
Undergraduate Topics in Computer Science

Bhim P. Upadhyaya

Data 
Structures and 
Algorithms 
with Scala
A Practitioner’s Approach with 
Emphasis on Functional Programming



Undergraduate Topics in Computer Science

Series editor

Ian Mackie

Advisory Board

Samson Abramsky, University of Oxford, Oxford, UK
Chris Hankin, Imperial College London, London, UK
Mike Hinchey, University of Limerick, Limerick, Ireland
Dexter C. Kozen, Cornell University, Ithaca, USA
Andrew Pitts, University of Cambridge, Cambridge, UK
Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA
Iain Stewart, University of Durham, Durham, UK



Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

http://www.springer.com/series/7592


Bhim P. Upadhyaya

Data Structures
and Algorithms with Scala
A Practitioner’s Approach with Emphasis
on Functional Programming

123



Bhim P. Upadhyaya
EqualInformation, LLC
Sunnyvale, CA, USA

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-12560-8 ISBN 978-3-030-12561-5 (eBook)
https://doi.org/10.1007/978-3-030-12561-5

Library of Congress Control Number: 2019930577

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



To the Readers
-Bhim



Preface

Professional software engineers find it difficult to make time to upgrade and rein-
force their own knowledge; most of their time is spent on business responsibili-
ties. This is also true for engineering students (among others), who have numerous
courses to take and rigorous exercises to do. So, time is a constraint for almost ev-
erybody. It is our observation that professionals need concise information source in
order to be able to allocate and get value out of their time. In this context, it is handy
to have a book that can be reviewed in one or two weekends.

A quick survey of books on Data Structures and Algorithms reveals that there
are plenty of well-written books; however, they have multiple shortcomings. One
that stands out is that most of those books were written a decade back. Computer
science is one of the fastest - if not the fastest - changing fields. There is a saying:
every time you turn your head you might see something new, which is true, specially
with the advances in automated builds. There might be thousands of builds running
or completing at a given point in time. All the successful builds create new versions
of existing software packages or new software packages. In this rapidly changing
context, books written a decade or more ago may not serve the purpose best.

Another shortcoming of well-written classical books in this field is that they are
either too long or too theoretical for practitioners. Finding weeks of free time to read
a book is certainly challenging for working software engineers, amid their stringent
work responsibilities. Also, too-theoretical books might be good for intellectual ex-
ercises and research in the field, but may not serve well to solve applied problems
quickly. Most professional engineers look for terse and precise presentation of ma-
terial.

The third aspect is that there are not many Data Structures and Algorithms books
available for Scala. Scala is becoming popular in the big data space. Most senior
Java-based software jobs, these days, prefer Scala proficiency. In this context, it is
certainly helpful to be equipped with Scala implementations of popular data struc-
tures as well as algorithms. Most of the analytical tasks are better done by the func-
tional style of processing. As Scala is an object-functional language, we can do
multi-paradigm programming. Scala also supports polyglot programming, Java be-
ing the closest sibling.
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viii Preface

This book has been written more in a study-note or tutorial style and it covers
nine popular topics in Data Structures and Algorithms—arrays, lists, stacks, queues,
hash tables, binary trees, sorting, searching, and graphs. Arrays are implemented
in an imperative style with the famous matrix multiplication problem. Most of the
other topics are implemented in a functional style. So, if you are planning to learn a
functional version of Data Structures and Algorithms in Scala, this is the right book.
I’ve tried to make the book as accessible as possible.

Most of the programs in this book are complete and running applications. Also,
each topic or subtopic has at least one complete and running example, which will
save your time. You can try to come up with better implementations than in this
book. Most of the challenge exercises are for this purpose. However, some are in-
tended to reinforce your understanding of the existing material. In addition to cre-
ativity, the ability to take somebody else’s solution and improve is desirable in the
job market; I’ve tried to incorporate both in this book. Also the book includes so-
lution to exercises so that you don’t struggle, specially when you are time-bound.
Happy Reading!

Sunnyvale, California Bhim P. Upadhyaya
October 2018
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Chapter 1
Foundational Components

We have observed that the longer professional engineers work, the more they tend
to focus on advanced topics and problems with higher complexity. When this is
practiced for a long time, it is easy to forget the fundamental building blocks. As a
result, solutions proposed for advanced problems may be biased. In order to have
a balanced approach, in this chapter, we focus on basic building blocks and funda-
mental algorithms. Feel free to skip this chapter if you do not need a refresher on
fundamentals.

We will focus more on what we can do with the fundamental structures than an
exhaustive listing of APIs that can be found in online documentation, even though
we might occasionally list the available features if this is helpful for memorization
that leads to productivity. In software engineering job interviews, even though inter-
viewers don’t focus on memorizing APIs, they do appreciate the ability to remem-
ber available features and use them to solve problems promptly. This is desirable at
work as well. So there should be a balance between creative ability and knowledge
of existing tools. In many cases, such knowledge can speed up the implementation
of creative ideas. We will make use of all such opportunities when we explore fun-
damental building blocks in this chapter.

In this book, we use Scala as our vehicle to implement data structures and al-
gorithms. Hence, in the next section, we will cover Scala arrays. Arrays are the
core building blocks of imperative programming. The majority of high-level pro-
gramming languages support array structures. Different forms of arrays can also
be found in low-level computational infrastructures, such as memory and CPU. We
will be using arrays extensively in this book. More importantly, many other data
structures use arrays directly or indirectly. We discuss arrays-based computation, in
detail, in Chapter 3.

Lists are fundamental building blocks of functional programming. We are very
likely to find lists in almost all the functional programming languages available to-
day. One of the earliest high-level programming languages, List Processor (LIST),
focuses on list-based processing; it builds on the idea of recursive functions of sym-
bolic expressions. Scala has brought together many features from many different
programming languages, including historical functional programming languages

1© Springer Nature Switzerland AG 2019
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Topics in Computer Science, https://doi.org/10.1007/978-3-030-12561-5_1
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such as LISP and ML, and more recent functional languages like Haskell. Scala
is also an expression-oriented language, along with being object-oriented and func-
tional. In this context, spending some time with list fundamentals is certainly going
to pay off in the long run. Section 1.2 covers list fundamentals. This section will also
cover another important foundational block called Vector. We will see in this section
why we need vectors. Detailed list-based computation is discussed in Chapter 4.

In many practical applications, continuous streams of data need to be handled.
Some of the examples of such applications are Twitter feed processing, server logs
processing, social media interactions like Facebook activities, etc. In these applica-
tions, very large streams of data are generated by user activities. Since user activities
relate to business opportunities, many companies spend significant sums on stream
processing. These days, there are numerous frameworks that support stream pro-
cessing, including open source frameworks such as Apache Spark, Apache Kafka,
and Apache Storm. At the time of writing, Spark and Kafka are the two latest and
most important frameworks in big data. Both of these frameworks were mostly writ-
ten in Scala. Hence we will cover Scala streams in Section 1.4. Then we will cover
sliding windows in the subsequent section.

1.1 Arrays

Scala arrays are mutable collections of values and are indexed. This means we can
access any element of an array if we know its index in O(1) running time. Refer to
Section B.3 for asymptotic notations and their meanings. Let’s look at the following
code snippet.

scala> val myNumbers = Array(0, 2, 4, 6, 8, 10)
myNumbers: Array[Int] = Array(0, 2, 4, 6, 8, 10)

scala> myNumbers(5)
res0: Int = 10

In the code snippet above, we define the array myNumbers without using the re-
served word new. Scala allows us to write succinct code and it does the neces-
sary internal transformations for the programmer. An array index starts from 0, so
the element at position n is accessed using <array-name>(n-1). In our case
myNumbers(5) returns an integer at position 6, which is 10. This call is internally
translated to apply(Int). It is interesting to go through the GitHub source code
(https://github.com/scala/scala/blob/2.13.x/src/library/
scala/Array.scala), if you have time. Here, since we are more interested in
using arrays rather than creating array structures for the purpose of implementing a
programming language, we will use the API documentation and try some interesting
operations that are widely used in day to day programming.

Let’s look at the following code snippet now.

scala> val numMult2 = myNumbers.map(_ * 2)

https://github.com/scala/scala/blob/2.13.x/src/library/scala/Array.scala
https://github.com/scala/scala/blob/2.13.x/src/library/scala/Array.scala
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numMult2: Array[Int] = Array(0, 4, 8, 12, 16, 20)

We multiply each number in the array by 2 and assign the result to numMult2.
Now if we execute numMult(5), we get 20. Note how terse the code is. If we try
to achieve the same using imperative loops, we will end up writing several lines of
code (LOCs). Let’s write one and see the difference.

package com.equalinformation.dascala.scala
.fundamentals

object MultBy2App {
def main(args: Array[String]): Unit = {

val myNumbers = Array(0, 2, 4,6, 8, 10)
multBy2(myNumbers).foreach(println)

}

def multBy2(myArray: Array[Int]): Array[Int] = {
val size = myArray.length
val myTempArray = new Array[Int](size)
var i = 0
while(i < size) {

myTempArray(i) = myArray(i) * 2
i += 1

}
myTempArray

}
}

The program above has 17 LOCs, whereas our functional implementation above
has a single LOC; add one more LOC for the original array definition, so a total of 2
LOCs. It is self-explanatory why functional programming is better suited for certain
types of tasks. At this stage, it is important to note that length is not the only factor.
There are other reason like scalability, concurrency, distribution, etc. In this chapter,
we will try to be more functional than imperative.

Now, let’s see some interesting array features. Reversing an array can be done by
using the reverse operation as shown below.

scala> myNumbers.reverse
res0: Array[Int] = Array(10, 8, 6, 4, 2, 0)

Two arrays can be combined using the ++ operator as shown below.

scala> val array1 = Array(1,2,3,4,5)
array1: Array[Int] = Array(1, 2, 3, 4, 5)

scala> val array2 = Array(6,7,8,9,10)
array2: Array[Int] = Array(6, 7, 8, 9, 10)
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scala> array1 ++ array2
res2: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8,

9, 10)

If we do this in an imperative style, it will have numerous LOCs. You can try this
as an exercise to get a feeling for the importance of the functional style of program-
ming.

Now, let’s try buit-in sorting.

scala> val fruits = Array("banana", "apple","orange")
fruits: Array[String] = Array(banana, apple, orange)

scala> fruits.sorted
res5: Array[String] = Array(apple, banana, orange)

Sorting is very handy in day-to-day programming. In the worst case, it takes O(n)
time to find an element in an unsorted array if we do not know the index beforehand.
If it is sorted it takes O(lg n) running time, which is significantly lower than O(n).

We can check whether an element exists in an array by passing a predicate. In
the following code snippet, a parameterized predicate is applied for every element
in the array f ruits. If the predicate holds true a boolean value true is returned. If
there are duplicate elements, only one boolean value true is returned.

scala> fruits.exists(x => x == "banana")
res21: Boolean = true

If we want filter the elements of an array that satisfy a given predicate then we
can do that using a f ilter operation. If there are duplicate elements, all will be listed.

scala> val myNums = Array(1, 2, 2, 3, 4, 5, 6, 7, 7,
8, 9, 5, 9, 10)

myNums: Array[Int] = Array(1, 2, 2, 3, 4, 5, 6, 7,
7, 8, 9, 5, 9, 10)

scala> myNums.filter(x => x == 2)
res33: Array[Int] = Array(2, 2)

Now, let’s find all the even numbers in the array myNums. For this, we filter the
array elements whose remainder is zero when divided by 2.

scala> myNums.filter(x => x % 2 == 0)
res35: Array[Int] = Array(2, 2, 4, 6, 8, 10)

Finding elements in a container is a common need for programmers. This can
be achieved using the f ind operation on a given array. Next, let’s see how the f ind
operation works. In the result below, we see only one 2. The f ind operation returns
an Option, and in the event of multiple occurrences, it returns the first occurrence.
Since it returns an Option, we need to use the get operation on that option to get the
value.
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scala> myNums.find(x => x % 2 == 0)
res36: Option[Int] = Some(2)

scala> res36.get
res38: Int = 2

Now, let’s create one more array with different data so that we can try various
other operations. We pretend that the counts and the corresponding domains, subdo-
mains, or related items are available as a single string. This is a realistic assumption
because many log files store textual information, which could be treated as one very
large string. In our case, we have numerous smaller strings with mixed data.

scala> val counts = Array("900,google.com",
"60,mail.yahoo.com",
"10,mobile.sports.yahoo.com",
"40,sports.yahoo.com",
"10,stackoverflow.com",
"2,en.wikipedia.org",
"1,es.wikipedia.org",
"1,mobile.sports")

counts: Array[String] = Array(900,google.com,
60,mail.yahoo.com, 10,mobile.sports.yahoo.com,
40,sports.yahoo.com, 10,stackoverflow.com,
2,en.wikipedia.org, 1,es.wikipedia.org,
1,mobile.sports)

Next, we split the strings in such a way that the count is separated from rest of
the string. This allows us to process counts.

scala> val countsMap = counts.map(_.split(",")).map {
case Array(s1,s2) => (s1,s2)}

countsMap: Array[(String, String)] = Array(
(900,google.com),
(60,mail.yahoo.com),
(10,mobile.sports.yahoo.com),
(40,sports.yahoo.com),
(10,stackoverflow.com),
(2,en.wikipedia.org),
(1,es.wikipedia.org),
(1,mobile.sports))

Next, let’s find the count for “.com”:

scala> val comCounts = countsMap.map {
| case(x,y) if y.endsWith(".com") => x.toInt
| case _ => 0
| }.reduceLeft(_ + _)
comCounts: Int = 1020
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Including subdomains, the total count for “.com” domains is 1020.

Exercise 1.1. Internet Advertisement Hits Analysis

You are in charge of an advertising program. Your advertisements are displayed
on websites all over the Internet. You have some CSV input data that counts how
many times you showed an advertisement on each individual domain. Every line
consists of a count and a domain name. The data looks like counts, above. Write
a function that takes this input as a parameter and returns a data structure contain-
ing the number of hits that were recorded on each domain and each domain under
it. For example, an impression on mail.yahoo.com counts for mail.yahoo.com, ya-
hoo.com, and com. Sub domains are added to the left of their parent domains. So
mobile.sports.yahoo and mail are not valid domains. A sample output is shown in
Table 1.1 (note that the counts may not be correct in the sample output, these are
only for illustration).

Table 1.1: Sample Internet advertisement analysis result

1220 com
800 google.com
505 yahoo.com

70 mail.yahoo.com
15 mobile.sports.yahoo.com
40 sports.yahoo.com

5 stackoverflow.com
3 org
3 wikipedia.org
2 en.wikipedia.org
1 es.wikipedia.org

1.2 Lists and Vectors

Lists are widely used in functional as well as imperative programming. As stated
earlier in this chapter, some of the early high-level programming languages featured
lists heavily as a part of their programming constructs. Also lists are a natural way of
thinking and translating those thoughts into computational structures. If list struc-
tures are available in a programming language then programmers will use them,
as there is a direct mapping between real-world lists and computational lists. We
discuss list-based computation in detail in Chapter 4.
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Let’s first declare a list of words:

scala> val myFruits = List("grape", "banana",
"apple", "mango")

myFruits: List[String] = List(grape, banana, apple,
mango)

If we are dealing with the first element of a linked list for delete or update opera-
tions, this requires O(1) time. Also inserting at the beginning of the list is constant
time. In the myFruits list, if we need to locate mango then we need to traverse all
the elements. This means that inserting an element at the end of the list also re-
quires O(n) running time. Similarly, deletion has the same time complexity for a
linked list. For a very large set of data this time complexity may prove to be inef-
ficient. In such cases, we can use another data structure called Vector, which has
better performance; it doesn’t matter whether we are performing operations in the
beginning, middle, or end. Vector provides a similar structure to that of an array,
but is immutable. We can perform many of the same operations that we can perform
in lists and arrays. Internally Vector is implemented using Trie structures, which
give us better performance. Many operations in Vector are localized and hence give
constant time, O(1), performance.

Let’s look at a few Vector operation to get a feeling for vectors.

scala> val myFruits = Vector("grape", "banana",
"apple", "mango")

myFruits: scala.collection.immutable.Vector[String]
= Vector(grape, banana, apple, mango)

scala> myFruits(3)
res2: String = mango

scala> val yourFruits = Vector("cucumber", "tomato")
yourFruits: scala.collection.immutable.Vector[String]

= Vector(cucumber, tomato)

scala> val combinedFruits = myFruits ++ yourFruits
combinedFruits: scala.collection.immutable.

Vector[String] = Vector(grape, banana, apple,
mango, cucumber, tomato)

scala> val notQuiteFruits = combinedFruits.filter(
x => x == "tomato")

notQuiteFruits: scala.collection.immutable
.Vector[String] = Vector(tomato)

We see that many higher level data manipulation operations are available. When
we filter for a particular element, it doesn’t have to traverse all the elements of the
vector, notQuiteFruits in our case. The data are stored in a Trie structure, which
maintains pointers to the data in a tree structure; hence the better performance.
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Now let’s look at one interesting and handy operation called groupBy, available
in List, Vector, and Array.

scala> val myWords = List("dog", "cat", "rat",
"goat", "horse")

myWords: List[String] = List(dog, cat, rat, goat,
horse)

scala> myWords groupBy {x => x.length}
res28: scala.collection.immutable.Map[Int,

List[String]] = Map(5 -> List(horse), 4 ->
List(goat), 3 -> List(dog, cat, rat))

This partitions the traversable collection into a map of traversable collections based
on a function supplied. Interestingly, if we are applying this to List, it produces a
map containing sublists; if we are applying this to either Array or Vector it produces
a map containing subarrays or sublists, respectively. In the code snippet above, it
solves the problem of counting words by length.

1.3 Applied Techniques for Efficient Computation

In this section, we discuss a couple of techniques that are commonly used in the
industry for better performance. Lazy evaluation, as the name suggests, allows eval-
uation of programming constructs when they are actually used, thereby eliminating
the need for additional storage. Memoization, on the other hand, saves processing
resources like CPU by storing reusable results from earlier computations.

1.3.1 Lazy Evaluation

A lazy evaluation can be defined as a kind of delayed evaluation. In this method,
the evaluation of an expression is done when the value of that expression is actually
used. As opposed to that, in the case of eager evaluation, expressions are evaluated
at the time of program execution. Let’s take a few examples.

scala> val myNum = 10
myNum: Int = 10

scala> var myNextNum = 11
myNextNum: Int = 11

In the above code snippet, both myNum and myNextNum are evaluated immediately,
irrespective of whether they are used or not. Contrary to that, in the following code
snippet, lazyTime is defined before eagerTime and also printed before eagerTime,
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but has higher value. This means lazyTime was not evaluated when the expression
was executed. Note that lazy is a Scala reserved word.

scala> import java.util.Calendar
import java.util.Calendar

scala> lazy val lazyTime = Calendar.getInstance
.getTime

lazyTime: java.util.Date = <lazy>

scala> val eagerTime = Calendar.getInstance.getTime
eagerTime: java.util.Date = Thu Nov 08 19:41:44 PST

2018

scala> println(lazyTime)
Thu Nov 08 19:42:19 PST 2018

scala> println(eagerTime)
Thu Nov 08 19:41:44 PST 2018

Now, the main question is what do we gain by making evaluations lazy? In the code
snippet above, we have smaller values to hold in the memory. But imagine thousands
of records being evaluated. If we are not using those records then holding them in the
computer’s memory is wasteful. In the case of even larger data, the computation can
become infeasible. Currently most popular open source big data processing engines,
like Apache Spark, use lazy evaluation extensively.

Another way of making evaluation lazy is to ask the compiler for delayed param-
eter evaluation. This can be achieved by using functions as parameters. Let’s take a
look at the following code snippet. The parameterized function takes the Unit type
of argument and returns Int. Specifying Unit is optional, so the myMethod signature
can also be written as myMethod(myArg : => Int).

scala> def myMethod(myArg: () => Int) =
| println(myArg())
myMethod: (myArg: () => Int)Unit

scala> myMethod(() => 5)
5

When myMethod is called, the integer argument is not evaluated. It is evaluated at
the time of printing because that is when it is needed. In a large industrial appli-
cation there can be many memory-intensive operations in between function calls
with functions as parameters and actual use of the values obtained by evaluating
parameterized functions. If a parameterized function’s evaluation demands signif-
icant memory then it is certainly helpful to delay the evaluation until the values
are needed, because there are other operations that require memory and need to be
executed in between.
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1.3.2 Memoization

Memoization is a technique in which the results of previous calculations are stored
so that they can be reused for future calculations. This clearly helps to avoid re-
computing. In the case of a very large data set this is certainly going to save CPU
time. Also, memoization is helpful even if local CPUs are not directly used. For
example, if there are numerous web service calls that request the same information
then those can be cached. This certainly improves the performance of the appli-
cation. Now, let’s walk through two implementations of factorial calculation—one
without memoization and another with memoization.

scala> def calcFactorial(x: Int): Int = {
| if(x == 0 || x == 1)
| 1
| else {
| println("Computing factorial")
| x * calcFactorial(x - 1)
| }
| }
calcFactorial: (x: Int)Int

The code snippet above is a factorial calculation without memoization. It performs
computation in every step, which can be seen in the following console output. Also,
if we run calcFactorial(5) again we get the same console output, which confirms
the re-computation.

scala> calcFactorial(5)
Computing factorial
Computing factorial
Computing factorial
Computing factorial
res5: Int = 120

Now, let’s implement the same with memoization. In the code snippet below, we
implement caching so that calculations performed earlier can be reused.

package com.equalinformation.dascala.scala
.fundamentals

class FactorialMemoiz {
var cache: Map[Int, Int] = Map()

def lookup(num: Int): Int =
cache.getOrElse(num, 0)

def calcFactMemoiz(x: Int): Int = {
if(x == 0 || x ==1)
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1
else if(lookup(x) > 0) {

println("Performing lookup")
lookup(x)

} else {
println("Performing calculation")
val factorial = x * calcFactMemoiz((x - 1))
cache += x -> factorial
factorial

}
}

}

object FactorialMemoizApp {
def main(args: Array[String]): Unit = {

val factMem = new FactorialMemoiz()
println(factMem.calcFactMemoiz(3))
println(factMem.calcFactMemoiz(5))

}

}

Let’s see the console output for this program. First the program calculated the fac-
torial of 3, so it entered the calculation block twice. This calculation is stored in
the cache. When we invoke the method to calculate the factorial for 6, it enters the
calculation block twice for 5 and 4, whereas it gets the pre-computed value for 3,
so we see one lookup. Caching-related questions are common in many software en-
gineering job interviews. You might be asked to design and implement a caching
strategy.

Performing calculation
Performing calculation
6
Performing calculation
Performing calculation
Performing lookup
120

1.4 Streams

In Section 1.3, we implemented both lazy evaluation and memoization. Fortunately,
we don’t have to implement those manually if we are using Scala’s Stream, which
is lazy, memoized, and immutable. This allows us to create infinite sequences using
Stream. Now, let’s look at Stream in action.
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scala> val myStream = Stream("message1", "message2",
"message3")

myStream: scala.collection.immutable.Stream[String]
= Stream(message1, ?)

Even though we supplied three messages, only the first is listed, which means only
the first element of the stream was computed. It is a lazy computation. Now, if we
access an element at an index other than 0, it will force computation. Let’s access
the second element.

scala> myStream(1)
res7: String = message2

scala> myStream
res8: scala.collection.immutable.Stream[String] =

Stream(message1, message2, ?)

It is evident that it has computed the second element as well. Also it is clear that it
only computed until second element. So this is truly lazy computation. Now let’s try
a stream with a few more elements. For brevity, we use numbers.

scala> val myNums = Stream(0,1,2,3,4,5,6,7,8,9)
myNums: scala.collection.immutable.Stream[Int] =

Stream(0, ?)

scala> myNums(3)
res9: Int = 3

scala> myNums
res10: scala.collection.immutable.Stream[Int] =

Stream(0, 1, 2, 3, ?)

scala> myNums(9)
res11: Int = 9

scala> myNums
res12: scala.collection.immutable.Stream[Int] =

Stream(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ?)

The code snippet above is intuitive. When we accessed the element at index 3, it
automatically computed all elements until index 3. This is true when we accessed
an element at index 9. Streams can also be create using the # :: operator. Let’s see
an example.

scala> val myStream = ’a’ #:: ’b’ #:: ’c’ #:: ’d’
#:: empty

myStream: scala.collection.immutable.Stream[Char] =
Stream(a, ?)
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So we can see that Stream behaves the same way. empty is an empty Stream. Let’s
look at one more way of creating a stream, using the cons function.

scala> val myTestSteam = cons(’a’, empty)
myTestSteam: Stream.Cons[Char] = Stream(a, ?)

Infinite sequences are common in mathematics. They solve some of the most de-
manding computing problems like handling continuously generated log files, tweets,
etc. So let’s create one sample infinite stream.

scala> def createInfStream(x: Int): Stream[Int] = {
| println("Processing...")
| cons(x, createInfStream(x + 1))
| }
createInfStream: (x: Int)Stream[Int]

We created a function createIn f Stream that creates an infinite stream using cons.
It looks line an infinite loop, which is true. But the lazy nature of Stream makes it
computable, as it is on-demand computing. Now, let’s access elements of the stream.

scala> val myInfIntStream = createInfStream(0)
Processing...
myInfIntStream: Stream[Int] = Stream(0, ?)

scala> myInfIntStream(0)
res15: Int = 0

scala> myInfIntStream(1)
Processing...
res16: Int = 1

scala> myInfIntStream(3)
Processing...
Processing...
res17: Int = 3

scala> myInfIntStream(5)
Processing...
Processing...
res18: Int = 5

scala> myInfIntStream(6)
Processing...
res19: Int = 6

scala> myInfIntStream(6)
res20: Int = 6
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We can see that the computation is on-demand. When we invoked createIn f Stream,
it created a stream with the first element. We accessed index 6 twice; the first time
we accessed it, it was computed. When we accessed it a second time, it reused the
pre-computed value. So it is lazy and memoized. Now, we need to try one more
thing: immutability. Let’s look at the following code snippet.

scala> var testImmInfStr = createInfStream(5)
Processing...
testImmInfStr: Stream[Int] = Stream(5, ?)

scala> testImmInfStr(4)
Processing...
Processing...
Processing...
Processing...
res22: Int = 9

scala> testImmInfStr(6)
Processing...
Processing...
res23: Int = 11

scala> testImmInfStr(5)
res24: Int = 10

scala> testImmInfStr(0)
res25: Int = 5

scala> testImmInfStr(3)
res27: Int = 8

scala> testImmInfStr(5) = 15
<console>:18: error: value update is not a member of

Stream[Int]
testImmInfStr(5) = 15
ˆ

Our starting value is 5. Then we accessed the element at index 4, which forced
computation until index 4. That was true for index 6 as well, except it had to compute
only two values, the remainder being reused. Next, when we accessed the element at
index 5, it got a pre-calculated value; this was true for index 0 and index 3. Finally,
we tried to assign a new value at index 5. Since Stream is immutable, it refused our
request to update.

Now, let’s quickly look at Stream to List conversion. In the case of infinite
streams, we are trying to convert an infinite steam to a list. In this case, before
converting, it tries to evaluate all of them, so evaluation never ends as it is an infinite
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list. So we need to be careful during stream to list conversion. There is a solution
for this problem. Let’s look at the code snippet below.

scala> testImmInfStr.take(5).toList
res28: List[Int] = List(5, 6, 7, 8, 9)

scala> testImmInfStr.toList
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...
Processing...

The first one terminates but the second one doesn’t. What is the reason? In the first
conversion, we limited the number of elements in the stream, which limited the eval-
uation and the computation terminated. In the second case, we gave an infinite set
of numbers, so it kept evaluating those numbers first. Evaluation completes before
conversion, which is the thing that we need to be careful about while converting a
stream to a list.

Lastly, as an infinite series example, let’s compute the Fibonacci series starting
from 0. We define the function createFiboSeries, which takes the first two Fibonacci
numbers. It is a recursive computation, so every time we iterate, the current second
number becomes the new first number and the next number in the Fibonacci series is
the sum of the current two numbers. The cons function prepends the first parameter,
which is a single value in this case, to the second parameter, which is a stream,
because createFiboSeries returns a stream of integers.

scala> def createFiboSeries(a: Int, b: Int):
Stream[Int] = {

| cons(a, createFiboSeries(b, a+b))
| }
createFiboSeries: (a: Int, b: Int)Stream[Int]

scala> val myFiboSeries = createFiboSeries(0, 1)
myFiboSeries: Stream[Int] = Stream(0, ?)

scala> myFiboSeries.take(7).foreach(println)
0
1
1
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2
3
5
8

By using take(7), we limited our computation to the first seven Fibonacci numbers,
which is how we terminated the infinite series. Then we applied println for each
element in the series.

