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Preface

How big IS it?

Numbers are thrown at us all the time. They are
frequently used to scare us: “Shark attacks doubled
this year!” or “Dozens of lives could be saved by using
infant car seats on airplanes!” They are often used to
tempt us: “This week’s lottery prize is $100 million!”
They are certainly needed to understand the world
around us: “The average American produces 100 cubic
feet of garbage every year!” or “Nuclear power plants
produce tons of high-level radioactive waste!”

You can make sense of these often confusing and
sometimes contradictory numbers with just two tools:
(1) an understanding of the meaning of large numbers
and (2) an ability to make rough, common-sense,
estimates starting from just a few basic facts. We’ll
teach you these straightforward skills so you can better
understand the world around you and better recognize
numerical, political, and scientific nonsense.

You can also use these tools to further your career.
Many top companies use estimation questions in job
interviews to judge the intelligence and flexibility of
their applicants [1]. Leading software firms, manage-
ment consultants, and investment banks (for example,
Microsoft, Goldman Sachs, and Smith Barney) ask
questions such as What’s the size of the market for
disposable diapers in China? How many golf balls does
it take to fill a 747? and How many piano tuners
are there in the world? [2, 3] Companies use these
questions as an excellent test of the applicants’ abilities
to think on their feet and to apply their mathematical
skills to real-world problems.

These problems are frequently called “Fermi prob-
lems,” after the legendary physicist Enrico Fermi, who

xiii



delighted in creating and solving them. During one of
the first atomic bomb tests, Fermi supposedly dropped
a few scraps of paper as the shock wave passed and
estimated the strength of the blast from the motion of
the scraps as they fell.

In this book, we will help you develop the ability to
estimate almost anything, from the amount of landfill
space needed to the number of people in the world
picking their nose at this instant. As there is no single
correct way to analyze these questions, we will indicate
some of the many paths to the right answer.

We will start with two short chapters on how to
estimate and how to handle large numbers, and then
we’ll move on to the heart of the book: interesting
questions (with lots of hints if you want them) fol-
lowed by the answers on the other side of the page. The
questions are divided into chapters, each focusing on a
particular topic, such as energy and the environment,
transportation, and risk. Each chapter will start with
easier questions and work up to harder ones. The
questions in chapters 6 through 9 will cover energy
in its various forms. We will start with mountain
climbing and go on to compare gasoline, chocolate
chip cookies, batteries, the Sun, gerbils, windmills, and
uranium.

The questions cover a large range of phenomena,
from the simple to the complex and from the silly to
the serious. We will figure out the answers to many
fascinating questions, including the following:

o If all the people in the world were crammed to-
gether, how much space would we occupy?

o How many batteries would it take to replace your
car’s gas tank?

o Could Spider-Man really stop a subway car?

o How much waste do nuclear and coal electric
power generators make per year?
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o What does it really cost to drive a car?

e Which is more powerful per pound, the Sun or a
gerbil?

e How much more cropland would we need to re-
place gasoline with corn-based ethanol?

All you will need to answer these questions is a
willingness to think and to handle big numbers. We
will remind you of the few scientific principles and
equations you might need. You will be astonished
at how much you can figure out starting with the
knowledge you already have.

The new knowledge you will attain can be applied
to all other estimation problems you may come across
in the future. Oh, and good luck on that job interview!

Xv






guezztimation

XXX EXXEXXERXXEXXRFXXEN*






How to Solve Problems



STEP 1: Write down the answer [4]. In other words,
come up with a reasonably close solution. This is
frequently all the information you need.

For example, if it is 250 miles from New York to
Boston, how long will it take to drive? You would
immediately estimate that it should take about four or
five hours, based on an average speed of 50-60 mph.
This is enough information to decide whether or not
you will drive to Boston for the weekend. If you do
decide to drive, you will look at maps or the Internet
and figure out the exact route and the exact expected
driving time.

Similarly, before you go into a store, you usually
know how much you are willing to spend. You might
think it is reasonable to spend about $100 on an X-
Game?2. If you see it for $30, you will automatically buy
it. If it sells for $300, you will automatically not buy it.
Only if the price is around $100 will you have to think
about whether to buy it.

We will apply the same reasoning here. We’ll try to
estimate the answer to within a factor of ten. Why a
factor of ten? Because that is good enough to make
most decisions.

Once you have estimated the answer to a problem,
the answer will fall into one of the three “Goldilocks”
categories:

1. too big
2. too small
3. just right

If the answer is too big or too small, then you know
what to do (e.g., buy the item, don’t drive to Boston).
Only if the answer is just right will you need to put
more work into solving the problem and refining the
answer. (But that’s beyond the scope of this book. We
just aim to help you estimate the answer to within a
factor of ten.)
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If all problems were as simple as that, you wouldn’t
need this book. Many problems are too complicated
for you to come up with an immediate correct answer.
These problems will need to be broken down into
smaller and smaller pieces. Eventually, the pieces will
be small enough and simple enough that you can
estimate an answer for each one. And so we come to

STEP 2: If you can’t estimate the answer, break the
problem into smaller pieces and estimate the answer
for each one. You only need to estimate each answer to
within a factor of ten. How hard can that be?

It is often easier to establish lower and upper
bounds for a quantity than to estimate it directly. If we
are trying to estimate, for example, how many circus
clowns can fit into a Volkswagen Beetle, we know the
answer must be more than one and less than 100. We
could average the upper and lower bounds and use 50
for our estimate. This is not the best choice because it
is a factor of 50 greater than our lower bound and only
a factor of two lower than our upper bound.

Since we want our estimate to be the same factor
away from our upper and lower bounds, we will use
the geometric mean. To take the approximate geo-
metric mean of any two numbers, just average their
coefficients and average their exponents.* In the clown
case, the geometric mean of one (10°)" and 100 (10%)
is 10 (10') because one is the average of the exponents
zero and two. Similarly, the geometric mean of 2 x 10'°

*We use coefficients and exponents to describe numbers in
scientific notation. The exponent is the power of ten and the
coefficient is the number (between 1 and 9.99) that multiplies
the power of ten. If you are not familiar with this notation, please
quickly check the section on scientific notation (“Dealing with
Large Numbers”) and then come right back. We’ll wait for you
here.

t Any number raised to the Oth power is 1.



and 6 x 10° is about 4 x 10° (because 4 = 3 and
9 = %*3).* If the sum of the exponents is odd, it is a
little more complicated. Then you should decrease the
exponent sum by one so it is even, and multiply the
final answer by three. Therefore, the geometric mean
of one and 10° is 3 x 10! = 30.

EXAMPLE 1: MongaMillions Lottery Ticket Stack

Here’s a relatively straightforward example: Your
chance of winning the MongaMillions lottery is one in
100 million." If you stacked up all the possible different
lottery tickets, how tall would this stack be? Which dis-
tance is this closest to: a tall building (100 m or 300 ft),
a small mountain (1000 m), Mt Everest (10,000 m), the
height of the atmosphere (10° m), the distance from
New York to Chicago (10°m), the diameter of the
Earth (107 m), or the distance to the moon (4 x 10® m)?
Imagine trying to pick the single winning ticket from
a stack this high.

Solution: To solve this problem, we need two pieces
of information: the number of possible tickets and
the thickness of each ticket. Because your chance of
winning is one in 100 million, this means that there are
100 million (10%) possible different tickets.* We can’t
reliably estimate really thin items like a single lottery
ticket (is it 1/16 in. or 1/64 in.? is it 1 mm or 0.1 mm?)
so let’s try to get the thickness of a pack of tickets.

*To be more precise (which this book rarely is), the geometric
mean of two numbers, b and ¢, is a = ~/bc. Our approximate rule
is exact for the exponents and close enough for this book for the
coefficients.

t Lottery billboards frequently have the odds of winning in very smat
print at the bottom.

+100 million = 100,000,000 or 1 followed by eight (count them!)
zeros. This can be written in scientific notation as 1 x 10°.
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Let’s think about packs of paper in general. One ream
of copier or printer paper (500 sheets) is about 1.5 to
2in. (or about 5 cm since 1in. = 2.5 cm) but paper is
thinner than lottery tickets. A pack of 52 playing cards
is also about 1 cm. That’s probably closer. This means
that the thickness of one ticket is

lcm cm 1m
t= ——— =0.02— X ——
52 tickets ticket 102 cm
=2x10"*
ticket

Therefore, the thickness of 108 tickets is

T=2x10"* x 108 tickets = 2 x 10*m

ticket

2 x 10*m is 20 kilometers or 20 km (which is about
15 miles since 1 mi = 1.6 km).

If stacked horizontally, it would take you four or five
hours to walk that far.

If stacked vertically, it would be twice as high as Mt
Everest (30,000 ft or 10 km) and twice as high as jumbo
jets fly.

Now perhaps you used the thickness of regular
paper so your stack is a few times shorter. Perhaps
you used 1 mm per ticket so your stack is a few times
taller. Does it really matter whether the stack is 10 km
or 50 km? Either way, your chance of pulling the single
winning ticket from that stack is pretty darn small.

EXAMPLE 2: Flighty Americans

These problems are great fun because, first, we are
not looking for an exact answer, and second, there are
many different ways of estimating the answer. Here is
a slightly harder question with multiple solutions.

How many airplane flights do Americans take in
one year?



We can estimate this from the top down or from the
bottom up. We can start with the number of airports
or with the number of Americans.

Solution 1: Start with the number of Americans and
estimate how many plane flights each of us take per
year. There are 3 x 108 Americans.* Most of us prob-
ably travel once a year (i.e., two flights) on vacation
or business and a small fraction of us (say 10%) travel
much more than that. This means that the number of
flights per person per year is between two and four (so
we’ll use three). Therefore, the total number of flights
per year is

N = 3 x 10® people x 3 flights/person-year

= 9 x 10® passengers/year

Solution 2: Start with the number of airports and then
estimate the flights per airport and the passengers per
flight. There are several reasonable size airports in a
medium-sized state (e.g., Virginia has Dulles, Reagan-
National, Norfolk, Richmond, and Charlottesville; and
Massachusetts has Boston and Springfield). If each of
the fifty states has three airports then there are 150
airports in the US. Each airport can handle at most one
flight every two minutes, which is 30 flights per hour
or 500 flights per 16-hour day. Most airports will have
many fewer flights than the maximum. Each airplane
can hold between 50 and 250 passengers. This means

*This is one of those numbers you need to know to do many
estimation questions. Go ahead and write it on your palm so
you'll be prepared for the test at the end of the book.
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that we have about

100 flights 100 passengers

N = 150ai ts X
PO airport-day flight

365 days s
X ————— =5 x 10° passengers per year
year
Wow! Both methods agree within a factor of two.
The actual number of US domestic airline passen-
gers in 2005 was 6.6 x 10%, which is close enough to
both answers.

EXAMPLE 3: Piano Tuners in Los Angeles

Now let’s work out a harder problem.

How many piano tuners are there in Los Angeles (or
New York or Virginia Beach or your own city)? This is
the classic example originated by Enrico Fermi [5] and
used at the beginning of many physics courses because
it requires employing the methods and reasoning used
to attack these problems but does not need any physics
concepts.

Solution: This is a sufficiently complicated problem
that we cannot just estimate the answer. To solve this,
we need to break down the problem. We need to
estimate (1) how many pianos there are in Los Angeles
and (2) how many pianos each tuner can care for.
To estimate the number of pianos, we need (1) the
population of the city, (2) the proportion of people
that own a piano, and (3) the number of schools,
churches, etc. that also have pianos. To estimate the
number of pianos each tuner can care for, we need to
estimate (1) how often each piano is tuned, (2) how
much time it takes to tune a piano, and (3) how much
time a piano tuner spends tuning pianos.
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This means that we need to estimate the following:

1. population of Los Angeles

2. proportion of pianos per person

3. how often each piano is tuned per year

4. how much time it takes to tune each piano

5. how much time each piano tuner works
per year

Let’s take it from the top.

1. The population of Los Angeles must be much
less than 108 (since the population of the US is
3 x 10%). It must be much more than 10° (since
that is the size of an ordinary big city). We’ll
estimate it at 107,

2. Pianos will be owned by individuals, schools,
and houses of worship. About 10% of the
population plays a musical instrument (it’s
surely more than 1% and less than 100%). At
most 10% of musicians play the piano and not
all of them own a piano so the proportion that
own a piano is probably 2—-3% of the musicians.
This would be 2 x 1072 of the population. There
is about one house of worship per thousand
people and each of those will have a piano.
There is about one school per 500 students (or
about 1 per 1000 population) and each of those
will have a piano. This gives us about 4 or 5
x 1072 pianos per person. Thus, the number of
pianos will be about 107 x 4 x 107> = 4 x 10%,

3. Pianos will be tuned less than once per month
and more than once per decade. We'll estimate
once per year.

4. It must take much more than 30 minutes and

less than one day to tune a piano (assuming that
it is not too badly out of tune). We’ll estimate

Chapter 1 How to Solve Problems



2 hours. Another way to look at it is that there
are 88 keys. At 1 minute per key, it will take 1.5
hours. At 2 minutes per key, it will take 3 hours.

5. A full-time worker works 8 hours per day, 5 days
per week, and 50 weeks per year which gives
8 x 5 x 50 = 2000 hours. In 2000 hours she can
tune about 1000 pianos (wow!).

This means that the 4 x 10* pianos need 40 piano
tuners.

How close are we? Well, the Yellow Pages for our
city of 10° inhabitants (ten times fewer than LA) has
16 entries under the heading of “Pianos—Tuning,
Repairing & Refinishing.” There are probably only one
or two tuners per entry and they probably do not
spend full time tuning. This means that our estimate
is probably too low by a factor of five. However, that is
a LOT closer than we could get by just guessing.

Remember that we are only trying to estimate the
answer within a factor of ten.
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Scientific Notation

As you may have noticed, we used 10® instead of
100,000,000 to represent 100 million. We do this for
two reasons. The first is that, if we multiply 3 trillion
times 20 quadrillion like this:

3000000000000 x 20000000000000000
= 6000000......

we will almost certainly miscount all those pesky zeros.
If we use a calculator, we will first miscount the pesky
zeros and then we will enter the incorrect number of
zeros in the calculator so the number will be even more
wrong. We'll get an answer with the correct first digit
(6) but the incorrect size. That’s like getting $60 when
you should have received $6000. The number of zeros
is much more important than the leading digit.

There is an easy and compact way of writing very
large and very small numbers. Any number can be
written as the product of a number between 1 and 10
and a number that is a power of ten. For example, we
can write 257 as 2.57 x 100 and 0.00257 as 2.57 x 0.001.
Now we have to count the zeros (but only once per
number). One hundred (100) has two zeros so we
write it as 10%, and 0.001 has three zeros (counting the
leading zero) and is less than one so we write it as 1072,
Therefore, we write 257 as 2.57 x 10% and 0.00257 as
2.57 x 1072, The exponent tells us how many zeros are
in the power of ten (2 and —3 in the previous sentence)
and the coefficient multiplies the power of ten. This
system is called scientific notation.

Here are some examples to make this clearer:

0.0l =1x1072
2000 = 2 x 10°
3,000,000 = 3 x 10°
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The second reason for using scientific notation of
the form x x 107 is that the most important part of
the number is the exponent y and not the coefficient
x. When we write the 300 million population of the
United States as 3 x 10%, the 8 is much more important
than the 3. This is because if you change the 3 to a
4, you change the population by only 1/3 or 30%.
If you change the 8 to a 9, then you change the
population by a factor of 10 (or 1000%). That is a huge
change, especially if you think that we are already too
crowded here. Thus, we use scientific notation so that
the exponent is written explicitly.

The rules for multiplying and dividing with scien-
tific notation are straightforward. When we multiply
numbers, we multiply coefficients and add exponents.
For example,

3% 10° x 4 x 108 = (3 x 4) x 10°7®
=12 x 10" =1.2x 10"

When we divide numbers, we divide coefficients and
subtract exponents. For example,
6

X103 108 =0.75x 1072 =7.5x107°

4 x 108 4

Note that in both of these examples, we had to cope
with a coefficient either more than 10 or less than 1. In
these cases, we will rewrite the out-of-range coefficient
in scientific notation itself. Thus, in the first example
the coefficient 12 can be written as 1.2 x 10'. This
means that what we really did was

12 x 10" = (1.2 x 10') x 10" = 1.2 x 10"

In the second case, the coefficient 0.75 is rewritten as
7.5 x 107! so that

0.75x 102 =(75x107) x 102 =7.5x 1073

13



When we add or subtract numbers using scientific
notation, the exponents of both numbers must be the
same. To add 3x 107 and 4 x 108, we need to convert the
number with the smaller exponent into a form where
it has the same exponent as the other number. In this
case, when we increase the exponent by one (from 7
to 8), we must simultaneously divide the coefficient by
10 (this is because increasing the exponent increases
the number by a factor of ten so we must decrease
the coefficient to compensate and keep the number the
same). Thus, we have

3x1074+4x102 =0.3x 108 +4x10® =4.3x 10°

Going back to that first equation, we write 3 tril-
lion (3000000000000) as 3 x 10'? and 20 quadrillion
(20000000000000000) as 2 x 10'® so that the operation
becomes

3% 102 x2x 10 = (2 x3) x 1012710 = 6 x 10%

We no longer need to count zeros; all we have to do is
to add exponents. We have a much easier time adding
12 and 16 to get 28 than we do counting 12 zeros and
16 zeros and then writing down 28 zeros.

Accuracy

The most important part of any number is the expo-
nent. After that, the next most important number is
the first digit of the coefficient (the number that mul-
tiplies the power of ten). The second and subsequent
digits of the coefficient are just small corrections to the
first digit.

The number of digits in the coefficient (also called
the “number of significant figures”) tells us how well
we know that number. For example, if your friend
gives you driving directions, there is a tremendous
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difference between the direction to “drive a couple
of dozen miles east and then turn left on Obscure
Alley” and the direction to “drive 25.2 miles east and
then turn left on Obscure Alley.” The first direction
is rather vague and imprecise. You expect to find
Obscure Alley somewhere between 12 and 36 miles
away. If you miss the left turn, you will probably drive
quite far before you turn around to look for it again.
The second direction is very precise and you expect to
find Obscure Alley between 25.1 and 25.3 miles away.
If you miss the turn, you will probably turn around by
the time you have driven 26 miles. The extra digits in
the second set of directions imply that your friend has
measured the distance carefully.

Similarly, the silliness of having too many digits is
illustrated by the following anecdote. Suppose that you
ask a museum guard how old a dinosaur skeleton is. He
responds that it is 75 million and 3 (75,000,003) years
old. When you look puzzled, he explains that when he
started the job three years ago, the skeleton was already
75 million years old.

Many of us make the same kind of mistake with our
calculators. Suppose that we used 23.0 gallons of gaso-
line to drive 327 miles. If we divide 327 by 23 on our
calculator we get 14.2173913. . .. But this cannot be the
answer to our problem. We did not measure either the
miles driven or the fuel consumed to 1 part in a billion
so our answer cannot possibly be so precise. Our gas
mileage should be 327 mil/23.0 gal = 14.2 mpg.

There are lots of rules for how to deal with signif-
icant figures in scientific calculations. Fortunately, we
will not need most of them.

In this book, we will estimate quantities to within
a factor of ten. Therefore, we will almost always keep
only one digit in the coefficient. This means that we
will round off 7.2 x 10° to just 7 x 10°. Our estimates
are just not accurate past the first digit. Keeping more
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digits is lying; it claims we know the answer much
better than we actually do.

There is another benefit to keeping only one signif-
icant figure: you shouldn’t need a calculator to solve
these problems. If you can add or subtract one- or two-
digit numbers (the exponents) without a calculator
and multiply or divide one-digit numbers without a
calculator, then you are all set to proceed.

A Note on Units

We have been using the metric system as students and
scientists for decades now, but we still think in inches,
feet, pounds, and degrees Fahrenheit (US customary
units) because those are the units we use every day.
When we estimate things, we’ll typically estimate them
in US units and then convert to metric. When we’re
done with the problem, we might convert back to US
units. If we used metric units in daily life, we would
have to do this for some quantities anyway, since units
such km/hr, liters (L), and cubic centimeters (cm?) are
not part of the MKS (meter/kilogram/second) system.

Why would anyone bother to do all that? Well, it’s a
lot easier to do the calculations in metric because the
conversion factors are (1) merely powers of ten (you try
converting miles to inches without a calculator), and
(2) converting quantities like volume is also much eas-
ier in the metric system. We know that 1 L =1000 cm®
and 1 m’ = 1000 L. What is a gallon in terms of cubic
inches or a cubic foot in terms of cups? We sure don’t
know.

In addition to simplifying unit conversions, the
metric system (SI or International System of Units)
is much easier for doing many calculations. All the
quantities are standardized on the meter, second,
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Quantity Metric Unit US Customary equivalent

Length 1 meter (m) 3ft
Length 10°m (1km)  0.6mi
Length 0.0lm(lcm) 0.4in.

Volume 1 liter (L) 1 quart

Mass 1 kilogram (kg) Mass of 2.2 pounds (Ib)
Mass 10° kg 1 ton

Weight  Inewton (N) 0.21b

Speed Im/s 2.2 mph

Time T x 107s 1 year

and kilogram. Thus, the unit of force, the newton
(N), is equal to a kilogram—meter/second®>. We
will use the following abbreviations for units:
meter (m), second (s), kilogram (kg), watt (W),
joule (J), newton (N), liter (L), hour (hr), etc. For
more information on SI units, see the US National
Institute of Standards and Technology (NIST) web-
site: http://physics.nist.gov/cuu/Units/index.html. We
will use the following abbreviations for US customary
units: mi (mile), ft (foot), in. (inch), gal (gallon), and
Ib (pound).

We will also use the standard prefixes giga or 10’
(G), mega or 10° (M), kilo or 10* (k), centi or 1072
(c), milli or 10™* (m), micro or 107° (u), and nano
or 107 (n). These are tabulated in the appendix. If we
need to use pico, tera, or yocto, we’ll warn you first.

Unit Conversion

We will frequently need to convert a quantity from
one unit to another. For example, to calculate the
distance light travels in one year or the energy used by
a 100-W light bulb in one year, you need to convert
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time from 1 year to some number of seconds. To do
this, we will multiply our original number by various
conversion factors that individually are equal to one,
e.g., fﬁfn = 1. Thus,

365 days ( 24 hr
lyear = lyear X | ———
1 year 1 day

60 min 60s ;
X - =3.15x10"s
1hr 1 min

Note that 1 year &~ 7 x 10”s. 7 appears in this
because the Earth goes around the Sun in an al-
most perfect circle and the circumference of a circle
c=2m R*.

Another handy conversion is from miles per hour
(mph) to meters per second (m/s). We think of speeds
in mph, but it is much easier to do calculations in m/s.
Fortunately, the conversion is straightforward. We first
convert meters to miles via kilometers and then we
convert seconds to hours via minutes:

Im/ 1m)/ 1km 0.6 mi
m/s = 1lm/s X | ——
* ® 103m 1 km

60s 60 min 22 moh
X =22m
1 min 1h P

Thus, 1 m/s is a little more than 2 mph.
We’ll use both these handy facts later on. Feel free
to write them on your palm also.

*You didn’t really believe that, did you? The 7 is just a coincidence,
but it makes a handy mnemonic. Of course, the exponent “7” is
much more important than the leading digit “3”.
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General Questions

Let’s start with some straightforward
questions about distance and space. We'll ask
about how much space we need for ourselves,
how much space we need for our garbage,

and how much space we need for our pickles.






One big family

If all the humans in the world were crammed
together, how much area would we require?

Compatre this to the area of a ;
large city, a state or small
country, the US, Asia.

How much area
would we need if
we gave every
family a house
and a yard
(i.e., a small o
plot of land)? ﬁ{ A

W00l = WOoL X WoL =y sI pJek inok

1O B3JE 3Y1 UBY] ‘YIPIM BY1 40} W OL 3soyd nok §| ¢ (w ool) Y oot
‘(wof) yool ‘(wot) Yot ‘(wE) Yol ipiek INok s| apim moH
"asenbs aq 0} 11 awINsse ‘piek e Jo eale dy) 91EWINSA O] 1INIH

‘a|doad jo saquinu ays Aq 1y A|dnnw uay ‘uosiad
1yoea J0j JuBM NOA BAJE Y] UO PapPIdAP aA,N0K 92UQ LNIH

199} aJenbs ol
1nogqe si Ja1aw atenbs e os ‘piek e ueyy 1a8uo| Aydi|s s1 Je1owW B
1eY] [|eD9Yy ¢4919W a4enbs e ojul 1y ued 9jdoad Auew moH i1 NIH

3 asoui || M Sunum
Jo awiy ay3 1e (uol||iq £°0) Uol||iLu OOE I3 B S| ASED SIY) Ul
pe1ay| "uolj|iq 9 JaAo pej e sI pliom ayi Jo uonejndod sy :INIH

21



ANSWER: Okay, 6 billion people is 6 x 10? of us. How
many can we cram into a square meter (i.e., 3 ft by
3 ft)? We're not sure, but it is certainly between 3 and
10. We'll choose 6. (That ignores the space needed to
play, eat, sleep, and well, the porta-potty question is
in chapter 4, so can you wait until then?) If there are
6 people per square meter, then 6 billion people will

need
2

9 1 m 9
A =6 x 10"people x —— = 10"m
6 people
We have no idea how big a billion square meters is
(although it sure sounds like a lot) so let’s convert it
to more reasonable units. We’ll convert it to kilometers
(km) and to miles. 1 km = 10> m. A square kilometer
is a square with sides of 10°> m so that 1 km? = 10> m x
10° m = 10° m?.
2

= 10° km?

