Scala Cookbook
SECOND EDITION
Recipes for Object-Oriented and Functional Programming
Alvin Alexander
Scala Cookbook
by Alvin Alexander
Copyright © 2021 Alvin Alexander. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.
Revision History for the Second Edition
See http://oreilly.com/catalog/errata.csp?isbn=9781492051541 for release details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Scala Cookbook, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.
The views expressed in this work are those of the author, and do not represent the publisher’s views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.
978-1-492-05154-1
[LSI]
Dedication
To the Kirn family of Louisville, Kentucky. As in the movie, While You Were Sleeping, I adopted them a long time ago, and my life has never been the same.
And also to my friends who passed away during the creation of this book: Frank, Ben, Kenny, Bill, and Lori.
Preface
This is a cookbook of problem-solving recipes about Scala 3, the most interesting programming language I’ve ever used. The book contains solutions to more than two hundred fifty common Scala programming problems, demonstrated with more than one thousand examples.
Compared to other Scala 3 learning resources, there are several unique things about this book:
As a cookbook, it’s intended to save you time by providing solutions to the most common problems you’ll encounter.
The book covers not only the Scala language but also recipes on Scala tools and libraries, including sbt, Spark, Scala.js, Akka actors, and JSON processing with the Play Framework.
The book takes a big dive into the Scala collections classes, using five chapters to demonstrate their use.
Output from the examples is shown either in the Scala interpreter or in comments after the code. As a result, whether you’re sitting by a computer, on a plane, or reading in your favorite recliner, you get the benefit of seeing their exact output. (Which often leads to, “Ah, so that’s how that works.”)
The Scala 3 Language
In the first edition of Scala Cookbook, I described Scala 2 as feeling like a combination of Ruby and Java. Back then I wrote, “My (oversimplified) Scala elevator pitch is that it’s a child of Ruby and Java: it’s light, concise, and readable like Ruby, but it compiles to class files that you package as JAR files that run on the Java virtual machine (JVM); it uses traits and mixins, and feels dynamic, but it’s statically typed.”
Since then, the Scala language features have been rethought and debated in an open, public process, and with the release of Scala 3 in 2021, the language feels even lighter, and now it seems like a combination of four terrific languages: Ruby and Java, combined with the lightweight and clean syntax of Python and Haskell.
Part of this even-lighter feel is thanks to the new optional braces syntax, which is also known as a significant indentation style. With this one change, for loops that used to look like this:
for (i <- 1 to 5) { println(i) }
now look like this:
for i <- 1 to 5 do println(i)
Similarly, if expressions and many other expressions also use less boilerplate syntax and are easier to read:
val y = if (x == 1) { true } else { false } // Scala 2
val y = if x == 1 then true else false // Scala 3
While this new syntax is considered optional, it’s become the de facto standard and is used in this book, the Scala 3 Book that I cowrote for the Scala documentation website, the official Scala 3 training classes on Coursera, the books Programming in Scala by Martin Odersky et al. (Artima Press) and Programming Scala by Dean Wampler (O’Reilly), and many more learning resources.
The new syntax isn’t the only change. Scala 3 has many new features, including:
Enumerations
Union and intersection types
Top-level definitions (so your code no longer has to be contained inside classes, traits, and objects)
Simplified use of implicits with the new given and using syntax
Greatly simplified syntax for extension methods and type classes
Even the syntax of traits and classes has been simplified to be more readable than ever before:
trait Animal:
def speak(): Unit
trait HasTail:
def wagTail(): Unit
class Dog extends Animal, HasTail:
def speak() = println("Woof")
def wagTail() = println("⎞⎜⎛ ⎞⎜⎛")
With the new syntax, every construct that creates unnecessary “noise” in your code has been removed.
Scala Features
In addition to everything just stated, Scala provides a multitude of features that make it a unique and truly modern programming language:
It’s created by Martin Odersky—the “father” of javac—and influenced by Java, Ruby, Smalltalk, ML, Haskell, Python, Erlang, and others.
It’s a high-level programming language.
It has a concise, readable syntax—we call it expressive.
It’s statically typed—so you get to enjoy all the benefits of static type safety—but it feels like a dynamic scripting language.
It’s a pure object-oriented programming (OOP) language; every variable is an object, and every operator is a method.
It’s also a functional programming (FP) language, so you can pass functions around as variables.
Indeed, the essence of Scala is, as Mr. Odersky puts it, that it’s a fusion of FP and OOP in a typed setting, with:
Functions for the logic
Objects for the modularity
It runs on the JVM, and thanks to the Scala.js project, it’s also a type-safe JavaScript replacement.
It interacts seamlessly with Java and other JVM libraries.
Thanks to GraalVM and Scala Native, you can now create fast-starting native executables from your Scala code.
The innovative Scala collections library has dozens of prebuilt functional methods to save you time and greatly reduces the need to write custom for loops and algorithms.
Programming best practices are built into Scala, which favors immutability, anonymous functions, higher-order functions, pattern matching, classes that cannot be extended by default, and much more.
The Scala ecosystem offers the most modern FP libraries in the world.
One thing that I love about Scala is that if you’re familiar with Java, you can be productive with Scala on day 1—but the language is deep, so as you go along you’ll keep learning and finding newer, better ways to write code. Scala will change the way you think about programming—and that’s a good thing.
Of all of Scala’s benefits, what I like best is that it lets you write concise, readable code. The time a programmer spends reading code compared to the time spent writing code is said to be at least a 10:1 ratio, so writing code that’s concise and readable is a big deal.
Scala Feels Light and Dynamic
More than just being expressive, Scala feels like a light, dynamic scripting language. For instance, Scala’s type inference system eliminates the need for the obvious. Rather than always having to specify types, you simply assign your variables to their data:
val hello = "Hello, world" // a String
val i = 1 // an Int
val x = 1.0 // a Double
Notice that there’s no need to declare that a variable is a String, Int, or Double. This is Scala’s type inference system at work.
Creating your own custom types works in exactly the same way. Given a Person class:
class Person(val name: String)
you can create a single person:
val p = Person("Martin Odersky")
or multiple people in a list, with no unnecessary boilerplate code:
val scalaCenterFolks = List(
Person("Darja Jovanovic"),
Person("Julien Richard-Foy"),
Person("Sébastien Doeraene")
)
And even though I haven’t introduced for expressions yet, I suspect that any developer with a little bit of experience can understand this code:
for
person <- scalaCenterFolks
if person.name.startsWith("D")
do
println(person.name)
And even though I haven’t introduced enums yet, the same developer likely knows what this code means:
enum Topping:
case Cheese, Pepperoni, Mushrooms, Olives
Notice again that there’s no unnecessary boilerplate code here; the code is as “minimalist” as possible, but still easily readable. Great care has been taken to continue Scala’s tradition of being an expressive language.
In all of these examples you can see Scala’s lightweight syntax, and how it feels like a dynamic scripting language.
Audience
This book is intended for programmers who want to be able to quickly find solutions to problems they’ll encounter when using Scala and its libraries and tools. I hope it will also be a good tool for developers who want to learn Scala. I’m a big believer in learning by example, and this book is chock-full of examples.
I generally assume that you have some experience with another programming language like C, C++, Java, Ruby, C#, PHP, Python, Haskell, and the like. My own experience is with those languages, so I’m sure my writing is influenced by that background.
Another way to describe the audience for this book involves looking at different levels of software developers. In this article on Scala levels, Martin Odersky defines the following levels of computer programmers:
Level A1: Beginning application programmer
Level A2: Intermediate application programmer
Level A3: Expert application programmer
Level L1: Junior library designer
Level L2: Senior library designer
Level L3: Expert library designer
This book is primarily aimed at the application developers in the A1, A2, A3, and L1 categories. While helping those developers is my primary goal, I hope that L2 and L3 developers can also benefit from the many examples in this book―especially if they have no prior experience with functional programming, or they want to quickly get up to speed with Scala and its tools and libraries.
Contents of This Book
This book is all about solutions, and Chapter 1, Command-Line Tasks contains a collection of recipes centered around using Scala at the command line. It begins by showing tips on how to use the Scala REPL, as well as the feature-packed Ammonite REPL. It then shows how to use command-line tools like scalac and scala to compile and run your code, as well as the javap command to disassemble your Scala class files. Finally, it shows how to run Scala-generated JAR files.
Chapter 2, Strings provides recipes for working with strings. Scala gets its basic String functionality from Java, but with the power of implicit conversions, Scala adds new functionality to strings, so you can also treat them as a sequence of characters (Char values).
Chapter 3, Numbers and Dates provides recipes for working with Scala’s numeric types, as well as the date classes that were introduced with Java 8. In the numeric recipes, you’ll see that there are no ++ and –– operators for working with numbers; this chapter explains why and demonstrates the other methods you can use. It also shows how to handle large numbers, currency, and how to compare floating-point numbers. The date recipes use the Java 8 date classes and also show how to work with legacy dates.
Chapter 4, Control Structures demonstrates Scala’s built-in control structures, starting with if/then statements and basic for loops, and then provides solutions for working with for/yield loops (for comprehensions), and for expressions with embedded if statements (guards). Because match expressions and pattern matching are so important to Scala, several recipes show how to use them to solve a variety of problems.
Chapter 5, Classes provides examples related to Scala classes, parameters, and fields. Because Scala constructors are very different than Java constructors, several recipes show the ins and outs of writing both primary and auxiliary constructors. Several recipes show what case classes are and how to use them.
Chapter 6, Traits and Enums provides examples of the all-important Scala trait, as well as the brand-new enum. The trait recipes begin by showing how to use a trait like a Java interface, and then they dive into more advanced topics, such as how to use traits as mixins, and how to limit which members a trait can be mixed into using a variety of methods. The final two recipes demonstrate how to use enums in domain modeling, including the creation of algebraic data types (ADTs).
Chapter 7, Objects contains recipes related to objects, including the meaning of an object as an instance of a class, as well as everything related to the object keyword.
Chapter 8, Methods shows how to define methods to accept parameters, return values, use parameter names when calling methods, set default values for method parameters, create varargs fields, and write methods to support a fluent style of programming. The last recipe in the chapter demonstrates the all-new Scala 3 extension methods.
Chapter 9, Packaging and Imports contains examples of Scala’s package and import statements, which provide more capabilities than the same Java keywords. This includes how to use the curly brace style for packaging, how to hide and rename members when you import them, and more.
Although much of the book demonstrates FP techniques, Chapter 10, Functional Programming combines many FP recipes in one location. Solutions show how to define anonymous functions (function literals) and use them in a variety of situations. Recipes demonstrate how to define a method that accepts a function argument, partially applied functions, and how to return a function from a function.
The Scala collections library is rich and deep, so Chapters 11 through 15 provide hundreds of collection-related examples.
Recipes in Chapter 11, Collections: Introduction help you choose collections classes for specific needs and then help you choose and use methods within a collection to solve specific problems, such as transforming one collection into a new collection, filtering a collection, and creating subgroups of a collection.
Chapter 12, Collections: Common Sequence Classes demonstrates the most common collections classes, including Vector, List, ArrayBuffer, Array, and LazyList. Recipes demonstrate how to create each type, as well as adding, updating, and removing elements.
Chapter 13, Collections: Common Sequence Methods then demonstrates how to use the most common methods that are available for the Scala sequence classes. Recipes show how to iterate over sequences, transform them, filter them, sort them, and more.
In the same way that the previous chapter demonstrates common sequence methods, Chapter 14, Collections: Using Maps demonstrates many of the same techniques for use with Scala Map classes.
Lastly, Chapter 15, Collections: Tuple, Range, Set, Stack, and Queue provides coverage of the other Scala collections classes, including tuples, ranges, sets, stacks, and queues.
Chapter 16, Files and Processes then shows how to work with files and processes. Recipes demonstrate how to read and write files, obtain directory listings, and work with serialization. Several recipes then demonstrate how to work with external processes in a platform-independent manner.
Chapter 17, Building Projects with sbt is a comprehensive guide to the de facto build tool for Scala applications. It starts by showing several ways to create an sbt project directory structure, and then it shows how to include managed and unmanaged dependencies, build your projects, generate Scaladoc for your projects, deploy your projects, and more.
Chapter 18, Concurrency with Scala Futures and Akka Actors provides solutions for the wonderful world of building concurrent applications (and engaging those multicore CPUs!) with futures and the Akka actors library. Recipes with futures show how to build one-shot, short-lived pockets of concurrency, while the actors’ recipes demonstrate how to create long-living parallel processes that may respond to billions of requests in their lifetime.
Chapter 19, Play Framework and Web Services shows how to use Scala on both the client and server sides of web services. On the server side it shows how to use the Play Framework to develop RESTful web services. For both client and server code it shows how to serialize and deserialize JSON, and how to work with HTTP headers.
Chapter 20, Apache Spark demonstrates the Apache Spark framework. Spark is one of the applications that made Scala famous, and recipes demonstrate how to work with large datasets as a Resilient Distributed Dataset (RDD), and also how to query them using industry-standard SQL queries.
Chapter 21, Scala.js, GraalVM, and jpackage provides several recipes for libraries and tools in the Scala and JVM worlds. The first several recipes demonstrate how to use Scala.js as a type-safe JavaScript replacement. The final recipes show how to convert your Scala code into a native executable using GraalVM, and then how to package your Scala application as a native application using Java’s jpackage utility.
Chapter 22, Integrating Scala with Java shows how to solve the few problems you might encounter when integrating Scala and Java code. While Scala code often just works when interacting with Java, there are a few “gotchas.” This chapter shows how to resolve problems related to the differences in the collections libraries, as well as problems you can run into when calling Scala code from Java.
Chapter 23, Types provides recipes for working with Scala’s powerful type system. Starting right from the introduction, concepts such as type variance, bounds, and constraints are demonstrated by example. Recipes show how to declare generics in class and method definitions, implement duck typing, and control which types your traits can be mixed into. Then several all-new Scala 3 concepts are demonstrated with opaque types, given`and `using values as a replacement for implicits, union and intersection types, and two recipes related to the concept of equality when comparing objects.
Chapter 24, Best Practices is unique for a cookbook, but because this is a book of solutions, I think it’s important to have a section dedicated to showing the best practices, i.e., how to write code “the Scala way.” Recipes show how to create methods with no side effects, how to work with immutable objects and collection types, how to think in terms of expressions (rather than statements), how to use pattern matching, and how to eliminate null values in your code.
Installing Scala
You can install Scala 3 in several different ways, including Homebrew (on macOS), Coursier, SDKMAN, and downloading and installing Scala manually. Coursier is considered to be the “Scala installer,” and its use is covered in this “Getting Started with Scala 3” page.
If you don’t want to install Scala just yet, you can also experiment with it in your browser using these online tools:
Conventions in This Book
There are a few important points to know about the conventions I use in this book. First, as mentioned, I use the optional braces (significant indentation) programming style, which eliminates most need for parentheses and curly braces:
for i <- 1 to 5 do println(i) // use this style
for (i <- 1 to 5) { println(i) } // don’t use this style
Along with this style, I indent my code with four spaces. Currently there’s no indentation standard, and developers seem to prefer two to four spaces.
Next, when I show examples, I often show the result of my examples in comments after the examples. Therefore, my examples look like this:
(1 to 10 by 2).toList // List(1, 3, 5, 7, 9)
(1 until 10 by 2).toList // List(1, 3, 5, 7, 9)
('d' to 'h').toList // List(d, e, f, g, h)
('d' until 'h').toList // List(d, e, f, g)
Using this style helps me include many more examples in this book than I could fit in the first edition.
Other coding standards used in this book are:
I always define variables as val fields (which are like final in Java), unless there’s a reason they need to be a var.
When a method takes no parameters and has a side effect (such as printing to the console), I define and call the method with empty parentheses, as ().
While in many situations it’s not necessary to define data types, I always declare the return type of public methods.
As an example of that last standard, you can define a method without declaring its return type, like this:
def double(i: Int) = i * 2
However, most developers prefer to show the method return type:
def double(i: Int): Int = i * 2
For just a few more characters of typing now, it makes your code easier to read later.
Support
Many of the source code examples shown in this book are available in this GitHub repository, which includes many complete sbt projects:
The Scala Gitter channel is an excellent source of help, and you’ll occasionally see my questions out there.
If you’re interested in proposals and debates about Scala features, the “Scala Contributors” website is also a terrific resource.
Finally, you can find my latest blog posts at alvinalexander.com, and I often tweet about Scala topics at twitter.com/alvinalexander.
Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.
Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by context.
TIP
This element signifies a tip or suggestion.
NOTE
This element signifies a general note.
WARNING
This element indicates a warning or caution.
Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/alvinj/ScalaCookbook2Examples.
If you have a technical question or a problem using the code examples, please send an email to bookquestions@oreilly.com.
This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but generally do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Scala Cookbook by Alvin Alexander (O’Reilly). Copyright 2021 Alvin Alexander, 978-1-492-05154-1.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.
O’Reilly Online Learning
NOTE
For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.
Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.
How to Contact Us
Please address comments and questions concerning this book to the publisher:
We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/scala-cookbook-2e.
Email bookquestions@oreilly.com to comment or ask technical questions about this book.
For news and information about our books and courses, visit https://oreilly.com.
Find us on Facebook: https://facebook.com/oreilly
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://youtube.com/oreillymedia
Acknowledgments
Writing a book this large takes a lot of work, and I’d like to thank my editor, Jeff Bleiel, for his work throughout the creation of this book. We began working together on the book in December 2018, and while Scala 3 kept changing through the community process, we continued working together on it until the book’s completion in 2021.
As I completed initial drafts of chapters, Jeff offered hundreds of suggestions on how to improve them. This process continued on through the COVID-19 pandemic, and as the book became more clear, Jeff (correctly) suggested the reorganization of several chapters. He’s incredibly thorough, and I can tell you that when you see a book that’s been edited by Jeff Bleiel, you can be assured that it’s well edited and thought out.
For this edition of the book, all the reviewers were helpful in different ways. Jason Swartz was a “most valuable reviewer” candidate on the first edition of Scala Cookbook, and he did another stellar job on this edition with many solid suggestions.
Philip Schwarz joined us on this edition and offered a number of good insights, especially on the early chapters of the book.
But for this edition, I owe a huge and special thanks to Hermann Hueck, who was the most valuable reviewer for this edition. Hermann offered hundreds of suggestions, both large and small, covering everything from the smallest line of code to the overall organization of the book.
I can’t say enough about both Jeff and Hermann, but maybe the best way to say it is that this book wouldn’t have been the same without them—thank you both!
I’d also like to thank Christopher Faucher, the production editor for this book. After Jeff and I agreed that we were finished with the initial writing and editing process, Chris came in and helped get the book to the finish line, as we worked through hundreds of comments and issues. If you know what it’s like to bring a large software application to life, getting a big book like this past the finish line is exactly the same. Thank you, Chris!