1.5 Sliding Windows

A sliding window enables us to break a list into smaller lists based on the window
specification that we provide. The window-based chunks can be converted to other
collections, such as arrays and vectors. On the surface, this might look like just
a feature, but when used in the right context it gives us tools to model efficient
solutions to a programming problem. A great solution, often, is a clever combination
of basic tools. Next, let’s look at a sliding window in action.

scala> val myNums = List(1,2,3,4,5,6,7,8,9)
myNums: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> myNums.sliding(2,1).toList
res9: List[List[Int]] = List(List(1, 2), List(2, 3),

List(3, 4), List(4, 5), List(5, 6), List(6, 7),
List(7, 8), List(8, 9))

scala> myNums.sliding(3,1).toList
res10: List[List[Int]] = List(List(1, 2, 3),

List(2, 3, 4), List(3, 4, 5), List(4, 5, 6),
List(5, 6, 7), List(6, 7, 8), List(7, 8, 9))

scala> myNums.sliding(1,2).toList
res11: List[List[Int]] = List(List(1), List(3),

List(5), List(7), List(9))

scala> myNums.sliding(1,3).toList
res12: List[List[Int]] = List(List(1), List(4),

List(7))

scala> myNums.sliding(1,4).toList
res13: List[List[Int]] = List(List(1), List(5),

List(9))

scala> myNums.sliding(5,1).toList
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res14: List[List[Int]] = List(List(1, 2, 3, 4, 5),
List(2, 3, 4, 5, 6), List(3, 4, 5, 6, 7),
List(4, 5, 6, 7, 8), List(5, 6, 7, 8, 9))

scala> myNums.sliding(5,5).toList
res15: List[List[Int]] = List(List(1, 2, 3, 4, 5),

List(6, 7, 8, 9))

scala> myNums.sliding(5,4).toList
res16: List[List[Int]] = List(List(1, 2, 3, 4, 5),

List(5, 6, 7, 8, 9))

Does this code snippet give you a clue as to how it works? You cannot get it
wrong if you are applying this to petabytes of data; thousands of reports can go
wrong if you make a mistake with this simple but powerful feature. The signature of
the sliding method is sliding(size: Int, step: Int): Iterator[List[A]], where size is the
number of elements per group and step is the distance between the first elements of
successive groups.

Let’s look at the first six lines (a blank line doesn’t count). We have a list contain-
ing numbers from 1 to 9. Our sliding window size is 2, which means we are telling
the compiler that substructures should have two elements in them. Our step size is 1,
which means the first element of the first sublist and the first element of the second
sublist should be consecutive elements. When myNums.sliding(2,3).toList is exe-
cuted, what will the first element of the second sublist be? The answer is 4, because
sublists can contain only two elements, and the distance should be 3 for consecutive
first elements of sublists. The time complexity of a sliding window operation spec-
ified by sliding(2,1) is O(n). Since we need to store elements in the sublists, we
need space proportional to the input elements, so the space complexity is also O(n).

Exercise 1.2. Time and Space Complexity for sliding(x,y)

Find the time and space complexity for the sliding window operations. Assume that
input data can be of any size and length.

1. sliding(3, 1)
2. sliding(1, 2)
3. sliding(1, 3)
4. sliding(1, 4)
5. sliding(5, 1)
6. sliding(5, 5)
7. sliding(5, 4)
8. x.sliding(1, x.size)
9. x.sliding(x.size, 1)

10. x.sliding((x.size) / 2, 1)
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11. x.sliding(1, (x.size) / 2)



Chapter 2
Fundamental Algorithms

Clarity is the most important thing in order to get the best out of any discipline. For
data structures and algorithms, wrong choices can easily waste millions of dollars
(convert this to your currency of interest). A small mistake can easily waste thou-
sands of dollars. In this context, it is important to have a sound understanding of
the fundamentals of the discipline in context. For us, fundamental algorithms give
insight and clarity on how to use the building blocks correctly and optimally. This
is the theme of this chapter. In order to gain better clarity and sound understanding
of data structures and algorithms, we will visit several fundamental algorithms.

2.1 Prime Numbers

A prime number is defined as a number that is only divisible by itself and one, ex-
cluding one. It is an infinite sequence: < 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, ... >.
One of the popular applications of prime numbers is cryptography. Prime numbers
are also used in hash functions to avoid collision, in random numbers generators for
uniform distribution, and in error-correcting code for noise elimination.

First, let’s outline an algorithm to generate prime numbers:

1. Create a container containing all the numbers greater than or equal to 2. This is
where we find all the prime numbers.

2. Limit the range if working with a finite computing resources like memory and
processing power so as to make it computationally feasible.

3. Apply prime number detection logic to each number, x:

a. Create a list of numbers that are less than or equal to the square root of
the number, x. R = {y1,y2, ...,yn}, where y1 < y2 < ... < yn and yn <=
squareRoot(x). The function squareRoot(x) produces the square root of the
integer x.
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b. Divide x by each numbers in the square root list, R, and see if the remainder
is zero in any one of the cases. If so, then exclude x from the list of primes;
otherwise add it to the list.

4. Return the computed list.

package com.equalinformation.dascala.scala.fundamentals

object PrimeNumbersApp {
def main(args: Array[String]): Unit = {

println(primes.take(15).toList)
}

val primes: Stream[Int] = 2 #:: Stream.from(3)
.filter {

x => {
val sqrtOfPrimes = primes.takeWhile(y =>

y <= math.sqrt(x))
!sqrtOfPrimes.exists( y => x % y == 0)

}
}

}

// Output: List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
// 41, 43, 47)

Fig. 2.1: Prime number generation using Stream

In Figure 2.1, we present a program to generate prime numbers. primes is a
stream of integers and is capable representing an infinite series. In our case, it does
represent an infinite series of integers. We generate it by combining the first element
of the series with a lazily evaluated stream, as shown in the code. Next, we need
to filter all non-primes. How do we do this? One way of doing it is to divide the
number x by numbers between 2 and (x− 1) and see if there is a remainder in one
of those divisions. If there is a remainder in one of those divisions then it is not a
prime, otherwise it is. This is correct logic but it is not efficient.

Alternatively, as seen above, we can calculate the square root of the number x and
divide it by the numbers from 2 to its square root and see if there is remainder in any
one of those divisions. If there is a remainder then x is not a prime, otherwise it is
a prime. This is more efficient logic than the previous one and hence we implement
this logic in Figure 2.1.
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Exercise 2.1. Time and Space Complexity

For the solution presented in Figure 2.1, calculate the time and space complexity.
You may want to refer Section B.3 for asymptotic notations.

2.2 Decimal to Binary Conversion

We are converting base 10 numbers to base 2 numbers. In these two number systems,
counting procedure differs mainly because of the symbols used. Let’s outline the
conversion algorithm, first.

1. Staring from the given number, create a sequence of numbers in such a way that
the succeeding number is half of the previous number, discarding the decimal
portion. Continue this until the last element satisfies 2 > x > 0, where x is the last
number in the sequence. Formally, S = {x1,x2, ...,xn}, where x2 = x1/2, x3 =
x2/2 and so on, and 2 > xn > 0.

2. For each number in the above list, divide by 2 and store the remainder in a con-
tainer.

3. The container now contains the binary equivalent bits in reverse order, b1b2...bn,
so reverse the order to get the binary equivalent number, bn...b2b1.

Now, let’s implement the above algorithm. In Figure 2.2, we present a typical
implementation.

package com.equalinformation.dascala.scala.fundamentals

object DecimalToBinaryConvApp {
def main(args: Array[String]): Unit = {

println(decToBinConv(5))
println(decToBinConv(8))

}

def decToBinConv(x: Int): String = {
val seqOfDivByTwo = Iterator.iterate(x)(a => a / 2)
val binList = seqOfDivByTwo.takeWhile(a => a > 0)
.map(a => a % 2)

binList.mkString.reverse
}

}

Fig. 2.2: Decimal to binary conversion using Iterator

The decToBinConv method takes a decimal number and converts it to its binary
equivalent. How does it do it? First, it creates a sequence of numbers by dividing
the given number by 2 until it is less than 2. It collects the quotient. Next, it divides
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each number in that sequence by 2 and stores the remainder in the collection binList,
which is an iterator of Int. The bits are accumulated in this container in reverse order,
and hence the last LOC reverses the order, converting the iterator into a string before
that.

Exercise 2.2. Lazy Evaluation, and Time and Space Complexity

For the solution presented in Figure 2.2,

• explain where lazy evaluation is taking place, and
• calculate the time and space complexity.

You may want to refer Section B.3 for asymptotic notations.

2.3 Divide and Conquer

Some problems appear complex as a whole. The same problem, when broken down
into smaller subproblems is easier to solve. The solutions to subproblems can be
combined to get the global solution to the problem. This is known as, divide and
conquer, which is a widely used technique in computer science problem solving.
We will see in Chapter 9 how this technique helps to achieve better performance.
Also, divide and conquer can be used to solve big data problems. In some compa-
nies, data are already distributed; in this context, we can take computing close to
these distributed data, get the local results and combine them to form global results.
If data are not already distributed, then we divide data so that they can be processed
in pieces. Then the results from those pieces can be merged to form the final solu-
tion. We’ve already discussed how divide and conquer works; now, let’s outline the
algorithm, just for formality.

1. Divide the problem into smaller subproblems.
2. Find problem-specific solution to the subproblems.
3. Merge the solutions of the subproblems to form the final solution.

Now, let’s take a problem and apply our algorithmic outline to find a solution.
Let’s assume that you are a student, currently studying computer science. Your par-
ents send tuition money to your account at the beginning of each semester. Your
school allows you to pay your tuition toward the end of the semester on a request
basis. Let’s assume that school is not strict about your reason as long as you pay the
tuition before the semester ends. Close to the computer science department, there
is a superb restaurant run by special arrangement between your university and the
restaurant chain owner. On a daily basis, the restaurant offers food items from every
major culture in the world. That means, today you can eat at Berlin, and tomorrow
you can eat at Tokyo. You stay late in the labs doing a lot of programming so that
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you don’t have time to cook yourself. The restaurant is a perfect solution for you,
except for one thing: money. It is a bit expensive and your pocket money is not
enough to buy food everyday, specially if you want to buy from this restaurant on a
regular basis.

As a very bright computer science student, you figured out the solution based
on your tuition money, i.e., your tuition money stays in your account most of the
semester, before it leaves as a tuition payment in the last week of the semester. You
have the opportunity to invest this money and make some profit to buy your food
from the restaurant. You figured out that buying and selling stock is your best option
as a short-term investor. But you also figured out that you need to be really clever to
make money out of stock trading, specially as you cannot afford to lose significant
money because you must pay your tuition fee at the end of the semester. So you are
looking for the maximum stock value in a window so that you can plan for your
future trading.

Table 2.1 shows your recordings of stocks for two weeks, on consecutive business
days. A window can be as large as the entire two weeks or it can be a single day.
As a smart computer science student, you figured out that creating a difference table
makes it easy to find such a maximum window. Very quickly, you realized that this
is a maximum subarray problem. Also, based on your Data Structure and Algorithm
course, you came to know that divide and conquer gives an n lg n solution, instead
of a brute force solution, which has O(n2) running time complexity. You decided
to implement a divide and conquer-based solution. Coincidently, you got hold of
this book and found that Figure 2.3 presents the solution that you were trying to
implement on your own. Let’s discuss this solution next.

Table 2.1: Sample stock price data

Day 0 1 2 3 4 5 6 7 8 9 10
Stock Price $150 $151 $149 $154 $160 $159 $163 $172 $169 $171 $176
Difference 1 -2 5 6 -1 4 9 -3 2 5

In Figure 2.3, the method le f tRightCrossMax computes the sum of the maximum
of the left subarray sums and the maximum of the right subarray sums. The method
f indContSubArrayMax calculates the sum of the maximum producing continuous
subarray, which is the maximum stock price increase. It takes a vector of integers
and returns an integer, which is the sum that we are interested in. In order to compute
this maximum subarray-based sum, it does pattern matching on the input data, data.
If the input data contains only a single value, then that is the answer. Otherwise, the
input vector is split into two from the middle. Then a recursive call is made to
break down the left split as well as the right split until no more splitting is required.
When no more splitting is required, it computes back. Along with finding the left
maximum and the right maximum, we also find the cross maximum. Finally we take
the maximum of the left maximum, right maximum, and cross maximum, which is
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package com.equalinformation.dascala.scala.fundamentals

object MaxContSubArrayApp {
def main(args: Array[String]): Unit = {

val stockPriceDiff = Vector(1, -2, 5, 6, -1, 4, 9, -3,
2, 5)

println(findContSubArrayMax(stockPriceDiff))
}

def findContSubArrayMax(data: Vector[Int]): Int =
data match {
case Vector(x) => x
case _ => {

val (l, r) = data.splitAt(data.length / 2)
val leftMax = findContSubArrayMax(l)
val rightMax = findContSubArrayMax(r)
val leftRightCrossMaxVal = leftRightCrossMax(l,r)
List(leftMax, rightMax, leftRightCrossMaxVal).max

}
}

def leftRightCrossMax(leftSub: Vector[Int], rightSub:
Vector[Int]): Int = {
val collLeftSums = for(i <- 1 to leftSub.length) yield

leftSub.takeRight(i).sum
val collRightSums = for(i <- 1 to rightSub.length) yield

rightSub.take(i).sum
collLeftSums.max + collRightSums.max

}
}

Fig. 2.3: Maximum continuous subarray sum: divide and conquer

the maximum value that we are interested in. You can test the program with a wide
variety of input data.



2.4 Greedy Algorithms 25

2.4 Greedy Algorithms

Greedy algorithms use the strategy of making the most profitable local selections
in the hope of finding the most profitable global selection. This means that in every
iteration we will be looking for the best local choice, which is the most beneficial.
Let’s take a problem and see how it works for us.

Let’s assume that you have colorful spring garden flowers and you want to protect
them from deer, children, rabbits, poultry, dogs, etc. Your garden is of rectangular
shape and you have calculated the perimeter using formula P = 2(l +b). You did a
quick search on Amazon and found most cost-effective garden safety netting mate-
rial made of metal. You decided to go with metal for its strength and durability. You
also found that buying larger pieces gives you a cost advantage and saves you from
doing additional joint work. You realize that joining nets is hard as well as costly.
Now we need to find an algorithm for you to buy the right numbers and combina-
tions of pieces of safety nets. Let’s assume that you want to use this algorithm as
well as the corresponding program for your future garden as well, which is likely
to be of different dimensions. Also, at that time, Amazon might show different di-
mensions for netting materials. In this context, we would like to write a generic
algorithm and provide a generic implementation as well.

package com.equalinformation.dascala.scala.fundamentals

case class Selection(perimeter: Int, gardenNets: List[Int])

object GardenNettingGreedyAlgoApp {
def main(args: Array[String]): Unit = {

val gardenNetLengths = Array(15,10,3,2,1)
val perimeter = 50
println(selectNets(perimeter, gardenNetLengths))

}

def selectNets(perimeter: Int, netLengths: Array[Int]):
List[Int] = {
val finalSelection = netLengths.foldLeft(Selection(

perimeter, List())) {
(selection, length) => {

val numbers = selection.perimeter / length
val netsToBuy = List.fill(numbers)(length)
Selection(selection.perimeter - numbers * length,

selection.gardenNets ::: netsToBuy)
}

}
finalSelection.gardenNets

}
}

Fig. 2.4: Garden safety netting: greedy algorithm
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In Figure 2.4, we provide a generic implementation for you to assist in mak-
ing your garden netting material purchase decision. Next, let’s discuss the imple-
mentation. The method selectNets takes the perimeter and available netting mate-
rial lengths as its arguments, and returns a list of netting material combinations.
For example, if it recommends two pieces of material with length 15 units then
it returns {15,15}. We make use of fold left here. For each pair of selection and
length, numbers is calculated by dividing perimeter by length, the quotient giv-
ing the number of pieces to buy. Of course, we start with the highest, because that
saves cost for you. For this, we supply the suitably sorted, descending order, array
of lengths. Then we fill a list those many times with the current value of length.
So this gives us how many pieces to buy for a given length. Next, we create our
Selection object, which holds our data. The distance left is obtained by subtracting
product of numbers and the current length from perimeter. The second parameter
in our case class is a list of pieces, initially empty. In the first iteration, it is ob-
tained by prepending netsToBuy to the empty list created during object creation.
Finally, we return gardenNets, which contains the recommendation, i.e., how many
pieces of what length. The console output for our implementation, in Figure 2.4, is
List(15,15,15,3,2). This completes our discussion of this garden fencing greedy
algorithm implementation.

Exercise 2.3. Garden safety netting: algorithm reverse engineering

In industrial programming, it sometimes happens that somebody else writes the al-
gorithms and implements them. Over a period of time the documentation for algo-
rithms is lost and only executable programs are available. The source of information
for new engineers joining the teams is business information through meetings with
different stakeholders and the source code repository. Often, it is true that infor-
mation provided in the meetings is vague. In this context, your best bet to find the
corresponding algorithms is to reverse engineer the implementation. Keeping that
in mind, we ask you do a preparatory exercise here. For the implementation in Fig-
ure 2.4, document the corresponding algorithm by reverse engineering the code.
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Arrays

The Oxford English Dictionary (OED) defines an array as “an ordered series or ar-
rangement,” for example, an array of solar panels, an array of pixels, etc. The OED’s
mathematics version of the definition is “an arrangement of quantities or symbols in
rows and columns; a matrix,” whereas the computing version of the definition is “an
indexed set of related elements.” All three definitions agree on ordering the entities
in context. So an array is an ordered structure. The three versions also give us a hint
about how to map a computing specific structure to a mathematical structure, and
finally to a real world structure.

Not all ordered arrangements may be easily analyzed using mathematics. For
example, the layers in our body are ordered arrangements and if we try to construct
a mathematical model it will probably be complex, specially if we want to deal at
the cellular depth and beyond. Similarly, not all symbols in rows and columns may
be computationally feasible. To be specific, in mathematics, it is fairly convenient
to model something approaching infinity because it is a thought process, and we
can symbolize that thought process with standard notations, methods, rules, etc. But
in the case of computers, we have limited memory and processing power. A great
deal of data structures and algorithms problems are related to this fact. If we are
getting harder problems in job interviews, that probably has something to do with
this reality, which is independent of domains.

Whether we work in finance, biotechnology, education, government, or energy,
this problem appears uniformly. This is also the origin of something called Ab-
stract Data Types. Arrays are not particularly abstract, but we will be dealing with
ADTs later in this book. An array is more like a foundational data structure that can
be utilized to implement other data structures, which are more abstract in nature.
The ADTs build a bridge between real-world and computing infrastructures. One of
the types of computing infrastructure is the programming language. Almost all the
high-level programming languages provide a mechanism to express arrays. Scala is
close to mathematics compared to many other high-level programming languages
available today, and hence makes it more convenient to express and process arrays.
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3.1 Structure

We will try to use as much mathematics as possible while trying to express struc-
tures, as it is closer to computing. It is a lot more convenient to transform a math-
ematical structure to a computer program, provided the model or structure is com-
putationally feasible. An array can be expressed as a sequence: < a0,a1, ...,an >,
where n is a positive integer greater than 1. The subscripts are the indices. One of
the instances of this generic sequence is < a,e, i,o,u> or < a,e, ...,u>. In this case,
n = 5. We can access the third vowel with the help of its corresponding index. If we
name this sequence as V , then V3 = i, provided indexing starts at 1. We could use
notation like V [3], V (3), or third(V ). If the indexing starts at 0 then the representa-
tion is V2 = i. Different programming languages use different styles to represent an
array.

Reading as well as modifying an element at a given index, i, takes O(1) time. In-
serting an element at the ith position requires (n− i) shifting and hence it is O(n− i);
similarly, deleting an element at ith index takes O(n− i) time. Inserting an element
into a full array requires creating a new array with higher capacity, copying all the
elements of the old array, and inserting the new element.

Next, let’s look at how Scala enables us to express array processing.

scala> val vowels = Array(’a’, ’e’, ’i’, ’o’, ’u’)
vowels: Array[Char] = Array(a, e, i, o, u)

scala> vowels(2)
res0: Char = i

scala> val vowelsReversed = vowels.reverse
vowelsReversed: Array[Char] = Array(u, o, i, e, a)

scala> vowelsReversed(2)
res1: Char = i

scala> vowels.length
res4: Int = 5

The code snippet above shows how to create an array containing vowels. The
third vowel is accessed using its index, i.e., vowels(2), indexing starts at 0. Next,
we call a library method to reverse the contents of the array vowels and assign
reversed contents to a new constant called vowelsReversed. Since the position of i
remains same, vowelsReversed(2) gives us the same value. Next, we get the length
of vowels; the length of vowelsReversed must be equal.



3.2 Typical Implementation 29

Exercise 3.1. Implement the length method

Implement a method or a function called calcLength that is functionally equivalent
to the length method shown in the code snippet above, without using built-in library
methods; you are only allowed to use the basic control structures available in Scala.
Also calculate the time complexity. You can either implement a single method in
REPL and test, or create a complete application using the IDE or tool of your choice.
Hint: you can use a terminator. A solution is available in Section A.1, which contains
a complete application.

3.2 Typical Implementation

Let’s take a problem of matrix multiplication in order to illustrate array deployment
or implementation. Equation 3.1 has three matrices; the first one is 2× 3 and the
second one is 3×4, which gives the dimension of the resultant matrix as 2×4.

[
2.5 1.5 0.5
1 2 4

]−1 −1.5 1 −1
0.5 −2 −2.5 1
1 2 1 1

=

[
−1.25 −5.75 −0.75 −0.5

4.0 2.5 0.0 5.0

]
(3.1)

In order to write a program for matrix multiplication, we need to remind our-
selves a few rules of matrix multiplication:

• The number of columns in the first matrix should be equal to the number of rows
in the second matrix.

• The resultant matrix will have dimensions such that the number of rows is equal
to the number of rows of the first matrix and the number of columns is equal to
the number of columns of the second matrix.

Now, let’s outline our algorithm. We will use pseudocode and traditional mathe-
matical notation to outline our algorithms throughout this book.

1. Define matrix multiplication logic for matrices A and B.

a. Allocate space for the resultant matrix, C.
b. Calculate the lengths of the rows and columns of two given matrices. Let’s call

them mat1Rows or p, mat1Columns or r, mat2Rows or r, and mat2Columns
or q.

c. i f (mat1Columns 6= mat2Rows then print an error message stating that the
given matrices don’t satisfy a matrix multiplication rule.

d. Else, compute the resultant matrix
i. Design variables for calculation: i is an integer variable denoting rows in

A where 0 < i ≤ p, j is an integer variable denoting columns in B where
0 < j ≤ q, and k is an integer variable denoting columns in A and rows in
B where (0 < k ≤ mat1Columns) ∧ (0 < k ≤ mat2Rows).
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ii. C11 = A11 ∗B11 +A12 ∗B21 +A13 ∗B31,
C12 = A11 ∗B12 +A12 ∗B22 +A13 ∗B32,
C13 = A11 ∗B13 +A12 ∗B23 +A13 ∗B33,
C14 = A11 ∗B14 +A12 ∗B24 +A13 ∗B34,
C21 = A21 ∗B11 +A22 ∗B21 +A23 ∗B31,
C22 = A21 ∗B12 +A22 ∗B22 +A23 ∗B32,
C23 = A21 ∗B13 +A22 ∗B23 +A23 ∗B33,
C24 = A21 ∗B14 +A22 ∗B24 +A23 ∗B34

iii. Find patterns and generalize the previous step, which gives us the following
relation to calculate the resultant matrix.

C =
p⊔

i=1

q⊔
j=1

r

∑
k=1

Aik ∗Bk j (3.2)

2. In the main routine, define matrices A and B.
3. Call the matrix multiplication subroutine, defined earlier.

In Figure 3.1, we present an application that implements the above algorithmic
outline. The matrix multiplication subroutine is implemented as the method multi-
plyMatrices, which takes two arguments, each a two-dimensional matrix. Its return
type is also a two-dimensional matrix. The body of this method first allocates space
for the resultant matrix, resultMat; the dimensions are calculated based on the input
parameters. Next, the method calculates the dimensions of the input matrices so that
they can be used as upper limits. There is a quick validation of matrix rules, which
should be satisfied in order to proceed the computation. The f or loops implement
the relation that we found after detecting patterns in our detail steps above. Finally,
the method returns the result.

In the main method, first we define two matrices A and B as myMatrix1 and
myMatrix2, respectively. Next, we call the subroutine by passing matrices A and B;
the result is assigned to a constant myResultMatrix. Finally, we print each element
of the resultant matrix for validation.
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package com.equalinformation.dascala.scala.arrays

object MatrixMultApp {
def main(args: Array[String]): Unit = {

val myMatrix1: Array[Array[Double]] = Array(Array(2.5,
1.5, 0.5), Array(1, 2, 4))

val myMatrix2: Array[Array[Double]] = Array(Array(-1,
-1.5, 1, -1), Array(0.5, -2, -2.5, 1), Array(1, 2,
1, 1))

val myResultMatrix: Array[Array[Double]] =
multiplyMatrices(myMatrix1, myMatrix2)

for(i <- 0 until myResultMatrix.length ) {
for(j <- 0 until myResultMatrix(0).length) {

println(myResultMatrix(i)(j)+ " ")
}
println()

}
}

def multiplyMatrices(mat1: Array[Array[Double]],
mat2: Array[Array[Double]]): Array[Array[Double]] = {

var resultMat = Array.ofDim[Double](mat1.length,
mat2(0).length)

val mat1Rows = mat1.length
val mat1Columns = mat1(0).length
val mat2Rows = mat2.length
val mat2Columns = mat2(0).length

if(mat1Columns != mat2Rows) {
println("Matrix 1 columns: " + mat1Columns +
" did not match with Matrix 2 rows: " + mat2Rows)

} else {
for(i <- 0 until mat1Rows) {

for(j <- 0 until mat2Columns) {
for(k <- 0 until mat1Columns) {

resultMat(i)(j) += mat1(i)(k) * mat2(k)(j)
}

}
}

}

resultMat
}

}

Fig. 3.1: Matrix multiplication
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3.3 Analysis

The implementation presented in Figure 3.1 has three f or loops. The innermost
f or loop takes care of the number of columns in the first matrix and the number
of rows in the second matrix. This is clearly dependent on the input matrices and
hence O(mat1Columns) time, i.e., as the length of the columns of the first matrix
increases, the computation time also increases. The same holds true for the length
of the rows of the second matrix.

The middle loop takes care of the length of the columns of the second matrix,
which in turn takes care of the length of the columns of the resultant matrix. So the
computation time is directly proportional to the length of the columns of the second
matrix. Hence we can say that it takes O(mat2Columns) time to take care of this
part of the computation. Similarly, it takes O(mat1Rows) to take care of external
row-based computation, which gives the length of the rows of the resultant matrix.

We can approximate mat1Columns, mat2Columns, and mat1Rows to n. With this
approximation, the time complexity of our implementation is O(n3). In practice, we
might get row-based data or column-based data. Row-based data can have a very
large number of rows and a very small number of columns. If there are billions
of rows and only a few columns, we need to re-analyze that context to come up
with a better big O approximation. We might need well-tailored solutions in such
cases. Row-based and column-based databases are practical examples, even though
database rows and columns might need to go through multiple transformations be-
fore they become arrays, internally.

Exercise 3.2. *Improve Matrix Multiplication

The solution presented in Figure 3.1 has time complexity of O(n3). Can you think
of a matrix multiplication algorithm that has better time complexity than O(n3)?
Consider these aspects of matrix-based data: (a) well-balanced, (b) row-heavy, (c)
column-heavy, and (d) mixed.

3.4 Application

Arrays, as you will see, are widely used to implement other data structures. Almost
every other data structure utilizes arrays in one form or another. You are also likely
to find arrays or their equivalents in almost every high level-programming language.
Not only that, you can find array-equivalent structures in assembly language and
hardware itself. For example, a memory can be though of as a two-dimensional
array of bits. For this reason, when higher performance is needed, it is convenient
to fall back to array structures.
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Numerous teams around the world are doing research on array-based databases
[DMB16] [SS18] [SCMMS18]. This is evidence of the importance of arrays. One of
the array-oriented databases is SciDB [Sci18]. Extensive array-based benchmarking
is shown in [CMMK+18], including superior performance over MySQL. The fac-
tors contributing to the superior performance are listed as direct offsetting and omis-
sion of index attributes, which are enabled by array-oriented data model; column-
oriented design and separate storage of each attribute; data partitioning to facilitate
both parallel and sequential computation. [Sto18] presents an overview of big data
landscape, in which he emphasizes the importance of array-oriented databases. The
author also claims that eventually column stores will win the race in the database
world.

Big data analytics and its applications, including machine learning, clustering,
and trend detection, are heavy on quantitative analysis. Most of the analytics oper-
ations are specified as linear algebra on array data. Matrices are heavily utilized in
big data applications; we have dealt with one of the important matrix operations.

Exercise 3.3. Discuss an Array-Oriented Database

Discuss an array-oriented database. Based on your research, explain why the array-
approach was chosen.

