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Preface
Today, Data Science has become an indispensable part of every organization, for which employers are willing to pay top dollars to hire skilled professionals. Due to the rapidly changing needs of industry, data continues to grow and evolve, thereby increasing the demand for data scientists. However, the questions that continuously haunt every company – are there enough highly-skilled individuals who can analyze how much data will be available, where it will come from, and what the advancement are in analytical techniques to serve them more significant insights? If you have picked up this book, you must have already come across these topics through talks or blogs from several experts and leaders in the industry.
To become an expert in any field, everyone must start from a point to learn. This book is designed with keeping such perspective in mind, to serve as your starting point in the field of data science. When I started my career in this field, I had little luck finding a compact guide that I could use to learn concepts of data science, practice examples, and revise them when faced with similar problems at hand. I soon realized Data Science is a very vast domain, and having all the knowledge in a small version of a book is highly impossible. Therefore, I decided I accumulate my experience in the form of this book, where you’ll gain essential knowledge and skill set required to become a data scientist, without wasting your valuable time finding material scattered across the internet.
I planned the chapters of this book in a chained form. In the first chapter, you will be made familiar with the data and the new data science skills set. The second chapter is all about setting up tools for the trade with the help of which you can practice the examples discussed in the book. In chapters three to six, you will learn all types of data structures in Python, which you will use in your day-to-day data science projects. In 7th chapter you will lean how to interact with different databases with Python. The eighth-chapter of this book will teach you the most used statistical concepts in data analysis. By the ninth chapter, you will be all set to start your journey of becoming a data scientist by learning how to read, load, and understand different types of data in Jupyter notebook for analysis. The tenth and eleventh chapters will guide you through different data cleaning and visualizing techniques.
From the twelfth chapter onwards, you will have to combine knowledge acquired from previous chapters to do data pre-processing of real-world use-cases. In chapters thirteen and fourteen, you will learn supervised and unsupervised machine learning problems and how to solve them. Chapters fifteen and sixteen will cover time series data and will teach you how to handle them. After covering the key concepts, I have included four different case studies, where you will apply all the knowledge acquired and practice solving real-world problems. The last three chapters of this book will make you industry-ready data scientists. Using best practices while structuring your project and use of GitHub repository along with your Data Science concepts will not make you feel naive, while working with other software engineering team.
The book you are holding is my humble effort to not only cover fundamentals of Data Science using Python, but also save your time by focusing on minimum theory + more practical examples. These practical examples include real-world datasets and real problems, which will make you confident in tackling similar or related data problems. I hope you find this book valuable, and that it enables you to extend your data science knowledge as a practitioner in a short time.
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“Learning from data is virtually universally useful. Master it and you will be welcomed anywhere.”
– John Elder, founder of the Elder Research
Elder Research is America’s largest and most experienced analytics consultancy. With his vision about data, John started his company in 1995, yet the importance of finding information from the data is a niche and the most demanding skill of the 21st century. Today data science is everywhere.
The explosive growth of the digital world requires professionals with not just strong skills, but also adaptability and a passion for staying on the forefront of technology. A recent study shows that demand for data scientists and analysts is projected to grow by 28 percent by 2021. This is on top of the current market need. According to the U.S. Bureau of Labor Statistics, growth for data science jobs skills will grow about 28% through 2026. Unless something changes, these skill-gaps will continue to widen. In this first chapter, you will learn how to be familiar with data, your role as an aspiring data scientist, and the importance of Python programming language in data science.
After studying this chapter, you should be able to understand the data types, the amount of the data generated daily, and the need for data scientists with currently available real-world use cases.
The best way to describe data is to understand the types of data. Data is divided into the following three categories.
A well-organized data in the form of tables that can be easily be operated is known as structured data. Searching and accessing information from such type of data is very easy. For example, data stored in the relational database, i.e., SQL in the form of tables having multiple rows and columns. The spreadsheet is another good example of structured data. Structured data represent only 5% to 10% of all data present in the world. The following figure 1.1 is an example of SQL data, where an SQL table is holding the merchant related data:
Figure 1.1: Sample SQL Data
Unstructured data requires advanced tools and software’s to access information. For example, images and graphics, PDF files, word document, audio, video, emails, PowerPoint presentations, webpages and web contents, wikis, streaming data, location coordinates, etc., fall under the unstructured data category. Unstructured data represent around 80% of the data. The following figure 1.2 shows various unstructured data types:
Figure 1.2: Unstructured data types
Semi-structured data is structured data that is unorganized. Web data such as JSON (JavaScript Object Notation) files, BibTex files, CSV files, tab-delimited text files, XML, and other markup languages are examples of semi-structured data found on the web. Semi-structured data represent only 5% to 10% of all data present in the world. The following figure 1.3 shows an example of JSON data:
Figure 1.3: JSON data
It’s become a universal truth that modern businesses are awash with data. Last year, McKinsey estimated that Big Data initiatives in the US healthcare system could account for $300 billion to $450 billion in reduced healthcare spending or 12-17 percent of the $2.6 trillion baselines in US healthcare costs. On the other hand though, bad or unstructured data is estimated to be costing the US roughly $3.1 trillion a year.
Data-driven decision making is increasing in popularity. Accessing and finding information from the unstructured data is complex and cannot be done easily with some BI tools; here data science comes into the picture.
Data science is a field that extracts the knowledge and insights from the raw data. To do so, it uses mathematics, statistics, computer science, and programming language knowledge. A person who has all these skills is known as a data scientist. A data scientist is all about being curious, self-driven, and passionate about finding answers. The following figure 1.4 shows the skills that a modern data scientist should have:
Figure 1.4: Skills of a modern data scientist
What does a data scientist do?
Most data scientists in the industry have advanced training in statistics, math, and computer science. Their experience is a vast horizon that also extends to data visualization, data mining, and information management. The primary job of a data scientist is to ask the right question. It’s about surfacing hidden insight that can help enable companies to make smarter business decisions.
The job of a data scientist is not bound to a particular domain. Apart from scientific research, they are working in various domains including shipping, healthcare, e-commerce, aviation, finance, education, etc. They start their work by understanding the business problem and then they proceed with data collection, reading the data, transforming the data in the required format, visualizing, modeling, and evaluating the model and then deployment. You can imagine their work cycle as mentioned in the following figure 1.5:
Figure 1.5: Work cycle of a data scientist
Eighty percent of a data scientist’s time is spent in simply finding, cleansing, and organizing data, leaving only 20 percent to perform analysis. These processes can be time-consuming and tedious. But it’s crucial to get them right since a model is only as good as the data that is used to build it. And because models generally improve as they are exposed to increasing amounts of data, it’s in the data scientists’ interests to include as much data as they can in their analysis.
In the later chapters of this book, you will learn all the above-required skills to be a data scientist.
Real-world use cases of data science
Information is the oil of the 21st century, and analytics is the combustion engine. Whether you are uploading a picture on Facebook, posting a tweet, emailing anybody, or shopping in an e-commerce site, the role of data science is everywhere. In the modern workplace, data science is applied to many problems to predict and calculate outcomes that would have taken several times more human hours to process. Following are some list of real-world examples where data scientists are playing a key role:
Python is very beginner friendly. The syntax (words and structure) is extremely simple to read and follow, most of which can be understood even if you do not know any programming. Python is a multi-paradigm programming language – a sort of Swiss Army knife for the coding world. It supports object-oriented programming, structured programming, and functional programming patterns, among others. There’s a joke in the Python community that Python is generally the second-best language for everything.
Python is a free, open-source software, and consequently, anyone can write a library package to extend its functionality. Data science has been an early beneficiary of these extensions, particularly Pandas, the big daddy of them all.
Python’s inherent readability and simplicity makes it relatively easy to pick up, and the number of dedicated analytical libraries available today means that data scientists in almost every sector will find packages already tailored to their needs, freely available for download.
The following survey (figure 1.6) was done by KDnuggets – a leading site on business analytics, Big Data, data mining, data science, and machine learning – clearly shows that Python is a preferable choice for data science/machine learning:
Figure 1.6: Survey by KDnuggets
Most of the people think that it is very difficult to become a data scientist. But, let me be clear, it is not tough!
If you love making discoveries about the world, and if you are fascinated by machine learning, then you can break into the data science industry no matter what your situation is. This book will push you to learn, improve, and master the data science skill on your own. There is only one thing you need to keep on, that is, LEARN-APPLY-REPEAT. In the next chapter, we will set up our machine, and be ready for our data science journey.
Installing Software and System Setup
In the last chapter, we covered the data science fundamentals, and now we are ready to move ahead and prepare our system for data science. In this chapter, we will learn about the most popular Python data science platform – Anaconda. With this platform, you don't need to install Python explicitly – just one installation in your system (Windows, macOS, or Linux) and you are ready to use the industry-standard platform for developing, testing, and training.
After studying this chapter, you should be able to install Anaconda in your system successfully and use the Jupyter notebook. You will also run your first Python program in your notebook.
You can download the Anaconda Distribution from the following link:
https://www.anaconda.com/download/
Once you click on the preceding link, you will see the following screen (as shown in figure 2.1):
Figure 2.1: Anaconda Distribution download page
Anaconda Distribution shows different OS options – Windows, macOS, and Linux. According to your OS, select the appropriate option. For this example, I have selected the Windows OS’s 64-Bit Graphical Installer (457 MB) option as shown in the following figure 2.2 :
Figure 2.2: Anaconda Distribution installer versions for Windows OS
Python community has stopped its support for Python 2.x and the prior version, so it is highly recommended that you should use Python 3.x. We are going to use Python 3.8 version throughout this book, so I will recommend downloading this version only. For downloading the distribution, see the two links just below the Download button; they are showing the Graphical Installer for each system architecture type-64-bit or 32-bit. Click on the appropriate link, and the downloading will start. This downloading process is the same for macOS and Linux.
Installing the Anaconda on Windows
Install Anaconda to a directory path that does not contain spaces or Unicode characters.
Here, replace the C:\Users\prateek\Anaconda3 with the actual path of your Anaconda installation folder that you copied earlier.
Figure 2.3: Anaconda Navigator
Installing the Anaconda with Graphical Installer in macOS is the same as we did above for Windows.
Installing the Anaconda in Linux
After downloading the 64bit(x86) installer, run the following two commands to check the data integrity:
Replace /path/filename with the actual path and filename of the file you downloaded.
Enter the following to install Anaconda for Python 3.8, just replace ~/Downloads/ with the path to the file you downloaded:
Figure 2.4: Installing Anaconda in Linux
Choose Install Anaconda as a user unless root privileges are required. The installer prompts – In order to continue the installation process, please review the license agreement. Click Enter to view license terms.
Scroll to the bottom of the license terms and enter Yes to agree. The installer prompts you to click Enter to accept the default install location, CTRL + C to cancel the installation, or specify an alternate installation directory. If you accept the default install location, the installer displays PREFIX=/home/<user>/anaconda<3> and continues the installation. It may take a few minutes to complete.
The installer prompts – Do you wish the installer to prepend the Anaconda<3> install location to PATH in your /home/<user>/.bashrc? Enter Yes.
If you enter No, you must manually add the path to Anaconda or conda will not work.
The installer describes Microsoft VS Code and asks if you would like to install the VS Code. Enter yes or no. If you select yes, follow the instructions on the screen to complete the VS Code installation.
Installing VS Code with the Anaconda installer requires an internet connection. Offline users may be able to find an offline VS Code installer from Microsoft.
The installer finishes and displays – Thank you for installing Anaconda<3>! Close and open your terminal window for the installation to take effect, or you can enter the command source ~/.bashrc.
After your installation is complete, verify it by opening Anaconda Navigator, a program that is included with Anaconda – open a Terminal window and type anaconda-navigator. If Navigator opens, you have successfully installed Anaconda.
You can find some known issues while installing Anaconda and their solutions in the following link: https://docs.anaconda.com/anaconda/user-guide/troubleshooting/
How to install a new Python library in Anaconda?
Most of the Python libraries/packages are preinstalled with the Anaconda Distribution, which you can verify by typing the following command in an Anaconda Prompt:
conda list
Figure 2.5: Anaconda Prompt
Now if you need to install any Python package which is not in the preceding list and is required for your task, then follow these steps. In the same Anaconda Prompt terminal, type conda install <package-name>.
For example, if you want to install scipy package, just type conda install scipy, then press enter and then enter y to continue.
A second recommended approach to install any new package in Anaconda is to search the same (conda install <package-name>) in Google first and then go to the first search result, which is shown as follows:
After installing Anaconda, the next step is to open the notebook – an open-source web application that allows you to create and share documents that contain live code, equations, visualizations, and narrative text. For the notebook, open Anaconda Navigator and click on Launch button under the Jupyter Notebook icon or just type Jupyter Notebook in the search bar in Windows and then select it as shown in the following figure 2.6:
Figure 2.6: Windows search bar
Once you select it, a browser window (default is IE) will be opened showing the notebook as showing in the following figure 2.7:
Figure 2.7: Browser window
Once your notebook is opened in the browser, click on the New dropdown and select the default first option – Python 3 as shown in the following figure 2.8:
Figure 2.8: Dropdown menu
After clicking on Python 3 option, a new tab will be opened containing the new untitled notebook, as shown in the following figure 2.9:
Figure 2.9: New tab
Rename your notebook with a proper name by double-clicking on the Untitled text and then enter any new name (I have named it MyFirstNotebook) and click Rename (refer to the following figure 2.10):
Figure 2.10: Rename
The preceding step will rename your notebook. Now it's time to run your first Python program in your first notebook. We will print a greeting message in Python for this purpose. In the cell (text bar) just type any welcome message inside the print block as shown in the following figure 2.11:
Figure 2.11: Welcome message
In the above cell, we are printing a string in Python 3.6. Now to run this program, you can simply press Shift + Enter keys together or click on the Play button just below the cell column (refer to the following figure 2.12):
Figure 2.12: Play button
Once you run the cell, your program will run and give you the output, as shown just below the cell in the following figure 2.13:
Figure 2.13: Output
Congrats! You have successfully run your first program in Python 3.7. This is just a one-line code using simple plain English text. Let's explore some more, the simplicity of the Python by doing some mathematical calculations.
Let's add two numbers by entering the FirstNumber + SecondNumber and then run it as shown in the following figure 2.14:
Figure 2.14: Simple calculation
Quite interesting, right! Let's move ahead and ask the user to input numbers and let Python do the homework. In the following example, you need to enter the first number, press enter, then enter the second number and press enter. The calculation will be done, and output will be displayed within a millisecond (as shown in the following figure 2.15):
Figure 2.15: Mathematical calculation
Now, suppose you have done your given task and want to share the same with your project lead or manager. You can do it easily by going to the File option and hover on the Download as option, as shown in the following figure 2.16:
Figure 2.16: Download as option
You can save your current work in different formats – notebook, PDF, Python, or HTML. Once you select the required option, it will be saved in that format with the same name as you have given while renaming the notebook in the default location of your system. By saving in the various formats, you can carry and share your analysis with anyone.
Anaconda Distribution is the fastest and easiest way to do Python and Machine Learning work. You can load the data, pre-process it, visualize it, train your model, and evaluate the performance in a single notebook and then share your work with anyone easily. For a complete walk-around of your Jupyter notebook, I have added a cheat sheet section just after this chapter. I suggest you read that cheat sheet and play with your notebook. In the next chapter, you will learn about the data structures specific to data science, and also how to use them in your analysis task.
Data structures are a way of organizing and storing data in a programming language so that they can be accessed and worked on efficiently. They define the relationship between data and operations that can be performed on the data. As an aspiring data scientist, you will use various data structures in your daily job so learning data type is a must-have skill. In this chapter, we will learn the two most widely used Python data structures specific to data science when working with huge data – lists and dictionaries. We will also compare both with the other data structures that look the same but have fundamental differences.
After studying this chapter, you will have a strong knowledge on using list and dictionary.
A list is a non-primitive type of data structure in Python, which means it stores a collection of values in various formats rather than storing only a single value. Lists are mutable – we can change the content of a list. In simple words, list is a collection that is ordered, mutable, and may contain duplicate values. Here, ordered means the order in which you entered the elements in a list; the same order will be shown, once you print/get that list.
In Python, we can store a single value in the following primitive data types:
Consider a scenario where your family doctor needs heights and weights of every family member to calculate the body mass index. Now creating a separate variable to store each person's height and weight is very inconvenient. Here, Python list comes in the picture.
In Python, a list is an object which is treated like any other data type (e.g., integers, strings, Boolean, etc.). This means that you can assign your list to a variable, so you can store and make it easier to access. We can create a list using the square brackets and separating the elements by a comma.
In your notebook, you can create an empty list, store it in a variable, and then check the type of the variable, as shown in the following figure 3.1:
Figure 3.1: Creating an empty list in Python
Let's create a list containing the heights of family members in meters, as shown in the following figure 3.2:
Figure 3.2: A list containing heights
One advantage of the list is that we can store different types (str, int, float, etc.) of values in a list and even a list of a list itself. Interesting right? For example, we can add names of the family members, which is the string data type and its values is in float data type in our previously created list, as shown in the following figure 3.3:
Figure 3.3: A list containing str and float
Different list manipulation operations
After creating a list, you will often find a situation where you want to update that list. This list manipulation is the exact step you are going to learn in this section:
Here, the starting point of a list begins with number zero (0), not from one (1). To access the first element of a list, you need to use zero indexes, not the first index as shown in the following figure 3.4:
Figure 3.4: Begin with number zero (0)
Figure 3.5: Changing java with cobol language
Figure 3.6: Using ‘for’ loop
Figure 3.7: Using list’s len() method
Figure 3.8: Using list’s append() method
Figure 3.9: Adding a new language .net
Figure 3.10: Removing some element from the list
The del() method use case is different from the other ones. It also removes the element on the specified index but its syntax is different from pop() or remove() methods. Let's create a new list with duplicate elements to understand the difference between remove(), del(), and pop() methods.
In the following figure 3.11, digit 1 is repeated two times. When we apply to remove() method, it's removing the element 4 from the list. The pop() method is removing the 4th index of the list, which is a digit at last position, whereas del() method is removing the 4th index element with a different syntax structure:
Figure 3.11: Applying different methods to remove an element
Figure 3.12: Sorting list in ascending or descending order
Difference between Lists and Tuples
In Python, there is a data type – Tuples, which is similar to lists, and it often confuses me as to which one to use in which condition. There are two main qualities of a tuple which distinguishes it from the list – first is the structure of a tuple, which means tuples are initialized with small brackets () rather than square brackets [] in lists, and the second major difference is that tuples are immutable, which means neither can we change or delete its value, nor can we add any new item after the declaration of a tuple. It means there is no append(), remove(), or pop() methods in tuples.
A tuple looks like how it’s shown in the following figure 3.13:
Figure 3.13: Tuples
In Python, dictionaries are made up of key-value pairs. A key is used to identify the item and the value holds the value of the item. The main concept of dictionaries is that for every value, you have a unique key. A dictionary is initialized by defining key-value in the curly {} brackets, where they are separated by a colon : sign. Unlike the list, a dictionary is a collection that is unordered, which means the order of its element is not guaranteed when you get or print the dictionary.
Let's create a dictionary to store the information of a car, where in the key of that dictionary we store the car's property name and in the value, we will store its name or value, as shown in the following figure 3.14:
Figure 3.14: Creating a dictionary
Some operations with dictionary
Figure 3.15: Using key and get() methods
Figure 3.16: Changing value in the dictionary
Figure 3.17: For loop
Figure 3.18: Displaying car details in a key-value pair
The other methods in the dictionary are the same as we used in the list earlier; instead of the index, we need to use key here.
List and Dictionary are the two most used data types which are used to efficiently work with huge amounts of data. In your daily data clean-up process, you will need to store some information in variables, where learning this chapter will come in handy. After practicing notebook examples in your notebook, you will gain confidence and will not confuse which data structure to use in which condition. In the next chapter, we will learn about Python functions and packages.
Package, function, and loop provide better modularity for your application and a high degree of code reusing. For your daily data science work, you don't need to reinvent the wheel or write some code from scratch. Remember, in the previous chapters, we have already used print() and type() functions. Python developers have written mostly used functionalities, which you can leverage easily in terms of functions. In this chapter, we will learn some other built-in Python functions, and how to use them to organize, and make our code reusable.
After studying the chapter, you will be able to use inbuilt Python functions and packages and write your function.
You must have already used and know the name of Python inbuilt functions, but sometimes you still have to figure out how to use it. To know more about a function, Python provides us another function, known as help(). In your Jupyter notebook, you can simply type help(<function_name>) and once you run this, it will give you all the information about that function.
For example, if I want to know about the inbuilt len() function, I will use help() function as shown in the following figure 4.1:
Figure 4.1: Using help() function
How to import a Python package?
To use some inbuilt functionalities, first you need to import such a package and for that, you just need to use import keyword. For example, you are working as a junior data scientist in an agriculture firm and you need to calculate the area of a circular land. You know it well that area of a circle can be calculated from the formula pi*r^2 where r is the radius of the circle, but you don't remember the value of the pi. No need to worry, Python provides a math package to help you in this scenario as shown in the following figure 4.2:
Figure 4.2: Math package provided by Python
Here we have imported the math package, but if we know the specific package, then we can also import only that sub-package from its package. For our example we don't need to import math package completely; in fact, we can import only the pi from the math package, as shown in the following figure 4.3:
Figure 4.3: Importing pi package from math package
How to create and call a function?
In Python, we define a function using the def keyword followed by function name and colon. For example, if you want to print “hello world” in a function, we first need to define the function and then write the print() inside that function, then we will see how to call that function. In the following figure 4.4, notice the space before the print(), it's called Python's indentation and is required to ensure that this code is a part of the function. You don't need to explicitly give space; your notebook already knows it and once you press the Enter key after the colon sign, it will automatically add a space:
Figure 4.4: Create and call a function
Passing parameter in a function
We have written a simple function; sometimes you also need to pass some information in your function, which we can do in the form of parameters or arguments. For example, you want to get the sum of the two numbers with the help of a function, so we will write a function which will take two parameters – a and b considering both are integers, and we will give the sum of both numbers by using return statement as shown in the following figure 4.5:
Figure 4.5: Defining a function to return sum of two numbers
Default parameter in a function
Sometimes you need to pass a default value to a parameter in your function. For example, you want to return the sum of two numbers where the second numerical value is pre-defined, as it is 6 here. You can do this in the following way (figure 4.6):
Figure 4.6: Default parameter in a function
In the MyFirstNotebook, I have shared an example to help you understand how to pass parameters to a function in runtime and determine the output value based on condition.
How to use unknown parameters in a function?
In previous examples you know there are only two parameters passed, but sometimes you don't know the number of arguments to pass in a function. In such a situation, you can pass *args parameter in your function as shown in the following figure 4.7. Here we are adding three numbers with the help of inbuilt sum() function:
Figure 4.7: Sum() function to add three numbers
In the preceding example, instead of args you can give any name but * sign is important to place before any name. Try replacing *args with another name that includes the asterisk. You'll see that the preceding code keeps working!
A global and local variable in a function
We use variables to store some values before using them in function. But the use of declared variables in Python has some limits. We can define them as global or as a local variable. The main difference between both of them is that the local variables are defined within a function block and can only be accessed inside that function, while global variables can be accessed by all functions that might be in your script. In the next example we have created a global scoped variable my_text – outside of the functions and accessing the same in both two functions (refer to the following figure 4.8):
Figure 4.8: Global variable in a function
Now let us first try to print the value of globally scoped variable just after the function declaration as shown in the following figure 4.9. The point to notice here is that my_text variable is defined outside of the function. If we run the program, it will show UnboundLocalError because it is treating my_text as a local variable:
Figure 4.9: Printing value of globally scoped variable
Now, let us comment the first print line just after the function declaration; our program will run without any error giving you the desired output as shown in the following figure 4.10:
Figure 4.10: Commenting the first print line after function declaration
Lambda function is also known as anonyms function in Python. For declaring a lambda function, we don't use a def keyword, instead we use the lambda keyword in a different way. In the following figure 4.11, I am going to write a normal function to multiply by 5 and then we will write the same functionality with lambda function:
Figure 4.11: Normal function and lambda function
Following is another example of adding two numbers with the help of inbuilt sum() function (refer to figure 4.12):
Figure 4.12: Adding two numbers using sum() function with lambda function
It's quite clear now that we use lambda functions when we require a nameless function for a short period of time, which is created at runtime.
Python doesn't have a defined entry point like the main() method in other languages, i.e., Java. Rather Python executes a source file line by line. Before executing the code, it will define a few special variables. For example, if the Python interpreter is running that module (the source file) as the main program, it sets the special __name__ variable to have a value __main__. If this file is being imported from another module, __name__ will be set to the module's name.
Sometimes you write a module (a Python file with .py extension) where it can be executed directly. Alternatively, it can also be imported and used in another module. Here you can put the main check (if __name__ == "__main__":), so that you can have that code only be executed when you want to run the module as a program and not have it executed when someone just wants to import your module and call your functions themselves.
Let's understand the preceding concept with an example. We will use a Python IDE to create Python files. You can download and install this IDE using the following link: https://www.jetbrains.com/help/pycharm/install-and-set-up-pycharm.html
After installing the PyCharm, open the IDE, and create a new project as shown in the following figure 4.13:
Figure 4.13: Creating new project
After creating the project, create a Python file with name my_module.py and put the following line of code there (refer to figure 4.14):
Figure 4.14: Creating a Python file
You can run the previously created module by right-clicking on the file and clicking on Run my_module as shown in the following figure 4.15:
Figure 4.15: Run ‘my_module’
This will generate the following result in the console:
Figure 4.16: ‘my_module’ window
As you can see in the result, we have created a new module and executed it as the main program, so the value of __name__ is set to __main__. As a result, if condition is satisfied and hello() function gets called. Now create a new file called using_module.py and import my_module thereby writing the following code (refer to figure 4.17):
Figure 4.17: Code to import ‘my_module’
Now run this file and you will see the following outcome:
Figure 4.18: Outcome of running the file
As you can see now, the statement in my_module fails to execute because the value of __name__ is set to my_module. From this small program, you can understand that every module in Python has a special attribute called __name__. The value of the __name__ attribute is set to __main__ when the module runs as the main program. Otherwise, the value of __name__ is set to contain the name of the module.
A loop is a block of code that gets repeated over and over again, either a specified number of times or until some condition is met. There are two kinds of loops in Python, while loops and for loops. The while loop repeats a section of code while some condition is true. The while statement starts with the while keyword, followed by a test condition, and ends with a colon (:). The loop body contains the code that gets repeated at each step of the loop. Each line is indented with four spaces. When a while loop is executed, Python evaluates the test condition and determines if it is true or false. If the test condition is true, then the code in the loop body is executed. Otherwise, the code in the body is skipped and the rest of the program is executed.
For example, see the following line of the code snippet (figure 4.19):
Figure 4.19: While loop code snippet
In the preceding code snippet, integer 1 is assigned to variable x. Then a while loop is created with the test condition x < 4, which checks whether or not the value of x is less than 4. If x is less than 4, the body of the loop is executed. Next, the value of x is printed on screen, and then x is incremented by 1.
A for loop executes a section of code once for each item in a collection of items. The number of times that the code is executed is determined by the number of items in the collection. The for statement begins with the for keyword, followed by a membership expression, and ends in a colon (:). The loop body contains the code to be executed at each step of the loop, and is indented with four spaces. For example, see following code snippet (figure 4.20):
Figure 4.20: For loop code snippet
In the preceding code snippet, at each step of the loop, the variable letter is assigned the next letter in the string Science, and then the value of the letter is printed. The loops run once for each character in the string Science, so the loop body executes seven times. Please note, a loop inside of another loop is called a nested loop, and they come up more often than you might expect. You can nest while loops inside of for loops, and vice versa.
As an aspiring data scientist, you'll constantly need to write your functions to solve problems that your data poses to you. In your daily work, you will import various packages, you will write your functions for different tasks, i.e., a function for data cleaning, another function for modeling, and another for evaluating your model, etc. In the next chapter, we will learn about the first fundamental package of Python used for scientific computing – NumPy.
NumPy is the fundamental package for scientific computing with Python. Most of the other packages such as pandas, statsmodels are built on top of it. NumPy is the short name for Numeric Python or Numerical Python. This package contains a powerful N-dimensional array object and useful linear algebra capabilities. In this chapter, we will learn about this N-dimensional array – a more powerful alternative to the list, and we will see how to use this in data manipulation.
After studying the chapter, you will be able to use the NumPy array effectively.
The NumPy package comes preinstalled in Anaconda distribution, so we don’t need to install this package; in fact for using it we just need to import it. We can import this package in the following way, as shown in figure 5.1:
Figure 5.1: Importing a NumPy package
In the preceding import statement, np is an alias pointing to NumPy. We can use this alias with any import to shorten the package name in further uses.
Why use NumPy array over list?
