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Preface
 

This book is a distillation of our approach to programming in R for exploring 
and explaining a variety of social science behavior. It is the product of our 
own notes from teaching R to many groups of people, from undergraduates 
and graduates to faculty members and practitioners. Indeed, this book would 
be impossible without the support from and engagement by many students, 
colleagues, and folks generally interested in our work. We are deeply grateful 
to these people and are excited to share our work in this form. 

In this book, we have two primary goals: 

1.	 To introduce social scientists, both in and out of academia, to R. R is 
at the same time a programming language as well as an environment 
to do statistics and data science. As R is open source (meaning 
open contribution of packages via the Comprehensive R Archive 
Network (CRAN)), there are many powerful tools available to users 
in virtually any discipline or domain to accomplish virtually any 
statistical or data science task. Our goal, then, is to cover the tools 
we find most helpful in our research as social scientists. 

2.	 As the subtitle of the book suggests, we are interested in exposing 
social scientists to the “tidy” approach to coding, which is also 
referred to as the Tidyverse. Though we expound on this in much 
greater detail throughout, the Tidyverse is a collection of packages 
all built around consistency and making tasks in R streamlined, 
with the product being a clean, clear rendering of the quantity or 
object of interest. And as this is an introductory text, we suggest 
it is most valuable to start from the Tidyverse framework, rather 
than base R, to reduce the steepness of the learning curve as much 
as possible. 

vii 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page viii — #8 �
�

�
�

�
�

viii	 Preface 

Overview of Chapters 

In the book, we cover the following topics for a full introduction to tidy R 
programming for social scientists: 

1.	 Introduction: Motivation for the book, getting and using R 
2.	 Foundations: Packages, libraries, and object-oriented programming 
3.	 Data Management: Getting your data into workable, tidy form 
4.	 Visualization: Visual presentations using ggplot2 and the gram

mar of graphics 
5.	 Essential Programming: Interacting with base R to learn func

tional programming 
6.	 Exploratory Data Analysis: Exploring relationships and data in 

the Tidyverse 
7.	 Essential Statistical Modeling: Fitting and diagnosing widely 

used models in the Tidyverse 
8.	 Parting Thoughts: Conclusion and wrap-up 
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1 

Introduction
 

R is a widely used statistical environment that has become very popular in the 
social sciences because of its power and extensibility. However, the way that R 
is taught to many social scientists is, we think, less than ideal. Many social 
scientists come to R after learning another statistical program (e.g. SAS, SPSS, 
or Stata). There are a variety of reasons they do this, such as finding there 
are some tasks they cannot do in these other programs, collaborating with 
colleagues who work in R, and/or being told that they need to learn R. For 
others, R may be the first statistical program they encounter, but they come 
to it without any kind of experience with programming (or even, increasingly, 
using a text interface). 

This is part of why “learning R” can be frustrating. Learning R for the first 
time, most students are shown how to undertake particular tasks in the style 
of a cookbook (i.e., here is how you conduct a regression analysis in R), with 
little effort dedicated to developing an underlying intuition of how R works as 
a language. As a result, for those who have experience with other statistical 
programs, R comes across as a harder way to do the same things they can do 
more easily in another program. This cookbook approach can also produce 
frustration for those who are coming to R as their first statistical analysis 
environment. Working with R in such a way becomes a process of copying and 
pasting, with only a shallow understanding of why things have a particular 
structure and, thus, difficulty moving beyond the demonstrated examples. 

Finally, the cookbook approach is, in many ways, a holdover from the pre-
internet era, when large coding manuals were a critical reference for finding out 
how to do anything in a complex program. These books had to be exhaustive, 
since they were needed as much for reference as for learning the environment. 
Today, however, there is a plethora of online materials to demonstrate how 
to perform specific tasks in R, and exhaustiveness can come at a cost to 
comprehension. What most beginners with R need is a concrete introduction 
to the fundamentals, which will allow them to fully leverage the tools available 
online. 

This book is focused on equipping readers with the tools and knowledge to 
overcome their initial frustration and fully engage with R. We introduce a 
modern approach to programming in R – the Tidyverse. This set of tools 
introduces a consistent grammar for working with R that allows users to 

1 
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2 Introduction 

quickly develop intuitions of how their code works and how to conduct new 
tasks. We have found this increases the speed of learning and encourages 
creativity in programming. 

This book is based on an intensive 3-day workshop introducing R, taught by 
one of the authors at the Inter-University Consortium for Political and Social 
Research (ICPSR), as well as numerous workshops and classes (at both the 
undergraduate and graduate levels) conducted by both authors. The goal is to 
have the reader: (1) understand and feel comfortable using R for data analysis 
tasks, (2) have the skills necessary to approach just about any task or program 
in R with confidence, and (3) have an appreciation for that which R allows a 
researcher to do and a desire to further their knowledge. 

1.1 Why R? 

If you have picked up this book, chances are that you already have a reason 
for learning R. But let’s go through some of the more common reasons why 
conducting your research in R is a good idea. 

One of the major attractions of R is that it is free and open source. R was 
created by Ross Ihaka and Robert Gentleman, of the Department of Statistics 
at the University of Auckland, in the early 1990s (Ihaka and Gentleman, 1996). 
It was designed to be a dialect of the popular S-PLUS statistical language 
that was developed for Bell Labs. Unlike S-PLUS, however, R was released 
under the GNU General Public License, which allows users to freely download, 
alter, and redistribute it. 

The result of this open source license is that R is accessible to everyone, without 
exorbitant licensing fees. It is also regularly updated and maintained, with 
frequent releases that allow for quick fixing of bugs and the addition of new 
features.1 Perhaps most importantly, the open source nature allows users to 
contribute their own additions to R in the form of “packages.” You will often 
hear R users say, in response to a question about how to do something in 
R, “There is a package for that.” From running advanced statistical models 
to ordering an Uber (the ubeR package) or making a scatterplot with cats 
instead of points (the CatterPlots package), it is likely that someone has 
developed a way to do it in R. As of 2015, there were over 10,000 packages 
on the Comprehensive R Archive Network (CRAN), with scores more being 
created all the time. Indeed, the book you are reading now was originally 
written completely in R using R Markdown and the bookdown package (Xie, 
2019). 

1The major new release usually comes around October, so you should, at a minimum, 
update your R system around this time. 
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Another reason for learning R is flexibility. R is both a language and an 
“environment” where users can do statistics and analysis. This covers a lot of 
ground – from data visualization and exploratory data analysis, to complex 
modeling, advanced programming and computation. R allows you to scrape 
data from websites, interact with APIs, and even create your own online 
(“Shiny”) applications. This flexibility, in turn, allows you as a researcher to 
undertake a wider variety of research tasks, some of which you might not even 
have considered previously. 

Though R is wonderfully flexible, fast, and efficient, the learning curve can 
be quite steep, as users must learn to write code. For example, in some other 
popular statistics programs, users can point-and-click on the models they 
want with little to no interface with the mechanics behind what is going on. 
This is both good and bad. It is good in that the learning curve in point
and-click interfaces is much gentler and accommodating. However, it is not a 
great thing in that it restricts user interface with the process of coding and 
statistical analysis. Point-and-click encourages minimal interaction with the 
data and tasks, and ultimately following the well-trod path of others, rather 
than creating your own path. 

The coding process required by R is also increasingly becoming the standard 
in the social sciences. The “replication revolution” in the social sciences has 
encouraged/required scholars to not only think about how they will share their 
results, but also how they will share the way they got those results (King, 
1995; Collaboration et al., 2015; Freese and Peterson, 2017). Indeed, several 
of the top social science journals – including American Economic Review, 
Journal of Political Economy, PLOS ONE, American Journal of Political 
Science, and Sociological Methods and Research, among others – now require 
submission of replication code and/or data prior to publication. Still others 
strongly encourage the submission of replication code. R code is ideal for this 
purpose – there are almost no obstacles to other scholars downloading and 
running your R code. The same cannot be said about programs that require 
licenses and point-and-click interaction. 

This replication process can also be useful for your own work. There is a 
common refrain among computer programmers that, “If you do not look at 
your code for a month, and have not included enough comments to explain what 
the commands do, it might as well have been written by someone else.” The 
same is true of point-and-click software. If you have a process that is reasonably 
complex and you do not work with it for a while, you might completely forget 
how to do it. By writing an R script, you have a written record of how you 
did each task, which you can easily execute again. 

Additionally, we recommend the use of R in a variety of applied research 
settings because of the high-quality options for visualization. Broadly, R uses 
layers to build plots. This layering provides many flexible options for users 
to interact directly with their visual tools to produce high-quality graphical 
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4 Introduction 

depictions of quantities of interest. Further, some packages, e.g., ggplot2, use 
something called the “grammar of graphics” (Wilkinson, 2012), which is a 
process of streamlining the building of sophisticated plots and figures in R 
(Wickham et al., 2019b; Wickham, 2009; Healy, 2018). This and other similar 
packages offer users even more advanced tools for generating high-quality, 
publication-ready visualizations (Lüdecke et al., 2020). 

And finally, we highly recommend R, because of the community. From blogs 
and local “R User” community groups in cities throughout the world to a 
host of conferences (e.g., UseR, EARL, rstudio::conf), the R community is 
a welcoming place. Further, the open source nature of R contributes to a 
communal atmosphere, where innovation and sophistication in programming 
and practice are highly prioritized. Put simply, R users want R to be the best it 
can be. The result is an inclusive community filled with creative programmers 
and applied users all contributing to this broader goal of a superior computing 
platform and language. And in the words of one of the most influential modern 
R developers, Hadley Wickham (a name you will see a lot in this book) 
(Waggoner, 2018a), 

. . . When you talk about choosing programming languages, I always say 
you shouldn’t pick them based on technical merits, but rather pick them 
based on the community. And I think the R community is like really, really 
strong, vibrant, free, welcoming, and embraces a wide range of domains. 
So, if there are people like you using R, then your life is going to be much 
easier. 

Therefore, though tricky to learn, if users are engaged in any way with data, 
whether working for an NGO, attending graduate school, or even legal work 
in many cases, users will be glad they opted to begin in R and endured the 
hard, but vastly rewarding work up front. 

1.2 Why This Book? 

There are many good introductions to R (Monogan III, 2015; Li, 2018; Wick-
ham and Grolemund, 2017), and we will point you towards several of them 
throughout. Yet, this book provides a unique and beneficial starting place, 
particularly for social scientists. There are several features of this book that 
lead us to this conclusion. 

First, it is written specifically for social scientists. Many of the best intro
ductions to R are written for those who are coming from other programming 
languages (e.g. Python, C++, Java) or from database design (e.g., Spark, 
SQL). The assumption is that the reader will already be pretty familiar with 
programming concepts, like objects, functions, scope, or even with R itself. 
This, however, does not apply to most social scientists, who usually do not 
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5 Why This Book? 

come in with experience in either programming or database management, and 
will, therefore, find these concepts unfamiliar, and often quite vexing. We also 
include details that are likely to be particularly relevant to social scientists, 
such as how to automatically generate tables using R. 

Second, we write this as a genuine introduction course, not as a cookbook. 
Cookbooks have their place for learning R. They provide handy guides to 
completing particular tasks, and are indispensable as you go through your work. 
But, just as following the steps to make bread is not the same as understanding 
how bread is made, copying code from a book or online resource is not the 
same as developing the skill base to flourish as a data analyst who uses R. For 
a similar reason, unlike some other introductions, we do not create any special 
software specifically for this book – you are here to learn R, not a software we 
design. This book concentrates on helping you to understand what you are 
doing and why. After working your way through this book, you should be able 
to undertake a range of tasks in R and more easily learn new ones and even 
troubleshoot your own errors. 

Third, we provide a thoroughly modern introduction to R. While using the 
word “modern” in any book is a risky proposition, we mean this in terms 
of using the latest tools as of this writing to help you be as productive as 
possible. This means using the RStudio integrated development environment 
(IDE) to assist you in writing and running code, R projects to keep track of 
and organize your work, and the Tidyverse set of tools to make your code 
more modular and comprehensible. 

Fourth, we concentrate on the areas of learning R that you will use the most 
often and are typically the most frustrating for beginners. Many people have 
heard of the “Dunning-Kruger effect”, which is the tendency for people with low 
ability to overestimate their ability (Kruger and Dunning, 1999). Many people 
forget about the inverse part of the Kruger-Dunning effect – the tendency for 
experts to underestimate the difficulty of tasks for which they are an expert. 
This sometimes exhibits itself in R introductions that attempt to introduce 
quite advanced statistical models, but give little to no attention to issues like 
file systems and data management. Yet, things like setting working directories 
are some of the most common stumbling blocks for students and data scientists 
will often say that 80% of their job is managing and shaping data, but this is 
almost never reflected in introductory texts. We try to correct this by giving a 
significant focus in the beginning to these fundamental skills. 

Fifth, this is a very concise introduction to R. We do not intend to cover, nor 
do you need to know, everything about the internal workings of R or all of the 
different options and functions in the Tidyverse. For a working social scientist, 
the goal is to learn the parts you are likely to use most often, and gain enough 
understanding of how R functions to get help with the unique situations. We 
would argue that many “introductions” suffer from too much detail, where 
what is important is buried under an avalanche of options you are unlikely to 
use and will promptly forget. 
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Finally, the analysis demonstrated throughout is based on real survey data 
from the American National Election Study (ANES) and a large cross-country 
data set created by Professor Pippa Norris at Harvard University. We selected 
these examples because they are real social science data, thus allowing users to 
get their hands dirty in a very practical way, mirroring many contexts they are 
more likely to see in their future work, rather than conducting a demonstration 
using either pre-cleaned data or data about which the reader will have no 
intuition. We have not cleaned or processed the data in any way, so it provides 
a good example of what you will encounter in the “real world.” You will be 
using the exact same data you would get from downloading these data sets 
from the internet. 

1.3 Why the Tidyverse? 

As was mentioned in the last section, this book is somewhat unique among 
social science introductions in our reliance on tools related to the “Tidyverse.” 
This is a set of tools that have been collected and curated to make your work 
in R more productive. The Tidyverse is actually a collection of R packages 
(which we will discuss later), which all share an underlying design philosophy, 
grammar and structure (Wickham, 2017; Wickham and Grolemund, 2017; 
Wickham et al., 2019a). 

There are several reasons we prefer to concentrate on the Tidyverse. First, it 
will allow us to get started with real data analysis, quickly. For those who do 
not start with a programming background, one of the more intimidating things 
about R is the introduction of programming concepts that usually comes with 
it. The basis of the R language was designed for Bell Labs engineers more than 
50 years ago. The Tidyverse grammar was designed for data analysts from 
a wide range of backgrounds. The tools in the Tidyverse allow you to start 
getting meaningful data analysis right away. 

Just as importantly, the shared design strategy of Tidyverse packages means 
that you will have an easier time learning how to do new things. The consistent 
design means that the intuitions you develop in this book should serve you 
well as you use new functions in the Tidyverse, allowing you to expand your 
knowledge more quickly. 

Second, the Tidyverse grammar is more comprehensible for people coming 
from other statistical packages. The use of characters like $ or [[ ]] is often 
one of the most intimidating parts of learning R for beginners. We will learn 
these things in this book, but we will only do so after learning a range of 
consistent and simple functions that will achieve the main tasks you wish to 
accomplish in data analysis. 
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Third, the Tidyverse usually has a single obvious method for achieving a goal. 
This draws from the philosophy that there should be one, and preferably only 
one, obvious way to do a task. This is very useful for being able to learn quickly 
and to understand what is being done in any example. A simple illustration of 
this is creating a new variable that is our original variable times 1,000. In base 
R, there are at least three ways to do this. 
dataset$new_variable <- dataset$old_variable * 1000 

dataset[["new_variable"]] <- dataset[["old_variable"]] * 1000 

dataset[, "new_variable"] <- dataset[, "old_variable"] * 1000 

Since there is no right way to do it, you will often find different preferences 
within the same group of scholars (and sometimes within the same code). In 
contrast, there is only one way to create this variable in the Tidyverse: 
dataset <- dataset %>% 

mutate(new_variable = old_variable * 1000) 

From our experience, this makes it much easier to keep track of what is being 
done, share your code with others, and avoid frustration spending hours finding 
out what may have gone wrong with your analysis. 

Fourth, while this book is intended primarily as an introduction to R, those 
who already know some R will find it useful for learning how to write “tidy” 
code in R. Many utilities in R are moving towards the Tidyverse structure 
and grammar, and this book will provide the familiarity with the Tidyverse 
needed to leverage these tools effectively. 

Finally, the tools provided in the Tidyverse are extremely powerful. The 
ggplot2 package, for example, has become the standard for most data visual
ization in R. The use of a consistent grammar makes it much easier to extend 
and develop than traditional R packages. Think about it like learning a foreign 
language. If the rules about, for example, how nouns are used changes from 
situation to situation, this makes it more difficult to learn the language and 
create your own statements. If, on the other hand, there is consistency in the 
rules, you can apply those rules to extend to new situations much more easily. 

1.4 What Tools Are Needed? 

Hopefully, if you are reading this book and have made it to this point, you 
are sufficiently convinced of R’s value for both programming and statistical 
analysis, if you were not already convinced. So at this point we transition 
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slightly away from a high-level discussion of R, and toward more practical 
aspects of how to get started with R. 

1.4.1 Downloading R and RStudio 

Before getting to into the environment, we first need to introduce precisely how 
to access the environment. It is undeniably daunting to open up R for the first 
time, and see a blank screen. Thus, we highly recommend the use of RStudio, 
which is a user-friendly integrated development environment (IDE) that directly 
interacts with the language of R (RStudio Team, 2015). In RStudio you can do 
all kind of things, from practicing writing code before running it (e.g., scripts), 
to writing reports (e.g., using markdown), to hopefully someday developing 
and releasing your own R packages. All of these and more are possible within 
RStudio directly. 

Moreover, RStudio includes a number of useful features that make working 
in R easier. This includes automatically closing parentheses and brackets 
for you, highlighting which closed parentheses correspond with a particular 
open parenthesis, providing hints on how to complete the command you are 
writing, color-coding of your scripts, providing keyboard shortcuts for common 
commands, and marking likely errors. Other than perhaps the Emacs Speaks 
Statistics (ESS) suite for Emacs (which we do not recommend unless you 
already use and like Emacs), RStudio is the most complete IDE for users of R. 

So where and how can users get R and RStudio? As mentioned earlier, perhaps 
one of the best things about R is that it is free. Users simply need to go to 
the R-Project page, http://www.r-project.org/, to first download R. Then, 
once R is successfully installed, go to the RStudio page, http://rstudio.com, 
to download RStudio onto your machine. For step-by-step download and 
installation procedures, with illustrations, you can go to the companion website, 
https://i2rss.weebly.com. 

For those of you who have already downloaded and installed R and RStudio, 
we recommend you take some time to check whether you are working with 
the latest version, and, if not, to update both systems. To check your version 
of R, simply run the command ,version (or for those of you working at the 
command line, R --version).2 To check your version of RStudio, simply run 
the command, rstudioapi::getVersion() to return only the version number, 
or rstudioapi::versionInfo() to get the version number, mode (desktop, 
cloud, etc.), and the citation format for properly citing the use of RStudio.3 

2A simpler tip is, when you open a new RStudio session, the version of R currently 
running will appear automatically in the open console window.

3Note that when reading a version number for any software, the first value is the major 
release, the middle value is more minor release, and subsequent values (3rd and 4th, e.g., 
“9000”) reflect the most minor changes to the software. For example, upon writing this book, 
the latest release of R is 3.6.1, meaning there have been 3 major releases of R, 6 slightly 
minor releases, and 1 minor fix/release for the current version. 

http://www.r-project.org
http://www.rstudio.com
https://www.i2rss.weebly.com
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1.5 How This Book Can be Used in a Class 

In addition to aiding the applied researcher in individual tasks and contexts, 
we also envision this book being used as a complementary text in the classroom. 
Whether in substantive social science classes that include a computational 
component, or in computationally intensive classes within the social sciences, 
we encourage widespread use of this book for the purpose of developing more 
efficient coding and programming practices. 

To assist in classroom use, we design each chapter as a fully self-contained R 
session. This means that there are no parts of the online code sets that are left 
unexplained, no need to refer to earlier chapters to check whether a step is 
missed, no conflicts with earlier code, and no concerns about losing information 
for later if you shut down your R session. This does result in a certain amount 
of repetition in the code, which is a strategic choice on our part. As the Russian 
proverb states, “Repetition is the mother of learning.” Similarly, there is strong 
scientific evidence that timed repetition is critical for mastery of tasks like 
mathematics, foreign languages, and computer programming (Oakley, 2014). 
For certain steps that are a part of any R session – setting a working directory, 
loading data, loading libraries – we want them to become automatic for the 
reader. Once this book is finished, this repetition should allow the user to 
immediately begin their given task without having to remind themselves of 
basic steps. 

We also embed practice questions throughout the chapters for readers to 
work through and keep in mind as they code. Given our goal of efficient 
programming and deeper understanding of rigorous technical process, we will 
also include many conceptual high-level questions in these exercises. These 
“substantive pauses” in chapters reinforce our main goal in this book, rather 
than providing just a technical manual with a list of useful functions. Exercises 
are usually divided into “basic”, “intermediate”, and “advanced.” The basic 
problems usually ask for modifications of code already introduced and require 
minimal understanding of what is happening and/or the relationship between 
concepts. These are for those who just want to do the things introduced in 
the book quickly. The intermediate problems will usually ask for some deeper 
understanding of what is happening in the introduced processes and may 
ask the reader to find new information. Finally, the advanced problems ask 
readers to undertake either a more complex task or to find some information 
on a related process not formally introduced in the chapter. Completing these 
exercises should result in the reader becoming comfortable with undertaking 
unfamiliar tasks on their own. 

Finally, we provide a range of online documentation to assist in classroom 
instruction. Many of the most difficult challenges that instructors face are 
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completely ignored by introductory textbooks, usually because they are consid
ered “too basic” for inclusion. We provide things like step-by-step installation 
instructions for R and RStudio, additional tutorials on basic statistics, and 
script versions of all the chapters that can be downloaded, directly updated (if 
so desired), and used in classes. This collection is ever expanding, so instructors 
can check to see if we have a resource for their particular needs (and contact 
the authors with requests for materials that are not yet covered). All of these 
resources are free to use or modify for the instructor’s needs, and, in the same 
open spirit, we encourage direct communication with students, researchers and 
instructors. The book website is at https://i2rss.weebly.com. 

Instructors will probably choose to emphasize some parts of the text over others. 
For example, undergraduates may not need the introduction to programming 
that is included later in the book, and this can be safely skipped. Similarly, 
institutions that have a separate data visualization course may decide to focus 
elsewhere and have students use a more specialized text to learn visualization. 
We have tried to make each chapter relatively self-contained so that instructors 
can pick and choose if that fits with what they are trying to accomplish in 
their courses. 

1.6 Plan for the Book 

Here is the plan for the rest of the book. 

Foundations: Chapter 2 provides the building blocks for the rest of the book. 
It starts with using R as an interactive environment. It then discusses the 
foundations of R – objects and functions. This sets up everything that follows, 
and will allow readers to understand how R is functioning throughout. Next, 
we introduce the process of setting working directories and working with R 
packages, both necessary for any work with R. Finally, we introduce the reader 
to the packages used in the book and where they can go for extra help. 

Data Management: More than 80% of data analysis is data management. This 
chapter provides details of how to conduct most major data management 
tasks using a tidy approach. This includes selecting variables, filtering data, 
summarizing data, conducting summaries by groups, combining commands 
with the pipe (%>%), reshaping data, and combining data sets. Within this 
context, the chapter will also introduce how to create cross-tabulations and 
comparisons of means, since these types of analysis are a natural extension 
of data management. This chapter also introduces the stargazer package 
to automatically generate publication-quality tables in R (Hlavac, 2018). We 
have found this to be an entry point that is easy to understand for beginners, 
building confidence in their use of R throughout the rest of the learning process. 

https://www.i2rss.weebly.com
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This chapter also serves as a practical introduction to the philosophy and 
structure of the Tidyverse. 

Visualization: The next chapter deals with visualization and graphics in R, 
introducing the ggplot2 package (Wickham et al., 2019b). This chapter focuses 
on the structure of graphics objects using the “grammar of graphics,” which 
is at the heart of ggplot (hence, “gg”). It also introduces concepts like the 
scope of a variable through examples in graphing, mapping aesthetics, and 
layering plot objects. The chapter does not go into nearly the detail of other 
books focused on graphics, but it provides a general entry point to creating 
basic and advanced graphics in a tidy manner. 

Programming: While base R is only used sparingly throughout the rest of 
the book, this chapter gets into much greater depth. We introduce the data 
structures of R (vectors, matrices, lists, data.frames), as well as the attributes 
of basic classes (character, numeric, factor). Students learn about indexing 
for each data structure, as well as some of their unique behaviors. This leads 
into a discussion of how to use conditions and loops to automate repetitive 
tasks, and how to save those programs as user-defined functions. We end by 
discussing the creation of modular code and providing some examples of useful 
functions. 

Exploratory Data Analysis: One of the first steps in any data analysis is getting 
to know your data through exploratory data analysis (EDA). In this chapter, 
we begin discussion of statistical analysis in R by introducing some of the tools, 
especially the skimr package, for conducting this type of analysis (McNamara 
et al., 2019). We demonstrate how to visually and numerically analyze data 
using R, as well as how to “skim” the data to provide powerful extensions 
beyond the traditional summary() command in base R. 

Essential Statistical Modeling: The final substantive chapter takes the reader 
through an introduction to correlation and regression in R, demonstrating how 
to conduct some of the most common types of analysis in the social sciences. 
We demonstrate t-tests, chi-squared tests, and regression, as well as a range 
of diagnostic tests, all based in the tidy R approach. For example, we use 
the broom package (Robinson, 2014) for tidy inspection of model output, and 
the tidy-friendly performance (Lüdecke et al., 2019) and see (Lüdecke et al., 
2020) packages from easystats to diagnose and visualize influential observations. 
We also introduce logistic and probit regression and offer a demonstration of 
how they differ from OLS regression in R. We also show the reader how to 
automatically create publication-quality tables of their regression models. 

Finally, we will conclude with a few thoughts on where the reader can go from 
here, as well as some parting tips for making the most of your R analysis. 



https://taylorandfrancis.com
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Foundations 

The goal of this chapter is to introduce you to key concepts used throughout 
the book. The first part will focus on philosophy and terminology of R. The 
second part of this chapter will focus on setting up the packages and libraries 
you need and how to download useful additional tools. The third part will 
introduce some of the resources you can use to help you out as you develop 
your R skills. 

We will not be going into any kind of depth about the underlying design 
philosophy of R or some of the deeper programming principles of Base R. 
There are plenty of other resources for readers to obtain this kind of knowledge 
(Matloff, 2011; Leemis, 2016). Our goal here is to construct a solid platform for 
you to conduct a wide range of social science work. After reading this chapter, 
you should find it relatively easy to follow the subsequent chapters, as well as 
to utilize online tutorials. We are assuming absolutely no previous experience 
with R and RStudio. For those of you who have some previous background 
with using R and RStudio, you can safely skim through some of the parts 
that might already be familiar, but we do recommend at least taking a casual 
glance at the subsections of this chapter to make sure we are not leveraging 
something with which you may not have previously worked. 

Before you start this chapter, be sure you have R and RStudio downloaded 
and installed, since we will be using both. If you need help with this process, 
or would like to start by having a more detailed understanding of the various 
parts of RStudio, you can consult with the online resources before moving on. 

2.1 Scripting with R 

When you open RStudio for the first time, it will look like the picture in Figure 
2.1. You will see that it splits your screen into three parts. On the left, you 
will see a window that has the R console. Think of this like the command line 
for R. Inside the window is a > which shows you that R is ready to accept a 
command. When you type something into this window and hit enter, R will 
execute (or “run”) that command. 

13 
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FIGURE 2.1 
A View of RStudio Opened for the First Time 

Give it a try. Type 1 + 1 in the console and hit Enter.1 You will see that R 
prints the result, 2, on the screen. 
1 + 1 

## [1] 2 

This interaction within the console is one of the key features of R. R is what 
computer scientists call a “scripting” language. This means that, when a 
command is passed to R, it is evaluated immediately. In contrast, “compiled” 
languages, like C or C++, are ones where there is an intermediate step 
between writing the command and running the command. The code is compiled 
into native machine language before being run. While programs in compiled 
languages tend to run faster, the advantage of scripting languages is that they 
are usually easier to learn and allow for closer interaction in the context of 
data analysis. Moreover, as computers have become more powerful, the speed 
advantages of compiled languages (except for very intensive tasks) has tended 
to dissipate.2 

1Note that you can either include or omit spaces between values. While the command will 
run either way, we recommend spaces between values in a function call to allow for easier 
reading of the code. E.g., 1 + 1 is cleaner and easier to read than 1+1; this will become 
clearer as functions and commands get more complicated later in the book.

2Note that recent efforts have been made to combine the efficiency and speed of scripting 
and compiled languages. For example, there are R packages that will allow you to interact 
with C++, Java, Python and other languages and tools. Indeed, many of the functions in 
base R are actually written in C! 
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Another feature of R that many users notice immediately is the ubiquity of 
parentheses. R uses parentheses to show where commands begin and end. A 
common problem users will experience is forgetting to close the parentheses on 
a command. If you do this, the > on the left will turn into a +, indicating that 
R is expecting more from the command. It will not return to the > until you 
have finished the command you are on. To demonstrate this to yourself, try 
typing (1 + 1, without closing the parentheses. Then, hit Enter/Return as 
many times as you would like. You will notice it will not give you the answer 
until you close the parentheses. 
(1 + 1 

) 

## [1] 2 

On the right-hand side of our screen when you first open RStudio, you will 
see two windows. On the upper-right-hand side, you will see a series of tabs, 
labeled “Environment”, “History”, “Connections”, and (sometimes) “Build.” 
We will only be using two of those tabs in this book. The Environment tab 
shows all the objects you have stored in memory for use in your R session. So, 
for example, if you load a data set, you will see it show up in the Environment 
tab. The History tab records all the commands you have made recently. If you 
ever want to enter one of these commands into the Console, you can simply 
double-click on it. 

On the lower-right-hand side, you will see five tabs. The “Files” tab shows 
all the files in your working directory. You can use this interactively to see 
what you have in your working directory, as well as any other areas of your file 
system. The “Plots” tab will show you any graphs that you make, and allow you 
to export them for use in your publications. We will use this extensively in our 
chapter on producing plots. The “Packages” tab shows you all the packages you 
have installed, and will check any that you have loaded into your environment 
(more on this below). The “Help” tab can be used whenever you call for the 
R documentation on a function. For example, if you type help("cor") or 
?cor, it will show you the R documentation for the cor() function (which, 
as you might guess, calculates the correlation between variables). The Viewer 
tab is for viewing local web content. We will be using this when we design 
three-dimensional plots later in the book. 

Once you have opened RStudio, you can open the script containing your code 
for an analysis by either selecting File » Open File in the dropdown menus, or 
by clicking on the folder icon. You can create a new script by selecting “File” 
» “New File” » “R Script” from the dropdown menu or by clicking on the 
blank page icon and choosing R Script. You will also notice that beside the 
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option to open a new R Script, it says “Ctrl+Shift+N.” This is a keyboard 
shortcut. It means that if you want to open a new R script, you can do so by 
holding down the Ctrl key, the Shift key, and the N key at the same time (your 
keyboard shortcuts might be different, depending on the operating system you 
are using). 

When you open an existing script or create a new one, a new box will appear 
above the console with the script. If you open more than one script at a time, 
you will see that it creates new tabs for each additional script. 

We have provided scripts containing all the code from this book on the 
companion website. 

Once you open a script with R commands in it, you will want to send those 
commands to the R console to run. You can do this either by clicking the Run 
button in the upper-left-hand corner of your script or by using the keyboard 
shortcut Ctrl+Enter (this may be different on your operating system; hover 
over the “Run” button to see how it is labeled on your system). 

By default, RStudio will run only the line where the cursor is located. If you 
wish to run more than one line, you can highlight all the lines you wish to run. 

Take some time to explore RStudio before you proceed to make sure you are 
comfortable with its operation. A more detailed version of the instructions 
above, with illustrations, is available on the companion website. 

Exercises 

2.1.0.0.1 Easy 

•	 Practice interacting with the console. What happens when you type 
"Hello World" into the console and press Enter? What happens when 
you type 3492 / 12 and press Enter? 

•	 Open a new blank script in three ways: by going to File » New File » R 
Script, using the “Ctrl+Shift+N” keyboard shortcut, and clicking on the 
new script icon. In one of these scripts, type the commands from questions 
1 and 2. Run them from the script file. 

•	 To paste (“concatenate”) together more than one string, you can use the 
paste() function. Try this. Type in paste("Hello", "World!"). What 
happens when you put in a number, like paste("Hole in", 1, "!")? 

2.1.0.0.2 Intermediate 

•	 What happens when you type the following command into the command 
line, round(sqrt(122.563ˆ2, 2)? How would you correct this? 

•	 What error message do you get when you type in "two" + 2 (be sure to 
include the quotation marks)? What do you think this means? 
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•	 In problem #3 above you might have noticed that paste("Hole in", 1, 
"!") produced a sentence with a space between the “1” and the “!”. Why 
do you think this happened? 

2.1.0.0.3 Advanced 

•	 Previewing what we will see below, type "two" * 2 into the console. What 
error message do you receive? What do you think this means? Feel free to 
look up the error message online to help. 

•	 We will not discuss all the possible mathematical operators for R in 
this book, but there are a number of additional operators about which 
you might be interested. What do **, %%, and %/% do? You can look for 
information online. 

2.2 Understanding R 

The foundations of R are pretty simple, but are often a stumbling block for 
new users. Two general rules that we will often return to are: 

1. Everything in R is an object. 
2. Anything that does something is a function. 

2.2.1 Objects 

Just like objects in the real world, objects in R have “attributes.” For example, 
the number 1 and the string “one” are both objects in R, but they have 
different attributes. These attributes determine what you can do with them. 
For example, adding two numbers makes sense, so running 1 + 1 in the R 
console will produce an outcome. Adding two strings does not make sense, so 
running "one" + "one" in the R console will return an error message.3 

We will often use the class() function to get some information about the 
objects. For example, if you run class(1) in the console, it will return numeric. 
Alternatively, if you run class("1"), it will return that it is a character. 
class(1) 

## [1] "numeric" 

3Some programming languages, like Python, will allow you to use mathematical operators 
with non-numeric values. For example, in Python, "one" + "one" would produce “oneone” 
(the same outcome as paste("one", "one") in R) or "one" * 3 would produce “oneoneone” 
(the same as rep("one", 3) in R). 
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class("1") 

## [1] "character" 

There are times when we will simply want the objects printed in the console, 
and other times when we will want to save those objects for later use. To save 
an object to memory in your R session, you can use assignment operators, 
which are either <- or =. When you do this, it will appear in the Environment 
tab in the upper-right-hand corner of RStudio. The <- and = are synonymous, 
but most R users, by convention, use <- for object assignment.4 In RStudio, 
you can also use the keyboard shortcut “Alt + -” to create <- (“Option + -” 
in Mac OS). 

So, in the example that follows, the first line will simply print the results of 1 
+ 1 to the console. The second saves the object to memory and calls it two. 
To print this in the console, we simply run two in the console and it prints the 
object on the screen. 
1 + 1 

## [1] 2 

two <- 1 + 1 
two 

## [1] 2 

R is what is called a strongly typed language. This means that capitalization 
and punctuation are important. The object Two is not the same as the object 
two. Getting an error returned saying that an object does not exist is often 
due to spelling or capitalization mistakes. Here is a quick example. 
two <- 2 
Two <- 2.2 
two 

## [1] 2 

Two 

## [1] 2.2 

two == Two 

## [1] FALSE 

4The original computers used by Bell Labs in creating R had a single key that produced 
this assignment operator. Most users still prefer it today both for style reasons and because 
of some rare situations where the = may demonstrate unexpected behavior. 
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2.2.2 Functions 

Functions in R work the same way as the functions you learned about in 
elementary school math. They take an object, do something to it, and return 
another object. Functions in R are usually denoted by their use of parentheses. 
As we mentioned, everything that does something in R is a function, making 
R a “functional programming language.” 

As you might have guessed from the last paragraph, you have already learned 
a function in this book. The class() function takes an object as its input and 
returns the name of the class of the object as a character string. 

The inputs into a function are called “arguments.” And running the function 
is called a “function call.” Some functions take a single argument and return a 
single object. Other functions can take on many arguments, and can return 
many objects. Some functions will have “default” arguments and behavior, 
so you do not need to type every input. For example, if you type help() 
into the console (with no argument), the Help tab in the lower-right side 
of RStudio will bring up the documentation for the help() function. If you 
type help("lm"), you have passed an argument to it (labeled “topic” in the 
help() documentation) asking for the help documentation on fitting a linear 
regression model (lm), and returns this documentation instead of the default. 

So, you might be wondering how functions fit within the rule that everything 
is an object in R. . . 

Functions are also objects. 

For example, if we look at the class of the help() function, we will see that it re
turns an object class – in this case it is a special class help_files_with_topic. 

2.2.3 Commenting with # 

Comments are invaluable when working in R. Comments allow for a variety 
of tasks including saving some code for later, altering a chunk in the script 
editor, or including notes to yourself to reference in future runs of code in an 
R script. 

To include a comment or to “comment-out” a chunk of code, simply place 
# before the text or code to be commented which equates to not running 
whatever may follow the #. 

For example, suppose you wanted to use the Pythagorean Theorem (a2 + b2 = 
c2) to solve for the hypotenuse, c, of a triangle. To solve for c, you take the 
square root of the sum of the other two sides of the triangle, c = 

√ 
a2 + b2. 