Exercise 3.4. *Dynamic Array Creation Based on Available System
Memory

Calculate the total available system memory and create an array to occupy that
memory. Next, create an elastic array to utilize half of the available memory and
gradually occupy the rest of the available memory, dynamically, i.e., checking the
availability of the second half of the previously available memory in real time. This
array should also be capable of shrinking to release memory to other applications.

Exercise 3.5. *Control Structure Transformation

Analyze the following AQL statement, which looks similar to a typical SQL state-
ment:

CREATE ARRAY MyArray
< A: integer NULLS,

B: double,
C: USER_DEFINED_TYPE >
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[ I=0:999999, 10000, 100, J=0:999999, 10000,
100 ]

PARTITION OVER ( Node1, Node2, Node3 )
USING block_cyclic();

Note the structure inside the pair of square brackets. This is a control structure,
which has structural similarities to some of the Scala control structures. One that
might seem very close is the Scala for expression. Now, write a Scala application
that takes this AQL control structure as an input and transforms it to a Scala for ex-
pression, which is an output for your application. In the AQL above, I and J provide
range, 10000 (a number after the range) specifies chunk size, and 100 (a number af-
ter the chunk size) specifies overlap. If you need additional information about AQL,
refer to the SciDB documentation online [Sci18].



Chapter 4
Lists

We make lists of things in our daily life. They are a way of keeping things together
so that they can be tracked, processed, or managed. If we are working for large
corporations, we have a list of employees, a list of contractors, a list of applica-
tions, a list of buildings, a list of cafeterias, etc. The list of employees can be further
divided into sublists based on their groups or categories, for example, a list of man-
agerial employees, a list of engineering employees, a list of information technology
employees, etc. Similarly, a list of buildings can be divided into a list of owned
building, a list of leased buildings, and so on. It is hard to live a life without lists. So
this answers the question why lists?

It is quite obvious from the above that there is a need for grouping information
in the form of lists or splitting information in the form of sublists. Sometimes we
need an aggregated report and at other times we need more specialized reports. This
creates the need for merging and splitting lists based on criteria. How many criteria
can there be? It is hard to answer this question without knowing the business. Even
after knowing the current state of business, it is hard to list complete criteria, as
the business can change. So instead of listing exhaustive criteria, we abstract out
common operations and treat them as software engineering processes.

From a software engineering point of view, we don’t care whether it is a list of
doctors or a list of engineers working for a company. If we are dealing with a list
of names, from the computational perspective the things we need to care are: What
makes a valid name? What are the allowed structures in the names? How can names
be composed? Do names contain only letters or numbers as well? It doesn’t matter
whether it is an engineer’s name or a doctor’s name. But from a business perspective
that might matter. So there is a dual presence of independence, which is what creates
design challenges.
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4.1 Structure

Based on our needs, the information can be modeled in the form of a list structure.
Thus structure is guided by what we need. Since final computation is done in a ma-
chine or multiple machines, the structure is partly influenced by how the machines
operate. So limitations can be imposed by computational devices. Let’s model a few
real-world lists in order to come with some structures.

Let’s say we need to maintain a list of company employees with relevant infor-
mation. So an employee is a thing for us. Let’s make further assumptions and say
that relevant information about the employee in this context is the employee’s first
name, last name, department, group, and salary. All other information, except salary,
is composed of alphabetical characters. Salary is expressed as a decimal number.
Now, we can formally model this information.

T hing def
=== {Employee}

Employee def
=== { f irst name, last name, department, group, salary}

or
Employee def

=== {name, department, group, salary}

High-level programming languages have something called type. Information is
modeled with the help of this type so that different features based on type theory can
be applied to catch and correct common mistakes programmers make. Now, let’s try
to go one step closer to programming languages. Employee can be represented as a
type and can have attributes. So the next level of modeling can be:

type = Employee
attributes = name, department, group, salary

In the next section, we will use Scala to implement our models. Further, we might
need operators that enable us to process our list of employees. We need operators to
aggregate multiple lists, to split a list, to retrieve an element from a list, to delete an
element in the list, and so on. We will not bother about defining those here; if we
do, we will end up developing a programming language, which is out of the scope
of this book.

4.2 Typical Implementation

In Scala, a type like Employee, in the previous section, can be expressed as a case
class. Let’s look at the following code snippet.

scala> abstract class Employee(firstName: String,
lastName: String, department: String,
salary: Double)
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defined class Employee

scala> case class Engineer(firstName: String,
lastName: String, department: String, salary: Double,
group: String) extends Employee(firstName, lastName,
department, salary)
defined class Engineer

scala> case class Doctor(firstName: String,
lastName: String, department: String, salary: Double,
group: String) extends Employee(firstName, lastName,
department, salary)
defined class Doctor

scala> val eng1 = Engineer("Isaac", "Newton", "IT",
4500.50, "Engineering")
eng1: Engineer = Engineer(Isaac,Newton,IT,4500.5,
Engineering)

scala> val eng2 = Engineer("Albert", "Einstein",
"Infra", 4600.50, "Engineering")
eng2: Engineer = Engineer(Albert,Einstein,Infra,
4600.5,Engineering)

scala> val doc1 = Doctor("Michael","Young","Cardio",
5000.5,"Medicine")
doc1: Doctor = Doctor(Michael,Young,Cardio,5000.5,
Medicine)

scala> val doc2 = Doctor("Jeffrey","Hall","Pathology",
5100.5,"Medicine")
doc2: Doctor = Doctor(Jeffrey,Hall,Pathology,5100.5,
Medicine)

scala> val engineers = List(eng1,eng2)
engineers: List[Engineer] = List(Engineer(Isaac,
Newton,IT,4500.5,Engineering), Engineer(Albert,
Einstein,Infra,4600.5,Engineering))

scala> val doctors = List(doc1,doc2)
doctors: List[Doctor] = List(Doctor(Michael,Young,
Cardio,5000.5,Medicine), Doctor(Jeffrey,Hall,
Pathology,5100.5,Medicine))

scala> val employees = engineers ::: doctors
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employees: List[Product with Serializable with
Employee] = List(Engineer(Isaac,Newton,IT,4500.5,
Engineering), Engineer(Albert,Einstein,Infra,4600.5,
Engineering), Doctor(Michael,Young,Cardio,5000.5,
Medicine), Doctor(Jeffrey,Hall,Pathology,5100.5,
Medicine))

scala> val emp2 = List(engineers, doctors)
emp2: List[List[Product with Serializable with
Employee]] = List(List(Engineer(Isaac,Newton,IT,
4500.5,Engineering), Engineer(Albert,Einstein,Infra,
4600.5,Engineering)), List(Doctor(Michael,Young,
Cardio,5000.5,Medicine), Doctor(Jeffrey,Hall,
Pathology,5100.5,Medicine)))

scala> emp2.flatten
res0: List[Product with Serializable with Employee] =
List(Engineer(Isaac,Newton,IT,4500.5,Engineering),
Engineer(Albert,Einstein,Infra,4600.5,Engineering),
Doctor(Michael,Young,Cardio,5000.5,Medicine),
Doctor(Jeffrey,Hall,Pathology,5100.5,Medicine))

scala> engineers.size
res4: Int = 2

scala> doctors.size
res5: Int = 2

scala> employees.size
res6: Int = 4

scala> employees.exists(x => x == eng1)
res38: Boolean = true

scala> employees.exists(x => x == doc2)
res39: Boolean = true

scala> employees.exists(x => x == engineers)
res40: Boolean = false

scala> emp2.exists(x => x == engineers)
res42: Boolean = true

In the code snippet above, we first created the abstract Employee class, which
has common attributes. Then we created the case classes Engineer and Doctor, each
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extending the abstract class Employee. After that we created a couple of sample data
for both types of employee. This is followed by creating a list for each category.
Those two lists are then combined using two different methods—using the operator
::: and List. Note that one forms a list, while the other forms a list of lists. This
affects searching. The one that forms a list of lists can identify the engineers’ group
as well as the doctors’ group. The operator performs a flat combination and hence
group information is no longer available.

Now, let’s take another problem and develop an application using lists. Our task is
to create a mini-dictionary containing at least the following words: apple, cow, color,
god, goat, dog, house, mother, orange, rat, zeal, university. Here are the additional
requirements:

1. Sort the words in ascending order.
2. Find whether there are duplicate words in the dictionary.
3. Find the total number of words in the dictionary.
4. Find whether the word “monkey” exists. Also check whether the word “univer-

sity” exists.
5. Use immutable APIs as much as possible; however, you may use println for

manual validation.

Figure 4.1 presents a typical solution for the mini-dictionary problem. First we
create a list containing our vocabulary and then we print both the original version
and the sorted version so that we can compare and validate the correctness of our
program. Next, we calculate the total number of duplicate words. This is followed
by the total number of words. In the last two LOCs, we check whether the given
words “monkey” and “university” exist, respectively.

Exercise 4.1. *Word Count by Alphabet

The solution presented in Figure 4.1 gives the total count of words in a list. Write
a program that outputs a count of words by alphabet. For example, if there are two
words starting with the letter ‘a’, in the list, then the count for ‘a’ would be 2. What
is the time complexity of your solution? Hint: In order to calculate time complexity,
if you are using Scala collections, refer to the “Performance Characteristics” page
of the Scala documentation [Col18].
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package com.equalinformation.dascala.scala.lists

object MiniDictionaryApp {
def main(args: Array[String]): Unit = {

val myDict = List( "apple", "cow", "color", "god",
"goat", "dog", "house", "mother", "orange",
"rat", "zeal","university",
"honorificabilitudinitatibus",
"floccinaucinihilipilification",
"pseudopseudohypoparathyroidism",
"supercalifragilisticexpialidocious",
"pneumonoultramicroscopicsilicovolcanoconiosis" )

myDict.foreach(x => println(x))
myDict.sorted.foreach(x => println(x))

println("Total number of duplicate words: " +
myDict.groupBy(identity).collect {

case (x, List(_, _, _*)) => x
}.size)

println("Total number of words: "+myDict.size)
println(myDict.exists(x => x == "monkey"))
println(myDict.exists(x => x == "university"))

}
}

Fig. 4.1: Mini dictionary

4.3 Analysis

We used Scala’s existing libraries in order to implement our business problem. Also,
the core operations are functional in nature. Sometimes, it is helpful to analyze what
a functional structure translates to during compilation. Many functional structures
are converted to loops, specially those that need to iterate over a collection.

For Scala’s List, getting the head takes constant time, which is O(1); also, get-
ting the tail has the same time complexity. Prepending to a list also takes O(1) time;
however, appending to a list requires traversing all the way to the end of the list
and hence requires O(n) time. Similarly, update and apply have O(n) time com-
plexity. If we use length or reverse in our program then we are introducing O(n)
time complexity. Knowing the time complexity of built-in methods or functions is
very helpful to come up with the overall time complexity of our programs. This also
gives us an idea of when to develop our own libraries.

Google is one such company that develops its own libraries and frameworks
when the available open source technology doesn’t meet its performance require-
ments. The same is true with Apple, Amazon, Facebook, etc. So if you plan to
apply for jobs in one of those companies or their competitors, it is certainly help-
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ful to know the limitations of existing open source libraries and how to improve
those or write new ones from scratch. This is one of the reasons why interviews in
these companies emphasize heavily on data structures and algorithms, among other
things.

If time permits, it is recommended to scan the source code of Scala’s List imple-
mentation [Lis18]. We see that List is declared as an abstract class.

abstract class List[+A]

This means it cannot be instantiated. Also, we notice that it has a type pa-
rameter A, with + in front of it, which means lists are covariant. For example, if
Employee is a super type of Engineer, then List < Employee > automatically be-
comes a super type of List < Engineer >. This allows us to assign a value of type
List < Engineer > to a variable of type List < Employee >. We created such lists
in Section 4.2.

4.4 Application

Both immutable and mutable versions of lists are used heavily in practice. If we
have large code bases written in Java, we might find a mutable version of the list.
If we are doing concurrent and distributed programming, it is good to start with the
immutable version and then migrate to a mutable version if the context demands. It
is much more complex to provide data consistency for mutable data in distributed
and concurrent programming environments.

If we are doing functional programming, the chances are very high that we will
be living and breathing lists. There are three basic operations—head, tail, isEmpty.
Let’s look at the the following code snippet as a reminder.

scala> val f1: (Int, Int) => Int = _ + _
f1: (Int, Int) => Int = <function2>

scala> val f2: (Int, Int) => Int = _ - _
f2: (Int, Int) => Int = <function2>

scala> val f3: (Int, Int) => Int = _ * _
f3: (Int, Int) => Int = <function2>

scala> val fnList = List(f1,f2,f3)
fnList: List[(Int, Int) => Int] = List(<function2>,
<function2>, <function2>)

scala> fnList.head
res6: (Int, Int) => Int = <function2>

scala> fnList.tail
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res7: List[(Int, Int) => Int] = List(<function2>,
<function2>)

scala> val myNumbers = List(1,2,3,4,5)
myNumbers: List[Int] = List(1, 2, 3, 4, 5)

scala> myNumbers.isEmpty
res0: Boolean = false

scala> myNumbers.head
res1: Int = 1

scala> myNumbers.tail
res2: List[Int] = List(2, 3, 4, 5)

The operations look fairly simple; we can make a list of functions or a list of
numbers or some other types. The operations head, tail, and isEmpty can be applied
to any type of list, as shown above. Here, List provides us with the ability to house
series of algorithms and apply those to some data.

In imperative programming, we deal a lot with loops, which are also known as
control structures. Scala is an expression-oriented language that supports functional
programming. Just to emphasize the application of lists, we have a historical pro-
gramming language called LISP (LISt Processor), also referred as Lisp [McC60].
The original paper written by John McCarthy starts with “Recursive functions of
symbolic expressions.” We see that the focus is on functions and expressions and
their computation by machine. Many functional languages were influenced by Lisp,
as was Scala. Hence, lists are likely to appear in many functional data structure
implementation tasks.

Exercise 4.2. Application of f old, f oldLe f t, and f oldRight
Functions

Given the following signature for three implementations of folding— f old, f oldLe f t,
and f oldRight, write sample programs of your choice to demonstrate how these
functions work. In your explanation, show detailed calculation steps for at least one
application, demonstrating operations for all three functions.

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
def foldLeft[B](z: B)(op: (B, A) => B): B
def foldRight[B](z: B)(op: (A, B) => B): B
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Exercise 4.3. Get, Average, and Reversal

Given a list, perform the following:

1. Given an integer index, get the value corresponding to this index.
2. Calculate the average of values.
3. Reverse the list.
4. Get the last element using f oldLe f t.
5. Calculate the length using f oldLe f t.



Chapter 5
Stacks

We observe stacks of things in our daily life—stacks of books in a library, stacks of
plates in a cafeteria, stacks of boxes in a store, etc. Even though these are different
kinds of things, there are several commonalities, in terms of how items are taken out
or put into these stacks. For example, whether it is a book or a plate, the one that is
placed on the stack last is on top of the stack and it is the first one to be removed.
So it is a Last In First Out (LIFO) stack.

In computer science, this structure is handy where we need to enforce the LIFO
rule. For example, if we want to check whether opening parentheses match with
closing parentheses in an expression, we can use a stack. Anywhere order checking
is needed this structure is handy.

5.1 Structure

A stack can be treated as a container that has a single opening, i.e., items can be
inserted and removed using that end only. Naturally, there are operations of interest:

• Insert an item.
• Remove an item.
• Check whether the stack is empty.
• Check whether the stack is full.

5.2 Typical Implementation

We present a typical implementation of a stack in Figure 5.1. The MyStack class has
five operations. The first one, called push, accepts data of type Double and inserts
it into the stack. When an item is pushed, top is increased by 1. Similarly, pop does
the opposite of what push does, i.e., it removes an item from the stack and then
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decreases top by 1. peek differs from pop in the sense that it returns the item on the
top but doesn’t remove the item. More accurately, it doesn’t change the pointer to the
top. isEmpty returns a Boolean value that tells whether the stack is empty. Similarly,
isFull tells us whether the stack is full. Note that the stack implementation makes
use of the Array data structure described in Chapter 3.

Now, on the main method side, we create a stack with capacity to hold eight
elements. The type of these elements is fixed during the stackBox definition, which
in this case is Double. Next, we insert elements into the stack and then remove them
until the stack is empty. The whole implementation validates our stack explanation.

Exercise 5.1. *Functional Implementation

Functional programming is being slowly adopted by the industry. Scala played an
instrumental role by fusing object-oriented programming with functional program-
ming. In this context, implement a functional stack. The one implemented in Fig-
ure 5.1 is an imperative implementation.
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package com.equalinformation.dascala.scala.stacks

class MyStack(maxSize: Int) {
private var stackBox = new Array[Double](maxSize)
private var top = -1

def push(data: Double): Unit = {
top += 1
stackBox(top) = data

}

def pop(): Double = {
val popData = stackBox(top)
top -= 1
popData

}

def peek(): Double = {
stackBox(top)

}

def isEmpty(): Boolean = {
return (top == -1)

}

def isFull(): Boolean = {
return (top == maxSize - 1)

}
}

object StackApp {
def main(args: Array[String]): Unit = {

val myStack = new MyStack(8)
myStack.push(5)
myStack.push(10)
myStack.push(20)

while(!myStack.isEmpty) {
println(myStack.pop())

}

}
}

Fig. 5.1: A typical stack implementation
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5.3 Analysis

A stack is a simple data structure that is handy for many operations requiring or-
dering or order enforcement. The space complexity for n push operations is O(n)
whereas it has an O(1) average case. Similarly, pop and peek have O(1) complexity,
which is true for isEmpty and isFull.

5.4 Application

First, let’s discuss one of the applications of stacks. The task, for us, is to reverse a
given word. We present a complete solution in Figure 5.2. The class MyStackChar
takes the maximum size of the stack as a constructor parameter, which is the length
of the input. Next, we define all stack-related operations.

Then we have the Reverser class that contains the actual logic to reverse a
given word. It takes the input word as its constructor parameter. We make use of
StringBuilder so that we can use its append method to form the reversed word. The
method reverse creates myStack, which is an instance of MyStackChar. Next, we
push every character in the word to the stack. When the characters are pushed into
the stack, the first character is at the bottom of the stack, the second character on
top of it, and so on. In this way, the last character to be inserted is the last character
of the word, which is popped first and appended to the collector out put. The first
character of the word is the last one to be popped and appended. This is how a given
word is reversed using a stack structure.

We can solve this problem using a plain array. But the solution presented here
is conceptually neat because the rules are clearer. Also, the solution presented in
Figure 5.2 doesn’t allow bugs to be introduced by custom handling of word indices.
See the code snippet below: it is hard to introduce a bug unknowingly as indices are
not directly present.

for(eachChar <- word) {
myStack.push(eachChar)

}

The stack structure can be used to solve a wide variety of problems. For example,
it can be used to match HTML and XML tags. Another common problem in com-
puter science is converting infix notations to postfix notations. Also it can be used
to evaluate expressions, for example, postfix operations. Internally, it can be used to
compute recursive structures and other function calls.
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package com.equalinformation.dascala.scala.stacks

class MyStackChar(maxSize: Int) {
private var stackBox = new Array[Char](maxSize)
private var top = -1

def push(data: Char): Unit = {
top += 1
stackBox(top) = data

}

def pop(): Char = {
val popData = stackBox(top)
top -= 1
popData

}

def peek(): Char = {
stackBox(top)

}

def isEmpty(): Boolean = {
return (top == -1)

}

def isFull(): Boolean = {
return (top == maxSize - 1)

}
}

class Reverser(word: String) {
private val output: StringBuilder = new StringBuilder

def reverse(): StringBuilder = {
val myStack = new MyStackChar(word.length)

for(eachChar <- word) {
myStack.push(eachChar)

}

while(!myStack.isEmpty) {
val poppedChar: Char = myStack.pop
output.append(poppedChar)

}

output
}

}

object WordReverseApp {
def main(args: Array[String]): Unit = {

print("Enter a word: ")
val inputWord = scala.io.StdIn.readLine().toString
val myReverser = new Reverser(inputWord)

println("Reverse word: " + myReverser.reverse)
}

}

Fig. 5.2: Word reversing
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Exercise 5.2. Stack Implementation Enhancement

Enhance the implementation of MyStackChar in Figure 5.2 so that we don’t need
multiple stack classes defined. For your testing you can use the existing Reverser
class and WordReverseApp. Since Reverser is in the same package, you don’t have
to import it. The object WordReverseApp might need renaming if you create a tex-
tual copy, as the Scala compiler will complain about duplicate objects.



Chapter 6
Queues

Queues are common in the real world. For example, we stand in a queue when we
go to a cafeteria; there are queues in restaurants, at ticket counters, at airport check-
in desks, etc. All of these queues have common rules. These rules are defined by the
owner of the queues. Interestingly, the queues in the cafeteria at Apple operate the
same way as the queues in Google’s cafeteria. As of 2018, Google’s cafeteria offers
free food whereas Apple’s cafeteria needs payment. In spite of this difference, the
queue rules are the same. Normally, we don’t find a handbook that tells how queues
should operate in both of these companies, but still they operate uniformly. Why?

Similarly, in computer science we have uniformity in the structure of certain
things. In operating systems there are many processes requiring resources. These
processes can be put in a queue and then allocated resources based on their arrival
priority. Sometimes, it might be necessary to assign priority to certain types of pro-
cesses. In such cases, we have new rules for operation, i.e., the items with higher
priority come out of the queue first. This type of structure is known as a priority
queue.

6.1 Structure

A queue, in general, can be thought of a pipe that is open at both ends so that items
enter from one end and exit from the other. In computer science, a queue can be
thought of as a container where items can be inserted and removed based on their
arrival order. This kind of structure defines a set of rules:

• An item that is inserted first is the first one to be removed. There is a popular
acronym for this: First in First Out (FIFO).

• An item that is inserted last leaves the queue last.
• Processes serving a queue often check whether the queue is full or empty.
• There should be a way to insert and remove an item from the queue.
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6.2 Typical Implementation

In Figure 6.1, we present a typical implementation of a queue. The class MyQueue
takes the maximum size of the queue as a constructor parameter. Then, based on
the parameterized maximum size, we create queueBox, with the help of array data
structure. When the queue is empty, the front index is 0, and we set rear to -1.
Similarly, the maximum number of items in the queue is also 0.

Next we define the insert method, which accepts data of any type. In its body,
first, we check the value of rear: if it is maxSize− 1, then we reset it, since it has
reached the full capacity of the queue. Next, we increase the value of rear by 1,
and data is inserted using rear as an index. Accordingly, the number of items in the
queue is increased.

When we remove an item from the queue, we return that item. In the body of the
method remove, we get the item at index f ront and assign it to a temporary holder
tempData. Then the value of f ront is increased by 1. If f ront reaches the maximum
value for this queue, we reset it. When we remove an item, the number of items in
the queue decreases by 1.

The method peekFront returns the item at the front of the queue but doesn’t
change the indexing. Indices change only when items are inserted or removed.
isEmpty checks whether the queue is empty or not and isFull, as the name sug-
gests, returns true if the queue is full; otherwise it returns false.

Once the queue definition is complete, we write the main method. First, we create
an instance of MyQueue, with capacity 10. Then we insert three elements. In order
to verify our implementation, we remove elements one by one until the queue is
empty. If the queue is correctly implemented then the item inserted first should be
printed first. This completes our queue implementation.

Exercise 6.1. *Queue Implementation Improvement

The implementation in Figure 6.1 might face performance issues when there are
large numbers of insertions and deletions. Find a typical number when performance
starts degrading. Then suggest improvements and implement those suggestions.
There is at least one bug in the program: identify the bug and implement your fix.

Now, let’s looks at the application presented in Figure 6.2. This is a typical func-
tional implementation of queue. First we define a case class FQueue, which has
two constructor parameters—out and in. As mentioned in Chapter 4, lists are the
fundamental structures in functional programming, as arrays are for imperative pro-
gramming.

The case class has a method check to check the invariant, i.e., it should always be
possible to extract an element from a non-empty list. Next, we define the applica-
tion object FunctQueueApp and house necessary methods there. Unlike the case of
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package com.equalinformation.dascala.scala.queues

class MyQueue(maxSize: Int) {
private var queueBox: Array[Any] = new Array[Any](maxSize)
private var front: Int = 0
private var rear: Int = -1
private var numOfItems: Int = 0

def insert(data: Any): Unit = {
if(rear == maxSize - 1) {

rear = -1
}

rear += 1
queueBox(rear) = data
numOfItems += 1

}

def remove(): Any = {
val tempData: Any = queueBox(front)
front += 1

if(front == maxSize) {
front = 0

}

numOfItems -= 1
tempData

}

def peekFront(): Any = {
queueBox(front)

}

def isEmpty(): Boolean = {
numOfItems == 0

}

def isFull(): Boolean = {
numOfItems == maxSize

}

}

object QueueApp {
def main(args: Array[String]): Unit = {

val myQueue = new MyQueue(10)

myQueue.insert(5)
myQueue.insert(10)
myQueue.insert(15)

while(!myQueue.isEmpty()) {
println(myQueue.remove())

}

}
}

Fig. 6.1: A typical queue implementation
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imperative programming, here we define queue operations in the application class
itself. This comes from the idea of functional composition. Let’s discuss the insert
and remove methods first. The out field can be Nil if in is Nil. Otherwise, the new
in gets a value which is the concatenation of the data element with the old in.

Now, let’s analyze the remove method. It takes a queue and returns an integer
value and a queue. The integer value is the head and the returned queue is the tail of
the input queue. In order for the output to be Nil, the queue should be empty.

Next, in the main, we create myQueue by inserting elements. Note the order: the
innermost element is the first one to be inserted and hence is the first to be removed
from the queue. In order to verify this, we apply remove once and print so that we
can visually check whether right element is coming out of the queue. The output
should look like the following:

(5,FQueue(List(10, 15),List()))

The insert method takes a data element and a queue as its inputs and returns a
queue as its output. The new input is formed by concatenating the data element with
the in field of queue.

Exercise 6.2. Functional Queue

For the implementation in Figure 6.2, perform the following:

1. Modify the program so that multiple types can be used during testing.
2. Make the necessary modification to extract the value enqueued in the second

position.
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package com.equalinformation.dascala.scala.queues

case class FQueue(out: List[Int], in: List[Int]) {
def check(): Boolean = (out, in) match {

case (Nil, x :: xs) => false
case _ => true

}

require(check, "Didn’t satisfy invariant")
}

object FunctQueueApp {
def main(args: Array[String]): Unit = {

val myQueue = insert(15, insert(10, insert(5,
FQueue(Nil, Nil))))

println(remove(myQueue))
}

def insert(data: Int, queue: FQueue): FQueue = {
val newIn = data :: queue.in
queue.out match {

case Nil => FQueue(newIn.reverse, Nil)
case _ => queue.copy(in = newIn)

}
}

def remove(queue: FQueue): (Int, FQueue) = {
queue.out match {

case Nil => throw new
IllegalArgumentException("Queue is empty!")

case x :: Nil => (x, queue.copy(out =
queue.in.reverse, Nil))

case y :: ys => (y, queue.copy(out = ys))
}

}

}

Fig. 6.2: A typical queue implementation – object-functional approach

6.3 Analysis

We have seen two implementations of the queue data structure, one in Figure 6.1 and
the other one in Figure 6.2. The object-oriented implementation houses the queue
operations in the object representing the queue, which is a typical way of writing
object-oriented programs. Class attributes and operations are inside the class, and
the software class represents a corresponding real-world class or object.

In object-functional implementation there is a mixed representation. We have a
case class that can be used for pattern matching, one of the popular features of func-
tional programming. When we have a class and an object, we could claim that the
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implementation is a sort of object-oriented programming, which is true, because
Scala fuses two programming paradigms—object-oriented and functional. In an
object-functional implementation, the core operations of a queue are housed in the
application itself. It is more inclined toward developing applications by composing
functions.

The time complexity of inserting and removing an item into the queue is O(1).

6.4 Application

Queues are widely used in many applications of computer science. For example,
queues are used in asynchronous data transfer, such as file IO. Files or chunks can
be put in a queue based on the order of arrival. The destination can consume when it
is ready and the queue guarantees the correct ordering. Similarly, queues can also be
used to schedule jobs by an operating system, specially those jobs that have equal
priority. Even though they have equal priority, they arrive at different times, and
the queue uses timing to set their priorities. Last but not least, queues are used to
implement other data structures and to solve algorithmic problems.

Queues can also be used effectively to solve many real-world problems. For ex-
ample, queues at counters could be represented by software queues. With visual
aids the servers can efficiently track and serve people in the queues. This also al-
lows proper allocation of servers. Similarly, a suitable number of cashiers can be
arranged in supermarkets based on queue size. Another application is to queue cus-
tomers in call centers. Generally, these operate on a first come, first served basis, so
queues are a natural representation. If we have preferred customers calling, they can
be handled using priority queues.
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Hash Tables

In the real world we have large ranges. For example, positive integers can be close
to infinity. A national identification number, like a social security number, can be
a nine-digit number. We may not necessarily have that much space available, or in
some cases it may not be efficient to allocate that much memory for the purpose of
computation. In such scenarios, it is efficient to map these large ranges to smaller
ranges that can be accommodated in computer memory. A data structure that makes
use of this technique is called a hash table; it stores keys and their values and uses a
hash function to map keys with their values. A hash table is one of the most efficient
data structures, with running time O(1) for search, insertion, and deletion. In the
worst-case scenario, specially when linked lists are stored as values, the running
time can be O(n).