Say for example, you have the weather data telling about the distance and the wind speed. Now you are supposed to calculate and generate a new feature from the data – the time. Ideally, we would go ahead with using the list and calculate by applying the formula to the list of distance and speed as shown in the following figure 5.2:
Figure 5.2: Calculating speed and distance
But once you run your code, you see the unexpected result:
Figure 5.3: Result of running the code
You must be confused and thinking, what I have done wrong with the list operations, but you have no clue!
The list has some limitations. You cannot perform some mathematical operations directly on the list and that’s why Python has a NumPy array to solve such a problem. To solve this issue, we need to import the NumPy package first, then we need to convert our list into NumPy array, and then we need to perform our operation, as shown in the following figure 5.4:
Figure 5.4: Using NumPy Array
In the preceding example, distance and speed variables are of type NumPy array and since time variable is associated with dist and speed NumPy arrays, its type is automatically assigned as NumPy array.
NumPy array has its attributes like dimension, size, and shape. We can know these attributes by using it’s ndim, shape, and size attributes as shown in our wind speed example (figure 5.5):
Figure 5.5: NumPy attributes
An array can be one, two, or three dimensions. Based on the problem you are solving, you need to create any dimension array; so let’s create an array using random numbers. For generating random numbers, in our case integer numbers, we will use NumPy’s random function and then we will check individual array attributes as shown in the following figure 5.6:
Figure 5.6: Creating arrays with random values
As noted, np.random.seed(0) sets the random seed to 0, so the pseudo-random numbers you get from random will start from the same point, and np.random.randint() function return random integers from the discrete uniform distribution of the specified dtype in the half-open interval (low, high). If high is None (the default), then results are from (0, low).
Let’s create another array using NumPy arange() function which returns evenly spaced values within a given interval. In the following figure 5.7, we are creating a sequence of integers from 0 to 20 with steps of 5:
Figure 5.7: Using arange() function
Accessing an element of a NumPy array
For analyzing and manipulating an array, you need to access the elements. We will use indexes of every element in an array as we did in the list. In a one-dimensional array, the ith value (counting from zero) can be accessed by specifying the desired index in square brackets, just as with Python lists. As shown in the following figure 5.8, we are accessing the elements of the arrays we have created above using np.random() earlier:
Figure 5.8: Accessing elements of the arrays
What about other dimension’s array? It’s quite simple. We just need to use a comma-separated tuple of indices as shown in the following figure 5.9, where we are accessing the first elements of 2D and 3D arrays:
Figure 5.9: Accessing first elements of 2D and 3D arrays
The multi-dimensional array has its importance while handling data. For example, let’s take a look at how one might store a movie-related data. A movie is nothing more than a time-varying sequence of images – i.e., an array of images. Each image is a two-dimensional array, with each element of the array representing a color. Color has three components – Red, Green, Blue. So, a movie can be modeled as a multidimensional array.
As we used square brackets to access individual array elements, we can also use them to access subarrays with the slice notation, marked by the colon (:) character. Slicing is an important concept to access the element of an array or list. But unlike the list in array slicing, they return views rather than copies of the array data. It means if we create a subarray for an array and then modify any element, then the original array will also be modified. In the following figure 5.10, we created a 1D array, and then we will access its elements using slicing:
Figure 5.10: Creating 1D array
Again, for the multi-dimensional array, we need to use multiple slices with comma as shown in the following figure 5.11:
Figure 5.11: Using multiple slices with comma for multidimensional array
As I mentioned previously, if we create a subarray, form an array, and make any changes in the subarray, then it will also change the original array. So, how can we be sure about the data integrity of an array? In such cases, make a copy of the original array using copy() and then modify without affecting the original array as shown in the following figures 5.12 and 5.13:
Figure 5.12: Using copy() function
Figure 5.13: Modifying the array
In some scenarios, you may need to combine two arrays into a single one. For this situation, NumPy has different methods – np.concatenate(), np.vstack(), and np.hstack().
The np.concatenate() method is useful for combining arrays of the same dimensions while np.vstack() and np.hstack() are good when you are working with arrays of mixed dimensions. For understanding each uses, we will first see how to combine two same dimension arrays and then we will see how to add different dimension arrays into one, as shown in the following figures 5.14 and 5.15:
Figure 5.14: Combining same dimension arrays
Figure 5.15: Adding different dimension arrays into one
For seeing different NumPy inbuilt features in your notebook, just press the tab key after the dot sign of NumPy alias (np).
In this chapter, we learnt how to perform standard mathematical operations on individual elements or complete array using NumPy. The range of functions covered linear algebra, statistical operations, and other specialized mathematical operations. For our purpose, we just need to know about the N-dimensional array or ndarray and the range of mathematical functions that are relevant to our research purpose. Till then, go chase your dreams, have an awesome day, make every second count. See you in the next chapter where we will learn about the second most important Python package – Pandas.
Pandas is a popular Python package for data science. It offers powerful, expressive, and flexible data structures that make data manipulation and analysis easy, among many other things. Pandas DataFrame is one of the very powerful and useful data structure among these. The Pandas library is one of the most preferred tools for data scientists to do data manipulation and analysis, next to matplotlib for data visualization and NumPy, the fundamental library for scientific computing in Python on which pandas was built.
After studying this chapter, you will be able to create, manipulate, and access the information you need from your data with the help of pandas data structures.
Importing pandas in your notebook is quite simple. Pandas is preinstalled with Anaconda distribution, so you don’t need to install it. In any case, if it is not installed, you can install it by typing the following command in Anaconda Prompt (figure 6.1):
Figure 6.1: Installing Pandas
Once you installed the pandas, you can import it as below:
Figure 6.2: Importing Pandas
Pandas have two main data structures widely used in data science, which are as follows:
Pandas is a one-dimensional labeled array capable of holding any data type such as integers, floats, and strings. It is similar to a NumPy 1-dimensional array. In addition to the values that are specified by the programmer, pandas assigns a label to each of the values. If the labels are not provided by the programmer, then pandas assigns labels (0 for the first element, 1 for the second element, and so on). A benefit of assigning labels to data values is that it becomes easier to perform manipulations on the dataset as the whole dataset becomes more of a dictionary where each value is associated with a label.
A pandas Series can be constructed using pd.Series() as shown in the following figure 6.3:
Figure 6.3: Constructing pandas Series
In the output cell, you can see that it is showing the default data type of the Series as the float. Let’s create another example of Series from the list of numbers (figure 6.4):
Figure 6.4: Another example of Series
In the preceding code example, you can see that the output is in tabular form with two columns – the first one is showing indexes starting from zero and the second one is showing the elements. This index column is generated by Series and if you want to re-index this with your index name, then you can do it in using index parameter as shown in the following figure 6.5:
Figure 6.5: Re-indexing the default index column
The ways of accessing elements in a Series object are similar to what we have seen in NumPy. You can perform NumPy operations on Series data arrays as shown in the following figure 6.6:
Figure 6.6: Accessing a Series element
Data manipulation with Series is also an easy task. We can apply mathematical calculations as we did in NumPy, as shown in the following figure 6.7:
Figure 6.7: Data manipulation with Series
Remember the dictionary data structure we have seen in an earlier chapter? We can convert this data structure to a Series so that dictionary’s key and value can be transformed into a tabular form, as shown in the following figure 6.8:
Figure 6.8: A sample dictionary
Pandas is a two-dimensional labeled data structure with columns of potentially different types. You can imagine a DataFrame containing three components – index, rows, and columns. A DataFrame is a tabular data structure in which data is laid out in rows and column format (similar to a CSV and SQL file), but it can also be used for higher-dimensional data sets. The DataFrame object can contain homogenous and heterogeneous values and can be thought of as a logical extension of Series data structures.
In contrast to Series, where there is one index, a DataFrame object has one index for columns and one index for rows. This allows flexibility in accessing and manipulating data. We can create a DataFrame using pd.DataFrame() as shown in the following figure 6.9:
Figure 6.9: Creating an empty DataFrame
Let’s create a DataFrame from a list where the list contains the name and age of a person. We will also rename the column names of our DataFrame using columns parameter as shown in the following figure 6.10:
Figure 6.10: A sample list containing name and age
Selecting a column in a DataFrame is same as what we have seen earlier with other data structures. For example, if you want to know all names under the Name column from the preceding DataFrame, then you can access them in two ways as shown in the following figure 6.11.
Figure 6.11: Accessing a DataFrame column
Let us suppose you want to add a new column to your DataFrame which will store the birth year of a person. You can do it easily as shown in the following figure 6.12:
Figure 6.12: Adding a column in existing DataFrame
Next, the deleting of a column is also an easy task. You can use .pop() to delete a column. Look at the following figure 6.13:
Figure 6.13: Deleting a column in existing DataFrame
Selecting a row or an index in a DataFrame is quite different but very easy if you know how to use the .loc[] and .iloc[] functions. For understanding both, let’s first create a DataFrame to store the company stock price, as shown in the following figure 6.14:
Figure 6.14: A sample DataFrame containing company stock data
To access the value that is at index 0, in column company, you can do it either using the label or by indicating the position. For label based indexing, you can use .loc[] and for position based indexing you can use .iloc[] as shown in the following figure 6.15:
Figure 6.15: Accessing value that is at index 0
From the preceding example, it is quite clear that .loc[] works on labels of your index. This means that if you give in loc[3], you look for the values of your DataFrame that have an index labeled 3.
On the other hand, .iloc[] works on the positions in your index. This means that if you give in iloc[3], you look for the values of your DataFrame that are at index ‘3’.
Some Useful DataFrame Functions
DataFrame is a very useful data structure that you will use often in your daily task. Storing data in a DataFrame has various benefits and it’s quite simple for data analysis. Let’s see some quite useful functions of a DataFrame:
Figure 6.16: Useful DataFrame functions
The .head() and .tail() are useful when you have thousands of rows and columns in your data and you want to inspect it in a quick view, as shown in the preceding figure 6.16.
Next, if you want to check data type of each column in your data, you can do so by using .dtypes, shown in the following figure 6.17:
Figure 6.17: Checking data type of columns
Pandas DataFrame has also one unique method which can give you descriptive statistics (mean, median, count, etc.) of your dataset. For knowing these statistics you can use .describe() as shown in the following figure 6.18. From this description, we can easily say the highest stock price is 95 and the minimum stock price is 25 and the total no. of stocks is 4. Imagine if this data contains records of millions of companies! Without pandas it will be much more difficult to know the statistics of the data.
Figure 6.18: Using describe() function to know statistics
If you have non-numeric data, then applying to the describe function would produce statistics such as count, unique, frequency. In addition to this, you can also calculate skewness (skew), kurtosis (kurt), percent changes, difference, and other statistics.
Next, the important function of a Pandas DataFrame is to check the information of your data including column data type, non-null values, and memory usage. This can be achieved using .info() as shown in the following figure 6.19:
Figure 6.19: Checking information of the DataFrame
Similarly, there is shape, columns, corr(), cov() functions which you will see in the later chapters of this book. Try these functions in your notebook and explore what information you get from them.
Handling missing values in DataFrame
As a data scientist, you will come across uncleaned data with missing values most of the time. Here missing means data is not available (NA) for any reason. You cannot simply ignore those missing data. In fact, before applying any machine learning algorithm, you need to handle such values. Pandas provides a flexible way to handle missing data. Pandas uses NaN (Not a number) or sometimes NaTas, the default missing value marker; with the help of it you can detect it easily using isnull() function. Let’s understand this function by first creating a DataFrame with missing values as shown in the following figure 6.20:
Figure 6.20: A sample DataFrame
You can see missing values as NaN. Now we can check the missing values using isnull() function and then count the sum of the missing values using sum() function as shown in the following figure 6.21. The isnull() function returns a Boolean same-sized object indicating if the values are missing and sum() function counts the True values of the Boolean:
Figure 6.21: Checking missing values
Once you know the total count of missing values, you can think about how to handle those. If you don’t have any clue about why there are missing values, one simple way of dealing with them is by simply dropping them using .dropna() function as shown in the following figure 6.22:
Figure 6.22: Removing all rows containing missing value
The dropna() function can also be applied on the basis of a column. You can remove all columns with at least one missing value using axis=1 parameter in dropna() function. For example, let’s apply this approach to the original df2 DataFrame. You need to rerun the DataFrame df2 creation cell before running the following cell, otherwise you will get the wrong output:
Figure 6.23: Removing all columns with missing values
Using column-based removal of NaN values could be risky, as you may risk losing all the columns if every column has NaN values. Instead, dropna() with rows approach is useful in this case.
The second approach to handle missing values is to fill them either with zero or with the mean/median or with the occurrence of a word. Let’s see how we can fill missing values (refer to the following figures 6.24 and 6.25):
Figure 6.24: Filling missing values
Figure 6.25: Filling missing values
In the preceding code cell, we are filling the missing values using the backward filling method of Pandas DataFrame. Similarly, you can use forward filling using the ffil() method.
The fast, flexible, and expressive pandas data structures are designed to make real-world data analysis significantly easier; but this might not be immediately the case for those who are just getting started with it. There is so much functionality built into this package that learning the options in just one go could be overwhelming. It is highly recommended to practice the functionalities with suitable case-studies. So, open your notebook, apply the learnings of this chapter, and explore more. In the next chapter, we will learn how to interact with different databases in Python.
As a data scientist, you will interact with the databases constantly. For this purpose, you need to know how to query, build, and write to different databases. Knowledge of SQL (Structured Query Language) is a perfect fit for this. SQL is all about data. SQL is used for three things. It used to Read/Retrieve data – so data is often stored in a database. It is also used to Write data in a database, and to update and insert new data. Python has its toolkit – SQLAlchemy which provides an accessible and intuitive way to query, build, and write to SQLite, MySQL, and PostgreSQL databases (among many others). We will cover all required database details specific to data science here.
After studying this chapter, you will become familiar with the fundamentals of relational databases and relational model. You will learn how to connect to a database and interact with it by writing basic SQL queries, both in raw SQL as well as with SQLAlchemy.
SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives you the full power and flexibility of SQL. It provides a nice Pythonic way of interacting with databases. Rather than dealing with the differences between specific dialects of traditional SQL such as MySQL or PostgreSQL or Oracle, you can leverage the Pythonic framework of SQLAlchemy to streamline your workflow and more efficiently query your data.
Let’s start our journey by first installing the SQLAlchemy package in our notebook. You can install this package from the Anaconda Distribution using the command (conda install -c anaconda sqlalchemy) in Anaconda Prompt as shown in the following figure 7.1:
Figure 7.1: Installing SQLAlchemy package
Once this package is installed, you can import it in your notebook as shown in the following figure 7.2:
Figure 7.2: Importing package in the notebook
Before using our toolkit, there should be a database to whom you want to connect first. We can use SQLAlchemy to connect with PostgreSQL, MySQL, Oracle, Microsoft SQL, SQLite, and many others. For our learning purpose, we will use MySQL db. You can download and install the MYSQL database from their official website:
https://dev.mysql.com/downloads/installer/
And for creating the database, tables, etc., you can install workbench using the following link:
https://dev.mysql.com/downloads/workbench/
After installing the MySQL workbench, you need to first create a connection there. For this, open the workbench and click on the + icon as highlighted in the following figure 7.3:
Figure 7.3: Open MySQL workbench and click on the + icon
Once you click on + icon, a pop-up screen will open. Here you need to give a connection name, username, and password for creating the connection. Note down the connection name, hostname, port, and password because we will need this information later. Once you complete this step, your connection is ready to be used:
Figure 7.4: Setting up new connection
After the successful creation of a connection, the next step is to create a schema. For this right-click in the SCHEMAS menu and select option Create Schema:
Figure 7.5: Creating a Schema
In the preceding figure 7.5, it is showing many schemas that I created earlier. Once you click on Create Schema option, follow the screen by entering the schema name and then selecting default options. In the preceding example, I have saved the schema with the name rms_dev.
SQLAlchemy engine configuration
Once you know your database information, the next step is to interact with the database. For this purpose, SQLAlchemy uses Engine. Creating an Engine with SQLAlchemy is quite simple. You need to use its create_engine api. You can import this API with the following import – from sqlalchemy import create_engine. This create_engine() API uses the following syntax to store the database information as parameters:
Figure 7.6: SQLAlchemy create_engine() syntax
Here, dialect names include the identifying name of the SQLAlchemy dialect, a name such as sqlite, mysql, postgresql, oracle, or mssql. The drivername is the name of the DBAPI to be used to connect to the database using all lowercase letters. If not specified, a default DBAPI will be imported if available – this default is typically the most widely known driver available for that backend. You can check the name of the DBAPI by clicking on the following link:
https://docs.sqlalchemy.org/en/latest/core/engines.html#mysql
In the following figure 7.7, I am going to use my MySQL db connection details in the Jupyter notebook for creating an engine:
Figure 7.7: Creating an engine
Here I am passing my db details (with username as root and password as admin) in the required format of create_engine() API, then I am connecting with the database using engine’s connect(). Since we have created a new schema, there is no table. So, let’s create a new table/data there first.
If you face No module named ‘MySQLdb’ error, it means you need to install mysqlclient that you can install from the anaconda prompt using ‘pip install mysqlclient’ command.
Creating a table in a database
Since we have connected to our engine, let’s create a table by using the execute() method of Engine. In this example, I am creating a table to hold customer-specific data-name and address. SQL syntax for creating a table is shown in the following figure 7.8:
Figure 7.8: Creating a table
In our case, we have already connected to our engine, so no need to use the ENGINE parameter. First I am storing my create table SQL query in a variable named query, then I am passing this query to Engine’s execute() method. To check if my table is created or not, I am printing the table name and in the end, I am closing my database connection:
Figure 7.9: Printing the table name
Always remember to close the database connection after any operation, just like we did with connection.close().
Once you have created a table, it’s time to insert some data into it. For adding new data to an existing table, we will use SQL insert query which syntax is as shown in the following figure 7.10:
Figure 7.10: Inserting data in a table
In our customers’ table, let us add a customer name and address as shown in the following figure 7.11:
Figure 7.11: Inserting data in a table
Now, to check the existing records of the table, we can use the select query of SQL, and then we can fetch all rows using fetchall() of sqlalchemyapi as shown in the following figure 7.12:
Figure 7.12: Checking existing records
In this way, you are now able to read the data from a database easily. You will be writing similar codes which will help you fetch thousands of data from a database for your analysis.
Updating an existing record is a daily task and you must know how to run updates on your records in case a record was wrongly inserted into the db. In the following figure 7.13, we are going to update our existing customer’s address using update SQL query:
Figure 7.13: Updating a record
For deleting a record, you can use WHERE clause to delete a record based on a column as shown in the following figure 7.14:
Figure 7.14: Deleting a record
In the relational database, there may be many tables, and in those tables, there may be a relationship between their columns. In such a condition you need to join tables. A real-world example of this scenario is from the e-commerce domain where product-related data is in one table, user-specific data is in another table, and inventory is in another one; here you need to fetch product details based on user or inventory. Joining the table can be done in three ways – inner join, left join, and right join. Let’s understand each of these joining.
We can join or combine rows from two or more tables based on a related column by using a JOIN statement. Let’s create two tables – users and products in our db to understand this type of joining first. Don’t forget to create and then connect your db connection before running the following code:
Figure 7.15: Inner join
Once you run the preceding code, you can also verify the outcome in your workbench. Go to your workbench and select the schema you created in the beginning, and then expand that schema. You will see a new table, which you have just created from the above cell, as shown in the following figure 7.16:
Figure 7.16: A new table is created
Since in our example, users and products tables have product ID as a common column, we can join users and products tables based on the product ID to see which user has bought which product, as shown in the following figure 7.17:
Figure 7.17: Joining tables based on product ID
INNER JOIN only shows the records where there is a match.
The left join returns all the rows from the table on the left even if no matching rows have been found in the table on the right. Where no matches have been found in the table on the right, none is returned as shown in the following figure 7.18:
Figure 7.18: Left join
Don’t forget to create and connect the dbconnection before executing any query, as we have done in the earlier normal join example.
The right join is the opposite of the left join. The right join returns all the columns from the table on the right, even if no matching rows have been found in the table on the left. Where no matches have been found in the table on the left, none is returned, as shown in the following figure 7.19:
Figure 7.19: Right join
Don’t forget to create and connect the db connection before executing any query, as we have done in the earlier normal join example.
SQL proficiency is a basic requirement for many data science jobs, including data analyst, business intelligence developer, programmer analyst, database administrator, and database developer. You’ll need SQL to communicate with the database and work with the data. Learning SQL will give you a good understanding of relational databases, which are the bread and butter of data science. It will also boost your professional profile, especially compared to those with limited database experience. So, keep practicing the Python skills of interfacing with sql shared in this chapter by creating your databases/schemas. In the next chapter, we will learn about the core concepts of statistics that are often used in data science.
Thinking Statistically in Data Science
Statistics play an important role in data science. If it is used wisely, you can extract knowledge from the vague, complex, and difficult real world. A clear understanding of statistics and the meanings of various statistical measures is important to distinguish between truth and misdirection. In this chapter, you will learn about the important statistical concepts and Python-based statistics tools that will help you understand the data focused on data science.
After studying the chapter, you will be able to apply statistics in a Pythonic way to analyze the data.
Statistics is the discipline of analyzing data. In data science, you will use two types of statistics – Descriptive and Inference statistics. Descriptive statistics include exploratory data analysis, unsupervised learning, clustering, and basic data summaries. Descriptive statistics have many uses, most notably helping us get familiar with a data set. Descriptive statistics usually are the starting point for any analysis; therefore, it enables us to present the data in a more meaningful way, which allows a simpler interpretation of the data.
The inference is the process of making conclusions about populations from samples. Inference includes most of the activities traditionally associated with statistics such as estimation, confidence intervals, hypothesis tests, and variability. Inference forces us to formally define targets of estimations or hypotheses. It forces us to think about the population that we’re trying to generalize from our sample. In statistics, population refers to the total set of observations that can be made. For example, if we are studying the weight of adult women, the population is the set of weights of all the women in the world. If we are studying the grade point average (GPA) of students at Harvard, the population is the set of GPAs of all the students at Harvard.
Types of statistical data/variables
When working with statistics, it’s important to recognize the different types of data. Most data fall into one of two groups – numerical or categorical. Example of numerical or quantitative data is a measurement, such as a person’s height, weight, IQ, or blood pressure; or they’re a count, such as the number of stocks shares a person owns, how many teeth a dog has, or how many pages you can read of your favorite book before you fall asleep. Categorical or qualitative data represent characteristics such as a person’s gender, marital status, hometown, or the types of movies they like. Categorical data can take on numerical values (such as “1” indicating male and “2” indicating female), but those numbers don’t have mathematical meaning. You couldn’t add them together, for example. (Other names for categorical data are qualitative data, or Yes/No data).
These two types of variables in statistics can be divided further, as shown in the following figure 8.1:
Figure 8.1: Variables in statistics
Let’s understand these categorizations:
Mean is simply another name for average. To calculate the mean of a data set, divide the sum of all values by the number of values. We can compute the arithmetic mean along the specified axis using NumPy. Following is the Pythonic way to calculate the mean:
Figure 8.2: Pythonic way to calculate mean
Median is the number that lies in the middle of a list of ordered numbers. The numbers may be in ascending or descending order. The median is easy to find when there is an odd number of elements in the data set. When there is an even number of elements, you need to take the average of the two numbers that fall in the center of the ordered list. Following is the way to calculate the median:
Figure 8.3: Calculating the median
Mode is that value which appears the most number of times in a data. To calculate mode, we need another package named as stats from scipy along with numpy:
Figure 8.4: Calculating the mode
Now the question arises as to when to use mean, median, or mode. The answer is that it depends on your dataset. The mean is a good measure of the average when a data set contains values that are relatively evenly spread with no exceptionally high or low values. The median is a good measure of the average value when the data include exceptionally high or low values because these have little influence on the outcome. The median is the most suitable measure of average for data classified on an ordinal scale. The mode is the measure of average that can be used with nominal data. For example, late-night users of the library were classified by faculty as 14% science students, 32% social science students, and 54% biological science students. No median or mean can be calculated but the mode is that the biological science students as students from this faculty were the most common.
We all must agree that our lives are full of uncertainties. We don’t know the outcomes of a situation until it happens. Will it rain today? Will I pass the next math test? Will my favorite team win the toss? Will I get a promotion in the next 6 months? All these questions are examples of uncertain situations we live in. If you understand these uncertain situations, you can plan things accordingly. That’s why probability plays an important role in the analysis.
We must know the following terminology related to probability – experiment is the uncertain situation which could have multiple outcomes; the outcome is the result of a single trail, the event is one or more outcome from an experiment, and probability is a measure of how likely an event is.
One of the most important things you need to know while arming yourself with prerequisite statistics for data science is the distributions. While the concept of probability gives us the mathematical calculations, distributions help us visualize what’s happening underneath. Following are some important distributions we must know:
Poisson distribution is used to calculate the number of events that might occur in a continuous-time interval. For instance, how many phone calls will be received at any time period, or how many people might show up in a queue? The Poisson distribution is a discrete function, meaning that the event can only be measured as occurring or not as occurring, meaning the variable can only be measured in whole numbers.
To calculate this function in Python, we can use scipy library’s stats package and to visualize samples, we can use matplotlib library as shown in the following figure 8.5:
Figure 8.5: Poisson Distribution
In the preceding code cell, first we have imported the Poisson package from the scipy.statsapi with matplotlib library to plot the distribution. Then we have created a Poisson discrete random variable named rv. Next, we have calculated the probability mass function (pmf) which is a function that can predict or show the mathematical probability of a value occurring at a certain data point. In the end, we just plotted the graph using the matplotlib library’s plot() and show() functions.
A distribution where only two outcomes are possible, such as success or failure, gain or loss, win or lose, and where the probability of success and failure is the same for all the trials is called a Binomial distribution. We can use the matplotlib Python library which has in-built functions to create such probability distribution graphs. Also, the scipy package helps in creating the binomial distribution as shown in the following figure 8.6:
Figure 8.6: Binomial Distribution
In the preceding code cell, we have imported the binom package from the scipy.statsapi. Then we have created a binomial discrete random variable named rv. Now to plot vertical lines at each x from ymin to ymax we have used matplotlib library’s vlines() function where we are passing our probability mass function (pmf) as one argument and then we are plotting and displaying the distribution as we did earlier.
Any distribution is known as normal distribution if it has the following characteristics:
You can calculate and draw the same using Python’s scipy and matplotlib packages as shown in the following figure 8.7:
Figure 8.7: Normal Distribution
In the preceding code cell, we imported the norm package from scipy.statsapi, then we have passed the probability density function (pdf) of normal continuous – discrete variable as np argument in plot() function. Here a pdf is a function that can predict or show the mathematical probability of a value occurring between a certain interval in the function. You will know more about this function later in this chapter.
Pearson correlation coefficient
In real-world data problems, you may face hundreds of attributes and you cannot include all of them for your analysis. That’s why you need to find a relationship between each variable. The Pearson correlation coefficient is a measure of the strength of a linear association between two variables and is denoted by r. It attempts to draw a line of best fit through the data of two variables, and the Pearson correlation coefficient, r, indicates how far away all these data points are to this line of best fit (i.e., how well the data points fit this new model/line of best fit).
The Pearson correlation coefficient can take a range of values from +1 to -1. A value of 0 indicates that there is no association between the two variables. A value greater than 0 indicates a positive association, that is, as the value of one variable increases, so does the value of the other variable. A value less than 0 indicates a negative association, that is, as the value of one variable increases, the value of the other variable decreases. The stronger the association of the two variables, the closer the Pearson correlation coefficient is.
Following is a guideline (depending on what you are measuring) to interpret the Pearson’s correlation coefficient:
Figure 8.8: Pearson correlation coefficient
Pythonic way to interpret Pearson’s correlation coefficient where r_row denotes Pearson’s correlation coefficient and p_value denotes the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so:
Figure 8.9: Calculating Pearson correlation coefficient
Probability Density Function (PDF)
Probability Density Function (PDF) is used to specify the probability of the random variable falling within a range of values, as opposed to taking on anyone’s value. The probability density function is nonnegative everywhere, and its integral over the entire space is equal to one.
In Python, we can interpret the PDF in the following way – first import norm package from scipy.stats library to create a normalized probability density function with NumPy and matplotlib libraries. In this example, we are creating a variable, x, and assigning it to np.arange(-4,4,0.001), that range from -4 to 4 with an increment of 0.001, then we plot a normalized probability density function with the line, plt.plot(x, norm.pdf(x)):
Figure 8.10: Probability Density Function
Pearson correlation is used in thousands of real-life situations. One recent example is – scientists in China wanted to know if there was a relationship between how weedy rice populations are different genetically. The goal was to find out the evolutionary potential of the rice. Pearson’s correlation between the two groups was analyzed. It showed a positive Pearson Product Moment correlation of between 0.783 and 0.895 for weedy rice populations. This figure is quite high, which suggested a fairly strong relationship.
Statistical inference and hypothesis testing
Statistical inference is the process of deducing properties of an underlying distribution by analysis of data. Inferential statistical analysis infers properties about a population – this includes testing hypotheses and deriving estimates. Statistics prove helpful in analyzing most collections of data. Hypothesis testing can justify conclusions even when no scientific theory exists. A statistical hypothesis, sometimes called confirmatory data analysis, is a hypothesis that is testable on the basis of observing a process that is modeled via a set of random variables. Whenever we want to make claims about the distribution of data or whether one set of results are different from another set of results in applied machine learning, we must rely on statistical hypothesis tests.