A=10"m? x =
106 m?

(Just to remind you, when you divide numbers in
scientific notation, you divide the coefficients and sub-
tract the exponents. In this case, 10°/10° = 10°7¢ =
10%.) Thus, we would occupy an area of 1000 square
kilometers. That’s a square 30 km on a side. Since a
mile is about 1.5km, all the people on Earth would
fit in a square that is 30 km or 20 mi on a side. That’s
the area of a large city such as Los Angeles or Virginia
Beach.

Wow! That’s not much at all.

Now let’s give every family a house and a yard (a
small piece of land). First we need to estimate the size
of the average family. In the US and Europe, the aver-
age family is about three people, but in the developing
world, it’s a bit more than that. We'll choose three so
that we overestimate the amount of land.

Next, we need to estimate the size of the yard. Since
we are not good at estimating area, we’ll assume a
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square yard and estimate its width. It will definitely
be smaller than a football field (100 m or 300 ft) and
bigger than a house (10m or 30ft) so we’ll take the
geometric mean and estimate 30 m. This means that
each family gets a piece of land of area A = 30m x
30 m = 10°> m? (or about 1/4 acre). Therefore, all of us
together will use a total land area of

Ifamily  10°m?

X

— =2x10"”m*
3people family

A = 6x10°peoplex

(Just to remind you, when you multiply numbers
in scientific notation, you multiply the coefficients
and add the exponents. In this case, 10° x 10° =
103 = 10'2,) This is 2 x 10° km? (two million square
kilometers) or about 1 x 10° mi* (one million square
miles). While it sounds like a lot, it is only the area of
Alaska or twice the area of Egypt. That is only 1% of
the surface area of the Earth.
That could leave a lot of room for other species!
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Fore!

How many golf balls would it take to circle the Earth
at the equator?*

*Thanks to Tom Isenhour for this question [6]. Can we have that
raise now, Tom?
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ANSWER: To answer this question we need the di-
ameter of a golf ball and the circumference of the
Earth. Let’s start with the easier part. A golf ball has
a diameter of a bit less than 2 inches or about 4 cm.

There are several ways to estimate the circumfer-
ence of the Earth. For example, there is a three-hour
time difference between New York and Los Angeles
and there are 24 times zones covering the Earth. There-
fore, the circumference of the Earth is about eight
times the distance from NY to LA. If you don’t remem-
ber that the distance between them is 3000 miles, then
you can estimate it from the fact that it takes about
six hours to fly from NY to LA and a modern jet flies
at about 500 mph. Thus, the circumference is about
¢ =8x3000mi = 2.4 x 10* mi.

Alternatively, we know that passenger jets fly slower
than the Earth rotates (since you always arrive after
you leave [in local time]) and that some military jets
can fly faster than the Earth rotates. Since passenger
jets fly at about 500 mph and military jets can fly
up to 2000 mph, we can estimate the Earth’s rota-
tion at 1000 mph. Since the Earth rotates completely
in 24 hours, its circumference must be ¢ = 24 x
1000 mph = 2.4 x 10* mi.

Of course, if you remembered that the circum-
ference is 25,000 miles (or 40,000 km) or that the
radius of the Earth is 4000 miles (6400 km) and the
circumference is ¢ = 27 R, then you didn’t need to
estimate it.

Now the arithmetic is straightforward. First we
need to convert the circumference of the Earth from
kilometers to centimeters. The number of golf balls
needed is

10°m  10°cm  1golfball
X

N =4 x 10*km x X
1km 1m 4cm

= 10°golf balls
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The Pacific Ocean is a very large water hazard. It would
be extremely irritating to lose a billion golf balls in the
water! We’d better use the special kind that floats.

This also provides an interesting peg on which to
hang the concept of “parts per billion” (ppb). If the
air contains so many ppb of some potentially toxic
substance, that is about the number of, say, red golf
balls in the otherwise white ones surrounding the
Earth. You could walk along the equator for months
before finding your first red golf ball.
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This is a fine pickle
you’ve got us into, Patty 3 ° 3

If all the pickles sold in the US last year were
placed end-to-end, what distance
would they cover?
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ANSWER: We will need to estimate the number of
pickles the average American eats each year and the
length of the average pickle. Our average pickle-in-the-
street is definitely more than 1 cm and less than 100 cm
(a 1-m pickle? yikes!) so we’ll estimate that it is about
10cm (4in.) long. The average American consumes
more than one pickle per year (that’s including the
pickle slices on hamburgers) and less than one per day
(400 per year) so we'll estimate 20 pickles per year.*
Therefore, the total length of all the pickles consumed
in one year is

20 pickles  10cm
X

L = 3 x 10® people x -
person pickle

_ 10 1m
=6x10"cm x

2 cm
=6x10°m
That is a distance of 6 x 10° kilometers or 4 x 10°
miles. That is more than the distance from the Earth

to the Moon! Who needs advanced technology? NASA
could just take the space pickle.

* According to the USDA [7], Americans consumed about four
pounds of pickles per person (try saying that five times fast!) in
2000 so our estimate of 20 pickles per person is not too bad.
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Throwing in the towel

What is the surface area of a typical
bath towel (include the fibers!).
Compare this to the area
of aroom, a house,
a football field.
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ANSWER: That’s obvious, surely! A large rectangular
towel 1m by 2m has a total surface area of 4 m?
(including both sides), right? (In US units, a big towel
may be as large as 3 ft by 6 ft.)

Wrong, actually, unless it is a very worn-out towel.
New towels have many little fibers that can absorb
a lot of moisture (recall the old puzzle—what gets
wetter the more it dries?). Unless youre a fan of
the Hitchhiker’s Guide to the Galaxy, you won’t have
brought your own towel, so nip off to the bathroom
and examine one; quickly now, we’re dripping all over
the floor.

You don’t need to actually go and count the number
of fibers per square inch or per square centimeter; in
the latter case there must be more than 10 and fewer
than 1000, so we take the geometric mean of 10" and
10%, which is 10%. In a square inch, being about 6 cm?,
we should expect about six times as many. This will
of course vary, depending on where you buy your
towels; we are assuming that we are describing one of
those very nice towels found in one of those very nice
hotels.

Back already? Right-oh. Now we need to estimate
the surface area of each fiber. We can approximate the
fiber as a cylinder or a box. Cylinders are complicated
so we'll use boxes. Each fiber is about 0.5 cm (1/4 in.)
long and 1 mm (0.1 cm) wide. Each “boxy” fiber then
has four flat surfaces, each 0.5 cm by 0.1 cm. Thus, the
surface area of one fiber is

A =4x05cmXx ——
fiber 102 m

x 0.1 cm x
102 cm

=2x10"m?
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Now we can calculate the total surface area of our
big bathroom towel:

Agoral = towel area x fibers per area x area per fiber

. 10? fibers  10*cm? 2 x 1077 m?
=4a4m X

X X
cm? 1 m? fiber
= 80m’

That is about 800 square feet: the size of a large
apartment or a small house.

This problem is similar in some ways to calculating
the length of the coastline. Just as the area of the towel
is much greater than its simple area, the length of coast
from, say, New York to Boston is much more than the
200-mile driving distance.
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Hey buddy, can you fill a dome?

How long would it
take a running
water faucet* to
fill the (inverted)
dome of the US
Capitol building
or St. Paul’s Cathedral?
Give your answer in
seconds, days, weeks,
or whatever units seem
reasonable.

*That’s a “tap” for our British readers (and author).
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ANSWER: We need to estimate the volume of the dome
and the flow rate of a water faucet. To estimate the
volume of the dome, we need to estimate its diameter.
The diameter of the dome of St. Paul’s or the Capitol
Building is more than 10m (or 30ft) and less than
100m (the length of a football field, about 300 ft),
so we take the geometric mean and estimate it as
/10 x 100m = 30 m (100 ft) in diameter.
If we remember that the volume of a sphere is V =
%n’ R? and that a dome is half a sphere, then we have
14 5 3 33
V=—--nR =2(15m)” =6 x 10°m
23
If we forgot the equation of a sphere, then we could
pretend that the dome is half of a cube (as Picasso
might have done) and approximate the volume as

1
V= 5d3 = 0.5 x (30m)* = 10*m’®

We would be off by only a factor of two. Not a problem!

Now we need to estimate the flow rate of a water
faucet. A typical domestic faucet running full-tilt can
fill a one-gallon container in under 30 seconds. A US
low-flow shower is limited to 2.5 gallons per minute
so that is about the same. A cubic meter of water is
103 liters, or 250 gallons. Thus, the time to fill the
Capitol dome is

volume of dome

flow rate

_ 6x10°m’® x 2.5 x 10 gal/m’
N 2 gal/min

= 7 x 10° min

Seven hundred thousand minutes is not a very helpful
quantity. Let’s convert it to more useful units and see
what we get.
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There are 60 minutes in an hour, or about 60 x 25 =
1500 minutes in a day.* We can convert minutes to

days to get
1 day

— < =500days
1.5 x 103 min 4

t =7 x 10° min x

That is less than two years.
Of course, we’d have to invert the dome first. ..

*We often wish we had an extra hour in the day. In this case, it’s
just for easier calculation.
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A mole of cats

How massive is a mole of cats?* (A mole is the number
of atoms that weigh that element’s atomic weight in
grams. For example, a mole of hydrogen weighs 1 gram
and a mole of carbon weighs 12 grams. It is used in
chemistry to make sure that there
are equivalent numbers of atoms
for a chemical reaction.)
Compare this to the
mass of a mountain,

a continent, the moon
(7 x 102 kg),
the Earth

(6 x 10**kg).

*Thanks again, Tom [8].

¢1ed d13sawiop ynpe [edidAy e jo ySom aya st ey (INIH

*SWIaYl 9S0Y1 JO (¢,OL X 9) Jaquinu
s,0ipe3oAy sutejuod Suiyihue Jo 3oL dUO Jey) JaquiaLudy INIH

39



ANSWER: We'll use fat cats weighing about 8 kg (181b)
each. We're using a neighbor’s cat, Quentin, as a model
here, though without his permission (or the neigh-
bor’s). There are Ny = 6 x 10? items in a mole,
whether you are talking about a mole of atoms or a
mole of cats (or a mole of moles). This means the
whole bunch of them will have a mass of about

M =8kg x 6 x 102 =5 x 10" kg

This is about the mass of the Earth or 70 times the
mass of the Moon. Sheer lunacy! And with nine lives
for each...

And if you think that an Earth made of cats is
absurd, continue reading to find out about a Sun made
of gerbils (see question 8.5).
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Massive MongaMillions

What would be the mass of all 102 MongaMillions
lottery tickets? How many 40-ton trucks

would be needed 4
to haul them away?
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ANSWER: To estimate the mass of all those tickets, we
will need to estimate their volume and their density.
The density of an object is expressed in mass per
volume. Air has a very low density (1kg/m?), water
has a medium density (10° kg/m? or 1kg/L) and lead
has a high density (10* kg/m? or 10 kg/L).

Volume is length times width times thickness. Ear-
lier, we estimated the thickness of each ticket to be
2 x 107*m, so we just need the length and width. A
ticket is about 4 inches on a side (more that 1in. and
less than 10in.). We could choose a slightly different
number, but 4in. = 10cm, which is a nice round
number to calculate squares with. Thus,

1m 1m 4
V=10cm X —— x 10cm X —— x2 x 107" m
2 cm 102 cm

=2x10"%m?

so the volume of 10® such tickets is V = 108 x 2 x
1076 =200 m’.

What about the mass of this pile of tickets? As
we all learned in science class, mass equals volume
times density. If we buy a ticket, and don’t win, we
might be tempted to discard it. Of course, we wouldn’t,
because it is wrong to litter, no matter how annoyed
we might be. But hypothetically, suppose we tossed
the ticket into a puddle, would it float or sink? The
former, I think, at least until it absorbed some water,
and perhaps sank, as some paper products will do
after a while. That means that the density of the ticket
is reasonably close to the density of water. Since the
density of water is 1000 kg/m® or 1 ton/m?, the total
mass is 200 tons. This would require five 40-ton trucks
to haul it away.

Another way of looking at this lottery is that you
would need to buy five tractor-trailer trucks full of
tickets to make sure that you won!
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Tons of trash 3 ° 8

How much domestic trash
is collected each year in
the US (in m? or tons)?
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ANSWER: Before the era of recycling (and when the
children lived at home), we used to empty our 13-
gallon trash can in the kitchen about every other day.
Now, it’s only about once a week, though the recycling
bin now gets emptied once a week (with newspapers,
boxes and other cardboard containers, bottles, plastic
containers, cans, etc.). On second thought, it’s easier
to lump them all together for this problem. Since
considering recycling changes the answer by less than
a factor of two for our household, we will ignore it for
this problem.

OK, if we empty the trash three or four times a
week, that’s about 50 gallons of trash for four people.
Now a gallon is about 4 liters, and a liter is 107> m?, so
our 50 gallons per week is 200 liters or 0.2 m>. In one
year (50 weeks), four people produce 50 x 0.2 = 10 m?
of garbage. That is about 300 cubic feet. Yick!

It’s worse than that. There are 3 x 10® of us, or
about 10% households, so we produce 10° m® of un-
compacted garbage.

Now let’s try to figure out the mass of that garbage.
There are two things to consider here: first, trash is
mostly not liquid (ooh, you threw the soup away!),
and therefore there’s a lot of air space in the trash bag,
and second, related to it, the density of the trash is
much less than that of water. Let’s estimate the density.
That full 13-gal (50-L) trash bag probably only weighs
between 10 and 201b (5 and 10kg). Thus, its density
is between 0.1 and 0.2kg/L (or 0.1 to 0.2 tons/m’ or
between 10 and 20% that of water).

Let’s take an average density of 0.2 tons/m”. Thus,
in one year, my family produced m = 10m’ x
0.2 tons/m’> = 2 tons of garbage (in US units, that is,
um, 2 tons).* Note that, since the average density is

*There are lots of different tons: metric, short, long, . .. Since they
differ by only 10%, we will use them interchangeably.
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so low, compacting the trash in garbage trucks should
reduce the volume by a factor of about three (more
than one and less than five).

But enough about us, let’s look at the whole coun-
try. With a population of 3 x 10%, we produce a total
mass and compacted volume of trash of about

2 tons/year
household

= 2 x 10 tons of trash/year

M = 10® households x

1 10m’/year
V =10%h holds x — X ————
OUSEnoids X 3 x household

= 3 x 10® m’of trash/year

Now let’s compare to reality. According to the US
Environmental Protection Agency [9], in 2005 the US
generated 245 million (2.45 x 10%) tons of municipal
solid waste (including recycling).

Now we need to figure out what to do with it all.
But that’s the subject of the next question.
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Mt. Trashmore

If we put all of that trash (see previous question) in a
landfill, how much space will this require? What
fraction of the US surface area is this?
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ANSWER: We need to figure out how much area we
need for all that garbage and how much area we have
available. Let’s start with the area we need for the
garbage. In the previous question we estimated that
Americans generate 3 x 108 m? of trash per year. If we
pile it 1 m high, we will need 3 x 10® m* and if we pile
it 10m high, we will need only 3 x 10" m?. Here in
Virginia Beach we are very proud of our local Everest,
Mt. Trashmore, a landscaped former landfill towering
62 ft (20 m) above sea level. This means that we’ll need
an area of
3 x 10%m’ /yr
20m B
Let’s plan ahead and make our landfill large enough for
100 years. In that case, we will need an area of 10° m?.
One billion square meters sure sounds like a lot. Let’s
look more closely. A square kilometer (which is about
half of a square mile) is a square 10° m on a side, so
that 1 km? = (10° m)? = 10° m?. This means that one
billion square meters is only(!) one thousand square
kilometers (10° m? = 10° km?). That still sounds like
alot, but it is only the area of Los Angeles* or Virginia
Beach and, besides, we have a whole country to dump
itin.

What is the US land area? Think of the US as being
rectangular in shape. We need to find the east—west
(New York to Los Angeles) and north—south (Mexico
to Canada) distances. You can fly from NY to LA in six
hours. The jet flies at about 500 mph so the distance
is about 3000 miles (or 5000 km). Alternatively, we
know that there are three time zones from NY to LA
so that the distance is 3/24 = 1/8 of the Earth’s
circumference at the equator (which we figured out
in the golf ball problem). Thus, the east—west distance

Agrash = 107 mz/yr

*Some claim that a landfill would improve LA significantly.
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is4 x 10*km/8 =5 x 10 km. Good, we got the same
answer.

Wait a minute, you may say, the US land area does
not include the equator! That’s no problem (except for
ambitious politicians), because the width of three time
zones in the US is not that different from that of three
time zones at the equator.

We can estimate the “vertical” (i.e., north—south)
dimension by just eyeballing the relative proportions
of our rectangular US from a map. The north—south
span is about one-third of the east—west span or about
1000 miles (1600 km). The land area is then approxi-
mately

Aus = 5 x 10°km x 1.6 x 10> km = 8 x 10° km?

Thus, the fraction of land area needed for our trash is

f= Awash  107km®
~ Aus 8 x 106km?

This means that after we have dumped all of our trash

for 100 years in a single huge land fill, we will still have

99.99% of the US land area for everything else we want
to do. This is just as Penn and Teller told us [10].

=10"*
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Juggling people 3 ° 1 o

On average, how many people are airborne over
the US at any given moment?
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ANSWER: There are two basic ideas here. First, the
fraction of time the average person spends flying
equals the average fraction of people that are air-
borne at any instant. This means that if you spend
10% of your time flying, then on average 10% of the
population is airborne at any given time.* Note that
this only works if there are enough people to average
things out.T Second, we can use our own experience to
estimate the fraction of time an average person spends
in the air, or shopping or sleeping or (you name it). In
other words,

number flying now  time spent flying

US population lyr

Back in chapter 1 we estimated that the average
American takes between two and four flights per year.
The typical flight will take between one and six hours
(not counting time spent parking, waiting in lines,
consuming the delectable airport comestibles, . ..) so
we will estimate three flights per year at three hours per
flight, or nine hours per year in flight. Now we insert
the numbers we know:

number flying now 9hr

3 x 108 hr people 400 days x 25hr/day

We rearrange this to get
9hr

ber flyi =3x10%h le x ———
number flying now r people 10" hr

= 3 x 10° hr people

That means there are about three hundred thousand
people airborne over the US at this moment. We hope
they all land safely.

*This does not mean that if you spend 10% of your time flying,
that 10% of the average person (that’s about one leg) is airborne.
+One other person, or even ten others wouldn’t suffice. There have
to be enough people so that at every moment some are in the air.

This is not a problem for this question.
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Shelving the problem 3 ° 1 1

During the last big California earthquake,
two million books fell off the

shelves in a university
library. How many
students would
need to be hired

to reshelve all
of the books in
three weeks?
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ANSWER: The books are not just put back on the
shelves in random order. They must be placed ac-
cording to their Library of Congress classification,
so care must be taken to identify exactly where the
book should reside. We’ll assume that the books fell
relatively close to where they belong so no one needs
to walk across the library. If a book is at my feet, and
I know immediately where to put it, that will take
between a few seconds and a minute. Thus, we can
reshelve between 60 and 600 books per hour. Let’s
work with an average of 200 per hour (that’s one-third
of 600 and three times 60).

This means that in three weeks, working eight
hours per day and five days per week, one student can
reshelve

200 books 8hr 5days
— X — X
student-hour  day  wee

x 3 weeks

= 2 x 10" books/student

Now, we need to reshelve two million books. This
means that we need

N 2 x 10° books 10% student
= = students
students = 57 104 books/student

Thus, 100 students would be needed to reshelve all of
those books in three weeks (assuming that they do not
stop to read the books as they reshelve them).
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Animals and People

Let’s continue with some more
straightforward questions about animals and
people. How big are we, how far do we run,

how many porta-potties do we need?

Be warned, the last question is harder.






More numerous
than the stars in the sky 4 ° 1

How many cells are there in the human body?
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ANSWER: Sorry to ask such a personal question, since
we hardly know one another, but what’s your volume?
It’s on your driver’s licence, along with your surface
area ... oops, we were being futuristic. Since you
didn’t answer the question, let’s figure it out. Let’s
estimate your mass, Mr. Jones, at a nice even 100 kg
(or approximately 200 Ib; ladies, you can modify this to
suit your own figures). Since we can safely assume that
you float,* your average density is rather close to that
of water or about 1kg/L or 10* kg/m’. Thus, 100 kg of
water occupies 100kg x (1m?®/10°kg) = 0.1m>. So
your volume, Sir, is about 0.1 m?.

We can do this another way. Let’s approximate our
body as a box of length /, width w, and height k, so our
volume is V = I x w x h. What choices shall we make
for these quantities? Length is easy, | ~ 6 ft. Now what
about w and h? John’s cross section is decidedly not
rectangular, but since we’re not going to say what shape
itis, well pick an average width, w = 1 ft (remember
to average over head, neck, torso, legs, and feet). As
for h, the front-back dimension, it will be about, say,
6 in. (he’s not barrel-chested). Therefore, his volume is
6x1x % = 3ft>. Now 1 m? isabout 3 x 3 x 3 = 27 ft?,
s0 3 ft® is about 0.1 m°.

Now let’s figure out the size of a cell using our
own eyes. We cannot generally see individual cells
with the unaided eye. If you look at a ruler, the lines
on the ruler are a fraction of a millimeter (107> m)
wide. I can quite easily see something one-tenth of
a millimeter (107*m) in size. I cannot see cells, so
they must be smaller than that. The inventor of the
microscope used his first crude microscope (with
a magnification between 10 and 100) to see cells.
Thus, a typical cell must be 10 to 100 times smaller

*That’s easy for us to say—we’re standing at the side of the pool.
+ Note: We are dealing with round numbers.
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than 10~* m or between 107> and 10~°m (that’s 1 to
10 «m [micrometer]) in size.

Here’s another approach. We can see cells with an
ordinary light microscope.* This means that the cells
must be larger than the wavelength of visible light or
we couldn’t see them. The wavelength of visible light
ranges from blue light at about 0.4 um to red light
at about 0.7 um (400 to 700 nm). Thus, cells must be
larger than 1 um. However, while we can see the major
features inside a cell, we cannot see that much detail,
so that typical cells must be much smaller than about
100 pm.

A typical human cell with a diameter of 10 um
(10 x 107®m = 1 x 107> m) will have a volume

Vi & diameter’ = (10> m)® = 10" m’

Now the number of cells in our body is just the ratio
of the volumes:

Vbody 107! m’
Ver 1075 m?

This means that you, Sir, and I each have about 100
trillion cells in our bodies. Goodness me! That’s about
a thousand times as many stars as reside in our galaxy.

Start counting . . . and Mr. Lucas? It’s time for the first
“Cell Wars” trilogy . ..

Neents =

* A light microscope uses light rather than, say, electrons to “see”
with. It may still be rather heavy.
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Laboring in vein 4 ° 2

What is the total volume of human blood in the world?

%’} £97) L0p LO0F O

kEEEEEEEEEEEEERERXX

suonendod piom aya st 1eYMm < LNIH

99 s1y1 1y3iw swinjoA poo|q 4nok jo
uoldel) 1ey M ¢3unis e e ajeuop nok op siuid Auew moH 11 NIH

¢p00|q SI aWN[OA INOK Jo uoidel) 1eYM S LNIH

61



ANSWER: We can estimate the amount of blood we
contain either as a fraction of our total volume or
as a multiple of the blood that we can donate. Let’s
start with our volume. We've already estimated human
volume in the previous question; it’s about 0.1 m? or
100 L. If we were made only of water, our discussion
would be more fluid in nature (or we would be all wet).
Since the blood has to carry all of the oxygen and other
nutrients we need, our body must be more than 1%
blood. Similarly, it is almost certainly less than 10%
blood. If we take the average, then we each contain
about 5% of 100 L, or 5 L of blood.

