Table of Contents
Beginning Data Science with Python and Jupyter
Why Subscribe?
PacktPub.com
About the author
About the reviewer
Packt is searching for authors like you
What This Book Covers
What You Need for This Book
Installation and Setup
Installing Anaconda
Updating Jupyter and Installing Dependencies
Who This Book is for
Conventions
Reader Feedback
Customer Support
Downloading the Example Code
Errata
Piracy
Questions
Lesson Objectives
Basic Functionality and Features
Subtopic A: What is a Jupyter Notebook and Why is it Useful?
Subtopic B: Navigating the Platform
Introducing Jupyter Notebooks
Subtopic C: Jupyter Features
Explore some of Jupyter's most useful features
Converting a Jupyter Notebook to a Python Script
Subtopic D: Python Libraries
Import the external libraries and set up the plotting environment
Our First Analysis - The Boston Housing Dataset
Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame
Load the Boston housing dataset
Subtopic B: Data Exploration
Explore the Boston housing dataset
Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks
Linear models with Seaborn and scikit-learn
Activity B: Building a Third-Order Polynomial Model
Subtopic D: Using Categorical Features for Segmentation Analysis
Create categorical fields from continuous variables and make segmented visualizations
Summary
2. Data Cleaning and Advanced Machine Learning
Preparing to Train a Predictive Model
Subtopic A: Determining a Plan for Predictive Analytics
Subtopic B: Preprocessing Data for Machine Learning
Explore data preprocessing tools and methods
Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem
Training Classification Models
Subtopic A: Introduction to Classification Algorithms
Training two-feature classification models with scikit-learn
The plot_decision_regions Function
Training k-nearest neighbors for our model
Training a Random Forest
Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves
Using k-fold cross validation and validation curves in Python with scikit-learn
Subtopic C: Dimensionality Reduction Techniques
Training a predictive model for the employee retention problem
Summary
3. Web Scraping and Interactive Visualizations
Lesson Objectives
Scraping Web Page Data
Subtopic A: Introduction to HTTP Requests
Subtopic B: Making HTTP Requests in the Jupyter Notebook
Handling HTTP requests with Python in a Jupyter Notebook
Subtopic C: Parsing HTML in the Jupyter Notebook
Parsing HTML with Python in a Jupyter Notebook
Activity A: Web Scraping with Jupyter Notebooks
Interactive Visualizations
Subtopic A: Building a DataFrame to Store and Organize Data
Building and merging Pandas DataFrames
Subtopic B: Introduction to Bokeh
Introduction to interactive visualizations with Bokeh
Activity B: Exploring Data with Interactive Visualizations
Summary
Beginning Data Science with Python and Jupyter
Beginning Data Science with Python and Jupyter
Copyright © 2018 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
Acquisition Editor: Aditya Date
Content Development Editor: Murtaza Haamid
Production Coordinator: Vishal Pawar
First published: May 2018
Production reference: 1310518
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78953-202-9
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.
Why Subscribe?
PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.
Contributors
About the author
Alex Galea has been professionally practicing data analytics since graduating with a Master's degree in Physics from the University of Guelph, Canada. He developed a keen interest in Python while researching quantum gases as part of his graduate studies. Alex is currently doing web data analytics, where Python continues to play a key role in his work. He is a frequent blogger about data-centric projects that involve Python and Jupyter Notebooks.
About the reviewer
Elie Kawerk likes to solve problems using the analytical skills he has accumulated over the years. He uses the data science process, including statistical methods and machine learning, to extract insights from data and get value out of it.
His formal training is in computational physics. He used to simulate atomic and molecular physics phenomena with the help of supercomputers using the good old FORTRAN language; this involved a lot of linear algebra and quantum physics equations.
You can find out more about Elie on his LinkedIn profile (https://www.linkedin.com/in/elie-kawerk-data-scientist/).
Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.
Preface
Data science is becoming increasingly popular as industries continue to value its importance. Recent advancements in open source sofware have made this discipline accessible to a wide range of people. In this book, we show how Jupyter Notebooks can be used with Python for various data science applications. Aside from being an ideal "virtual playground" for data exploration, Jupyter Notebooks are equally suitable for creating reproducible data processing pipelines, visualizations, and prediction models. By using Python with Jupyter Notebooks, many challenges presented by data science become simple to conceptualize and implement. This is achieved by leveraging Python libraries, which offer abstractions to the more complicated underlying algorithms. The result is that data science becomes very approachable for beginners. Furthermore, the Python ecosystem is very strong and is growing with each passing year. As such, students who wish to continue learning about the topics covered in this book will fnd excellent resources to do so.
By the end of this book, you will be equipped to analyse data using Python and use Jupyter notebooks effectively.
What This Book Covers
Lesson 1, Jupyter Fundamentals, covers the fundamentals of data analysis in Jupyter. We will start with usage instructions and features of Jupyter such as magic functions and tab completion. We will then transition to data science specific material. We will run an exploratory analysis in a live Jupyter Notebook. We will use visual assists such as scatter plots, histograms, and violin plots to deepen our understanding of the data. We will also perform simple predictive modeling.
Lesson 2, Data Cleaning and Advanced Machine Learning, shows how predictive models can be trained in Jupyter Notebooks. We will talk about how to plan a machine learning strategy. This lesson also explains the machine learning terminology such as supervised learning, unsupervised learning, classification, and regression. We will discuss methods for preprocessing data using scikit-learn and pandas.
Lesson 3, Web Scraping and Interactive Visualizations, explains how to scrap web page tables and then use interactive visualizations to study the data. We will start by looking at how HTTP requests work, focusing on GET requests and their response status codes. Then, we will go into the Jupyter Notebook and make HTTP requests with Python using the Requests library. We will see how Jupyter can be used to render HTML in the notebook, along with actual web pages that can be interacted with. After making requests, we will see how Beautiful Soup can be used to parse text from the HTML, and used this library to scrape tabular data.
What You Need for This Book
This book will require the following minimum hardware requirements:
Throughout this book, we will be using Python and Jupyter Notebook to run our code. Additionally, Anaconda environment is needed to run Python and Jupyter notebook. Please ensure you have the following installed on your machine:
Python libraries included with Anaconda installation:
Python libraries that require manual installation:
Installation and Setup
Before you start with this book, we'll install Anaconda environment which consists of Python and Jupyter Notebook.
Installing Anaconda
Updating Jupyter and Installing Dependencies
#Update conda
conda update conda
#Update Jupyter
conda update jupyter
#install packages
conda install numpy
conda install pandas
conda install statsmodels
conda install matplotlib
conda install seaborn
jupyter notebook
Who This Book is for
This book will be most applicable to professionals and students interested in data analysis. The topics covered are relevant to a variety of job descriptions across a large range of industries. For the best experience, you should have knowledge of programming fundamentals and some experience with Python. In particular, having some familiarity with Python libraries such as Pandas, matplotlib, and scikit-learn will be useful.
Conventions
In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words and Python language keywords in text are shown as follows: "With the newly created blank Notebook, click in the top cell and type print('hello world')"
Folder names, filenames, file extensions, pathnames, include file names in text are shown as follows: "The header file boost/asio.hpp includes most of the types and functions required for using the Asio library".
A block of code is set as follows:
y = df['MEDV'].copy()
del df['MEDV']
df = pd.concat((y, df), axis=1)
New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Click on New in the upper-right corner and select a kernel from the drop-down menu."
Important new programming terms are shown in bold. Conceptual terms are shown in italics.
Note
Important additional details about a topic appear like this, as in a sidebar.
Tip
Important notes, tips, and tricks appear like this.
Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the Example Code
You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.
Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.
Questions
If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.
Chapter 1. Jupyter Fundamentals
Jupyter Notebooks are one of the most important tools for data scientists using Python. This is because they're an ideal environment for developing reproducible data analysis pipelines. Data can be loaded, transformed, and modeled all inside a single Notebook, where it's quick and easy to test out code and explore ideas along the way. Furthermore, all of this can be documented "inline" using formatted text, so you can make notes for yourself or even produce a structured report.
Other comparable platforms - for example, RStudio or Spyder - present the user with multiple windows, which promote arduous tasks such as copy and pasting code around and rerunning code that has already been executed. These tools also tend to involve Read Eval Prompt Loops (REPLs) where code is run in a terminal session that has saved memory. This type of development environment is bad for reproducibility and not ideal for development either. Jupyter Notebooks solve all these issues by giving the user a single window where code snippets are executed and outputs are displayed inline. This lets users develop code efficiently and allows them to look back at previous work for reference, or even to make alterations.
We'll start the lesson by explaining exactly what Jupyter Notebooks are and continue to discuss why they are so popular among data scientists. Then, we'll open a Notebook together and go through some exercises to learn how the platform is used. Finally, we'll dive into our first analysis and perform an exploratory analysis in Basic Functionality and Features.
Lesson Objectives
In this lesson, you will:
Note
All code from this book are available as lesson-specific IPython notebooks in the code bundle. All color plots from this book are also available in the code bundle.
Basic Functionality and Features
In this section, we first demonstrate the usefulness of Jupyter Notebooks with examples and through discussion. Then, in order to cover the fundamentals of Jupyter Notebooks for beginners, we'll see the basic usage of them in terms of launching and interacting with the platform. For those who have used Jupyter Notebooks before, this will be mostly a review; however, you will certainly see new things in this topic as well.
Subtopic A: What is a Jupyter Notebook and Why is it Useful?
Jupyter Notebooks are locally run web applications which contain live code, equations, figures, interactive apps, and Markdown text. The standard language is Python, and that's what we'll be using for this book; however, note that a variety of alternatives are supported. This includes the other dominant data science language, R:
Those familiar with R will know about R Markdown. Markdown documents allow for Markdown-formatted text to be combined with executable code. Markdown is a simple language used for styling text on the web. For example, most GitHub repositories have a README.md Markdown file. This format is useful for basic text formatting. It's comparable to HTML but allows for much less customization. Commonly used symbols in Markdown include hashes (#) to make text into a heading, square and round brackets to insert hyperlinks, and stars to create italicized or bold text:
Having seen the basics of Markdown, let's come back to R Markdown, where Markdown text can be written alongside executable code. Jupyter Notebooks offer the equivalent functionality for Python, although, as we'll see, they function quite differently than R Markdown documents. For example, R Markdown assumes you are writing Markdown unless otherwise specified, whereas Jupyter Notebooks assume you are inputting code. This makes it more appealing to use Jupyter Notebooks for rapid development and testing.
From a data science perspective, there are two primary types for a Jupyter Notebook depending on how they are used: lab-style and deliverable.
Lab-style Notebooks are meant to serve as the programming analog of research journals. These should contain all the work you've done to load, process, analyze, and model the data. The idea here is to document everything you've done for future reference, so it's usually not advisable to delete or alter previous lab-style Notebooks. It's also a good idea to accumulate multiple date-stamped versions of the Notebook as you progress through the analysis, in case you want to look back at previous states.
Deliverable Notebooks are intended to be presentable and should contain only select parts of the lab-style Notebooks. For example, this could be an interesting discovery to share with your colleagues, an in-depth report of your analysis for a manager, or a summary of the key findings for stakeholders.
In either case, an important concept is reproducibility. If you've been diligent in documenting your software versions, anyone receiving the reports will be able to rerun the Notebook and compute the same results as you did. In the scientific community, where reproducibility is becoming increasingly difficult, this is a breath of fresh air.
Subtopic B: Navigating the Platform
Now, we are going to open up a Jupyter Notebook and start to learn the interface. Here, we will assume you have no prior knowledge of the platform and go over the basic usage.
Introducing Jupyter Notebooks
Note
On Unix machines such as Mac or Linux, command-line navigation can be done using ls to display directory contents and cd to change directories.
On Windows machines, use dir to display directory contents and use cd to change directories instead. If, for example, you want to change the drive from C: to D:, you should execute d: to change drives.
jupyter notebook
A new window or tab of your default browser will open the Notebook Dashboard to the working directory. Here, you will see a list of folders and files contained therein.
[I 20:03:01.045 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/ ?token=e915bb06866f19ce462d959a9193a94c7c088e81765f9d8a
Going to that HTTP address will load the app in your browser window, as was done automatically when starting the app. Closing the window does not stop the app; this should be done from the terminal by typing Ctrl + C.
jupyter notebook –-help
jupyter notebook --port 9000
Kernels provide programming language support for the Notebook. If you have installed Python with Anaconda, that version should be the default kernel. Conda virtual environments will also be available here.
Note
Virtual environments are a great tool for managing multiple projects on the same machine. Each virtual environment may contain a different version of Python and external libraries. Python has built-in virtual environments; however, the Conda virtual environment integrates better with Jupyter Notebooks and boasts other nice features. The documentation is available at: https://conda.io/docs/user-guide/tasks/manage-environments.html.
Any stdout or stderr output from the code will be displayed beneath as the cell runs. Furthermore, the string representation of the object written in the final line will be displayed as well. This is very handy, especially for displaying tables, but sometimes we don't want the final object to be displayed. In such cases, a semicolon (;) can be added to the end of the line to suppress the display.
New cells expect and run code input by default; however, they can be changed to render Markdown instead.
There is a Play icon in the toolbar, which can be used to run cells. As we'll see later, however, it's handier to use the keyboard shortcut Shift + Enter to run cells. Right next to this is a Stop icon, which can be used to stop cells from running. This is useful, for example, if a cell is taking too long to run:
New cells can be manually added from the Insert menu:
Cells can be copied, pasted, and deleted using icons or by selecting options from the Edit menu:
Cells can also be moved up and down this way:
There are useful options under the Cell menu to run a group of cells or the entire Notebook:
An important thing to understand about these Notebooks is the shared memory between cells. It's quite simple: every cell existing on the sheet has access to the global set of variables. So, for example, a function defined in one cell could be called from any other, and the same applies to variables. As one would expect, anything within the scope of a function will not be a global variable and can only be accessed from within that specific function.
The Notebook name will be displayed in the upper-left corner. New Notebooks will automatically be named Untitled.
Since we didn't shut down the Notebook, we just saved and exited, it will have a green book symbol next to its name in the Files section of the Jupyter Dashboard and will be listed as Running on the right side next to the last modified date. Notebooks can be shut down from here.
Note
If you plan to spend a lot of time working with Jupyter Notebooks, it's worthwhile to learn the keyboard shortcuts. This will speed up your workflow considerably. Particularly useful commands to learn are the shortcuts for manually adding new cells and converting cells from code to Markdown formatting. Click on Keyboard Shortcuts from the Help menu to see how.
Subtopic C: Jupyter Features
Jupyter has many appealing features that make for efficient Python programming. These include an assortment of things, from methods for viewing docstrings to executing Bash commands. Let's explore some of these features together in this section.
Note
The official IPython documentation can be found here: http://ipython.readthedocs.io/en/stable/. It has details on the features we will discuss here and others.
Explore some of Jupyter's most useful features
Moving on from shortcuts, the help option is useful for beginners and experienced coders alike. It can help provide guidance at each uncertain step.
Users can get help by adding a question mark to the end of any object and running the cell. Jupyter finds the docstring for that object and returns it in a pop-out window at the bottom of the app.
Tab completion can be used to do the following:
This can be especially useful when you need to know the available input arguments for a module, when exploring a new library, to discover new modules, or simply to speed up workflow. They will save time writing out variable names or functions and reduce bugs from typos. The tab completion works so well that you may have difficulty coding Python in other editors after today!
Scroll to the Jupyter Magic Functions section and run the cells containing %lsmagic and %matplotlib inline:
%lsmagic lists the available options. We will discuss and show examples of some of the most useful ones. The most common magic command you will probably see is %matplotlib inline, which allows matplotlib figures to be displayed in the Notebook without having to explicitly use plt.show().
The timing functions are very handy and come in two varieties: a standard timer (%time or %%time) and a timer that measures the average runtime of many iterations (%timeit and %%timeit).
Even by using a Python kernel (as you are currently doing), other languages can be invoked using magic commands. The built-in options include JavaScript, R, Pearl, Ruby, and Bash. Bash is particularly useful, as you can use Unix commands to find out where you are currently (pwd), what's in the directory (ls), make new folders (mkdir), and write file contents (cat / head / tail).