7.1 Structure and Algorithm

In terms of structure, a hash table is more like an array; however, the way elements
are addressed is different. In an array, elements are addressed using direct address-
ing. In direct addressing, an element at position k is accessed using the index value
k. In hash tables, keys are computed using a hash function. The core of a hash ta-
ble lies in the ability to design a hash function that does efficient mapping between
the real-world range or problem range and the range available (or allocated) in the
computer. A good hash function can distribute real-world keys uniformly in the
computer’s memory without any collision. A collision occurs when two or more
real-world keys are mapped to a single hash table key.

When the problem space keys have a very large range, it may not be possible
to have unique corresponding keys in the hash table. In such scenarios, linked lists
are used to provide additional identity. In addition to the key, object values can
be compared. In such implementations, in the worst-case scenario it can take O(n)
time to find an element in the hash table. This is primarily because linked lists are
involved.

57© Springer Nature Switzerland AG 2019
B. P. Upadhyaya, Data Structures and Algorithms with Scala, Undergraduate 
Topics in Computer Science, https://doi.org/10.1007/978-3-030-12561-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12561-5_7&domain=pdf


58 7 Hash Tables

A quick search in the ACM Digital Library or the IEEE Xplore Digital Library
results in many research papers related to hash functions. It is not in the scope of
this book to deal with hash function design in detail. This book, primarily, aims to
provide good hands-on examples, from a coding perspective, specially functional
implementations using Scala. However, we discuss a couple of techniques to design
a hash function so that Scala coding makes better sense.

The first technique is simple. It is known as the remainder method. In this
method, the hash code is calculated by dividing the key by the available array size.
The remainder is the key value to be used in the hash table. For example, let’s say
there are 1000 keys in the problem space and we have available array size of 17.
Now, a hash key for a randomly picked value between 0 and 1000 is calculated as:
hash(n) = n % 17. For example, the hash value for 35 is hash(35) = 35 % 17 = 1.
Similarly, the hash value for 999 = hash(999) = 999 % 17 = 13. You may have
already realized that there is a good chance of key collision.

A somewhat better hash function can be designed using the multiplication
method. In this method, the hash function is defined as: hash(key) = bm ∗ ((key ∗
R) % 1)c, where 0 < R < 1. Let’s pick R = 0.201. Now, hash(35) = b17 ∗ ((35 ∗
0.201) % 1)c= 2. Calculating for 999: hash(999)= b17∗((999∗0.201) % 1)c= 14.
It is apparent that the hash values differ. It should be fun to vary the array size and R
and see how uniquely the hash table keys are generated for a given range of problem
space keys. You are strongly encouraged to come up with your own hash function.

Exercise 7.1. *Dynamic Hash Functions

Is it practical to create dynamic hash functions based on the available memory of
a machine where a program or an application is running? If yes, make practical
assumptions to design (or generate) dynamic hash functions. If no, provide your
reasoning.

7.2 Typical Implementation

In this section, we present two versions of hash table implementation—mutable and
immutable. Let’s start with the mutable version. We present a mutable hash table
implementation in Figure 7.1. The class HashTableMutableImpl has two parame-
terized types—Key and Value. Also, the class takes size as a constructor parameter,
which is of type Int. It extends the mutable trait HashTable; since they are in the
same package there is no need to explicitly import the trait. Next, we define a con-
tainer called myHashArray that holds lists of keys and values. This is initialized
with empty lists; the size of the array is defined by the constructor parameter size.

Next, we define a hashCode method, which calculates a hash code for a given
key. The Key type is parameterized so that different types can be used. Scala pro-
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vides the ## operation to calculate hash codes. We make use of this operation to
calculate the hash code for our keys. We use the remainder method discussed in
Section 7.1. If the calculated value is negative, we add the size value to it so that it
becomes positive; otherwise we return as it is.

Now, let’s discuss the insert operation. This takes a key and value pair as its pa-
rameters and returns Unit type, which is equivalent to void. Since it changes the
content of myHashArray, it doesn’t have to return anything. We extract a list using
a hash key obtained from hashCode. Next, we prepend the key-value pair to this list,
making sure that there is no key matching the current key, which guarantees unique-
ness. Then we assign this newly formed list to the same position in myHashArray
from where the list was obtained. Basically, we have added a key-value pair to this
list and placed it back in the array, in the same position; the position is determined
by the hash code, which is calculated by the hashCode method using the incoming
key.

Now, let’s discuss the search operation. This takes a key and returns an Option.
First we extract the corresponding list based on the hash key of the incoming key.
Next, we find a pair so that the first element of the pair matches the incoming key
and we return the second element of that matching pair, because the second element
is the value that the search user is interested in.

Finally, we have the delete operation, which takes a key as its input parameter
and returns an Option; this option contains the value that we deleted. In this method,
first we extract the corresponding list using the hash key, which is based on the
incoming key. Next, we filter a pair whose first element is equal to the incoming key;
in another words, we logically remove the pair matching its key with the incoming
key. The remaining contents of the list are assigned back to the same position in
myHashArray. This does the delete operation. Lastly, we return the value of the pair
whose key matches the incoming key.

Now it is time to test our mutable hash table implementation. We present the
test application in Figure 7.2. First we have trait definition, which is obvious, be-
cause we already discussed its implementation. In the main method, we first cre-
ate an instance of HashTableMutableImpl; the size is specified as 17. This value
is used to calculate the hash key every time the hashCode method is invoked in
HashTableMutableImpl. Then we insert five key-value pairs. The keys are similar
to US social security numbers, without dashes. Next, we print the search results.
Once successfully inserted, we should get Some(< value >) printed on the console.
Next, we delete the “Ritchie” entry, which should be successfully deleted. In the last
LOC, we search for the already deleted key, which maps to “Richie”. So it should
print None on the console. The second last LOC tries to delete the non-existing
record, so it should print None. See the entire output below. This completes our dis-
cussion of mutable hash table implementation. Next, we will discuss the immutable
version.

Martin search, Some(Martin)
James search, Some(James)
Brian search, Some(Brian)
Einstein search Some(Einstein)
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package com.equalinformation.dascala.scala.hash_tables.mutable

class HashTableMutableImpl[Key, Value](size: Int) extends
HashTable[Key, Value] {
private val myHashArray = Array.fill(size)(List[(Key,

Value)]())

def hashCode[Key](myKey: Key) = {
val tempHashCode = myKey.## % size
if(tempHashCode < 0) tempHashCode + size else

tempHashCode
}

override def insert(myKey: Key, myValue: Value): Unit = {
val myList = myHashArray(hashCode(myKey))
myHashArray(hashCode(myKey)) = (myKey, myValue) +:

myList.filter(x => x._1 != myKey)
}

override def search(myKey: Key): Option[Value] = {
val myList = myHashArray(hashCode(myKey))
myList.find(x => x._1 == myKey).map(y => y._2)

}

override def delete(myKey: Key): Option[Value] = {
val myList = myHashArray(hashCode(myKey))
myHashArray(hashCode(myKey)) = myList.filter(x =>

x._1 != myKey)
myList.find(x => x._1 == myKey).map(y => y._2)

}
}

Fig. 7.1: A typical mutable hash table implementation

Richie search, Some(Richie)
Richie delete, Some(Richie)
Non-existing delete, None
Richie search, None

In Figure 7.3, we present an immutable hash table implementation. Let’s first
discuss the corresponding immutable trait HashTable, which is presented in Fig-
ure 7.4:

trait HashTable[Key, Value] {
def insert(myKey: Key, myValue: Value):
HashTable[Key, Value]
def search(myKey: Key): Option[Value]
def delete(myKey: Key): HashTable[Key, Value]
}
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package com.equalinformation.dascala.scala.hash_tables.mutable

trait HashTable[Key, Value] {
def insert(myKey: Key, myValue: Value)
def search(myKey: Key): Option[Value]
def delete(myKey: Key): Option[Value]

}

object HashTableMutableApp {
def main(args: Array[String]): Unit = {

val myHashTable: HashTable[Int, String] =
new HashTableMutableImpl[Int, String](17)

myHashTable.insert(123456789, "Martin")
myHashTable.insert(987654321, "James")
myHashTable.insert(123454321, "Brian")
myHashTable.insert(432112345, "Einstein")
myHashTable.insert(776612345, "Richie")

println(s" Martin search, ${myHashTable
.search(123456789)}")

println(s"James search, ${myHashTable
.search(987654321)}")

println(s"Brian search, ${myHashTable
.search(123454321)}")

println(s"Einstein search ${myHashTable
.search(432112345)}")

println(s"Richie search, ${myHashTable
.search(776612345)}")

println(s"Richie delete, ${myHashTable
.delete(776612345)}")

println(s"Non-existing delete, ${myHashTable
.delete(886612345)}")

println(s"Richie search, ${myHashTable
.search(776612345)}")

}
}

Fig. 7.2: Mutable hash table test application

Unlike the mutable version, the immutable insert has to return a new HashTable,
as it doesn’t modify the existing hash table. It copies the existing hash table instead
of modifying it; this is how immutable operations work. Similarly, the delete oper-
ation returns a new HashTable, which is one element less than the original copy for
a successful delete; the original copy remains as it is. The search operation is the
same as that of the mutable version, as neither version has to modify anything. They
just read a record. If a record exists for a given key then it returns Some(< value >);
otherwise None.
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Now, let’s discuss the HashTableImmutableImpl class. This is a protected class
and is not meant to be accessed from outside. So the test application calls the sin-
gleton object, which has the apply method in it serving as a factory method. This
method has the size parameter, which can be passed while calling this object. Inter-
nally the singleton object creates a vector of specified size and fills it with empty
lists. Also, it creates an instance of the HashTableImmutableImpl class by pass-
ing the vector myHashVector. We use Vector for the immutable implementation
because it provides a similar structure to that of the Array and has a Trie struc-
ture implemented underneath. This improves the performance of the immutable im-
plementation; however, the performance may not be as good as that of a mutable
implementation.

In HashTableImmutableImpl, size is calculated based on the size of myHashVector;
this size is used to calculate the hash code for a given key. The method hashCode
is the same as that of the mutable version. The insert method signature doesn’t
explicitly specify return type, which is implicit in this case. First we calculate the
insertion index using the incoming key. Then we get the corresponding list from
myHashVector. We create a new list by prepending the incoming key-value pair to
this list. As in the mutable version, we make sure the incoming key is unique by ap-
plying f ilter. Next, a new instance of HashTableImmutableImpl is created, which
has updated myHashVector; the position insertionIndex is updated by newList.

The search method is the same as that of the mutable version. First, we get a
list corresponding to the hash key generated using the incoming key. Then we find
a key-value pair whose key matches the incoming key and then return the second
element of the pair, which is the value for a given key.

Finally, the delete method performs the removal operation. Like the insert
method, it has an implicit return type, which is comes from Scala’s type inference.
First, we calculate the deletion index based on the incoming key. Then we get a list
corresponding to this index. In order to perform deletion, we retain records that do
not match the incoming key; in other words, records whose keys match the incom-
ing key are filtered out. The filtered list is then assigned to a new val, which then
updates the deletionIndex. A new HashTableImmutableImpl is returned.

Now, let’s test our immutable hash map implementation. We present the test ap-
plication in Figure 7.4. We have already discussed the immutable trait HashTable,
which is not part of the test application but is placed here for convenience. In the
main method, first, we get an instance of HashTableImmutableImpl class. Note
that we do not explicitly create an instance here; rather we get an instance by calling
the apply method of the singleton object HashTableImmutableImpl. We pass the
size value as 17. Next, we insert all the records. Note that we do insertion in a single
statement; basically insert a new key-value pair into the result of the previous inser-
tion. If we do the same as in mutable version we end up with five val identifiers,
because each insertion returns a new HashTable.

Next, we print the result of the search operation. All of these statements should
print Some(< value >) if the corresponding key-value pairs have been success-
fully inserted. Then we remove a key-value pair corresponding to “Richie”. Note
that we assign it to a variable because we get a new HashTable; we need to use
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package com.equalinformation.dascala.scala
.hash_tables.immutable

protected class HashTableImmutableImpl[Key, Value](
myHashVector: Vector[List[(Key, Value)]]) extends
HashTable[Key, Value] {

private val size = myHashVector.size

def hashCode[Key](myKey: Key) = {
val tempHashCode = myKey.## % size
if(tempHashCode < 0) tempHashCode + size else

tempHashCode
}

override def insert(myKey: Key, myValue: Value) = {
val insertionIndex = hashCode(myKey)
val insertionList = myHashVector(insertionIndex)
val newList = (myKey, myValue) +: insertionList

.filter(_._1 != myKey)

new HashTableImmutableImpl[Key, Value](myHashVector
.updated(insertionIndex, newList))

}

override def search(myKey: Key): Option[Value] = {
val myList = myHashVector(hashCode(myKey))
myList.find(x => x._1 == myKey).map(y => y._2)

}

override def delete(myKey: Key) = {
val deletionIndex = hashCode(myKey)
val deletionList = myHashVector(deletionIndex)
val newList = deletionList.filter(_._1 != myKey)

new HashTableImmutableImpl[Key, Value](myHashVector
.updated(deletionIndex, newList))

}
}

object HashTableImmutableImpl {
def apply[Key, Value](size: Int) = {

val myHashVector = Vector.fill(size)(List())

new HashTableImmutableImpl[Key, Value](myHashVector)
}

}

Fig. 7.3: A typical immutable hash table implementation
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this hash table if we want to test whether our deletion was successful. Similarly,
we try to delete a non-existing value as well. Next, we search for the “Richie”
record in removedRichie, which should return None, as is the case for a non-existing
record in nonExisting. Finally, we search for the “Richie” record in f illedTable,
which is unmodified by the delete operation as it is immutable. So it should return
Some(Richie). Below, we list the complete output of this test program. This com-
pletes our discussion of immutable hash table implementation.

Martin search, Some(Martin)
James search, Some(James)
Brian search, Some(Brian)
Einstein search Some(Einstein)
Richie search, Some(Richie)
Richie search, None
Non-existing search, None
Richie search in original, Some(Richie)

Exercise 7.2. *Mutable Vs. Immutable Hash Table

Create the necessary test data to test both the mutable as well as immutable imple-
mentation of hash table presented in this chapter. Based on your test results, discuss
which one is more efficient. Hint: you may need a substantially large data set or its
equivalent in order to find a performance difference.
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package com.equalinformation.dascala.scala
.hash_tables.immutable

trait HashTable[Key, Value] {
def insert(myKey: Key, myValue: Value):

HashTable[Key, Value]
def search(myKey: Key): Option[Value]
def delete(myKey: Key): HashTable[Key, Value]

}

object HashTableImmutableApp {
def main(args: Array[String]): Unit = {

val myHashTable: HashTable[Int, String] =
HashTableImmutableImpl(17)

val filledTable = myHashTable.insert(123456789, "Martin")
.insert(987654321, "James")
.insert(123454321, "Brian")
.insert(432112345, "Einstein")
.insert(776612345, "Richie")

println(s" Martin search, ${filledTable
.search(123456789)}")

println(s"James search, ${filledTable
.search(987654321)}")

println(s"Brian search, ${filledTable
.search(123454321)}")

println(s"Einstein search ${filledTable
.search(432112345)}")

println(s"Richie search, ${filledTable
.search(776612345)}")

val removedRichie = filledTable.delete(776612345)
val nonExisting = filledTable.delete(886612345)

println(s"Richie search, ${removedRichie
.search(776612345)}")

println(s"Non-existing search, ${nonExisting
.search(886612345)}")

println(s"Richie search in original, ${filledTable
.search(776612345)}")

}
}

Fig. 7.4: Immutable hash table test application
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7.3 Analysis

In Section 7.2, we presented implementations of both mutable and immutable ver-
sions of a hash table. Ideally a hash table has running time complexity of O(1) for
insert, search, and delete operations. This can change when a linked list is used to
handle collision. In this case, the best running time is O(1). If we have to traverse
to the end of a linked list then the running time complexity is O(m), where m is the
number of elements in the corresponding linked list.

The mutable version of our implementation is more efficient than the immutable
version. But the immutable version is better suited for concurrency, as it doesn’t
modify the original hash table; it creates a new copy and makes modifications to
that copy. That’s why immutable hash tables are called persistent hash tables. The
advantage is that we don’t lose the original data copy so we can easily recover any
inconsistent state. The disadvantage is that there are multiple copies. If the data to
be handled is very large, this process is certainly going to occupy more memory.
Since computer memory is not infinite, we need to find better way of handling it.
That is why we used Vector to implement immutable hash tables. Vector, internally,
implements a Trie data structure, which eliminates some of the duplications.

7.4 Application

Hash tables come in handy every time we encounter problems that require us to
map keys with values in constant time for lookup, add, and remove. Since a hash
table is one of the fastest performing data structures, often programmers look for
an opportunity to transform other data structures into hash tables whenever there
is an opportunity. If we are going through a typical Scala or Java workspace for a
real-world application, we are very likely to find some use of a hash table.

Dictionaries and HashMap are applications of hash tables. Similarly, if we look
at file systems, we have name and path and physical location to track, among other
items. Paths and physical locations are stored as an application of a hash table. An-
other interesting application of hash functions is password verification. A highly se-
cure web application doesn’t send your password to the server side for verification,
because that password can be intercepted en route. Instead, the application gener-
ates a hash code based on your password using special cryptographic hash functions.
These cryptographic functions are sophisticated enough that it is very hard to gen-
erate a hash code equivalent to the hash code generated by the application for your
password. On the server side, the transmitted hash code is compared with the stored
hash code for your password. This means double security: even if the hash code
storage system is compromised, it is still very hard to know your password, because
the hash code of your password is stored, not your password. Another application
of hashing is cloud storage, such as Google Drive and Dropbox. In these systems,
hashing is used to optimize storage and search.



Chapter 8
Binary Trees

Hierarchical structures are abundant the nature. For example, a family tree helps us
to understand relationships. It is a most talked about topic. We are interested to know
where we lie in terms of the whole family structure, and that helps us to discover our
new relatives. An academic ancestry tree shows how a particular school of thought
has propagated over a period of time.

One of the advantages of tree representation of information is the convenience
of analysis. When we put information in a tree structure certain relationships can
be seen much more quickly compared to any textual representation. Also trees have
certain properties, which we will explore in detail in this chapter, that allow us to do
efficient information synthesis.

In the world of computer science, a tree is a nonlinear data structure that models
hierarchical structures. These hierarchical structures may come from the real world
or from human-made systems. A binary tree is a special form of tree, i.e., it has at
most two children. Information represented in the form of binary trees is a lot more
convenient to process, as binary trees show certain properties. For example, if we
have two children they are easy to manage, but that may not be true when we have
many more children. There will be a lot to track and take care of.

8.1 Structure and Algorithms

Formally, a binary tree can be represented with a triple, T = (x, L, R), where x
represents a node and L and R represent a left branch and a right branch, respectively.
Also L and R are disjoint binary trees and do not contain x. The term binary comes
from there being two children, i.e., every node in a binary tree can have at most two
children. Also this is referred as the degree of a binary tree, which is 2. For a binary
tree to be a full or complete binary tree it has to satisfy two conditions:

1. All of its leaves are at the same level and
2. Every interior node has two children.
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Here are some important definitions related to the structure of binary trees, or
trees in general.

• path: This is defined as a sequence of nodes (x0, x1, x2, ..., xn), where nodes
with adjacent subscripts are adjacent nodes. Since trees are acyclic, a path cannot
contain the same node more than once.

• path length: This is defined as the number n of its adjacent pairs.
• root path: For a node x0, its root path is defined as a path (x0, x1, x2, ..., xn),

where xn is the root of a tree.
• depth: This is defined as the length of its root path.
• height: This is defined as the greatest depth among all of its nodes
• level: This is the set of all nodes at a given depth.
• size: This is defined as the number of non-leaf nodes.

Now, let’s look at tree traversal algorithms.

8.1.1 Preorder

1. Visit the root.
2. Perform a preorder traversal on the left subtree if it is nonempty.
3. Perform a preorder traversal on the right subtree if it is nonempty.

8.1.2 Inorder

1. Perform an inorder traversal on the left subtree if it is nonempty.
2. Visit the root.
3. Perform an inorder traversal on the right subtree if it is nonempty.

8.1.3 Postorder

1. Perform a postorder traversal on the left subtree if it is nonempty.
2. Perform a postorder traversal on the right subtree if it is nonempty.
3. Visit the root.

8.2 Typical Implementation

In Figure 8.1, we present a typical implementation of a binary tree. Now, let’s ana-
lyze the code. We define a generic type-based binary tree using:
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sealed trait BinaryTree[+A]

This is sealed and the type is covariant. Since it is sealed, it can only be extended
in the same source file, which helps the compiler to check for exhaustive pattern
matching.

Next, we have a case object called Lea f , which is a binary tree of Nothing as it
doesn’t have any value and subtrees.

case object Leaf extends BinaryTree[Nothing]

We need one more component to create a binary tree, i.e., a construct that helps
us to create branches. Since we use pattern matching extensively in order to process
binary trees, this is also going to be a case class, as shown in the code snippet below.

case class Branch[A](value: A, left: BinaryTree[A],
right: BinaryTree[A]) extends BinaryTree[A]

A branch node has a value of type A and two subtrees—a left subtree and a right
subtree. We can see that it is recursive structure, which is one of the reasons for the
code being succinct.

The method createTree, in Figure 8.1, takes a list and creates a binary tree out of
this list. If the list is empty that matches the Lea f case, i.e., we return Lea f . When
the list has one or more elements we build a tree. Half of the elements are used to
create a left subtree and the other half for a right subtree.

In order to calculate the size of a binary tree, we define the size method. If a tree
is a Lea f node, then the size is 0. Otherwise, we compute the size recursively at
each node. The size of the tree at a node is calculated by adding the accumulated
sum increased by 1 (the size of the current node), the size of the left subtree, and the
size of the right subtree. This is captured by the expression:

1 + size(leftBranch) + size(rightBranch)

Similarly, we use a recursive structure to calculate the depth of a binary tree, as
shown in Figure 8.1. For a tree that has only a leaf, the depth is 0. Otherwise, the
depth at each node is calculated as a sum of the accumulated sum increased by 1
(the depth of the current node) and the maximum depth of subtrees. If the left tree
is deeper than the right subtree then the depth of the left subtree is considered for
calculation and vice versa.

Exercise 8.1. Binary Tree Equality

Write an application to check whether two given binary trees are equal. It is recom-
mended to use recursive structures for your implementation for brevity.
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package com.equalinformation.dascala.scala.bin_trees

sealed trait BinaryTree[+A]
case object Leaf extends BinaryTree[Nothing]
case class Branch[A](value: A, left: BinaryTree[A],

right: BinaryTree[A]) extends BinaryTree[A]

object BinaryTreeApp {
def main(args: Array[String]): Unit = {

val myList = List(1,2,3,4,5,6)
val myBinTree = createTree(myList)
println(myBinTree)
println(size(myBinTree))
println(depth(myBinTree))

}

def createTree[A](list: List[A]): BinaryTree[A] =
list match {
case Nil => Leaf
case x :: xs => {
val halfLength = xs.length / 2
Branch(x, createTree(xs.take(halfLength)),

createTree(xs.drop(halfLength)))
}

}

def size[A](binTree: BinaryTree[A]): Int = binTree match {
case Leaf => 0
case Branch(_, leftBranch, rightBranch) => 1 +

size(leftBranch) + size(rightBranch)
}

def depth[A](binTree: BinaryTree[A]): Int = binTree match {
case Leaf => 0
case Branch(_, leftBranch, rightBranch) => 1 +

(depth(leftBranch) max depth(rightBranch))
}

}

Fig. 8.1: A typical binary tree implementation

Exercise 8.2. *Complete Binary Tree

Using recursive structures, implement a complete binary tree.
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Exercise 8.3. Binary Tree Flipping

Write an application to flip a binary tree.

Exercise 8.4. Binary Tree Flipped Equality

Write an application to check whether a binary tree is a flipped version of another
binary tree.

Now, let’s look at binary tree traversal algorithms. We present a complete solution
in Figure 8.2. The method preorder takes a binary tree and returns a list of items
from preorder traversal. If the tree has only one leaf then it returns Nil because there
is no value present. For a non-empty tree, we apply a recursive structure to traverse
the tree. We prepend the node value with the combined list of left subtree preorder
traversal and right subtree preorder traversal.

Similarly, the method inorder takes a binary tree and returns a list that is the
result of inorder traversal. If a tree has only a leaf, the ouput is Nil. Otherwise,
the output is a combination of three items—the list obtained by performing inorder
traversal on the left subtree, the node value, and the list obtained by performing
inorder traversal on the right subtree. Note how operators apply to a list and a single
value.

Next, the method postorder takes a tree and returns a list that is the result of
postorder traversal. As for other traversals, if the tree contains only a leaf then the
result is Nil. For a non-empty tree, we apply a recursive structure. In order to achieve
postorder traversal, we first traverse the left subtree, get a list, and then join that list
with the result of traversing the right subtree in postorder. Finally we join the node
value.

In the main method, first we create a list, myList, containing six integer values,
then we build a binary tree by invoking the createTree method. Then we print the
result of creating the tree and print the results of preorder, inorder, and postorder
traversals so that we can compare. This completes the binary tree traversal imple-
mentation.
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package com.equalinformation.dascala.scala.bin_trees

object BinTreeTraversal {
def main(args: Array[String]): Unit = {

val myList = List(1,2,3,4,5,6)
val myBinTree = createTree(myList)
println(myBinTree)
println(preorder(myBinTree))
println(inorder(myBinTree))
println(postorder(myBinTree))

}

def preorder[A](binTree: BinaryTree[A]): List[A] =
binTree match {
case Leaf => Nil
case Branch(value, leftBranch, rightBranch) =>

value :: (preorder(leftBranch) ++
preorder(rightBranch))

}

def inorder[A](binTree: BinaryTree[A]): List[A] =
binTree match {
case Leaf => Nil
case Branch(value, leftBranch, rightBranch) =>

inorder(leftBranch) ++ (value :: inorder(rightBranch))
}

def postorder[A](binTree: BinaryTree[A]): List[A] =
binTree match {
case Leaf => Nil
case Branch(value, leftBranch, rightBranch) =>

postorder(leftBranch) ++ postorder(rightBranch) ++
List(value)

}

def createTree[A](list: List[A]): BinaryTree[A] =
list match {
case Nil => Leaf
case x :: xs => {

val halfLength = xs.length / 2
Branch(x, createTree(xs.take(halfLength)),

createTree(xs.drop(halfLength)))
}

}
}

Fig. 8.2: Binary tree traversal
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8.3 Analysis

We have seen a typical binary tree implementation, along with size and depth calcu-
lations. We also noticed that functional code is terse. The solutions to the exercises
are in Appendix A. Next, we implemented three binary tree traversal algorithms—
preorder, inorder, and postorder. We used recursive structures whenever there was
an opportunity. Further, we observed the wide application of List in functional pro-
gramming. The complete application is object-functional; however, most of our code
is functional in nature.

8.4 Application

Binary trees have a wide variety of applications, which we will discuss later in this
section. One of the specializations of binary trees is binary search trees, which make
search applications faster. A binary tree is a binary search tree if the value at the root
node is greater than or equal to all the values in the left subtree and less than or equal
to all the values in the right subtree. This applies to all the nodes, which guarantees
elements in an ascending order and this makes the search time complexity O(lg n).

We present a dictionary application using a binary search tree in Figure 8.3.
Let’s discuss algorithms and their implementation together. First, we define a type
Dictionary, which is a BinaryTree that takes a tuple, (String, A), as a type. Note
that the tuple itself has a generic type A. That means the key is going to be a String
but the value can be any type. We also define empty, which is a Lea f . In the main
method, we first create a list of key-value tuples; keys are some random words and
values are some random numbers. We are creating an arbitrary dictionary of words
in which we can experiment with insertion, search, update, etc. Next, we create a
binary search tree by making use of the insert method. This is followed by applying
three traversal methods to the tree so that we can verify whether the binary tree was
constructed, and then we search for a specific word in the dictionary.

The insert method takes a key, a value, and a dictionary and returns a dictionary.
If it finds an empty slot, Lea f , it inserts a branch with a node value (key, value),
and left and right subtrees as Lea f . The second case matches the input key with the
current node’s k value. If it matches then we have an existing key: no insertion is
required and hence the error message. The third case is that in which the incoming
key is less than the key value of the current node. Since it proceeds recursively,
it finds the right place to insert, which is in the left subtree. During recursion two
things happen—match or no match. If a match occurs it falls to the second case: key
already present. If a match doesn’t occur it falls to the first case, in which it creates
a branch, as mentioned earlier. The last case does the same but on the right subtree,
because the incoming key is greater than the existing key, k.