In simple words, we can interpret data by assuming a specific structure of our outcome and use statistical methods to confirm or reject the assumption. The assumption is called a hypothesis and the statistical tests used for this purpose are called statistical hypothesis tests. In statistics, a hypothesis test calculates some quantity under a given assumption. The result of the test allows us to interpret whether the assumption holds or whether the assumption has been violated.
Following are two concrete examples that we will use a lot in machine learning:
The assumption of a statistical test is called the null hypothesis, or hypothesis 0 (H0 for short). It is often called the default assumption, or the assumption that nothing has changed. A violation of the test’s assumption is often called the first hypothesis, hypothesis 1, or H1 for short. H1 is shorthand for some other hypothesis, as all we know is that the evidence suggests that the H0 can be rejected.
The process of distinguishing between the null hypothesis and the alternative hypothesis is aided by identifying two conceptual types of errors (type 1 and type 2), and by specifying parametric limits on, for example, how much type 1 error will be permitted.
Let’s understand these statistical concepts based on a real-world example. In this exercise, we will aim to study how accurately we can characterize the actual average participant experience (population mean) from the samples of data (sample mean). We can quantify the certainty of outcome through the confidence intervals. In this exercise we will first create an array of total experience in data science specialization batch of a class and store it in a variable named as dss_exp:
Figure 8.11: a sample numpy array containing number of experience
Next, we will plot a histogram to see the distribution of experiences. For histogram plotting, we will use the matplotlib library’s hits() function. In this function, we are using bins parameter that tells us the number of bins that our data will be divided into:
Figure 8.12: Understanding underlying distribution of experience
The preceding cell will draw the following histogram:
Figure 8.13: Distribution of experience in data science specialization
After this, we will estimate the experiences by taking the mean and standard deviation:
Figure 8.14: Estimating experiences
Now, to see how the distribution of the sample mean to look like, we are drawing samples for 1000 times (NUM_TRIALS) and compute the mean each time. The distribution is plotted to identify the range of values it can take. The original data has experience raging between 0 years and 20 years and spread across it:
Figure 8.15: How distribution of sample mean look
For computing the mean and standard deviation, we have used mean() and std() function. For computing percentile, we are using numpy library’s percentile() function. This function computes the qth percentile of the data along the specified axis and returns the qth percentile(s) of the array elements:
Figure 8.16: Computing mean, standard deviation, and percentile
The preceding code will plot the following histogram, which tells that the original experience of students of data science is in no way a normal distribution. It has peaks around 5 years, 10 years, and 19 years’ experience. The following plot is the histogram of the mean of samples for any given n:
Figure 8.17: Sampling distribution of Mean
Now to find an estimated range of values which is likely to include an unknown population parameter, that is, the estimated range being calculated from a given set of sample data, we will select the confidence interval of our samples. In the following code cell, we are creating a function for selecting confidence interval. Always remember that the selection of a confidence level for an interval determines the probability that the confidence interval produced will contain the true parameter value. Common choices for the confidence level are 0.90, 0.95, and 0.99. These levels correspond to percentages of the area of the normal density curve. For example, a 95% confidence interval covers 95% of the normal curve – the probability of observing a value outside of this area is less than 0.05:
Figure 8.18: Function to select confidence interval
This shows us that given the sample size n, we can estimate the sample mean and confidence interval. The confidence interval is estimated assuming normal distribution, which holds well when n >= 30. When n is increased, confidence interval becomes smaller, which implies that results are obtained with higher certainty:
Figure 8.19: Estimating sample mean and confidence interval
Let’s apply the same concept to an array of old batch experienced so that we can perform Hypothesis testing. Firstly, let’s define the Hypotheses as follows for our example:
The process of distinguishing between the null hypothesis and the alternative hypothesis is aided by identifying two conceptual types of errors (type 1 and type 2), and by specifying parametric limits on, for example, how much type 1 error will be permitted:
Figure 8.20: Performing hypothesis testing
From the output, you can easily see that the previous batch average experience is around 8 while the new batch has an average experience of 10 years. Thus, our first Hypothesis (H1) is fulfilled in our example, which means we can reject the null Hypothesis:
Figure 8.21: plot of hypothesis testing example
The results of a statistical hypothesis test may cause a lot of confusion to decide whether to take the result or reject it. To understand this, we need to interpret the p-value. P-value is a quantity that we can use to interpret or quantify the result of the test and either reject or fail to reject the null hypothesis. This is done by comparing the p-value to a threshold value chosen beforehand, called the significance level. The significance level is often referred to by the Greek lower case letter alpha. A common value used for alpha is 5% or 0.05. A smaller alpha value suggests a more robust interpretation of the null hypothesis, such as 1% or 0.1%.
In the next examples, we’ll do hypothesis testing based on the intuition from the sampling distribution of mean and then we will interpret the p-value:
Figure 8.22: Hypothesis testing
In the preceding code cell, after calculating the average experiences of previous and current batches, we are performing the t-test using stats.ttest_ind() function. The t-test (also called Student’s T-Test) compares two averages (means) and tells us if they are different from each other. The t-test also tells us how significant the differences are; In other words, it lets us know if those differences could have happened by chance. This test gives us a t-score. The t-score is a ratio of the difference between the two groups and the difference within the groups. A large t-score tells you that the groups are different. A small t-score tells you that the groups are similar.
Every t-value has a p-value to go with it. A p-value is a probability that the results from our sample data occurred by chance. P-values are from 0% to 100%. They are usually written as a decimal. For example, a p-value of 5% is 0.05. Low p-values are good; they indicate our data did not occur by chance. So, in our example, the p-value is greater than 0.05 or 1.0, so we cannot reject the null hypothesis. Since the p-value is probabilistic; when we interpret the result of a statistical test, we do not know what is true or false, only what is likely. Rejecting the null hypothesis means that there is sufficient statistical evidence that the null hypothesis does not look likely. Otherwise, it means that there is not sufficient statistical evidence to reject the null hypothesis. If we say that we accept the null hypothesis, the language suggests that the null hypothesis is true. Instead, it is safer to say that we fail to reject the null hypothesis, as in, there is insufficient statistical evidence to reject it.
We have covered some core concepts of statistics in this chapter and we will cover more statistical concepts related to machine learning during the course of later chapters in this book. Statistics is important in data analysis and we cannot ignore it. Framing questions statistically allows researchers to leverage data resources to extract knowledge and obtain better answers. It also allows them to establish methods for prediction and estimation, to quantify their degree of certainty, and to do all of this, using algorithms that exhibit predictable and reproducible behavior. So, practice and implement learnings from this chapter. In the next chapter, we will learn how to import various forms of data and work with data.
Data importing is the first step you will do before analyzing. Since data is present in various forms, .txt, .csv, .excel, JSON, etc., importing or reading of such data is also different but quite simple in a Pythonic way. While importing external data, you need to check various points, i.e., whether header row exists in data or not, is there any missing values there, the data type of each attribute, etc. In this chapter, with the help of Pandas I/O API, you will not only learn to read the data, but also how to write data into various formats of files.
After studying this chapter, you will become an expert in importing, reading, and refining various forms of data.
The simplest form of flat data you will see is in .txt files. To import text data, we need a dataset in this format. For this purpose, we will import a real-world dataset. In the next example, I have made use of consumer price index data obtained from the US Labor Department. You can download the data by clicking on the following URL:
https://catalog.data.gov/dataset/consumer-price-index-average-price-data
Once you copy and save the preceding data in a text file in your system, provide the path to read it. We will use pandasread_table() function to read the text file indicating the path where the file is stored in your system (I have stored the file in my E:/pg/docs/BPB/data folder), as shown in the following figure 9.1:
Figure 9.1: Importing text data
Isn’t that simple! The pd.read_table() function imports all data in a variable cpi_data. If you check the type of this variable, you will notice that this is a pandas DataFrame. The pandas library imports the data in DataFrame format which denotes row and column with index. This data type is easy to manipulate the data further:
Figure 9.2: Importing in DataFrame
We can inspect the data using the head() function. pandas’ read_table() function has inbuilt functionality to filter blank columns which you can use by passing as arguments separated by a comma. For example, in the preceding cpi data, there is a blank column footnote_codes. By using the use cols argument as shown in the following figure 9.3, we can filter the unwanted columns:
Figure 9.3: Using cols argument
CSV or comma-separated values are the favorite formats for saving data. You will see that most of the publicly available datasets for analysis/machine learning are in .csv format. In the next example, I have made use of crime data to analyze the crime incidents occurred in Chicago city. You can download this data by clicking on the following link or save it from the datasets provided in the GitHub repository of the book:
https://catalog.data.gov/dataset?res_format=CSV
Similar to our previous example of reading data from the .txt file, you can import and read this CSV data using the pandas read_csv() function, as shown in the following figure 9.4. This function also has inbuilt features which you can find in following official link: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
Figure 9.4: Importing CSV data
Sometimes, CSV files can be loaded with numerous rows of datasets (our dataset is approximately 1.47 GB). Please be patient while the importing of data is in process. You will notice a clock icon on the top of the browser tab of your notebook indicating the system is busy.
Excel is another most widely used dataset format that contains numbers of the sheet in the form of a tab. You can use the pandas read_excel() function with its sheet_name argument to read the data from a particular sheet of Excel data. In the next example, I have used a Superstore Excel sheet with three tabs-Orders, Returns, People, which you can download by clicking on the following link: https://community.tableau.com/docs/DOC-1236
Figure 9.5: Importing Excel data
In the preceding figure 9.5, we have just imported data from the Orders sheet of the Superstore.xls.
The JSON format is the most preferred form of data exchange in today’s world of API. To deal with a JSON structured data, you can use pandas read_json() function to read with its orient argument as shown in the following figure 9.6:
Figure 9.6: Importing JSON data
Here, the orient parameter can take values as split, records, index, and columns. Try these in your notebook and see the difference in output. Please note, if you are facing error like keyerror: ‘schema’, update your pandas version to v0.23, since orient=’table’ parameter has some issues in the older version of pandas.
Any object in Python can be pickled so that it can be saved on disk. What pickle does is that it serializes the object first before writing it to file. The idea is that this character stream contains all the information necessary to reconstruct the object in another Python script. When you will work on machine learning, then you will need to train your model many times, and picking will help you by saving the training time. Once you pickled your trained model, you can share this trained model to others; they don’t need to waste their time in the retraining of the model. We will cover that part later; let’s learn how to read a pickled file using pandas:
Figure 9.7: Importing pickled data
Our next type of data is in compressed form. The ZIP file format is a common archive and compression standard. So how can you unzip a file so that you can read the data? For this purpose, Python has a zipfile module that provides tools to create, read, write, append, and list a ZIP file. In this example, we will unzip soil data from the African region which you can download from our GitHub repository:
https://github.com/dsbyprateekg/BPB-Publications
Figure 9.8: Importing a compressed data
The preceding code will unzip the file in your given path; in our example, the unzipped file is in CSV format that you can easily read using pandas read_csv() function. There are various inbuilt parameters for this zipfile which you can try in your notebook by clicking on the following link: https://docs.python.org/3.6/library/zipfile.html
Data importing is the first step to get the data. In this chapter, we have learned various formats of data importing. Without loading the dataset in an appropriate data type, you cannot move further. As a data scientist, you will mostly find datasets in CSV format, so pandas read_csv() function will be your best friend in the data importing process. The more you practice in your notebook, the more you will learn. So, explore the data importing with different parameters and see the result. In the next chapter, we will learn about the data cleaning process.
Before starting your analysis, you need to transform the raw data into a clean form. As a data scientist, you will spend 80% of your time cleaning and manipulating data. This process is also known as data wrangling.
A machine learning model’s accuracy depends on the data it is applied to. Hence, data cleaning is a vital step for any data scientist. In this chapter, you will work on a couple of case studies and apply learnings from the previous chapters to clean the data.
After studying this chapter, you will have applied knowledge of the data cleaning process.
As a first step, you must understand the business problem and then look upon the data given by the business team or client. In this first case study, we are going to work on the National Football League (NFL) data. You can access the data from our GitHub repository. As a data scientist, your first task is to read the data in your notebook.
Since the data is in ZIP format, our first step will be to unzip this data and read it using Pandas .zipfile() function by providing the correct location of the file stored in the system as shown in the following figure 10.1:
Figure 10.1: Unzipping a ZIP file
Please note, while reading the data using the pandas read_csv() function, I am passing low_memory parameter. Otherwise, you will get the low_memory warning because guessing dtypes (data type) for each column is very memory demanding and pandas tries to determine what dtype to set by analyzing the data in each column. The pandas library can only determine what dtype a column should have after reading the entire file. This means none of the data can be parsed before the whole file is read unless you risk having to change the dtype of that column when you read the last value. For now, it’s ok to use a low_memory parameter with setting the parameter value to False.
After reading the data, we can look at it so that we get an idea about its attributes. For this, we can use .head() or .sample() function. Since you have already come across how to use the .head() function, I will use .sample() function to view the data as shown in the following figure 10.2:
Figure 10.2: Viewing the data
Tada! The data is displayed in tabular form with some columns having NaN values; these values are called missing values. Let’s apply the same function in building_permits dataframe as shown in the following figure 10.3:
Figure 10.3: Applying .sample() function in building_permits
After reading the data, we have found out that both datasets have missing values. Our next step will be to calculate the number of missing values we have in each column. For counting the null values, pandas has .isnull() function. Since nfl_data has 102 columns, we will analyze the first ten columns containing missing values as shown in the following figure 10.4:
Figure 10.4: Analyzing missing values
Each column name and the associated number indicates the number of missing values – that seems like a lot! We cannot ignore such a high number of missing values. It might be helpful to see what percentage of the values in our dataset were missing to give us a better sense of the scale of this problem. For this percentage calculation, we will take help of the combination of NumPy’s .prod() and pandas shape functions as shown in the following figure 10.5:
Figure 10.5: Calculating percentage of values missing
That’s amazing right, almost a quarter of the cells in this dataset are empty! Now it’s your turn to apply the same steps in the building_permits dataset and check the percentage of missing values there.
In the next step, we will take a closer look at some of the columns with missing values and try to figure out what might be going on with them. This process in data science means closely looking at your data and trying to figure out why it is the way it is and how that will affect your analysis. For dealing with missing values, you’ll need to use your intuition to figure out why the value is missing.
To help figure this out the next question that a data scientist must ask himself/herself - Is this value missing because it wasn’t recorded or because it doesn’t exist?
In the first case, if a value is missing because it doesn’t exist (for example the height of the oldest child of someone who doesn’t have any children), then it doesn’t make any sense to try and guess what it might be. These values you probably do want to keep as NaN. In the second case, if a value is missing because it wasn’t recorded, then you can try to guess what it might have been based on the other values in that column and row. This is called imputation that you will learn later in this chapter.
In our nfl_data dataset, if you check the TimeSecs column, it has a total of 224 missing values because they were not recorded. So, it would make sense for us to try and guess what they should be rather than just leaving them as NAs or NaNs. On the other hand, there are other fields, like PenalizedTeam that also have a lot of missing fields. In this case, though, the field is missing because if there was no penalty, then it doesn’t make sense to say which team was penalized. For this column, it would make more sense to either leave it empty or to add a third value like none and use that to replace the NAs.
Till now you must have understood that reading and understanding through your data can be a tedious process. Imagine doing such careful data analysis daily where you have to look at each column individually until you figure out the best strategy for filling those missing values. Now it’s your turn to look at the columns, street number suffix, and zip code from the building_permits datasets with a similar approach. Both contain missing values. Which, if either, of these are missing because they don’t exist? Which, if either, are missing because they weren’t recorded?
If you don’t have any reason to figure out why your values are missing, the last option you could be left with is to just remove any rows or columns that contain missing values. But this is not recommended for important projects! It’s usually worth taking out some time to go through your data and carefully look at all the columns with missing values one-by-one and understand your dataset. It could be frustrating at the beginning, but you’ll get used to this eventually, and it will help you evolve as a better data scientist.
For dropping missing values, pandas do have a handy function, dropna() to help you do this. Stay alert! When using this function, if you don’t pass any parameter, it will remove all of the data even if every row in your dataset has at least one missing value. For saving ourselves from this situation, we can use axis parameter having column value with this function. We will also check before and after the effect of missing values dropping in the dataset as shown in the following figure 10.6:
Figure 10.6: Dropping missing values
By passing axis=1 as parameter we were able to drop columns with one or more missing values.
We’ve lost quite a bit of data, but at this point we have successfully removed all the NaN’s from our NFL data. Now it’s your turn to try removing all the rows from the building_permits dataset that contains missing values and see how many are left and then try to remove all the columns with empty values and check, how much of your data is left?
Automatically fill missing values
Instead of dropping missing values, we have another option to fill these values. For this purpose, pandas have fillna() function with the option of replacing the NaN values with the value of our choice. In the case of our example data set, I will replace all the NaN values with 0 in nfl_data dataset, since I have already removed/dropped columns with NaN values. Before applying this function, I will pick a small subset view of data in the columns from EPA to Season so that it will print well in the notebook. For this subsetting, you can use .loc() function and pass the range indexes of columns after the comma inside the function. The single colon before the comma in the .loc() function indicates data from all rows for the subsetting:
Figure 10.7: Automatically filling missing values
In the code file, I have prepared and shared another example to check the sum and percentage of missing values in the nfl_data. I hope you’ll be surprised to see the changes in the dataset after the example operations we performed in our previous examples. The second option of filling missing values automatically is by replacing missing values with the value that follows (in the next row) it in the same column. This makes a lot of sense for datasets where the observations have some sort of logical order to them. Here we are using backward filling (bfill) with fillna function for this task:
Figure 10.8: Second option to automatically filling missing value
Try the same steps in building_permits dataset and explore the automatic filling of missing values!
How to scale and normalize data?
Most of the machine learning algorithms do not take raw numerical attributes of your dataset. You need to fit the numerical values within a specific scale. For example, you might be looking at the prices of some products in both Rupee and US Dollars. One US Dollar is worth about 70 Rupees, but if you don’t scale your price methods, some machine learning algorithms will consider a difference in the price of 1 Rupee as important as a difference of 1 US Dollar! This doesn’t fit with our intuitions of the world. With currency, you can convert between currencies. But what if you’re looking at something like height and weight? It’s not entirely clear how many pounds should equal one inch (or how many kilograms should equal one meter) because these two are different measurement units.
In this example of this chapter, you will work on a Kickstarter Project dataset - ks-projects-201612.csv, which you can download from our GitHub repository. Kickstarter is a community of more than 10 million people comprising of creative, tech enthusiasts who help in bringing creative project to life. Till now, more than $3 billion dollars have been contributed by the members in fueling creative projects. The projects can be literally anything – a device, a game, an app, a film etc. Kickstarter works on all or nothing basis, i.e., if a project doesn’t meet its goal, the project owner gets nothing. For example, if a projects’ goal is $500, even if it gets funded until $499, the project won’t be a success. In this dataset, you will transform the values of numeric variables so that the transformed data points have specific helpful properties.
These transforming techniques are known as scaling and normalization. One difference between these two techniques is that, in scaling, you’re changing the range of your data while in normalization you’re changing the shape of the distribution of your data. To understand the output of both techniques, we will need visualization also, so we will use some visualization libraries as well. Let’s understand each of them one-by-one.
For scaling, you will first need to install the mlxtend library which is a Python library of useful tools for the day-to-day data science tasks. For this installation, open Anaconda Prompt and run the following command: conda install -c conda-forge mlxtend follow the instructions.
After installing the required library, read the download data:
Figure 10.9: min max scaling example
Figure 10.10: output of the min max scaling example
By scaling your variables, you can compare different variables on equal footing. To help solidify what scaling looks like, let’s start by scaling the goals of each campaign in our dataset, which is how much money they were asking for:
Figure 10.11: Scaling the goals of each campaign
Once you run the preceding shell, the following plots will be displayed:
Figure 10.12: Plots that are displayed
You can see that scaling changed the scales of the plots dramatically but not the shape of the data and we can conclude that it looks like most campaigns have small goals, but a few have very large ones.
Scaling just changes the range of your data. Normalization is a more radical transformation. The point of normalization is to change your observations so that they can be described as a normal distribution. Remember here that normal distribution is a specific statistical distribution where roughly equal observations fall above and below the mean, the mean and the median are the same, and there are more observations closer to the mean. The normal distribution is also known as the Gaussian distribution.
The method we are using to normalize here is called the Box-Cox Transformation. In the Kickstarter data example, we’re going to normalize the amount of money pledged for each campaign:
Figure 10.13: Box-Cox Transformation
Once you run the preceding shell, you will see the following plots:
Figure 10.14: Result of Box-Cox Transformation
It’s not perfect – it looks like a lot of pledges got very few pledges, but it is much closer to normal! Now it’s your turn to apply the same with the pledged column. Does it have the same info?
Many datasets have a date column and sometimes you may have to deal with requirements like fetching transactional data for a particular month or dates of a month. In such cases, you must know how to parse date. For this you will work on the third case study, where you will work on natural disaster dataset and will learn how to parse data. Let’s import the required modules and load our datasets:
Figure 10.15: Importing required modules
If you check the landslides dataframe using .head() function, you will see that there is a date column on which we will build our example:
Figure 10.16: Checking landslides DataFrame using .head() function
Looking at the data, we can tell that the date column contains dates, but does Python know that they’re dates? Let’s verify the data types of each column with the .info() function:
Figure 10.17: Verifying data types of each column using .info() function
Shocked to see a strange data type of the date column! Pandas, by default, use the object dtype for storing various types of data types. When you see a column with the dtype object, it will have strings in it. To convert the dtype object into date object, we will use pandas to_datetime() function for parsing date value as shown in the following figure 10.18:
Figure 10.18: Parsing date value
The dtype object is now converted into the datetime64 format, which is a standard one for storing dates. If you want to extract the day of the month from the date_parsed column, use the .dt.day function as shown in the following figure 10.19:
Figure 10.19: Extracting the day of the month
Apply the same approach and try your hand at fetching the day of the month from the volcanos dataset.
How to apply character encoding?
Character encodings are specific sets of rules for mapping from raw binary byte strings (that look like this: 0110100001101001) to characters that make up human-readable text (like hello). There are many different techniques used to encode such binary datasets and if you try converting such data in the text without knowing the encoding technique it was originally written in, you will end up with scrambled text.
While working with text in Python 3, you’ll come across two main data types. One is the string, which is what text is by default. The other data is the bytes data type, which is a sequence of integers. Most datasets will probably be encoded with UTF-8. This is what Python expects by default, so most of the time you won’t run into problems. However, sometimes you’ll get an error like this:
UnicodeDecodeError: ‘utf-8’ codec can’t decode byte 0x99 in position 11: invalid start byte
To understand this, let’s work on the Kickstarts project again but this time try to read 2016 CSV file:
Figure 10.20: Trying to read 2016 CSV file
To solve this error, you need to pass correct encoding while reading the file. We can check the encoding of this project’s 2018 version file which you have already downloaded using chardet module as shown in the following figure 10.21:
Figure 10.21: Checking the encoding
Encoding is Windows-125 having 73% confidence value. Let’s see if that’s correct:
Figure 10.22: reading csv data with correct encoding
You may face duplicate data entry in your dataset like Karachi and Karachi where there is a space in the second or same name with case issues. These types of inconsistency need to be removed. To understand this type of situation, we will work on a dataset where suicide attacks held in Pakistan are mentioned. Let’s understand this situation by importing the suicide attack dataset and explore the inconsistent column as below:
Figure 10.23: Cleaning inconsistent data
Since our focus is on inconsistency, let’s move on to the city name column:
Figure 10.24: Cleaning inconsistent data in City column
Let us format each cell data by converting every letter in lower case and by removing white spaces from the beginning and end of cells. You can easily do this using str module’ slower() and strip() functions. Inconsistencies in capitalizations and trailing white spaces are very common in text data and you can fix a good 80% of your text data entry inconsistencies by doing this:
Figure 10.25: Fixing inconsistencies using str module functions
If you have read this chapter carefully and applied the learning in your notebook, then at the end of this chapter you have gained practical knowledge of data cleaning process. There are many techniques to learn when it comes to mastering data science subject. After practicing the techniques covered in this chapter on different data sets, you’ll gain competitive skills to stay ahead in the data science role. So, keep practicing and explore more techniques day by day. In the next chapter, we will learn about visualization in detail.
Data is very powerful. It’s not easy to completely understand large data sets by looking at lots of numbers and statistics. For the ease of understanding, data needs to be classified and processed. It is a well-known fact that the human brain processes visual content better than it processes plain text. That’s why data visualization is one of the core skills in data science. In simple words – visualization is nothing but, representing data in a visual form. This visual form can be charts, graphs, lists, maps, etc. In this chapter, you will work on a case study and learn different types of charts to plot with the help of Python’s matplotlib and seaborn libraries along with pandas.
After studying the chapter, you will become an expert in visualization using Pandas.
Bar charts or Bar graphs are the simplest forms of data visualization method. They map categories to numbers; that’s why bar graphs are good to present the data of different groups that are being compared with each other. To understand how to plot a bar chart, you will work on the Wine Review Points dataset, which you can download in ZIP form from our repository. In this dataset, wine-producing provinces of the world (category) is compared to the number of labels of wines they produce (number). Let’s load this ZIP file, unzip it, and read the file by following the same steps learned in the previous chapter:
Figure 11.1: Importing Zip file
The CSV file is now extracted and stored in the location mentioned in the .extractall() function. Read the CSV file and store data in a pandas library’s DataFrame variable, as shown in the following figure 11.2:
Figure 11.2: Loading the wine review dataset into a DataFrame
Suppose you want to understand which province produces more wine than any other province in the world. For this comparison you can use the bar chart as shown in the following figure 11.3:
Figure 11.3: Provinces with Wine Production Data
Isn’t it easy to clearly say that California produces more wine than any other province of the world? From this visualization, you can demonstrate a chart instead of showing statistics code to your client. That’s is the beauty of data visualization. Now coming back to the actual code, we are using matplotlib.pyplot as our main plotting library. Next, we are using value_counts() function to find the frequency of the values present in the province column in descending order. For denoting the x and y axis with a name, we are using xlabel() and ylabel() functions of pyplot. Lastly, we have used the show() function to display the plots.
A line chart or line graph is a type of chart that displays information as a series of data points called markers connected by straight line segments. Line graphs are used to display quantitative values over a continuous interval or time period. A line graph is most frequently used to show trends and analyze how the data has changed over time. In our example, let us draw a line graph to plot and understand wine review points using plot.line() function as shown in following figure 11.4:
Figure 11.4: Wine Review Points using plot.line() function
Here, points in the wine review dataset denote the number of points Wine Enthusiast rated the wine on a scale of 1-100. From the preceding line chart, you can easily say that almost 20000 wines got 87 points in their reviews.
A histogram looks like a bar plot. A histogram is a special kind of bar plot that splits your data into even intervals and displays the number of rows in each interval with bars. The only analytical difference is that instead of each bar representing a single value, it represents a range of values. However, histograms have one major shortcoming. Because they break space up into even intervals, they don’t deal very well with skewed data (meaning it tends to have a long tail on one side or the other). For example, let us check the number of wines which are priced less than $200 as shown in the following figure 11.5:
Figure 11.5: Number of Wines priced below $200
If you run the same code but price with greater than $200, then the plot will not break up in even interval. This is also one of the techniques to deal with skewness of the data. Histograms work best for interval variables without skew as well as for ordinal categorical variables.
A scatter plot is a bivariate plot which simply maps each variable of interest to a point in two-dimensional space. If you want to see the relationship between two numerical variables, then you can use the scatter plot. In our wine dataset, suppose you want to check the relationship between price and points, then to visualize a scatter plot with the best fitting in our output cell, instead of taking all prices, we will take a sample like all the wines which have a price below $100, and then we will plot the relationship using scatter() function:
Figure 11.6: Plotting relationship using scatter() function
The preceding plot shows us that price and points are weakly correlated, which means that more expensive wines generally earn more points when reviewed. Scatter plot has one weakness – overplotting, therefore, scatter plots work best with relatively small datasets, and with variables which have a large number of unique values. That’s why I have taken only 100 samples while plotting. Try without using the sample in the preceding code and see the difference in output.
A stacked chart is one which plots the variables one on top of the other. It is like a bar graph or line chart, but it is subdivided into its components so that the comparisons, as well as the totals, can be seen. To plot a stacked plot, we will have to work on another dataset which represents the top five wine reviews:
Figure 11.7: Stacked plot
In this dataset, the review score of the top five wines is mentioned, which is a perfect example to visualize each component as a stacked plot. Let’s plot a stacked plot:
Figure 11.8: Plotting a stacked plot
Doesn’t it look beautiful? But this plot has the following two limitations:
If you want to visualize a statistics summary of a given dataset, then the box plot is your friend. As shown in the following figure 11.9, the left, and right of the solid-lined box are always the first and third quartiles (i.e., 25% and 75% of the data), and the band inside the box is always the second quartile (the median). The whiskers (i.e., the blue lines with the bars) extend from the box to show the range of the data:
Figure 11.9: Box plot
Let’s understand first these five statistical terms:
Let’s see how to utilize a box plot on a real-world dataset – Breast Cancer Diagnostic, which you can download from our repository and read it as shown in the following figure 11.10:
Figure 11.10: Utilizing a Box plot
The next task is to analyze the relationship between malignant or benign tumors (a categorical feature) and area_mean (continuous feature).