There are plenty of external magic commands that can be installed. A popular one is ipython-sql, which allows for SQL code to be executed in cells.
pip install ipython-sql
This allows for connections to remote databases so that queries can be executed (and thereby documented) right inside the Notebook.
Here, we first connect to the local sqlite source; however, this line could instead point to a specific database on a local or remote server. Then, we execute a simple SELECT to show how the cell has been converted to run SQL code instead of Python.
If not already done, install the version documentation tool now from the terminal using pip. Open up a new window and run the following code:
pip install version_information
Once installed, it can then be imported into any Notebook using %load_ext version_information. Finally, once loaded, it can be used to display the versions of each piece of software in the Notebook.
Converting a Jupyter Notebook to a Python Script
You can convert a Jupyter Notebook to a Python script. This is equivalent to copying and pasting the contents of each code cell into a single .py file. The Markdown sections are also included as comments.
The conversion can be done from the NotebookApp or in the command line as follows:
jupyter nbconvert --to=python lesson-1-notebook.ipynb
This is useful, for example, when you want to determine the library requirements for a Notebook using a tool such as pipreqs. This tool determines the libraries used in a project and exports them into a requirements.txt file (and it can be installed by running pip install pipreqs).
The command is called from outside the folder containing your .py files. For example, if the .py files are inside a folder called lesson-1, you could do the following:
pipreqs lesson-1/
The resulting requirements.txt file for lesson-1-workbook.ipynb looks like this:
cat lesson-1/requirements.txt
matplotlib==2.0.2
numpy==1.13.1
pandas==0.20.3
requests==2.18.4
seaborn==0.8
beautifulsoup4==4.6.0
scikit_learn==0.19.0
Subtopic D: Python Libraries
Having now seen all the basics of Jupyter Notebooks, and even some more advanced features, we'll shift our attention to the Python libraries we'll be using in this book. Libraries, in general, extend the default set of Python functions. Examples of commonly used standard libraries are datetime, time, and os. These are called standard libraries because they come standard with every installation of Python.
For data science with Python, the most important libraries are external, which means they do not come standard with Python.
The external data science libraries we'll be using in this book are NumPy, Pandas, Seaborn, matplotlib, scikit-learn, Requests, and Bokeh. Let's briefly introduce each.
Note
It's a good idea to import libraries using industry standards, for example, import numpy as np; this way, your code is more readable. Try to avoid doing things such as from numpy import *, as you may unwittingly overwrite functions. Furthermore, it's often nice to have modules linked to the library via a dot (.) for code readability.
Having introduced these libraries, let's go back to our Notebook and load them, by running the import statements. This will lead us into our first analysis, where we finally start working with a dataset.
Import the external libraries and set up the plotting environment
Just like for regular Python scripts, libraries can be imported into the Notebook at any time. It's best practice to put the majority of the packages you use at the top of the file. Sometimes it makes sense to load things midway through the Notebook and that is completely OK.
For a nice Notebook setup, it's often useful to set various options along with the imports at the top. For example, the following can be run to change the figure appearance to something more aesthetically pleasing than the matplotlib and Seaborn defaults:
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
See here for more options: https://matplotlib.org/users/customizing.html
%config InlineBackend.figure_format='retina'
sns.set() # Revert to matplotlib defaults
plt.rcParams['figure.figsize'] = (9, 6)
plt.rcParams['axes.labelpad'] = 10
sns.set_style("darkgrid")
So far in this book, we've gone over the basics of using Jupyter Notebooks for data science. We started by exploring the platform and finding our way around the interface. Then, we discussed the most useful features, which include tab completion and magic functions. Finally, we introduced the Python libraries we'll be using in this book.
The next section will be very interactive as we perform our first analysis together using the Jupyter Notebook.
Our First Analysis - The Boston Housing Dataset
So far, this lesson has focused on the features and basic usage of Jupyter. Now, we'll put this into practice and do some data exploration and analysis.
The dataset we'll look at in this section is the so-called Boston housing dataset. It contains US census data concerning houses in various areas around the city of Boston. Each sample corresponds to a unique area and has about a dozen measures. We should think of samples as rows and measures as columns. The data was first published in 1978 and is quite small, containing only about 500 samples.
Now that we know something about the context of the dataset, let's decide on a rough plan for the exploration and analysis. If applicable, this plan would accommodate the relevant question(s) under study. In this case, the goal is not to answer a question but to instead show Jupyter in action and illustrate some basic data analysis methods.
Our general approach to this analysis will be to do the following:
Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame
Oftentimes, data is stored in tables, which means it can be saved as a comma-separated variable (CSV) file. This format, and many others, can be read into Python as a DataFrame object, using the Pandas library. Other common formats include tab-separated variable (TSV), SQL tables, and JSON data structures. Indeed, Pandas has support for all of these. In this example, however, we are not going to load the data this way because the dataset is available directly through scikit-learn.
Note
An important part after loading data for analysis is ensuring that it's clean. For example, we would generally need to deal with missing data and ensure that all columns have the correct datatypes. The dataset we use in this section has already been cleaned, so we will not need to worry about this. However, we'll see messier data in the second lesson and explore techniques for dealing with it.
Load the Boston housing dataset
The Boston housing dataset can be accessed from the sklearn.datasets module using the load_boston method.
The output of the second cell tells us that it's a scikit-learn Bunch object. Let's get some more information about that to understand what we are dealing with.
Reading the resulting docstring suggests that it's basically a dictionary, and can essentially be treated as such.
We find these fields to be self-explanatory: ['DESCR', 'target', 'data', 'feature_names'].
Note that in this call, we explicitly want to print the field value so that the Notebook renders the content in a more readable format than the string representation (that is, if we just type boston['DESCR'] without wrapping it in a print statement). We then see the dataset information as we've previously summarized:
Boston House Prices dataset
===========================
Notes

Data Set Characteristics:
:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive
:Median Value (attribute 14) is usually the target
:Attribute Information (in order):
- CRIM per capita crime rate by town
…
…
- MEDV Median value of owner-occupied homes in $1000's
:Missing Attribute Values: None
Of particular importance here are the feature descriptions (under Attribute Information). We will use this as reference during our analysis.
Note
For the complete code, refer to the Lesson 1.txt file in the Lesson 1 folder.
Now, we are going to create a Pandas DataFrame that contains the data. This is beneficial for a few reasons: all of our data will be contained in one object, there are useful and computationally efficient DataFrame methods we can use, and other libraries such as Seaborn have tools that integrate nicely with DataFrames.
In this case, we will create our DataFrame with the standard constructor method.
The docstring reveals the DataFrame input parameters. We want to feed in boston['data'] for the data and use boston['feature_names'] for the headers.
Looking at the output, we see that our data is in a 2D NumPy array. Running the command boston['data'].shape returns the length (number of samples) and the number of features as the first and second outputs, respectively.
df = pd.DataFrame(data=boston['data'], columns=boston['feature_names'])
In machine learning, the variable that is being modeled is called the target variable; it's what you are trying to predict given the features. For this dataset, the suggested target is MEDV, the median house value in 1,000s of dollars.
We see that it has the same length as the features, which is what we expect. It can therefore be added as a new column to the DataFrame.
df['MEDV'] = boston['target']
Move the target variable to the front of df by running the cell with the following:
y = df['MEDV'].copy()
del df['MEDV']
df = pd.concat((y, df), axis=1)
Here, we introduce a dummy variable y to hold a copy of the target column before removing it from the DataFrame. We then use the Pandas concatenation function to combine it with the remaining DataFrame along the 1st axis (as opposed to the 0th axis, which combines rows).
Note
You will often see dot notation used to reference DataFrame columns. For example, previously we could have done y = df.MEDV.copy(). This does not work for deleting columns, however; del df.MEDV would raise an error.
Run the next few cells to see the head, tail, and length of df:
Each row is labeled with an index value, as seen in bold on the left side of the table. By default, these are a set of integers starting at 0 and incrementing by one for each row.
Run the next cell to see the datatypes of each column.
For this dataset, we see that every field is a float and therefore most likely a continuous variable, including the target. This means that predicting the target variable is a regression problem.
Run the next cell to calculate the number of NaN values in each column:
For this dataset, we see there are no NaNs, which means we have no immediate work to do in cleaning the data and can move on.
Remove some columns by running the cell that contains the following code:
for col in ['ZN', 'NOX', 'RAD', 'PTRATIO', 'B']:
del df[col]
Subtopic B: Data Exploration
Since this is an entirely new dataset that we've never seen before, the first goal here is to understand the data. We've already seen the textual description of the data, which is important for qualitative understanding. We'll now compute a quantitative description.
Explore the Boston housing dataset
This computes various properties including the mean, standard deviation, minimum, and maximum for each column. This table gives a high-level idea of how everything is distributed. Note that we have taken the transform of the result by adding a .T to the output; this swaps the rows and columns.
Going forward with the analysis, we will specify a set of columns to focus on.
cols = ['RM', 'AGE', 'TAX', 'LSTAT', 'MEDV']
As a reminder, let's recall what each of these columns is. From the dataset documentation, we have the following:
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- TAX full-value property-tax rate per $10,000
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's
To look for patterns in this data, we can start by calculating the pairwise correlations using pd.DataFrame.corr.
df[cols].corr()
This resulting table shows the correlation score between each set of values. Large positive scores indicate a strong positive (that is, in the same direction) correlation. As expected, we see maximum values of 1 on the diagonal.
Note
Pearson coefficient is defined as the covariance between two variables, divided by the product of their standard deviations:
The covariance, in turn, is defined as follows:
Here, n is the number of samples, xi and yi are the individual samples being summed over, andand
are the means of each set.
Instead of straining our eyes to look at the preceding table, it's nicer to visualize it with a heatmap. This can be done easily with Seaborn.
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
ax = sns.heatmap(df[cols].corr(),
cmap=sns.cubehelix_palette(20, light=0.95, dark=0.15))
ax.xaxis.tick_top() # move labels to the top
plt.savefig('../figures/lesson-1-boston-housing-corr.png',
bbox_inches='tight', dpi=300)
We call sns.heatmap and pass the pairwise correlation matrix as input. We use a custom color palette here to override the Seaborn default. The function returns a matplotlib.axes object which is referenced by the variable ax. The final figure is then saved as a high resolution PNG to the figures folder.
Visualize the DataFrame using Seaborn's pairplot function. Run the cell containing the following code:
sns.pairplot(df[cols],
plot_kws={'alpha': 0.6},
diag_kws={'bins': 30})
Having previously used a heatmap to visualize a simple overview of the correlations, this plot allows us to see the relationships in far more detail.
Looking at the histograms on the diagonal, we see the following:
Taking a closer look at the MEDV histogram in the bottom right, we actually see something similar to TAX where there is a large upper-limit bin around $50,000. Recall when we did df.describe(), the min and max of MDEV was 5k and 50k, respectively. This suggests that median house values in the dataset were capped at 50k.
Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks
Continuing our analysis of the Boston housing dataset, we can see that it presents us with a regression problem where we predict a continuous target variable given a set of features. In particular, we'll be predicting the median house value (MEDV). We'll train models that take only one feature as input to make this prediction. This way, the models will be conceptually simple to understand and we can focus more on the technical details of the scikit-learn API. Then, in the next lesson, you'll be more comfortable dealing with the relatively complicated models.
Linear models with Seaborn and scikit-learn
Note how the number of rooms per house (RM) and the % of the population that is lower class (LSTAT) are highly correlated with the median house value (MDEV). Let's pose the following question: how well can we predict MDEV given these variables?
To help answer this, let's first visualize the relationships using Seaborn. We will draw the scatter plots along with the line of best fit linear models.
fig, ax = plt.subplots(1, 2)
sns.regplot('RM', 'MEDV', df, ax=ax[0],
scatter_kws={'alpha': 0.4}))
sns.regplot('LSTAT', 'MEDV', df, ax=ax[1],
scatter_kws={'alpha': 0.4}))
The line of best fit is calculated by minimizing the ordinary least squares error function, something Seaborn does automatically when we call the regplot function. Also note the shaded areas around the lines, which represent 95% confidence intervals.
Note
These 95% confidence intervals are calculated by taking the standard deviation of data in bins perpendicular to the line of best fit, effectively determining the confidence intervals at each point along the line of best fit. In practice, this involves Seaborn bootstrapping the data, a process where new data is created through random sampling with replacement. The number of bootstrapped samples is automatically determined based on the size of the dataset, but can be manually set as well by passing the n_boot argument.
fig, ax = plt.subplots(1, 2)
ax[0] = sns.residplot('RM', 'MEDV', df, ax=ax[0],
scatter_kws={'alpha': 0.4})
ax[0].set_ylabel('MDEV residuals $(y-\hat{y})$')
ax[1] = sns.residplot('LSTAT', 'MEDV', df, ax=ax[1],
scatter_kws={'alpha': 0.4})
ax[1].set_ylabel('')
Each point on these residual plots is the difference between that sample (y) and the linear model prediction (ŷ). Residuals greater than zero are data points that would be underestimated by the model. Likewise, residuals less than zero are data points that would be overestimated by the model.
Patterns in these plots can indicate suboptimal modeling. In each preceding case, we see diagonally arranged scatter points in the positive region. These are caused by the $50,000 cap on MEDV. The RM data is clustered nicely around 0, which indicates a good fit. On the other hand, LSTAT appears to be clustered lower than 0.
def get_mse(df, feature, target='MEDV'):
Get x, y to model
y = df[target].values
x = df[feature].values.reshape(-1,1)
...
...
error = mean_squared_error(y, y_pred)
print('mse = {:.2f}'.format(error))
print()
Note
For the complete code, refer to the Lesson 1.txt file in the Lesson 1 folder.
In the get_mse function, we first assign the variables y and x to the target MDEV and the dependent feature, respectively. These are cast as NumPy arrays by calling the values attribute. The dependent features array is reshaped to the format expected by scikit-learn; this is only necessary when modeling a one-dimensional feature space. The model is then instantiated and fitted on the data. For linear regression, the fitting consists of computing the model parameters using the ordinary least squares method (minimizing the sum of squared errors for each sample). Finally, after determining the parameters, we predict the target variable and use the results to calculate the MSE.
get_mse(df, 'RM')
get_mse(df, 'LSTAT')
Comparing the MSE, it turns out the error is slightly lower for LSTAT. Looking back to the scatter plots, however, it appears that we might have even better success using a polynomial model for LSTAT. In the next activity, we will test this by computing a third-order polynomial model with scikit-learn.
Forgetting about our Boston housing dataset for a minute, consider another real-world situation where you might employ polynomial regression. The following example is modeling weather data. In the following plot, we see temperatures (lines) and precipitations (bars) for Vancouver, BC, Canada:
Any of these fields are likely to be fit quite well by a fourth-order polynomial. This would be a very valuable model to have, for example, if you were interested in predicting the temperature or precipitation for a continuous range of dates.
You can find the data source for this here: http://climate.weather.gc.ca/climate_normals/results_e.html?stnID=888.
Activity B: Building a Third-Order Polynomial Model
Shifting our attention back to the Boston housing dataset, we would like to build a third-order polynomial model to compare against the linear one. Recall the actual problem we are trying to solve: predicting the median house value, given the lower class population percentage. This model could benefit a prospective Boston house purchaser who cares about how much of their community would be lower class.
Use scikit-learn to fit a polynomial regression model to predict the median house value (MEDV), given the LSTAT values. We are hoping to build a model that has a lower mean-squared error (MSE).
Note
You should fill these empty cells in with code as we complete the activity. You may need to insert new cells as these become filled up; please do so as needed!
y = df['MEDV'].values
x = df['LSTAT'].values.reshape(-1,1)
This is identical to what we did earlier for the linear model.
Notice how each element in the array is itself an array with length 1. This is what reshape(-1,1) does, and it is the form expected by scikit-learn.
Import the appropriate transformation tool from scikit-learn and instantiate the third-degree polynomial feature transformer:
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3)
Build the polynomial feature set by running the following code:
x_poly = poly.fit_transform(x)
Unlike x, the arrays in each row now have length 4, where the values have been calculated as x0, x1, x2 and x3.