Finally, I’d like to thank Martin Odersky and his team for creating such an interesting programming language. I first fell in love with Scala when I found his book Programming in Scala at a bookstore in Anchorage, Alaska, in 2010, and since then it’s been a lovefest that continues through Scala 3 in 2021 and beyond.
All the best,
Al
Chapter 1. Command-Line Tasks
Most likely, one of the first steps on your Scala 3 journey will involve working at the command line. For instance, after you install Scala as shown in “Installing Scala”, you might want to start the REPL—Scala’s Read/Eval/Print/Loop—by typing scala at your operating system command line. Or you may want to create a little one-file “Hello, world” project and then compile and run it. Because these command-line tasks are where many people will start working with Scala, they’re covered here first.
The REPL is a command-line shell. It’s a playground area where you can run small tests to see how Scala and its third-party libraries work. If you’re familiar with Java’s JShell, Ruby’s irb, the Python shell or IPython, or Haskell’s ghci, Scala’s REPL is similar to all of these. As shown in Figure 1-1, just start the REPL by typing scala at your operating system command line, then type in your Scala expressions, and they’ll be evaluated in the shell.
Any time you want to test some Scala code, the REPL is a terrific playground environment. There’s no need to create a full-blown project—just put your test code in the REPL and experiment with it until you know it works. Because the REPL is such an important tool, its most important features are demonstrated in the first two recipes of this chapter.
Figure 1-1. The Scala 3 REPL running in a macOS Terminal window
While the REPL is terrific, it’s not the only game in town. The Ammonite REPL was originally created for Scala 2, and it had many more features than the Scala 2 REPL, including:
The ability to import code from GitHub and Maven repositories
The ability to save and restore sessions
Pretty-printed output
Multiline editing
At the time of this writing Ammonite is still being ported to Scala 3, but many important features already work. See Recipe 1.3 for examples of how to use those features.
Finally, when you need to build Scala projects, you’ll typically use a build tool like sbt, which is demonstrated in Chapter 17. But if you ever want to compile and run a small Scala application, such as one that has just one or two files, you can compile your code with the scalac command and run it with scala, just like you do in Java with the javac and java commands. This process is demonstrated in Recipe 1.4, and after that, Recipe 1.6 shows how you can run applications that you package as a JAR file with the java or scala commands.
1.1 Getting Started with the Scala REPL
Problem
You want to get started using the Scala REPL, and start taking advantage of some of its basic features.
Solution
If you’ve used REPL environments in languages like Java, Python, Ruby, and Haskell, you’ll find the Scala REPL to be very familiar. To start the REPL, type scala at your operating system command line. When the REPL starts up you may see an initial message, followed by a scala> prompt:
$ scala
Welcome to Scala 3.0
Type in expressions for evaluation. Or try :help.
scala> _
The prompt indicates that you’re now using the Scala REPL. Inside the REPL environment you can try all sorts of different experiments and expressions:
scala> val x = 1
x: Int = 1
scala> val y = 2
y: Int = 2
scala> x + y
res0: Int = 3
scala> val x = List(1, 2, 3)
x: List[Int] = List(1, 2, 3)
scala> x.sum
res1: Int = 6
As shown in these examples:
After you enter your command, the REPL output shows the result of your expression, including data type information.
If you don’t assign a variable name, as in the third example, the REPL creates its own variable, beginning with res0, then res1, etc. You can use these variable names just as though you had created them yourself:
scala> res1.getClass
res2: Class[Int] = int
scala> res1 + 2
res3: Int = 8
Both beginning and experienced developers write code in the REPL every day to quickly see how Scala features and their own algorithms work.
Tab completion
There are a few simple tricks that can make using the REPL more effective. One trick is to use tab completion to see the methods that are available on an object. To see how tab completion works, type the number 1, then a decimal, and then press the Tab key. The REPL responds by showing the dozens of methods that are available on an Int instance:
scala> 1.
!= finalize round
floatValue self
% floor shortValue
& formatted sign
* getClass signum
many more here ...
You can also limit the list of methods that are displayed by typing the first part of a method name and then pressing the Tab key. For instance, if you want to see all the methods available on a List, type List(1). followed by the Tab key, and you’ll see over two hundred methods. But if you’re only interested in methods on a List that begin with the characters to, type List(1).to and then press Tab, and that output will be reduced to these methods:
scala> List(1).to
to toIndexedSeq toList toSet toTraversable
toArray toIterable toMap toStream toVector
toBuffer toIterator toSeq toString
Discussion
I use the REPL to create many small experiments, and it also helps me understand some type conversions that Scala performs automatically. For instance, when I first started working with Scala and typed the following code into the REPL, I didn’t know what type the variable x was:
scala> val x = (3, "Three", 3.0)
val x: (Int, String, Double) = (3,Three,3.0)
With the REPL, it’s easy to run tests like this and then call getClass on a variable to see its type:
scala> x.getClass
val res0: Class[? <: (Int, String, Double)] = class scala.Tuple3
Although some of that result line is hard to read when you first start working with Scala, the text on the right side of the = lets you know that the type is a Tuple3 class.
You can also use the REPL’s :type command to see similar information, though it currently doesn’t show the Tuple3 name:
scala> :type x
(Int, String, Double)
However, it’s generally helpful in many other instances:
scala> :type 1 + 1.1
Double
scala> :type List(1,2,3).map(_ * 2.5)
List[Double]
Though these are simple examples, you’ll find that the REPL is extremely helpful when you’re working with more complicated code and libraries you’re not familiar with.
Starting the REPL Inside sbt
You can also start a Scala REPL session from inside the sbt shell. As shown in Recipe 17.5, “Understanding Other sbt Commands”, just start the sbt shell inside an sbt project:
$ sbt
MyProject> _
Then use either the console or the consoleQuick command from there:
MyProject> console
scala> _
The console command compiles the source code files in the project, puts them on the classpath, and starts the REPL. The consoleQuick command starts the REPL with the project dependencies on the classpath, but without compiling project source code files. This second option is useful for times when your code isn’t compiling, or when you want to try some test code with your dependencies (libraries).
See Also
If you like the idea of a REPL environment but want to try alternatives to the default REPL, there are several great free alternatives:
The Ammonite REPL has more features than the REPL, and it’s demonstrated in Recipe 1.3.
Scastie is a web-based alternative to the REPL that supports sbt options and lets you add external libraries into your environment.
ScalaFiddle is also a web-based alternative.
The IntelliJ IDEA and Visual Studio Code (VS Code) IDEs both have worksheets, which are similar to the REPL.
1.2 Loading Source Code and JAR Files into the REPL
Problem
You have Scala code in a source code file and want to use that code in the REPL.
Solution
Use the :load command to read source code files into the REPL environment. For example, given this code in a file named Person.scala, in a subdirectory named models:
class Person(val name: String):
override def toString = name
you can load that source code into the running REPL environment like this:
scala> :load models/Person.scala
// defined class Person
After the code is loaded into the REPL, you can create a new Person instance:
scala> val p = Person("Kenny")
val p: Person = Kenny
Note, however, that if your source code has a package declaration:
// Dog.scala file
package animals
class Dog(val name: String)
the :load command will fail:
scala> :load Dog.scala
1 |package foo
|^^^
|Illegal start of statement
Source code files can’t use packages in the REPL, so for situations like this you’ll need to compile them into a JAR file, and then include them in the classpath when you start the REPL. For instance, this is how I use version 0.2.0 of my Simple Test library with the Scala 3 REPL:
// start the repl like this
$ scala -cp simpletest_3.0.0-0.2.0.jar
scala> import com.alvinalexander.simpletest.SimpleTest.*
scala> isTrue(1 == 1)
true
At the time of this writing you can’t add a JAR to an already running REPL session, but that feature may be added in the future.
Discussion
Another good thing to know is that compiled class files in the current directory are automatically loaded into the REPL. For example, if you put this code in a file named Cat.scala and then compile it with scalac, that creates a Cat.class file:
case class Cat(name: String)
If you start the REPL in the same directory as that class file, you can create a new Cat:
scala> Cat("Morris")
val res0: Cat = Cat(Morris)
On Unix systems you can use this technique to customize your REPL environment. To do so, follow these steps:
Create a subdirectory in your home directory named repl. In my case, I create this directory as /Users/al/repl. (Use any name for this directory that you prefer.)
Put any *.class files you want in that directory.
Create an alias or shell script you can use to start the REPL in that directory.
On my system I put a file named Repl.scala in my ~/repl directory, with these contents:
import sys.process.*
def clear = "clear".!
def cmd(cmd: String) = cmd.!!
def ls(dir: String) = println(cmd(s"ls -al $dir"))
def help =
println("\n=== MY CONFIG ===")
"cat /Users/Al/repl/Repl.scala".!
case class Person(name: String)
val nums = List(1, 2, 3)
I then compile that code with scalac to create its class files in that directory. Then I create and use this alias to start the REPL:
alias repl="cd ~/repl; scala; cd -"
That alias moves me to the ~/repl directory, starts the REPL, and then returns me to my current directory when I exit the REPL.
As another approach, you can create a shell script named repl, make it executable, and place it in your ~/bin directory (or anywhere else on your PATH):
#!/bin/sh
cd ~/repl
scala
Because a shell script is run in a subprocess, you’ll be returned to your original directory when you exit the REPL.
By using this approach, your custom methods will be loaded into the REPL when it starts up, so you can use them inside the scala shell:
clear // clear the screen
cmd("ps") // run the 'ps' command
ls(".") // run 'ls' in the current directory
help // displays my Repl.scala file as a form of help
Use this technique to preload any other custom definitions you’d like to use in the REPL.
1.3 Getting Started with the Ammonite REPL
Problem
You want to get started using the Ammonite REPL, including understanding some of its basic features.
Solution
The Ammonite REPL works just like the Scala REPL: just download and install it, then start it with its amm command. As with the default Scala REPL, it evaluates Scala expressions and assigns a variable name if you don’t provide one:
@ val x = 1 + 1
x: Int = 2
@ 2 + 2
res0: Int = 4
But Ammonite has many additional features. You can change the shell prompt with this command:
@ repl.prompt() = "yo: "
yo: _
Next, if you have these Scala expressions in a file named Repl.scala, in a subdirectory named foo:
import sys.process.*
def clear = "clear".!
def cmd(cmd: String) = cmd.!!
def ls(dir: String) = println(cmd(s"ls -al $dir"))
you can import them into your Ammonite REPL with this command:
@ import $file.foo.Repl, Repl.*
Then you can use those methods inside Ammonite:
clear // clear the screen
cmd("ps") // run the 'ps' command
ls("/tmp") // use 'ls' to list files in /tmp
Similarly, you can import a JAR file named simpletest_3.0.0-0.2.0.jar in a subdirectory named foo into your amm REPL session using the Ammonite $cp variable:
// import the jar file
import $cp.foo.`simpletest_3.0.0-0.2.0.jar`
// use the library you imported
import com.alvinalexander.simpletest.SimpleTest.*
isTrue(1 == 1)
The import ivy command lets you import dependencies from Maven Central (and other repositories) and use them in your current shell:
yo: import $ivy.`org.jsoup:jsoup:1.13.1`
import $ivy.$
yo: import org.jsoup.Jsoup, org.jsoup.nodes.{Document, Element}
import org.jsoup.Jsoup
yo: val html = "<p>Hi!</p>"
html: String = "<p>Hi!</p>"
yo: val doc: Document = Jsoup.parse(html)
doc: Document = <html> ...
yo: doc.body.text
res2: String = "Hi!"
Ammonite’s built-in time command lets you time how long it takes to run your code:
@ time(Thread.sleep(1_000))
res2: (Unit, FiniteDuration) = ((), 1003788992 nanoseconds)
Ammonite’s auto-complete ability is impressive. Just type an expression like this, then press Tab after the decimal:
@ Seq("a").map(x => x.
When you do so, Ammonite displays a long list of methods that are available on x—which is a String—beginning with these methods:
def intern(): String
def charAt(x$0: Int): Char
def concat(x$0: String): String
much more output here ...
This is nice because it shows you not only the method names but also their input parameters and return type.
Discussion
Ammonite’s list of features is long. Another great one is that you can use a startup configuration file, just like using a Unix .bashrc or .bash_profile startup file. Just put some expressions in a ~/.ammonite/predef.sc file:
import sys.process.*
repl.prompt() = "yo: "
def clear = "clear".!
def cmd(cmd: String) = cmd.!!
def ls(dir: String) = println(cmd(s"ls -al $dir"))
def reset = repl.sess.load() // similar to the scala repl ':reset' command
Then, when you start the Ammonite REPL, your prompt will be changed to yo:, and those other methods will be available to you.
One more great feature is that you can save a REPL session, and it will save everything you’ve done to this point. To test this, create a variable in the REPL, and then save your session:
val remember = 42
repl.sess.save()
Then create another variable:
val forget = 0
Now reload the session, and you’ll see that the remember variable is still available, but the forget variable has been forgotten, as desired:
@ repl.sess.load()
res3: SessionChanged = SessionChanged(removedImports = Set('forget),
addedImports = Set(), removedJars = Set(), addedJars = Set())
@ remember
res4: Int = 42
@ forget
|val res5 = forget
| ^^
| Not found: forget
You can also save and load multiple sessions by giving them different names, like this:
// do some work
val x = 1
repl.sess.save("step 1")
// do some more work
val y = 2
repl.sess.save("step 2")
// reload the first session
repl.sess.load("step 1")
x // this will be found
y // this will not be found
See the Ammonite documentation for details on more features.
1.4 Compiling with scalac and Running with scala
Problem
Though you’ll typically use a build tool like sbt or Mill to build Scala applications, occasionally you may want to use more basic tools to compile and run small test programs, in the same way you might use javac and java with small Java applications.
Solution
Compile small programs with scalac, and run them with scala. For example, given this Scala source code file named Hello.scala:
@main def hello = println("Hello, world")
compile it at the command line with scalac:
$ scalac Hello.scala
Then run it with scala, giving the scala command the name of the @main method you created:
$ scala hello
Hello, world
Discussion
Compiling and running classes is the same as Java, including concepts like the classpath. For instance, imagine that you have a class named Pizza in a file named Pizza.scala, and that it depends on a Topping type:
class Pizza(val toppings: Topping*):
override def toString = toppings.toString
Assuming that Topping is defined like this:
enum Topping:
case Cheese, Mushrooms
and that it’s in a file named Topping.scala, and has been compiled to Topping.class in a subdirectory named classes, compile Pizza.scala like this:
$ scalac -classpath classes Pizza.scala
Note that the scalac command has many additional options you can use. For instance, if you add the -verbose option to the previous command, you’ll see hundreds of lines of additional output that show how scalac is working. These options may change over time, so use the -help option to see additional information:
$ scalac -help
Usage: scalac <options> <source files>
where possible standard options include:
-P Pass an option to a plugin, e.g. -P:<plugin>:<opt>
-X Print a synopsis of advanced options.
-Y Print a synopsis of private options.
-bootclasspath Override location of bootstrap class files.
-classpath Specify where to find user class files.
much more output here ...
Main methods
While we’re talking about compiling main methods, it helps to know that they can be declared in two ways with Scala 3:
Using the @main annotation on a method
Declaring a main method with the proper signature in an object
As shown in the Solution, a simple @main method that takes no input parameters can be declared like this:
@main def hello = println("Hello, world")
You can also declare an @main method to take whatever parameters you want on the command line, such as taking a String and Int in this example:
@main def hello(name: String, age: Int): Unit =
println(s"Hello, $name, I think you are $age years old.")
After that code is compiled with scalac, it can be run like this:
$ scala hello "Lori" 44
Hello, Lori, I think you are 44 years old.
For the second approach, declaring a main method inside an object is just like declaring a main method in Java, and the signature for the Scala main method must look like this:
object YourObjectName:
// the method must take `Array[String]` and return `Unit`
def main(args: Array[String]): Unit =
// your code here
If you’re familiar with Java, that Scala code is analogous to this Java code:
public class YourObjectName {
public static void main(String[] args) {
// your code here
}
}
1.5 Disassembling and Decompiling Scala Code
Problem
In the process of learning how Scala code is compiled into class files, or trying to understand a particular problem, you want to examine the bytecode the Scala compiler generates from your source code.
Solution
The main way to disassemble Scala code is with the javap command. You may also be able to use a decompiler to convert your class files back to Java source code, and this option is shown in the Discussion.
Using javap
Because your Scala source code files are compiled into regular JVM class files, you can use the javap command to disassemble them. For example, assume that you’ve created a file named Person.scala that contains this source code:
class Person(var name: String, var age: Int)
Next, compile that file with scalac:
$ scalac Person.scala
Now you can disassemble the resulting Person.class file into its signature using javap, like this:
$ javap -public Person
Compiled from "Person.scala"
public class Person {
public Person(java.lang.String, int);
public java.lang.String name();
public void name_$eq(java.lang.String);
public int age();
public void age_$eq(int);
}
This shows the public signature of the Person class, which is its public API, or interface. Even in a simple example like this you can see the Scala compiler doing its work for you, creating methods like name(), name_$eq, age(), and age_$eq. The Discussion shows more detailed examples.
If you want, you can see additional information with the javap -private option:
$ javap -private Person
Compiled from "Person.scala"
public class Person {
private java.lang.String name; // new
private int age; // new
public Person(java.lang.String, int);
public java.lang.String name();
public void name_$eq(java.lang.String);
public int age();
public void age_$eq(int);
}
The javap has several more options that are useful. Use the -c option to see the actual commands that comprise the Java bytecode, and add the -verbose option to that to see many more details. Run javap -help for details on all options.
Discussion
Disassembling class files with javap can be a helpful way to understand how Scala works. As you saw in the first example with the Person class, defining the constructor parameters name and age as var fields generates quite a few methods for you.