Alternatively, we can estimate this from the amount
of blood we are allowed to donate. A typical Red Cross
donation is about one pint of blood. They would surely
not let us donate a dangerous amount of blood, so
that this one pint is probably about 10% of our total
supply. Now we just need to convert from archaic pints
to modern liters. There are two pints in a quart, which
is about a liter. Thus, 10 pints is about 5L, so the
two methods give about the same answer. [ Confession:
JA lived in the United Kingdom during the period
regarded as dangerous for the incidence of mad cow
disease, so he cannot donate blood. But thus far he has
shown no symptoms (outside of this book, that is).]

There are about 6 x 10° people in the world. Thus,
the total volume of blood is

SL 9 10
V= X 6 x 10” people =3 x 107 L
person
There are 1000 L in a cubic meter, so that V = 3 x
107 m>. Now let’s see how large a volume this is.

New York City’s Central Park is about 2km? or
about 2 x 10° m?. Thus, this would cover Central Park
to a depth

volume 3 x 10’ m’

area 2 x 10® m?
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This is 50 ft or the height of a 5-story building. Given
the number of murders occurring in TV series like CSI
New York and Law and Order, one might be forgiven
for thinking that most of this blood is already there!

If we want to get biblical, we can compare it to the
volume of blood shed at the battle of Armageddon
as mentioned in the book of Revelation: “They were
trampled in the winepress outside the city, and blood
flowed out of the press, rising as high as the horses’
bridles for a distance of 1,600 stadia” Rev. 14:20 (NIV).
A horse’s bridle is about 2 m high. At almost 200 m
per stadion, 1600 stadia is 300 km. Now we just need
the width. That much liquid will spread out a lot,
especially when flowing 300 km. Let’s use a width of
3 km. Thus, the volume of blood predicted to flow at
Armageddon is

Varmageddon = 2m X 3 X 10°m x 3 x 10°m
=2x10°m’

That is about 15 times more blood than humans
currently have. We guess we just need more people.
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Unzipping your skin

What is the surface area of a typical human?
(Include only the skin, not the surface area of the
digestive tract.)
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ANSWER: If you could unzip your skin (like the
rhinocerous in Kipling’s Just-So story), how large an
area would it cover? The area of a sheet on a double
bed? Your backyard? This is actually an important
question since it determines how much fabric you
need to make a suit of clothing, how much sunlight
hits your body, how much force is exerted on you
when scuba diving, how much of certain medicines
you should take, and how much you can perspire.

You could measure most of your area by taking
a shirt and a pair of pants, disassembling them, and
measuring their total area, but we are not trying to
be that precise. There are at least two reasonable
approximations, humans as cylinders and humans as
flat sheets.

We are certainly not cylindrical critters of height
h and radius r, but if we were, then our surface area
would just be A = 2mrh. We can account for the
fact that we are not simple cylinders by multiplying the
final answer by 1.5 or 2. Let’s estimate r and h. Height
is easy, ours is 2 m (well, let’s just say that it rounds up
to 2m [6ft 7in.]). Radius is less than 1 m (3 ft) and
more than 0.1 m (4in.) so we’ll estimate 0.5 m. This
gives a surface area of

A=2rrh=3x05mx2m=6m?

We can check to see if this is consistent with our
previous volume estimate of 0.1 m>. The volume of a
cylinder is the area of its base (77?) times its height,
or V = mr*h. This gives V = 3 x (0.5m)?> x 2m =
1.5m’.

Oops, that is way too much. Let’s decrease the
radius to 0.2m (8in.). That will give us a volume of
0.24m?, still a bit too big, and an area A = 2.4m?.
Since we’re not really cylinders, let’s round the answer
up to 3m?,
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That’s about the area of a medium-sized towel (not
including the fibers!). Of course, we have lots of curves
and corners, so this is just a rough estimate, even if we
shaved first.

Alternatively, suppose we were flat like a sheet; front
and back would each be about 2 m (6 ft) high by 0.5m
(1.5 ft) wide, so that’s a total of 2 m?, a bit smaller than
the first estimate, and much simpler to obtain!

Body surface area (BSA) is important in medicine
for calculating the appropriate dose of some med-
ications. You can calculate your own BSA at many
websites [11]. I calculated mine to be 2.06 m?, so our
estimates are pretty darn good (for purposes of this
book, but certainly not for medical purposes).

At ten tons of air pressure on every square meter,
there are 20 tons of air pushing on you. If you scuba
dive down to 120 ft (40 m), there are another 40 tons of
water pressure on every square meter. That adds up to
another 80 tons of water pressing on you. It’s amazing
that the human body can withstand those forces!
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Hair today, gone tomorrow 4 ° 4

What is the total length
of all the hair on an
average woman’s

head?
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ANSWER: We will answer this question in three stages.
First we will estimate the area of the scalp, then the
number of hairs per square centimeter, and then the
length of a typical strand of hair.

My hand spans a distance of about 8inches or
20 cm. My head is about one hand span in diameter.
Assuming my head to be a sphere (and my scalp to be
a hemisphere), the area of my scalp is

1
Ascalp = 547'[1’2 = 6(10 Cm)2 = 600 sz

(Alternatively, if you treated your scalp as a square
20 cm on a side, you would have gotten 400 cm?. Close
enough!)

Now we need the number of hairs per area (per
square centimeter). We can count the number of hairs
along one centimeter and square it. There are 1-2 hairs
per millimeter or 10-20 per centimeter. This gives
100-400 hairs per square centimeter. We’ll use 200.
This means that the total number of hairs on a person’s
head is about

N = 6 x 10> cm? x 2 x 10? hairs/cm?
= 10° hairs

Blond hair is typically finer and more closely spaced
than black hair so your answers may vary. However,
this unnecessary precision amounts to bifurcating
rabbits.*

All we need now is the length of a typical hair.
Women’s hair ranges from 1cm (0.5in.) to 100 cm
(1 m or 3ft). The geometrical mean of 1 and 100 cm
is 10 cm (41in.) or about shoulder length. This means

* Splitting hares.
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that the total length of all the hairs on a woman’s head
is about

L =10’ hairs x 10 cm/hair = 10° cm = 10* m = 10 km

This is 10kilometers or about 6miles. Short hair
would be about 1km and really long hair would be
about 100 km.

It’s enough to make your hair stand on end.
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Hot dawg! 4 ° 5

How long a hot dog (or sausage or wurstor . . .)
can be made from a typical cow?
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ANSWER: We first need to figure out the volume of a
cow. A cow is about ten times the weight of a person
(about one ton or the weight of a small car). It is
definitely less than 100 times the weight of a person
(10tons is the weight of a large truck). Since the
densities are about the same, this means that it has
ten times the volume of a person or V., = 10 X
0.1m’* = 1m?.

Now we just need to estimate the volume of a
sausage or hot dog. We’ll assume square hot dogs so we
don’t to bother with pesky factors of 7. The thickness,
t, of a typical sausage or “dog” is 1 in. (2 cm or 0.02 m).
Thus, for a hot dog of length L, it will have a volume of

2
Vhotdog =Lxt

and since it must have the same volume as the cow it is
made from, its length will be

1= Yew _ 1 m’
2 (2 x 10~2 m)?
=2x10°m

This is 2000 m or 2 km (over 1 mile)! Wow!

Note that this assumes that every little bit of the cow
is ground up into hot dog. We really, really hope that
this is a bad assumption.

A hot dog made from a human being would be ten
times shorter or about 200 m. That is twice the length
of a football field!
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Playing the field 4 ° 6

How far does a soccer or field hockey player travel
during the course of a 90-minute game?
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ANSWER: If you've ever watched that most wonderful
of sporting events, the World Cup,* you’ll have noticed
that players (except the goal keepers) spend most
of their time running or walking, only occasionally
standing still (such as when some reckless and violent
individual playing against England commits a terrible
foul against an innocent player who would otherwise
have scored a magnificent and game-winning goal).
The players rarely stand still; they sometimes walk and
sometimes run quite fast.

Let’s estimate walking and running speeds. The
world record for running the mile is about 4 minutes.
That would be about 15 miles per hour, which, at
1 m/s ~ 2 mph, is about 7 m/s. Alternatively, the world
record for the 100-m dash is about 10s, or about
10 m/s. Walking speeds are closer to 2—4 mph or 1-
2 m/s. If we assume that half the time is spent running
at full speed and the other half is spent walking, then
we’ll have an average speed of (7 + 1)/2 = 4m/s or
8 mph. (The correct answer is surely between 2 and
8 m/s so our answer must be within a factor of two!)

During a standard 90-minute (1.5-hour) game, the
players travel about 8 mph times 1.5hr = 12mi (or
almost 20 km). Quite a workout!

* Disclaimer: This is not the opinion of all the authors and certainly
not of the editors.
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Ewww... gross! 4.7

How many people in the world are picking their nose
right now?
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ANSWER: As with the flighty Americans problem, the
fraction of the time you or I spend in some activity
(except for scuba diving: none!) is equal to the fraction
of people doing it right now.*

We won’t ask how long you spend picking your
nose each day, but how long do you estimate that
your friends spend in this activity? Ten seconds is
probably far too short, and 1000 seconds or 15 minutes
is too long, so 100 seconds (about 2 minutes) seems
a reasonable compromise. We'll further assume that
our children are correct when they claim that “Mom,
everybody does it!”"

Don’t tell our children, but there is some evidence
that ingestion of nasal mucous helps train the immune
system to recognize harmful bacteria and viruses.

Anyway, we’ll estimate that all six billion of us spend
an average of 2 minutes per day picking our nose
(neglecting people with more than one nose). There
are about 25 x 60 = 1500 minutes in a day. Thus,
we have

number picking now 2 min
6 x 10° people ~ 1500 min
or
2 min

Noik = 6 x 10° people X ———
pick PEOPIE X 1500 min

= 10’ people

Thus, ten million people are picking their nose at this
very moment. Hmmm . . . so this is why politicians use
up gallons of hand sanitizer. They shake way too many
hands.

* Assuming, of course, that the authors and readers of this book are
typical people. Hah!

+Videotape of an audience of doctors at a medical lecture indicated
that our children’s claim is quite correct.
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Going potty

How much space would
a million people need
at a political rally?

How many porta-potties?
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ANSWER: In a political rally, people are packed rea-
sonably tightly together. There is still space to move
around, so we’re not packed as tightly as in the very
first question. Let’s estimate that there’s about two feet
between people. Since each person is about one foot
in size, each person occupies a space that is about 3 ft
by 3ft or 1 m?. That means that 10° people occupy
10° m? or 1 km?. That is about the size of the National
Mall in Washington, DC or Central Park in New York.
Now that you have all those people there, you need to
provide facilities for inputs and outputs, that is to say
refreshments and porta-potties.

Again, as with the flighty Americans or the nose
picking, the fraction of the time I spend in some
activity (except for bungee-jumping: none!) is equal to
the fraction of people doing it right now. So: how long
do you spend in the bathroom during the daytime?
Ignore time spent grooming or powdering your nose.
One minute is probably too short and 100 minutes
is far too long (“Are you going to be in there ALL
day?”). So let’s settle on 10 minutes, shall we? Also,
let’s just take a 15-hr day because most people don’t go
to political rallies while they are sleeping. Let’s convert
15 hours to 15 x 60 = 10> minutes (so it has the same
units as our bathroom interval). Thus, the fraction of
daytime spent in the bathroom (and hence the fraction
of people in the bathroom at any instant) is 10 minutes
out of 10* minutes or 1%.

This means that we need one potty for every 100
people, or a total of 10* potties for 10° people. Wow,
that’s a huge logistical effort! Note that if there is one
potty for every 100 people, given that I spend 1/100
of my time there, then all the potties will be 100%
occupied during the entire rally. Since the demand
for potties is generally not uniform, there will be
serious queuing problems (that is British for “really
long lines”). So a few more might be advantageous...
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Now let’s compare with reality. The Virginia Chil-
dren’s Festival attracts about 3000 people annually to
Norfolk’s Town Point Park. They have about forty
or fifty porta-potties there. The number of potties
required, according to our estimate, is 3000/100 = 30,
so they have a few extra to reduce the waiting times.
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Let’s get one thing straight!

How long is all the DNA
in your body?

How long is the DNA

of all humanity?
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ANSWER: This one is a little complicated. We need to
calculate the size of the building blocks of DNA and
the total volume of DNA in the cell. Then we can use
that to figure out how long the total DNA is.

The nucleus of a cell is filled primarily with long
strands of DNA called chromosomes.* Each chromo-
some is composed of long strings of base pairs (the
familiar letters AT GC from a long forgotten biology
course). Each base pair is a very complicated molecule
itself. This means that it must contain a lot of atoms,
certainly more than 100 and less than 10%, so we’ll
estimate 10° atoms per base pair. We will treat each
base pair as a cube, 10 atoms on a side. Since all atoms
are about 10™'° m, our base pairs are 10~ m in length.
The volume of a base pair is then the length cubed:

Vop = (107°m)* = 107 m’

We estimated earlier that a cell is about 107> m in
size. The nucleus is about 1/10 of that, or 10~°m.
Thus, the volume of the nucleus is

Vo=(10"°m)’ =107 ¥ m’
This means that each nucleus can contain a number of
base pairs

‘/n 10—18 m3

_ _ 9
pr T 107 m3 10

Mpz

That is one billion base pairs. That’s a LOT of infor-
mation.

Now let’s straighten out all that DNA. There are 10’
base pairs at 10~% m each so the total length of DNA in
the cell is about 1 m. According to biology textbooks,
the length is between 1 and 3 m [12, 13].

*This is a physicist’s view of a cell and is accurate to within a factor
of two or three. If you want more precision, call a friendly
biologist.
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Now we estimated previously that there are 10
cells in our bodies. At 1 m of DNA each, that stretches
out to 10" m. That is 1000 times the distance from the
Earth to the Sun, ten times the distance from here to
Pluto, or about 1% of a light year.

If we stretched out the DNA of everyone on the
planet, the combined DNA strand would extend about
108 light years—about 50 times farther than the next
galaxy! But who would be around to appreciate the
comparison?
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Transportation

Americans have a love—hate relationship with
their cars. We love the freedom and privacy
they provide but we hate the traffic and
pollution they cause and the expensive fuel
they need. In this chapter we look at how far
we drive, how much it costs, and what some

of the alternatives are.






Driving past Saturn 5 ° 1

How many total miles (or kilometers) do all
Americans drive in one year? How does this compare
to the circumference of the Earth (2.5 x 10* mi),

the distance to the Moon (2.4 x 10° mi), the distance
to the Sun (9 x 107 mi), or the distance to

Saturn (10° mi)?

kEXEXEEEEEEEEEEERERXX

‘SUBDLIBWY ¢OL X € 31 313y :LNIH
¢19n0D sanuelIem JBD Mau op Jedk Jad sajiw Auew MOH :INIH

¢deak e ul aALp uosiad auo saop Jej MOH :INIH

89



ANSWER: To answer this question we need (1) how
many miles each American drives and (2) the total
number of Americans who drive. There are many ways
to estimate our average mileage. You could look it up,
but that would violate the spirit of this book, and
besides, it would involve getting up and walking over
to the computer. You could use your typical yearly
mileage (which would probably be within a factor of
two of the national average). Or you could look at
new car guarantees. Manufacturers advertise 3-year/
36,000-mile or 10-year/120,000-mile warranties. This
indicates that each car is driven about 12 thousand
miles per year.

Now we need the number of cars. There are
3 x 10® Americans. Almost all of us drive. There is less
than one car per person and more than one car per
four people so we will estimate one car for every two
people.* Thus, the total miles driven by all Americans
is about

10* mi

d=

3 1 car .

%3 x 10° peoplex ———— =2x 10" mi
car 2 people
That is 2 trillion miles or 3 trillion kilometers.
Wow! That distance would take us around the Earth
108 times, to the Moon and back 4 million (4 x 10°)
times, or to Pluto and back 2000 times. It takes the
Earth 3000 years to travel that distance in its orbit
around the Sun. At a speed of 3 x 10® m/s, it takes light
one-third of a year to travel that far.”
Who knew it was that far to the corner store!

*1In 2000, there were an average of 2.6 people and 1.3 cars per
American household. This is fortunate because only the
0.6 person can drive the 0.3 car [14].

+This means this means that Americans travel at a total speed of
only one-third that of light.
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Drowning in gasoline

What volume of gasoline does a typical automobile
(car, SUV, or pickup) use during its lifetime? Note that
this question asks about the lifetime of the vehicle,

not the time that you own it. Compare the weight of
the fuel to the weight of the car.
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ANSWER: First, let’s estimate how many total miles a
vehicle travels in its lifetime. Your vehicle’s odometer
typically has six digits. This indicates that manufac-
turers expect your vehicle to last at least 100,000 (10°)
miles. However, most vehicles do not reach much past
200,000 (2 x 10°) miles.* Let’s start with 10° miles
because it is a nice round number. (Cars made in the
1950s and 1960s did not last as long and frequently had
only five-digit odometers.)

Now let’s estimate the gas mileage. There are several
ways to do this. You can have an obsessive attention
to detail and calculate your mileage every time you
fill your gas tank. You can read the new car ads or
Consumer Reports and notice the mileage. Or you can
estimate it from how far you travel between fill-ups
and how much gas you put in. Most cars travel about
300 miles between fill-ups. If you have to put in 10
gallons of gasoline, then you get

300 mi
10 gal

= 30 mpg (miles per gallon)

If you have to put in 30gallons, then you get only
(300 mi)/(30gal) = 10 mpg. Since almost all cars get
between 10 and 40 mpg, we’ll use 20 mpg for our
estimates.

Now we can calculate the answer. The total number
of gallons used is equal to the total miles driven divided
by the miles per gallon:

10° mi

=——— =5x10gal
20 mpg

gas

*(Larry here:) I tried to keep my previous car until it reached the
moon, but had to get rid of it at only 225 thousand miles, not the
240 thousand I was aiming for.

+ This way, we’ll be within a factor of two of the right answer for
almost any vehicle.
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Now we need to convert to metric, since converting to
cubic inches or feet or yards would be too complicated.
One gallon equals four quarts, which equals approxi-
mately four liters. Thus, 5 x 10° gal &~ 2 x 10* L. Since
there are 1000 L in a cubic meter, this gives a volume
of gasoline equal to 20 m”.

Now let’s see how big that is. A 20-m? volume could
be 1 m deep by 4 m wide by 5 m long. At 3 ft per meter
(actually 3.3), that’s 3 ft deep by 12 ft wide by 15 ft long.
That is much larger than your car. It’s enough to fill a
small above-ground swimming pool!

At a density of 1ton/m?, your car will burn about
20tons of fuel in its lifetime. That is ten times the
weight of the car itselfl Even if you drive a Prius or
other car that gets 50 mpg, you will still burn 8 tons
of fuel.

Maybe your car lasts longer than 10° miles. Maybe
your car is a 10-mpg gas guzzler or a 40-mpg gas
sipper. Your answer will still be well within a factor of
ten. The fuel your car burns will greatly outweigh the
car itself.
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Slowly on the highway 5 ° 3

How much total extra time would Americans spend
driving each year if we lowered the highway speed
limit from 65 to 55 mph? (Note that we assume that
there is some relationship between posted limits and
actual speeds on highways.)

Give your answer in lifetimes.
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ANSWER: We need to estimate the time we spend
driving on 65-mph highways. To do this, we need to
estimate the distance we drive on 65-mph highways.

From the answer to an earlier question, we know
we drive 2 x 102 (that’s two trillion) miles per year.
About half of that is spent driving on the highway.
Urban highways do not have 65-mph limits (as if you
could ever drive that fast on the Santa Monica Freeway
or New York’s West Side Highway). We’ll estimate that
only about half of highway driving is done on 65-mph
roads. Thus, we drive

1 1
dos mph = 2 x 10" mi x S X5 =5% 10" mi

\]

on 65-mph roads.

Now we need to figure out (1) how much time it
would take to drive at a 65-mph speed limit, (2) how
much time it would take to drive at a 55-mph speed
limit, and (3) the difference. Instead of using 65 and
55 mph, we will use 70 and 60 mph. We do this for
two reasons: (1) No one knows what the real (i.e., the
enforced) speed limit is so most traffic exceeds the
limit at least somewhat, and (2) it is much easier to
do arithmetic with round numbers.

At 70 mph, driving takes a total time of

1

t65 mph = %Opﬁm =7 x 10°hr
If the speed limit is lowered to 55mph and people
drive at 60 mph, then

5 x 10! mi

t = =  —8x10°hr
>S5 mph 60 mph

Thus, we will spend an extra time
fextra = 155 mph — fo5 mph = 8X 10° hr—7x10° hr = 10° hr
That is an extra one billion hours behind the wheel.

Yikes!
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There are only 24 x 365 ~ 10 hours in a year. Thus,
the extra 10° hours is an extra 10° years.

At 100 years in a lifetime, that is an extra 1000
lifetimes.

Holy cow! That is a lot more lifetimes than we lose
to sharks or lightning or secondhand smoke or arsenic
in drinking water or . . ..

Of course, there is a huge difference between one
person losing her entire life or millions of people losing
a few hours each. (After all, 10° hr divided among
3 x 10% Americans is only 3 hr each.)

Note that we have not asked how many lives would
be saved by lowering the speed limit. Since traffic
deaths depend on actual speed driven, speed differ-
ences among drivers, and many other factors, it is
very hard to predict the change in fatalities. There was
no obvious change in the high fatality rate when the
nationwide 55-mph limit was repealed and different
regression studies reach different conclusions. Some
claim that raising the limit saved lives.
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Rickshaws and automobiles 5 ° 4

What are the relative costs of fuel (per kilometer or
per mile) of New York City bicycle rickshaws
(human-pedaled taxis) and of automobiles?
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ANSWER: Let’s start with automobiles. If your car gets
20 miles per gallon and gas costs $3.00 per gallon, then
it will cost you

$3.00/gal

—————— = $0.15/mi = $0.10/k
20 mi/gallon $0.15/mi = $0.10/km

Cars are cheap to run!*

Now let’s figure out how much the human costs per
kilometer. To do that, we need to estimate the costs
and the kilometers (or miles). Bicycling speed with
passengers will be between 5 (very slow) and 10 (fast)
mph. Thus, during an 8-hour day, the rickshaw can
travel between 40 and 80 miles. Since it is not always
in motion, we’ll use the lower estimate of 40 miles
(or 60km). We can also consider the performance
of experienced bicyclists. They can travel 100 miles
in a day. Pulling passengers and dealing with NYC
traffic would certainly slow them down to 50 miles
(or less).

Working that hard will burn a lot of calories.
We can estimate the costs of food several ways, from
per diem rates for expense accounts, from fraction of
annual income, from the costs of fast food, etc. Let’s
see what we get.

Expense account per diems are about $40. This is
almost certainly too high, since it applies primarily
to business folks who expect to eat three meals a day
at good to excellent restaurants. Western European
or American per capita income is $30,000-40,000 per
year or about $100 per day. We spend more than 5%
and a lot less than half of our income on food, so we’ll
estimate we spend 10-20% of our income or $10-20
per day on food. Buying three meals a day in fast-food

* Since the difference between miles and kilometers is only a factor
of 1.6, it really does not matter which one you use.
+We'll investigate food as an energy source in Chapter 5.
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restaurants would also cost about $10-20 per day.*
Thus, the fuel costs for the rickshaw pedaler will be

$15/day
60 km/day

Thus, the rickshaw costs only 2-3 times more than
the car for fuel. The car uses more energy per mile, but
gasoline is a much cheaper energy source than food.

Note also that the fuel costs for the autmobile
depend strictly on distance traveled (i.e., if you dou-
ble the distance, you double the fuel cost) but that
the fuel costs for the rickshaw bicyclist include the
2000 Calories per day just for basic metabolism.

= $0.25/km

*Since these are New York City rickshaw drivers, we will assume
Western diet and food costs.
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Horse exhaust

How much waste is generated (per kilometer) by
horse-drawn carriages and by automobiles? Give your
answer in kg/km.

¢auljosed Jo uo||ed e uo [9ABJ} JBD B S0P JBf MOH :1NIH

‘uosiad B Se 9AISSEW SE SaWI} OL
1N0QE SI 3SI0Y Y/ HULIP PUE 183 9SI0Y 3Y} S0P YdN MOH INIH

'a|doad uey) 421sBy YdNLWI JBY] J0U dJB SISIOH
¢Kep auo Ul |aAel) 3Se11IED UMBIP-9SIOY B S0P U8} MOH :INIH

*(a3sem) Indino
SawW023q (jany pue pooy) 1ndul ays || 1eyl awNnssy :INIH

‘snoased si
Isneyxa Jed pue pinbi| 1o pijos Jaya si 1sneyxa 3sioH :INIH

103



ANSWER: We'll need to first estimate how far a horse
can pull a carriage in one day and then estimate how
much food and water it consumes in the process. Note
that we are assuming that the horse does not gain or
lose weight and therefore it converts its food and drink
into an equal mass of horse exhaust.