We are now going to use this data to fit a linear model. Labeling the features as a, b, c, and d, we will calculate the coefficients α0, α1, α2, and α3 and of the linear model:
We can plug in the definitions of a, b, c, and d, to get the following polynomial model, where the coefficients are the same as the previous ones:
from sklearn.linear_model import LinearRegression
clf = LinearRegression()
clf.fit(x_poly, y)
a_0 = clf.intercept_ + clf.coef_[0] # intercept
a_1, a_2, a_3 = clf.coef_[1:] # other coefficients
msg = 'model: y = {:.3f} + {:.3f}x + {:.3f}x^2 + {:.3f}x^3'\
.format(a_0, a_1, a_2, a_3)
print(msg)
To get the actual model intercept, we have to add the intercept_ and coef_[0] attributes. The higher-order coefficients are then given by the remaining values of coef_.
y_pred = clf.predict(x_poly)
resid_MEDV = y - y_pred
We'll plot these soon to compare with the linear model residuals, but first we will calculate the MSE.
from sklearn.metrics import mean_squared_error
error = mean_squared_error(y, y_pred)
print('mse = {:.2f}'.format(error))
As can be seen, the MSE is significantly less for the polynomial model compared to the linear model (which was 38.5). This error metric can be converted to an average error in dollars by taking the square root. Doing this for the polynomial model, we find the average error for the median house value is only $5,300.
Now, we'll visualize the model by plotting the polynomial line of best fit along with the data.
fig, ax = plt.subplots()
Plot the samples
ax.scatter(x.flatten(), y, alpha=0.6)
Plot the polynomial model
x_ = np.linspace(2, 38, 50).reshape(-1, 1)
x_poly = poly.fit_transform(x_)
y_ = clf.predict(x_poly)
ax.plot(x_, y_, color='red', alpha=0.8)
ax.set_xlabel('LSTAT'); ax.set_ylabel('MEDV');
Here, we are plotting the red curve by calculating the polynomial model predictions on an array of x values. The array of x values was created using np.linspace, resulting in 50 values arranged evenly between 2 and 38.
Now, we'll plot the corresponding residuals. Whereas we used Seaborn for this earlier, we'll have to do it manually to show results for a scikit-learn model. Since we already calculated the residuals earlier, as reference by the resid_MEDV variable, we simply need to plot this list of values on a scatter chart.
fig, ax = plt.subplots(figsize=(5, 7))
ax.scatter(x, resid_MEDV, alpha=0.6)
ax.set_xlabel('LSTAT')
ax.set_ylabel('MEDV Residual $(y-\hat{y})$')
plt.axhline(0, color='black', ls='dotted');
Compared to the linear model LSTAT residual plot, the polynomial model residuals appear to be more closely clustered around y - ŷ = 0. Note that y is the sample MEDV and ŷ is the predicted value. There are still clear patterns, such as the cluster near x = 7 and y = -7 that indicates suboptimal modeling.
Having successfully modeled the data using a polynomial model, let's finish up this lesson by looking at categorical features. In particular, we are going to build a set of categorical features and use them to explore the dataset in more detail.
Subtopic D: Using Categorical Features for Segmentation Analysis
Often, we find datasets where there are a mix of continuous and categorical fields. In such cases, we can learn about our data and find patterns by segmenting the continuous variables with the categorical fields.
As a specific example, imagine you are evaluating the return on investment from an ad campaign. The data you have access to contain measures of some calculated return on investment (ROI) metric. These values were calculated and recorded daily and you are analyzing data from the previous year. You have been tasked with finding data-driven insights on ways to improve the ad campaign. Looking at the ROI daily timeseries, you see a weekly oscillation in the data. Segmenting by day of the week, you find the following ROI distributions (where 0 represents the first day of the week and 6 represents the last).
This shows clearly that the ad campaign achieves the largest ROI near the beginning of the week, tapering off later. The recommendation, therefore, may be to reduce ad spending in the latter half of the week. To continue searching for insights, you could also imagine repeating the same process for ROI grouped by month.
Since we don't have any categorical fields in the Boston housing dataset we are working with, we'll create one by effectively discretizing a continuous field. In our case, this will involve binning the data into "low", "medium", and "high" categories. It's important to note that we are not simply creating a categorical data field to illustrate the data analysis concepts in this section. As will be seen, doing this can reveal insights from the data that would otherwise be difficult to notice or altogether unavailable.
Create categorical fields from continuous variables and make segmented visualizations
Take a look at the panels containing AGE. As a reminder, this feature is defined as the proportion of owner-occupied units built prior to 1940. We are going to convert this feature to a categorical variable. Once it's been converted, we'll be able to replot this figure with each panel segmented by color according to the age category.
sns.distplot(df.AGE.values, bins=100,
hist_kws={'cumulative': True},
kde_kws={'lw': 0})
plt.xlabel('AGE')
plt.ylabel('CDF')
plt.axhline(0.33, color='red')
plt.axhline(0.66, color='red')
plt.xlim(0, df.AGE.max());
Note that we set kde_kws={'lw': 0} in order to bypass plotting the kernel density estimate in the preceding figure.
Looking at the plot, there are very few samples with low AGE, whereas there are far more with a very large AGE. This is indicated by the steepness of the distribution on the far right-hand side.
The red lines indicate 1/3 and 2/3 points in the distribution. Looking at the places where our distribution intercepts these horizontal lines, we can see that only about 33% of the samples have AGE less than 55 and 33% of the samples have AGE greater than 90! In other words, a third of the housing communities have less than 55% of homes built prior to 1940. These would be considered relatively new communities. On the other end of the spectrum, another third of the housing communities have over 90% of homes built prior to 1940. These would be considered very old.
We'll use the places where the red horizontal lines intercept the distribution as a guide to split the feature into categories: Relatively New, Relatively Old, and Very Old.
def get_age_category(x):
if x < 50:
return 'Relatively New'
elif 50 <= x < 85:
return 'Relatively Old'
else:
return 'Very Old'
df['AGE_category'] = df.AGE.apply(get_age_category)
Here, we are using the very handy Pandas method apply, which applies a function to a given column or set of columns. The function being applied, in this case get_age_category, should take one argument representing a row of data and return one value for the new column. In this case, the row of data being passed is just a single value, the AGE of the sample.
Note
The apply method is great because it can solve a variety of problems and allows for easily readable code. Often though, vectorized methods such as pd.Series.str can accomplish the same thing much faster. Therefore, it's advised to avoid using it if possible, especially when working with large datasets. We'll see some examples of vectorized methods in the upcoming lessons.
Looking at the result, it can be seen that two class sizes are fairly equal, and the Very Old group is about 40% larger. We are interested in keeping the classes comparable in size, so that each is well-represented and it's straightforward to make inferences from the analysis.
Note
It may not always be possible to assign samples into classes evenly, and in real-world situations, it's very common to find highly imbalanced classes. In such cases, it's important to keep in mind that it will be difficult to make statistically significant claims with respect to the under-represented class. Predictive analytics with imbalanced classes can be particularly difficult. The following blog post offers an excellent summary on methods for handling imbalanced classes when doing machine learning: https://svds.com/learning-imbalanced-classes/.
Let's see how the target variable is distributed when segmented by our new feature AGE_category.
sns.violinplot(x='MEDV', y='AGE_category', data=df,
order=['Relatively New', 'Relatively Old', 'Very Old']);
The violin plot shows a kernel density estimate of the median house value distribution for each age category. We see that they all resemble a normal distribution. The Very Old group contains the lowest median house value samples and has a relatively large width, whereas the other groups are more tightly centered around their average. The young group is skewed to the high end, which is evident from the enlarged right half and position of the white dot in the thick black line within the body of the distribution.
This white dot represents the mean and the thick black line spans roughly 50% of the population (it fills to the first quantile on either side of the white dot). The thin black line represents boxplot whiskers and spans 95% of the population. This inner visualization can be modified to show the individual data points instead by passing inner='point' to sns.violinplot(). Let's do that now.
It's good to make plots like this for test purposes in order to see how the underlying data connects to the visual. We can see, for example, how there are no median house values lower than roughly $16,000 for the Relatively New segment, and therefore the distribution tail actually contains no data. Due to the small size of our dataset (only about 500 rows), we can see this is the case for each segment.
cols = ['RM', 'AGE', 'TAX', 'LSTAT', 'MEDV', 'AGE_category']
sns.pairplot(df[cols], hue='AGE_category',
hue_order=['Relatively New', 'Relatively Old', 'Very Old'],
plot_kws={'alpha': 0.5}, diag_kws={'bins': 30});
Looking at the histograms, the underlying distributions of each segment appear similar for RM and TAX. The LSTAT distributions, on the other hand, look more distinct. We can focus on them in more detail by again using a violin plot.
Unlike the MEDV violin plot, where each distribution had roughly the same width, here we see the width increasing along with AGE. Communities with primarily old houses (the Very Old segment) contain anywhere from very few to many lower class residents, whereas Relatively New communities are much more likely to be predominantly higher class, with over 95% of samples having less lower class percentages than the Very Old communities. This makes sense, because Relatively New neighborhoods would be more expensive.
Summary
In this lesson, you have seen the fundamentals of data analysis in Jupyter.
We began with usage instructions and features of Jupyter such as magic functions and tab completion. Then, transitioning to data-science-specific material, we introduced the most important libraries for data science with Python.
In the latter half of the lesson, we ran an exploratory analysis in a live Jupyter Notebook. Here, we used visual assists such as scatter plots, histograms, and violin plots to deepen our understanding of the data. We also performed simple predictive modeling, a topic which will be the focus of the following lesson in this book.
In the next lesson, we will discuss how to approach predictive analytics, what things to consider when preparing the data for modeling, and how to implement and compare a variety of models using Jupyter Notebooks.
Chapter 2. Data Cleaning and Advanced Machine Learning
The goal of data analytics in general is to uncover actionable insights that result in positive business outcomes. In the case of predictive analytics, the aim is to do this by determining the most likely future outcome of a target, based on previous trends and patterns.
The benefits of predictive analytics are not restricted to big technology companies. Any business can find ways to benefit from machine learning, given the right data.
Companies all around the world are collecting massive amounts of data and using predictive analytics to cut costs and increase profits. Some of the most prevalent examples of this are from the technology giants Google, Facebook, and Amazon, who utilize big data on a huge scale. For example, Google and Facebook serve you personalized ads based on predictive algorithms that guess what you are most likely to click on. Similarly, Amazon recommends personalized products that you are most likely to buy, given your previous purchases.
Modern predictive analytics is done with machine learning, where computer models are trained to learn patterns from data. As we saw briefly in the previous lesson, software such as scikit-learn can be used with Jupyter Notebooks to efficiently build and test machine learning models. As we will continue to see, Jupyter Notebooks are an ideal environment for doing this type of work, as we can perform ad hoc testing and analysis, and easily save the results for reference later.
In this lesson, we will again take a hands-on approach by running through various examples and activities in a Jupyter Notebook. Where we saw a couple of examples of machine learning in the previous lesson, here we'll take a much slower and more thoughtful approach. Using an employee retention problem as our overarching example for the lesson, we will discuss how to approach predictive analytics, what things to consider when preparing the data for modeling, and how to implement and compare a variety of models using Jupyter Notebooks.
In this lesson, you will:
Preparing to Train a Predictive Model
Here, we will cover the preparation required to train a predictive model. Although not as technically glamorous as training the models themselves, this step should not be taken lightly. It's very important to ensure you have a good plan before proceeding with the details of building and training a reliable model. Furthermore, once you've decided on the right plan, there are technical steps in preparing the data for modeling that should not be overlooked.
Note
We must be careful not to go so deep into the weeds of technical tasks that we lose sight of the goal.
Technical tasks include things that require programming skills, for example, constructing visualizations, querying databases, and validating predictive models. It's easy to spend hours trying to implement a specific feature or get the plots looking just right. Doing this sort of thing is certainly beneficial to our programming skills, but we should not forget to ask ourselves if it's really worth our time with respect to the current project.
Also, keep in mind that Jupyter Notebooks are particularly well-suited for this step, as we can use them to document our plan, for example, by writing rough notes about the data or a list of models we are interested in training. Before starting to train models, it's good practice to even take this a step further and write out a well-structured plan to follow. Not only will this help you stay on track as you build and test the models, but it will allow others to understand what you're doing when they see your work.
After discussing the preparation, we will also cover another step in preparing to train the predictive model, which is cleaning the dataset. This is another thing that Jupyter Notebooks are well-suited for, as they offer an ideal testing ground for performing dataset transformations and keeping track of the exact changes. The data transformations required for cleaning raw data can quickly become intricate and convoluted; therefore, it's important to keep track of your work. As discussed in the first lesson, tools other than Jupyter Notebooks just don't offer very good options for doing this efficiently.
Subtopic A: Determining a Plan for Predictive Analytics
When formulating a plan for doing predictive modeling, one should start by considering stakeholder needs. A perfect model will be useless if it doesn't solve a relevant problem. Planning a strategy around business needs ensures that a successful model will lead to actionable insights.
Although it may be possible in principle to solve many business problems, the ability to deliver the solution will always depend on the availability of the necessary data. Therefore, it's important to consider the business needs in the context of the available data sources. When data is plentiful, this will have little effect, but as the amount of available data becomes smaller, so too does the scope of problems that can be solved.
These ideas can be formed into a standard process for determining a predictive analytics plan, which goes as follows:
Steps 2 and 3 should be repeated until a realistic plan has taken shape. At this point, you will already have a good idea of what the model input will be and what you might expect as output.
Once we've identified a problem that can be solved with machine learning, along with the appropriate data sources, we should answer the following questions to lay a framework for the project. Doing this will help us determine which types of machine learning models we can use to solve the problem:
If the answer is yes, then we will be doing supervised machine learning. Supervised learning has many real-world use cases, whereas it's much rarer to find business cases for doing predictive analytics on unlabeled data.
If the answer is no, then you are using unlabeled data and hence doing unsupervised machine learning. An example of an unsupervised learning method is cluster analysis, where labels are assigned to the nearest cluster for each sample.
In a regression problem, the target variable is continuous, for example, predicting the amount of rain tomorrow in centimeters. In a classification problem, the target variable is discrete and we are predicting class labels. The simplest type of classification problem is binary, where each sample is grouped into one of two classes. For example, will it rain tomorrow or not?
Consider the size of the data in terms of width and height, where width refers to the number of columns (features) and height refers to the number of rows. Certain algorithms are more effective at handling large numbers of features than others. Generally, the bigger the dataset, the better in terms of accuracy. However, training can be very slow and memory intensive for large datasets. This can always be reduced by performing aggregations on the data or using dimensionality reduction techniques.
If there are different data sources, can they be merged into a single table? If not, then we may want to train models for each and take an ensemble average for the final prediction model. An example where we may want to do this is with various sets of times series data on different scales. Consider we have the following data sources: a table with the AAPL stock closing prices on a daily time scale and iPhone sales data on a monthly time scale.
We could merge the data by adding the monthly sales data to each sample in the daily time scale table, or grouping the daily data by month, but it might be better to build two models, one for each dataset, and use a combination of the results from each in the final prediction model.
Subtopic B: Preprocessing Data for Machine Learning
Data preprocessing has a huge impact on machine learning. Like the saying "you are what you eat," the model's performance is a direct reflection of the data it's trained on. Many models depend on the data being transformed so that the continuous feature values have comparable limits. Similarly, categorical features should be encoded into numerical values. Although important, these steps are relatively simple and do not take very long.
Note
The aspect of preprocessing that usually takes the longest is cleaning up messy data. Just take a look at this pie plot showing what data scientists from a particular survey spent most of their time doing:
Another thing to consider is the size of the datasets being used by many data scientists. As the dataset size increases, the prevalence of messy data increases as well, along with the difficulty in cleaning it.
Simply dropping the missing data is usually not the best option, because it's hard to justify throwing away samples where most of the fields have values. In doing so, we could lose valuable information that may hurt final model performance.
The steps involved in data preprocessing can be grouped as follows:
Let's explore some of the tools and methods for doing the preprocessing.
Explore data preprocessing tools and methods
We are going to start by showing off some basic tools from Pandas and scikit-learn. Then, we'll take a deeper dive into methods for rebuilding missing data.