Now, let’s analyze the searchKey method. If we hit the Lea f , that means the
key is not found, so it returns None. If there is a match between the incoming key
and the current key then it returns the value associated with that key with the help
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of a wrapper, Some, because our return type is Option[A]. If the incoming key is
less than the current key, the method continues searching in the left subtree. If the
incoming key is greater than the current key, the method continues searching in the
right subtree. At some point it might match. If it does, it hits the second case. If it
doesn’t then it hits the first case.

Now, analyzing the updateValue method, it takes a key, a value to update to, and
a dictionary in which the update is performed and then returns an updated dictionary.
If the key is not found, it just inserts the incoming tuple (key, value); otherwise it
replaces the value associated with the current key. This happens in the second case.
The third case is the case in which the incoming key is less than the current key, and
hence recursion continues on the left branch. If the incoming key is greater than the
current key, the recursion continues in the right branch

Binary trees are used in compilers to process expressions using expression trees.
Also they can be used for data compression, such as Huffman coding trees. One
specialization of binary trees, binary search trees, discussed above, can be used to
enhance search applications, since it supports search, insertion, and deletion with an
average time complexity of O(lg n).



8.4 Application 75

package com.equalinformation.dascala.scala.bin_trees
object BinarySearchTreeApp {

type Dictionary[A] = BinaryTree[(String, A)]
def empty[A](): Dictionary[A] = Leaf
def main(args: Array[String]): Unit = {

val myWordList = List(("cat", 5), ("dog", 7),
("the", 12), ("for", 4), ("then", 11))

val myBinSearchTree = myWordList.foldLeft(empty[Int]())
((y, x) => insert(x._1, x._2, y))

println(inorder(myBinSearchTree))
println(preorder(myBinSearchTree))
println(postorder(myBinSearchTree))
println(searchKey("for", myBinSearchTree))

}
def insert[A](key: String, value: A, dict: Dictionary[A]):
Dictionary[A] = dict match {
case Leaf => Branch((key, value), Leaf, Leaf)
case Branch((k, v), lb, rb) if (key == k) =>

sys.error(s"key ${key} already present")
case Branch((k, v), lb, rb) if (key < k) =>

Branch((k, v), insert(key, value, lb), rb)
case Branch((k, v), lb, rb) if (key > k) =>

Branch((k, v), lb, insert(key, value, rb))
}
def searchKey[A](key: String, dict: Dictionary[A]):
Option[A] = dict match {
case Leaf => None
case Branch((k, v), lb, rb) if (key == k) => Some(v)
case Branch((k, v), lb, rb) if (key < k) =>

searchKey(key, lb)
case Branch((k, v), lb, rb) if (key > k) =>

searchKey(key, rb)
}
def updateValue[A](key: String, value: A,
dict: Dictionary[A]): Dictionary[A] = dict match {
case Leaf => Branch((key, value), Leaf, Leaf)
case Branch((k, v), lb, rb) if (key == k) =>

Branch((k, value), lb, rb)
case Branch((k, v), lb, rb) if (key < k) =>

Branch((k, value), updateValue(key, value, lb), rb)
case Branch((k, v), lb, rb) if(key > k) =>

Branch((k, value), lb, updateValue(key, value, rb))
}
def preorder[A](binTree: BinaryTree[A]): List[A] =
binTree match {
// preorder body here

}

def inorder[A](binTree: BinaryTree[A]): List[A] =
binTree match {
// inorder body here

}

def postorder[A](binTree: BinaryTree[A]): List[A] =
binTree match {
// postorder body here

}
}

Fig. 8.3: Binary search tree application



Chapter 9
Sorting

Sorting is a common operation both in life and in computer science. In our daily
life, we sort items so that searching is faster, and this is true in computer science
as well. After all, computers exist to help us in our day-to-day tasks. There might
be sorting present at different levels, based on requirements. For example, some-
times, we might need to sort character by character. At other times, we might need
to sort larger structures, like company profiles. Whatever the reason, the basic prin-
ciple of sorting remains same. Also, there are two orders for sorting—ascending and
descending.

Let’s assume that there are n items to be sorted: < a1,a2,a3, ...,an >. When these
items are sorted in ascending order their relationship can be formally stated as a1 ≤
a2 ≤ a3 ≤ ... ≤ an. Similarly, their descending order sorting can be formally stated
as an ≥ an−1 ≥ an−2 ≥ a2 ≥ a1.

9.1 Bubble Sort

9.1.1 Algorithm

Let’s first outline the bubble sort algorithm:

1. Start with the first element in the sequence.
2. Compare the first element with the second element.
3. If the first element is greater than the second element then swap, else move on to

the next element, which is the second element.
4. Compare the second element with the third element.
5. if the second element is greater than the third element then swap two, else move

on to the third element, which is the next element in the input sequence.
6. Repeat the above steps until the second last element is compared with the last

element, which completes the first pass and places the largest number in nth po-
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sition, i.e., the last position. If the indexing starts with 0 then it is position n−1.
The first pass is completed with (n−1) comparisons.

7. In the second pass, carry out similar operations until the third last element is
compared with the second last element. We don’t compare the last element be-
cause that is the largest element. So the second pass gives us the second largest
element, which is stored in the second last position. The number of comparisons
required for the second pass is (n−2).

8. Repeat the above procedure until the final pass. In the final pass, we just need
to compare two elements, i.e.: the first element and the second element. So the
number of comparisons for the final pass is 1. After the final pass, we have a fully
sorted sequence of elements, in ascending order.

9. During each comparison, instead of moving the larger one to the right, if we
move the smaller one to the right we get the elements sorted in descending order.

9.1.2 Typical Implementation

We present a typical implementation of bubble sort in Figure 9.1. Let’s first analyze
the calcMax method. Remember that we calculated maximum in each pass in our
algorithmic outline, in the previous section. If the input data matches Nil, then we
don’t have the maximum, and we just do the formality of Nil processing. If the input
matches the second case, then the input has only one element. In that case, the max-
imum is the same element and the tail will be Nil. In the last case, we first calculate
the maximum of tail and store the result in memory. Note that the result has two
parts—tail maximum and remaining tail, i.e., tail of tail. If tail maximum is greater
than or equal to head, tail maximum becomes the maximum and head becomes part
of the remaining tail. Otherwise, head is the maximum and tail maximum stays with
the remaining tail.

Now, let’s analyze the bubbleSortAsc method. An empty list has nothing to sort
so we return Nil. If the input list is not empty then we first calculate the maximum
of all the elements and store the result in memory. The result has two parts, the
maximum value and the remaining data. The remaining data, in the first iteration, is
one less element from the input data list. Next, we apply bubbleSortAsc recursively
on the remaining data and the maximum element from each iteration is concate-
nated. When recursion completes, we get a fully sorted list, in ascending order. This
completes the bubble sort, in ascending order.

Exercise 9.1. Bubble Sort: Descending Order

Modify the application in Figure 9.1 to implement descending order.
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package com.equalinformation.dascala.scala.sorting

object BubbleSortAscApp {
def main(args: Array[String]): Unit = {

println(bubbleSortAsc(List(3,1,6,8,2)))
println(bubbleSortAsc(List("z", "c", "a", "b")))

}

def bubbleSortAsc[T <% Ordered[T]](myData: List[T]):
List[T] = myData match {
case Nil => Nil
case _ => {

val (max, remainingData) = calcMax(myData)
bubbleSortAsc(remainingData) ::: List(max)

}
}

def calcMax[T <% Ordered[T]](myData: List[T]): (T,
List[T]) = myData match {
case (Nil) => (null.asInstanceOf[T], Nil)
case (head :: Nil) => (head, Nil)
case (head :: tail) => {

val (tailMax, tailRemaining) = calcMax(tail)
if (tailMax >= head) (tailMax, head :: tailRemaining)
else (head, tailMax :: tailRemaining)

}
}

}

Fig. 9.1: A typical bubble sort implementation

Exercise 9.2. *Bubble Sort: Generic

Combine the solution of the above exercise, Exercise 9.1, with the implementation in
Figure 9.1 to create a generic bubble sort implementation. In your implementation,
you should have only one method called bubbleSort that does both ascending and
descending orders. From the main method, users of your application should be able
to pass a list and an order type as parameters.

9.2 Selection Sort

9.2.1 Algorithm

We outline the selection sort algorithm first:
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1. Find the smallest element, or largest element if doing descending order, in the
list and swap with the first element.

2. In the second pass, find the smallest element in the remaining list, which is a
sublist of the given list that doesn’t have the global smallest element.

3. Swap the smallest element with the lowest index in the sublist if the lowest index
element is greater than this smallest element.

4. Continue the above steps until two elements are left in the list, which is the final
pass, requiring only one comparison. Swap if the element at the lower index is
greater than the element at the higher index. This completes selection sort.

9.2.2 Typical Implementation

We present a typical implementation of selection sort in Figure 9.2. Now, let’s ana-
lyze the method selectionSortAsc. It takes a list of generic type of data as its input
and returns a sorted list of the same type in ascending order. The first case returns
Nil for an empty list. If the list contains only one element, then it is already sorted.
This is covered by the second case, which returns a list of the head element.

Now, the interesting part: the third case covers an input case with two or more
elements. First, the minimum of tail is calculated and also the corresponding index
is recorded. If head is less than or equal to the minimum element of the tail then
head is appended to the list returned by recursive selectionSortAsc. This guarantees
that the smallest element is at the lowest index. If head is greater than the minimum
element of the tail then tail is split at the index of the minimum element of the tail.
This lets us pick the minimum, which is the head of the second half of the tail. Hence
the head of the second half of the tail is appended to the recursive selectSortAsc.
Now the new parameterized list is the concatenation of first half of the tail and the
head prepended with the second half of the tail. Note that the head has been swapped
with the minimum of the tail. This completes the selection sort, in ascending order.

In the main method, we call selectionSortAsc twice by passing two different
types of lists—a list of integers and a list of strings. If the implementation is correct,
it should be able to produce the sorted output for both types because we have used
a generic type as an input to the sorting method, selectionSortAsc.

Exercise 9.3. Selection Sort: Descending Order

Modify the application in Figure 9.2 to implement selection sort in descending order.
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package com.equalinformation.dascala.scala.sorting

object SelectionSortAscApp {
def main(args: Array[String]): Unit = {

println(selectionSortAsc(List(5,3,2,8,7)))
println(selectionSortAsc(List("k","d","c","a","q")))

}

def selectionSortAsc[T <% Ordered[T]](myData: List[T]):
List[T] = myData match {
case Nil => Nil
case head :: Nil => List(head)
case head :: tail => {

val minElem = tail.min
val indexOfMinElem =

tail.indexOf(minElem)
if(head <= minElem) {

head :: selectionSortAsc(tail)
} else {

val (tailHalf1, tailHalf2) =
tail.splitAt(indexOfMinElem)

tailHalf2.head :: selectionSortAsc(tailHalf1 :::
head :: tailHalf2.tail)

}
}

}
}

Fig. 9.2: A typical selection sort implementation

Exercise 9.4. *Selection Sort: Generic

Combine the solution of Exercise 9.3 with the implementation in Figure 9.2 to create
a generic selection sort implementation. A user of your implementation should be
able to perform both ascending and descending order selection sorts by calling a
single selectionSort method or function. They should be able to parameterize the
order type while calling your service.

9.3 Insertion Sort

9.3.1 Algorithm

We outline the insertion sort algorithm below.



82 9 Sorting

1. The base case for insertion sort is the first element, which is sorted by default as
it is the only element in a sublist of the input list. So, in the first pass, we compare
the second element with the first element and if the second element is less than
the first element we insert it before the first element. Now the first two elements
are sorted and this is the sorted sublist for the second pass for the third element
to be inserted in the correct place. The total number of comparisons required in
the first pass, is one.

2. In the second pass, we take the third element and compare it with the elements in
the sorted sublist from the first pass and insert it into the correct place. The total
number of comparisons required in this pass is two.

3. We repeat the procedure for the rest of the remaining elements in the input list.
In the last pass, the total number of comparisons required is (n−1).

9.3.2 Typical Implementation

In Figure 9.3 we present a typical implementation of insertion sort. Let’s first look
at the insertElementAsc method. This method takes an element to be inserted and a
sorted sublist where the element has to be inserted. If the sorted sublist is empty, we
return the element prepended to it so that it forms a list of one element. If the sorted
list has two or more elements, we split it into head and tail so that we can compare
and insert the element under consideration. If the head is less than or equal to the
element then the element must be inserted after the head, i.e., head comes first in
the sorted sublist and hence is prepended to the recursive structure. If the element is
less than the head then the element is prepended to the sorted sublist.

Now, let’s look at the insertionSortAsc method. This method takes a list of ele-
ments as input and returns a sorted list for the same set of elements. If the incoming
list is empty then we return that, as we don’t have to sort. Otherwise, we split the
incoming data into head and tail. We store the recursive call result in temp, which
becomes a sorted list. Then we insert the head into this sorted list.

Now, in the main method, we first call insertSortAsc by passing a list of integers.
This sorts the elements of type integer. Next, we vary the type of the elements by
passing a list of strings. This time it sorts strings. This demonstrates the generic
nature of our implementation in terms of data type.

Exercise 9.5. Insertion Sort: Descending Order

Modify the application in Figure 9.3 to implement descending order for insertion
sort.
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package com.equalinformation.dascala.scala.sorting

object InsertionSortAscApp {
def main(args: Array[String]): Unit = {

println(insertionSortAsc(List(15,10,33,11)))
println(insertionSortAsc(List("banana","apple","mango")))

}

def insertionSortAsc[T <% Ordered[T]](myData: List[T]):
List[T] = {
if (myData == Nil) {

myData
} else {

val head :: tail = myData
val temp = insertionSortAsc(tail)
insertElementAsc(head, temp)

}
}

def insertElementAsc[T <% Ordered[T]](elem: T,
sortedSubList: List[T]): List[T] = {
if (sortedSubList == Nil) {

return elem :: sortedSubList
} else {

val head :: tail = sortedSubList
if (head <= elem) {

head :: insertElementAsc(elem, tail)
} else {

elem :: sortedSubList
}

}
}

}

Fig. 9.3: A typical insertion sort implementation

Exercise 9.6. *Insertion Sort: Generic

Combine your solution Exercise 9.5 with the implementation in Figure 9.3 so as to
create a generic insertion sort implementation. Your generic implementation should
provide a single method or function, insertionSort, that can be called for both as-
cending as well as descending order sorting. You may parameterize the order type
so that users of your application can specify the order as a parameter along with a
list to be sorted.
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9.4 Merge Sort

9.4.1 Algorithm

Let’s outline the merge sort algorithm first. We can implement it in the next section.
The algorithm below uses a divide and conquer strategy.

1. Split the given list till every sublist has at most one element.

a. If the given data is an empty list then return two empty sublists.
b. For a non-empty list, split the list into head and tail.
c. If the tail is empty, then return two sublists, the first is the list with the head

and the second is an empty list.
d. If the given list has two or more elements then calculate the head of the tail

and the tail of the tail of the given list. Next, split the tail of the tail of the
given list into two parts—part1 and part2. Now, return two sublists so that
the first sublist is formed by prepending the head of the given list to part1 and
the second sublist is formed by prepending the head of the tail of the given list
to part2.

2. Merge the sublists. While doing so, keep the merged list sorted too.

a. The precondition is that the sublists should be sorted. If either the first sublist
or the second sublist is empty then return the merged list, which is equal to
the non-empty sublist.

b. If both the sublists are non-empty then carry out the following.
i. If the head of the first sublist is greater than the head of the second sublist

then prepend the head of the second sublist to the recursive merge of the
first list with the tail of the second sublist.

ii. If the head of the second sublist is greater than or equal to the head of the
first sublist then prepend the head of the first sublist to the recursive merge
of the tail of the first sublist with the second sublist.

9.4.2 Typical Implementation

We present a typical implementation of merge sort in Figure 9.4. Let’s first dis-
cuss the split method. It takes a list and returns two sublists. If the given list is
empty then we return two sublists that are empty too. Next, we calculate the head
and the tail of the given list so that it can be processed further for splitting. If the
tail of the given list is empty then return the first sublist by prepending the head
with Nil. In this case, the second sublist is Nil. Now, if the incoming list has two
or more elements, we need to go through a slightly different process for splitting.
First calculate the head of the tail and the tail of the tail of the given list. Then split
the tail of the tail of the given list into two parts—tailO f TailO f myDataSplit1 and
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tailO f TailO f myDataSplit2. The first sublist to be returned is formed by prepend-
ing the head of the given list to the first split, above. Similarly, the second sublist
to be returned is formed by prepending the head of the tail of the given list to the
second split, above. This completes the splitting process.

Next, let’s discuss the merging process, the method mergeAsc. This method takes
two sorted lists—sortedSubList1 and sortedSubList2—and returns a single merged
list, which is sorted too. If one of the incoming lists is empty then the merged list
is equal to the non-empty incoming list. If both sortedSubList1 and sortedSubList2
are non-empty then we compare their head elements. Whichever is the smaller, we
prepend that to the recursive merge of the other sublist with the tail of the sublist
whose head is smaller. This guarantees ascending order.

Now, let’s look at the method mergeSortAsc. It takes a list and returns a sorted
list, in ascending order. If the incoming list or its tail is empty then we return the
list as it is because it can contain at most one element, which is sorted by default.
Otherwise, we split the list and apply mergeSortAsc to each of the splits. The results
are two sorted sublists. Next, we apply mergeAsc, which merges the two sorted
sublists and keeps the order in the merged list, which is returned to the caller.

Finally, in our main method, we have two different calls to mergeSortAsc. The
first call provides a list of integers and the second one provides a list of strings. Both
are sorted because our implementation is generic, in terms of type. This completes
the merge sort implementation for ascending order.

Exercise 9.7. Merge Sort: Descending Order

Modify the implementation in Figure 9.4 so as to implement descending order for
merge sort.

Exercise 9.8. *Merge Sort: Generic

Combine your solution for Exercise 9.7 with the implementation in Figure 9.4 to
create a generic merge sort implementation. In your generic solution, there should
be only one method called mergeSort that does both ascending and descending order
sorting. You may parameterize the order type so that a user of your service can pass
the order type along with data to be sorted.
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package com.equalinformation.dascala.scala.sorting

object MergeSortAscApp {
def main(args: Array[String]): Unit = {

println(mergeSortAsc(List(5,6,2,3,1)))
println(mergeSortAsc(List("cat", "put", "bag")))

}

def mergeSortAsc[T <% Ordered[T]](myData: List[T]):
List[T] = {
if( myData == Nil || myData.tail == Nil) {

return myData
}

val (myDataSplit1, myDataSplit2) = split(myData)
val sortedSL1 = mergeSortAsc(myDataSplit1)
val sortedSL2 = mergeSortAsc(myDataSplit2)
mergeAsc(sortedSL1, sortedSL2)

}

def mergeAsc[T <% Ordered[T]](sortedSubList1: List[T],
sortedSubList2: List[T]): List[T] = (sortedSubList1,
sortedSubList2) match {
case (sortedSubList1, Nil) => sortedSubList1
case (Nil, sortedSubList2) => sortedSubList2
case (x1 :: y1, x2 :: y2) =>

if (x1 > x2) x2 :: mergeAsc(sortedSubList1, y2)
else x1 :: mergeAsc(y1, sortedSubList2)

}

def split[T <% Ordered[T]](myData: List[T]): (List[T],
List[T]) = {
if (myData == Nil) {

return (Nil, Nil)
}

val headOfmyData = myData.head
val tailOfmyData = myData.tail
if(tailOfmyData == Nil) {

return (headOfmyData :: Nil, Nil)
}
val headOfTailOfmyData = tailOfmyData.head
val tailOfTailOfmyData = tailOfmyData.tail
val (tailOfTailOfmyDataSplit1, tailOfTailOfmyDataSplit2)

= split(tailOfTailOfmyData)
return (headOfmyData :: tailOfTailOfmyDataSplit1,

headOfTailOfmyData :: tailOfTailOfmyDataSplit2)
}

}

Fig. 9.4: A typical merge sort implementation
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9.5 Quick Sort

9.5.1 Algorithm

Let’s first outline the algorithm for quick sort. Like merge sort, quick sort also ben-
efits from the power of a divide and conquer strategy.

1. First, we select a pivot element in the given list. There are many ways to select
a pivot, including randomization. Selection of the pivot determines the perfor-
mance of quick sort. For simplicity, we take the first element as our pivot for the
first pass. The second element will be the pivot for the second pass, and so on.

2. In the first pass, we create two sublists, i.e., all the elements smaller than the
pivot will be on the first sublist and all the elements greater than the pivot will be
on the second sublist. This gives us ascending order. If we reverse the logic, we
get descending order.

3. In the second pass, we change our pivot, and the second element becomes the
new pivot. Now, all the elements smaller than the second element will be part of
the first partition and those that are greater will be part of the second partition.
This process slowly sorts the elements. By the end of the second pass there will
be at least two elements sorted. Note that it takes longer if the list is already
sorted, which is the worst performance case for quick sort.

4. In every pass, elements either go to the left of the pivot or to the right. In order to
create the final sorted list, we need to merge the left partition, the pivot, and the
right partition. The pivot can be either appended to the left partition or prepended
to the right partition in order to create a final sorted list. In Scala, prepending has
constant time complexity whereas appending has O(n) complexity. Certainly we
would like to pick O(1) complexity.

9.5.2 Typical Implementation

We present a typical implementation of the quick sort algorithm in Figure 9.5. Let’s
first discuss the method partitionAsc. It takes a pivot, a list to be partitioned, a left
partition placeholder, and a right partition placeholder , as inputs. If the incoming
list is empty then we return p1 and p2 unchanged; both are initialized as Nil from
a calling LOC. If the head of the incoming list is less than the pivot then the head
is prepended to the left partition, p1, otherwise it is prepended to the right partition.
This is applied recursively. This gives us an ascending order.

Now, let’s look at the quickSortAsc method. It takes a list to be sorted as an input
and produces a sorted list as its output. If the incoming list is empty then we return
Nil. If the incoming list has only one element then we return a list containing that
element. If the incoming list has two or more elements then we partition the list.
When we partition, we get two parts—a left partition and a right partition. Then
we prepend the head to the right partition because prepend has complexity of O(1)
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whereas append has complexity of O(n). Finally, we combine the left partition with
the right partition, which has the head prepended to it. This gives us a completely
sorted list, in ascending order.

package com.equalinformation.dascala.scala.sorting

object QuickSortAsc {
def main(args: Array[String]): Unit = {

println(quickSortAsc(List(5,2,1,6,7)))
println(quickSortAsc(List("grape","apple","apricot")))

}

def quickSortAsc[T <% Ordered[T]](myData: List[T]):
List[T] = myData match {
case Nil => Nil
case head :: Nil => List(head)
case head :: tail => {

val (p1, p2) = partitionAsc(head, tail, Nil, Nil)
val leftToPivot = quickSortAsc(p1)
val rightToPivot = quickSortAsc(p2)
val temp = head :: rightToPivot
return leftToPivot ++ temp

}
}

def partitionAsc[T <% Ordered[T]](pivot: T, myData:
List[T], p1: List[T], p2: List[T]): (List[T], List[T]) =
myData match {
case Nil => (p1, p2)
case head :: tail =>

if (head < pivot) partitionAsc(pivot, tail, head ::
p1, p2)

else partitionAsc(pivot, tail, p1, head :: p2)
}

}

Fig. 9.5: A typical quick sort implementation

Exercise 9.9. Quick Sort: Descending Order

Modify the implementation in Figure 9.5 to implement descending order for the
quick sort algorithm presented in Section 9.5.1.



9.6 Comparative Analysis 89

Exercise 9.10. *Quick Sort: Generic

Combine the solution of Exercise 9.9 with the implementation in Figure 9.5 to cre-
ate a generic implementation for the algorithm presented in Section 9.5.1. A user
of your implementation should be able to perform both ascending and descending
order quick sort by calling a single quickSort method or function. They should be
able to parameterize the order type while calling your generic implementation of the
quick sort algorithm.

9.6 Comparative Analysis

As described in Section 9.1.1, bubble sorts does (n−1) comparisons in the first pass,
where n is the number of elements in the input data sequence. In the second pass,
it does (n− 2) comparisons to find the largest among the remaining elements; the
largest among the whole sequence is already settled as the last element. In the final
pass, we determine the smallest and the second smallest elements, which needs only
one comparison. So the total number of comparisons required is (n−1)+(n−2)+
...+1, which evaluates to n(n−1)

2 . So the time complexity of bubble sort is O(n2).
The first pass of selection sort makes (n− 1) comparisons, as described in the

algorithm in Section 9.2.1. To find a smallest or largest element, it has to compare
one element with rest of the elements. However, in the second pass, there is one less
element to compare because the smallest in the input has already been identified and
placed in the smallest index. So the second pass has to make only (n− 2) compar-
isons. Similarly, the final pass makes only one comparison. So the total number of
comparisons required for selection sort is (n−1)+(n−2)+ ...+1, which evaluates
to n(n−1)

2 . Hence, the time complexity of selection sort is O(n2).
In the case of insertion sort, we start with a sorted sublist and an element to be

inserted. The initial sorted sublist consists of one element, the first element. Hence
the number of comparisons required in the first pass is one. Similarly, the number
of comparisons required in the second pass is two, because the first pass added one
element in the sublist containing the first element. In the final pass, the number of
comparisons required is (n−1). Hence the total number of comparisons required for
selection sort is 1+2+ ...+(n−1), which is n(n−1)

2 . Therefore, the time complexity
of insertion sort is O(n2). In the best case, the input list might be already sorted. But
we need to check whether the input list is actually sorted, and hence it has time
complexity O(n).

The merge sort algorithm is presented in Section 9.4.1. Since we are splitting the
given list into sublists containing at most one element, it takes O(n) time. Similarly,
since merge is the opposite of splitting and we have n splits to merge, it has O(n)
time complexity. So, the splitting and merging combined time complexity is O(n+
n) = O(2n) and this is equivalent to O(n). There is one more time complexity, i.e.,
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both merging and splitting deal with a height of lg n. This gives us the total time
complexity of merge sort as O(n lg n).

Lastly, the quick sort algorithm presented in Section 9.5.1 gives a good indication
of the time complexity. On average, quick sort has to deal with (lg n) height and
each step has O(n) complexity. This gives us an average time complexity for quick
sort of O(n lg n). Ironically, for quick sort, the worst case is when the input list
is already sorted. In that case, the algorithm has to deal with n height. So the total
worst case time complexity for quick sort is O(n2). This completes our analysis of
all five sorting algorithms. Finally, Table 9.1 presents a summary of our discussion.

Table 9.1: Time complexities of sorting algorithms

Algorithm Best Case Average Case Worst Case

Bubble sort O(n) O(n2) O(n2)

Selection sort O(n2) O(n2) O(n2)

Insertion sort O(n) O(n2) O(n2)
Merge sort O(n lg n) O(n lg n) O(n lg n)
Quick sort O(n lg n) O(n lg n) O(n2)

9.7 Application

Sorting can help reduce the complexity of a problem. Let’s think about searching
an element in an unsorted array. We have to compare our search item with every
element in the array under consideration. If the array has billions of elements in it,
the search process is certainly going to be time-consuming. Not only that, as more
elements are added to the array, the searching gets worse. One can think of a column
of a database as an array, because database columns or rows are often represented
as arrays for in-memory processing. There are higher-level data structures available,
but arrays are faster. Even with this fastest data structure, searching is not efficient.
It is a scalability problem.

Now, let’s think about the same search problem in a sorted array. We could start
from the middle of the array and then, depending upon whether the search element
is less than or greater than the middle element, we can either go to the left of the
array or to the right. In the first pass, we have reduced the search space by half. In
the second pass, our search space will be one-quarter. So the search time complexity
for a sorted array is O(lg n), whereas it is O(n) for unsorted array.

For companies like Google, Amazon, Apple, and Facebook the search has to
go through petabytes of data. Sorting is certainly applied to improve performance.
Sorting is also heavily used in databases internally.



Chapter 10
Searching

Searching is frequently used in our daily life as well as in computer science. If we
are doing a manual search, most likely we try to match the image or description
that we have in our brain to the actual object that we are looking for. So it is a kind
of pattern matching operation. Similarly, pattern matching is a common technique
used in computing too.

Now, let’s discuss a couple of cases to set the stage for our searching algorithms.
In the case of images, we do structural matching or comparison, i.e., each compo-
nent in the target object is matched with the reference object that we have in our
brain. The order is not unique as we apply visual inspection. Different people match
in different ways. Largely, this depends upon our earlier training. This might also be
enhanced with specific knowledge and rules. For example, there are rules for man-
ufacturing coins. If one side of a coin matches the description, there is no need to
match the other side, because it is governed by currency-specific rules.