You could build a function to solve for this based on any two values supplied 
for sides a and b by starting with the following: 
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solve_for_c <- function(a, b){ 
sqrt(a^2 + b^2) 

} 

Though this function technically does the job, suppose you wanted to follow 
best practices of function-writing, and wanted to make this function defensive.5 

To do so, you might be interested in testing out various warning messages 
based on a mistake on the part of the user. So you might update the function 
to be: 
solve_for_c <- function(a, b){ 

sqrt(a^2 + b^2) 
if (!is.numeric(a)) { 

stop('"a" must be numeric\n', 
'You have provided an object of class: ', class(a)[1]) 

} 
} 

This warning would let the user know 1) whether a non-numeric value was 
supplied to the function, and 2) the class of the object(s) supplied. Though 
these ideas and terms are covered in depth later in the book, the point here is 
that you could use the # to comment-out the warning message and redefine 
the function to test it in real-time, e.g., 
solve_for_c <- function(a, b){ 

sqrt(a^2 + b^2) 
#if (!is.numeric(a)) {
 
# stop('"a" must be numeric\n',
 
# 'You have provided an object of class: ', class(a)[1])
 
#}
 

} 

When you call your function solve_for_c() with the warning commented 
out, the call will ignore all of the code following each # and simply run the 
calculation included at the outset in the simplest version of the function. 

A few things to note when using the #. First, when commenting multiple 
lines, you must include the # before each line; otherwise, calling the function 
will throw an error. Second, especially in larger chunks of code, be sure that 
only the parts you intend to comment-out are indeed commented out. The 
most common error in this regard is commenting out a chunk of code as 
in the example above, but forgetting to also comment out the closing } on 
the penultimate line of the function. Here again, failing to do so and then 
attempting to call the function will throw an error. And finally, we recommend 

5Note: we cover defensive programming in the context of user-defined functions in the 
Essential Programming chapter. 
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liberal use of comments, especially when writing large chunks of code or writing 
code in real-time (e.g., during class or a lab session). Comments in this context 
are exceedingly valuable for annotating complex code that you may forget 
when you return to the script. You will see us including comments in code 
throughout this book. 

Exercises 

2.2.3.0.1 Easy 

•	 In the previous exercises we used the paste() function to paste (con
catenate) words and symbols together. You may have noticed that it 
automatically added a space between the items we are pasting together. 
For example paste("Hole in", 1, "!") places a space between “1” and 
“!”. Type in ?paste(). 

–	 Reading the help, what argument sets this? 
–	 What is its default? 
–	 How can you eliminate the space (or add something different)? 

2.2.3.0.2 Intermediate 

•	 Technically, in question 9, there are two ways to eliminate the space 
between words. What is the other way to do this? 

2.2.3.0.3 Advanced 

•	 In this section, we said that functions are usually denoted by parentheses, 
but you have seen symbols that do things without parentheses. Specifically 
mathematical operators, like +, -, /, and *. Type ?'+' into the console. 
What does it tell you about these operators? 

•	 Try typing '+'(1, 1) into the console. What does it produce? How does 
it show that these operators are, in fact, similar to other functions? 

2.3 Working Directories 

One of the first obstacles new users of R often face is understanding and setting 
a “working directory.” The working directory is the place on your computer 
from which you want R to work. Setting a working directory ensures you know 
from where you are navigating to find files and to where the objects you want 
to save are being placed. 

Whenever R is opened, a working directory is automatically assigned. To see 
where this is, users simply need to run the function getwd(), with no argument 
in the parentheses. This will return a single line in the output console with a 
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file path for the location of the currently assigned working directory. If users 
are happy with this location, no further action is needed. 

But if you want to change this, then they need a slightly different 
command, setwd(), with the name of the new file path included in 
quotation marks in the parentheses. For example, typing the following, 
setwd("/Users/username/Desktop"), will set the working directory to be on 
the desktop of a Macintosh computer for user, username. For Windows users, 
the command will take the form setwd("C:/Users/username/Desktop/"). 

While we recommend users become familiar with their file system and set 
their working directory by command, those who are less familiar with their 
computer’s file system may also set their working directory using an interactive 
browser. This can be accessed through the dropdown menu by going to Session 
» Set Working Directory » Choose Directory (or using the “Ctrl+Shift+H” 
keyboard shortcut). In the examples in the following chapters, we will use the 
command setwd(choose.dir()), which also allows the user to interactively 
set the working directory if using Windows or Mac OSX, but we strongly 
recommend you become used to setting your working directory using one of 
the other methods, or that you start using R projects, which are explained in 
the next section. 

2.4 Setting Up an R Project 

In the previous section, we explained how to set up your working directory 
using the setwd() command. While setting working directories is a funda
mental part of many computer programs, doing so often causes unnecessary 
problems. Effectively using the command requires that you understand how 
your directories are organized on your computer, and this tends to vary by 
whether your operating system is Windows, Linux, or OSX. For example, in 
the last section, we showed how to set the working directory to the Desktop 
folder on a Mac using the command setwd("/Users/username/Desktop"). 
But, for a Windows user, this command will not work, and will gen
erate an error, Error in setwd("/Users/username/Desktop") : cannot 
change working directory. This is because Windows starts in a different 
area of the computer – the C drive. To do the same in Windows, the command 
becomes setwd("C:/Users/username/Desktop"). 

If you use more than one computer for your work, this can also cause issues. 
If, for example, your computer at work has the username rkennedy, but your 
laptop has the username Ryan, you will have to change your directory every 
time you try to use your code. 
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Things get a lot worse when you start working with other people. Their 
directories are likely to be structured differently than yours, meaning that 
they cannot just run your code – they must find where you make reference to 
a directory and change it. This can get so annoying that one Twitter post to 
the #rstats discussion thread threatened to set a user’s computer on fire if 
their code included the setwd() command.6 

While threatening to set someone’s computer on fire may be a little extreme, 
the reality is that including information that will only work on your computer 
is inconvenient for you (at least if you ever plan on doing work on a different 
computer) and discourteous to anyone with whom you work. 

Luckily, there is another way to do things. In RStudio, you can set up a 
“project.” The project stores information needed to run your code and find 
your files, without you always having to tell it where to look. It also makes 
sure that those with whom you are working do not revolt when working with 
your code. 

To create a project, just go to the Project menu in the upper-right-hand corner 
of RStudio, and select New Project. Once you have done this, you will be 
asked if you would like to create the project in a new directory or an existing 
directory. If you already have a folder containing your data, you might choose 
an existing folder. If you are starting from scratch, or simply want a new folder 
with which to do your work, choose a new directory. Locate the area into which 
you want to put your project, and, if it is a new directory, give it a name. For 
step-by-step instructions with illustrations, you can go to the book’s support 
website. 

RStudio will create a new file with a .Rproj extension. Whenever you open 
this file, either by double-clicking on it or navigating to it using the Project 
menu, it will automatically set your working directory to the location of the 
.Rproj file. If you copy the folder to a new computer - no problem, all your 
code will still work. If you work with a co-author through Dropbox or another 
shared system - no problem, they can simply open the .Rproj folder and it 
will work. (Note: If using Dropbox, you may want to pause syncing while you 
are working on a project to avoid error messages.) 

In subsequent chapters, we will use the setwd(choose.dir()) command to set 
the working directory so that each chapter is self-contained, but in some of the 
online scripts we provide examples of .Rproj files as well, and we recommend 
you get used to using and creating these. 

6https://www.tidyverse.org/articles/2017/12/workflow-vs-script/ 

http://www.tidyverse.org
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2.5 Loading and Using Packages and Libraries 

Packages are a fundamental part of R. Packages contain many useful libraries 
of functions that you will need for your work in R. In 2017, the Comprehensive 
R Archive Network (CRAN) surpassed the 10,000 packages mark and it is still 
growing. R users worldwide find solutions to the data and analysis challenges 
they face, and they share these solutions on CRAN, GitHub, Zenodo, and 
other sites. 

This aspect of working in R is incredibly valuable for a couple of reasons. First, 
for almost any task you can think of, someone has likely written a package 
to make your life easier. This is one of the main advantages to R being open 
source. Some of these packages you will use all the time – indeed, they may 
become a default heading on your code. Others you may just use for one 
project. 

R often has capabilities years before other statistical programs. In fact, a 
common reason why people learn R is that they find out that a particular 
task has already been developed as a package in R, while it has not been 
implemented in the statistical package they usually use. 

Second, the use of packages means that you only have to install what you need 
for your current project. This can seem a little odd for those used to working 
in other statistical programs that automatically load everything the program 
can do every time it is opened. The reality is that R simply has too much that 
it can do to load everything every time (remember, there are more than 10,000 
packages available, containing millions of functions). By only loading what 
you need, you ensure that your projects are only using the resources that you 
actually need. 

2.5.1 Installing Packages 

To access packages, users must first install the package, and then 
load the library to be able to use the functions stored within the 
package source files. The basic function for installing any package is 
install.packages("PACKAGE_NAME"). 

For example, to install all of the Tidyverse packages that are used throughout 
this book, users would install the tidyverse package (yes, that includes many 
packages in a package): 
install.packages("tidyverse") 

RStudio provides an additional way to do this. In the lower-right hand window, 
in the “Packages” tab, you can click the “Install” button. Once you have done 
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this, you can type in the packages you want and click “Install” to install them. 
This can be useful because RStudio will list the packages that match your 
search as you type, avoiding common errors in spelling or capitalization. 

Once you have installed a package, it is on your computer and you do not need 
to install it again when you restart R or start a new project, though you may 
need to reinstall packages when you update your R and/or RStudio versions. 

2.5.2 Loading Packages 

Once you have the package installed, you need to load the library of func
tions into your workspace using the command library(PACKAGE_NAME). Note 
the quotation marks in the install.packages() command, but the lack of 
quotation marks in the library() command. You will run up against error 
messages if you reverse these. 

Here is an example of how to load the tidyverse package, now that it is 
installed (per the above line): 
library(tidyverse) 

To use a package, you will need to load it using the library() function every 
time you restart R or start a new project.7 

Now that you know the general use of packages and libraries, we will provide 
an overview of some of the main packages we will use throughout the book. 

2.5.3 The here Package 

An example of a very simple package we will be using throughout the book is the 
here package. When you are navigating through your file system, it is usually 
done using a string like Users/username/Desktop. These can sometimes get 
very long and annoying to type, especially if the file we are looking for is deep 
in our file system. 

The here package is incredibly simple, but also incredibly powerful, especially 
when combined with an R project. After installing the package, you can load 
it into the workspace using library(here), and you will see it print out a 
message that reads, here() starts at <DIRECTORY>, where the directory is 
the current working directory. 
library(here) 

The here package allows you to use the here() function to create a string 
with the information you need to point R to a particular file. For example, if 

7Note: alternatively, you can save libraries to your R profile, but we do not recommend 
doing this because your needs will likely change over time. 
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we have set our working directory to the desktop and we want R to access 
the dataset.csv file in the Data folder on the desktop, would simply use 
here("Data", "dataset.csv"). As you can see in the code block that follows, 
this simply outputs a string with that location. 
here("Data", "dataset.csv") 

## [1] "/Users/waggoner/Dropbox/.../Data/dataset.csv 

Whenever we use a function to load our data, we can place this here() call 
into the function to load the data. 
read_csv(here("Data", "dataset.csv")) 

The beauty of the here() function is that if we use a different computer, 
with a different file structure, we can use the same exact command on both 
computers. This is very nice when you are working on multiple computers or 
with collaborators on a project. We will be using it in this book so that the 
code we provide will work on your computer without modification. 

2.5.4 The tidyverse Package 

Another package we will be using regularly in this book is the tidyverse 
package. As noted above, the Tidyverse is actually a set of packages that share 
a common philosophy and grammar. This includes the ggplot2 package for 
creating graphics (used extensively in the Visualization chapter), the tibble 
package for producing a tibble data structure that has some useful properties 
compared to R’s default data.frames, the dplyr package that allows for quick 
and readable data manipulation, the tidyr package to reshape your data into 
a “tidy” format that is useful for analysis, the readr package for quickly 
parsing a range of “rectangular” data structures that are common in the social 
sciences (these four packages are introduced and used extensively in the Data 
Management chapter), and the purrr package for functional programming 
that makes some repetitive tasks much simpler. 

You could install and load all of these packages individually, but since these 
packages are commonly used together, they have been bundled in a single 
tidyverse package to make it easier to load. 

While we strongly advocate the Tidyverse approach to programming and 
working in R, it is still useful to understand some parts of base R. You can do 
just about any basic data analysis task in the Tidyverse, but there may be 
some situations that require you to program in base R, you may see an example 
that uses base R, or you may encounter a package you want to use that follows 
base R conventions. Thus, we will introduce some base R throughout the book. 
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2.5.5 Overlapping Functions 

In some cases, different packages will use the same name to do different things. 
For example, in the next chapter, we will be using the dplyr package that is 
included in the tidyverse, and we will be making use of one of its component 
functions, select(), which selects named columns from a data set. 

Perhaps unsurprisingly, there are other packages that also have select() 
functions. One of them is the MASS package and another is the skimr package. 
If you load all of these packages and try using the select() function from 
dplyr, the system will not know which one to use. If this occurs (usually 
indicated by an “unused argument” error), you need to specify which package’s 
function you want to use, separating the package and function name with ::. 
For example, by running dplyr::select(), you are stating "use the select() 
function from (::) the dplyr package. 

2.5.6 Other Packages Used in This Book 

There are a number of other packages we will be using in this book. Here is a 
list of all of them, along with a short explanation of what they do. 

here is a package that allows you to interactively search your working directory. 
For example, if you want to navigate to the “Data” folder in your working 
directory and find the “raw_data.csv” file, you would use here("Data", 
"raw_data.csv"). 

readxl is a package for opening Excel spreadsheets (.xls or .xlsx) in R. 

haven has functions for opening Stata (.dta), SPSS (.sav), and SAS (.sas7bdat) 
data. 

stargazer is a package for producing professional tables that can be imported 
into other common word processing software like Microsoft Word or LaTeX. 

forcats is a package that provides a set of functions for handling “factor” 
variables. 

corrr provides functions for analyzing the correlation between variables that 
is more detailed and intuitive than base R’s traditional cor() function. 

janitor is a package to make nice-looking cross-tabulations, with many options 
for customization and calculation. 

purrr is a Tidyverse package housing, among many other useful functional 
programming tools, the map family of functions covered in the Essential 
Programming chapter. Mapping functions are important Tidyverse innovations, 
allowing social scientists a streamlined bypass of for loops and the base R 
apply family of functions. 
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amerika supplies a color scheme that mimics traditional colors for graphics 
about American politics (i.e., red for Republicans and blue for Democrats) 
(Waggoner, 2019). 

arm is a compilation of many useful packages for analysis associated with 
Andrew Gelman and Jennifer Hill’s popular book, “Data Analysis Using 
Regression and Multilevel/Hierarchical Models” (Gelman and Hill, 2006). 

faraway is a compilation of data sets and functions from Julian Faraway’s 
book, Extending the Linear Model with R: Generalized Linear, Mixed Effects 
and Nonparametric Regression Models (Faraway, 2016). 

MASS is a compilation of data sets and functions from Bill Venables and Brian 
Ripley’s book, Modern Applied Statistics with S-PLUS (Venables and Ripley, 
2013). 

OOmisc contains a set of useful miscellaneous functions produced by Ozgur 
Asar and Ozlem Ilk. 

pROC is a package of functions to produce and analyze receiver operating 
characteristic (ROC) curves. 

lmtest is a package of functions for analyzing regression models, including 
likelihood-ratio tests. 

rstatix is a package for evaluating basic statistical functions such as t-tests. 

car provides functions utilized in John Fox and Sanford Weisberg’s book, An 
R Companion to Applied Regression (Fox and Weisberg, 2018). 

plotly is a powerful package for advanced plotting, including interactive plots. 

broom is a Tidyverse-complementary package for inspection of model objects, 
which is much more thorough than the summary() function in base R. 

patchwork is a Tidyverse-complementary package for placing ggplot objects 
in a single pane with minimal code. 

performance is a package from the easystats software group that includes a 
host of performance checks for regression models. 

see is a Tidyverse-complementary visualization package from the easystats 
software group that complements ggplot2, and also allows for plotting objects 
created using the performance package. 

You can install all of the packages needed for this book by running the following 
code chunk in your console. Alternatively, you can click on the “Packages” 
tab in the lower-right-hand corner of RStudio, click “Install,” type in all the 
packages you want (separated with a comma or space), and click “Install.” 

install.packages(c("tidyverse", "here", "readxl", "haven", 
"janitor", "stargazer", "forcats", "skimr", 
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"corrr", "amerika", "purrr", "arm", 
"faraway", "MASS", "OOmisc", "pROC", 
"lmtest", "car", "rstatix", "plotly", 
"broom", "patchwork", "performance", "see") 

) 

Exercises 

2.5.6.0.1 Easy 

•	 Try installing and loading the arm package from Gelman and Hill’s book 
(Gelman and Hill, 2006). Make sure you understand this process. 

•	 Install the other packages needed for this book. Try loading tidyverse 
and here. 

2.5.6.0.2 Intermediate 

•	 You may have noticed that we used the c() function to create a vector of 
packages we wanted to install. Run ?c(). What does this tell you about 
the c() function? What happens when you type c(1, 2, 3) into the 
console? Why? 

•	 Set up an R project called “R Code” somewhere on your system. You can 
either create the folder and then create the project, or you can create the 
folder by creating a project. What happens when you open the project? 
Now create subfolders in the project location for “Data” and “Code”. Use 
the here() function to create a string that indicates these subfolders. 

2.5.6.0.3 Advanced 

•	 Some even newer packages are available on GitHub, a repository for 
programs and packages that is open to anyone. How would you install a 
package from GitHub? Try installing the package fliptime, which might 
be useful for those of you working with data with calendar dates, from 
the GitHub address "Displayr/flipTime". 

2.6 Where to Get Help 

We all need help every now and again. Even after more than a two and a half 
combined decades of using R between the authors, we still often seek help 
with how to do some tasks. The reason is not so much that R is difficult to 
use, but rather that, when you try to do something new in any system, you 
will run into unfamiliar challenges. Even Hadley Wickham, the designer of the 
Tidyverse, is there with you (Waggoner, 2018a). . . 
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It’s easy when you start out programming to get really frustrated and 
think, “Oh it’s me, I’m really stupid,” or, “I’m not made out to program.” 
But, that is absolutely not the case. Everyone gets frustrated. I still get 
frustrated occasionally when writing R code. It’s just a natural part of 
programming. So, it happens to everyone and gets less and less over time. 
Don’t blame yourself. Just take a break, do something fun, and then come 
back and try again later. 

This is where R’s amazing user community comes in. Our experience is that, 
because of R’s large user base of people who are trying all sorts of creative 
projects, it is usually easier to find help with the challenges that arise in R 
than it is in other statistics packages. There are several ways to find help. 

If you just need a reminder of how a function works or what options are 
available for a command, you can use R’s official documentation. Within 
RStudio, as we previously noted, this can be accessed simply by typing a 
? followed by the command about which you have a question, or by typing 
help() with the command you would like help with in the parentheses in 
quotation marks. For example, to quickly remind yourself of the arguments 
and options available for regression models, you could type either ?lm or 
help("lm") and the official documentation for the function will show up in 
the help tab in the lower-right-hand corner. 

Beyond the official documentation, there is a vibrant R users community that 
is very willing to help people learn and deal with new situations. As the Beatles 
would say, “I get by with a little help from my friends.” In R, you have tens of 
thousands of friends willing to help you out. A good place to start is R-Bloggers 
or the “#rstats” hashtag on Twitter (https://twitter.com/hashtag/rstats). 
R-bloggers compiles blog posts from a range of authors. It is a great place 
to find announcements about new R packages and books, available courses, 
tutorials for different tasks, and just about anything else you can do with R. 
You can subscribe to receive daily emails that are usually filled with interesting 
tidbits about what you can do with R. 

“Coding by search engine” is really a thing. We have heard tenured computer 
science faculty at highly prestigious institutions who have described their 
process using this phrase. If you want to learn how to do something new or if 
you get an error message, going to your preferred search engine and typing it 
in is usually not a bad place to start. For example, typing “regression analysis 
in R” into Google, will produce a number of tutorials to take you through 
examples. Often your searches will be more effective if you know the package 
you want to use. So, for example, we often use “tidyverse” or “dplyr” in our 
searches for data management questions. Similarly, if you get an error message 
and copy it into a search engine, chances are you will be directed to a site where 
someone has posted the question and someone else has answered it. We have 
almost always found that when we encounter an issue, someone else has also 

https://www.twitter.com
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encountered it and has posted a solution. The largest repository of solutions 
posted by R users just like you is Stack Overflow (https://stackoverflow.com/). 

The main thing to remember is that you are not alone. If you are running into 
a problem, chances are that there are many others out there who have had 
the same problem, and, because of this, have probably put the information 
you need in the help files or posted a solution online. Nothing worth doing is 
going to be without some frustrations, but there are plenty of places to help 
you when you struggle. Now, let’s move on to the first step in almost any data 
analysis – data management. 

2.7 Concluding Remarks 

If you haven’t been working through the problems in this section or following 
along with the examples, we suggest you take some time to do so before you 
move on. The online resources will take you through some code examples 
and will also provide you with illustrations of some of the procedures in this 
chapter. Just as a building is only as good as its foundation, you will have 
difficulty proceeding if you do not understand what we have done so far. You 
do not need to have everything mastered, but you do need to have a basic idea 
of what we are talking about. 

If you feel like we have been giving you a lot of information, do not worry. In 
subsequent chapters, as well as in the online resources, we will give you plenty 
of examples. Many of the things in this chapter, like setting a working directory, 
will be repeated in each chapter, both to make the chapters self-contained and 
to provide you with review. As numerous studies have demonstrated, learning 
skills like coding requires this type of repetition and reminders to promote 
mastery (Oakley, 2014). If you keep working through this, you will likely look 
back on this chapter in a few years and think it is too simple. 

https://www.stackoverflow.com


https://taylorandfrancis.com
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Data Management and Manipulation
 

One of the first tasks most users will encounter when they receive a new data 
set is to get the data in the form they want. This may involve a range of 
tasks such as reading data sets from different formats, combining multiple 
data sets, summarizing the data, creating new variables from the old variables, 
and a range of additional tasks. Data rarely comes in a form that is ready to 
use. There are often errors, improper formatting, missing data and a range 
of other issues researchers must address. As scholars have started leveraging 
less structured and more complex data, like “big data” and text data, the 
importance of data management and manipulation (“munging” or “wrangling” 
as it is sometimes called) has become even more important (Radford and 
Lazer, 2019). InfoWorld identified this as the 80/20 dilemma, where most data 
analysts spend 80% of their time in data management and manipulation, while 
spending 20% of their time in actual analysis.1 

Yet, most introductions to computational statistical analysis might give a very 
short introduction to data manipulation. In some ways, this is not terribly 
surprising. We all got into the social sciences to make discoveries, not necessarily 
to spend our time shaping and cleaning data. Why can’t we just skip to fitting 
statistical models that provide support for our research question? 

We hope to convince you that good data management and manipulation is not 
only necessary, but can also be quite rewarding. Building strong skills in data 
management and manipulation will allow you to get to your answers faster, 
and will allow you to create data for answering novel questions. If all you ever 
learn is how to work with clean data created by others, you will only be able 
to answer questions addressed in others’ data. This is not where you want to 
be as a social scientist. 

This chapter will teach you the basics of managing your data, from loading 
the data into R to exporting the data to other programs and reporting the 
information about your data. It will cover all of these tasks using the Tidyverse, 
along with a few useful utilities in base R. 

1https://www.infoworld.com/article/3228245/the-80-20-data-science-dilemma.html 
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3.1 Loading the Data 

The first task is taking the data you have and reading it into R for analysis. In 
some programs, this can be an initial source of frustration. Statistical software 
programs usually want you to use their format for your data and may make it 
difficult to use data from another source (or even from different versions of 
the same program).2 Because R has such a large user community, who also 
use data in a variety of formats, there are packages that will allow you to read 
data from a wide variety of sources. 

Go ahead and open a new session of RStudio and set your working directory to 
the folder for your project. If you are working with R projects (the .Rproj files 
provided in the online code or a project you have created yourself), you can 
simply open the .Rproj file and it will automatically set your working directory 
to the location of the .Rproj file. You can then skip the following command. 
If you need a reminder about how R projects work, see the “Foundations” 
chapter. 
# Set your working directory 
setwd(choose.dir()) 

Let’s start with one of the most common and simple formats. Comma-separated 
values (CSV, with the extension .csv) files are used for storing a lot of social 
science data, and is a standard format for programs like Microsoft Excel. This 
type of data stores everything as text, with commas separating the columns. 
The reason it is commonly used is that it does not require a lot of space to 
save and it works with almost any kind of statistical program. In addition, 
it never becomes out-of-date – while the ability to open particular types of 
data files may fall by the wayside with time, the ability to open and parse 
text files will not. To load a data set that is in .csv format, you can use the 
read_csv() function from the readr package that is included when you load 
tidyverse. We also use the here() function to tell the computer to look in 
the “data” subfolder of our working directory. If your data is already in your 
working directory, you can just use read_csv("anes_pilot_2016.csv"). 
# Load the libraries needed for this session. 
library(tidyverse) 
library(here) 

2Programs that charge for upgrades are particularly notorious for changing their default 
data format. The goal is to force users to upgrade to the newest version. Even worse, 
sometimes they will not provide backward compatibility with previous data formats. It 
is always a good idea to keep at least one version of your data in a plain text format 
(comma-separated or tab-separated) so you will not find your data unreadable in the future. 
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# Load the NES data using the read_csv() and here() functions 
NESdta <- read_csv(here("data", "anes_pilot_2016.csv")) 

While CSV files are quite common, sometimes you will find data in a variety 
of other formats. For example, since Microsoft Excel is often used to store 
data, especially by people who work in business and public policy, you may 
also encounter data that is stored in its default format (.xls or .xlsx). Since 
other researchers have encountered this, there is an R package specifically for 
loading this kind of data called readxl. Here is how to load the same data if 
it were saved in this format. 
# Load the additional library needed for this task. 
library(readxl) 

# Load the NES data using the read_excel() and here() functions 
NESdata <- read_excel(here("data", "anes_pilot_2016.xlsx")) 

Similarly, if we had a data set that had been saved using SAS (.sas7bdat), 
SPSS (.sav), or Stata (.dta) – three popular statistical packages in the social 
sciences – you can use the haven package. 
# Load the additional library needed for this task. 
library(haven) 

# Use read_dta() and here() functions for Stata file 
NESdata <- read_dta(here("data", "anes_pilot_2016.dta")) 

# Use read_sav() and here() functions for SPSS file 
NESdata <- read_sav(here("data", "anes_pilot_2016.sav")) 

# Use read_sas() and here() functions for SAS file 
NESdata <- read_sas(here("data", "anes_pilot_2016.sas7bdat")) 

As we have already noted, one of the real powers of R is the ability for users 
to write their own solutions to address problems that are often encountered by 
researchers. In a number of other software programs, it can be quite difficult 
to read certain types of data unless you have access to that specific program. 
An (in)famous example of this occurred in 2013, when Stata changed its data 
format, such that older versions of the program could not open files saved by 
the new version of Stata. Anyone with older versions of the program found 
their system was rendered functionally illiterate overnight. R can handle all of 
these data types (plus many more) because its global user base has made it 
relatively easy to do so. 

R also has the capacity to open files from database programs, like SQL, or 
from online APIs that usually report results in JSON format. We will not 
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cover all of these here, but it is worthwhile to note that just about any kind of 
data structure can be handled by R with the use of packages. 

3.1.1 The American National Election Survey (ANES) 

For this chapter, and several of the subsequent chapters, we will be using the 
American National Election Survey (ANES) for demonstration. The ANES 
project is one of the longest running in political science in the U.S. While it 
was formally created by the U.S. National Science Foundation (NSF) in 1977, 
the University of Michigan had been conducting surveys around midterm and 
presidential elections going back to 1952.3 The rich results from these surveys 
have been the raw material for countless books, dissertations, and published 
articles (Campbell et al., 1960; Lewis-Beck et al., 2008; Aldrich and McGraw, 
2012). 

We specifically look at the 2016 pilot study, which was collected between 
January 22 and January 28, 2016. 1,200 individuals were interviewed in a 32 
minute online questionnaire. The survey included questions covering a range 
of topics among U.S. eligible voters: preferences in the presidential primary, 
stereotyping, the economy, discrimination, race and racial consciousness, police 
use of force, and numerous policy issues. 

We choose this survey for several reasons. First, we want readers to see and 
practice with real data, warts and all. This is especially important for this 
chapter. Well-manicured data sets encourage spending more time learning 
specific statistical models, when a large portion of most researchers’ time will 
be spent getting the data into the condition that is needed for the analysis. 
Second, we wanted to give researchers experience with data they might actually 
be interested in using later. Experience with this data set will allow the 
reader to work with other ANES data sets, which have many of the same 
characteristics. Updated ANES data is regularly becoming available and can 
be downloaded for use in research projects from the ANES website.4 Third, 
the tasks demonstrated are similar to those readers will commonly see on the 
news, evaluating candidate support and popularity, giving a common reference 
point for readers from a variety of fields. Indeed, in just the first three months 
of 2020, there were 15 news articles about ANES data – more than one per 
week. Finally, it covers an interesting period of U.S. politics, e.g., a few days 
before Senator Ted Cruz and Secretary Hillary Clinton would win the Iowa 
Caucus, and a couple of weeks before Donald Trump and Senator Bernie 
Sanders would win the New Hampshire primary. While some of you may be 
reading this when all these events are a distant memory, this is a critical 
juncture in an election that would eventually lead to the election of Donald 
Trump as President, with very large consequences for U.S. domestic politics 

3https://electionstudies.org/about-us/history/
 
4https://electionstudies.org/
 

https://www.electionstudies.org
https://www.electionstudies.org
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(Pierson, 2017), the global political system (Giani and Méon, 2017; Ikenberry, 
2017), and our understanding of how politicians win elections (MacWilliams, 
2016; Sides et al., 2017). 

3.1.2 A Short Note on Data Structures 

In the examples above, we are loading the data using packages that are included 
by default in the Tidyverse or in packages that are designed in accordance with 
Tidyverse standards. Technically, this means that the files are being loaded as 
tibbles (class tbl). 
# Check the class of the NESdta tibble. 
class(NESdta) 

## [1] "spec_tbl_df" "tbl_df" "tbl" "data.frame" 

A tibble is one data structure in R, but it is not the only one.
 

The default data structure in base R is called a data.frame. A CSV file, for
 
example, can be loaded using the read.csv() function as demonstrated below.
 
NESdata_df <- read.csv(here("data", "anes_pilot_2016.csv"))
 

Tibbles work in the same way as data.frames, but with some important mod
ifications. In some ways they do less. For example, they will not automatically 
change your variable names or types. At the same time, tibbles also provide 
some nice additional options. For example, tibbles will complain more when 
there are issues with the data. While warning messages might be annoying, 
they can also be quite useful for flagging problems with data and helping to 
avoid problems down the line. 

Tibbles also provide more information in an easier to understand format. If 
we try to print the NES data on our screen by typing NESdata_df, the results 
will be very long and almost impossible to read (indeed, we will not show it in 
the book because it is so messy). If we type in NESdata (our tibble), we get 
something much more comprehensible, providing only the first ten rows of the 
first few variables, along with the type of data, and then a printout of the rest 
of the variables available with their type. 
# Show the structure of our NES tibble 
NESdta 

Some functions still require that you use the data.frame format. You 
can easily convert between tibbles and data.frames using as_tibble() or 
as.data.frame(), respectively. The following code chunk shows conversion 
from a data frame to a tibble. 
# Convert data.frame to tibble 
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NESdata_df_tibble <- as_tibble(NESdata_df) 
class(NESdata_df_tibble) 

We can of course go the other direction from a tibble to a data frame. 
# Convert tible back to data.frame 
NESdata_df_tibble_df <- as.data.frame(NESdata_df_tibble) 
class(NESdata_df_tibble_df) 

Before we leave this discussion, a more general pattern is worth highlighting. 
You can see us using the “as” prefix to convert between different types of data. 
This is a more general pattern in R. If we want to convert a numeric data to 
factor variable, for example, we would use as.factor(). You will see several 
versions of this prefix as we continue through the book. 

Exercises 

3.1.2.0.1 Easy 

•	 On the webpage for this book, we also provide a data set with information 
about the 50 U.S. states. How would you load the states.csv file and 
save it in memory as an object named states? 

•	 Type in NESdta to see the tibble structure. What type of variables are 
there in this data set? 

•	 Sometimes it is useful just to get a vector of names for variables. Use the 
names() function to get these for NESdta. 

3.1.2.0.2 Intermediate 

•	 We noted in the previous chapter that everything in R is an object and 
anything that does something is a function. How is the here() function 
an example of this? As a function, what does it do? As an object what 
attributes does it have? Run class(here()). What does this tell you? 

•	 class() is also a function. Run class(NESdta$fttrump). What does this 
tell you? How does the behavior of class() change? 

3.1.2.0.3 Advanced 

•	 We saw how to see the structure of a tibble. How would you do the same 
with a data.frame? [Note: You can look this up online.] 

•	 The names() function gets the names of the variables in a data.frame 
or tibble. It can also be used to change the names of the variables. How 
would you do this? 
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3.2 Data Wrangling 

With the data loaded, we need to start doing things with it. Data “munging” 
or “wrangling” is the process of getting your data into the form you need for 
analysis (i.e., data management). The Tidyverse offers a myriad of functions for 
effectively, efficiently and consistently managing data. Most of these functions 
are in the dplyr package, which is one of the main components of the Tidyverse. 
We will cover eight of these functions: 

• select() - choose specific variables you wish to keep 
• filter() - filter your data by selected values 
• group_by()- group your data by categorical values 
• summarize() - create summary statistics of data 
• join() - merge different data sets 
• mutate() - create new variables 

As with almost any data set, the NES data has many more variables than 
we could ever really plan on using in a single analysis. So, we might want to 
limit ourselves to just those in which we have some interest. Let us create 
a new object, called NESdta_short, which includes only the variables we 
will need for this section. You will notice that throughout the book, we 
use dplyr::select() instead of just select(). As noted previously, several 
packages used in this book have their own versions of the select() function, 
so this ensures we are using the select() function associated with the dplyr 
package. 
# Select particular variables 
NESdta_short <- NESdta %>% 

dplyr::select(fttrump, pid3, birthyr, 
ftobama, state, gender, pid7) 

NESdta_short 

## # A tibble: 1,200 x 7 
## fttrump pid3 birthyr ftobama state gender pid7 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1 1960 100 6 1 1 
## 2 28 3 1957 39 13 2 4 
## 3 100 2 1963 1 24 1 6 
## 4 0 1 1980 89 35 1 1 
## 5 13 4 1974 1 27 1 5 
## 6 61 3 1958 0 18 1 4 
## 7 5 1 1978 73 23 1 1 
## 8 85 2 1951 0 53 1 7 
## 9 70 3 1973 12 18 1 4 
## 10 5 1 1936 87 12 1 1 
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## # ... with 1,190 more rows 

This creates a new tibble that only includes five variables: fttrump - a “feeling 
thermometer” where people rate their feelings of then primary candidate 
Donald Trump from 0 to 100; pid3 - a three point rating of political identity, 
where 1 means Democrat, 2 means Independent, and 3 means Republican; 
the respondent’s year of birth, which we will use to establish their age; the 
respondent’s gender, which is 1 if male and 2 if female; and the feeling 
thermometer for then-President Barack Obama (ftobama), again from 0 to 
100. 

The select() function in the Tidyverse is very versatile. It can be combined 
with other functions like starts_with(), ends_with(), and contains() to 
select more than one variable at a time. We can also use the : to select more 
than one variable that are consecutive in the data set. 