As we can see, the function accepts a left and right DataFrame to merge. You can specify one or more columns to group on as well as how they are grouped, that is, to use the left, right, outer, or inner sets of values. Let's see an example of this in use.
df_1 = pd.DataFrame({'product': ['red shirt', 'red shirt', 'red shirt', 'white dress'],\n",
'price': [49.33, 49.33, 32.49, 199.99]})\n",
df_2 = pd.DataFrame({'product': ['red shirt', 'blue pants', 'white tuxedo', 'white dress'],\n",
'in_stock': [True, True, False, False]})
Here, we will build two simple DataFrames from scratch. As can be seen, they contain a product column with some shared entries.
Now, we are going to perform an inner merge on the product shared column and print the result.
Note how only the shared items, red shirt and white dress, are included. To include all entries from both tables, we can do an outer merge instead. Let's do this now.
This returns all of the data from each table where missing values have been labeled with NaN.
This returns all of the data from each table where missing values have been labeled with NaN.
Since this is our first time encountering an NaN value in this book, now is a good time to discuss how these work in Python.
First of all, you can define an NaN variable by doing, for example, a = float('nan'). However, if you want to test for equality, you cannot simply use standard comparison methods. It's best to do this instead with a high-level function from a library such as NumPy. This is illustrated with the following code:
Some of these results may seem counterintuitive. There is logic behind this behavior, however, and for a deeper understanding of the fundamental reasons for standard comparisons returning False, check out this excellent StackOverflow thread: https://stackoverflow.com/questions/1565164/what-is-the-rationale-for-all-comparisons-returning-false-for-ieee754-nan-values.
Run the cell containing df.drop_duplicates() to return a version of the DataFrame with no duplicate rows:
This is the easiest and "standard" way to drop duplicate rows. To apply these changes to df, we can either set inplace=True or do something like df = df.drop_duplicated(). Let's see another method, which uses masking to select or drop duplicate rows.
We can take the sum of this result to determine how many rows have duplicates, or it can be used as a mask to select the duplicated rows.
df[~df.duplicated()]
df[~df['product'].duplicated()]
Here, we are doing the following things:
As expected, we now see that only the first red shirt row remains, as the duplicate product rows have been removed.
In order to proceed with the steps, let's replace df with a deduplicated version of itself. This can be done by running drop_duplicates and passing the parameter inplace=True.
df.drop_duplicates(inplace=True)
Continuing on to other preprocessing methods, let's ignore the duplicated rows and first deal with the missing data. This is necessary because models cannot be trained on incomplete samples. Using the missing price data for blue pants and white tuxedo as an example, let's show some different options for handling NaN values.
Simply dropping the NaN values is usually not the best option, because losing data is never good, especially if only a small fraction of the sample values is missing. Pandas offers a method for filling in NaN entries in a variety of different ways, some of which we'll illustrate now.
Note the options for the value parameter; this could be, for example, a single value or a dictionary/series type map based on index. Alternatively, we can leave the value as None and pass a fill method instead. We'll see examples of each in this lesson.
df.fillna(value=df.price.mean())
df.fillna(method='pad')
Notice how the white dress price was used to pad the missing values below it.
To conclude this section, we will prepare our simple table to be used for training a machine learning algorithm. Don't worry, we won't actually try to train any models on such a small dataset! We start this process by encoding the class labels for the categorical data.
Imagining we want to use this table to train a predictive model, we should first think about changing all the variables to numeric types.
df.in_stock = df.in_stock.map({False: 0, True: 1})
from sklearn.preprocessing import LabelEncoder
rating_encoder = LabelEncoder()
_df = df.copy()
_df.rating = rating_encoder.fit_transform(df.rating)
_df
This might bring to mind the preprocessing we did in the previous lesson, when building the polynomial model. Here, we instantiate a label encoder and then "train" it and "transform" our data using the fit_transform method. We apply the result to a copy of our DataFrame, _df.
You may notice a problem here. We are working with a so-called "ordinal" feature, where there's an inherent order to the labels. In this case, we should expect that a rating of "low" would be encoded with a 0 and a rating of "high" would be encoded with a 2. However, this is not the result we see. In order to achieve proper ordinal label encoding, we should again use map, and build the dictionary ourselves.
ordinal_map = {rating: index for index, rating in enumerate(['low', 'medium', 'high'])}
print(ordinal_map)
df.rating = df.rating.map(ordinal_map)
We first create the mapping dictionary. This is done using a dictionary comprehension and enumeration, but looking at the result, we see that it could just as easily be defined manually instead. Then, as done earlier for the in_stock column, we apply the dictionary mapping to the feature. Looking at the result, we see that rating now makes more sense than before, where low is labeled with 0, medium with 1, and high with 2.
Now that we've discussed ordinal features, let's touch on another type called nominal features. These are fields with no inherent order, and in our case, we see that product is a perfect example.
Most scikit-learn models can be trained on data like this, where we have strings instead of integer-encoded labels. In this situation, the necessary conversions are done under the hood. However, this may not be the case for all models in scikit-learn, or other machine learning and deep learning libraries. Therefore, it's good practice to encode these ourselves during preprocessing.
df = pd.get_dummies(df)
The final DataFrame then looks as follows:
Here, we see the result of one-hot encoding: the product column has been split into 4, one for each unique value. Within each column, we find either a 1 or 0 representing whether that row contains the particular value or product.
Moving on and ignoring any data scaling (which should usually be done), the final step is to split the data into training and test sets to use for machine learning. This can be done using scikit-learn's train_test_split. Let's assume we are going to try to predict whether an item is in stock, given the other feature values.
features = ['price', 'rating', 'product_blue pants',
'product_red shirt', 'product_white dress',
'product_white tuxedo']
X = df[features].values
target = 'in_stock'
y = df[target].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.3)
Here, we are selecting subsets of the data and feeding them into the train_test_split function. This function has four outputs, which are unpacked into the training and testing splits for features (X) and the target (y).
Observe the shape of the output data, where the test set has roughly 30% of the samples and the training set has roughly 70%.
We'll see similar code blocks later, when preparing real data to use for training predictive models.
This concludes the section on cleaning data for use in machine learning applications. Let's take a minute to note how effective our Jupyter Notebook was for testing various methods of transforming the data, and ultimately documenting the pipeline we decided upon. This could easily be applied to an updated version of the data by altering only specific cells of code, prior to processing. Also, should we desire any changes to the processing, these can easily be tested in the notebook, and specific cells may be changed to accommodate the alterations. The best way to achieve this would probably be to copy the notebook over to a new file, so that we can always keep a copy of the original analysis for reference.
Moving on to an activity, we'll now apply the concepts from this section to a large dataset as we prepare it for use in training predictive models.
Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem
Suppose you are hired to do freelance work for a company who wants to find insights into why their employees are leaving. They have compiled a set of data they think will be helpful in this respect. It includes details on employee satisfaction levels, evaluations, time spent at work, department, and salary.
The company shares their data with you by sending you a file called hr_data.csv and asking what you think can be done to help stop employees from leaving.
To apply the concepts we've learned thus far to a real-life problem. In particular, we seek to:
Note
Starting with this activity and continuing through the remainder of this lesson, we'll be using Human Resources Analytics, which is a Kaggle dataset.
There is a small difference between the dataset we use in this book and the online version. Our human resource analytics data contains some NaN values. These were manually removed from the online version of the dataset, for the purposes of illustrating data cleaning techniques. We have also added a column of data called is_smoker, for the same purposes.
%%bash
head ../data/hr-analytics/hr_data.csv
Judging by the output, convince yourself that it looks to be in standard CSV format. For CSV files, we should be able to simply load the data with pd.read_csv.
We can see that it appears to have loaded correctly. Based on the tail index values, there are nearly 15,000 rows; let's make sure we didn't miss any.
with open('../data/hr-analytics/hr_data.csv') as f:
print(len(f.read().splitlines()))
Now that our client's data has been properly loaded, let's think about how we can use predictive analytics to find insights into why their employees are leaving.
Let's run through the first steps for creating a predictive analytics plan:
Recall, as mentioned earlier, that effective analytics techniques lead to impactful business decisions. With that in mind, if we were able to predict how likely an employee is to quit, the business could selectively target those employees for special treatment. For example, their salary could be raised or their number of projects reduced. Furthermore, the impact of these changes could be estimated using the model!
To assess the validity of this plan, let's think about our data. Each row represents an employee who either works for the company or has left, as labeled by the column named left. We can therefore train a model to predict this target, given a set of features.
Assess the target variable. Check the distribution and number of missing entries by running the following code:
df.left.value_counts().plot('barh')
print(df.left.isnull().sum())
Here's the output of the second code line:
About three-quarters of the samples are employees who have not left. The group who has left makes up the other quarter of the samples. This tells us we are dealing with an imbalanced classification problem, which means we'll have to take special measures to account for each class when calculating accuracies. We also see that none of the target variables are missing (no NaN values).
Now, we'll assess the features:
for f in df.columns:try:fig = plt.figure()…
…
print('-'*30)
Note
For the complete code, refer to the Lesson 2.txt file in the Lesson 2 folder.
This code snippet is a little complicated, but it's very useful for showing an overview of both the continuous and discrete features in our dataset. Essentially, it assumes each feature is continuous and attempts to plot its distribution, and reverts to simply plotting the value counts if the feature turns out to be discrete.
The result is as follows:
For many features, we see a wide distribution over the possible values, indicating a good variety in the feature spaces. This is encouraging; features that are strongly grouped around a small range of values may not be very informative for the model. This is the case for promotion_last_5years, where we see that the vast majority of samples are 0.
The next thing we need to do is remove any NaN values from the dataset.
df.isnull().sum() / len(df) * 100
We can see there are about 2.5% missing for average_montly_hours, 1% missing for time_spend_company, and 98% missing for is_smoker! Let's use a couple of different strategies that we've learned about to handle these.
fill_value = df.time_spend_company.median()
df.time_spend_company = df.time_spend_company.fillna(fill_value)
The final column to deal with is average_montly_hours. We could do something similar and use the median or rounded mean as the integer fill value. Instead though, let's try to take advantage of its relationship with another variable. This may allow us to fill the missing data more accurately.
sns.boxplot(x='number_project', y='average_montly_hours', data=df)
We can see how the number of projects is correlated with average_monthly_hours, a result that is hardly surprising. We'll exploit this relationship by filling in the NaN values of average_montly_hours differently, depending on the number of projects for that sample. Specifically, we'll use the mean of each group.
mean_per_project = df.groupby('number_project')\
.average_montly_hours.mean()
mean_per_project = dict(mean_per_project)
print(mean_per_project)
We can then map this onto the number_project column and pass the resulting series object as the argument to fillna.
fill_values = df.number_project.map(mean_per_project)
df.average_montly_hours = df.average_montly_hours.fillna(fill_values)
assert df.isnull().sum().sum() == 0
df.left = df.left.map({'no': 0, 'yes': 1})
df = pd.get_dummies(df)
We can see that department and salary have been split into various binary features.
The final step to prepare our data for machine learning is scaling the features, but for various reasons (for example, some models do not require scaling), we'll do it as part of the model-training workflow in the next activity.
df.to_csv('../data/hr-analytics/hr_data_processed.csv', index=False)
Again, we pause here to note how well the Jupyter Notebook suited our needs when performing this initial data analysis and clean-up. Imagine, for example, we left this project in its current state for a few months. Upon returning to it, we would probably not remember what exactly was going on when we left it. Referring back to this notebook though, we would be able to retrace our steps and quickly recall what we previously learned about the data. Furthermore, we could update the data source with any new data and re-run the notebook to prepare the new set of data for use in our machine learning algorithms. Recall that in this situation, it would be best to make a copy of the notebook first, so as not to lose the initial analysis.
To summarize, we've learned and applied methods for preparing to train a machine learning model. We started by discussing steps for identifying a problem that can be solved with predictive analytics. This consisted of:
We also discussed how to identify supervised versus unsupervised and regression versus classification problems.
After identifying our problem, we learned techniques for using Jupyter Notebooks to build and test a data transformation pipeline. These techniques included methods and best practices for filling missing data, transforming categorical features, and building train/test data sets.
In the remainder of this lesson, we will use this preprocessed data to train a variety of classification models. To avoid blindly applying algorithms we don't understand, we start by introducing them and overviewing how they work. Then, we use Jupyter to train and compare their predictive capabilities. Here, we have the opportunity to discuss more advanced topics in machine learning like overfitting, k-fold cross-validation, and validation curves.
Training Classification Models
As we've already seen in the previous lesson, using libraries such as scikit-learn and platforms such as Jupyter, predictive models can be trained in just a few lines of code. This is possible by abstracting away the difficult computations involved with optimizing model parameters. In other words, we deal with a black box where the internal operations are hidden instead. With this simplicity also comes the danger of misusing algorithms, for example, by overfitting during training or failing to properly test on unseen data. We'll show how to avoid these pitfalls while training classification models and produce trustworthy results with the use of k-fold cross validation and validation curves.
Subtopic A: Introduction to Classification Algorithms
Recall the two types of supervised machine learning: regression and classification. In regression, we predict a continuous target variable. For example, recall the linear and polynomial models from the first lesson. In this lesson, we focus on the other type of supervised machine learning: classification. Here, the goal is to predict the class of a sample using the available metrics.
In the simplest case, there are only two possible classes, which means we are doing binary classification. This is the case for the example problem in this lesson, where we try to predict whether an employee has left or not. If we have more than two class labels instead, we are doing multi-class classification.
Although there is little difference between binary and multi-class classification when training models with scikit-learn, what's done inside the "black box" is notably different. In particular, multi-class classification models often use the one-versus-rest method. This works as follows for a case with three class labels. When the model is "fit" with the data, three models are trained, and each model predicts whether the sample is part of an individual class or part of some other class. This might bring to mind the one-hot encoding for features that we did earlier. When a prediction is made for a sample, the class label with the highest confidence level is returned.
In this lesson, we'll train three types of classification models: Support Vector Machines, Random Forests, and k-Nearest Neighbors classifiers. Each of these algorithms are quite different. As we will see, however, they are quite similar to train and use for predictions thanks to scikit-learn. Before swapping over to the Jupyter Notebook and implementing these, we'll briefly see how they work.
SVMs attempt to find the best hyperplane to divide classes by. This is done by maximizing the distance between the hyperplane and the closest samples of each class, which are called support vectors.
This linear method can also be used to model nonlinear classes using the kernel trick. This method maps the features into a higher-dimensional space in which the hyperplane is determined. This hyperplane we've been talking about is also referred to as the decision surface, and we'll visualize it when training our models.
k-Nearest Neighbors classification algorithms memorize the training data and make predictions depending on the K nearest samples in the feature space. With three features, this can be visualized as a sphere surrounding the prediction sample. Often, however, we are dealing with more than three features and therefore hyperspheres are drawn to find the closest K samples.
Random Forests are an ensemble of decision trees, where each has been trained on different subsets of the training data.
A decision tree algorithm classifies a sample based on a series of decisions. For example, the first decision might be "if feature x_1 is less than or greater than 0." The data would then be split on this condition and fed into descending branches of the tree. Each step in the decision tree is decided based on the feature split that maximizes the information gain.
Essentially, this term describes the mathematics that attempts to pick the best possible split of the target variable.
Training a Random Forest consists of creating bootstrapped (that is, randomly sampled data with replacement) datasets for a set of decision trees. Predictions are then made based on the majority vote. These have the benefit of less overfitting and better generalizability.
Note
Decision trees can be used to model a mix of continuous and categorical data, which make them very useful. Furthermore, as we will see later in this lesson, the tree depth can be limited to reduce overfitting. For a detailed (but brief) look into the decision tree algorithm, check out this popular StackOverflow answer: https://stackoverflow.com/a/1859910/3511819.
There, the author shows a simple example and discusses concepts such as node purity, information gain, and entropy.
