging with R programming, both in and out of
the Tidyverse. Though the majority of coverage in this chapter is using base
R tools, at the end we will return to the Tidyverse, covering a core functional
programming task – mapping (via the Tidyverse purrr package). Our goal
here is to cover a variety of tools and syntactic choices in R to widen and
deepen your R toolbox, driving toward the ultimate goal of making our way
up the steep R learning curve.

This chapter is a bit more technical than applied, but is no less important for
cultivating an effective understanding of R. In the long term, understanding
the basics of programming in R will help to expand your horizons and open
up new vistas for your research.

5.1 Data Classes

Before we get into the ins-and-outs of programming, the next couple of sections
will look under the hood of R to discuss some of the fundamental items that
make up the language. One way to think about this is that we will be looking
at the small building blocks that can be used to make a much larger structure.

We start by discussing the types of data objects R allows you to use and how
they behave. There are several different classes of data, and the operations
you can perform on the data will differ, depending on the class. These classes
are “numeric”, “character”, and “factor.”

Numeric data is just what it sounds like. This is data that is either made up
of integers or doubles (a term used for numeric data that can have decimal
places).
Examples of numeric class
class(1)

[1] "numeric"

101

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 102 — #112 �
�

�
�

�
�

102 Essential Programming

class(1020)

[1] "numeric"

class(0.50)

[1] "numeric"

Character data (sometimes called “strings”) is data made up of a combination
of letters, numbers, and, sometimes, symbols. Character data will be encased
in quotation marks when it is printed out.
Examples of character class
class("this is a string")

[1] "character"

class("email@email.com")

[1] "character"

class("1")

[1] "character"

Notice especially the last example. It is the number 1, so you might expect it
to be numeric, but it is not because it is in quotation marks. If you were to
try a numeric operation, say adding it to something else, R would give you an
error.
Adding a string with a numeric
"1" + 1

Finally, factor data is one of the most confusing classes to deal with in R, and
many people choose to avoid using it unless it is specifically needed. The factor
class is a hybrid between the numeric class and the character class. For most
functional purposes, it is treated as being of the character class, but with an
underlying order. Here is an example of how this can get confusing.
Example of factor class
example <- as.factor(c("1","3","5","2","5","1","100"))
example

[1] 1 3 5 2 5 1 100
Levels: 1 100 2 3 5

This tells us that we have created a vector of factors with 5 levels (representing
the unique strings in the vector). Now let’s say we look at the numbers in this
vector and say we want to treat them as numbers.
Example of problems with factor class

mailto:email@email.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 103 — #113 �
�

�
�

�
�

Data Classes 103

strange_example <- as.numeric(example)
strange_example

[1] 1 4 5 3 5 1 2

This is not at all what we expected. How did “100” become 2? And how did
“3” become 4? This is because it is giving you the underlying numbers behind
the factors, not the values of a numeric version of the strings. To do this, we
would need to do something like this.
Convert a factor class to numeric
expected_example <- as.numeric(as.character(example))
expected_example

[1] 1 3 5 2 5 1 100

And this is one of the reasons we will avoid factors for most of our work in
this book. There are, however, some situations in which factors are useful. For
example, factors can be used to set an order to character data for graphing. If
you want to create a factor variable, it is recommended that you also explicitly
set the order of that variable using the levels = option. In the following
example, we want low to be associated with 1, medium with 2, and high with
3.
Create a set of values
values <- c("high", "low", "medium", "low", "low", "high")

Create an unordered factor
unordered_factor <- factor(values)

Create ordered factor
ordered_factor <- factor(values,

levels = c("low", "medium", "high"))

Print them both out for comparison
unordered_factor

[1] high low medium low
Levels: high low medium

ordered_factor

low high

[1] high low medium low
Levels: low medium high

Show them both as numeric
as.numeric(unordered_factor)

low high

[1] 1 2 3 2 2 1

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 104 — #114 �
�

�
�

�
�

104 Essential Programming

as.numeric(ordered_factor)

[1] 3 1 2 1 1 3

As you can see above, you can move between data types, to a degree. The
character “1” can be made numeric using the as.numeric(), or a set of
strings can be converted into factors using factor(). You should always be
careful when you move between classes, however, to make sure you do not get
unexpected results.

Exercises

5.1.0.0.1 Easy

•	 Classify each of the following as numeric or character: 2, “two”, “five”,
“5”, 100.

•	 Extending the logic we’ve covered so far, what is the function you would
use to check whether an object is a matrix?

5.1.0.0.2 Intermediate

•	 As shown above, if you try entering "1" + 1, you will get an error. Create
two variables, one called number_one with a value of 1 and one called
character_one with a value of "1". How can you make number_one +
character_one produce the correct answer, 2?

5.1.0.0.3 Advanced

•	 Create a vector of values using numeric_vector <- runif(10), which
gives you 10 random numbers between 0 and 1 from a uniform distri
bution. What happens when you use as.character() on this vector?
What happens when you use as.factor()? What happens when you use
as.numeric(as.factor())? Why?

•	 Describe the differences between factor objects and categorical objects.

5.2 Data Structures

There are several main data structures used in R, some of which we have
already encountered. The first, a vector, we have seen before. A vector is a
one-dimensional collection of objects and can hold a set of items of any class.
However, it cannot hold items of different classes. If it receives inputs from
different classes, it will change these to make them a single class.1

1In most other programming languages, a vector is called an “array”. Technically, an
“array” in R is a separate data structure, which can be comprised of vectors of one or more

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 105 — #115 �
�

�
�

�
�

105 Data Structures

A vector
vector1 <- c(1,2,3,4,5) # numeric
vector1

[1] 1 2 3 4 5

vector2 <- c("jack", "jill", "up the hill") # character
vector2

[1] "jack" "jill" "up the hill"

vector3 <- c(1,2,"three","four") # num + char --> char
vector3

[1] "1" "2" "three" "four"

Because they only include items of the same class, we can check the class of
items in a vector. As you can see below, if you include both character and
numeric items in a vector, the numeric entries are converted to character
entries and the vector will be considered of the character class.
Class of items in a vector
class(vector3)

[1] "character"

You can access single items in a vector by placing the index of the item you
want in brackets. If you wish to access multiple items, you can specify the
range using a colon (:). This will return the items in the vector from the first
number to the second, inclusive of both.
You can access items in a vector using vectorname[#]
e.g., to access the 2nd item in vector1
vector1[2]

[1] 2

Access the 3rd item in vector2
vector2[3]

[1] "up the hill"

Access multiple items in a vector using `:`
vector1[2:4]

[1] 2 3 4

You can also find the length of a vector using the length() function. This

dimensions. An array of one dimension is almost the same as a vector and an array of two
dimensions is almost the same as a matrix. We will not go into depth on arrays, since they
are not as commonly encountered as other data structures.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 106 — #116 �
�

�
�

�
�

106 Essential Programming

can be an especially useful function if, for example, you are looking at vectors
of differing lengths and want to get the last few items in them. This will be
important when you try to write functions that might be used on vectors of
different lengths. The code block below shows an example where we get the
last three items in “vector 1” by asking for all the items ranging from two
places before the end of the vector to the end of the vector.
Number of items are in the vector using length()
length(vector1)

[1] 5

Get last three items of vector1
vector1[(length(vector1) - 2):length(vector1)]

[1] 3 4 5

A matrix is essentially a collection of one-dimensional vectors arranged into
two dimensions of rows and columns. As with a vector, a matrix can only
be of one class. And, while we will not cover it here, R includes a range of
operations that can be used for matrix (linear) algebra. You can access parts
of a matrix by placing the numbers of the rows and columns you want into
brackets, separated by commas. The first item in the brackets is the row
number, the second is the column number. So, for example, matrix1[2,3]
requests the entry in the second row and the third column of the matrix.
matrix1 <- matrix(c(1,2,3,4,5,6,7,8,9), nrow = 3, ncol = 3)
matrix1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

You can access items in a matrix using matrixname[#row, #col]
e.g., access the value in the 2nd row of the 3rd column
matrix1[2,3]

[1] 8

Use `:` to access multiple; and blank to access all items
matrix1[2:3,]

[,1] [,2] [,3]
[1,] 2 5 8
[2,] 3 6 9

Find the dimensions of your matrix using dim()
dim(matrix1)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 107 — #117 �
�

�
�

�
�

107 Data Structures

[1] 3 3

Find the number of rows and columns with nrow() and ncol()
nrow(matrix1)

[1] 3

ncol(matrix1)

[1] 3

A list is a collection of other data structures (including lists of lists). Unlike
vectors and matrices, a list can contain any combination of data types. Lists
are especially useful for programming because they give you a very flexible
data structure for storing a range of values. In the example below, we show
you the creation of a list that includes two vectors and a matrix. You can also
see different methods for accessing the items in a list. One way is to use double
brackets ([[]]). So, for example, list1[[2]] gets the second element in the
list – in this case it is “vector2”. Another way is to assign names to the list
items. In the example below, we assign the names using the names() function
on the left and assigning a vector of names on the right. Once a list has been
assigned names, you can access the items in the list using a $, where the list
name is on the left side and the name of the list item you wish to access is on
the right.
Lists are a collection of other data structures
They are what most statistical functions return
list1 <- list(vector1, vector2, matrix1)

Items in a list can be accessed using listname[[itemnumber]]
list1[[2]]

[1] "jack" "jill" "up the hill"

Name and access items in the list via listname$itemname
names(list1) <- c("vector1", "vector2", "matrix1")
list1$vector2

[1] "jack" "jill" "up the hill"

In fact, if you have used R before, you were probably using lists without even
knowing it. Dataframes and tibbles are both special kinds of lists. Indeed, you
have seen us use the $ before to access particular variables in a dataframe
or tibble. Similarly, when you run a regression model, the object that is
returned is a list with a range of different components like the coefficients, the
variance-covariance matrix, etc.

In the example below, we run a regression of y1 on x1 (both random numbers
from a uniform distribution). When we use the names() function, you can see
that, as in the list example above, we get names for the items in the resulting

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 108 — #118 �
�

�
�

�
�

108 Essential Programming

list. One of those items is a vector of coefficients, which we can access using
the $. We can also access specific items in the vector using the brackets ([
]), just like we observed above. Finally, we can use the list in the summary()
function to see the results in a nice format. If you repeat the process on the
results of the summary() function, you will see that the output of that function
is also a list.2

Using lists in R without knowing it
y1 <- runif(100, min = 0, max = 1)
x1 <- runif(100, min = 10, max = 20)
regression <- lm(y1 ~ x1)
names(regression) # list returned by lm()

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

regression$coefficients # coefficient vector in lm()'s return

(Intercept) x1
0.6446093 -0.0094899

regression$coefficients[2] # Accessing one of the coefficients

x1
-0.0094899

summary(regression) # summary == presentation of list elements

##

Call:

lm(formula = y1 ~ x1)

##

Residuals:

Min 1Q Median 3Q Max

-0.53854 -0.22524 0.01843 0.28101 0.52222

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.64461 0.16239 3.97 0.000137 ***

x1 -0.00949 0.01117 -0.85 0.397502

--
Signif. codes:

2Readers should note that here and anywhere in the book where simulations or random
draws are used, results will be slightly different from our own given the randomness of the
process, e.g., runif().

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 109 — #119 �
�

�
�

�
�

109 Data Structures

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2987 on 98 degrees of freedom
Multiple R-squared: 0.007315,Adjusted R-squared: -0.002814
F-statistic: 0.7222 on 1 and 98 DF, p-value: 0.3975

As mentioned above, a dataframe (data.frame) is a type of list, but it has
some special features that are worth mentioning. A dataframe is a list that
creates rectangular data. When you import a data set from .xls, .csv, .dat,
or .dta, you get a dataframe. While it looks a lot like a matrix, it allows you
to access columns by names and combine a range of data types. All of the
individual columns will be of the same data type, but different columns can
have different data types. You can also access individual columns using a $,
much like a list. Within each column, all of the items are of the same class.
Dataframes are what we think of as a data set in Stata or SPSS

convert a matrix to a dataframe using data.frame()
dataframe1 <- data.frame(matrix1)

names(dataframe1) <- c("y", "x1", "x2") # Name the variables

Access different variables via dataframename$variablename
dataframe1$y # Returns the variable as a vector

[1] 1 2 3

dataframe1$y[2]

[1] 2

Use the head() function to see the first few rows
head(dataframe1)

y x1 x2
1 1 4 7
2 2 5 8
3 3 6 9

The last data structure we will discuss is a relatively new one developed for
the Tidyverse called a “tibble.” A tibble is very similar to a dataframe, and
even can be constructed using very similar commands. Tibbles have a few
advantages in speed with larger datasets and have a nicer print option (no need
to use head()). Because of this, tibbles are slowly becoming the standard.
Create a tibble out of a matrix
tibble1 <- as_data_frame(dataframe1)
tibble2 <- as_tibble(dataframe1)

Print the data

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 110 — #120 �
�

�
�

�
�

110 Essential Programming

tibble1
tibble2

Exercises

5.2.0.0.1 Easy

•	 Using dataframe1, which you created in this section, display the first 10
rows and 10 columns. How do you do this?

•	 When you type in tibble2 from above, you will get a printout of the
data structure. What do the letters (e.g. STR) under the column names
stand for? Look up what the different column names can be and what
they mean.

5.2.0.0.2 Intermediate

•	 Create two vectors, v1 <- c(1, 2, 3) and v2 <- c(4, 5, 6). What
happens when you use c(v1, v2)? Why? What about rbind(v1, v2) or
cbind(v1, v2)?

5.2.0.0.3 Advanced

•	 Print the structure of tibble1 and tibble2 previously created. Describe
the differences in these types of objects in substantive terms. And further,
why might one use a tibble instead of a data frame?

5.3 Operators

Programming in R is built on expressions, operators, and characters. And
further, when using R, we are often concerned with accomplishing complex
tasks (or even simple ones) most efficiently and quickly. This implies some
degree of iterating over a series of simpler tasks. While our goal is to encourage
creation of user-defined functions and loops whenever possible, at a minimum,
this chapter is concerned with getting you comfortable with the general syntax
that is central to programming in R.

First, consider relational operators. These are symbols, or “operators” that
specify relationships between objects. And recall that R is built on “object
oriented programming”, where values are stored in objects which can be
manipulated and combined a variety of ways downstream. The main relational
operators are:

1. < less than
2. > greater than

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 111 — #121 �
�

�
�

�
�

Operators 111

3. <= less than or equal to
4. >= greater than or equal to
5. == equal (identical) to
6. != not equal to

Relational operators return an object of class “logical”, meaning it has a value
of either TRUE or FALSE. Put in terms of an example, the first line of the code
block below asks R whether 5 is greater than 4. R returns TRUE. The second
line asks if 5 is less than or equal to 4. R returns FALSE. The third line shows
that the result is of class “logical.”

5 > 4

[1] TRUE

5 <= 4

[1] FALSE

class(5 > 4)

[1] "logical"

Similar to relational operators are logical operators. These provide the ground
rules for combining and pairing objects in a variety of manners. Consider the
most common logical operators:

1. ! not
2. & and
3. | or

Note that the ! operator appears in both lists of operators. This is because,
on its own it just means “not,” which is a logical expression. Combined with
other operators, ! can add its value, so to speak, to others (e.g., not equal to
is !=).

These logical operators can be used to produce complex conditions. For example,
the first line of the code block below tests whether 5 is greater than 3 AND
whether 5 is greater than 6. This returns a value of FALSE because one of the
two conditions is false. The second line tests whether five is greater than 3
OR whether 5 is greater than 6. This evaluates to TRUE because one of the
two conditions is true. The third line uses the ! operator to reverse the second
line. This evaluates to FALSE, reversing the result of the second line.
5 > 3 & 5 > 6

[1] FALSE

5 > 3 | 5 > 6

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 112 — #122 �
�

�
�

�
�

112 Essential Programming

[1] TRUE

!(5 > 3 | 5 > 6)

[1] FALSE

The last line of the above block also shows an important point about the use
of () with logical operators. Just like mathematical equations, the statement
inside the parentheses is evaluated first, followed by the statement outside the
parentheses.

Exercises

5.3.0.0.1 Easy

•	 What does the following statement evaluate to – !((5 > 3 & 5 > 6) |
5 > 6)? Why?

5.3.0.0.2 Intermediate

•	 Think about the use of == compared to = seen elsewhere in the book.
Apply this logic to the ! operator, and offer a definition of !! (read:
“double bang” or “bang bang”).

5.3.0.0.3 Advanced

•	 As we have discussed previously, objects that take other objects as an
input and then output another object are called functions. Demonstrate
that relational and logical operators are also functions. Try \>‘(5,3)‘.
What does this produce? Can you produce the same statement as in #1
above using the function form?

5.4 Conditional Logic

if and if else are essential building blocks to programming in R, from testing
certain values or expressions to writing packages and big chunks of code with
conditional statements. They are very powerful tools in programming, and
similar versions exist in all major programming languages. Specifically, the
syntax starts with if, and then a value to be tested is supplied in parentheses,
followed by braces, which include the statement to be expressed. In if else
cases, the user can evaluate a statement under different constraints (e.g., “If
value X is Y, then do Z. Otherwise (”else“), do A.”).

Let’s begin with a simple case of an if statement: evaluating whether a
supplied number is positive, and printing as much if it is.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 113 — #123 �
�

�
�

�
�

Conditional Logic	 113

x	 <- 5

if (x > 0) {
print("Positive number")

}

[1] "Positive number"

Next, let’s take a simple case for if else. In this case, we check if a number is

greater than zero. If so, we print Positive, else we print Negative or zero.

x <- -5

if (x > 0) {
print("Positive")

} else {
print("Negative or zero")

}

[1] "Negative or zero"

Note, we are creating and defining an object x, which is the value being

evaluated. We can redefine x, and test it again.

x <- 5

if (x > 0) {
print("Positive")

} else {
print("Negative or zero")

}

[1] "Positive"

Though seemingly simple, if and if else are core to understanding and
applying programming in R.

Exercises

5.4.0.0.1 Easy

•	 Create your own spelling test. Check if a variable contains the word
“antialestablishtarianism” and have it print “correct” if it is spelled correctly
or “incorrect” if it is spelled incorrectly. Try out different spellings for
your variable and see what it produces.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 114 — #124 �
�

�
�

�
�

114 Essential Programming

5.5 User-Defined Functions

Building on (and soon to layer) the logic of conditional statements using if and
if else, we now shift to user-defined functions. These are similarly powerful
programming tools that drastically streamline the programming (and research)
process. They allow users to do a ton of tasks, like automating rote, redundant
code and calculations. But the value of functions is mostly that they allow
for consistent calculation and for simple usage in future applications. They
operate on the same principle of preferring sum(2,2,2,2) in base R to the
more laborious (2 + 2 + 2 + 2). Though the tradeoff may seem minimal
with the simple example, the value of writing functions to streamline code and
calculations will quickly become apparent.