For example, if we wanted to select all of the feeling thermometer variables, 
and we know that they all start with the prefix ft, we could simply put the 
following. 
# Select using starts_with() 
NESdta %>% 

dplyr::select(starts_with("ft")) 

Alternatively, since they are next to each other in the original data set, we 
could have done it like this. 
# Selecting using a range 
NESdta %>% 

dplyr::select(ftobama:ftsci) 

We can also combine all of these tools. Let’s say we wanted political party 
affiliation, year of birth, gender, and all of the feeling thermometer variables 
(with the prefix ft*). 
# Combining selection procedures 
NESdta %>% 

dplyr::select(pid3, birthyr, gender, starts_with("ft")) 

## # A tibble: 1,200 x 21 
## pid3 birthyr gender ftobama ftblack ftwhite fthisp ftgay 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1960 1 100 100 100 100 96 
## 2 3 1957 2 39 6 74 6 75 
## 3 2 1963 1 1 50 50 50 16 
## 4 1 1980 1 89 61 64 61 62 
## 5 4 1974 1 1 61 58 71 55 
## 6 3 1958 1 0 50 51 51 46 
## 7 1 1978 1 73 100 70 100 100 
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## 8 2 1951 1 0 70 70 69 49 
## 9 3 1973 1 12 50 50 50 5 
## 10 1 1936 1 87 75 90 51 85 
## # ... with 1,190 more rows, and 13 more variables: 
## # ftjeb <dbl>, fttrump <dbl>, ftcarson <dbl>, 
## # fthrc <dbl>, ftrubio <dbl>, ftcruz <dbl>, 
## # ftsanders <dbl>, ftfiorina <dbl>, ftpolice <dbl>, 
## # ftfem <dbl>, fttrans <dbl>, ftmuslim <dbl>, ftsci <dbl> 

Finally, we can also use select() to remove columns by placing - in front of 
them. For example, if we decide we do not want to keep the 7 point political 
ID scale, we can remove it from the data set with the following code. 
NESdta_short <- NESdta_short %>% 

dplyr::select(-pid7) 

NESdta_short 

## # A tibble: 1,200 x 6 
## fttrump pid3 birthyr ftobama state gender 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1 1960 100 6 1 
## 2 28 3 1957 39 13 2 
## 3 100 2 1963 1 24 1 
## 4 0 1 1980 89 35 1 
## 5 13 4 1974 1 27 1 
## 6 61 3 1958 0 18 1 
## 7 5 1 1978 73 23 1 
## 8 85 2 1951 0 53 1 
## 9 70 3 1973 12 18 1 
## 10 5 1 1936 87 12 1 
## # ... with 1,190 more rows 

The filter() function works similarly to the select() function, but instead 
of selecting columns by their names, filter() allows you to select rows by 
their values. If, for example, we wanted to find only the respondents who gave 
Donald Trump the highest possible rating, we could do this easily using this 
function. In this case, there were 54 people in the survey who matched this 
criterion. As with the select() function, we indicate that we want to use 
the filter() function from the dplyr package to avoid conflicts with other 
packages, dplyr::filter(). 
# Select only those respondents who give Trump a 100 
NESdta_short %>% 

dplyr::filter(fttrump == 100) 

## # A tibble: 54 x 6 
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## fttrump pid3 birthyr ftobama state gender
 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 
## 1 100 2 1963 1 24 1
 
## 2 100 4 1974 0 17 1
 
## 3 100 4 1947 3 6 2
 
## 4 100 3 1958 0 31 1
 
## 5 100 2 1936 6 48 1
 
## 6 100 2 1962 0 42 2
 
## 7 100 3 1957 1 45 1
 
## 8 100 2 1959 4 13 1
 
## 9 100 4 1952 0 4 2
 
## 10 100 2 1951 6 36 1
 
## # ... with 44 more rows
 

Let’s say that we only want to see those respondents who give Donald Trump 
the highest possible rating (100) and Barack Obama the lowest possible rating 
(1). We can combine these conditions using the & (“and”) operator. 
# Filter respondents who give Trump a 100 and Obama a 1
 
NESdta_short %>% 

dplyr::filter(fttrump == 100 & ftobama == 1) 

We could also look for those who either give Donald Trump the highest possible 
rating or give Barack Obama the highest possible rating by using the | (“or”) 
operator. There are 144 respondents who match one of these two criterion. 
# Filter respondents who give Trump a 100 or Obama a 100
 
NESdta_short %>% 

dplyr::filter(fttrump == 100 | ftobama == 100) 

## # A tibble: 144 x 6
 
## fttrump pid3 birthyr ftobama state gender
 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1 1960 100 6 1
 
## 2 100 2 1963 1 24 1
 
## 3 59 1 1945 100 42 2
 
## 4 16 1 1951 100 36 2
 
## 5 18 2 1994 100 40 2
 
## 6 1 1 1960 100 55 2
 
## 7 100 4 1974 0 17 1
 
## 8 0 1 1969 100 48 1
 
## 9 0 1 1936 100 4 1
 
## 10 6 3 1959 100 47 1
 
## # ... with 134 more rows 

We can also combine these logical operators. Let’s say that we want all the 
people who have either given both Donald Trump and Barack Obama scores 
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of 100 or have given them both scores of 1. We can do this using parentheses, 
just like we would in a mathematical equation. This tells R to first find all the 
people who match the first criterion, then find all the people who match the 
second criterion, and select the people who match either one criterion or the 
other. Perhaps unsurprisingly, there are only four people who match one of 
these two criteria. 
# Filter respondents for Trump and Obama 100s or 1s 
NESdta_short %>% 

dplyr::filter((fttrump == 100 & ftobama == 100) | 
(fttrump == 1 & ftobama == 1)) 

## # A tibble: 4 x 6
 
## fttrump pid3 birthyr ftobama state gender
 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 
## 1 100 1 1961 100 24 2
 
## 2 1 3 1981 1 26 1
 
## 3 100 1 1994 100 34 2
 
## 4 1 2 1981 1 45 2
 

Finally, we can also filter using ranges and other mathematical operators. If, 
for example, we wanted only those people whose approval of Donald Trump is 
greater than 50, we can do this much as you would expect. 
# Filter respondents for Trump greater than 50
 
NESdta_short %>% 

dplyr::filter(fttrump > 50) 

## # A tibble: 472 x 6
 
## fttrump pid3 birthyr ftobama state gender
 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 
## 1 100 2 1963 1 24 1
 
## 2 61 3 1958 0 18 1
 
## 3 85 2 1951 0 53 1
 
## 4 70 3 1973 12 18 1
 
## 5 74 2 1978 32 51 1
 
## 6 95 3 1943 10 36 2
 
## 7 82 2 1938 80 21 2
 
## 8 91 2 1956 4 6 2
 
## 9 51 3 1984 0 8 1
 
## 10 51 1 1981 66 39 1
 
## # ... with 462 more rows
 

This also applies to finding values that are related to the summary statistics 
for the full data. For example, if we wanted all of those who give a higher than 
average approval of Donald Trump, we could run the following. 
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NESdta_short %>% 
dplyr::filter(fttrump > mean(fttrump, na.rm = TRUE)) 

## # A tibble: 537 x 6
 
## fttrump pid3 birthyr ftobama state gender
 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 
## 1 100 2 1963 1 24 1
 
## 2 61 3 1958 0 18 1
 
## 3 85 2 1951 0 53 1
 
## 4 70 3 1973 12 18 1
 
## 5 74 2 1978 32 51 1
 
## 6 95 3 1943 10 36 2
 
## 7 82 2 1938 80 21 2
 
## 8 91 2 1956 4 6 2
 
## 9 51 3 1984 0 8 1
 
## 10 51 1 1981 66 39 1
 
## # ... with 527 more rows
 

Exercises 

3.2.0.0.1 Easy 

•	 Using the NESdta tibble, create a new tibble called NESdta_practice that 
only includes pid3 and fttrump. 

•	 Using the NESdta tibble, create a new tibble that overwrites 
NESdta_practice that only includes variables containing the string pid. 

•	 Filter the rows to only those respondents who give Donald Trump a higher 
approval than the median. 

•	 How many people give Trump a score above 50 and Obama a score below 
50? 

3.2.0.0.2 Intermediate 

•	 You can see that in some cases, we ran commands that actually change 
NESdta_short and in other cases we just printed what the data would 
look like. Why was the behavior different between these blocks of code? 
Explain how to change a data set in the computer’s memory, how to create 
a new data set, and how to just print the results in the console. 

•	 How would you select only variables in the NESdta data set that end with 
the number 3? Contains the string “id”? 

•	 Type ?filter into the console. What do you get? Which help file would 
you choose, and why? 
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3.2.0.0.3 Advanced 

•	 Go through the data set and put together a tibble that selects five variables 
you would use to predict support for Trump. Check to make sure that the 
coding of these questions matches with what you would expect, and use 
filter() to remove missing values. [You will need to reference the data 
set codebook available online.] 

3.3 Grouping and Summarizing Your Data 

You may have noticed the strange symbol in a few of the previous commands, 
%>%. This is called a “pipe,” which is read as “then,” and it was originally 
developed by Stefan Milton Bache for the R package magrittr. The pipe 
allows you to declare at the very beginning the data on which you want to 
work and stack a number of operations onto that data without having to 
declare the data you want to use each time you issue a command (or, worse, 
only work with one data set at a time - yes, people really do this). 

To show you how the pipe allows you to stack commands, let’s look at two 
other functions - the group_by() and summarize() functions. Let’s say that 
we think that Republicans will be most positively disposed to Donald Trump 
as a candidate, followed by Independents, and then by Democrats - not an 
earth-shaking hypothesis, but it works for demonstration. We can use the 
group_by() function to tell R what groups we want to make, and follow this 
with the summarize() command to create the needed summaries.5 

# Using group_by() and summarize() 
NESdta_short %>% 

group_by(pid3) %>% 
summarize(average_fttrump = mean(fttrump, na.rm = TRUE), 

median_fttrump = median(fttrump, na.rm = TRUE), 
variance_fttrump = var(fttrump, na.rm = TRUE), 
stddev_fttrump = sd(fttrump, na.rm = TRUE), 
max_fttrump = max(fttrump, na.rm = TRUE), 
min_fttrump = min(fttrump, na.rm = TRUE), 
n_fttrump = n()) %>% 

ungroup() 

## # A tibble: 5 x 8 

5The warning message about ungrouping output is a recent behavior change to the 
summarize() function. By default, the .group argument is set to “drop_last”, meaning that 
the last, in this case only, grouping is dropped. We still use the ungroup() function at the 
end to avoid any unanticipated behavior. 
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## pid3 average_fttrump median_fttrump variance_fttrump 
## <dbl> <dbl> <dbl> <dbl> 
## 1 1 22.1 4 4878. 
## 2 2 65.1 72 1028. 
## 3 3 44.5 41 3675. 
## 4 4 45.7 41 1346. 
## 5 5 28.8 26 874. 
## # ... with 4 more variables: stddev_fttrump <dbl>, 
## # max_fttrump <dbl>, min_fttrump <dbl>, n_fttrump <int> 

As you can see from the output, the group_by(pid3) function has de
clared that we want R to group respondents together by their party affilia
tion. The summarize(average_fttrump = mean(fttrump, na.rm = TRUE), 
...) command is a little more complex. We are telling R that we are going to 
have it create a new variable, average_fttrump, that is the mean value of the 
variable for each group. The mean() function is a part of the base R system. 
The command na.rm = TRUE is necessary to tell R that we do not want it to 
include any missing values - “NA”. Why is this needed? Well, technically the 
average of anything including a missing value is going to be missing. So we 
need to tell R explicitly that we do not want them to be included. The other 
functions - e.g. max(), min(), median() - work in a similar manner. Finally, 
since we are done with these groups, we run the ungroup() function. This 
ensures that the grouping does not persist past these commands. 

Another useful function, but from base R, is the summary() function. This 
function takes an object as its input and outputs an adaptive display of 
summary statistics. 
# Using the summary() function with a data set 
summary(NESdta_short) 

Similarly, we can use the summary() function on single variables using the $, 
where the data set is placed before the $ and the variable of interest is placed 
after, as shown below. 
# Using the summary function with a variable 
summary(NESdta_short$fttrump) 

The group_by() command is also useful in a number of other conditions. In 
the last section, we filtered responses to only those who gave Donald Trump a 
higher than average approval score. This time, let’s say that we are interested 
in finding the respondents of each gender who give him a higher than average 
score than other people of the same gender. In this case, we can tell R to group 
the responses by gender and then filter to those respondents who score higher 
than average in each group. 
# Filter for Trump higher than average approval by gender 
NESdta_short %>% 
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group_by(gender) %>% 
dplyr::filter(fttrump > mean(fttrump, na.rm = T)) 

## # A tibble: 531 x 6
 
## # Groups: gender [2]
 
## fttrump pid3 birthyr ftobama state gender
 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 
## 1 100 2 1963 1 24 1
 
## 2 61 3 1958 0 18 1
 
## 3 85 2 1951 0 53 1
 
## 4 70 3 1973 12 18 1
 
## 5 74 2 1978 32 51 1
 
## 6 95 3 1943 10 36 2
 
## 7 82 2 1938 80 21 2
 
## 8 91 2 1956 4 6 2
 
## 9 51 3 1984 0 8 1
 
## 10 51 1 1981 66 39 1
 
## # ... with 521 more rows
 

Finally, we can create the groups for any number of conditions. Extending 
our first example, let’s say we want the mean approval of Donald Trump 
broken down by party affiliation and gender. This can be accomplished by just 
including both conditions, separated by a comma. 
# Summarizing mean approval of Trump by party and gender 
NESdta_short %>% 

group_by(pid3, gender) %>% 
summarize(average_fttrump = mean(fttrump, na.rm = TRUE), 

n_fttrump = n()) %>% 
ungroup() 

## # A tibble: 9 x 4
 
## pid3 gender average_fttrump n_fttrump
 
## <dbl> <dbl> <dbl> <int>
 
## 1 1 1 17.5 189
 
## 2 1 2 25.3 270
 
## 3 2 1 70.3 129
 
## 4 2 2 60.6 151
 
## 5 3 1 44.0 208
 
## 6 3 2 45.2 172
 
## 7 4 1 43.1 44
 
## 8 4 2 49.2 33
 
## 9 5 2 28.8 4
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Exercises 

3.3.0.0.1 Easy 

•	 Using the summary() function, give the summary statistics for ftobama. 
•	 Sometimes it is more useful to find out how many respondents fall within 

a category. Using the base R table() function find out how many people 
are in each category of the pid3 variable. 

•	 Using group_by() and summarize() find the summary statistics for 
ftobama by gender. 

•	 When combining commands, we use the %>% (pipe). Try to put in your 
own words what it means to pipe data from one command to another. 
From the last example, what is being piped into each command? How is 
the data changed at each step? 

3.3.0.0.2 Intermediate 

•	 How would you do what you did in #18 using group_by() and 
summarize()? 

•	 You have now seen the $ in a couple of situations. How would you describe 
(in words) the use of $? 

3.3.0.0.3 Advanced 

•	 Group the NESdta_short data object accordingly: 
–	 group_by_all() (all variables) 
–	 group_by_at() (using pid3 and gender) 
–	 group_by_if() (for all numeric variables) 

3.4 Creating New Variables 

Another task that you will often find yourself doing is adding new variables to 
your data set. This is usually done with the mutate() function from the dplyr 
package in the Tidyverse. Let’s start with a very simple variable transformation. 
The birthyr variable does not directly represent the concept we really want, 
age. To do this, we should create a new variable that calculates the age of a 
respondent by subtracting their birth year from the year of the survey. 
# Create a new variable giving the respondent's age 
NESdta_short <- NESdta_short %>% 

mutate(age = 2016 - birthyr) 

NESdta_short 

## # A tibble: 1,200 x 7 
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## fttrump pid3 birthyr ftobama state gender age 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1 1960 100 6 1 56 
## 2 28 3 1957 39 13 2 59 
## 3 100 2 1963 1 24 1 53 
## 4 0 1 1980 89 35 1 36 
## 5 13 4 1974 1 27 1 42 
## 6 61 3 1958 0 18 1 58 
## 7 5 1 1978 73 23 1 38 
## 8 85 2 1951 0 53 1 65 
## 9 70 3 1973 12 18 1 43 
## 10 5 1 1936 87 12 1 80 
## # ... with 1,190 more rows 

This works for any number of different operations on variables. For example, 
if we wanted to get the square of the respondent’s age, we could simply do the 
following. 
# Create a new variable for squared respondent's age 
NESdta_short <- NESdta_short %>% 

mutate(age2 = age^2) 

NESdta_short 

## # A tibble: 1,200 x 8 
## fttrump pid3 birthyr ftobama state gender age age2 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1 1960 100 6 1 56 3136 
## 2 28 3 1957 39 13 2 59 3481 
## 3 100 2 1963 1 24 1 53 2809 
## 4 0 1 1980 89 35 1 36 1296 
## 5 13 4 1974 1 27 1 42 1764 
## 6 61 3 1958 0 18 1 58 3364 
## 7 5 1 1978 73 23 1 38 1444 
## 8 85 2 1951 0 53 1 65 4225 
## 9 70 3 1973 12 18 1 43 1849 
## 10 5 1 1936 87 12 1 80 6400 
## # ... with 1,190 more rows 

And, if we wanted to get rid of that same variable later, we could do that by 
setting its value to NULL. 
# Remove variable with square of age from data set 
NESdta_short <- NESdta_short %>% 

mutate(age2 = NULL) 

NESdta_short 
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## # A tibble: 1,200 x 7 
## fttrump pid3 birthyr ftobama state gender age 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1 1960 100 6 1 56 
## 2 28 3 1957 39 13 2 59 
## 3 100 2 1963 1 24 1 53 
## 4 0 1 1980 89 35 1 36 
## 5 13 4 1974 1 27 1 42 
## 6 61 3 1958 0 18 1 58 
## 7 5 1 1978 73 23 1 38 
## 8 85 2 1951 0 53 1 65 
## 9 70 3 1973 12 18 1 43 
## 10 5 1 1936 87 12 1 80 
## # ... with 1,190 more rows 

In the last section, we summarized support for then-candidate Donald Trump 
by party affiliation. But what if we want these summaries to be a part of the 
NESdta_short data set? This is where the mutate() function comes in. Run 
the same functions as above, but this time let us use the mutate() function 
instead of the summarize() function. 
# Creating a new variable using group_by() and mutate() 
NESdta_short <- NESdta_short %>% 

group_by(pid3) %>% 
mutate(average_fttrump = mean(fttrump, na.rm = TRUE)) %>% 
ungroup() 

NESdta_short 

As you can see, a sixth column has been added to our data set, with the 
average values for each political ID added to the data set. From here, we can 
take other actions. For example, we can subtract the average for each group 
from the individual respondent’s evaluation of candidate Donald Trump by 
using the mutate() function again. 
# Using mutate to create a new variable 
NESdta_short <- NESdta_short %>% 

mutate(deviation_fttrump = fttrump - average_fttrump) 
NESdta_short 

A new column has been added showing how far away each respondent is from 
the average for those who share their party affiliation. Respondent 1, shown 
in the first row, gives Donald Trump a rating about 21 points lower than the 
average for those who share their party affiliation. 

Note that while the feeling thermometers for Donald Trump and Barack 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 51 — #61 �
�

�
�

�
�

51 Creating New Variables 

Obama are only supposed to go from 0 to 100, the summary statistics said 
the maximum values were 998. What is happening here? 

Many data sets try not to leave blank spaces or mix strings and numeric values. 
The reason is that some programs might behave unexpectedly when loading 
this data. So, instead, they represent missing values by highly improbable 
numeric values – in this case 998 (other data sets will use unexpected negative 
values like -999). We need to tell R that these are actually missing values, 
denoted as NA in R, as opposed to actual numbers. 

To do this, we can again use the mutate() function. This time, we combine it 
with the replace() function. replace() takes three values as its input. The 
first is the variable on which we are making the replacement, the second is 
a logical test. This can be read as, “Where the variable is. . . ” For example, 
the second part of the first replacement asks it to make the replacement 
where the variable fttrump is greater than 100. As you can see, within the 
mutate() function, we have asked for our original variable to be equal to the 
specified replacement (i.e., we have redefined the original variable to drop these 
nonsensical values). 
# Using replace() to recode values 
NESdta_short <- NESdta_short %>% 

mutate(fttrump = replace(fttrump, fttrump > 100, NA), 
ftobama = replace(ftobama, ftobama == 998, NA)) 

summary(NESdta_short) 

## fttrump pid3 birthyr 
## Min. : 0.00 Min. :1.000 Min. :1921 
## 1st Qu.: 2.00 1st Qu.:1.000 1st Qu.:1955 
## Median : 30.00 Median :2.000 Median :1968 
## Mean : 38.38 Mean :2.072 Mean :1968 
## 3rd Qu.: 72.00 3rd Qu.:3.000 3rd Qu.:1982 
## Max. :100.00 Max. :5.000 Max. :1997 
## NA's :3 
## ftobama state gender 
## Min. : 0.00 Min. : 1.00 Min. :1.000 
## 1st Qu.: 5.00 1st Qu.:12.00 1st Qu.:1.000 
## Median : 52.50 Median :29.00 Median :2.000 
## Mean : 48.62 Mean :28.32 Mean :1.525 
## 3rd Qu.: 87.00 3rd Qu.:42.00 3rd Qu.:2.000 
## Max. :100.00 Max. :56.00 Max. :2.000 
## NA's :2 
## age 
## Min. :19.00 
## 1st Qu.:34.00 
## Median :48.00 
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## Mean :48.06 
## 3rd Qu.:61.25 
## Max. :95.00 
## 

Another variable we will likely want to change is the state variable. Right 
now, it has numbers that represent the states, but we will probably want 
strings with the state names as well. We can look up the numbers associated 
with each state in the ANES and create a new variable called state_name 
that contains the name of the state. 

There are a lot of values we will need to replace, so we will use a different 
function, the case_when() function, which allows us to change a large number 
of values within a variable. 
# Create state_name with the string names of states 
NESdta_short <- NESdta_short %>% 

mutate(state_name = case_when(state == 1~"Alabama", 
state == 2~"Alaska", 
state == 4~"Arizona", 
state == 5~"Arkansas", 
state == 6~"California", 
state == 8~"Colorado", 
state == 9~"Connecticut", 
state == 10~"Delaware", 
state == 11~"DC", 
state == 12~"Florida", 
state == 13~"Georgia", 
state == 15~"Hawaii", 
state == 16~"Idaho", 
state == 17~"Illinois", 
state == 18~"Indiana", 
state == 19~"Iowa", 
state == 20~"Kansas", 
state == 21~"Kentucky", 
state == 22~"Louisiana", 
state == 23~"Maine", 
state == 24~"Maryland", 
state == 25~"Massachusetts", 
state == 26~"Michigan", 
state == 27~"Minnesota", 
state == 28~"Mississippi", 
state == 29~"Missouri", 
state == 30~"Montana", 
state == 31~"Nebraska", 
state == 32~"Nevada", 
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state == 33~"New Hampshire", 
state == 34~"New Jersey", 
state == 35~"New Mexico", 
state == 36~"New York", 
state == 37~"North Carolina", 
state == 38~"North Dakota", 
state == 39~"Ohio", 
state == 40~"Oklahoma", 
state == 41~"Oregon", 
state == 42~"Pennsylvania", 
state == 44~"Rhode Island", 
state == 45~"South Carolina", 
state == 46~"South Dakota", 
state == 47~"Tennessee", 
state == 48~"Texas", 
state == 49~"Utah", 
state == 50~"Vermont", 
state == 51~"Virginia", 
state == 53~"Washington", 
state == 54~"West Virginia", 
state == 55~"Wisconsin", 
state == 56~"Wyoming")) 

A final note: you might have noticed the double equal sign, ==. This is a 
relatively common logical operator used in many statistical packages and 
programming languages. A single equal sign, =, is used to set one object equal 
to another. So, in the command above, when we type fttrump = ..., this 
tells R to change the object fttrump into what follows the equal sign. A double 
equal sign, ==, is used for comparison, and it returns a value of TRUE if the 
item on the left-hand side is equal to the item on the right-hand side, and 
FALSE otherwise. 

You will use this a lot, especially as we start discussing the use of logic. A type 
of logical command you will find yourself using a lot is ifelse(condition, 
outcome if true, outcome if false). Let’s take, for example, the gender 
variable in the ANES data. Here, we are interested in recoding the gender 
variable (currently 2 = female and 1 = male) to be more descriptive and also 
on the more common 0,1 scale. Using mutate() and ifelse() from base R, we 
create a new variable female, where 1 equals cases when gender = 2 (female), 
and 0 otherwise (previously, gender = 1). 
# Gender is currently coded 1 for male 2 for female 
unique(NESdta_short$gender) 

## [1] 1 2 
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# Use ifelse() to create a dichotomous variable if female 
NESdta_short <- NESdta_short %>% 

mutate(female = ifelse(gender == 2, 1, 0)) 

ifelse() is a very flexible function. It can be used to execute multiple logical 
statements by nesting those statements (an approach we will see again later in 
the Essential Programming chapter). To nest these functions, we simply tell 
the computer that if the outcome is false, it is to execute another ifelse() 
function. Let’s say we wish to split the age variable into three categories young, 
middle aged, and old. We can do this using nested ifelse() functions. 
#Using nested ifelse() functions 
NESdta_short %>% 

mutate(age_categories = ifelse(age <= 35, "Young", 
ifelse(age > 35 & age < 65, 

"Middle Age", "Old"))) %>% 
group_by(age_categories) %>% 
summarize(n = n()) 

## # A tibble: 3 x 2 
## age_categories n 
## <chr> <int> 
## 1 Middle Age 649 
## 2 Old	 210 
## 3 Young 341 

In the above code block, we nest two ifelse() functions. The first tests if 
the respondent’s age is less than or equal to 35. If true, it assigns a value of 
“Young”; if false it goes to the next test. The second ifelse() function asks if 
the respondent’s age is between 35 and 65. If it is, the respondent is assigned 
a value of “Middle Age”, and, if not, they must be “Old”. The last two lines 
utilize the group_by() and summarize() functions you learned about above 
to show how many people in our survey fall into each category. 

Exercises 

3.4.0.0.1 Easy 

•	 Create a new variable called Republican that is 1 if the respondent is a 
Republican (pid3 == 2) and 0 otherwise. 

•	 Create a new variable called pid_text that gives the text labels for pid3 
(1 = Democrat, 2 = Republican, 3 = Independent, 4 = Other). 

3.4.0.0.2 Intermediate 

•	 Use replace() to change those who are labeled “Independent” in your 
pid_text variable to “Other.” 
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•	 Create a new variable that is the de-meaned version of ftobama. Try to 
do it in one step using %>%. 

3.4.0.0.3 Advanced 

•	 Mutate a new variable of your choice, but it must be the combination of 
three other variables. Consider using case_when(), among other useful 
dplyr functions. 

•	 Create a tibble and a tribble of the most recent NESdta_short data ob
ject. What are the differences, and what do these differences substantively 
point to in the Tidyverse? How might they compare to a data.frame? 

3.5 Combining Data Sets 

One area where R really shines is in its ability to handle multiple data sets at 
the same time. In many other common statistical programs, you are limited to 
working on one data set at a time within a particular session. In R, you can 
work with many more. Actually, right now we are already working with more 
than one data set. When we created the NESdta_short data set, we added a 
second data set to our session. If you look in the upper-right hand window 
of RStudio, under the Environment tab, you will see that both NESdta and 
NESdta_short are listed as “Data.” This means that at any time you can go 
back to working on the original NESdta data set at any time. 

Suppose we forgot a variable we wanted when we created the NESdta_short 
data set. All we would need to do is go back to the line where we did the 
subsetting above and run it with the additional variable name. No harm, no 
foul. For those of you who have worked with other statistics programs, you 
have probably seen what a pain similar operations can be. 

But the primary use you will have for this is to work with different data 
sets. Say we suspect that where a person lives affects their approval of then-
candidate Donald Trump - there were certainly differences in his voteshare 
in different states during the primary, and we know that people’s political 
opinions are not independent of those around them. We can load a data set 
with a few state-level attributes and combine it with our individual-level ANES 
data. 
# Read states data set into a tribble 
states <- read_csv(here("Data","statescsv.csv")) 

To merge two data sets, we need to find a common key. This key is a variable 
that links cases in one data set to another. In this case, we have the state_name 
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variable we created in the ANES data set and the variable state in our states 
data set. Both contain strings with the name of the state in them. 

It will be useful to have the variables we are using as the common key to have 
the same name. If we ever need to do this, we can use the rename() function, 
with the new name on the left and the old name on the right. For this data, 
we need to rename the state variable to state_name to match with the ANES 
data we just created.6 

# Change "state" to "state_name" to match ANES data set 
states <- states %>% 

rename(state_name = state) 

Now we will join the data sets together. There are several options for joining 
data together. These differ in how they handle situations in which the data 
sets have somewhat different values in the common key. Let’s say, for example, 
that data set #1 includes Puerto Rico and data set #2 does not. Conversely, 
data set #2 includes Guam and data set #1 does not. 

We can decide: 

1.	 To only keep those cases where the territory is common to both data 
sets, thereby excluding both Puerto Rico and Guam. This is an 
inner_join(). 

2.	 To keep all the values in data set #1 and drop the values that do 
not match in data set #2 - in this case to keep Puerto Rico and 
drop Guam. This is a left_join(). 

3.	 To keep all the values in data set #2 and drop the values that do 
not match in data set #1 - in this case to keep Guam and drop 
Puerto Rico. This is a right_join(). 

4.	 To keep all the values from both data set #1 and data set #2 
keeping both Puerto Rico and Guam. This is a full_join(). 

5.	 To drop all values that match in data set #1 and data set #2 - in this 
case, only keeping Puerto Rico and Guam. This is an anti_join(). 

For this case, we will use an inner_join(), only keeping the values for the 
states that match in both data sets, and putting them into a new data set 
called NESdta_states. 
# Create new data set by inner joining the NES and states data 
NESdta_states <- NESdta_short %>% 

inner_join(states, by = "state_name") 
# Display the variable names of the resulting data set 
names(NESdta_states) 

## [1] "fttrump" "pid3" "birthyr" "ftobama" 

6We can also do this without renaming the key variable. 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 57 — #67 �
�

�
�

�
�

Basic Descriptive Analysis 57 

## [5] "state" 
## [9] "female" 
## [13] "unemploy" 

"gender" 
"college" 
"union" 

"age" 
"over64" 
"urban" 

"state_name" 
"south" 

As we can see, the resulting data set has all the variables from both data sets. 

Exercises 

3.5.0.0.1 Easy 

•	 Another way to combine two data sets with different names for their 
key, instead of renaming one of them, is to use by = c("key_name_1" = 
"key_name_2"). Reload the state data set and try this out. What happens 
with the key names? 

•	 What is anti_join(), and when might you use this? 

3.5.0.0.2 Intermediate 

•	 Reload the states data set. What happens when you use outer_join() 
instead of inner_join()? Why? How might this behavior change in 
different circumstances? 

3.5.0.0.3 Advanced 

•	 Sometimes two data sets will have the same name for a non-key variable. 
What do you think happens in this case? Reload the states data set, change 
the name of demstate in the data to pid3. Merge the data sets and use 
the name() function to see what happened, and report your results with 
some brief discussion. 

3.6 Basic Descriptive Analysis 

Now that we have seen how to load our data and do some basic manipulation, 
you might be interested in describing your data in a few different ways that 
facilitate testing of hypotheses. In this section, we will cover some common 
descriptive methods for characterizing relationships in your data. This will 
also give us an opportunity to play around with some of the data manipulation 
commands you learned above. We will start with a discussion of cross-tabulation 
and then move into some variations of comparisons of means. 

Before beginning this analysis, let’s make a few changes to the data using the 
tools we learned above to make our results more interpretable. Take some time 
to look at this block to make sure you understand what we have covered so 
far. 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 58 — #68 �
�

�
�

�
�

58 Data Management and Manipulation 

NESdta_states <- NESdta_states %>% 
mutate(gender_name = ifelse(gender == 1, "male", "female"), 

pid_name = case_when(pid3 == 1 ~ "Democrat", 
pid3 == 2 ~ "Republican", 
pid3 == 3 ~ "Other"), 

south_name = ifelse(south == 1, "South", "Not South"), 
age_categories = case_when(age <= 35 ~ "Young", 

age > 35 & age <= 65 ~ 
"Middle Age", 

age > 65 ~ "Older")) 

Cross-tabulations simply compare how many cases fall into different groups 
with two categorical or ordered variables. In our current data set, we have 
two categorical variables about which we might want information, gender 
and political ID. Suppose we expected women to be more likely than men to 
support Democrats. Let’s see if this holds true in the NES data set. 

There are several ways we might try to accomplish this. One is to use the 
same summary tools that we used above. We can simply use the group_by() 
function to find out how many fall into each category of these variables. 
NESdta_states %>% 

group_by(gender_name, pid_name) %>% 
summarize(n = n()) 

## # A tibble: 8 x 3 
## # Groups: gender_name [2] 
## gender_name pid_name n 
## <chr> <chr> <int> 
## 1 female Democrat 270 
## 2 female Other 172 
## 3 female Republican 151 
## 4 female <NA> 37 
## 5 male Democrat 189 
## 6 male Other 208 
## 7 male Republican 129 
## 8 male <NA> 44 

This process produces all of the information that we would expect in a cross-
tabulation (although not exactly in the format we might expect). For example, 
we can see that there are 129 men who are Republicans in this survey. But this 
does not necessarily answer our main question, since there are also 151 women 
who are Republicans. If we go by raw numbers, we might assume women are 
more likely to be Republicans, missing the fact that there are also more women 
in the survey overall. 
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To get this, we will need to figure out how many men and women are in 
this survey, and then divide the numbers above by the total number of men 
and women. This is a straightforward combination of the commands we have 
already used above – first grouping by gender and getting the number in each 
category, then grouping by both gender and political ID and getting those 
numbers, and finally dividing the former by the latter. The only last piece 
is that, since we do not want to lose our other variables, we will use mutate 
for the first grouping. We will also use mean() to get total number by each 
gender (technically, we could have used min(), max() or any other summary 
function because the values are all the same within this grouping). Finally, we 
divide the number of observations in each gender/political ID pair by the total 
number of respondents of each gender to get the proportion. 
NESdta_states %>% 

group_by(gender_name) %>% 
mutate(sum_gender = n()) %>% 
group_by(gender_name, pid_name) %>% 
summarize(n = n(), 

n_gender = mean(sum_gender),
 
p = n/n_gender)
 

## # A tibble: 8 x 5 
## # Groups: gender_name [2] 
## gender_name pid_name n n_gender p 
## <chr> <chr> <int> <dbl> <dbl> 
## 1 female Democrat 270 630 0.429 
## 2 female Other 172 630 0.273 
## 3 female Republican 151 630 0.240 
## 4 female <NA> 37 630 0.0587 
## 5 male Democrat 189 570 0.332 
## 6 male Other 208 570 0.365 
## 7 male Republican 129 570 0.226 
## 8 male <NA> 44 570 0.0772 

The results confirm that there is a gender difference, but, at least in this 
sample, the main difference appears to be in terms of the proportion of each 
gender that identifies as Democrat versus as a member of neither party. About 
43% of women identify as Democrats, while only 33% of men do the same. 
Conversely, 36% of men say they do not identify with either party, whereas 
27% of women say the same. The proportion of Republicans in both groups 
is pretty similar, with only a 1.3 point difference. We can repeat this process 
with three or more variables if desired. 

While the above provides all the information you need for a cross-tabulation, we 
will admit that it is not the prettiest way to do things. Perhaps not surprisingly, 
then, a package has been built to make this process even easier. The janitor 
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package gives us the ability to create these types of cross-tabulations very easily. 
We use three simple functions: tabyl() is where we put the variables we want 
cross-tabulated, adorn_percentages() allows us to choose if we want “row” 
or “column” proportions, adorn_pct_formatting() converts the proportions 
into percents and allows us to set the number of digits, and adorn_ns() results 
in the inclusion of the raw counts. 

In the block below, we load the janitor package and create a simple cross-
tabulation of the number of outcomes in each category. 
library(janitor) 

NESdta_states %>% 
tabyl(pid_name, gender_name) 

## pid_name female male 
## Democrat 270 189 
## Other 172 208 
## Republican 151 129 
## <NA> 37 44 

In              
give us “col” (column) proportions. 
NESdta_states %>% 

tabyl(pid_name, gender_name) %>% 
adorn_percentages("col") 

## pid_name female male 
## Democrat 0.42857143 0.33157895 
## Other 0.27301587 0.36491228 
## Republican 0.23968254 0.22631579 
## <NA> 0.05873016 0.07719298 

the next block, we add in the adorn_percentages() function and tell it to

Finally, we convert the proportions into percentages and include the counts to 
create a nicely formatted cross-tabulation. 
NESdta_states %>% 

tabyl(pid_name, gender_name) %>% 
adorn_percentages("col") %>% 
adorn_pct_formatting(digits = 2) %>% 
adorn_ns() 

## pid_name female male 
## Democrat 42.86% (270) 33.16% (189) 
## Other 27.30% (172) 36.49% (208) 
## Republican 23.97% (151) 22.63% (129) 
## <NA> 5.87% (37) 7.72% (44) 
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The functions in the janitor package for creating cross-tabulations are quite 
flexible. If we want to create a three-way table, we can do this by simply 
adding the third variable we wish to include. For example, we can generate a 
cross-tabulation splitting the relationship between gender and partisan ID by 
whether respondents live in a southern or non-southern state. 
NESdta_states %>% 

tabyl(pid_name, gender_name, south_name) %>% 
adorn_percentages("col") %>% 
adorn_pct_formatting(digits = 2) %>% 
adorn_ns() 

## $`Not South`
 
## pid_name female male
 
## Democrat 45.70% (186) 34.85% (130)
 
## Other 26.29% (107) 37.00% (138)
 
## Republican 20.88% (85) 18.77% (70)
 
## <NA> 7.13% (29) 9.38% (35)
 
##
 
## $South
 
## pid_name female male
 
## Democrat 37.67% (84) 29.95% (59)
 
## Other 29.15% (65) 35.53% (70)
 
## Republican 29.60% (66) 29.95% (59)
 
## <NA> 3.59% (8) 4.57% (9)
 

Now, let’s look at how to create tables to compare the means of a continuous 
variable within a category. This is very easy to do using the data manipulation 
functions we learned above. We can use group_by() to set our categories and 
summarize() to calculate the means of our target variable. Let’s, for example, 
look at the differences between men and women in their approval of Donald 
Trump. 
NESdta_states %>% 

group_by(gender_name) %>% 
summarize(averge_Trump_approval = mean(fttrump, na.rm = T)) 

## # A tibble: 2 x 2 
## gender_name averge_Trump_approval 
## <chr> <dbl> 
## 1 female 35.9 
## 2 male 41.1 

Surprisingly, we do not see much difference in average ratings. Still, it should 
be noted that this poll took place prior to numerous allegations of sexual 
harassment and assault being lodged against then-candidate Donald Trump. 
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Again, this can easily be extended to more than one category by adding more 
than one group. Let’s demonstrate this using by comparing women and men 
in different age categories. 
NESdta_states %>% 

group_by(age_categories, gender_name) %>% 
summarize(averge_Trump_approval = mean(fttrump, na.rm = T)) 

## # A tibble: 6 x 3 
## # Groups: age_categories [3] 
## age_categories gender_name averge_Trump_approval 
## <chr> <chr> <dbl> 
## 1 Middle Age female 36.3 
## 2 Middle Age male 43.2 
## 3 Older female 46.3 
## 4 Older male 52.4 
## 5 Young female 28.7 
## 6 Young male 31.2 

This shows a very interesting pattern at this point in the election cycle. There 
are relatively large gender differences, but they seem to be dependent on age 
categories. The gap between men and women is quite apparent, with young 
women being more approving than their male counterparts, while middle-aged 
and older women are less approving than their male counterparts. As noted 
above, this likely changed later in the election cycle as more information came 
to light, but, in this relatively early period, it seems to be the women who 
remember Trump’s tabloid history with women in the 1980s who have a lower 
approval than males in their age cohort. 

3.7 Tidying a Data Set 

So far we have primarily looked at the Tidyverse functions associated with the 
dplyr package. Another important data munging package in the Tidyverse 
is tidyr. The tidyr package is meant to assist in creating a “tidy” data set. 
Formulated by Hadley Wickham (Wickham, 2014), there are three rules that 
make a data set tidy: (1) each variable must have its own column, (2) each 
observation must have its own row, and (3) each value must have its own cell. 