How far can an average horse pull an average
carriage in one day? Since we are making the horse
work for about eight hours, it is certainly not going
to gallop, canter, or trot for most of it. Let’s start with
the average walking speed of a horse. A horse will
certainly walk faster than a person (3—4 mph or about
5-6kph or about 2m/s) but not that much faster.
This gives us a range of about 5-10 mph. In 8 hours,
it can travel 40-80 miles, so we’ll choose 60 miles
(or 100 km).*

How can we figure out the food consumption? We
can try to directly estimate the food consumed or we
can start with a human and scale up. A horse will cer-
tainly eat more than 1 quart (or liter) of grain and less
than 100 quarts. We’ll take the geometrical mean and
estimate 10 L. That has a mass of about 10 kg (201b)*
and will therefore produce 10kg of waste. Similarly,
the horse will drink more than 1L and less than
100L so we will estimate that it drinks about 10L
(also 10kg).

Now let’s start with a human and scale up. We eat
2-31b (1-1.5kg) of food and drink 1-2 L (or quarts) of
liquid per day. A horse is about ten times our size (in
volume or mass) and thus probably consumes about
ten times more than we do. This gives about the same
consumption as the previous estimate.

*That factor of 1.6 is almost irrelevant. Our estimates are just not
that exact.

+ The density of anything organic is reasonably close to water. The
density of water is 1 g/cm® or 1kg/L or 1 ton/m°.
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Thus, the horse will produce about 10kg each
of liquid and solid waste in the course of traveling
60 miles. The total waste will be about 0.3 kg/mi.

The automobile burns about one gallon every
20 miles. A gallon is about 4L and thus has a mass
of about 4 kg. Thus, the car produces 4 kg of waste in
20 miles or 0.2 kg/mi.

A car produces about the same amount of waste per
mile as a horse.* The problem is that while the car’s
exhaust blows away into the air (and is almost entirely
carbon dioxide and water), the horse’s exhaust sticks
around (literally). Imagine New York City if it had
millions of horses instead of millions of cars. Better yet,
don’t.

*Both produce plant food! The car produces carbon dioxide and
the horse produces fertilizer.
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ANSWER: First we need to figure the lifetime of tires
in miles. As usual, there are a few ways to do this.
You can estimate the lifetime of a tire in years and
assume the usual 12,000 miles per year. Tires definitely
last more than 1 year and less than 10, so estimates
of between 3 and 5 years are reasonable. Alternatively,
you can read the tire ads, which advertise the tire
lifetimes, or remember the lifetime of the last set of
tires you bought. Tires typically last 30-60 thousand
miles. They typically have between 1/4 and 1/2in. (i.e.,
about 1 cm) of tread.

Thus, 1 cm of tread is worn off in about 4 x 10* mi.
We want to know how long it takes to wear off a
thickness of one molecule or 5x 1071 m of tread. That
distance is

_4x 10*mi  100cm

d= x5x 107 m

X

lcm 1m
=20 x 10~* mi
=2x 107 mi

Now we need to make sense of this result. 107> mi is

hard to figure out, but 10~? km is just 1 m. Since a mile
is only a little bigger than a km, we have

d=2x107mi=3x10km=3m

Three meters is about 10 feet. That is only one or two
complete rotations of the tire.

Thus, you wear off a one-molecule thickness of
rubber with every rotation of your tire.
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Working for the car

Your car allows you to travel many miles
in just a few hours. However, in addition
to the hours you spend driving, you
have to spend more hours not driving,
hours you spend earning money to pay f
for your car (eg: depreciation,
insurance, fuel). This extra time
reduces your average car travel
speed. For example, if you drive
60 miles in one hour and then
spend one more hour earning
enough money to pay for the
driving, then your average
speed is not 60 mph,

but 30 mph.

If you add all the time you
spend working in order to &
earn the money to pay for =
your car to all the time that  ({
you sPend driving your car, 9 )
what is your average car ° D
travel speed? 4
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ANSWER: We need to figure out how much time we
spend working to pay for the car and how much time
we spend driving the car. Let’s put the pedal to the
metal and take it from the top.

To figure out the working time, we need to first
estimate the life-cycle cost of the car. There are at least
two ways to estimate the cost of a car. We can take the
IRS mileage reimbursement rate of $0.445 per mile in
2006. That’s the easy way. (As usual, any value between
$0.30 and $0.60 is quite reasonable.) Alternatively, we
can try to figure out the life-cycle cost of a car. Here
we go.

Let’s buy an average new car. No Hummers, no
Jaguars, no Minis. Then let’s keep the car until it
gets old or about ten years. We will have to pay for
many things in those ten years: the car, insurance, gas,
repairs, fuzzy dice, and parking.

The best selling vehicle in America in 2006 was the
Ford F-150 pickup truck and the best selling car was
the Toyota Camry. Both vehicles cost between $20,000
and $25,000 (depending on options and ability to
bargain).

Insurance will cost about $1000 per year or $10,000
for 10 years. It will be a lot more for an 18-year-old
male driving a Corvette with three speeding tickets
and a DUI in the Bronx. It will probably be much less
for a 45-year-old woman with a perfect driving record
in Salem, Oregon.

Repairs will probably average about $1000 per year.
Repairs will cost much less in the first few years and
much more in the last few years.

In ten years, we will drive about 120,000 miles (or
about fives times around the Earth). At the Camry’s 20
miles per gallon, we will burn % = 6000 gallons
of gasoline. At $3 per gallon, that will cost $18,000.
The difference in mileage between the Camry and the
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F-150 will amount to “only” a few thousand dollars
of gas and is thus too small for this book to worry
about.

If you live in Manhattan (New York, not Kansas),
you can add $3000 per year for parking. That’s your
problem. Most of us can leave that out.

Thus, the total costs of driving 1.2 X 10° mi in
10 years is (to one significant figure):

Category Cost (3)
Vehicle cost 20,000

Insurance 10,000
Repairs 10,000
Gasoline 18,000
Fuzzy dice 5
Total 60,000

If we use the IRS mileage number of about
$0.50 per mile, we also get a total cost of $60,000 for
120,000 miles.

Note that the total (life-cycle) cost of the car is three
times the purchase price.

Now we need to figure out (1) how much time we
spend driving the 120,000 mi and (2) how much time
we spend earning the $60,000.

Most people typically drive on a mix of highways
(55-65 mph) and local streets (25-45 mph plus traffic
lights and stop signs). If we average highway and local
(or Montana and New York City), we’ll get a speed of
30—40 mph. This means that we will spend a total of

1.2 x 10° mi
fdrive = —————— = 3000 hr
40 mph
behind the wheel to travel 120,000 miles. If you average
30 mph, you will spend 4000 hours.

Per capita American income is $40,000 per year. Of

course, we don’t spend all of our time working (it only

111



seems that way). In one year, we work

40hr 50 weeks 2000 hr
X =
week year year

Twork =

Since it takes 2000 hours to earn $40,000, we earn an
average of $20 per hour.* At $20 per hour, it will take

N $60, 000
earn — $20/hr

Wow! We spend about the same amount of time
earning the money to pay for our car as we do driving
it. Whodathunkit?

Now we can calculate our average driving speed.
The total time we devote to driving (and we are cer-
tainly devoted to our cars) is 3000 hours driving plus
3000 hours earning, which equals 6000 hours. Thus,
our average automotive speed is

120, 000 mil
~ 6000 hr

And this does not even count the time spent looking
for a parking space or waiting for the mechanic.

= 3000 hr

= 20 mph

*Not counting taxes.
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Energy and Work

Chapter 6
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Energy of Height

Gravity sucks! If you drop something, it will fall. The
gravitational acceleration at the surface of the Earth
is ¢ = 10 m/s>.* This means that a falling object will
increase its speed by 10 m/s (about 20 mph or 36 kph)
every second. If you fell for 5s, you would hit the
ground at 50 m/s or 110 mph or 180 kph. Ouch!

g is also the gravitational force (measured in new-
tons (N)) exerted on an object of mass 1kg (1kg is
about the mass of 21b) at the surface of the Earth.
Thus, a 1-kg block experiences a gravitational force
(i.e., has a weight) of 10 N on Earth (less on the moon
and more on the “surface” of Jupiter). In general, the
gravitational force on an object can be expressed as
F = mg, where m is the mass in kilograms.

It takes work to lift an object against the force of
Earth’s gravity. The energy needed to do this is called
the potential energy

PE = mgh

where h is the height in meters. This makes sense. If
you increase the mass of the lifted object, or the height
you lift it to, or the gravitational pull, then you will
need more energy to lift the object. The metric unit of
energy is the joule, abbreviated J.

*To be precise, which this book is not, g varies from 9.78 to
9.83m/s” depending on latitude.

+This difference between mass and weight can be confusing. The
object has the same mass everywhere, but the force needed to lift
it depends on the planetary gravity. To increase the potential
confusion, in US customary units, pounds can refer to either
weight or mass.
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Mountain climbing 6 ° 1 ° 1

How much do you change your potential energy
climbing a medium-sized mountain? How does
this compare to the 6 x 10° ] in a can of soda?
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ANSWER: Since potential energy is PE = mgh, we
need to estimate our mass, the gravitational acceler-
ation, and the height of the mountain. Assuming that
we do this on Earth, ¢ = 10 m/s%.

Humans (at least the ones likely to climb moun-
tains) weigh between 100 and 2001b. This means that
we have a mass between 50 and 100 kg. As usual, we
will choose 100 kg because it is a round number* and
makes the arithmetic easier.

A medium-sized mountain is taller than a building
and shorter than Mt. Everest. The tallest building has
about 100 floors or stories with about 10 ft per floor
and thus is about 1000 ft tall. Since 1m ~ 3 ft, this
is about 300 m. Thus, a medium-sized mountain is
somewhere between 3 x 10? and 1 x 10* m. We'll take
the average of the coefficients (the average of 3 and 1
is 2) and the average of the exponents (the average
of 2 and 4 is 3) to get a height of h = 2 x 10°m
(or 6000 ft). This is the height of the tallest mountain
on the US east coast. If you chose a shorter or taller
mountain, that’s fine too.

Now we can calculate the change in potential energy
when you climb that mountain:

PE = mgh
= 100kg x 10m/s* x 2 x 10°m
=2x10°]

Gee, two million joules! Is a joule big or small? Is that
alot?

To figure that out, we need to compare to other
measures of energy. A 12-oz (330-mL) can of soda
contains 6 x 10°J of food energy.” Thus, by climbing

*And if I massed a 100 kg, I would be round too.

t1If you live in the US, the soda’s energy content is given in Calories.
We’ll discuss those in the next chapter. If you live elsewhere, it’s
given directly in joules.
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that mountain, we would gain potential energy equal
to the food energy contained in

N 2% 10°7] 3 s0d
= = sodas
sodas g 105 ] /soda

That’s not much! Climbing a 2-km (6000-ft) mountain
takes a lot more work than that!
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Flattening the Alps 6 ° 1 ° 2

How much energy could we get from flattening the
Rocky Mountains or the Alps (i.e., how much
potential energy is stored in a mountain range)?
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ANSWER: We need to estimate the average height of
the Alps or the Rockies and their total mass. To get
the mass we will need to estimate the volume and the
density. To get the volume we will estimate the aver-
age length, width, and height. The highest mountain
in either mountain range is about 20,000 ft (6000 m)
so we will estimate that the average height including
all the peaks and valleys is less than half of that or
2%10° m.*

The Alps stretch about 10° (1000) km from east
to west (it is certainly more than 10*km and less
than 10* km) and about 200 km from north to south.
(If you did this in miles, that’s fine. Since miles and
kilometers are so close, 1 mi = 1.6 km, they are almost
interchangeable in this book.) Now we need to convert
these distances to meters. Fortunately, it is easier than
converting miles to feet. Since 1 km = 10> m, 10° km
= 10° mand 2x 10> km = 2x 10° m. Thus, the volume
of the Alps will be

VAlpszlxwxh=106mx2x105mx2><103m
=4x10"m’

The Rockies are a lot longer since they run from
southern US to northern Canada. This is about 3000
miles or 5 x 10° km. That would increase the volume
by a factor of five from 4 x 10" m? to 2 x 10" m?.
Now we estimate the density in order to convert
volume to mass. Mountains are made of rock. Rock
sinks and thus is denser than water (1ton/m?). Rock
is less dense than iron (10 ton/m?). Thus, we will use a

*If you look at a relief map of the Alps, you will see that most of the
Alps are actually only at about 1500 m. Thus, our crude estimate
is not too bad.
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density of d = 3 tons/m? or 3 x 10° kg/m>. This gives
a total mass of

Myyps = V x d =4 x 10" m’ x 3 x 10° kg/m’
=1x10"%kg

and the Rockies will have five times as much. That’s a
lot of mass.

Now we can calculate the potential energy. Note
that the average height of the mountain range is 2 x
10° m. However, the mass extends from sea level up to
the average height. Thus, for calculating the potential
energy, we need to use half of that average height.*

PEpjps = mgh =1 x 10"% kg x 10m/s* x 1 x 10°m
=1x107]

and the Rockies will have five times as much or
PERockies = 5 X 10?2 (about 10" cans of soda). Now
THAT is a LOT of energy! The energy to raise the
mountains came from the motion of the continents
(and originally from the heat generated in the core of
the Earth).

Note that the height of the mountain range enters
our equations twice, once explicitly as the height and
once as part of the volume. This means that if we
overestimate the height by a factor of two, we will
overestimate the potential energy by a factor of four.
Fortunately, we are only trying to get within a factor
of ten.

*It’s OK if you left out this factor of two. We are only trying to get
within a factor of ten of the correct answer.
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Raising a building

How much potential energy
does a 100-story building
have?
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ANSWER: As in the previous problem, we need to
estimate the height of the object and its mass.

Each story of a building is about 10 to 12 feet.
Ceilings are about 8 feet (i.e., there is about 8 feet of
air between the floor and the ceiling) and there is
space used for ductwork and cabling and for structure
(holding up the building). This 10 to 12 feet is equal
to 3 to 4 meters. Thus, the 100 story building is 100
stories x 3 m/story = 300 m tall. The average height of
the material in the building will be half of that (since
not all the material is located at the top of the building)
or h =150m.

Now we need to estimate the mass of the building.
The building’s mass is in its vertical structure and its
horizontal floors. The structural supports are all steel
(since it is much stronger than the same weight of
concrete). The structural supports will occupy much
more than 1% and much less than 100% of the
volume of the building. We will take the geometric
mean and estimate that they occupy about 10% of
the volume of the building (if it was much less then
we could build much taller buildings and if it was
much more then there would be little usable space in
the building).

Therefore, we need to estimate the volume of the
building. We already have the height. The area of a
typical 100-story building will be somewhere between
a football field (50 yards by 100 yards = 5 x 10° yd* =
5 x 10> m?) and a private house (10° ft* or 100 m?).
We'll use 10° m? for our building (this is 30 m by 30 m
or 100 ft by 100 ft). Thus, the volume is

Vhgg = h x A= 3 x10*m x 10° m*
=3x10°m’

We'll assume that 10% of this is steel with a density
d = 10tons/m’ = 10* kg/m>. Thus, the mass of the
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building is
m = Vied X d = Vpigg X 10% x d
=3 x10°m’ x 0.1 x 10*kg/m’
=3 x 10%kg

Note that the 110-story Sears Tower has a mass of
M = 2 x 10% kg (so we are gol-durn close!).
Now the potential energy is easy:

PE = mgh =3 x 10°kg x 10m/s* x 1.5 x 10*m
=5x10"7]

That’s equivalent to the energy contained in 10 million
cans of soda. Now that is a lot of energy. It helps
explain why it is much easier to collapse a building
than it is to build it.
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Energy of Motion

It takes work to make an object change its speed (e.g.,
from 0 to 60 mph) even ignoring pesky details such as
friction and air resistance. The kinetic energy (energy
of motion) of an object (in joules) is

1

KE = —mv?
2

where m is the mass in kilograms and v is the velocity
(or speed) in meters per second.* (It is easy to convert
from meters per second to miles per hour since 1 m/s
~ 2mph.)

If you drop a water balloon from a building, it will
start with a large amount of potential energy (PE),
convert PE to KE as it falls, and then convert KE to
a large splash as it hits.

* Technically, velocity includes both magnitude and direction, while
speed includes just the magnitude. Since we will only be using
them to calculate kinetic energy where the direction does not
matter, we will use both terms interchangeably.
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At your service 6 ° 2 ° 1

What is the kinetic energy in joules of a served
tennis ball?
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ANSWER: Since KE = %mvz, we need to estimate the
mass and the velocity. There are definitely more than
one and less than 100 tennis balls in a pound so we
will estimate that there are 10 tennis balls per pound.
This means that there are 20 tennis balls in a kilogram
(since 1 kg = 21b). Thus, the mass is
lkg -2

m= s 5 x 107" kg/ball

Now we need to estimate the velocity. We can place
certain limits on the speed. Since the tennis ball does
not make a sonic boom, we know it is slower than
the speed of sound (300 m/s). The tennis ball travels
faster than a car (30 to 60 mph or 15 to 30 m/s). Let’s
see if we can get more information. We can compare
it to baseball. A pitched fastball (in baseball) travels at
100 mph (50 m/s). A served tennis ball should go faster
than that because the racket gives some mechanical
advantage. Alternatively, we can use the size of the
tennis court. The ball travels about 60 ft (20 m) from
the service line to where it hits the court. It must take
more than 0.2s to do this (or we could never return
a serve) and it certainly takes less than a second. This
gives a range of speeds from 20 to 100 m/s. We’ll use
60 m/s (or 120 mph).

Now we can calculate the kinetic energy:

1
KE = Emv2 =0.5x5x 10"%kg x (60m/s)?

= 100]

1007 is the energy output of a 100-W light bulb for 1s
(since 1 watt = 1joule/second).

Not much!

Now let’s compare to reality. The fastest tennis serve
was 164 mph (73 m/s) so 60 m/s is quite reasonable for
an excellent player. The mass of a tennis ball is 57 g, so
our estimate of 50 g is also very close.
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Kinetic trucking 6 ° 2 ° 2

What is the kinetic energy (in joules) of a large truck
at highway speed?
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ANSWER: We need to estimate the speed and mass
of the truck. US highway speed limits are typically
between 55 and 65 mph. We’ll use a speed of 60 mph
~ 30 m/s. (Remember that we need to use metric units
in our equations.) A small car weighs about 1ton. A
large truck will weigh a lot more than one car but less
than 100 cars. This would give us a weight of 10 tons
(the geometric mean of 1 and 100). Alternatively, we
can estimate the mass from bridge weight-limit signs.
Bridge weight limits, if posted, tend to be about 10 or
20 tons. This implies that large trucks weigh more than
that (since otherwise the warning signs would not be
needed). This gives a weight of about 40 tons. We'll use
the average of 10tons and 40 tons, or 20 tons. Since
1 ton = 10% kg, 20 tons = 20 x 10> kg = 2 x 10* kg. Now
we calculate that

1
PE = Emvz =0.5x 2 x 10°kg x (30m/s)*

=1x10"J

This is 10° (one million) times less than the pot-
ential energy of a large building. Since a typical can
of soda contains 10°J, this is the energy contained in
100 12-ounce (330-mL) cans of soda. We’ll investigate
automotive energy sources (batteries and gasoline)
more in the next chapter.

Note that a small car with a mass of about 1 ton
will have a lot less kinetic energy. We can calculate it
directly, or we can use the fact that the car has a mass
that is twenty times less than the truck and therefore
will have a kinetic energy that is twenty times less.
Thus, the car’s kinetic energy will be KE,, = 1 X
107J/20 = 5 x 10°J. This is the energy contained in
five cans of soda.
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Racing continents

What is the kinetic energy of a drifting continent?
(Ignore the rotation and other motion of the Earth.
We are only interested in the motion of the continent
with respect to the rest of the Earth.)
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ANSWER: As usual, we need to estimate the mass and
the speed. Let’s start with the mass. We will estimate
the volume (i.e., length, width, and height [or depth])
and the density using North America. We estimated
the width of the contiguous US back in question 3.9
as 1/8 of the Earth’s circumference or 5 x 10°m.
Assuming that North America is square (insert your
bad joke here; we’re temporarily out of stock), the
length is also 5 x 10° m.

The depth of the crust is a little more difficult. It
is certainly more than 1km (many mines go deeper
than that) and less than 10° km (since we know that the
tectonic plates are a small fraction of the radius of the
Earth). We'll take the geometric mean of 1 and 10° km
which is 30 km or 3 x 10* m.* Thus, the volume of the
North American plate is

Via =lwh=5x10°m x 5x 10°m x 3 x 10*m
=8 x 10" m’

Now we can multiply that by the density of rock to
get the mass. The density must be more than that of
water (d = 1 x 10° kg/m?) and less than that of iron
(d = 10x10° kg/m?) so we will use d = 3 x 10° kg/m”:

mya =dx V=3x 103kg/m3x8x 10" m?
=2 x 10" kg

Now we need the velocity. If you read about Cal-
ifornia earthquakes, you might know that the North
American plate is moving at about 1 to 2cm per
year. Alternatively, we can use a longer time scale. The
Atlantic Ocean has been widening for about 10® years
as North America has been moving away from Europe.
At present, the maximum width of the Atlantic Ocean

*The actual thickness of the continental crust is between 20 and
80 km.
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is about 5000 km = 5 x 10° m. Thus, the velocity* of
North America is

d 5x10°m
V = —-= -
M 108 yr
lyr
=5x107?m/yr x ———
/y T x 107 s

=2x10""m/s

This estimate of 5cm per year is a few times larger
than the actual speed. It is still not very fast.
The kinetic energy is now

1
KE = Emv2 =0.5x2x 10% kg x (2 x 10~ m/s)?

=4x10°]

That is a lot more than the tennis ball but a lot less than
the truck! It is much less than one can of soda.

To explain why continents are so hard to stop, we
would need to estimate their momentum. Perhaps in
the next book . ..

*We use V for volume and v for velocity. Scientists rapidly run out
of variables and have to reuse letters.
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“To boldly go ...”

How much energy is needed to get a spaceship
from Earth to Alpha Centauri (the nearest star,
about 4 light-years away) before
the passengers die of old age?
How many tons of fuel will this
take (assuming 4 X 10° J/ton
~ 7 of TNT or rocket fuel)?
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ANSWER: The rocket fuel will provide the kinetic
energy for the rocket ship. To figure out the kinetic
energy, we need to estimate the mass and the velocity.
Thus, we first need to figure out how fast the spaceship
will need to travel. The spaceship needs to travel the
4 light-years from Earth to Alpha Centauri in 40 years
or less.* Since it takes us 40 years to travel the distance
that light travels in four, our velocity is one-tenth of
the speed of light. Thus,

1
v=—c=0.1x3x10"m/s
10

=3x10"m/s

Now we need to estimate the mass of the rocketship.
A modern aircraft carrier displaces 10° tons. Colum-
bus sailed to the New World in the Santa Maria, which
weighed only about 100 tons.” It’s hard to imagine
cramming the life-support systems needed for a 40-
year voyage in a tiny ship. Let’s use a mass of 10* tons or
107 kg. Since the kinetic energy is directly proportional
to the mass, it’s easy to try different masses. Anyway,
let’s calculate the fuel we need.

The spaceship will have a kinetic energy of

1
KE = Emv2 =0.5x 10" kg x (3 x 10" m/s)*

=5x10*]

That’s a lot of energy. We could get that much from
flattening the Alps, but that would supply the energy
for only one small vessel.

*Why 40 years? We could have chosen any number between 20 and
60 years. There are two reasons: (1) it worked for Moses and (2) it
simplifies the arithmetic because it is exactly ten times four.

+ But his voyage lasted only a few months and he did not have to
bring all his oxygen.
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Now let’s look at the fuel needed. At 4 x 10° J/ton of
fuel, our 10*-ton spaceship will need fuel with a total
mass

5x 10217

— =1x10"ton
4 x 10°J/ton

Mfyel =
Yikes! It does not matter what size spaceship you chose
because the fuel will weigh 100 million (10%) times
more than the spaceship. Now we need to include the
extra fuel needed to accelerate the fuel. We did not
even take into account the energy needed to decelerate
the spaceship at its destination or the inefficiency of
rocket engines.

There is no way we can do this. We cannot fly
a spaceship to the stars in a human lifetime using
conventional chemical fuels.