Training two-feature classification models with scikit-learn
We'll continue working on the employee retention problem that we introduced in the first topic. We previously prepared a dataset for training a classification model, in which we predicted whether an employee has left or not. Now, we'll take that data and use it to train classification models:
For this example, we'll be training classification models on two continuous features: satisfaction_level and last_evaluation.
sns.jointplot('satisfaction_level', 'last_evaluation',
data=df, kind='hex')
As you can see in the preceding image, there are some very distinct patterns in the data.
plot_args = dict(shade=True, shade_lowest=False)
for i, c in zip((0, 1), ('Reds', 'Blues')):
sns.kdeplot(df.loc[df.left==i, 'satisfaction_level'],
df.loc[df.left==i, 'last_evaluation'],
cmap=c, **plot_args)
Now, we can see how the patterns are related to the target variable. For the remainder of this section, we'll try to exploit these patterns to train effective classification models.
from sklearn.model_selection import train_test_splitfeatures = ['satisfaction_level', 'last_evaluation']X_train, X_test, y_train, y_test = train_test_split(df[features].values, df['left'].values,
test_size=0.3, random_state=1)
Our first two models, the Support Vector Machine and k-Nearest Neighbors algorithm, are most effective when the input data is scaled so that all of the features are on the same order. We'll accomplish this with scikit-learn's StandardScaler.
from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.transform(X_test)
Note
An easy mistake to make when doing machine learning is to "fit" the scaler on the whole dataset, when in fact it should only be "fit" to the training data. For example, scaling the data before splitting into training and testing sets is a mistake. We don't want this because the model training should not be influenced in any way by the test data.
from sklearn.svm import SVCsvm = SVC(kernel='linear', C=1, random_state=1)
svm.fit(X_train_std, y_train)
Then, we train a linear SVM classification model. The C parameter controls the penalty for misclassification, allowing the variance and bias of the model to be controlled.
from sklearn.metrics import accuracy_scorey_pred = svm.predict(X_test_std)acc = accuracy_score(y_test, y_pred)print('accuracy = {:.1f}%'.format(acc*100))
>> accuracy = 75.9%
We predict the targets for our test samples and then use scikit-learn's accuracy_score function to determine the accuracy. The result looks promising at ~75%! Not bad for our first model. Recall, though, the target is imbalanced. Let's see how accurate the predictions are for each class.
from sklearn.metrics import confusion_matrixcmat = confusion_matrix(y_test, y_pred)scores = cmat.diagonal() / cmat.sum(axis=1) * 100print('left = 0 : {:.2f}%'.format(scores[0]))print('left = 1 : {:.2f}%'.format(scores[1]))
>> left = 0 : 100.00%
>> left = 1 : 0.00%
It looks like the model is simply classifying every sample as 0, which is clearly not helpful at all. Let's use a contour plot to show the predicted class at each point in the feature space. This is commonly known as the decision-regions plot.
from mlxtend.plotting import plot_decision_regionsN_samples = 200X, y = X_train_std[:N_samples], y_train[:N_samples]
plot_decision_regions(X, y, clf=svm)
The function plots decision regions along with a set of samples passed as arguments. In order to see the decision regions properly without too many samples obstructing our view, we pass only a 200-sample subset of the test data to the plot_decision_regions function. In this case, of course, it does not matter. We see the result is entirely red, indicating every point in the feature space would be classified as 0.
It shouldn't be surprising that a linear model can't do a good job of describing these nonlinear patterns. Recall earlier we mentioned the kernel trick for using SVMs to classify nonlinear problems. Let's see if doing this can improve the result.
svm = SVC(kernel='rbf', C=1, random_state=1)
svm.fit(X_train_std, y_train)
Each computation done in this function has already been seen in this example; it simply calculates accuracies and plots the decision regions.
check_model_fit(svm, X_test_std, y_test)
The result is much better. Now, we are able to capture some of the non-linear patterns in the data and correctly classify the majority of the employees who have left.
The plot_decision_regions Function
The plot_decision_regions function is provided by mlxtend, a Python library developed by Sebastian Raschka. It's worth taking a peek at the source code (which is of course written in Python) to understand how these plots are drawn. It's really not too complicated.
In a Jupyter Notebook, import the function with from mlxtend.plotting import plot_decision_regions, and then pull up the help with plot_decision_regions? and scroll to the bottom to see the local file path:
Then, open up the file and check it out! For example, you could run cat in the notebook:
This is okay, but not ideal as there's no color markup for the code. It's better to copy it (so you don't accidentally alter the original) and open it with your favorite text editor.
When drawing attention to the code responsible for mapping the decision regions, we see a contour plot of predictions Z over an array X_predict that spans the feature space.
Let's move on to the next model: k-Nearest Neighbors.
Training k-nearest neighbors for our model
from sklearn.neighbors import KNeighborsClassifier
KNeighborsClassifier?
The n_neighbors parameter decides how many samples to use when making a classification. If the weights parameter is set to uniform, then class labels are decided by majority vote. Another useful choice for the weights is distance, where closer samples have a higher weight in the voting. Like most model parameters, the best choice for this depends on the particular dataset.
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train_std, y_train)
check_model_fit(knn, X_test_std, y_test)
We see an increase in overall accuracy and a significant improvement for class 1 in particular. However, the decision region plot would indicate we are overfitting the data. This is evident by the hard, "choppy" decision boundary, and small pockets of blue everywhere. We can soften the decision boundary and decrease overfitting by increasing the number of nearest neighbors.
knn = KNeighborsClassifier(n_neighbors=25)knn.fit(X_train_std, y_train)
check_model_fit(knn, X_test_std, y_test)
As we can see, the decision boundaries are significantly less choppy, and there are far less pockets of blue. The accuracy for class 1 is slightly less, but we would need to use a more comprehensive method such as k-fold cross validation to decide if there's a significant difference between the two models.
Note that increasing n_neighbors has no effect on training time, as the model is simply memorizing the data. The prediction time, however, will be greatly affected.
Note
When doing machine learning with real-world data, it's important for the algorithms to run quick enough to serve their purposes. For example, a script to predict tomorrow's weather that takes longer than a day to run is completely useless! Memory is also a consideration that should be taken into account when dealing with substantial amounts of data.
We will now train a Random Forest.
Training a Random Forest
Note
Observe how similar it is to train and make predictions on each model, despite them each being so different internally.
from sklearn.ensemble import RandomForestClassifierforest = RandomForestClassifier(n_estimators=50, max_depth=5,random_state=1)
forest.fit(X_train, y_train)
check_model_fit(forest, X_test, y_test)
Note the distinctive axes-parallel decision boundaries produced by decision tree machine learning algorithms.
We can access any of the individual decision trees used to build the Random Forest. These trees are stored in the estimators_attribute of the model. Let's draw one of these decision trees to get a feel for what's going on. Doing this requires the graphviz dependency, which can sometimes be difficult to install.
from sklearn.tree import export_graphvizimport graphvizdot_data = export_graphviz(forest.estimators_[0],out_file=None, feature_names=features, class_names=['no', 'yes'], filled=True, rounded=True, special_characters=True)graph = graphviz.Source(dot_data)
graph
We can see that each path is limited to five nodes as a result of setting max_depth=5. The orange boxes represent predictions of no (has not left the company), and the blue boxes represent yes (has left the company). The shade of each box (light, dark, and so on) indicates the confidence level, which is related to the gini value.
To summarize, we have accomplished two of the learning objectives in this section:
In particular, we used the preprocessed data from our employee retention problem to train classification models to predict whether an employee has left the company or not. For the purposes of keeping things simple and focusing on the algorithms, we built models to predict this given only two features: the satisfaction level and last evaluation value. This two-dimensional feature space also allowed us to visualize the decision boundaries and identify what overfitting looks like.
In the following section, we will introduce two important topics in machine learning: k-fold cross-validation and validation curves.
Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves
Thus far, we have trained models on a subset of the data and then assessed performance on the unseen portion, called the test set. This is good practice because the model performance on training data is not a good indicator of its effectiveness as a predictor. It's very easy to increase accuracy on a training dataset by overfitting a model, which can result in poorer performance on unseen data.
That said, simply training models on data split in this way is not good enough. There is a natural variance in data that causes accuracies to be different (if even slightly) depending on the training and test splits. Furthermore, using only one training/test split to compare models can introduce bias towards certain models and lead to overfitting.
k-fold cross validation offers a solution to this problem and allows the variance to be accounted for by way of an error estimate on each accuracy calculation. This, in turn, naturally leads to the use of validation curves for tuning model parameters. These plot the accuracy as a function of a hyperparameter such as the number of decision trees used in a Random Forest or the max depth.
Note
This is our first time using the term hyperparameter. It references a parameter that is defined when initializing a model, for example, the C parameter of the SVM. This is in contradistinction to a parameter of the trained model, such as the equation of the decision boundary hyperplane for a trained SVM.
The method is illustrated in the following diagram, where we see how the k-folds can be selected from the dataset:
The k-fold cross validation algorithm goes as follows:
It's standard to set k = 10, but smaller values for k should be considered if using a big data set.
This validation method can be used to reliably compare model performance with different hyperparameters (for example, the C parameter for an SVM or the number of nearest neighbors in a KNN classifier). It's also suitable for comparing entirely different models.
Once the best model has been identified, it should be re-trained on the entirety of the dataset before being used to predict actual classifications.
When implementing this with scikit-learn, it's common to use a slightly improved variation of the normal k-fold algorithm instead. This is called stratified k-fold. The improvement is that stratified k-fold cross validation maintains roughly even class label populations in the folds. As you can imagine, this reduces the overall variance in the models and decreases the likelihood of highly unbalanced models causing bias.
Validation curves are plots of a training and validation metric as a function of some model parameter. They allow to us to make good model parameter selections. In this book, we will use the accuracy score as our metric for these plots.
Note
The documentation for plot validation curves is available here: http://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html.
Consider this validation curve, where the accuracy score is plotted as a function of the gamma SVM parameter:
Starting on the left side of the plot, we can see that both sets of data are agreeing on the score, which is good. However, the score is also quite low compared to other gamma values, so therefore we say the model is underfitting the data. Increasing the gamma, we can see a point where the error bars of these two lines no longer overlap. From this point on, we see the classifier overfitting the data as the models behave increasingly well on the training set compared to the validation set. The optimal value for the gamma parameter can be found by looking for a high validation score with overlapping error bars on the two lines.
Keep in mind that a learning curve for some parameter is only valid while the other parameters remain constant. For example, if training the SVM in this plot, we could decide to pick gamma on the order of 10-4. However, we may want to optimize the C parameter as well. With a different value for C, the preceding plot would be different and our selection for gamma may no longer be optimal.
Using k-fold cross validation and validation curves in Python with scikit-learn
The training data should already be in the notebook's memory, but let's reload it as a reminder of what exactly we're working with.
df = pd.read_csv('../data/hr-analytics/hr_data_processed.csv')
features = ['satisfaction_level', 'last_evaluation']
X = df[features].values
y = df.left.values
clf = RandomForestClassifier(n_estimators=100, max_depth=5)
Train 10 variations of our model clf using stratified k-fold validation. Note that scikit-learn's cross_val_score does this type of validation by default. Run the cell containing the following code:
from sklearn.model_selection import cross_val_score
np.random.seed(1)
scores = cross_val_score(
estimator=clf,
X=X,
y=y,
cv=10)
print('accuracy = {:.3f} +/- {:.3f}'.format(scores.mean(), scores.
std()))
>> accuracy = 0.923 +/- 0.005
Note how we use np.random.seed to set the seed for the random number generator, therefore ensuring reproducibility with respect to the randomly selected samples for each fold and decision tree in the Random Forest.
>> array([0.93404397, 0.91533333, 0.92266667, 0.91866667, 0.92133333,
0.92866667, 0.91933333, 0.92 , 0.92795197, 0.92128085])
Using cross_val_score is very convenient, but it doesn't tell us about the accuracies within each class. We can do this manually with the model_selection.StratifiedKFold class. This class takes the number of folds as an initialization parameter, then the split method is used to build randomly sampled "masks" for the data. A mask is simply an array containing indexes of items in another array, where the items can then be returned by doing this: data[mask].
from sklearn.model_selection import StratifiedKFold…
…
print('fold: {:d} accuracy: {:s}'.format(k+1, str(class_acc)))
return class_accuracy
Note
For the complete code, refer to the Lesson 2.txt file in the Lesson 2 folder.
from sklearn.model_selection import cross_val_scorenp.random.seed(1)…
…
>> fold: 10 accuracy: [0.98861646 0.70588235]
>> accuracy = [0.98722476 0.71715647] +/- [0.00330026 0.02326823]
Note
For the complete code, refer to the Lesson 2.txt file in the Lesson 2 folder.
Now we can see the class accuracies for each fold! Pretty neat, right?
Do the calculations required to plot a validation curve by training Random Forests over a range of max_depth values. Run the cell containing the following code:
clf = RandomForestClassifier(n_estimators=10)
max_depths = np.arange(3, 16, 3)
train_scores, test_scores = validation_curve(
estimator=clf,
X=X,
y=y,
param_name='max_depth',
param_range=max_depths,
cv=10);
This will return arrays with the cross validation scores for each model, where the models have different max depths. In order to visualize the results, we'll leverage a function provided in the scikit-learn documentation.
plot_validation_curve(train_scores, test_scores,
max_depths, xlabel='max_depth')
Recall how setting the max depth for decision trees limits the amount of overfitting? This is reflected in the validation curve, where we see overfitting taking place for large max depth values to the right. A good value for max_depth appears to be 6, where we see the training and validation accuracies in agreement. When max_depth is equal to 3, we see the model underfitting the data as training and validation accuracies are lower.
To summarize, we have learned and implemented two important techniques for building reliable predictive models. The first such technique was k-fold cross-validation, which is used to split the data into various train/test batches and generate a set accuracy. From this set, we then calculated the average accuracy and the standard deviation as a measure of the error. This is important so that we have a gauge of the variability of our model and we can produce trustworthy accuracy.
We also learned about another such technique to ensure we have trustworthy results: validation curves. These allow us to visualize when our model is overfitting based on comparing training and validation accuracies. By plotting the curve over a range of our selected hyperparameter, we are able to identify its optimal value.
In the final section of this lesson, we take everything we have learned so far and put it together in order to build our final predictive model for the employee retention problem. We seek to improve the accuracy, compared to the models trained thus far, by including all of the features from the dataset in our model. We'll see now-familiar topics such as k-fold cross-validation and validation curves, but we'll also introduce something new: dimensionality reduction techniques.
Subtopic C: Dimensionality Reduction Techniques
Dimensionality reduction can simply involve removing unimportant features from the training data, but more exotic methods exist, such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). These techniques allow for data compression, where the most important information from a large group of features can be encoded in just a few features.
In this subtopic, we'll focus on PCA. This technique transforms the data by projecting it into a new subspace of orthogonal "principal components," where the components with the highest eigenvalues encode the most information for training the model. Then, we can simply select a few of these principal components in place of the original high-dimensional dataset. For example, PCA could be used to encode the information from every pixel in an image. In this case, the original feature space would have dimensions equal to the number of pixels in the image. This high-dimensional space could then be reduced with PCA, where the majority of useful information for training predictive models might be reduced to just a few dimensions. Not only does this save time when training and using models, it allows them to perform better by removing noise in the dataset.
Like the models we've seen, it's not necessary to have a detailed understanding of PCA in order to leverage the benefits. However, we'll dig into the technical details of PCA just a bit further so that we can conceptualize it better. The key insight of PCA is to identify patterns between features based on correlations, so the PCA algorithm calculates the covariance matrix and then decomposes this into eigenvectors and eigenvalues. The vectors are then used to transform the data into a new subspace, from which a fixed number of principal components can be selected.
In the following section, we'll see an example of how PCA can be used to improve our Random Forest model for the employee retention problem we have been working on. This will be done after training a classification model on the full feature space, to see how our accuracy is affected by dimensionality reduction.
Training a predictive model for the employee retention problem
We have already spent considerable effort planning a machine learning strategy, preprocessing the data, and building predictive models for the employee retention problem. Recall that our business objective was to help the client prevent employees from leaving. The strategy we decided upon was to build a classification model that would predict the probability of employees leaving. This way, the company can assess the likelihood of current employees leaving and take action to prevent it.
Given our strategy, we can summarize the type of predictive modeling we are doing as follows:
In particular, we are training models to determine whether an employee has left the company, given a set of continuous and categorical features. After preparing the data for machine learning in Activity A, Preparing to Train a Predictive Model for the Employee-Retention Problem, we went on to implement SVM, k-Nearest Neighbors, and Random Forest algorithms using just two features. These models were able to make predictions with over 90% overall accuracy. When looking at the specific class accuracies, however, we found that employees who had left (class-label 1) could only be predicted with 70-80% accuracy. Let's see how much this can be improved by utilizing the full feature space.
features = ['satisfaction_level', 'last_evaluation', 'number_project','average_montly_hours', 'time_spend_company', 'work_accident',…
…
X = df[features].values
y = df.left.values
Note
For the complete code, refer to the Lesson 2.txt file in the Lesson 2 folder.