For this task, first, you need to separate the malignant or benign tumor data from the complete dataset based on the mean area. This time, I will use the seaborn library to plot my boxplot and save the plot as an image. For plotting a box plot we will use boxplot() function of the seaborn library as shown the following figure 11.11:
Figure 11.11: Plotting box plot using function from seaborn library
Using the preceding graph, we can compare the range and distribution of the area mean for malignant and benign diagnosis. We observe that there is a greater variability for malignant tumor area mean as well as larger outliers. Also, since the notches in the boxplots do not overlap, you can conclude that with 95% confidence, that the true medians do differ.
Data visualization is one of the core skills in data science. In order to start building useful models, we need to understand the underlying dataset. Effective data visualization is the most important tool in your arsenal for getting this done, and hence a critical skill for you to master. There are various readymade visualization tools like Tableau and QlikView present in the market, but you must know the basic plotting skills as we did in this chapter. The more you practice on actual datasets, the more you will gain your visualization knowledge; so, start practicing in your notebook and check what you can analyze from the output. In the next chapter, you will learn about the data pre-processing steps.
For achieving better results from the applied model in machine learning projects, properly formatted data is mandatory. Some machine learning models need the information to be in a particular format, for example, some machine learning algorithm(s) do not support null values. For such algorithms, null values have to be managed in the original raw data set. Another important reason for having formatted data is to evaluate it using more than one machine learning and deep learning algorithms and chose among the best fit algorithmic solution to the data problem. In this chapter, you will learn data pre-processing steps which will form the final step towards working with machine learning algorithms. You will learn Feature Engineering along with data cleaning and visualization with the help of a real-world case study.
After studying this chapter, you will be equipped with the skills to make your data ready to start working with machine learning algorithms.
In this chapter, we will analyze datasets of two pioneer e-retail merchants - ModCloth and RentTheRunWay. Both retailers want to improve their catalog size recommendation process and thus they asked data scientists to help. The following type of information is available in the datasets:
These datasets are highly sparse, with most products and customers having only a single transaction. Note that, here a product refers to a specific size of a product, as your goal is to predict fitness for associated catalog sizes. Also, since different clothing products use different sizing conventions, you will standardize sizes into a single numerical scale preserving the order.
You can download the two datasets of each merchant from the link provided in the book for downloading the dataset. Both datasets are in the ZIP format. So before reading the actual file, you need to unzip it first, as shown in the following code block:
Figure 12.1: Unzipping the datafile
Once you run the preceding code, it unzips the datafile which is in JSON format. Use the pandas library’s .read_json() function to read this JSON file and store it in a dataframe for processing later:
Figure 12.2: Using pandas library’s function to read file
From the preceding head view of our case-study dataset, you will notice the following points:
Let’s explore the columns and information of the dataset in details:
Figure 12.3: Exploring columns and information of dataset
It looks like there are spaces between some column names. So, let’s rename the space with an underscore as shown in the following figure 12.4:
Figure 12.4: Renaming space with an underscore
Let’s move further and check the data types of each column so that you can make more observations:
Figure 12.5: Checking datatypes of each column
Once again if you analyze the data type of each column, you will find the following points:
Next, you can check the missing values in each column as shown in the following block of code:
Figure 12.6: Checking for missing values
Figure 12.7: Analyzing the missing values
Further analyzing the output under that waist column, we surprisingly found a lot of NULL values (97%) – consider also that Modcloth is an online retail merchant and most of the data from Modcloth comes from the 3 categories of dresses, tops, and bottoms.
Let’s dig more into the data before you dive into performing the pre-processing tasks as shown in the following figure 12.8:
Figure 12.8: Analyzing the data
From the preceding statistical description, you can infer the following:
Keeping in mind the basic statistical analysis we have done till now, let’s check the outliers in our dataset by plotting a box plot using numerical columns of the dataset:
Figure 12.9: Plotting a box plot using numerical columns
Figure 12.10: Numerical variables in Modcloth dataset
You can analyze the following key points from the preceding box plot:
The next step will be to handle the null values in shoe size and then visualize the bra_size vs. size:
Figure 12.11: Handling null values
Figure 12.12: Joint distribution of bra_size vs. size
From the plot we can’t see any significant deviation from usual behavior for bra-size; in fact for all other numerical variables as well, you can expect the apparent outliers, from the boxplot to behave similarly. Now, we ‘ll head to pre-processing the dataset for suitable visualizations.
Data cleaning and pre-processing
Let’s handle the variables and change the data type to the appropriate type for each column. For this purpose, you will define a function first for creating the distribution plot of different variables as shown in the following figure 12.13:
Figure 12.13: Defining the function for creating distribution plot
Once you run the preceding function, it will draw the following, which looks like the plot in your notebook:
Figure 12.14: Initial distribution of features
Looking at the individual plots from the output, you can analyze and infer the following:
Let’s apply these observations one by one as shown in the following figure 12.15:
Figure 12.15: Applying the observations
Creating new features from existing ones is called feature engineering. This step improves your model accuracy amazingly. To extract a new feature, you must understand the actual business problem, it’s dataset and you must think out of the box sometimes. In the given dataset, we will try to do the same, so let’s start this approach by creating a new feature of first_time_user.
You can use the following logic to identify first time buyer:
You can verify the above logic as the following, before creating the new feature:
Now we can add a new column to the original data - first_time_user, with Boolean data type which will indicate if a user/a transaction, is a first-time user or not. This is based on the grounds that Modcloth has no previous information about the person; in fact, it is possible that the new user did multiple transactions for the first time!
Figure 12.16: Adding a new column
Let’s move further and observe other columns; you will find the following analysis result:
Figure 12.17: Cleaning the columns
Let’s analyze the remaining columns:
Let’s apply the above analysis to our dataframe:
Figure 12.18: Applying the analysis
Now if you check the dataset using .info(), you will find that there are no more missing values! You can move onto visualizing and gaining more insight into the data.
Here, you will visualize how the items of different categories fared in terms of - fit, length, and quality. This will tell Modcloth which categories need more attention! For this, you can plot 2 distributions in categories like the following:
For this purpose, I have used various functions in the next code block as shown in the following figure 12.19:
Figure 12.19: Using various functions
Let’s apply our functions to visualize the comparison of category and fit:
Figure 12.20: Visualizing comparison of category and fit
The output will look like below:
Figure 12.21: Output of comparison
Analyze the preceding plot, and you can find the following observation:
You can draw the same plot to see the comparison between category and length; try at your end and analyze what observation you can make! There is another dataset of RentTheRunWay merchant, which I have provided in the datasets for your practice. Try implementing the learnings from this chapter to the dataset and see what observations you can make.
Feature Engineering and visualization are very impactful skills in data analysis. If done in the right way, they can push your machine learning modeling in a very positive way. Achieving the expertise in both skills requires practicing all the previous chapters, as well as this chapter learning in different datasets. Don’t just load the dataset in your notebook - try to understand the actual business problem first, explore each attributes of the dataset, think how you can extract a new feature from the existing one, and what will be the impact of it on analysis. Keep practicing and in the next chapter you will start your machine learning journey.
In the previous chapters of this book, you have gained all the required skills to jump into the machine learning (ML) world. ML is the field of teaching machines and computers to learn from existing data to make predictions on new data without being explicitly programmed. In this chapter, you will learn about different types of machine learning, deep dive into some supervised machine learning techniques, and how to use Python to perform supervised learning. You will also learn how to build predictive models, tune their parameters, and tell how well they will perform on unseen data, all this while using real-world datasets. You will do so using scikit-learn, one of the most popular and user-friendly machine learning libraries for Python.
After studying and practicing this chapter, you will be an expert in solving supervised ML problems.
Introduction to machine learning (ML)
Machine learning algorithms are divided into the following four categories according to their purpose:
Supervised ML learning algorithms try to model relationships and dependencies between the target prediction output and the input features such that we can predict the output values for new data based on those relationships which it learns from the original data set. Supervised ML algorithm is further divided into the following two categories based on two types of problems:
Unsupervised ML Learning algorithms are used when computer/system is trained with unlabelled data - meaning the training data does not include targets or in other sense, we don’t tell the system where to go. On the contrary, a system will arrive at an understanding by itself from the data we provide. These algorithms are useful in cases where the human expert doesn’t know what to look for in the data. Clustering is the most important unsupervised ML problem, where we group similar things. For the grouping of data, we don’t provide the labels, the system understands from data itself and clusters the data. Some examples are - given a set of tweets, cluster data based on the content of tweets, or based on a set of images or clusters into different objects.
The semi-supervised ML Learning algorithm falls in between the two types of algorithms mentioned earlier. In many practical situations, the cost to label is quite high, since it requires skilled human experts to do that. So, in the absence of labels in most of the observations (but present in few), semi-supervised algorithms are the best candidates for the model building. Speech analysis and web content classification are two classic examples, of semi-supervised learning models.
The reinforcement ML learning algorithm allows machines/software agents to automatically determine the ideal behavior within a specific context, in order to maximize its performance. In this process-input state, which is observed by the agent, the decision-making function is used to make the agent perform an action; after the action is performed, the agent receives reward or reinforcement from the environment and then the state-action pairing information about the reward is stored. Some applications of the reinforcement learning algorithms are computer played board games (Chess, Go), robotic hands, and self-driving cars.
The following is a list of must-know algorithms:
In the next few chapters, we will learn to apply these algorithms, like Logistic Regression, Linear Discriminant Analysis, k-Nearest Neighbors, Decision Trees, Gradient Boosting, and Support Vector Machine to real-life case studies, and understand how they help provide human-like solutions.
In supervised ML problems, we act as the teacher where we feed the computer with training data containing the input/predictors. We show the system correct answers (output) obtained from analyzing the data and from the analysis the computer should be able to learn the patterns to predict the output values for new input data based on relationships it learned by analyzing the original datasets. In more simple words, we first train the model with lots of training data (inputs and targets), then with new data and the logic we got earlier, we predict the output.
The following image shows thumb rule to distinguish between two types of supervised ML problems:
The first type of supervised ML algorithm - classification algorithms, are used when the desired output is a discrete label. In other words, they’re helpful when the answer to your question about your business falls under a finite set of possible outcomes. Many use cases, such as determining whether an email is a spam or not, have only two possible outcomes. This is called a binary classification.
Multi-label classification captures everything else and is useful for customer segmentation, audio and image categorization, and text analysis for mining customer sentiment.
Following is a list of some common classification ML algorithms:
The second type of Supervised ML algorithm – regression, is useful for predicting continuous outputs. That means the answer to your question is represented by a quantity that can be flexibly determined based on the inputs of the model rather than being confined to a set of possible labels. Linear regression is one form of regression algorithm. The representation of linear regression is an equation that describes a line that best fits the relationship between the input variables (x) and the output variables (y), by finding specific weightings for the input variables called coefficients (B). For example: y = B0 + B1 * x
We will predict y given the input x as the goal of the linear regression learning algorithm is to find the values for the coefficients B0 and B1.
In machine learning, there’s something called the “No Free Lunch” theorem. In a nutshell, it states that no one algorithm works best for every problem, and it’s especially relevant for supervised learning (i.e., predictive modeling).
Don’t confuse with the name, it is a classification model. Logistic regression (LR) is used to describe data and to explain the relationship between one dependent binary variable and one or more nominal, ordinal, interval, or ratio-level independent variables. Behind the scenes, the logistic regression algorithm uses a linear equation with independent predictors to predict a value. The predicted value can be anywhere between negative infinity to positive infinity. We need the output of the algorithm to be class variable, i.e., 0-no, 1-yes. LR is based on the probability (p) so if the probability > 0.5, the data is labeled as ‘1’, otherwise data is labeled as ‘0’. By default, the value of the probability threshold (p) in LR is 0.5.
The decision tree classifiers organized a series of test questions and conditions in a tree structure. In the decision tree, the root and internal nodes contain attribute test conditions to separate records that have different characteristics. All the terminal node is assigned a class label - Yes or No. Once the decision tree has been constructed, classifying a test record is straightforward. Starting from the root node, we apply the test condition to the record and follow the appropriate branch based on the outcome of the test. It then leads us either to another internal node, for which a new test condition is applied or to a leaf node. When we reach the leaf node, the class label associated with the leaf node is then assigned to the record. Various efficient algorithms have been developed to construct a reasonably accurate, albeit suboptimal, decision tree in a reasonable amount of time. For example, Hunt’s algorithm, ID3, C4.5, CART, SPRINT are greedy decision tree induction algorithms.
The principle behind the nearest neighbor classification consists of finding a predefined number, i.e., the ‘k’ - of training samples closest in distance to a new sample, which has to be classified. The label of the new sample will be defined by these neighbors. L-nearest neighbor classifiers have a fixed user-defined constant for the number of neighbors which has to be determined. There are also radius-based neighbor learning algorithms, which has a varying number of neighbors based on the local density of points, all the samples inside of a fixed radius. The distance can, in general, be any metric measure; standard Euclidean distance is the most common choice. Neighbors-based methods are known as non-generalizing machine learning methods since they simply remember all of its training data. Classification can be computed by a majority vote of the nearest neighbors of the unknown sample.
Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis is a dimensionality reduction technique but can also be used as a linear classifier technique. Since Logistic regression can become unstable when the classes are well separated or when there are few examples from which to estimate the parameters; LDA is a better technique in such cases. LDA model consists of the statistical properties of your data, calculated for each class. For a single input variable (x), this is the mean and the variance of the variable for each class. For multiple variables, these are the same properties calculated over the multivariate Gaussian, namely the means and the covariance matrix.
These statistical properties are estimated from your data and plug into the LDA equation to make predictions. These are the model values that you would save to file for your model.
Gaussian Naive Bayes Classifier
A Gaussian Naive Bayes (NB) algorithm is a special type of NB algorithm. It’s specifically used when the features have continuous values. It’s also assumed that all the features are following a Gaussian distribution, i.e., normal distribution. Remember that Bayes’ theorem is based on conditional probability. The conditional probability helps us in calculating the probability that something will happen, given that something else has already happened.
Support Vector Machine (SVM) is a supervised machine learning algorithm that can be used for either classification or regression challenges. In the SVM Classifier algorithm, we plot each data item as a point in n-dimensional space (where n is the number of features you have) with the value of each feature being the value of a particular coordinate. Then, we perform classification by finding the hyper-plane that differentiates the two classes very well. SVMs are simply the coordinates of individual observation. SVM is a frontier that best segregates the two classes (hyper-plane/line).
Solving a classification ML problem
For solving a supervised machine learning problem, you need labeled data. You can get labeled data either in the form of a historical data with labels or you can perform experiments like A/B testing to get labeled data or get from crowdsourcing labeled data. In all cases, our goal is to learn from the data and then make a prediction on new data based on past learning. To understand this in our next example, we will use Python’s sci-kit learn or sklearn library to solve a classification problem. Except for sklearn, there are TensorFlow and keras libraries also widely used in solving ML problems.
Sklearnapi expects inputs in numpy array, so always check the data type of the data and convert it accordingly. Also, it expects that the data should not have missing values so handle the missing values before training the model.
You will work on the best known and simple dataset named Iris, to be found in the pattern recognition. Iris is a plant that has three species. This dataset was introduced by the British statistician Ronald Fisher in 1936. Based on the features of this plant, Fisher developed a linear discriminant model to distinguish the Iris species with each other. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the latter are NOT linearly separable from each other.
Goal: Your goal is to predict the class of an iris plant.
From the above description of the problem, you can understand that sepal length/width and petal length/width are the features, whereas Species is the Target variable. Species have three possibilities - Versicolor, Virginica, Setosa. This is a multi-class classification problem. Along with many datasets, the iris dataset is also present in the sklearn library, so you don’t need to download it. The complete solution of this exercise has been done as a notebook for your reference, named as Solving a classification ML problem.ipynb. Let’s start our step-by-step process to solve the problem:
Figure 13.1: Loading dataset
Figure 13.2: Checking type of dataset
It will show that the datatype is of class Bunch, which is like a dictionary containing key-value; each key will be unique in the key-value pair and the values can be accessed if you know the keys. To find out the list of keys present in the dataset iris, you can print the keys with .keys() function as shown in the following figure 13.3:
Figure 13.3: Printing keys with .keys() function
Figure 13.4: Diagnosis of the data key
Figure 13.5: Values associated with target variable
Figure 13.6
Figure 13.7: Converting iris data
Figure 13.8: Plotting histogram of features
Figure 13.9: Scatter plot matrix of Iris dataframe
Here, we have created a scatter plot matrix of our Iris dataframe using the scatter_matrix method in pandas.plotting. In simple words, the scatter matrix is plotting each of the columns specified against other columns which you can see as the diagonal of the matrix.
Figure 13.10: Splitting a dataset
Here, we have used train_test_split() function of sklearn’s model_selection package. This function splits arrays or matrices into a random train, and test subsets. In this function we pass the feature data as the first argument, target as the second argument, and proportion of the original data for testing as test_size and last the seed for random number generations. This function returns four arrays - the training data, the test data, the training labels, and the test labels; so we have unpacked these four into variables named as X_train, X_validation, Y_train, Y_validation respectively. Now you have training data in the X_train and Y_train for preparing models and an X_validation and Y_validation sets that we can use later as validation.
Why train/test split and cross-validation?
For understanding the importance of train/test split and cross-validation, we need to first understand the two types of problems in ML - Overfitting and Underfitting a model. Overfitting means that the model we trained has been trained too well and is now, well, fit too closely to the training dataset. This usually happens when the model is too complex (i.e., too many features/variables compared to the number of observations). This model will be very accurate on the training data but will probably be not very accurate on untrained or new data. It is because this model is not generalized, meaning you can generalize the results, and can’t make any inferences on other data, which is, ultimately, what you are trying to do. In contrast to overfitting, underfitting is when a model is underfitted, which means that the model does not fit the training data and therefore misses the trends in the data. It also means the model cannot be generalized to new data.
Train/test split and cross-validation help to avoid overfitting more than underfitting. But train/test split does have its dangers — what if the split we make isn’t random? In order to avoid this, we perform cross-validation. It’s very similar to train/test split, but it’s applied to more subsets. Meaning, we split our data into k subsets, and train on k-1 one of those subsets. What we do is to hold the last subset for the test. We’re able to do it for each of the subsets.
Figure 13.11: Using scoring variable
Figure 13.12: Code cell
Code explanation: Here we have first initialized an empty list where we can store our models. Next, we are adding six classification algorithms in these models so that we can compare the result of each. For evaluating each model one by one and saving the result of each model, we have defined results variable for storing the model’s accuracy and names variable for storing algorithm name. Both these variables are of type list.
In the next step inside the for loop, we are iterating the models’ list. In this iteration, we are using the KFold() function of model_selection which provides train/test indices to split data into train/test sets. It split the dataset into k consecutive folds (without shuffling by default).
For evaluating our metrics by cross-validation and also recording fit/score times, we are using cross_val_score() function. From the output, it looks like the SVM classifier has the highest estimated accuracy score (99%).
Figure 13.13: Code snippet for accuracy comparison
Once you run the preceding cell, you will see below result:
Figure 13.14: Plot of accuracy comparison
Figure 13.15: Generating accuracy score and report
To train our model, we have used .fit() function which is a default function in many algorithms for training. After training the model, to make predictions, we have used .predict()function call. Inside fit() method, we pass two required arguments - features and target as numpy array. The sklearnapi requires data in numpy array format only. Another point to remember is that there should be no missing values in data, otherwise you will face unexpected errors.
From the output, we can deduce that the accuracy is 0.933333 or 93%. The confusion matrix provides an indication of the three errors made. Finally, the classification report provides a breakdown of each class by precision, recall, f1-score, and support, showing excellent results (granted the validation dataset was small). The support gives the number of samples of the true response that lie in that class (no. of species in our case on the test dataset).
Details of the report: Here, the classification report is a report of Precision/Recall/F1-score - for each element in your test data. In multiclass problems, it is not a good idea to read Precision/Recall and F1-score over the whole data because any imbalance would make you feel you’ve reached better results. The confusion matrix is a much-detailed representation of what’s going on with your labels. So, there are 7 [7+0+0] points in the first class (label 0). Out of these, your model was successful in identifying 7 of those correctly in label 0. Similarly, look at the second row. There were 12 [0+10+2] points in class 1, but 10 of them were marked correctly.
Coming to Recall/Precision: They are some of the most used measures in evaluating how good your system works. Now you had 7 points in the first species (call it 0 species). Out of them, your classifier was able to get 7 elements correctly. That’s your recall. 7/7 = 1. Now look only at the first column in the table. There is one cell with entry 7, rest all are zeros. This means your classifier marked 7 points in species 0, and all 7 of them were actually in species 0. This is precision. 7/7 = 1. Look at the column marked 2. In this column, there are elements scattered in two rows. 11 of them [0+2+11=13] were marked correctly. Rest [2] is incorrect. So that reduces your precision.
Figure 13.16: Pickle library serializes ML algorithms
Running the example saves the model to finalized_model.sav in your local working directory. Load the saved model; evaluating it provides an estimate of the accuracy of the model on unseen data. Later you can load this file to deserialize your model and use it to make new predictions.
Solving a regression ML problem
There are many different types of regression problems based on different data. The specific type of regressions we are going to learn is called generalized linear models. The important thing for you to know is that with this family of models, you need to pick a specific type of regression you’re interested in. The different type of data with respect to regression is shown in the following figure 13.17:
Figure 13.17: Three types of regression
About the problem – you are going to work on the GapMinder dataset. This dataset is already in a clean state. GapMinder is a non-profit venture promoting sustainable global development and achievement of the United Nations Millennium Development Goals. It seeks to increase the use and understanding of statistics about social, economic, and environmental development at local, national, and global levels.
Goal: Your goal will be to use this data to predict the life expectancy in a given country based on features such as the country’s GDP, fertility rate, and population.
Figure 13.18: Inspecting columns and data types
Always remember, scikit-learn does not accept non-numerical features. In our case, Region is a categorical variable, so you cannot include it in your training process until you handle it. You will learn how to handle this later.
Figure 13.19: Creating arrays for features and target variable
Figure 13.20: Reshaping the variables
After reshaping both variables, dimension will be changed:
Figure 13.21: Changing the dimension
Figure 13.22: Heat map
In the preceding heat map, green cells show a positive correlation, while cells that are in red show a negative correlation. Here, we can say that life and fertility are poorly correlated. Linear regression should be able to capture this trend.
Next, we will solve our problem using linear regression. Before applying this, let’s know some fundamentals of this algorithm. In this algorithm, we try to fit a line to the data in such a way that it follows the equation: y=ax+b or for higher dimensions: y=a1x1+a2x2+b. Here y is the target, x is the single feature, a and b are the parameters of the model that you want to learn. So here the first question is how to choose a and b?
For this, we define an error function (loss or cost function) for any given line and choose the line that minimizes the error function. In the sklearn library, when we train the data using the fit() method, it automatically applies this loss function behind the scene. This function is also called ordinary least squares (OLS). The default accuracy metrics of this algo is R^2 (R square) instead of accuracy in classification problem.
Figure 13.23: Applying Linear Regression
Figure 13.24: Evaluating predictions on regression ML problems
If you compare this output with the output of the previous cell, you can easily say that all features have improved the model score, because our model fit is increased from 0.619 to 0.729. Model performance is dependent on the way the data is split. This makes sense, as the model has more information to learn from.
Figure 13.25: Cross validation code snippet
In the preceding example, we have applied 5-fold cross-validation on the GapMinder data. By default, the scikit-learn library’s cross_val_score() function uses R^2 (R square) as the metric of choice for regression. Since we are performing 5-fold cross-validation, the function will return 5 scores. Hence, we have computed these 5 scores and then taken their averages.
Cross-validation is essential, but do not forget, the more folds you use, the more computationally expensive cross-validation becomes. Define the k as per your system capabilities.
Since linear regression minimizes a loss function by choosing a coefficient for each feature variable, largely chosen coefficients can lead your model to overfit. To avoid this situation, we can alter the loss function; this technique is known as regularization. In this technique, we try to find out the most important features and shrink the large coefficients to almost zero, so that only important ones remain. Two regularization techniques are widely used in ML - Lasso Regression and Ridge regression. Let’s understand each one by one:
Let’s understand how you can apply Lasso with Python in the breast cancer research dataset. This dataset is already there in sklearnapi. First, we will import the Lasso package from the sklearn.linear_model library followed by the breast cancer dataset from sklearnapi, and then we will apply the Lasso in our dataset as shown in the following figure 13.26:
Figure 13.26: Applying Lasso package
Once you run the preceding cell, you will see the following output:
Figure 13.27: Output of running Lasso package
In our dataset, there are a total of 30 features initially, but on the application of Lasso regression, only 4 features are used; rest are all shrunk to zero (see the red stars on the preceding plot). The training and test scores are 56% and 58% respectively, which are very low -- it means our model is underfitting. Now you can reduce this under-fitting by increasing the number of iteration and reducing the alpha. Try with alpha=0.0001 and number of feature =22 [lasso = Lasso(alpha=0.0001, max_iter=10e5)] and see how much accuracy you get!
Next, we will learn how to apply Ridge Regression in Python. Here we will use Boston house price dataset from sklearnapi:
Figure 13.28: Applying Ridge Regression
Here axis=1 means we are applying logic row-wise. We have separated the target column - Price from the dataframe and stored it as target column:
Figure 13.29: Separating a column and storing as target column
Here, in X-axis, we plot the coefficient index, which is the features of our dataset. In our case, Boston data has 13 features. Once you run the preceding code, you will see the following output:
Figure 13.30: Plot of coefficient index vs magnitude
You will notice in the preceding plot, that the low value of alpha (0.01) is denoted as a red star, and when the coefficients are less restricted, the coefficient magnitudes are almost the same as of linear regression. Try with alpha=100 and you will see that for this higher value of alpha (100), for coefficient indices 3,4,5, the magnitudes are considerably less compared to linear regression case. From the preceding exercises, you can say that Lasso is great for feature selection, but when building regression models, ridge regression should be your first choice.
If you noticed, the steps we have followed to solve classification and regression problems have a similarity. We can summarize the common steps in the following simple words:
Till now you have learned the required steps to build an ML model. But sometimes, implementing a model is not the ultimate solution. You may be required to fine-tune your model for better accuracy. For the example explained earlier, you can tune your models:
The preceding parameters are chosen before training the model and are called hyperparameters. These parameters cannot be learned by fitting the model. So how can you choose the right one? Till now only one possible solution is found - try with different hyperparameters values, fit all of them separately, do cross-validation, and then choose the right one after comparing the results.
Now, you will learn how to do the same using GridSearchCV library which exhaustive searches over specified parameter values for an estimator. Here you only need to specify the hyperparameter as a dictionary in which keys are the hyperparameter’s name like alpha or n_neighbors and the values in this dictionary area list containing the values for which we choose the relevant hyperparameters.
Let’s see how to use the GridSearchCV with logistic regression. Logistic Regression has a parameter - C which controls the inverse of the regularization strength, so a large C can lead to an overfit model, while a small C can lead to an underfit model. Now see how you can set up the hyperparameter grid (c_space) and perform grid-search cross-validation on a diabetic dataset. This dataset was prepared on diabetes patients for the use of participants for the 1994 AAAI Spring Symposium on Artificial Intelligence in Medicine:
Figure 13.31: Setting up hyperparameter grid and performing grid-search cross-validation
Here in param_grid variable, you can also use penalty argument along with C to specify what you want, to use l1 or l2 regularization:
Figure 13.32: Using penalty argument with C
In the preceding output cell, you can see the different properties of diabetes patients as columns. With proper hyperparameter grid setup, we have achieved the best score of our logistic regression model.
One drawback of GridSearchCV is - it can be computationally expensive, especially if you are searching over a large hyperparameter space and dealing with multiple hyperparameters. As an alternative, you can also use RandomizedSearchCV in which a fixed number of hyperparameter settings is sampled from specified probability distributions. Let’s understand how to use this in a decision tree classifier. As the name suggests, the decision tree classifiers organized a series of test questions and conditions in a tree structure. Decision Tree Classifier poses a series of carefully crafted questions about the attributes of the test record. Each time it receives an answer, a follow-up question is asked until a conclusion about the class label of the record is reached:
Figure 13.33: Decision Tree Classifier example
In the preceding code cell, we have set the hyperparameter grid using RandomizedSearchCV to find the best parameters and as a result, we found the best hyperparameters criterion, max_depth, and min_simple_leaf as entropy, 3, and 4 respectively. You have now understood that hyperparameter tuning skill depends on your practice. The more you try with different parameters with different algorithms, the more you will be able to understand.