As a second example, take the var attribute off both of those fields, so you have this class definition:
class Person(name: String, age: Int)
Compile this class with scalac, and then run javap on the resulting class file. You’ll see that this results in a much shorter class signature:
$ javap -public Person
Compiled from "Person.scala"
public class Person {
public Person(java.lang.String, int);
}
Conversely, leaving var on both fields and turning the class into a case class significantly expands the amount of code Scala generates on your behalf. To see this, change the code in Person.scala so you have this case class:
case class Person(var name: String, var age: Int)
When you compile this code, it creates two output files, Person.class and Person$.class. Disassemble those two files using javap:
$ javap -public Person
Compiled from "Person.scala"
public class Person implements scala.Product,java.io.Serializable {
public static Person apply(java.lang.String, int);
public static Person fromProduct(scala.Product);
public static Person unapply(Person);
public Person(java.lang.String, int);
public scala.collection.Iterator productIterator();
public scala.collection.Iterator productElementNames();
public int hashCode();
public boolean equals(java.lang.Object);
public java.lang.String toString();
public boolean canEqual(java.lang.Object);
public int productArity();
public java.lang.String productPrefix();
public java.lang.Object productElement(int);
public java.lang.String productElementName(int);
public java.lang.String name();
public void name_$eq(java.lang.String);
public int age();
public void age_$eq(int);
public Person copy(java.lang.String, int);
public java.lang.String copy$default$1();
public int copy$default$2();
public java.lang.String _1();
public int _2();
}
$ javap -public Person$
Compiled from "Person.scala"
public final class Person$ implements scala.deriving.Mirror$Product,
java.io.Serializable {
public static final Person$ MODULE$;
public static {};
public Person apply(java.lang.String, int);
public Person unapply(Person);
public java.lang.String toString();
public Person fromProduct(scala.Product);
public java.lang.Object fromProduct(scala.Product);
}
As shown, when you define a class as a case class, Scala generates a lot of code for you, and this output shows the public signature for that code. See Recipe 5.14, “Generating Boilerplate Code with Case Classes”, for a detailed discussion of this code.
About Those .tasty Files
You may have noticed that in addition to .class files, Scala 3 also generates .tasty files during the compilation process. These files are generated in what’s known as a TASTy format, where the acronym TASTy comes from the term typed abstract syntax trees.
Regarding what these files are, the TASTy Inspection documentation states, “TASTy files contain the full typed tree of a class including source positions and documentation. This is ideal for tools that analyze or extract semantic information from the code.”
One of their uses is for integration between Scala 3 and Scala 2.13+. As this Scala forward compatibility page states, “Scala 2.13 can read these (TASTy) files to learn, for example, which terms, types and implicits are defined in a given dependency, and what code needs to be generated to use them correctly. The part of the compiler that manages this is known as the Tasty Reader.”
See Also
In my “How to Create Inline Methods in Scala 3” blog post, I show how to use this technique to understand inline methods.
You may also be able to use decompilers to convert .class files into Java code. I occasionally use a tool named JAD, which was discontinued in 2001, but amazingly it’s still able to at least partially decompile class files twenty years later. A much more modern decompiler named CFR was also mentioned on the Scala Gitter channel.
For more information on TASTy and .tasty files, see these resources:
“Macros: the Plan for Scala 3”
“Forward Compatibility for the Scala 3 Transition”
“Scala 3 Migration Guide: Compatibility Reference”
1.6 Running JAR Files with Scala and Java
Problem
You’ve created a JAR file from a Scala application and want to run it using the scala or java commands.
Solution
First, create a basic sbt project, as shown in Recipe 17.1, “Creating a Project Directory Structure for sbt”. Then add sbt-assembly into the project configuration by adding this line to the project/plugins.sbt file:
// note: this version number changes several times a year
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.15.0")
Then put this Hello.scala source code file in the root directory of that project:
@main def hello = println("Hello, world")
Next, create a JAR file with either the assembly or show assembly command in the sbt shell:
// option 1
sbt:RunJarFile> assembly
// option 2: shows the output file location
sbt:RunJarFile> show assembly
[info] target/scala-3.0.0/RunJarFile-assembly-0.1.0.jar
As shown, the output of the show assembly command prints the location where the output JAR file is written. This file begins with the name RunJarFile because that’s the value of the name field in my build.sbt file. Similarly, the 0.1.0 portion of the filename comes from the version field in that file:
lazy val root = project
.in(file("."))
.settings(
name := "RunJarFile",
version := "0.1.0",
scalaVersion := "3.0.0"
)
Next, create an Example subdirectory, move into that directory, and copy the JAR file into that directory:
$ mkdir Example
$ cd Example
$ cp ../target/scala-3.0.0/RunJarFile-assembly-0.1.0.jar .
Because the sbt-assembly plugin packages everything you need into the JAR file, you can run the hello main method with this scala command:
$ scala -cp "RunJarFile-assembly-0.1.0.jar" hello
Hello, world
Note that if your JAR file contains multiple @main methods in packages, you can run them with similar commands, specifying the full path to the methods at the end of the command:
scala -cp "RunJarFile-assembly-0.1.0.jar" com.alvinalexander.foo.mainMethod1
scala -cp "RunJarFile-assembly-0.1.0.jar" com.alvinalexander.bar.mainMethod2
Discussion
If you (a) attempt to run your JAR file with the java command, or (b) create the JAR file with sbt package instead of sbt assembly, you’ll need to manually add your JAR file dependencies to your classpath. For example, when running a JAR file with the java command, you’ll need to use a command like this:
$ java -cp "~/bin/scala3/lib/scala-library.jar:my-packaged-jar-file.jar" ↵
foo.bar.Hello
Hello, world
Note that the entire java command should be on one line, including the foo.bar.Hello portion at the end of the line.
For this approach you need to find the scala-library.jar file. In my case, because I manage the Scala 3 distribution manually, I found it in the directory shown. If you’re using a tool like Coursier to manage your Scala installation, the files it downloads can be found under these directories:
On macOS: ~/Library/Caches/Coursier/v1
On Linux: ~/.cache/coursier/v1
On Windows: %LOCALAPPDATA%\Coursier\Cache\v1, which, for a user named Alvin, typically corresponds to C:\Users\Alvin\AppData\Local\Coursier\Cache\v1
See the Coursier Cache page for up-to-date details on these directory locations.
Why use sbt-assembly?
Note that if your application uses managed or unmanaged dependencies and you use sbt package instead of sbt assembly, you’ll have to understand all of those dependencies and their transitive dependencies, find those JAR files, and then include them in the classpath setting. For that reason, the use of sbt assembly or a similar tool is strongly recommended.
See Also
See Recipe 17.11, “Deploying a Single Executable JAR File”, for more details on how to configure and use sbt-assembly.
Chapter 2. Strings
As programmers, we deal with strings all the time—names, addresses, phone numbers, and the like. Scala strings are great because they have all the features of Java strings, and more. In this chapter you’ll see some of the shared features in the recipes on string formatting and using regex patterns, while the other recipes demonstrate features that are unique to Scala.
Because of the syntax of the Scala language, one major difference with Java is in how Scala strings are declared. All Scala variables are declared as a val or var, so a string variable is typically created like this:
val s = "Hello, world"
That expression is equivalent to this Java code:
final String s = "Hello, world"
In Scala the general rule of thumb is to always declare a variable as a val, unless there’s a good reason to use a var. (Pure functional programming takes this further, and strictly forbids the use of var fields.)
You can also explicitly declare a String type:
val s: String = "Hello, world" // don’t do this

However, that isn’t recommended because it only makes your code unnecessarily verbose. Because Scala’s type inference is very powerful, the implicit syntax shown in the first example is sufficient, and preferred. In fact, as a practical matter, the only time I declare a type explicitly when creating a variable is when I call a method and it’s not clear from the method name what its return type is:
val s: String = someObject.someMethod(42)
Scala String Features
Additional features that give power (superpower!) to Scala strings are:
The ability to compare strings with ==
Multiline strings
String interpolators, which let you write code like println(s"Name: $name")
Dozens of additional functional methods that let you treat a string as a sequence of characters
The recipes in this chapter demonstrate all of these features.
Strings are a sequence of characters
An important point I just touched on is that Scala strings can be treated as a sequence of characters, i.e., as a Seq[Char]. Because of this, given this example string:
val s = "Big Belly Burger"
these are just a few of the commonly used “sequence” methods you can call on it:
s.count(_ == 'B') // 3
s.dropRight(3) // "Big Belly Bur"
s.dropWhile(_ != ' ') // " Belly Burger"
s.filter(_ != ' ') // "BigBellyBurger"
s.sortWith(_ < _) // " BBBeeggillrruy"
s.take(3) // "Big"
s.takeRight(3) // "ger"
s.takeWhile(_ != 'r') // "Big Belly Bu"
All of those methods are standard Seq methods, and they’re covered in depth in Chapter 11.
Chaining Method Calls Together
Except for the foreach method—which returns Unit and is not “functional” according to some definitions—all the methods on a Seq are functional, meaning that they don’t mutate the existing sequence but instead return a new value when they’re applied. Because of this functional nature, you can call several methods in series on a string:
scala> "scala".drop(2).take(2).capitalize
res0: String = Al
If you haven’t seen this technique before, here’s a brief description of how this example works: drop is a collection method that drops (discards) the number of elements that are specified from the beginning of the collection, and it keeps the remaining elements. When it’s called on the string as drop(2), it drops the first two characters (sc) from the string (scala) and returns the remaining elements:
scala> "scala".drop(2)
res0: String = ala
Next, the take(2) method retains the first two elements from the sequence it’s given—the string "ala"—and discards the rest:
scala> "scala".drop(2).take(2)
res1: String = al
Finally, the capitalize method is called to get the end result:
scala> "scala".drop(2).take(2).capitalize
res2: String = Al
If you’re not familiar with chaining methods together like this, it’s known as a fluent style of programming. See Recipe 8.8, “Supporting a Fluent Style of Programming”, for more information. Code like this is very common in functional programming, where every function is pure and returns a value. This style is popular with Rx technologies like RxJava and RxScala and is also heavily used with Spark.
Where do those methods come from?
If you know Java, you may know that the Java String class doesn’t have a capitalize method, so it can be a surprise that it’s available on a Scala string. Indeed, a Scala string has dozens of additional methods on top of a Java string, all of which you can see with the “code assist” feature in an IDE like Eclipse or IntelliJ IDEA.
Once you see all the methods that are available, it can be a surprise when you learn that there is no Scala String class. How can a Scala string have all these methods if there is no Scala String class?
The way this works is that Scala inherits the Java String class and then adds methods to it through features known as implicit conversions and extension methods. Implicit conversions were the way to add methods to closed classes in Scala 2, and extension methods are how they’re added in Scala 3. See Recipe 8.9, “Adding New Methods to Closed Classes with Extension Methods”, for details on how to create extension methods.
While this may change over time, in Scala 3.0 many of the extra methods you’ll find on a Scala String are defined in the StringOps class. Those methods are defined in StringOps, and then they’re automatically imported into the scope of your code by the scala.Predef object, which is implicitly imported into every Scala source code file. In the Scala 2.13 Predef object—which is still used by Scala 3.0—you’ll find this documentation and implicit conversion:
/** The `String` type in Scala has all the methods of the underlying
* `java.lang.String`, of which it is just an alias ... In addition,
* extension methods in scala.collection.StringOps
* are added implicitly through the conversion augmentString.
*/
@inline implicit def augmentString(x: String): StringOps = new StringOps(x)
augmentString converts a String into a StringOps type. The end result is that the methods from the StringOps class are added to all Scala String instances. This includes methods like drop, take, and filter that let you treat a string as a sequence of characters.
Look at the Predef Source Code
If you’re first learning Scala, I encourage you to look at the source code for the Scala 2.13 scala.Predef object. You can find a link to the source code on that Scaladoc page, and it provides great examples of many Scala programming features. You can also see how it includes other types like StringOps and WrappedString.
2.1 Testing String Equality
Problem
You want to compare two strings to see if they’re equal, i.e., whether they contain the same sequence of characters.
Solution
In Scala, you compare two String instances with the == operator. Given these strings:
val s1 = "Hello"
val s2 = "Hello"
val s3 = "H" + "ello"
you can test their equality like this:
s1 == s2 // true
s1 == s3 // true
A nice benefit of the == method is that it doesn’t throw a NullPointerException on a basic test if a string is null:
val s4: String = null // String = null
s3 == s4 // false
s4 == s3 // false
If you want to compare two strings in a case-insensitive manner, one approach is to convert both strings to uppercase or lowercase and compare them with the == method:
val s1 = "Hello" // Hello
val s2 = "hello" // hello
s1.toUpperCase == s2.toUpperCase // true
You can also use the equalsIgnoreCase method that comes along with the Java String class:
val a = "Kimberly"
val b = "kimberly"
a.equalsIgnoreCase(b) // true
Note that while an equality test on a null string doesn’t throw an exception, calling a method on a null string will throw a NullPointerException:
val s1: String = null
val s2: String = null
scala> s1.toUpperCase == s2.toUpperCase
java.lang.NullPointerException // more output here ...
Discussion
In Scala you test object equality with the == method. This is different than Java, where you use the equals method to compare two objects.
The == method is defined in the AnyRef class—the root class of all reference types—and it first checks for null values and then calls the equals method on the first object (i.e., this) to see if the two objects (this and that) are equal. As a result, you don’t have to check for null values when comparing strings.
BETTER YET, DON’T USE NULL
In idiomatic Scala, you never use null values. The discussion in this recipe is intended to help you understand how == works if you encounter a null value, presumably from working with a Java library, or some other library where null values were used.
If you’re coming from a language like Java, any time you feel like using a null, use an Option instead. I find it helpful to imagine that Scala doesn’t even have a null keyword. See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for more information and examples.
In Scala 3 you can even change the type system so that any type that extends AnyRef—i.e., types like String, List, Option, etc.—is non-nullable. By using the experimental -Yexplicit-nulls compiler option, you actually change the Scala type hierarchy so that this code won’t compile:
val s: String = null
// won’t compile with '-Yexplicit-nulls'
See the Scala explicit nulls page for more details.
See Also
For more information on == and defining equals methods, see Recipe 5.9, “Defining an equals Method (Object Equality)”.
2.2 Creating Multiline Strings
Problem
You want to create multiline strings within your Scala source code, like you can with the heredoc syntax of other languages.
Solution
In Scala, you create multiline strings by surrounding your text with three double quotes:
val foo = """This is
a multiline
String"""
Although this works, the second and third lines in this example will end up with whitespace at the beginning of their lines. When you print the string, it looks like this:
This is
a multiline
String
You can solve this problem in several different ways. The best solution is to add the stripMargin method to the end of your multiline string and begin all lines after the first line with the pipe symbol (|):
val speech = """Four score and
|seven years ago""".stripMargin
If you don’t like using the | symbol, just specify the character you want to use when calling stripMargin:
val speech = """Four score and
#seven years ago""".stripMargin('#')
You can also left-justify every line after the first line of your string:
val foo = """Four score and
seven years ago"""
All of these approaches yield the same result, a multiline string with each line of the string left-justified:
Four score and
seven years ago
Those approaches result in a true multiline string, with a hidden \n character after the end of each line. If you want to convert this multiline string into one continuous line you can add a replaceAll method after the stripMargin call, replacing all newline characters with blank spaces:
val speech = """Four score and
|seven years ago
|our fathers...""".stripMargin.replaceAll("\n", " ")
This yields:
Four score and seven years ago our fathers...
Discussion
Another great feature of Scala’s multiline string syntax is that you can include single- and double-quotes in a string without having to escape them:
val s = """This is known as a
|"multiline" string
|or 'heredoc' syntax.""". stripMargin.replaceAll("\n", " ")
This results in this string:
This is known as a "multiline" string or 'heredoc' syntax.
2.3 Splitting Strings
Problem
You want to split a string into parts based on a field separator, such as a string you get from a comma-separated value (CSV) or pipe-delimited file.
Solution
Use one of the overridden split methods that are available on String objects:
scala> "hello world".split(" ")
res0: Array[String] = Array(hello, world)
The split method returns an array of strings, which you can work with as usual:
scala> "hello world".split(" ").foreach(println)
hello
world
Discussion
You can split a string on simple characters like a comma in a CSV file:
scala> val s = "eggs, milk, butter, Cocoa Puffs"
s: java.lang.String = eggs, milk, butter, Cocoa Puffs
// 1st attempt
scala> s.split(",")
res0: Array[String] = Array("eggs", " milk", " butter", " Cocoa Puffs")
Using this approach, it’s best to trim each string. Use the map method to call trim on each string before returning the array:
// 2nd attempt, cleaned up
scala> s.split(",").map(_.trim)
res1: Array[String] = Array(eggs, milk, butter, Cocoa Puffs)
You can also split a string based on a regular expression. This example shows how to split a string on whitespace characters:
scala> "Relax, nothing is under control".split("\\s+")
res0: Array[String] = Array(Relax,, nothing, is, under, control)
Not All CSV Files Are Created Equally
Note that some files that state they are CSV files may actually contain commas within their fields, typically enclosed in single or double quotation marks. Other files may also include newline characters in their fields. An algorithm to process files like that will be more complicated than the approach shown. See the Wikipedia entry on CSV files for more information.
About that split method…
The split method is interesting in that it’s overloaded, with some versions of it coming from the Java String class and some coming from Scala’s StringOps class. For instance, if you call split with a Char argument instead of a String argument, you’re using the split method from StringOps:
// split with a String argument (from Java)
"hello world".split(" ") //Array(hello, world)
// split with a Char argument (from Scala)
"hello world".split(' ') //Array(hello, world)
2.4 Substituting Variables into Strings
Problem
You want to perform variable substitution into a string, like you can do with other languages, such as Perl, PHP, and Ruby.
Solution
To use basic string interpolation in Scala, precede your string with the letter s and include your variables inside the string, with each variable name preceded by a $ character. This is shown in the println statement in the following example:
val name = "Fred"
val age = 33
val weight = 200.00
scala> println(s"$name is $age years old and weighs $weight pounds.")
Fred is 33 years old and weighs 200.0 pounds.
According to the official Scala string interpolation documentation, when you precede your string with the letter s, you’re creating a processed string literal. This example uses the “s string interpolator,” which lets you embed variables inside a string, where the variables are replaced by their values.
Using expressions in string literals
In addition to putting simple variables inside strings, you can include expressions inside a string by placing the expression inside curly braces. In the following example, the value 1 is added to the variable age inside the processed string:
scala> println(s"Age next year: ${age + 1}")
Age next year: 34
This example shows that you can use an equality expression inside the curly braces:
scala> println(s"You are 33 years old: ${age == 33}")
You are 33 years old: true
You also need to use curly braces when printing object fields:
case class Student(name: String, score: Int)
val hannah = Student("Hannah", 95)
scala> println(s"${hannah.name} has a score of ${hannah.score}")
Hannah has a score of 95
Notice that attempting to print the values of object fields without wrapping them in curly braces results in the wrong information being printed:
// error: this is intentionally wrong
scala> println(s"$hannah.name has a score of $hannah.score")
Student(Hannah,95).name has a score of Student(Hannah,95).score
Discussion
The s that’s placed before each string literal is actually a method. Though this seems slightly less convenient than just putting variables inside of strings, there are at least two benefits to this approach:
Scala provides other interpolation functions to give you more power.
Anyone can define their own string interpolation functions. For example, Scala SQL libraries take advantage of this capability to let you write queries like sql"SELECT * FROM USERS".
Let’s look at Scala’s two other built-in string interpolation methods.
The f string interpolator (printf style formatting)
In the example in the Solution, the weight was printed as 200.0. This is OK, but what can you do if you want to add more decimal places to the weight, or remove them entirely?