Someone needs to start working on dilithium crys-
tals or antimatter drives.
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Work

“Work” is not just a generic term. In physics it means
transferring energy by pushing on something (apply-
ing a force) and making it move. When you kick a
football (either the spherical or nonspherical kind),
you are applying a force over a distance. When you
shoot a bullet from a gun, the expanding gases in the
gun barrel exert a force over a distance. When you
apply the brakes in your car, the ground applies a force
on your car over a distance. The energy transferred by
this force is

W= Fd

where F is the force in newtons (10N is the weight
of 1kg and 10* N is the weight of 1ton [on Earth])
and d is the distance over which the force is applied
(in meters). Note that the force must be in the same
(or opposite) direction as the distance traveled. If you
push in the same direction that the object travels,
you increase its energy and speed (e.g., kicking a
football). If you push in the opposite direction, then
you decrease the object’s energy and speed (e.g., apply
the brakes).* Thus,

work = change in kinetic energy

*If you push sideways (perpendicular to the object’s motion), then
you do no work. You change the object’s direction but not its
energy or speed (e.g., the Earth pulling on the Moon).
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Crash!

In the interests of researching this book, John offers
to crash his car into a hard barrier at highway speed.
What force would be exerted on his body as he
stopped? (Assume that he is wearing his seat belt
and his air bag deploys properly.)
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ANSWER: For John to change his velocity from high-
way speed to a complete stop, a force needs to be
exerted on him. This is Newton’s first law: Your speed
and direction of motion will not change unless an
outside force acts on you. In this case, the force acting
on John is exerted by the seat belt and air bag that
compel him to slow down as the car slows down. We
will estimate the force exerted on him by the seat belt
and air bag. To do this, we will estimate his initial
kinetic energy (since the work done by the seat belt
must change that value to zero) and the distance over
which the force acts.

We'll assume that he is driving at 60 mph or 90 kph
(30m/s) and has a mass of 100kg (2201b).* In that
case, his kinetic energy is

1
KE = Emv2 = 0.5 x 100kg x (30rn/s)2

=5x 10*]

Thus, the work done in stopping him must be 5 x 10*J.

Fortunately, the front end of his car is well designed
and crumples. While the front bumper stops imme-
diately, the passenger compartment slows and stops
more gradually as the front end crumples. A typical
front end will crumple less than 1 m (3 ft) and more
than 0.1 m (10 cm or 4in.). We'll take the average and
use 0.5 m." This means that the force exerted is

W 5x10%]
Fcrash: — =
d 0.5m
=10°N

*This mass is in the cause of science. He will lose the extra weight
when the problem is finished.

+1In this case, there is little difference between the geometric mean
of 0.3 m and the average of 0.5 m.
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Let’s see how much that is. Since 10N is the grav-
itational force exerted on a 1-kg object, 10° N is the
gravitational force exerted on a 10*-kg object. Thus,
the force exerted on John during the collision is equiv-
alent to one hundred 100-kg (200-1b) people standing
on your chest. That is 10 tons! Yikes! Driving into a
wall at 60 mph (even if you are wearing your seat belt)
is not a good ideal!

Car dashboards are padded and cars have crumple
zones to increase the stopping distance in a crash in
order to decrease the stopping forces involved. The
reason that you should always wear your seat belt is
that the seat belt holds you in your seat, so that you
stop gradually as the car stops. If you are not wearing
your seatbelt, your head will stop abruptly as it hits the
windshield. Since the stopping distance will be much
less, the forces involved will be much greater. This is
generally not a good thing.
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Spider-Man and the subway car

In the movie Spider-Man 2, Spider-Man stops a
runaway New York City six-car subway train by
attaching his webs to nearby buildings and pulling
really hard for 10 or 20 city blocks. How much force
does he have to exert to stop the subway train? Give
your answer in newtons and in tons (1 ton = 10* N).
How does this compare to the force that you can exert?
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ANSWER: This is very similar to the previous question.
Since the work done by Spider-Man to stop the train
is equal to the train’s initial kinetic energy, we need
to estimate the mass and velocity of the train. We will
then need to estimate the stopping distance in order to
calculate the force exerted.

A subway car is about the same size and weight as
a semi-trailer (18-wheeler) truck. This is between 10
and 40 tons. We'll use 20 tons (or 2 x 10*kg). There
are six cars on a train so that the mass of the train is
6 x 2 x 10* kg = 10° kg. They certainly go faster than
20 mph and slower than 100 mph. Since it is not that
far between subway stops, subways travel at only about
40 mph (20 m/s). Thus, the kinetic energy of a subway
train is

1
KE = Emvz =0.5 x 10°kg x (20m/s)*

=2x10"]

Now we need to figure out the stopping distance.
There are 20 blocks per mile in Manhattan. Thus, 10 or
20 blocks is about 1km or 10°> m. (It’s certainly more
than 100 m and less than 10 km.) Thus, Spider-Man
needs to exert a force

F_KE_2><107]
d 10°m
=2x10'N

A force of 2 x 10*N is the weight of 2000kg or
2 tons. For a superhero who can lift cars, this is quite
possible (although definitely not easy). A human could
definitely not do it.

Wow! Hollywood got the physics correct, in a
superhero movie no less! Hurray!
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Hydrocarbons and Carbohydrates

Chemical Energy

Unless we are capable of photosynthesis, we get most
of our energy from chemical reactions: from eating
food and from burning hydrocarbon fuels. In a typical
chemical reaction, one electron is exchanged between
two atoms. The energy of this exchange is about



1.5 electron volts or 1.5eV.* If you want more preci-
sion than that, ask a chemist or look it up. To convert
this to a useful number, we need to know two things:

1. The conversion from electron volts to joules:
leVA2x107"7]

2. The number of molecules involved in the
reaction

To determine the second, we need to introduce a
little chemistry. We will be concerned primarily with
hydrocarbons and therefore will limit ourselves to the
reactions C+ O — CO, (carbon plus oxygen reacts to
form carbon dioxide) and H + O — H,O (hydrogen
plus oxygen reacts to form water). All the oxygen for
these reactions comes from the atmosphere.

In this book, there are only three hydrocarbons:
coal (pure carbon), natural gas (methane or CHy),
and everything in between (including gasoline), which
we will call CH,." One mole of carbon has a mass of
12 g (the atomic weight of carbon) and contains Ny =
6 x 10% atoms. Burning that will result in N chemical
reactions. One mole of methane has a mass of 16 g (the
atomic weight of the carbon plus four hydrogens) and
contains Ny = 6 x 10% molecules. Burning that will
result in 3 x N, reactions (one CO, and two H,0).

*We know this because batteries convert chemical energy to
electrical energy. Common batteries provide an electrical
potential of 1.5 V. Therefore, each single electron flowing through
the battery gains an energy of 1.5 electron volts and each coulomb
of electricity (a coulomb is a LOT of electrons, 1 C = 6 x 10'8¢)
flowing through the battery gains an energy of 1.5 coulomb volts
(or 1.5 joules).

+ This is because many hydrocarbons consist of long carbon chains
with two hydrogen atoms per carbon atom. We can think of these
as being made up of repeated CH, units. In practice, the ratio of
hydrogen to carbon varies depending on the exact chemical
involved. We are not chemists; this is not our problem.
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Energy in gasoline 7 ° 1 ° 1

How much chemical energy (in joules) can be released
by burning 1 kg (about 1L or 1/4 gal) of gasoline?
What is its energy density (in J/kg)?
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ANSWER: Since we know that the energy we get for
each chemical reaction is 1.5 €V, we need to estimate
the number of chemical reactions that occur when we
burn 1kg of gasoline. To do this we need to estimate
the chemical composition.

We will assume that the hydrogen to carbon ratio
in gasoline is two (since it is more than zero [pure
carbon] and less than four [pure methane]). Thus, we
will assume that gasoline is made of CH, molecules.*
The atomic masses of carbon and hydrogen are 12
and 1, respectively, so that the molecular mass of CH,
is 14. This means that one mole of CH, has a mass of
14gor 1.4 x 1072 kg. Thus, 1kg of gasoline contains

1kg
N =
1.4 x 1072 kg/mole

= 70 moles

Each of these CH, “molecules” will give us two
reactions: the carbon atom will oxidize and form CO,
and the two hydrogen atoms will oxidize and form
H,O. Thus, each CH, molecule will provide 3 eV. The
total energy released by burning (oxidizing) 1kg of
gasoline will be

70moles 6 x 107 reactions 3eV
= x x

kg mole reaction

1]
X—
6 x 1018 eV

Thus, we estimate that 1kg of gasoline will release
2 x 107 J when burned.

Looking this up on the web [15], we find that gaso-
line has an energy density of about 4.5 x 107 J/kg so
we are only off by a factor of two. Not bad, considering
the approximations we made.

=2x10"J/kg

*This ignores the fact that the carbon atoms are in long-chain
molecules (octane has 8 carbon atoms in a chain) and thus
ignores the energy needed to break the carbon—carbon bonds.
We'll let the chemists worry about that.
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Note also that gasoline has a density of about 3/4
that of water. This is definitely close enough to one
for this book. However, if you need to be precise,* you
should use a volume energy density of 3 x 107 J/L.

Note that 1 kg of TNT contains only 4 x 10° J, which
is only 10% of gasoline. However, the TNT can release
that energy MUCH more rapidly.

*Which this book is not.

149






Battery energy

How much chemical energy is stored
in a common D-battery?
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ANSWER: To estimate the chemical energy contained
in a battery, we need to estimate its power output and
its lifetime. This is because power (measured in watts)
is the energy used each second. Thus, a 100-W light-
bulb consumes 100 ] of electrical energy every second.

The easiest way to estimate the power output of a
battery is to compare the light output of a flashlight
powered by the battery with other lights of known
power consumption. Since different types of light bulb
(e.g.; incandescent, fluorescent, LED) have very dif-
ferent efficiencies (i.e., very different amounts of light
produced for the same amount of energy consumed),
we need to make sure we compare light from the same
type of bulb. We’ll use the common incandescent bulbs
for our comparison. (Those are the ones that emit light
by heating the filament to thousands of degrees and
hence get very hot.)

A flashlight definitely gives off much less light than
standard lamp bulbs (100-W, 60-W, or 25-W). It gives
off about the same amount of light (within a factor
of 10) as a 4-W night-light, although it is difficult
to compare precisely because a flashlight is usually
directional (i.e., it uses a mirror to focus the beam
in one direction) and a night-light is usually omni-
directional and partly shielded.* Thus, we will estimate
that the flashlight consumes 4 W (i.e., 4]/s).

Now we need to estimate the lifetime of the battery.
The flashlight can stay lit for more than an hour but
less than a day (24 hr). We will take the geometric
mean and estimate that the lifetime is 5 hours. Now

*You also need to compare the two light sources under similar
ambient light conditions (since the light sensitivity of the human
eye changes by orders of magnitude from bright sunlight to
darkness).

152 Chapter 7 Hydrocarbons and Carbohydrates



we can calculate the chemical energy stored in the
battery:

Ep_pattery = power X time
=4 W x 5hr x 3.6 x 10’ s/hr
=7 x10*J

Thus, one D-battery contains 7 x 10*] of chemical
energy.

Let’s compare our estimates to reality. A Duracell
alkaline D-battery has a specified capacity of 15,000
mA-hr (milliamp-hours) or 15 A-hr. The power out-
put equals the current (in amperes) times the voltage.
Thus, we have

Egpec = 15A-hr x 1.5V x 3.6 x 10’ s/hr
= 8.1 x 10*]

Now we need to ask, is this a lot of energy? It
is about the same amount as the chemical energy
contained in a can of soda. It is also about 1/1000 of
the energy in a kilogram (or liter) of gasoline. Since
107°L = I mL = 1cm?, it is the energy contained in
a cubic centimeter (about the volume of the last joint
your smallest finger) of gasoline. Not much.

We’ll explore this further in the next question.
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Battery energy density

What is the energy density of a D-battery (in joules
per kilogram)? How does this compare to the energy
density of gasoline?
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ANSWER: To estimate the energy density, we need
to estimate the energy and mass of one battery. We
estimated the energy of one D-battery in the previous
problem. Now we just need to estimate the mass. It is
frequently easier to estimate how many objects it takes
to have the weight of 1kg rather than to estimate the
weight of a single object. One D-battery clearly weighs
less than a kilogram and 100 D-batteries clearly weigh
more. We estimate that there are about 10 D-batteries
per kilogram. (In reality, a four-pack of D-batteries
has a shipping weight of one pound. This would imply
exactly nine batteries in a kilogram.)

Now we can calculate the energy density of alkaline
D-batteries:

energy  batteries
X

energy densityp,__, = battery ke

8 x10*] 10D — cell
= X
D — cell kg

=8 x 10°J/kg

Remember that gasoline has an energy density of
4 x 107 J/kg. This is a factor of fifty (50) worse. Wow!

In fact, reusable batteries are much worse than
that. Reusable batteries are designed for, among other
things, energy density and cycle life (how many times
you can recharge it) [16]. The energy densities of
rechargeable batteries are several times worse than the
nonrechargeable ones. They range from 1 x 10°J/kg
for lead-acid batteries to 6 x 10°J/kg for the highest
energy-density lithium-ion batteries. The batteries can
be recharged only 200 to 500 times (depending on type
of battery).

Note that the cycle life can also be a serious lim-
itation. If you refuel your car once per week, that is
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50 times per year. This means that a 200-cycle battery
would last only four years as the energy storage for a
car. If you are buying an electric car, you do not want
to have to replace the large, heavy, expensive battery
every four years.
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Batteries vs. gas tanks

How many tons of batteries will you
need to contain the same amount of
energy as the gasoline in your gas
tank? How much does a full tank
of gasoline weigh?
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ANSWER: Automobile (passenger car and SUV) gas
tanks range from 10 to 30 gallons depending on the
size and mileage of the car. A compact car takes about
10 gallons, a minivan takes about 20, and a Hummer
H2 takes 32. Let’s use 20 gallons as a reasonable aver-
age. Twenty gallons of gas contains energy

E =20gal x 4L/gal x 3 x 10" J/L
=2x107]

or 2 GJ. Twenty gallons is about 80 L and therefore has
a mass of about 80 kg or 160 Ib.

Now let’s see how large a rechargeable battery we
need to store that much energy. Let’s use the best
lithium-batteries available in 2006, with an energy
density of 6 x 10°]J/kg. We will need a battery with
mass

2x10%]

= X7 534 10%k
6x105)/kg 8

or three tons.

Now, this is not quite fair, even by the imprecise
standards of this book. When we convert chemical
energy to mechanical energy by burning fuel in an
engine or a generator, the efficiency is only about one-
third. About two-thirds of the chemical energy is lost
to heat. Since we have already generated the electrical
energy (typically by burning fossil fuel), we need only
one-third as much electrical energy as gasoline energy.
Therefore, we need only(!) one ton of batteries.

Note that this still does not give you a heating
system in your car. Car heaters use some of the two-
thirds of the fuel’s energy that is converted to heat in
order to warm the passenger compartment. Battery-
powered electric cars will need to have special air
conditioners (called heat pumps) that can be run
backward to heat the passenger compartment (thereby
cooling the outside).
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Since car weights range from one ton (compact car)
to two tons (minivan) to three tons (Hummer H2),
adding one ton of batteries is significant.

This battery weight is not surprising. Battery tech-
nology currently limits many consumer products,
from laptop computers to cell phones to cordless
power tools. We need to increase the energy density
of batteries (with no degradation of lifetime or safety
or environmental effects) by a factor of at least five.*

Well, what are you waiting for? Get to work!

*We'll discuss energy transfer speeds later in this chapter.
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Food Is Energy

We get energy (perhaps too much energy) from the
food we eat.* The amount of energy in food is listed
on the nutrition statement on the back of the package.
Europeans find this conveniently measured in joules;
Americans need to convert from calories to joules.
One food Calorie (C) equals 10° physics calories (c)
equals 4 x 10° joules (J)."

*This energy comes from chemical reactions of the food molecules
with oxygen in our body (oxidation). Rapid oxidation is called
burning. The energy content of food is measured by burning the
food and measuring the energy released.

+ Calories were originally used to measure heat and joules were
originally used to measure kinetic and potential energy. It was
only later that we learned that they are just different forms of
energy. A physics calorie is the amount of energy needed to raise
the temperature of 1 g of water 1°C.
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Eat here, get gas

How much energy does a typical well-fed
human consume in one year (in joules)?
How much energy does a
typical well-fed car
consume in one
year (in joules)?
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ANSWER: We consume between 2000 and 3000 food
Calories per day. This means that in one year we
consume

E = energy per day x days per year
= 2.5x10° C/day x 4 x 10° J/C x 4 x 10* days/year
=4 x10° J/year

This is an average. Athletes consume more, couch
potatoes should consume less.

Now let’s consider the hungry automobile. The
energy used equals the gasoline used times the energy
density of gasoline. From a previous question, we
know the energy density of gasoline is 3 x 107 J/L. So
how much gas do we use?

In a previous chapter we estimated that the average
American drives 10* miles each year and gets about
20 miles per gallon. Using these numbers, we can
calculate the average car’s yearly gasoline consumption

10* mi/yr
20 mi/gal
= 500gal/yr x 4L/gal

V= x 4L/gal

=2 x 10°L/yr

Thus, the average car uses 500 gallons or 2000 liters per
year.

Alternatively, you can estimate your own gasoline
consumption by multiplying how often you refuel
your car with how many gallons you put in each time.
For example, if you refuel your car every week and
put in 12 gallons each time, your car’s yearly gasoline
consumption is

V = 12 gal/refuel x 1 refuel/week x 50 weeks/yr
= 600 gal/yr x 4L/gal = 2.4 x 10° L/yr
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Gasoline has an energy density of 3 x 107 J/L. Thus,
in one year the average car uses energy

E=2x10°L/yr x 3 x 10" J/L
=6x10"]/yr

That is 60 billion joules. Rather a lot!

Thus, your car consumes about 15 times more
energy than you do. This is not surprising, since
most humans cannot push one ton along the road at
30 mph.
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Farmland for ethanol 7 ° 2 ° 2

How much more farmland would America need to
farm to grow corn for enough ethanol to completely
replace the gasoline used in all of our cars? Give your
answer as a multiple of the amount of farmland

we use today. Note that this question assumes, first,
that cars can run on 100% ethanol fuel, second, that
we use only the human-edible parts

of the plant for
ethanol, and, third,
that we get a lot
more energy from
burning the ethanol
than it takes to
produce it.
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ANSWER: All the energy consumed (i.e., eaten) by
humans comes from growing crops or from animals
fed by those crops. Almost all of the energy consumed
(i.e., burned) by cars comes from fossil fuels. If we use
crops to fuel cars, we will need more farmland.

We can assume that the amount of farmland we
need is proportional to the amount of energy we need
from crops. The typical American or European con-
sumes 4 x 10°]J/yr (4GJ/yr) of energy. The typical
American car consumes 6 x 10'°J/yr (60 GJ/yr), or
about 15 times as much.

However, we need to include the effects of eating
meat. Much of the American and European diet comes
from meat, not from vegetables. The conversion ef-
ficiency (the ratio of animal feed to animal weight)
varies from two for chickens and fish through four
for pork to seven for beef [17]. Thus, on average,
every calorie that comes from meat represents four
calories that come from grain and other animal feed.
If half of our food calories come from meat, then we
really consume 2 GJ/yr of plants directly and another
4 x 2 = 8 GJ /yr of plants indirectly. Thus, we consume
10 GJ/yr of plant energy.

There is about one car for every two Americans, so
the energy consumed by one American plus her share
of the car is

1
E=10G]+ E6OG]

=40G]J

Thus, instead of depending on farmland to provide
10 GJ /yr for each American, we will now need farm-
land to provide 40 GJ /yr! Yikes! This is a huge increase.

To feed both cars and people from farmland, we
would have to vastly increase the farmland under
cultivation with a consequent loss of wilderness and
animal habitat.
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It’s not even clear how much gasoline we would save
by doing this. That depends on how much fossil fuel
it takes to produce one gallon of ethanol from corn.
Experts are still wrangling about this. Some even claim
that it takes more fossil fuel energy to produce the
ethanol than the ethanol contains.

169



Power!

In physics, “power” is just the rate at which we use
energy. We measure power in watts (W). 1 watt =
1 joule/second. Your 100-W lightbulb uses 100 joules
of energy every second. Thus, in one year, your 100-W
bulb could use as much as

E=100W x 7 x 107 s/yr = 3 x 10’ J/yr

Wow! Your parents were right when they told you to
turn off the lights.

Rather than measuring energy in joules, power
companies persist in using kilowatt-hours which is
the energy consumed when you use 1 kW for 1 hour.
This is

60 min 60s

1kW-hr = 1000W x 1hr x X -
hr 1 min

=3.6 x 10°]

Thus, your 100-W light bulb uses about 10° kW-hr
per year.
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Hot humans

What is the power (in heat) output
of a human (in W or J/s)?
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ANSWER: To answer this problem, we need to estimate
our energy consumption over some reasonable period.
This is typically given per day. We consume about 2500
food calories per day. Since this is already in units
of power (i.e., energy/time) we just need to convert
the units:

4x10°] 1day

P =2.5x 10’ Cal/d
% al/day X == X 105

1077
105s
=100]/s = 100 W

Alternatively, we could have used the answer to
problem 7.2.1 where we estimated that we each con-
sume 4 x 10° J/yr. Converting this to watts, we get

9
_ AT 0w
7 x 107 s/yr

Thus, humans have the same heat output as a
100-W light bulb. Fifteen of us are equivalent to a
1500-W space heater.

Architects and engineers must take this heat out-
put into account when designing heating and cooling
systems for theaters, airplanes, and other structures
containing large numbers of people.
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Fill ’er up with gasoline

At what rate (in watts) is energy
transferred to your car’s gas tank
when you fill the tank?
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ANSWER: When you fill your car’s gas tank, you are
transferring energy. Since power is energy divided by
time, we need to estimate the energy transferred by
the gasoline and the time it takes to fill the tank. To
get the energy transferred, we first need the amount of
gasoline transferred when you fill your car’s tank. We
don’t know what car you drive, so we’ll use an average
car.

A car’s gas tank can hold between 10 and 30 gallons.
Twenty gallons of gas contains

E =20gal x 4L/gal x 3 x 10" J/L
=2x10°]

of chemical energy.

Now we need to estimate the time it takes to transfer
this energy. We are not counting the time it takes to
drive to the gas station or the time it takes to pay for
the gas, only the time it takes to pump the gas. It takes
more than 1 minute and less than 10 minutes to pump
the gas. We’ll choose 3 minutes as a reasonable average.
(If you need to be more precise, use a stopwatch and
time it yourself.)

Thus, the power transfer at a gas station is

2x107]
3 min x 60s/min
2 x10°]
2 x 10%s
=10"W

P =

= 10 MW

Wow! We transfer chemical energy to our car at a rate
of 10 megawatts! That is pretty fast!
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Fill ’er up with electricity

At what rate can you transfer electrical
energy to your electric car? Assume
that you are plugging the car

in overnight at home.
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ANSWER: You drive your electric car home and plug
it in. The energy transfer rate will be limited by the
power that your electric circuit can transfer. If you have
a special charging station built for the car, then the
power will be limited to the power that your house
can transfer. Let’s consider the power limitations of
American houses.

We can find this out in a few ways. We could go
around our house and plug in as many space heaters
as possible without tripping our circuit breakers. That
is too much work and too expensive. A 1.5-kW space
heater uses about the maximum possible power for
one electrical circuit. One circuit typically supplies
several outlets and lights. You can count the number of
independent electrical circuits by counting the num-
ber of circuit breakers in your electrical panel. Most
houses have about ten or twenty. This means that your
home has a limit of about

Prax = 20 x 1.5kW = 30 kW

This will overestimate the limit since electrical wiring
is not designed to have all circuits drawing their maxi-
mum current simultaneously.

Another way to do this is to look at the main circuit
breaker that limits the total electrical current coming
into our house. A typical main circuit breaker for a
medium-sized house might limit the electrical current
to about 125 amps. Since power = voltage x current,
this means that the maximum power available is

P=VxI=110V x 125A = 10*W

This gives a limit of 10 kW.

Thus, by plugging in an electric car, we can recharge
it at a rate of at most 10 kW, about one thousand (!)
times slower than refueling it with gasoline. Note
that this only works with a special dedicated circuit.
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Regular wall outlets would recharge the battery ten
times slower still.

This is OK if we are always willing to recharge
our electric cars overnight. This would be seriously
inconvenient if we needed to refuel our electric car in
the middle of a long trip.

Note that this is why automakers are working on
developing a plug-in hydrid car. The batteries alone
would give the car a 40-mile range, enough for most
daily driving. The gas tank and gas engine would
be available for the occasional longer trip (or faster
acceleration or using the heater or air conditioner).
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The Earth, the Moon,
and Lots of Gerbils

Now it’s time to look at more cosmic
questions, concerning meteors, moons,

planets, stars, and gerbils.