As before, we begin with a simple example to get the intuition: squaring a
value. Rather than typing: (3ˆ2), (4ˆ2), (5ˆ2), and so on, a function would
streamline this process significantly, prevent the likelihood of messing up the
syntax if approached line by line, and also allow the user to come back to
access the function in the future (as well as update for needed complexity as
we will see below). The syntax is defining a new object, and then specifying
the function with an argument supplied in parentheses. Then, within braces,
there is a statement to be evaluated, and the result is returned as output.
With that, let’s make this squared value a function.
sq <- function(x) {

sqn <- x^2
return(sqn)

}

With the function defined by the user (hence the name), we can call the
function to see if it worked properly.
sq(2)

[1] 4

This is good news! Our function worked as expected. Feel free to try squaring
any value to verify (or have fun). Now, let’s complicate our example just a
little bit, allowing for greater flexibility. In the following case, we are updating
the function to allow for x and y values to be defined. Thus, instead of just
squaring our supplied value, we are now allowing for raising any value, x, to
any power, y. As such, we change the name of the original function from sq to
exp.
exp <- function(x, y) {

expn <- x^y

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 115 — #125 �
�

�
�

�
�

115 User-Defined Functions

return(expn)
}

With the function defined, we can now call it to see if it worked. For a simple
case, raise 2 to the power of 4.
exp(2,4)

[1] 16

Now, here is another complication, but allowing for a much more descriptive
(and thus useful) function. In the next case, we are printing a descriptive
output using both print() and paste(), the latter of which allows us to
“paste” words along with our output, which is especially useful when writing
R packages.
exp <- function(x, y) {

expn <- x^y
print(paste(x,"raised to the power of", y, "is", expn))
return(expn) # optional

}

And further, we can also assign “default values” in our functions, which are
values you don’t have to specify, but could change if you want. So, in the
example below, if the user does not define a specific value for y, it will, by
default, be assigned a value of 2.

Note, we are continuing to redefine our exp function from earlier. If you wanted
to leave the original intact, you would simply need to change the object name
to the left of the assignment operator, <-.
exp <- function(x, y = 2) {

expn <- x^y
print(paste(x,"raised to the power of", y, "is", expn))

}

From here, we can call a few versions of the function to see everything come
together:
exp(3)

[1] "3 raised to the power of 2 is 9"

As expected, when only one value – the x value – is defined, the default value
for y is used and the function squares the provided value.

Or. . .
exp(3,1)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 116 — #126 �
�

�
�

�
�

116	 Essential Programming

[1] "3 raised to the power of 1 is 3"

In this case, we have defined both an x and y value, so the default squaring is
overridden and y is assigned a value of 1.

Now, let’s build on what we have learned so far and create a new function that
actually does something of more value. Specifically, we can write a function
that calculates temperature in Celsius, given a supplied Fahrenheit value.
celsius <- function(f) {

c	 <- ((f - 32) * 5) / 9
return(c)

}

With the function defined, we can either supply individual Fahrenheit values,
or a vector of Fahrenheit values; the function can handle both. Let’s store a
vector of Fahrenheit values in the object fahrenheit and test out the function
(note: if we supply a vector of values, we should get a vector of values returned
as output).
fahrenheit <- c(60, 65, 70, 75, 80, 85, 90, 95, 100)

celsius(fahrenheit)

[1] 15.55556 18.33333 21.11111 23.88889 26.66667 29.44444
[7] 32.22222 35.00000 37.77778

Excellent! The function worked as expected with quick calculation of a vector
of Fahrenheit values to Celsius via our celsius user-defined function.

Exercises

5.5.0.0.1 Easy

•	 Take one of the number comparison if else statements from the previous
section and make it a function. Make sure you understand how this works.

5.5.0.0.2 Intermediate

•	 Write a function to convert pounds (lbs) to kilograms (kgs) (note: 1 lb ≈
0.45 kg).

5.5.0.0.3 Advanced

•	 Write a function and place it within another function. This can evaluate
any expression you’d like (e.g., nesting power rules). More broadly, discuss
the benefits of such a task. Why might you do it? When would it not
make sense to do so?

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 117 — #127 �
�

�
�

�
�

117 User-Defined Functions

5.5.1 Layering Statements

In addition to learning each of these parts, it is important to note that the power
of these programming building blocks is that they can be layered. Notably,
we can embed conditional logic previously discussed (if and if else) into
user-defined functions to make them even more powerful, descriptive, and
ultimately more useful.
First, write the function
pnz <- function(x) {

if (x > 0) {
n <- "Positive"

}
else if (x < 0) {

n <- "Negative"
}
else {

n <- "Zero"
}
return(n)

}

Now call it for a variety of values
pnz(4)

[1] "Positive"

pnz(-3)

[1] "Negative"

pnz(0)

[1] "Zero"

Note that in the combination above, we combined if and else to have an else
if statement, which is a programmatic way of layering multiple statements in
a single function. This is somewhat similar to the layering of the ifelse()
function we used for recoding variables two chapters ago. Indeed, the logic of
if and else presented here is similar, although the programming functions
are more flexible in their use.

Finally, de-bugging is a key piece of writing code in R, especially when creating
R packages. Specifically, we can tell a function to stop if something in the
code is wrong/missing, or we can also print warning messages if something is
where it should not be, but we don’t want to stop the function entirely and
throw an error message.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 118 — #128 �
�

�
�

�
�

118 Essential Programming

Let’s put all of these pieces together that we have learned so far and replicate
a function to calculate the Herfindahl-Hirschman Index (HHI), which is a
measure of market concentration (often used as a proxy for competition). This
is from an R package hhi, and serves as a useful case study applying all of
this logic (Waggoner, 2018b). The package takes a dataframe as its input, x,
along with a string, s, that identifies the variable for which HHI is calculated.
Calculate Herfindahl-Hirschman Index Scores

usage: hhi(x, "s")
x Name of the data frame
s Vector corresponding with market shares
return: hhi A measure of market concentration
Note: Vector of "share" values == total share of firms
Note: 0 = perfect competition; 10,000 = perfect monopoly

hhi <- function(x, s){
if (!is.data.frame(x)) {

stop('"x" must be data frame\n',
'You have provided an object of class: ', class(x)[1])

}
shares <- try(sum(x[,s]))
if (shares < 100 | shares > 100) {

warning('shares, "s", do not sum to 100')

}

d <- x[,s]

if (!is.numeric(d)) {

stop('"s" must be numeric vector\n',
'You have provided an object of class: ', class(d)[1])

}
if (any(d < 0)) {

stop('vector "s" must contain only positive values')

}

hhi <- sum(d^2)

return(hhi)
}

With the function defined, as well as parameters defined, we can create some
fake “firm” data as well as the share of the market each retains, and then
calculate the competitiveness (or concentration) of this hypothetical market.
a <- c(1,2,3,4) # firm id
b <- c(20,30,40,10) # market share of each firm (totaling 100%)
x <- data.frame(a,b) # create data frame

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 119 — #129 �
�

�
�

�
�

119 Making Your Code Modular

hhi(x, "b")

[1] 3000

5.6 Making Your Code Modular

Once you have created a function, you can start to make your code “modular.”
This means that you can start to split your code between several files. Why
would you want to do this?

As you conduct more and more actions during your analysis, you will find
that your scripts may become quite long. We have had scripts that have run
into thousands of lines. Think about it. By the time you have made all of the
changes you want to a data set, done some exploration, finished your main
analyses, and conducted some robustness checks, you might end up with a
very long list of commands and it might be difficult to find and modify specific
parts.

Also, with what you have learned in this chapter, you might want to use your
functions multiple times. Take the function for calculating HHI in the last
section. This may be something you will want to do in several different projects,
and it can become messy to paste it into every script you write in its entirety.

So, instead of putting everything into a single file, you can save them as separate
files (or “modules”) and load them into your code. For the hhi function you
created in the last section, you can put it into a script file and save it as hhi.r
in your working directory. Once you have done this, you can load the function
into another project by simply typing source("hhi.r"). You do not have to
limit yourself to one function per module. Modules can contain any number
of functions. So you could make a collection of calculations you find yourself
using often and load all of those functions using this method.

If this looks a little familiar, it is basically the same thing you have been
doing when you install and load a package. Packages are simply collections of
functions that have some additional attributes (like the help documentation)
that make them easier to use. At some point, you might want to turn some of
your modules into packages. There are many resources online to help you with
this, as well as Hadley Wickham’s book on the subject.

In addition to saving and reusing functions, you can place entire parts of your
analysis in different modules to make it easier to keep track of your analysis.
If, for example, you have a hundred lines of code to take some raw data and
convert it into the format you want, this can also be saved as a function and
saved as a separate module.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 120 — #130 �
�

�
�

�
�

120 Essential Programming

By saving parts of your code as modules, you will make it easier to change
and maintain your code.

Exercises

5.6.0.0.1 Easy

•	 Try this out. Create a module called hhi.r. Open a new script and load
the module. Then try out the hhi() function in that new script.

5.6.0.0.2 Intermediate

•	 Let’s say you want to have a function you can use to convert a number of
imperial measures to their equivalent metric measures. Create a function
called convert that takes two inputs – a numeric value and the name of
the type of measure (“foot”, “yard”, and “mile”). Write the function such
that if a value in feet is entered, it will convert to centimeters (1 foot ≈
30.48 centimeters); if a value in yards is entered, it will convert to meters
(1 yard ≈ 0.91 meters), and if a value in miles is entered, it will convert
to kilometers (1 mile ≈ 1.61 kilometers).

5.7 Loops

Let’s transition to for loops, which are a close relative of user-defined functions.
Indeed, these are often used together, and can even be used to do similar
things, with a few tweaks. We will see this in a moment. But let’s start at the
beginning. for loops allow for iterating some calculation or function over a
bunch of different observations. So instead of typing out the same calculation
line by line, while updating the main quantity of interest, you can just tell a
for loop to do it for you (pun not intended, but not regretted). The syntax for
for loops is similar to functions, where they begin with “for” and then start
with some value in a sequence in parentheses. Then, within the braces, there
is similarly a statement to be evaluated. Let’s see how this works in practice
by revisiting our temperature example.
fahrenheit <- c(60, 65, 70, 75, 80, 85, 90, 95, 100)

for (i in 1:length(fahrenheit)) {
print(((fahrenheit[i] - 32) * 5) / 9)

}

[1] 15.55556
[1] 18.33333
[1] 21.11111

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 121 — #131 �
�

�
�

�
�

Loops 121

[1] 23.88889
[1] 26.66667
[1] 29.44444
[1] 32.22222
[1] 35
[1] 37.77778

The same logic applies here, where we tell the loop to start at the first value
(1) for each observation, i, in the vector of values in the object fahrenheit.
And calculate the temperature conversion for each value in the fahrenheit
vector. Finally, print the results for each supplied value. In sum, for loops are
quite powerful tools that will significantly streamline your programming and
make you think more efficiently in the process (e.g., “Rather than calculating
values incrementally, how could I automate the process based on foundational
logic/rules?”).

With your knowledge of if else and for statements, you now know the foun
dational blocks of programming in R (or, really, any programming language).
There are other programming structures, but conditional logic (if else) and
looping (for) are the foundational components of programming.

5.7.1 Using a Loop to Test the Power of an Experiment

A common task for those conducting social science experiments is the calcu
lation of the “power” of an experiment. In any experiment, we need to have
enough participants to make sure we can detect a statistically significant effect
(if any), but we do not want to make our sample size unnecessarily large, since
this would waste time and money. Power tests are also a standard part of
pre-registration, an increasingly common part of social science experiments.

One way to calculate the power of an experiment is to simulate what our
data will look like. This involves drawing a sample from a particular (usually
normal) distribution, creating a simulated treatment and control group, and
running a statistical test on it. The proportion of the time that the test detects
a statistically significant difference is the power of the test.

The code block below shows an adaptation of an example developed by the
Evidence in Governance and Politics (EGAP) for those conducting experiments.
It involves drawing a sample of 500 people from a normal distribution with a
mean of 0 and a standard deviation of 1.3 It then assigns 250 of the people to
a treatment group that is, on average, 0.2 higher (i.e., the treatment effect is
2/10 of a standard deviation). It uses a t-test to test the statistical significance
and records whether it was statistically significant at the 0.05 level (p < 0.05).

3Remember from your introduction to statistics that any normal distribution can be
standardized to have a mean of 0 and a standard deviation of 1 by subtracting the mean
and dividing by the standard deviation.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 122 — #132 �
�

�
�

�
�

122 Essential Programming

Note, in the chunk below, if assigned to the treatment group (assignment ==
1), the outcome is Y1. If the observation is assigned to the control group (1
assignment == 1), the outcome is Y0.
N <- 500 # Number of participants in the study
alpha <- 0.05 # Level of significance set to p < 0.05
simulations <- 100 # The number of simulations we want
treatment_effect <- 0.2 # Expected effect of the experiment

experiment_result <- c() # Create empty vector for results

Loop 100 times
for (i in 1:simulations) {

Y0 <- rnorm(n = N, mean = 0, sd = 1) # random vals from normal
Y1 <- Y0 + treatment_effect # exp outcome of treat
assignment <- rbinom(n = N, size = 1, prob = .5) # treat/cont
outcomes <- (Y0 * (1 - assignment)) + (Y1 * assignment)
pvalue <- t.test(outcomes ~ assignment)$p.value # t-test for p
significant <- ifelse(pvalue <= alpha, 1, 0)
experiment_result <- c(experiment_result, significant)

}

mean(experiment_result) # Print the power of the experiment

[1] 0.7

As you can see, the power of the test is about 0.6. Usually, for an experiment,
we want to have at least 0.8 power. This suggests that we should add more
cases to our experiment.

5.7.2 Using Loops to Explore Distributions

Suppose we drew a random sample of 50 respondents’ self-reported political
ideology on a 7-point scale, where 1 was extremely liberal and 7 was extremely
conservative. The mean of that sample was 3.32, suggesting the average person
in this sample sees themselves as generally moderate, or in the middle of the
distribution of political ideology. Here is the code setting this up:
sample_ideology <- c(3, 1, 2, 4, 4, 6, 1, 3, 2, 6,

1, 7, 3, 1, 4, 3, 4, 4, 1, 6,
7, 5, 7, 1, 1, 3, 2, 4, 1, 7,
1, 2, 1, 4, 6, 3, 2, 3, 1, 4,
1, 6, 3, 4, 5, 4, 1, 7, 2, 2)

mean(sample_ideology)

[1] 3.32

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 123 — #133 �
�

�
�

�
�

Loops 123

Now, suppose we wanted to simulate the reported sample ideology to see
whether this random sample was reflective of the broader American population.
However, we are not exactly sure how many times to do this to accurately
reflect the population of interest. To get traction on this question, the central
limit theorem and law of large numbers can help us out. To see the shape
distribution of many samples (central limit theorem) and how the location of
the distributions change (law of large numbers), we can use a series of for
loops, and plot the different distributions to see when and where (and whether)
the samples converge on the underlying population.

for loops allow for iterating some calculation or function over many different
observations. This is a simulation. The syntax of for loops is similar to
functions, where they begin with “for” and then start with some value in a
sequence in parentheses. Then, within the braces, there is a statement to be
evaluated.

For each chunk below, we start by creating an empty vector in which to store
our simulated values. We then specify the loop, to sample with replacement,
based on the initially-drawn sample (sample_ideology), and then take the
mean. We then plot each simulation and compare side by side via another
tidy-friendly package covered in the previous visualization chapter, patchwork.
The final result is in Figure 5.1.
N = 5
sm1 <- rep(NA, 5)

for (i in 1:5) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm1[i] <- mean(samp)

}

N = 20
sm2 <- rep(NA, 20)

for (i in 1:20) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm2[i] <- mean(samp)

}

N = 50
sm3 <- rep(NA, 50)

for (i in 1:50) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm3[i] <- mean(samp)

}

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 124 — #134 �
�

�
�

�
�

124 Essential Programming

N = 100
sm4 <- rep(NA, 100)

for (i in 1:100) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm4[i] <- mean(samp)

}

N = 500
sm5 <- rep(NA, 500)

for (i in 1:500) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm5[i] <- mean(samp)

}

N = 1500
sm6 <- rep(NA, 1500)

for (i in 1:1500) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm6[i] <- mean(samp)

}

N = 3500
sm7 <- rep(NA, 3500)

for (i in 1:3500) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm7[i] <- mean(samp)

}

N = 7000
sm8 <- rep(NA, 7000)

for (i in 1:7000) {
samp <- sample(sample_ideology, 30, replace = TRUE)
sm8[i] <- mean(samp)

}

Now plot each simulation
library(ggplot2)
library(patchwork)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 125 — #135 �
�

�
�

�
�

Loops 125

p1 <- quickplot(sm1, geom="histogram", main="N=5", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p2 <- quickplot(sm2, geom="histogram", main="N=20", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p3 <- quickplot(sm3, geom="histogram", main="N=50", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p4 <- quickplot(sm4, geom="histogram", main="N=100", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p5 <- quickplot(sm5, geom="histogram", main="N=500", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p6 <- quickplot(sm6, geom="histogram", main="N=1500", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p7 <- quickplot(sm7, geom="histogram", main="N=3500", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

p8 <- quickplot(sm8, geom="histogram", main="N=7000", bins=30) +
theme_minimal() +
geom_vline(xintercept=3.32, linetype="dashed", color="red")

piece ggplot objects together with the patchwork package
p1 +

p2 +
p3 +
p4 +
p5 +
p6 +
p7 +
p8

Note that, as expected by the central limit theorem and the law of large
numbers, as the sample size grows larger, the shape becomes more nor

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 126 — #136 �
�

�
�

�
�

126 Essential Programming

0.00
0.25
0.50
0.75
1.00

3.2 3.3 3.4 3.5 3.6
sm1

N=5

0
1
2
3

3.00 3.25 3.50 3.75 4.00
sm2

N=20

0
2
4
6

2.5 3.0 3.5 4.0
sm3

N=50

0

5

10

2.0 2.5 3.0 3.5 4.0
sm4

N=100

0
10
20
30
40
50

2.5 3.0 3.5 4.0 4.5
sm5

N=500

0
50
100
150

2 3 4
sm6

N=1500

0
100
200
300
400

2 3 4 5
sm7

N=3500

0
200
400
600
800

2 3 4
sm8

N=7000

FIGURE 5.1
Simulation Results

mally/Gaussian distributed (via, central limit theorem) and the location
of the distribution centers over the sample mean ideology of 3.32 (via, law of
large numbers).

Indeed, this simple simulation shows that if we drew a large enough sample
based on the original small sample, the shape and location of the distribution
would indeed center over the “true population” value, suggesting our small
initial sample was reflective of the true population. This is the idea behind a
statistical technique generically referred to as “randomization distributions
for statistical inference,” which helps quantify evidence against some null
hypothesis. Though the scope of this technique is beyond what we are interested
in in this book, it remains a useful demonstration of a for loop for simulating
these different sample sizes, but based on the original parameter values, which
is a very common social science task.

Exercises

5.7.2.0.1 Easy

• Write a function to calculate body mass index (BMI) and store it in
wt object, bmi. Note: the formula is bmi = h2 , where wt is a person’s weight

(kilograms), and h2 is a person’s height squared (meters).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 127 — #137 �
�

�
�

�
�

Loops	 127

•	 Repeat the previous exercise, but use a for loop instead.
•	 Pass the following vectors, weight and height, to your function (from #1)

and your loop (#2): weight <- c(70, 75, 80, 60, 90) and height <
c(1.3, 2, 2.1, 1, 1.7). Do you see the same values returned? Why or
why not?

5.7.2.0.2 Intermediate

• What are the two major types of operators and how do they differ?

5.7.2.0.3 Advanced

•	 Experiment with the experimental power loop above. How many cases
should you have in order to get at least 80% power? What about if the
treatment effect is 0.4?

•	 Try to nest the above loop inside another loop that tests the power with
sample sizes of 100, 300, 500, 700, and 900. (Hint: you will have it loop
over a vector c(100, 300, 500, 700, 900)).