This simple desire leads to the “f string interpolator,” which lets you use printf style formatting specifiers inside strings. The following examples show how to print the weight, first with two decimal places:
scala> println(f"$name is $age years old and weighs $weight%.2f pounds.")
Fred is 33 years old and weighs 200.00 pounds.
and then with no decimal places:
scala> println(f"$name is $age years old and weighs $weight%.0f pounds.")
Fred is 33 years old and weighs 200 pounds.
As demonstrated, to use this approach, just follow these steps:
Precede your string with the letter f
Use printf style formatting specifiers immediately after your variables
printf Formatting Specifiers
The most common printf format style specifiers are shown in Recipe 2.5.
Though these examples use the println method, it’s important to note that you can assign the result of a variable substitution to a new variable, similar to calling sprintf in other languages:
scala> val s = f"$name, you weigh $weight%.0f pounds."
s: String = Fred, you weigh 200 pounds.
Now s is a normal string that you can use as desired.
The raw interpolator
In addition to the s and f string interpolators, Scala includes another interpolator named raw. The raw interpolator doesn’t escape any literals within the string. The following example shows how raw compares to the s interpolator:
scala> s"foo\nbar"
val res0: String = foo
bar
scala> raw"foo\nbar"
res1: String = foo\nbar
As shown, s treats \n as a newline character while raw doesn’t give it any special consideration and just passes it along.
Create Your Own Interpolator
In addition to the s, f, and raw interpolators, you can define your own interpolators. See Recipe 2.11 for examples of how to create your own interpolator.
See Also
Recipe 2.5 lists many common string formatting characters.
The Oracle Formatter class documentation has a complete list of formatting characters that can be used.
The official Scala string interpolation page shows a few more details about interpolators.
Recipe 2.11 demonstrates how to create your own string interpolator.
2.5 Formatting String Output
Problem
You want to format string output, including strings that contain integers, floats, doubles, and characters.
Solution
Use printf-style formatting strings with the f interpolator. Many configuration options are shown in the following examples.
Date/time formatting
If you’re interested in date and time formatting, those topics are covered in Recipe 3.11, “Formatting Dates”.
Formatting strings
Strings can be formatted with the %s format specifier. These examples show how to format strings, including how to left- and right-justify them within a certain space:
val h = "Hello"
f"'$h%s'" // 'Hello'
f"'$h%10s'" // ' Hello'
f"'$h%-10s'" // 'Hello '
I find it easier to read formatted strings when the variable name is enclosed in curly braces, so I’ll use this style for the rest of this recipe:
f"'${h}%s'" // 'Hello'
f"'${h}%10s'" // ' Hello'
f"'${h}%-10s'" // 'Hello '
Formatting floating-point numbers
Floating-point numbers are printed with the %f format specifier. Here are several examples that show the effects of formatting floating-point numbers, including Double and Float values:
val a = 10.3456 // a: Double = 10.3456
val b = 101234567.3456 // b: Double = 1.012345673456E8
f"'${a}%.1f'" // '10.3'
f"'${a}%.2f'" // '10.35'
f"'${a}%8.2f'" // ' 10.35'
f"'${a}%8.4f'" // ' 10.3456'
f"'${a}%08.2f'" // '00010.35'
f"'${a}%-8.2f'" // '10.35 '
f"'${b}%-2.2f'" // '101234567.35'
f"'${b}%-8.2f'" // '101234567.35'
f"'${b}%-14.2f'" // '101234567.35 '
Those examples demonstrate Double values, and the same syntax works with Float values:
val c = 10.5f // c: Float = 10.5
f"'${c}%.1f'" // '10.5'
f"'${c}%.2f'" // '10.50'
Integer formatting
Integers are printed with the %d format specifier. These examples show the effects of padding and justification:
val ten = 10
f"'${ten}%d'" // '10'
f"'${ten}%5d'" // ' 10'
f"'${ten}%-5d'" // '10 '
val maxInt = Int.MaxValue
f"'${maxInt}%5d'" // '2147483647'
val maxLong = Long.MaxValue
f"'${maxLong}%5d'" // '9223372036854775807'
f"'${maxLong}%22d'" // ' 9223372036854775807'
Zero-fill integer options
These examples show the effects of zero-filling integer values:
val zero = 0
val one = 1
val negTen = -10
val bigPos = 12345
val bigNeg = -12345
val maxInt = Int.MaxValue
// non-negative integers
f"${zero}%03d" // 000
f"${one}%03d" // 001
f"${bigPos}%03d" // 12345
f"${bigPos}%08d" // 00012345
f"${maxInt}%08d" // 2147483647
f"${maxInt}%012d" // 002147483647
// negative integers
f"${negTen}%03d" // -10
f"${negTen}%05d" // -0010
f"${bigNeg}%03d" // -12345
f"${bigNeg}%08d" // -0012345
Character formatting
Characters are printed with the %c format specifier. These examples show the effects of padding and justification when formatting character output:
val s = 's'
f"|${s}%c|" // |s|
f"|${s}%5c|" // | s|
f"|${s}%-5c|" // |s |
f works with multiline strings
It’s important to note that the f interpolator works with multiline strings, as shown in this example:
val n = "Al"
val w = 200.0
val s = f"""Hi, my name is ${n}
|and I weigh ${w}%.1f pounds.
|""".stripMargin.replaceAll("\n", " ")
println(s)
That code results in the following output:
Hi, my name is Al and I weigh 200.0 pounds.
As noted in Recipe 2.2, you also don’t need to escape single and double quotation marks when you use multiline strings.
Discussion
As a reference, Table 2-1 shows common printf style format specifiers.
Format specifier | Description |
---|---|
%c | Character |
%d | Decimal number (integer, base 10) |
%e | Exponential floating-point number |
%f | Floating-point number |
%i | Integer (base 10) |
%o | Octal number (base 8) |
%s | A string of characters |
%u | Unsigned decimal (integer) number |
%x | Hexadecimal number (base 16) |
%% | Print a “percent” character |
$$ | Print a “dollar sign” character |
To help demonstrate how these format specifiers work, these examples show how to use %% and $$:
println(f"%%") // prints %
println(f"$$") // prints $
Table 2-2 shows special characters you can use when formatting strings.
Character sequence | Description |
---|---|
\b | backspace |
\f | form feed |
\n | newline, or linefeed |
\r | carriage return |
\t | tab |
\\ | backslash |
\" | double quote |
\' | single quote |
\u | beginning of a Unicode character |
See Also
The java.util.Formatter class documentation shows all the available formatting characters.
2.6 Processing a String One Character at a Time
Problem
You want to iterate through each character in a string, performing an operation on each character as you traverse the string.
Solution
If you need to transform the characters in a string to get a new result (as opposed to a side effect), use a for expression, or higher-order functions (HOFs) like map and filter. If you want to do something that has a side effect, such as printing output, use a simple for loop or a method like foreach. If you need to treat the string as a sequence of bytes, use the getBytes method.
Transformers
Here’s an example of a for expression—a for loop with yield—that transforms each character in a string:
scala> val upper = for c <- "yo, adrian" yield c.toUpper
upper: String = YO, ADRIAN
Here’s an equivalent map method:
scala> val upper = "yo, adrian".map(c => c.toUpper)
upper: String = YO, ADRIAN
That code can be shortened with the magic of Scala’s underscore character:
scala> val upper = "yo, adrian".map(_.toUpper)
upper: String = YO, ADRIAN
A great thing about HOFs and pure transformation functions is that you can combine them in series to get a desired result. Here’s an example of calling filter and then map:
"yo, adrian".filter(_ != 'a').map(_.toUpper) // String = YO, DRIN
Side effects
When you need to perform a side effect—something like printing each character in a string to STDOUT—you can use a simple for loop:
scala> for c <- "hello" do println(c)
h
e
l
l
o
The foreach method can also be used:
scala> "hello".foreach(println)
h
e
l
l
o
Working on string bytes
If you need to work with a string as a sequence of bytes, you can also use the getBytes method. getBytes returns a sequential collection of bytes from a string:
scala> "hello".getBytes
res0: Array[Byte] = Array(104, 101, 108, 108, 111)
Adding foreach after getBytes shows one way to operate on each Byte value:
scala> "hello".getBytes.foreach(println)
104
101
108
108
111
Writing a Method to Work with map
To write a method that you can pass into map to operate on the characters in a String, define it to take a single Char as input, then perform the logic on that Char inside the method. When the logic is complete, return whatever data type is needed for your algorithm. Though the following algorithm is short, it demonstrates how to create a custom method and pass that method into map:
// write your own method that operates on a character
def toLower(c: Char): Char = (c.toByte+32).toChar
// use that method with map
"HELLO".map(toLower)
// String = hello
See the Eta Expansion discussion in Recipe 10.2, “Passing Functions Around as Variables”, for more details about how you’re able to pass a method into another method that expects a function parameter.
Discussion
Because Scala treats a String as a sequence of characters—a Seq[Char]—all of those examples work naturally.
for + yield
If you’re coming to Scala from an imperative language (Java, C, C#, etc.), using the map method might not be comfortable at first. In this case you might prefer to write a for expression like this:
val upper = for c <- "hello, world" yield c.toUpper
Adding yield to a for loop essentially places the result from each loop iteration into a temporary holding area. When the loop completes, all the elements in the holding area are returned as a single collection; you can say that they are yielded by the for loop.
While I (strongly!) recommend getting comfortable with how map works, if you want to write for expressions when you first start, it may help to know that this expression that uses filter and map:
val result = "hello, world"
.filter(_ != 'l')
.map(_.toUpper)
is equivalent to this for expression:
val result = for
c <- "hello, world"
if c != 'l'
yield
c.toUpper
Custom for Loops Are Rarely Needed
As I wrote in the first edition of the Scala Book on the official Scala website, a great strength of the Scala collections classes is that they come with dozens of prebuilt methods. A great benefit of this is that you no longer need to write custom for loops every time you need to work on a collection. And if that doesn’t sound like enough of a benefit, it also means that you no longer have to read custom for loops written by other developers. ;)
More seriously, studies have shown that developers spend much more time reading code than writing code, with reading/writing ratios estimated to be as high as 20:1, and most certainly at least 10:1. Because we spend so much time reading code, it’s important that code be both concise and readable—what Scala developers call expressive.
Transformer methods
But once you become comfortable with the “Scala way”—which involves taking advantage of Scala’s built-in transformer functions so you don’t have to write custom for loops—you’ll want to use a map method call. Both of these map expressions produce the same result as that for expression:
val upper = "hello, world".map(c => c.toUpper)
val upper = "hello, world".map(_.toUpper)
A transformer method like map can take a simple one-line anonymous function like the one shown, and it can also take a much larger algorithm. Here’s an example of map that uses a multiline block of code:
val x = "HELLO".map { c =>
// 'c' represents each character from "HELLO" ('H', 'E', etc.)
// that’s passed one at a time into this algorithm
val i: Int = c.toByte + 32
i.toChar
}
// x: String = "hello"
Notice that this algorithm is enclosed in curly braces. Braces are required any time you want to create a multiline block of code like this.
As you might guess from these examples, map has a loop built into it, and in that loop it passes one Char at a time to the algorithm it’s given.
Before moving on, here are a few more examples of string transformer methods:
val f = "foo bar baz"
f.dropWhile(_ != ' ') // " bar baz"
f.filter(_ != 'a') // foo br bz
f.takeWhile(_ != 'r') // foo ba
Side effect approaches
Where the map or for/yield approaches are used to transform one collection into another, the foreach method is used to operate on each element without returning a result, which you can tell because its method signature shows that it returns Unit:
def foreach[U](f: (A) => U): Unit

This tells us that foreach is useful for handling side effects, such as printing:
scala> "hello".foreach(println)
h
e
l
l
o
A Complete Example
The following example demonstrates how to call getBytes on a string and then pass a block of code into foreach to help calculate an Adler-32 checksum value on a string:
/**
* Calculate the Adler-32 checksum using Scala.
* @see https://en.wikipedia.org/wiki/Adler-32
*/
def adler32sum(s: String): Int =
val MOD_ADLER = 65521
var a = 1
var b = 0
// loop through each byte, updating `a` and `b`
s.getBytes.foreach{ byte =>
a = (byte + a) % MOD_ADLER
b = (b + a) % MOD_ADLER
}
// this is the return value.
// note that Int is 32 bits, which this requires.
b * 65536 + a // or (b << 16) + a
@main def adler32Checksum =
val sum = adler32sum("Wikipedia")
println(f"checksum (int) = ${sum}%d")
println(f"checksum (hex) = ${sum.toHexString}%s")
The second println statement in the @main method prints the hex value 11e60398, which matches the 0x11E60398 on the Adler-32 algorithm page.
Note that I use foreach in this example instead of map because the goal is to loop over each byte in the string and then do something with each byte, but without returning anything from the loop. Instead, the algorithm updates the mutable variables a and b.
See Also
Under the covers, the Scala compiler translates a for loop into a foreach method call. This gets more complicated if the loop has one or more if statements (guards) or a yield expression. This is discussed in great detail in my book Functional Programming, Simplified (CreateSpace).
The Adler code is based on Wikipedia’s discussion of the Adler-32 checksum algorithm.
2.7 Finding Patterns in Strings
Problem
You need to search a String to see if it contains a regular expression pattern.
Solution
Create a Regex object by invoking the .r method on a String, and then use that pattern with findFirstIn when you’re looking for one match, and findAllIn when looking for all matches.
To demonstrate this, first create a Regex for the pattern you want to search for, in this case, a sequence of one or more numeric characters:
val numPattern = "[0-9]+".r // scala.util.matching.Regex = [0-9]+
Next, create a sample string you can search:
val address = "123 Main Street Suite 101"
The findFirstIn method finds the first match:
scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = Some(123)
Notice that this method returns an Option[String].
When looking for multiple matches, use the findAllIn method:
scala> val matches = numPattern.findAllIn(address)
val matches: scala.util.matching.Regex.MatchIterator = <iterator>
As shown, findAllIn returns an iterator, which lets you loop over the results:
scala> matches.foreach(println)
123
101
If findAllIn doesn’t find any results, an empty iterator is returned, so you can still write your code just like that—you don’t need to check to see if the result is null. If you’d rather have the results as a Vector, add the toVector method after the findAllIn call:
scala> val matches = numPattern.findAllIn(address).toVector
val matches: Vector[String] = Vector(123, 101)
If there are no matches, this approach yields an empty vector. Other methods like toList, toSeq, and toArray are also available.
Discussion
Using the .r method on a String is the easiest way to create a Regex object. Another approach is to import the Regex class, create a Regex instance, and then use the instance in the same way:
import scala.util.matching.Regex
val numPattern = Regex("[0-9]+")
val address = "123 Main Street Suite 101"
val match1 = numPattern.findFirstIn(address) // Option[String] = Some(123)
Although this is a bit more work, it’s also more obvious. I’ve found that it can be easy to overlook the .r at the end of a string (and then spend a few minutes wondering how the code I was looking at could possibly work).
A brief discussion of the Option returned by findFirstIn
As mentioned in the Solution, the findFirstIn method finds the first match in the example string and returns an Option[String]:
scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = Some(123)
The Option/Some/None pattern is discussed in Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, so I won’t go into it in great detail here, but a simple way to think about an Option is that it’s a container that holds either zero or one values. In the case of findFirstIn, if it succeeds it returns the string "123" wrapped in a Some, i.e., as a Some("123"). However, if it fails to find the pattern in the string it’s searching, it returns a None:
scala> val address = "No address given"
address: String = No address given
scala> val match1 = numPattern.findFirstIn(address)
match1: Option[String] = None
In summary, any time a method is (a) defined to return an Option[String], (b) guaranteed to not throw an exception, and (c) guaranteed to terminate (i.e., not to go into an infinite loop), it will always return either a Some[String] or a None.
See Also
See the Scala Regex class documentation for more ways to work with regular expressions.
See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for details on how to work with Option values.
2.8 Replacing Patterns in Strings
Problem
You want to search for regular-expression patterns in a string and then replace them.
Solution
Because a string is immutable, you can’t perform find-and-replace operations directly on it, but you can create a new string that contains the replaced contents. There are several ways to do this.
You can call replaceAll on a string, assigning the result to a new variable:
scala> val address = "123 Main Street".replaceAll("[0-9]", "x")
address: String = xxx Main Street
You can create a regular expression and then call replaceAllIn on that expression, again remembering to assign the result to a new string:
scala> val regex = "[0-9]".r
regex: scala.util.matching.Regex = [0-9]
scala> val newAddress = regex.replaceAllIn("123 Main Street", "x")
newAddress: String = xxx Main Street
To replace only the first occurrence of a pattern, use the replaceFirst method:
scala> val result = "123".replaceFirst("[0-9]", "x")
result: String = x23
You can also use replaceFirstIn with a Regex:
scala> val regex = "H".r
regex: scala.util.matching.Regex = H
scala> val result = regex.replaceFirstIn("Hello world", "J")
result: String = Jello world
See Also
The scala.util.matching.Regex documentation shows more examples of creating and using Regex instances.
2.9 Extracting Parts of a String That Match Patterns
Problem
You want to extract one or more parts of a string that match the regular-expression patterns you specify.
Solution
Define the regular-expression (regex) patterns you want to extract, placing parentheses around them so you can extract them as regular-expression groups. First, define the desired pattern:
val pattern = "([0-9]+) ([A-Za-z]+)".r
This creates pattern as an instance of the scala.util.matching.Regex class. The regex that’s used can be read as, “One or more numbers, followed by a space, followed by one or more alphanumeric characters.”
Next, this is how you extract the regex groups from the target string:
val pattern(count, fruit) = "100 Bananas"
// count: String = 100
// fruit: String = Bananas
As shown in the comments, this code extracts the numeric field and the alphanumeric field from the given string as two separate variables, count and fruit.
Discussion
The syntax shown here may feel a little unusual because it seems like you’re defining pattern as a val field twice, but this syntax is more convenient and readable in a real-world example that uses a match expression.
Imagine you’re writing the code for a search engine like Google, and you want to let people search for movies using a variety of phrases. To be really convenient, you’ll let them type any of these phrases to get a listing of movies near Boulder, Colorado:
"movies near 80301"
"movies 80301"
"80301 movies"
"movie: 80301"
"movies: 80301"
"movies near boulder, co"
"movies near boulder, colorado"
One way you can allow all these phrases to be used is to define a series of regular-expression patterns to match against them. Just define your expressions, and then attempt to match whatever the user types against all the possible expressions you’re willing to allow.