The second case that we are interested is textual matching, which will be the
focus of this chapter. In textual matching, substring searching is a very common
requirement, and hence we will be dealing with those algorithms in the following
sections. If we are doing a substring search manually, then we match the first char-
acter of the substring to be searched with the first character of the text in which we
are performing matching. If that matches, we continue with the second character
and so on. Since we can move our eyes, we could start by matching from the middle
of a page or anywhere we like. But if we are looking for first occurrence then it will
be a sequential match or search. In the case of computers, matching is generally
performed sequentially. But this can be changed if we have different requirements.

Searching has a wide range of algorithms. Binary search trees are presented in
Chapter 8. In this chapter, we will be dealing with Naive search and Knuth-Morris-
Pratt search algorithms.
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10.1 Algorithms

Let’s first outline the Naive search algorithm.

1. For the first character in the text perform the following matching loop.

a. Match the first character of the substring being searched with the current char-
acter of the text.

b. If there is a match then match the second character of the substring with the
next character of the text. Continue this until all the characters of the substring
match with the characters of the text. If there is a complete match then return
the index of the current character of the text, which is 0 in this case.

c. If there is no match, then exit this matching loop.

2. Now, move the pointer to the second character of the text and carry on performing
the matching loop described above. Any partial match is lost in the backtracking
process. If there is a complete match, return the index, which is 1 in this case. If
there is no complete match, move the pointer to the third character.

3. Continue the above steps until we reach an index which when added to the length
of the substring gives the length of the text, i.e., the last starting point for compar-
ison should have enough characters following it so that the index stays within the
limit. In the worst case, the running time complexity of Naive search is O(mn),
where m is the length of the substring to be searched and n is the length of the
text in which search is performed.

Now, let’s outline the Knuth-Morris-Pratt algorithm.

1. Initialize variables.
m = Length of the pattern (substring to be searched)
n = Length of the text
T = Prefix table
i = Number of characters matched

2. Compute the prefix table first. This is a preprocess that processes the pattern to
find matches of prefixes of the pattern with the pattern itself. The pattern here
is a substring to be searched. It indicates how much of the last comparison can
be reused if the comparison fails; this is an improvement over the Naive search
algorithm. P and S denote the pattern to be searched and the text in which the
search is performed, respectively. The prefix function is defined as the size of
the largest prefix of P[0,1, ..., l−1] that is also a suffix of P[1,2, ..., l]. The prefix
table is computed with the help of the following subroutine, which has O(m)
running time complexity.

a. m← length[P]
b. T [1]← 0
c. k← 0
d. for l← 2 to m do

while k > 0 and P[k+1] 6= p[l] do
k← T [k]
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end while
if P[k+1] = P[l] then

k← k+1
end if
T [l]← k

end for

e. return T

3. Perform variable initialization: i = 0 indicates the beginning of the match.
4. Compare the first character of the substring to be searched (pattern) with the first

character of the text. If it is not a match substitute the value of T [i] to i. If it is a
match then increment the value of i by 1.

5. Next, check if all the pattern elements are matched with the text elements. If not
matched then repeat the search process. If matched then return the starting index
of the matched substring of the text.

6. Continue the above steps to find the next match.
7. The above steps can be represented by the following pseudo-code.

a. n← length[S]
b. m← length[P]
c. T ← computePre f ixTable(P), call prefix computation subroutine above.
d. i← 0
e. for j← 1 to n do

while i > 0 and P[i+1] 6= S[ j] do
i← T [i]
if P[i+1] = S[ j] then

i← i+1
end if
if i = m then

i← P[i]
end if

end while
end for

8. Return a set of starting indices for all matched substrings of the text. The running
time complexity of prefix table computation is O(m). It takes O(n) to compare
the pattern to the text. Hence, the total running time complexity is O(m+n).

In order to clarify the above algorithm, let’s compute a prefix table for P =
{xyxyxzx}. Initially, m = length[P] = 7, T [1] = 0, and k = 0. As shown in the al-
gorithm above, m is the length of the pattern or string to be searched, T is the prefix
table, and k is the initial potential value that is initialized to 0.

• Step 1: l = 2, k = 0, T [2] = 0
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l 1 2 3 4 5 6 7
P x y x y x z x
T 0 0

• Step 2: l = 3, k = 0, T [3] = 1

l 1 2 3 4 5 6 7
P x y x y x z x
T 0 0 1

• Step 3: l = 4, k = 1, T [4] = 2

l 1 2 3 4 5 6 7
P x y x y x z x
T 0 0 1 2

• Step 4: l = 5, k = 2, T [5] = 3

l 1 2 3 4 5 6 7
P x y x y x z x
T 0 0 1 2 3

• Step 5: l = 6, k = 3, T [6] = 1

l 1 2 3 4 5 6 7
P x y x y x z x
T 0 0 1 2 3 1

• Step 6: l = 7, k = 1, T [7] = 1

l 1 2 3 4 5 6 7
P x y x y x z x
T 0 0 1 2 3 1 1

Now, let’s look at an example to realize the KMP algorithm. We have P =
{xyxyxzx} from the above analysis. Let’s assume S = {yxzyxyxyxyxzxxy}. Now, let’s
walk through our KMP algorithm to check whether P occurs in S.

• Step 1: j = 1, i = 0, comparing P[1] with S[1]. Since P[1] does not match with
S[1], P is shifted one position to the right.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 2: j = 2, i = 0, comparing P[1] with S[2], there is a match.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x
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• Step 3: j = 3, i = 1, comparing P[2] with S[3], there is no match. Now, backtrack-
ing on P and comparing P[1] with S[3], that is not a match. So now proceed with
the next character in S, by increasing the index to S.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 4: j = 4, i = 0, comparing P[1] with S[4], there is no match. Next, move on
to the next index of S.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 5: j = 5, i = 0, comparing P[1] with S[5], there is match. Since there is a
match, increase the index of P as well for the next step.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 6: j = 6, i = 1, comparing P[2] with S[6], there is a match. For the next step,
increase the index of P as well.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 7: j = 7, i = 2, comparing P[3] with S[7], there is a match. So increase the
index of P as well for the next step.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 8: j = 8, i = 3, comparing P[4] with S[8], there is a match. For the next step,
increase the index of P as well.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 9: j = 9, i = 4, comparing P[5] with S[9], there is a match. So increase the
index of P as well for the next step.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 10: j = 10, i = 5, comparing P[6] with S[10], there is no match. So
backtrack on P and compare P[4] with S[10] since mismatch resulted in i =
pre f ixValue[5] = 3. Refer to the prefix calculation steps above. Since there is
a match, increase the index of P as well for the next step.
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Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 11: j = 11, i = 4, comparing P[5] with S[11], there is a match. Since there
is a match, increase the index of P as well for the next step.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 12: j = 12, i = 5, comparing P[6] with S[12], there is a match. Increase the
index of P as well for the next step.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

• Step 13: j = 13, i = 6, comparing P[7] with S[13]. There is a match. Since we
don’t have any more characters left in P, this completes the process and we can
return the index value, value = currentIndex(S)+ 1− length(P) = 14− 7 = 7.
For this example, the total number of shifts = i−m = 13−7 = 6.

Text y x z y x y x y x y x z x x y

Pattern x y x y x z x

10.2 Typical Implementation

We present a typical implementation of Naive search in Figure 10.1. Let’s first ana-
lyze the method naiveSubstringSearch. It takes a string to be searched (pattern) and
a string in which search is performed (text) as its parameters. It returns an index of
the first occurrence of the pattern in the text. For the entire length of the data, we
apply the f ind operation. In order to avoid an index out of bound condition we place
a check, i.e., continue the matching operation if the current text index is less than
or equal to the length of the text less the length of the pattern. This ensures there
are sufficient characters for comparison. If this condition is met then we match each
character of the pattern with the characters of the text. If there is a complete match
then we return the index, otherwise we return −1.

In the main method, we create a sample text and a sample pattern. Next, we
invoke naiveSubstringSearch and print the result. Since both the pattern and text
are small, it convenient to verify this manually.

Exercise 10.1. Imperative Naive Search Implementation

Modify the solution presented in Figure 10.1 to provide an imperative solution.
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package com.equalinformation.dascala.scala.searching

object NaiveSubstringSearchApp {
def main(args: Array[String]): Unit = {

val myData1 = "This is a functional implementation."
val myWords1 = "functional"
println(naiveSubstringSearch(myWords1, myData1))

}

def naiveSubstringSearch(myWords: String, myData:String):
Int = {
myData.indices.find { i =>
i + myWords.length <= myData.length &&
myWords.indices.forall(j => myData(j + i) == myWords(j))
}.getOrElse(-1)

}
}

Fig. 10.1: A typical Naive search implementation

Exercise 10.2. *Naive Search All Occurrences

Modify the implementation in Figure 10.1 so as to find all the occurrences of a given
pattern in a given text. Your implementation should print all the corresponding in-
dices and the total count of all occurrences.

Next, let’s discuss the KMP implementation. In Figure 10.2, we present a typical
KMP algorithm implementation. The method pre f ixTable computes the prefix table
for a given pattern. It has a String input and outputs a vector of integers, which is a
prefix table. We use f oldLe f t. The first item in the prefix table is always zero, hence
we start with a vector containing zero. Also, we skip the first character as it always
has an entry of zero, which we have already calculated. In this case, we extract our
initial state, which is a tuple containing an initial value and the prefix table. We
process the current character with this initial state. We iterate the stream starting
with our initial value and keep lowering the initial value as long as the condition is
satisfied. The function passed to the f ind operation checks whether the initial value
is zero or the current character matches search string’s currently indexed character.
Next, we increase the lower value if the result of searchString(lowerValue) matches
with currentCharacter, otherwise the new value is same as the lower value. Next,
we return the tuple containing new value and the vector that has the new value added
into it. Finally, we return the vector, which is the second element in the tuple. This
completes the prefix table computation.

Next, let’s discuss the operation kmpSubstringSearch, which is an implemen-
tation of the KMP algorithm. First, we create the prefix table by calling the op-
eration pre f ixTable. Next, we write the main logic. Again we use f oldLe f t with
initial condition (−1,0). The first element of this tuple, −1, represents the index
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when the pattern is found, and the second element represents the initial value of
the length of the match. We run the logic for all the characters in the text and hence
myData.indices. We have two cases to cover. For both cases, f oundIndex represents
an index when a match occurs, x represents the current matches, and i represents the
current index from the range of indices of the text. The first case covers the “found”
case. If the pattern is found then we return a tuple containing f oundIndex and 0.
The second element of the tuple doesn’t matter, so we simply return 0. In the sec-
ond case, we do stream iteration, which is similar to a while loop. We iterate with
initial value x, and each time s is assigned a new value using pre f ixTab(x−1). The
value of lowerX provides a stopping condition. Our conditions are either x == 0 or
there is a match. Since f ind returns an Option, we need to use get to get the corre-
sponding value. Next, newX is increased by one if there is a match, otherwise it is
left as it is. The last LOC checks if it is a complete match. If it is, then it returns a
tuple containing f oundIndex and 0. If it is not a complete match, then it returns −1
for f oundIndex, indicating that we have not found the pattern. The second element
of the tuple is newX . Finally, since the f oldLe f t returns a tuple, we are interested
in the first element, because the first element gives the f oundIndex.

In the main method, we define two strings—text and pattern. Then we print the
result of invoking the kmpSubstringSearch method. If the pattern is found, then
the relevant index is printed, otherwise −1 is the output. This completes the KMP
implementation.
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package com.equalinformation.dascala.scala.searching

object KnuthMorrisPrattApp {
def main(args: Array[String]): Unit = {

val myData1 = "This is a functional implementation."
val myWords1 = "functional"
println(kmpSubstringSearch(myWords1, myData1))

}

def kmpSubstringSearch(myWords: String, myData:String):
Int = {
val prefixTab = prefixTable(myWords)

myData.indices.foldLeft(-1, 0) {
case ((foundIndex, x), i) if foundIndex > 0 =>

(foundIndex, 0)
case ((foundIndex, x), i) => {

val stepsX = Stream.iterate(x)(x => prefixTab(x-1))
val lowerX = stepsX.find(x => x == 0 || myWords(x)

== myData(i)).get
val newX = if (myWords(lowerX) == myData(i))

lowerX + 1 else lowerX
if(newX == myWords.length) (i - newX + 1, 0) else

(-1, newX)
}

}._1
}

def prefixTable(searchString: String): Vector[Int] = {
searchString.drop(1).foldLeft(0, Vector(0)) {

case ((initialValue, prefixT), currentCharacter) => {
val lowerValue = Stream.iterate(initialValue)(

initialValue => prefixT(initialValue - 1))
.find(initialValue => initialValue == 0 ||
searchString(initialValue) == currentCharacter)
.get

val newValue = if (searchString(lowerValue) ==
currentCharacter) lowerValue + 1 else lowerValue

(newValue, prefixT :+ newValue)
}

}._2
}

}

Fig. 10.2: A typical implementation for Knuth-Morris-Pratt algorithm
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10.3 Analysis

We picked two algorithms for our discussions in this chapter. The Naive search
has a running time of O(mn), where m is the length of the pattern and n is the
length of the text. This algorithm does backtracking when a complete match doesn’t
occur. This becomes inefficient when there are numerous partial matches. The KMP
algorithm avoids backtracking by computing a prefix table. It can re-use the last
partial match for the next iteration, thereby avoiding re-computation. The running
time complexity of KMP algorithm is O(n).

10.4 Application

Searching is ubiquitous. We search words in dictionaries. We might search names
and phone numbers in a phone directory. We search different things using Internet
search engines such as Google. All of these searches perform some kind of match-
ing. It can be: pattern matching, key matching, etc. In all cases the logic from KMP
or Naive search can be utilized. Since KMP has O(n) running time compared to
Naive’s O(mn) it can be utilized to implement faster substring searching, specially
when we are building search applications from scratch.



Chapter 11
Graphs

Graph structures are common. For example, if we represent each city with a circle
and the roads connecting to them with a line, we get a graph. Generally, the traffic
is bidirectional, so we get an undirected or bidirectional graph. Similarly, if we
create a diagram based on flights between cities, we get another graph. Further, the
interaction among people can be represented by graphs. So graphs are commonly
available structures.

11.1 Structure and Algorithms

In terms of structure, a graph is a nonlinear structure that has two parts:

1. A set V = V (G) whose elements are called vertices, nodes, or points of G.
2. A set E = E(G) of unordered pairs of distinct vertices called edges or arcs of G.

Hence, a graph can be represented as a tuple G = (V, E), where V is a set of
vertices, nodes, or points and E is a set of edges or arcs..

Similarly, a directed graph or digraph is a nonlinear structure in which the edges
are one-way, which has two parts:

1. A set V = V (G) whose elements are called vertices, nodes, or points of G.
2. A set E = E(G) of ordered pairs (a, b) of vertices called directed edges or arcs.

Directed edges are sometimes called simply edges.

In this chapter, we will be dealing with directed graphs, simply called graphs. So,
Let’s discuss the conventions that we will be using. Suppose e = (a, b) is a directed
edge in a digraph G. We will use the following conventions:

1. e begins at a and ends at b.
2. a is the origin or initial point of e, and b is the destination or end point of e.
3. b is a successor of a.
4. a is adjacent to b, and b is adjacent to a.
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There are two common algorithms to traverse a graph—depth-first and breadth-
first. In depth-first, a node’s children are visited before its siblings. In the case of
breadth-first, a node’s siblings are visited before its children.

11.2 Typical Implementation

We present a typical implementation of a graph in Figure 11.1. A graph can be
represented with the help of lists.

val myGraph = List(("a", "b"), ("a", "c"), ("b", "d"),
("b", "e"), ("b", "c"), ("c", "e"), ("d", "f"))

In the above code snippet, letters represent graph vertices or nodes and tuples rep-
resent graph edges. For example, (“a”, “b”) represents an edge from vertex a to
vertex b. Similarly, (“a”, “c”) represents an edge from vertex a to vertex c. So ver-
tex a connects to vertex b and c. The rest of the tuples can be interpreted in the same
way.

Now, let’s look at the method calcSuccessorSet, which calculates a successor
set of a vertex. An adjacent vertex in the direction of the arrow is a successor. A
successor set is a non-repeating collection of such adjacent vertices. For example,
the successor set of vertex a is {b, c}. In the calSuccessorSet, the case Nil covers the
empty list or that there are no more vertices to calculate successor for. The second
case checks if vertex matches the first element of the tuple; if it matches, then the
second element is added to the successor set. The last case is the default case of
no match and it skips the current tuple. We will be using calcSuccessorSet in other
programs in this chapter. For example, to traverse a graph, we need to calculate
successors; similarly, to perform topological sorting, we need to do the same.

In Figure 11.2, we present depth-first and breadth-first traversals. Let’s look at the
method traverseDepthFirst. It takes the starting point or starting vertex and then
the graph, which is a list of tuples. Each tuple represents an arc in the graph; the
relevant vertices are included implicitly. The method returns a list of vertices, which
is a list of String, in this implementation. Note that we have the private method
depthFirst, because we don’t want to expose the details outside. Also, this particular
implementation avoids list appending, which is expensive.

The inner method depthFirst takes a list of vertices and a list of visited vertices,
and returns a list of vertices as a result of depth-first traversal. The first case covers
the case that there are no more edges to traverse and the list of visited vertices is
returned. The second case does the magic of traversal. It applies depthFirst recur-
sively by passing suitable parameters. The first parameter is the remaining vertices
in the list of vertices. If a vertex has already been visited then the second parameter
is the visited list. If the vertex was not visited then a depth-first traversal must be
performed on its successors and the current vertex becomes part of the visited list.
This completes depth-first traversal.
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package com.equalinformation.dascala.scala.graphs

object GraphApp {
def main(args: Array[String]): Unit = {

val myGraph = List(("a", "b"), ("a", "c"), ("b", "d"),
("b", "e"), ("b", "c"), ("c", "e"), ("d", "f"))

println(calcSuccessorSet("b", myGraph))
}

def calcSuccessorSet(vertex: String, graph:
List[(String, String)]): List[String] = graph match {
case Nil => Nil
case x :: xs if (vertex == x._1) => x._2 ::

calcSuccessorSet(vertex, xs)
case _ :: xs => calcSuccessorSet(vertex, xs)

}
}

Fig. 11.1: A typical graph implementation

Now, let’s look at the method traverseBreadthFirst. The parameter lists are sim-
ilar to that of traverseDepthFirst method. Also we have a parallel private method
called breadthFirst. When there are no more edges to traverse the list of visited
vertices is returned, which is covered by the first case. The second case or clause
matches when x is already a member of the visited list of vertices. In this case, the
current vertex is skipped because it has already been visited. The last case matches
when x is encountered for the first time. Here, the list of vertices to be processed
is formed by appending successors of the current vertex to the remaining vertices
in the list. Since successors are appended, the children’s breadth-first traversal is
done later relative to the siblings’ breadth-first traversal. This guarantees breadth-
first traversal.

Exercise 11.1. *Performance Improvement of Breadth-First

In Figure 11.2, traverseBreadhFirst uses list appending, which is an expensive op-
eration in general. Improve this method by eliminating list appending. Hint: see the
implementation of the method traverseDepthFirst; a similar technique might work.
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package com.equalinformation.dascala.scala.graphs

object GraphTraversalApp {
def main(args: Array[String]): Unit = {

val myGraph = List(("a", "b"), ("a", "c"), ("b", "d"),
("b", "e"), ("b", "c"), ("c", "e"), ("d", "f"))

println(traverseDepthFirst("a", myGraph))
println(traverseBreadthFirst("a", myGraph))

}

def traverseDepthFirst(start: String, graph:
List[(String, String)]): List[String] = {
def depthFirst(vertices: List[String], visited:

List[String]): List[String] = vertices match {
case Nil => visited
case x :: xs => depthFirst(xs,

if(visited.contains(x)) visited
else depthFirst(calcSuccessorSet(x, graph),

x :: visited))
}

val result = depthFirst(List(start), List())
result.reverse

}

def traverseBreadthFirst(start: String,
graph: List[(String, String)]): List[String] = {
def breadthFirst(vertices: List[String], visited:

List[String]): List[String] = vertices match {
case Nil => visited
case x :: xs if visited.contains(x) =>

breadthFirst(xs, visited)
case x :: xs => breadthFirst(xs ++

calcSuccessorSet(x, graph), x :: visited)
}

val result = breadthFirst(List(start), List())
result.reverse

}

def calcSuccessorSet(vertex: String, graph:
List[(String, String)]): List[String] = graph match {
case Nil => Nil
case x :: xs if (vertex == x._1) => x._2 ::

calcSuccessorSet(vertex, xs)
case _ :: xs => calcSuccessorSet(vertex, xs)

}

}

Fig. 11.2: Graph traversal
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11.3 Analysis

A typical graph implementation code using a list is succinct. In fact, almost all
the code written primarily in functional style is terse, even though it might look
a bit abstract in the beginning. We used list element prepend (::) in almost all the
implementations in this chapter, primarily because it has better performance, i.e.,
the time complexity is O(1). The two primary language constructs used were pattern
matching and lists. We also made use of inner methods or private methods to hide
the details. Note how inner methods are used; first they are defined and then invoked
using a base case.

11.4 Application

Graphs have wide range of applications. Let’s first look at one of those applica-
tions from an implementation point of view. Topological sorting is a specific type
of sorting where items are sorted based on precedence. For example, we go to an
elementary school first and then to a middle school, and finally we wrap up our
K-12 education with a high school. If we are using a K-12 education system, an
elementary school has to come before a middle school and a middle school has to
come before a high school.

In Figure 11.3, we implement a topological sorting for events related to universi-
ties admission and graduation. myEventList contains a list of events as tuples. Each
tuple represents two adjacent vertices in a corresponding graph. Since it is a directed
graph, the arrow is from the first element of a tuple to the second element of that tu-
ple. This much information is sufficient to construct a graph. The tuples information
is related to precedence; however, there are alternate paths, and events in alternate
paths should follow precedence when sorted. For example, whether we go to CMU
or MIT, graduation comes after choosing a major. Similarly, in order to join either
of these universities, we first need to receive an admission offer. To receive an ad-
mission offer, we first need to apply. Application is not complete if there is no test
score, which means that we need to take standardized tests before completing our
applications. Normally, we don’t take test and then prepare for it.

Now, let’s analyze the code. As usual, we have an inner method called topSort
within the public method topologicalSort. The outer method accepts a list of tuples,
which is a graph representation. The inner method take a list of unvisited vertices
and a list of visited vertices. As the recursive structure continues, the list of unvis-
ited vertices shrinks and the list of visited vertices grows. The first match clause
represents completed traversal; in that case, the list of visited vertices is returned.
The second match clause takes care of an unvisited vertex in the list of vertices and
is done recursively until all unvisited vertices are covered. If a pre-visited vertex is
found then that vertex is skipped. Otherwise, the current vertex is prepended with
the result of topological sorting of its successors. This completes the topological
sorting.
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package com.equalinformation.dascala.scala.graphs

object TopologicalSortingApp {
def main(args: Array[String]): Unit = {

val myEventsList = List(("prepare_test", "take_test"),
("take_test", "apply"),
("apply", "receive_offer"),
("receive_offer", "join_CMU"),
("join_CMU", "choose_major"),
("choose_major", "graduate"),
("receive_offer", "join_MIT"),
("join_MIT", "choose_major"),
("choose_major", "graduate"))

println(topologicalSort(myEventsList))
}

def topologicalSort(graph: List[(String, String)]) = {
def topSort(vertices: List[String], visited:

List[String]): List[String] = vertices match {
case Nil => visited
case x :: xs => topSort(xs,

if(visited.contains(x)) visited
else x :: topSort(calcSuccessorSet(x, graph),

visited))
}

val (start, _) = graph.unzip
val result = topSort(start, List())
result

}

def calcSuccessorSet(vertex: String, graph: List[(String,
String)]): List[String] = graph match {
case Nil => Nil
case x :: xs if (vertex == x._1) => x._2 ::

calcSuccessorSet(vertex, xs)
case _ :: xs => calcSuccessorSet(vertex, xs)

}

}

Fig. 11.3: Topological sorting
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Exercise 11.2. Cycle Detection in Topological Sorting

Cycles can create confusion while ordering items, in terms of precedence. So it is
important to detect and handle them properly. For this exercise, return a separate list
of vertices that create cycles. So your result type is (List[String],List[String]). For
testing, add a tuple, (“choose ma jor”,“ join MIT ”) or something equivalent that
forms a cycle. If your program is implemented correctly, your output will look like:

(List(prepare_test, take_test, apply, receive_offer,
join_CMU, choose_major, join_MIT, graduate),
List(choose_major))

Note the second list and its content, choose ma jor.

One of the interesting applications of graphs is modeling electronic circuits. Air
traffic controllers can make use of graphs of flight networks. Similarly, highway
networks can be modeled with graphs for analysis and design. The other popu-
lar domains are the Internet, intranets, and the World-Wide Web (WWW). These
days, social networking applications make heavy use of graph models. There are
over a dozen graph-based databases. One of the state of the art graph databases is
Neo4j [Neo18]. Build tools like Maven, Make, or Ant utilize precedence. For exam-
ple, module A may have a dependency on module B. In this case, module B must
be built before module A can be built.

Exercise 11.3. Graph Databases Research

Make a list of known graph-based databases by searching online. From your list,
select the five most popular databases and analyze how graph theories were used
while building those databases. This should give you good idea of the importance
of graph-related structures and algorithms.

11.5 Dijkstra’s Shortest Path Algorithm

Let’s say you are a brilliant computer programmer working for one of the high-
est paying tech companies, in Silicon Valley, such as Google, Apple, Facebook,
or Amazon. You make a lot of money and would like to travel in order to get a
short break from your work. Let’s assume you are attracted by the beauty of the Hi-
malayas and have found Kathmandu as your destination. Further, let’s assume that
you want to spend as little as possible (even though you are traveling to one of the
magnificent Himalayan cities in Nepal) for your travel to Kathmandu and invest the
rest of your money so that you can travel to other destinations in the future. There
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are many transits that can be used to fly to Kathmandu. Also there are numerous
airline services that can be combined to fly to Kathmandu from Silicon Valley using
transits. In this context, it is desirable to find the most economical travel route. The
most economical route can be called the shortest path, in terms of cost. A famous
Dutch computer scientist, Dr. Edsger W. Dijkstra, conceived this algorithm in the
late 1950s.

Now, let’s first outline Dijkstra’s shortest path algorithm.

1. Select a start vertex; this is very likely to come from a problem definition
2. Initialize the distance of the start vertex from the start vertex as 0
3. Initialize the distance of all other vertices from the start vertex as ∞

4. WHILE there is at least one unvisited vertex
Visit the unvisited vertex with the smallest known distance from
the start vertex
FOR each unvisited neighbor of the current vertex

Calculate the distance from the start vertex
IF the calculated distance is less than the known distance

Update the shortest distance to this vertex
Update the previous vertex name with the current vertex name

END IF
Add the current vertex to the list of visited vertices

END WHILE

Now, let’s take a simple example and walk through the algorithm. We have a set
of vertices V = {P,Q,R,S,T}. Vertices are connected with bidirectional edges, i.e.,
there are cycles present. Dijkstra’s algorithm can work with cycles too. The weights
of the edges are shown in the small boxes. The graph is visualized in Figure 11.4.
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Fig. 11.4: Dijkstra’a algorithm: given problem

Now, let’s walk through the algorithm stepwise:
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• Step 1: Initial state: P is the starting vertex, the distance from P to P is 0, and
the distance from P to all other vertices is ∞. Visited = [] and Unvisited =
[P,Q,R,S,T ].
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Fig. 11.5: Dijkstra’a algorithm: S1 graph

This step is visualized in Figure 11.5 and the corresponding state information is
shown in Table 11.1.

Table 11.1: Dijkstra’s algorithm: S1 state

Vertex Shortest distance from P Previous vertex
P 0
Q ∞

R ∞

S ∞

T ∞

• Step 2: Visit P, distance is 0. Visit P’s neighbors: Q and S. The distance from
P to Q is 7 and the distance from P to S is 2. Since our shortest distances for
all other vertices are still ∞, we can update the calculated values. Visited = [P]
and Unvisited = [Q,R,S,T ]. Since we visited Q and S via P, we enter P as the
previous vertex for both.
This step is visualized in Figure 11.6 and the corresponding state information is
shown in Table 11.2.

• Step 3: The shortest known distance in the table is 2, which corresponds to vertex
S. So now we visit vertex S and calculate the distance from the starting vertex P to
its neighbors: Q and T. P is also the neighbor of S, but we won’t visit it because
we have already visited P. The calculated distance from P to Q is 5, which is
less than the known shortest distance 7. Hence 7 is replaced by 5. Similarly, the
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Fig. 11.6: Dijkstra’a algorithm: S2 graph

Table 11.2: Dijkstra’s algorithm: S2 state

Vertex Shortest distance from P Previous vertex
P 0
Q 7 P
R ∞

S 2 P
T ∞

shortest known distance for T is still ∞ and the calculated distance is 4. Hence
∞ is replaced by 4. This time, we visited Q via S, so the previous vertex P is
replaced by S. We visited T via S and hence the previous vertex is updated to S.
Visited = [P,S] and Unvisited = [Q,R,T ].
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Fig. 11.7: Dijkstra’a algorithm: S3 graph
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This step is visualized in Figure 11.7 and the corresponding state information is
shown in Table 11.3.