5.7.3 Nesting Loops and Extreme Bounds Analysis (EBA)

As with conditional logic, we can nest loops to iterate over multiple vectors
of values, or conduct several calculations. For example, the code block below
shows a simple example of one loop nested in another to get all of the possible
combinations of letters from two vectors.
vector1 <- c("a", "b", "c", "d")
vector2 <- c("a", "b", "c", "d")

for (i in 1:length(vector1)) {
for (j in 1:length(vector2)) {

print(paste("Value of vector1 is ", vector1[i],
" and of vector2 is ", vector2[j])

)
}

}

[1] "Value of vector1 is a and of vector2 is a"
[1] "Value of vector1 is a and of vector2 is b"
[1] "Value of vector1 is a and of vector2 is c"
[1] "Value of vector1 is a and of vector2 is d"
[1] "Value of vector1 is b and of vector2 is a"
[1] "Value of vector1 is b and of vector2 is b"
[1] "Value of vector1 is b and of vector2 is c"
[1] "Value of vector1 is b and of vector2 is d"
[1] "Value of vector1 is c and of vector2 is a"

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 128 — #138 �
�

�
�

�
�

128 Essential Programming

[1] "Value of vector1 is c and of vector2 is b"
[1] "Value of vector1 is c and of vector2 is c"
[1] "Value of vector1 is c and of vector2 is d"
[1] "Value of vector1 is d and of vector2 is a"
[1] "Value of vector1 is d and of vector2 is b"
[1] "Value of vector1 is d and of vector2 is c"
[1] "Value of vector1 is d and of vector2 is d"

This very simple nesting of loops to get all the combinations of items in several
sets can be quite useful. To give just one example in applied research, it can
be used in programming a technique called Extreme Bounds Analysis (EBA).
EBA was a proposed technique for dealing with the issue of uncertainty in
the specification of statistical models (Leamer, 1983, Leamer (2010)). The
argument was that most scholarly papers only report a small subset of the
statistical models they run, and that results (due to collinearity, missing data,
or a number of other issues) may be different, depending on the variables
included in the model. The proposal was for scholars to report the range of
outcomes from every combination of three variables.

EBA has been used by a number of studies (Levine and Renelt, 1992, Xavier
et al. (1997), Kennedy and Tiede (2013)), but has also been criticized by
scholars who view it as atheoretical (McAleer et al., 1985). For our purposes,
we care less about whether EBA is a desirable approach – it gives us a good
example of nested loops.4

The chunks of code below show the code for a very simple EBA analysis of
the ANES data for support of then-candidate Trump. First, we load the data –
setting our working directory, loading the needed libraries, loading the data,
and manipulating it into the form we want. We are looking at nine different
features we think might affect support of Trump, meaning there are 84 different
combinations of three features possible.
Load needed libraries
library(tidyverse)
library(here)

Set your working directory
setwd(choose.dir())

Load the data via read_csv() and here()
NESdta <- read_csv(here("data", "anes_pilot_2016.csv"))

Parsed with column specification:

cols(

.default = col_double(),

4There is actually an R package now for EBA called Extremebounds that became available
in 2016 (Hlavac, 2016).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 129 — #139 �
�

�
�

�
�

Loops 129

version = col_character(),

pid2d = col_character(),

pid2r = col_character(),

other10_open = col_character(),

race_other = col_character(),

employ_t = col_character(),

religpew_t = col_character(),

disc_fed_disc_police_rnd = col_character(),

white_sections_rnd = col_character(),

lazy_violent_rnd = col_character(),

FEELING_THERMOMETER_rnd = col_character(),

meet_rnd = col_character(),

givefut_rnd = col_character(),

info_rnd = col_character(),

ISSUES_OC14_rnd = col_character(),

disc_selfsex_rnd = col_character(),

lazy_col_rnd = col_character(),

lazy_row_rnd = col_character(),

violent_col_rnd = col_character(),

violent_row_rnd = col_character()

... with 9 more columns

)

See spec(...) for full column specifications.

Data manipulation for a simple analysis
NESdta_small <- NESdta %>%

mutate(fttrump = ifelse(fttrump > 100, NA, fttrump),
age = 2016 - birthyr,
white = ifelse(race == 1, 1, 0),
faminc = ifelse(faminc > 90, NA, faminc),
republican = ifelse(pid3 == 2, 1, 0),
religiosity = ifelse(pew_churatd>6, NA, 7-pew_churatd),
news_interest = ifelse(newsint > 6, NA, 5 - newsint),
conservativism = ifelse(ideo5 > 5, NA, ideo5),
female = ifelse(gender == 2, 1, 0)) %>%

dplyr::select(fttrump, age, white, faminc, republican,
religiosity, news_interest, conservativism,
educ, female) %>%

dplyr::filter(!is.na(fttrump))

NESdta_small

A tibble: 1,197 x 10
fttrump age white faminc republican religiosity
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 130 — #140 �
�

�
�

�
�

130 Essential Programming

1 1 56 1 4 0 1
2 28 59 1 8 0 3
3 100 53 1 1 1 1
4 0 36 1 12 0 1
5 13 42 1 10 0 5
6 61 58 1 7 0 5
7 5 38 1 NA 0 5
8 85 65 1 10 1 1
9 70 43 1 8 0 5
10 5 80 1 10 0 6
... with 1,187 more rows, and 4 more variables:
news_interest <dbl>, conservativism <dbl>, educ <dbl>,
female <dbl>

In the next chunk, we create our EBA function, eba(). The function takes as
its input a data set, where the first column contains our dependent variable
and the rest of the columns are the independent variables. There are three
nested loops. The first (i), goes through the independent variables, starting
with the second column of the data and moving to the third-from-last column.
The second (j) goes from the third column to the next-to-last column. The
third (k) goes from the fourth column to the last column. By doing this, we
get all of the combinations of features. The first time through, it will get
independent variables 1, 2, and 3. The second, it will get variables 1, 2, and 4.
It will go through all the options for k, then will move to the second item in j
(1, 3, 4; 1, 3, 5; etc.). For each of these, you can see that it runs a regression
model for the three selected variables and saves the coefficients. The results
are stored in a tibble, fullresults, and are returned by the function.
Create a function that checks all combinations of 3 variables
eba <- function(dataset) {

tempdata <- as.matrix(dataset)
fullresults <- c()
for (i in 2:(ncol(tempdata) - 2)) {

for (j in (i + 1):(ncol(tempdata) - 1)) {
for (k in (j + 1):ncol(tempdata)) {

coefficients <- c(rep(NA, ncol(tempdata) - 1))
tempModel <- lm(tempdata[,1] ~ tempdata[,i] +

tempdata[,j] + tempdata[,k]
)

coefficients[(i - 1)] <- tempModel$coefficients[2]
coefficients[(j - 1)] <- tempModel$coefficients[3]
coefficients[(k - 1)] <- tempModel$coefficients[4]
fullresults <- rbind(fullresults, coefficients)

}
}

}

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 131 — #141 �
�

�
�

�
�

Loops 131

fullresults <- as_tibble(data.frame(fullresults))
names(fullresults) <- names(dataset)[2:length(names(dataset))]
return(fullresults)

}

We can now call our eba() function using the ANES data we loaded previously.
We pass the data set to the function and it returns the results. We can see the
distribution for the variables white and faminc (family income) as examples.
trumpEBA <- eba(NESdta_small)
trumpEBA

A tibble: 84 x 9
age white faminc republican religiosity news_interest
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.341 14.3 -0.0619 NA NA NA
2 0.259 8.43 NA 32.4 NA NA
3 0.303 14.5 NA NA 3.32 NA
4 0.362 13.0 NA NA NA -2.18
5 0.195 8.62 NA NA NA NA
6 0.305 13.7 NA NA NA NA
7 0.320 13.1 NA NA NA NA
8 0.321 NA -0.271 35.5 NA NA
9 0.395 NA -0.0607 NA 2.89 NA
10 0.443 NA 0.247 NA NA -2.36
... with 74 more rows, and 3 more variables:
conservativism <dbl>, educ <dbl>, female <dbl>

summary(trumpEBA$white)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
7.134 9.799 13.078 12.582 15.551 17.898 56

summary(trumpEBA$faminc)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.35179 -0.11555 0.01588 0.02031 0.15296 0.41478
NA's
56

Success! The trumpEBA tibble includes 84 observations, which is the number of
feature combinations we expected. The results show clearly that white respon
dents report higher favorability of Trump, regardless of the other variables
included as controls. Family income, however, has a positive effect on Trump’s
approval, on average, but appears more sensitive to model specification, with
some specifications suggesting the opposite relationship.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 132 — #142 �
�

�
�

�
�

132 Essential Programming

Again, the point here is not about EBA as an approach, nor about the specifics
of what increases support for then-candidate Trump. Rather, we are interested
in showing how these nested loops can direct the computer to execute tasks
quickly, which would otherwise take a long time to perform manually.

5.8 Mapping with purrr

The final concept we cover bridges programming and modeling. We are in
terested here in covering the map() family of functions, which is essentially
a blend of loops and user-defined functions. Mapping functions offer users
the ability to map or iteratively pass functions to values stored in arrays or
vectors. For those familiar with the base R apply family of functions, mapping
functions are essentially Tidyverse-flavored updates. The map family is housed
in the purrr package for functional programming and is loaded when the
tidyverse library is loaded.

We will use the smaller subset of the ANES data set created for the EBA exam
ple above. This time, we will include only the female, fttrump, and birthyr
variables. We will then use a some tools learned in the Data Management and
Manipulation chapter to mutate() fttrump (turning strange values to NAs)
and female (recoding the levels of gender), and conclude by filtering out NAs,
in line with the best practice of keeping data tidy.
NESdta_small <- NESdta %>%

dplyr::select(gender, fttrump, birthyr) %>%
mutate(fttrump = replace(fttrump, fttrump > 100, NA),

female = ifelse(gender == 2, 1, 0)) %>%
dplyr::filter(!is.na(fttrump))

NESdta_small <- NESdta_small %>%
dplyr::select(-gender)

inspect a small random sample to make sure things look good
sample_n(NESdta_small, 5)

A tibble: 5 x 3
fttrump birthyr female
<dbl> <dbl> <dbl>
1 68 1957 1
2 100 1982 1
3 91 1951 1
4 0 1940 1
5 22 1957 1

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 133 — #143 �
�

�
�

�
�

133 Mapping with purrr

With our small data set built, we now use split() from base R to split our
subsample into two groups: female (1) and not female (0). We store this in
the new object fems. This exercise will demonstrate the simplest use of map().
The general syntax is to map a selected function (second argument) to the data
object (first argument). So, here, we will pass the nrow() base R function and
summary() base R function to the fems object. The output will be the number
of observations (rows) associated with male and female respondents, and then
a feature-level summary of observations in each level of fems, respectively.
first split into groups using split from base R
fems <- split(NESdta_small, NESdta_small$female)

Explore respondents in each group
map(fems, nrow)

$`0`
[1] 570

$`1`
[1] 627

Now, feature level summary of each group
map(fems, summary)

$`0`
fttrump birthyr female
Min. : 0.0 Min. :1921 Min. :0
1st Qu.: 3.0 1st Qu.:1954 1st Qu.:0
Median : 39.0 Median :1970 Median :0
Mean : 41.1 Mean :1968 Mean :0
3rd Qu.: 75.0 3rd Qu.:1982 3rd Qu.:0
Max. :100.0 Max. :1997 Max. :0

$`1`
fttrump birthyr female
Min. : 0.00 Min. :1924 Min. :1
1st Qu.: 2.00 1st Qu.:1955 1st Qu.:1
Median : 20.00 Median :1965 Median :1
Mean : 35.91 Mean :1967 Mean :1
3rd Qu.: 70.00 3rd Qu.:1982 3rd Qu.:1
Max. :100.00 Max. :1997 Max. :1

Importantly, the basic map function previously used will always return a list,
which is a mixed data type. But importantly, there may be many cases in
which you would prefer working with a specific type of data or want a specific
data type to condition the map function. If such is the case, then there are
several other map functions, map that can be used. For example, the raw count

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 134 — #144 �
�

�
�

�
�

134 Essential Programming

of rows is an integer, so we could use map_int() to get the same result, but
ensuring it’s a real-valued integer.
map_int(fems, nrow) # note the different map() function

0 1
570 627

make sure the returned value is an integer, NOT a list
is.integer(map_int(fems, nrow)) # return "TRUE"

[1] TRUE

is.integer(map(fems, nrow)) # return "FALSE"

[1] FALSE

With the logic under your belt, consider a couple extensions using map. First,
rather than using split() from base R, the Tidyverse version of this is to
“nest” via nest() or unnest(). Suppose we want to nest() respondents by
“female or not” to return a data frame into a so-called “list-column”, which
can host multiple data types in a single vector.5 In other words, we can nest a
data frame within a row or column. List-columns from model output is a very
common occurrence.

First, we will create a new object, new_nes, with data frames and/or tibbles
for each level of female. The specific syntax below reads, “give me two rows
and a data frame for the other two features in the small data set, nested by
each level of female.”

Then, we complicate matters for more descriptive output by adding two new
features via mutate(): first, the number of rows/respondents, and second the
mean values for Trump support from each group of respondents.6

(new_nes <- nest(NESdta_small, -female))

Warning: All elements of `...` must be named.
Did you want `data = c(fttrump, birthyr)`?

A tibble: 2 x 2
female data
<dbl> <list>
1 0 <tibble [570 x 2]>
2 1 <tibble [627 x 2]>

5The terminology is thanks to Jenny Bryan. See the purrr package documentation for
more.

6Readers should note that the use of “doubles” above in map_dbl() indicate numeric
data types for precision calculations, e.g., decimal places. They are used in many domains
and for many tasks. See the purrr help documentation for more.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 135 — #145 �
�

�
�

�
�

135 Concluding Remarks

new_nes %>%
mutate(n_row = map_int(data, nrow),

mean = map_dbl(data, ~ mean(.x$fttrump)))

A tibble: 2 x 4
female data n_row mean
<dbl> <list> <int> <dbl>
1 0 <tibble [570 x 2]> 570 41.1
2 1 <tibble [627 x 2]> 627 35.9

Now, reverse the nesting using unnest(), and we are back to where we started.
unnest(new_nes, data) %>%

head()

A tibble: 6 x 3
female fttrump birthyr
<dbl> <dbl> <dbl>
1 0 1 1960
2 0 100 1963
3 0 0 1980
4 0 13 1974
5 0 61 1958
6 0 5 1978

5.9 Concluding Remarks

In this chapter, we learned some of the core building blocks of programming
in both base R and the Tidyverse. All of these techniques and concepts are
borrowed from other programming languages and adapted for the R language.
For example, there are for loops (and also repeat and while loops) in
Python, and different types of operators (e.g., logical) are used in virtually
all programming languages like C and C#. With these tools in your toolbox,
you can become a better, more efficient programmer, which will help you do a
variety of tasks, whether writing R packages or conducting your own research.

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 137 — #147 �
�

�
�

�
�

6

Exploratory Data Analysis

The first thing any researcher should do prior to fitting models is get to know
the data. This is the case because often the shape and structure of the data
are unknown to the researcher. For example, if the data are skewed in a certain
direction along some variable of interest, then this could limit the quality of
inferences drawn after fitting a model (we will discuss this more below). But
beyond overtly harmful effects, it is a good idea to know some basic features
of the data as well as distributional shapes and patterns.

Broadly, this process of getting to know your data is called exploratory data
analysis (EDA), and has it’s roots in the work of John Tukey (Jones, 1987),
who brought us many modern statistical tools for exploring data, such as the
boxplot. Even though users are not fitting models in the predictive or causal
ways of approaching analysis, exploring data is still very much analysis in that,
by inspecting distributions and shapes of data, users are able to conceptualize
trends and even generate baseline expectations, which will influence the research
program in numerous ways downstream. Importantly, in other fields, such as
machine learning, exploratory data analysis is closely linked with clustering,
classification, and other useful techniques to help make sense of data when
little of the data is known a priori. For example, machine learning researchers
may fit a variety of clustering algorithms such as k-means, k-medoids, or
CLARA (for big data applications) to pull out patterns and more precisely
define groupings present within the data, but in a largely atheoretic way. Yet,
in the social sciences, such approaches to exploring data are often avoided in
an effort to guard against the possibility of ethical issues like searching for
patterns too early, which could lead to a perception of “p-hacking” (searching
for significant results based only on p-values across many model iterations)
or post-hoc theorizing (suggesting you, the researcher, were aware of and
anticipating the emergent patterns the whole time). Though there is a some
degree of gray area in this regard, there could be a reasonable case made for
a technique like clustering being helpful, not harmful, as a crucial step to
contributing to a greater understanding of the non-random structure that is
assumed to exist in data.

Our goal in this chapter, then, is to walk readers through a typical EDA
project using the tools covered so far, while also bringing in a few new tidy
techniques. This chapter will provide a roadmap for exploring data in search

137

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 138 — #148 �
�

�
�

�
�

138 Exploratory Data Analysis

of descriptive trends, as well as offering guidance on how to discuss these
trends in the context of a broader research project. Thus, while some new
techniques and tools will be covered, the broader thrust of this chapter is in
line with the tone of our book, where we are not interested in merely compiling
a bunch of tidy functions, but rather are interested in demonstrating how to
leverage the power of the tidyverse in the context of social science research.
And importantly, every social science research project should include some
EDA component.

In service of this goal, we will cover some common methods for exploring
data including plots (bar plots, boxplots, and scatterplots), summary statistics
(inter-quartile range (IQR), mean, median, minima and maxima, and so on),
and a combination of these methods in tidy framework, drawing heavily from
the skimr package.

Let’s start by loading some useful packages and the data, followed by some
quick tidying based on some techniques explored in the data management
chapter.
Load the libraries needed for this chapter
library(tidyverse)
library(here)
library(skimr)
library(amerika)

Set the working directory
setwd(choose.dir())

Load the ANES data and tidy a bit
NESdta <- read_csv(here("data", "anes_pilot_2016.csv"))

NESdta_sub <- NESdta %>%
dplyr::select(fttrump, pid3, birthyr, gender, ftobama) %>%
mutate(fttrump = replace(fttrump, fttrump > 100, NA),

ftobama = replace(ftobama, ftobama == 998, NA),
Party = case_when(pid3 == 1 ~ "Democrat",

pid3 == 2 ~ "Republican",
pid3 == 3 ~ "Independent")) %>%

as.data.frame() %>%
drop_na()

6.1 Visual Exploration

With the data loaded and tidied, let’s start with basic visual descriptions of
some variables of interest, which is the most common starting place in an EDA

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 139 — #149 �
�

�
�

�
�

139 Visual Exploration

project given the rich descriptive nature of visualizations. A widely used visual
tool for EDA is a bar plot, which is a close relative of the histogram, showing
the categorical density of some variable of interest. These are especially useful
in survey data where groupings of respondents are visually distributed across
some variable of interest. Following the bar plot, we present Tukey’s boxplot,
which is more descriptive.