As a small example, imagine that you just want to allow these two patterns:
// match "movies 80301"
val MoviesZipRE = "movies (\\d{5})".r
// match "movies near boulder, co"
val MoviesNearCityStateRE = "movies near ([a-z]+), ([a-z]{2})".r
These patterns will match strings like this:
"movies 80301"
"movies 99676"
"movies near boulder, co"
"movies near talkeetna, ak"
Once you’ve defined regex patterns you want to allow, you can match them against whatever text the user enters using a match expression. In this example, you call a fictional method named getSearchResults that returns an Option[List[String]] when a match occurs:
val results = textUserTyped match
case MoviesZipRE(zip) => getSearchResults(zip)
case MoviesNearCityStateRE(city, state) => getSearchResults(city, state)
case _ => None
As shown, this syntax makes your match expressions very readable. For both patterns you’re matching you call an overloaded version of the getSearchResults method, passing it the zip field in the first case and the city and state fields in the second case.
It’s important to note that with this technique, the regular expressions must match the entire user input. With the regex patterns shown, the following strings will fail because they have a blank space at the end of the line:
"movies 80301 "
"movies near boulder, co "
You can solve this problem by trimming the input string, or using a more complicated regular expression, which you’ll want to do anyway in the real world.
As you can imagine, you can use this same pattern-matching technique in many different circumstances, including matching date and time formats, street addresses, people’s names, and many other situations.
See Also
See Recipe 4.6, “Using a Match Expression Like a switch Statement”, for more match expression examples.
In the match expression you can see that scala.util.matching.Regex is used as an extractor. Extractors are discussed in Recipe 7.8, “Implementing Pattern Matching with unapply”.
2.10 Accessing a Character in a String
Problem
You want to access a character at a specific position in a string.
Solution
Use Scala’s array notation to access a character by an index position, but be careful you don’t go past the end of the string:
"hello"(0) // Char = h
"hello"(1) // Char = e
"hello"(99) // throws java.lang.StringIndexOutOfBoundsException
Discussion
I include this recipe because in Java you use the charAt method for this purpose. You can also use it in Scala, but this code is unnecessarily verbose:
"hello".charAt(0) // Char = h
"hello".charAt(99) // throws java.lang.StringIndexOutOfBoundsException
In Scala the preferred approach is to use the array notation shown in the Solution.
Array Notation Is Really a Method Call
The Scala array notation is a nice-looking and convenient way to write code, but if you want to know how things work behind the scenes, it’s interesting to know that this code, which is convenient and easy for humans to read:
"hello"(1) // 'e'
is translated by the Scala compiler into this code:
"hello".apply(1) // 'e'
For more details, this little bit of syntactic sugar is explained in Recipe 7.5, “Using apply Methods in Objects as Constructors”.
2.11 Creating Your Own String Interpolator
Problem
You want to create your own string interpolator, like the s, f, and raw interpolators that come with Scala.
Solution
To create your own string interpolator, you need to know that when a programmer writes code like foo"a b c", that code is transformed into a foo method call on the StringContext class. Specifically, when you write this code:
val a = "a"
foo"a = $a"
it’s translated into this:
StringContext("a = ", "").foo(a)
Therefore, to create a custom string interpolator, you need to create foo as a Scala 3 extension method on the StringContext class. There are a few additional details you need to know, and I’ll show those in an example.
Suppose that you want to create a string interpolator named caps that capitalizes every word in a string, like this:
caps"john c doe" // "John C Doe"
val b = "b"
caps"a $b c" // "A B C"
To create caps, define it as an extension method on StringContext. Because you’re creating a string interpolator, you know that your method needs to return a String, so you begin writing the solution like this:
extension(sc: StringContext)
def caps(?): String = ???
Because a preinterpolated string can contain multiple expressions of any type, caps needs to be defined to take a varargs parameter of type Any, so you can further write this:
extension(sc: StringContext)
def caps(args: Any*): String = ???
To define the body of caps, the next thing to know is that the original string comes to you in the form of two different variables:
sc, which is an instance of StringContext, and provides it data in an iterator
args.iterator, which is an instance of Iterator[Any]
This code shows one way to use those iterators to rebuild a String with each word capitalized:
extension(sc: StringContext)
def caps(args: Any*): String =
// [1] create variables for the iterators. note that for an
// input string "a b c", `strings` will be "a b c" at this
// point.
val strings: Iterator[String] = sc.parts.iterator
val expressions: Iterator[Any] = args.iterator
// [2] populate a StringBuilder from the values in the iterators
val sb = StringBuilder(strings.next.trim)
while strings.hasNext do
sb.append(expressions.next.toString)
sb.append(strings.next)
// [3] convert the StringBuilder back to a String,
// then apply an algorithm to capitalize each word in
// the string
sb.toString
.split(" ")
.map(_.trim)
.map(_.capitalize)
.mkString(" ")
end caps
end extension
Here’s a brief description of that code:
First, variables are created for the two iterators. The strings variable contains all the string literals in the input string, and expressions contains values to represent all of the expressions in the input string, such as a $a variable.
Next, I populate a StringBuilder by looping over the two iterators in the while loop. This starts to put the string back together, including all of the string literals and expressions.
Finally, the StringBuilder is converted back into a String, and then a series of transformation functions are called to capitalize each word in the string.
There are other ways to implement the body of that method, but I use this approach to be clear about the steps involved, specifically that when an interpolator like caps"a $b c ${d*e}" is created, you need to rebuild the string from the two iterators.
Discussion
To understand the solution it helps to understand how string interpolation works, i.e., how the Scala code you type in your IDE is converted into other Scala code. With string interpolation, the consumer of your method writes code like this:
id"text0${expr1}text1 ... ${exprN}textN"
In this code:
id is the name of your string interpolation method, which is caps in my case.
The textN pieces are string constants in the input (preinterpolated) string.
The exprN pieces are the expressions in the input string that are written with the $expr or ${expr} syntax.
When you compile the id code, the compiler translates it into code that looks like this:
StringContext("text0", "text1", ..., "textN").id(expr1, ..., exprN)
As shown, the constant parts of the string—the string literals—are extracted and passed as parameters to the StringContext constructor. The id method of the StringContext instance—caps, in my example—is passed any expressions that are included in the initial string.
As a concrete example of how this works, assume that you have an interpolator named yo and this code:
val b = "b"
val d = "d"
yo"a $b c $d"
In the first step of the compilation phase the last line is converted into this:
val listOfFruits = StringContext("a ", " c ", "").yo(b, d)
Now the yo method needs to be written like the caps method shown in the solution, handling these two iterators:
args.iterators contains: "a ", " c ", "" // String type
exprs.iterators contains: b, d // Any type
More Interpolators
For more details, my GitHub project for this book shows several examples of interpolators, including my Q interpolator, which converts this multiline string input:
val fruits = Q"""
apples
bananas
cherries
"""
into this resulting list:
List("apples", "bananas", "cherries")
See Also
This recipe uses extension methods, which are discussed in Recipe 8.9, “Adding New Methods to Closed Classes with Extension Methods”.
The official Scala page on string interpolation.
2.12 Creating Random Strings
Problem
When you try to generate a random string using the nextString method of the Random class, you see a lot of unusual output or ? characters. The typical problem looks like this:
scala> val r = scala.util.Random()
val r: scala.util.Random = scala.util.Random@360d41d0
scala> r.nextString(10)
res0: String = ??????????
Solution
What’s happening with nextString is that it returns Unicode characters, which may or may not display well on your system. To generate only alphanumeric characters—the letters [A-Za-z] and the numbers [0-9]—use this approach:
import scala.util.Random
// examples of two random alphanumeric strings
Random.alphanumeric.take(10).mkString // 7qowB9jjPt
Random.alphanumeric.take(10).mkString // a0WylvJKmX
Random.alphanumeric returns a LazyList, so I use take(10).mkString to get the first ten characters from the stream. If you only call Random.alphanumeric.take(10), you’ll get this result:
Random.alphanumeric.take(10) // LazyList[Char] = LazyList(<not computed>)
Because LazyList is lazy—it computes its elements only when they’re needed—you have to call a method like mkString to force a string result.
Discussion
Per the Random class Scaladoc, alphanumeric “returns a LazyList of pseudorandomly chosen alphanumeric characters, equally chosen from A-Z, a-z, and 0-9.”
If you want a wider range of characters, the nextPrintableChar method returns values in the ASCII range 33–126. This includes almost every simple character on your keyboard, including letters, numbers, and characters like !, -, +,], and >. For example, here’s a little algorithm that generates a random-length sequence of printable characters:
val r = scala.util.Random
val randomSeq = for i <- 0 to r.nextInt(10) yield r.nextPrintableChar
Here are a few examples of the random sequence that’s created by that algorithm:
Vector(s, `, t, e, o, e, r, {, S)
Vector(X, i, M, ., H, x, h)
Vector(f, V, +, v)
Those can be converted into a String with mkString, as shown in this example:
randomSeq.mkString // @Wvz#y#Rj\
randomSeq.mkString //b0F:P&!WT$
See asciitable.com or a similar website for the complete list of characters in the ASCII range 33–126.
Lazy methods
As described in Recipe 20.1, “Getting Started with Spark”, with Apache Spark you can think of collections methods as being either transformation methods or action methods:
Transformation methods transform the elements in a collection. With immutable classes like List, Vector, and LazyList, these methods transform the existing elements to create a new collection. Just like Spark, when you use a Scala LazyList, these methods are lazily evaluated (also known as lazy or nonstrict). Methods like map, filter, take, and many more are considered transformation methods.
Action methods are methods that essentially force a result. They’re a way of stating, “I want the result now.” Methods like foreach and mkString can be thought of as action methods.
See Recipe 11.1, “Choosing a Collections Class” for more discussion and examples of transformer methods.
See Also
In my blog post “How to Create Random Strings in Scala (A Few Different Examples)”, I show seven different methods for generating random strings, including alpha and alphanumeric strings.
In “Scala: A Function to Generate a Random-Length String with Blank Spaces” I show how to generate a random string of random length, where the string also contains blank spaces.
Chapter 3. Numbers and Dates
This chapter covers recipes for working with Scala’s numeric types, and it also includes recipes for working with the Date and Time API that was introduced with Java 8.
In Scala, the types Byte, Short, Int, Long, and Char are known as integral types because they are represented by integers, or whole numbers. The integral types along with Double and Float comprise Scala’s numeric types. These numeric types extend the AnyVal trait, as do the Boolean and Unit types. As discussed on the unified types Scala page, these nine types are called the predefined value types, and they are non-nullable.
The relationship of the predefined value types to AnyVal and Any (as well as Nothing) is shown in Figure 3-1. As shown in that image:
All of the numeric types extend AnyVal.
All other types in the Scala class hierarchy extend AnyRef.
Figure 3-1. All the predefined numeric types extend AnyVal
As shown in Table 3-1, the numeric types have the same data ranges as their Java primitive equivalents.
Data type | Description | Range |
---|---|---|
Char | 16-bit unsigned Unicode character | 0 to 65,535 |
Byte | 8-bit signed value | –128 to 127 |
Short | 16-bit signed value | –32,768 to 32,767 |
Int | 32-bit signed value | –2,147,483,648 to 2,147,483,647 |
Long | 64-bit signed value | –2 63 to 263–1, inclusive (see below) |
Float | 32-bit IEEE 754 single precision float | See below |
Double | 64-bit IEEE 754 double precision float | See below |
In addition to those types, Boolean can have the values true or false.
If you ever need to know the exact values of the data ranges and don’t have this book handy, you can find them in the Scala REPL:
Char.MinValue.toInt // 0
Char.MaxValue.toInt // 65535
Byte.MinValue // -128
Byte.MaxValue // +127
Short.MinValue // −32768
Short.MaxValue // +32767
Int.MinValue // −2147483648
Int.MaxValue // +2147483647
Long.MinValue // -9,223,372,036,854,775,808
Long.MaxValue // +9,223,372,036,854,775,807
Float.MinValue // −3.4028235e38
Float.MaxValue // +3.4028235e38
Double.MinValue // -1.7976931348623157e308
Double.MaxValue // +1.7976931348623157e308
In addition to these basic numeric types, the BigInt and BigDecimal classes are also covered in this chapter.
Underscores in Numeric Literals
Scala 2.13 introduced the ability to use underscores in numeric literal values:
// Int
val x = 1_000
val x = 100_000
val x = 1_000_000
// Long (can also use lowercase ‘L’, but I find that confusing)
val x = 1_000_000L
// Double
val x = 1_123.45
val x = 1_123.45D
val x = 1_123.45d
val x = 1_234e2 // 123400.0
// Float
val x = 3_456.7F
val x = 3_456.7f
val x = 1_234e2F
// BigInt and BigDecimal
val x: BigInt = 1_000_000
val x: BigDecimal = 1_234.56
Numeric literals with underscores can be used in all the usual places:
val x = 1_000 + 1
if x > 1_000 && x < 1_000_000 then println(x)
x match
case 1_000 => println("got 1,000")
case _ => println("got something else")
for
i <- 1 to 1_000
if i > 999
do
println(i)
One place where they can’t currently be used is in casting from String to numeric types:
Integer.parseInt("1_000") // NumberFormatException
"1_000".toInt // NumberFormatException
Complex Numbers
If you need more powerful math classes than those that are included with the standard Scala distribution, check out the Spire project, which includes classes like Rational, Complex, Real, and more.
Dates and Times
The last several recipes in this chapter cover the Date and Time API that was introduced with Java 8, and they show how to work with new classes like LocalDate, LocalTime, LocalDateTime, Instant, and ZonedDateTime.
3.1 Parsing a Number from a String
Problem
You want to convert a String to one of Scala’s numeric types.
Solution
Use the to* methods that are available on a String:
"1".toByte // Byte = 1
"1".toShort // Short = 1
"1".toInt // Int = 1
"1".toLong // Long = 1
"1".toFloat // Float = 1.0
"1".toDouble // Double = 1.0
Be careful, because these methods can throw a NumberFormatException:
"hello!".toInt // java.lang.NumberFormatException
As a result, you may prefer to use the to*Option methods, which return a Some when the conversion is successful, and a None when the conversion fails:
"1".toByteOption // Option[Byte] = Some(1)
"1".toShortOption // Option[Short] = Some(1)
"1".toIntOption // Option[Int] = Some(1)
"1".toLongOption // Option[Long] = Some(1)
"1".toFloatOption // Option[Float] = Some(1.0)
"1".toDoubleOption // Option[Double] = Some(1.0)
"one".toIntOption // Option[Int] = None
BigInt and BigDecimal instances can also be created directly from strings:
val b = BigInt("1") // BigInt = 1
val b = BigDecimal("1.234") // BigDecimal = 1.234
And they can also throw a NumberFormatException:
val b = BigInt("yo") // NumberFormatException
val b = BigDecimal("dude!") // NumberFormatException
Handling a base and radix with Int
If you need to perform calculations using bases other than 10, use the parseInt method of the java.lang.Integer class, as shown in these examples:
Integer.parseInt("1", 2) // Int = 1
Integer.parseInt("10", 2) // Int = 2
Integer.parseInt("100", 2) // Int = 4
Integer.parseInt("1", 8) // Int = 1
Integer.parseInt("10", 8) // Int = 8
Discussion
If you’ve used Java to convert a String to a numeric data type, then the NumberFormatException is familiar. However, Scala doesn’t have checked exceptions, so you’ll probably want to handle this situation differently.
A first thing to know is that you don’t have to declare that Scala methods can throw an exception, so it’s perfectly legal to write a method like this:
// you're not required to declare "throws NumberFormatException"
def makeInt(s: String) = s.toInt
Writing a pure function
However, in functional programming (FP) you’d never do this. As written, this method can short-circuit a caller’s code, and that’s something you never do in FP. (You might think of it as something you’d never do to another developer, or want another developer to do to you.) Instead, a pure function always returns the type that its signature shows. Therefore, in FP you’d write this function like this instead:
def makeInt(s: String): Option[Int] =
try
Some(s.toInt)
catch
case e: NumberFormatException => None
This function is declared to return Option[Int], meaning that if you give it a "10", it will return a Some(10), and if you give it "Yo", it returns a None. This function is equivalent to toIntOption, which was shown in the Solution, and introduced in Scala 2.13.
Shorter makeInt Functions
While that code shows a perfectly legitimate way to write a makeInt function that returns Option[Int], you can write it shorter like this:
import scala.util.Try
def makeInt(s: String): Option[Int] = Try(s.toInt).toOption
Both this function and the previous makeInt function always return either Some[Int] or None:
makeInt("a") // None
makeInt("1") // Some(1)
makeInt("2147483647") // Some(2147483647)
makeInt("2147483648") // None
If you prefer to return Try from your function instead of Option, you can write it like this:
import scala.util.{Try, Success, Failure}
def makeInt(s: String): Try[Int] = Try(s.toInt)
The advantage of using Try is that when things go wrong, it returns the reason for the failure inside a Failure object:
makeInt("1") // Success(1)
makeInt("a") // Failure(java.lang.NumberFormatException: For input string: "a")
Document methods that throw exceptions
These days I don’t like methods that throw exceptions, but if for some reason they do, I prefer that the behavior is documented. Therefore, if you’re going to allow an exception to be thrown, consider adding an @throws Scaladoc comment to your method:
@throws(classOf[NumberFormatException])
def makeInt(s: String) = s.toInt
This approach is required if the method will be called from Java code, as described in Recipe 22.7, “Adding Exception Annotations to Scala Methods”.
See Also
Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, provides more details on using Option, Some, and None.
3.2 Converting Between Numeric Types (Casting)
Problem
You want to convert from one numeric type to another, such as from an Int to a Double, Double to Int, or possibly a conversion involving BigInt or BigDecimal.
Solution
Numeric values are typically converted from one type to another with a collection of to* methods, including toByte, toChar, toDouble, toFloat, toInt, toLong, and toShort. These methods are added to the base numeric types by classes like RichDouble, RichInt, RichFloat, etc., which are automatically brought into scope by scala.Predef.
As shown on the Scala unified types page, numeric values are easily converted in the direction shown in Figure 3-2.