How to handle categorical variables in sklearn?
If you recollect, in one of the preceding examples, there is a categorical variable Region in GapMider dataset which is not accepted by sklearnapi. You need to learn how to handle this case because sometimes it is not good to just leave such variables. One way to convert a non-numeric variable in the desired format of sklearn is to binarize using Pandas get_dummies() function. Let’s see how to do the same:
Figure 13.34: Converting non-numeric variable in desired format
Here pd.get_dummies(df) is converting the categorical variable of our dataframe into dummy/indicator variable. Once you run the preceding cell, you will see that Region column is suffixed by region names:
Figure 13.35: Region DataFrame columns
Now you can perform regression technique on the whole GapMinder dataset as shown in the following figure 13.36:
Figure 13.36: Regression technique on GapMinder dataset
Here axis=1 means we are applying logic row-wise; for column-wise operation, change it to axis=0.
The advanced technique to handle missing data
You have already learned to handle the missing data either by removing it or replacing it with mean, median, or mode or forward/backward values in previous chapters. But what about if your dataset has many zero values? Here you will learn how to use sklearnapi to handle such values. The sklearn.preprocessing has imputer package and imputer has transform() function, which we can use in the following way to fill zero/missing values in the Pima Indians Diabetes Dataset that involves predicting the onset of diabetes within 5 years in Pima Indians given medical details:
Figure 13.37: Handling missing data
Once you check the count of the dataset, you will find that there are no missing values here:
Figure 13.38: Counting missing values
But you should not blindly believe the preceding output; you must perform statistical analysis as shown in the following figure 13.39:
Figure 13.39: Performing statistical analysis
Since this is a diabetic data, many attributes of this data cannot be zero, for example, blood pressure or Body mass index. Hence, you must replace such zero values with logical ones. This observation is very important, and you must review carefully your data and the problem.
Let’s first replace zeros of some columns with actual missing value - NaN and then we will handle NaN:
Figure 13.40: Replacing zero with actual missing value
As you already know that missing values in a dataset can cause errors with some machine learning algorithms like LDA algorithm, let’s impute these values and then we will apply LDA:
Figure 13.41: Imputing missing values
Now you can easily apply LDA algorithm on imputed data:
Figure 13.42: Applying LDA algorithm
That’s it! It is quite easy to impute zero values, right? Let’s see another example of Impute with pipeline with another algorithm known as SVM Classifier:
Figure 13.43: Example of imputing
Here steps variable is a list of tuples where the first tuple consists of the imputation step and the second consists of the classifier. This is the pipeline concept for imputing. After setting it up you can use it for classification as shown in the following figure 13.44:
Figure 13.44: Using for classification
Figure 13.45: classification report result
See, how easy it is to handle such data with pipeline!
You have now learned the fundamentals, as well as some advanced techniques of supervised machine learning algorithms. You have also solved a real-world supervised problem. But there is so much to explore and learn in this field. That can be only done if you try different approaches and algorithms by your own; so try as much as you can. Until then go chase your dreams, have an awesome day, make every second count. See you later in next chapter of this book, where you will learn about unsupervised machine learning.
The main feature of unsupervised learning algorithms, when compared to classification and regression methods, is that input data are unlabeled (i.e., no labels or classes given), and the algorithm learns the structure of the data without any assistance. This is the world of unsupervised learning - you are not guiding or supervising the pattern discovery by some prediction task, but instead uncovering hidden structure from unlabeled data. Unsupervised learning encompasses a variety of techniques in machine learning, from clustering to dimension reduction to matrix factorization. In this chapter, you will learn the fundamentals of unsupervised learning and implement the essential algorithms using scikit-learn and scipy.
After studying and practicing this chapter, you will be familiar with unsupervised learning, and will be able to cluster, transform, visualize, and extract insights from unlabeled datasets.
The unsupervised learning inputs (training data) are unlabeled and we have no output results to validate the efficiency of the learning process. However, once the training process is complete, we are able to label our data. The described process is similar to how humans acquire knowledge through experience. Even though the machine works in the dark, it somehow manages to extract features and patterns from the probability distributions of data (e.g., images, texts), which are fed to it.
However, why would we even need unsupervised learning if we have so many efficient and tested supervised ML methods around? There are several reasons for the growing popularity of unsupervised methods:
Unsupervised learning techniques
Some applications of unsupervised machine learning techniques include the following:
The two unsupervised learning techniques that we will explore are clustering the data into groups by similarity and reducing dimensionality to compress the data while maintaining its structure and usefulness.
Clustering is the process of grouping similar entities together. The goal of this unsupervised machine learning technique is to find similarities in the data point and group similar data points together. Grouping similar entities together gives us insight into the underlying patterns of different groups. For example, you can identify different groups/segments of customers and market each group in a different way to maximize the revenue. Clustering is also used to reduce the dimensionality of the data when you are dealing with a copious number of variables. The most popular and widely used clustering algorithms are K-mean clustering and hierarchical clustering.
In K-mean clustering, K means the input, which is how many clusters you want to find. In this algorithm, you place K centroids in random locations in your space, rather than using the Euclidean distance between data points and centroids. You assign each data point to the cluster which is close to it, then recalculate the cluster centers as a mean of data points assigned to it, and then again repeat the preceding steps until no further changes occur. In mathematics, the Euclidean distance or Euclidean metric is the ordinary straight-line distance between two points in Euclidean space. With this distance, Euclidean space becomes a metric space and the centroids are like the heart of the cluster; they capture the points closest to them and add them to the cluster.
You might be thinking, how I decided the value of K in the first step? One of the methods is called the Elbow method – which can be used to decide an optimal number of clusters. The idea is to run K-mean clustering on a range of K values and plot the percentage of variance explained on the Y-axis and K on X-axis. For example, in the following screenshot, you will notice that as we add more clusters after 3, though it doesn’t give much better modeling on the data. The first cluster adds a lot of information, but at some point, the marginal gain will start dropping:
Figure 14.1: Elbow method plot
See the preceding plot - it almost looks like a human elbow structure. Let’s see how to apply k-means on an actual dataset and evaluate a cluster. To understand and practice the code examples, kindly load the unsupervised learning notebook provided inside the code bundle.
In this exercise you will get the poker training/testing dataset from a url and then perform k-means with Elbow method:
Figure 14.2: Performing k-means with elbow method
In the preceding code cell, first, we read the train and test data from a url using urllib.request.urlretrieve() function, which takes url as one required argument. This function is the easiest way to store the content of a page in a variable; so, we will do the same by storing the train and test data in url and url2 variables.
Here, we have saved the train and test CSV files in our local directory. From there, we will read and store them in Pandas Dataframe for further processing. Next, we subset the training dataset:
Figure 14.3: Subset clustering variables
Next, in order to cluster the data effectively, you’ll need to standardize these features first. For equally contributing to the variables, we will scale them using preprocessing.scale() function as shown in the following screenshot:
Figure 14.4: Scaling variables
The preprocessing.scale() function standardizes a dataset along any axis [Center to the mean and component-wise scale to unit variance].
Next, for computing distance between each pair of the two collections of inputs, you don’t need to do any calculation. Using scipy.spatial.distance object’s cdist library, we can do that. After calculating the distance, we will loop through each cluster and fit the model to the train set, and then we will generate the predicted cluster assignment and append the mean distance by taking the sum divided by the shape, as shown in the following screenshot:
Figure 14.5: Finding value of k with Elbow method
Once you run the preceding cell, you will see, as shown in the following output plot, that 3 (see X-axis in the plot) will be the right choice of k as after this you will not get a better model. The number of clusters = the X-axis value of the point, that is, the corner of the elbow (the plot looks often like an elbow):
Figure 14.6: Selecting k with the elbow method
Unlike K-mean clustering, hierarchical clustering starts by assigning all data points as their cluster. As the name suggests, it builds the hierarchy, and in the next step, it combines the two nearest data points and merges it to one cluster. Following are the steps to implement this technique:
In a nutshell, you can decide the optimal number of clusters by noticing which vertical lines can be cut by horizontal lines without intersecting a cluster and cover the maximum distance. Let’s see how you can use hierarchical clustering on Iris dataset:
Figure 14.7: Using hierarchical clustering on Iris dataset
Here, we are using linkage() function with ward argument to obtain a hierarchical clustering of the iris samples, and dendrogram() to visualize the result. Here, ward is a linkage method that minimizes the variant between the clusters. Once you run the preceding cell, it will display the following plot:
Figure 14.8: dendogram plot example
See, dendrograms are a great way to illustrate the arrangement of the clusters produced by hierarchical clustering! In our example, you can see a straight black horizontal line between the clusters. This line is currently crossing the 3 clusters, so the number of clusters will be three in this case.
Remember, hierarchical clustering can’t handle big data well, but K-means clustering can. In K-means clustering, as we start with an arbitrary choice of clusters, the results generated by running the algorithm multiple times might differ, while results are reproducible in hierarchical clustering.
Another clustering technique often used in visualization is t-distributed stochastic neighbor embedding (t-SNE). It maps higher dimension space to 2D or 3D space so that we can visualize higher-dimensional data. It’s a dimensionality reduction technique.
In the case of the Iris dataset, which has four measurements, its samples are 4D. For this dataset, t-SNE technique can map samples to 2D for easy visualization. In sklearnapi, you can use t-SNE from sklearn.ma library and then can use its fit_transform() method for fitting the model and transforming the data simultaneously. But it has one limit - you cannot extend it to include new samples, you have to start over each time. One important parameter of t-SNE is the learning rate, which you choose according to the dataset but a value between 50-200 is often a fine choice. One strange behavior of this technique is that every time you apply t-SNE, you will get different visualization results on the same dataset, so don’t be confused with this behavior. In fact, it is perfectly fine to run t-SNE a number of times (with the same data and parameters), and to select the visualization with the lowest value of the objective function as your final visualization. One drawback of using this technique is that it is a memory consuming technique; so, be careful to apply on a simple computer, otherwise you may get memory errors.
Let’s see how you can use sklearnapi to apply t-SNE in the MNIST digit dataset. You can load this dataset from the sklearn.datasetsapi using fetch_mldata function as shown in the following code cell:
Figure 14.9: Using fetch_mldata function
If you face any issue while loading the data from sklearnapi, you can then download the dataset from any other resources like Google or GitHub or the download link provided in the book. Next, import the basic libraries - numpy and pandas and then convert the preceding training data (X) into a pandas dataframe. From this newly created dataframe, extract the target variable as shown in the following code cell:
Figure 14.10: Extracting target variable
Next, we will take a random subset of the digits. The randomization is important as the dataset is sorted by its label (i.e., the first seven thousand or so are zeros, etc.). To ensure randomization, we’ll create a random permutation of the number 0 to 69,999, which allows us later to select the first five or ten thousand for our calculations and visualizations:
Figure 14.11: Random selecting the permutations
We now have our dataframe and our randomization vector. Let’s first check what these numbers look like. To do this, we’ll generate 30 plots of randomly selected images. Don’t forget to import the matplotlib.pyplot as plt before running the following code:
Figure 14.12: code snippet for plotting the numbers
These are 28-by-28-pixel images and therefore have a total of 784 dimensions, each holding the value of one specific pixel. What we can do is reduce the number of dimensions drastically, whilst trying to retain as much of the variation in the information as possible:
Figure 14.13: result of the plotting code snippet
In case if you are not seeing the actual image as output or seeing the object as output; you need to put a semicolon after the plt.show() line, i.e., plt.show(). To make sure that we don’t burden our machine in terms of memory and power/time, we will only use the first 7,000 samples to run the algorithm on:
Figure 14.14: use of TSNE
In the preceding code cell, we have taken the 7000 samples as a variable n_sne and then in the TSNE() function, we are passing Dimension of the embedded space as n_components, Verbosity level as verbose, Number of nearest neighbors as perplexity and the Maximum number of iterations for the optimization as n_iter arguments. The fit_transform() method fits the data into an embedded space and returns that transformed output.
Based on my system configuration, the output looks like the following screenshot:
Figure 14.15: Result of the TSNE code snippet
We can visualize the two dimensions by creating a scatter plot and coloring each sample by its respective label. This time we will use ggplot to visualize our data. To install this package with conda, run one of the following in the Anaconda prompt:
conda install -c conda-forge ggplot
conda install -c conda-forge/label/gcc7 ggplot
conda install -c conda-forge/label/cf201901 ggplot
Figure 14.16: ggplot code snippet
Once you run the preceding code, you will see the following beautiful plot. In case if you are getting an object instead of plot, you need to add and run following code- tsne_plot.show();
Figure 14.17: tSNE dimensions colored by digit
We can see that the digits are very clearly clustered in their little group (see the label colors as each color is denoting a separate color). The same visualization you cannot do without t-SNE, if you include higher dimensions.
Principal Component Analysis (PCA)
One of the most common tasks in unsupervised learning is dimensionality reduction. On one hand, dimensionality reduction may help with data visualization (e.g., t-SNA method) while, on the other hand, it may help deal with the multicollinearity of your data and prepare the data for a supervised learning method (e.g., decision trees). Multicollinearity of data is a type of disturbance in the data, and if present in the data, the statistical inferences made about the data may not be reliable. PCA is one of the easiest, most intuitive, and most frequently used methods for dimensionality reduction.
PCA aligns the data with axes, which means that it rotates data samples to be aligned with axes in such a way that no information is lost. Here you can understand a principal component as the direction of variance. Let’s see how we can apply PCA on a student details dataset. Don’t forget to rerun the required packages like pandas before running the following line if you are starting your work:
Figure 14.18: Loading example datasets
This dataset contains the details about student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social, and school-related features, and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). Here the target attribute G3 has a strong correlation with attributes G2 and G1. G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd-period grades.
Here, some columns look like categorical variables, so let’s handle such columns:
Figure 14.19: Handling categorical columns
Let’s check the correlation between G1, G2, and G3 columns of the dataset, using .corr() function:
Figure 14.20: Using .corr() function
From the preceding output cell, you can easily say that G1, G2, and G3 are highly correlated, so we can drop G1 and G2 for further analysis:
Figure 14.21: Dropping G1 and G2
The next step is to separate targets and samples from the dataset, and then apply PCA using the sklearn.decomposition package. Here, our target variable is G3, so we will separate it from the dataset. In the following code cell, we are putting the target in label variable and rest of the data in the predictor variable. Later, we import the PCA library from the sklearn.decompositionapi and initialize it using PCA() function. Then, we use .fit() method to train our data, and explained_variance_ration() method to get the percentage of variance explained by each of the selected components. Next, we will use numpy’ cumsum() method, which returns the cumulative sum of the elements along a given axis:
Figure 14.22: PCA code snippet example
Here, variance means summative variance or multivariate variability or overall variability or total variability. PCA replaces original variables with new variables, called principal components, which are orthogonal (i.e., they have zero covariations), and has variances (called eigenvalues) in decreasing order. Once you run the preceding cell, the following plot will be displayed:
Figure 14.23: Plot of the code snippet
In the preceding output, the red line is the regression line or the set of the predicted values from the model. The variance explained, can be understood as the ratio of the vertical spread of the regression line (i.e., from the lowest point on the line to the highest point on the line) to the vertical spread of the data (i.e., from the lowest data point to the highest data point).
By now, you must have grasped the basic knowledge of regression techniques. It’s time to apply your knowledge to a real problem. Here, you will work on the MNIST computer vision dataset, which consists of 28 x 28 pixel images of digits. Let’s import the train data first:
Figure 14.24: Importing train data
The MNIST set consists of 42,000 rows and 785 columns. There are 784 columns, as well as one extra label column, which is essentially a class label to state whether the row-wise contribution to each digit gives a 1 or a 9. Each row component contains a value between one and zero, which describes the intensity of each pixel.
Let’s conduct some cleaning of the train data by saving the label feature and then removing it from the dataframe:
Figure 14.25: target column handling
Since our dataset consists of a relatively large number of features (columns), it is a perfect time to apply the Dimensionality Reduction method (PCA). For this, it may be informative to observe how the variances look like for the digits in the MNIST dataset. Therefore, to achieve this, let us calculate the eigenvectors and eigenvalues of the covariance matrix as follows:
Figure 14.26: Calculating eigenvectors and eigenvalues of covariance matrix
After calculating Individual Explained Variance and Cumulative Explained Variance values, let’s use the plotly visualization package to produce an interactive chart to showcase this. The first import required plotly libraries. If this library is not installed in your notebook, install it using the command, conda install -c plotlyplotly:
Figure 14.27: Installing plotly libraries
Next, we will plot a simple scatter plot using plotly. Since these plots are interactive, you can move up and down over it. In the following code cell, first, we will set the scatter plot parameters like name, mode, and color for cumulative and individual explained variances, then we will append these two scatter plot variables into a subplot using make_subplots() function:
Figure 14.28: scatter plot code snippet
Once you run the preceding cell, you will get the following plot:
Figure 14.29: Explained variance plots
As we can see, out of our 784 features or columns, approximately 90% of the Explained Variance can be described by using just over 200 features. So, if you want to implement a PCA on this, extracting the top 200 features would be a very logical choice, as they already account for the majority of the data.
The PCA method seeks to obtain the optimal directions (or eigenvectors) that captures the most variance (spreads out the data points the most). Therefore, it may be informative to visualize these directions and their associated eigenvalues. For speed, I will invoke PCA to only extract the top 30 eigenvalues (using sklearn’s .components_ call) from the digit dataset and visually compare the top 5 eigenvalues to some of the other smaller ones to see if we can glean any insights. Import the PCA package from sklearn.decompositionapi, if you are restarting your work, and then follow this code:
Figure 14.30: checking eigenvalues
Figure 14.31: code snippet for plotting eigen values
The preceding cell will draw the following plots:
Figure 14.32: plot of different eigen values
The preceding subplots portray the top 5 optimal directions or principal component axes that the PCA method has decided to generate for our digit dataset. If you compare the first component Eigenvalue 1 to the 25th component Eigenvalue 5, it is obvious that more complicated directions or components are being generated in the search to maximize variance in the new feature subspace.
Now using the sklearn toolkit, we implement the PCA algorithm as follows:
Figure 14.33: Implementing PCA algorithm
In the preceding code, we are first normalizing the data (actually no need to do so for this data set, as they are all 1’s and 0’s) using sklearn’s convenient StandardScaler() call. Next, we invoke the sklearn library’s inbuilt PCA function by providing into its argument n_components, the number of components/dimensions we would like to project the data on. As a general practice, for selecting the number of components or dimensions, always look at the proportion of cumulative variance and the individual variance, which you have already done earlier in this chapter.
Finally, we’ll call both fits and transform methods that fit the PCA model with the standardized digit data set, and then perform a transformation by applying the dimensionality reduction on the data.
Imagine just for a moment that we were not provided with the class labels to this digit set, because PCA is an unsupervised method. How will we be able to separate our data points in the new feature space? We can apply a clustering algorithm on our new PCA projection data, and hopefully arrive at distinct clusters that would tell us something about the underlying class separation in the data.
To start, we set up a KMeans clustering method with Sklearn’s KMeans call, and use the fit_predict method to compute cluster centers, and predict cluster indices for the first and second PCA projections (to see if we can observe any appreciable clusters):
Figure 14.34: KMeans clustering code snippet
Figure 14.35: clustering plot code snippet
The output of the preceding input looks like as shown in the following screenshot:
Figure 14.36: K-means clustering
Visually, the clusters generated by the K-Means algorithm appear to provide a clearer demarcation amongst clusters, as compared to naively adding in class labels into our PCA projections. This should come as no surprise as PCA is meant to be an unsupervised method, and therefore not optimized for separating different class labels.
Validation of an unsupervised ML depends on which class of unsupervised algorithms you are referring to.
For example, dimensionality reduction techniques are generally evaluated by computing the reconstruction error. You can do this, using similar techniques with respect to supervised algorithms, for example, by applying a k-fold cross-validation procedure.
Clustering algorithms are more difficult to evaluate. Internal metrics use only information on the computed clusters to evaluate whether clusters are compact and well-separated. Also, you can have external metrics that perform statistical testing on the structure of your data.
Density estimation is also rather difficult to evaluate, but there is a wide range of techniques that are mostly used for model tuning, for example, cross-validation procedures.
In addition, unsupervised strategies are sometimes used in the context of a more complex workflow, in which an extrinsic performance function can be defined. For example, if clustering is used to create meaningful classes (e.g., clustering documents), it is possible to create an external dataset by hand-labeling and testing the accuracy (the so-called gold standard). Similarly, if dimensionality reduction is used as a pre-processing step in a supervised learning procedure, the accuracy of the latter can be used as a proxy performance measure for the dimensionality reduction technique.
This chapter has taught you the basic concepts of unsupervised learning along with practical use cases of dimensionality reduction techniques. It is strongly recommended that you apply the learnings from this chapter, as well as other supervised dimensionality reduction techniques – LDA, and compare the results with each other. As always said, practice more and more on different datasets and you will find new insights in every practice. In the next chapter, you will learn how to handle time-series data.
In previous chapters, you have learned how to solve supervised and unsupervised machine learning problems. In this chapter, you will gain knowledge to understand and work with time-series data. Whether it is analyzing business trends, forecasting company revenue, or exploring customer behavior, every data scientist is likely to encounter time series data at some point during their work. Time series is a series of data points indexed (or listed or graphed) in time order. Therefore, the data is organized by relatively deterministic timestamps, and compared to random sample data, may contain additional information that we can extract.
After studying this chapter, you will be able to manipulate and visualize the time-series data in order to extract meaningful statistics and other characteristics of the data.
Since time-series is a collection of data points collected at constant time intervals, they are analyzed to determine the long-term trend. Time-series forecasting is the use of a model to predict future values based on previously observed values. In business scenarios, that’s like predicting stock price or predicting the weather conditions for tomorrow, time-series has a significant role. In your day-to-day job, you will come across situations with time series-connected tasks. For example, think about the following frequent question a person may think daily — What will happen with our metrics in the next day/week/month? How many people will install the app? How much time will a user spend online? How many actions will the users do? Analyzing such kind of data can reveal things that at first were not clear, such as unexpected trends, correlations, and forecast trends in the future bringing a competitive advantage to anyone who uses it. For these reasons, time-series can be applied to a wide range of fields.
Pandas have dedicated libraries for handling time-series objects, particularly the datatime64[ns] class, which stores time information and allows us to perform some operations fast. Here ns means nano-seconds. Besides pandas, you will need statsmodels library that has tons of statistical modeling functions, including time series. You can install the statsmodels by running the following command in Anaconda prompt:
conda install -c anaconda statsmodels
When you load the data in a pandas Dataframe, any column can contain the date for time information, but it is most important as a Dataframe index, because it converts the entire dataframe into a Time Series. The complete examples of this chapter are in Time Series Data.ipynb as a notebook. First, let’s understand the pandas capability of handling time-series data by importing basic libraries:
Figure 15.1: Importing basic libraries
Now, we will create a pandas dataframe and check its datatype as shown in the following screenshot:
Figure 15.2: Creating pandas dataframe and checking datatype
In the preceding cells, the type of our time_stamp variable is Timestamp and a default time with midnight value is added, and date string also generates the same result, which means that you can use the date as string also. Pandas Timestamp has various attributes like a year, month, day, weekday_name, etc., to store time-specific information which you can access as shown in the following screenshot:
Figure 15.3: Accessing time-specific information
Pandas has also a data type for handling time periods. The Period object always has a frequency with month as default. It also has a method to convert between frequencies, as well as the period object to convert back in its timestamp format. You can also convert a Timestamp object to period and vice versa. What more to say! You can even perform basic date arithmetic operations. Let’s understand how you can practically implement this:
Figure 15.4: Handling time periods
Next, you will create a time-series with sequences of Dates using the pandas date_range() function. This function returns a fixed frequency DatetimeIndex. You can also convert the index to period index just like Timestamp. See the following cells for each one and notice the data type in output cells:
Figure 15.5: How to use date_range()
Now we can easily create a time-series (Pandas DatetimeIndex). For example, we will create a random 12 rows with 2 columns using numpy.random.rand() to match the date-time index and then create our first time-series as shown in the following screenshot:
Figure 15.6: Creating a time series data with DataFrame
In the preceding output cells, you can see that each date in the resulting pd.DatetimeIndex is a pd.Timestamp and since this Timestamp has various attributes, you can easily access and obtain information about the date. In the following example, we will create a week of data, iterate over the result, and obtain the dayofweek and weekday_name for each date:
Figure 15.7: Creating a week of data to obtain result
The preceding examples will help you to handle and manipulate time-series data with statsmodel library very easily. Next, you will learn how to transform a time-series data.
Transforming a time-series data
While analyzing the time-series data, it is common to transform your data into a better one. For example, your date column is in object form and you will need to parse this string object and then convert it to datetime64 datatype, or you may need to generate new data from the existing time-series data. That’s why it is important to know all these transformations. Let’s understand the importance of transformation by working on Google’s stock price data, which you can download from the download link provided at the start of the book:
Figure 15.8: Understanding importance of transformation
The Date column looks fine at first, but when you check its data type, it’s a string:
Figure 15.9: Datatype is a string
Since many machine learning algorithms don’t accept string input, you must convert data column datatype to correct data type. You can convert a string data type to dateTime64[ns] using pandas as shown in the following screenshot:
Figure 15.10: Converting string datatype to dateTime64[ns]
Now, our Date column is an incorrect datatype and we can set it as the index as shown in the following screenshot:
Figure 15.11: How to set date as index
If you get an error like keyerror: [‘Date’], add drop=False’ argument in the preceding code cell. So your new code will be google_df.set_index(‘Date’, inplace=True, drop=False).
Here, we are setting the Date column as index and the argument- inplace=True means don’t create a new copy of the DataFrame.
Once you have corrected the datatype, you can easily visualize the stock price data as shown in the following screenshot:
Figure 15.12: Visualizing stock price data
You might have noticed here that there is no frequency in our date time index; the calendar day frequency can be set, as shown in the following screenshot:
Figure 15.13: Setting calendar day frequency
After this transformation, let’s check the new data, because there may be some null values added. It’s good to check the head of the dataset, as shown in the following screenshot:
Figure 15.14: Head of dataset
As you can see, these new dates have missing values; this is called upsampling. This means, higher frequency implies new dates, therefore the missing values. We will handle this later in this chapter.
Manipulating a time-series data
Time-series data manipulation means shifting or lagging values back or forward in time, getting the difference in value for a given time period, or computing the percent change over any number of periods. The pandas library has built-in methods to achieve all such manipulations.
In the next example, we will explore the power of the pandas. We will reload Google stock price data using Pandas DataFrame, but with some additional parameters, as shown in the following screenshot:
Figure 15.15: Reloading Google stock price data with additional parameters
In this case, while loading the dataset, you will notice the date column is automatically transformed in the correct format. Here, pandas does all parsing for you and provides us with the properly formatted time series dataset!
Let’s understand the different methods of pandas for manipulating our time-series data. First, we will see the shift() method, which by default, shifts by 1 period into the future, as shown in the following screenshot:
Figure 15.16: Using shift() method
Similarly, there is alagged() method, which by default, shifts by 1 period into the past. You can try this in your notebook!
You can also calculate one-period finance change or financial return using div() method and some arithmetic operation on it, as shown in the following screenshots:
Figure 15.17: Calculating one period finance using div()
Figure 15.18: Peek of the DataFrame
You can also calculate the difference in value for two adjacent periods using diff() method. Try this in your notebook! Since you are able to use the preceding knowledge to visually compare a stock price series for Google, let us now shift 90 business days into both past and future, as shown in the following screenshot:
Figure 15.19: Visually comparing time series
Thus, you can visually compare the time series to itself at different points in time.
Comparing time-series growth rates
Comparing the time-series growth rate is a very common task, and you will come across it in your time series analysis. For example, comparing the stock performance. However, this is not a piece of cake, because stock price series are very hard to compare at different levels. There is a solution to tackle this problem - normalize price series to start at 100. To achieve this solution, you just need to divide all prices in series and then multiply the same by 100. As a result, you will get the first value as 1 and all prices relative to the starting point. Let’s apply this solution in our Google stock price data, as shown in the following screenshot:
Figure 15.20: Comparing time-series growth
Notice the output plot here! It is starting at 100.
In the same way, you can normalize multiple series as well. We just need to ensure that row labels of our series align with the columns headers of the DataFrame. For this confirmation, you don’t need to worry, because the div() method will take care of this. For example, we will normalize different companies’ stock price, as shown in the following screenshot:
Figure 15.21: Normalizing stock price of different companies
Now, we will plot different stock prices of different companies using the plot() method. Here, we will again use div() method to ensure that row labels of our series align with the column headers of the price_df, as shown in the following screenshot:
Figure 15.22: Using div() method
Once you normalize the price of the stocks, as shown in the preceding screenshot, you can also compare the performance of various stocks against a benchmark. Let’s learn this by comparing the three largest stocks from the NYSE to the Dow Jones Industrial Average datasets, which contain the 30 largest US companies, as shown in the following screenshots:
Figure 15.23: Comparing various stocks data
Figure 15.24: Plot of the stocks comparison
Next, we will learn how to compare the performance of Microsoft (MSFT) and Apple (AAPL) to the S&P 500 dataset over the last 10 years, as shown in the following screenshots:
Figure 15.25: Comparing performances of Apple and Microsoft stock data
Figure 15.26: Plot of the comparison
Now you can compare these stocks to the overall market, so that you can easily spot trends and outliers.