A commonly used, and very untidy, dataset is the World Development 
Indicators from the World Bank. We will load a raw output from the World 
Development Indicators in the same form you would receive if you used 
their interactive website. 
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# Read in World Development Indicators data set 
wdi_data <- read_csv(here("data","wdi_data.csv")) 
wdi_data 

This very short data is very untidy for a number of reasons. First, our main 
variables, access to electricity and agricultural land, are not given their own 
columns, but are rather separate rows for each country. Second, each observa
tion does not have its own row. Instead, we have the yearly observations in 
separate columns. Indeed, the only rule of tidy data sets that this data set 
follows is that each value has its own cell. 

To begin the process of tidying this data, we make some changes to get it ready 
to reshape. First, we give it more usable variable names using the rename() 
function. You will notice that when we have variable names that are more 
than one word or start with numeric values, we have to surround them with 
“‘”, this is to indicate that these are not numeric or separate values. After we 
have renamed the columns we want, we also create a new variable with the 
variable names in the rows using the mutate() function. Finally, we get rid of 
the original row variable labels by deselecting them. 
# Prepare WDI data for reshaping 
wdi_data2 <- wdi_data %>% 

rename(country = `Country Name`, code = `Country Code`, 
series = `Series Name`, series_code = `Series Code`, 
`2010` = `2010 [YR2010]`, `2013` = `2013 [YR2013]`) %>% 

mutate(variable_name=case_when(series_code=="EG.ELC.ACCS.ZS"~ 
"electricity_access", 

series_code=="AG.LND.AGRI.ZS"~ 
"pct_agriculture")) %>% 

dplyr::select(-series, -series_code) 

To get the years into their own column, we will take those two columns and 
use the gather() function on them. The key will be the name given to the 
new variable containing the column names and the value will be the name for 
the values in those columns. A common way to describe this process is that 
we have taken a “wide” data set and made it “long”. 
# Reshape the data wide to long 
wdi_data2 <- wdi_data2 %>% 

gather(`2010`,`2013`, key = "year", value = "levels") 
wdi_data2 

We could also have indicated a range of columns to be gathered by using a 
colon (:) as an operator indicating, “from here to there.” This is useful if we 
have a large number of columns to be gathered (as long as they are sequential 
in the data set). 
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# Reshape the data wide to long 
wdi_data2 <- wdi_data2 %>% 

gather(`2010`:`2013`, key = "year", value = "levels") 
wdi_data2 

Now we want to give each variable its own column. To do this, we will use 
the spread() function. In this case, the key is he column we want to spread 
and the value is the variable level for those keys. This is the opposite of what 
we did with gather(). We are now taking a “long” data set and making it 
“wide”. 
# Reshape data long to wide 
wdi_data2 <- wdi_data2 %>% 

spread(key = variable_name, value = levels) 
wdi_data2 

Now we have a tidy data set with which to work. 

Exercises 

3.7.0.0.1 Easy 

•	 Explain/think about the differences between spread() and gather(). 
What are some common features? Unique features? When should one be 
used over the other and why? 

3.7.0.0.2 Intermediate 

•	 The spread() function can also be used to organize the summary analyses 
(cross-tabulations and comparison of means) that we created above using 
group_by(). Take the cross-tabulation created using group_by() into a 
format closer to what we created using the janitor package’s tabyl() 
function using spread(). 

•	 Do the same as in #1, but with the comparison of means. 

3.7.0.0.3 Advanced 

•	 Can you undo what we just did with the WDI data? 

3.8 Saving Your Data Set for Later Use 

After all the work you have done to get your data into the shape you want, 
you will probably want to save this data set to your hard drive so you do not 
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have to start over in your next session. To do this, we recommend using the 
write_csv() function from the readr package in Tidyverse. 

There are several reasons we recommend saving your data. First, we suggest 
saving data as a .csv file because text-based storage files like this are quite 
compact, can be opened by a range of programs and languages, and will not 
become obsolete in the future. Older users of Stata or SPSS can attest that 
using proprietary storage can results in loss of data once the program manager 
decides to update the software and not maintain backward compatibility. 
Second, much like the difference between read_csv() from readr and base 
R’s read.csv() function, the Tidyverse version has some defaults that users 
are likely to prefer. For example, the base R command (write.csv()) adds 
row names to the data set by default with no variable name. We have yet 
to encounter a situation in which this adds value to the data set and can 
sometimes cause problems, especially on data sets that are repeatedly opened 
and modified. 

Saving your data set is relatively simple. You simply add two arguments to the 
write_csv() function. The first is the tibble or data.frame you wish to save. 
The second is where you want it saved, including the file name you wish to 
use. Here we are going to save our NESdta_short tibble as a .csv file called 
ANES_short.csv in our data folder. 
# Save the NESdta_short tibble as a .csv file 
write_csv(NESdta_short, here("data", "ANES_short.csv")) 

As you might expect, there are write_* versions of all of the read_* commands 
used earlier for loading data. This makes R very flexible for opening and 
converting a wide variety of data sources. 

Exercises 

3.8.0.0.1 Easy 

•	 Can you save this in .dta (Stata) format? Which package would you use? 
•	 Can you save this in .sav (SPSS) format? Which package would you use? 
•	 Can you save this in .xlsx (Excel) format? Which package would you 

use? 

3.9 Saving Your Data Set Details for Presentation 

Once you have all the data you need for your analysis in the format that 
you want, it is time to save that information in a format that you can use 
to present it in a paper or book. We have all been in the situation where we 
have put in a ton of work putting together a data set and a reviewer catches a 
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small error or suggests the addition of a new variable. At one point in time, 
we would have manually typed in all the numbers and formatting, requiring 
that even some relatively minor changes resulted in hours of extra work. As 
you might already suspect, when there are problems like these, R users have 
likely written a package for dealing with the issue. 

The stargazer package was designed so that you can easily take your analyses 
and turn them into professional tables that can be inserted into a word 
processing document (e.g. Word, LibreOffice, LATEX). It will take care of 
formatting, updating, and most of the other tasks with little work on your part. 
Not only that, but stargazer is extremely flexible – able to accommodate 
a wide range of table formats, custom standard errors, and other quirks you 
may encounter in particular journals or with particular reviewers. 

Here we will show how stargazer produces a table of summary statistics that 
can be inserted into a Microsoft Word document. Later, we will show how to 
generate a table for regression models. 

We will start by making sure we have an object that only includes the columns 
we wish to summarize. In this case, let’s just pick 3 variables: fttrump, age, and 
whether the respondent is female. We create the age variable by subtracting 
the year of the survey the respondent’s year of birth (birthyr) from the year 
of the survey, 2016. We will create a dummy variable indicating whether the 
respondent is female using the same ifelse() statement we used above. The 
we will use select() to pick just those three columns. 
# Create and select variable to be summarized 
NESdta_summary <- NESdta_short %>% 

mutate(age = 2016 - birthyr, 
female = ifelse(gender == 2, 1, 0), 
fttrump = replace(fttrump, fttrump > 100, NA)) %>% 

dplyr::select(fttrump, age, female) 

Now that we have the data set to be summarized, we can load the stargazer 
library and run the stargazer() function on the data set. Note that we need 
to convert our tibble to a data.frame for stargazer. 
# Load stargazer package into workspace 
library(stargazer) 

# Create LaTeX-style table to print to console 
stargazer(data.frame(NESdta_summary)) 

For those of you not familiar with LATEX, the output might look a little strange. 
LATEX is a document preparation system to produce high-quality typesetting. 
It is commonly used by academics because of its ability to automate some 
parts of the writing process (e.g. creating a formatted bibliography). It can also 
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be used to automatically update tables and figures from R. It also, however, 
has a somewhat steep learning curve, so we will not assume you use it here. 

Instead, let’s create an HTML table. These can be opened natively in Microsoft 
Word and simply copied and pasted into any document. To do this, we will 
set the type of chart to HTML. 
# Create stargazer table in .html format 
stargazer(data.frame(NESdta_summary), 

type = "html") 

This still looks confusing, but Microsoft Word (and most other visual word 
processing programs) knows how to read this to form a table. All we need to 
do is save it and open it using Word and it will look like a well-formatted 
table. To do this, we simply specify where to put the output and save it as a 
.doc file. In this case, we have created a sub-directory in our working directory 
for tables, and we will call our file “summary_table.doc”. 
# Save the table as a summary_table.doc 
stargazer(data.frame(NESdta_summary), 

type = "html", 
out = here("tables","summary_table.doc")) 

Now we have a well-formatted, easy to modify and read table. But there is one 
last thing we might want to change. The variable names in our data set are 
not very informative. We might want to make them a little clearer in meaning. 
We can do this by adding a vector of covariate labels, which is a collection of 
names bound together by the function c(). 
# Add informative variable labels 
stargazer(data.frame(NESdta_summary), 

type = "html", 
covariate.labels = c("Approval of Trump", 

"Age", 
"Female"), 

out = here("tables","summary_table.doc")) 

If you open “summary_table.doc” in Microsoft Word, you will see an output 
like that in the Figure 3.1. This output can be modified using Word’s standard 
table manipulation tools and can be copied and pasted into any other Word 
document. For users of LATEX, the process is even simpler. The user can save 
the table as a .tex file and add \input{./Tables/summary_table.tex} to 
their document. This will also allow for tables to be automatically updated as 
updates are made to your R code. 

stargazer is very flexible and rich, with many options for customizing your 
tables. And once you have written the code for your table once, all you need 
to do in order to update it is make a small modification and re-run the code. 
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FIGURE 3.1 
An Example of a Microsoft Word Summary Statistics Table Created by 
Stargazer 

To learn more about the types of table stargazer can make and how to vary 
features, check out the package’s online documentation. 

Exercises 

3.9.0.0.1 Easy 

•	 List the arguments in the stargazer() function, and highlight a few that 
seem particularly useful and briefly describe how you might use this in 
your own research. 

•	 Change the variable names in the stargazer() function and re-write a 
new table. Save the table on your Desktop as a .html file. 

3.9.0.0.2 Intermediate 

•	 Select all the feeling thermometer questions (they start with ft) from the 
ANES survey. Create a table of summary statistics from this for Microsoft 
Word. What do these tell you? 

3.9.0.0.3 Advanced 

•	 Replicate the stargazer output without calling the function. 
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Visualizing Your Data 

Creating effective visual representations of data is arguably one of the most 
important parts of presenting research. Major social science journals, such as the 
American Journal of Political Science, have issued recent statements strongly 
recommending authors offer visual output in lieu of redundant numerical 
output whenever possible. Further, the importance of findings and novelty of 
design can be lost (or at best limited) if the researcher fails to offer simple, 
clear visualization of findings. As a group of scholars argued in the Proceedings 
of the National Academy of Sciences, the ability to read and construct data 
visualizations is “as important as the ability to read and write text” (Börner 
et al., 2019). 

Given this importance, this chapter focuses on moving from creating “less
than-exciting” plots to exciting plots using the powerful ggplot2 package, 
which is a core part of the Tidyverse. We will be covering all the basic plots 
and showing how, by learning the “grammar of visualization” associated with 
ggplot2, you can build quite complex and informative plots. We will also give 
you a taste of how to produce plots that are interactive and can be placed, for 
example, on a website to promote your research. 

Throughout this chapter, we will also be providing examples of how plots are 
created in base R. The idea is to give you an idea of how plots are usually 
generated, and why associating a grammar with your plots is useful. 

4.1 The Global Data Set 

While the previous chapter focused on understanding political behavior in 
the 2016 American presidential primary, this chapter shifts its focus to un
derstanding the relationship between economic development and democracy 
from 1972 to 2014. The idea that economic development, usually measured 
as the log of per-capita gross domestic product (GDP), is related to the level 
of democracy in a country is highly influential in economics, sociology and 
political science (Lerner, 1958; Lipset, 1959; Kennedy, 2010; Inglehart and 
Welzel, 2009). This argument, usually labeled modernization theory, also has 

69 
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had many critics since it was first propounded almost 70 years ago (O’donnell, 
1973; Robinson, 2006). 

To analyze both this relationship, and some of the reasons it has been so 
controversial over the last sixty plus years, we will be using a data set compiled 
by Dr. Pippa Norris of Harvard University. 

In this chapter, we will present some basic plots of this relationship that help 
explain both the endurance of modernization theory and why it has been so 
controversial. If you follow along in the exercises, you will gain additional 
insight. 

4.2 The Data and Preliminaries 

Let’s start by focusing on two of the most commonly used plots in social 
science research: histograms and scatterplots. As always, you should start this 
section by opening a new session in RStudio and setting your working directory 
to the folder from which you will be working or open the R project, .Rproj, 
file located in the directory from which you wish to work. 
# Set your working directory 
setwd(choose.dir()) 

After you have started a new R session, load the tidyverse library (be sure to 
first install tidyverse using the install.packages command if not already 
done), which includes the ggplot2 library for plotting data. We will also load 
our country dataset. 

And let’s do some simple data manipulation to get our variables into the 
format we would like. There are several major changes that we make. First, 
the original data set has almost 3,000 variables. Working with so much data 
can quickly become unwieldy, so we use the select() function to narrow the 
data set to just the variables we will use in the examples and exercises. Next, 
we use the filter() function to keep only the cases that have an assigned 
region. As a review, this is an example of combining commands. !is.na() is 
a logical test that evaluates to TRUE when the row is not missing a value for 
region and FALSE when it is missing (remember the ! means NOT). filter() 
removes rows that do not meet the criteria in its parentheses. 

Finally, we use mutate() to create new variables, or new versions of our 
variables. The first set of variables we will be using is the Freedom House 
measures of democracy. Freedom House is a non-governmental organization 
dedicated to spreading democracy worldwide. Every year since 1973, they have 
produced a democracy score for every country on a 7-point scale, where 7 
means the country is the least free on their scale and 1 indicates a country 
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is the most free on the scale. In this data set, the variables containing the 
Freedom House scores for 1972 (fhrate72), 1985 (fhrate1985), and 2008 
(fhrate2008) are selected. But the data set saves these as a “string” because, 
instead of placing a 7, the data set has “Least Free,” and instead of a 1, the 
data set has “Most Free.” We convert these strings to their numeric values using 
the replace() function, convert them to numeric using the as.numeric() 
function, and, finally, subtract those values from 8 to reverse the scale – making 
higher numbers represent higher levels of democracy. If this discussion of string 
and numeric variables is a little confusing, do not worry. We will be covering 
these concepts in greater detail in the Essential Programming chapter. 

For region, we use our case_when() function to create a new variable called 
“Region” that combines several categories. This will make our visualization 
easier later on. 

For per-capita GDP, we have three measurement time periods: 1971 
(GDPPC1971), 1984 (GDPPC1984), and 2007 (GDPPC2007). We use the log() 
function to place all three of these on a log scale, which is a common method 
for dealing with this particular data. 
# Modify variables into the format we would like 
ctydta_short <- ctydta %>% 

dplyr::select(Nation, fhrate72, fhrate85, fhrate08,
 
Region8b, GDPPC1971, GDPPC1984, GDPPC2007,
 
Fragile2006, OECD) %>%
 

filter(!is.na(Region8b)) %>% 
mutate(fhrate72 = replace(fhrate72,fhrate72=="Least free","7"), 

fhrate72 = replace(fhrate72,fhrate72=="Most free","1"), 
fhrate72 = 8 - as.numeric(fhrate72), 
fhrate85 = replace(fhrate85,fhrate85=="Least free","7"), 
fhrate85 = replace(fhrate85,fhrate85=="Most free","1"), 
fhrate85 = 8 - as.numeric(fhrate85), 
fhrate14 = replace(fhrate08,fhrate08=="Least free","7"), 
fhrate14 = replace(fhrate08,fhrate08=="Most free","1"), 
fhrate14 = 8 - as.numeric(fhrate08), 
Region=case_when(Region8b=="industrial"~"Industrial", 

Region8b=="latinameri"~"Latin America", 
Region8b=="africa"~"Africa & M.E.", 
Region8b=="arab state"~"Africa & M.E.", 
Region8b=="c&eeurope"~"Eastern Europe", 
Region8b=="se asia &"~"Asia", 
Region8b=="south asia"~"Asia", 
Region8b=="east asia"~"Asia"), 

ln_gdppc_71 = log(GDPPC1971),
 
ln_gdppc_84 = log(GDPPC1984),
 
ln_gdppc_07 = log(GDPPC2007))
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## Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced 
## by coercion 

Note that you will likely receive a warning message indicating that NAs were 
introduced by coercion. This is normal when converting a string variable to 
numeric, since empty strings - "" - will be automatically converted to missing 
values. We use the tidy-friendly skim() function from the skimr package 
addressed at length in the Exploratory Data Analysis chapter to check that 
everything in our resulting data looks as expected, and it does. 
library(skimr) 

skim(ctydta_short) 

We can also leverage the glimpse() function from the tidyverse tibble 
package to get a printout of all features in wide format, which offers a helpful 
quick look at the structure of the data. 
glimpse(ctydta_short)
 

## Rows: 193
 
## Columns: 15
 
## $ Nation <chr> "Afghanistan", "Albania", "Algeria"...
 
## $ fhrate72 <dbl> 3.5, 1.0, 2.0, NA, NA, NA, 3.5, 2.0...
 
## $ fhrate85 <dbl> 1.0, 1.0, 2.0, NA, 1.0, 5.5, 6.0, 1...
 
## $ fhrate08 <chr> "5.5", "3", "5.5", "Most free", "5....
 
## $ Region8b <chr> "arab state", "c&eeurope", "africa"...
 
## $ GDPPC1971 <dbl> 883.4850, 2533.3756, 3699.2895, NA,...
 
## $ GDPPC1984 <dbl> 1020.8060, 2994.4853, 5528.0921, NA...
 
## $ GDPPC2007 <dbl> 752.4724, 4729.8822, 6421.2448, NA,...
 
## $ Fragile2006 <chr> "Fragile", "Intermedia", "Fragile",...
 
## $ OECD <chr> "Not member", "Not member", "Not me...
 
## $ fhrate14 <dbl> 2.5, 5.0, 2.5, NA, 2.5, 6.0, 6.0, 3...
 
## $ Region <chr> "Africa & M.E.", "Eastern Europe", ...
 
## $ ln_gdppc_71 <dbl> 6.783874, 7.837308, 8.215896, NA, 8...
 
## $ ln_gdppc_84 <dbl> 6.928348, 8.004528, 8.617598, NA, 7...
 
## $ ln_gdppc_07 <dbl> 6.623364, 8.461656, 8.767367, NA, 8...
 

4.3 Histograms 

Let’s start by making a simple historgram to show the density of different 
democracy levels in 1972 in Figure 4.1. Histograms are a common starting 
place for describing our data, giving us a general idea of what the dependent 
variable of modernization theory looked like at the beginning of the period we 
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are exploring. If we were doing this using base R, the commands might look 
something like this. 
# Create the histogram 
hist(ctydta_short$fhrate72, 

xlab = "Level of Democracy", 
ylab = "Number of Countries", 
main = "Histogram of Democracy in 1972") 
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FIGURE 4.1 
A Simple Histogram 

There is nothing particularly wrong with this approach to plotting the his
togram, but using the base R plotting functions can quickly produce clunky 
code that is difficult to remember, reproduce, and understand. Let’s say, for 
example, we want to see separate histograms for the density of democracies by 
region: “Industrial”, “Latin America”, “Africa and M.E.”, “Eastern Europe”, 
and “Asia.” Here is what this might look like using R’s standard plots in Figure 
4.2. 
# Subset the data into regions 
industrial <- subset(ctydta_short, 

Region == "Industrial") 
latin_america <- subset(ctydta_short, 

Region == "Latin America") 
africa <- subset(ctydta_short, 
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Region == "Africa & M.E.") 
eastern_europe <- subset(ctydta_short, 

Region == "Eastern Europe") 
asia <- subset(ctydta_short, 

Region == "Asia") 

par(mfrow = c(3, 2)) # places histograms in 3x2 plot 
hist(industrial$fhrate72, 

xlab = "Level of Democracy", 
ylab = "Number of Countries", 
main = "Industrial") 

hist(latin_america$fhrate72, 
xlab = "Level of Democracy", 
ylab = "Number of Countries", 
main = "Latin America") 

hist(africa$fhrate72, 
xlab = "Level of Democracy", 
ylab = "Number of Countries", 
main = "Africa & M.E.") 

hist(eastern_europe$fhrate72, 
xlab = "Level of Democracy", 
ylab = "Number of Countries", 
main = "Eastern Europe") 

hist(asia$fhrate72, 
xlab = "Level of Democracy", 
ylab = "Number of Countries", 
main = "Asia") 

par(mfrow = c(1, 1)) # reset plot space 

There are a number of reasons this code is less than appealing. Notice that 
there is no overall “grammar” to how we construct the plots. We find ourselves 
using $ and functions like par() that do not seem to fit with the tasks in 
which we have the most interest. The names we are using for the tasks also 
do not match easily with what we are trying to do. For example, mfrow is a 
vector of length 2 that specifies the number of rows and columns. But trying 
to remember what this command is and what it does is difficult, meaning that 
you will probably have to look it up next time you want to do it. There is 
also the issue of setting the global options. Notice that we have to use the 
par() function twice. The second time is to make sure we do not accidentally 
create a plot with 2 rows and 2 columns when we do not want to do so. It 
would be far better if we could revert to this default without having to do so 
explicitly every time. As we can attest, it is far too easy to miss this step and 
very frustrating when it happens. Finally, notice that there is no overall title 
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FIGURE 4.2 
Separate Histograms 

for the figure. This is because this is created as three separate figures pasted 
together. 

The package ggplot2, included in the tidyverse, is designed to be a “grammar 
of graphics” (Wilkinson, 2012) similar to the design of dplyr as a “grammar 
of data manipulation.” It has a set of commands that are consistent across 
different types of plots. It also, as we will see, allows you to make complex plots 
without a lot of extra work. Put simply, it addresses some of the problems 
of clunky code that has been built up over the extended period of R’s initial 
development. 

Let’s make do the same thing we did above, but using ggplot2. Start by 
creating a simple histogram in Figure 4.3.1 

# ggplot version 
ggplot(data = ctydta_short) + 

geom_histogram(aes(x = fhrate72), binwidth = 1) + 
labs(x = "Level of Democracy", 

1Readers should note that there exist “quick” work-arounds in ggplot2 including both 
qplot() and quickplot(), which are the same. These allow for quick base-R-flavored syntax 
for plotting, but are more limited in certain ways than the main ggplot() function. Thus, 
mostly throughout the book we will stick with ggplot(), but will occasionally use one of 
the “quick” versions for demonstrative purposes. 
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y = "Number of Countries", 
title = "Histogram of Democracy in 1972") + 

theme_minimal() 
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FIGURE 4.3 
A Simple Histogram via ggplot 

You will immediately see a few differences in this way of writing the code. First, 
we are combining different parts of the plot using a +. Just like the %>% we 
used for data manipulation, this lets us add different parts to the chart as we 
go.2 To more clearly demonstrate this point, we can build a plot piece-by-piece, 
starting simply and adding to it to create something more complex that looks 
exactly the way we want it. The result is a complete plot like the one shown 
in Figure 4.4. Importantly, when building a plot one layer at a time like this, 
the use of <- allows us to save our plot as an object, and add onto that object 
as we go. We first save the basic histogram as an object called basic_hist, 
and then add to it. 
# ggplot with additions version 
basic_hist <- ggplot(data = ctydta_short) 

basic_hist <- basic_hist + 

2In fact, we can even combine the %>% and + in ggplot2 syntax, e.g., piping the data to 
ggplot() and building accordingly. 
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geom_histogram(aes(x = fhrate72), binwidth = 1) 

basic_hist <- basic_hist + 
labs(x = "Level of Democracy", 

y = "Number of Countries", 
title = "Histogram of Democracy in 1972") 

basic_hist <- basic_hist + theme_minimal() 

basic_hist 
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FIGURE 4.4 
Building Out a Histogram 

By building out the plot in this way, the grammar is more explicit. The first 
function is ggplot(), which tells R that we are using ggplot2 to create the 
graph and to set up the system accordingly. In the function call, we declare 
the data we will be using for this plot. Since we are using only one data source 
for the entire plot, we can specify that data source here. 

Once the system and data are declared, the next step is to tell R what type of 
chart we want to use. This involves using a “geometry” function (or “geom” 
for short). Here the geom is a histogram, so we will use geom_histogram(). 
As you might guess, other types of charts have similar functions: geom_bar() 
for bar charts, geom_line() for line graphs, geom_point() for scatterplots, 
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etc. There may be some times when you want to use multiple data sources (for 
example, overlaying a scatterplot of one source of data with a histogram from 
another). To do this, simply set the data variable within the desired geometry, 
rather than setting it in the ggplot() function. 

Within the geom, we declare a mapping aesthetic (or “aes” for short). The 
aesthetic tells the system what we want placed where. Since we are creating a 
histogram with the count of cases in each bin, we only need to declare our x 
axis (i.e. that we want the distribution of the variable fhrate72). Within the 
geom, we can also change a number of the options for the chart. In this case, 
we tell it how large we want the bins of the histogram to be (1 in this case). 

There is also a function for naming the axes. We add in a set of labels for the 
x-axis, y-axis and the main label using the labs() function. 

Finally, we change the theme from the default to a black-and-white scheme by 
adding the theme_minimal() function. 

One thing that you will see when you run either of these code examples is a 
warning saying that the program Removed 36 rows containing non-finite 
values (stat_bin). This is simply telling you that there were 36 cases in 
which the variable fhrate72 was missing data, i.e., Freedom House did not 
provide them with ratings that year. This is another advantage to ggplot2; it 
tells you more about your data than the base R functions. 

To see how this creates cleaner code, it is useful to show a more complex 
example. Let’s try breaking down the histograms by region again leveraging 
ggplot2 and shown in Figure 4.5. 
# Plot differences between democracy by region 
ggplot(data = ctydta_short) + 

geom_histogram(aes(x = fhrate72), binwidth = 1) + 
theme_minimal() + 
facet_wrap( ~ Region, ncol = 2) + 
labs(x = "Level of Democracy", 

y = "Number of Countries", 
title = "Levels of Democracy by Region in 1972") 

In this example, we simply added another function using the +, called 
facet_wrap(), which tells the system to compile subgraphs as a function 
of the region of the country. 

And finally, ggplot2 is very flexible in allowing us to modify our charts to the 
particular style we want. Let’s see another simple case, plotting the density of 
democracy scores as a histogram to see how things change when you update 
the bin size and colors in Figure 4.6. 
# Update binwidth and color 
ggplot(data = ctydta_short) + 
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FIGURE 4.5 
A More Complex, Faceted Histogram 

geom_histogram(aes(x = fhrate72),
 
binwidth = 2,
 
color = "white",
 
fill = "steelblue") +
 

theme_minimal() + 
labs(x = "Level of Democracy",
 

y = "Number of Countries",
 
title = "Level of Democracy in 1972")
 

## Warning: Removed 36 rows containing non-finite values 
## (stat_bin). 

Plots created using ggplot are almost infinitely customizable. For those of 
you looking for inspiration (as well as example code), the R Graph Gallery 
provides hundreds of examples using the tools introduced here. 

Exercises 

4.3.0.0.1 Easy 

•	 Create a histogram for the Freedom House democracy scores in 1985 
and 2008. Modify the number of bins until it looks like what you want. 
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FIGURE 4.6 
Updating Style and Color 

What does this tell you about the progress of democracy over this time 
period? 

•	 Using facet_wrap(), break down the democracy scores for 1985 and 2008 
down by region. Be sure to set the binwidth and make the labels accurate. 
Has the progress of democracy been equally distributed across regions? 

•	 ggplot2 includes many different themes that can fit your personal pref
erences. Try changing theme_minimal(). Re-create the final plot for 
fhrate72 from the text above, and try out theme_bw() and theme_dark() 
to see what some of these look like. 

4.3.0.0.2 Intermediate 

•	 In using the histogram to plot the density of fhrate72 above, you may 
have noticed the warning message: Removed 36 rows containing non-finite 
values (stat_bin). What does this mean? 

•	 What is the difference between bins and binwidth for plotting histograms? 
Consider exploring the ggplot documentation for the answer. 

4.3.0.0.3 Advanced 

•	 This data set is not tidy, as discussed in the previous chapter. Namely, a 
tidy data set should have a single row for each country-year (or in this 
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case, for every country-year pair, e.g., country observation of per-capita 
GDP from 1984 should be paired with the Freedom House rating from 
1985). Create this tidy data set. Once you have done so, how does this 
change your commands to create the histogram for Freedom House scores 
from 1972? 

4.4 Bar Plots 

Another very common plot for better understanding the distribution of your 
data is the bar plot. Let’s say you wanted to plot the number of countries in 
each region in your data. Since region is a categorical variable, a histogram 
does not make a lot of sense. 

Here is how you would need to create a bar plot in base R. There are some 
elements of this that will likely seem strange to a beginning user. In particular, 
it involves combining two disparate types of commands, creating a table and 
then saving that table before you can plot it. See this in Figure 4.7. 
# First, create a table and save it as an object 
region_table <- table(ctydta_short$Region) 

# Create a bar chart of the table 
barplot(region_table, 

xlab = "Region", 
ylab = "Number of Countries", 
main = "Distribution of Countries in Regions") 

Now we will create the same plot using ggplot2 with the geom_bar() function. 
Notice how we do not introduce any new concepts or steps beyond those from 
the process for creating a histogram. Instead, we are using the same grammar, 
just changing the verb (function) we use for the defining the geometry of plot. 
See this ggplot() version in Figure 4.8. 
ggplot(data = ctydta_short) + 

geom_bar(aes(x = Region)) + 
labs(x = "Region", 

y = "Number of Countries", 
title = "Distribution of Countries by Region") + 

theme_minimal() 

We can also combine the skills we learned for data management earlier to create 
more complex plots. Let’s say we want to know the average democracy score 
in 1972. This is easy to do using summarize() with our graphing functions. 
We can even use the pipe, %>%, to link them together. 
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FIGURE 4.7 
A Basic Barplot 
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FIGURE 4.8 
A Barplot via ggplot 
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The only new thing that we need to do is change the stat argument in the 
geom_bar() function to “identity”. This tells the program to use the variable 
we define for the y-axis as the height of the bars, rather than counting the 
number of cases. The more complex version is now in Figure 4.9. 
# Combine data management and visualization 
ctydta_short %>% 

group_by(Region) %>% 
summarize(mean_democracy_72 = mean(fhrate72, na.rm = TRUE)) %>% 
ggplot() + 
geom_bar(aes(x=Region, y=mean_democracy_72), stat="identity") + 
labs(x = "Region", 

y = "Mean Democracy Score in 1972", 
title = "Mean Democracy Score By Region in 1972") + 

theme_minimal() 
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FIGURE 4.9 
Complicating a Barplot with ggplot 

Hopefully by this point you can appreciate how powerful the linkage between 
everything we have seen so far can be. The data management grammar we 
learned in the last chapter fits almost seamlessly with the visualization grammar 
we are learning in this chapter. And, in both cases, it is just a matter of putting 
together the right nouns (arguments) with the right verbs (functions) to convey 
informative statistical meaning. 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 84 — #94 �
�

�
�

�
�

84 Visualizing Your Data 

Exercises 

4.4.0.0.1 Easy 

•	 Make a barplot of the stability of countries in this data set in 2006 (variable 
name Fragile2006). 

•	 Governments that have faced political instability often struggle to subse
quently democratize. Let’s see if our data shows this. Create a barplot for 
the average Freedom House score in 2014, given stability in 2006. 

•	 There are many options to modify bar plots. One allows you to flip the x 
and y axis, which is especially useful when you have long value labels for 
a variable. Try doing this by adding the coord_flip() function. 

4.4.0.0.2 Intermediate 

•	 What is the difference between a barplot and histogram? When might one 
be appropriate over the other? 

•	 Update the barplot for mean democracy by region to instead summarize 
democracy by it’s median. Then, render a new barplot with a different 
color bar for each of the five regions. 

4.4.0.0.3 Advanced 

•	 Re-produce the barplot for mean level of democracy by region, but this 
time using qplot() (“quick plot”). This is also from ggplot2 and has some 
similar features, but the construction of the function, aesthetic mapping, 
and process of layering are all a bit different than the ggplot() approach 
we previously covered. 

4.5 Scatterplots 

Another very common plot in social science research is the scatterplot. This can 
be useful for a variety of tasks, from viewing simple distributions of variables 
to displaying relationships and predicted probabilities. We will discuss these 
exploratory-type tools in greater depth in the chapter on exploratory data 
analysis. As with histograms and barplots, there is a tradeoff between clunky 
code and less-than-exciting output versus elegant, modular code and appealing 
output. We start with the base R version using the plot command and get 
Figure 4.10. 
# Scatterplot using Base R 
plot(ctydta_short$ln_gdppc_71, ctydta_short$fhrate72, 

main="Relationship Between Development and Democracy, 1972", 
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xlab="log(per-capita GDP)",
 
ylab="Freedom House Level of Democracy")
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FIGURE 4.10 
A Basic Scatterplot 

Figure 4.10 shows a positive relationship between the log of per-capita GDP 
and the level of democracy for a country in 1972. Substantively, this chart 
shows that even in 1972, countries with a higher level of economic development 
measured by per-capita GDP, were generally more democratic. The relationship, 
however, can be a little difficult to pick out from this plot alone and there are 
many additional parameters that contribute to a prettier and more descriptive 
plot. Adding these is not very straightforward in base R. 

As such, let’s start with a simple ggplot2 scatter plot with the command 
ggplot(), shown in Figure 4.11, before progressing to some more descriptive 
and advanced plots below. 
# ggplot version of scatterplot 
ggplot(ctydta_short, aes(x = ln_gdppc_71, y = fhrate72)) + 

geom_point() + 
geom_smooth(method = lm, alpha = 0.1) + 
labs(x="log(per-capita GDP)", 

y="Freedom House Level of Democracy", 
title="Relationship Between Development & Democracy, 1972")+ 

theme_minimal() 
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FIGURE 4.11 
A Nicer Scatterplot via ggplot 

This is already a much prettier plot that is also more descriptive. There are 
two things that we have changed from our previous plots. First, we declared 
our aesthetic in the ggplot() function, rather than in our geometry functions. 
Since we are using the same aesthetic for both geometries, we can declare it 
earlier and not have to repeat it. This is a concept that computer scientists 
call the “scope” of a variable. When we declare it in the ggplot() function, 
the values for the aesthetic, aes(), are the same for all subsequent functions 
and are communicated to those functions by the + operator. When we declare 
the aesthetic in the individual geometries, for example in geom_point(), it 
only applies to that geometry. This is very useful if we want to overlay charts 
using different variables, or even different data sets as mentioned above. 

We also have declared two geometries, geom_point() and geom_smooth(). 
The first creates our scatter plot and the second creates our regression line, 
showing the relationship, as well as the 95% confidence intervals.The method 
= lm argument is used to specify that we are using a linear model to create the 
line (the default if we do not specify a method is a non-linear LOESS model). 

We can do a lot with these building blocks. Let’s say that we think that 
the effect of economic development interacts with the region in which the 
country is located. Indeed, some scholars have argued that the conclusions 
of modernization theory may be strongly influenced by geography (Ward 
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and Gleditsch, 2018) or that there may be common historical factors leading 
to some countries becoming both rich and democratic, while leaving others 
poor and authoritarian (Robinson, 2006). We can check this by adding to 
the aesthetic of our plot, telling it to fill the plot components with colors 
representing the values of region. See the result in Figure 4.12. 
ggplot(ctydta_short, aes(x = ln_gdppc_71, y = fhrate72, 

color = Region)) +
 
geom_point() +
 
geom_smooth(method = lm, alpha = 0.1) +
 
labs(x="log(per-capita GDP)",
 

y="Freedom House Level of Democracy",
 
title="Relationship Between Development & Democracy, 1972",
 
fill="Region") +
 

theme_minimal() 
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FIGURE 4.12 
A Scatterplot with Continuous and Categorical Features 

Note the different colors associated with the country’s region. Now both the 
points and the linear fit lines have been colored according to the country’s re
gion, showing the relationship between economic development and democracy, 
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conditional on region.3 Interestingly, it looks like the relationship between 
economic development and democracy in 1972 is conditional on region. For 
industrialized, Latin American, and, within a very limited range, Eastern 
Euroepan countries, there seems to be a relationship between economic de
velopment and democracy. Within Asia and Africa, however, there appears 
to be no real relationship. Moreover, it looks like much of what we observed 
in the overall relationship among all countries is being driven by differences 
in regions. Industrialized countries are both more economically prosperous 
and democratic, while Asian countries at this time are both less economically 
developed and less democratic. It is, perhaps, not surprising that this period 
of time - the 1970s - was when the narrative around dependency became very 
popular among scholars, arguing that the world economic system was set up in 
such a way that the industrialized core became wealthy and democratic, while 
countries in the periphery remained poor and authoritarian (Smith, 1979). 

There are many more arguments and updates users can make to ggplot2 plots. 
For example, users can also use the shape argument to change the shape of 
the points (e.g., circles, triangles, etc.). Just run ?ggplot2 to view the many 
parameters and customization options available. 

As we have seen before, another way to show conditional distributions is using 
a facet wrap, which separates each plot and places them in their own windows. 
The facet_wrap() function allows any direction or combination of columns 
and rows with separate plots based on the conditioning variable (input as 
“~ variable”, where the “~” indicates that the charts are a function of the 
conditioning variable). The numbers of columns and rows are denoted by 
passing values to the nrow or ncol arguments in the facet_wrap() function. 

Since some of the points in our plot overlap, it can be difficult to see where 
the largest concentrations of countries lie, so we will also set alpha = 0.3, 
which increases the transparency of points, making darker sections indicative 
of higher concentrations (we could also use the geom_jitter() function to 
add a small amount of noise that can make individual points more visible). 
The updated plot is shown in Figure 4.13. 
# Use a facet wrap to display the regions 
ggplot(ctydta_short, aes(x = ln_gdppc_71, y = fhrate72)) + 

geom_point(alpha = 0.3) + 
geom_smooth(method = lm, alpha = 0.1) + 
theme_minimal() + 
labs(x="ln(per-capita GDP)", 

y="Freedom House Level of Democracy", 
title="Relationship Between Development & Democracy, 1972")+ 

facet_wrap(~ Region, ncol = 2) # update "nrow" or "ncol" 

3We will come back to linear models and regression fit lines in the statistical modeling 
chapter later. 
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##	 `geom_smooth()` using formula 'y ~ x' 
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FIGURE 4.13 
Faceting and Updating a Scatterplot 

This set of figures tells a similar story to what we noticed above, but some of the 
patterns are easier to identify. We can see why modernization theory has been 
so controversial. While there appears to be a global pattern linking economic 
development and democracy, the regional heterogeneity in this relationship is 
such that it evokes suspicion, especially among those studying these regions. 