Looking at the feature names, recall what the values look like for each one. Scroll up to the set of histograms we made in the first activity to help jog your memory. The first two features are continuous; these are what we used for training models in the previous two exercises. After that, we have a few discrete features, such as number_project and time_spend_company, followed by some binary fields such as work_accident and promotion_last_5years. We also have a bunch of binary features, such as department_IT and department_accounting, which were created by one-hot encoding.
Given a mix of features like this, Random Forests are a very attractive type of model. For one thing, they're compatible with feature sets composed of both continuous and categorical data, but this is not particularly special; for instance, an SVM can be trained on mixed feature types as well (given proper preprocessing).
Note
If you're interested in training an SVM or k-Nearest Neighbors classifier on mixed-type input features, you can use the data-scaling prescription from this StackExchange answer: https://stats.stackexchange.com/questions/82923/mixing-continuous-and-binary-data-with-linear-svm/83086#83086.
A simple approach would be to preprocess data as follows:
%%time
np.random.seed(1)
clf = RandomForestClassifier(n_estimators=20)
max_depths = [3, 4, 5, 6, 7,
9, 12, 15, 18, 21]
train_scores, test_scores = validation_curve(
estimator=clf,
X=X,
y=y,
param_name='max_depth',
param_range=max_depths,
cv=5);
We are testing 10 models with k-fold cross validation. By setting k = 5, we produce five estimates of the accuracy for each model, from which we extract the mean and standard deviation to plot in the validation curve. In total, we train 50 models, and since n_estimators is set to 20, we are training a total of 1,000 decision trees! All in roughly 10 seconds!
plot_validation_curve(train_scores, test_scores,
max_depths, xlabel='max_depth');
For small max depths, we see the model underfitting the data. Total accuracies dramatically increase by allowing the decision trees to be deeper and encode more complicated patterns in the data. As the max depth is increased further and the accuracy approaches 100%, we find the model overfits the data, causing the training and validation accuracies to grow apart. Based on this figure, let's select a max_depth of 6 for our model.
We should really do the same for n_estimators, but in the spirit of saving time, we'll skip it. You are welcome to plot it on your own; you should find agreement between training and validation sets for a large range of values. Usually, it's better to use more decision tree estimators in the Random Forest, but this comes at the cost of increased training times. We'll use 200 estimators to train our model.
np.random.seed(1)clf = RandomForestClassifier(n_estimators=200, max_depth=6)scores = cross_val_class_score(clf, X, y)print('accuracy = {} +/- {}'\.format(scores.mean(axis=0), scores.std(axis=0)))
>> accuracy = [0.99553722 0.85577359] +/- [0.00172575 0.02614334]
The accuracies are way higher now that we're using the full feature set, compared to before when we only had the two continuous features!
fig = plt.figure(figsize=(5, 7))sns.boxplot(data=pd.DataFrame(scores, columns=[0, 1]),palette=sns.color_palette('Set1'))plt.xlabel('Left')
plt.ylabel('Accuracy')
Random Forests can provide an estimate of the feature performances.
Note
The feature importance in scikit-learn is calculated based on how the node impurity changes with respect to each feature. For a more detailed explanation, take a look at the following StackOverflow thread about how feature importance is determined in Random Forest Classifier: https://stackoverflow.com/questions/15810339/how-are-feature-importances-in-randomforestclassifier-determined.
pd.Series(clf.feature_importances_, name='Feature importance',index=df[features].columns)\.sort_values()\.plot.barh()
plt.xlabel('Feature importance')
It doesn't look like we're getting much in the way of useful contribution from the one-hot encoded variables: department and salary. Also, the promotion_last_5years and work_accident features don't appear to be very useful.
Let's use Principal Component Analysis (PCA) to condense all of these weak features into just a few principal components.
from sklearn.decomposition import PCApca_features = \…
…
pca = PCA(n_components=3)
X_pca = pca.fit_transform(X_reduce)
Note
For the complete code, refer to the Lesson 2.txt file in the Lesson 2 folder.
>> array([[-0.67733089, 0.75837169, -0.10493685],
>> [0.73616575, 0.77155888, -0.11046422],
>> [0.73616575, 0.77155888, -0.11046422],
>> ...,
>> [-0.67157059, -0.3337546 , 0.70975452],
>> [-0.67157059, -0.3337546 , 0.70975452],
>> [-0.67157059, -0.3337546 , 0.70975452]])
Since we asked for the top three components, we get three vectors returned.
df['first_principle_component'] = X_pca.T[0]df['second_principle_component'] = X_pca.T[1]
df['third_principle_component'] = X_pca.T[2]
Select our reduced-dimension feature set to train a new Random Forest with. Run the following code:
features = ['satisfaction_level', 'number_project', 'time_spend_
company',
'average_montly_hours', 'last_evaluation',
'first_principle_component',
'second_principle_component',
'third_principle_component']
X = df[features].values
y = df.left.values
np.random.seed(1)
clf = RandomForestClassifier(n_estimators=200, max_depth=6)
scores = cross_val_class_score(clf, X, y)
print('accuracy = {} +/- {}'\
.format(scores.mean(axis=0), scores.std(axis=0)))
>> accuracy = [0.99562463 0.90618594] +/- [0.00166047 0.01363927]
fig = plt.figure(figsize=(5, 7))sns.boxplot(data=pd.DataFrame(scores, columns=[0, 1]),
palette=sns.color_palette('Set1'))plt.xlabel('Left')
plt.ylabel('Accuracy')
Comparing this to the previous result, we find an improvement in the class 1 accuracy! Now, the majority of the validation sets return an accuracy greater than 90%. The average accuracy of 90.6% can be compared to the accuracy of 85.6% prior to dimensionality reduction!
Let's select this as our final model. We'll need to re-train it on the full sample space before using it in production.
np.random.seed(1)clf = RandomForestClassifier(n_estimators=200, max_depth=6)
clf.fit(X, y)
from sklearn.externals import joblib
joblib.dump(clf, 'random-forest-trained.pkl')
clf = joblib.load('random-forest-trained.pkl')
Congratulations! We've trained the final predictive model! Now, let's see an example of how it can be used to provide business insights for the client.
Say we have a particular employee, who we'll call Sandra. Management has noticed she is working very hard and reported low job satisfaction in a recent survey. They would therefore like to know how likely it is that she will quit.
For the sake of simplicity, let's take her feature values as a sample from the training set (but pretend that this is unseen data instead).
sandra = df.iloc[573]X = sandra[features]X
>> satisfaction_level 0.360000
>> number_project 2.000000
>> time_spend_company 3.000000
>> average_montly_hours 148.000000
>> last_evaluation 0.470000
>> first_principle_component 0.742801
>> second_principle_component -0.514568
>> third_principle_component -0.677421
The next step is to ask the model which group it thinks she should be in.
clf.predict([X])
>> array([1])
The model classifies her as having already left the company; not a good sign! We can take this a step further and calculate the probabilities of each class label.
clf.predict_proba([X])
>> array([[0.06576239, 0.93423761]])
We see the model predicting that she has quit with 93% accuracy.
Since this is clearly a red flag for management, they decide on a plan to reduce her number of monthly hours to 100 and the time spent at the company to 1.
X.average_montly_hours = 100X.time_spend_company = 1clf.predict_proba([X])
>> array([[0.61070329, 0.38929671]])
Excellent! We can now see that the model returns a mere 38% likelihood that she has quit! Instead, it now predicts she will not have left the company.
Our model has allowed management to make a data-driven decision. By reducing her amount of time with the company by this particular amount, the model tells us that she will most likely remain an employee at the company!
Summary
In this lesson, we have seen how predictive models can be trained in Jupyter Notebooks.
To begin with, we talked about how to plan a machine learning strategy. We thought about how to design a plan that can lead to actionable business insights and stressed the importance of using the data to help set realistic business goals. We also explained machine learning terminology such as supervised learning, unsupervised learning, classification, and regression.
Next, we discussed methods for preprocessing data using scikit-learn and pandas. This included lengthy discussions and examples of a surprisingly time-consuming part of machine learning: dealing with missing data.
In the latter half of the lesson, we trained predictive classification models for our binary problem, comparing how decision boundaries are drawn for various models such as the SVM, k-Nearest Neighbors, and Random Forest. We then showed how validation curves can be used to make good parameter choices and how dimensionality reduction can improve model performance. Finally, at the end of our activity, we explored how the final model can be used in practice to make data-driven decisions.
Chapter 3. Web Scraping and Interactive Visualizations
So far in this book, we have focused on using Jupyter to build reproducible data analysis pipelines and predictive models. We'll continue to explore these topics in this lesson, but the main focus here is data acquisition. In particular, we will show you how data can be acquired from the web using HTTP requests. This will involve scraping web pages by requesting and parsing HTML. We will then wrap up this lesson by using interactive visualization techniques to explore the data we've collected.
The amount of data available online is huge and relatively easy to acquire. It's also continuously growing and becoming increasingly important. Part of this continual growth is the result of an ongoing global shift from newspapers, magazines, and TV to online content. With customized newsfeeds available all the time on cell phones, and live-news sources such as Facebook, Reddit, Twitter, and YouTube, it's difficult to imagine the historical alternatives being relevant much longer. Amazingly, this accounts for only some of the increasingly massive amounts of data available online.
With this global shift toward consuming content using HTTP services (blogs, news sites, Netflix, and so on), there are plenty of opportunities to use data-driven analytics. For example, Netflix looks at the movies a user watches and predicts what they will like. This prediction is used to determine the suggested movies that appear. In this lesson, however, we won't be looking at "business-facing" data as such, but instead we will see how the client can leverage the internet as a database. Never before has this amount and variety of data been so easily accessible. We'll use web-scraping techniques to collect data, and then we'll explore it with interactive visualizations in Jupyter.
Interactive visualization is a visual form of data representation, which helps users understand the data using graphs or charts. Interactive visualization helps a developer or analyst present data in a simple form, which can be understood by non-technical personnel too.
Lesson Objectives
In this lesson, you will:
Scraping Web Page Data
In the spirit of leveraging the internet as a database, we can think about acquiring data from web pages either by scraping content or by interfacing with web APIs. Generally, scraping content means getting the computer to read data that was intended to be displayed in a human-readable format. This is in contradistinction to web APIs, where data is delivered in machine-readable formats – the most common being JSON.
In this topic, we will focus on web scraping. The exact process for doing this will depend on the page and desired content. However, as we will see, it's quite easy to scrape anything we need from an HTML page so long as we have an understanding of the underlying concepts and tools. In this topic, we'll use Wikipedia as an example and scrape tabular content from an article. Then, we'll apply the same techniques to scrape data from a page on an entirely separate domain. But first, we'll take some time to introduce HTTP requests.
Subtopic A: Introduction to HTTP Requests
The Hypertext Transfer Protocol, or HTTP for short, is the foundation of data communication for the internet. It defines how a page should be requested and how the response should look. For example, a client can request an Amazon page of laptops for sale, a Google search of local restaurants, or their Facebook feed. Along with the URL, the request will contain the user agent and available browsing cookies among the contents of the request header. The user agent tells the server what browser and device the client is using, which is usually used to provide the most user-friendly version of the web page's response. Perhaps they have recently logged in to the web page; such information would be stored in a cookie that might be used to automatically log the user in.
These details of HTTP requests and responses are taken care of under the hood thanks to web browsers. Luckily for us, today the same is true when making requests with high-level languages such as Python. For many purposes, the contents of request headers can be largely ignored. Unless otherwise specified, these are automatically generated in Python when requesting a URL. Still, for the purposes of troubleshooting and understanding the responses yielded by our requests, it's useful to have a foundational understanding of HTTP.
There are many types of HTTP methods, such as GET, HEAD, POST, and PUT. The first two are used for requesting that data be sent from the server to the client, whereas the last two are used for sending data to the server.
These HTTP methods are summarized in the following table:
HTTP method | Description |
---|---|
GET | Retrieves the information from the specified URL |
HEAD | Retrieves the meta information from the HTTP header of the specified URL |
POST | Sends the attached information for appending to the resource(s) at the specified URL |
PUT | Sends the attached information for replacing the resource(s) at the specified URL |
A GET request is sent each time we type a web page address into our browser and press Enter. For web scraping, this is usually the only HTTP method we are interested in, and it's the only method we'll be using in this lesson.
Once the request has been sent, a variety of response types can be returned from the server. These are labeled with 100-level to 500-level codes, where the first digit in the code represents the response class. These can be described as follows:
For the purposes of web scraping, we usually only care about the response class, that is, the first digit of the response code. However, there exist subcategories of responses within each class that offer more granularity on what's going on. For example, a 401 code indicates an unauthorized response, whereas a 404 code indicates a page not found response. This distinction is noteworthy because a 404 would indicate we've requested a page that does not exist, whereas 401 tells us we need to log in to view the particular resource.
Let's see how HTTP requests can be done in Python and explore some of these topics using the Jupyter Notebook.
Subtopic B: Making HTTP Requests in the Jupyter Notebook
Now that we've talked about how HTTP requests work and what type of responses we should expect, let's see how this can be done in Python. We'll use a library called Requests, which happens to be the most downloaded external library for Python. It's possible to use Python's built-in tools, such as urllib, for making HTTP requests, but Requests is far more intuitive, and in fact it's recommended over urllib in the official Python documentation.
Requests is a great choice for making simple and advanced web requests. It allows for all sorts of customization with respect to headers, cookies, and authorization. It tracks redirects and provides methods for returning specific page content such as JSON. Furthermore, there's an extensive suite of advanced features. However, it does not allow JavaScript to be rendered.
Note
Oftentimes, servers return HTML with JavaScript code snippets included, which are automatically run in the browser on load time. When requesting content with Python using Requests, this JavaScript code is visible, but it does not run. Therefore, any elements that would be altered or created by doing so are missing. Often, this does not affect the ability to get the desired information, but in some cases we may need to render the JavaScript in order to scrape the page properly. For doing this, we could use a library like Selenium. This has a similar API to the Requests library, but provides support for rendering JavaScript using web drivers.
Let's dive into the following section using the Requests library with Python in a Jupyter Notebook.
Handling HTTP requests with Python in a Jupyter Notebook
We are going to request a web page and then examine the response object. There are many different libraries for making requests and many choices for exactly how to do so with each. We'll only use the Requests library, as it provides excellent documentation, advanced features, and a simple API.
url = 'https://jupyter.org/'
req = requests.Request('GET', url)
req.headers['User-Agent'] = 'Mozilla/5.0'
req = req.prepare()
We use the Request class to prepare a GET request to the jupyter.org homepage. By specifying the user agent as Mozilla/5.0, we are asking for a response that would be suitable for a standard desktop browser. Finally, we prepare the request.
Looking at its usage, we see how the request can be sent using a session. This is similar to opening a web browser (starting a session) and then requesting a URL.
with requests.Session() as sess:
page = sess.send(req)
This code returns the HTTP response, as referenced by the page variable. By using the with statement, we initialize a session whose scope is limited to the indented code block. This means we do not have to worry about explicitly closing the session, as it is done automatically.
As expected, the response is HTML. We can format this output better with the help of BeautifulSoup, a library which will be used extensively for HTML parsing later in this section.
from bs4 import BeautifulSoup
print(BeautifulSoup(page_html, 'html.parser').prettify()[:1000])
We import BeautifulSoup and then print the pretty output, where newlines are indented depending on their hierarchy in the HTML structure.
from IPython.display import HTML
HTML(page_html)
Here, we see the HTML rendered as well as possible, given that no JavaScript code has been run and no external resources have loaded. For example, the images that are hosted on the jupyter.org server are not rendered and we instead see the alt text: circle of programming icons, jupyter logo, and so on.
from IPython.display import IFrame
IFrame(src=url, height=800, width=800)
Here, we see the full site rendered, including JavaScript and external resources. In fact, we can even click on the hyperlinks and load those pages in the IFrame, just like a regular browsing session.
Recall how we used a prepared request and session to request this content as a string in Python. This is often done using a shorthand method instead. The drawback is that we do not have as much customization of the request header, but that's usually fine.
url = 'http://www.python.org/'page = requests.get(url)
page
<Response [200]>
The string representation of the page (as displayed beneath the cell) should indicate a 200 status code, indicating a successful response.