How to change time-series frequency?
Change in frequency also affects the data. If you are doing upsampling, then you should fill or handle the missing values, and if you are doing downsampling, then you should aggregate the existing data. First, we will find out the quarterly frequency of the time series data, then from this quarterly frequency, we will take out the monthly frequency so that in the end, we can use this monthly frequency for upsampling and downsampling:
Figure 15.27: Using monthly frequency for upsampling and downsampling
Now let’s see how we can achieve this in each case:
Figure 15.28: Handling missing values
Now you will learn about the interpolate() method. Pandas dataframe.interpolate() function is basically used to fill NA values in the dataframe or series. But this is a very powerful function to fill the missing values. It uses various interpolation techniques to fill the missing values, rather than hard-coding the value. To understand the Pandas interpolate() method, which Interpolates values according to different methods, let’s take an example of a new dataset:
Figure 15.29: Understanding interpolate() method
Now we will interpolate debt/GDP and compare to unemployment, as shown in the following screenshot:
Figure 15.30: Interpolating dept/GDP
Later, we can visualize this as shown in the following screenshot:
Figure 15.31: Plot of the GDP and unemployment data
In the preceding plot, you can see Debt/GDP column of our dataframe as a blue line, whereas Unemployment as a brown line. From the plot, you can understand that Debt/GDP rate is increasing with some variation between 2015 and 2016, while Unemployment is decreasing steadily since 2010.
So far, we have done upsampling, fill logic, and interpolation. Now we will learn how to do downsampling. For downsampling, you can choose options like mean, median, or last value to fill the missing values. For understanding this, let’s work on the air quality dataset:
Figure 15.32: To understand how to do downsampling
First, we calculate and plot the monthly average ozone trend, as shown in the following screenshot:
Figure 15.33: Calculating and plotting monthly average ozone trend
Next, we calculate and plot the annual average ozone trend, as shown in the following screenshot:
Figure 15.34: Calculating and plotting annual average ozone trend
You can easily see how changing the resampling period changes the plot of the time series.
Now you can compare higher-frequency stock price series to lower-frequency economic time series easily. As a first example, let’s compare the quarterly GDP growth rate to the quarterly rate of return on the (resampled) Dow Jones Industrial index of 30 large US stocks. GDP growth is reported at the beginning of each quarter for the previous quarter. To calculate matching stock returns, you’ll resample the stock index to quarter start frequency using the alias QS, and aggregating using the .first() observations, as shown in the following screenshot:
Figure 15.35: Loading gdp growth and DJI datasets
Since we have stored the data as a dataframe, let’s calculate the quarterly return and plot it with respect to GDP growth, as shown in the following screenshot:
Figure 15.36: Calculating quarterly return and plotting with GDP growth
Let’s explore how the monthly mean, median, and standard deviation of daily S&P500 returns have trended over the last 10 years. In this example, we will aggregate the mean, median, and standard deviation with resample() method:
Figure 15.37: Aggregating mean, median, and standard deviation with resample() method
From the preceding plot, you can easily see the statistical average methods like mean as a blue line, green as standard deviation, and orange as median of daily S&P500 returns in the last 10 years.
In this chapter, you have learned how to manipulate and visualize time-series data. If you practice the preceding exercise in your notebook, time-series data is no more difficult for you to understand. But to know more, you need to practice more with new data. The learning from this chapter will definitely help you when you work with stock price prediction or weather prediction or sales data. In the next chapter, you will learn different time-series forecasting machine learning methods.
In the previous chapter, you learned the techniques of manipulating and visualizing varying types of time-series data analysis. In this chapter, you will learn about the various time-series forecasting methods using the statsmodels library. These statistical techniques are important to know before applying any machine learning model on time-series data. You will learn different APIs of this library to forecast time-series, by working on different examples. Having a working code example as a starting point will greatly accelerate your progress, when you apply these methods with machine learning models. You can find all the examples mentioned in this chapter in a notebook named, Time Series Methods.ipynb.
After studying this chapter, you will be familiar with the various time-series forecasting methods and apply the techniques to forecast any time-series problem.
What is time-series forecasting?
Time-series forecasting is an important area of machine learning, because there are so many prediction problems present in this world that involve a time component. Since Time-series adds an explicit order dependence between observations – time dimension, this additional dimension is both a constraint and a structure that provides a source of additional information. Making predictions is called extrapolation in the classical statistical handling of time-series data. More modern fields focus on the topic and refer to it as time-series forecasting.
Forecasting involves taking models to fit on historical data and using them to predict future observations. An important distinction in forecasting is that the future is completely unpredictable and must only be estimated from what has already happened. Some examples of time-series forecasting are as follows: forecasting the closing price of stock each day, forecasting product sales in units sold each day for a store, forecasting the number of passengers through a train station each day, forecasting unemployment for a state each quarter, forecasting the average price of petrol in a city each day, etc.
Famous statisticians and econometricians, Dr. Hyndman and Dr. Athanasopoulos, have summarized 5 basic forecasting steps, which are as follows:
The preceding basic steps are very useful and effective, so always remember and apply the same whenever you deal with time-series data.
Time-series forecasting techniques
The statsmodels library has many methods for time-series forecasting. You must know some of these time-series methods/techniques, because you will not get better accuracy by only applying a machine-learning algorithm to a time-series data. The following are some common techniques, which we will cover in this chapter:
Autoregression is a time-series model that uses observations from previous time steps as input to a regression equation to predict the value at the next time step. An autoregression model makes an assumption that the observations at previous time steps are useful to predict the value at the next time step. This relationship between variables is called correlation. If both variables change in the same direction (e.g., go up together or down together), it is called a positive correlation. If the variables move in opposite directions as values change (e.g., one goes up and one goes down), then it is called a negative correlation. The method is suitable for univariate time-series without trend and seasonal components. The following is an example of using Autoregression model using statsmodels library’s API:
Figure 16.1: Example of using Autoregression model
In the preceding code cell, we fit the unconditional maximum likelihood of an AR (p) process using statsmodels.tsa.ar_model.AR.fit() and later we return the in-sample and out-of-sample prediction using the predict() method. The predict() method takes the first argument as the starting number of forecasting and second argument takes a number where you want to end the forecasting. In our case, the autoregression model has predicted values as 100.65 for a sample dataset.
This algorithm helps us to forecast new observations based on a time-series. This algorithm uses smoothing methods. The moving average algorithm is used only on the time-series that DON’T have a trend. This method is suitable for univariate time-series without trend and seasonal components. It consists of making the arithmetic mean of the last n observations contained by the time-series to forecast the next observation.
We can use the ARMA class to create an MA model and set a zeroth-order AR model. We must specify the order of the MA model in the order argument, as shown in the following screenshot:
Figure 16.2: Order of MA model in order argument
In the preceding code cell, we have fitted the MA model by exact maximum likelihood via Kalman filter using statsmodels.tsa.arima_model.fit() method with disp as a false parameter, and later we have returned the in-sample and out-of-sample prediction using the predict() method. In our sample dataset example, we are getting moving average prediction as 75.33.
Autoregressive Moving Average (ARMA)
In ARMA forecasting model, both autoregression analysis and moving average methods are applied to well-behaved time-series data. ARMA assumes that the time-series is stationary and fluctuates more or less uniformly around a time-invariant mean. Non-stationary series needs to be differenced one or more times to achieve stationarity. ARMA models are considered inappropriate for impact analysis or for data that incorporates random shocks:
Figure 16.3: ARMA model example
In the preceding code cell, we have fitted ARIMA (p,d,q) model by exact maximum likelihood via Kalman filter using statsmodels.tsa.arima_model.fit() method, and later we have returned the in-sample and out-of-sample prediction using the predict() method. Here disp argument controls the frequency of the output during the iterations. The predict() method forecasted 0.58 as the prediction of our sample dataset.
Autoregressive Integrated Moving Average (ARIMA)
ARIMA method combines both Autoregression (AR) and Moving Average (MA) methods, as well as a differencing pre-processing step of the sequence to make the sequence stationary, called integration (I). ARIMA models can represent a wide range of time-series data and are used generally in computing the probability of a future value lying between any two limits. Although this method can handle data with a trend, it does not support time-series with a seasonal component. ARIMA models are denoted with the notation ARIMA (p, d, q). These three parameters account for seasonality, trend, and noise in data.
Figure 16.4: ARIMA model example
In the preceding code cell, we fit the ARIMA (p, d, q) model by exact maximum likelihood via Kalman filter, and then predicted it’s ARIMA model in-sample and out-of-sample using .predict() method.
Seasonal Autoregressive Integrated Moving-Average (SARIMA)
An extension to ARIMA that supports the direct modeling of the seasonal component of the series is called SARIMA. SARIMA model combines the ARIMA model with the ability to perform the same autoregression, differencing, and moving average modeling at the seasonal level. This method is suitable for univariate time-series with the trend and/or seasonal components. The big difference between an ARIMA model and a SARIMA model is the addition of seasonal error components to the model:
Figure 16.5: SARIMA model
In the preceding code cell, we have fitted the model by maximum likelihood via Kalman filter, and then we have returned the fitted values using predict() method. Here the SARIMAX method has one extra argument - seasonal_order(), which has 4 parameters. The (p, d, q, s) order of the seasonal component of the model are for AR parameters, differences, MA parameters, and periodicity.
Here d must be an integer indicating the integration order of the process, while p and q may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and/or MA lags to include. s as an integer giving the periodicity (number of periods in season), often it is 4 for quarterly data or 12 for monthly data. The default is no seasonal effect. Next, you will see the same SARIMA model with an X factor.
Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors (SARIMAX)
The SARIMAX model is an extension of the SARIMA model that also includes the modeling of exogenous variables. Here, exogenous variables are also called covariates and can be thought of as parallel input sequences that have observations, and at the same time steps as the original series. The method is suitable for univariate time-series with the trend and/or seasonal components and exogenous variables:
Figure 16.6: SARIMAX method
Consider an example of food supply chain research. During the retail stage of the food supply chain (FSC), food waste and stock-outs occur mainly due to inaccurate sales forecasting, which leads to the inappropriate ordering of products. The daily demand for a fresh food product is affected by external factors, such as seasonality, price reductions, and holidays. In order to overcome this complexity and inaccuracy, while doing sales forecasting, try to consider all the possible demand influencing factors. SARIMAX model tries to account all the effects due to the demand influencing factors to forecast the daily sales of perishable foods in a retail store; it is found that the SARIMAX model improves the traditional SARIMA model.
Vector Autoregression Moving-Average (VARMA)
The VARMA method models the next step in each time-series using an ARMA model. It is the generalization of ARMA to multiply parallel time-series, e.g., multivariate time-series. The method is suitable for multivariate time-series without trend and seasonal components:
Figure 16.7: VARMA method
From the preceding code example, you can see that the VARMAX class in statsmodels allows estimation of VAR, VMA, and VARMA models (through the order argument), optionally with a constant term (via the trend argument). Exogenous regressors may also be included (as usual in statsmodels, by the exog argument), and in this way, a time trend may be added. Finally, the class allows measurement error (via the measurement_error argument), and allows specifying either a diagonal or unstructured innovation covariance matrix (via the error_cov_type argument).
Holt Winter’s Exponential Smoothing (HWES)
The Holt Winter’s Exponential Smoothing (HWES), also called the Triple Exponential Smoothing method, models the next time step as an exponentially weighted linear function of observations at prior time steps, taking trends and seasonality into account. The method is suitable for univariate time-series with the trend and/or seasonal components:
Figure 16.8: HWES method
Exponential smoothing promises you the possibility of peeking into the future by building models, with which you can solve the following kind of problems - How many iPhone XR will be sold in the first 7 months? What’s the demand trend for Tesla after Elon Musk smokes weed on a live show? Will this winter be warm?
Forecast future traffic to a web page
Now it’s time to apply the learnings from this and the previous chapter to an actual time-series problem. In the following exercise, your goal is to forecast future traffic to Wikipedia pages. You can download the dataset required to form this exercise from our repository. Let’s start our analysis by loading the dataset:
Figure 16.9: Loading the dataset
The training dataset has 5 rows and 551 columns. Let’s first find how language affects web traffic. For this, we will use a simple regular expression to search for the language code in the Wikipedia URL. First, import the re library, and then follow this code:
Figure 16.10: Searching language code using regular expression
For each language, Wikipedia has different pages. To make our analysis easy, we will create dataframes to hold each language, as shown in the following screenshot:
Figure 16.11: Creating dataframes to hold each language
Let’s plot all the different sets on the same plot to know how the total number of views changes over time:
Figure 16.12: Plotting different sets on same plot
Figure 16.13: Wiki pages in different languages
From the preceding plot, you can deduce the following - English shows a much higher number of views per page. This is expected, since Wikipedia is a US-based site. The English and Russian plots show very large spikes around day 400. There’s also a strange pattern in the English data around day 200. The Spanish data (see the green line) is very interesting as well. There is a clear periodic structure there, with a ~1-week fast period and what looks like a significant dip around every 6 months or so.
Since it looks like there is some periodic structure here, we will plot each of these separately, so that the scale is more visible. Along with the individual plots, we will also look at the magnitude of the Fast Fourier Transform (FFT), because Peaks in the FFT show us the strongest frequencies in the periodic signal. You can import the fft from the scipy.fftpackapi, calculate the magnitude of fft using numpy, as shown in the following screenshot:
Figure 16.14: Oce snippet for FFT magnitude
For the ease of understanding, I am only showing the German plot; rest you can see in your notebook:
Figure 16.15: German plot
Once you see all the plots in your notebook, you will find the following insights - the Spanish data has the strongest periodic features compared to most of the other languages. For some reason, the Russian and media data do not seem to reveal any pattern. I plotted red lines, where a period of 1, 1/2, and 1/3-weeks’ patterns would appear. We see that the periodic features are mainly at 1 and 1/2 weeks. This is not surprising, since browsing habits may differ on weekdays compared to weekends, leading to peaks in the FFTs at frequencies of n/(1 week) for integer n.
We’ve learned now that not all page views are smooth. There is some regular variation from day to day, but there are also large effects that can happen quite suddenly. Most likely, a model will not be able to predict the sudden spikes, unless it can be fed more information about what is going on in the world that day.
Now we will look at the most popular pages, which will generally be the main pages for the languages in this dataset. We will loop over the language sets using for loop, and then look over the pages using the key Pages for each language. After calculating the total, we will sort the results in the descending order. The following function will do this for us:
Figure 16.16: Most popular pages code snippet
The preceding cell will generate popular pages’ list for all languages; here is an example of the German language:
Figure 16.17: Popular pages of German language
Let’s analyze more! We have seen earlier, the the statsmodels package includes quite a few tools for performing time-series analysis. Here, I’ll show the autocorrelation and partial autocorrelation for the most-viewed page for each language. Both methods show correlations of the signal with a delayed version of itself. At each lag, the partial autocorrelation tries to show the correlation at that lag after removing correlations at shorter lags:
Figure 16.18: autocorrelation and partial autocorrelation
In most cases, you will see strong correlations and anticorrelations every 7 days due to weekly effects. For the partial autocorrelation, the first week seems to be the strongest, and then things start settling down:
Figure 16.19: Partial autocorrelation
Let’s apply one of the classical statistical forecasting methods – the ARIMA model –for a small set of pages and then we will see the insights we get from these plots:
Figure 16.20: ARIMA model applied
The preceding code will plot the data as a blue line and the ARIMA model will be denoted as the orange line for each language. Some of the plots will look like the following screenshots. You can see the rest of the plots in your notebook:
Figure 16.21: ARIMA model denoted in orange line
Figure 16.22: ARIMA model vs Data plot example
Figure 16.23: ARIMA model vs Data plot example
Take a good look at all the plots, and you will understand that the ARIMA model, in some cases, is able to predict the weekly substructure of the signal effectively. In other cases, it seems to just give a linear fit. This is potentially very useful in the weekly substructure of the signal.
What will happen when you just blindly apply the ARIMA model to the whole dataset? Try this and you will see that the results are not nearly as good as just using a basic median model.
The time-series method of forecasting is the most reliable, when the data represents a broad time period. Information about conditions can be extracted by measuring data at various time intervals – e.g., hourly, daily, monthly, quarterly, annually, or at any other time interval. Forecasts are the soundest when based on large numbers of observations for longer time periods to measure patterns in conditions. To get more confidence, start working on any new stock or weather dataset, and apply this chapter’s learnings in forecasting. In the next chapter, you will go through various case study examples.
In the previous chapters, you have learned the basics and some advanced concepts, with the help of real-world data science problems. To begin the journey of a data scientist, as I mentioned earlier, the more you practice your learning, the more you will gain confidence. Let us work on some case studies covering the application of supervised and unsupervised machine learning techniques. These case studies will walk you through different business domains and give you a grip as a data scientist.
Predict whether or not an applicant will be able to repay a loan
Your goal: In our first study, you work for an insurance client and help them implement a machine learning model to predict the probability of whether or not an applicant will be able to repay a loan.
Your client: Your client is an international consumer finance provider with operations in 10 countries.
About dataset: The client has given his datasets having static data for all applications. One row represents one loan in their data, which you can download from our repository.
Our baseline ML models: In this example, I will apply logistic regression and random forest algorithms.
Since the objective of this competition is to use historical loan application data to predict whether or not an applicant will be able to repay a loan, this is a standard supervised classification task. Let’s import all required basic libraries and read the datasets:
Figure 17.1: Importing basic libraries and the dataset
Figure 17.2: Peek of the imported dataset
The training data has 307511 observations (each one a separate loan) and 122 features (variables) including the TARGET (the label we want to predict). Details related to every loan is present in a row and is identified by the feature SK_ID_CURR. The training application data comes with the TARGET indicating “0: the loan was repaid”, or “1: the loan was not repaid”. Similarly, we will check the testing dataset that is also provided in a separate file named application_test.csv:
Figure 17.3: Loading Testing dataset
In the next step, we will do Exploratory Data Analysis (EDA); this is an open-ended process, where we calculate statistics and make figures to find trends, anomalies, patterns, or relationships within the data. The target is what we are asked to predict: either a 0 for the loan was repaid on time, or a 1 indicating the client had payment difficulties. We will first examine the number of loans falling into each category. Referring to the following plot, you can say that this is an imbalanced class problem. It indicates more loans were repaid on time compared to the loans that were defaulted:
Figure 17.4: Distribution of the target
Let’s examine the missing values. Here, we will look at the number and percentage of missing values in each column by writing a function. Remember, it is a coding standard to write some common functionalities in a function:
Figure 17.5: Examining missing values
Now, we will apply the preceding function in training dataframe, and fill these missing values later:
Figure 17.6: Missing values statistics
Let’s now look at the number of unique entries in each of the object (categorical) columns:
Figure 17.7: Checking unique entries
Let’s encode these Categorical Variables or the preceding object datatype columns. We will follow the following thumb rule - if we only have two unique values for a categorical variable (such as Male/Female), then label encoding method is fine, but for more than 2 unique categories, one-hot encoding method is the safe option to handle categorical features:
Figure 17.8: Handling categorical columns
Figure 17.9: Shape of the data
One-hot encoding has created more columns in the training data because there were some categorical variables with categories not represented in the testing data. To remove the columns in the training data that are not in the testing data, we need to align the dataframes.
First, we extract the target column from the training data (because this is not in the testing data, but we need to keep this information). When we align, we must make sure to set axis = 1 to align the dataframes based on the columns and not on the rows:
Figure 17.10: Preparing train and test data
Now the training and testing datasets have the same features which are required for machine learning. One problem we always want to lookout for before doing EDA is to find anomalies within the data. These may be due to mistyped numbers, errors in measuring equipment or that they could be valid but have extreme measurements. One way to support anomalies quantitatively is by looking at the statistics of a column using the describe method. Try using the .describe() on DAYS_EMPLOYED column and see what you find:
Figure 17.11: Using .describe() method
It turns out that the anomalies have a lower rate of default. Handling the anomalies depends on the exact situation, with no set rules. One of the safest approaches is just to set the anomalies to a missing value and then have them filled in (using Imputation) before machine learning.
In our case we will fill in the anomalous values with not a number (np.nan), and then create a new Boolean column indicating whether or not the value was anomalous:
Figure 17.12: Days Employment Histogram
As an extremely important note, anything we do to the training data, we also have to do to the testing data. Repeat the preceding step in the testing dataset on your own. Now that we have dealt with the categorical variables and the outliers, we’ll look for correlations between the features and the target. We can calculate the Pearson correlation coefficient between every variable and the target using the .corr dataframe method:
Figure 17.13: Using .corr dataframe method
Let’s take a look at some of the more significant correlations: the DAYS_BIRTH is the most positive correlation (except for TARGET because the correlation of a variable with itself is always 1!). DAYS_BIRTH is the age in days of the client at the time of the loan in negative days (for whatever reason!). The correlation is positive, but the value of this feature is negative, meaning that as the client gets older, they are less likely to default on their loan (i.e., the target == 0). That’s a little confusing, so we will take the absolute value of the feature and then the correlation will be negative:
Figure 17.14: Finding correlation of positive days since birth and target
As the client gets older, there is a negative linear relationship with the target meaning that as clients get older, they tend to repay their loans on-time more often. Let’s start looking at this variable. First, we can make a histogram of the age. We will put the X-axis in years to make the plot a little more understandable:
Figure 17.15: Age of client
By itself, the distribution of age does not tell us much more than that! There are no outliers (no age more than 70 years) as all the ages are reasonable. Next, we will try two simple feature construction methods for feature engineering: polynomial features and domain knowledge features. Polynomial models are a great tool for determining which input factors drive responses and in what direction. In the polynomial method, we make features that are powers of existing features as well as interaction terms between existing features, and in domain knowledge, we use our logic specific to a domain:
Figure 17.16: New dataframe for polynomial features
Figure 17.17: Training and transforming polynomial features
The preceding code will create a considerable number of new features. To get the names, you have to use the polynomial features get_feature_names() method. In this method, pass the input features’ names and it will show the output as follows:
Figure 17.18: Getting names of new features
There are 35 features with individual features raised to powers up to degree 3 and interaction terms. Now, we can see whether any of these new features are correlated with the target:
Figure 17.19: Checking correlation between target and input features
Most of the new variables have a greater (in terms of absolute magnitude) correlation with the target than the original features. When we build machine learning models, we can try with and without these features to determine if they help the model learn. We will add these features to a copy of the training and testing data and then evaluate models with and without the features because many times in machine learning, the only way to know if an approach will work is to try it out:
Figure 17.20: Preparing data with new features
Let’s do feature engineering by domain knowledge. We can make a couple of features that attempt to capture what we think may be important for telling whether a client will default on a loan. For this, you need to read about the client; for example, here you can read about the client from their website or Google, and their business on your own, and then create new features:
Figure 17.21: Domain knowledge features
Now we will make a baseline model. In this example, I will use Logistic Regression and Random Forest model, but you must apply some new models as well. To get a baseline, we will use all features after encoding the categorical variables. We will pre-process the data by filling in the missing values (imputation) and normalizing the range of the features (feature scaling). The following code performs these pre-processing steps:
Figure 17.22: Code for pre-processing
Now we create the model and train the model using .fit() method, as shown in the following screenshot:
Figure 17.23: Using .fit() method
Now that the model has been trained, we can use it to make predictions, as shown in the following screenshot. We want to predict the probability of not paying a loan, so we use the model predict.proba() method. This will return m x 2 array, where m is the number of observations. The first column is the probability of the target being 0 and the second column is the probability of the target being 1 (so, for a single row, the two columns must sum to 1). We want the probability, the loan is not repaid, so we will select the second column:
Figure 17.24: Making predictions
Now we will prepare our submission format in a CSV format, so that you can share it with the client. There will be only two columns: SK_ID_CURR and TARGET in CSV.
We will create a dataframe, named submit, which will have one column named as SK_ID_CURR from the test set and one column named as TARGET filled with the predictions as shown in the following screenshot:
Figure 17.25: Submitting dataframe
Later we save this in a CSV file with the .to_csv() method of dataframes as shown in the following screenshot:
Figure 17.26: Saving in a CSV file
Now try a second model – Random Forest – on the same training data to see how that affects performance:
Figure 17.27: Random Forest Classifier model
Here, like any other model, we have initialized the Random Forest Classifier model with some parameters, like no. of estimators, random state, verbose, and no. of jobs. You can modify these parameters and try with different values:
Figure 17.28: Modifying the parameters
Now we will make predictions using engineered features as shown previously. The only way to see if the previously created polynomial features and domain knowledge improved the model is to train and test a model on these features. We can then compare the submission performance to the one without these features to gauge the effectiveness of our feature engineering, as shown in the following screenshots:
Figure 17.29: Imputing and training with RFC
Figure 17.30: Making prediction and submission
In the same way, we should also check domain features like we did using the logistic model earlier:
Figure 17.31: Checking domain features
Figure 17.32: Saving submission dataframe
You can measure each model prediction by the ROC AUC metric. Calculate this for each of the preceding models and see if there is any improvement in accuracy.
Now to see which variables are the most relevant, we can look at the feature importance of the Random Forest. We may use these feature-importance as a method of dimensionality reduction in future work. So, it is important to do this step as well:
Figure 17.33: Plotting feature-importance
Figure 17.34: Feature importances
As expected, the most important features are those dealing with EXT_SOURCE and DAYS_BIRTH. We can see that there are only a handful of features with significant importance to the model, which suggests we may be able to drop many of the features without a decrease in performance (and we may even see an increase in performance.)
In this exercise you have made a baseline model solve an actual supervised machine learning problem. We have tried with LR and Random Forest classifiers, but other models are waiting for you to extend this base model, and see how to improve the accuracy of the model. Try to apply different models and don’t forget to check the performance of your model using the ROC AUC metric! In next chapter we are going to work on another case study of spam or ham message detection.
Build a prediction model that will accurately classify which text messages are spam
Your goal: Build a prediction model that will accurately classify which text messages are spam.
About dataset: The SMS Spam Collection is a set of SMS-tagged messages that have been collected for SMS Spam research. It contains one set of 5,574 SMS messages in English, tagged according to being ham (legitimate) or spam. The files contain one message per line. Each line is composed of two columns: v1 contains the label (ham or spam) and v2 contains the raw text in spam.csv file.
Our ML models: Multinomial Naive Bayes and Support Vector Machines.
Let’s import the required basic libraries and load the dataset in a pandas dataframe:
Figure 18.1: Importing required libraries
In this case study, we will use Naive Bayes and support vector machine algorithms. In the preceding block of code, we have imported these two libraries along with some basic ones:
Figure 18.2: Loading the spam dataset
Although this dataset is in a clean state, before proceeding further, it is always a good practice to check the data type of the columns or missing values, which you can check using .info() and .isnull() methods. Let’s check the distribution of spam vs. non-spam messages by plotting them. Since we have two categories, it is always good to plot a bar or pie chart to see the distribution. So, first we will draw the bar chart, and then we will plot a pie chart:
Figure 18.3: Plotting of bar graph
In the preceding screenshot, we have the same result, which in another way can be plotted as a pie chart, as shown in the following screenshot, demonstrating the result in percentage:
Figure 18.4: Plotting of pie chart
In the preceding chart, you can easily see that 13% of the messages are defined as spam while the rest are not spam. Next, we will see the frequencies of each word in spam and non-spam texts. For this calculation, I will use collections.Counter(), because it stores elements as dictionary keys, and their counts are stored as dictionary values:
Figure 18.5: Using collections.Counter()
In the preceding code cell, we are counting the frequencies of spam and ham messages using the Counter() function, and then storing each count in separate dataframes - ham_df and spam_df. Later, we are plotting the frequencies. First, we plot the most frequently appearing words in non-spam messages, as shown in the following screenshot:
Figure 18.6: Plotting most frequently appearing words in non-spam messages
Later, we plot the most frequently appearing words in spam messages:
Figure 18.7: Plotting most frequently appearing words in spam messages
From the preceding plots, you can see that the majority of frequent words in both classes are stop words, such as to, a, or, and so on. Stop words are the most common words in a language that has very rare or no meaning in machine learning. It will be good to remove such words. Besides this, creating new features is also a good choice to improve model accuracy.
We’ll learn how to do this in two simple steps. The sklearn.feature_extraction module can be used to extract features in a format supported by machine learning algorithms from datasets consisting of formats such as text. We will use sklearn library’s CountVectorizer API to convert a collection of text documents to a matrix of token counts and remove stop words, as shown in the following screenshot:
Figure 18.8: Removing stop words and creating new features
With this, we have created more than 8400 new features. Now we will start the predictive analysis. We will first map spam messages as 1 and no-spam messages as 0. Later, we will split our data set into training set and test set:
Figure 18.9: Splitting data into training and test set
We will train different Bayes models by changing the regularization parameter and evaluate the accuracy, recall, and precision of the model with the test set:
Figure 18.10: Training and Evaluating the performance of the model
In the preceding code cell, we are first defining parameters used in Naive Bayes; in our case, we are using Multi Nomial Naive Bayes algorithm. The process of training is the same as other sklearn API - fit the model and then make predictions. For computing the recall, we are using metrics.recall_score() function.