For these first two visual tools, building on the earlier Visualization chapter,
we will rely on ggplot2 from the Tidyverse, and alter the geometric layers,
geom_*, for bar plots first (geom_bar) and boxplots second (geom_boxplot).
The result is in Figure 6.1.
ggplot(NESdta_sub, aes(fttrump, fill = Party)) +

geom_bar(fill = amerika_palette(n = 233,
name = "Dem_Ind_Rep7",
type = "continuous")) +

labs(x = "Trump Feeling Thermometer",
y = "Count of Respondents",
title = "Feeling Thermometer for Trump by Party",
subtitle = "2016 ANES Pilot Study") +

facet_wrap(~ Party) +
theme_minimal()

Democrat Independent Republican

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

25

50

75

100

Trump Feeling Thermometer

C
ou

nt
 o

f R
es

po
nd

en
ts

2016 ANES Pilot Study
Feeling Thermometer for Trump by Party

FIGURE 6.1
Feelings toward Trump by Party

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 140 — #150 �
�

�
�

�
�

140 Exploratory Data Analysis

In Figure 6.1, note a few expansions from the earlier visualization chapter.
First, we are now using the amerika package, which is an American-politics
inspired color palette generator for applications such as these (Waggoner, 2019).
The idea is that applications map basic political knowledge to appropriate
color palettes, where, for example, “Democrats” (or “liberals”) are assumed
to be on the left and thus blue, with “Independents” (or “moderates”) in the
middle and thus gray, followed by “Republicans” (or “conservatives”) on the
right, and thus red. Further, we use the powerful layer, facet_wrap, which
allows for breaking up feelings toward Trump by party affiliation, based on the
pid3 variable from the ANES data. Each party is placed in a unique window,
or “facet”. This is a very useful tool for making an already descriptive plot
more descriptive. Taken together, note in this bar plot that emergent patterns
are in line with basic expectations of the distribution of political preferences
in American politics, with Democrats (in blue) having strongest negative (or
“coldest”) feelings toward Trump, with Independents and Republicans having
progressively more positive (or “warmer”) feelings toward him. Building on
these patterns from the basic bar plot, we can dig more into the numeric
summaries of these data, but still using a visual tool: the boxplot.

Here, we introduce John Tukey’s boxplot using the same two variables, Party
and fttrump (feelings toward Trump). Boxplots are highly descriptive sum
maries of data of any size, showing the IQR, from the 1st quartile to the 3rd,
in the box, with the line in the box representing the median of the distribution.
The “whiskers” on the bottom and top of the plot show the minimum and
maximum, respectively, of the data distribution. The dots represent outliers.

To build our boxplot, we simply change the geom to be geom_boxplot instead
of geom_bar in the previous case. Here again we use the amerika package to
quickly fill in appropriate colors in the boxes corresponding to each of the
three major American political parties. The increase in descriptive information
provided by boxplots allow for more thorough exploration of the data, especially
in tandem with other visual tools such as the bar plot. These distributions in
feelings toward Trump by party are shown in Figure 6.2.
ggplot(NESdta_sub, aes(x = Party, y = fttrump)) +

geom_boxplot(fill = amerika_palette(name = "Dem_Ind_Rep3")) +
labs(x = "Political Party",

y = "Trump Feeling Thermometer Score",
title = "Feeling Thermometer for Trump by Party",
subtitle = "2016 ANES Pilot Study") +

theme_minimal()

The boxplot shows that there are a lot of Democratic outliers given the very low
mean and median as we might expect. This suggests that while the majority
of the distribution of Democratic respondents has negative feelings toward
Trump as we might expect, interestingly there are a few Democrats who think

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 141 — #151 �
�

�
�

�
�

141 Visual Exploration

0

25

50

75

100

Democrat Independent Republican
Political Party

Tr
um

p
Fe

el
in

g
Th

er
m

om
et

er
 S

co
re

2016 ANES Pilot Study
Feeling Thermometer for Trump by Party

FIGURE 6.2
Feeling Distributions by Party

positively toward him. Further, in line with baseline expectations from our
initial bar plot, we can see that the distribution of Republicans is situated at the
highest end with the most positive feelings toward Trump, with Independents
somewhere in between these major political parties. Regardless of the patterns,
the point here is that these visual tools require relatively minimal code, but
provide a great deal of information and nuance, which contribute to a greater
understanding of our data.

We now transition to a third visual tool for exploring data, which is the
scatterplot. The scatterplot is a slightly more intuitive approach to observing
natural trends in the data. Similar to the previous two visual tools, ggplot2
offers some excellent options for visualizing basic trends in data using a
scatterplot. Here, as you might expect at this point, we simply need to update
the ‘geom_* layer to be geom_point. Building on the intuition of the bar plot,
we can explore the range of feelings toward Trump (fttrump) by party affiliation
(Party) in Figure 6.3, but also across the age of respondents (birthyr), allowing
for even greater nuance to our descriptive exploration.
ggplot(NESdta_sub, aes(x = birthyr, y = fttrump,

color = factor(Party))) +

geom_point() +

scale_color_manual(name="Party",

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 142 — #152 �
�

�
�

�
�

142 Exploratory Data Analysis

values=amerika_palette(name="Dem_Ind_Rep3"))+
labs(x = "Birth Year",

y = "Trump Feeling Thermometer Score",
title = "Feelings Toward Trump across Age and Party") +

theme_minimal()

0

25

50

75

100

1920 1940 1960 1980 2000
Birth Year

Tr
um

p
Fe

el
in

g
Th

er
m

om
et

er
 S

co
re

Party

Democrat

Independent

Republican

Feelings Toward Trump across Age and Party

FIGURE 6.3
Feelings toward Trump by Party and Age

Conditioning the point colors by party affiliation, we can see several natural
patterns emerge. First, note that many respondents across all parties had a
relatively cold feelings toward Trump in 2016, seen in the tight grouping of
points near 0.0 on the Y axis at the bottom of the plot. Inversely, there is
also a high concentration of extremely positive feelings toward Trump, with
points clustered around the top of the plot at 100 on the Y axis. Further,
there are fewer respondents in between these extremes, suggesting Trump may
be a polarizing political figure, where the majority of respondents either love
him or hate him. Though more analysis would be needed to develop and test
this idea, the point remains that an interesting natural pattern pointing to
this possibility is present in these data, and was only uncovered by visually
exploring our data.

While these trends may exist and while the conditional point color is useful,
there are so many respondents that it is difficult to say much more about

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 143 — #153 �
�

�
�

�
�

143 Visual Exploration

any possible trends based on this plot. To get a more precise, though still
exploratory, look at these trends, we can add a nonparametric LOESS smoother,
which simply describes the trend in the data. It is “nonparametric” in that it
does not have an a-priori statistical definition of the data, such as that the
relationship is linear. Rather, it simply describes conditional patterns based
on natural values, thereby capturing natural variation.

To update our scatterplot to add these LOESS smoothers, we simply add
another geometric layer, but this time it is called geom_smooth. Inside the
layer, we must specify the method argument to be loess. Importantly, layering
these smoothers after conditional colors already exist in the plot results in
an automatic inheriting of the mapping aesthetic (see the earlier “Visualizing
Your Data” chapter for more on mapping aesthetics). This means that the
colors of the smoothers will also be conditional on party affiliation as we have
specified, which will help us explore the data and trends consistently, and thus
more efficiently. The result is in Figure 6.4.
ggplot(NESdta_sub, aes(x = birthyr, y = fttrump,

color = factor(Party))) +
geom_point() +
geom_smooth(method = "loess", se = FALSE) +
scale_color_manual(name="Party",

values=amerika_palette(name="Dem_Ind_Rep3"))+
labs(x = "Birth Year",

y = "Trump Feeling Thermometer Score",
title = "Feelings Toward Trump across Age and Party") +

theme_minimal()

`geom_smooth()` using formula 'y ~ x'

In addition to corroborating earlier patterns of extremity and intuition across
major American political parties, the addition of the LOESS smoother reveals
another interesting pattern which is that across all parties, younger respondents
(toward the right of the X axis along “Birth Year”) all favor Trump much less
than their older counterparts to the left of the X axis. All smoothers start at a
higher point on the left of the X axis than where they end on the right of the X
axis along birthyr, though some variation seems to spike in the middle-range
of respondents.

As demonstrated with these few simple visual techniques, it is clear that the
Tidyverse has many powerful visual tools available for exploring natural trends
in data.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 144 — #154 �
�

�
�

�
�

144 Exploratory Data Analysis

0

25

50

75

100

1920 1940 1960 1980 2000
Birth Year

Tr
um

p
Fe

el
in

g
Th

er
m

om
et

er
 S

co
re

Party

Democrat

Independent

Republican

Feelings Toward Trump across Age and Party

FIGURE 6.4
Smoothed Feelings toward Trump

Exercises

6.1.0.0.1 Easy

•	 Plot support for Trump (fttrump) as both a bar plot and a histogram
by altering the geom_*. Place these plots side by side. What do you see?
How do these plotting methods differ, and when might it be more or less
appropriate than another?

•	 Do a quick Google search for the RColorBrewer package. How many
palettes are included in this package? Update the plot above of birthyr by
fttrump, colored by Party using the Dark2 palette from RColorBrewer.
Play around with other color palettes in both the RColorBrewer and
amerika packages.

6.1.0.0.2 Intermediate

•	 What is a boxplot and how is it useful?
•	 Suppose your teacher requested a “full visual exploratory story.” Where

would you start, what techniques would you include, and how would you
organize this “story told with data”?

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 145 — #155 �
�

�
�

�
�

145 Numeric Exploration

6.1.0.0.3 Advanced

•	 What did Tukey mean by needing both “confirmatory” and “exploratory”
hypotheses? Recall Tukey was writing these things in the 1970s and
1980s. How then, if at all, does his conclusion relate to modern predictive
modeling and data science?

•	 Create an interactive version of the previous scatterplot of feelings toward
Trump over the range of age by political party affiliation.

6.2 Numeric Exploration

While visual exploration is an important first step to take prior to fitting
models, it is not the only exploratory tool at our disposal. Numeric summaries
and descriptions of data are also quite useful for unpacking and exploring
data efficiently. Base R has many useful tools for this, including summary().
We will start here, but bring in the tidy approach quickly, which allows for
more efficient front-end filtering and wrangling as we saw in the earlier data
management chapter. Consider first some basic summary statistics calculated
using the summary() command in base R.
summary(NESdta_sub)

fttrump pid3 birthyr
Min. : 0.0 Min. :1.000 Min. :1921
1st Qu.: 2.0 1st Qu.:1.000 1st Qu.:1954
Median : 28.0 Median :2.000 Median :1967
Mean : 37.9 Mean :1.931 Mean :1968
3rd Qu.: 71.0 3rd Qu.:3.000 3rd Qu.:1982
Max. :100.0 Max. :3.000 Max. :1997
gender ftobama Party
Min. :1.000 Min. : 0.00 Length:1115
1st Qu.:1.000 1st Qu.: 6.00 Class :character
Median :2.000 Median : 55.00 Mode :character
Mean :1.529 Mean : 49.62
3rd Qu.:2.000 3rd Qu.: 88.00
Max. :2.000 Max. :100.00

The output from this object includes variable-level numeric summaries consist
ing of: minimum value, 1st quartile, median, 3rd quartile, mean, and maximum
(as well as a count of missing values (NAs), if those exist in the data). When
calling the summary on the full data set, the output produced these basic
summary statistics for all variables in the data set, which here was our tidied
NESdta_sub data object. However, we urge caution in such a use of summary(),

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 146 — #156 �
�

�
�

�
�

146 Exploratory Data Analysis

as some values may not make sense. For example, R will calculate the mean
value of a categorical dummy variable, which takes on only values of 0 and 1.
Even though a “mean” is calculated, this has no substantive meaning.

Though a useful starting place, the tidy approach to numeric exploration
of data is much more efficient and cleanly output. Though there are many
tools in the tidyverse that we could use, we will focus on: sample_n, filter,
group_by, and skim (from the skimr package, which is written to complement
the tidy approach, as we will see in a moment).

If we were interested in only grabbing a subset of rows/observations from the
full data set, but wanted it to be a random grab to get a “fair” (or perhaps,
fairer) look at the data, the sample_n function from the Tidyverse is a good
place to start. It has a number of useful arguments, such as allowing the user
to specify how many random observations to grab (size) as well as whether
to sample with or without replacement (replace). Consider the following
example, inspecting a random sample with replacement of observations of
length 10 across all variables in our NESdta_sub data object.
sample_n(NESdta_sub,

size = 10,
replace = TRUE)

fttrump pid3 birthyr gender ftobama Party
1 98 2 1931 1 0 Republican
2 84 2 1978 1 0 Republican
3 74 2 1962 2 53 Republican
4 85 2 1951 1 0 Republican
5 18 3 1996 1 61 Independent
6 12 3 1958 1 0 Independent
7 99 2 1940 1 10 Republican
8 58 1 1992 2 43 Democrat
9 17 3 1967 1 31 Independent
10 95 3 1946 1 1 Independent

We get a cleanly formatted tibble of 10 randomly selected observa
tions/respondents across all variables in our NESdta_sub object.1

In line with the tidy approach to programming, we can layer several functions
using the pipe operator (%>%) we previously discussed in the data management
chapter, as well as at the outset of this chapter when tidying and creating our
restricted data object, NESdta_sub. For example, we may want to explore a
random set of observations that appear in the data after a specific date. In

1We encourage users to adjust and alter the arguments in the function to observe how
the random grab change each time the function is called, e.g., changing size from 10 to 30,
or setting replace = TRUE. Or at a minimum, consider testing the randomness claim here
by simply running the previous code chunk again (and again) seeing how the sampled rows
differ each time.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 147 — #157 �
�

�
�

�
�

147 Numeric Exploration

this case, we would pipe the filter function to restrict our small sample of
length 5 to include respondents younger than the median birth year, which is
1967.2 Building on the discussion of the filter() function in the earlier data
management chapter, it is useful to point out that there are other versions of
filter(), which allow for conditional filtering of data, or filtering based on
specific values of a given variable, e.g., filter_if() or filter_at(). These
can be extremely useful in numerically exploring specific chunks of the data, or
data based on some condition of interest as in our example here. We encourage
users to inspect the dplyr package documentation for many more details on
the wide array of options available in the filter family, let alone the full
range of munging functions in the dplyr package. To do so, run the command
?filter with a single ? for the specific function, or ??dplyr with two ?? to
inspect documentation for the entire package.
median(NESdta_sub$birthyr) # 1967

[1] 1967

NESdta_sub %>%
filter(birthyr > median(birthyr, na.rm = TRUE)) %>%
sample_n(5, replace = TRUE)

fttrump pid3 birthyr gender ftobama Party
1 98 2 1980 1 25 Republican
2 2 1 1972 2 100 Democrat
3 3 1 1986 2 100 Democrat
4 1 2 1981 2 1 Republican
5 1 1 1983 1 94 Democrat

Similarly, we could group observations along a specific attribute by piping
another layer using the group_by() function, and then drawing a random
sample of 5 from each party, again, for all respondents younger than the median
age in the sample.
NESdta_sub %>%

filter(birthyr > median(birthyr, na.rm = TRUE)) %>%
group_by(pid3) %>%
sample_n(5, replace = TRUE)

A tibble: 15 x 6
Groups: pid3 [3]
fttrump pid3 birthyr gender ftobama Party
<dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 1 1 1983 1 100 Democrat

2Note the na.rm argument, which in this case is set to TRUE. This simply means that
we would like to filter values at the supplied threshold for all observations containing real
values, not those with missing values.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 148 — #158 �
�

�
�

�
�

148 Exploratory Data Analysis

2 40 1 1980 1 80 Democrat
3 3 1 1987 2 75 Democrat
4 39 1 1988 1 90 Democrat
5 50 1 1978 1 51 Democrat
6 80 2 1971 1 3 Republican
7 0 2 1972 1 4 Republican
8 80 2 1982 1 3 Republican
9 0 2 1987 2 91 Republican
10 91 2 1976 1 12 Republican
11 3 3 1973 2 97 Independent
12 3 3 1997 2 15 Independent
13 5 3 1979 1 15 Independent
14 33 3 1981 1 39 Independent
15 87 3 1968 2 3 Independent

Importantly, in all of these exercises of exploring the data as well as those
discussed in the Data Management and Manipulation chapter, you can store
these restricted data sets as objects, as with any value in R. Recall, as we
noted in the Foundations chapter, that R is built around the notion of “object
oriented programming”, where storing values in objects is at the heart of
working in R. And recall that objects are created by simply passing one value
to another through the assignment operator, <-.

As an aside, the intuition and consistency of the Tidyverse should hopefully be
apparent by this point in the book. To reiterate, the aim of tidy programming
is to make programming in R as simple, concise, clear, and consistent as
possible. For example, in many of the Tidyverse packages, you will see a lot of
similarities in the names of arguments and functions, e.g., _all and _by. These
suffixes appear in many places and mean exactly what they imply: “apply this
function by (based on) a given value” or "do this thing for all values in the
variable or for all variables in the data set. The result is these tools are useful
for both EDA as well as streamlining programming and workflows for more
productive analysis in R.

Exercises

6.2.0.0.1 Easy

•	 Calculate the mean of birthyr and then the median of birthyr. How
might our view of the data change when inspecting each of these values?
And more importantly, what picture of the data are each of these numeric
descriptors providing?

•	 What does the “mapping” argument do in any ggplot()? (hint: consider
?)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 149 — #159 �
�

�
�

�
�

149 Putting it All Together: Skimming Data

6.2.0.0.2 Intermediate

•	 Create a new variable called dem_mean_birth that records the mean
birthyr for all Democrats in the data. Do the same two more times for
Republicans and Independents, respectively, altering the variable name as
it makes sense (e.g., rep_mean_birth for Republicans). Display these in
a tibble and discuss substantive patterns and differences (if any) you see.

•	 What advantage does a boxplot offer over a scatterplot and how might
this impact exploratory conclusions drawn?

6.2.0.0.3 Advanced

•	 Building on the discussion of the boxplot above, what numeric value is
revealed in a boxplot? Do you think the numeric presentation of these
values is more effective and descriptive than the visual presentation, or
vice versa? Why?

•	 Write a function to take on a vector of feeling thermometer ratings and
automatically generate a scatterplot over the range of age. Using this
function, plot feelings toward all political candidates over the range of age.
Placing these in a grid (hint: consider the gridExtra package for multiple
ggplot() objects), what are some general patterns you see relating to
feelings and respondents’ ages, or are there any trends?

6.3 Putting it All Together: Skimming Data

Beyond addressing isolated powerful Tidyverse tools that can be used for
exploratory data analysis prior to fitting models, we can combine these visual
and numeric tidy functions for an even cleaner and simpler look at the data.
To do so, we will rely on the skim() function from the skimr package.

The skim() function can be used for summary statistics for individual variables
or entire data sets. Though more informative and useful than the summary()
function in base R for a variety of reasons, one of the most powerful extensions
of skim() is the separation of variables in a data set by variable type (e.g.,
factor, numeric, character, etc.). Upon distinguishing between variable type,
skim() presents summary statistics by variable that make sense (e.g., bypassing
the meaningless “mean” calculation for dummy variables mentioned above), in
addition to a visual of the distribution of each variable in the data. Consider
the following exercise of skimming the variables in our restricted NESdta_sub
data object.
skim(NESdta_sub)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 150 — #160 �
�

�
�

�
�

150 Exploratory Data Analysis

In addition to the many useful summary statistics by variable type as well as
the histogram of the variable’s distribution, the standard deviations for all
numeric variables is included, but not for categorical or character variables, as
this calculation would not make any sense. Further, the complete and missing
values are quite useful in contexts where little is known about the data or
when the data are particularly large and messy. Regarding different syntax,
instead of minimum, median, and so on in the summary() function, skim()
calls the quantiles p0, p25, p50, etc. The values remain the same, despite the
different terminology.

Inspecting our data set, a few things stand out. First, we have no missing
observations. Also, inspecting the histogram for birthyr, for example, we
see that it is skewed toward the younger end, where we have far fewer older
respondents than young respondents.

Though already significantly more informative, we can go farther in skimming
our data given that, as previously mentioned, skimr was designed to fully
integrate with tidy programming, seen, for example, in the reliance on tidy
vocabulary.3

Exercises

6.3.0.0.1 Easy

•	 Use the skim function to numerically explore all feeling thermometers in
the NESdta data set. (hint: think back to the Data Munging chapter on
selecting subsets of variables that start with a common string, like, e.g.,
“ft” for feeling thermometer).