Figure 3-2. The direction in which numeric values are easily converted
A few examples show how casting in this direction is done:
val b: Byte = 1
b.toShort // Short = 1
b.toInt // Int = 1
b.toLong // Long = 1
b.toFloat // Float = 1.0
b.toDouble // Double = 1.0
When you go with the flow like that, conversion is simple. It’s also possible to go in the opposite direction—against the flow—like this:
val d = 100.0 // Double = 100.0
d.toFloat // Float = 100.0
d.toLong // Long = 100
d.toInt // Int = 100
d.toShort // Short = 100
d.toByte // Byte = 100
However, be aware that going in this direction can cause serious problems:
val d = Double.MaxValue // 1.7976931348623157E308
// intentional error: don’t do these things
d.toFloat // Float = Infinity
d.toLong // Long = 9223372036854775807
d.toInt // Int = 2147483647
d.toShort // Short = -1
d.toByte // Byte = -1
Therefore, before attempting to use those methods, you should always check to see if the conversion attempt is valid:
val d: Double = 65_535.0
d.isValidByte // false (Byte ranges from -128 to 127)
d.isValidChar // true (Char ranges from 0 to 65,535)
d.isValidShort // false (Short ranges from -32,768 to 32,767)
d.isValidInt // true (Int ranges from -2,147,483,648 to 2,147,483,647)
Note that these methods are not available on Double values:
d.isValidFloat // not a member of Double
d.isValidLong // not a member of Double
Also note, as you might expect, when using this technique the Int/Short/Byte tests will fail if the Double has a nonzero fractional part:
val d = 1.5 // Double = 1.5
d.isValidInt // false
d.isValidShort // false
d.isValidByte // false
asInstanceOf
Depending on your needs you can also cast “with the flow” using asInstanceOf:
val b: Byte = 1 // Byte = 1
b.asInstanceOf[Short] // Short = 1
b.asInstanceOf[Int] // Int = 1
b.asInstanceOf[Long] // Long = 1
b.asInstanceOf[Float] // Float = 1.0
b.asInstanceOf[Double] // Double = 1.0
Discussion
Because all of these numeric types are classes (and not primitive values), BigInt and BigDecimal also work similarly. The following examples show how they work with the numeric value types.
BigInt
The BigInt constructor is overloaded, giving you nine different ways to construct one, including giving it an Int, Long, or String:
val i: Int = 101
val l: Long = 102
val s = "103"
val b1 = BigInt(i) // BigInt = 101
val b2 = BigInt(l) // BigInt = 102
val b3 = BigInt(s) // BigInt = 103
BigInt also has isValid* and to* methods to help you cast a BigInt value to the numeric types:
isValidByte, toByte
isValidChar, toChar
isValidDouble, toDouble
isValidFloat, toFloat
isValidInt, toInt
isValidLong, toLong
isValidShort, toShort
BigDecimal
Similarly, BigDecimal can be constructed in many different ways, including these:
BigDecimal(100)
BigDecimal(100L)
BigDecimal(100.0)
BigDecimal(100F)
BigDecimal("100")
BigDecimal(BigInt(100))
BigDecimal has all the same isValid* and to* methods that the other types have. It also has to*Exact methods that work like this:
BigDecimal(100).toBigIntExact // Some(100)
BigDecimal(100.5).toBigIntExact // None
BigDecimal(100).toIntExact // Int = 100
BigDecimal(100.5).toIntExact // java.lang.ArithmeticException: ↵
// (Rounding necessary)
BigDecimal(100.5).toLongExact // java.lang.ArithmeticException
BigDecimal(100.5).toByteExact // java.lang.ArithmeticException
BigDecimal(100.5).toShortExact // java.lang.ArithmeticException
See the BigInt Scaladoc and BigDecimal Scaladoc for even more methods.
3.3 Overriding the Default Numeric Type
Problem
When using an implicit type declaration style, Scala automatically assigns types based on their numeric values, and you need to override the default type when you create a numeric field.
Solution
If you assign 1 to a variable without explicitly declaring its type, Scala assigns it the type Int:
scala> val a = 1
a: Int = 1
Therefore, when you need to control the type, explicitly declare it:
val a: Byte = 1 // Byte = 1
val a: Short = 1 // Short = 1
val a: Int = 1 // Int = 1
val a: Long = 1 // Long = 1
val a: Float = 1 // Float = 1.0
val a: Double = 1 // Double = 1.0
While I prefer that style, it’s also legal to specify the type at the end of the expression:
val a = 0: Byte
val a = 0: Int
val a = 0: Short
val a = 0: Double
val a = 0: Float
For longs, doubles, and floats you can also use this style:
val a = 1l // Long = 1
val a = 1L // Long = 1
val a = 1d // Double = 1.0
val a = 1D // Double = 1.0
val a = 1f // Float = 1.0
val a = 1F // Float = 1.0
You can create hex values by preceding the number with a leading 0x or 0X, and you can store them as an Int or Long:
val a = 0x20 // Int = 32
val a = 0x20L // Long = 32
Discussion
It’s helpful to know about this approach when creating any object instance. The general syntax looks like this:
// general case
var [name]: [Type] = [initial value]
// example
var a: Short = 0
This form can be helpful when you need to initialize var fields in a class:
class Foo:
var a: Short = 0 // specify a default value
var b: Short = _ // defaults to 0
var s: String = _ // defaults to null
As shown, you can use the underscore character as a placeholder when assigning an initial value. This works when creating class variables, but it doesn’t work in other places, such as inside a method. For numeric types this isn’t an issue—you can just assign the type the value zero—but with most other types, if you really want a null value you can use this approach inside a method:
var name = null.asInstanceOf[String]
But the usual warning applies: don’t use null values. It’s better to use the Option/Some/None pattern, which you’ll see in the best Scala libraries and frameworks, such as the Play Framework. See Recipe 24.5, “Eliminating null Values from Your Code”, and Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for more discussion of this important topic.
TYPE ASCRIPTION
In some rare instances, you may need to take advantage of a technique called type ascription, whose syntax looks like these examples. The Stack Overflow question “What Is the Purpose of Type Ascriptions in Scala?” shows a case where it’s advantageous to upcast a String to an Object:
val s = "Hala" // s: String = Hala
val o = s: Object // o: Object = Hala
As shown, the syntax is similar to this recipe. This upcasting is known as type ascription, and the Scala style guide on types describes it as follows:
“Ascription is basically just an up-cast performed at compile time for the sake of the type checker. Its use is not common, but it does happen on occasion. The most often seen case of ascription is invoking a varargs method with a single Seq parameter. This is done by ascribing the _* type.”
3.4 Replacements for ++ and −−
Problem
You want to increment or decrement numbers using operators like ++ and −− that are available in other languages, but Scala doesn’t have these operators.
Solution
Because val fields are immutable, they can’t be incremented or decremented, but var Int fields can be mutated with the += and −= methods:
var a = 1 // a = 1
a += 1 // a = 2
a −= 1 // a = 1
As an added benefit, you use similar methods for multiplication and division:
var i = 1 // i = 1
i *= 4 // i = 4
i /= 2 // i = 2
Attempting to use this approach with val fields results in a compile-time error:
scala> val x = 1
x: Int = 1
scala> x += 1
<console>:9: error: value += is not a member of Int
x += 1
^
Discussion
Another benefit of this approach is that you can use these operators on other numeric types besides Int. For instance, the Double and Float classes can be used in the same way:
var d = 1.2 // Double = 1.2
d += 1 // 2.2
d *= 2 // 4.4
d /= 2 // 2.2
var f = 1.2F // Float = 1.2
f += 1 // 2.2
f *= 2 // 4.4
f /= 2 // 2.2
3.5 Comparing Floating-Point Numbers
Problem
You need to compare two floating-point numbers, but as in some other programming languages, two floating-point numbers that should be equivalent may not be.
Solution
When you begin working with floating-point numbers, you quickly learn that 0.1 plus 0.1 is 0.2:
scala> 0.1 + 0.1
res0: Double = 0.2
But 0.1 plus 0.2 isn’t exactly 0.3:
scala> 0.1 + 0.2
res1: Double = 0.30000000000000004
This inaccuracy makes comparing two floating-point numbers a significant problem:
val a = 0.3 // Double = 0.3
val b = 0.1 + 0.2 // Double = 0.30000000000000004
a == b // false
The solution to this problem is to write your own functions to compare floating-point numbers with a tolerance. The following approximately equals method demonstrates the approach:
import scala.annotation.targetName
@targetName("approxEqual")
def ~=(x: Double, y: Double, tolerance: Double): Boolean =
if (x - y).abs < tolerance then true else false
You can use this method like this:
val a = 0.3 // 0.3
val b = 0.1 + 0.2 // 0.30000000000000004
~=(a, b, 0.0001) // true
~=(b, a, 0.0001) // true
Discussion
In this solution the @targetName annotation is optional, but it’s recommended for these reasons when you create a method that uses symbols:
It helps interoperability with other languages that don’t support the use of symbolic method names.
It makes it easier to use stacktraces, where the target name you supply is used instead of the symbolic name.
It provides an alternative name for your symbolic method name in the documentation, showing the target name as an alias of the symbolic method name.
Extension methods
As shown in Recipe 8.9, “Adding New Methods to Closed Classes with Extension Methods”, you can define this method as an extension method on the Double class. If you assume a tolerance of 0.5, you can create that extension method like this:
extension (x: Double)
def ~=(y: Double): Boolean = (x - y).abs < 0.5
If you prefer, the method’s test condition can be expanded to this:
extension (x: Double)
def ~=(y: Double): Boolean =
if (x - y).abs < 0.5 then true else false
In either case, it can then be used with Double values like this:
if a ~= b then ...
That makes for very readable code. However, when you hardcode the tolerance, it’s probably preferable to define the tolerance as a percentage of the given value x:
extension (x: Double)
def ~=(y: Double): Boolean =
// allow a +/- 10% variance
val xHigh = if x > 0 then x*1.1 else x*0.9
val xLow = if x > 0 then x*0.9 else x*1.1
if y >= xLow && y <= xHigh then true else false
Or, if you prefer to have the tolerance as a method parameter, define the extension method like this:
extension (x: Double)
def ~=(y: Double, tolerance: Double): Boolean =
if (x - y).abs < tolerance then true else false
and then use it like this:
1.0 ~= (1.1, .2) // true
1.0 ~= (0.9, .2) // true
1.0 ~= (1.21, .2) // false
1.0 ~= (0.79, .2) // false
See Also
“What Every Computer Scientist Should Know About Floating-Point Arithmetic”
The “Accuracy problems” section of the Wikipedia floating-point accuracy arithmetic page
The Wikipedia arbitrary-precision arithmetic page
3.6 Handling Large Numbers
Problem
You’re writing an application and need to use very large integer or decimal values.
Solution
If the Long and Double types aren’t large enough, use the Scala BigInt and BigDecimal classes:
val bi = BigInt(1234567890) // BigInt = 1234567890
val bd = BigDecimal(123456.789) // BigDecimal = 123456.789
// using underscores with numeric literals
val bi = BigInt(1_234_567_890) // BigInt = 1234567890
val bd = BigDecimal(123_456.789) // BigDecimal = 123456.789
BigInt and BigDecimal wrap the Java BigInteger and BigDecimal classes, and they support all the operators you’re used to using with numeric types in Scala:
bi + bi // BigInt = 2469135780
bi * bi // BigInt = 1524157875019052100
bi / BigInt(2) // BigInt = 617283945
You can convert them to other numeric types:
// bad conversions
bi.toByte // -46
bi.toChar // ˒
bi.toShort // 722
// correct conversions
bi.toInt // 1234567891
bi.toLong // 1234567891
bi.toFloat // 1.23456794E9
bi.toDouble // 1.234567891E9
To avoid conversion errors, test them first:
bi.isValidByte // false
bi.isValidChar // false
bi.isValidShort // false
bi.isValidInt // true
bi.isValidLong // true
BigInt also converts to a byte array:
bi.toByteArray // Array[Byte] = Array(73, -106, 2, -46)
Discussion
Before using BigInt or BigDecimal, you can check the minimum and maximum values that Long and Double can handle:
Long.MinValue // -9,223,372,036,854,775,808
Long.MaxValue // +9,223,372,036,854,775,807
Double.MinValue // -1.7976931348623157e308
Double.MaxValue // +1.7976931348623157e308
Depending on your needs, you may also be able to use the PositiveInfinity and NegativeInfinity of the standard numeric types:
scala> 1.7976931348623157E308 > Double.PositiveInfinity
res0: Boolean = false
BigDecimal Is Often Used for Currency
BigDecimal is often used to represent currency because it offers control over rounding behavior. As shown in previous recipes, adding $0.10 + $0.20 with a Double isn’t exactly $0.30:
0.10 + 0.20 // Double = 0.30000000000000004
But BigDecimal doesn’t suffer from that problem:
BigDecimal(0.10) + BigDecimal(0.20) // BigDecimal = 0.3
That being said, you can still run into issues when using Double values to construct BigDecimal values:
BigDecimal(0.1 + 0.2) // BigDecimal = 0.30000000000000004
BigDecimal(.2 * .7) // BigDecimal = 0.13999999999999999
Therefore, it’s recommended that you always use the String version of the BigDecimal constructor to get the precise results you’re looking for:
BigDecimal("0.1") + BigDecimal("0.2") // BigDecimal = 0.3
BigDecimal("0.2") * BigDecimal("0.7") // BigDecimal = 0.14
As Joshua Bloch states in Effective Java (Addison-Wesley), “use BigDecimal, int, or long for monetary calculations.”
See Also
Baeldung’s “BigDecimal and BigInteger in Java” has a lot of details on the Java classes that are wrapped by Scala’s BigDecimal and BigInt class.
If you need to save these data types into a database, these pages may be helpful:
The Stack Overflow page “How to Insert BigInteger in Prepared Statement Java”
The Stack Overflow page “Store BigInteger into MySql”
The “Unpredictability of the BigDecimal(double) Constructor” Stack Overflow page discusses the problem of passing a double to BigDecimal in Java.
3.7 Generating Random Numbers
Problem
You need to create random numbers, such as when testing an application, performing a simulation, and many other situations.
Solution
Create random numbers with the scala.util.Random class. The following examples show common random number use cases:
val r = scala.util.Random
// random integers
r.nextInt // 455978773
r.nextInt // -1837771511
// returns a value between 0.0 and 1.0
r.nextDouble // 0.22095085955974536
r.nextDouble // 0.3349793259700605
// returns a value between 0.0 and 1.0
r.nextFloat // 0.34705013
r.nextFloat // 0.79055405
// set a seed when creating a new Random
val r = scala.util.Random(31)
// update the seed after you already have a Random instance
r.setSeed(1_000L)
// limit the integers to a maximum value
r.nextInt(6) // 0
r.nextInt(6) // 5
r.nextInt(6) // 1
When setting a maximum value on nextInt, the Int returned is between 0 (inclusive) and the value you specify (exclusive), so specifying 100 returns an Int from 0 to 99.
Discussion
This section shows several other useful things you can do with the Random class.
Random length ranges
Scala makes it easy to create a random-length range of numbers, which is especially useful for testing:
// random length ranges
0 to r.nextInt(10) // Range 0 to 9
0 to r.nextInt(10) // Range 0 to 3
0 to r.nextInt(10) // Range 0 to 7
Remember that you can always convert a Range to a sequence if that’s what you need:
// the resulting list size will be random
(0 to r.nextInt(10)).toList // List(0, 1, 2, 3, 4)
(0 to r.nextInt(10)).toList // List(0, 1, 2)
// a random size LazyList
(0 to r.nextInt(1_000_000)).to(LazyList)
// result: LazyList[Int] = LazyList(<not computed>)
A for/yield loop gives you a nice way to modify the values in the sequence:
for i <- 0 to r.nextInt(10) yield i * 10
That approach yields sequences like these:
Vector(0, 10, 20, 30)
Vector(0, 10)
Vector(0, 10, 20, 30, 40, 50, 60, 70, 80)
Fixed-length ranges with random values
Another approach is to create a sequence of known length, filled with random numbers:
val seq = for i <- 1 to 5 yield r.nextInt(100)
That approach yields sequences that contain five random integers, like these:
Vector(99, 6, 40, 77, 19)
Vector(1, 75, 87, 55, 39)
Vector(46, 40, 4, 82, 92)
You can do the same thing with nextFloat and nextDouble:
val floats = for i <- 1 to 5 yield r.nextFloat()
val doubles = for i <- 1 to 5 yield r.nextDouble()
Shuffling an existing sequence
Another common need is to “randomize” an existing sequence. To do that, use the Random class shuffle method:
import scala.util.Random
val x = List(1, 2, 3)
Random.shuffle(x) // List(3, 1, 2)
Random.shuffle(x) // List(2, 3, 1)
Getting a random element from a sequence
If you have an existing sequence and want to get a single random element from it, you can use this function:
import scala.util.Random
def getRandomElement[A](list: Seq[A], random: Random): A =
list(random.nextInt(list.length))
Here are a few examples of how to use this method:
val r = scala.util.Random
// integers
val ints = (1 to 100).toList
getRandomElement(ints, r) // Int = 66
getRandomElement(ints, r) // Int = 11
// strings
val names = List("Hala", "Helia", "Hannah", "Hope")
getRandomElement(names, r) // Hala
getRandomElement(names, r) // Hannah
3.8 Formatting Numbers and Currency
Problem
You want to format numbers or currency to control decimal places and separators (commas and decimals), typically for printed output.
Solution
For basic number formatting, use the f string interpolator. For other needs, such as adding commas and working with locales and currency, use instances of the java.text.NumberFormat class:
NumberFormat.getInstance // general-purpose numbers (floating-point)
NumberFormat.getIntegerInstance // integers
NumberFormat.getCurrencyInstance // currency
NumberFormat.getPercentInstance // percentages
The NumberFormat instances can also be customized for locales.