“And yet it moves” (e pur si muove)

What is the orbital speed of the Earth around the Sun?
What is its kinetic energy?
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ANSWER: To estimate the speed, we need the distance
traveled and the time elapsed. The Earth takes one year
to travel entirely around the Sun. The distance traveled
is the circumference of the circle. The radius of that
circle is the distance from the Earth to the Sun, or R =
1.5 x 10" m. If you used R = 93 million miles, that’s
fine too (93 million miles = 150 million kilometers =
1.5 x 10'' m). Thus, the Earth’s speed is

distance traveled

V= -
time
2r x 1.5%x 10" m 27w x 1.5 x 10" m
N 1 year N T x 107s
=3x10"m/s

Thus, the Earth has a speed of 60 thousand miles per
hour (since 1 m/s ~ 2 mph). Rather a lot.

To estimate the kinetic energy, we also need the
mass of the Earth. We could Google that, but we would
not learn anything from the exercise. Let’s estimate
it. There are several ways to do this. If we know
the formula relating the mass of the Earth and the
gravitational acceleration at its surface, we could use
that*. Instead we’ll estimate the mass from the Earth’s
volume and its density. We know the radius of the
Earth, R = 6 x 10> km or 6 x 10° m. If you remember
the formula for the volume of a sphere, you can use
V = (4/3)7 R>. If you don’t remember that formula,
you can use the fact that a sphere is about half the size
of a cube with sides equal to the diameter of the sphere
(V < (2R)? = 8R?®). This gives a volume of

4
V= 5yrR3 =4(6 x 10°m)®> = 10*' m®

*The physicists among us can use g = G M/ R?, where the
gravitational acceleration ¢ = 10 m/s?, Newton’s constant
G ~ 7 x 1071 N-m?/kg?, and R is the Earth’s radius.
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(where we made the approximation that w = 3, appro-
priate for this book and for miscellaneous state
legislatures).

We know the Earth is denser than water
(10° kg/m?) and less dense than iron (8 x 10° kg/m?).
We'll use a density of 3 x 10°kg/m’. This gives a
mass of

Mgarn = dV = 3x10° kg/m’ x 10 m® = 3x 10" kg

The actual mass of the Earth is twice as much, or
6 x 10%* kg. This indicates that the Earth’s density is
about 6, or much closer to iron than we estimated.

Now we can calculate the kinetic energy of the Earth
orbiting the Sun:

1 1
KEgarth = Emv2 =5 X 6 x 10* kg x (3x10*m/s)?

=3x10%]

Now that is a lot of energy!
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Duck!

What is the kinetic energy (in joules
and in megatons of TNT [1 kg of
TNT contains 4 x 10°J of
chemical energy])

of a 1-km meteorite

when it hits the

Earth?
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ANSWER: To estimate the kinetic energy of the mete-
orite, we need to estimate its mass and its speed. We
will estimate the meteorite’s density and calculate its
mass from its density and volume. Since the problem
does not specify whether the meteorite is spherical
or cubic or whether the size refers to the radius or
the diameter, we will make assumptions that make
life easier for us. In this case, we will assume that
the meteorite is a cube. This gives a volume V =
(1km)> = 1km>. A sphere of radius 1 km will have
a volume four times larger and a sphere of diameter
1 km will have a volume half as much.

Now we need to estimate the density. Again the
density is somewhere between those of water and iron.
We know that some meteorites are iron and some are
rock. We will use the density of iron so the impact is
more spectacular. (You can divide that by two if your
meteorite is rocky.) This means that the mass of the
meteorite is

10° m
= Vd = 1km’
" mx(lkm

3
) x 8 x 10° kg/m’

=8 x 10" kg

where we needed the factor of [(10° m)/(1km)]® =
10° m?/km” to convert from km? to m>. Be very care-
ful with factors like that. If you put them in backward
or upside-down, you will make a mistake of 10'8. That
is a huge error, even in this book.

We now estimate the speed of the meteorite. The
speed of the Earth in its orbit is 3 x 10* m/s. This speed
comes from the Earth’s orbit in the Sun’s gravitational
field. The meteorite is also orbiting the Sun. Therefore,
it will also have a speed reasonably close to the Earth’s
(i.e., within a factor of two). The meteor could hit
the Earth head on (so the relative speed would be
6 x 10*m/s) or it could bump the Earth gently from
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behind (so the relative speed would be only 1 x 10* m/s
or less). We'll just use 3 x 10* m/s for the impact speed.

The kinetic energy of the meteorite as it hits the
Earth is thus

1 1
K E meteorite = Emvzzz x 8x 10" kg x (3x10* m/s)?

=4x10"]

This is much less than the kinetic energy of the Earth
orbiting the Sun so the meteorite will not change our
orbit. However, at 4 x 10°]J/ton of TNT, this is the
energy contained in 10'? tons or 10° megatons of TNT.
This is rather a lot.

According to [18], a 700-m-diameter meteorite will
have a yield of 10* to 10°> megatons and would destroy
an area the size of a moderate state (e.g., Virginia).
A meteorite this size is expected to hit the Earth every
10° years.

The dinosaur killer meteorite is estimated to have
been 10 km in size. Small wonder that it caused mas-
sive extinctions.

Don’t forget to duck.
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Super-sized Sun

What is the radius 7’

of the Sun? >

What is the Sun’s j —
average density? N

Note that the mass 4 2l \\\

of the Sun is about
one million times

the mass of the Earth,
or2 x 10%kg.
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ANSWER: Here we use our knowledge of our own
bodies and of the distance to the Sun to determine the
radius of the Sun.

Sun

diameter
nn

Finger
width

(1cm) Finger

Arm length (1 m)

Distance to Sun (1 .5x10"m)

If we hold a finger out at arm’s length, it will cover
the image of the Sun. This means that the finger and
the Sun both subtend the same angle. This means that
the size of the finger divided by the distance to the
finger equals the size of the Sun divided by the distance
to the Sun. See the figure (which is certainly not to
scale). The width of my finger is about 1 cm = 107 m.
The length of my arm is about 1 m. The distance to the
Sunis 1.5 x 10" m. Thus,

Sun size finger size

distance to Sun  distance to finger

. finger size .
Sun size = —————— x distance to Sun
distance to finger

1072 m "
= x 1.5x 100" m
1m

=15x10°m

Note that this is the distance from one side of the Sun
to the other, or its diameter. This is actually correct
to within 10%! Humans really are the measure of the
universe!

Now we can calculate the density of the Sun using
Msyn = 2 x 10% kg. Rather than looking up the mass
of the Sun, you might remember from elementary
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school that the mass of the Sun is about a million times
greater than the mass of the Earth.* The density is the
mass divided by the volume:

d = MSun _ MSun
Vv TR
2 x 10 kg

4(7 x 108 m)3

2 x 10°%kg
1.4 x 107 m?

= 1.4 x 10’ kg/m’

Wow! This is only slightly more than the density of
water. The low density of the outer gas envelope must
compensate for the very high density of the center of
the Sun.

*We could also calculate the mass of the Sun from the period of
the Earth’s orbit and the gravitational acceleration of the Earth
caused by the Sun, but that is beyond the scope of this book.
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Sun power 8 ° 4

What is the power output of the Sun (in W)?
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ANSWER: The solar power density at Earth orbit is
1400 W/m?, or 1400] passing through each square
meter every second. This means that all points that
are the same distance from the Sun experience the
same solar power density. Since we are in outer space,
we do not have to worry about clouds or nighttime
diminishing the solar energy. The distance from the
Sun to the Earthis R = 1.5 x 108 km or 1.5 x 10! m.
Thus, we need to find the total area of all points that
are a distance R from the Sun. These points form the
surface of a sphere centered on the Sun. The area of
this sphere is

A=47R*=12x (1.5 x 10! m)?
= 2.5 x 10% m?

The total power output of the Sun is thus the power
density times the area:

P = solar power density x sphere area
= 1.4 x 10° W/m?* x 2.5 x 10* m?
=4 x 10°W

The actual answer is 3.6 x 10** W so our answers agree
when rounded to one digit.

What relevance does this have to our lives? The total
solar energy output determines when we will face the
ultimate energy crisis. Forget about high oil prices,
forget about running out of oil, forget about oil shale
and tar sands. Those are only minor problems. The
ultimate limit on human energy consumption will be
the total energy output of the Sun.

In one year, the Sun emits energy

E=4x10"°W x 7 x 107 s/yr = 10* J/yr

In 2003 humans used approximately 4 x 10%°] of
energy [19]. This means that we will ultimately be able
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to increase our energy output by a factor of 10%*/4 x
10 = 2 x 10" (20 trillion). This sounds like a lot.
Heck, it isa lot.

The US Department of Energy projects that energy
use will continue to increase by about 2% per year for
the next 25 years. That does not seem like much. Let’s
see how long it will take us to reach that if our energy
use keeps increasing by a mere 2% per year. In one year,
our energy usage will increase by a factor of 1.02, in
two years by a factor of (1.02)? = 1.04, in three years
by (1.02)* = 1.06, and in 100 years by (1.02)!? ~ 7.
This is not getting us close. Let’s take a short cut. If
1.02" = 2 x 103, then n = log(2 x 10'%)/log(1.02) =
1550.* Thus, 1550 years from now (in the year 3550),
energy use will have increased by a factor of

F =(1.02)"% =2 x 10"

and we will be using every single watt the Sun puts out!
The real energy crisis is coming! Doomsday strikes
in 3550!
What this exercise really shows is the absurdity of
extrapolating exponential growth trends too far into
the future.

*Sorry about using logs here. Just remember: A good logarithm
enables lumberjacks to be natural musicians.
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Gerbils 1, Sun o

If the Sun were made out of gerbils, then the Earth
would be incinerated. Compare the power output per
mass of the Sun and a small mammal.
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ANSWER: We can estimate this one of two ways. We
can estimate the power output divided by the mass for
the Sun and for gerbils or we can estimate the total
power output from a mass of gerbils equal to that of
the Sun. Let’s start with the ratios. The Sun is easy
because we have already estimated its power output
(Psgn = 4 x 10 W) and mass (Msy, = 2 x 10°°kg).
Thus, the Sun’s power density is

P _4><1026W

Poan = = oo
T M T 2% 10¥kg

=2 x 107" W/kg.

The power density of a gerbil is more difficult. We
have already estimated the power output of a human.
Since both gerbils and humans are mammals, we can
expect that the metabolic rates are somewhat similar.
However, since humans are much bigger, they have
much more thermal insulation and therefore radiate
comparatively less heat. The linear scale of a human is
about 1 m (it is certainly more than 10 cm [4in.] and
less than 10 m [30ft]). The linear scale of a gerbil is
about 10 cm (it is more than 1 cm and less than 1 m).
Thus, humans have about ten times the linear size and
thus about ten times thicker insulation. This means
that gerbils emit about ten times more heat (per unit
mass) than humans.

We will calculate the power density for a human
and adjust it upward for a gerbil. A human has a mass
of about 100 kg and a power output of about 100 W
(see section 7.3.1). This means that the human power
density is about

P 100W

M 100kg

The power density of a gerbil will be even greater.
Thus, a gerbil’s power density will be at least 10*

times greater than the Sun’s. This means that if the Sun
were made of gerbils, it would emit 10* times more

W/kg

Phuman =

198 Chapter 8 The Earth, the Moon, and Lots of Gerbils



power. This would increase the surface temperature
of the Earth by a factor of ten,* from 300K (25°C or
70°F) to 3000 K (3000 °C or 5000 °F). This would get
mighty uncomfortable (although not as uncomfort-
able as all those poor gerbils).

It is quite unexpected that the Sun, which is pow-
ered by nuclear reactions, is less powerful (pound for
pound or kilogram for kilogram) than gerbils, which
are powered by chemical reactions.

This is, of course, a very silly problem. The Sun
carries all of its fuel for billions of years; gerbils do not.
If we include all the food, water, and oxygen needed by
the gerbils for ten billion years, then the Sun would be
way ahead. A human eats about two pounds (1kg) of
food per day. This means that in one year we eat several
times our body weight. In a billion years, we would eat
several billion times our body weight. This more than
makes up for the mere factor of 10%.

*Since power is proportional to temperature to the fourth,
P o T
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Chemical Sun

If the Sun were powered only by
chemical reactions, for how
long could it continue to
burn at its current power
output?
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ANSWER: The Sun can contain at most M = 2 X
10* kg of chemical fuel. We can estimate the maxi-
mum energy contained either by assuming that the
Sun is made out of gasoline (which we have already
calculated) and oxygen or by investigating the optimal
fuel. Let’s start with gasoline because it is easier. The
energy density of gasoline (CH, in this book) is about
4 x 107 J/kg. If we ignore the oxygen for now, this gives
a total energy content of the Sun

Egyn = mass x energy density
=2 x10"kg x 4 x 107 J/kg
=8 x10"]

Since the Sun emits energy atarate of P = 4x 10%] /s,
this means that this amount of energy will last a time

energy content 8 x 10%7]

Tsun = =
sun power output 4 x 10%°]/s

1
=2 x 10" s x — 0
T x 107s

= 10* years

That is not a very long time. Human agriculture
started about 10* years ago. The time is even shorter
if we replace about 2/3 of the gasoline with the oxygen
needed to burn the gasoline.

We can probably get more energy by oxidizing
either pure hydrogen or some other fuel. However,
since we cannot do a factor of ten better, it is not worth
the effort to calculate it.

This fact bothered 19th century physicists tremen-
dously. William Thomson, who was raised to the
British peerage as Lord Kelvin for his great discoveries
in thermodynamics, wrote about this in 1862 [20].
He found that the most energetic chemical reaction
known could power the Sun for only 3000 years. He
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further calculated that gravitational potential energy,
the energy generated by objects falling into the Sun,
could have provided energy for at most 107 years. This
calculation assumed that the Sun itself was assembled
from smaller objects falling in.

This conclusion contradicted the then-recent geo-
logical discoveries of the ages of rocks. Kelvin therefore
concluded his article thus:

As for the future, we may say, with equal certainty,
that inhabitants of the earth can not continue to
enjoy the light and heat essential to their life for
many million years longer unless sources now
unknown to us are prepared in the great
storehouse of creation.

The answer to Kelvin’s conundrum is, of course,
nuclear energy. We will discuss that in the next chapter.
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Nearby supernova

If a star 30 light-years distant went supernova

(and distributed most of its mass in all directions
uniformly), how much of its mass (in kg) would hit
the Earth? A light-year is the distance light travels in
one year so that 11-y =3 x 105m/s x 7 x 107 s =
10'¢ m. If the planet Krypton was orbiting the star
when it went supernova, how much of its mass (in kg)
would hit the Earth?
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ANSWER: Stars get their energy from nuclear fusion.
They start by fusing hydrogen into helium. When they
run out of hydrogen, they fuse helium into heavier
nuclei. Eventually, if the star is large enough (M, >
8 Mg, ), it will fuse silicon into iron. Once the core
of the star becomes iron, fusion no longer produces
energy (since iron is about the most tightly bound
nucleus). The core then cools and collapses inward. As
it collapses, it converts gravitational potential energy
to kinetic energy (just like dropping a water balloon
from a tall building, only MUCH more so). Some of
the energy generated by this collapse creates a giant
explosion that blows the outer part of the star rapidly
and violently outward.* The remnant of the core then
forms either a neutron star or a black hole (depending
on the initial mass of the star).

As time passes, the mass of the ejected outer part of
the star expands outward in a spherical shell. At some
point, part of this shell will pass through our solar
system. When it does, the radius of the shell will be 30
light-years. One light-year is the distance light travels
in one year: 11-y = vt =3 x 108 m/s x 7 x 10”"s =
106 m. Therefore, the surface area of the shell at that
distance will be

Aghell = 47 R* =12 x (301-y)*
12 x (30 x 10'° m)?

— 1036 m2

Since the mass of the ejected material is about ten
times the mass of the Sun ( Ms,;, = 2 x 10°° kg), we can

*You can try this yourself at home on a smaller scale. Place a tennis
ball on top of a basketball and drop them together. (It takes a little
coordination to drop them so that the tennis ball is still on top of
the basketball when they hit the ground.) The basketball plays
the part of the falling core. The tennis ball is ejected upward
rapidly.
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estimate the density of the ejecta as it passes through
the solar system:
M 2x10k

dZX:anﬂg:zxm Skg/mz

Now all we need is the area of the Earth in order
to figure out how much mass hits the Earth. We could
use the surface area (47 R?) but none of the mass will
hit the far side. To be geometrically correct, we should
use the cross-sectional area (7 R*). Using the wrong
area will change your answer by only a factor of four.
Aparth = T R*> = (6 x 10°m)? = 10" m?. Thus, the
total mass of the supernova ejecta that hits the Earth
would be

m = area x density = 10" m* x 2 x 107> kg/m?
=2x10"kg

That is a lot, but there is only 20 micrograms (a few
cubic millimeters of dust) spread over each square
meter of surface.

If we now consider how much mass from the planet
Krypton would hit the Earth, we need to replace the
mass of the star with the mass of the planet. The mass
of the Earth is about 10 times less than the Sun so we
will assume that the mass of Krypton is 10° times less
than its star. This means that if 2 x 10° kg of star dust
hits the Earth, then 107 x 2 x 10°kg = 2 x 10° kg
of kryptonite reaches the Earth. That is two tons of
kryptonite.

Watch out, Superman!
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Melting ice caps

How much would the
ocean surface rise
if the ice caps
melted?
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ANSWER: To solve this problem, we need to estimate
the volume of ice resting on the land and then figure
out how high it would be if we melted the ice and
spread it over the ocean. To do this, we can either
estimate the volume of the ice cap and divide by the
surface area of the Earth (since the Earth is 3/4 ocean),
or we can estimate the height of the ice cap and scale
that by the relative areas of the ice cap and the earth.

Since only the land-based ice cap matters, we will
ignore the Arctic ice cap. Greenland is much smaller
than Antarctica, so we will consider only Antarctica.
Let’s first estimate the average height of the ice cap. It
must be much more than 100 m, since scientists have
drilled several-kilometer ice cores that go back 700,000
years. It must be much less than 10* m (10 km) since
that is the height of Mt. Everest. We’ll take the aver-
age height to be 10°> m, the geometric mean of 10> and
10* m.

Now we need the area of Antarctica. Actually, we
just need the relative area of Antarctica and the Earth.
If the area of Antarctica is one-tenth the area of the
Earth, then the 10° m tall ice cap will raise the ocean
level by % x10°m = 100 m. If you look at a globe,
you can see that Antarctica is contained well within
the Antarctic Circle at 66° south latitude. We'll assume
that Antarctica fills the entire circle beyond 70° S. Let’s
see how many of these circles will go around the world
from south to north and back again. Antarctica itself
goes from 70° S, to the South Pole at 90° S, and then
to 70° S, so that it spans 40° of latitude. The next copy
will go from 70° S to 30° S. The third will go from 30° S
to 10° N. You get the idea.

There are 360° of latitude as you go around the
globe from the South Pole to the North Pole and back
again. Therefore, you can place % = 9 copies of
Antarctica on that north—south circle. You can place
another 9 copies of Antarctica along an east—west circle
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at the equator. If the surface of the Earth was a square,
you could place 9 x 9 = 80 copies of Antarctica on
it. The actual number will be a bit less than that. We’ll
estimate that the surface area of the Earth is 50 times
greater than the surface area of Antarctica.

Alternatively, you could estimate the area of Antarc-
tica. Assume that Antarctica is a circle. The radius
of Antarctica is the distance from the South Pole to
70° S, which is 3260(;0 of the circumference of the Earth
or Ry = % X 277 Rgarth = 2 % 10 km. This gives an
area Ay = m R2, = 107 km?. If you compare this to
the surface area of the Earth, you will also get a factor
of 50.

Now we will take the ice covering each square meter
of Antarctica, melt it, and spread it out so that it covers
50 square meters of water. If there are 10° m of ice
covering Antarctica, then the extra water will raise the
ocean height by

10°m
h = =20m
50

This would be, shall we say, rather unfortunate for all
coastal cities.

The actual expected sea-level rise would be about
80 m [21]. Note that the consequences of an 80-m rise
are not that much worse than a 20-m rise. Either would
be catastrophic.

To quote Bill Cosby, “How long can you tread
water?”

21






Energy and the Environment

One measure of the advance of civilization is
the amount by which we use external sources
of energy to multiply our own puny efforts. We
have advanced from animal power, through
water and wind power, to electrical power

generated mostly by fossil fuel.






Power to the people

How much electrical power does one American
or European family

(or household) use
(on average)?
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ANSWER: There are two ways to estimate the average
power we use. We can work from the bottom up by
adding up the contributions from individual appli-
ances or we can work from the top down, using our
electric bill to estimate the total electric energy we use
in a month.

Let’s start from the bottom up. Consider the ap-
pliances that are on for a significant fraction of the
day. Since we are writing this book in August, we will
consider air conditioners, stoves and ovens, refrigera-
tors, and light bulbs. We will assume that microwave
ovens, water heaters, washing machines, etc. are not
on enough to make a big difference.

There are probably five 100-W light bulbs on from
5:00 to 11:00 PM every day. The refrigerator certainly
uses more power than a light bulb (100 W) and less
than a space- heater (1500 W) so we’ll take the geomet-
ric mean of 400 W. You can listen to your refrigerator
and hear it switch on and off. It is on about one-fourth
of the time (that is the time that the compressor is
running and it is actively cooling food). The stove and
oven probably use more power than a space heater
(3x10* W) for about an hour a day. The air condition-
er is harder to estimate. A room air conditioner can be
plugged into a room outlet and therefore uses about
the same power as a space heater (1500 W). If you have
six rooms, then your total air conditioning (AC) uses
about 10 kW. Central air conditioning should be more
efficient than individual room air conditioners and
probably uses about half that power. Now we want the
average AC usage from April to October.* At 2:00 PM

*We are assuming a location in about the middle of the US or
Europe, where the heating season runs from November to March
and the cooling season runs from April to October. We are also
assuming that the heating and cooling costs are equal. Your results
will vary depend on where you live, but they should be within a
factor of ten.
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on the hottest day of the year, your AC is probably run-
ning constantly. At night in October, your AC is proba-
bly unused. During those six months, the AC certainly
runs less than 100% and more than 1% of the time. We
will take the geometric mean and estimate 10% (or 2.4
hours per day). Let’s see what we have so far:

Peak power Timeused  Average

Item (kW) (hr/day)  power (kW)
Lights 0.5 6 0.1
Refrigerator 0.4 12 0.2
Stove 3.0 1 0.1
Central AC 5.0 2.4 0.5
Total 0.9

The average household uses an average 0.9 kW of
electrical power.

Let’s attack the problem from the other end. A
typical monthly electric power bill (it’s really an energy
bill, since we pay for kilowatt-hours, not for kilowatts)
is about $100. At an average price of $0.10 per kW-hr,
that means we use P = $100/(0.10 $/kW-hr)=
10> kW-hr each month. Since there are 24 hours/day x
30 days/month = 700 hours per month, this means
that our average power consumption is

energy used (in kW-hr)

time (in hr)
10° kW-hr
= —— =14kW
700 hr

The two methods give the same answer to within a
factor of two!
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Continental power 9 ° 2

How much electrical power does the US (or Europe)
use? How much electrical energy in one year?
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ANSWER: There are two ways to estimate this. We
can estimate either the power produced or the power
consumed. To estimate the total electrical power con-
sumed by the US or Europe,* we need to add up the
total power used by residences, commerce, and indus-
try. We just estimated that one American household
uses 1 kW of electrical power. Therefore, we need to
estimate the total number of households.

There are 3 x 10® Americans. With two or three
Americans per household, there are about 10® house-
holds. The total residential power usage is then

Pres = 10° W/household x 10® households=10"! W

There is probably about as much commercial store
and office space as there is residential space, so com-
mercial and residential power use is probably about the
same or 10! W.

Industrial power use is probably between one and
ten times as much as residential or commercial use, so
we will take the geometric mean and estimate a factor
of three or 3 x 10" W.

Thus, the total electrical power used in the US is

Poec = 10N W4+ 10" W43 x 10" W =5x 101 W

Now let’s try to estimate the total power produced.
We read somewhere that there are about 100 nuclear
power plants and that they produce about 10% of the
nation’s electricity. Each power plant produces about
1 GW (10° W). Thus, the total electrical power produ-
ced is about ten times the nuclear power produced or

P = 10 x number of nuclear plants x power per plant
= 10 x 10* plants x 10° W/plant
=10"W

*The US and Europe have about the same population and standard
of living and so consume about the same amount of electricity
(at least at the level of precision of this book).
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Hmmmm. The two estimates differ by only a factor
of two.

Now let’s calculate the total electrical energy used
by the US in one year. Since energy equals power times
time, we have

E=Pxt=10"W x 7 x 10"s/yr =3 x 10”]

That is certainly a lot of energy (although it will not
get a rocketship to Alpha Centauri).

Now let’s compare it to reality. According to the CIA
World Factbook [22], the US used 3.6 x 10> kW-hr
of electricity in 2003. We need to convert this from
kW-hr to J.