•	 What does it mean for a package like skimr to be “complementary of the
Tidyverse”?

6.3.0.0.2 Intermediate

•	 Pick any three variables from the NESdta data set, and “tell a descriptive
story” with these data. In other words, using the exploratory techniques
discussed in this chapter, how would you visually and numerically explore
and present these data to a general audience?

•	 Plot a random sample of the Obama feeling thermometer ratings (ftobama)
of size = 50, conditional on gender. Overlay a loess smoother. What do
you see? What does the loess smoother tell you?

3To further illustrate this point, users can even specify tidyverse commands with a skim
call, e.g., skim(ANES, starts_with("ft")), which would display the summary statistics
and histograms for all feeling thermometers in the ANES data set (i.e., beginning with “ft”
prefix).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 151 — #161 �
�

�
�

�
�

151 Concluding Remarks

6.3.0.0.3 Advanced

•	 Suppose you saw a pattern that surprised you, like, e.g., more Republican
support for Obama than among Democratic respondents. How would you
investigate this seemingly odd pattern?

•	 Suppose you plotted the distribution of feelings toward Trump (fttrump),
and saw a big spike in support at the value of 998. What would this tell
you and how would you know? What would be some exploratory follow-up
steps you could take in response?

6.4 Concluding Remarks

In this chapter, we covered how to visually and numerically explore data in line
with the Tidyverse approach to programming in R. This approach leverages
consistent vocabulary across a variety of functions to result in cleaner code
that is simpler to link, layer, and update.

Of note, we highly recommend readers explore the many options available in
the skimr package, as well as combine functions and operations from other
Tidyverse packages using the %>%. As noted throughout, piping functions that
are built using the same vocabulary will minimize the steepness of the learning
curve of working in R.

In the next and final substantive chapter we build on the principles of EDA cov
ered here, and transition to statistically modeling and visualizing relationships
in a tidy way.

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 153 — #163 �
�

�
�

�
�

7

Essential Statistical Modeling

When approaching statistical modeling in the social sciences, we most often
operate from the “null hypothesis testing framework” (i.e., NHST), where we
are interested in addressing the question, Can we reject the “null hypothesis
of no effect” given the data we observe, or not?

In this chapter, we will address this question for several very common situations.
We start with an example of one-sample and two-sample t-tests. Next, we
continue with the exploration of cross-tabulation tables, showing how to find
the chi-square value. Third, we explore the very versatile methods of correlation
and ordinary least squares regression (OLS). Finally, for a binary response
variable we demonstrate logistic and probit regression.

In this chapter we walk through essential techniques for fitting, interpreting,
and diagnosing each of these commonly used modeling techniques from a
Tidyverse perspective. Importantly, this is not a statistics text, but rather
an introduction to R and the Tidyverse for social scientists. As statistical
modeling is essential to social scientists, we cover these topics, but only at
a high level and with a greater focus on fitting widely used models in the
Tidyverse. The expectation is that the reader will have at least a passing
familiarity with the statistical techniques discussed below. If the reader needs
a review, there are plenty of excellent introductions to statistics for the social
sciences (Finlay and Agresti, 1986, Gailmard (2014)).

Once you have the basics of model fitting in R down, you will find that these
patterns tend to persist as you move to trying different models and techniques.

7.1 Loading and Inspecting the Data

As always, we start this section by starting RStudio and setting our working
directory or opening the R project, .Rproj, file you will be using.
Set your working directory
setwd(choose.dir())

153

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 154 — #164 �
�

�
�

�
�

154 Essential Statistical Modeling

We continue with our ANES data set in this chapter. In this chapter we will
focus on a constrained set of variables:

1.	 fttrump: Feeling thermometer for Trump in 2016 (from 1 to 100,
where 1 = cold and 100 = warm)

2.	 pid3: Respondent’s party affiliation (1 = Democrat, 2 = Indepen
dent, 3 = Republican)

3.	 birthyr: Respondent’s birth year
4.	 gender: Respondent’s gender (1 = male and 2 = female)
5.	 ftobama: Feeling thermometer for Obama in 2016 (from 1 to 100,

where 1 = cold and 100 = warm)

First, we need to load some relevant packages and load the corresponding
libraries.
library(tidyverse)
library(here)
library(corrr)
library(skimr)
library(amerika)
library(broom)
library(rstatix)
library(janitor)
library(performance)
library(see)

A few of these packages are worth noting, since they are new to this chapter.
The corrr package provides functions to evaluation correlations within a
tidyverse framework. rstatix does the same for basic statistical functions and
will be used for t-tests below. We will again be using the janitor package for
analyzing cross-tabulation – in this case, analyzing chi-squared.

With the packages loaded, we now load our data, NESdta, using the here
package. Next, we create a new data object, NESdta_sub, with only these 5
variables of interest, and do a bit of cleaning using the functions we learned in
the data management chapter. Also, note that we are creating a new variable,
Party by recoding the pid3 variable to correspond with the actual party labels,
instead of 1, 2, and 3. This will come in handy for plots below.
NESdta <- read_csv(here("data", "anes_pilot_2016.csv"))

NESdta_sub <- NESdta %>%
dplyr::select(fttrump, pid3, birthyr, gender, ftobama) %>%
mutate(fttrump = replace(fttrump, fttrump > 100, NA),

ftobama = replace(ftobama, ftobama == 998, NA),
Party = case_when(pid3 == 1 ~ "Democrat",

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 155 — #165 �
�

�
�

�
�

t-statistics 155

pid3 == 2 ~ "Republican",
pid3 == 3 ~ "Independent"),

female = ifelse(gender == 2, 1, 0)) %>%

as.data.frame() %>%

drop_na()

Before moving into the actual tests, we will use the glimpse() function we
used earlier to check if the data looks like what we expect.
glimpse(NESdta_sub)

Rows: 1,115

Columns: 7

$ fttrump <dbl> 1, 28, 100, 0, 61, 5, 85, 70, 5, 74, 95...

$ pid3 <dbl> 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, ...

$ birthyr <dbl> 1960, 1957, 1963, 1980, 1958, 1978, 195...

$ gender <dbl> 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, ...

$ ftobama <dbl> 100, 39, 1, 89, 0, 73, 0, 12, 87, 32, 1...

$ Party <chr> "Democrat", "Independent", "Republican"...

$ female <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, ...

Now that the data is ready, let’s start producing some statistical models.

7.2 t-statistics

One of the most basic statistical tests is a difference in means test. If we have
two groups (for example, a treatment group and a control group), we can
compare the means between the two (or more) groups using a t-distribution.
These tests are often used in combination with the difference in means tables
we demonstrated in the data management chapter. These t-tests are quite easy
to calculate in R, as we demonstrate below.

There are several different types of t-tests. We start with the simplest, a
one-sample comparison of means. In this situation, we are comparing the mean
in a sample against a hypothetical population mean. So let’s say we want to
test whether approval for then-candidate Donald Trump is above 50 on a 100
point scale. We might interpret this as the point where people view him more
positively than negatively.

The t_test() function from the rstatix package is used for this purpose.
There are two baseline arguments that are required. The first is the function
to be analyzed. The ~ operator is often used in statistical tests and is often
read as “is approximated by.” In this case, we are evaluating one group against
a null model so we place the variable to be evaluated on the left-hand side,

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 156 — #166 �
�

�
�

�
�

156 Essential Statistical Modeling

followed by ~ 1. The other part of this test is to specify the hypothetical
population mean we are testing with mu =. In this case, we are testing the
likelihood that the population mean for Trump’s approval is 50, given the data
from the ANES sample. Finally, we also specify detailed = TRUE to get a
detailed report of the results that includes the 95% confidence intervals.
NESdta_sub %>%

summarize(mean_approval = mean(fttrump, na.rm = T))

mean_approval
1 37.89596

t-test fit
NESdta_sub %>%

t_test(fttrump ~ 1, mu = 50, detailed = TRUE)

A tibble: 1 x 12

estimate .y. group1 group2 n statistic p

* <dbl> <chr> <chr> <chr> <int> <dbl> <dbl>

1 37.9 fttr~ 1 null ~ 1115 -11.1 4.45e-27

... with 5 more variables: df <dbl>, conf.low <dbl>,

conf.high <dbl>, method <chr>, alternative <chr>

In the first chunk of code, we show that the average approval for Trump in this
survey was well below 50 – in fact it was about 37.9 – using the summarize()
function we learned earlier.

Upon conducting the t-test, we unsurprisingly found that the difference between
the mean we find in the sample and the hypothetical mean of 50 is statistically
significant. The t-statistic is -11.07 and the p-value is less than 0.001, both
indicating that the difference in means is greater than that which is typically
considered “statistically significant.” We can also see this in the 95% confidence
intervals that range from 35.7 to 40.0, far below the hypothetical mean of 50.

The default for this test is a two-tailed test, but this can be changed by
specifying alternative = "greater" for a right-tailed test or alternative
= "less" for a left-tailed test. We can also change the confidence level we
desire by changing the conf.level option. For example, to do the test at the
99% level of confidence, we would specify conf.level = 0.99.

The next test is to compare two groups. So, for example, let’s say we want
to know if the difference in Trump’s approval between men and women is
statistically significant at this point in the 2016 campaign. We can use the
same t_test() function. In this case, we will specify the groups we want to
test. We will use the female variable, which is 1 if the respondent is female
and 0 otherwise. We specify the group by changing ~ 1 to ~ female. The rest
of the example remains the same.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 157 — #167 �
�

�
�

�
�

t-statistics 157

NESdta_sub %>%
group_by(female) %>%
summarize(avg_approval = mean(fttrump, na.rm = TRUE))

A tibble: 2 x 2
female avg_approval
<dbl> <dbl>
1 0 40.9
2 1 35.2

t-test fit
NESdta_sub %>%

t_test(fttrump ~ female, detailed = TRUE)

A tibble: 1 x 15

estimate estimate1 estimate2 .y. group1 group2 n1

* <dbl> <dbl> <dbl> <chr> <chr> <chr> <int>

1 5.70 40.9 35.2 fttr~ 0 1 525

... with 8 more variables: n2 <int>, statistic <dbl>,

p <dbl>, df <dbl>, conf.low <dbl>, conf.high <dbl>,

method <chr>, alternative <chr>

Again, we start by looking at the difference between the two group means
using the group_by() and summarize() functions from earlier in the book.
It appears that, on average, women give Trump about a 5 point lower rating
than men.

The t-test shows that this difference is statistically significant. The 95%
confidence interval of this difference suggests that there is between a 1 and 10
point difference between men and women in this sample. The p-value is 0.009,
which is well below the usual 0.05 level of significance.

As with the one-sample t-test, the options will allow you to change the
confidence levels or move to a one-tailed test. By default, the t_test()
function for difference between groups assumes that the groups have different
variances, but this can be changed by specifying var.equal = TRUE. Similarly,
by default, the function assumes that the groups are not paired, but this can
be changed by specifying paired = TRUE.

We have only scratched the surface of the options available for conducting
t-tests in R, and the associated plot options and diagnostic tests. This, however,
gives you the foundation to find out more on your own about how to conduct
t-tests.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 158 — #168 �
�

�
�

�
�

158 Essential Statistical Modeling

7.3 Chi-square Test for Contingency Tables

In the data management chapter, we also introduced how to create contingency
tables in R. Now we want to know if the differences observed in the contingency
tables are statistically significant, or if they might be due to random sampling
error.

As a reminder, here is a simple way to get a cross-tab using the janitor
package’s tabyl() function. In this case, we create a cross-tabulation of the
respondent’s political party ID with their stated gender (where 1 indicates
female and 0 indicates male).
NESdta_sub %>%

tabyl(Party, female)

Party 0 1
Democrat 188 268
Independent 208 171
Republican 129 151

Notice that this does not lend itself to a comparison of means because both
variables are nominal/categorical. We will instead use the chi-squared test of
statistical significance, which is executed with the chisq.test() function.
NESdta_sub %>%

tabyl(Party, female) %>%
chisq.test()

##

Pearson's Chi-squared test

##

data: .

X-squared = 15.64, df = 2, p-value = 0.0004017

The results show that the differences in party affiliations between men and
women are much higher than we would have expected by random chance. The
chi-squared value is 15.64, and the corresponding p-value is 0.0004 – much
lower than the standard 0.05 level of confidence often used as a threshold in
the social sciences.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 159 — #169 �
�

�
�

�
�

Correlation 159

7.4 Correlation

We now move to a discussion of correlation. Correlation provides information
about the direction (positive or negative) and strength of a linear relationship
between two variables.

Before calculating the correlation, however, it is always valuable to inspect
your data as we discussed in the previous Exploratory Data Analysis chapter.
Though there are many ways to do this, we will focus here on visualization as
this offers a more intuitive, clean look at the distribution of our variables of
interest.

To do so, we start with a scatterplot of the distribution of feelings toward
Trump plotted against the distribution of feelings toward Obama.1 As such,
with this plot in Figure 7.1, we can get a first look at whether respondents
naturally vary in preferences for candidates of different parties, as we might
expect they would.
ggplot(NESdta_sub, aes(fttrump, ftobama)) +

geom_point(alpha = 0.7, color = "Midnight Blue") +
labs(x = "Trump Feeling Thermometer",

y = "Obama Feeling Thermometer") +
theme_minimal()

Sure enough, we can see clusters of respondents in the upper left and lower
right corners of the plot, suggesting that respondents who really favor Obama
(higher values on the Y axis) tend to also really oppose Trump (lower values on
the X axis). While the same is true for the opposite in the lower right corner,
its not as stark as we might expect. We will explicitly explore the role of
partisanship in this story later in the chapter.

A natural next step to see how strong the relationship is between these two
variables is to check the correlation between them. Correlation is also often used
to diagnose collinearity and other issues (discussed more below) in regression
models. Pearson’s correlation coefficient, ρ, which is the most commonly used,
ranges from -1 for a perfect negative correlation to 1 for a perfect positive
correlation, with 0 indicating no correlation. The corrr package provides a
range of highly useful modifications to the standard R correlation function so
we will be leveraging its correlate() function.

So let’s select the variables plotted above and find their correlation. This can
be accomplished with the following code.

1Note: the alpha argument in the geom_point() function sets the transparency of the
points, where values < 1 produce some amount of transparency, and values = 1 produce
fully filled in points.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 160 — #170 �
�

�
�

�
�

160 Essential Statistical Modeling

0

25

50

75

100

0 25 50 75 100

Trump Feeling Thermometer

O
b

a
m

a
 F

e
e

lin
g

 T
h

e
rm

o
m

e
te

r

FIGURE 7.1
Feelings toward Trump and Obama

correlation <- NESdta_sub %>%
dplyr::select(ftobama, fttrump, birthyr) %>%
correlate()

##

Correlation method: 'pearson'

Missing treated using: 'pairwise.complete.obs'

correlation

A tibble: 3 x 4

rowname ftobama fttrump birthyr

<chr> <dbl> <dbl> <dbl>

1 ftobama NA -0.593 0.149

2 fttrump -0.593 NA -0.165

3 birthyr 0.149 -0.165 NA

The resulting tibble shows that there is a moderate negative relationship
between approval of Trump and approval of Obama. It also shows a small
positive correlation between birth year and support of Obama (younger people
give him a higher rating), and a small negative correlation for approval of
Trump (older people give him a higher rating).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 161 — #171 �
�

�
�

�
�

161 Ordinary Least Squares Regression

There is a lot more that can be done with the corrr package, in part because
of its tidyverse setup. For those interested in finding out more of what can be
done with correlations, the author of the package has provided an excellent
summary of his frustration with the base R correlation functions and the
capabilities of the corrr package here.

Exercises

7.4.0.0.1 Easy

•	 Calculate the correlation between a person’s birth year, birthyr, and their
approval of both Obama and Trump, ftobama and fttrump, respectively.

•	 Using the scatterplot code we developed in the “Exploratory Data Analysis”
chapter, plot the relationship between support for Obama and Trump.
Using geom_smooth(), check whether the relationship looks linear.

7.4.0.0.2 Intermediate

•	 How, if at all, is correlation related to regression?
•	 Sometimes two libraries will contain functions with the same name. This is

the case with skimr and dplyr, which both have a filter() function. Try
using the filter() function without specifying the library. How would
you update your code to avoid this error?

7.4.0.0.3 Advanced

•	 Describe a scenario where it would not make sense to calculate a correlation
coefficient.

•	 Suppose you get a correlation of 1.0. What would this tell you and what
might be some follow-up steps you would take to investigate?

7.5 Ordinary Least Squares Regression

With our data loaded and explored, as well as a quick check for correlations
between variables of interest, we can now fit a simple bivariate linear ordi
nary least squares regression (OLS) model, predicting feelings toward Trump
(fttrump) as a function of respondents’ ages (birthyr).

OLS is a very powerful and flexible model, that is used in a variety of circum
stances. Like correlation, a basic OLS model assumes that there is a linear
relationship between the independent and dependent variable. This assumption
can, however, be relaxed by adding squared, cubic, or even higher order expo
nents to the regression equation. Basic OLS also assumes that the dependent

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 162 — #172 �
�

�
�

�
�

162 Essential Statistical Modeling

variable is continuous, but this model is sometimes used with ordinal (or even
dichotomous) data.

For simplicity of demonstration, we are going to assume a linear relationship
between respondents’ ages and their feelings toward Trump. A naive, but
perhaps reasonable expectation would be that younger respondents have more
negative (or “cold”) feelings toward Trump. To get a sense of this, consider
the simple regression using the lm function (“linear model”) from base R. We
store the model in object reg_simple. Once we have the model object saved,
instead of using the summary() function from base R to display the results of
the model, the broom package offers a “tidy” version of summarizing model
objects in a cleaner, more robust way. Specifically, we will use the tidy(),
augment(), and glance() functions from broom to explore our model in detail
at both the variable and model levels.
reg_simple <- lm(fttrump ~ birthyr,

data = NESdta_sub)

Before inspecting the output, notice that all of the analysis to this point follows
the rules we laid out at the beginning – everything is an object and every
action is a function. The lm() function is taking two arguments. The first is
the formula, which has the dependent variable on the left, followed by a ~
(“approximately”) symbol, and the independent variable on the right. The
second is the data argument, which tells the function to which data to apply
the formula. If you run ?lm you can see what other arguments are available
for this function.

The lm() function produces an object of class “lm” that we are saving to

memory as reg_simple.

class(reg_simple)

[1] "lm"

As we saw in the programming chapter, this object is also a list, which contains
a number of other objects. If we use the names() function, we can see the
names of these objects.
names(reg_simple)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

We can see a number of objects that we can access with the $ operator. For
example, if we want to just call and retain the model coefficients, we can run
the following code.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 163 — #173 �
�

�
�

�
�

163 Ordinary Least Squares Regression

reg_simple$coefficients

(Intercept) birthyr
734.3474013 -0.3539436

Now, for a tidier version of the model results, we can call the tidy() function
from the tidy-friendly broom package for a simple and clean description of the
model output.
tidy(reg_simple)

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 734. 125. 5.87 0.00000000569
2 birthyr -0.354 0.0636 -5.57 0.0000000321

The output includes estimate, std.error, statistic, and p.value. The
estimate is the β coefficient, while the std.error is the measure of uncertainty
surrounding that estimate. Then significance of this effect is captured by the
statistic (usually either Z or t), as well as the p.value, which, despite
the current controversy surrounding use and interpretation of p-values, is
interpreted as the chance of observing some test statistic value equal to or
more extreme than the computed value assuming the null hypothesis of no
effect or relationship were true. To interpret our model, we start with the β
coefficients, which are the effects we are estimating. In the simplest case, we
interpret these values as a one unit change in X causes a β change in Y .