The f string interpolator
The f string interpolator, which is discussed in detail in Recipe 2.4, “Substituting Variables into Strings”, provides simple number formatting capabilities:
val pi = scala.math.Pi // Double = 3.141592653589793
println(f"${pi}%1.5f") // 3.14159
A few more examples demonstrate the technique:
// floating-point
f"${pi}%1.2f" // String = 3.14
f"${pi}%1.3f" // String = 3.142
f"${pi}%1.5f" // String = 3.14159
f"${pi}%6.2f" // String = " 3.14"
f"${pi}%06.2f" // String = 003.14
// whole numbers
val x = 10_000
f"${x}%d" // 10000
f"${x}%2d" // 10000
f"${x}%8d" // " 10000"
f"${x}%-8d" // "10000 "
If you prefer the explicit use of the format method that’s available to strings, write the code like this instead:
"%06.2f".format(pi) // String = 003.14
Commas, locales, and integers
When you want to format integer values, such as by adding commas in a locale like the United States, use NumberFormat’s getIntegerInstance method:
import java.text.NumberFormat
val formatter = NumberFormat.getIntegerInstance
formatter.format(10_000) // String = 10,000
formatter.format(1_000_000) // String = 1,000,000
That result shows commas because of my locale (near Denver, Colorado), but you can set a locale with getIntegerInstance and the Locale class:
import java.text.NumberFormat
import java.util.Locale
val formatter = NumberFormat.getIntegerInstance(Locale.GERMANY)
formatter.format(1_000) // 1.000
formatter.format(10_000) // 10.000
formatter.format(1_000_000) // 1.000.000
Commas, locales, and floating-point values
You can handle floating-point values with a formatter returned by getInstance:
val formatter = NumberFormat.getInstance
formatter.format(12.34) // 12.34
formatter.format(1_234.56) // 1,234.56
formatter.format(1_234_567.89) // 1,234,567.89
You can also set a locale with getInstance:
val formatter = NumberFormat.getInstance(Locale.GERMANY)
formatter.format(12.34) // 12,34
formatter.format(1_234.56) // 1.234,56
formatter.format(1_234_567.89) // 1.234.567,89
Currency
For currency output, use the getCurrencyInstance formatter. This is the default output in the United States:
val formatter = NumberFormat.getCurrencyInstance
formatter.format(123.456789) // $123.46
formatter.format(12_345.6789) // $12,345.68
formatter.format(1_234_567.89) // $1,234,567.89
Use a Locale to format international currency:
import java.util.{Currency, Locale}
val deCurrency = Currency.getInstance(Locale.GERMANY)
val deFormatter = java.text.NumberFormat.getCurrencyInstance
deFormatter.setCurrency(deCurrency)
deFormatter.format(123.456789) // €123.46
deFormatter.format(12_345.6789) // €12,345.68
deFormatter.format(1_234_567.89) // €1,234,567.89
If you don’t use a currency library you’ll probably want to use BigDecimal, which also works with getCurrencyInstance. Here’s the default output in the United States:
import java.text.NumberFormat
import scala.math.BigDecimal.RoundingMode
val a = BigDecimal("10000.995") // BigDecimal = 10000.995
val b = a.setScale(2, RoundingMode.DOWN) // BigDecimal = 10000.99
val formatter = NumberFormat.getCurrencyInstance
formatter.format(b) // String = $10,000.99
Here are two examples of BigDecimal values that use a locale:
import java.text.NumberFormat
import java.util.Locale
import scala.math.BigDecimal.RoundingMode
val b = BigDecimal("1234567.891").setScale(2, RoundingMode.DOWN)
// result: BigDecimal = 1234567.89
val deFormatter = NumberFormat.getCurrencyInstance(Locale.GERMANY)
deFormatter.format(b) // String = 1.234.567,89 €
val ukFormatter = NumberFormat.getCurrencyInstance(Locale.UK)
ukFormatter.format(b) // String = £1,234,567.89
Custom formatting patterns
You can also create your own formatting patterns with the DecimalFormat class. Just create the pattern you want, then apply the pattern to a number using the format method, as shown in these examples:
import java.text.DecimalFormat
val df = DecimalFormat("0.##")
df.format(123.45) // 123.45 (type = String)
df.format(123.4567890) // 123.46
df.format(.1234567890) // 0.12
df.format(1_234_567_890) // 1234567890
val df = DecimalFormat("0.####")
df.format(.1234567890) // 0.1235
df.format(1_234.567890) // 1234.5679
df.format(1_234_567_890) // 1234567890
val df = DecimalFormat("#,###,##0.00")
df.format(123) // 123.00
df.format(123.4567890) // 123.46
df.format(1_234.567890) // 1,234.57
df.format(1_234_567_890) // 1,234,567,890.00
See the Java DecimalFormat class for more formatting pattern characters (and a warning that, in general, you shouldn’t create a direct instance of DecimalFormat).
Locales
The java.util.Locale class has three constructors:
Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String data)
It also includes more than a dozen static instances for locales like CANADA, CHINA, FRANCE, GERMANY, JAPAN, UK, US, and more. For countries and languages that don’t have Locale constants, you can still specify them using a language or a pair of language/country strings. For example, per Oracle’s JDK 10 and JRE 10 Supported Locales page, locales in India can be specified like this:
Locale("hi-IN", "IN")
Locale("en-IN", "IN")
Here are a few other examples:
Locale("en-AU", "AU") // Australia
Locale("pt-BR", "BR") // Brazil
Locale("es-ES", "ES") // Spain
These examples demonstrate how the first India locale is used:
// India
import java.util.{Currency, Locale}
val indiaLocale = Currency.getInstance(Locale("hi-IN", "IN"))
val formatter = java.text.NumberFormat.getCurrencyInstance
formatter.setCurrency(indiaLocale)
formatter.format(123.456789) // ₹123.46
formatter.format(1_234.56789) // ₹1,234.57
With all of the get*Instance methods of NumberFormat, you can also set a default locale:
import java.text.NumberFormat
import java.util.Locale
val default = Locale.getDefault
val formatter = NumberFormat.getInstance(default)
formatter.format(12.34) // 12.34
formatter.format(1_234.56) // 1,234.56
formatter.format(1_234_567.89) // 1,234,567.89
Discussion
This recipe falls back to the Java approach for printing currency and other formatted numeric fields, though of course the currency solution depends on how you handle currency in your applications. In my work as a consultant, I’ve seen most companies handle currency using the Java BigDecimal class, and others create their own custom currency classes, which are typically wrappers around BigDecimal.
3.9 Creating New Date and Time Instances
Problem
You need to create new date and time instances using the Date and Time API that was introduced with Java 8.
Solution
Using the Java 8 API you can create new dates, times, and date/time values. Table 3-2 provides a description of some of the new classes you’ll use (from the java.time Javadoc), all of which work in the ISO-8601 calendar system.
Class | Description |
---|---|
LocalDate | A date without a time zone, such as 2007-12-03. |
LocalTime | A time without a time zone, such as 10:15:30. |
LocalDateTime | A date-time without a time zone, such as 2007-12-03T10:15:30. |
ZonedDateTime | A date-time with a time zone, such as 2007-12-03T10:15:30+01:00 Europe/Paris. |
Instant | Models a single instantaneous point on the timeline. This might be used to record event timestamps in the application. |
To create new date/time instances:
Use now methods on those classes to create new instances that represent the current moment.
Use of methods on those classes to create dates that represent past or future date/time values.
Now
To create instances to represent the current date and time, use the now methods that are available on the new classes in the API:
import java.time.*
LocalDate.now // 2019-01-20
LocalTime.now // 12:19:26.270
LocalDateTime.now // 2019-01-20T12:19:26.270
Instant.now // 2019-01-20T19:19:26.270Z
ZonedDateTime.now // 2019-01-20T12:44:53.466-07:00[America/Denver]
The results of those methods demonstrate the data that’s stored in each type.
Past or future
To create dates and times in the past or future, use the of factory methods on each of the classes shown. For example, here are a few ways to create java.time.LocalDate instances with its of factory methods:
val squirrelDay = LocalDate.of(2020, 1, 21)
val squirrelDay = LocalDate.of(2020, Month.JANUARY, 21)
val squirrelDay = LocalDate.of(2020, 1, 1).plusDays(20)
Note that with LocalDate, January is represented by 1 (not 0).
java.time.LocalTime has five of* factory methods, including these:
LocalTime.of(hour: Int, minute: Int)
LocalTime.of(hour: Int, minute: Int, second: Int)
LocalTime.of(0, 0) // 00:00
LocalTime.of(0, 1) // 00:01
LocalTime.of(1, 1) // 01:01
LocalTime.of(23, 59) // 23:59
These intentional exceptions help demonstrate the valid values for minutes and hours:
LocalTime.of(23, 60) // DateTimeException: Invalid value for MinuteOfHour,
// (valid values 0 - 59): 60
LocalTime.of(24, 1) // DateTimeException: Invalid value for HourOfDay,
// (valid values 0 - 23): 24
java.time.LocalDateTime has nine of* factory method constructors, including these:
LocalDateTime.of(year: Int, month: Int, dayOfMonth: Int, hour: Int, minute: Int)
LocalDateTime.of(year: Int, month: Month, dayOfMonth: Int, hour: Int, minute: Int)
LocalDateTime.of(date: LocalDate, time: LocalTime)
java.time.ZonedDateTime has seven of* factory method constructors, including these:
of(int year, int month, int dayOfMonth, int hour, int minute, int second,
int nanoOfSecond, ZoneId zone)
of(LocalDate date, LocalTime time, ZoneId zone)
of(LocalDateTime localDateTime, ZoneId zone)
ofInstant(Instant instant, ZoneId zone)
Here’s an example of the second method:
val zdt = ZonedDateTime.of(
LocalDate.now,
LocalTime.now,
ZoneId.of("America/New_York")
)
// result: 2021-01-01T20:38:57.590542-05:00[America/New_York]
While I’m in the neighborhood, a few other java.time.ZoneId values look like this:
ZoneId.of("Europe/Paris") // java.time.ZoneId = Europe/Paris
ZoneId.of("Asia/Tokyo") // java.time.ZoneId = Asia/Tokyo
ZoneId.of("America/New_York") // java.time.ZoneId = America/New_York
// an offset from UTC (Greenwich) time
ZoneId.of("UTC+1") // java.time.ZoneId = UTC+01:00
java.time.Instant has three of* factory methods:
Instant.ofEpochMilli(epochMilli: Long)
Instant.ofEpochSecond(epochSecond: Long)
Instant.ofEpochSecond(epochSecond: Long, nanoAdjustment: Long)
Instant.ofEpochMilli(100) // Instant = 1970-01-01T00:00:00.100Z
The Instant class is nice for many reasons, including giving you the ability to calculate the time duration between two instants:
import java.time.{Instant, Duration}
val start = Instant.now // Instant = 2021-01-02T03:41:20.067769Z
Thread.sleep(2_000)
val stop = Instant.now // Instant = 2021-01-02T03:41:22.072429Z
val delta = Duration.between(start, stop) // Duration = PT2.00466S
delta.toMillis // Long = 2004
delta.toNanos // Long = 2004660000
3.10 Calculating the Difference Between Two Dates
Problem
You need to determine the difference between two dates.
Solution
If you need to determine the number of days between two dates, the DAYS enum constant of the java.time.temporal.ChronoUnit class is the easiest solution:
import java.time.LocalDate
import java.time.temporal.ChronoUnit.DAYS
val now = LocalDate.of(2019, 1, 20) // 2019-01-20
val xmas = LocalDate.of(2019, 12, 25) // 2019-12-25
DAYS.between(now, xmas) // Long = 339
If you need the number of years or months between two dates, you can use the YEARS and MONTHS enum constants of ChronoUnit:
import java.time.LocalDate
import java.time.temporal.ChronoUnit.*
val now = LocalDate.of(2019, 1, 20) // 2019-01-20
val nextXmas = LocalDate.of(2020, 12, 25) // 2020-12-25
val years: Long = YEARS.between(now, nextXmas) // 1
val months: Long = MONTHS.between(now, nextXmas) // 23
val days: Long = DAYS.between(now, nextXmas) // 705
Using the same LocalDate values, you can also use the Period class, but notice the significant difference in the output between the ChronoUnit and Period approaches:
import java.time.Period
val diff = Period.between(now, nextXmas) // P1Y11M5D
diff.getYears // 1
diff.getMonths // 11
diff.getDays // 5
Discussion
The between method of the ChronoUnit class takes two Temporal arguments:
between(temporal1Inclusive: Temporal, temporal2Exclusive: Temporal)
Therefore, it works with all Temporal subclasses, including Instant, LocalDate, LocalDateTime, LocalTime, ZonedDateTime, and more. Here’s a LocalDateTime example:
import java.time.LocalDateTime
import java.time.temporal.ChronoUnit
// of(year, month, dayOfMonth, hour, minute)
val d1 = LocalDateTime.of(2020, 1, 1, 1, 1)
val d2 = LocalDateTime.of(2063, 4, 5, 1, 1)
ChronoUnit.DAYS.between(d1, d2) // Long = 15800
ChronoUnit.YEARS.between(d1, d2) // Long = 43
ChronoUnit.MINUTES.between(d1, d2) // Long = 22752000
The ChronoUnit class has many other enum constants, including CENTURIES, DECADES, HOURS, MICROS, MILLIS, SECONDS, WEEKS, YEARS, and more.
3.11 Formatting Dates
Problem
You need to print dates in a desired format.
Solution
Use the java.time.format.DateTimeFormatter class. It provides three types of formatters for printing date/time values:
Predefined formatters
Locale formatters
The ability to create your own custom formatters
Predefined formatters
DateTimeFormatter provides 15 predefined formatters you can use. This example shows how to use a formatter with a LocalDate:
import java.time.LocalDate
import java.time.format.DateTimeFormatter
val d = LocalDate.now // 2021-02-04
val f = DateTimeFormatter.BASIC_ISO_DATE
f.format(d) // 20210204
These examples show what the other date formatters look like:
ISO_LOCAL_DATE // 2021-02-04
ISO_DATE // 2021-02-04
BASIC_ISO_DATE // 20210204
ISO_ORDINAL_DATE // 2021-035
ISO_WEEK_DATE // 2021-W05-4
Locale formatters
Create locale formatters using these static DateTimeFormatter methods:
ofLocalizedDate
ofLocalizedTime
ofLocalizedDateTime
You also apply one of four java.time.format.FormatStyle values when creating a localized date:
SHORT
MEDIUM
LONG
FULL
This example demonstrates how to use ofLocalizedDate with a LocalDate and FormatStyle.FULL:
import java.time.LocalDate
import java.time.format.{DateTimeFormatter, FormatStyle}
val d = LocalDate.of(2021, 1, 1)
val f = DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)
f.format(d) // Friday, January 1, 2021
Using the same technique, this is what the four format styles look like:
SHORT // 1/1/21
MEDIUM // Jan 1, 2021
LONG // January 1, 2021
FULL // Friday, January 1, 2021
Custom patterns with ofPattern
You can also create custom patterns by specifying your own formatting strings. Here’s an example of the technique:
import java.time.LocalDate
import java.time.format.DateTimeFormatter
val d = LocalDate.now // 2021-01-01
val f = DateTimeFormatter.ofPattern("yyyy-MM-dd")
f.format(d) // 2021-01-01
Here are a few other common patterns:
"MM/dd/yyyy" // 01/01/2021
"MMM dd, yyyy" // Jan 01, 2021
"E, MMM dd yyyy" // Fri, Jan 01 2021
This example demonstrates how to format a LocalTime:
import java.time.LocalTime
import java.time.format.DateTimeFormatter
val t = LocalTime.now
val f1 = DateTimeFormatter.ofPattern("h:mm a")
f1.format(t) // 6:48 PM
val f2 = DateTimeFormatter.ofPattern("HH:mm:ss a")
f2.format(t) // 18:48:33 PM
With a LocalDateTime you can format both date and time output:
import java.time.LocalDateTime
import java.time.format.DateTimeFormatter
val t = LocalDateTime.now
val f = DateTimeFormatter.ofPattern("MMM dd, yyyy h:mm a")
f.format(t) // Jan 01, 2021 6:48 PM
See the DateTimeFormatter class for a complete list of predefined formats and formatting pattern characters that are available.
3.12 Parsing Strings into Dates
Problem
You need to parse a string into one of the date/time types introduced in Java 8.
Solution
If your string is in the expected format, pass it to the parse method of the desired class. If the string is not in the expected (default) format, create a formatter to define the format you want to accept.
LocalDate
This example shows the default format for java.time.LocalDate:
import java.time.LocalDate
val d = LocalDate.parse("2020-12-10") // LocalDate = 2020-12-10
If you try to pass a string into parse with the wrong format, you’ll get an exception:
val d = LocalDate.parse("2020/12/10") // java.time.format.DateTimeParseException
To accept a string in a different format, create a formatter for the desired pattern:
import java.time.format.DateTimeFormatter
val df = DateTimeFormatter.ofPattern("yyyy/MM/dd")
val d = LocalDate.parse("2020/12/10", df) // LocalDate = 2020-12-10
LocalTime
These examples demonstrate the default format for java.time.LocalTime:
import java.time.LocalTime
val t = LocalTime.parse("01:02") //01:02
val t = LocalTime.parse("13:02:03") //13:02:03
Notice that each field requires a leading 0:
val t = LocalTime.parse("1:02") //java.time.format.DateTimeParseException
val t = LocalTime.parse("1:02:03") //java.time.format.DateTimeParseException
These examples demonstrate several ways of using formatters:
import java.time.format.DateTimeFormatter
LocalTime.parse("00:00", DateTimeFormatter.ISO_TIME)
// 00:00
LocalTime.parse("23:59", DateTimeFormatter.ISO_LOCAL_TIME)
// 23:59
LocalTime.parse("23 59 59", DateTimeFormatter.ofPattern("HH mm ss"))
// 23:59:59
LocalTime.parse("11 59 59 PM", DateTimeFormatter.ofPattern("hh mm ss a"))
// 23:59:59
LocalDateTime
This example demonstrates the default format for java.time.LocalDateTime:
import java.time.LocalDateTime
val s = "2021-01-01T12:13:14"
val ldt = LocalDateTime.parse(s) // LocalDateTime = 2021-01-01T12:13:14
These examples demonstrate several ways of using formatters:
import java.time.LocalDateTime
import java.time.format.DateTimeFormatter
val s = "1999-12-31 23:59"
val f = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm")
val ldt = LocalDateTime.parse(s, f)
// 1999-12-31T23:59
val s = "1999-12-31 11:59:59 PM"
val f = DateTimeFormatter.ofPattern("yyyy-MM-dd hh:mm:ss a")
val ldt = LocalDateTime.parse(s, f)
// 1999-12-31T23:59:59
Instant
java.time.Instant only has one parse method that requires a date/time stamp in the proper format:
import java.time.Instant
Instant.parse("1970-01-01T00:01:02.00Z") // 1970-01-01T00:01:02Z
Instant.parse("2021-01-22T23:59:59.00Z") // 2021-01-22T23:59:59Z
ZonedDateTime
These examples demonstrate the default formats for java.time.ZonedDateTime:
import java.time.ZonedDateTime
ZonedDateTime.parse("2020-12-31T23:59:59-06:00")
// ZonedDateTime = 2020-12-31T23:59:59-06:00
ZonedDateTime.parse("2020-12-31T23:59:59-00:00[US/Mountain]")
// ZonedDateTime = 2020-12-31T16:59:59-07:00[US/Mountain]
These examples demonstrate several ways of using formatters with ZonedDateTime:
import java.time.ZonedDateTime
import java.time.format.DateTimeFormatter.*
val zdt = ZonedDateTime.parse("2021-01-01T01:02:03Z", ISO_ZONED_DATE_TIME)
// ZonedDateTime = 2021-01-01T01:02:03Z
ZonedDateTime.parse("2020-12-31T23:59:59+01:00", ISO_DATE_TIME)
// ZonedDateTime = 2020-12-31T23:59:59+01:00
ZonedDateTime.parse("2020-02-29T00:00:00-05:00", ISO_OFFSET_DATE_TIME)
// ZonedDateTime = 2020-02-29T00:00-05:00
ZonedDateTime.parse("Sat, 29 Feb 2020 00:01:02 GMT", RFC_1123_DATE_TIME)
// ZonedDateTime = 2020-02-29T00:01:02Z
Be aware that an improper date (or improperly formatted date) will throw an exception:
ZonedDateTime.parse("2021-02-29T00:00:00-05:00", ISO_OFFSET_DATE_TIME)
// java.time.format.DateTimeParseException: Text '2021-02-29T00:00:00-05:00'
// could not be parsed: Invalid date 'February 29' as '2021' is not a leap year
ZonedDateTime.parse("Fri, 29 Feb 2020 00:01:02 GMT", RFC_1123_DATE_TIME)
// java.time.format.DateTimeParseException: Text
// 'Fri, 29 Feb 2020 00:01:02 GMT' could not be parsed: Conflict found:
// Field DayOfWeek 6 differs from DayOfWeek 5 derived from 2020-02-29
Chapter 4. Control Structures
As their name implies, control structures provide a way for programmers to control the flow of a program. They’re a fundamental feature of programming languages that let you handle decision making and looping tasks.