The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn is the number of false negatives. The recall is intuitively the ability of the classifier to find all the positive samples, so the best value is 1 and the worst value is 0.
After computing the recall, we are also computing the precision, which is the ratio of tp / (tp + fp) where tp is the number of true positives and fp is the number of false positives. Precision is intuitively the ability of the classifier not to label as positive, a sample that is negative.
Next, in the following code cell, we are calculating our model performance using different matrices:
Figure 18.11: Calculating performance
As you can see, there are different learning models with their precisions in the preceding output cell. Now we will select the model with the best test precision, as shown in the following code cell:
Figure 18.12: Selecting model with best test precision
From the preceding output cell, we can see that the train and test accuracy score is almost the same, which means there is no overfitting in our model. Let’s also check if there is more than one model with 100% precision:
Figure 18.13: Checking other models with 100% precision
As you can see, there are more than one model having 100% precision, but there are some point differences in alpha and train accuracy score. Let’s select the model which has more test accuracy:
Figure 18.14: Using model with more test accuracy
From the preceding output, you can easily say that the model has an alpha score of 15.730010. The model, with train accuracy 0.979641 and test accuracy 0.969549 is our best model and that is at index number 143. Let’s also generate confusion Matrix for our Naive Bayes Classifier:
Figure 18.15: Generating confusion matrix
See the preceding confusion matrix result, and you can say that we misclassify 56 spam messages as non-spam emails, whereas we don’t misclassify any non-spam message and our model has 96.95% test accuracy, which you found out just earlier. Now we will repeat the preceding steps with our second model - Support Vector Machine:
Figure 18.16: Using Support Vector Machine
Figure 18.17: Preparing dataframe with matrix data
Figure 18.18: Training with SVM model
Figure 18.19: Confusion matrix with SVM model
In this case, we misclassify 31 spam as non-spam messages, whereas we don’t misclassify any non-spam messages, indicating that the SVC model has 98.3% test accuracy, which is better than our Naive Bayes model. That completes our goal!
Now you can classify any new text to spam or non-spam with the help of your SVM model, as shown in the following screenshot:
Figure 18.20: Predicting new text using SVM model
As you can see in the preceding output cell, I have added a new sentence for testing our model. Here, first we store it in a variable, as we used Y for this, then we have initialized the CountVectorizer() function with English stop words. Next, we have trained the model, and after the transformation of our new sentence, we are predicting the outcome, and our model has recognized this sentence as spam, which is a correct prediction.
If you follow this case-study, you will find that classifying any mail or message is not a tough task. Gmail, Yahoo Mail, and other email platforms are already using similar types of algorithms for such tasks. Naive Bayes and Support Vector Machines are the two most used algorithms in spam vs. non-spam classification problems. What more you can do with this model is, try different parameters, and see what variation in accuracy you can achieve with your changes.
Build a film recommendation engine
Your goal: Build a film recommendation engine.
About dataset: TMDB dataset contains around 5000 movies and TV series with data on the plot, cast, crew, budget, and revenues. The credit CSV (tmdb_5000_credits.csv) contains the movie id, title, cast, and crew details, while movie CSV file (tmdb_5000_movies.csv) contains the movie budget, genre, revenue, popularity, etc.
Main ML libraries: TfidfVectorizer and CountVectorizer.
About recommendation engine: A recommendation engine filters the data using different algorithms, and recommends the most relevant items to users. It first captures the past behavior of a customer, and based on that, recommends products that the users might be likely to buy. Here, we will build a movie recommendation engine based on popularity and content-based engines.
Let’s load the datasets and explore them first to have a better understanding of the data:
Figure 19.1: Loading the datasets
Figure 19.2: Exploring the datasets
Now, before starting our analysis, first we will think about a metric that can rate or score a movie, because a movie with a 7.9 average rating and only 2 votes cannot be considered better than the movie with 7.8 as an average rating but 45 votes. In the movie’s dataset, vote_count, vote_average is already present. We just have to find out the mean vote across the whole data, which can be calculated, as shown in the following screenshot:
Figure 19.3: Calculating the mean vote
It shows a mean rating for all the movies as approximately 6 on a scale of 10.
The next step is to determine an appropriate value for the minimum votes required to be listed in the chart. We will use the 90th percentile as our cutoff. In other words, for a movie to feature in the charts, it must have more votes than at least 90% of the movies in the list:
Figure 19.4: Calculating the required minimum votes
Now, we can filter out the movies that qualify for the chart:
Figure 19.5: Filtering out movies qualified for the chart
We see that there are 481 movies that qualify to be on this list. Now, we need to calculate our metric for each qualified movie.
To do this, we will define a function, weighted_rating(). This function will calculate our metric for each qualified movie. Next, we will also define a new feature called score; the value of this feature is calculated by applying this weighted_rating() function to our DataFrame of qualified movies. This is our first step toward making our first basic recommender. For writing weighted_rating() function, you can take help from the IMDB site itself by click on the following link:
https://help.imdb.com/article/imdb/track-movies-tv/faq-for-imdb-ratings/G67Y87TFYYP6TWAV#
I have represented the same formula as the following function for your ease:
Figure 19.6: metric calculation for qualified movies
Now, let’s understand how to visualize five popular movies that we got from the preceding code cell:
Figure 19.7: Preparing visual graph
See! It was quite easy to create our first basic popularity-based recommendation engine. But there is something to keep in mind – these popularity-based recommenders provide a general chart of recommended movies to all the users. They are not sensitive to the interests and tastes of a particular user. Now we will tackle this problem as well and we will create a more refined system – content-based recommendation engine – by including other columns like overview, cast, crew, keyword, tagline, etc., in our analysis. For this, we need to handle these texts, so that a machine learning model can understand them. We will use scikit-learn’s built-in TfIdfVectorizer class that produces the TF-IDF matrix in a couple of lines. In this matrix, each column represents a word in the overview vocabulary (all the words that appear in at least one document), and each column represents a movie, as before. TfIdfVectorizer has two parts - Term Frequency(TF) and Inverse Document Frequency (idf). TF simply tells us how many times a particular word appears in a single doc, and IDF solves the frequent and rare words in a given doc. After importing this library, we will initialize it with stop word parameter as English. This stop_words parameter is used to remove less-meaningful English words. Then, we will handle the missing values in the overview column, as shown in the following screenshot:
Figure 19.8: train movies data with TF-IDF Vectorizer
With this matrix in hand, we can now compute a similarity score. We will be using the cosine similarity to calculate a numeric quantity that denotes the similarity between the two movies. We use the cosine similarity score, because it is independent of magnitude (or size) and is relatively easy and fast to calculate. Cosine similarity is a metric used to measure how similar the documents are, irrespective of their size. Since we have used the TF-IDF vectorizer, calculating the dot product will directly give us the cosine similarity score. Therefore, we will use sklearn’s linear_kernel() instead of cosine_similarities(), because it is faster in executing inputs:
Figure 19.9: Using sklearn’s linear_kernel()
Now, we will define a function that takes in a movie title as an input and outputs a list of the 10 most similar movies. Firstly, for this, we need a reverse mapping of movie titles and DataFrame indices. In other words, we need a mechanism to identify the index of a movie in our metadata DataFrame, given its title:
Figure 19.10: Constructing reverse map of indices and movie titles
Next, we will define our recommendation function that will do the following steps:
Figure 19.11: defining recommendation function
Figure 19.12: Testing the function
That’s great! Our recommendation engine has been improved.
Let’s make it more mature by including the following metadata: 3 top actors, director, related genres, and movie plot keywords. From the cast, crew, and keywords features, we need to extract the three most important actors, the director and the keywords associated with that movie. Right now, our data is present in the form of stringified lists; we need to convert it into a safe and usable structure:
Figure 19.13: converting data into usable structure
Next, we’ll write functions that will help us extract the required information from each feature:
Figure 19.14: Writing function to extract information from features
Figure 19.15: peek of the data with new features
The next step would be to convert the names and keyword instances into lowercase and strip all the spaces between them. This is done so that our vectorizer doesn’t count the John of JohnCena and JohnCleese as the same:
Figure 19.16: Converting names and keyword instances into lowercase and stripping spaces
We are now in a position to create our metadata soup, which is a string that contains all the metadata that we want to feed to our vectorizer (namely actors, director, and keywords):
Figure 19.17: creating meta data soup
Now, we will use sklearn’s CountVectorizer() instead of TF-IDF to remove stop words and transform our newly created soup column:
Figure 19.18: use of Count Vectorizer and similarity check
Figure 19.19: testing recommendation function
Wow! You see that our recommendation engine has been successful in capturing more information due to more metadata and has given us (arguably) better recommendations. Still, there are a lot of work pending for you to improve your engine, like the language of the film was not checked; in fact, this could be important to ensure that the films recommended are in the same language as the one chosen by the user. So, add a feature in your model and see if are you getting a better result or not. This is one example of a recommendation engine that you can use as a base model. You can extend this model for different problems like product recommendation or a product category recommendation.
Recommendation systems are widely used in almost every e-commerce and in over the top (OTT) media services. For a user these systems make the experience better by helping to select the best choice over other options, as well as increase the probability of earning more revenue for a company. After completing this exercise, you have hands-on experience in building a movie recommendation engine. Now don’t stop here, apply your knowledge to build a product recommendation engine or a song recommendation engine, and feel the value of a Data Scientist’s work to this society.
Predict house sales in King County, Washington State, USA, using regression
Your goal: Online property companies offer valuations of houses using machine learning techniques. This case study aims to predict house sales in King County, Washington State, USA, using regression.
About dataset: This dataset contains house sale prices for King County, which includes Seattle. It includes houses sold between May 2014 and May 2015 as described in kc_house_data.csv.
Our ML model: Linear Regression and Polynomial Regression.
Let’s first read the housing data, for which I have defined an empty dataframe named evaluation. This dataframe includes Mean Squared Error (MSE), R-squared, and Adjusted R-squared, which are the important metrics to compare different models. Having an R-squared value closer to one and smaller MSE means a better fit. In the following example, I will calculate these values and store them in this dataframe with my results. For this purpose, first, we will import all basic libraries along with the sklearn library:
Figure 20.1: Importing all basic libraries
After creating our evaluation dataframe, we will load the King County dataset in a dataframe and will look into the head of this:
Figure 20.2: peek of the housing data
Please note here, when we model a linear relationship between a response and just one explanatory variable, it is called simple linear regression. Here, I want to predict the house prices, so our response variable is the price. However, for a simple model, we also need to select a feature. When I look at the columns of the dataset, the living area (sqft) seemed the most important feature.
When we examine the correlation matrix, we may observe that the price has the highest correlation coefficient with living area (sqft), and this also supports my opinion. Thus, I decided to use the living area (sqft) as a feature, but if you want to examine the relationship between price and another feature, you may prefer that feature. We will apply this logic in our dataframe, but we will first split our dataset into 80:20 ratio, so that we can train on 80% data, and then validate our model on 20% data. Then, we will separate the target variable - price - from the training dataset, and then fit the Linear regression model on this training and target input using the fit() method. We will apply the same for the testing dataset. Then, we will predict the result on test data using predict() method. At last, we will calculate the loss of our model, using MSE metric, as shown in the following screenshot:
Figure 20.3: training and prediction on housing data
In the last three lines of the preceding code cell, we used our evaluation dataframe to calculate the metric by passing the metric scores - msesm, rtrsm, and rtesm.
You will notice in the following output that we are getting mean squared error or regression loss as 254289.149 for our simple model:
Figure 20.4: Average price for test data
Because we have just two dimensions at the simple regression, it is easy to draw it. The below chart determines the result of the simple regression. It does not look like a perfect fit but when we work with real-world datasets, having a perfect fit is not easy:
Figure 20.5: plot the house price vs space
Figure 20.6: Predicted regression line data
In the preceding case, we have used a simple linear regression and found a poor fit, because data looks scattered around the line. To improve this model, I am planning to add more features. However, in this case we should be careful about the overfit, which can be detected by the high difference between the training and test evaluation metrics. When we have more than one feature in linear regression, it is defined as multiple regression. Then, it is time to check the correlation matrix before fitting a multiple regression.
Having too many features in a model is not always a good thing, because it might cause overfit and worse results when we want to predict values for a new dataset. Thus, if a feature does not improve your model a lot, not adding it may be a better choice.
Another important thing is a correlation; if there is a very high correlation between two features, keeping both of them is not a good idea (most of the time). For instance, sqt_above and sqt_living columns in the datasets are highly correlated. This can be estimated when you look at the definitions of the dataset.
Just to be sure, you can double-check this by looking at the correlation matrix, which we will draw next. However, this does not mean that you must remove one of the highly correlated features, for instance, bathrooms and sqrt_living. They are highly correlated, but I do not think that the relation between them is the same as the relation between sqt_living and sqt_above. Let’s draw a correlation matrix with all these features:
Figure 20.7: Correlation matrix
Figure 20.8: Pearson Correlation Matrix
After looking into the correlation matrix, we can examine the features and reach some useful analytical conclusions. Furthermore, plotting charts and examining the data before applying a model is a very good practice, because we may detect some possible outliers or decide to do some normalizations. This is not a must, but getting to know the data using visualization is always good.
Now, to determine bedrooms, floors, or bathrooms/bedrooms vs. price comparison, I preferred boxplot, because we have numerical data and they are not continuous as 1,2,… bedrooms, 2.5, 3,… floors (probably 0.5 stands for the penthouse):
Figure 20.9: creating box plot
Figure 20.10: Graphical representation of bathrooms and bedrooms
Let’s create a complex model manually to find out if we get a better regression loss or not. For this purpose, we will include six features of the dataset for predicting the outcome, and then we will repeat the same steps as we have done earlier:
Figure 20.11: creating a complex model
Figure 20.12 prediction on complex data
From the preceding output, you can say that the uurfirst complex model decreased the MSE to 248514.011, which means we can add additional features to our model and again plot boxplots for further examination, as shown in the following screenshot:
Figure 20.13: plot the box plot
Figure 20.14: box plot of house price vs grade
Let’s add some more features and repeat the same steps:
Figure 20.15: adding more features and making prediction
Figure 20.16: result of the prediction on more data
From the preceding result, you can see that adding more features in our complex model 2 is decreasing the regression log, i.e., in our case, it is now 210486.689. Always remember, for the linear models, the main idea is to fit a straight line to our data. However, if the data has a quadratic distribution, this time choosing a quadratic function and applying a polynomial transformation, may give us better results. Let’s see how we can choose a quadratic function and apply the polynomial transformation in the following screenshot:
Figure 20.17: Applying polynomial transformation
In the preceding code cell, we have first initialized the Polynomial Features with degree 2 for generating polynomial and interaction features. Then we have fit and transformed these features using fit_transform() method, and then we have trained our linear regression model using the fit() method as we did earlier.
Next, we repeat the same step but for degree 3. After this, you can calculate each degree’s regression log and score, and then apply our evaluation dataframe to it, just as we did earlier.
You will get the following result after executing the preceding steps:
Figure 20.18: comparison of all predictions
When we look at the preceding evaluation table, MSE values are confusing to select the best model, because many models have the same MSE value. For removing this confusion, we must see the R-squared (test) values also. An R-squared value, closer to 100%, denotes a good correlation; so, in our case it seems our 3rd-degree Polynomial Regression model is the best model for our problem having a 74.9% R-squared value. That completes our goal!
Always start with a simple model, and then increase its complexity by adding its features and check different evaluation metric scores. Although it is a time-consuming process, it is one of the best ways to get a stable and highly accurate model.
Try to add some new features, check the evaluation metric, and see if you are getting a more valid score or not.
Congratulations! You have built a very good model to predict house sales. Such types of models are very helpful for sales, and they can help the sales representatives to focus on important features of a property to sell. Now you have hands-on experience in dealing with sales-related problems. So, go on and apply this knowledge to predict store sales or product sales, and see how you can help the company with your data-driven skills.
After completing the last 20 chapters of this book, you are quite ready to transform your title from an Aspiring Data Scientist to a Data Scientist. In the real-world, when you will work with a company, you will often find yourself in a new project from time to time. To share my experience with you, I had worked on three different projects in a single year, and each project had different Python environments: one was using Python 2.7, the second was on Python 3.6, and third was on Python 3.7. Uninstalling a version and then reinstalling the required version in your machine with a project to project is a tedious task. Also, it is not a good practice. Not only do we have to do this step for Python, we also need to do this for various libraries that we have installed. In the first bonus chapter of this book, you will learn about the Python virtual environment to solve this environment change issue. Along with this, you will also learn some of the best practices while working on your first Data Science project.
The main objective of this chapter is to teach you some best practices while working on a project. In the real world, you use your Jupyter notebook for your analysis. Still, you will share your final analysis in the form of a project consisting of Python file/files, txt files organized in several folders. After completing this chapter, you will be quite familiar with such best practices.
What is a Python virtual environment?
If you open the Anaconda Prompt, you will see the following text is showing at the start of the prompt - (base) just as in the following screenshot:
Figure 21.1: Anaconda prompt
As the name says, it is the default base environment of your Python and other libraries installed. Instead of using this base environment, from now onwards, you will use an isolated Python environment, known as the Python virtual environment. The benefit of using this environment is that every new project has its own Python version and other dependent Python libraries. You don’t need to uninstall and reinstall Python with every new project. The beauty of using a Python virtual environment is that there are no limits to its number. You can create as many environments as you want.
How to create and activate a virtual environment?
Since we are using Anaconda from the beginning of this book, we will use conda to create and activate a virtual environment in our machine. To create a Python virtual environment, open Anaconda Prompt with admin rights and use the following command: conda create --name <Virtual_ENV_NAME> python=<Version>
Please replace <Virtual_ENV_NAME> with any name and <Version> with your specific Python version. If you want to check the Python version installed in your machine, just run python –version in the same Anaconda prompt. Following is a screenshot of my Anaconda Prompt:
Figure 21.2: new_py_virtual Anaconda prompt
In the preceding example, I have given my virtual environment name as new_py_virtual, and my Python version is 3.7.3. Once you run this command, the prompt will take a few seconds, and it will collect all required packages for creating your new Python virtual environment:
Figure 21.3: New Python virtual environment
When asked, press y and enter. It will install the required packages, and your new Python virtual environment will be created:
Figure 21.4: Installing required packages
Once the new environment is created, we need to activate it. You can activate it by running the following command: conda activate <Virtual_ENV_NAME>. The same command you can also see in your Anaconda Prompt console:
Figure 21.5: Activating the new enviornment
Notice the starting line of your console. In my example, the (base) environment is changed to (new_py_virtual). In the same way, you will see your environment name. This means you have successfully created and activated the environment. Now you can install any Python package using command pip install <package_name> in this newly created virtual environment. Once you finish your work, you can close this console, and when you want to start your work again, you just need to open Anaconda Prompt, run the following command conda activate <Virtual_ENV_NAME>. That’s it. Your previous environment is ready for reuse. If you want to create another Python virtual environment, open a different Anaconda Prompt, and repeat the previously mentioned steps with your required Python version and with a different environment name.
How to open Jupyter notebook with this new environment?
Once you create your new Python virtual environment and install all required Python packages, the next step is to open your Jupyter notebook with this environment. The step is straightforward. You just need to use the jupyter notebook command in the same Anaconda Prompt. Before using that command, you will first create a new directory, and from there, you will open your Jupyter notebook. It is our first good practice to create a directory structure for our project. For this first step, create a new folder in your local disk and copy its path. For example, I have created a new folder named as example_notebook in the following path E:\prateekg\docs\BPB\Bonus\ and copied the path till the newly created folder. In my case, the full path is E:\prateekg\docs\BPB\Bonus\ example. Now in the same Anaconda Prompt, go to the path you have copied and run the following command: jupyter notebook --notebook-dir <path_till_new_folder>.
My Anaconda Prompt screen looks like the following screenshot:
Figure 21.6: Opening a Jupyter Notebook
Once you press Enter, a new browser window will open showing your notebook folder. In my case, it looks like the following screenshot:
Figure 21.7: Browser window
In the same way, you can also open any existing notebook. You just need to give its path to the command jupyter notebook --notebook-dir. For creating a new Jupyter notebook, just click on New dropdown, select Python 3, and it will open a new notebook in a new tab.
How to set an activated virtual environment in PyCharm IDE?
Till now, you have learned the setup of the Python virtual environment with your notebook. Next step is to learn how to do the same with PyCharm IDE. Once you set this up, you can directly run your Python files in PyCharm console. Since in the real-world project, you will most probably use PyCharm IDE, I will show you how to complete this setup. If you have not installed PyCharm IDE in your machine, please follow Chapter 4: Package, Function and Loop of this book, where I have already described this. Open PyCharm, go to File and click on the Open link. Paste the path of your newly created folder. Make sure that after pasting the path, your folder should be selected automatically. If not, then manually select the folder. The screen will look like the following screenshot:
Figure 21.8: PyCharm IDE screen
Click on OK button, PyCharm will be opened and it will start the indexing of your imported project. The project will look like the following screenshot in PyCharm:
Figure 21.9: Project in PyCharm
Now, we will setup our virtual environment with this project. For this purpose, press Ctrl+Alt+s keys or choose File | Settings (for Windows and Linux or PyCharm) | Preferences for macOS. Then select Project <project name> | Project Interpreter. It will open the following pop-up in your screen:
Figure 21.10: Project Interpreter in PyCharm
Once you select the Project Interpreter option, on the right-hand side, you will see a drop-down under the name Project Interpreter. Click on that drop-down and select Show All… option. Now select the option having your newly created environment name, if it exists, or click on + icon to manually search it. In my case, I clicked on + icon, and a new pop up appeared. From there, select Conda Environment as shown on the left menu and then select Existing Environment. Next, from the dropdown next to this option, select the option having your newly created virtual environment name and click on Ok buttons till you come in the main PyCharm window:
Figure 21.11: Virtual environment Settings
Once you click on all OK buttons, PyCharm will start the indexing of your project. You can see this process in the bottom right-most corner of your PyCharm IDE. It looks like the following screenshot:
Figure 21.12: Indexing in PyCharm
Wait for this indexing to complete. Once it’s done, your project is configured with this virtual environment. When you open PyCharm IDE next time, you don’t need to do this step again. PyCharm will automatically use this virtual environment with this project.
What is requirements.txt file?
Till now, we have created our project directory and imported it in PyCharm IDE with a virtual environment. The next step is to make a requirements.txt file in our project. requirements.txt file is a simple text file containing your installed Python libraries with its version as key-value pairs. This file is required to setup your project quickly in any new environment. Any new user can read this file and simply run this instead of installing packages one by one. To create this file, we will use the pip freeze command. Open a new Anaconda Prompt, activate your newly created Python virtual environment, and go to the path of your project directory. In my case, it looks like the following screenshot:
Figure 21.13: Path of the project directory
Now run the following command: pip freeze > requirements.txt. This command will save all your Python libraries in a newly created .txt file. Once you run the preceding command, go to your project folder, where you will find your requirements.txt file. The same you can also see in PyCharm IDE. For my project, it looks like the following in PyCharm:
Figure 21.14: requirements.txt file view
If you see requirements.txt file, as shown in the preceding screenshot, it means you have successfully created it. Now anyone can install all required libraries of your project in his/her machine by just running the following command: pip install –r requirements.txt.
The next best practice to use in your project is to have a README.md file. This file contains information about your project in such a way that a new user can understand the goal of your project, how to setup, and be able to run the code. Since this is the first file that any new user searches in a project, it should be good enough to understand. You can create a simple text file and change its extension to .md from .txt for creating this file. Here, the extension .md means markdown. It’s a mark-up language for text formatting. You can edit this file in any text editor. For creating this file in PyCharm, right-click on your project, go to New, and select File option:
Figure 21.15: Creating readme.md file
Enter the name as README.md and click on the OK button. This file is created in your project directory. The next step is to fill this file as per your project. Here, I am sharing a snippet of this file, in which you can use a template for your project and can easily edit as per your need.
Figure 21.16: README.md file preview
You can find the complete project structure in our shared repository. In the next few chapter, you will add on new files in this project structure, and in the end, you will have a complete project structure.
Once your project is ready, you will need to share it with other team members, so that they can use it. For sharing, copy-pasting the code and shaing via mail or pen-drive, is a very bad practice, and often restricted in an organization. For this purpose, you should know how to use GitHub. GitHub is a Git repository hosting service, and it provides a web-based interface. To use this, you need to register yourself in GitHub first. Open the following link in the browser: https://github.com/ and click on Sign up link for registration. Once you are successfully registered, the next step is to create a repository there. After logging into GitHub, you will see the new button on the right side of the Repositories:
Figure 21.17: Repository in GitHub
Click on New button. A new screen will be opened and you will be asked to enter the repository name. Fill the name field and click on Create repository button:
Figure 21.18: Creating new repository
Once you click on Create repository, a new screen will be opened, asking you to upload existing code in the repository. For this, we will use the command-line option. For the command-line option, we will use the Git Bash. You can download the Git Bash from the following link: https://gitforwindows.org/.
Once you download and install the Git Bash, just type Git Bash from search option in your windows machine and click on Git Bash. It will open a command-line console. Now, copy your newly created project directory path and paste the following: cd E:/prateekg/docs/BPB/Bonus/example_notebook. Don’t forget to replace ‘\’ with ‘/’ before running the command. It looks like the following screenshot:
Figure 21.19: GitBash command window
Next, you just need to run the following commands one-by-one:
git init
git add <your_file_to_add>
git commit –m <“commit_message”>
git remote add origin <your_repo_git_link>
git push -u origin master
For example, when I run command git in it, my repository is initialized:
Figure 21.20: initializing the repo in GitBash
Next, the second command will add my files to the repository. If you want to add all files at once, you just need to give a dot(.) instead of the file name. I recommend adding files one by one to avoid any error:
Figure 21.21: Adding files
After adding files, we need to commit these files with a message using the third command:
Figure 21.22: Committing files
After committing the files, we need to push our local repository to the remote repository using the fourth command:
Figure 21.23: Pushing local repository to remote repository
As the last step, we just need to push local changes to our GitHub repository using the fifth command:
Figure 21.24: Pushing local changes to GitHub repository
That’s it! Now, when you refresh your GitHub profile, you will see your added files, README.md and requirements.txt, as shown in the following screenshot:
Figure 21.25: Files added
In this chapter, you have learned some of the best practices that you will use in any organization. Python virtual environment gives you the ability and freedom to install a specific version of packages. On the other hand, requirements.txt file makes your project easy to install in any other system, and from README.md file, any new user can understand your work easily. You also learned how to use GitHub. Follow the steps mentioned in this chapter, or download the project from our repository, import it in PyCharm, and use this as a template for any of your projects. In the next chapter, you will learn about a new gradient boosting algorithm – CatBoost.
Introduction to An Advanced Algorithm - CatBoost
In Chapter 13: Supervised Machine Learning and Chapter 14: Unsupervised Machine Learning, you have learned how to solve supervised and unsupervised machine learning problems using Python’s scikit-learn library. One essential step in using the scikit-learn library is to handle categorical data before modeling. What technique we use for converting the categorical data into numerical form affects the model performance directly. Leaving certain features means making your prediction weak. So it is an important step and requires strong knowledge of your dataset. What if this step can be automated? What if instead of focusing on this conversion, you can give your attention to training? Sounds interesting! In this chapter, you will learn one of the advanced algorithm - CatBoost, which will automate this conversion for you.
Data Science is an emerging field. The frequency of new algorithm coming in this field is very rapid. Every new algorithm comes in the market with improved features, and they outperform older algorithms. As a Data Scientist, we need to update ourselves daily, and we should try to use them in our work. Following the same thought, in this chapter, you will learn about gradient boosting and CatBoost algorithms. Also, you will learn how to use CatBoost in solving a real dataset problem.
What is a Gradient Boosting algorithm?
Gradient boosting is an efficient algorithm for converting weak learners into better learners. Here, a weak learner is also known as a weak hypothesis. Adaptive Boosting, also known as AdaBoost, was the first boosting algorithm. The three essential elements used by a gradient boosting algorithm are loss function, weak learner, and additive model. You have used different loss functions in classification, and regression problems, for example, mean squared error and logarithmic loss. So, as per the type of problem, gradient boosting algorithm uses the loss function. For choosing the weak learner, gradient boosting chooses decision trees. Here, trees are constructed with best split points, and subsequent models are added to correct the errors in predictions. Please note here that trees are added one at a time, and existing trees are not changed in this algorithm. While adding the trees, this algorithm makes sure to minimize the loss. Examples of gradient boosting algorithms are CatBoost, XGBoost, and LightGBM. These algorithms have achieved the state-of-the-art results in a variety of practical tasks. Our focus in this chapter will be on CatBoost.