10°W 60s 60 min

E = 3.6 x 10"2kW-hr x x " x
1 kW 1 min 1hr

=1.3x10"]

We're off by a factor of two.
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Solar energy 9 ° 3

How much solar energy reaches the
Earth in a one year?
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ANSWER: Since we know that the solar power density
is 1400 W/m?2, we need to estimate the time and the
area to get the energy received. We cannot just use
the surface area of the Earth (A = 47 R?) for two
reasons: (1) Half of it is dark (i.e., night) and (2) the
light intensity decreases at higher latitudes due to the
angle of incidence of the light. If we imagine a slice
through the middle of the Earth, that circle will be per-
pendicular to the Sun and all the sunlight will hit it
from directly overhead. We will use the area of this
circle (the same one we used for the supernova debris).
Thus, the area we want is

A=7R* =7 x (6 x 10°m)? = 10"m?
Now we can calculate the energy
E=14x10°W/m* x 10" m? x 7 x 10" s/yr
=4 x 10*]/yr

This is more energy than we could gain by flattening
the Rockies or the Alps.

As we discussed in the answer to question 8.4,
humans used 4 x 10%° ] of energy in 2003. Thus, we
used a fraction

f= 4 x 10 ] /yr -
4 x 1024 /yr

of the available solar energy hitting the Earth. Of
course, most of the energy we used came from ancient
solar energy as stored in fossil fuels.

This means that we could expand our energy use by
a factor of 100 and still only use 1% of the available
solar energy. However, at a 2% annual increase in
energy use, we will reach that point in a mere 230 years.
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Land for solar energy

How much land (in km?) would be needed to supply
the US electrical energy needs with
solar energy? What fraction
of the US land area
would be needed?
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ANSWER: We will start with the total solar power
density outside the atmosphere and then account for
the effects of the atmosphere, clouds, night, and con-
version efficiency.

The solar constant is 1.4 x 10> W/m?. About half
of that reaches the ground (at noon on a clear day).
Including the effects of clouds and night decreases the
total flux by about a factor of ten to 140 W/m?. The
efficiency of solar panels is about 10%, so they will
generate an average of about 14 W/m? of electrical
power.

From problem 9.2 we know that the US uses an
average of 5 x 10! W. Thus, we would need an area

electrical power used

Asolar cell = .
electrical power per area

5x 101 W
1.4x10' W/m?

=4 x 10" m?

Now (1km)? = (10°m)? = 10°m?. Thus, the area
needed is A = 4 x 10*km?. This is a square that is
200 km (150 mi) on a side.

This seems like a lot of land, but the US is a very
big country. Let’s compare this area to the area of the
US. We already estimated the area of the contiguous
US back in question 3.9 as A = 107 km?.

Therefore, the fraction of US land area needed if we
used solar energy cells (photovoltaics) to provide all of
our electrical energy would be

solar cellarea 4 x 10* km?
"~ USlandarea 107 km?
We would need to use 0.4% of all US land area for
solar arrays.
This would be amazingly expensive for three rea-
sons. First, solar cells are very expensive. They cost

=4x 1073
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about $10 per watt installed (in 2006), so 5 x 101 W
would cost 5 trillion dollars. Second, the best sites
for solar power (i.e., deserts) are frequently far from
population centers and would require expensive long-
distance power transmission. Third, we would need an
amazing number of batteries to charge during the day
and provide power at night.
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Tilting at windmills

How much electric power can a wind turbine

(a modern windmill) generate? (Consider Y
the kinetic energy of the air passing /
through the area swept by
the turbine

blades.) .
~0),
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ANSWER: Wind turbines convert wind kinetic energy
into electrical energy. Therefore, to estimate the power
that a wind turbine can generate, we first need to
estimate the available kinetic energy. To estimate that,
we need the air mass and the wind speed. The air mass
passing through the area swept by the blades will be
determined by the area swept by the blades and by the
wind speed. We will first estimate the wind speed.

Wind turbines are placed in windy locations. Typ-
ical sustained wind speeds will be between 20 and
30 mph or between 10 and 15m/s. (Less than that
would not be considered windy, more than that is
rather unlikely.) We’ll use 10 m/s because it is a nice
round number. We'll see how the final answer depends
on wind speed later.

Modern wind turbines are as tall as a ten-story
building. (Some are even taller.) At about 4 m or 12 ft
per story, the wind turbine would be 40 m tall. This
means that the length of the blades is 40 m and the
area of the circle swept by the blades is A = 7r?
3 x (40m)? =5 x 10° m?.

At a wind speed of 10 m/s, air travels 10 m in one
second. Thus, in one second, a volume of air V =
10m x5x10° m? = 5x 10* m? passes through the area
swept by the turbine blades. At a density of 1kg/m?,
this air has a mass m = 5 x 10* kg. Thus, 50 tons of
air passes through the blade area every second!

Now we can calculate the kinetic energy of one
second’s amount of air:

1 1
KEqir = Emv2 = x5x 10 kg x (10 m/s)>

=3x10°]
Thus, the power of the wind passing through the
turbine blade area is 3 x 10° W or 3 MW. That’s a lot

of available power.
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Now we need to estimate the efficiency of the wind
turbine in extracting the kinetic energy from the air
and converting it to electrical energy. That efficiency
has to be more than 1% (since that is a very low effi-
ciency) and less than 100% (since that would bring the
wind to a complete stop). We will take the geometric
mean and estimate an efficiency of 10%. This means
that the available power from a wind turbine at a
constant wind speed of 20 mph (10 m/s) would be 10%
of 3 x 10° W, which equals 3 x 10° W or 300 kW.

Now let’s consider the effects of wind speed. If
we double the wind speed then we double the speed
in the kinetic energy equation, which quadruples the
kinetic energy (since the speed is squared). However,
it also doubles the mass passing through the turbine
blade area, so doubling the wind speed increases the
available kinetic energy by a factor of 2° = 8. Thus,
our 40-m turbine would produce 300 kW at a wind
speed of 10 m/s and eight times more, or 2.4 MW, at
a wind speed of 20 m/s (40 mph).

Now its time for the dreaded reality check. Accord-
ing to the Danish Wind Industry Association [23],
a modern 92-m blade diameter wind turbine with a
maximum tolerable wind speed of 25 m/s would have
a nominal output of 2.75 MW and an average power
of almost 1 MW. Since our hypothetical turbine would
produce 2.4 MW at 20 m/s, our estimate is rather good.

Unfortunately, wind energy is not reliable enough
to provide base electrical power. Yet another reason for
better batteries.
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The power of coal 9 ° 6

How much fuel does a 1 GW coal-fired electrical
power plant require? Express your answer in kilo-
grams per year and in 100-ton railroad cars per day.
Note that the plant uses 3 GW of thermal power to
produce 1 GW of electrical power.
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ANSWER: To figure out how much coal a I-GW electric
power plant needs per year, we need to estimate the
thermal energy needed in one year and the energy den-
sity of coal. Oil, gas, coal, and nuclear power plants use
the heat from their fuel to boil water and then use the
steam to turn a turbine and produce electricity. Only
about one-third of the thermal energy is converted to
electrical energy; the other two-thirds is emitted as
heat. Thus, in one year, a 1-GW electrical power plant
will need to burn enough fuel to produce

Eyer = 1GW x 3 x 7 x 10”s/yr = 10" J /yr

This thermal energy comes from the chemical en-
ergy of the coal. Burning one atom of carbon will
produce 1.5eV of energy. One mole of carbon has a
mass of 12g = 1.2 x 1072 kg. Thus there are 1/1.2 x
1072 = 80 moles of carbon in a kilogram. There are
6 x 10* atoms in a mole. Thus, one kilogram of coal
contains chemical energy equal to

1.5eV 6 x 10% atoms

E =
coal atom x mole
2x 107°] 80 moles
X X
eV kg
=10"J/kg

Alternatively, we could have taken the results for
gasoline (CH,) and divided by two since we get about
as much energy from burning the H, as from the
C and the H, has much less mass than the C. This
would give an energy density of% x 4.5 x 107 J/kg =
2 x 107 J/kg.

When we compare with reality, we find that coal has
an energy density of between 10 and 30 MJ/kg [15],
so we are within a factor of three.
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Now, we can calculate the coal needed to operate
the power plant for a year:

energy needed 107 /yr
choal = & = Y

coal energy density 2 x 107 J/kg
=5 x 10 kg/yr

This is 5 million tons of coal. That is a lot of coal.

Let’s try to get a feel for how much that is. We
cannot really picture a ton of coal, let alone 5 million
tons. One railroad car can carry about 100 tons of
coal. One very long railroad train will have 100 cars.
Thus, to carry 5 x 10° tons of coal, we will need
5 x 10* railroad cars, organized into five hundred 100-
car trains. This means that our power plant needs
more than one 100-car coal train every single day.

Wow. That really is a lot of coal.
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The power of nuclei

There are two general types of nuclear reactions,
fission and fusion. We use fission reactions on Earth
to produce nuclear energy and nuclear explosions. The
Sun and stars use fusion reactions to produce solar
energy. Fissioning (splitting) a heavy element such as
uranium or plutonium produces about 200 MeV
(mega-electron volts) of energy. Fusing four hydrogen
nuclei (protons) into one helium nucleus produces

28 MeV of energy. Nuclear reactions can convert bet-
ween 0.1 and 1% of the mass of the atoms to energy.
How much fuel does a 1-GW, nuclear power plant
require in one year?
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ANSWER: The nuclear power plant needs the same
thermal energy as a coal plant to produce its 1 GW of
electrical energy for a year. Thus, from the previous
question, we know it needs E = 10" J/yr.

This thermal energy comes from the fission of
235U. Fissioning one atom of **>U will produce about
200 MeV (2 x 10® eV) of energy. One mole of #*°U has
amass of 235 g or about 0.24 kg. This means that there
are 4 moles/kg. Thus, 2°U has an energy density of

2x10%eV 6 x 10%® atoms

Eosy = X
U atom 1 mole
2x 107" 4 moles
J X =8 x 10" J/kg
leV kg

That is 8 million times more energy density than coal.
However, we need to reduce this because only 5% of
the fuel is 2*>U. The other 95% is the relatively inert
238U, This means that the effective energy density is
only 5% of 8 x 10'® J/kg or Eyy = 4 x 10" J/kg.

This means that in one year, a 1-GW nuclear power
plant will need

energy needed 107 J/yr
My =

uranium energy density 4 x 10'2J/kg
=2 x 10*kg/yr

or 20 tons of 5% enniched uranium. Since the den-
sity of uranium is about 2 x 10* kg/m?’, this mass of
uranium would fit in a cube that is 1 m (3 ft) on each
side. Thus, the fuel for a nuclear power plant for an
entire year would fit under your dining room table.*

*We do not suggest storing the fuel there for two reasons: (1) You
would bang your shins on it repeatedly, and (2) if the fuel was
concentrated into such a small volume with no control rods, it
would go critical, the chain reaction would be out of control, and
you would have a highly radioactive meltdown in your dining
room. But at least your food would not get cold.
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Hard surfaces

What fraction of the USland <=
area is impervious
(i.e., roofed or paved)?
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ANSWER: We will estimate the size of the typical Amer-
ican home, estimate the amount of road per home,
and add some more space to account for commercial
development.

A typical two-story home has about 2000 square
feet of living space and thus 1000 square feet of roof
area. Since 1 m? = (3ft)> ~ 10ft?, the typical home
has about 100 m? of roof area.

Now we need to include roads. Our typical house is
about 10 m wide by 10 m deep. The distance between
the front doors of adjacent houses will certainly be
greater than 10m (i.e., no space between houses) and
less than 100 m (i.e., a football field between houses).
We'll take the geometric mean of 10 and 100 m and use
a house spacing of 30 m (100 ft). Therefore, each house
will have 30 m of road.

The width of this road is shared between houses
on both sides of the street. A typical suburban road
is more than 1 car (3m) wide and less than 10 cars
(30 m) wide so we will use a width of 10 m (30 ft). This
means that the typical house will have a 30-m-long
stretch of road that is 5 m wide with an area of 150 m?.
Thus, each house will have 100 m? of roof and 150 m?
of road for a total of 250 m?.

We estimated earlier that the 3 x 10% Americans
form about 10® households. Thus, residential roofs
and roads will cover an area A = 108 x 2.5 x 10> m? =
2.5 x 10" m?,

Stores, offices, and factories will certainly oc-
cupy more than one-tenth and less than ten times
the amount of residential space so we will estimate
that commercial roofs and roads contribute another
2.5 x 10 m?, Therefore, the total roofed and paved
area in the USis A = 5 x 10! m? or 5 x 10* km?.

Alternatively, we can estimate this by considering
(1) the population density of our cities and (2) the
roof and road density of our cities. A typical US city
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has a density of 2000 people per square mile or 1000
people/km?. At this density, if everyone lived in cities,
the cities would cover an area
8
_ 3 x 10° people 3% 10° km?
103 people/km?

You can look at Google maps for any suburban region
and estimate that this city is about 25% paved and
roofed (more than 10% and less than 50%). Therefore,
the total paved area is about 10° km?. This estimate
agrees (within a factor of two) with the other method.
In reality, according to a 2004 study done by the US
National Atmospheric and Oceanographic Adminis-
tration (NOAA) [24], 1.1 x 10° km? are impervious.
This is slightly higher than either of our estimates.

We already estimated the land area of the US in
question 9.4 to be 8 x 10° km?. Therefore, the fraction
of the US that is paved or roofed is

roofed and paved area
US land area

8 x 10* km?

8 x 10 km?

or about 1%. This is about twice the amount of land
that we estimated we would need to provide enough
solar energy for all of our electrical needs. This puts
that number in perspective. To provide enough solar
energy for the US, we would have to have an area of
solar panels equal to half the area of all the roofs and
roads in the entire country. Yikes!

-2
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The Atmosphere

We rely on the atmosphere for airplanes, kites,
wind-blown hair, and, oh yeah, breathing.
Let’s find whose breath you just breathed in,
how much oxygen plants provide, and how

much carbon dioxide cars emit.






Into thin air

What is the mass of the atmosphere?
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ANSWER: Atmospheric pressure is measured in too
many different ways. It is 15 pounds per square inch
or 10° newtons per square meter or (shudder) 760 mm
(30in.) of mercury or 10 m of water. These last two
measures just indicate that the weight of the air over a
certain area is the same as the weight of an amount of
mercury sufficient to cover the same area to a depth of
760 mm (or enough water to cover the same area to a
depth of 10 m).

We can use any of these measures to calculate the
mass of the atmosphere. To do that, we just need to
multiply the area of the Earth’s surface (in appropriate
units) by the mass per square whatever. For example,
if we use 15 pounds per square inch, we would need to
calculate the area of the Earth in square inches (ick!).
Alternatively, if we use 760 mm of mercury, we would
have to calculate the weight of enough mercury to
cover the entire Earth’s surface (including the oceans)
to a depth of 760 mm (or enough water to cover it to a
depth of 10 m).

We will use the pressure of 10° N/m? so we don’t
have to calculate square inches. 10° N is the weight of
10* kg (since Fyrayity = mg, where ¢ = 10 m/s?).

Now we need the surface area of the Earth. We
happen to remember that the surface area of a sphere
is A = 4 R?, but not everyone does. You can also
pretend that the Earth is a cube. In that case, the area
of each of the six faces is (2R)? = 4 R? so that the total
area is A = 24R2. This is close enough for this book
and saves you from having to memorize pesky formu-
las. We’ll use the correct equation if you don’t mind:

Aparth = 4T R* = 12 x (6 X 10°m)? = 4 x 10" m?

2

Thus, the mass of all the air is

M = 10*kg/m? x 4 x 10" m* = 4 x 10" kg

That is 4 billion billion kilograms or more than the
mass of the Alps!
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Ancient air

How many molecules

of Alexander the Great’s
last breath do you inhale
with each breath?
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ANSWER: To answer this question, we need to estimate
the number of molecules in Alexander’s last breath and
the fraction of the atmosphere that you just breathed
in a few seconds ago. The second part amounts to
estimating the number of breaths in the atmosphere.

The volume of a breath is about 1L (1 quart). It is
certainly more than a cup (1/4 L) and less than a gallon
(4L). We have no idea how many molecules are in a
liter, but we do know the number of molecules in a
mole. A mole contains 6 x 10?*> molecules and takes up
20L (as a gas at standard temperature and pressure).
Thus, a 1-L breath contains 1/20 of a mole and hence
contains 3 x 102 molecules.

Now we need the number of breaths in the at-
mosphere. We can estimate this using either the vol-
ume of a breath (in which case we need the volume
of the atmosphere) or the mass of a breath (in which
case we can use the mass of the atmosphere that we
just estimated). Since we’re lazy, we’ll use the mass.*
The average density of air is about 1000 times less
than that of water. Since 1L of water has a mass of
1kg, 1L of air would have a mass of 1 g. You can also
calculate the mass of air from its molecular weight.
Our 1-L breath is 1/20 of a mole. Air is composed
of N, (molecular weight = 2 x 14 = 28) and O,
(molecular weight = 2 x 16 = 32) molecules and
so the average molecular weight is 30. One mole of
air would have a mass of 30g. Therefore, air has a
density d = (30 g/mole)/(20 L/mole) = 1.5 g/L. (The
difference between 1g and 1.5g is due to roundoff
error and is negligible for this book.)

*This also lets us avoid the question of how high the atmosphere is.
Unlike the oceans, the atmosphere thins out as you ascend but
never really ends. The boundary of outer space is somewhere
between 100 and 300 km (60 to 200 mi). The maximum height at
which there is enough air for humans to breathe is a bit less than
the height of Mt. Everest (10 km).
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The total mass of the atmosphere (from the previ-
ous question) is m,; = 4 x 10" kg = 4 x 10*! g. Since
one breath has a mass of 1g, with each breath you
inhale one part in 4 x 10! of the atmosphere. Thus,
the number of Alexander the Great’s (AG) molecules
that you just inhaled is

Nag = AG's molecules in the atmosphere

x fraction of the atmosphere inhaled

= 3 x 10*? molecules x ————
4 x 1021

= 8 molecules

Thus, you just inhaled about eight molecules from
Alexander the Great’s (and Confucius’ and Ramses’
and . ..) last breath (and second-to-last and . . .).

We hope you treated those molecules with rever-
ence and care.*

* Alas, we know from quantum mechanics and thermodynamics
that all oxygen molecules are alike and cannot be tagged like
classical macroscopic particles [25]. Thus, this question is
ultimately meaningless. The following analogy can be helpful. If
you pay for a $20 purchase with a $20 bill and then six months
later we give you $20 (for being such a loyal reader) then there is a
chance that the same bill returned to you (since each has a unique
serial number). If, however, you pay for your purchase with a
credit card and then six months later we transfer $20 to your bank
account, it is completely meaningless to ask whether it is the same
bill. However, it is still fascinating to know that are about as many
molecules in one breath as there are breaths in the atmosphere.

249






Suck it up

How much time would it take human respiration to
use up 10% of all atmospheric O, (oxygen), ignoring
all other contributions?
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ANSWER: We need to estimate the amount of oxygen
used up in each breath. From there, we can go on
to estimate the number of breaths it will take to use
up 10% of the oxygen in the atmosphere. We know
that cardiopulmonary resuscitation (CPR) can keep
someone alive until the ambulance arrives. This means
that the air we force into someone’s lungs by breathing
out contains enough oxygen to sustain life (even for
someone sick enough to need CPR). This means that
we use relatively little of the oxygen in each breath. We
estimate that we use 10% of the oxygen that we inhale
(alot more than 1% and a lot less than 100%).

This means that we now need to estimate the
amount of time it will take humans to breathe in (and
out) the entire atmosphere once (since that will use
up 10% of the oxygen). Note that we have completely
avoided needing to know the abundance of oxygen in
the atmosphere.*

In the previous question we estimated that each
breath has a volume of about 1L and a mass of
about 1g and that there are 4 x 10°! breaths in the
atmosphere. Therefore, we just need to estimate how
much time will be needed for humanity to take those
4 x 10%! breaths. Well, there are 6 x 10° of us. This
means that the number of breaths you need to take is

4 x 10*! breaths

= " —7x10"
I\rbreaths 6 % 10°

We take about one breath every few seconds. Let’s
estimate four seconds per breath. This means that it
will take each of us a time

t =7 x 10" breaths x 4 s/breath

1 year

=3x10"sx = 10° years

7w x 107s
That is 100 thousand years.

*If you're curious, it’s about 20%. If you're not curious, why are
you reading this footnote?
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OK. Individually, we won’t survive long enough to
accomplish this. However, all the other animals are
helping us. Since human (or at least hominid) life on
this planet dates back millions of years and animal
life on this planet dates back hundreds of millions
of years, it’s a good thing that plants are continually
replenishing the oxygen supply.
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CO, from coal

How much carbon dioxide (in kg) does a 1-GW,
coal-fired power plant release into the atmosphere
each year? What fraction of the mass of the
atmosphere is this?
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ANSWER: The amount of carbon dioxide released into
the atmosphere will be directly proportional to the
amount of carbon burned by the power plant. If all
of the carbon is completely burned, then it will all be
emitted from the smokestack in the form of carbon
dioxide. Fortunately, we know how much coal the
1-GW, coal-fired power plant uses in one year. We
estimated that in question 9.6 to be 5 x 10° kg. Each
carbon atom is oxidized and becomes a molecule of
carbon dioxide. Carbon and oxygen are relatively light
elements and have about the same atomic weight.*
Therefore, each molecule of carbon dioxide (CO,)
has about three times the mass of a carbon atom.
Therefore, the total mass of CO, emitted into the
atmosphere in one year by a 1-GW, coal-fired power
plant is

Mco, =3 x5 x 10°kgC =2 x 10" kg

That seems to be a lot of CO,. Let’s compare it to the
mass of the atmosphere. We calculated the mass of the
atmosphere in question 10.1 to be M, = 4 x 108 kg,
This plant will add

2 x 10'%kg

I=1 108 kg

=5x%x107"

or five parts per billion CO; to the atmosphere every
year. If you remember those golf balls circling the
equator in the first chapter, that would amount to five
CO; golf balls out of the billion needed to circle the
globe. While this does not seem like much, there are a
lot of power plants.

A natural gas-fired power plant, fueled by methane
(CHy), will produce about three times less carbon

*If you insist on being precise, the atomic weight of carbon is 12
and the atomic weight of oxygen is 16.
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dioxide per GW than a coal-fired plant because it
oxidizes the hydrogen and the carbon: the carbon
will oxidize to carbon dioxide (CO,) and the four
hydrogen atoms will oxidize to two water molecules
(H,0). With three reactions, it will produce three
times as much energy per carbon atom.

Note that carbon dioxide is a colorless gas. The
“smoke” you see emerging from a smokestack will be
some combination of partially combusted fuel, impu-
rities (e.g., ash), and steam (condensing water vapor).

Note also that carbon dioxide is naturally present
in the atmosphere at a level of a few hundred parts per
million. Plants breathe in CO; and breathe out oxygen.
Thus, carbon dioxide is not a standard pollutant (like
smog) that harms people directly. Any damage it might
do is indirect.

257






A healthy glow

How much high-level nuclear (i.e., highly radioactive)
waste does a 1-GW,, nuclear power plant produce
in a year?
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ANSWER: The nuclear fuel in the reactor is composed
primarily of two isotopes of uranium, ?*>U and 2*3U.
The *U fissions into smaller nuclei, many of which
are highly radioactive. The daughter nuclei and the
287U in the reactor are exposed to a tremendous
amount of radiation, which also produces many highly
radioactive by-products. Thus, all of the fuel becomes
highly radioactive waste. That is most of the high-
level nuclear waste produced by the power plant. Thus,
the mass of the highly radioactive waste is between
one and ten times the mass of the fuel. We’ll take the
geometric mean and use a factor of three.

Fortunately, we know how much nuclear fuel the
1-GW, nuclear power plant uses in one year. We
estimated that in question 9.7 to be 2 x 10* kg. Thus, a
nuclear power plant produces about

Miudearwaste = 3 X 2 X 10* kg =6 x 10* kg

or about 60 tons of highly radioactive nuclear waste
per year.

This waste is extremely dangerous. On the other
hand, since it so compact (and solid) it should be
much easier to dispose of safely.
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CO, from cars

How much carbon dioxide (in kg)
does one car emit into the

atmosphere each year?
All American cars?
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ANSWER: We already estimated that the average
American car is driven about 10* miles per year and
gets about 20 miles per gallon. This means that it
consumes about (10* miles per year)/(20 mpg) = 500
gallons per year. At 4 liters per gallon, this is 2000 liters
per year.

Now we need to convert from volume to mass. A
liter of water has a mass of 1 kg. Gasoline is a bit lighter
than water, but not enough for us to worry about.
Thus, your car burns about 2000 kg of gasoline per
year. That is 2 tons of gasoline, more than the mass of
most cars!