The URL returned is not what we input; notice the difference? We were redirected from the input URL, http://www.python.org/, to the secured version of that page, https://www.python.org/. The difference is indicated by an additional s at the start of the URL, in the protocol. Any redirects are stored in the history attribute; in this case, we find one page in here with status code 301 (permanent redirect), corresponding to the original URL requested.
Now that we're comfortable making requests, we'll turn our attention to parsing the HTML. This can be something of an art, as there are usually multiple ways to approach it, and the best method often depends on the details of the specific HTML in question.
Subtopic C: Parsing HTML in the Jupyter Notebook
When scraping data from a web page, after making the request, we must extract the data from the response content. If the content is HTML, then the easiest way to do this is with a high-level parsing library such as Beautiful Soup. This is not to say it's the only way; in principle, it would be possible to pick out the data using regular expressions or Python string methods such as split, but pursuing either of these options would be an inefficient use of time and could easily lead to errors. Therefore, it's generally frowned upon and instead, the use of a trustworthy parsing tool is recommended.
In order to understand how content can be extracted from HTML, it's important to know the fundamentals of HTML. For starters, HTML stands for Hyper Text Markup Language. Like Markdown or XML (eXtensible Markup Language), it's simply a language for marking up text. In HTML, the display text is contained within the content section of HTML elements, where element attributes specify how that element should appear on the page.
Looking at the anatomy of an HTML element, as seen in the preceding picture, we see the content enclosed between start and end tags. In this example, the tags are <p> for paragraph; other common tag types are <div> (text block), <table> (data table), <h1> (heading), (image), and <a> (hyperlinks). Tags have attributes, which can hold important metadata. Most commonly, this metadata is used to specify how the element text should appear on the page. This is where CSS files come into play. The attributes can store other useful information, such as the hyperlink href in an <a> tag, which specifies a URL link, or the alternate alt label in an tag, which specifies the text to display if the image resource cannot be loaded.
Now, let's turn our attention back to the Jupyter Notebook and parse some HTML! Although not necessary when following along with this section, it's very helpful in real-world situations to use the developer tools in Chrome or Firefox to help identify the HTML elements of interest. We'll include instructions for doing this with Chrome in the following section.
Parsing HTML with Python in a Jupyter Notebook
In this section, we'll scrape the central bank interest rates for each country, as reported by Wikipedia. Before diving into the code, let's first open up the web page containing this data.
Looking at the page, we see very little content other than a big list of countries and their interest rates. This is the table we'll be scraping.
from bs4 import BeautifulSoup
soup = BeautifulSoup(page.content, 'html.parser')
We use Python's default html.parser as the parser, but third-party parsers such as lxml may be used instead, if desired.
Usually, when working with a new object like this Beautiful Soup one, it's a good idea to pull up the docstring by doing soup?. However, in this case, the docstring is not particularly informative. Another tool for exploring Python objects is pdir, which lists all of an object's attributes and methods (this can be installed with pip install pdir2). It's basically a formatted version of Python's built-in dir function.
try:import pdirdir = pdir
except:
print('You can install pdir with:\npip install pdir2')
dir(soup)
Here, we see a list of methods and attributes that can be called on soup. The most commonly used function is probably find_all, which returns a list of elements that match the given criteria.
h1 = soup.find_all('h1')
h1
>> [<h1 class="firstHeading" id="firstHeading" lang="en">List of countries by central bank interest rates</h1>]
Usually, pages only have one H1 element, so it's obvious that we only find one here.
>> {'class': ['firstHeading'], 'id': 'firstHeading', 'lang': 'en'}
We see the class and ID of this element, which can both be referenced by CSS code to define the style of this element.
imgs = soup.find_all('img')
len(imgs)
>> 91
There are lots of images on the page. Most of these are for the country flags.
[element.attrs['src'] for element in imgsif 'src' in element.attrs.keys()]
We use a list comprehension to iterate through the elements, selecting the src attribute of each (so long as that attribute is actually available).
Now, let's scrape the table. We'll use Chrome's developer tools to hunt down the element this is contained within.
body_content = soup.find('div', {'id': 'bodyContent'})
We can now seek out the table within this subset of the full HTML. Usually, tables are organized into headers <th>, rows <tr>, and data entries <td>.
table_headers = body_content.find_all('th')[:3]table_headers
>>> [<th>Country or

currency union</th>, <th>Central bank

interest rate (%)</th>, <th>Date of last

change</th>]
Here, we see three headers. In the content of each is a break element
, which will make the text a bit more difficult to cleanly parse.
table_headers = [element.get_text().replace('\n', ' ')for element in table_headers]table_headers
>> ['Country or currency union',
'Central bank interest rate (%)',
'Date of last change']
Here, we get the content with the get_text method, and then run the replace string method to remove the newline resulting from the
 element.
To get the data, we'll first perform some tests and then scrape all the data in a single cell.
row_number = 2d1, d2, d3 = body_content.find_all('tr')[row_number]\.find_all('td')
We find all the row elements, pick out the third one, and then find the three data elements inside that.
Let's look at the resulting data and see how to parse the text from each row.
We're getting some undesirable characters at the front. This can be solved by searching for only the text of the <a> tag.
Similar to d1, we see that it would be better to get only the span element's text.
d3.find_all('span')[1].text
>> '30 June 2016'
data = []for i, row in enumerate(body_content.find_all('tr')):...
...
>> Ignoring row 101 because len(data) != 3
>> Ignoring row 102 because len(data) != 3
Note
For the complete code, refer to the Lesson 3.txt file in the Lesson 3 folder.
We iterate over the rows, ignoring any that contain more than three data elements. These rows will not correspond to data in the table we are interested in. Rows that do have three data elements are assumed to be in the table, and we parse the text from these as identified during the testing.
The text parsing is done inside a try/except statement, which will catch any errors and allow this row to be skipped without stopping the iteration. Any rows that raise errors due to this statement should be looked at. The data for these could be recorded manually or accounted for by altering the scraping loop and re-running it. In this case, we'll ignore any errors for the sake of time.
>> [['Albania', 1.25, '4 May 2016'],
['Angola', 16.0, '30 June 2016'],
['Argentina', 26.25, '11 April 2017'],
['Armenia', 6.0, '14 February 2017'],
['Australia', 1.5, '2 August 2016'],
['Azerbaijan', 15.0, '9 September 2016'],
['Bahamas', 4.0, '22 December 2016'],
['Bahrain', 1.5, '14 June 2017'],
['Bangladesh', 6.75, '14 January 2016'],
['Belarus', 12.0, '28 June 2017']]
f_path = '../data/countries/interest-rates.csv'with open(f_path, 'w') as f:f.write('{};{};{}\n'.format(*table_headers))for d in data:f.write('{};{};{}\n'.format(*d))
Note that we are using semicolons to separate the fields.
Activity A: Web Scraping with Jupyter Notebooks
We are going to get the population of each country. Then, in the next topic, this will be visualized along with the interest rate data scraped in the previous section.
The page we look at in this activity is available here: http://www.worldometers.info/world-population/population-by-country/.
Now that we've seen the basics of web scraping, let's apply the same techniques to a new web page and scrape some more data!
Note
This page may have changed since this document was created. If this URL no longer leads to a table of country populations, please use this Wikipedia page instead: https://en.wikipedia.org/wiki/List_of_countries_by_population (United_Nations).
data = []
for i, row in enumerate(soup.find_all('tr')):
row_data = row.find_all('td')
try:
d1, d2, d3 = row_data[1], row_data[5], row_data[6]
d1 = d1.find('a').text
d2 = float(d2.text)
d3 = d3.find_all('span')[1].text.replace('+', '')
data.append([d1, d2, d3])
except:
print('Ignoring row {}'.format(i))
url = 'http://www.worldometers.info/world-population/population-by-country/'
IFrame(url, height=300, width=800)
The page should load in the notebook. Scrolling down, we can see the Countries in the world by population heading and the table of values beneath it. We'll scrape the first three columns from this table to get the countries, populations, and yearly population changes.
page = requests.get(url)soup = BeautifulSoup(page.content, 'html.parser')
We feed the page content to the BeautifulSoup constructor. Recall that previously, we used page.text here instead. The difference is that page.content returns the raw binary response content, whereas page.text returns the UTF-8 decoded content. It's usually best practice to pass the bytes object and let BeautifulSoup decode it, rather than doing it with Requests using page.text.
soup.find_all('h1')
>> [<h1>Countries in the world by population (2017)</h1>]
We'll scrape the table by searching for <th>, <tr>, and <td> elements, as in the previous section.
table_headers = soup.find_all('th')table_headers
>> [<th>#</th>,
<th>Country (or dependency)</th>,
<th>Population
 (2017)</th>,
<th>Yearly
 Change</th>,
<th>Net
 Change</th>,
<th>Density
 (P/Km²)</th>,
<th>Land Area
 (Km²)</th>,
<th>Migrants
 (net)</th>,
<th>Fert.
 Rate</th>,
<th>Med.
 Age</th>,
<th>Urban
 Pop %</th>,
<th>World
 Share</th>]
table_headers = table_headers[1:4]
table_headers = [t.text.replace('\n', '') for t in table_headers]
After selecting the subset of table headers we want, we parse the text content from each and remove any newline characters.
Now, we'll get the data. Following the same prescription as the previous section, we'll test how to parse the data for a sample row.
row_number = 2row_data = soup.find_all('tr')[row_number]\
.find_all('td')
>> [<td>2</td>,
<td style="font-weight: bold; font-size:15px; text-align:left">India</td>,
<td style="font-weight: bold;">1,339,180,127</td>,
<td>1.13 %</td>]
It's pretty obvious that we want to select list indices 1, 2, and 3. The first data value can be ignored, as it's simply the index.
d1, d2, d3 = row_data[1:4]
print(d1.find('a').text)print(d2.text)print(d3.text)
>> India
>> 1,339,180,127
>> 1.13 %
Excellent! This looks to be working well. Now, we're ready to scrape the entire table.
data = []for i, row in enumerate(soup.find_all('tr')):try:d1, d2, d3 = row.find_all('td')[1:4]d1 = d1.find('a').textd2 = d2.textd3 = d3.textdata.append([d1, d2, d3])except:print('Error parsing row {}'.format(i))
>> Error parsing row 0
This is quite similar to before, where we try to parse the text and skip the row if there's some error.
>> [['China', '1,409,517,397', '0.43 %'],
['India', '1,339,180,127', '1.13 %'],
['U.S.', '324,459,463', '0.71 %'],
['Indonesia', '263,991,379', '1.10 %'],
['Brazil', '209,288,278', '0.79 %'],
['Pakistan', '197,015,955', '1.97 %'],
['Nigeria', '190,886,311', '2.63 %'],
['Bangladesh', '164,669,751', '1.05 %'],
['Russia', '143,989,754', '0.02 %'],
['Mexico', '129,163,276', '1.27 %']]
It looks like we have managed to scrape the data! Notice how similar the process was for this table compared to the Wikipedia one, even though this web page is completely different. Of course, it will not always be the case that data is contained within a table, but regardless, we can usually use find_all as the primary method for parsing.
f_path = '../data/countries/populations.csv'with open(f_path, 'w') as f:f.write('{};{};{}\n'.format(*table_headers))for d in data:
f.write('{};{};{}\n'.format(*d))
To summarize, we've seen how Jupyter Notebooks can be used for web scraping. We started this lesson by learning about HTTP methods and status codes. Then, we used the Requests library to actually perform HTTP requests with Python and saw how the Beautiful Soup library can be used to parse the HTML responses.
Our Jupyter Notebook turned out to be a great tool for this type of work. We were able to explore the results of our web requests and experiment with various HTML parsing techniques. We were also able to render the HTML and even load a live version of the web page inside the notebook!
In the next topic of this lesson, we shift to a completely new topic: interactive visualizations. We'll see how to create and display interactive charts right inside the notebook, and use these charts as a way to explore the data we've just collected.
Interactive Visualizations
Visualizations are quite useful as a means of extracting information from a dataset. For example, with a bar graph it's very easy to distinguish the value distribution, compared to looking at the values in a table. Of course, as we have seen earlier in this book, they can be used to study patterns in the dataset that would otherwise be quite difficult to identify. Furthermore, they can be used to help explain a dataset to an unfamiliar party. If included in a blog post, for example, they can boost reader interest levels and be used to break up blocks of text.
When thinking about interactive visualizations, the benefits are similar to static visualizations, but enhanced because they allow for active exploration on the viewer's part. Not only do they allow the viewer to answer questions they may have about the data, they also think of new questions while exploring. This can benefit a separate party such as a blog reader or co-worker, but also a creator, as it allows for easy ad hoc exploration of the data in detail, without having to change any code.
In this topic, we'll discuss and show how to use Bokeh to build interactive visualizations in Jupyter. Prior to this, however, we'll briefly revisit pandas DataFrames, which play an important role in doing data visualization with Python.
Subtopic A: Building a DataFrame to Store and Organize Data
As we've seen time and time again in this book, pandas is an integral part of doing data science with Python and Jupyter Notebooks. DataFrames offer a way to organize and store labeled data, but more importantly, pandas provides time saving methods for transforming data within a DataFrame. Examples we have seen in this book include dropping duplicates, mapping dictionaries to columns, applying functions over columns, and filling in missing values.
With respect to visualizations, DataFrames offer methods for creating all sorts of matplotlib graphs, including df.plot.barh(), df.plot.hist(), and more. The interactive visualization library Bokeh previously relied on pandas DataFrames for their high-level charts. These worked similar to Seaborn, as we saw earlier in the previous lesson, where a DataFrame is passed to the plotting function along with the specific columns to plot. The most recent version of Bokeh, however, has dropped support for this behavior. Instead, plots are now created in much the same way as matplotlib, where the data can be stored in simple lists or NumPy arrays. The point of this discussion is that DataFrames are not entirely necessary, but still very helpful for organizing and manipulating the data prior to visualization.
Building and merging Pandas DataFrames
Let's dive right into an exercise, where we'll continue working on the country data we scraped earlier. Recall that we extracted the central bank interest rates and populations of each country, and saved the results in CSV files. We'll load the data from these files and merge them into a DataFrame, which will then be used as the data source for the interactive visualizations to follow.
We are first going to load the data from the CSV files, so that it's back to the state it was in after scraping. This will allow us to practice building DataFrames from Python objects, as opposed to using the pd.read_csv function.
Note
When using pd.read_csv, the datatype for each column will be inferred from the string input. On the other hand, when using pd.DataFrame as we do here, the datatype is instead taken as the type of the input variables.
In our case, as will be seen, we read the file and do not bother converting the variables to numeric or date-time until after instantiating the DataFrame.
with open('../data/countries/interest-rates.csv', 'r') as f:
int_rates_col_names = next(f).split(',')
int_rates = [line.split(',') for line in f.read().splitlines()]
with open('../data/countries/populations.csv', 'r') as f:
populations_col_names = next(f).split(',')
populations = [line.split(',') for line in f.read().splitlines()]
print(int_rates_col_names)int_rates[:5]
>> ['Country or currency union', 'Central bank interest ...
...
['Indonesia', '263', '991', '379', '1.10 %'],
['Brazil', '209', '288', '278', '0.79 %']]
Note
For the complete code, refer to the Lesson 3.txt file in the Lesson 3 folder.
Now, the data is in a standard Python list structure, just as it was after scraping from the web pages in the previous sections. We're now going to create two DataFrames and merge them, so that all of the data is organized within one object.
df_int_rates = pd.DataFrame(int_rates, columns=int_rates_col_names)
df_populations = pd.DataFrame(populations, columns=populations_col_names)
This isn't the first time we've used this function in this book. Here, we pass the lists of data (as seen previously) and the corresponding column names. The input data can also be of dictionary type, which can be useful when each column is contained in a separate list.