CatBoost, developed by Yandex researchers and engineers in 2017, is a high performance open source library for gradient boosting on decision trees. With default parameters, CatBoost gives excellent results, and it works very fast on large datasets using GPU. It reduces overfitting while constructing a model, and it can handle certain features automatically. CatBoost can be used to solve both classification and regression problems. The most attractive feature of CatBoost is to handle certain features. Here, certain feature is a feature having a discrete set of values that are not necessarily comparable with each other, for example, city name. We generally convert these features into numerical form before the training. CatBoost handles categorical features during the training time and we don’t need to convert them into numerical form. You will learn about its parameters later in this chapter.
Install CatBoost in Python virtual environment
In the previous chapter, you created a virtual environment using conda command. We will use the same environment from now onwards. You can again use that environment. For this open Anaconda Prompt with admin rights, activate the environment by just running the following command: conda activate <Virtual_ENV_NAME>. Your base location will be changed to your virtual environment name. Now, install the CatBoost using the following command: pip install catboost:
Figure 22.1: Installing CatBoost
CatBoost has some inbuilt visualization capability. For using this capability, you need to run the following command as well: pip install ipywidgets, and then you need to activate the notebook widget by running the following command: jupyter nbextension enable --py widgetsnbextension:
Figure 22.2: Enabling catboost widgets
Once you see the ok message in the console, it means you have successfully installed the CatBoost. While installing, if you get any Module Not found Error, then please install that library using pip install command and then proceed to the next step.
How to solve a classification problem with CatBoost?
Once you complete the previous step, you are ready to use CatBoost. Let’s open our notebook in our activated virtual environment, as we did in the previous chapter:
Figure 22.3: Open notebook
Once the notebook is opened in the browser, create a new notebook there and give it a name. Now to understand how to use CatBoost, we must use a dataset. Infact, to understand CatBoost’s categorical feature handling capability, we need a dataset that has more certain features; also that dataset should be a real-world dataset. We don’t need to go anywhere to download such a dataset. CatBoost provides inbuilt datasets processing with some real-world datasets, including UCI Adult Data Set, Kaggle Amazon Employee Access Data Set, Kaggle Titanic Data Set, etc.; you can load these datasets from catboost.datasets directly. For our first example of this chapter, we will use the Titanic Data Set. You can find this dataset description from the following link: https://www.kaggle.com/c/titanic/data. Let’s load this dataset along with NumPy, as shown in the following screenshot:
Figure 22.4: Loading Titanic Data set
After running the preceding cell, the Titanic dataset will be imported. After importing the dataset, the next step is to load the training and testing dataset. For this, we just need to fetch the titanic() function. Let’s fetch both datasets and check the shape of the loaded datasets:
Figure 22.5: Checking shape of datasets
So, we have 891 samples in the training dataset and 418 samples in the testing dataset. Let’s check the top five data of the training dataset using dataframe’s head() function:
Figure 22.6: Using head() function
Here, the Survived column is our target variable, which we need to predict for testing dataset. 1 (yes) means a person had survived, and 0 (no) means the person has not survived. Next, we will check the data type of the columns:
Figure 22.7: Checking datatype of columns
As you can see, there are many categorical columns in this dataset, which is indeed needed here! But before applying CatBoost, we must check the missing values and then fix them. Let’s check the missing values first:
Figure 22.8: Checking missing values
From the preceding output cell, we can see that the Age column has 177, Cabin column has 687, and the Embarked column has two missing values in our training dataset. Check for yourself, the missing values in the testing dataset, as well! Now we will fix each missing value one-by-one. Let’s fill the Age column’s missing values with it’s median:
Figure 22.9: Fixing missing values
Next, we will fill the Embarked column’s missing values with the most frequent one:
Figure 22.10: Filling missing values in Embarked column
Now, the last remaining column with missing values is Cabin, and it is in very high number. Instead of removing this column, let’s fill this column’s missing values with any random string:
Figure 22.11: Replacing missing values in Cabin column
Have you checked the missing values in the testing dataset? If yes, you will see there is an extra column with missing values - Fare. Let’s handle this column’s missing values also:
Figure 22.12: Handling missing values in Fare column
Now, if you check the missing values in both dataset again, you will find all missing values are filled. In the next step, we will separate the target column from our training dataset:
Figure 22.13: Separating target column from training dataset
Next, we will split the training dataset into training and validation dataset to avoid overfitting:
Figure 22.14: Splitting training dataset
Until now, all steps that we have followed here, you have already seen in Chapter 13 and Chapter 14 of this book. There is nothing new. Now, we can move to our main goal - how to use CatBoost? For this, let’s import CatBoost and other required libraries and then create CatBoost classifier model, as shown in the following screenshot:
Figure 22.15: Importing CatBoost
In the preceding input cells, we have first imported the CatBoostClassifier, since our problem is a classification ml problem. If you are working on the regression ml problem, then you need to use CatBoostRegressor. Next, we have imported Pool. Pool class is used for data processing in CatBoost. We pass our features data into the Pool constructor. The cv is used for doing cross-validation. You will see the exact use of these in further steps. While initializing our classifier, we have enabled use_best_model parameter for saving the best model:
Next, we will make a list of certain features. Here, I am making this list with all columns having object data type. You can update the list as per your understanding of the categorical features. Then I will pass this list in the model training step, as shown in the following screenshot:
Figure 22.16: Training of the model
Here, for model training, we are using mode.fit() function, which you already know. Along with parameters like - input training dataset(X_train), and target variable(y_train), here, we are passing our categorical features list in cat_features parameter. This is the parameter that will take care of all heavy lifting with certain features. For validation purposes, we have used eval_set parameter with our validation dataset, and also enabled another interesting parameter - plot. The plot feature will plot metric values, custom loss values, and time data during training. Once you run the preceding cell, model training will start, and during the training, you will see a running plot in the Jupyter notebook output cell until the training ends. In the end, you will see the number of boosting steps with the best accuracy on validation dataset, as shown in the following screenshot:
Figure 22.17: Best iteration and accuracy
See, without handling certain features on your own, you have got 87% validation accuracy. Sounds great, right! Let’s cross-validate our model by doing some cross-validation also. For this, we will use 5-fold cross-validation with Pool constructor, as shown in the following screenshot:
Figure 22.18: Using 5-fold cross-validation with Pool constructor
Here, we are using logarithmic loss as our loss function and five-fold for cross-validation. You can change the value of fold_count from 5 to 10, or it’s default value three and see the effect on your own. Once you run the preceding cell, you will again see the plot during the cross-validation. You can click anywhere on this plot and it will show you some interesting points in zoom:
Figure 22.19: Plot of CV during training
Once the cross-validation is done, you will see the training and validation accuracy, as shown in the following screenshot:
Figure 22.20: Training and validation accuracy
You can also print the best cv accuracy, as shown in the following screenshot:
Figure 22.21: Printing best cv accuracy
The output of the preceding cell is shown in the following screenshot:
Figure 22.22: Best accuracy result
Let’s print the precise validation score as well:
Figure 22.23: Printing precise validation score
We are getting 83% accuracy with CatBoost. It’s amazing right? Try the same dataset and use some other classification algorithms, which you have learnt earlier and see if you can match this accuracy. Next, you can make prediction on some data with this model. For making prediction, you just need to call model.predict(X_test). In the next step, you can save this model, and then reload the saved model for your further use, as shown in the following screenshot:
Figure 22.24: Reloading saved model
Since this dataset is from Kaggle, it requires final submission in specific CSV format having PassengerId and Survived columns only. Let’s make prediction on test data and save them in Kaggle required format:
Figure 22.25: Making Kaggle submission file
Push your notebook in your GitHub repository
In the previous chapter, you uploaded your project structure in your GitHub repository. Since you have solved anml problem in this chapter, it’s time to push your changes to your repository. If you have successfully ended this chapter, then you will have a notebook, your saved model in .dump format, and your final submission file. You will push all these into your GitHub repository. Before committing, it’s better to make a new folder inside your project directory catboost_example and paste all required files there. Now, open GitBash and go to your project directory/path and run git commands, which you ran in the previous chapter one-by-one. Following are some screenshots of my terminal with output for the same:
Figure 22.26: Initialize and add changes to the Repo
Figure 22.27: Pushing changes to the Repo
Once you refresh your GitHub repository page, you will see catboost_example folder with added files in your repository as I see in my repository:
Figure 22.28: CatBoost example folder with added files
In this chapter, you learnt an advanced gradient boosting algorithm, which, as of now, is being widely used in solving classification machine learning problems due to its higher speed and accuracy. You can find more details of CatBoost from their official link as well: https://catboost.ai/docs/concepts/python-reference_parameters-list.html. All the steps mentioned in this chapter are present as a Jupyter notebook Solving_a_classification_ml_problem_using_CatBoost.ipynb in our repository. I have also added an advanced notebook named as performance_prediction_catboost_prateekg.ipynb, which will guide you to use the best of the CatBoost to achieve the number one rank in a hackethon. Go ahead and download the notebook and see yourself in the first rank of that hackethon. In the next final chapter of this book, you will find a question-answer series related to the learning of all chapters, which will help you in your interview preparation as well.
Revision of All Chapters’ Learning
If you have completed all previous chapters of this book, you have gained all the essential skills of a Data Scientist that any company expects from a fresher. You have learned the required theory plus code implementation by working on real-world datasets. In this chapter, you will revise 51 must-know data science questions and their answers. These questions-answers will help you in your coming interviews since these basic questions are a must-know for cracking any Data Science interview. Although Data Science is a vast field, the starting point of any of your interviews will be these questions. So, let’s start your revision.
Data is the plural form of datum, which means a single piece of information. Structured data, unstructured data, and semi-structured data are the three types of data we see on a daily basis. SQL data or tabular data is the example of structure data, images/audio/video/email, etc., are examples of unstructured data, and data in CSV/XML/JSON, etc., are known as semi-structured data.
In statistics, most of the data fall into the following two categories: Numerical data and Categorical data. Numerical data is also known as Quantitative data. Numerical data is further divided into the following two categories: Discrete data and Continuous data. Discrete data have distinct and separate values. We can only count the discrete data, but we cannot measure it. For example, the number of heads count in 12 flips of a coin is discrete data. Continuous data can be measured but not counted, for example, the weight of a person. Categorical data represents characteristics, for example, a person’s gender. We can represent them in number, but they don’t have any meaning. Categorical data is also divided into the following two categories: Nominal and Ordinal. Nominal data represents discrete units and has no order, for example, language you speak. Ordinal data represents discrete units, but with an order, for example, your educational background.
Anaconda. It is an industry-standard for open source data science. We don’t need to install Python separately if Anaconda is installed. It provides Jupyter notebook, which we use for our data science work. Besides Anaconda, we use PyCharm IDE for coding and GitHub repository for code pushing into the repository.
Machine learning is the science of getting computers or machines to act without being explicitly programmed. Machine learning helps computers to learn from past data and act accordingly for the new unseen data.
Based on the various data problem, machine learning (ML) is divided into the following three main types: Supervised, Unsupervised, and Reinforcement learning. In supervised ML, we have the past/previous data of a problem having input examples with the target variable. To solve such problems, this learning uses a model to learn the mapping between input and target. A model is fit on training data and then used to predict test data having input examples only. Unsupervised ML operates only on input data without the target variable. It works without any guidance. In reinforcement ML, an agent operates in an environment and learns from the feedback; for example, teaching a computer to play a game.
Classification and Regression are the two types of supervised ML problems. In classification, we predict a class label, for example, predicting if a mail is a spam or ham. In regression, we predict a numerical value, for example, predicting house prices of an area.
Logistic Regression, Decision Tree, K Nearest Neighbors, Linear Discriminant Analysis, Naive Bayes, Support Vector Machine, Random Forest, CatBoost, XGBoost, etc.
Linear Regression, Decision Tree, K Nearest Neighbors, Support Vector Machine, Random Forest, CatBoost, XGBoost, etc.
Clustering and Association are the two main types of unsupervised ML problems. Clustering involves finding groups in data, for example, grouping online customers by their purchasing behaviors. The association involves finding rules that describe more significant portions of data, for example, person who purchased product A also tend to purchase product B.
K-Means Clustering, Hierarchical Clustering, Principal component analysis, etc.
Any algorithm that makes strong assumptions about the form of the mapping or target function is called a parametric algorithm, and those who do not make strong assumptions about the mapping or target function are known as non-parametric ML algorithms. Linear Regression and Linear Discriminant Analysis are two examples of parametric algorithms. Decision Trees, Naive Bayes, and Support Vector Machines are three examples of non-parametric ML algorithms.
The mapping function, also known as the target function is a function that a supervised ML algorithm aims to approximate.
Bias is the simplifying assumptions made by a model in machine learning (ML) to make the mapping/target function more comfortable to learn. Generally, parametric algorithms are high bias in nature.
Variance is the amount that the estimate of the target function will change if different training data was used. Generally, non-parametric algorithms are high variance in nature.
Any supervised machine learning algorithm aims to achieve low bias and low variance. As we know, parametric algorithms often have a high bias, but a low variance and non-parametric algorithms have high variance but low bias. Therefore, there is often a battle to balance out bias and variance in machine learning. This tension is known as the Bias-Variance trade-off. While solving an ML problem, we try to make a balance between bias and variance.
Overfitting and underfitting are the two leading causes of poor performance in machine learning. Overfitting means learning the training data so well but performing very poorly on new unseen data. Underfitting means neither learning the training data properly nor working properly in new unseen data. Overfitting is the most common problem in machine learning.
We can limit overfitting by applying the following two essential techniques: Use k-fold cross-validation and Hold back a validation dataset. The benefit of using k-fold cross-validation technique is that it allows us to train and test our model k-times on different subsets of training data and build up an estimate of the performance of a machine learning model on unseen data. A validation dataset is simply a subset of our training data that we hold back from our machine learning algorithms until the very end of our project and then compare the training and validation dataset accuracy. Both techniques assure our model is generalized very well.
1) Mean: Mean is the average of the numbers in a list or a dataset’s column.
2) Mode: Mode is the most common number in a dataset or a list.
3) Median: Median is the middle of the set of numbers.
4) Standard Deviation: It is the average spread of the points from the mean value.
Linear Regression is a statistical and machine learning model that assumes a linear relationship between the input variable (x) and the single output variable (y). When there are multiple input variables, it is known as multiple linear regression. The representation equation of a simple linear regression model is y = c + m * x where c is the intercept, also known as bias coefficient and m is slope of the line. Learning a linear regression model means estimating the values of the coefficients used in the representation. So, the goal is to find the best estimates for the coefficients to minimize the errors in predicting y from x. We use linear regression to solve supervised (regression) ML problems. In Python, we use scikit-learn.linear_model.LinearRegression class to use this algorithm.
To make best use of linear regression model, we must structure our data according to the following assumptions:
1) Linear regression assumes that the relationship between our input and output is linear.
2) Linear regression assumes that our input and output variables are not noisy.
3) Linear regression assumes that our input variables are not highly correlated.
4) Linear regression assumes that our input and output variables have a Gaussian distribution.
5) Linear regression assumes that our input variables are in same scale.
Ordinary Least Squares: When we have more than one input, we can use Ordinary Least Squares to estimate the values of the coefficients. In Ordinary Least Squares method, for a given regression line through the data, we calculate the distance from each data point to the regression line, square it, and sum all of the squared errors together. This is the quantity that ordinary least squares seek to minimize.
Regularization methods are extensions of the training of the linear model. These methods not only minimize the sum of the squared error of the model on the training data using Ordinary Least Squares, they also reduce the complexity of the model. Two regularization methods for linear regression are as follows:
1) Lasso Regression: It is also called L1 regularization where Ordinary Least Squares method is modified to also minimize the absolute sum of the coefficients.
2) Ridge Regression: It is also called L2 regularization where Ordinary Least Squares method is modified to also minimize the squared absolute sum of the coefficients.
Logistic Regression is a statistical and machine learning model, which is used to solve supervised (classification) ML problems. In fact, logistic regression is made for solving binary (two-class) classification problems, but it can be used for solving multi-class problem also. Logistic regression uses logistic or sigmoid function to model the probability of the default class. Logistic function is an S-shaped curve that can take any real number and map it between 0 and 1. The equation of this function is 1 / (1 + e ^ -value) where e is the base of natural logarithms and value is the actual numerical value we want to transform. Since logistic regression predicts the probabilities, the probability prediction is transformed into 0 or 1 by the logistic function. If the probability is greater than 0.5, we can take the output as a prediction for the default class (class 0), otherwise the prediction is for the other class (class 1). The coefficients of the logistic regression algorithm must be estimated from our training data. This is done using maximum-likelihood estimation. In Python, we use sklearn.linear_model.LogisticRegression class to use this algorithm.
The assumptions made by logistic regression about the distribution and relationships in our data are much the same as the assumptions made in linear regression:
1) Logistic regression assumes a linear relationship between the input variables and the output.
2) Logistic Regression predicts the output in binary form.
3) Logistic regression assumes no error (outliers) in the output variable.
4) Logistic Regression assumes that our input variables are not highly correlated.
5) Logistic Regression assumes that input variables are in the same scale.
Logistic regression is a classification algorithm, traditionally limited to solve only two-class classification problems, and it can become unstable when the classes are well separated. If we have more than two classes, then the Linear Discriminant Analysis (LDA) addresses these points, and is the go-to linear method for multiclass classification problems. LDA assumes that our data is Gaussian (each variable is shaped like a bell curve when plotted) and each attribute has the same variance (values of each variable vary around the mean by the same amount on average). With these assumptions, the LDA model estimates the mean and variance from our data for each class. We use sklearn.discriminant_analysis.LinearDiscriminantAnalysis class to use this algorithm in Python.
Decision Trees are also known as Classification and Regression Trees (CART), because this algorithm can be used to solve both types of supervised ML problems. The representation for the CART model is a binary tree, where each node represents a single input variable (x) and a split point on that variable, assuming the variable is numeric. The leaf nodes of the tree contain an output variable (y), which is used to make a prediction. CART uses a greedy approach to divide the input space where all the values are lined up, and different split points are tried and tested using a cost function. The split with the lowest cost is selected. A split point is a single value of a single attribute. All input variables and all possible split points are evaluated, and the very best split point is chosen each time. For classification ML problems, the Gini index function is used, which indicates how pure the leaf nodes are. For regression problems, the cost function, that is minimized to choose spit points, is the sum squared error.
Naive Bayes is a classification algorithm for solving both binary and multiclass classification problems. It is called Naive Bayes because the calculation of the probabilities for each hypothesis is simplified to make their calculation tractable. Instead of calculating the values of each attribute value, they are assumed to be conditionally independent, given the target value. This assumption is extreme but works very well in real-world data. Training with this algorithm is high-speed, since no coefficients are needed to be fitted by optimization procedures, and only the probability of each class, and the probability of each class given different input (x) values, need to be calculated. We use sklearn.naive_bayes class to use this algorithm.
A hypothesis is a function that best describes the target in our supervised machine learning problems. We can say that it is a guess that requires some evaluation. The hypothesis, that an algorithm would come up with, depends upon our data and also depends upon the restrictions and biases that we have imposed on our data. In statistics, we conduct some hypothetical tests on our data to draw some conclusion. A reasonable hypothesis is testable; it can be either true or false. These tests are conducted based on some assumptions, which lead us to the following two terms: Null Hypothesis (H0) and Alternate Hypothesis (H1). H0 is the default assumption and suggests no effect, while H1 suggests some effect. H1 is the violation of the test’s assumption. H1 means that the evidence suggests that the H0 can be rejected.
K-Nearest Neighbors (KNN) algorithm is used to solve both classification and regression ML problems. KNN stores the entire dataset for modeling; so, it makes a prediction using the training dataset directly. Predictions are made for a new data point by searching through the entire training set for the k’s most similar instances and then summarizing the output variable for those k instances. For regression, this might be the mean output variable; in classification, this might be the mode (or most common) class value. To determine which of the k instances in the training dataset are most similar to a new input, a distance measure is used. For real-valued input variables, the most popular distance measure is Euclidean distance. Euclidean distance is calculated as the square root of the sum of the squared differences between a point x and point y across all input attributes. Other popular distance measures are Hamming distance, Manhattan distance, etc. Euclidean is a good distance measure to use if the input variables are similar in type (e.g., all measured widths and heights). Manhattan distance is an excellent measure to use if the input variables are not similar in type (such as age, gender, height, etc.). We use sklearn.neighbors class to use this algorithm in Python.
Support Vector Machines or SVM algorithm is used to solve both classification and regression ML problems. According to this algorithm, the numeric input variables (x) in our data form an n-dimensional space. For example, if we had three input variables, this would form a three-dimensional space. A hyperplane is a line that splits these input variable spaces. In SVM, a hyperplane is selected to best separate the points in the input variable space by their class - either class 0 or class 1. The distance between the line and the closest data points is referred to as the margin. The best or optimal line that can separate the two classes is the line that has the largest margin. This is called the Maximal-Margin hyperplane. The margin is calculated as the perpendicular distance from the line to only the closest points. These points are called the support vectors. Since real data is messy, we cannot separate them perfectly with a hyperplane. To solve this problem, a soft margin classifier is introduced. In practice, SVM algorithm is implemented using a kernel. This kernel can be linear, polynomial, or radial, based on our data problem. SVM assumes that our inputs are numeric, so if we have categorical inputs, we may need to convert them to binary dummy variables. We use sklearn.svm class to use this algorithm in Python.
Random Forest is a type of ensemble machine learning algorithm called Bootstrap Aggregation or bagging. The bootstrap is a powerful statistical method for estimating a quantity from a data sample and an ensemble method is a technique that combines the predictions from multiple machine learning algorithms together to make more accurate predictions than any individual model. Bootstrap Aggregation is a general procedure that can be used to reduce the variance for those algorithms that have high variance, like decision trees (CART). Decision trees are very sensitive to data; they train on, and so if training data is changed, the resulting decision tree can be quite different. Random Forest algorithm handles this drawback by learning subtress in such a way that resulting predictions from all of the subtrees have less correlation. In other words we can say that a random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy. We use sklearn.ensemble class to use RandomForestClassifier() or RandomForestRegressor() in Python.
Boosting is an ensemble technique that attempts to create a strong classifier from a number of weak classifiers. This is done by building a model from the training data, then creating a second model that attempts to correct the errors from the first model. Models are added until the training set is predicted perfectly or a maximum number of models are added. CatBoost is an example of boosting technique.
Classification Accuracy, Log Loss, Area under ROC Curve, Confusion Matrix, Classification Report.
Classification Accuracy is the most common evaluation metric for classification problems. It is the number of correct predictions made as a ratio of all predictions made. We can use accuracy_score() function from sklearn.metrics class or classification_report() function from sklearn.metrics class to calculate accuracy.
Log loss is a performance metric for evaluating the predictions of probabilities of membership to a given class. Smaller log loss is better and a value of 0 represents a perfect log loss. We can use log_loss() function from sklearn.metrics class to calculate log loss.
Area Under ROC Curve (or ROC AUC) is a performance metric for evaluating binary classification problems mainly. An ROC Curve is a plot of the true positive rate and the false positive rate for a given set of probability predictions at different thresholds. These different thresholds are used to map the probabilities to class labels. The area under the curve is then the approximate integral under the ROC Curve. We can use roc_auc_score() function from sklearn.metrics class to use this metric.
The confusion matrix is a presentation table of the accuracy of a model with two or more classes. The table presents predictions on the x-axis and accuracy outcomes on the y-axis. The cells of the table are the number of predictions made by a machine learning algorithm. The confusion matrix shows the ways in which our classification model is confused when it makes predictions.
Python’s scikit-learn library provides a convenience report, when working on classification problems to give us a quick idea of the accuracy of a model using a number of measures. The classification_report() function from sklearn.metrics class displays the precision, recall, f1-score, and support for each class.
Mean Absolute Error, Mean Squared Error, R^2.
Mean Absolute Error (MAE) is the average of the absolute differences between predictions and actual values. It gives an idea of how wrong the predictions were. We can sue mean_absolute_error() function from sklearn.metrics class to use this metric. The best value of MAE is 0.0.
Mean Squared Error (MSE) is similar to the mean absolute error. It provides a gross idea of the magnitude of the error. Best value of MSE is 0.0 and we can use mean_squared_error() function from sklearn.metrics class to calculate this metric.
R^2 (R Squared) metric provides an indication of the goodness of fitting of a set of predictions to the actual values. This measure is also called the coefficient of determination. Best possible score of RMSE is 1.0 and it can be negative. A perfect model would get score of 0.0. We can sue r2_score() function form sklearn.metrics class to compute this metric.
No, accuracy metric can be misleading if we have an unequal number of observations in each class or if we have more than two classes in our dataset. We must calculate confusion matrix, which can give us a better idea of what our classification model is getting right and what types of errors it is making. Besides this, Precision, Recall, and f1-score from classification report can give us correct performance measurement.
For calculating a confusion matrix, first we need a test or validation dataset with expected outcome values, then we make a prediction for each row in our test dataset. At last, from the expected outcomes and predictions count, we see the following two points: the number of correct predictions for each class and the number of incorrect predictions for each class, organized by the class that was predicted. These numbers are organized in a table or in a matrix, where each row of the matrix corresponds to a predicted class and each column of the matrix corresponds to an actual class. The counts of correct and incorrect classification are then filled into the matrix. The total number of correct predictions for a class go into the expected row for that class value, and the predicted column for that class value. In the same way, the total number of incorrect predictions for a class go into the expected row for that class value and the predicted column for that class value. In Python, from sklearn.metrics class, we import confusion_matrix() function to calculate this matrix.
From sklearn.metrics class, we use classification_report() function to calculate the report. This report displays the precision, recall, f1-score and support for each class. Precision is the number of positive predictions divided by the total number of positive class values predicted. It is also called the Positive Predictive Value (PPV). Precision can be thought of as a measure of a classifier’s exactness. Recall is the number of positive predictions divided by the number of positive class values in the test data. It is also called Sensitivity or the True Positive Rate. Recall can be thought of as a measure of a classifier’s completeness. F1-Score conveys the balance between the precision and the recall. If we are looking to select a model based on a balance between precision and recall, the F1-Score is our choice. Formulas of these three metrics are as follows:
Data rescaling is an important part of data preparation before applying machine learning algorithms. Most of the machine learning algorithms work very well, if data is on same scale and give worst results if we avoid this. Converting features in same scale is known as rescaling. Normalization is a technique for rescaling. Normalization refers to rescaling real valued numeric attributes into the range 0 and 1. We can use sklean.preprocessing class for rescaling and normalize() function is used for this purpose. Other than this function, we can also use MinMaxScaler class from sklean.preprocessing for rescaling.
Standardization refers to shifting the distribution of each attribute to have a mean of zero and a standard deviation of one. It is a useful technique to transform attributes with a Gaussian distribution and differing means and standard deviations to a standard Gaussian distribution with a mean of 0 and a standard deviation of 1. We can use StandardScaler class from sklean.preprocessing for standardization.
For improving our machine learning model result, we use scikit-learn.model_selection class’s Grid Search CV or Randomized Search CV method. Grid Search CV method builds and evaluates a model for each combination of algorithm parameters specified in a grid. Randomized Search CV method samples algorithm parameters from a random distribution for a fixed number of iterations, then a model is constructed and evaluated for each combination of parameters chosen.
I follow the following 5 cycle while solving my predictive modeling data science problem: define the problem, prepare the data, spot-check different algorithms, improve the model, save and deploy the model.
Data leakage is a problem in machine learning while developing a predictive model. Data leakage is when information from outside the training dataset is used to create the model. It is a serious problem for the following reason: creating overly optimistic models that are practically useless and cannot be used in production. To overcome this problem, we should always use cross validation and hold back validation dataset. If possible, we should use both techniques. As a good practice, we must perform data preparation steps (feature selection, outlier removal, encoding, feature scaling, etc.) within cross validation folds.
If we have a lot of input features and we want to use only important features to our model, then we can use the feature selection technique. One common feature selection technique from scikit-learn’s library is: Recursive Feature Elimination (RFE). It works by recursively removing attributes and building a model on those attributes that remain. It uses the model accuracy to identify which attributes contribute the most to predict the target attribute. Some algorithms, like Random Forest and CatBoost have inbuilt feature importance methods - feature_importances_ and eval_features() respectively.
You have come a long way in a short amount of time. You have developed the important and valuable skillset of being able to solve different machine learning problems. This is just the beginning of your journey. Data Science is very broad and you need to practice daily and make a habit of reading about new algorithms/techniques coming in this field. To master the data science, your next step is to get familiar with various real world problems and their solutions. For this, I recommend you to join https://www.kaggle.com/, participate in any past challenge there, apply your learning to solve that challenge without seeing the solutions, and in the end, compare your approach with a winner approach. In this way, you will gain practical knowledge of solving a business problem with Data Science. You can follow BPB Publications’s catalog and also my GitHub profile: https://github.com/dsbyprateekg. I want to take a moment and sincerely thank you for letting me help you start your journey with Data Science. I hope you keep learning and have fun as you continue to master Data Science.
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