Next, augment() is another powerful function in broom that provides much
more variable-level information useful for analysis. This function call returns
verbose output including, e.g., fitted values (.fitted), residuals (.resid),
Cook’s distance (.cooksd), a measure of outliers discussed more below with
diagnostics), and so on.
augment(reg_simple)

A tibble: 1,115 x 8
fttrump birthyr .fitted .resid .std.resid .hat .sigma
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1960 40.6 -39.6 -1.10 1.08e-3 36.0
2 28 1957 41.7 -13.7 -0.380 1.25e-3 36.1
3 100 1963 39.6 60.4 1.68 9.65e-4 36.0
4 0 1980 33.5 -33.5 -0.931 1.37e-3 36.0
5 61 1958 41.3 19.7 0.546 1.19e-3 36.1
6 5 1978 34.2 -29.2 -0.812 1.23e-3 36.0
7 85 1951 43.8 41.2 1.14 1.76e-3 36.0
8 70 1973 36.0 34.0 0.943 9.85e-4 36.0

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 164 — #174 �
�

�
�

�
�

164 Essential Statistical Modeling

9 5 1936 49.1 -44.1 -1.23 4.02e-3 36.0
10 74 1978 34.2 39.8 1.10 1.23e-3 36.0
... with 1,105 more rows, and 1 more variable:
.cooksd <dbl>

Finally, broom has another function, glance(), that returns model-level output,
including 2R , log-likelihood values, AIC, BIC, degrees of freedom, and so on.
See the output and inspect the package documentation for exhaustive details
on the package and functions (i.e., ?broom).
glance(reg_simple)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0271 0.0262 36.0 31.0 3.21e-8 1
... with 6 more variables: logLik <dbl>, AIC <dbl>,
BIC <dbl>, deviance <dbl>, df.residual <int>,
nobs <int>

Returning to the output, the negative β coefficient for birthyr suggests that
younger respondents indeed have more negative feelings toward Trump. This
is “significant” at the strict p < 0.01 level. We can also visualize our model by
plotting it and overlaying a “best fit” line using ggplot() and adding a linear
smoother layer (geom_smooth()) with confidence intervals around the line via
se = TRUE. The result is in Figure 7.2.
ggplot(NESdta_sub, aes(x = birthyr, y = fttrump)) +

geom_point(alpha = 0.7) +
geom_smooth(method = "lm", se = TRUE, alpha = 0.1) +
labs(x = "Birth Year",

y = "Trump Feeling Thermometer Score",
title = "The Effect of Age on Trump Feelings") +

theme_minimal()

`geom_smooth()` using formula 'y ~ x'

Now, we may worry about other effects, such as party affiliation, that may
also influence feelings toward Trump. In such a case, we would want to update
our model to account for this. This would be a multiple regression. To do so,
simply add (yes, using the + operator) additional independent variables, or
“regressors.” In statistics, this is called “controlling” (e.g., “the effect of age,
controlling for party”).

We store the model in object reg_multiple, and then calculate predicted
feelings toward Trump at the mean levels for each political party, while holding
the other variable (birthyr) at its mean level using two powerful commands:
tibble and predict.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 165 — #175 �
�

�
�

�
�

165 Ordinary Least Squares Regression

0

25

50

75

100

1920 1940 1960 1980 2000

Birth Year

T
ru

m
p

 F
e

e
lin

g
 T

h
e

rm
o

m
e

te
r

S
c
o

re

The Effect of Age on Trump Feelings

FIGURE 7.2
Linear Relationship between Age and Feelings toward Trump

reg_multiple <- lm(fttrump ~ birthyr + Party,
data = NESdta_sub); tidy(reg_multiple)

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 560. 108. 5.19 2.49e- 7
2 birthyr -0.275 0.0548 -5.03 5.83e- 7
3 PartyIndependent 24.3 2.15 11.3 3.76e-28
4 PartyRepublican 46.4 2.36 19.7 4.23e-74

predict(reg_multiple,
tibble(Party = c("Democrat", "Republican", "Independent"),

birthyr = mean(NESdta_sub$birthyr)))

1 2 3
17.98660 64.33667 42.31621

As we would expect, feelings towards Trump are most positive among Repub
licans. Even as a candidate who had notably supported many Democrats in
the past, Republicans appear to have been drawn to Trump to a much greater
extent than Independents. We will come back to this point later in the chapter.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 166 — #176 �
�

�
�

�
�

166 Essential Statistical Modeling

Exercises

7.5.0.0.1 Easy

•	 Why would you fit a regression model in the first place? What are the
advantages compared to examining correlations, differences in means, or
cross-tabulations?

•	 Create a similar regression model for support for Obama. Are the results
different from what you saw in your model of support for Trump? If so
how? If not, why do you think this is the case?

7.5.0.0.2 Intermediate

•	 How large is the gender gap in support for Trump? Add the female
variable to your model to find out. Then use predict() to show the
difference between men and women who are Republicans and of average
age.

•	 How do you interpret a regression β coefficient?

7.5.0.0.3 Advanced

•	 Fit a regression model predicting support for Trump as a function of
an interaction between political party affiliation and gender. What do
you find, and what justification would there be to add a multiplicative
interaction term to the right-hand side of a regression model?

•	 What do “ordinary”, “least”, and “squares” mean? Is “ordinary” problem
atic? Why or why not?

7.5.1 Regression Diagnostics

Upon fitting any model, researchers should always check the fit and diagnose
their models. Though researchers may be interested in a variety of metrics
for fit, the two most common checks for linear models are: multicollinearity
(whether more than one independent variable is explaining roughly the same
variance in the dependent variable) and influential observations (outliers
exerting larger effect on the model fit over the other observations). There
are a few methods for checking for these, but we will focus on two: variance
inflation factor (“vif”) for multicollinearity and Cook’s distance for influential
observations.

7.5.1.1 Multicollinearity

First, for multicollinearity, this is when we have multiple regressors explaining
a lot of the same variance in our dependent variable. Recall the main goal of
regression is to parsimoniously explain as much unique variance in the response
variable as possible. When two explanatory variables are highly correlated, we
encounter some amount of overlapping variance explained between the two.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 167 — #177 �
�

�
�

�
�

167 Ordinary Least Squares Regression

This results in inefficiency, as the model is chewing up more degrees of freedom
(working harder), but for relatively little (if any) additional explanatory gain.
Multicollinearity can also result in misleading inference about the effect of
particular variables. One of the most common tests to check for multicollinearity
is to estimate variance inflation factor statistics for all variables in the model.
Essentially, the test checks across every regressor in the full model, and then
checks how much the variance of the model shifts when a variable is included
versus when it is excluded. The simplest statistic for variance explained is the
R2. Thus, the formula is 1/1 − R2. Typically, values over 10 are considered j

problematic, though this is merely a rule of thumb, not a statistical property.
The vif() function from the car package is quite simple, requiring only the
model be supplied as input.
First fit a multiple regression model
reg_full <- lm(fttrump ~ birthyr + Party + female,

data = NESdta_sub); tidy(reg_full)

A tibble: 5 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 569. 108. 5.28 1.56e- 7
2 birthyr -0.279 0.0547 -5.09 4.10e- 7
3 PartyIndependent 23.8 2.16 11.0 8.61e-27
4 PartyRepublican 46.1 2.36 19.6 1.24e-73
5 female -3.94 1.87 -2.11 3.50e- 2

car::vif(reg_full)

GVIF Df GVIF^(1/(2*Df))
birthyr 1.009648 1 1.004812
Party 1.022983 2 1.005697
female 1.015137 1 1.007540

We do not see any problematic variables based on VIF output. This is good
news, suggesting the variables included are explaining unique variance in the
dependent variable.2

7.5.1.2 Influential Observations and Outliers

Next, we can check for outliers that may be exerting a larger than expected
amount of leverage or pull on the linear fit line explaining the data. We can

2Note, the lack of multicollinearity makes sense in such a simple case. The real threat
of multicollinearity enters when there are many regressors included on the right-hand side
of the model, and especially when the number of regressors approaches the size of the
sample. There is a more complex statistical technique widely used in machine learning called
regularization, which efficiently deals with multicollineary and model complexity when it is
a serious threat. For interested readers, there are some excellent resources for learning these
techniques in R (James et al., 2013).

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 168 — #178 �
�

�
�

�
�

168 Essential Statistical Modeling

check for these by calculating and visualizing Cook’s Distance, which is one of
the more common approaches to detecting outliers in regression models (as
well as in data sets, though this application is not be covered in this chapter).
Readers should note that you can inspect residual vs. fitted value plots in
base R by simply plotting the lm object (i.e., plot(lm_model). However, here
we will leverage two more recent packages from the easystats software group,
which use ggplot2 from the tidyverse to render visualizations: performance
to check for outliers, and see to plot the results. We will use our reg_full
model previously fit.

Cook’s distance calculates the influence of each observation on the fitted
(predicted) values. It is a useful way to detect outliers, and whether any
outliers may be troublesome for our estimates (i.e., pulling the regression fit
line toward their location in the predictor space). Yet, whether the observation
is a problematic outlier is a question left to the researcher. Let’s check for
outliers in our reg_full model using the check_outliers() function from
performance.
check_outliers(reg_full)

OK: No outliers detected.

Good news: no outliers were detected, at least when using Cook’s distance.
Note: users should inspect the performance package documentation for the
list of available metrics, which can be included and changed by supplying
the appropriate name (e.g., cook or iforest) to the method argument in the
check_outliers() function.

Yet, while this is good news for our model, it is not such good news when
demonstrating what to do if and when outliers are detected. To make this
point, and demonstrate the available tools, we will replicate the example from
the performance package documentation, to which Waggoner contributed.
This example is using the mtcars data set, but with fake outlier cases manually
added to the mt2 data set. Upon creating the data with the outliers, we will
use the check_outliers() function previously used, and then plot the results
using the plot() function from the see package. The result will be an easy to
read ggplot2 object with outliers labeled accordingly in Figure 7.3.
create the synthetic data with outliers
mt1 <- mtcars[, c(1, 3, 4)]

mt2 <- rbind(mt1, data.frame(mpg = c(37, 40),

disp = c(300, 400),
hp = c(110, 120)))

fit the model on the created data
model <- lm(disp ~ mpg + hp,

data = mt2)

news:no

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 169 — #179 �
�

�
�

�
�

169 Ordinary Least Squares Regression

check for outliers using Cook's and IQR (for comparison)
check_outliers(model, method = c("cook", "iqr"))

Warning: 3 outliers detected (cases 31, 33, 34).

visualize
plot(check_outliers(model, method = c("cook", "iqr"))) +

theme(axis.text.x = element_text(angle = 75, hjust = 1))

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Observation

D
is
ta
nc
e Method

Cook
IQR

FIGURE 7.3
Labeled Outliers via Cook’s Distance and IQR

Exercises

7.5.1.2.1 Easy

•	 Run these diagnostics on your regression for support for Obama from
the previous section. Are there any outliers or issues you notice in this
regression?

7.5.1.2.2 Intermediate

•	 What is the first step you would take if you suspected an outlier may be
exerting a large amount of influence on the fit of your model?

•	 Replicate the previous case, but this time change method = "all". Do

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 170 — #180 �
�

�
�

�
�

170 Essential Statistical Modeling

you see consistency across the different metrics? Why or why not, do you
think?

7.5.1.2.3 Advanced

•	 What is in the denominator of the variance inflation factor equation, and
why is this the case?

•	 Think about the logic behind Cook’s distance. Now, look up the “local
outlier factor” (LOF). How do these differ in substantive terms? How are
they similar?

7.5.2 Saving Regression Results

Even if you follow best practices and present your results visually, you will
likely need to provide a table of your regression results at some point. Here
again, the stargazer package is useful for automatically generating these
tables.

Here is how we would create a table for Microsoft Word of the two regression
models above. You will notice that this code is very similar to what we
used to create the table of summary statistics. The only real difference is
that we are including more than one object from which stargazer() is
drawing information. We also need to set the label for the dependent variable
(dep.var.labels()) to make it more informative than fttrump (and similarly
for the independent variables via covariate.labels argument). The output,
when we open it in Word, is a publication-ready table.
stargazer(reg_simple, reg_multiple,

dep.var.labels = c("Approval of Trump"),
covariate.labels = c("Birth Year",

"Independent",
"Republican"),

type = "html",
out = here("tables", "ols_models.doc"))

As we noted before, there are a number of different options with stargazer,
so take some time to play around with these to find your favorite table format.

Exercises

7.5.2.0.1 Easy

•	 Create a table that includes a bivariate model and a multivariate model
of support for Obama (ftobama). Save it and open it in Microsoft Word
or another word processing program.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 171 — #181 �
�

�
�

�
�

171 Binary Response Models

7.5.2.0.2 Intermediate

•	 You can add a number of different models to the same table. Take the
table for approval of Trump (fttrump) above and add the bivariate and
multivariate models for approval of Obama (ftobama). Be sure to modify
the labels accordingly.

7.5.2.0.3 Advanced

•	 What is the difference between kable() and stargazer()? (hint: consider
looking into the knitr package in the Tidyverse)

7.5.3 Concluding Remarks for OLS

We have merely scratched the surface on fitting, interpreting, and diagnosing
linear models. For example, you can use regressions to fit mediation models
when mediating effects are suspected (Waggoner, 2020). There are also many
other diagnostic tests you could (and should) run when you fit models and
present results, such as studentized residual plots, leverage plots, and so on.
Many of these other techniques are detailed in the easystats performance
package demonstrated above.

The bottom line is, in social science research, researchers should always strive
to be honest and thorough in the research program and present the full scope
of the process. This includes multiple iterations of models run, diagnostic tests,
and even alternative specifications. And more specifically for our purposes, we
suggest the Tidyverse is an exceptionally useful environment to facilitate this
process in a consistent, clean manner.

7.6 Binary Response Models

Recall that if we are interested in predicting the outcome of a binary dependent
variable (e.g., moving from a no to a yes, or the probability of moving from
a 0 to a 1), then we should fit a binary response model that can efficiently
handle estimation of the outcome.

OLS is inappropriate for binary response dependent variables, because it
assumes a continuous distribution in the response. The first attempt to deal
with this type of data was called a linear probability model (LPM). But, it
was soon realized that an LPM also produced unrealistic probabilities (e.g.,
105% or -30% likelihood of some event happening).

As such, the two most widely used models aimed at handling these types of data
in social sciences are logistic regression (logit) and probit regression. Probit was

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 172 — #182 �
�

�
�

�
�

172 Essential Statistical Modeling

much more popular in the 1980s and 1990s. Today, however, logistic regressions
are arguably used more frequently in the social sciences. It is important to note
that this preference is largely cosmetic (at least in a substantive, inferential
sense), as both estimators produce virtually identical point estimates. We will
demonstrate this below.

Ultimately, though, fitting a binary response model in R is nearly as straightfor
ward as fitting a basic linear model. This time, though, we will use the glm()
function instead of lm(), as logistic and probit regressions are generalized
linear models (hence the “g” in the “glm” function). Once we fit our model, it
is always a good idea to visualize the results as well as check for the robustness
of our estimates. We demonstrate these concepts in the Tidyverse for the
remainder of this chapter.

7.6.1 Loading Some New Libraries

First, we need to load a few new libraries and then create a binary response
variable. To do the latter, we will call it pro_trump, where over 50% on the
Trump feeling thermometer suggests the respondent supports Trump, at least
more than opposing him. To create this new variable, we use the ifelse()
function you learned earlier. Ultimately, we are interested in predicting the
likelihood of supporting Trump, relative to not supporting him. In other words,
we are interested in the probability of moving from a 0 (not support) to a 1
(support).
load some packages/libraries first

library(faraway)

library(foreign)

library(ggplot2)

library(arm)

library(MASS)

library(OOmisc) # for ePCP fit statistics

library(pROC) # for plotting ROC curves

library(lmtest) # for likelihood ratio tests

library(skimr)

create new "pro_trump" var for prediction

NESdta_sub <- NESdta_sub %>%

mutate(pro_trump = ifelse(fttrump >= 50, 1, 0)) %>%
drop_na()

inspect to make sure everything looks right
sample_n(tibble(NESdta_sub$pro_trump), 5)

A tibble: 5 x 1
`NESdta_sub$pro_trump`

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 173 — #183 �
�

�
�

�
�

173 Binary Response Models

<dbl>
1 1
2 1
3 0
4 1
5 0

table(NESdta_sub$pro_trump) # whole df: 665 = 0; 450 = 1

0 1
665 450

7.6.2	 Demonstrating Why OLS is Poor for Binary Outcomes

First, to motivate the value of fitting a logistic or probit model, we demonstrate
how an OLS model performs poorly in predicting binary responses in Figure
7.4.
ggplot(NESdta_sub, aes(x = birthyr, y = pro_trump)) +

geom_point(alpha = 0.7) +
geom_smooth(method = "lm", se = TRUE) +
labs(x	 = "Birth Year",

y = "Observed Pro-Trump Rating (FT >= 0.5)",
title = "The Effect of Age on Pro-Trump Rating") +

theme_minimal()

`geom_smooth()` using formula 'y ~ x'

The data constrained at {0, 1}, we can see the linear fit line is quite inefficient
and does not explain very much of the data. Thus we need a model that can
handle binary response dependent variables. As previously noted, there are
two options here that are most commonly used: logit and probit. However,
which one should we choose? The short answer is, it doesn’t really matter. But
let’s prove it Tidyverse style!