Exercises 

4.5.0.0.1 Easy 

•	 What is the relationship between ln_gdppc_84 and fhrate85? Create a 
scatterplot with a linear smoother to find this out. 

•	 In the previous question, you used method = lm to show a linear fit line. 
What if we expected a non-linear relationship? Type in ?geom_smooth() 
and look at the help information for the methods. What other options 
are available? What is the default? Try method = loess in one of your 
charts. Does this suggest a non-linear relationship? 
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4.5.0.0.2 Intermediate 

•	 What assumptions are we making about the data generating process when 
we change the method argument in the geom_smooth() function from lm 
to loess to gam to glm? Note: We will cover data generating processes 
and model assumptions more in the Essential Statistical Modeling chapter. 
Thus, answer this question based on your existing knowledge. 

4.5.0.0.3 Advanced 

•	 What does the note you get in the earlier scatterplot, geom_smooth() 
using formula ‘y ~ x’, mean? And how does geom_smooth() differ from 
stat_smooth() 

4.6 Combining Multiple Plots 

In some instances, you might want to combine multiple plots of different types. 
While the facet_wrap() function allows you to combine plots of the same 
type broken down by a grouping variable, it would not let you combine plots 
of different kinds or with different data. Unfortunately, we can’t leverage the 
par(mfrow) command for ggplot objects as we did for plot objects in base R. 
As such, we demonstrate two packages for easily combining multiple ggplots: 
the gridExtra package or the patchwork package. 

First, we will cover the use of gridExtra. We start by creating and storing 
four plots: a histogram of fhrate72, a bar plot for Region, a histogram for 
ln_gdppc_71, and a scatter plot for economic development and Freedom House 
democracy score. We will then paste them together using the grid.arrange() 
function and present the results in Figure 4.14. 
# Combining plots with the gridExtra package 
library(gridExtra) 

plot1 <- ggplot(ctydta_short) + 
geom_histogram(aes(x = fhrate72), binwidth = 1) 

plot2 <- ggplot(ctydta_short) + 
geom_bar(aes(x = Region)) + 
theme(axis.text.x = element_text(angle = 75, hjust = 1)) 

plot3 <- ggplot(ctydta_short) + 
geom_histogram(aes(x = ln_gdppc_71), binwidth = 2) 

plot4 <- ggplot(ctydta_short) + 
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geom_point(aes(x = ln_gdppc_71, y = fhrate72)) 

grid.arrange(plot1, plot2, plot3, plot4, ncol = 2) 
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FIGURE 4.14 
Combined Plots via grid.arrange 

Now, let’s use the same four plots in the previous case using the patchwork 
package. Results are in Figure 4.15. 
# Combining plots with the patchwork package 
library(patchwork) 

plot1 <- ggplot(ctydta_short) + 
geom_histogram(aes(x = fhrate72), binwidth = 1) 

plot2 <- ggplot(ctydta_short) + 
geom_bar(aes(x = Region)) + 
theme(axis.text.x = element_text(angle = 75, hjust = 1)) 

plot3 <- ggplot(ctydta_short) + 
geom_histogram(aes(x = ln_gdppc_71), binwidth = 2) 

plot4 <- ggplot(ctydta_short) + 
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geom_point(aes(x = ln_gdppc_71, y = fhrate72)) 

plot1 + 
plot2 + 
plot3 + 
plot4 
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FIGURE 4.15 
Combined Plots via patchwork 

Though the results look pretty much the same, the patchwork package 
offers much more flexibility in both placement of plots (e.g., using \ for 
top/bottom placement), as well as in annotating the plots (e.g., using the 
plot_annotation() function to add titles, subtitles, captions, and more). Let’s 
see these differences in action, all of which lead us to prefer the patchwork 
solution over the gridExtra solution. See the customized result in Figure 4.16. 
# Combining plots with the patchwork package 
library(patchwork) 

plot1 <- ggplot(ctydta_short) + 
geom_histogram(aes(x = fhrate72), binwidth = 1) 

plot2 <- ggplot(ctydta_short) + 
geom_bar(aes(x = Region)) + 
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theme(axis.text.x = element_text(angle = 75,
 
vjust = 0.5))
 

plot3 <- ggplot(ctydta_short) + 
geom_histogram(aes(x = ln_gdppc_71), binwidth = 2) 

plot4 <- ggplot(ctydta_short) + 
geom_point(aes(x = ln_gdppc_71, y = fhrate72)) 

four_plots <- plot2 / 
(plot1 + plot3) / 
plot4 

four_plots + plot_annotation( 
title = "Four slick plots with annotation", 
subtitle = "Here is a great subtitle!") 
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Here is a great subtitle!
Four slick plots with annotation

FIGURE 4.16 
Customization via patchwork 

Much more detail on customizing layouts, combinations of ggplot objects, and 
annotation options including tagging and customizing plot labels is available 
at the patchwork pkgdown site. 
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Exercises 

4.6.0.0.1 Easy 

•	 Change the layout using the + and / operators using the patchwork 
package. Create a few new layouts of the plots we previously created. 

•	 Create four new plots from this data. Place them into a grid using 
gridExtra. Then do the same with patchwork. Can you make them 
look the same? 

•	 What happens if you do not set the number of columns in the 
grid.arrange() function? 

4.6.0.0.2 Intermediate 

•	 You can create grids of multiple grids. Try grid.arrange(g1, g1). What 
happens? What about grid.arrange(g1, plot1)? 

•	 Manually add a title and subtitle using the gridExtra solution (Note: 
this is not as straightforward as with patchwork). 

4.7 Saving Your Plots 

Once you have spent so much time creating and cleaning your plots, it would be 
good if we could automatically save the plot. That way, if you need to modify 
it later, you can make the modifications and save them to a specified folder 
without needing to go through the process of finding folders or remembering 
how you set up the figure. 

RStudio provides some tools for saving plots. When you create a plot, it will 
show up in the Plots tab in the lower-right-hand part of RStudio. From here, 
you can click on the Export menu and choose how to save your plot. You can 
also preview how your plot will look in different sizes. 

Once you figure out what size you want your figure to be and the type of file 
you would like to save, you can use the ggsave() function to record how you 
want to save the figure. Let’s say you want to save plot1 from the last section 
as a 5x7 .png file (a standard format for Microsoft Word) in a subfolder called 
“Figures” (make sure you have created this folder in your working directory). 
Here is how you can do it using ggsave(). 
# Save plot1 as a .png file 
ggsave(here("Figures","plot1.png"), 

plot = plot1, 
device = "png", 
width = 7, height = 5) 
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Exercises 

4.7.0.0.1 Easy 

•	 Try to save another plot to the Figures folder. 

4.7.0.0.2 Intermediate 

•	 What happens if you remove “Figures” from the here() function? Where 
does this save? 

•	 How would you save to a particular folder without using the here() 
function? (Try to do this with a command, rather than using the RStudio 
dropdown menu.) 

4.8 Advanced Visualizations 

So far, we have created nice, clean visual descriptions of our data, but we have 
barely scratched the surface of what is possible in ggplot2, and we will return 
to some additional plots in the Exploratory Data Analysis chapter. 

Before we conclude this chapter, we want to provide a few examples of advanced 
visualization techniques – charts that you might be less likely to use, but 
which demonstrate the range of R for producing visualizations. Hopefully 
demonstrating the range of possibilities in R will help inspire you to create 
your own stunning graphics. 

The goal at this point, is to take that which you have learned in the comparative 
cases presented above, and apply it to the more complex code. Importantly, 
everything covered below is built using the same logic and syntax covered to 
this point. 

4.8.1 Bubble Plots 

In 2010, Hans Rosling presented a series of data plots to show changes in 
global population and health over time in a documentary on BBC Four, and 
in a series of YouTube videos and TED talks. These videos became incredibly 
popular, with just one of his videos on YouTube receiving more than 9 million 
views (as of this writing). 

Rosling made use of animation and several other techniques which we will not 
cover (but, for which, there are libraries in R), but the core of his presentations 
was a type of chart called a bubble plot. These plots combine color and size with 
traditional scatter plots to present four dimensions of data in two dimensions. 

The code below, resulting in Figure 4.17, demonstrates how, by simply speci
fying the size and color aesthetics, we can create a plot that shows how the 
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level of democracy in 2014 is related to a country’s change in per-capita GDP 
from 1971 to 2007, region, and level of democracy in 1972. 
ctydta_short %>% 

mutate(change_gdppc = ln_gdppc_07 - ln_gdppc_71) %>% 
ggplot(aes(x = fhrate72, y = fhrate14)) + 
geom_point(aes(size = change_gdppc, color = Region), 

position = "jitter") + 
geom_abline(intercept = 0, slope = 1) + 
scale_y_continuous(limits = c(0.5, 7.5, 1)) + 
scale_x_continuous(limits = c(0.5, 7.5, 1)) + 
labs(x = "Democracy Score 1972", y = "Democracy Score 2014", 

size = "Per-capita GDP Growth") +
 
theme_minimal()
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FIGURE 4.17 
A Bubble Plot 

There are a lot of options that have been specified in this plot, but, by now, 
you can probably figure out what all of them do on your own. We started by 
creating a new variable that records the change in the log of per-capita GDP 
using the mutate function from the last chapter. 

We fed the resulting data into ggplot with an aesthetic that places a country’s 
1972 Freedom House score on the x-axis and their 2014 score on the y-axis. 
We then added a scatterplot using the geom_point() geometry, specifying 
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that the color was determined by the country’s region and the point’s size was 
determined by the country’s GDP growth. The position of the points is also 
specified as “jitter”, which adds a small amount of noise to the data so the 
points that overlap are not hidden. 

Since we are looking at the change in democracy, it is useful to have a line 
which indicates no change – in this case a 45 degree line – which we add 
by creating with the geom_abline() geometry and specifying a line with a 
y-intercept at zero and a slope of 1. The points above this line are the countries 
that have increased their democracy scores, and the ones below this line have 
decreased their scores. 

Finally, we clean up the chart by specifying the axis marks on the x-axis and 
y-axis using the scale_x_continuous() and scale_y_continuous() options 
with the limits defined – in this case, we had the limits go from 0.5 to 7.5 by 
steps of 1. And, as before, we specify informative axis and legend labels, and 
change the theme to a black-and-white theme. 

The results are somewhat more basic than Rosling’s famous plots, but not by 
much. As you become more skilled with graphics, you will find that the sky is 
the limit in creating your graphics. 

4.8.2 Interactive Plots 

In contemporary scholarship, an increasing number of scholars are posting 
graphics online that can convey more information, through animation and 
interaction, than on the printed page. These graphics allow readers to get a 
better understanding of the data, as well as providing interesting summaries 
of data that can be shared on social media to reach a broader audience. In 
this subsection, we will demonstrate how to generate interactive plots. 

There are many ways to generate interactive plots in R, such as iplot, Rggobi, 
plotly, and so on. Though all of these have their strengths and weaknesses, 
we will focus on plotly, which leverages ggplot2 and is a rapidly developing 
platform for complex and impressive interactive plots. Further, plotly has a 
host website that allows users to place interactive plots on the web, and also 
offers a simple point-and-click interface at https://plot.ly/. 

For interactive plots using plotly and ggplot2, we will need to install and 
load the plotly R package. Also, in the code below we will be returning to the 
pipe operator, %>%, which is a centerpiece of the Tidyverse. We will continue 
to use our ctydta_short data object. For these plots, our key function is 
plot_ly, where the argument type allows us to change the plot type (e.g., 
scatterplot, histogram, etc.). Run the following code locally for a simple 
interactive scatterplot. 

https://www.plot.ly
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library(plotly) 

# simple scatterplot 
scatter <- plot_ly(ctydta_short, 

x = ~ ln_gdppc_71, 
y = ~ fhrate72, 
type = "scatter", # plot type 
text = paste("Country: ", 

ctydta_short$Nation), # hover 
mode = "markers", # object type 
color = ~ Region, 
size = ~ ln_gdppc_71 

) %>% 
layout(title='Simple Scatterplot', 

xaxis=list(title='ln(per-capita GDP)'), 
yaxis=list(title='Freedom House Democracy Score, 1972')) 

scatter 

The plot you see in the Viewer tab in the lower right-hand corner of RStudio 
allows you to hover over the points to see more information. You can save this 
plot as an interactive HTML plot by going to the Export dropdown menu and 
selecting “Save as Web Page. . . ”. (Note that, if it does not show up in the 
Viewer window, this is likely just a result of the size of your screen. You can 
save it as a web page and it will show up when you click the saved file.) 

In the code chunk above, there are a few changes to syntax, but mostly the 
intuition from ggplot2 remains the same. Note, though, that for axis titles, 
we need to pipe in a new layer (layout). Further, take note of the fact that we 
stored the plot in its own object, scatter, which is a requirement for building 
interactive plots manually like this in R.4 

Let’s try another interactive plot, but of a histogram. 
# Interactive histogram 
hist <- plot_ly(ctydta_short, 

x = ~ fhrate72, 
type = "histogram", 
text = paste("Region: ", ctydta_short$Region), 
color = ~ Region 

) %>% 
layout(title='Simple Histogram', 

xaxis=list(title='Freedom House Democracy Score, 1972'), 
yaxis=list(title='Number of Countries')) 

hist 

4This is not necessary for building plots directly on Plotly’s website. 
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There is a ton of information in this plot! Inspect it all carefully. Try leveraging 
the internal tools from plotly in the upper right, such as changing the number 
of bars viewed at a time, the hover text, magnifying portions, and so on. 
These are quite informative, powerful plots that do not require a great deal of 
additional knowledge beyond our use of ggplot() above. 

4.9 Concluding Remarks 

This has been a whirlwind tour of visualization using ggplot2 and other related 
packages in the broader Tidyverse. While we have covered a lot of ground, the 
reality is that we have only scratched the surface of the visualization tools 
available and what you can do with these tools. As you have probably figured 
out by now, R is incredibly flexible for visualization, allowing for a wide range 
of plot options that are basically impossible in statistical packages like SPSS, 
SAS, and Stata. 

If this sounds like the area of artists, you are not far off. While many social 
scientists fall into the trap of re-creating the basic plots they learn in their 
introductory classes over and over, truly great visualizations find ways to 
convey information in a manner that is beautiful and meaningful (Tufte et al., 
1990; Tufte, 2001; Healy, 2018). You now have the fundamentals needed to 
produce such plots, so continue learning visualization and let your imagination 
run free. 

4.9.1 More Resources 

There are several nice resources that you can access online or in print to help 
you with more specific plots. Here are two excellent resources to help you as 
you continue to develop your skills with ggplot. 

1.	 The Data Visualization Chapter in the R for Data Science, which is 
a free book by Hadley Wickham and Garrett Grolemund (Wickham 
and Grolemund, 2017). A version of this is available free online. 

2.	 For a book length treatment of the subject, Kieran Healy’s book, 
Data Visualization: A Practical Introduction (Healy, 2018), is an 
excellent treatment of visualization generally, and visualization using 
ggplot2 in particular. 



https://taylorandfrancis.com
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Essential Programming 

In this chapter we are depart from the Tidyverse for a while to introduce 
readers to core programming concepts in (mostly, base) R. These tools are 
invaluable for efficiently engaging with R programming, both in and out of 
the Tidyverse. Though the majority of coverage in this chapter is using base 
R tools, at the end we will return to the Tidyverse, covering a core functional 
programming task – mapping (via the Tidyverse purrr package). Our goal 
here is to cover a variety of tools and syntactic choices in R to widen and 
deepen your R toolbox, driving toward the ultimate goal of making our way 
up the steep R learning curve. 

This chapter is a bit more technical than applied, but is no less important for 
cultivating an effective understanding of R. In the long term, understanding 
the basics of programming in R will help to expand your horizons and open 
up new vistas for your research. 

5.1 Data Classes 

Before we get into the ins-and-outs of programming, the next couple of sections 
will look under the hood of R to discuss some of the fundamental items that 
make up the language. One way to think about this is that we will be looking 
at the small building blocks that can be used to make a much larger structure. 

We start by discussing the types of data objects R allows you to use and how 
they behave. There are several different classes of data, and the operations 
you can perform on the data will differ, depending on the class. These classes 
are “numeric”, “character”, and “factor.” 

Numeric data is just what it sounds like. This is data that is either made up 
of integers or doubles (a term used for numeric data that can have decimal 
places). 
# Examples of numeric class 
class(1) 

## [1] "numeric" 

101 
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class(1020) 

## [1] "numeric" 

class(0.50) 

## [1] "numeric" 

Character data (sometimes called “strings”) is data made up of a combination 
of letters, numbers, and, sometimes, symbols. Character data will be encased 
in quotation marks when it is printed out. 
# Examples of character class 
class("this is a string") 

## [1] "character" 

class("email@email.com") 

## [1] "character" 

class("1") 

## [1] "character" 

Notice especially the last example. It is the number 1, so you might expect it 
to be numeric, but it is not because it is in quotation marks. If you were to 
try a numeric operation, say adding it to something else, R would give you an 
error. 
# Adding a string with a numeric 
"1" + 1 

Finally, factor data is one of the most confusing classes to deal with in R, and 
many people choose to avoid using it unless it is specifically needed. The factor 
class is a hybrid between the numeric class and the character class. For most 
functional purposes, it is treated as being of the character class, but with an 
underlying order. Here is an example of how this can get confusing. 
# Example of factor class 
example <- as.factor(c("1","3","5","2","5","1","100")) 
example 

## [1] 1 3 5 2 5 1 100 
## Levels: 1 100 2 3 5 

This tells us that we have created a vector of factors with 5 levels (representing 
the unique strings in the vector). Now let’s say we look at the numbers in this 
vector and say we want to treat them as numbers. 
# Example of problems with factor class 

mailto:email@email.com
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strange_example <- as.numeric(example) 
strange_example 

## [1] 1 4 5 3 5 1 2 

This is not at all what we expected. How did “100” become 2? And how did 
“3” become 4? This is because it is giving you the underlying numbers behind 
the factors, not the values of a numeric version of the strings. To do this, we 
would need to do something like this. 
# Convert a factor class to numeric 
expected_example <- as.numeric(as.character(example)) 
expected_example 

## [1] 1 3 5 2 5 1 100 

And this is one of the reasons we will avoid factors for most of our work in 
this book. There are, however, some situations in which factors are useful. For 
example, factors can be used to set an order to character data for graphing. If 
you want to create a factor variable, it is recommended that you also explicitly 
set the order of that variable using the levels = option. In the following 
example, we want low to be associated with 1, medium with 2, and high with 
3. 
# Create a set of values 
values <- c("high", "low", "medium", "low", "low", "high") 

# Create an unordered factor 
unordered_factor <- factor(values) 

# Create ordered factor 
ordered_factor <- factor(values, 

levels = c("low", "medium", "high")) 

# Print them both out for comparison 
unordered_factor 

## [1] high low medium low 
## Levels: high low medium 

ordered_factor 

low high 

## [1] high low medium low 
## Levels: low medium high 

# Show them both as numeric 
as.numeric(unordered_factor) 

low high 

## [1] 1 2 3 2 2 1 
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as.numeric(ordered_factor) 

## [1] 3 1 2 1 1 3 

As you can see above, you can move between data types, to a degree. The 
character “1” can be made numeric using the as.numeric(), or a set of 
strings can be converted into factors using factor(). You should always be 
careful when you move between classes, however, to make sure you do not get 
unexpected results. 

Exercises 

5.1.0.0.1 Easy 

•	 Classify each of the following as numeric or character: 2, “two”, “five”, 
“5”, 100. 

•	 Extending the logic we’ve covered so far, what is the function you would 
use to check whether an object is a matrix? 

5.1.0.0.2 Intermediate 

•	 As shown above, if you try entering "1" + 1, you will get an error. Create 
two variables, one called number_one with a value of 1 and one called 
character_one with a value of "1". How can you make number_one + 
character_one produce the correct answer, 2? 

5.1.0.0.3 Advanced 

•	 Create a vector of values using numeric_vector <- runif(10), which 
gives you 10 random numbers between 0 and 1 from a uniform distri
bution. What happens when you use as.character() on this vector? 
What happens when you use as.factor()? What happens when you use 
as.numeric(as.factor())? Why? 

•	 Describe the differences between factor objects and categorical objects. 

5.2 Data Structures 

There are several main data structures used in R, some of which we have 
already encountered. The first, a vector, we have seen before. A vector is a 
one-dimensional collection of objects and can hold a set of items of any class. 
However, it cannot hold items of different classes. If it receives inputs from 
different classes, it will change these to make them a single class.1 

1In most other programming languages, a vector is called an “array”. Technically, an 
“array” in R is a separate data structure, which can be comprised of vectors of one or more 
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### A vector 
vector1 <- c(1,2,3,4,5) # numeric 
vector1 

## [1] 1 2 3 4 5 

vector2 <- c("jack", "jill", "up the hill") # character 
vector2 

## [1] "jack" "jill" "up the hill" 

vector3 <- c(1,2,"three","four") # num + char --> char 
vector3 

## [1] "1" "2" "three" "four" 

Because they only include items of the same class, we can check the class of 
items in a vector. As you can see below, if you include both character and 
numeric items in a vector, the numeric entries are converted to character 
entries and the vector will be considered of the character class. 
# Class of items in a vector 
class(vector3) 

## [1] "character" 

You can access single items in a vector by placing the index of the item you 
want in brackets. If you wish to access multiple items, you can specify the 
range using a colon (:). This will return the items in the vector from the first 
number to the second, inclusive of both. 
# You can access items in a vector using vectorname[#] 
## e.g., to access the 2nd item in vector1 
vector1[2] 

## [1] 2 

## Access the 3rd item in vector2 
vector2[3] 

## [1] "up the hill" 

## Access multiple items in a vector using `:` 
vector1[2:4] 

## [1] 2 3 4 

You can also find the length of a vector using the length() function. This 

dimensions. An array of one dimension is almost the same as a vector and an array of two 
dimensions is almost the same as a matrix. We will not go into depth on arrays, since they 
are not as commonly encountered as other data structures. 
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can be an especially useful function if, for example, you are looking at vectors 
of differing lengths and want to get the last few items in them. This will be 
important when you try to write functions that might be used on vectors of 
different lengths. The code block below shows an example where we get the 
last three items in “vector 1” by asking for all the items ranging from two 
places before the end of the vector to the end of the vector. 
# Number of items are in the vector using length() 
length(vector1) 

## [1] 5 

# Get last three items of vector1 
vector1[(length(vector1) - 2):length(vector1)] 

## [1] 3 4 5 

A matrix is essentially a collection of one-dimensional vectors arranged into 
two dimensions of rows and columns. As with a vector, a matrix can only 
be of one class. And, while we will not cover it here, R includes a range of 
operations that can be used for matrix (linear) algebra. You can access parts 
of a matrix by placing the numbers of the rows and columns you want into 
brackets, separated by commas. The first item in the brackets is the row 
number, the second is the column number. So, for example, matrix1[2,3] 
requests the entry in the second row and the third column of the matrix. 
matrix1 <- matrix(c(1,2,3,4,5,6,7,8,9), nrow = 3, ncol = 3) 
matrix1 

## [,1] [,2] [,3] 
## [1,] 1 4 7 
## [2,] 2 5 8 
## [3,] 3 6 9 

# You can access items in a matrix using matrixname[#row, #col] 
## e.g., access the value in the 2nd row of the 3rd column 
matrix1[2,3] 

## [1] 8 

## Use `:` to access multiple; and blank to access all items 
matrix1[2:3,] 

## [,1] [,2] [,3] 
## [1,] 2 5 8 
## [2,] 3 6 9 

## Find the dimensions of your matrix using dim() 
dim(matrix1) 
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## [1] 3 3 

## Find the number of rows and columns with nrow() and ncol() 
nrow(matrix1) 

## [1] 3 

ncol(matrix1) 

## [1] 3 

A list is a collection of other data structures (including lists of lists). Unlike 
vectors and matrices, a list can contain any combination of data types. Lists 
are especially useful for programming because they give you a very flexible 
data structure for storing a range of values. In the example below, we show 
you the creation of a list that includes two vectors and a matrix. You can also 
see different methods for accessing the items in a list. One way is to use double 
brackets ([[ ]]). So, for example, list1[[2]] gets the second element in the 
list – in this case it is “vector2”. Another way is to assign names to the list 
items. In the example below, we assign the names using the names() function 
on the left and assigning a vector of names on the right. Once a list has been 
assigned names, you can access the items in the list using a $, where the list 
name is on the left side and the name of the list item you wish to access is on 
the right. 
# Lists are a collection of other data structures 
## They are what most statistical functions return 
list1 <- list(vector1, vector2, matrix1) 

# Items in a list can be accessed using listname[[itemnumber]] 
list1[[2]] 

## [1] "jack" "jill" "up the hill" 

# Name and access items in the list via listname$itemname 
names(list1) <- c("vector1", "vector2", "matrix1") 
list1$vector2 

## [1] "jack" "jill" "up the hill" 

In fact, if you have used R before, you were probably using lists without even 
knowing it. Dataframes and tibbles are both special kinds of lists. Indeed, you 
have seen us use the $ before to access particular variables in a dataframe 
or tibble. Similarly, when you run a regression model, the object that is 
returned is a list with a range of different components like the coefficients, the 
variance-covariance matrix, etc. 

In the example below, we run a regression of y1 on x1 (both random numbers 
from a uniform distribution). When we use the names() function, you can see 
that, as in the list example above, we get names for the items in the resulting 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 108 — #118 �
�

�
�

�
�

108 Essential Programming 

list. One of those items is a vector of coefficients, which we can access using 
the $. We can also access specific items in the vector using the brackets ([ 
]), just like we observed above. Finally, we can use the list in the summary() 
function to see the results in a nice format. If you repeat the process on the 
results of the summary() function, you will see that the output of that function 
is also a list.2 

# Using lists in R without knowing it 
y1 <- runif(100, min = 0, max = 1) 
x1 <- runif(100, min = 10, max = 20) 
regression <- lm(y1 ~ x1) 
names(regression) # list returned by lm() 

## [1] "coefficients" "residuals" "effects" 
## [4] "rank" "fitted.values" "assign" 
## [7] "qr" "df.residual" "xlevels" 
## [10] "call" "terms" "model" 

regression$coefficients # coefficient vector in lm()'s return 

## (Intercept) x1 
## 0.6446093 -0.0094899 

regression$coefficients[2] # Accessing one of the coefficients 

## x1 
## -0.0094899 

summary(regression) # summary == presentation of list elements 

##
 
## Call:
 
## lm(formula = y1 ~ x1)
 
##
 
## Residuals:
 
## Min 1Q Median 3Q Max
 
## -0.53854 -0.22524 0.01843 0.28101 0.52222
 
##
 
## Coefficients:
 
## Estimate Std. Error t value Pr(>|t|)
 
## (Intercept) 0.64461 0.16239 3.97 0.000137 ***
 
## x1 -0.00949 0.01117 -0.85 0.397502
 
## --
## Signif. codes:
 

2Readers should note that here and anywhere in the book where simulations or random 
draws are used, results will be slightly different from our own given the randomness of the 
process, e.g., runif(). 
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## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.2987 on 98 degrees of freedom 
## Multiple R-squared: 0.007315,Adjusted R-squared: -0.002814 
## F-statistic: 0.7222 on 1 and 98 DF, p-value: 0.3975 

As mentioned above, a dataframe (data.frame) is a type of list, but it has 
some special features that are worth mentioning. A dataframe is a list that 
creates rectangular data. When you import a data set from .xls, .csv, .dat, 
or .dta, you get a dataframe. While it looks a lot like a matrix, it allows you 
to access columns by names and combine a range of data types. All of the 
individual columns will be of the same data type, but different columns can 
have different data types. You can also access individual columns using a $, 
much like a list. Within each column, all of the items are of the same class. 
# Dataframes are what we think of as a data set in Stata or SPSS 

## convert a matrix to a dataframe using data.frame() 
dataframe1 <- data.frame(matrix1)
 
names(dataframe1) <- c("y", "x1", "x2") # Name the variables
 

# Access different variables via dataframename$variablename 
dataframe1$y # Returns the variable as a vector 

## [1] 1 2 3 

dataframe1$y[2] 

## [1] 2 

# Use the head() function to see the first few rows 
head(dataframe1) 

## y x1 x2 
## 1 1 4 7 
## 2 2 5 8 
## 3 3 6 9 

The last data structure we will discuss is a relatively new one developed for 
the Tidyverse called a “tibble.” A tibble is very similar to a dataframe, and 
even can be constructed using very similar commands. Tibbles have a few 
advantages in speed with larger datasets and have a nicer print option (no need 
to use head()). Because of this, tibbles are slowly becoming the standard. 
# Create a tibble out of a matrix 
tibble1 <- as_data_frame(dataframe1) 
tibble2 <- as_tibble(dataframe1) 

# Print the data 
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tibble1 
tibble2 

Exercises 

5.2.0.0.1 Easy 

•	 Using dataframe1, which you created in this section, display the first 10 
rows and 10 columns. How do you do this? 

•	 When you type in tibble2 from above, you will get a printout of the 
data structure. What do the letters (e.g. STR) under the column names 
stand for? Look up what the different column names can be and what 
they mean. 

5.2.0.0.2 Intermediate 

•	 Create two vectors, v1 <- c(1, 2, 3) and v2 <- c(4, 5, 6). What 
happens when you use c(v1, v2)? Why? What about rbind(v1, v2) or 
cbind(v1, v2)? 

5.2.0.0.3 Advanced 

•	 Print the structure of tibble1 and tibble2 previously created. Describe 
the differences in these types of objects in substantive terms. And further, 
why might one use a tibble instead of a data frame? 

5.3 Operators 

Programming in R is built on expressions, operators, and characters. And 
further, when using R, we are often concerned with accomplishing complex 
tasks (or even simple ones) most efficiently and quickly. This implies some 
degree of iterating over a series of simpler tasks. While our goal is to encourage 
creation of user-defined functions and loops whenever possible, at a minimum, 
this chapter is concerned with getting you comfortable with the general syntax 
that is central to programming in R. 

First, consider relational operators. These are symbols, or “operators” that 
specify relationships between objects. And recall that R is built on “object
oriented programming”, where values are stored in objects which can be 
manipulated and combined a variety of ways downstream. The main relational 
operators are: 

1. < less than 
2. > greater than 
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3. <= less than or equal to 
4. >= greater than or equal to 
5. == equal (identical) to 
6. != not equal to 

Relational operators return an object of class “logical”, meaning it has a value 
of either TRUE or FALSE. Put in terms of an example, the first line of the code 
block below asks R whether 5 is greater than 4. R returns TRUE. The second 
line asks if 5 is less than or equal to 4. R returns FALSE. The third line shows 
that the result is of class “logical.” 

5 > 4 

## [1] TRUE 

5 <= 4 

## [1] FALSE 

class(5 > 4) 

## [1] "logical" 

Similar to relational operators are logical operators. These provide the ground 
rules for combining and pairing objects in a variety of manners. Consider the 
most common logical operators: 

1. ! not 
2. & and 
3. | or 

Note that the ! operator appears in both lists of operators. This is because, 
on its own it just means “not,” which is a logical expression. Combined with 
other operators, ! can add its value, so to speak, to others (e.g., not equal to 
is !=). 

These logical operators can be used to produce complex conditions. For example, 
the first line of the code block below tests whether 5 is greater than 3 AND 
whether 5 is greater than 6. This returns a value of FALSE because one of the 
two conditions is false. The second line tests whether five is greater than 3 
OR whether 5 is greater than 6. This evaluates to TRUE because one of the 
two conditions is true. The third line uses the ! operator to reverse the second 
line. This evaluates to FALSE, reversing the result of the second line. 
5 > 3 & 5 > 6 

## [1] FALSE 

5 > 3 | 5 > 6 
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## [1] TRUE 

!(5 > 3 | 5 > 6) 

## [1] FALSE 

The last line of the above block also shows an important point about the use 
of () with logical operators. Just like mathematical equations, the statement 
inside the parentheses is evaluated first, followed by the statement outside the 
parentheses. 

Exercises 

5.3.0.0.1 Easy 

•	 What does the following statement evaluate to – !((5 > 3 & 5 > 6) | 
5 > 6)? Why? 

5.3.0.0.2 Intermediate 

•	 Think about the use of == compared to = seen elsewhere in the book. 
Apply this logic to the ! operator, and offer a definition of !! (read: 
“double bang” or “bang bang”). 

5.3.0.0.3 Advanced 

•	 As we have discussed previously, objects that take other objects as an 
input and then output another object are called functions. Demonstrate 
that relational and logical operators are also functions. Try \>‘(5,3)‘. 
What does this produce? Can you produce the same statement as in #1 
above using the function form? 

5.4 Conditional Logic 

if and if else are essential building blocks to programming in R, from testing 
certain values or expressions to writing packages and big chunks of code with 
conditional statements. They are very powerful tools in programming, and 
similar versions exist in all major programming languages. Specifically, the 
syntax starts with if, and then a value to be tested is supplied in parentheses, 
followed by braces, which include the statement to be expressed. In if else 
cases, the user can evaluate a statement under different constraints (e.g., “If 
value X is Y, then do Z. Otherwise (”else“), do A.”). 

Let’s begin with a simple case of an if statement: evaluating whether a 
supplied number is positive, and printing as much if it is. 
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x	 <- 5 

if (x > 0) { 
print("Positive number") 

} 

## [1] "Positive number"
 

Next, let’s take a simple case for if else. In this case, we check if a number is
 
greater than zero. If so, we print Positive, else we print Negative or zero.
 
x <- -5
 

if (x > 0) { 
print("Positive") 

} else { 
print("Negative or zero") 

} 

## [1] "Negative or zero"
 

Note, we are creating and defining an object x, which is the value being
 
evaluated. We can redefine x, and test it again.
 
x <- 5
 

if (x > 0) { 
print("Positive") 

} else { 
print("Negative or zero") 

} 

## [1] "Positive" 

Though seemingly simple, if and if else are core to understanding and 
applying programming in R. 

Exercises 

5.4.0.0.1 Easy 

•	 Create your own spelling test. Check if a variable contains the word 
“antialestablishtarianism” and have it print “correct” if it is spelled correctly 
or “incorrect” if it is spelled incorrectly. Try out different spellings for 
your variable and see what it produces. 
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5.5 User-Defined Functions 

Building on (and soon to layer) the logic of conditional statements using if and 
if else, we now shift to user-defined functions. These are similarly powerful 
programming tools that drastically streamline the programming (and research) 
process. They allow users to do a ton of tasks, like automating rote, redundant 
code and calculations. But the value of functions is mostly that they allow 
for consistent calculation and for simple usage in future applications. They 
operate on the same principle of preferring sum(2,2,2,2) in base R to the 
more laborious (2 + 2 + 2 + 2). Though the tradeoff may seem minimal 
with the simple example, the value of writing functions to streamline code and 
calculations will quickly become apparent. 

As before, we begin with a simple example to get the intuition: squaring a 
value. Rather than typing: (3ˆ2), (4ˆ2), (5ˆ2), and so on, a function would 
streamline this process significantly, prevent the likelihood of messing up the 
syntax if approached line by line, and also allow the user to come back to 
access the function in the future (as well as update for needed complexity as 
we will see below). The syntax is defining a new object, and then specifying 
the function with an argument supplied in parentheses. Then, within braces, 
there is a statement to be evaluated, and the result is returned as output. 
With that, let’s make this squared value a function. 
sq <- function(x) { 

sqn <- x^2 
return(sqn) 

} 

With the function defined by the user (hence the name), we can call the 
function to see if it worked properly. 
sq(2) 

## [1] 4 

This is good news! Our function worked as expected. Feel free to try squaring 
any value to verify (or have fun). Now, let’s complicate our example just a 
little bit, allowing for greater flexibility. In the following case, we are updating 
the function to allow for x and y values to be defined. Thus, instead of just 
squaring our supplied value, we are now allowing for raising any value, x, to 
any power, y. As such, we change the name of the original function from sq to 
exp. 
exp <- function(x, y) { 

expn <- x^y 
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return(expn) 
} 

With the function defined, we can now call it to see if it worked. For a simple 
case, raise 2 to the power of 4. 
exp(2,4) 

## [1] 16 

Now, here is another complication, but allowing for a much more descriptive 
(and thus useful) function. In the next case, we are printing a descriptive 
output using both print() and paste(), the latter of which allows us to 
“paste” words along with our output, which is especially useful when writing 
R packages. 
exp <- function(x, y) { 

expn <- x^y 
print(paste(x,"raised to the power of", y, "is", expn)) 
return(expn) # optional 

} 

And further, we can also assign “default values” in our functions, which are 
values you don’t have to specify, but could change if you want. So, in the 
example below, if the user does not define a specific value for y, it will, by 
default, be assigned a value of 2. 

Note, we are continuing to redefine our exp function from earlier. If you wanted 
to leave the original intact, you would simply need to change the object name 
to the left of the assignment operator, <-. 
exp <- function(x, y = 2) { 

expn <- x^y 
print(paste(x,"raised to the power of", y, "is", expn)) 

} 

From here, we can call a few versions of the function to see everything come 
together: 
exp(3) 

## [1] "3 raised to the power of 2 is 9" 

As expected, when only one value – the x value – is defined, the default value 
for y is used and the function squares the provided value. 

Or. . . 
exp(3,1) 
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## [1] "3 raised to the power of 1 is 3" 

In this case, we have defined both an x and y value, so the default squaring is 
overridden and y is assigned a value of 1. 