Gasoline is a hydrocarbon with about two hydrogen
atoms for each carbon atom. Since carbon has an
atomic mass of 12 and hydrogen has an atomic mass
of 1, we can (and will) ignore the hydrogen. The two
oxygens that combine with each carbon to make CO,
have a total atomic mass of 32. Thus, the mass of the
CO, (44) is almost four times the mass of the carbon
(12). Thus, your car will emit 4 x 2000 kg = 8 x 10° kg
of carbon dioxide every year.

However, there is more than one car in the US.
As we discussed in question 5.1, there are 3 x 10%
Americans and about 0.5 car per person. Thus, all
American cars emit a total of

Mco, = 8 x 10° kg/car-year x 1.5 x 10%cars
=1 x 10" kg/yr

That is 1 billion (10°) tons.

Now let’s compare to reality. According to the US
Department of Energy [26], total CO, emissions in
the US in 2004 were 6billion tons. Transportation,
which includes cars, trucks, railroads, and airplanes,
accounted for 2 billion tons of CO,. That is only twice
as much as we estimated for cars alone.
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That seems to be a lot of CO,. Let’s again com-
pare it to the mass of the atmosphere. Driving cars
will add

f= 1 x 10 kg
4% 108kg

=2x1077

or 200 parts per billion CO; to the atmosphere every
year. If you remember those golf balls circling the
equator in the first chapter, that would amount to 200
CO, golf balls out of the billion needed to circle the
globe. This is 1000 times less than natural level of
CO; in the atmosphere of about 200 parts per million
(200 ppm or 2 x 107%).

If we want to reduce our share of transportation
greenhouse gas emissions, we can either drive less
or drive a car with better gas mileage. Driving less
means either car pooling* or living closer to work
(which restricts our house and neighborhood choices).
Driving a more efficient car means either paying more
for a hybrid (but not all hybrids get good gas mileage)
or driving a smaller car. If you drive an electric car, the
electricity still has to be generated somehow, generally
by burning fossil fuels. Alternatively, we can pass laws
that make other people pay the costs of reducing CO,
emissions. The choice is ours.

*Which carries the risk of developing car pool tunnel syndrome.
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Turning gas into trees

How much carbon dioxide (in kg) does a 1-km? new*
forest absorb per year? Trees absorb carbon dioxide,

emit oxygen (thank you, trees!), and use the carbon

to make more tree. Assume
that the forest is growing
in a temperate zone that
gets plenty of rainfall
(e.g., New ]erseyT
or Germany).

*So we do not need to account for trees dying and rotting.
T New Jersey may be the “landfill of opportunity,” but we assure you
that it has some lovely forests too.
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ANSWER: This is a great problem, because there are
four very different ways to solve it. We can estimate
(1) the number and size of 20-year-old trees, (2) how
thick a layer they would make if we cut them all down
and compacted them, (3) the solar energy used by
the forest and how much CO, would be converted to
carbon with that energy, or (4) the water used by the
trees and how much cellulose would be made from the
hydrogen in the water. Methods (1) and (2) will work
much better if we average over 20 years.

The easiest method is to estimate how thick a layer
the trees would make if after 20 years we cut the forest
down and compacted it. A 20-year-old tree is less than
a meter thick. Thus, the layer of biomass will certainly
be more than 1 cm (1072 m or 1/2 in.) and less than
1 m, so we will take the geometric mean and use a
thickness of 0.1 m (4 in.). Thus, the volume of biomass
willbe V = (10°m)? x 0.1 m = 10° m>. Since wood
has about the same density as water (10°> kg/m?), this
gives a total mass of M=10>kg/m’ x 10> m> =10° kg,
Since almost of all of this mass is carbon and since
CO; has about four times the mass of C, we estimate
that 1 km? of new forest removes 4 x 10% kg of CO; in
20 years or 2 x 107 kg/year of carbon dioxide.

Now let’s try the solar energy method. The solar
power available at Earth orbit is 10> W/m?. Between
night and clouds and the atmosphere, about 10% of
that energy is available to the trees. After a billion years
of evolution, trees must be more than 1% efficient
at using solar energy (but definitely less than 100%)
so we'll assume 10% efficiency.* Some of that energy
probably goes to maintaining the tree’s metabolism so
we’ll estimate that 50% of the available energy is used
to make more tree. Thus, after accounting for night

*This is the same efficiency as our best photovoltaic solar cells
today.
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and clouds (10%), energy conversion efficiency (10%),
and energy used for making more tree (50%), only
5 x 1077 of the 10> W/m? or 5W/m? is used to make
more tree. This gives an available energy

E =5W/m? x © x 107 s/yr x 10° m? /km?
x 6 x 10" eV/] = 10% eV /yr-km?

We converted this from joules to electron-volts be-
cause extracting the carbon from CO, requires 1.5eV
(our standard chemical reaction energy). Thus, we can
extract the carbon from 6 x 10°> CO, molecules per
year. The mass of all this CO, is

6 x 10** molecules/yr

Mco, X 44 g/mole CO,

~ 6 x 105 molecules/mole
=4 x 10" g/yr = 4 x 10" kg/yr

This is a factor of about two more than our previous
estimate. Not too bad for such different methods.

Now let’s compare to reality. According to the
Encyclopedia of Energy [27], the average insolation
ranges from 100 to 200 W/m? and the solar en-
ergy capture efficiency ranges from 0.2 to 5%. The
highest production levels are from a tree plantation
in the Congo, which produces 36 tons/hectare/year
or 4 x 10° kg/km? /yr. Our estimates are about a factor
of ten higher even than this maximal production.
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Turning trees into gas 1 o ° 8

Humans have cleared a lot of forest for agriculture
in the last 8000 years. Assuming that all the cleared
forest has been burned or otherwise oxidized,

how many tons of CO,
has deforestation added
to the atmosphere?
How much is
this in ppm
(parts per ~7 e
million)? ] '
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ANSWER: We need to estimate the area of forested
land cleared and the amount of biomass per area.
Let’s start with the area. Land is 25% of the Earth’s
surface. We'll estimate that half of all land area was
originally forested and half of that has been cleared.
Thus, humans have cleared forest from 1/4 of the land
area of Earth. This estimate is certainly within a factor
of four of reality since we have certainly cleared less
than 100% of the land area and more than 1/16 or 6%.
The surface area of the Earth (see question 10.1) is

Aparth = 47 R?* = 47(6 x 10° km)? = 4 x 10® km?

The land area is one-quarter of that or 10® km?. Hu-
mans have cleared the forests from one-quarter of that
or2 x 10" m?.

Now we need the amount of biomass. We know
from the previous question that new forests produce
less than 4 x 10° kg/km?/yr of biomass. However, after
a forest becomes mature, it becomes a steady-state sys-
tem where the amount of wood that rots (i.e., oxidizes)
equals the amount of new wood produced. It takes
at least 10 years and less than 100 years for a forest
to become mature.* We'll take the geometric mean
and use 30 years. Thus, clearing forest for agriculture
releases 30 x 4 x 10° kg/km?=10® kg/km? of biomass.
Since CO, has four times the mass of carbon, this
is 4 x 10® kg/km? of CO,. Before we continue, let’s
compare this to reality. Typical forest biomass is about
107 kg carbon/km? [28]. Thus, our estimate of 10 is a
factor of 10 too high.

Using the real biomass density, clearing forests re-
leased

Mco, = 2 x 10" km? x 4 x 10 kg/km”
=8 x 10" kg

*This definition of maturity refers to the carbon cycle, not to the
species of trees in the forest.
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of carbon dioxide. That is 10* times more than
American cars emit each year.

To put it another way, the total mass of the atmo-
sphere is only 4 x 10'® kg. Thus, this is about 200 parts
per million (ppm) of the atmosphere. The current
atmospheric concentration of CO, is about 350 ppm,
so that this is a significant input.

Wow! Maybe clearing forests over the last ten
thousand years has averted another ice age [29]. Or
maybe not.
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Risk

Life is dangerous. But some things are far
more dangerous than others. Do we really
need to worry about shark attacks? Should we
be required to put infants in car seats on
airplanes? After figuring out these questions,
you should be able to see through the scare
tactics used against us by politicians and

other salesmen.






Gambling on the road

What is the risk (in the US) of dying per mile traveled
in an automobile? What fraction of American deaths
are caused by automobiles?
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ANSWER: We need to estimate the total number of
miles traveled and the total number of deaths on the
road. In question 5.1 we estimated the total distance
that Americans drive each year to be about 2 x 102 mi.
About 4 x 10* Americans die each year in car crashes.
Thus, the risk of death is

4% 10* deaths/yr

=2 x 107% deaths/mi
2 x 1012 mi/yr /mi

Wow, there are only two deaths per 100 million miles.
That sounds pretty safe.

Let’s look at this number a different way. Let’s figure
out the probability that you, the reader, will die in a car
crash. The probability that any one of us will be killed
in a car crash is the same as the fraction of Americans
who die in car crashes. That is, if one in fifty Americans
die in car crashes, then your chance of dying in a car
crash is also one in fifty.

Now we need to estimate the number of Americans
that die each year. There are 3 x 10® of us. The average
American life span is about 75 years (although we plan
to live much longer than that). Thus, one in every
75 Americans dies every year. This means that the
number of deaths every year is

3 x 108 Americans

Ny = = 4 x 10° deaths/yr
75yr

Thus, the total lifetime probability of dying in a car
crash is

4 x 10* car deaths/yr 0.01
4 x 106 deaths/yr

or 1%. Thus, 1% of us will die in a car crash. (This
is the total probability starting at age zero. Since you,
gentle reader, are probably slightly older than that,
your probability of dying in a car crash is somewhat
reduced. Whew!)

P, crash —
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The plane truth

What is the risk in America of dying per mile
traveled in a large airplane?

How does this /;\
compare to the ;
risks of driving?
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ANSWER: We need to estimate the total miles traveled
and the total deaths per year. We estimated in the
introduction that Americans take 7 x 10® flights per
year. The average distance per flight is probably more
than 300 miles (it is almost easier to drive) and less
than 3000 miles (the distance from NY to LA), so
we will use the geometric mean of 1000 miles. Thus,
Americans fly a total distance of d = 7 x 10® flights
x10° miles/flight = 7 x 10! mi. This is 1/3 as far as
we drive.

Large planes do not crash every year. Whew! The
crash frequency is less than once a year and more
than once a decade. We’ll take the geometric mean of
once every three years (since 3 = /1 x 10). When
a plane crashes, it kills about 100 people. Thus, large
plane crashes kill about 30 people per year. This
means that the probability of dying in a large plane
crash per mile is

30 deaths/yr

= W =4 x 10_11 deaths/mi
X mi/yr

That is almost 1000 times safer per mile than driving.

Note that expressing airplane fatalities in terms of
deaths per mile is somewhat misleading since almost
all crashes occur during takeoff and landing. A 3000-
mile plane flight is almost exactly as dangerous as a
300-mile plane flight.

This means that some airline safety regulations
could be misguided. For example, if we required in-
fants to ride in infant seats on airplanes, it could cost
lives. This would make plane travel more expensive,
since parents would have to pay for a plane ticket
for their infant. Thus, fewer families would fly and
more would drive. Because driving is so much more
dangerous than flying, many more people would be
killed on the roads than would be saved by using infant
seats on the airplane.
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Life's a beach 1 1 03

Compare the risks of getting killed by a shark at the
beach and of driving to the beach.
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ANSWER: Shark attacks are scary. Shark attacks are
newsworthy. Just about every person killed by a shark
will make the national news. We read about shark
deaths at the beach every few years. This indicates that
there is about one fatality per year. (To humans, that is.
We kill lots more sharks per year than that.) In reality,
the average for the US is about 0.5 per year.

Now we need to estimate the number of beach goers
per year. About 10% of the US population lives within
20 miles of the coast (it’s certainly between 1 and
100%). About 10% of them go to the beach on any
given summer day. This means that in July and August,
3x10%x0.1x0.1 = 3 x 10° Americans are at the beach
on any given day. Since there are 60 days in July and
August, this means that there are 60 x 3 x 10 =2x108
beach visits each year. This is a bit low but reasonably
close to reality since California alone has 10® beach
visits per year [30].

Each beach goer probably drives about 10 miles
each way to get to the beach (more than one and less
than 100). The total distance driven by beach goers is
thus about d = 20mi x 2 x 10® visits = 4 x 10° mi.
This will cause an average of

Nieaths = 4 % 10° mi x 2 x 10~® deaths/mi = 80 deaths

Thus, driving to the beach is about 100 times more
dangerous than shark attacks. Despite this, or perhaps
because of this, the shark attacks get far more media
coverage and publicity.*

*Driving accidents are just so, you know, pedestrian.
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Up in smoke 1 1 o4

On average, how much does each cigarette smoked by
a heavy smoker shorten his or her life expectancy?
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ANSWER: We need to estimate how many cigarettes a
heavy smoker smokes and how many years of life he or
she will lose. We will do this for the average smoker.
Your Uncle Joe may have smoked like a chimney until
he was shot by a jealous lover at age 97 while skydiving,
but he got lucky. Someone will get lucky and win the
lottery, but the average lottery gambler loses money.
Some people live long lives despite smoking, but the
average smoker dies early.

Smoking kills primarily through lung cancer and
heart disease. These are late-onset diseases. They typ-
ically start killing at age 50 or so. The average smoker
must lose much more than one year of life* and less
than 30 years (since smoking starts to kill at about
age 50 and life expectancy is less than 80). Taking the
geometric mean of 1 and 30, smokers die five years
earlier than nonsmokers.

If you started smoking at age 18 (when it became
legal to buy cigarettes) and continued until you died
at age 70, at one pack of cigarettes per day, you would
have smoked

N = 50years x 400 days/year x 20 cigarettes/day
= 4 x 10’ cigarettes

If we make the totally ridiculous assumption that
each cigarette makes the same contribution to mortal-
ity, then each cigarette will cost you

5years
= Y— =10"° years
4 x 10’ cigarettes
= 107 years x  x 10’ s/yr = 300s = 5min

Thus, each cigarette would cost you about the amount
of time it takes to smoke it.

*If a smoker only lost one year of life, we would not make so much
of a fuss about smoking.
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Comparing to reality,* a study in the British Medical
Journal [31] found that there is a difference in life
expectancy between smokers and nonsmokers of 6.5
years and the average smoker consumes a bit less than
a pack per day. They found that each cigarette costs
an average of 11 min of life. Maybe we should have
published.

Note that the assumption that each cigarette does
an equal amount of damage is both unverifiable and
probably nonsense. Biological systems frequently have
thresholds below which no damage is done. One ton
of rocks will crush you. However, the first pound or
kilogram of rock will not have any adverse affect at
all. Similarly, swallowing two tablets of acetaminophen
will help your headache but swallowing the entire
bottleful will kill you.

*Or at least to a published study.
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Unanswered Questions

There are many, many more questions that
could be asked and answered. Just look at the
world around you and apply your newfound
skills. Here is a set of unanswered questions

to get you started.



10.

11.

12.

13.

286

. How many 1-gal (4-L) buckets of water are

needed to empty Loch Ness (or Lake Erie)?

. How many cigarettes are smoked annually in the

US? If you place them end-to-end, how far will
they stretch?

. How many video rental stores are there in the

US (or Europe)?

. How many people are talking on their cell

phones at this instant?

. How many people are eating lunch at this

instant?

. How fast does human hair grow (in m/s

or mph)?

. How many grains of sand are there in all the

beaches of the world?

. How many blades of grass are there on the

average (natural) football field?

. If all the lottery tickets sold in the US in one

year were stacked up, how tall would the
stack be?

How much total time do Americans spend
driving in one year? Express your answer in
hours, years, and lifetimes.

What is your average bicycle travel speed?
Include the time you spend riding your bicycle
and the time you spend earning money to pay
for your bicycle.

How much gasoline would the US save if the
speed limit was lowered from 65 to 55 mph?
How many extra hours of the time would be
spent driving for each gallon of gas saved?

How much rubber (in kg) is deposited on
American roadways every year by automobile
tires?
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14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24,

25.
26.

What is the potential energy of a large raindrop
in a cloud?

You crash your car into highway crash barrels
(large barrels filled with sand) at highway speed.
What force is exerted on your body as you stop?
(Assume that you are wearing your seat belt and
your air bag deploys properly.)

How much potential energy does the landfill
referred to in chapter 3 have after Americans
have dumped all their garbage there for

100 years?

What is the kinetic energy of a rifle bullet?

What force does a catcher exert on a baseball
when he catches a fast pitch?

How much energy can be released by eating 1 kg
of chocolate chip cookies?

What is the total kinetic energy of all the
vehicles on the road in the United States (or
Europe) at this instant?

If you drop a water ballon from a 30-story
building, with what speed will it hit the ground?

How much does a human sweat in a hot climate
(T =98.6°F = 37 °C)? Express your answer in
liters/day. (Assume that all of the energy you
ingest can be removed only by sweating. Water
absorbs about 1000 J/g when it evaporates.)

How much food (in kg) does a typical human
consume in her lifetime? How does that
compare to her mass?

What is the kinetic energy of the Moon as it
orbits the Earth?

What is the energy density of U (in J/kg)?

If every American switched to driving an electric
car we would use more electrical energy.
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27.

28.

29.

30.

31.

32.

33.
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How many 1-GW power plants would it take to
supply that much electrical energy?

How many tons of hydrogen are converted to
helium in the Sun every year?

What proportion of the Sun’s mass is converted
to energy during the 10-billion year lifetime of
the Sun? (Assume that its power output is
relatively constant over its lifetime.)

How many miles of roads does the US (or
Europe) have?

How much carbon dioxide (in kg) does one
person emit into the atmosphere each year? All
humans?

How much force does the atmosphere exert on
the front of your body?

How large a helium ballon (in m?®) would be
needed to lift your car? Helium has about
one-tenth the density of air.

How much, on average, will each high-fat meal
consumed shorten your life?
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Appendix A
Needed Numbers and Formulas

Although it is extraordinary how much can be deduced from

just a little knowledge, a little knowledge is necessary. We

do not believe that it is dangerous. Here are the important

numbers and formulas we use in this book.

A

Useful Numbers

US population (2006) = 3 x 10°
World population (2006) = 6 x 10°
Number of items/mole (Avogadro’s number) =6 x 10%
Electron volts/joule (eV/]) = 6 x 10'
I m/s = 2mph

lyear =7 x 107 s

Size of an atom = 107" m

Radius of the Earth = 6 x 10°m
Earth—-Sun distance = 1.5 x 10"' m

1 Calorie = 4 x 10°]

Chemical reaction energy = 1.5e¢V
Mass of one mole of carbon = 12 g

Acceleration of gravity at Earth’s surface ¢ = 10 m/s*

Handy formulas

Potential energy, PE = mgh

Mass = volume x density
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1
Kinetic energy, KE = imv2

Work = force x distance
Work = change in KE

Energy = power(W) x time(s)

A.3 Metric Prefixes

Size Prefix Abbreviation
10° giga G

10° mega M

10° kilo k

1072 centi c

1073 milli m

10~° micro o

107° nano n
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Appendix B

Pegs to Hang Things On

Length in meters (m)

Object

1011

107 (10* km)

10° (10% km)

10° (107 km)
10* (10 km)
10° (1 km; 0.6 mi)

102

10!

10°

107! (10 cm)

1072 (1 cm)

1073 (1 mm)

1074

107°

107% (1 micron [1 um])

10~ (1 nanometer [1 nm])

10710

Earth—Sun distance
(1.5 x 10" m)

Earth’s diameter

(8000 mi, or

1.3 x 10*km)
Distance from

New Orleans to
Detroit (1600 km)
Lake Michigan (length)
Mt. Everest (height)
George Washington
Bridge

Football field (length)
Tennis court

Tall man’s stride
Person’s hand (width)
Sugar cube

Coin (thickness)
Human hair (thickness)
Human cell (diameter)
Soap-bubble film
(thickness)

Small molecule

Atom
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Area in square meters (m?)

Typical object

1014
1012
10"
10°

108
10° (1 km?)
10*

10?

10°

107* (1 cm?)
107° (1 mm?)
1078

Land area of the Earth
Egypt; Texas

New York State; Iceland
Los Angeles;

Virginia Beach
Manhattan

City of London

Football field

Volleyball court

Small office desk

Sugar cube (one side only)
Head of a pin

Pixel on computer display

Density in kilograms per
cubic meter (kg/m?)

Item

1018 Neutron star;
atomic nucleus

10° White dwarf star

10* Lead; iron

10° (1 ton/m?, 1kg/L, Water; human body

1g/cm?)

10° Earth’s atmosphere at
sea level
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Mass in kilograms (kg)  Object

10%° The Sun

10%7 Jupiter

10%° Earth

102! Earth’s oceans

108 Earth’s atmosphere

10" World coal reserves
(estimated)

1012 World oil production in 2001

10! Total mass of human world
population

1010 Great Pyramid of Giza

10° Matter converted into energy
by the Sun each second

108 Aircraft carrier

107 RMS Titanic

10° Launch mass of the space
shuttle

10° Largest animal, the blue whale

10* Large elephant

10° (1 ton) Automobile (small)

102 Lion; large human

10! Microwave oven; large cat

10° 1 liter or quart of water

107! Human kidney; apple; rat

1072 Lethal dose of caffeine;
adult mouse; large coin

1073 (1g) Sugar cube

107* Caffeine in a cup of coffee

107° (1 mg) Mosquito

1077 Lethal dose of ricin

1070 (1 ug) Sand grain (medium)

1072 (1 ng) Human cell

10777 Neutron; proton; hydrogen
atom

10730 Electron
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airplane flights, 5
Alexander the Great, 247
area
human, 65
landfill, 47
people, 21
rally, 79
towel, 31
trash, 47
Armageddon, 61
atmosphere, 247
mass of, 245
using up, 251
automobiles
average speed, 109
cost, 99, 109
crash, 139
distance, 89
fuel, 91
time, 95
tires, 107
waste, 103

ball

golf, 25

tennis, 127
battery, 151, 155, 159
blood, 61
books, 53
breathing, 247, 251
building, 123

calories, 162

carbon dioxide
from cars, 261
from coal, 255

from deforestation, 269
into forests, 265

cars
distance, 89

cats, 39

cells, 57

coal, 233, 255

continent, 131

cow, 73

DNA, 83
driving, 89

Earth
circumference, 25
mass, 39
electricity
power, 175
energy, 170
battery, 151, 159
car, 163
chemical, 145, 147, 160,
162, 201
electrical, 159
electrical, 219
electron-Volts, 146
ethanol, 167
food, 163
gasoline, 147, 159
gravitational, 114
Joules, 114
kinetic, 126, 138, 139, 143,
230
continent, 131
Earth, 181
meteorite, 185
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rocket ship, 135

tennis ball, 127

truck, 129
nuclear, 237

potential, 114, 115, 119, 123

solar, 193
Sun, 201, 223, 225
TNT, 149
work, 138
energy crisis, 195
energy density
battery, 155
gasoline, 147
ethanol, 167

farmland, 167
fission, 237

flying, 5, 51

food, 162

force, 138, 139, 143
fossil fuel, 167
fusion, 237

gasoline, 147, 159, 163
power, 173

gerbil, 197

Goldilocks, 2

gravitation, 114

hair, 69
heat, 171
horses, 103
hot dog, 73
human
area, 65
cells, 57
noses, 77
power, 171
hydrocarbons, 146

ice caps, 209
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kilowatt-hour, 170
Krypton, 205
Kryptonite, 207

landfill, 47
library, 53
lottery, 4, 41

mass
trash, 43

mean, geometric, 3

meteorite, 185

Million Man March, 79

mole, 147

mountain
climbing, 115
flattening, 119

noses, 77
nuclear energy, 237
nuclear waste, 259

oxygen, 251

part per billion, 27
paved area, 239
piano tuners, 7
pickles, 29
porta-potties, 79
power, 170
electrical, 215, 219
human, 171
refueling
electricity, 175
gasoline, 173
Sun, 193
Watt, 151
wind, 229
power density
gerbil, 197
Sun, 197



power plant
coal fired, 233
nuclear, 237

refueling, 173, 175
rickshaws, 99
risk
shark attack, 279
smoking, 281
rocket ship, 135
roofs, 239

shark attack, 279
smoking, 281
soccer, 75
solar energy, 223, 225
speed, 126
Spider-Man, 143
subway, 143
Sun
density, 189
energy, 201

power density, 197, 193
radius, 189
Superman, 207
supernova, 205

TNT, 149
trash, 43, 47
truck, 129

velocity, 126
volume
blood, 61
cow, 73
human, 57
trash, 43
U.S. Capitol, 35

waste, 103

Watt, 170

wind turbine, 229
work, 138, 139, 143
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