7.6.3	 Demonstrating Logit and Probit are (Virtually) Identi
cal

To demonstrate that logit and probit are functionally identical, we first fit
a logit model, and then a probit model to estimate the relative impact of
respondents’ ages (birthyr) on the likelihood of being “pro-Trump”. Of note,

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 174 — #184 �
�

�
�

�
�

174 Essential Statistical Modeling

0.00

0.25

0.50

0.75

1.00

1920 1940 1960 1980 2000

Birth Year

O
b

s
e

rv
e

d
 P

ro
−

T
ru

m
p

 R
a

ti
n

g
 (

F
T

 >
=

 0
.5

)

The Effect of Age on Pro−Trump Rating

FIGURE 7.4
Poor Fit of OLS for a Binary Outcome

the only thing we are changing in these models is the link function, from logit
to probit. We store each model in objects logit and probit.3

logit <- glm(pro_trump ~ birthyr,
family = binomial(link = logit),
NESdta_sub); tidy(logit)

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 32.5 7.20 4.52 0.00000622
2 birthyr -0.0167 0.00366 -4.57 0.00000483

probit <- glm(pro_trump ~ birthyr,
family = binomial(link = probit),
NESdta_sub); tidy(probit)

A tibble: 2 x 5
term estimate std.error statistic p.value

3The update to the glm() function compared to the lm() function is the inclusion of
family argument. This is where we tell the function that we are interested in the binomial
family, and that we want either a logit or a probit link within the binomial family.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 175 — #185 �
�

�
�

�
�

175 Binary Response Models

<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 20.3 4.44 4.56 0.00000508
2 birthyr -0.0104 0.00226 -4.62 0.00000391

Importantly, raw coefficients from logit and probit models are not extremely
helpful beyond direction of effects and significance. To turn these into something
more useful, a common choice is to calculate predicted probabilities. To do so,
and thus compare both numerically and visually, we can show the predicted
probabilities for being pro-Trump for specific levels of age. We will show for
the oldest respondent (born in 1921), the median respondent (born in 1967)
and then the youngest respondent (born in 1997). We obtain these values
using skim(). We then calculate and store the predicted values at each level
by simply plugging the intercept (β0) and slope (βj) coefficients into either
ilogit() or pnorm() for logit and probit models, respectively. The reason for
this choice is because the logit requires the inverse logistic distribution, while
the probit requires the normal distribution to turn these coefficient values into
predicted probabilities for more intuitive interpretation. We then store these
in a transposed tibble using the tribble() function to offer a cleaner look at
predicted probabilities by age level.
get the different values for min, med, and max birth year first
summary(NESdta_sub$birthyr)

store preds when birth year is at its min, median, and max
l_min <- ilogit(32.52570 + (-0.01673) * 1921) #min
p_min <- pnorm (20.263235 + (-0.010424) * 1921) #min
l_med <- ilogit(32.52570 + (-0.01673) * 1967) #median
p_med <- pnorm (20.263235 + (-0.010424) * 1967) #median
l_max <- ilogit(32.52570 + (-0.01673) * 1997) #max
p_max <- pnorm (20.263235 + (-0.010424) * 1997) #max

Predictions_Logit_Probit <- tribble(# transposed tibble
~` `, ~Logit, ~Probit,
"Minimum Birth Year (1921)", l_min, p_min,
"Median Birth Year (1967)", l_med, p_med,
"Maximum Birth Year (1997)", l_max, p_max

)
Predictions_Logit_Probit

In line with the earlier OLS findings, younger respondents are much less likely
to be in the pro-Trump camp, while older respondents are most likely to be
in the pro-Trump camp. But more importantly for our purposes, note the
virtually identical predictions for both the logit and probit models. This is
evidence of point number 1. For evidence of point number 2, corroborating these
similarities, we can also visualize this by plotting the predicted probabilities
against each other. If they are the same, then we would expect a perfectly

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 176 — #186 �
�

�
�

�
�

176 Essential Statistical Modeling

diagonal 45 degree line from the lower left to the upper right. To do this, we
will use ggplot2 with a point geometry to create a scatterplot and present
the comparison in Figure 7.5.
logit_phat <- logit$fitted.values # fitted values from logit
probit_phat <- probit$fitted.values # fitted values from probit

hat_data <- tibble(logit_phat, probit_phat)
#hat_data # uncomment to inspect if you'd like

hat_data %>%
ggplot() +
geom_point(alpha = 0.7, aes(x = logit_phat, y = probit_phat)) +
labs(x = "Logit Predicted Probabilities",

y = "Probit Predicted Probabilities",
title = "Comparing Logit & Probit Predictions") +

theme_minimal()

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6
Logit Predicted Probabilities

P
ro

bi
t P

re
di

ct
ed

 P
ro

ba
bi

lit
ie

s

Comparing Logit & Probit Predictions

FIGURE 7.5
Comparing Logit and Probit

It is clear from this chart that the logit and probit are virtually identical. Thus,
we will proceed with only logit for the remainder of the chapter.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 177 — #187 �
�

�
�

�
�

177 Binary Response Models

7.6.4	 Hypothesis Testing, Inference, and Substantive Inter
pretation

For both the logit and probit models, the glm() function returns the slope
coefficients, their corresponding standard errors and significance levels. We
can also get confidence intervals (CIs) for the estimated coefficients using the
confint() function, which profiles the likelihood distribution. After fitting the
model, we can convert coefficients into odds ratios, which are straightforward
to interpret. Based on the mean odds ratio, a one-point increase in X, will
increase the probability of moving from 0 to 1 by a factor of Z. Values greater
than 1 are positive relative effects, whereas values less than 1 are negative
relative effects. Note that the odds ratios are the exponentiated coefficients
from the model, and can be calculated via the exp() function from base R.
confint(logit)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 18.48486848 46.717426131
birthyr -0.02394826 -0.009594217

base::exp(logit$coefficients)

(Intercept) birthyr
1.335769e+14 9.834070e-01

7.6.5	 A Multivariate Model
To this point, we have found that age has a significantly negative impact on
the likelihood of being pro-Trump. Yet, there are likely other factors that also
matter. To explore these, and thus control for other factors, we can complicate
our base model by adding additional regressors as we did in the OLS case
earlier in the chapter.
mult_logit <- glm(pro_trump ~ birthyr + factor(Party) + gender,

family = binomial(link = logit),
NESdta_sub); tidy(mult_logit)

A tibble: 5 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 31.1 8.06 3.86 1.16e- 4
2 birthyr -0.0164 0.00409 -4.00 6.44e- 5
3 factor(Party)Indepe~ 1.32 0.163 8.11 5.13e-16
4 factor(Party)Republ~ 2.41 0.182 13.3 3.14e-40
5 gender -0.275 0.138 -2.00 4.56e- 2

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 178 — #188 �
�

�
�

�
�

178 Essential Statistical Modeling

Here we store the multivariate version in the object mult_logit, and also
make Party a factor for the sake of plotting below. Note that this does not
change the impact of the variable or the model.

With a more fully specified model controlling for additional factors (party
and also gender), we can get a more reliable sense of the magnitude of these
effects by generating out-of-sample predicted probabilities, ranging over the
birth year and holding the effect of gender at its mean value. This will give
us a targeted look at the effect of party affiliation on the likelihood of being
pro-Trump.
out of sample predicted values
let birth year range (do this 300 time for each level of party)
hold gender effect at mean; 100 times for each party id level
sub_data <- with(NESdta_sub, tibble(

birthyr = rep(seq(from = 1921, to = 1997,
length.out = 100),

3),

gender = mean(gender),

Party = factor(rep(c("Democrat",

"Republican",

"Independent"),

each = 100)))

)

combine predicted values and SEs based on "sub_data"
pred_data <- cbind(sub_data, predict(mult_logit,

newdata = sub_data,
type = "link",
se = TRUE))

store lower limit (LL) and upper limit (UL) values

attach to predicted values data frame created in "pred_data"

pred_data <- within(pred_data, {

PredictedProb <- plogis(fit)
LL <- plogis(fit - (1.96 * se.fit))
UL <- plogis(fit + (1.96 * se.fit))

})

With our synthetic out-of-sample data frame created, we can now plot these
results with unique lines and confidence intervals for each party in Figure 7.6.
ggplot(pred_data, aes(x = birthyr, y = PredictedProb)) +

geom_errorbar(aes(ymin = LL, ymax = UL), alpha = 0.2) +
geom_line(aes(color = Party), size = 1) +
scale_color_manual(values = amerika_palette("Dem_Ind_Rep3"),

name = "Party") +

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 179 — #189 �
�

�
�

�
�

179 Binary Response Models

labs(x = "Birth Year",
y = "Predicted Probability of Pro-Trump Rating",
title = "The Effect of Age and Party on Pro-Trump Rating",
subtitle = "Trends from 300 Out-of-Sample Predictions") +

theme_minimal()

0.25

0.50

0.75

1920 1940 1960 1980 2000

Birth Year

P
re

d
ic

te
d

 P
ro

b
a

b
ili

ty
 o

f
P

ro
−

T
ru

m
p

 R
a

ti
n

g

Party

Democrat

Independent

Republican

Trends from 300 Out−of−Sample Predictions

The Effect of Age and Party on Pro−Trump Rating

FIGURE 7.6
Out-of-Sample Predictions

In line with expectations and seen in the different slopes for each level of party
affiliation, Democrats have the overall lowest probability of supporting Trump,
followed by Independents in the middle, and followed by Republicans, who
have the highest overall probability of supporting Trump. Yet, the likelihood
of being pro-Trump across all parties drastically decreases as the respondent
pool gets younger.

7.6.6 Assessing Model Fit

As with OLS regression, it is vitally important to assess the fit of models in
the binary response world as well. We focus on two difference approaches:
classification-based (did the model classify observations correctly compared
to true values) and the likelihood-based (does model X predict the likeli
hood of moving from 0 to 1 better than model Z?). We start with expected

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 180 — #190 �
�

�
�

�
�

180 Essential Statistical Modeling

proportion correctly predicted (ePCP) and then we inspect receiver operating
characteristic (ROC) curves. We conclude with likelihood ratio tests.

7.6.6.1 Expected Proportion Correctly Predicted (ePCP)

First, using function ePCP(), we can calculate the expected proportion correctly
predicted (ePCP) statistics associated with each of our logit models (the
bivariate and the multivariate). We then store the predicted values and present
them visually across both models. Here, we are interested in which model
performs “best.” Higher ePCP suggests a better fit, or a higher proportion of
correctly classifying Trump supporters versus non-supporters.4

y <- NESdta_sub$pro_trump
pred1 <- predict(logit, type="response")
pred2 <- predict(mult_logit, type="response")

epcp1 <- ePCP(pred1, y, alpha = 0.05)
epcp2 <- ePCP(pred2, y, alpha = 0.05)

The multivariate iteration has a higher mean ePCP value than the bivariate
model, suggesting the more complicated multivariate model fits the data better
than the bivariate model. We can also visualize these results in Figure 7.7.
epcpdata <- data.frame(rbind(epcp1, epcp2))

epcpdata$model <- c(1,2)

epcpdata$count <- factor(c(1,2),

label = c("Bivariate", "Multivariate"))

ggplot(epcpdata, aes(x = model, y = ePCP,
color = count)) +

geom_bar(position = position_dodge(),
stat = "identity",
fill = "darkgray") +

geom_errorbar(aes(ymin = lower, ymax = upper),
width = 0.1,
position = position_dodge(0.9)) +

labs(title = "Comparing ePCP between Bivariate and\n
Multivariate Logistic Regressions",
x = "Model Specification",
y = "Expected Proportion of Correct Prediction",
color = "Model") +

theme_minimal()

4We thank Ling Zhu (University of Houston) for sharing some excellent base code used
in these assessment tests.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 181 — #191 �
�

�
�

�
�

181 Binary Response Models

0.0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5
Model Specification

E
xp

ec
te

d
P

ro
po

rti
on

 o
f C

or
re

ct
 P

re
di

ct
io

n

Model

Bivariate

Multivariate

Comparing ePCP between Bivariate and

 Multivariate Logistic Regressions

FIGURE 7.7
Expected Proportion Correctly Predicted (ePCP)

7.6.6.2 Receiver Operating Characteristic (ROC) Curves

Next, receiver operating characteristic (ROC) curves plot the correct predic
tions (sensitivity, “true positive” rate) against false predictions (specificity,
“false positive” rate). When a model fits well, the area under the curve (AUC)
will be greater, where 1 suggests perfect classification. The 45-degree diagonal
line is a reference point, such that we are interested in the model with the
curve most distant to the upper left from the diagonal line, suggesting greater,
positive AUC, and thus a better fit with more true positives correctly classified,
which again is support for Trump (y = 1). Results are in Figure 7.8.
par(mfrow = c(1,2)) # set the pane side by side (rows, columns)
plot.roc(y, pred1,

col="darkgreen",
main = "Bivariate Logit")

Setting levels: control = 0, case = 1

Setting direction: controls < cases

plot.roc(y, pred2,
col="darkorange",
main = "Multivariate Logit")

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 182 — #192 �
�

�
�

�
�

182 Essential Statistical Modeling

Setting levels: control = 0, case = 1
Setting direction: controls < cases

Bivariate Logit

Specificity

S
en
si
tiv
ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
5

1.
0

Multivariate Logit

Specificity

S
en
si
tiv
ity

1.0 0.8 0.6 0.4 0.2 0.0

0.
0

0.
5

1.
0

FIGURE 7.8
ROC Curves Comparing Bivariate and Multivariate Fits

Similar to ePCP, we can see much greater AUC for the multivariate model with
a curve farther to the upper left compared to the bivariate model, suggesting
the multivariate specification fits best.

7.6.6.3 Likelihood Ratio Tests

Finally, we can also assess fit by comparing the fit between models based
on the likelihood ratios using the likelihood ratio test. The test statistic is
defined as, LRtest = 2lnL(MB) − 2lnL(MM), where L(MB) is the likelihood
of estimates for the bivariate model and L(MM) is the likelihood of estimates
for the multivariate model.
lrtest(logit, mult_logit)

Likelihood ratio test

Model 1: pro_trump ~ birthyr
Model 2: pro_trump ~ birthyr + factor(Party) + gender
#Df LogLik Df Chisq Pr(>Chisq)

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 183 — #193 �
�

�
�

�
�

Concluding Remarks 183

1 2 -741.35
2 5 -632.56 3 217.58
--
Signif. codes:
0 '***' 0.001 '**' 0.01

< 2.2e-16

'*' 0.05

'.' 0.1 ' ' 1

As the log-likelihood of a model is a measure of fit, we are looking for a
significant result (sufficiently small p-value), and the model with a smaller
absolute log-likelihood value. Seen from the lrtest() output, the multivariate
model is indeed better fitting than the bivariate model, in line with the previous
tests.

Exercises

7.6.6.3.1 Easy

•	 Repeat the modeling exercise above, but with a dichotomous version of the
feeling thermometer for Obama (ftobama). How are the results similar or
different?

•	 Create a table for your logit models of support for Trump and Obama.

7.6.6.3.2 Intermediate

•	 Check the fit of your Obama logistic regression. Do the independent variables
contribute to a better model for explaining support for Obama or support
for Trump? How do you know? Why do you think these results are different,
if indeed they are?

•	 Suppose you visualized an ROC curve for your logistic regression model, but
the curve was to the lower right of the 45 degree reference line (i.e., below).
What would this tell you, and how would you know?

7.6.6.3.3 Advanced

•	 What might be a reasonable argument against collapsing a quantitative (i.e.,
continuous numeric) variable into a binary variable?

•	 Suppose your teacher said, “fit a linear probability model with a binary
dependent variable.” What would you say in response and what would be a
different approach you could take and why?

7.7 Concluding Remarks

This chapter has attempted to cover a lot of ground in a very short amount of
space. Our goal was to demonstrate that the range of statistical tools common
to most social scientists fits quite well in the Tidyverse. For example, those

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 184 — #194 �
�

�
�

�
�

184 Essential Statistical Modeling

familiar with the base R function for correlation, cor(), will immediately see
that working with the Tidyverse counterpart, correlate(), is much easier.

The capacities of R for statistical modeling are immense. From Bayesian
analysis to machine learning, you can find just about any type of statistical
model you will need, with an R package already developed. If you are wondering
where to start to find a specific model, visit the CRAN Task Views. Consider
also searching for the model or technique, adding “in R” to the search. Such a
task with return a host of tutorials, blog posts, and many other resources to
help you along your way.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 185 — #195 �
�

�
�

�
�

8

Parting Thoughts

This book has provided a very concise introduction to R and the Tidyverse.
We hope we have made a sufficient case for the use of both, and provided you
with the tools and understanding you need to set you off on your journey. But
you may be wondering where you go from here. In this section, we will provide
you with a few ideas of how to move towards mastery of the R language, and
get lots of great ideas for how you can use R to create new, original, and
exciting research. As we said in the beginning, learning to program is not
always an easy process. But over time, you will find these tools will open areas
of research that you never thought of prior to learning programming. As the
old saying goes,

If all you have is a hammer, everything begins to look like a nail.

Learning to efficiently program in R will change the way you view and do your
research. Neither of us anticipated the kind of work we are doing now when we
started graduate school. Yet, learning R opened new avenues far more exciting
than anything we had originally anticipated.

8.1 Continuing to Learn with R

As you leave this book, one thing is more important than any other for you to
learn R – use R. You probably have heard of other tools for research that offer
a simpler (at least at first) way to accomplish what you want to do. SPSS and
Stata have dropdown menus – why not do basic analyses there? The answer is
that you will not learn R if you are only using it every once in a while, when
you need to do something you cannot do in another language. We will not go
as far as one well-known scholar who claimed to do his taxes in R, but you
will not really learn without continuous use. Try to use R as your first choice
for analysis, and only use another program if you find yourself in a situation
in which it is really needed. R should become your default. This is part of
the reason we emphasized data management and graphics in this book. Since
these are the tasks that begin just about any project, you have no excuse not
to start with R.

185

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 186 — #196 �
�

�
�

�
�

186 Parting Thoughts

As you program with R, you will build a base of code that you will continue
to use as you work. Remember to save the scripts that you write. You will find
that you can re-use your code over and over. And, as you develop a base of
scripts, you will find that working in R becomes much faster (and faster than
using drop-down menus all the time). The online companion site for this book
provides all the code from this book to jump-start this process, and you can
find a range of code available online to help you build up this base of code.

Related to this, it is a good idea to subscribe to daily emails from R-Bloggers.
This will give you exposure to many of the exciting projects that are being
done by others in R, and will allow you to see the many opportunities using R
opens to your research. Many places also have dedicated groups for using R or
data science more generally, where you can meet other R users and participate
in fascinating projects, no matter your level of skill. You can find many of
these on Meetup.

Finally, be patient with yourself. There is the old story (perhaps apocryphal)
that Einstein told a student, who claimed to have difficulty with math, “Do
not worry about your difficulties in mathematics. I can assure you mine are
still greater.” All of us have had situations where we have struggled to get a
particular piece of code to run correctly, or have received an error message we
do not understand. Keep working on it and looking for help. It may take a
while, but there is no greater feeling than conquering, and mastering, a task
that you have struggled with previously. Celebrate your accomplishments, and
persist through your difficulties.

8.2 Where To Go from Here

As we have mentioned in several places, our online companion site provides
code examples of several other common (and some uncommon) tasks in R.
You can download these and add them to your code base.

To discover specific packages in R that are useful for a particular statistical
model or task, there is also the CRAN Task Views, which provides a curated
list of packages available for all kinds of analysis, from Bayesian statistics to
network analysis and machine learning.

Many scholars have also put together books that will help you as you work with
R in more specific circumstances, and many of these are available online (many
at no cost). A compendium of these books can be found at https://www.r
project.org/doc/bib/R-books.html.

A few more specific books that you might pick up after this book are:

– Hadley Wickham and Garrett Grolemund’s R for Data Science. This book

https://www.r�project.org
https://www.r�project.org/doc/bib/R-books.html

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 187 — #197 �
�

�
�

�
�

187 A Final Word

provides a more comprehensive picture of what you can do in the Tidyverse. It
is much more valuable, however, once you already have some basic familiarity
working with R and the basics of the Tidyverse, as it is written for an audience
with some level of prior programming experience. The book is available in
print, as an electronic book, or online for free (https://r4ds.had.co.nz/).

– Quan Li’s Using R for Data Analysis in Social Sciences. Li provides an
excellent introduction to base R, and also goes into much greater detail on
specific statistical models and, in particular, how to replicate studies in the
social sciences.

– Kieran Healy’s Data Visualization: A Practical Introduction. This book
provides an overview of the graphical capabilities in R using practical examples
using ggplot2.

– For those interested in Bayesian statistics using R, we cannot recommend
Richard McElreath’s Statistical Rethinking highly enough. It is both entertain
ing and enlightening, and uses R to demonstrate important statistical concepts
with which any researcher should be familiar.

8.3 A Final Word

In so many ways, we are living in a golden era for quantitative social science
research. Never have we had so much data available on human behavior, and
the ability to generate and analyze these data in ways that would have been
inconceivable just a decade ago. The future of the social sciences belongs to
those who are able to produce unique and replicable research. You now have
at your disposal what we consider one of the most powerful tools for achieving
this. We look forward to seeing what you do with it.

https://www.r4ds.had.co.nz

https://taylorandfrancis.com

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 189 — #199 �
�

�
�

�
�

Bibliography

Aldrich, J. H. and McGraw, K. M. (2012). Improving public opinion sur
veys: interdisciplinary innovation and the american national election studies.
Princeton University Press.