Now, let’s build on what we have learned so far and create a new function that 
actually does something of more value. Specifically, we can write a function 
that calculates temperature in Celsius, given a supplied Fahrenheit value. 
celsius <- function(f) { 

c	 <- ((f - 32) * 5) / 9 
return(c) 

} 

With the function defined, we can either supply individual Fahrenheit values, 
or a vector of Fahrenheit values; the function can handle both. Let’s store a 
vector of Fahrenheit values in the object fahrenheit and test out the function 
(note: if we supply a vector of values, we should get a vector of values returned 
as output). 
fahrenheit <- c(60, 65, 70, 75, 80, 85, 90, 95, 100) 

celsius(fahrenheit) 

## [1] 15.55556 18.33333 21.11111 23.88889 26.66667 29.44444 
## [7] 32.22222 35.00000 37.77778 

Excellent! The function worked as expected with quick calculation of a vector 
of Fahrenheit values to Celsius via our celsius user-defined function. 

Exercises 

5.5.0.0.1 Easy 

•	 Take one of the number comparison if else statements from the previous 
section and make it a function. Make sure you understand how this works. 

5.5.0.0.2 Intermediate 

•	 Write a function to convert pounds (lbs) to kilograms (kgs) (note: 1 lb ≈ 
0.45 kg). 

5.5.0.0.3 Advanced 

•	 Write a function and place it within another function. This can evaluate 
any expression you’d like (e.g., nesting power rules). More broadly, discuss 
the benefits of such a task. Why might you do it? When would it not 
make sense to do so? 
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5.5.1 Layering Statements 

In addition to learning each of these parts, it is important to note that the power 
of these programming building blocks is that they can be layered. Notably, 
we can embed conditional logic previously discussed (if and if else) into 
user-defined functions to make them even more powerful, descriptive, and 
ultimately more useful. 
# First, write the function 
pnz <- function(x) { 

if (x > 0) { 
n <- "Positive" 

} 
else if (x < 0) { 

n <- "Negative" 
} 
else { 

n <- "Zero" 
} 
return(n) 

} 

# Now call it for a variety of values 
pnz(4) 

## [1] "Positive" 

pnz(-3) 

## [1] "Negative" 

pnz(0) 

## [1] "Zero" 

Note that in the combination above, we combined if and else to have an else 
if statement, which is a programmatic way of layering multiple statements in 
a single function. This is somewhat similar to the layering of the ifelse() 
function we used for recoding variables two chapters ago. Indeed, the logic of 
if and else presented here is similar, although the programming functions 
are more flexible in their use. 

Finally, de-bugging is a key piece of writing code in R, especially when creating 
R packages. Specifically, we can tell a function to stop if something in the 
code is wrong/missing, or we can also print warning messages if something is 
where it should not be, but we don’t want to stop the function entirely and 
throw an error message. 
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Let’s put all of these pieces together that we have learned so far and replicate 
a function to calculate the Herfindahl-Hirschman Index (HHI), which is a 
measure of market concentration (often used as a proxy for competition). This 
is from an R package hhi, and serves as a useful case study applying all of 
this logic (Waggoner, 2018b). The package takes a dataframe as its input, x, 
along with a string, s, that identifies the variable for which HHI is calculated. 
# Calculate Herfindahl-Hirschman Index Scores 
# 
# usage: hhi(x, "s") 
# x Name of the data frame 
# s Vector corresponding with market shares 
# return: hhi A measure of market concentration 
# Note: Vector of "share" values == total share of firms 
# Note: 0 = perfect competition; 10,000 = perfect monopoly 

hhi <- function(x, s){ 
if (!is.data.frame(x)) { 

stop('"x" must be data frame\n', 
'You have provided an object of class: ', class(x)[1]) 

} 
shares <- try(sum(x[ ,s])) 
if (shares < 100 | shares > 100) { 

warning('shares, "s", do not sum to 100')
 
}
 
d <- x[ ,s]
 
if (!is.numeric(d)) {
 

stop('"s" must be numeric vector\n', 
'You have provided an object of class: ', class(d)[1]) 

} 
if (any(d < 0)) { 

stop('vector "s" must contain only positive values')
 
}
 
hhi <- sum(d^2)
 

return(hhi) 
} 

With the function defined, as well as parameters defined, we can create some 
fake “firm” data as well as the share of the market each retains, and then 
calculate the competitiveness (or concentration) of this hypothetical market. 
a <- c(1,2,3,4) # firm id 
b <- c(20,30,40,10) # market share of each firm (totaling 100%) 
x <- data.frame(a,b) # create data frame 
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hhi(x, "b") 

## [1] 3000 

5.6 Making Your Code Modular 

Once you have created a function, you can start to make your code “modular.” 
This means that you can start to split your code between several files. Why 
would you want to do this? 

As you conduct more and more actions during your analysis, you will find 
that your scripts may become quite long. We have had scripts that have run 
into thousands of lines. Think about it. By the time you have made all of the 
changes you want to a data set, done some exploration, finished your main 
analyses, and conducted some robustness checks, you might end up with a 
very long list of commands and it might be difficult to find and modify specific 
parts. 

Also, with what you have learned in this chapter, you might want to use your 
functions multiple times. Take the function for calculating HHI in the last 
section. This may be something you will want to do in several different projects, 
and it can become messy to paste it into every script you write in its entirety. 

So, instead of putting everything into a single file, you can save them as separate 
files (or “modules”) and load them into your code. For the hhi function you 
created in the last section, you can put it into a script file and save it as hhi.r 
in your working directory. Once you have done this, you can load the function 
into another project by simply typing source("hhi.r"). You do not have to 
limit yourself to one function per module. Modules can contain any number 
of functions. So you could make a collection of calculations you find yourself 
using often and load all of those functions using this method. 

If this looks a little familiar, it is basically the same thing you have been 
doing when you install and load a package. Packages are simply collections of 
functions that have some additional attributes (like the help documentation) 
that make them easier to use. At some point, you might want to turn some of 
your modules into packages. There are many resources online to help you with 
this, as well as Hadley Wickham’s book on the subject. 

In addition to saving and reusing functions, you can place entire parts of your 
analysis in different modules to make it easier to keep track of your analysis. 
If, for example, you have a hundred lines of code to take some raw data and 
convert it into the format you want, this can also be saved as a function and 
saved as a separate module. 
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By saving parts of your code as modules, you will make it easier to change 
and maintain your code. 

Exercises 

5.6.0.0.1 Easy 

•	 Try this out. Create a module called hhi.r. Open a new script and load 
the module. Then try out the hhi() function in that new script. 

5.6.0.0.2 Intermediate 

•	 Let’s say you want to have a function you can use to convert a number of 
imperial measures to their equivalent metric measures. Create a function 
called convert that takes two inputs – a numeric value and the name of 
the type of measure (“foot”, “yard”, and “mile”). Write the function such 
that if a value in feet is entered, it will convert to centimeters (1 foot ≈ 
30.48 centimeters); if a value in yards is entered, it will convert to meters 
(1 yard ≈ 0.91 meters), and if a value in miles is entered, it will convert 
to kilometers (1 mile ≈ 1.61 kilometers). 

5.7 Loops 

Let’s transition to for loops, which are a close relative of user-defined functions. 
Indeed, these are often used together, and can even be used to do similar 
things, with a few tweaks. We will see this in a moment. But let’s start at the 
beginning. for loops allow for iterating some calculation or function over a 
bunch of different observations. So instead of typing out the same calculation 
line by line, while updating the main quantity of interest, you can just tell a 
for loop to do it for you (pun not intended, but not regretted). The syntax for 
for loops is similar to functions, where they begin with “for” and then start 
with some value in a sequence in parentheses. Then, within the braces, there 
is similarly a statement to be evaluated. Let’s see how this works in practice 
by revisiting our temperature example. 
fahrenheit <- c(60, 65, 70, 75, 80, 85, 90, 95, 100) 

for (i in 1:length(fahrenheit)) { 
print(((fahrenheit[i] - 32) * 5) / 9) 

} 

## [1] 15.55556 
## [1] 18.33333 
## [1] 21.11111 
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## [1] 23.88889 
## [1] 26.66667 
## [1] 29.44444 
## [1] 32.22222 
## [1] 35 
## [1] 37.77778 

The same logic applies here, where we tell the loop to start at the first value 
(1) for each observation, i, in the vector of values in the object fahrenheit. 
And calculate the temperature conversion for each value in the fahrenheit 
vector. Finally, print the results for each supplied value. In sum, for loops are 
quite powerful tools that will significantly streamline your programming and 
make you think more efficiently in the process (e.g., “Rather than calculating 
values incrementally, how could I automate the process based on foundational 
logic/rules?”). 

With your knowledge of if else and for statements, you now know the foun
dational blocks of programming in R (or, really, any programming language). 
There are other programming structures, but conditional logic (if else) and 
looping (for) are the foundational components of programming. 

5.7.1 Using a Loop to Test the Power of an Experiment 

A common task for those conducting social science experiments is the calcu
lation of the “power” of an experiment. In any experiment, we need to have 
enough participants to make sure we can detect a statistically significant effect 
(if any), but we do not want to make our sample size unnecessarily large, since 
this would waste time and money. Power tests are also a standard part of 
pre-registration, an increasingly common part of social science experiments. 

One way to calculate the power of an experiment is to simulate what our 
data will look like. This involves drawing a sample from a particular (usually 
normal) distribution, creating a simulated treatment and control group, and 
running a statistical test on it. The proportion of the time that the test detects 
a statistically significant difference is the power of the test. 

The code block below shows an adaptation of an example developed by the 
Evidence in Governance and Politics (EGAP) for those conducting experiments. 
It involves drawing a sample of 500 people from a normal distribution with a 
mean of 0 and a standard deviation of 1.3 It then assigns 250 of the people to 
a treatment group that is, on average, 0.2 higher (i.e., the treatment effect is 
2/10 of a standard deviation). It uses a t-test to test the statistical significance 
and records whether it was statistically significant at the 0.05 level (p < 0.05). 

3Remember from your introduction to statistics that any normal distribution can be 
standardized to have a mean of 0 and a standard deviation of 1 by subtracting the mean 
and dividing by the standard deviation. 



�
�

“intro_to_R” — 2021/1/11 — 19:01 — page 122 — #132 �
�

�
�

�
�

122 Essential Programming 

Note, in the chunk below, if assigned to the treatment group (assignment == 
1), the outcome is Y1. If the observation is assigned to the control group (1 
assignment == 1), the outcome is Y0. 
N <- 500 # Number of participants in the study 
alpha <- 0.05 # Level of significance set to p < 0.05 
simulations <- 100 # The number of simulations we want 
treatment_effect <- 0.2 # Expected effect of the experiment 

experiment_result <- c() # Create empty vector for results 

# Loop 100 times 
for (i in 1:simulations) { 

Y0 <- rnorm(n = N, mean = 0, sd = 1) # random vals from normal 
Y1 <- Y0 + treatment_effect # exp outcome of treat 
assignment <- rbinom(n = N, size = 1, prob = .5) # treat/cont 
outcomes <- (Y0 * (1 - assignment)) + (Y1 * assignment) 
pvalue <- t.test(outcomes ~ assignment)$p.value # t-test for p 
significant <- ifelse(pvalue <= alpha, 1, 0) 
experiment_result <- c(experiment_result, significant) 

} 

mean(experiment_result) # Print the power of the experiment 

## [1] 0.7 

As you can see, the power of the test is about 0.6. Usually, for an experiment, 
we want to have at least 0.8 power. This suggests that we should add more 
cases to our experiment. 

5.7.2 Using Loops to Explore Distributions 

Suppose we drew a random sample of 50 respondents’ self-reported political 
ideology on a 7-point scale, where 1 was extremely liberal and 7 was extremely 
conservative. The mean of that sample was 3.32, suggesting the average person 
in this sample sees themselves as generally moderate, or in the middle of the 
distribution of political ideology. Here is the code setting this up: 
sample_ideology <- c(3, 1, 2, 4, 4, 6, 1, 3, 2, 6, 

1, 7, 3, 1, 4, 3, 4, 4, 1, 6, 
7, 5, 7, 1, 1, 3, 2, 4, 1, 7, 
1, 2, 1, 4, 6, 3, 2, 3, 1, 4, 
1, 6, 3, 4, 5, 4, 1, 7, 2, 2) 

mean(sample_ideology) 

## [1] 3.32 
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Now, suppose we wanted to simulate the reported sample ideology to see 
whether this random sample was reflective of the broader American population. 
However, we are not exactly sure how many times to do this to accurately 
reflect the population of interest. To get traction on this question, the central 
limit theorem and law of large numbers can help us out. To see the shape 
distribution of many samples (central limit theorem) and how the location of 
the distributions change (law of large numbers), we can use a series of for 
loops, and plot the different distributions to see when and where (and whether) 
the samples converge on the underlying population. 

for loops allow for iterating some calculation or function over many different 
observations. This is a simulation. The syntax of for loops is similar to 
functions, where they begin with “for” and then start with some value in a 
sequence in parentheses. Then, within the braces, there is a statement to be 
evaluated. 

For each chunk below, we start by creating an empty vector in which to store 
our simulated values. We then specify the loop, to sample with replacement, 
based on the initially-drawn sample (sample_ideology), and then take the 
mean. We then plot each simulation and compare side by side via another 
tidy-friendly package covered in the previous visualization chapter, patchwork. 
The final result is in Figure 5.1. 
# N = 5 
sm1 <- rep(NA, 5) 

for (i in 1:5) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm1[i] <- mean(samp) 

} 

# N = 20 
sm2 <- rep(NA, 20) 

for (i in 1:20) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm2[i] <- mean(samp) 

} 

# N = 50 
sm3 <- rep(NA, 50) 

for (i in 1:50) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm3[i] <- mean(samp) 

} 
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# N = 100 
sm4 <- rep(NA, 100) 

for (i in 1:100) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm4[i] <- mean(samp) 

} 

# N = 500 
sm5 <- rep(NA, 500) 

for (i in 1:500) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm5[i] <- mean(samp) 

} 

# N = 1500 
sm6 <- rep(NA, 1500) 

for (i in 1:1500) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm6[i] <- mean(samp) 

} 

# N = 3500 
sm7 <- rep(NA, 3500) 

for (i in 1:3500) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm7[i] <- mean(samp) 

} 

# N = 7000 
sm8 <- rep(NA, 7000) 

for (i in 1:7000) { 
samp <- sample(sample_ideology, 30, replace = TRUE) 
sm8[i] <- mean(samp) 

} 

# Now plot each simulation 
library(ggplot2) 
library(patchwork) 
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p1 <- quickplot(sm1, geom="histogram", main="N=5", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p2 <- quickplot(sm2, geom="histogram", main="N=20", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p3 <- quickplot(sm3, geom="histogram", main="N=50", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p4 <- quickplot(sm4, geom="histogram", main="N=100", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p5 <- quickplot(sm5, geom="histogram", main="N=500", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p6 <- quickplot(sm6, geom="histogram", main="N=1500", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p7 <- quickplot(sm7, geom="histogram", main="N=3500", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

p8 <- quickplot(sm8, geom="histogram", main="N=7000", bins=30) + 
theme_minimal() + 
geom_vline(xintercept=3.32, linetype="dashed", color="red") 

# piece ggplot objects together with the patchwork package 
p1 + 

p2 + 
p3 + 
p4 + 
p5 + 
p6 + 
p7 + 
p8 

Note that, as expected by the central limit theorem and the law of large 
numbers, as the sample size grows larger, the shape becomes more nor
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FIGURE 5.1 
Simulation Results 

mally/Gaussian distributed (via, central limit theorem) and the location 
of the distribution centers over the sample mean ideology of 3.32 (via, law of 
large numbers). 

Indeed, this simple simulation shows that if we drew a large enough sample 
based on the original small sample, the shape and location of the distribution 
would indeed center over the “true population” value, suggesting our small 
initial sample was reflective of the true population. This is the idea behind a 
statistical technique generically referred to as “randomization distributions 
for statistical inference,” which helps quantify evidence against some null 
hypothesis. Though the scope of this technique is beyond what we are interested 
in in this book, it remains a useful demonstration of a for loop for simulating 
these different sample sizes, but based on the original parameter values, which 
is a very common social science task. 

Exercises 

5.7.2.0.1 Easy 

• Write a function to calculate body mass index (BMI) and store it in 
wt object, bmi. Note: the formula is bmi = h2 , where wt is a person’s weight 

(kilograms), and h2 is a person’s height squared (meters). 
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•	 Repeat the previous exercise, but use a for loop instead. 
•	 Pass the following vectors, weight and height, to your function (from #1) 

and your loop (#2): weight <- c(70, 75, 80, 60, 90) and height <
c(1.3, 2, 2.1, 1, 1.7). Do you see the same values returned? Why or 
why not? 

5.7.2.0.2 Intermediate 

• What are the two major types of operators and how do they differ? 

5.7.2.0.3 Advanced 

•	 Experiment with the experimental power loop above. How many cases 
should you have in order to get at least 80% power? What about if the 
treatment effect is 0.4? 

•	 Try to nest the above loop inside another loop that tests the power with 
sample sizes of 100, 300, 500, 700, and 900. (Hint: you will have it loop 
over a vector c(100, 300, 500, 700, 900)). 

5.7.3 Nesting Loops and Extreme Bounds Analysis (EBA) 

As with conditional logic, we can nest loops to iterate over multiple vectors 
of values, or conduct several calculations. For example, the code block below 
shows a simple example of one loop nested in another to get all of the possible 
combinations of letters from two vectors. 
vector1 <- c("a", "b", "c", "d") 
vector2 <- c("a", "b", "c", "d") 

for (i in 1:length(vector1)) { 
for (j in 1:length(vector2)) { 

print(paste("Value of vector1 is ", vector1[i], 
" and of vector2 is ", vector2[j]) 

) 
} 

} 

## [1] "Value of vector1 is a and of vector2 is a" 
## [1] "Value of vector1 is a and of vector2 is b" 
## [1] "Value of vector1 is a and of vector2 is c" 
## [1] "Value of vector1 is a and of vector2 is d" 
## [1] "Value of vector1 is b and of vector2 is a" 
## [1] "Value of vector1 is b and of vector2 is b" 
## [1] "Value of vector1 is b and of vector2 is c" 
## [1] "Value of vector1 is b and of vector2 is d" 
## [1] "Value of vector1 is c and of vector2 is a" 
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## [1] "Value of vector1 is c and of vector2 is b" 
## [1] "Value of vector1 is c and of vector2 is c" 
## [1] "Value of vector1 is c and of vector2 is d" 
## [1] "Value of vector1 is d and of vector2 is a" 
## [1] "Value of vector1 is d and of vector2 is b" 
## [1] "Value of vector1 is d and of vector2 is c" 
## [1] "Value of vector1 is d and of vector2 is d" 

This very simple nesting of loops to get all the combinations of items in several 
sets can be quite useful. To give just one example in applied research, it can 
be used in programming a technique called Extreme Bounds Analysis (EBA). 
EBA was a proposed technique for dealing with the issue of uncertainty in 
the specification of statistical models (Leamer, 1983, Leamer (2010)). The 
argument was that most scholarly papers only report a small subset of the 
statistical models they run, and that results (due to collinearity, missing data, 
or a number of other issues) may be different, depending on the variables 
included in the model. The proposal was for scholars to report the range of 
outcomes from every combination of three variables. 

EBA has been used by a number of studies (Levine and Renelt, 1992, Xavier 
et al. (1997), Kennedy and Tiede (2013)), but has also been criticized by 
scholars who view it as atheoretical (McAleer et al., 1985). For our purposes, 
we care less about whether EBA is a desirable approach – it gives us a good 
example of nested loops.4 

The chunks of code below show the code for a very simple EBA analysis of 
the ANES data for support of then-candidate Trump. First, we load the data – 
setting our working directory, loading the needed libraries, loading the data, 
and manipulating it into the form we want. We are looking at nine different 
features we think might affect support of Trump, meaning there are 84 different 
combinations of three features possible. 
# Load needed libraries 
library(tidyverse) 
library(here) 

# Set your working directory 
setwd(choose.dir()) 

# Load the data via read_csv() and here() 
NESdta <- read_csv(here("data", "anes_pilot_2016.csv")) 

## Parsed with column specification:
 
## cols(
 
## .default = col_double(),
 

4There is actually an R package now for EBA called Extremebounds that became available 
in 2016 (Hlavac, 2016). 
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## version = col_character(),
 
## pid2d = col_character(),
 
## pid2r = col_character(),
 
## other10_open = col_character(),
 
## race_other = col_character(),
 
## employ_t = col_character(),
 
## religpew_t = col_character(),
 
## disc_fed_disc_police_rnd = col_character(),
 
## white_sections_rnd = col_character(),
 
## lazy_violent_rnd = col_character(),
 
## FEELING_THERMOMETER_rnd = col_character(),
 
## meet_rnd = col_character(),
 
## givefut_rnd = col_character(),
 
## info_rnd = col_character(),
 
## ISSUES_OC14_rnd = col_character(),
 
## disc_selfsex_rnd = col_character(),
 
## lazy_col_rnd = col_character(),
 
## lazy_row_rnd = col_character(),
 
## violent_col_rnd = col_character(),
 
## violent_row_rnd = col_character()
 
## # ... with 9 more columns
 
## )
 

## See spec(...) for full column specifications.
 

# Data manipulation for a simple analysis 
NESdta_small <- NESdta %>% 

mutate(fttrump = ifelse(fttrump > 100, NA, fttrump), 
age = 2016 - birthyr, 
white = ifelse(race == 1, 1, 0), 
faminc = ifelse(faminc > 90, NA, faminc), 
republican = ifelse(pid3 == 2, 1, 0), 
religiosity = ifelse(pew_churatd>6, NA, 7-pew_churatd), 
news_interest = ifelse(newsint > 6, NA, 5 - newsint), 
conservativism = ifelse(ideo5 > 5, NA, ideo5), 
female = ifelse(gender == 2, 1, 0)) %>% 

dplyr::select(fttrump, age, white, faminc, republican, 
religiosity, news_interest, conservativism, 
educ, female) %>% 

dplyr::filter(!is.na(fttrump)) 

NESdta_small 

## # A tibble: 1,197 x 10 
## fttrump age white faminc republican religiosity 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
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## 1 1 56 1 4 0 1 
## 2 28 59 1 8 0 3 
## 3 100 53 1 1 1 1 
## 4 0 36 1 12 0 1 
## 5 13 42 1 10 0 5 
## 6 61 58 1 7 0 5 
## 7 5 38 1 NA 0 5 
## 8 85 65 1 10 1 1 
## 9 70 43 1 8 0 5 
## 10 5 80 1 10 0 6 
## # ... with 1,187 more rows, and 4 more variables: 
## # news_interest <dbl>, conservativism <dbl>, educ <dbl>, 
## # female <dbl> 

In the next chunk, we create our EBA function, eba(). The function takes as 
its input a data set, where the first column contains our dependent variable 
and the rest of the columns are the independent variables. There are three 
nested loops. The first (i), goes through the independent variables, starting 
with the second column of the data and moving to the third-from-last column. 
The second (j) goes from the third column to the next-to-last column. The 
third (k) goes from the fourth column to the last column. By doing this, we 
get all of the combinations of features. The first time through, it will get 
independent variables 1, 2, and 3. The second, it will get variables 1, 2, and 4. 
It will go through all the options for k, then will move to the second item in j 
(1, 3, 4; 1, 3, 5; etc.). For each of these, you can see that it runs a regression 
model for the three selected variables and saves the coefficients. The results 
are stored in a tibble, fullresults, and are returned by the function. 
# Create a function that checks all combinations of 3 variables 
eba <- function(dataset) { 

tempdata <- as.matrix(dataset) 
fullresults <- c() 
for (i in 2:(ncol(tempdata) - 2)) { 

for (j in (i + 1):(ncol(tempdata) - 1)) { 
for (k in (j + 1):ncol(tempdata)) { 

coefficients <- c(rep(NA, ncol(tempdata) - 1)) 
tempModel <- lm(tempdata[,1] ~ tempdata[,i] + 

tempdata[,j] + tempdata[,k] 
) 

coefficients[(i - 1)] <- tempModel$coefficients[2] 
coefficients[(j - 1)] <- tempModel$coefficients[3] 
coefficients[(k - 1)] <- tempModel$coefficients[4] 
fullresults <- rbind(fullresults, coefficients) 

} 
} 

} 
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fullresults <- as_tibble(data.frame(fullresults)) 
names(fullresults) <- names(dataset)[2:length(names(dataset))] 
return(fullresults) 

} 

We can now call our eba() function using the ANES data we loaded previously. 
We pass the data set to the function and it returns the results. We can see the 
distribution for the variables white and faminc (family income) as examples. 
trumpEBA <- eba(NESdta_small) 
trumpEBA 

## # A tibble: 84 x 9 
## age white faminc republican religiosity news_interest 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 0.341 14.3 -0.0619 NA NA NA 
## 2 0.259 8.43 NA 32.4 NA NA 
## 3 0.303 14.5 NA NA 3.32 NA 
## 4 0.362 13.0 NA NA NA -2.18 
## 5 0.195 8.62 NA NA NA NA 
## 6 0.305 13.7 NA NA NA NA 
## 7 0.320 13.1 NA NA NA NA 
## 8 0.321 NA -0.271 35.5 NA NA 
## 9 0.395 NA -0.0607 NA 2.89 NA 
## 10 0.443 NA 0.247 NA NA -2.36 
## # ... with 74 more rows, and 3 more variables: 
## # conservativism <dbl>, educ <dbl>, female <dbl> 

summary(trumpEBA$white) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 
## 7.134 9.799 13.078 12.582 15.551 17.898 56 

summary(trumpEBA$faminc) 

## Min. 1st Qu. Median Mean 3rd Qu. Max. 
## -0.35179 -0.11555 0.01588 0.02031 0.15296 0.41478 
## NA's 
## 56 

Success! The trumpEBA tibble includes 84 observations, which is the number of 
feature combinations we expected. The results show clearly that white respon
dents report higher favorability of Trump, regardless of the other variables 
included as controls. Family income, however, has a positive effect on Trump’s 
approval, on average, but appears more sensitive to model specification, with 
some specifications suggesting the opposite relationship. 
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Again, the point here is not about EBA as an approach, nor about the specifics 
of what increases support for then-candidate Trump. Rather, we are interested 
in showing how these nested loops can direct the computer to execute tasks 
quickly, which would otherwise take a long time to perform manually. 

5.8 Mapping with purrr 

The final concept we cover bridges programming and modeling. We are in
terested here in covering the map() family of functions, which is essentially 
a blend of loops and user-defined functions. Mapping functions offer users 
the ability to map or iteratively pass functions to values stored in arrays or 
vectors. For those familiar with the base R apply family of functions, mapping 
functions are essentially Tidyverse-flavored updates. The map family is housed 
in the purrr package for functional programming and is loaded when the 
tidyverse library is loaded. 

We will use the smaller subset of the ANES data set created for the EBA exam
ple above. This time, we will include only the female, fttrump, and birthyr 
variables. We will then use a some tools learned in the Data Management and 
Manipulation chapter to mutate() fttrump (turning strange values to NAs) 
and female (recoding the levels of gender), and conclude by filtering out NAs, 
in line with the best practice of keeping data tidy. 
NESdta_small <- NESdta %>% 

dplyr::select(gender, fttrump, birthyr) %>% 
mutate(fttrump = replace(fttrump, fttrump > 100, NA), 

female = ifelse(gender == 2, 1, 0)) %>% 
dplyr::filter(!is.na(fttrump)) 

NESdta_small <- NESdta_small %>% 
dplyr::select(-gender) 

# inspect a small random sample to make sure things look good 
sample_n(NESdta_small, 5) 

## # A tibble: 5 x 3 
## fttrump birthyr female 
## <dbl> <dbl> <dbl> 
## 1 68 1957 1 
## 2 100 1982 1 
## 3 91 1951 1 
## 4 0 1940 1 
## 5 22 1957 1 
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With our small data set built, we now use split() from base R to split our 
subsample into two groups: female (1) and not female (0). We store this in 
the new object fems. This exercise will demonstrate the simplest use of map(). 
The general syntax is to map a selected function (second argument) to the data 
object (first argument). So, here, we will pass the nrow() base R function and 
summary() base R function to the fems object. The output will be the number 
of observations (rows) associated with male and female respondents, and then 
a feature-level summary of observations in each level of fems, respectively. 
# first split into groups using split from base R 
fems <- split(NESdta_small, NESdta_small$female) 

# Explore respondents in each group 
map(fems, nrow) 

## $`0` 
## [1] 570 
## 
## $`1` 
## [1] 627 

# Now, feature level summary of each group 
map(fems, summary) 

## $`0` 
## fttrump birthyr female 
## Min. : 0.0 Min. :1921 Min. :0 
## 1st Qu.: 3.0 1st Qu.:1954 1st Qu.:0 
## Median : 39.0 Median :1970 Median :0 
## Mean : 41.1 Mean :1968 Mean :0 
## 3rd Qu.: 75.0 3rd Qu.:1982 3rd Qu.:0 
## Max. :100.0 Max. :1997 Max. :0 
## 
## $`1` 
## fttrump birthyr female 
## Min. : 0.00 Min. :1924 Min. :1 
## 1st Qu.: 2.00 1st Qu.:1955 1st Qu.:1 
## Median : 20.00 Median :1965 Median :1 
## Mean : 35.91 Mean :1967 Mean :1 
## 3rd Qu.: 70.00 3rd Qu.:1982 3rd Qu.:1 
## Max. :100.00 Max. :1997 Max. :1 

Importantly, the basic map function previously used will always return a list, 
which is a mixed data type. But importantly, there may be many cases in 
which you would prefer working with a specific type of data or want a specific 
data type to condition the map function. If such is the case, then there are 
several other map functions, map that can be used. For example, the raw count 
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of rows is an integer, so we could use map_int() to get the same result, but 
ensuring it’s a real-valued integer. 
map_int(fems, nrow) # note the different map() function 

## 0 1 
## 570 627 

# make sure the returned value is an integer, NOT a list 
is.integer(map_int(fems, nrow)) # return "TRUE" 

## [1] TRUE 

is.integer(map(fems, nrow)) # return "FALSE" 

## [1] FALSE 

With the logic under your belt, consider a couple extensions using map. First, 
rather than using split() from base R, the Tidyverse version of this is to 
“nest” via nest() or unnest(). Suppose we want to nest() respondents by 
“female or not” to return a data frame into a so-called “list-column”, which 
can host multiple data types in a single vector.5 In other words, we can nest a 
data frame within a row or column. List-columns from model output is a very 
common occurrence. 

First, we will create a new object, new_nes, with data frames and/or tibbles 
for each level of female. The specific syntax below reads, “give me two rows 
and a data frame for the other two features in the small data set, nested by 
each level of female.” 

Then, we complicate matters for more descriptive output by adding two new 
features via mutate(): first, the number of rows/respondents, and second the 
mean values for Trump support from each group of respondents.6 

(new_nes <- nest(NESdta_small, -female)) 

## Warning: All elements of `...` must be named. 
## Did you want `data = c(fttrump, birthyr)`? 

## # A tibble: 2 x 2 
## female data 
## <dbl> <list> 
## 1 0 <tibble [570 x 2]> 
## 2 1 <tibble [627 x 2]> 

5The terminology is thanks to Jenny Bryan. See the purrr package documentation for 
more. 

6Readers should note that the use of “doubles” above in map_dbl() indicate numeric 
data types for precision calculations, e.g., decimal places. They are used in many domains 
and for many tasks. See the purrr help documentation for more. 
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new_nes %>% 
mutate(n_row = map_int(data, nrow), 

mean = map_dbl(data, ~ mean(.x$fttrump))) 

## # A tibble: 2 x 4 
## female data n_row mean 
## <dbl> <list> <int> <dbl> 
## 1 0 <tibble [570 x 2]> 570 41.1 
## 2 1 <tibble [627 x 2]> 627 35.9 

Now, reverse the nesting using unnest(), and we are back to where we started. 
unnest(new_nes, data) %>% 

head() 

## # A tibble: 6 x 3 
## female fttrump birthyr 
## <dbl> <dbl> <dbl> 
## 1 0 1 1960 
## 2 0 100 1963 
## 3 0 0 1980 
## 4 0 13 1974 
## 5 0 61 1958 
## 6 0 5 1978 

5.9 Concluding Remarks 

In this chapter, we learned some of the core building blocks of programming 
in both base R and the Tidyverse. All of these techniques and concepts are 
borrowed from other programming languages and adapted for the R language. 
For example, there are for loops (and also repeat and while loops) in 
Python, and different types of operators (e.g., logical) are used in virtually 
all programming languages like C and C#. With these tools in your toolbox, 
you can become a better, more efficient programmer, which will help you do a 
variety of tasks, whether writing R packages or conducting your own research. 



https://taylorandfrancis.com
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Exploratory Data Analysis
 

The first thing any researcher should do prior to fitting models is get to know 
the data. This is the case because often the shape and structure of the data 
are unknown to the researcher. For example, if the data are skewed in a certain 
direction along some variable of interest, then this could limit the quality of 
inferences drawn after fitting a model (we will discuss this more below). But 
beyond overtly harmful effects, it is a good idea to know some basic features 
of the data as well as distributional shapes and patterns. 

Broadly, this process of getting to know your data is called exploratory data 
analysis (EDA), and has it’s roots in the work of John Tukey (Jones, 1987), 
who brought us many modern statistical tools for exploring data, such as the 
boxplot. Even though users are not fitting models in the predictive or causal 
ways of approaching analysis, exploring data is still very much analysis in that, 
by inspecting distributions and shapes of data, users are able to conceptualize 
trends and even generate baseline expectations, which will influence the research 
program in numerous ways downstream. Importantly, in other fields, such as 
machine learning, exploratory data analysis is closely linked with clustering, 
classification, and other useful techniques to help make sense of data when 
little of the data is known a priori. For example, machine learning researchers 
may fit a variety of clustering algorithms such as k-means, k-medoids, or 
CLARA (for big data applications) to pull out patterns and more precisely 
define groupings present within the data, but in a largely atheoretic way. Yet, 
in the social sciences, such approaches to exploring data are often avoided in 
an effort to guard against the possibility of ethical issues like searching for 
patterns too early, which could lead to a perception of “p-hacking” (searching 
for significant results based only on p-values across many model iterations) 
or post-hoc theorizing (suggesting you, the researcher, were aware of and 
anticipating the emergent patterns the whole time). Though there is a some 
degree of gray area in this regard, there could be a reasonable case made for 
a technique like clustering being helpful, not harmful, as a crucial step to 
contributing to a greater understanding of the non-random structure that is 
assumed to exist in data. 

Our goal in this chapter, then, is to walk readers through a typical EDA 
project using the tools covered so far, while also bringing in a few new tidy 
techniques. This chapter will provide a roadmap for exploring data in search 

137 
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of descriptive trends, as well as offering guidance on how to discuss these 
trends in the context of a broader research project. Thus, while some new 
techniques and tools will be covered, the broader thrust of this chapter is in 
line with the tone of our book, where we are not interested in merely compiling 
a bunch of tidy functions, but rather are interested in demonstrating how to 
leverage the power of the tidyverse in the context of social science research. 
And importantly, every social science research project should include some 
EDA component. 

In service of this goal, we will cover some common methods for exploring 
data including plots (bar plots, boxplots, and scatterplots), summary statistics 
(inter-quartile range (IQR), mean, median, minima and maxima, and so on), 
and a combination of these methods in tidy framework, drawing heavily from 
the skimr package. 

Let’s start by loading some useful packages and the data, followed by some 
quick tidying based on some techniques explored in the data management 
chapter. 
# Load the libraries needed for this chapter 
library(tidyverse) 
library(here) 
library(skimr) 
library(amerika) 

# Set the working directory 
setwd(choose.dir()) 

# Load the ANES data and tidy a bit 
NESdta <- read_csv(here("data", "anes_pilot_2016.csv")) 

NESdta_sub <- NESdta %>% 
dplyr::select(fttrump, pid3, birthyr, gender, ftobama) %>% 
mutate(fttrump = replace(fttrump, fttrump > 100, NA), 

ftobama = replace(ftobama, ftobama == 998, NA), 
Party = case_when(pid3 == 1 ~ "Democrat", 

pid3 == 2 ~ "Republican", 
pid3 == 3 ~ "Independent")) %>% 

as.data.frame() %>% 
drop_na() 

6.1 Visual Exploration 

With the data loaded and tidied, let’s start with basic visual descriptions of 
some variables of interest, which is the most common starting place in an EDA 
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project given the rich descriptive nature of visualizations. A widely used visual 
tool for EDA is a bar plot, which is a close relative of the histogram, showing 
the categorical density of some variable of interest. These are especially useful 
in survey data where groupings of respondents are visually distributed across 
some variable of interest. Following the bar plot, we present Tukey’s boxplot, 
which is more descriptive. 

For these first two visual tools, building on the earlier Visualization chapter, 
we will rely on ggplot2 from the Tidyverse, and alter the geometric layers, 
geom_*, for bar plots first (geom_bar) and boxplots second (geom_boxplot). 
The result is in Figure 6.1. 
ggplot(NESdta_sub, aes(fttrump, fill = Party)) + 

geom_bar(fill = amerika_palette(n = 233, 
name = "Dem_Ind_Rep7", 
type = "continuous")) + 

labs(x = "Trump Feeling Thermometer", 
y = "Count of Respondents", 
title = "Feeling Thermometer for Trump by Party", 
subtitle = "2016 ANES Pilot Study") + 

facet_wrap(~ Party) + 
theme_minimal() 
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FIGURE 6.1 
Feelings toward Trump by Party 
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In Figure 6.1, note a few expansions from the earlier visualization chapter. 
First, we are now using the amerika package, which is an American-politics 
inspired color palette generator for applications such as these (Waggoner, 2019). 
The idea is that applications map basic political knowledge to appropriate 
color palettes, where, for example, “Democrats” (or “liberals”) are assumed 
to be on the left and thus blue, with “Independents” (or “moderates”) in the 
middle and thus gray, followed by “Republicans” (or “conservatives”) on the 
right, and thus red. Further, we use the powerful layer, facet_wrap, which 
allows for breaking up feelings toward Trump by party affiliation, based on the 
pid3 variable from the ANES data. Each party is placed in a unique window, 
or “facet”. This is a very useful tool for making an already descriptive plot 
more descriptive. Taken together, note in this bar plot that emergent patterns 
are in line with basic expectations of the distribution of political preferences 
in American politics, with Democrats (in blue) having strongest negative (or 
“coldest”) feelings toward Trump, with Independents and Republicans having 
progressively more positive (or “warmer”) feelings toward him. Building on 
these patterns from the basic bar plot, we can dig more into the numeric 
summaries of these data, but still using a visual tool: the boxplot. 