Next, we're going to clean up each DataFrame. Starting with the interest rates one, let's print the head and tail, and list the data types.
pd.options.display.max_rows = 10
df_int_rates
df_int_rates.dtypes
>> Country or currency union object
>> Central bank interest rate (%) object
>> Date of last change object
>> dtype: object
Pandas has assigned each column as a string datatype, which makes sense because the input variables were all strings. We'll want to change these to string, float, and datetime, respectively.
df_int_rates['Central bank interest rate (%)'] = \df_int_rates['Central bank interest rate (%)']\.astype(float, copy=False)df_int_rates['Date of last change'] = \
pd.to_datetime(df_int_rates['Date of last change'])
We use astype to cast the Interest Rate values as floats, setting copy=False to save memory. Since the date values are given in such an easy-to-read format, these can be converted simply by using pd.to_datetime.
df_int_rates.dtypes
>> Country or currency union object
>> Central bank interest rate (%) float64
>> Date of last change datetime64[ns]
>> dtype: object
As can be seen, everything is now in the proper format.
df_populations
Then, run this code:
df_populations['Population (2017)'] = df_populations['Population (2017)']\.str.replace(',', '')\.astype(float, copy=False)df_populations['Yearly Change'] = df_populations['Yearly Change']\.str.rstrip('%')\
.astype(float, copy=False)
To cast the numeric columns as a float, we had to first apply some modifications to the strings in this case. We stripped away any commas from the populations and removed the percent sign from the Yearly Change column, using string methods.
Now, we're going to merge the DataFrames on the country name for each row. Keep in mind that these are still the raw country names as scraped from the web, so there might be some work involved with matching the strings.
df_merge = pd.merge(df_populations,
df_int_rates,
left_on='Country (or dependency)',
right_on='Country or currency union',
how='outer'
df_merge
We pass the population data in the left DataFrame and the interest rates in the right one, performing an outer match on the country columns. This will result in NaN values where the two do not overlap.
df_merge.sort_values('Population (2017)', ascending=False)\.head(10)
It looks like U.S. didn't match up. This is because it's listed as United States in the interest rates data. Let's remedy this.
col = 'Country (or dependency)'
df_populations.loc[df_populations[col] == 'U.S.'] = 'United States'
We rename the country for the populations DataFrame with the use of the loc method to locate that row. Now, let's merge the DataFrames properly.
df_merge = pd.merge(df_populations,df_int_rates,left_on='Country (or dependency)',right_on='Country or currency union',
how='inner')
del df_merge['Country or currency union']
name_map = {'Country (or dependency)': 'Country','Population (2017)': 'Population','Central bank interest rate (%)': 'Interest rate'}df_merge = df_merge.rename(columns=name_map)
We are left with the following merged and cleaned DataFrame:
df_merge.to_csv('../data/countries/merged.csv', index=False)
Subtopic B: Introduction to Bokeh
Bokeh is an interactive visualization library for Python. Its goal is to provide similar functionality to D3, the popular interactive visualization library for JavaScript. Bokeh functions very differently than D3, which is not surprising given the differences between Python and JavaScript. Overall, it's much simpler and it doesn't allow nearly as much customization as D3 does. This works to its advantage though, as it's much easier to use, and it still boasts an excellent suite of features that we'll explore in this section.
Let's dive right into a quick exercise with the Jupyter Notebook and introduce Bokeh by example.
Note
There is good documentation online for Bokeh, but much of it is outdated. Searching something like Bokeh bar plot in Google still tends to turn up documentation for legacy modules that no longer exist, for example, the high-level plotting tools that used to be available through bokeh.charts (prior to version 0.12.0). These are the ones that take pandas DataFrames as input in much the same way that Seaborn plotting functions do. Removing the high-level plotting tools module has simplified Bokeh, and will allow for more focused development going forward. Now, the plotting tools are largely grouped into the bokeh.plotting module, as will be seen in the next exercise and following activity.
Introduction to interactive visualizations with Bokeh
We'll load the required Bokeh modules and show some simple interactive plots that can be made with Bokeh. Please note that the examples in this book have been designed using version 0.12.10 of Bokeh.
from bokeh.plotting import figure, show, output_notebookoutput_notebook()
We need to run output_notebook() in order to render the interactive visuals within the Jupyter notebook.
np.random.seed(30)data = pd.Series(np.random.randn(200),index=list(range(200)))\.cumsum()x = data.indexy = data.values
The random data is generated using the cumulative sum of a random set of numbers that are distributed about zero. The effect is a trend that looks similar to a stock price time series, for example.
p = figure(title='Example plot', x_axis_label='x', y_axis_label='y')p.line(x, y, legend='Random trend')show(p)
We instantiate the figure, as referenced by the variable p, and then plot a line. Running this in Jupyter yields an interactive figure with various options along the right-hand side.
The top three options (as of version 0.12.10) are Pan, Box Zoom, and Wheel Zoom. Play around with these and experiment with how they work. Use the reset option to re-load the default plot limits.
size = np.random.rand(200) * 5p = figure(title='Example plot', x_axis_label='x', y_axis_label='y')
p.circle(x, y, radius=size, alpha=0.5, legend='Random dots')show(p)
Here, we've specified the size of each circle using a random set of numbers.
A very enticing feature of interactive visualizations is the tooltip. This is a hover tool that allows the user to get information about a point by hovering over it.
p.circle(x, y, radius=size, alpha=0.5, legend='Random dots')show(p)
This time, we'll create a data source to pass to the plotting method. This can contain metadata, which can be included in the visualization via the hover tool.
source = ColumnDataSource(data=dict(
x=x,
y=y,
...
...
source=source,
legend='Random dots')
show(p)
Note
For the complete code, refer to the Lesson 3.txt file in the Lesson 3 folder.
We'll stop the introductory exercise here, but we'll continue creating and exploring plots in the following activity.
We define a data source for the plot by passing a dictionary of key/value pairs to the ColumnDataSource constructor. This source includes the x location, y location, and size of each point, along with the random letter A, B, or C for each point. These random letters are assigned as labels for the hover tool, which will also display the size of each point. The Hover Tool is then added to the figure, and the data is retrieved from each element through the specific plotting method, which is circle in this case.
The result is that we are now able to hover over the points and see the data we've selected for the Hover Tool!
We notice, by looking at the toolbar to the right of the plot, that by explicitly including the Hover Tool, the others have disappeared. These can be included by manually adding them to the list of tool objects that gets passed to bokeh.plotting.figure.
from bokeh.models import PanTool, BoxZoomTool, WheelZoomTool, ResetTool
...
...
legend='Random dots')
show(p)
This code is identical to what was previously shown except for the tools variable, which now references several new tools we've imported from the Bokeh library.
Activity B: Exploring Data with Interactive Visualizations
We'll pick up using Bokeh right where we left off with the previous exercise, except instead of using the randomly generated data seen there, we'll instead use the data we scraped from the web in the first part of this lesson.
To use Bokeh to create interactive visualizations of our scraped data.
df = pd.read_csv('../data/countries/merged.csv')df['Date of last change'] = pd.to_datetime(df['Date of last change'])
Whereas in the previous exercise we were interested in learning how Bokeh worked, now we are interested in what this data looks like. In order to explore this dataset, we are going to use interactive visualizations.
source = ColumnDataSource(data=dict(
x=df['Interest rate'],
y=df['Population'],
desc=df['Country'],
))
hover = HoverTool(tooltips=[
('Country', '@desc'),
('Interest Rate (%)', '@x'),
('Population', '@y')
])
tools = [hover, PanTool(), BoxZoomTool(), WheelZoomTool(), ResetTool()]
p = figure(tools=tools,
x_axis_label='Interest Rate (%)',
y_axis_label='Population')
p.circle('x', 'y', size=10, alpha=0.5, source=source)
show(p)
This is quite similar to the final examples we looked at when introducing Bokeh in the previous exercise. We set up a customized data source with the x and y coordinates for each point, along with the country name. This country name is passed to the Hover Tool, so that it's visible when hovering the mouse over the dot. We pass this tool to the figure, along with a set of other useful tools.
We see they belong to India and China. These countries have fairly average interest rates. Let's focus on the rest of the points by using the Box Zoom tool to modify the view window size.
Explore the points and see how the interest rates compare for various countries. What are the countries with the highest interest rates?:
Let's re-plot this, adding a color based on the date of last interest rate change. This will be useful to search for relations between the date of last change and the interest rate or population size.
def get_year(x):year = x.strftime('%Y')if year in ['2018', '2017', '2016']:return yearelse: return 'Other'df['Year of last change'] = df['Date of last change'].apply(get_year)
We first define a function to group the samples based on year of last change, and then apply that function to the Date of last change column. Next, we need to map these values to colors for the visualization.
year_to_color = {
'2018': 'black',
'2017': 'blue',
'2016': 'orange',
'Other':'red'
}
Once mapped to the Year of last change column, this will assign values to colors based on the available categories: 2018, 2017, 2016, and Other. The colors here are standard strings, but they could alternatively by represented by hexadecimal codes.
source = ColumnDataSource(data=dict(
x=df['Interest rate'],
...
...
fill_color='colors', line_color='black',
legend='label')
show(p)
Note
For the complete code, refer to the Lesson 3.txt file in the Lesson 3 folder.
There are some technical details that are important here. First of all, we add the colors and labels for each point to the ColumnDataSource. These are then referenced when plotting the circles by setting the fill_color and legend arguments.
We can see how the dark dots are more prevalent to the right-hand side of the plot. This indicates that countries that have higher interest rates are more likely to have been recently updated.
The one data column we have not yet looked at is the year-over-year change in population. Let's visualize this compared to the interest rate and see if there is any trend. We'll also enhance the plot by setting the circle size based on the country population.
source = ColumnDataSource(data=dict(x=df['Yearly Change'],...
...p.circle('x', 'y', size=10, alpha=0.5, source=source,radius='radii')show(p)
Here, we use the square root of the population for the radii, making sure to also scale down the result to a good size for the visualization.
We see a strong correlation between the year-over-year population change and the interest rate. This correlation is especially strong when we take the population sizes into account, by looking primarily at the bigger circles. Let's add a line of best fit to the plot to illustrate this correlation.
We'll use scikit-learn to create the line of best fit, using the country populations (as visualized in the preceding plot) as weights.
from sklearn.linear_model import LinearRegression
X = df['Yearly Change'].values.reshape(-1, 1)
y = df['Interest rate'].values
weights = np.sqrt(df['Population'])/1e5
lm = LinearRegression()
lm.fit(X, y, sample_weight=weights)
lm_x = np.linspace(X.flatten().min(), X.flatten().max(), 50)
lm_y = lm.predict(lm_x.reshape(-1, 1))
The scikit-learn code should be familiar from earlier in this book. As promised, we are using the transformed populations, as seen in the previous plot, as the weights. The line of best fit is then calculated by predicting the linear model values for a range of x values.
To plot the line, we can reuse the preceding code, adding an extra call to the line module in Bokeh. We'll also have to set a new data source for this line.
source = ColumnDataSource(data=dict(
x=df['Yearly Change'],
y=df['Interest rate'],
...
...
p.line('x', 'y', line_width=2, line_color='red',
source=lm_source)
show(p)
For the line source, lm_source, we include N/A as the country name and population, as these are not applicable values for the line of best fit. As can be seen by hovering over the line, they indeed appear in the tooltip.
The interactive nature of this visualization gives us a unique opportunity to explore outliers in this dataset, for example, the tiny dot in the lower-right corner.
Summary
In this lesson, we scraped web page tables and then used interactive visualizations to study the data.
We started by looking at how HTTP requests work, focusing on GET requests and their response status codes. Then, we went into the Jupyter Notebook and made HTTP requests with Python using the Requests library. We saw how Jupyter can be used to render HTML in the notebook, along with actual web pages that can be interacted with. After making requests, we saw how Beautiful Soup can be used to parse text from the HTML, and used this library to scrape tabular data.
After scraping two tables of data, we stored them in pandas DataFrames. The first table contained the central bank interest rates for each country and the second table contained the populations. We combined these into a single table that was then used to create interactive visualizations.
Finally, we used Bokeh to render interactive visualizations in Jupyter. We saw how to use the Bokeh API to create various customized plots and made scatter plots with specific interactive abilities such as zoom, pan, and hover. In terms of customization, we explicitly showed how to set the point radius and color for each data sample. Furthermore, when using Bokeh to explore the scraped population data, the tooltip was utilized to show country names and associated data when hovering over the points.
Congratulations for completing this introductory course on data science using Jupyter Notebooks! Regardless of your experience with Jupyter and Python coming into the book, you've learned some useful and applicable skills for practical data science!
Before finishing up, let's quickly recap the topics we've covered in this book.
The first lesson was an introduction to the Jupyter Notebook platform, where we covered all of the fundamentals. We learned about the interface and how to use and install magic functions. Then, we introduced the Python libraries we'll be using and walked through an exploratory analysis of the Boston housing dataset.
In the second lesson, we focused on doing machine learning with Jupyter. We first discussed the steps for developing a predictive analytics plan, and then looked at a few different types of models including SVM, a KNN classifier, and Random Forests. Working with an employee retention dataset, we applied data cleaning methods and then trained models to predict whether an employee has left or not. We also explored more advanced topics such as overfitting, k-fold cross-validation, and validation curves.
Finally, in the third lesson, we shifted briefly from data analysis to data collection using web scraping and saw how to make HTTP requests and parse the HTML responses in Jupyter. Then, we finished up the book by using interactive visualizations to explore our collected data.
We hope that you've enjoyed working with Jupyter Notebooks through all of this, and that you might continue using them for your projects in the future!
Index
B
C
D
G
H
I
J
K
L
M
N
P
R
S
T
U
V
W
X
Table of Contents
Beginning Data Science with Python and Jupyter
Table of Contents
Beginning Data Science with Python and Jupyter
Why Subscribe?
PacktPub.com
Contributors
About the author
About the reviewer
Packt is searching for authors like you
Preface
What This Book Covers
What You Need for This Book
Installation and Setup
Installing Anaconda
Updating Jupyter and Installing Dependencies
Who This Book is for
Conventions
Reader Feedback
Customer Support
Downloading the Example Code
Errata
Piracy
Questions
1. Jupyter Fundamentals
Lesson Objectives
Basic Functionality and Features
Subtopic A: What is a Jupyter Notebook and Why is it Useful?
Subtopic B: Navigating the Platform
Introducing Jupyter Notebooks
Subtopic C: Jupyter Features
Explore some of Jupyter's most useful features
Converting a Jupyter Notebook to a Python Script
Subtopic D: Python Libraries
Import the external libraries and set up the plotting environment
Our First Analysis - The Boston Housing Dataset
Subtopic A: Loading the Data into Jupyter Using a Pandas DataFrame
Load the Boston housing dataset
Subtopic B: Data Exploration
Explore the Boston housing dataset
Subtopic C: Introduction to Predictive Analytics with Jupyter Notebooks
Linear models with Seaborn and scikit-learn
Activity B: Building a Third-Order Polynomial Model
Subtopic D: Using Categorical Features for Segmentation Analysis
Create categorical fields from continuous variables and make segmented visualizations
Summary
2. Data Cleaning and Advanced Machine Learning
Preparing to Train a Predictive Model
Subtopic A: Determining a Plan for Predictive Analytics
Subtopic B: Preprocessing Data for Machine Learning
Explore data preprocessing tools and methods
Activity A: Preparing to Train a Predictive Model for the Employee-Retention Problem
Training Classification Models
Subtopic A: Introduction to Classification Algorithms
Training two-feature classification models with scikit-learn
The plot_decision_regions Function
Training k-nearest neighbors for our model
Training a Random Forest
Subtopic B: Assessing Models with k-Fold Cross-Validation and Validation Curves
Using k-fold cross validation and validation curves in Python with scikit-learn
Subtopic C: Dimensionality Reduction Techniques
Training a predictive model for the employee retention problem
Summary
3. Web Scraping and Interactive Visualizations
Lesson Objectives
Scraping Web Page Data
Subtopic A: Introduction to HTTP Requests
Subtopic B: Making HTTP Requests in the Jupyter Notebook
Handling HTTP requests with Python in a Jupyter Notebook
Subtopic C: Parsing HTML in the Jupyter Notebook
Parsing HTML with Python in a Jupyter Notebook
Activity A: Web Scraping with Jupyter Notebooks
Interactive Visualizations
Subtopic A: Building a DataFrame to Store and Organize Data
Building and merging Pandas DataFrames
Subtopic B: Introduction to Bokeh
Introduction to interactive visualizations with Bokeh
Activity B: Exploring Data with Interactive Visualizations
Summary
Index