Table 11.3: Dijkstra’s algorithm: S3 state

Vertex Shortest distance from P Previous vertex
P 0
Q 5 S
R ∞

S 2 P
T 4 S

• Step 4: Among the unvisited vertices in the list, the vertex T has the shortest
distance from starting vertex A, so we visit vertex T, in this step. It has two
unvisited neighbors: Q and R. Now, distance from P to Q = distance from P to T
from the state table + distance from T to Q = 4+3 = 7. Similarly, the calculated
distance from P to R is 10. The shortest known distance for R is still ∞, so we
update it by 10. The shortest known distance for Q is 5, which is less than 7, so
we don’t update it. We add one more entry in the visited list, so Visited = [P,S,T ]
and Unvisited = [Q,R].
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Fig. 11.8: Dijkstra’a algorithm: S4 graph

This step is visualized in Figure 11.8 and the corresponding state information is
shown in Table 11.4.

• Step 5: Following the same logic, we visit Q next. It has only one unvisited
neighbor, R. The calculated distance from P to R via Q = 5+ 6 = 11, which is
greater than the existing entry for R. So we don’t update the shortest distance.
Since the shortest distance is not updated, we don’t have to update previous ver-
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Table 11.4: Dijkstra’s algorithm: S4 state

Vertex Shortest distance from P Previous vertex
P 0
Q 5 S
R 10 T
S 2 P
T 4 S

tex. Again, we add one more entry in the visited list, so Visited = [P,S,T,Q] and
Unvisited = [R].
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Fig. 11.9: Dijkstra’a algorithm: S5 graph

This step is visualized in Figure 11.9 and the corresponding state information is
available in Table 11.5.

Table 11.5: Dijkstra’s algorithm: S5 state

Vertex Shortest distance from P Previous vertex
P 0
Q 5 S
R 10 T
S 2 P
T 4 S

• Step 6: Finally, we visit R as it has the shortest known distance from the starting
vertex P, among unvisited vertices; it is the only unvisited vertex left. Since it
doesn’t have any unvisited neighbors, we only update the visited and unvisited
lists. So Visited = [P,S,T,Q,R] and Unvisited = [].
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Fig. 11.10: Dijkstra’a algorithm: S6 graph

This step is visualized in Figure 11.10 and the corresponding state information is
shown in Table 11.6.

Table 11.6: Dijkstra’s algorithm: S6 state

Vertex Shortest distance from P Previous vertex
P 0
Q 5 S
R 10 T
S 2 P
T 4 S

Now, if we look at our final state in Table 11.5, we find the shortest distance to
each of the vertices from the starting vertex P. This answers many questions, because
it is an exhaustive computation. In a given graph, we can find the minimum cost path
from a vertex of interest to any other vertex. If we are only interested in reaching
a specific destination, this greedy algorithm has a downside, i.e., it still has to do
exhaustive computation. Nevertheless, Dijkstra’s algorithm solves many practical
problems.

Next, we will take a practical problem and solve it using a Dijkstra’s algorithm
implementation in Scala. Based on Google Flights data points, Figure 11.11 presents
partial flight routes from San Francisco International Airport (SFO) in San Fran-
cisco, CA, USA to Tribhuvan International Airport (KTM) in Kathmandu, Nepal
for 11-04-2018. The total costs are the actual costs of different routes, whereas the
breakdown of each route cost is arbitrary. The costs keep changing, so arbitrary
breakdown won’t affect our exercise.
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Fig. 11.11: Flight routes: San Francisco (SFO) to Kathmandu (KTM) 11-04-2018
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Exercise 11.4. State Graphs and Tables

For the flight graph network presented in Figure 11.11, apply Dijkstra’s shortest
path algorithm and create all the relevant state graphs and tables.

Exercise 11.5. Graph Building Blocks

In order to implement the flight graph network presented in Figure 11.11 using Di-
jkstra’s shortest path algorithm, you will need basic graph-related building blocks.
Perform the following building-blocks work before implementing Dijkstra’s algo-
rithm:

1. Implement a trait called MyGraph with these functions: edges, addEdge, and
neighbors. The function edges returns a list of vertices, the function addEdge
returns a graph that has the currently supplied vertex, and the function neighbors
returns a list of neighboring vertices of a given vertex.

2. Also implement a companion object called MyGraph with two apply meth-
ods. The signature of the first apply method is apply[V](adjacencyList: Map[V,
List[V]]): MyGraph[V]. The signature of the second apply method is apply[V ]() :
MyGraph[V ].

3. Implement a class called MyDirectedGraph that extends the trait MyGraph.
Here is a partial implementation:

class MyDirectedGraph[V](adjacencyList: Map[V,
List[V]]) extends MyGraph[V] {
override def vertices: List[V] =

adjacencyList.keys.toList

// Implement rest of the methods
}

4. Implement a class called MyUnDirectedGraph that extends MyDirectedGraph
so that previous implementation is reused. You only need to override the addEdge
method. Unlike the implementation in MyDirectedGraph, this method keeps
track of the neighbors of both the source vertext and the target vertex.

5. Implement a class called MyWeightedGraph that takes care of edge weight. This
class extends the trait MyGraph. Create a case class called MyWeightedEdge
that has two constructor parameters—destination vertex and weight. In addition
to overriding the trait methods, add a method called addEdge which takes the
source vertex and an instance of MyWeightedEdge as its parameters so that
weight of the edge added can be taken care of. Similarly, add a method called
neighborsWithWeight that returns a list of weighted edges instead of a list of
vertices.

6. Finally, write a test application to test your implementation. This test application
should create a graph with some sample data. You may use your own sample data
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or use the sample data provided below. In your test application, print the vertices
of your graph so that you can verify that your implementation actually creates a
graph correctly. Also print the neighbors of a given vertex so that you can validate
the correctness of your implementation. A sample data set and a sample console
output is shown below.
Sample data:

val myGraph = MyGraph[String]()
.addEdge("San Francisco", "Hong Kong")
.addEdge("Hong Kong", "Kathmandu")
.addEdge("Kathmandu", "San Francisco")
.addEdge("Kathmandu", "Bangkok")
.addEdge("Bangkok", "San Francisco")
.addEdge("Pokhara", "Bangkok")

Sample output for the list of vertices and neighbors of vertex “Kathmandu”, re-
spectively:

List(San Francisco, Bangkok, Kathmandu, Pokhara,
Hong Kong)

List(Bangkok, San Francisco)

We have done the prerequisite exercise, so we are ready to implement a Dijkstra’s
shortest path-based solution for the problem presented in Figure 11.11. We first
create a weighted graph as shown in Figure 11.12. All the edges in Figure 11.11 are
represented along with their weights. MyWeightedEdge is a class with the following
definition:

case class MyWeightedEdge[V](dest: V, weight: Int)

It takes the destination vertex and weight as its constructor parameters. One of the
advantages of using a case class is that it can be used for pattern matching. The
class MyWeightedGraph takes the adjacency list as its constructor parameter. The
adjacency list is a map of vertices and a list of weighted edges. A partial class
definition is shown below:

class MyWeightedGraph[V](adjacencyList: Map[V,
List[MyWeightedEdge[V]]]) extends MyGraph[V] {
// Methods implementation here

}

It extends the trait MyGraph, which has four methods. The first method, vertices,
returns a list of vertices. Similarly, the method edges returns a list of edges. The
method addEdge takes a source vertex and a destination vertex as its input param-
eters. These vertices are added in the list and a corresponding graph is returned.
The method neighbors takes a vertex and returns its neighbors as a list of vertices.
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MyWeightedGraph overloads the addEdge method to facilitate edge-weight han-
dling. Also it has a method called neighborsWithWeight, which takes a vertex and
returns a list of weighted edges. Here is the definition of the trait MyGraph

trait MyGraph[V] {
def vertices: List[V]
def edges: List[(V,V)]
def addEdge(a: V, b: V): MyGraph[V]
def neighbors(x: V): List[V]

}

package com.equalinformation.dascala.scala.graphs.dijkstra_spm

object MyTravelGraph {
val travelGraph = new MyWeightedGraph(Map("San Francisco"

-> Nil))
.addEdge("San Francisco", MyWeightedEdge("Vancouver",
348))

.addEdge("San Francisco", MyWeightedEdge("Los Angeles",
200))

.addEdge("San Francisco", MyWeightedEdge("Guangzhou",
680))

.addEdge("San Francisco", MyWeightedEdge("Hong Kong",
530))

.addEdge("San Francisco", MyWeightedEdge("Dubai", 800))

.addEdge("San Francisco", MyWeightedEdge("Shanghai", 382))

.addEdge("San Francisco", MyWeightedEdge("New York", 500))

.addEdge("San Francisco", MyWeightedEdge("Istanbul", 499))

.addEdge("San Francisco", MyWeightedEdge("Delhi", 1547))

.addEdge("Vancouver", MyWeightedEdge("Guangzhou", 686))

.addEdge("Los Angeles", MyWeightedEdge("Guangzhou", 500))

.addEdge("Shanghai", MyWeightedEdge("Bangkok", 160))

.addEdge("New York", MyWeightedEdge("Doha", 800))

.addEdge("Bangkok", MyWeightedEdge("Kunming", 145))

.addEdge("Guangzhou", MyWeightedEdge("Kathmandu", 214))

.addEdge("Hong Kong", MyWeightedEdge("Kathmandu", 400))

.addEdge("Kunming", MyWeightedEdge("Kathmandu", 105))

.addEdge("Doha", MyWeightedEdge("Kathmandu", 1287))

.addEdge("Istanbul", MyWeightedEdge("Kathmandu", 300))

.addEdge("Delhi", MyWeightedEdge("Kathmandu", 300))

.addEdge("Kathmandu", MyWeightedEdge("Delhi", 300))

}

Fig. 11.12: Travel route graph
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In Figure 11.13, we present Dijkstra’s shortest path implementation for the prob-
lem presented in Figure 11.11. Note that the airport codes are replaced by the cor-
responding cities in Figure 11.12, which are more convenient to analyze.

Now, let’s discuss the code in Figure 11.13. First, we have a case class called
ShortestStep, which has three constructor parameters—parents, unVisited, and
distances. So we are keeping track of visited nodes, the nodes to be visited, and
costs. Costs are represented by edge weights and represented by the parameter
distances in the program. In the beginning, all distances will be ∞ except for the
starting vertex, which is 0. We have a method to find the minimum, because this is
what we are interested in with Dijkstra’s algorithm. This method uses a Try struc-
ture to recover from exceptions. If a value is not found then it can return None. The
f indMin method is used to calculate the shortest path.

Next, we create a distances map, denoted by distancesMap in the program. We
create it using the graph that we built in Figure 11.12. In the beginning, except for
the starting node, Dijkstra’s algorithm initializes all the distances to ∞, so we map
them to a maximum integer value and convert the results to a map. Also we add the
starting vertex map, (“SanFrancisco” −> 0).

Next, let’s discuss the f indShortestPath method. We supply a ShortestStep in-
stance that has all the required information—visited vertices map, unvisited vertices,
and distances map. It is a recursive method and we start by finding minimum in the
ShortStep and assign that to a tuple containing vertex and current distance. Next,
we recompute distances for all the neighbors of the current node that we are visiting.
We do that by getting all the neighbors of the current node being processed. And we
only collect such neighbors whose distance from the starting node is greater than
the sum of the current node’s distance and weight of edge from the current node to
this neighbor. If there is such a node then we replace the distance of this neighbor
with currentDist +w, because this is the new shortest distance from the starting
node. Next, we create the parents map newParents to take care of newly created or
changed distances. If there is any node whose distance has changed then that node’s
new parent is the current node being visited. Then we make a recursive call in which
the current parents are replaced by new parents, the current node being processed is
taken out of the unvisited list, and the distances are replaced by the new distances.
Lastly, either we get the recursive step or the stopping condition using getOrElse.
When there are no more nodes to visit we reach a stopping step. In that case, we
return the step unmodified.

The method extractShortestPaths extracts the shortest paths so that we can print
them for manual validation. It takes a vertex whose shortest path we are interested
in and then its parents map. It returns a list of vertices that we need to visit in order
to get to this vertex. It gets a parent node to this node and prepends that to the
list. It does it recursively to get the parent of a parent and so on until there are no
more parents left. When no more parent vertices are left it returns the list of vertices
accumulated so far, which gives the shortest path to the vertex parameterized to this
method.

In the main method, we write a helper function spResult that helps us to print
the shortest path. So we invoke the shortestPath method which takes ShortStep as
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its parameter. For ShortStep, we supply an empty map for parents as there are no
parents initially. We pass all the vertices as unvisited, which is true initially. The
third parameter gets distanceMap, in which all the distances are initialized with the
maximum integer value, as ∞ cannot be processed, along with the starting vertex
being initialized to 0. Next, we print all the distances from spResult, which gives
us the minimum cost of flight to that airport. In the last LOC, we print the shortest
path for each airport in the flight route graph presented in Figure 11.11. We achieve
this by traversing each vertex in travelGraph. For each vertex traversed, we extract
the shortest path by passing that vertex and parents from spResult to the method
extractShortestPaths. This completes our discussion of the solution presented in
Figure 11.13. The console output is shown below.

Map(San Francisco -> 0, Shanghai -> 382,
Bangkok -> 542, Kathmandu -> 792, Doha -> 1300,
Delhi -> 1092, Los Angeles -> 200, New York -> 500,
Hong Kong -> 530, Istanbul -> 499,
Vancouver -> 348, Kunming -> 687, Guangzhou -> 680)

List(San Francisco)
List(San Francisco, Shanghai)
List(San Francisco, Shanghai, Bangkok)
List(San Francisco, Shanghai, Bangkok, Kunming,

Kathmandu)
List(San Francisco, New York, Doha)
List(San Francisco, Shanghai, Bangkok, Kunming,

Kathmandu, Delhi)
List(San Francisco, Los Angeles)
List(San Francisco, New York)
List(San Francisco, Hong Kong)
List(San Francisco, Istanbul)
List(San Francisco, Vancouver)
List(San Francisco, Shanghai, Bangkok, Kunming)
List(San Francisco, Guangzhou)

Exercise 11.6. *Dijkstra’s Shortest Path with Multi-Weight Edges and
Weighted Vertices

The flight network presented in Figure 11.11 has an additional weight associated
with each edge, which is flight time. Every vertex other than SFO and KTM has
an associated weight, which is layover. Now, we have time as well as cost coming
into the picture. Outline the solution steps. Examine whether Dijkstra’s shortest path
algorithm (SPM) can still be applied. If it can be applied, create relevant state graphs
and tables. Also provide a corresponding Scala implementation. If Dijkstra’s SPM
cannot be applied, provide your reasoning.
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package com.equalinformation.dascala.scala.graphs.dijkstra_spm
import com.equalinformation.dascala.scala.graphs.dijkstra_spm

.MyTravelGraph.travelGraph

import scala.util.Try

case class ShortestStep(parents: Map[String, String],
unVisited: Set[String],
distances: Map[String, Int]) {
def findMin(): Option[(String, Int)] =

Try(unVisited.minBy(x => distances(x))).toOption.map(x =>
(x, distances(x)))

}

object MyTravelDijkstraShortestPathApp {
def main(args: Array[String]): Unit = {

val spResult = findShortestPath(ShortestStep(Map(),
travelGraph.vertices.toSet, distancesMap))

println(spResult.distances)
travelGraph.vertices.foreach(x =>

println(extractShortestPaths(x,
spResult.parents).reverse))

}

val distancesMap = travelGraph.vertices.map(_ ->
Int.MaxValue).toMap + ("San Francisco" -> 0)

def findShortestPath(step: ShortestStep): ShortestStep = {
step.findMin().map {

case (x, currentDist) => {
val newDists = travelGraph.neighborsWithWeight(x)

.collect {
case MyWeightedEdge(y, w) if step.distances
.get(y).exists(_ > currentDist + w) =>
y -> (currentDist + w)

}

val newParents = newDists.map {
case (y, _) => y -> x

}

findShortestPath(ShortestStep(step.parents ++
newParents, step.unVisited - x, step.distances ++
newDists))

}

}.getOrElse(step)

}

def extractShortestPaths(vertex: String, parents:
Map[String, String]): List[String] = parents.get(vertex)
.map(x => vertex +: extractShortestPaths(x, parents))
.getOrElse(List(vertex))

}

Fig. 11.13: Dijkstra’s shortest path implementation for travel route graph



Appendix A
Solutions for Selected Exercises

A.1 Chapter 3

• Solution for Exercise 3.1:

package com.equalinformation.dascala.scala.arrays

object MethodLengthApp {
def main(args: Array[String]): Unit = {

println(calcLength(Array(’a’, ’e’, ’i’, ’o’, ’u’, ’\0’)))
}

def calcLength(item: Array[Char]): Int = {
var count = 0
while(item(count) != ’\0’) {

count += 1
}

count
}

}

The solution presented above iterates through each element of the input character
array and hence it has time complexity of O(n).

• Solution for Exercise 3.3
One of the array-oriented databases that has both industrial as well as academic
research aspects is SciDB [Sci18] [CMMK+18]. SciDB has a consortium of dis-
tributed research and development teams located at MIT, Microsoft, Brown Uni-
versity, The University of Wisconsin-Madison, etc. It is an open-source, array-
oriented, declarative, shared-nothing, and extensible database. The high-level ar-
chitectural components include SciDB Application, Language Specific UI, Run-
time Supervisor, Query Interface and Parser, Plan Generator, and Storage Layer.

121© Springer Nature Switzerland AG 2019
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The storage layer is a multi-node structure and each node consists of a Local
Executor and Storage Manager. A typical query execution request flows from
SciDB Application to Storage Layer.

The data model consists of nested, multidimensional arrays as first-class cit-
izens. It has basic data types and allows user-defined data types as well. The
storage model supports array partitioning, with co-location of values that are
related to adaptive chunking, dense packing, and compression. On-disk repre-
sentations include dense arrays and sparse arrays. Dense arrays are extremely
compact. Also the model allows co-location of nested arrays with reference to
the parent array. In terms of redundancy, it allows array replication and chunking
with overlapping that enables parallel processing.

As far as operators are concerned, SciDB supports an Array-Oriented Query
Language (AQL). There are three types of operators—structural (add dimen-
sion, concatenate, etc.), content-dependent (filter, select, etc.), and structural and
content-dependent (joins). There are generic operators to scatter and gather array
chunks and values, in distributed environments. A typical AQL statement looks
like:

CREATE ARRAY MyArray
< A: integer NULLS,

B: double,
C: USER_DEFINED_TYPE >

[ I=0:999999, 10000, 100, J=0:999999, 10000,
100 ]

PARTITION OVER ( Node1, Node2, Node3 )
USING block_cyclic();

In this query, the attribute names are A, B, and C; I and J are index names;
chunk size is 10,000 and overlap is defined as 100. Note that the content inside a
pair of square brackets looks like a loop. We had a similar structure in our matrix
multiplication application presented in Figure 3.1.

Research has shown that the array approach has many advantages for big
data, including data partitioning convenience to allow both parallel and sequen-
tial processing, direct offsetting and omission of index attributes, and efficient
as well as convenient multi-dimensional representation and processing. Also,
benchmarking has shown that the array approach performs better than the tra-
ditional RDBMS style of representation and processing of data [CMMK+18].

A.2 Chapter 4

• Solution for Exercise 4.2:
First, using f old,

scala> myNumList.fold(0) { (acc, x) => acc + x }
res6: Int = 12
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scala> myNumList.fold(0)(_ + _)
res7: Int = 12

f old doesn’t have a particular order, as opposed to f oldLe f t and f oldRight.
Here is one possible sequence of steps for f old.

op(acc = 0, x = 2), op(acc = 0, x = 4);
2, op(acc = 4, x = 6)

or, 2, op(op(acc = 0, x = 4), 6);
op(acc = 2, x = 10)

or, op(acc = 2, op(op(acc = 0, x = 4), 6));

Now, using f oldLe f t,

scala> val myNumList: List[Int] = List(2,4,6)
myNumList: List[Int] = List(2, 4, 6)

scala> myNumList.foldLeft(0) {
(acc, x) => acc + x }

res0: Int = 12

scala> myNumList.foldLeft(3) {
(acc, x) => acc + x }

res1: Int = 15

scala> myNumList.foldLeft(0)(_ + _)
res2: Int = 12

scala> myNumList.foldLeft(3)(_ + _)
res3: Int = 15

The f oldLe f t function in our code snippet takes two arguments—an initial value
and a pre-defined combining operation op that takes two arguments: the accu-
mulated value acc and the current value. It processes the traversable list in this
case from left to right. Note that the code snippet above presents two different
solutions with different initial values to give an idea of how an initial value is
processed.
Here is how op is applied in steps:

op(acc = 0, x = 2) // 2;
op(acc = 2, x = 4) // 6

or, op(op(acc = 0, x = 2), 4);
op(acc = 6, x = 6) // 12,

or, op(op(op(acc = 0, x = 2), 4), 6);

Now, using f oldRight, we get the same result but the internal computational
steps are different.
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scala> myNumList.foldRight(0) {
(acc, x) => acc + x }

res4: Int = 12

scala> myNumList.foldRight(0)(_ + _)
res5: Int = 12

In this case, the detailed steps are:

op(acc = 0, x = 6) // 6;
op(acc = 6, x = 4) // 10

or, op(op(acc = 0, x = 6), 4);
op(acc = 10, x = 2) // 12

or, op(op(op(acc = 0, x = 6), 4), 2);

• Solution for Exercise 4.3

1. Getting the value for a given integer index:

scala> val myNumList: List[Int] = List(2,4,6)
myNumList: List[Int] = List(2, 4, 6)

scala> def get[A](list: List[A], index: Int): A =
| list.tail.foldLeft(list.head, 0) {
| (x, y) => if(x._2 == index) x else (y, x._2 +1)
| } match {
| case (result, ind) if (index == ind) => result
| case _ => throw new Exception("Incorrect index")
| }
get: [A](list: List[A], index: Int)A

scala> get(myNumList, 0)
res12: Int = 2

scala> get(myNumList, 2)
res13: Int = 6

scala> get(myNumList, 3)
java.lang.Exception: Incorrect index
at .get(<console>:15)
... 33 elided

2. Calculating the average of values:

scala> val myNewNumList = List(2.0, 4.0, 6.0)
myNewNumList: List[Double] = List(2.0, 4.0, 6.0)

scala> def calcAverage(list: List[Double]):
| Double = list match {
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| case head :: tail => tail.foldLeft(head, 1.0) {
| (x, y) =>
| ((x._1 * x._2 + y)/(x._2 + 1.0), x._2 + 1.0)
| }._1
| case Nil => throw new Exception("Not a Number")
| }
calcAverage: (list: List[Double])Double

scala> calcAverage(myNewNumList)
res16: Double = 4.0

3. Reversing a given list:

scala> def rev[A](list: List[A]): List[A] =
list.foldLeft(List[A]()) { (x, y) => y :: x}

rev: [A](list: List[A])List[A]

scala> rev(myNumList)
res11: List[Int] = List(6, 4, 2)

4. Getting the last element of a list using f oldLe f t:

scala> def getLast[A](list: List[A]): A =
list.foldLeft[A](list.head) { (_, x) => x }

getLast: [A](list: List[A])A

scala> getLast(myNumList)
res9: Int = 6

5. Calculating the length of a list using f oldLe f t:

scala> def listLength(list: List[Any]): Int =
list.foldLeft(0) { (count, _) => count + 1}

listLength: (list: List[Any])Int

scala> listLength(myNumList)
res8: Int = 3

A.3 Chapter 5

• Solution for Problem 5.2:
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package com.equalinformation.dascala.scala.stacks

class MyStackGen(maxSize: Int) {
private var stackBox = new Array[Any](maxSize)
private var top = -1

def push(data: Any): Unit = {
top += 1
stackBox(top) = data

}

def pop(): Any = {
val popData = stackBox(top)
top -= 1
popData

}

def peek(): Any = {
stackBox(top)

}

def isEmpty(): Boolean = {
return (top == -1)

}

def isFull(): Boolean = {
return (top == maxSize - 1)

}
}

object WordReverseImpApp {
def main(args: Array[String]): Unit = {

print("Enter a word: ")
val inputWord = scala.io.StdIn.readLine().toString
val myReverser = new Reverser(inputWord)

println("Reverse word: "+myReverser.reverse)
}

}

A.4 Chapter 6

• Solution for Problem 6.2:
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package com.equalinformation.dascala.scala.queues

case class FQueueGen(out: List[Any], in: List[Any]) {
def check(): Boolean = (out, in) match {

case (Nil, x :: xs) => false
case _ => true

}

require(check, "Didn’t satisfy invariant")
}

object FunctQueueGenApp {
def main(args: Array[String]): Unit = {

val myQueue = insert("apple", insert("banana",
insert("mango", FQueueGen(Nil, Nil))))

println(remove(remove(myQueue)._2))
}

def insert(data: Any, queue: FQueueGen): FQueueGen = {
val newIn = data :: queue.in
queue.out match {

case Nil => FQueueGen(newIn.reverse, Nil)
case _ => queue.copy(in = newIn)

}
}

def remove(queue: FQueueGen): (Any, FQueueGen) = {
queue.out match {

case Nil => throw new
IllegalArgumentException("Queue is empty!")

case x :: Nil => (x, queue.copy(out =
queue.in.reverse, Nil))

case y :: ys => (y, queue.copy(out = ys))
}

}

}

A.5 Chapter 8

• Solution for Exercise 8.1: see Figure A.1.
• Solution for Exercise 8.2: see Figure A.2.
• Solution for Exercise 8.3: see Figure A.3.
• Solution for Exercise 8.4: see Figure A.4.
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package com.equalinformation.dascala.scala.bin_trees

object CompareBinTreesApp {
def main(args: Array[String]): Unit = {

val binTree1 = createTree(List(1,2,3,4,5))
val binTree2 = createTree(List(2,1,3,4,5))
println(equal(binTree1, binTree2))

}

def equal[A](binTree1: BinaryTree[A], binTree2:
BinaryTree[A]): Boolean = (binTree1, binTree2) match {
case (Leaf, Leaf) => true
case (Branch(v1, lb1, rb1), Branch(v2, lb2, rb2)) if v1

== v2 => equal(lb1, lb2) && equal(rb1, rb2)
case _ => false

}

def createTree[A](list: List[A]): BinaryTree[A] =
list match {
case Nil => Leaf
case x :: xs => {

val halfLength = xs.length / 2
Branch(x, createTree(xs.take(halfLength)),

createTree(xs.drop(halfLength)))
}

}
}

Fig. A.1: Binary tree equality check

package com.equalinformation.dascala.scala.bin_trees

object CompleteBinaryTreeApp {
def main(args: Array[String]): Unit = {

val myCompleteBinTree = createCompleteBinaryTree(2, 3);
println(myCompleteBinTree)

}

def createCompleteBinaryTree(value: Int, depth: Int):
BinaryTree[Int] =
if(depth == 0) Leaf
else Branch(value, createCompleteBinaryTree(2 * value,

depth - 1), createCompleteBinaryTree(2 * value + 1,
depth -1))

}

Fig. A.2: Complete binary tree



A.5 Chapter 8 129

package com.equalinformation.dascala.scala.bin_trees

object BinTreeFlippingApp {
def main(args: Array[String]): Unit = {

val myList = List(1,2,3,4,5,6)
val myBinTree = createTree(myList)
println(myBinTree)
println(flip(myBinTree))

}

def flip[A](binTree: BinaryTree[A]): BinaryTree[A] =
binTree match {
case Leaf => Leaf
case Branch(value, leftBranch, rightBranch) =>

Branch(value, flip(rightBranch), flip(leftBranch))
}

def createTree[A](list: List[A]): BinaryTree[A] =
list match {
case Nil => Leaf
case x :: xs => {

val halfLength = xs.length / 2
Branch(x, createTree(xs.take(halfLength)),

createTree(xs.drop(halfLength)))
}

}

}

Fig. A.3: Binary tree flipping
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package com.equalinformation.dascala.scala.bin_trees

object BinTreeFlipCheckApp {
def main(args: Array[String]): Unit = {

val myList = List(1,2,3,4,5,6)
val myBinTree = createTree(myList)
val myBinTreeFlipped = flip(myBinTree)
println(myBinTree)
println(myBinTreeFlipped)
println(flipEqual(myBinTree, myBinTreeFlipped))

}

def flipEqual[A](binTree1: BinaryTree[A], binTree2:
BinaryTree[A]): Boolean = (binTree1, binTree2) match {
case (Leaf, Leaf) => true
case (Branch(value1, leftBranch1, rightBranch1),