Here, we introduce John Tukey’s boxplot using the same two variables, Party 
and fttrump (feelings toward Trump). Boxplots are highly descriptive sum
maries of data of any size, showing the IQR, from the 1st quartile to the 3rd, 
in the box, with the line in the box representing the median of the distribution. 
The “whiskers” on the bottom and top of the plot show the minimum and 
maximum, respectively, of the data distribution. The dots represent outliers. 

To build our boxplot, we simply change the geom to be geom_boxplot instead 
of geom_bar in the previous case. Here again we use the amerika package to 
quickly fill in appropriate colors in the boxes corresponding to each of the 
three major American political parties. The increase in descriptive information 
provided by boxplots allow for more thorough exploration of the data, especially 
in tandem with other visual tools such as the bar plot. These distributions in 
feelings toward Trump by party are shown in Figure 6.2. 
ggplot(NESdta_sub, aes(x = Party, y = fttrump)) + 

geom_boxplot(fill = amerika_palette(name = "Dem_Ind_Rep3")) + 
labs(x = "Political Party", 

y = "Trump Feeling Thermometer Score", 
title = "Feeling Thermometer for Trump by Party", 
subtitle = "2016 ANES Pilot Study") + 

theme_minimal() 

The boxplot shows that there are a lot of Democratic outliers given the very low 
mean and median as we might expect. This suggests that while the majority 
of the distribution of Democratic respondents has negative feelings toward 
Trump as we might expect, interestingly there are a few Democrats who think 
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FIGURE 6.2 
Feeling Distributions by Party 

positively toward him. Further, in line with baseline expectations from our 
initial bar plot, we can see that the distribution of Republicans is situated at the 
highest end with the most positive feelings toward Trump, with Independents 
somewhere in between these major political parties. Regardless of the patterns, 
the point here is that these visual tools require relatively minimal code, but 
provide a great deal of information and nuance, which contribute to a greater 
understanding of our data. 

We now transition to a third visual tool for exploring data, which is the 
scatterplot. The scatterplot is a slightly more intuitive approach to observing 
natural trends in the data. Similar to the previous two visual tools, ggplot2 
offers some excellent options for visualizing basic trends in data using a 
scatterplot. Here, as you might expect at this point, we simply need to update 
the ‘geom_* layer to be geom_point. Building on the intuition of the bar plot, 
we can explore the range of feelings toward Trump (fttrump) by party affiliation 
(Party) in Figure 6.3, but also across the age of respondents (birthyr), allowing 
for even greater nuance to our descriptive exploration. 
ggplot(NESdta_sub, aes(x = birthyr, y = fttrump, 

color = factor(Party))) +
 
geom_point() +
 
scale_color_manual(name="Party",
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values=amerika_palette(name="Dem_Ind_Rep3"))+ 
labs(x = "Birth Year", 

y = "Trump Feeling Thermometer Score", 
title = "Feelings Toward Trump across Age and Party") + 

theme_minimal() 
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FIGURE 6.3 
Feelings toward Trump by Party and Age 

Conditioning the point colors by party affiliation, we can see several natural 
patterns emerge. First, note that many respondents across all parties had a 
relatively cold feelings toward Trump in 2016, seen in the tight grouping of 
points near 0.0 on the Y axis at the bottom of the plot. Inversely, there is 
also a high concentration of extremely positive feelings toward Trump, with 
points clustered around the top of the plot at 100 on the Y axis. Further, 
there are fewer respondents in between these extremes, suggesting Trump may 
be a polarizing political figure, where the majority of respondents either love 
him or hate him. Though more analysis would be needed to develop and test 
this idea, the point remains that an interesting natural pattern pointing to 
this possibility is present in these data, and was only uncovered by visually 
exploring our data. 

While these trends may exist and while the conditional point color is useful, 
there are so many respondents that it is difficult to say much more about 
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any possible trends based on this plot. To get a more precise, though still 
exploratory, look at these trends, we can add a nonparametric LOESS smoother, 
which simply describes the trend in the data. It is “nonparametric” in that it 
does not have an a-priori statistical definition of the data, such as that the 
relationship is linear. Rather, it simply describes conditional patterns based 
on natural values, thereby capturing natural variation. 

To update our scatterplot to add these LOESS smoothers, we simply add 
another geometric layer, but this time it is called geom_smooth. Inside the 
layer, we must specify the method argument to be loess. Importantly, layering 
these smoothers after conditional colors already exist in the plot results in 
an automatic inheriting of the mapping aesthetic (see the earlier “Visualizing 
Your Data” chapter for more on mapping aesthetics). This means that the 
colors of the smoothers will also be conditional on party affiliation as we have 
specified, which will help us explore the data and trends consistently, and thus 
more efficiently. The result is in Figure 6.4. 
ggplot(NESdta_sub, aes(x = birthyr, y = fttrump, 

color = factor(Party))) + 
geom_point() + 
geom_smooth(method = "loess", se = FALSE) + 
scale_color_manual(name="Party", 

values=amerika_palette(name="Dem_Ind_Rep3"))+ 
labs(x = "Birth Year", 

y = "Trump Feeling Thermometer Score", 
title = "Feelings Toward Trump across Age and Party") + 

theme_minimal() 

## `geom_smooth()` using formula 'y ~ x' 

In addition to corroborating earlier patterns of extremity and intuition across 
major American political parties, the addition of the LOESS smoother reveals 
another interesting pattern which is that across all parties, younger respondents 
(toward the right of the X axis along “Birth Year”) all favor Trump much less 
than their older counterparts to the left of the X axis. All smoothers start at a 
higher point on the left of the X axis than where they end on the right of the X 
axis along birthyr, though some variation seems to spike in the middle-range 
of respondents. 

As demonstrated with these few simple visual techniques, it is clear that the 
Tidyverse has many powerful visual tools available for exploring natural trends 
in data. 
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FIGURE 6.4 
Smoothed Feelings toward Trump 

Exercises 

6.1.0.0.1 Easy 

•	 Plot support for Trump (fttrump) as both a bar plot and a histogram 
by altering the geom_*. Place these plots side by side. What do you see? 
How do these plotting methods differ, and when might it be more or less 
appropriate than another? 

•	 Do a quick Google search for the RColorBrewer package. How many 
palettes are included in this package? Update the plot above of birthyr by 
fttrump, colored by Party using the Dark2 palette from RColorBrewer. 
Play around with other color palettes in both the RColorBrewer and 
amerika packages. 

6.1.0.0.2 Intermediate 

•	 What is a boxplot and how is it useful? 
•	 Suppose your teacher requested a “full visual exploratory story.” Where 

would you start, what techniques would you include, and how would you 
organize this “story told with data”? 
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6.1.0.0.3 Advanced 

•	 What did Tukey mean by needing both “confirmatory” and “exploratory” 
hypotheses? Recall Tukey was writing these things in the 1970s and 
1980s. How then, if at all, does his conclusion relate to modern predictive 
modeling and data science? 

•	 Create an interactive version of the previous scatterplot of feelings toward 
Trump over the range of age by political party affiliation. 

6.2 Numeric Exploration 

While visual exploration is an important first step to take prior to fitting 
models, it is not the only exploratory tool at our disposal. Numeric summaries 
and descriptions of data are also quite useful for unpacking and exploring 
data efficiently. Base R has many useful tools for this, including summary(). 
We will start here, but bring in the tidy approach quickly, which allows for 
more efficient front-end filtering and wrangling as we saw in the earlier data 
management chapter. Consider first some basic summary statistics calculated 
using the summary() command in base R. 
summary(NESdta_sub) 

## fttrump pid3 birthyr 
## Min. : 0.0 Min. :1.000 Min. :1921 
## 1st Qu.: 2.0 1st Qu.:1.000 1st Qu.:1954 
## Median : 28.0 Median :2.000 Median :1967 
## Mean : 37.9 Mean :1.931 Mean :1968 
## 3rd Qu.: 71.0 3rd Qu.:3.000 3rd Qu.:1982 
## Max. :100.0 Max. :3.000 Max. :1997 
## gender ftobama Party 
## Min. :1.000 Min. : 0.00 Length:1115 
## 1st Qu.:1.000 1st Qu.: 6.00 Class :character 
## Median :2.000 Median : 55.00 Mode :character 
## Mean :1.529 Mean : 49.62 
## 3rd Qu.:2.000 3rd Qu.: 88.00 
## Max. :2.000 Max. :100.00 

The output from this object includes variable-level numeric summaries consist
ing of: minimum value, 1st quartile, median, 3rd quartile, mean, and maximum 
(as well as a count of missing values (NAs), if those exist in the data). When 
calling the summary on the full data set, the output produced these basic 
summary statistics for all variables in the data set, which here was our tidied 
NESdta_sub data object. However, we urge caution in such a use of summary(), 
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as some values may not make sense. For example, R will calculate the mean 
value of a categorical dummy variable, which takes on only values of 0 and 1. 
Even though a “mean” is calculated, this has no substantive meaning. 

Though a useful starting place, the tidy approach to numeric exploration 
of data is much more efficient and cleanly output. Though there are many 
tools in the tidyverse that we could use, we will focus on: sample_n, filter, 
group_by, and skim (from the skimr package, which is written to complement 
the tidy approach, as we will see in a moment). 

If we were interested in only grabbing a subset of rows/observations from the 
full data set, but wanted it to be a random grab to get a “fair” (or perhaps, 
fairer) look at the data, the sample_n function from the Tidyverse is a good 
place to start. It has a number of useful arguments, such as allowing the user 
to specify how many random observations to grab (size) as well as whether 
to sample with or without replacement (replace). Consider the following 
example, inspecting a random sample with replacement of observations of 
length 10 across all variables in our NESdta_sub data object. 
sample_n(NESdta_sub, 

size = 10, 
replace = TRUE) 

## fttrump pid3 birthyr gender ftobama Party 
## 1 98 2 1931 1 0 Republican 
## 2 84 2 1978 1 0 Republican 
## 3 74 2 1962 2 53 Republican 
## 4 85 2 1951 1 0 Republican 
## 5 18 3 1996 1 61 Independent 
## 6 12 3 1958 1 0 Independent 
## 7 99 2 1940 1 10 Republican 
## 8 58 1 1992 2 43 Democrat 
## 9 17 3 1967 1 31 Independent 
## 10 95 3 1946 1 1 Independent 

We get a cleanly formatted tibble of 10 randomly selected observa
tions/respondents across all variables in our NESdta_sub object.1 

In line with the tidy approach to programming, we can layer several functions 
using the pipe operator (%>%) we previously discussed in the data management 
chapter, as well as at the outset of this chapter when tidying and creating our 
restricted data object, NESdta_sub. For example, we may want to explore a 
random set of observations that appear in the data after a specific date. In 

1We encourage users to adjust and alter the arguments in the function to observe how 
the random grab change each time the function is called, e.g., changing size from 10 to 30, 
or setting replace = TRUE. Or at a minimum, consider testing the randomness claim here 
by simply running the previous code chunk again (and again) seeing how the sampled rows 
differ each time. 
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this case, we would pipe the filter function to restrict our small sample of 
length 5 to include respondents younger than the median birth year, which is 
1967.2 Building on the discussion of the filter() function in the earlier data 
management chapter, it is useful to point out that there are other versions of 
filter(), which allow for conditional filtering of data, or filtering based on 
specific values of a given variable, e.g., filter_if() or filter_at(). These 
can be extremely useful in numerically exploring specific chunks of the data, or 
data based on some condition of interest as in our example here. We encourage 
users to inspect the dplyr package documentation for many more details on 
the wide array of options available in the filter family, let alone the full 
range of munging functions in the dplyr package. To do so, run the command 
?filter with a single ? for the specific function, or ??dplyr with two ?? to 
inspect documentation for the entire package. 
median(NESdta_sub$birthyr) # 1967 

## [1] 1967 

NESdta_sub %>% 
filter(birthyr > median(birthyr, na.rm = TRUE)) %>% 
sample_n(5, replace = TRUE) 

## fttrump pid3 birthyr gender ftobama Party 
## 1 98 2 1980 1 25 Republican 
## 2 2 1 1972 2 100 Democrat 
## 3 3 1 1986 2 100 Democrat 
## 4 1 2 1981 2 1 Republican 
## 5 1 1 1983 1 94 Democrat 

Similarly, we could group observations along a specific attribute by piping 
another layer using the group_by() function, and then drawing a random 
sample of 5 from each party, again, for all respondents younger than the median 
age in the sample. 
NESdta_sub %>% 

filter(birthyr > median(birthyr, na.rm = TRUE)) %>% 
group_by(pid3) %>% 
sample_n(5, replace = TRUE) 

## # A tibble: 15 x 6 
## # Groups: pid3 [3] 
## fttrump pid3 birthyr gender ftobama Party 
## <dbl> <dbl> <dbl> <dbl> <dbl> <chr> 
## 1 1 1 1983 1 100 Democrat 

2Note the na.rm argument, which in this case is set to TRUE. This simply means that 
we would like to filter values at the supplied threshold for all observations containing real 
values, not those with missing values. 
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## 2 40 1 1980 1 80 Democrat 
## 3 3 1 1987 2 75 Democrat 
## 4 39 1 1988 1 90 Democrat 
## 5 50 1 1978 1 51 Democrat 
## 6 80 2 1971 1 3 Republican 
## 7 0 2 1972 1 4 Republican 
## 8 80 2 1982 1 3 Republican 
## 9 0 2 1987 2 91 Republican 
## 10 91 2 1976 1 12 Republican 
## 11 3 3 1973 2 97 Independent 
## 12 3 3 1997 2 15 Independent 
## 13 5 3 1979 1 15 Independent 
## 14 33 3 1981 1 39 Independent 
## 15 87 3 1968 2 3 Independent 

Importantly, in all of these exercises of exploring the data as well as those 
discussed in the Data Management and Manipulation chapter, you can store 
these restricted data sets as objects, as with any value in R. Recall, as we 
noted in the Foundations chapter, that R is built around the notion of “object
oriented programming”, where storing values in objects is at the heart of 
working in R. And recall that objects are created by simply passing one value 
to another through the assignment operator, <-. 

As an aside, the intuition and consistency of the Tidyverse should hopefully be 
apparent by this point in the book. To reiterate, the aim of tidy programming 
is to make programming in R as simple, concise, clear, and consistent as 
possible. For example, in many of the Tidyverse packages, you will see a lot of 
similarities in the names of arguments and functions, e.g., _all and _by. These 
suffixes appear in many places and mean exactly what they imply: “apply this 
function by (based on) a given value” or "do this thing for all values in the 
variable or for all variables in the data set. The result is these tools are useful 
for both EDA as well as streamlining programming and workflows for more 
productive analysis in R. 

Exercises 

6.2.0.0.1 Easy 

•	 Calculate the mean of birthyr and then the median of birthyr. How 
might our view of the data change when inspecting each of these values? 
And more importantly, what picture of the data are each of these numeric 
descriptors providing? 

•	 What does the “mapping” argument do in any ggplot()? (hint: consider 
?) 
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6.2.0.0.2 Intermediate 

•	 Create a new variable called dem_mean_birth that records the mean 
birthyr for all Democrats in the data. Do the same two more times for 
Republicans and Independents, respectively, altering the variable name as 
it makes sense (e.g., rep_mean_birth for Republicans). Display these in 
a tibble and discuss substantive patterns and differences (if any) you see. 

•	 What advantage does a boxplot offer over a scatterplot and how might 
this impact exploratory conclusions drawn? 

6.2.0.0.3 Advanced 

•	 Building on the discussion of the boxplot above, what numeric value is 
revealed in a boxplot? Do you think the numeric presentation of these 
values is more effective and descriptive than the visual presentation, or 
vice versa? Why? 

•	 Write a function to take on a vector of feeling thermometer ratings and 
automatically generate a scatterplot over the range of age. Using this 
function, plot feelings toward all political candidates over the range of age. 
Placing these in a grid (hint: consider the gridExtra package for multiple 
ggplot() objects), what are some general patterns you see relating to 
feelings and respondents’ ages, or are there any trends? 

6.3 Putting it All Together: Skimming Data 

Beyond addressing isolated powerful Tidyverse tools that can be used for 
exploratory data analysis prior to fitting models, we can combine these visual 
and numeric tidy functions for an even cleaner and simpler look at the data. 
To do so, we will rely on the skim() function from the skimr package. 

The skim() function can be used for summary statistics for individual variables 
or entire data sets. Though more informative and useful than the summary() 
function in base R for a variety of reasons, one of the most powerful extensions 
of skim() is the separation of variables in a data set by variable type (e.g., 
factor, numeric, character, etc.). Upon distinguishing between variable type, 
skim() presents summary statistics by variable that make sense (e.g., bypassing 
the meaningless “mean” calculation for dummy variables mentioned above), in 
addition to a visual of the distribution of each variable in the data. Consider 
the following exercise of skimming the variables in our restricted NESdta_sub 
data object. 
skim(NESdta_sub) 
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In addition to the many useful summary statistics by variable type as well as 
the histogram of the variable’s distribution, the standard deviations for all 
numeric variables is included, but not for categorical or character variables, as 
this calculation would not make any sense. Further, the complete and missing 
values are quite useful in contexts where little is known about the data or 
when the data are particularly large and messy. Regarding different syntax, 
instead of minimum, median, and so on in the summary() function, skim() 
calls the quantiles p0, p25, p50, etc. The values remain the same, despite the 
different terminology. 

Inspecting our data set, a few things stand out. First, we have no missing 
observations. Also, inspecting the histogram for birthyr, for example, we 
see that it is skewed toward the younger end, where we have far fewer older 
respondents than young respondents. 

Though already significantly more informative, we can go farther in skimming 
our data given that, as previously mentioned, skimr was designed to fully 
integrate with tidy programming, seen, for example, in the reliance on tidy 
vocabulary.3 

Exercises 

6.3.0.0.1 Easy 

•	 Use the skim function to numerically explore all feeling thermometers in 
the NESdta data set. (hint: think back to the Data Munging chapter on 
selecting subsets of variables that start with a common string, like, e.g., 
“ft” for feeling thermometer). 

•	 What does it mean for a package like skimr to be “complementary of the 
Tidyverse”? 

6.3.0.0.2 Intermediate 

•	 Pick any three variables from the NESdta data set, and “tell a descriptive 
story” with these data. In other words, using the exploratory techniques 
discussed in this chapter, how would you visually and numerically explore 
and present these data to a general audience? 

•	 Plot a random sample of the Obama feeling thermometer ratings (ftobama) 
of size = 50, conditional on gender. Overlay a loess smoother. What do 
you see? What does the loess smoother tell you? 

3To further illustrate this point, users can even specify tidyverse commands with a skim 
call, e.g., skim(ANES, starts_with("ft")), which would display the summary statistics 
and histograms for all feeling thermometers in the ANES data set (i.e., beginning with “ft” 
prefix). 
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6.3.0.0.3 Advanced 

•	 Suppose you saw a pattern that surprised you, like, e.g., more Republican 
support for Obama than among Democratic respondents. How would you 
investigate this seemingly odd pattern? 

•	 Suppose you plotted the distribution of feelings toward Trump (fttrump), 
and saw a big spike in support at the value of 998. What would this tell 
you and how would you know? What would be some exploratory follow-up 
steps you could take in response? 

6.4 Concluding Remarks 

In this chapter, we covered how to visually and numerically explore data in line 
with the Tidyverse approach to programming in R. This approach leverages 
consistent vocabulary across a variety of functions to result in cleaner code 
that is simpler to link, layer, and update. 

Of note, we highly recommend readers explore the many options available in 
the skimr package, as well as combine functions and operations from other 
Tidyverse packages using the %>%. As noted throughout, piping functions that 
are built using the same vocabulary will minimize the steepness of the learning 
curve of working in R. 

In the next and final substantive chapter we build on the principles of EDA cov
ered here, and transition to statistically modeling and visualizing relationships 
in a tidy way. 



https://taylorandfrancis.com
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Essential Statistical Modeling 

When approaching statistical modeling in the social sciences, we most often 
operate from the “null hypothesis testing framework” (i.e., NHST), where we 
are interested in addressing the question, Can we reject the “null hypothesis 
of no effect” given the data we observe, or not? 

In this chapter, we will address this question for several very common situations. 
We start with an example of one-sample and two-sample t-tests. Next, we 
continue with the exploration of cross-tabulation tables, showing how to find 
the chi-square value. Third, we explore the very versatile methods of correlation 
and ordinary least squares regression (OLS). Finally, for a binary response 
variable we demonstrate logistic and probit regression. 

In this chapter we walk through essential techniques for fitting, interpreting, 
and diagnosing each of these commonly used modeling techniques from a 
Tidyverse perspective. Importantly, this is not a statistics text, but rather 
an introduction to R and the Tidyverse for social scientists. As statistical 
modeling is essential to social scientists, we cover these topics, but only at 
a high level and with a greater focus on fitting widely used models in the 
Tidyverse. The expectation is that the reader will have at least a passing 
familiarity with the statistical techniques discussed below. If the reader needs 
a review, there are plenty of excellent introductions to statistics for the social 
sciences (Finlay and Agresti, 1986, Gailmard (2014)). 

Once you have the basics of model fitting in R down, you will find that these 
patterns tend to persist as you move to trying different models and techniques. 

7.1 Loading and Inspecting the Data 

As always, we start this section by starting RStudio and setting our working 
directory or opening the R project, .Rproj, file you will be using. 
# Set your working directory 
setwd(choose.dir()) 

153 
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We continue with our ANES data set in this chapter. In this chapter we will 
focus on a constrained set of variables: 

1.	 fttrump: Feeling thermometer for Trump in 2016 (from 1 to 100, 
where 1 = cold and 100 = warm) 

2.	 pid3: Respondent’s party affiliation (1 = Democrat, 2 = Indepen
dent, 3 = Republican) 

3.	 birthyr: Respondent’s birth year 
4.	 gender: Respondent’s gender (1 = male and 2 = female) 
5.	 ftobama: Feeling thermometer for Obama in 2016 (from 1 to 100, 

where 1 = cold and 100 = warm) 

First, we need to load some relevant packages and load the corresponding 
libraries. 
library(tidyverse) 
library(here) 
library(corrr) 
library(skimr) 
library(amerika) 
library(broom) 
library(rstatix) 
library(janitor) 
library(performance) 
library(see) 

A few of these packages are worth noting, since they are new to this chapter. 
The corrr package provides functions to evaluation correlations within a 
tidyverse framework. rstatix does the same for basic statistical functions and 
will be used for t-tests below. We will again be using the janitor package for 
analyzing cross-tabulation – in this case, analyzing chi-squared. 

With the packages loaded, we now load our data, NESdta, using the here 
package. Next, we create a new data object, NESdta_sub, with only these 5 
variables of interest, and do a bit of cleaning using the functions we learned in 
the data management chapter. Also, note that we are creating a new variable, 
Party by recoding the pid3 variable to correspond with the actual party labels, 
instead of 1, 2, and 3. This will come in handy for plots below. 
NESdta <- read_csv(here("data", "anes_pilot_2016.csv")) 

NESdta_sub <- NESdta %>% 
dplyr::select(fttrump, pid3, birthyr, gender, ftobama) %>% 
mutate(fttrump = replace(fttrump, fttrump > 100, NA), 

ftobama = replace(ftobama, ftobama == 998, NA), 
Party = case_when(pid3 == 1 ~ "Democrat", 
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pid3 == 2 ~ "Republican", 
pid3 == 3 ~ "Independent"), 

female = ifelse(gender == 2, 1, 0)) %>%
 
as.data.frame() %>%
 
drop_na()
 

Before moving into the actual tests, we will use the glimpse() function we 
used earlier to check if the data looks like what we expect. 
glimpse(NESdta_sub)
 

## Rows: 1,115
 
## Columns: 7
 
## $ fttrump <dbl> 1, 28, 100, 0, 61, 5, 85, 70, 5, 74, 95...
 
## $ pid3 <dbl> 1, 3, 2, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, ...
 
## $ birthyr <dbl> 1960, 1957, 1963, 1980, 1958, 1978, 195...
 
## $ gender <dbl> 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, ...
 
## $ ftobama <dbl> 100, 39, 1, 89, 0, 73, 0, 12, 87, 32, 1...
 
## $ Party <chr> "Democrat", "Independent", "Republican"...
 
## $ female <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, ...
 

Now that the data is ready, let’s start producing some statistical models. 

7.2 t-statistics 

One of the most basic statistical tests is a difference in means test. If we have 
two groups (for example, a treatment group and a control group), we can 
compare the means between the two (or more) groups using a t-distribution. 
These tests are often used in combination with the difference in means tables 
we demonstrated in the data management chapter. These t-tests are quite easy 
to calculate in R, as we demonstrate below. 

There are several different types of t-tests. We start with the simplest, a 
one-sample comparison of means. In this situation, we are comparing the mean 
in a sample against a hypothetical population mean. So let’s say we want to 
test whether approval for then-candidate Donald Trump is above 50 on a 100 
point scale. We might interpret this as the point where people view him more 
positively than negatively. 

The t_test() function from the rstatix package is used for this purpose. 
There are two baseline arguments that are required. The first is the function 
to be analyzed. The ~ operator is often used in statistical tests and is often 
read as “is approximated by.” In this case, we are evaluating one group against 
a null model so we place the variable to be evaluated on the left-hand side, 
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followed by ~ 1. The other part of this test is to specify the hypothetical 
population mean we are testing with mu =. In this case, we are testing the 
likelihood that the population mean for Trump’s approval is 50, given the data 
from the ANES sample. Finally, we also specify detailed = TRUE to get a 
detailed report of the results that includes the 95% confidence intervals. 
NESdta_sub %>% 

summarize(mean_approval = mean(fttrump, na.rm = T)) 

## mean_approval 
## 1 37.89596 

# t-test fit 
NESdta_sub %>% 

t_test(fttrump ~ 1, mu = 50, detailed = TRUE) 

## # A tibble: 1 x 12
 
## estimate .y. group1 group2 n statistic p
 
## * <dbl> <chr> <chr> <chr> <int> <dbl> <dbl>
 
## 1 37.9 fttr~ 1 null ~ 1115 -11.1 4.45e-27
 
## # ... with 5 more variables: df <dbl>, conf.low <dbl>,
 
## # conf.high <dbl>, method <chr>, alternative <chr>
 

In the first chunk of code, we show that the average approval for Trump in this 
survey was well below 50 – in fact it was about 37.9 – using the summarize() 
function we learned earlier. 

Upon conducting the t-test, we unsurprisingly found that the difference between 
the mean we find in the sample and the hypothetical mean of 50 is statistically 
significant. The t-statistic is -11.07 and the p-value is less than 0.001, both 
indicating that the difference in means is greater than that which is typically 
considered “statistically significant.” We can also see this in the 95% confidence 
intervals that range from 35.7 to 40.0, far below the hypothetical mean of 50. 

The default for this test is a two-tailed test, but this can be changed by 
specifying alternative = "greater" for a right-tailed test or alternative 
= "less" for a left-tailed test. We can also change the confidence level we 
desire by changing the conf.level option. For example, to do the test at the 
99% level of confidence, we would specify conf.level = 0.99. 

The next test is to compare two groups. So, for example, let’s say we want 
to know if the difference in Trump’s approval between men and women is 
statistically significant at this point in the 2016 campaign. We can use the 
same t_test() function. In this case, we will specify the groups we want to 
test. We will use the female variable, which is 1 if the respondent is female 
and 0 otherwise. We specify the group by changing ~ 1 to ~ female. The rest 
of the example remains the same. 
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NESdta_sub %>% 
group_by(female) %>% 
summarize(avg_approval = mean(fttrump, na.rm = TRUE)) 

## # A tibble: 2 x 2 
## female avg_approval 
## <dbl> <dbl> 
## 1 0 40.9 
## 2 1 35.2 

# t-test fit 
NESdta_sub %>% 

t_test(fttrump ~ female, detailed = TRUE) 

## # A tibble: 1 x 15
 
## estimate estimate1 estimate2 .y. group1 group2 n1
 
## * <dbl> <dbl> <dbl> <chr> <chr> <chr> <int>
 
## 1 5.70 40.9 35.2 fttr~ 0 1 525
 
## # ... with 8 more variables: n2 <int>, statistic <dbl>,
 
## # p <dbl>, df <dbl>, conf.low <dbl>, conf.high <dbl>,
 
## # method <chr>, alternative <chr>
 

Again, we start by looking at the difference between the two group means 
using the group_by() and summarize() functions from earlier in the book. 
It appears that, on average, women give Trump about a 5 point lower rating 
than men. 

The t-test shows that this difference is statistically significant. The 95% 
confidence interval of this difference suggests that there is between a 1 and 10 
point difference between men and women in this sample. The p-value is 0.009, 
which is well below the usual 0.05 level of significance. 

As with the one-sample t-test, the options will allow you to change the 
confidence levels or move to a one-tailed test. By default, the t_test() 
function for difference between groups assumes that the groups have different 
variances, but this can be changed by specifying var.equal = TRUE. Similarly, 
by default, the function assumes that the groups are not paired, but this can 
be changed by specifying paired = TRUE. 

We have only scratched the surface of the options available for conducting 
t-tests in R, and the associated plot options and diagnostic tests. This, however, 
gives you the foundation to find out more on your own about how to conduct 
t-tests. 
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7.3 Chi-square Test for Contingency Tables 

In the data management chapter, we also introduced how to create contingency 
tables in R. Now we want to know if the differences observed in the contingency 
tables are statistically significant, or if they might be due to random sampling 
error. 

As a reminder, here is a simple way to get a cross-tab using the janitor 
package’s tabyl() function. In this case, we create a cross-tabulation of the 
respondent’s political party ID with their stated gender (where 1 indicates 
female and 0 indicates male). 
NESdta_sub %>% 

tabyl(Party, female) 

## Party 0 1 
## Democrat 188 268 
## Independent 208 171 
## Republican 129 151 

Notice that this does not lend itself to a comparison of means because both 
variables are nominal/categorical. We will instead use the chi-squared test of 
statistical significance, which is executed with the chisq.test() function. 
NESdta_sub %>% 

tabyl(Party, female) %>% 
chisq.test() 

##
 
## Pearson's Chi-squared test
 
##
 
## data: .
 
## X-squared = 15.64, df = 2, p-value = 0.0004017
 

The results show that the differences in party affiliations between men and 
women are much higher than we would have expected by random chance. The 
chi-squared value is 15.64, and the corresponding p-value is 0.0004 – much 
lower than the standard 0.05 level of confidence often used as a threshold in 
the social sciences. 
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7.4 Correlation 

We now move to a discussion of correlation. Correlation provides information 
about the direction (positive or negative) and strength of a linear relationship 
between two variables. 

Before calculating the correlation, however, it is always valuable to inspect 
your data as we discussed in the previous Exploratory Data Analysis chapter. 
Though there are many ways to do this, we will focus here on visualization as 
this offers a more intuitive, clean look at the distribution of our variables of 
interest. 

To do so, we start with a scatterplot of the distribution of feelings toward 
Trump plotted against the distribution of feelings toward Obama.1 As such, 
with this plot in Figure 7.1, we can get a first look at whether respondents 
naturally vary in preferences for candidates of different parties, as we might 
expect they would. 
ggplot(NESdta_sub, aes(fttrump, ftobama)) + 

geom_point(alpha = 0.7, color = "Midnight Blue") + 
labs(x = "Trump Feeling Thermometer", 

y = "Obama Feeling Thermometer") + 
theme_minimal() 

Sure enough, we can see clusters of respondents in the upper left and lower 
right corners of the plot, suggesting that respondents who really favor Obama 
(higher values on the Y axis) tend to also really oppose Trump (lower values on 
the X axis). While the same is true for the opposite in the lower right corner, 
its not as stark as we might expect. We will explicitly explore the role of 
partisanship in this story later in the chapter. 

A natural next step to see how strong the relationship is between these two 
variables is to check the correlation between them. Correlation is also often used 
to diagnose collinearity and other issues (discussed more below) in regression 
models. Pearson’s correlation coefficient, ρ, which is the most commonly used, 
ranges from -1 for a perfect negative correlation to 1 for a perfect positive 
correlation, with 0 indicating no correlation. The corrr package provides a 
range of highly useful modifications to the standard R correlation function so 
we will be leveraging its correlate() function. 

So let’s select the variables plotted above and find their correlation. This can 
be accomplished with the following code. 

1Note: the alpha argument in the geom_point() function sets the transparency of the 
points, where values < 1 produce some amount of transparency, and values = 1 produce 
fully filled in points. 
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FIGURE 7.1 
Feelings toward Trump and Obama 

correlation <- NESdta_sub %>% 
dplyr::select(ftobama, fttrump, birthyr) %>% 
correlate() 

##
 
## Correlation method: 'pearson'
 
## Missing treated using: 'pairwise.complete.obs'
 

correlation
 

## # A tibble: 3 x 4
 
## rowname ftobama fttrump birthyr
 
## <chr> <dbl> <dbl> <dbl>
 
## 1 ftobama NA -0.593 0.149
 
## 2 fttrump -0.593 NA -0.165
 
## 3 birthyr 0.149 -0.165 NA
 

The resulting tibble shows that there is a moderate negative relationship 
between approval of Trump and approval of Obama. It also shows a small 
positive correlation between birth year and support of Obama (younger people 
give him a higher rating), and a small negative correlation for approval of 
Trump (older people give him a higher rating). 
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There is a lot more that can be done with the corrr package, in part because 
of its tidyverse setup. For those interested in finding out more of what can be 
done with correlations, the author of the package has provided an excellent 
summary of his frustration with the base R correlation functions and the 
capabilities of the corrr package here. 

Exercises 

7.4.0.0.1 Easy 

•	 Calculate the correlation between a person’s birth year, birthyr, and their 
approval of both Obama and Trump, ftobama and fttrump, respectively. 

•	 Using the scatterplot code we developed in the “Exploratory Data Analysis” 
chapter, plot the relationship between support for Obama and Trump. 
Using geom_smooth(), check whether the relationship looks linear. 

7.4.0.0.2 Intermediate 

•	 How, if at all, is correlation related to regression? 
•	 Sometimes two libraries will contain functions with the same name. This is 

the case with skimr and dplyr, which both have a filter() function. Try 
using the filter() function without specifying the library. How would 
you update your code to avoid this error? 

7.4.0.0.3 Advanced 

•	 Describe a scenario where it would not make sense to calculate a correlation 
coefficient. 

•	 Suppose you get a correlation of 1.0. What would this tell you and what 
might be some follow-up steps you would take to investigate? 

7.5 Ordinary Least Squares Regression 

With our data loaded and explored, as well as a quick check for correlations 
between variables of interest, we can now fit a simple bivariate linear ordi
nary least squares regression (OLS) model, predicting feelings toward Trump 
(fttrump) as a function of respondents’ ages (birthyr). 

OLS is a very powerful and flexible model, that is used in a variety of circum
stances. Like correlation, a basic OLS model assumes that there is a linear 
relationship between the independent and dependent variable. This assumption 
can, however, be relaxed by adding squared, cubic, or even higher order expo
nents to the regression equation. Basic OLS also assumes that the dependent 
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variable is continuous, but this model is sometimes used with ordinal (or even 
dichotomous) data. 

For simplicity of demonstration, we are going to assume a linear relationship 
between respondents’ ages and their feelings toward Trump. A naive, but 
perhaps reasonable expectation would be that younger respondents have more 
negative (or “cold”) feelings toward Trump. To get a sense of this, consider 
the simple regression using the lm function (“linear model”) from base R. We 
store the model in object reg_simple. Once we have the model object saved, 
instead of using the summary() function from base R to display the results of 
the model, the broom package offers a “tidy” version of summarizing model 
objects in a cleaner, more robust way. Specifically, we will use the tidy(), 
augment(), and glance() functions from broom to explore our model in detail 
at both the variable and model levels. 
reg_simple <- lm(fttrump ~ birthyr, 

data = NESdta_sub) 

Before inspecting the output, notice that all of the analysis to this point follows 
the rules we laid out at the beginning – everything is an object and every 
action is a function. The lm() function is taking two arguments. The first is 
the formula, which has the dependent variable on the left, followed by a ~ 
(“approximately”) symbol, and the independent variable on the right. The 
second is the data argument, which tells the function to which data to apply 
the formula. If you run ?lm you can see what other arguments are available 
for this function. 

The lm() function produces an object of class “lm” that we are saving to
 
memory as reg_simple.
 
class(reg_simple)
 

## [1] "lm" 

As we saw in the programming chapter, this object is also a list, which contains 
a number of other objects. If we use the names() function, we can see the 
names of these objects. 
names(reg_simple) 

## [1] "coefficients" "residuals" "effects" 
## [4] "rank" "fitted.values" "assign" 
## [7] "qr" "df.residual" "xlevels" 
## [10] "call" "terms" "model" 

We can see a number of objects that we can access with the $ operator. For 
example, if we want to just call and retain the model coefficients, we can run 
the following code. 
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reg_simple$coefficients 

## (Intercept) birthyr 
## 734.3474013 -0.3539436 

Now, for a tidier version of the model results, we can call the tidy() function 
from the tidy-friendly broom package for a simple and clean description of the 
model output. 
tidy(reg_simple) 

## # A tibble: 2 x 5 
## term estimate std.error statistic p.value 
## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 (Intercept) 734. 125. 5.87 0.00000000569 
## 2 birthyr -0.354 0.0636 -5.57 0.0000000321 

The output includes estimate, std.error, statistic, and p.value. The 
estimate is the β coefficient, while the std.error is the measure of uncertainty 
surrounding that estimate. Then significance of this effect is captured by the 
statistic (usually either Z or t), as well as the p.value, which, despite 
the current controversy surrounding use and interpretation of p-values, is 
interpreted as the chance of observing some test statistic value equal to or 
more extreme than the computed value assuming the null hypothesis of no 
effect or relationship were true. To interpret our model, we start with the β 
coefficients, which are the effects we are estimating. In the simplest case, we 
interpret these values as a one unit change in X causes a β change in Y . 