Börner, K., Bueckle, A., and Ginda, M. (2019). Data visualization literacy:
Definitions, conceptual frameworks, exercises, and assessments. Proceedings
of the National Academy of Sciences, 116(6):1857–1864.

Campbell, A., Converse, P. E., Miller, W. E., and Stokes, D. E. (1960). The
american voter. University of Chicago Press.

Collaboration, O. S. et al. (2015). Estimating the reproducibility of psycholog
ical science. Science, 349(6251):aac4716.

Faraway, J. J. (2016). Extending the linear model with R: generalized linear,
mixed effects and nonparametric regression models. Chapman and Hall/CRC.

Finlay, B. and Agresti, A. (1986). Statistical methods for the social sciences.
Dellen.

Fox, J. and Weisberg, S. (2018). An R companion to applied regression. Sage
Publications.

Freese, J. and Peterson, D. (2017). Replication in social science. Annual
Review of Sociology, 43:147–165.

Gailmard, S. (2014). Statistical modeling and inference for social science.
Cambridge University Press.

Gelman, A. and Hill, J. (2006). Data analysis using regression and multi
level/hierarchical models. Cambridge university press.

Giani, M. and Méon, P.-G. (2017). Global racist contagion following donald
trump’s election. British Journal of Political Science, pages 1–8.

Healy, K. (2018). Data Visualization: A Practical Introduction. Princeton
University, Princeton, NJ.

Hlavac, M. (2016). Extremebounds: Extreme bounds analysis in r. Journal of
Statistical Software, 72.

189

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 190 — #200 �
�

�
�

�
�

190 Bibliography

Hlavac, M. (2018). stargazer: Well-Formatted Regression and Summary Statis
tics Tables. R package version 5.2.2.

Ihaka, R. and Gentleman, R. (1996). R: a language for data analysis and
graphics. Journal of computational and graphical statistics, 5(3):299–314.

Ikenberry, G. J. (2017). The plot against american foreign policy: Can the
liberal order survive. Foreign Aff., 96:2.

Inglehart, R. and Welzel, C. (2009). How development leads to democracy:
What we know about modernization. Foreign Affairs, pages 33–48.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction
to statistical learning, volume 112. Springer.

Jones, L. V. (1987). The Collected Works of John W. Tukey: Philosophy and
Principles of Data Analysis 1965-1986, volume 4. CRC Press.

Kennedy, R. (2010). The contradiction of modernization: A conditional model
of endogenous democratization. The Journal of Politics, 72(3):785–798.

Kennedy, R. and Tiede, L. (2013). Economic development assumptions and
the elusive curse of oil. International Studies Quarterly, 57(4):760–771.

King, G. (1995). Replication, replication. PS: Political Science & Politics,
28(3):444–452.

Kruger, J. and Dunning, D. (1999). Unskilled and unaware of it: how difficulties
in recognizing one’s own incompetence lead to inflated self-assessments.
Journal of personality and social psychology, 77(6):1121.

Leamer, E. E. (1983). Let’s take the con out of econometrics. The American
Economic Review, 73(1):31–43.

Leamer, E. E. (2010). Tantalus on the road to asymptopia. Journal of
Economic Perspectives, 24(2):31–46.

Leemis, L. (2016). Learning Base R. Lightning Source.

Lerner, D. (1958). The passing of traditional society: Modernizing the middle
east.

Levine, R. and Renelt, D. (1992). A sensitivity analysis of cross-country growth
regressions. The American economic review, pages 942–963.

Lewis-Beck, M. S., Jacoby, W. G., Norpoth, H., and Weisberg, H. F. (2008).
The American voter revisited. University of Michigan Press.

Li, Q. (2018). Using R for Data Analysis in Social Sciences. Oxford University,
Oxford, UK.

Lipset, S. M. (1959). Political man: The social bases of politics.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 191 — #201 �
�

�
�

�
�

Bibliography 191

Lüdecke, D., Makowski, D., and Waggoner, P. D. (2019). Performance: assess
ment of regression models performance. R package version 0.4, 2.

Lüdecke, D., Makowski, D., Waggoner, P. D., and Ben-Shachar, M. S. (2020).
see: Visualisation toolbox for ’easystats’ and extra geoms, themes and color
palettes for ’ggplot2’. R package version 0.5.1.1.

MacWilliams, M. C. (2016). Who decides when the party doesn’t? authoritarian
voters and the rise of donald trump. PS: Political Science & Politics,
49(4):716–721.

Matloff, N. (2011). The art of R programming: A tour of statistical software
design. No Starch Press.

McAleer, M., Pagan, A. R., and Volker, P. A. (1985). What will take the con
out of econometrics? The American Economic Review, 75(3):293–307.

McNamara, A., Arino de la Rubia, E., Zhu, H., Ellis, S., and Quinn, M. (2019).
skimr: Compact and Flexible Summaries of Data. R package version 1.0.5.

Monogan III, J. E. E. (2015). Political Analysis Using R. Use R! Springer,
New York.

Oakley, B. A. (2014). A mind for numbers: How to excel at math and science
(even if you flunked algebra). TarcherPerigee.

O’donnell, G. (1973). Modernization and bureaucratic-authoritarianism: Stud
ies in south american politics.

Pierson, P. (2017). American hybrid: Donald trump and the strange merger of
populism and plutocracy. The British journal of sociology, 68:S105–S119.

Radford, J. and Lazer, D. (2019). Big data for sociological research. The Wiley
Blackwell Companion to Sociology, pages 417–443.

Robinson, D. (2014). broom: An r package for converting statistical analysis
objects into tidy data frames. arXiv preprint arXiv:1412.3565.

Robinson, J. A. (2006). Economic development and democracy. Annu. Rev.
Polit. Sci., 9:503–527.

RStudio Team (2015). RStudio: Integrated Development Environment for R.
RStudio, Inc., Boston, MA.

Sides, J., Tesler, M., and Vavreck, L. (2017). The 2016 us election: How trump
lost and won. Journal of Democracy, 28(2):34–44.

Smith, T. (1979). The underdevelopment of development literature: the case
of dependency theory. World Politics, 31(2):247–288.

Tufte, E. R. (2001). The visual display of quantitative information, volume 2.
Graphics press Cheshire, CT.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 192 — #202 �
�

�
�

�
�

192 Bibliography

Tufte, E. R., Goeler, N. H., and Benson, R. (1990). Envisioning information,
volume 126. Graphics press Cheshire, CT.

Venables, W. N. and Ripley, B. D. (2013). Modern applied statistics with
S-PLUS. Springer Science & Business Media.

Waggoner, P. D. (2018a). Advice to Young (and Old) Programmers: A Con
versation with Hadley Wickham. R-Bloggers.

Waggoner, P. D. (2018b). The hhi package: Streamlined calculation and
visualization of herfindahl-hirschman index scores. Journal of Open Source
Software, 3(28):828.

Waggoner, P. D. (2019). amerika: American Politics-Inspired Color Palette
Generator. R package version 0.1.0.

Waggoner, P. D. (2020). A simple method for purging mediation effects.
Journal of Statistical Theory and Practice, 14(25):25.

Ward, M. D. and Gleditsch, K. S. (2018). Spatial regression models, volume
155. Sage Publications.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer,
New York.

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(10):1–23.

Wickham, H. (2017). tidyverse: Easily Install and Load the ’Tidyverse’. R
package version 1.2.1.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,
R., Grolemund, G., Hayes, A., Henry, L., Hester, J., et al. (2019a). Welcome
to the tidyverse. Journal of Open Source Software, 4(43):1686.

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke,
C., and Woo, K. (2019b). ggplot2: Create Elegant Data Visualisations Using
the Grammar of Graphics. R package version 3.1.1.

Wickham, H. and Grolemund, G. (2017). R for Data Science. O’Reilly, New
York.

Wilkinson, L. (2012). The grammar of graphics. In Handbook of Computational
Statistics, pages 375–414. Springer.

Xavier, S.-i.-M. et al. (1997). I just ran two million regressions. American
Economic Review, 87(2):178–83.

Xie, Y. (2019). bookdown: Authoring Books and Technical Documents with R
Markdown. R package version 0.10.

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 193 — #203 �
�

�
�

�
�

Index

<- vs. =, 18

== vs. =, 53

>, 13

?, 15, 30

$ operator, 46, 74, 107, 109, 162

LATEX, 27, 66

80/20 dilemma, 33

adorn_ns(), 60

adorn_pct_formatting(), 60

adorn_percentages(), 60

aes(), 78

AIC, 164

alpha argument, 88, 159

American Economic Review, 3

American Journal of Political Science,

3, 69

American National Election Study

(ANES), 6, 36

amerika package, 28, 140

and operator, 42, 111

anti_join(), 56

apply all (_all), 148

apply by (_by), 148

approximation operator (), 155

area under the curve (AUC), 181

argument(), 162, 163

arguments, 19

arm package, 28

arrays, 104

as.data.frame(), 37

as.factor(), 38

as.numeric(), 104

as_tibble(), 37

Asar, Ozgur, 28

assignment operator (<-), 18, 148

attributes, 17

Bache, Stefan Milton, 45

bar plots, 81, 139

Bell Labs, 6, 18

BIC, 164

binary response model, 171

bookdown package, 2

boxplots, 139, 140

broom, 11

broom package, 28, 162

bubble plots, 95

C, 14

c(), 67

C++, 4, 14

car package, 28, 167

case_when(), 52

CatterPlots package, 2

central limit theorem, 123, 125

character data, 102

check_outliers(), 168

chi-squared test, 11, 158

chisq.test(), 158

CLARA, 137

class(), 17, 105

classification accuracy, 179

classroom use, 9

combining plots, 90

comma-separated values (CSV), 34

comment-out, 19

comments, 19

comparison of means, 61

compiled languages, 14

Comprehensive R Archive Network

(CRAN), 2, 24

conditional logic, 112

confidence intervals (CIs), 177

confidence level, 156

193

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 194 — #204 �
�

�
�

�
�

194 Index

confint(), 177

contains(), 40

contingency tables, 158

Cook’s distance, 163, 168

correlate(), 159

correlation, 27, 159

corrr package, 27, 154, 159

CRAN Task Views, 184, 186

cross-tabulation, 27, 58, 158

data classes, 101

data munging/wrangling, 39

data structures, 104

data.frame, 37, 109

de-bugging, 117

default values, 115

defensive programming, 20

degrees of freedom, 164

descriptive analysis, 57

difference in means test, 155

double brackets, 107

downloading R, 8

downloading RStudio, 8

dplyr package, 26, 39, 147

dplyr::filter(), 41

dplyr::select(), 27, 39

Dunning-Kruger effect, 5

EARL, 4

easystats, 11, 28, 168

Einstein, Albert, 186

else if, 117

Emacs, 8

ends_with(), 40

environment, 3

Environment tab, 15

ePCP(), 180

equal (identical) to, 111

Evidence in Governance and Politics

(EGAP), 121

Excel format (.xls, .xlsx), 27, 35

exp(), 177

expected proportion correctly

predicted (ePCP), 180

experimental power, 121

exploratory data analysis (EDA), 11

exploring distributions, 122

Extreme Bounds Analysis (EBA), 128

facet_wrap(), 78, 88, 140

factor data, 102

factor levels, 103

factor(), 103

family argument, 174

faraway package, 28

Faraway, Julian, 28

file path, 22

Files tab, 15

filter(), 41, 146

filter_at(), 147

filter_if(), 147

fitted values, 163

for, 120

forcats package, 27

Fox, John, 28

Freedom House, 70

full_join(), 56

function call, 19

function(), 114

functional programming language, 19

functions, 19

gather(), 63

Gelman, Andres, 28

generalized linear model (GLM), 172

Gentleman, Robert, 2

geom_abline(), 97

geom_bar(), 81, 139

geom_boxplot(), 139, 140

geom_histogram(), 77

geom_jitter(), 88

geom_point, 159

geom_point(), 86, 141

geom_smooth(), 86, 143

get working directory, 21

getwd(), 21

ggplot(), 77

ggplot2 package, 4, 7, 11, 26, 75, 139,

176

ggplot2 themes, 78, 97

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 195 — #205 �
�

�
�

�
�

195 Index

ggsave(), 94

glance(), 162, 164

glimpse(), 72, 155

glm(), 172, 174, 177

global data set, 69

GNU General Public License, 2

grammar, 6

grammar of graphics, 4, 11, 75

graph geometry (geom_), 77

greater than, 110

greater than or equal to, 111

grid.arrange(), 90

gridExtra package, 90

Grolemund, Garrett, 99, 186

group_by(), 45, 146, 157

haven package, 27, 35

head(), 109

Healy, Kieran, 99, 187

Help tab, 15

help(), 15, 19, 30

help, finding, 29

here package, 25, 27, 154

here(), 25, 34

Herfindahl-Hirschman Index (HHI),

118

Hill, Jennifer, 28

histograms, 72

History tab, 15

HTML, 67, 98

if, 112

if else, 112

ifelse(), 53, 117, 172

Ihaka, Ross, 2

Ilk, Ozlem, 28

ilogit(), 175

influential observations, 166, 167

inner_join(), 56

install.packages(), 24

integrated development environment

(IDE), 5, 8

Inter-University Consortium for

Political and Social

Research (ICPSR), 2

interactive histograms, 98

interactive plots, 97

interactive scatterplots, 97

janitor package, 27, 60, 154, 158

Java, 4, 14

joining data, 55

Journal of Political Economy, 3

k-means, 137

k-medoids, 137

labs(), 78

law of large numbers, 123, 126

layering statements, 117

left_join(), 56

length(), 105

less than, 110

less than or equal to, 111

Li, Quan, 187

library(), 25

LibreOffice, 66

likelihood ratio test, 182

linear model, 86, 162

Linear Probability Model (LPM), 171

lists, 107

lm(), 162

lmtest package, 28

loading data, 34

LOESS, 86, 143

log-likelihood, 164

logical class, 111

logical operators, 111

logistic regression (Logit), 171

long to wide data, 64

loops, 120

lrtest(), 183

magrittr package, 45

map(), 132

map_dbl(), 134

map_int(), 134

mapping aesthetic, 78

markdown, 8

MASS package, 27, 28

mathematical operators, 43

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 196 — #206 �
�

�
�

�
�

196 Index

matrices, 106

max(), 46

McElreath, Richard, 187

mean(), 46

median(), 46

Meetup, 186

merging data, 55

mfrow, 74

Michigan, University of, 36

Microsoft Word, 27, 66, 170

min(), 46

missing values, 51, 145

model fit, 179

modernization theory, 69

modular code, 119

modules, 119

multicollinearity, 166

multiple regression, 164

multivariate logit, 177

mutate(), 48

na.rm, 46

names(), 107, 162

National Science Foundation (NSF),

36

ncol, 88

nest(), 134

nested loops, 127

new script, 15

new variables, 48

Norris, Pippa, 6, 70

not equal, 111

not is.na(), 70

not operator, 70, 111

nrow, 88

nrow(), 133

null hypothesis testing framework

(NHST), 153

numeric data, 101

objects, 17

one-tailed test, 156

only one way to do it, 7

OOmisc package, 28

opening scripts, 15

operators, 110

or operator, 42, 111

Ordinary Least Squares (OLS), 161

out-of-sample data, 178

outliers, 167

p-hacking, 137

p-values, 163

packages, 2, 24, 27

Packages tab, 15, 24

packages, installing, 24, 28

packages, loading, 25

packages, overlapping functions, 27

par(), 74

parentheses, 15

paste(), 115

patchwork package, 28, 90, 123

Pearson’s correlation coefficient, 159

performance package, 11, 28, 168

pipe operator (%>%), 45, 146

plain text format, 34

PLOS One, 3

plot addition (+), 76

plot_annotation(), 92

plotly package, 28, 97

Plots tab, 15

pnorm(), 175

point-and-click, 3

power, 121

predicted probabilities, 175

print(), 115

probit regression, 171

pROC package, 28

Proceedings of the National Academy

of Sciences, 69

programming, 11

purrr package, 26, 27, 132

Pythagorean Theorem, 19

Python, 4, 14

qplot(), 75

quickplot(), 75

R community, 4, 30

R console, 13

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 197 — #207 �
�

�
�

�
�

197 Index

R Graph Gallery, 79

r-bloggers, 30, 186

R2, 164

read.csv(), 37

read_csv(), 34

readr package, 26, 34

readxl package, 27, 35

receiver operating characteristic

(ROC) curves, 28, 180, 181

regression, 11, 161

regression coefficients, 163

regression tables, 170

relational operators, 110

removing variables, 49

rename(), 56

repetition, value of, 9

replace(), 51

replication, 3

reshaping data, 62

residuals, 163

right_join(), 56

Ripley, Brian, 28

Rosling, Hans, 95

rstatix package, 28, 154

rstats, 30

RStudio, 8, 15

RStudio projects, 23

rstudio::conf, 4

runif(), 108

running scripts, 16

S-PLUS, 2

sample(), 123

sample_n(), 146

sampling with replacement, 146

SAS data format (.sas7bdat), 27, 35

saving data, 65

saving plots, 94

scale_x_continuous(), 97

scale_y_continuous(), 97

scatterplots, 84, 141

scripting, 8, 13

scripting language, 14

see package, 11, 28, 168

select range, 105

select range (:), 40

select(), 27, 39

selecting range, 63

set working directory, 22

setwd(), 22

setwd(choose.dir()), 22

shape argument, 88

Shiny applications, 3

simulation, 121

skim, 146

skim(), 72, 149, 175

skimr package, 11, 27, 138, 146, 149

Sociological Methods and Research, 3

source(), 119

Spark, 4

split(), 133

spread(), 64

SPSS data format (.sav), 27, 35

SQL, 4

Stack Overflow, 31

stargazer, 10

stargazer package, 27, 66, 170

starts_with(), 40

stat argument, 83

Stata data format (.dta), 27, 35

stop, 117

strings, 102

strongly typed, 18

summarize(), 45, 157

summary statistics, 66, 145

summary(), 11, 46, 145

t-test, 1-sample, 155

t-test, equal variance, 157

t-test, paired, 157

t-test, two sample, 156

t-test, unequal variance, 157

t-tests, 11, 28, 155

t_test(), 155, 156

tab-separated values (TSV), 34

table generation, 66

tabyl(), 60, 158

theme_b2(), 97

theme_minimal(), 78

tibble package, 26

�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 198 — #208 �
�

�
�

�
�

198 Index

tibbles, 37, 109
tidy code, 7
tidy data, 62
tidy(), 162, 163
tidyr package, 26, 62
Tidyverse, 6
tidyverse package, 24, 26
transparency, 88
tribble(), 175
Tukey, John, 137, 140
two-tailed test, 156

ubeR package, 2
ungroup(), 46
University of Auckland, 2
unnest(), 134
unused argument error, 27
Updating R, 2
updating R, 8
updating RStudio, 8
UseR, 4
user-defined functions, 114

variance inflation factor (VIF), 166
vectors, 104
Venables, Bill, 28
Viewer tab, 15
vif(), 167
visual exploration, 138
visualization, 3, 11, 69, 139

warning messages, 20, 117
Weisberg, Sanford, 28
Wickham, Hadley, 4, 29, 99, 186
wide to long data, 63
working directory, 21
write_csv(), 65

	Contents
	Preface
	1 Introduction
	2 Foundations
	3 Data Management and Manipulation
	4 Visualizing Your Data
	5 Essential Programming
	6 Exploratory Data Analysis
	7 Essential Statistical Modeling
	8 Parting Thoughts
	Bibliography
	Index