Branch(value2, leftBranch2, rightBranch2)) if
value1 == value2 => flipEqual(leftBranch1,
rightBranch2) && flipEqual(leftBranch2, rightBranch1)

case _ => false
}

def createTree[A](list: List[A]): BinaryTree[A] =
list match {
case Nil => Leaf
case x :: xs => {

val halfLength = xs.length / 2
Branch(x, createTree(xs.take(halfLength)),

createTree(xs.drop(halfLength)))
}

}

def flip[A](binTree: BinaryTree[A]): BinaryTree[A] =
binTree match {
case Leaf => Leaf
case Branch(value, leftBranch, rightBranch) =>

Branch(value, flip(rightBranch), flip(leftBranch))
}

}

Fig. A.4: Binary tree flipped equality check
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A.6 Chapter 9

• Solution for Exercise 9.1: see Figure A.5.

package com.equalinformation.dascala.scala.sorting

object BubbleSortDescApp {
def main(args: Array[String]): Unit = {

println(bubbleSortDesc(List(3,1,6,8,2)))
println(bubbleSortDesc(List("z", "c", "a", "b")))

}

def bubbleSortDesc[T <% Ordered[T]](myData: List[T]):
List[T] = myData match {
case Nil => Nil
case _ => {

val (min, remainingData) = calcMin(myData)
bubbleSortDesc(remainingData) ::: List(min)

}
}

def calcMin[T <% Ordered[T]](myData: List[T]): (T,
List[T]) = myData match {
case (Nil) => (null.asInstanceOf[T], Nil)
case (head :: Nil) => (head, Nil)
case (head :: tail) => {

val (tailMin, tailRemaining) = calcMin(tail)
if (tailMin <= head) (tailMin, head :: tailRemaining)
else (head, tailMin :: tailRemaining)

}
}

}

Fig. A.5: Bubble sort: descending

• Solution for Exercise 9.3: see Figure A.6.
• Solution for Exercise 9.5: see Figure A.7.
• Solution for Exercise 9.7: see Figure A.8.
• Solution for Exercise 9.9: see Figure A.9.
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package com.equalinformation.dascala.scala.sorting

object SelectionSortDescApp {
def main(args: Array[String]): Unit = {

println(selectionSortDesc(List(5,3,2,8,7)))
println(selectionSortDesc(List("k","d","c","a","q")))

}

def selectionSortDesc[T <% Ordered[T]](myData:
List[T]): List[T] = myData match {
case Nil => Nil
case head :: Nil => List(head)
case head :: tail => {

val maxElem = tail.max
val indexOfMaxElem = tail.indexOf(maxElem)
if(head >= maxElem) {

head :: selectionSortDesc(tail)
} else {

val (tailHalf1, tailHalf2) =
tail.splitAt(indexOfMaxElem)

tailHalf2.head :: selectionSortDesc(tailHalf1 :::
head :: tailHalf2.tail)

}
}

}
}

Fig. A.6: Selection sort: descending
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package com.equalinformation.dascala.scala.sorting

object InsertionSortDescApp {
def main(args: Array[String]): Unit = {

println(insertionSortDesc(List(15,10,33,11)))
println(insertionSortDesc(List("banana","apple",

"mango")))
}

def insertionSortDesc[T <% Ordered[T]](myData: List[T]):
List[T] = {
if (myData == Nil) {

myData
} else {

val head :: tail = myData
val temp = insertionSortDesc(tail)
insertElementDesc(head, temp)

}
}

def insertElementDesc[T <% Ordered[T]](elem: T,
sortedSubList: List[T]): List[T] = {
if(sortedSubList == Nil) {

return elem :: sortedSubList
} else {

val head :: tail = sortedSubList
if (head >= elem) {

head :: insertElementDesc(elem, tail)
} else {

elem :: sortedSubList
}

}
}

}

Fig. A.7: Insertion sort: descending
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package com.equalinformation.dascala.scala.sorting

object MergeSortDescApp {
def main(args: Array[String]): Unit = {

println(mergeSortDesc(List(5,6,2,3,1)))
println(mergeSortDesc(List("cat", "put", "bag")))

}

def mergeSortDesc[T <% Ordered[T]](myData: List[T]):
List[T] = {
if( myData == Nil || myData.tail == Nil) {

return myData
}

val (myDataSplit1, myDataSplit2) = split(myData)
val sortedSL1 = mergeSortDesc(myDataSplit1)
val sortedSL2 = mergeSortDesc(myDataSplit2)
mergeDesc(sortedSL1, sortedSL2)

}

def mergeDesc[T <% Ordered[T]](sortedSubList1: List[T],
sortedSubList2: List[T]): List[T] = (sortedSubList1,
sortedSubList2) match {
case (sortedSubList1, Nil) => sortedSubList1
case (Nil, sortedSubList2) => sortedSubList2
case (x1 :: y1, x2 :: y2) =>

if (x1 < x2) x2 :: mergeDesc(sortedSubList1, y2)
else x1 :: mergeDesc(y1, sortedSubList2)

}

def split[T <% Ordered[T]](myData: List[T]): (List[T],
List[T]) = {
if (myData == Nil) {

return (Nil, Nil)
}

val headOfmyData = myData.head
val tailOfmyData = myData.tail
if(tailOfmyData == Nil) {

return (headOfmyData :: Nil, Nil)
}
val headOfTailOfmyData = tailOfmyData.head
val tailOfTailOfmyData = tailOfmyData.tail
val (tailOfTailOfmyDataSplit1, tailOfTailOfmyDataSplit2)

= split(tailOfTailOfmyData)
return (headOfmyData :: tailOfTailOfmyDataSplit1,

headOfTailOfmyData :: tailOfTailOfmyDataSplit2)
}

}

Fig. A.8: Merge sort: descending
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package com.equalinformation.dascala.scala.sorting

object QuickSortDesc {
def main(args: Array[String]): Unit = {

println(quickSortDesc(List(5,2,1,6,7)))
println(quickSortDesc(List("grape","apple","apricot")))

}

def quickSortDesc[T <% Ordered[T]](myData:
List[T]): List[T] = myData match {
case Nil => Nil
case head :: Nil => List(head)
case head :: tail => {

val (p1, p2) = partitionDesc(head, tail, Nil, Nil)
val leftToPivot = quickSortDesc(p1)
val rightToPivot = quickSortDesc(p2)
val temp = head :: rightToPivot
return leftToPivot ++ temp

}
}

def partitionDesc[T <% Ordered[T]](pivot: T, myData:
List[T], p1: List[T], p2: List[T]): (List[T], List[T]) =
myData match {
case Nil => (p1, p2)
case head :: tail =>

if (head > pivot) partitionDesc(pivot, tail, head ::
p1, p2)

else partitionDesc(pivot, tail, p1, head :: p2)
}

}

Fig. A.9: Quick sort: descending
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A.7 Chapter 10

• Solution for Exercise 10.1:

package com.equalinformation.dascala.scala.searching

object NaiveSubstringSearchImperativeApp {
def main(args: Array[String]): Unit = {

val myData1 = "This is an imperative implementation."
val myWords1 = "imperative"
println(naiveSubstringSearchImperative(myWords1,

myData1))
}

def naiveSubstringSearchImperative(myWords: String,
myData:String): Int = {
var index = -1
for(i <- 0 to myData.length - myWords.length if

index == -1) {
var j = 0

while(j < myWords.length && myData(i + j) ==
myWords(j)) {
j += 1

}

if (j == myWords.length) {
index = i

}
}

index
}

}

A.8 Chapter 11

• Solution for Exercise 11.2: see Figure A.10.
• Solution for Exercise 11.5: see Figure A.11 to Figure A.15.
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package com.equalinformation.dascala.scala.graphs

object TopologicalSortCycleDetectionApp {
def main(args: Array[String]): Unit = {

val myEventsList = List(("prepare_test", "take_test"),
("take_test", "apply"),
("apply", "receive_offer"),
("receive_offer", "join_CMU"),
("join_CMU", "choose_major"),
("choose_major", "graduate"),
("receive_offer", "join_MIT"),
("join_MIT", "choose_major"),
("choose_major", "graduate"),
("choose_major", "join_MIT"))

println(topoSortDetectCycle(myEventsList))
}

def topoSortDetectCycle(graph: List[(String, String)]) = {
def topoSort(vertices: List[String], path: List[String],

vc: (List[String], List[String])): (List[String],
List[String]) = vertices match {
case Nil => vc
case x :: xs => {

val (visited, cycle) = vc
topoSort(xs, path,

if (path.contains(x)) (visited, x :: cycle)
else if (visited.contains(x)) vc
else addToVisitedTL(x, topoSort(
calcSuccessorSet(x, graph), x :: path, vc))

)
}

}

val (start, _) = graph.unzip
val result = topoSort(start, List(), (List(), List()))
result

}

def calcSuccessorSet(vertex: String, graph: List[(String,
String)]): List[String] = graph match {
case Nil => Nil
case x :: xs if (vertex == x._1) => x._2 ::

calcSuccessorSet(vertex, xs)
case _ :: xs => calcSuccessorSet(vertex, xs)

}

def addToVisitedTL(value: String, vc: (List[String],
List[String])) = (value :: vc._1, vc._2)

}

Fig. A.10: Topological sorting and cycle detection
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1. package com.equalinformation.dascala.scala.graphs.dijkstra_spm

trait MyGraph[V] {
def vertices: List[V]
def edges: List[(V,V)]
def addEdge(a: V, b: V): MyGraph[V]
def neighbors(x: V): List[V]

}

object MyGraph {
def apply[V](adjacencyList: Map[V, List[V]]): MyGraph[V] =

new MyDirectedGraph(adjacencyList)
def apply[V](): MyGraph[V] = new MyDirectedGraph(Map[V,

List[V]]())
}

Fig. A.11: A typical graph trait with singleton object

2. package com.equalinformation.dascala.scala.graphs.dijkstra_spm

class MyDirectedGraph[V](adjacencyList: Map[V, List[V]])
extends MyGraph[V] {
override def vertices: List[V] = adjacencyList.keys.toList

override def edges: List[(V, V)] = adjacencyList.flatMap {
case (v, neighbors) => neighbors.map(x =>(v,x))

}.toList

override def addEdge(a: V, b: V): MyDirectedGraph[V] = {
val aNeighbors = b +: neighbors(a)
new MyDirectedGraph(adjacencyList + (a -> aNeighbors))

}

override def neighbors(x: V): List[V] =
adjacencyList.getOrElse(x, Nil)

}

Fig. A.12: A typical directed graph implementation

3. package com.equalinformation.dascala.scala.graphs.dijkstra_spm

class MyUndirectedGraph[V](adjacencyList: Map[V, List[V]])
extends MyDirectedGraph[V](adjacencyList) {
override def addEdge(a: V, b: V): MyUndirectedGraph[V] = {

val aNeighbors = b +: neighbors(a)
val bNeighbors = a +: neighbors(b)
new MyUndirectedGraph(adjacencyList + (a -> aNeighbors,
b -> bNeighbors))

}
}

Fig. A.13: A typical undirected graph implementation
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4. package com.equalinformation.dascala.scala.graphs.dijkstra_spm

case class MyWeightedEdge[V](dest: V, weight: Int)

class MyWeightedGraph[V](adjacencyList: Map[V,
List[MyWeightedEdge[V]]]) extends MyGraph[V] {
override def vertices: List[V] = adjacencyList.keys.toList

override def edges: List[(V, V)] = adjacencyList.flatMap {
case (v, edgeList) => edgeList.map(e => v -> e.dest)

}.toList

def addEdge(a: V, weightedEdge: MyWeightedEdge[V]):
MyWeightedGraph[V] = {
val aNeighbors = weightedEdge +:

adjacencyList.getOrElse(a, Nil)
new MyWeightedGraph(adjacencyList + (a -> aNeighbors))

}

override def addEdge(a: V, b: V): MyWeightedGraph[V] =
addEdge(a, new MyWeightedEdge(b, weight = 0))

override def neighbors(x: V): List[V] =
adjacencyList.getOrElse(x, Nil).map(_.dest)

def neighborsWithWeight(x: V): List[MyWeightedEdge[V]] =
adjacencyList.getOrElse(x, Nil).toList

}

Fig. A.14: A typical weighted graph implementation

5. package com.equalinformation.dascala.scala.graphs.dijkstra_spm

object MyGraphApp {
def main(args: Array[String]): Unit = {

val myGraph = MyGraph[String]()
.addEdge("San Francisco", "Hong Kong")
.addEdge("Hong Kong", "Kathmandu")
.addEdge("Kathmandu", "San Francisco")
.addEdge("Kathmandu", "Bangkok")
.addEdge("Bangkok", "San Francisco")
.addEdge("Pokhara", "Bangkok")

println(myGraph.vertices)
println(myGraph.neighbors("Kathmandu"))

}

}

Fig. A.15: A typical graph test application



Appendix B
Review of Discrete Mathematical Topics

In this appendix, we present a summary of discrete topics of interest from data
structures and algorithms point of view.

B.1 Logarithms

In this section, we list information related to logarithms.

• log is used to represent logarithms to base 10, called common logarithms. Def-
inition: The function that takes any positive number x as input and returns the
exponent to which the base 10 must be raised to obtain x; it is represented by
log(x). Example: log(100) = log10(100) = log10(102) = 2.

• lg is used to represent logarithms to base 2, called binary logarithms. Definition:
The function that takes any positive number x as input and returns the exponent to
which the base 2 must be raised to obtain x; it is represented by lg(x). Example:
lg(32) = log2(32) = log2(25) = 5.

• ln is used to denote logarithms to base e, called natural logarithms. Definition:
The function that takes any positive number x as input and returns the exponent
to which the base e must be raised to obtain x; it is represented by ln(x). e denotes
the number 2.71828... Example: ln(1) = log2.71828...(1) = log2.71828(e0) = 0. In
addition, ln(e) = log2.71828...(e) = log2.71828...(e1) = 1.

• ln(x) and ex are inverse functions. So, if ex = y then x = ln(y), which implies
eln(y) = y. Also, x = ln(ex).

• You might have already noticed: log⇔ log10, lg⇔ log2, and ln⇔ log2.71828....
Note that some software engineering authors approximate lg with log. Mathe-
matically, they are not same but it might make sense to approximate in practice
if the difference between the two doesn’t alter the analysis results.

• Generalizing:

1. logb(bx) = x
2. logb(uv) = logb(u)+ logb(v)
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B. P. Upadhyaya, Data Structures and Algorithms with Scala, Undergraduate 
Topics in Computer Science, https://doi.org/10.1007/978-3-030-12561-5



142 B Review of Discrete Mathematical Topics

3. logb(
u
v ) = logb(u)− logb(v)

4. logb(uv) = v logb(u)
5. logb(x) =

logc(x)
logc(b)

= (logb(c))(logc(x))

B.2 Floor and Ceiling Functions

• For a real number x, the floor function returns the greatest integer that is less than
x. It is denoted by bxc.

• For a real number x, the ceiling function returns the smallest integer that is greater
than x. It is denoted by dxe.

B.3 Asymptotic Notations

Asymptotic notations allow us to analyze an algorithm’s running time by identifying
its behavior as a function of its input; input size can increase or decrease. Most of the
time, we are interested in increasing input size, as that is the one that causes prob-
lems, in terms of scaling. In software engineering practice, many engineers report
software systems being slow when input size increases significantly. The word “sig-
nificantly” is relative to the available CPU, memory, disk, and network bandwidth.
That’s why we use asymptotic notations, which allow us to express complexities in
relative terms so that we can choose one algorithm over another.

In Table B.1, we present notations, meanings, and relations.

Table B.1: Asymptotic notations and their meanings

Notations Analogy Imprecise Meaning

f (n) = O(g(n)) ≤ f (n) grows more slowly or at the same rate as g(n).
f (n) = o(g(n)) < f (n) grows more slowly than g(n).
f (n) = Ω(g(n)) ≥ f (n) grows faster or at the same rate as g(n).
f (n) = ω(g(n)) > f (n) grows faster than g(n).
f (n) = θ(g(n)) = f (n) grows at the same rate as g(n).

Now let’s use set theoretic notations. As sets of functions, the following relations
hold true.

• o(g)⊆ O(g)
• ω(g)⊆Ω(g)
• θ(g) = O(g)∩Ω(g)
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We have used big O notation extensively in this book. This is true for many
practitioner-oriented books because knowing the upper bound helps practitioners
to save systems from crashing or performing too slowly. Also this can be a good
basis for algorithmic selection. Knowing complexity in terms of θ notation is even
better, but might be a bit more involved. Summarized in Table B.1, big O notation
is a symbolism that is widely used in computer science, complexity theory, and
mathematics to formally describe how fast a function grows or declines. In terms of
notations, for a problem of size n, a constant-time algorithm is “order 1”, denoted by
O(1). A linear-time algorithm is “order n”, denoted by O(n). Similarly, a quadratic-
time algorithm is “order n squared”, denoted by O(n2).

B.4 Summations

We have carried out summations multiple times in this book while analyzing algo-
rithm complexities. So, let’s look at a few summations, here, as an exercise.

• The sum of the first n positive integers can be calculated with the formula: 1+
2+3+4+ ...+n = n(n+1)

2 . Example: 1+2+3+4+5 = 5(5+1)
2 = 16.

• The sum of a finite geometric series is calculated with the formula: a+ar+ar2+

...+arn−1 = a(1−rn)
1−r , provided r 6= 1. Example:

5+5(3)+5(32)+5(33) = 5(1−34)
1−3

⇒ 5+15+45+135 = 5(−80)
−2

⇒ 200 = 200
• The sum of the squares of the first n integers can be calculated with the for-

mula: 12 + 22 + 32 + 42 + ...+ n2 = n(n+1)(2n+1)
6 . Example: 12 + 22 + 32 + 42 =

4(4+1)(8+1)
6

⇒ 1+4+9+16 = 20(9)
6

⇒ 30 = 30

B.5 Fibonacci Sequence

If you did your undergraduate degree in computer science, mathematics, or equiva-
lent then you may have come across the Fibonacci sequence numerous times. Equa-
tion B.1 defines the Fibonacci sequence.

Fn =


0, if n = 0.
1, if n = 1.
Fn−1 +Fn−2 if n > 1.

(B.1)

The first 11 numbers from the Fibonacci sequence can be seen in Table B.2.
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Table B.2: Fibonacci numbers

n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55

B.6 Counting

Counting is a very useful technique in computing. Often we need to combine prod-
ucts from different categories to form new products. Health care and finance have
many combinations and permutations of products and features. At a fundamental
level, permutations and combinations can be applied in many fields. A resource or-
chestrator in Amazon’s cloud can utilize combinatorial analysis for resource man-
agement and optimum allocation.

We have two basic counting principles—the sum rule principle and the product
rule principle. Let’s see their definitions and a few examples to realize those defini-
tions.

• Sum Rule Principle: Suppose an event P can occur in m different ways and a
second event Q can occur in n different ways, and they are mutually exclusive.
Then P or Q can occur in m+ n different ways. Let’s take an example to re-
alize this definition. Problem: A computer science department has 10 different
programming courses, 4 different mathematics courses, and 3 different manage-
ment courses. How many ways can a student choose just one of the courses?
Solution: The number of ways a student can choose just one of the courses =
n = (10+4+3) = 17.

• Product Rule Principle: Suppose there are two independent events P and Q,
which can occur in m and n different ways, respectively. Then the combination of
P and Q can occur in mn different ways. Now, let’s take an example to realize this
definition. For the same problem described above, how many ways can a student
choose one of each kind of course? Solution: The number of ways a student can
choose one of each kind of course = m = (10(4)(3)) = 120.

• Permutations: This is a technique in which a set of n objects are arranged in a
given order. We can take all the objects at a time or a subset of the objects. In
terms of notation, the number of permutations of n objects taken r at a time is
denoted by P(n,r), nPr, or Pn,r. We can use a formula to calculate the number of
permutations: P(n,r) = n(n−1)(n−2)...(n− r+1) = n!

(n−r)! . Example: let’s say
we have a set of five letters A, B, C, D, and E. How many permutations can be
there if 3 of them are taken at a time? Solution: n= 5, r = 3. So P(5,3) = 5!

(5−3)! =
5(4)(3)(2)(1)

2(1) = 60. So there can be 60 different permutations. Some valid permuta-
tions are (ABC,ACB,BAC,BCA,CAB,CBA,BCD,BDC,CBD,CDB,DBC,DCB).

• Combinations: A combination of n elements, from a set having n elements, taken
r at a time is any selection of r of the elements without considering the order. It
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is denoted by C(n,r), nCr, Cn,r, or Cn
r . A combination can be calculated using the

formula: C(n,r) = P(n,r)
r! = n!

r!(n−r)! . Sometimes, the following notation is used.

C(n,r) =
(

n
r

)
Now let’s solve the same problem that we used for permutation. The modified
problem is: we have a set of five letters A, B, C, D, and E. How many combina-
tions can be there if 3 of them are taken at a time? Solution: C(5,3) = 5!

3!(5−3!) =
5(4)(3)(2)(1)
(3)(2)(1)(2)(1) = 10. So there can be 10 different combinations.
Let’s take one more example for combination.
Problem: A student buys 2 computer science books, 2 mathematics books, and
4 management books from a book store that has 4 computer science books, 5
mathematics books, and 8 management books. Find the number m of choices
that the student has.
Solution: The student can choose the computer science books in C(4,2) ways,
the mathematics books in C(5,2) ways, and the management books in C(8,4)
ways. Thus the number m of choices is:

m =

(
4
2

)(
5
2

)(
8
4

)
= 4!

2!(2!) ·
5!

2!(3!) ·
8!

4!(4!)

= 4·3·2·1
(2·1)(2·1) ·

5·4·3·2·1
(2·1)(3·2·1) ·

8·7·6·5·4·3·2·1
(4·3·2·1)(4·3·2·1)

= 4·3
2·1 ·

5·4
2·1 ·

8·7·6·5
4·3·2·1

= 6 ·10 ·70 = 4200
So, the student has 4200 different choices. This should be interesting. The num-
ber of books that the store has, in each category, is less than 10, i.e., 4 in computer
science, 5 in mathematics, and 8 in management. The total number of books the
store has is 17. But the student has 4200 combinations available. Isn’t that amaz-
ing? Now, we can think of Amazon Web Services. If there are 17 resources avail-
able currently, the AWS orchestrator could create thousands of combinations out
of those resources and present the combinations to customers.



Glossary

binary search tree A binary tree in which the value at the root node is greater than
or equal to all the values in the left subtree and less than or equal to all the values in
the right subtree.

breadth-first graph traversal In breadth-first traversal, a node’s siblings are vis-
ited before its children.

degree of a tree The degree of a tree denotes how many children each node can
have. The degree of a binary tree is 2.

depth of a node The length of its root path.

digraphs Directed graphs are called digraphs.

depth-first graph traversal In depth-first traversal, a node’s children are visited
before its siblings.

edge An edge connects two graph vertices.

height of a tree The greatest depth among all of the tree’s nodes.

inorder tree traversal The left subtree is visited first, then the node, and finally
the right subtree.

lazy evaluation Evaluation of expressions is done when the corresponding values
are needed.

level in a tree The set of all nodes at a given depth.

memoization A technique in which calculations performed at previous steps are
reused for efficiency.

path in a tree A sequence of nodes (x0, x1, x2, ..., xn), where nodes with adjacent
subscripts are adjacent nodes. Since trees are acyclic, a path cannot contain the same
node more than once.

path length of a tree The sum of the lengths of all paths from its root.
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preorder tree traversal The node is visited first, then the left subtree, and finally
the right subtree.

postorder tree traversal The left subtree is visited first, then the right subtree, and
finally the node.

root path For a node x0, its root path is defined as a path (x0, x1, x2, ..., xn), where
xn is the root of a tree.

size of a tree The number of non-leaf nodes in a tree.

vertex A graph node is called a vertex.
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Facebook, 90
Google, 90

compiler, 9, 69, 74
complexity, 90
compression, 122
computation, 36, 57
computation

forced, 14
computation time, 32
computationally feasible, 19
computer program, 28
computing, 28
concatenation, 54
concurrency, 66
consortium, 121
cotainer, 4
counting, 144
covariant, 69
CPU, 8, 142
cyptographic functions, 66

data
petabytes, 17

data element, 54
data model

array-oriented, 33
data partitioning, 122
data set

very large, 10
data structure

fastest, 90
Trie, 62

data structures, 32
data structures

nonlinear, 67
database, 33
decimal number, 21, 36
deletions, 52
depth-first, 102
dictionary, 39, 66, 73
direct addressing, 57
disk, 142
divide and conquer, 22, 84, 87
Dropbox, 66

eager evaluation, 8
edges, 101
elastic array, 33
electronic circuits, 107
employees, 36
equation, 143
expensive, 102
experiment, 73
expression, 8

fall back, 32
Fibonacci sequence, 15, 143
FIFO, 51
flipped, 71
floor, 142
forced computation, 14
formula

C(n,r), 145
P(n,r), 144
geometric series, 143
sum of positive integers, 143
sum of square, 143

frameworks, 40
functional composition, 54, 56

generic algorithm, 25
Google, 40, 100
Google Drive, 66
graph

bidirectional, 101
breadth-first, 102
databases, 107
depth-first, 102
directed, 101, 105
traverse, 102
undirected, 101

greedy algorithm, 113

hardware, 32
hash code, 58
hash function

design, 57
map, 57
multiplication method, 58
remainder method, 58

hash table
keys, 57
structure, 57
values, 57

head, 78, 80, 82, 84
high-level programming languages, 27
higher performance, 32
highway networks, 107
HTML, 48

IDE, 29
immutable, 41, 58
immutable implementation, 62
indexing, 28
industrial application, 9
infinite series, 16
infinite stream, 13
input size, 142
insertion sort

complexity, 89
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insertions, 52

key collision, 58
key-value, 62
Knuth-Morris-Pratt, 92, 94, 97, 100

language
functional, 42
Scala, 36

lazy
computation, 12
evaluation, 8

leaves, 67
library

built-in, 29
method, 28

LIFO, 45
linear algebra, 33
LISP, 42
list

computational, 6
empty, 84
split, 36
structure, 36
things, 35

LOC, 39, 87
logarithms

binary, 141
common, 141
natural, 141

machine, 36
machine learning, 33
magic, 102
match clause, 105
matching pair, 59
mathematical notation, 29
mathematics, 28
matrix

dimensions, 29
multiplication, 29, 122
multiplication logic, 29
operations, 33

memoization, 10
memory, 9, 142
merge sort

complexity, 90
merging, 85
method

inner, 105
model, 28
mutable, 41, 58, 62
mutually exclusive, 144
MySQL, 33

Naive search, 92, 96
Neo4J, 107
network bandwidth, 142
node, 67

object-functional, 55
occurrence, 91
omission, 122
on-demand, 14
open source, 40
operating systems, 51
operations, 45, 77
operator

:::, 39
orchestrator, 144
order

ascending, 73, 85, 88
descending, 77, 88

packing, dense, 122
parallel computation, 33
parameter

constructor, 48
parameter evaluation, 9
pattern matching, 55, 69, 91
performance, 52, 87, 105
permutations, 144
pivot, 87
placeholder, 87
prefix table, 92
prime, 20
priority, 51, 56
processing

parallel, 122
sequential, 122

product rule, 144
program execution, 8
programming

concurrent, 41
distributed, 41
functional, 41, 73
object-oriented, 56

programming constructs, 6, 8
programming languages, high level, 36
proportional, 32

quantitative analysis, 33
queues, 51
quick sort

time complexity, 90

randomization, 87
RDBMS, 122
re-computation, 100
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recursion, 74
recursive structure, 71
REPL, 29
repository, 26
research, academic, 121
reverse engineering, 26
root, 68
running time, 142

Scala
for expression, 34
array processing, 28
collections, 39

SciDB, 33, 34, 121
SciDB architecture

query interface, parser, plan generator,
executor, storage manager, 121

SciDB team
MIT, Microsoft, Brown, Wisconsin, 121

seal, 69
selection sort

complexity, 89
sibling, 103
singleton object, 62
sliding window, 16
software engineering, 35
software queues, 56
sort

bubble, 77
insertion, 82
merge, 84
quick, 87
selection, 79

sorting, topological, 105
splitting, 85
SQL, 33
square root, 20
stack

capacity, 46
implementation, 45

stock trading, 23
storage, 8
streams

lazy evaluation, 11
memoization, 11

structural matching, 91
structures

express, 28
graphs, 101
hierarchical, 67

nonlinear, 101
sublist, sorted, 82
subroutine, 30
substring, 91
subtree

left, 69
right, 69
traversal, 68

successor, 102
sum rule, 144
summation, 143
system memory, 33

tail, 78, 80, 82, 84
tail, maximum, 78
time complexity, 17, 32, 87
topological, 105
transformation, 32
traversable collection, 8
traversal

inorder, 68
postorder, 68
preorder, 68

trees
binary, 67
complete binary, 67
disjoint binary, 67
expression, 74
family descendant, 67
Huffman coding, 74

Trie, 66
tuple, 102
type, 36
type parameter, 41

upper limits, 30

validation, 30
value, pre-computed, 11, 14
vectors, 7
vertex, 101
vertex

adjacent, 102
unvisited, 105
visited, 105

web application, 66
WWW, 107

XML, 48
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