Next, augment() is another powerful function in broom that provides much 
more variable-level information useful for analysis. This function call returns 
verbose output including, e.g., fitted values (.fitted), residuals (.resid), 
Cook’s distance (.cooksd), a measure of outliers discussed more below with 
diagnostics), and so on. 
augment(reg_simple) 

## # A tibble: 1,115 x 8 
## fttrump birthyr .fitted .resid .std.resid .hat .sigma 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 1 1960 40.6 -39.6 -1.10 1.08e-3 36.0 
## 2 28 1957 41.7 -13.7 -0.380 1.25e-3 36.1 
## 3 100 1963 39.6 60.4 1.68 9.65e-4 36.0 
## 4 0 1980 33.5 -33.5 -0.931 1.37e-3 36.0 
## 5 61 1958 41.3 19.7 0.546 1.19e-3 36.1 
## 6 5 1978 34.2 -29.2 -0.812 1.23e-3 36.0 
## 7 85 1951 43.8 41.2 1.14 1.76e-3 36.0 
## 8 70 1973 36.0 34.0 0.943 9.85e-4 36.0 
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## 9 5 1936 49.1 -44.1 -1.23 4.02e-3 36.0 
## 10 74 1978 34.2 39.8 1.10 1.23e-3 36.0 
## # ... with 1,105 more rows, and 1 more variable: 
## # .cooksd <dbl> 

Finally, broom has another function, glance(), that returns model-level output, 
including 2R , log-likelihood values, AIC, BIC, degrees of freedom, and so on. 
See the output and inspect the package documentation for exhaustive details 
on the package and functions (i.e., ?broom). 
glance(reg_simple) 

## # A tibble: 1 x 12 
## r.squared adj.r.squared sigma statistic p.value df 
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
## 1 0.0271 0.0262 36.0 31.0 3.21e-8 1 
## # ... with 6 more variables: logLik <dbl>, AIC <dbl>, 
## # BIC <dbl>, deviance <dbl>, df.residual <int>, 
## # nobs <int> 

Returning to the output, the negative β coefficient for birthyr suggests that 
younger respondents indeed have more negative feelings toward Trump. This 
is “significant” at the strict p < 0.01 level. We can also visualize our model by 
plotting it and overlaying a “best fit” line using ggplot() and adding a linear 
smoother layer (geom_smooth()) with confidence intervals around the line via 
se = TRUE. The result is in Figure 7.2. 
ggplot(NESdta_sub, aes(x = birthyr, y = fttrump)) + 

geom_point(alpha = 0.7) + 
geom_smooth(method = "lm", se = TRUE, alpha = 0.1) + 
labs(x = "Birth Year", 

y = "Trump Feeling Thermometer Score", 
title = "The Effect of Age on Trump Feelings") + 

theme_minimal() 

## `geom_smooth()` using formula 'y ~ x' 

Now, we may worry about other effects, such as party affiliation, that may 
also influence feelings toward Trump. In such a case, we would want to update 
our model to account for this. This would be a multiple regression. To do so, 
simply add (yes, using the + operator) additional independent variables, or 
“regressors.” In statistics, this is called “controlling” (e.g., “the effect of age, 
controlling for party”). 

We store the model in object reg_multiple, and then calculate predicted 
feelings toward Trump at the mean levels for each political party, while holding 
the other variable (birthyr) at its mean level using two powerful commands: 
tibble and predict. 
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The Effect of Age on Trump Feelings

FIGURE 7.2 
Linear Relationship between Age and Feelings toward Trump 

reg_multiple <- lm(fttrump ~ birthyr + Party, 
data = NESdta_sub); tidy(reg_multiple) 

## # A tibble: 4 x 5 
## term estimate std.error statistic p.value 
## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 (Intercept) 560. 108. 5.19 2.49e- 7 
## 2 birthyr -0.275 0.0548 -5.03 5.83e- 7 
## 3 PartyIndependent 24.3 2.15 11.3 3.76e-28 
## 4 PartyRepublican 46.4 2.36 19.7 4.23e-74 

predict(reg_multiple, 
tibble(Party = c("Democrat", "Republican", "Independent"), 

birthyr = mean(NESdta_sub$birthyr))) 

## 1 2 3 
## 17.98660 64.33667 42.31621 

As we would expect, feelings towards Trump are most positive among Repub
licans. Even as a candidate who had notably supported many Democrats in 
the past, Republicans appear to have been drawn to Trump to a much greater 
extent than Independents. We will come back to this point later in the chapter. 
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Exercises 

7.5.0.0.1 Easy 

•	 Why would you fit a regression model in the first place? What are the 
advantages compared to examining correlations, differences in means, or 
cross-tabulations? 

•	 Create a similar regression model for support for Obama. Are the results 
different from what you saw in your model of support for Trump? If so 
how? If not, why do you think this is the case? 

7.5.0.0.2 Intermediate 

•	 How large is the gender gap in support for Trump? Add the female 
variable to your model to find out. Then use predict() to show the 
difference between men and women who are Republicans and of average 
age. 

•	 How do you interpret a regression β coefficient? 

7.5.0.0.3 Advanced 

•	 Fit a regression model predicting support for Trump as a function of 
an interaction between political party affiliation and gender. What do 
you find, and what justification would there be to add a multiplicative 
interaction term to the right-hand side of a regression model? 

•	 What do “ordinary”, “least”, and “squares” mean? Is “ordinary” problem
atic? Why or why not? 

7.5.1 Regression Diagnostics 

Upon fitting any model, researchers should always check the fit and diagnose 
their models. Though researchers may be interested in a variety of metrics 
for fit, the two most common checks for linear models are: multicollinearity 
(whether more than one independent variable is explaining roughly the same 
variance in the dependent variable) and influential observations (outliers 
exerting larger effect on the model fit over the other observations). There 
are a few methods for checking for these, but we will focus on two: variance 
inflation factor (“vif”) for multicollinearity and Cook’s distance for influential 
observations. 

7.5.1.1 Multicollinearity 

First, for multicollinearity, this is when we have multiple regressors explaining 
a lot of the same variance in our dependent variable. Recall the main goal of 
regression is to parsimoniously explain as much unique variance in the response 
variable as possible. When two explanatory variables are highly correlated, we 
encounter some amount of overlapping variance explained between the two. 
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This results in inefficiency, as the model is chewing up more degrees of freedom 
(working harder), but for relatively little (if any) additional explanatory gain. 
Multicollinearity can also result in misleading inference about the effect of 
particular variables. One of the most common tests to check for multicollinearity 
is to estimate variance inflation factor statistics for all variables in the model. 
Essentially, the test checks across every regressor in the full model, and then 
checks how much the variance of the model shifts when a variable is included 
versus when it is excluded. The simplest statistic for variance explained is the 
R2. Thus, the formula is 1/1 − R2. Typically, values over 10 are considered j

problematic, though this is merely a rule of thumb, not a statistical property. 
The vif() function from the car package is quite simple, requiring only the 
model be supplied as input. 
# First fit a multiple regression model 
reg_full <- lm(fttrump ~ birthyr + Party + female, 

data = NESdta_sub); tidy(reg_full) 

## # A tibble: 5 x 5 
## term estimate std.error statistic p.value 
## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 (Intercept) 569. 108. 5.28 1.56e- 7 
## 2 birthyr -0.279 0.0547 -5.09 4.10e- 7 
## 3 PartyIndependent 23.8 2.16 11.0 8.61e-27 
## 4 PartyRepublican 46.1 2.36 19.6 1.24e-73 
## 5 female -3.94 1.87 -2.11 3.50e- 2 

car::vif(reg_full) 

## GVIF Df GVIF^(1/(2*Df)) 
## birthyr 1.009648 1 1.004812 
## Party 1.022983 2 1.005697 
## female 1.015137 1 1.007540 

We do not see any problematic variables based on VIF output. This is good 
news, suggesting the variables included are explaining unique variance in the 
dependent variable.2 

7.5.1.2 Influential Observations and Outliers 

Next, we can check for outliers that may be exerting a larger than expected 
amount of leverage or pull on the linear fit line explaining the data. We can 

2Note, the lack of multicollinearity makes sense in such a simple case. The real threat 
of multicollinearity enters when there are many regressors included on the right-hand side 
of the model, and especially when the number of regressors approaches the size of the 
sample. There is a more complex statistical technique widely used in machine learning called 
regularization, which efficiently deals with multicollineary and model complexity when it is 
a serious threat. For interested readers, there are some excellent resources for learning these 
techniques in R (James et al., 2013). 
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check for these by calculating and visualizing Cook’s Distance, which is one of 
the more common approaches to detecting outliers in regression models (as 
well as in data sets, though this application is not be covered in this chapter). 
Readers should note that you can inspect residual vs. fitted value plots in 
base R by simply plotting the lm object (i.e., plot(lm_model). However, here 
we will leverage two more recent packages from the easystats software group, 
which use ggplot2 from the tidyverse to render visualizations: performance 
to check for outliers, and see to plot the results. We will use our reg_full 
model previously fit. 

Cook’s distance calculates the influence of each observation on the fitted 
(predicted) values. It is a useful way to detect outliers, and whether any 
outliers may be troublesome for our estimates (i.e., pulling the regression fit 
line toward their location in the predictor space). Yet, whether the observation 
is a problematic outlier is a question left to the researcher. Let’s check for 
outliers in our reg_full model using the check_outliers() function from 
performance. 
check_outliers(reg_full) 

## OK: No outliers detected. 

Good news: no outliers were detected, at least when using Cook’s distance. 
Note: users should inspect the performance package documentation for the 
list of available metrics, which can be included and changed by supplying 
the appropriate name (e.g., cook or iforest) to the method argument in the 
check_outliers() function. 

Yet, while this is good news for our model, it is not such good news when 
demonstrating what to do if and when outliers are detected. To make this 
point, and demonstrate the available tools, we will replicate the example from 
the performance package documentation, to which Waggoner contributed. 
This example is using the mtcars data set, but with fake outlier cases manually 
added to the mt2 data set. Upon creating the data with the outliers, we will 
use the check_outliers() function previously used, and then plot the results 
using the plot() function from the see package. The result will be an easy to 
read ggplot2 object with outliers labeled accordingly in Figure 7.3. 
# create the synthetic data with outliers 
mt1 <- mtcars[, c(1, 3, 4)]
 
mt2 <- rbind(mt1, data.frame(mpg = c(37, 40),
 

disp = c(300, 400), 
hp = c(110, 120))) 

# fit the model on the created data 
model <- lm(disp ~ mpg + hp, 

data = mt2) 

news:no
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# check for outliers using Cook's and IQR (for comparison) 
check_outliers(model, method = c("cook", "iqr")) 

## Warning: 3 outliers detected (cases 31, 33, 34). 

# visualize 
plot(check_outliers(model, method = c("cook", "iqr"))) + 

theme(axis.text.x = element_text(angle = 75, hjust = 1)) 
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FIGURE 7.3 
Labeled Outliers via Cook’s Distance and IQR 

Exercises 

7.5.1.2.1 Easy 

•	 Run these diagnostics on your regression for support for Obama from 
the previous section. Are there any outliers or issues you notice in this 
regression? 

7.5.1.2.2 Intermediate 

•	 What is the first step you would take if you suspected an outlier may be 
exerting a large amount of influence on the fit of your model? 

•	 Replicate the previous case, but this time change method = "all". Do 
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you see consistency across the different metrics? Why or why not, do you 
think? 

7.5.1.2.3 Advanced 

•	 What is in the denominator of the variance inflation factor equation, and 
why is this the case? 

•	 Think about the logic behind Cook’s distance. Now, look up the “local 
outlier factor” (LOF ). How do these differ in substantive terms? How are 
they similar? 

7.5.2 Saving Regression Results 

Even if you follow best practices and present your results visually, you will 
likely need to provide a table of your regression results at some point. Here 
again, the stargazer package is useful for automatically generating these 
tables. 

Here is how we would create a table for Microsoft Word of the two regression 
models above. You will notice that this code is very similar to what we 
used to create the table of summary statistics. The only real difference is 
that we are including more than one object from which stargazer() is 
drawing information. We also need to set the label for the dependent variable 
(dep.var.labels()) to make it more informative than fttrump (and similarly 
for the independent variables via covariate.labels argument). The output, 
when we open it in Word, is a publication-ready table. 
stargazer(reg_simple, reg_multiple, 

dep.var.labels = c("Approval of Trump"), 
covariate.labels = c("Birth Year", 

"Independent", 
"Republican"), 

type = "html", 
out = here("tables", "ols_models.doc")) 

As we noted before, there are a number of different options with stargazer, 
so take some time to play around with these to find your favorite table format. 

Exercises 

7.5.2.0.1 Easy 

•	 Create a table that includes a bivariate model and a multivariate model 
of support for Obama (ftobama). Save it and open it in Microsoft Word 
or another word processing program. 
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7.5.2.0.2 Intermediate 

•	 You can add a number of different models to the same table. Take the 
table for approval of Trump (fttrump) above and add the bivariate and 
multivariate models for approval of Obama (ftobama). Be sure to modify 
the labels accordingly. 

7.5.2.0.3 Advanced 

•	 What is the difference between kable() and stargazer()? (hint: consider 
looking into the knitr package in the Tidyverse) 

7.5.3 Concluding Remarks for OLS 

We have merely scratched the surface on fitting, interpreting, and diagnosing 
linear models. For example, you can use regressions to fit mediation models 
when mediating effects are suspected (Waggoner, 2020). There are also many 
other diagnostic tests you could (and should) run when you fit models and 
present results, such as studentized residual plots, leverage plots, and so on. 
Many of these other techniques are detailed in the easystats performance 
package demonstrated above. 

The bottom line is, in social science research, researchers should always strive 
to be honest and thorough in the research program and present the full scope 
of the process. This includes multiple iterations of models run, diagnostic tests, 
and even alternative specifications. And more specifically for our purposes, we 
suggest the Tidyverse is an exceptionally useful environment to facilitate this 
process in a consistent, clean manner. 

7.6 Binary Response Models 

Recall that if we are interested in predicting the outcome of a binary dependent 
variable (e.g., moving from a no to a yes, or the probability of moving from 
a 0 to a 1), then we should fit a binary response model that can efficiently 
handle estimation of the outcome. 

OLS is inappropriate for binary response dependent variables, because it 
assumes a continuous distribution in the response. The first attempt to deal 
with this type of data was called a linear probability model (LPM). But, it 
was soon realized that an LPM also produced unrealistic probabilities (e.g., 
105% or -30% likelihood of some event happening). 

As such, the two most widely used models aimed at handling these types of data 
in social sciences are logistic regression (logit) and probit regression. Probit was 
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much more popular in the 1980s and 1990s. Today, however, logistic regressions 
are arguably used more frequently in the social sciences. It is important to note 
that this preference is largely cosmetic (at least in a substantive, inferential 
sense), as both estimators produce virtually identical point estimates. We will 
demonstrate this below. 

Ultimately, though, fitting a binary response model in R is nearly as straightfor
ward as fitting a basic linear model. This time, though, we will use the glm() 
function instead of lm(), as logistic and probit regressions are generalized 
linear models (hence the “g” in the “glm” function). Once we fit our model, it 
is always a good idea to visualize the results as well as check for the robustness 
of our estimates. We demonstrate these concepts in the Tidyverse for the 
remainder of this chapter. 

7.6.1 Loading Some New Libraries 

First, we need to load a few new libraries and then create a binary response 
variable. To do the latter, we will call it pro_trump, where over 50% on the 
Trump feeling thermometer suggests the respondent supports Trump, at least 
more than opposing him. To create this new variable, we use the ifelse() 
function you learned earlier. Ultimately, we are interested in predicting the 
likelihood of supporting Trump, relative to not supporting him. In other words, 
we are interested in the probability of moving from a 0 (not support) to a 1 
(support). 
# load some packages/libraries first
 
library(faraway)
 
library(foreign)
 
library(ggplot2)
 
library(arm)
 
library(MASS)
 
library(OOmisc) # for ePCP fit statistics
 
library(pROC) # for plotting ROC curves
 
library(lmtest) # for likelihood ratio tests
 
library(skimr)
 

# create new "pro_trump" var for prediction
 
NESdta_sub <- NESdta_sub %>% 

mutate(pro_trump = ifelse(fttrump >= 50, 1, 0)) %>% 
drop_na() 

# inspect to make sure everything looks right 
sample_n(tibble(NESdta_sub$pro_trump), 5) 

## # A tibble: 5 x 1 
## `NESdta_sub$pro_trump` 
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## <dbl> 
## 1 1 
## 2 1 
## 3 0 
## 4 1 
## 5 0 

table(NESdta_sub$pro_trump) # whole df: 665 = 0; 450 = 1 

## 
## 0 1 
## 665 450 

7.6.2	 Demonstrating Why OLS is Poor for Binary Outcomes 

First, to motivate the value of fitting a logistic or probit model, we demonstrate 
how an OLS model performs poorly in predicting binary responses in Figure 
7.4. 
ggplot(NESdta_sub, aes(x = birthyr, y = pro_trump)) + 

geom_point(alpha = 0.7) + 
geom_smooth(method = "lm", se = TRUE) + 
labs(x	 = "Birth Year", 

y = "Observed Pro-Trump Rating (FT >= 0.5)", 
title = "The Effect of Age on Pro-Trump Rating") + 

theme_minimal() 

## `geom_smooth()` using formula 'y ~ x' 

The data constrained at {0, 1}, we can see the linear fit line is quite inefficient 
and does not explain very much of the data. Thus we need a model that can 
handle binary response dependent variables. As previously noted, there are 
two options here that are most commonly used: logit and probit. However, 
which one should we choose? The short answer is, it doesn’t really matter. But 
let’s prove it Tidyverse style! 

7.6.3	 Demonstrating Logit and Probit are (Virtually) Identi
cal 

To demonstrate that logit and probit are functionally identical, we first fit 
a logit model, and then a probit model to estimate the relative impact of 
respondents’ ages (birthyr) on the likelihood of being “pro-Trump”. Of note, 
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FIGURE 7.4 
Poor Fit of OLS for a Binary Outcome 

the only thing we are changing in these models is the link function, from logit 
to probit. We store each model in objects logit and probit.3 

logit <- glm(pro_trump ~ birthyr, 
family = binomial(link = logit), 
NESdta_sub); tidy(logit) 

## # A tibble: 2 x 5 
## term estimate std.error statistic p.value 
## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 (Intercept) 32.5 7.20 4.52 0.00000622 
## 2 birthyr -0.0167 0.00366 -4.57 0.00000483 

probit <- glm(pro_trump ~ birthyr, 
family = binomial(link = probit), 
NESdta_sub); tidy(probit) 

## # A tibble: 2 x 5 
## term estimate std.error statistic p.value 

3The update to the glm() function compared to the lm() function is the inclusion of 
family argument. This is where we tell the function that we are interested in the binomial 
family, and that we want either a logit or a probit link within the binomial family. 
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## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 (Intercept) 20.3 4.44 4.56 0.00000508 
## 2 birthyr -0.0104 0.00226 -4.62 0.00000391 

Importantly, raw coefficients from logit and probit models are not extremely 
helpful beyond direction of effects and significance. To turn these into something 
more useful, a common choice is to calculate predicted probabilities. To do so, 
and thus compare both numerically and visually, we can show the predicted 
probabilities for being pro-Trump for specific levels of age. We will show for 
the oldest respondent (born in 1921), the median respondent (born in 1967) 
and then the youngest respondent (born in 1997). We obtain these values 
using skim(). We then calculate and store the predicted values at each level 
by simply plugging the intercept (β0) and slope (βj ) coefficients into either 
ilogit() or pnorm() for logit and probit models, respectively. The reason for 
this choice is because the logit requires the inverse logistic distribution, while 
the probit requires the normal distribution to turn these coefficient values into 
predicted probabilities for more intuitive interpretation. We then store these 
in a transposed tibble using the tribble() function to offer a cleaner look at 
predicted probabilities by age level. 
# get the different values for min, med, and max birth year first 
summary(NESdta_sub$birthyr) 

# store preds when birth year is at its min, median, and max 
l_min <- ilogit(32.52570 + (-0.01673) * 1921) #min 
p_min <- pnorm (20.263235 + (-0.010424) * 1921) #min 
l_med <- ilogit(32.52570 + (-0.01673) * 1967) #median 
p_med <- pnorm (20.263235 + (-0.010424) * 1967) #median 
l_max <- ilogit(32.52570 + (-0.01673) * 1997) #max 
p_max <- pnorm (20.263235 + (-0.010424) * 1997) #max 

Predictions_Logit_Probit <- tribble( # transposed tibble 
~` `, ~Logit, ~Probit, 
"Minimum Birth Year (1921)", l_min, p_min, 
"Median Birth Year (1967)", l_med, p_med, 
"Maximum Birth Year (1997)", l_max, p_max 

) 
Predictions_Logit_Probit 

In line with the earlier OLS findings, younger respondents are much less likely 
to be in the pro-Trump camp, while older respondents are most likely to be 
in the pro-Trump camp. But more importantly for our purposes, note the 
virtually identical predictions for both the logit and probit models. This is 
evidence of point number 1. For evidence of point number 2, corroborating these 
similarities, we can also visualize this by plotting the predicted probabilities 
against each other. If they are the same, then we would expect a perfectly 
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diagonal 45 degree line from the lower left to the upper right. To do this, we 
will use ggplot2 with a point geometry to create a scatterplot and present 
the comparison in Figure 7.5. 
logit_phat <- logit$fitted.values # fitted values from logit 
probit_phat <- probit$fitted.values # fitted values from probit 

hat_data <- tibble(logit_phat, probit_phat) 
#hat_data # uncomment to inspect if you'd like 

hat_data %>% 
ggplot() + 
geom_point(alpha = 0.7, aes(x = logit_phat, y = probit_phat)) + 
labs(x = "Logit Predicted Probabilities", 

y = "Probit Predicted Probabilities", 
title = "Comparing Logit & Probit Predictions") + 

theme_minimal() 
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FIGURE 7.5 
Comparing Logit and Probit 

It is clear from this chart that the logit and probit are virtually identical. Thus, 
we will proceed with only logit for the remainder of the chapter. 
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7.6.4	 Hypothesis Testing, Inference, and Substantive Inter
pretation 

For both the logit and probit models, the glm() function returns the slope 
coefficients, their corresponding standard errors and significance levels. We 
can also get confidence intervals (CIs) for the estimated coefficients using the 
confint() function, which profiles the likelihood distribution. After fitting the 
model, we can convert coefficients into odds ratios, which are straightforward 
to interpret. Based on the mean odds ratio, a one-point increase in X, will 
increase the probability of moving from 0 to 1 by a factor of Z. Values greater 
than 1 are positive relative effects, whereas values less than 1 are negative 
relative effects. Note that the odds ratios are the exponentiated coefficients 
from the model, and can be calculated via the exp() function from base R. 
confint(logit) 

## Waiting for profiling to be done... 

## 2.5 % 97.5 % 
## (Intercept) 18.48486848 46.717426131 
## birthyr -0.02394826 -0.009594217 

base::exp(logit$coefficients) 

## (Intercept) birthyr 
## 1.335769e+14 9.834070e-01 

7.6.5	 A Multivariate Model 
To this point, we have found that age has a significantly negative impact on 
the likelihood of being pro-Trump. Yet, there are likely other factors that also 
matter. To explore these, and thus control for other factors, we can complicate 
our base model by adding additional regressors as we did in the OLS case 
earlier in the chapter. 
mult_logit <- glm(pro_trump ~ birthyr + factor(Party) + gender, 

family = binomial(link = logit), 
NESdta_sub); tidy(mult_logit) 

## # A tibble: 5 x 5 
## term estimate std.error statistic p.value 
## <chr> <dbl> <dbl> <dbl> <dbl> 
## 1 (Intercept) 31.1 8.06 3.86 1.16e- 4 
## 2 birthyr -0.0164 0.00409 -4.00 6.44e- 5 
## 3 factor(Party)Indepe~ 1.32 0.163 8.11 5.13e-16 
## 4 factor(Party)Republ~ 2.41 0.182 13.3 3.14e-40 
## 5 gender -0.275 0.138 -2.00 4.56e- 2 
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Here we store the multivariate version in the object mult_logit, and also 
make Party a factor for the sake of plotting below. Note that this does not 
change the impact of the variable or the model. 

With a more fully specified model controlling for additional factors (party 
and also gender), we can get a more reliable sense of the magnitude of these 
effects by generating out-of-sample predicted probabilities, ranging over the 
birth year and holding the effect of gender at its mean value. This will give 
us a targeted look at the effect of party affiliation on the likelihood of being 
pro-Trump. 
# out of sample predicted values 
# let birth year range (do this 300 time for each level of party) 
# hold gender effect at mean; 100 times for each party id level 
sub_data <- with(NESdta_sub, tibble( 

birthyr = rep(seq(from = 1921, to = 1997, 
length.out = 100), 

3),
 
gender = mean(gender),
 
Party = factor(rep(c("Democrat",
 

"Republican",
 
"Independent"),
 

each = 100)))
 
)
 

# combine predicted values and SEs based on "sub_data" 
pred_data <- cbind(sub_data, predict(mult_logit, 

newdata = sub_data, 
type = "link", 
se = TRUE)) 

# store lower limit (LL) and upper limit (UL) values
 
# attach to predicted values data frame created in "pred_data"
 
pred_data <- within(pred_data, { 

PredictedProb <- plogis(fit) 
LL <- plogis(fit - (1.96 * se.fit)) 
UL <- plogis(fit + (1.96 * se.fit)) 

}) 

With our synthetic out-of-sample data frame created, we can now plot these 
results with unique lines and confidence intervals for each party in Figure 7.6. 
ggplot(pred_data, aes(x = birthyr, y = PredictedProb)) + 

geom_errorbar(aes(ymin = LL, ymax = UL), alpha = 0.2) + 
geom_line(aes(color = Party), size = 1) + 
scale_color_manual(values = amerika_palette("Dem_Ind_Rep3"), 

name = "Party") + 
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labs(x = "Birth Year", 
y = "Predicted Probability of Pro-Trump Rating", 
title = "The Effect of Age and Party on Pro-Trump Rating", 
subtitle = "Trends from 300 Out-of-Sample Predictions") + 

theme_minimal() 
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FIGURE 7.6 
Out-of-Sample Predictions 

In line with expectations and seen in the different slopes for each level of party 
affiliation, Democrats have the overall lowest probability of supporting Trump, 
followed by Independents in the middle, and followed by Republicans, who 
have the highest overall probability of supporting Trump. Yet, the likelihood 
of being pro-Trump across all parties drastically decreases as the respondent 
pool gets younger. 

7.6.6 Assessing Model Fit 

As with OLS regression, it is vitally important to assess the fit of models in 
the binary response world as well. We focus on two difference approaches: 
classification-based (did the model classify observations correctly compared 
to true values) and the likelihood-based (does model X predict the likeli
hood of moving from 0 to 1 better than model Z?). We start with expected 
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proportion correctly predicted (ePCP) and then we inspect receiver operating 
characteristic (ROC) curves. We conclude with likelihood ratio tests. 

7.6.6.1 Expected Proportion Correctly Predicted (ePCP) 

First, using function ePCP(), we can calculate the expected proportion correctly 
predicted (ePCP) statistics associated with each of our logit models (the 
bivariate and the multivariate). We then store the predicted values and present 
them visually across both models. Here, we are interested in which model 
performs “best.” Higher ePCP suggests a better fit, or a higher proportion of 
correctly classifying Trump supporters versus non-supporters.4 

y <- NESdta_sub$pro_trump 
pred1 <- predict(logit, type="response") 
pred2 <- predict(mult_logit, type="response") 

epcp1 <- ePCP(pred1, y, alpha = 0.05) 
epcp2 <- ePCP(pred2, y, alpha = 0.05) 

The multivariate iteration has a higher mean ePCP value than the bivariate 
model, suggesting the more complicated multivariate model fits the data better 
than the bivariate model. We can also visualize these results in Figure 7.7. 
epcpdata <- data.frame(rbind(epcp1, epcp2))
 
epcpdata$model <- c(1,2)
 
epcpdata$count <- factor(c(1,2),
 

label = c("Bivariate", "Multivariate")) 

ggplot(epcpdata, aes(x = model, y = ePCP, 
color = count)) + 

geom_bar(position = position_dodge(), 
stat = "identity", 
fill = "darkgray") + 

geom_errorbar(aes(ymin = lower, ymax = upper), 
width = 0.1, 
position = position_dodge(0.9)) + 

labs(title = "Comparing ePCP between Bivariate and\n 
Multivariate Logistic Regressions", 
x = "Model Specification", 
y = "Expected Proportion of Correct Prediction", 
color = "Model") + 

theme_minimal() 

4We thank Ling Zhu (University of Houston) for sharing some excellent base code used 
in these assessment tests. 
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Expected Proportion Correctly Predicted (ePCP) 

7.6.6.2 Receiver Operating Characteristic (ROC) Curves 

Next, receiver operating characteristic (ROC) curves plot the correct predic
tions (sensitivity, “true positive” rate) against false predictions (specificity, 
“false positive” rate). When a model fits well, the area under the curve (AUC) 
will be greater, where 1 suggests perfect classification. The 45-degree diagonal 
line is a reference point, such that we are interested in the model with the 
curve most distant to the upper left from the diagonal line, suggesting greater, 
positive AUC, and thus a better fit with more true positives correctly classified, 
which again is support for Trump (y = 1). Results are in Figure 7.8. 
par(mfrow = c(1,2)) # set the pane side by side (rows, columns) 
plot.roc(y, pred1, 

col="darkgreen", 
main = "Bivariate Logit") 

## Setting levels: control = 0, case = 1 

## Setting direction: controls < cases 

plot.roc(y, pred2, 
col="darkorange", 
main = "Multivariate Logit") 
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## Setting levels: control = 0, case = 1 
## Setting direction: controls < cases 
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FIGURE 7.8 
ROC Curves Comparing Bivariate and Multivariate Fits 

Similar to ePCP, we can see much greater AUC for the multivariate model with 
a curve farther to the upper left compared to the bivariate model, suggesting 
the multivariate specification fits best. 

7.6.6.3 Likelihood Ratio Tests 

Finally, we can also assess fit by comparing the fit between models based 
on the likelihood ratios using the likelihood ratio test. The test statistic is 
defined as, LRtest = 2lnL(MB ) − 2lnL(MM ), where L(MB ) is the likelihood 
of estimates for the bivariate model and L(MM ) is the likelihood of estimates 
for the multivariate model. 
lrtest(logit, mult_logit) 

## Likelihood ratio test 
## 
## Model 1: pro_trump ~ birthyr 
## Model 2: pro_trump ~ birthyr + factor(Party) + gender 
## #Df LogLik Df Chisq Pr(>Chisq) 
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## 1 2 -741.35 
## 2 5 -632.56 3 217.58 
## --
## Signif. codes: 
## 0 '***' 0.001 '**' 0.01 

< 2.2e-16 

'*' 0.05 

*** 

'.' 0.1 ' ' 1 

As the log-likelihood of a model is a measure of fit, we are looking for a 
significant result (sufficiently small p-value), and the model with a smaller 
absolute log-likelihood value. Seen from the lrtest() output, the multivariate 
model is indeed better fitting than the bivariate model, in line with the previous 
tests. 

Exercises 

7.6.6.3.1 Easy 

•	 Repeat the modeling exercise above, but with a dichotomous version of the 
feeling thermometer for Obama (ftobama). How are the results similar or 
different? 

•	 Create a table for your logit models of support for Trump and Obama. 

7.6.6.3.2 Intermediate 

•	 Check the fit of your Obama logistic regression. Do the independent variables 
contribute to a better model for explaining support for Obama or support 
for Trump? How do you know? Why do you think these results are different, 
if indeed they are? 

•	 Suppose you visualized an ROC curve for your logistic regression model, but 
the curve was to the lower right of the 45 degree reference line (i.e., below). 
What would this tell you, and how would you know? 

7.6.6.3.3 Advanced 

•	 What might be a reasonable argument against collapsing a quantitative (i.e., 
continuous numeric) variable into a binary variable? 

•	 Suppose your teacher said, “fit a linear probability model with a binary 
dependent variable.” What would you say in response and what would be a 
different approach you could take and why? 

7.7 Concluding Remarks 

This chapter has attempted to cover a lot of ground in a very short amount of 
space. Our goal was to demonstrate that the range of statistical tools common 
to most social scientists fits quite well in the Tidyverse. For example, those 
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familiar with the base R function for correlation, cor(), will immediately see 
that working with the Tidyverse counterpart, correlate(), is much easier. 

The capacities of R for statistical modeling are immense. From Bayesian 
analysis to machine learning, you can find just about any type of statistical 
model you will need, with an R package already developed. If you are wondering 
where to start to find a specific model, visit the CRAN Task Views. Consider 
also searching for the model or technique, adding “in R” to the search. Such a 
task with return a host of tutorials, blog posts, and many other resources to 
help you along your way. 
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Parting Thoughts 

This book has provided a very concise introduction to R and the Tidyverse. 
We hope we have made a sufficient case for the use of both, and provided you 
with the tools and understanding you need to set you off on your journey. But 
you may be wondering where you go from here. In this section, we will provide 
you with a few ideas of how to move towards mastery of the R language, and 
get lots of great ideas for how you can use R to create new, original, and 
exciting research. As we said in the beginning, learning to program is not 
always an easy process. But over time, you will find these tools will open areas 
of research that you never thought of prior to learning programming. As the 
old saying goes, 

If all you have is a hammer, everything begins to look like a nail. 

Learning to efficiently program in R will change the way you view and do your 
research. Neither of us anticipated the kind of work we are doing now when we 
started graduate school. Yet, learning R opened new avenues far more exciting 
than anything we had originally anticipated. 

8.1 Continuing to Learn with R 

As you leave this book, one thing is more important than any other for you to 
learn R – use R. You probably have heard of other tools for research that offer 
a simpler (at least at first) way to accomplish what you want to do. SPSS and 
Stata have dropdown menus – why not do basic analyses there? The answer is 
that you will not learn R if you are only using it every once in a while, when 
you need to do something you cannot do in another language. We will not go 
as far as one well-known scholar who claimed to do his taxes in R, but you 
will not really learn without continuous use. Try to use R as your first choice 
for analysis, and only use another program if you find yourself in a situation 
in which it is really needed. R should become your default. This is part of 
the reason we emphasized data management and graphics in this book. Since 
these are the tasks that begin just about any project, you have no excuse not 
to start with R. 

185 
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As you program with R, you will build a base of code that you will continue 
to use as you work. Remember to save the scripts that you write. You will find 
that you can re-use your code over and over. And, as you develop a base of 
scripts, you will find that working in R becomes much faster (and faster than 
using drop-down menus all the time). The online companion site for this book 
provides all the code from this book to jump-start this process, and you can 
find a range of code available online to help you build up this base of code. 

Related to this, it is a good idea to subscribe to daily emails from R-Bloggers. 
This will give you exposure to many of the exciting projects that are being 
done by others in R, and will allow you to see the many opportunities using R 
opens to your research. Many places also have dedicated groups for using R or 
data science more generally, where you can meet other R users and participate 
in fascinating projects, no matter your level of skill. You can find many of 
these on Meetup. 

Finally, be patient with yourself. There is the old story (perhaps apocryphal) 
that Einstein told a student, who claimed to have difficulty with math, “Do 
not worry about your difficulties in mathematics. I can assure you mine are 
still greater.” All of us have had situations where we have struggled to get a 
particular piece of code to run correctly, or have received an error message we 
do not understand. Keep working on it and looking for help. It may take a 
while, but there is no greater feeling than conquering, and mastering, a task 
that you have struggled with previously. Celebrate your accomplishments, and 
persist through your difficulties. 

8.2 Where To Go from Here 

As we have mentioned in several places, our online companion site provides 
code examples of several other common (and some uncommon) tasks in R. 
You can download these and add them to your code base. 

To discover specific packages in R that are useful for a particular statistical 
model or task, there is also the CRAN Task Views, which provides a curated 
list of packages available for all kinds of analysis, from Bayesian statistics to 
network analysis and machine learning. 

Many scholars have also put together books that will help you as you work with 
R in more specific circumstances, and many of these are available online (many 
at no cost). A compendium of these books can be found at https://www.r
project.org/doc/bib/R-books.html. 

A few more specific books that you might pick up after this book are: 

– Hadley Wickham and Garrett Grolemund’s R for Data Science. This book 

https://www.r�project.org
https://www.r�project.org/doc/bib/R-books.html
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provides a more comprehensive picture of what you can do in the Tidyverse. It 
is much more valuable, however, once you already have some basic familiarity 
working with R and the basics of the Tidyverse, as it is written for an audience 
with some level of prior programming experience. The book is available in 
print, as an electronic book, or online for free (https://r4ds.had.co.nz/). 

– Quan Li’s Using R for Data Analysis in Social Sciences. Li provides an 
excellent introduction to base R, and also goes into much greater detail on 
specific statistical models and, in particular, how to replicate studies in the 
social sciences. 

– Kieran Healy’s Data Visualization: A Practical Introduction. This book 
provides an overview of the graphical capabilities in R using practical examples 
using ggplot2. 

– For those interested in Bayesian statistics using R, we cannot recommend 
Richard McElreath’s Statistical Rethinking highly enough. It is both entertain
ing and enlightening, and uses R to demonstrate important statistical concepts 
with which any researcher should be familiar. 

8.3 A Final Word 

In so many ways, we are living in a golden era for quantitative social science 
research. Never have we had so much data available on human behavior, and 
the ability to generate and analyze these data in ways that would have been 
inconceivable just a decade ago. The future of the social sciences belongs to 
those who are able to produce unique and replicable research. You now have 
at your disposal what we consider one of the most powerful tools for achieving 
this. We look forward to seeing what you do with it. 

https://www.r4ds.had.co.nz


https://taylorandfrancis.com
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