Prior to learning Scala back in 2010, I thought control structures like if/then statements, along with for and while loops, were relatively boring features of programming languages, but that was only because I didn’t know there was another way. These days I know that they’re a defining feature of programming languages.
Scala’s control structures are:
for loops and for expressions
if/then/else if expressions
match expressions (pattern matching)
try/catch/finally blocks
while loops
I’ll briefly introduce each of these next, and then the recipes will show you additional details about how to use their features.
for Loops and for Expressions
In their most basic use, for loops provide a way to iterate over a collection to operate on the collection’s elements:
for i <- List(1, 2, 3) do println(i)
But that’s just a basic use case. for loops can also have guards—embedded if statements:
for
i <- 1 to 10
if i > 3
if i < 6
do
println(i)
With the use of the yield keyword, for loops also become for expressions—loops that yield a result:
val listOfInts = for
i <- 1 to 10
if i > 3
if i < 6
yield
i * 10
After that loop runs, listOfInts is a Vector(40, 50). The guards inside the loop filter out all of the values except 4 and 5, and then those values are multiplied by 10 in the yield block.
Many more details about for loops and expressions are covered in the initial recipes in this chapter.
if/then/else-if Expressions
While for loops and expressions let you traverse over a collection, if/then/else expressions provide a way to make branching decisions. In Scala 3 the preferred syntax has changed, and now looks like this:
val absValue = if a < 0 then -a else a
def compare(a: Int, b: Int): Int =
if a < b then
-1
else if a == b then
0
else
1
end compare
As shown in both of those examples, an if expression truly is an expression that returns a value. (Expressions are discussed in Recipe 4.5.)
match Expressions and Pattern Matching
Next, match expressions and pattern matching are a defining feature of Scala, and demonstrating their capabilities takes up the majority of this chapter. Like if expressions, match expressions return values, so you can use them as the body of a method. As an example, this method is similar to the Perl programming language’s version of things that are true and false:
def isTrue(a: Matchable): Boolean = a match
case false | 0 | "" => false
case _ => true
In that code, if isTrue receives a 0 or an empty string, it returns false, otherwise it returns true. Ten recipes in this chapter are used to detail the features of match expressions.
try/catch/finally Blocks
Next, Scala’s try/catch/finally blocks are similar to Java, but the syntax is slightly different, primarily in that the catch block is consistent with a match expression:
try
// some exception-throwing code here
catch
case e1: Exception1Type => // handle that exception
case e2: Exception2Type => // handle that exception
finally
// close your resources and do anything else necessary here
Like if and match, try is an expression that returns a value, so you can write code like this to transform a String into an Int:
def toInt(s: String): Option[Int] =
try
Some(s.toInt)
catch
case e: NumberFormatException => None
These examples show how toInt works:
toInt("1") // Option[Int] = Some(1)
toInt("Yo") // Option[Int] = None
Recipe 4.16 provides more information about try/catch blocks.
while Loops
When it comes to while loops, you’ll find that they’re rarely used in Scala. This is because while loops are mostly used for side effects, such as updating mutable variables and printing with println, and these are things you can also do with for loops and the foreach method on collections. That being said, if you ever need to use one, their syntax looks like this:
while
i < 10
do
println(i)
i += 1
while loops are briefly covered in Recipe 4.1.
Finally, because of a combination of several Scala features, you can create your own control structures, and these capabilities are discussed in Recipe 4.17.
Control Structures as a Defining Feature of Programming Languages
At the end of 2020 I was fortunate enough to cowrite the Scala 3 Book on the official Scala Documentation website, including these three chapters:
When I said earlier that control structures are a “defining feature of programming languages,” one of the things I meant is that after I wrote those chapters, I came to realize the power of the features in this chapter, as well as how consistent Scala is compared to other programming languages. That consistency is one of the features that makes Scala a joy to use.
4.1 Looping over Data Structures with for
Problem
You want to iterate over the elements in a collection in the manner of a traditional for loop.
Solution
There are many ways to loop over Scala collections, including for loops, while loops, and collection methods like foreach, map, flatMap, and more. This solution focuses primarily on the for loop.
Given a simple list:
val fruits = List("apple", "banana", "orange")
you can loop over the elements in the list and print them like this:
scala> for f <- fruits do println(f)
apple
banana
orange
That same approach works for all sequences, including List, Seq, Vector, Array, ArrayBuffer, etc.
When your algorithm requires multiple lines, use the same for loop syntax, and perform your work in a block inside curly braces:
scala> for f <- fruits do
| // imagine this requires multiple lines
| val s = f.toUpperCase
| println(s)
APPLE
BANANA
ORANGE
for loop counters
If you need access to a counter inside a for loop, use one of the following approaches. First, you can access the elements in a sequence with a counter like this:
for i <- 0 until fruits.length do
println(s"$i is ${fruits(i)}")
That loops yields this output:
0 is apple
1 is banana
2 is orange
You rarely need to access sequence elements by their index, but when you do, that is one possible approach. Scala collections also offer a zipWithIndex method that you can use to create a loop counter:
for (fruit, index) <- fruits.zipWithIndex do
println(s"$index is $fruit")
Its output is:
0 is apple
1 is banana
2 is orange
Generators
On a related note, the following example shows how to use a Range to execute a loop three times:
scala> for i <- 1 to 3 do println(i)
1
2
3
The 1 to 3 portion of the loop creates a Range, as shown in the REPL:
scala> 1 to 3
res0: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3)
Using a Range like this is known as using a generator. Recipe 4.2 demonstrates how to use this technique to create multiple loop counters.
Looping over a Map
When iterating over keys and values in a Map, I find this to be the most concise and readable for loop:
val names = Map(
"firstName" -> "Robert",
"lastName" -> "Goren"
)
for (k,v) <- names do println(s"key: $k, value: $v")
The REPL shows its output:
scala> for (k,v) <- names do println(s"key: $k, value: $v")
key: firstName, value: Robert
key: lastName, value: Goren
Discussion
Because I’ve switched to a functional programming style, I haven’t used a while loop in several years, but the REPL demonstrates how it works:
scala> var i = 0
i: Int = 0
scala> while i < 3 do
| println(i)
| i += 1
0
1
2
while loops are generally used for side effects, such as updating a mutable variable like i and writing output to the outside world. As my code gets closer to pure functional programming—where there is no mutable state—I haven’t had any need for them.
That being said, when you’re programming in an object-oriented programming style, while loops are still frequently used, and that example demonstrates their syntax. A while loop can also be written on multiple lines like this:
while
i < 10
do
println(i)
i += 1
Collection methods like foreach
In some ways Scala reminds me of the Perl slogan, “There’s more than one way to do it,” and iterating over a collection provides some great examples of this. With the wealth of methods that are available on collections, it’s important to note that a for loop may not even be the best approach to a particular problem; the methods foreach, map, flatMap, collect, reduce, etc., can often be used to solve your problem without requiring an explicit for loop.
For example, when you’re working with a collection, you can also iterate over each element by calling the foreach method on the collection:
scala> fruits.foreach(println)
apple
banana
orange
When you have an algorithm you want to run on each element in the collection, just pass the anonymous function into foreach:
scala> fruits.foreach(e => println(e.toUpperCase))
APPLE
BANANA
ORANGE
As with the for loop, if your algorithm requires multiple lines, perform your work in a block:
scala> fruits.foreach { e =>
| val s = e.toUpperCase
| println(s)
| }
APPLE
BANANA
ORANGE
See Also
For more examples of how to use zipWithIndex, see Recipe 13.4, “Using zipWithIndex or zip to Create Loop Counters”.
For more examples of how to iterate over the elements in a Map, see Recipe 14.9, “Traversing a Map”.
The theory behind how for loops work is very interesting, and knowing it can be helpful as you progress. I wrote about it at length in these articles:
“How to Make a Custom Sequence Work as a for Loop Generator”
“How to Enable Filtering in a for Expression”
“How to Enable the Use of Multiple Generators in a for Expression”
4.2 Using for Loops with Multiple Counters
Problem
You want to create a loop with multiple counters, such as when iterating over a multidimensional array.
Solution
You can create a for loop with two counters like this:
scala> for i <- 1 to 2; j <- 1 to 2 do println(s"i = $i, j = $j")
i = 1, j = 1
i = 1, j = 2
i = 2, j = 1
i = 2, j = 2
Notice that it sets i to 1, loops through the elements in j, then sets i to 2 and repeats the process.
Using that approach works well with small examples, but when your code gets larger, this is the preferred style:
for
i <- 1 to 3
j <- 1 to 5
k <- 1 to 10 by 2
do
println(s"i = $i, j = $j, k = $k")
This approach is useful when looping over a multidimensional array. Assuming you create and populate a small two-dimensional array like this:
val a = Array.ofDim[Int](2,2)
a(0)(0) = 0
a(0)(1) = 1
a(1)(0) = 2
a(1)(1) = 3
you can print every array element like this:
scala> for
| i <- 0 to 1
| j <- 0 to 1
| do
| println(s"($i)($j) = ${a(i)(j)}")
(0)(0) = 0
(0)(1) = 1
(1)(0) = 2
(1)(1) = 3
Discussion
As shown in Recipe 15.2, “Creating Ranges”, the 1 to 5 syntax creates a Range:
scala> 1 to 5
val res0: scala.collection.immutable.Range.Inclusive = Range 1 to 5
Ranges are great for many purposes, and ranges created with the <- symbol in for loops are referred to as generators. As shown, you can easily use multiple generators in one loop.
See Also
4.3 Using a for Loop with Embedded if Statements (Guards)
Problem
You want to add one or more conditional clauses to a for loop, typically to filter out some elements in a collection while working on the others.
Solution
Add one or more if statements after your generator, like this:
for
i <- 1 to 10
if i % 2 == 0
do
print(s"$i ")
// output: 2 4 6 8 10
These if statements are referred to as filters, filter expressions, or guards, and you can use as many guards as needed for the problem at hand. This loop shows a hard way to print the number 4:
for
i <- 1 to 10
if i > 3
if i < 6
if i % 2 == 0
do
println(i)
Discussion
It’s still possible to write for loops with if expressions in an older style. For instance, given this code:
import java.io.File
val dir = File(".")
val files: Array[java.io.File] = dir.listFiles()
you could, in theory, write a for loop in a style like this, which is reminiscent of C and Java:
// a C/Java style of writing a 'for' loop
for (file <- files) {
if (file.isFile && file.getName.endsWith(".scala")) {
println(s"Scala file: $file")
}
}
However, once you become comfortable with Scala’s for loop syntax, I think you’ll find that it makes the code more readable, because it separates the looping and filtering concerns from the business logic:
for
// loop and filter
file <- files
if file.isFile
if file.getName.endsWith(".scala")
do
// as much business logic here as needed
println(s"Scala file: $file")
Note that because guards are generally intended to filter collections, you may want to use one of the many filtering methods that are available to collections—filter, take, drop, etc.—instead of a for loop, depending on your needs. See Chapter 11 for examples of those methods.
4.4 Creating a New Collection from an Existing Collection with for/yield
Problem
You want to create a new collection from an existing collection by applying an algorithm (and potentially one or more guards) to each element in the original collection.
Solution
Use a yield statement with a for loop to create a new collection from an existing collection. For instance, given an array of lowercase strings:
scala> val names = List("chris", "ed", "maurice")
val names: List[String] = List(chris, ed, maurice)
you can create a new array of capitalized strings by combining yield with a for loop and a simple algorithm:
scala> val capNames = for name <- names yield name.capitalize
val capNames: List[String] = List(Chris, Ed, Maurice)
Using a for loop with a yield statement is known as a for-comprehension.
If your algorithm requires multiple lines of code, perform the work in a block after the yield keyword, manually specifying the type of the resulting variable, or not:
// [1] declare the type of `lengths`
val lengths: List[Int] = for name <- names yield
// imagine that this body requires multiple lines of code
name.length
// [2] don’t declare the type of `lengths`
val lengths = for name <- names yield
// imagine that this body requires multiple lines of code
name.length
Both approaches yield the same result:
List[Int] = List(5, 2, 7)
Both parts of your for comprehension (also known as a for expression) can be as complicated as necessary. Here’s a larger example:
val xs = List(1,2,3)
val ys = List(4,5,6)
val zs = List(7,8,9)
val a = for
x <- xs
if x > 2
y <- ys
z <- zs
if y * z < 45
yield
val b = x + y
val c = b * z
c
That for comprehension yields the following result:
a: List[Int] = List(49, 56, 63, 56, 64, 63)
A for comprehension can even be the complete body of a method:
def between3and10(xs: List[Int]): List[Int] =
for
x <- xs
if x >= 3
if x <= 10
yield x
between3and10(List(1,3,7,11)) // List(3, 7)
Discussion
If you’re new to using yield with a for loop, it can help to think of the loop like this:
When it begins running, the for/yield loop immediately creates a new empty collection that is of the same type as the input collection. For example, if the input type is a Vector, the output type will also be a Vector. You can think of this new collection as being like an empty bucket.
On each iteration of the for loop, a new output element may be created from the current element of the input collection. When the output element is created, it’s placed in the bucket.
When the loop finishes running, the entire contents of the bucket are returned.
That’s a simplification, but I find it helpful when explaining the process.
Note that writing a for expression without a guard is just like calling the map method on a collection.
For instance, the following for comprehension converts all the strings in the fruits collection to uppercase:
scala> val namesUpper = for n <- names yield n.toUpperCase
val namesUpper: List[String] = List(CHRIS, ED, MAURICE)
Calling the map method on the collection does the same thing:
scala> val namesUpper = names.map(_.toUpperCase)
val namesUpper: List[String] = List(CHRIS, ED, MAURICE)
When I first started learning Scala, I wrote all of my code using for/yield expressions, until one day I realized that using for/yield without a guard was the same as using map.
See Also
Comparisons between for comprehensions and map are shown in more detail in Recipe 13.5, “Transforming One Collection to Another with map”.
4.5 Using the if Construct Like a Ternary Operator
Problem
You’re familiar with Java’s special ternary operator syntax:
int absValue = (a < 0) ? -a : a;
and you’d like to know what the Scala equivalent is.
Solution
This is a bit of a trick problem, because unlike Java, in Scala there is no special ternary operator; just use an if/else/then expression:
val a = 1
val absValue = if a < 0 then -a else a
Because an if expression returns a value, you can embed it into a print statement:
println(if a == 0 then "a" else "b")
You can also use it in another expression, such as this portion of a hashCode method:
hash = hash * prime + (if name == null then 0 else name.hashCode)
The fact that if/else expressions return a value also lets you write concise methods:
// Version 1: one-line style
def abs(x: Int) = if x >= 0 then x else -x
def max(a: Int, b: Int) = if a > b then a else b
// Version 2: the method body on a separate line, if you prefer
def abs(x: Int) =
if x >= 0 then x else -x
def max(a: Int, b: Int) =
if a > b then a else b
Discussion
The “Equality, Relational, and Conditional Operators” Java documentation page states that the Java conditional operator ?: “is known as the ternary operator because it uses three operands.”
Java requires a separate syntax here because the Java if/else construct is a statement; it doesn’t have a return value, and is only used for side effects, such as updating mutable fields. Conversely, because Scala’s if/else/then truly is an expression, a special operator isn’t needed. See Recipe 24.3, “Writing Expressions (Instead of Statements)”, for more details on statements and expressions.
Arity
The word ternary has to do with the arity of functions. Wikipedia’s “Arity” page states, “In logic, mathematics, and computer science, the arity of a function or operation is the number of arguments or operands that the function takes.” A unary operator takes one operand, a binary operator takes two operands, and a ternary operator takes three operands.
4.6 Using a Match Expression Like a switch Statement
Problem
You have a situation where you want to create something like a simple Java integer-based switch statement, such as matching the days in a week, the months in a year, and other situations where an integer maps to a result.
Solution
To use a Scala match expression like a simple, integer-based switch statement, use this approach:
import scala.annotation.switch
// `i` is an integer
(i: @switch) match
case 0 => println("Sunday")
case 1 => println("Monday")
case 2 => println("Tuesday")
case 3 => println("Wednesday")
case 4 => println("Thursday")
case 5 => println("Friday")
case 6 => println("Saturday")
// catch the default with a variable so you can print it
case whoa => println(s"Unexpected case: ${whoa.toString}")
That example shows how to produce a side-effect action (println) based on a match. A more functional approach is to return a value from a match expression:
import scala.annotation.switch
// `i` is an integer
val day = (i: @switch) match
case 0 => "Sunday"
case 1 => "Monday"
case 2 => "Tuesday"
case 3 => "Wednesday"
case 4 => "Thursday"
case 5 => "Friday"
case 6 => "Saturday"
case _ => "invalid day" // the default, catch-all
The @switch annotation
When writing simple match expressions like this, it’s recommended to use the @switch annotation, as shown. This annotation provides a warning at compile time if the switch can’t be compiled to a tableswitch or lookupswitch. Compiling your match expression to a tableswitch or lookupswitch is better for performance because it results in a branch table rather than a decision tree. When a value is given to the expression, it can jump directly to the result rather than working through the decision tree.
The Scala @switch annotation documentation states:
If [this annotation is] present, the compiler will verify that the match has been compiled to a tableswitch or lookupswitch, and issue an error if it instead compiles into a series of conditional expressions
The effect of the @switch annotation is demonstrated with a simple example. First, place the following code in a file named SwitchDemo.scala:
// Version 1 - compiles to a tableswitch
import scala.annotation.switch
class SwitchDemo:
val i = 1
val x = (i: @switch) match
case 1 => "One"
case 2 => "Two"
case 3 => "Three"
case _ => "Other"
Then compile the code as usual:
$ scalac SwitchDemo.scala
Compiling this class produces no warnings and creates the SwitchDemo.class output file. Next, disassemble that file with this javap command:
$ javap -c SwitchDemo
The output from this command shows a tableswitch, like this:
16: tableswitch { // 1 to 3
1: 44
2: 52
3: 60
default: 68
}
This shows that Scala was able to optimize your match expression to a tableswitch. (This is a good thing.)
Next, make a minor change to the code, replacing the integer literal 1 with a value:
import scala.annotation.switch
// Version 2 - leads to a compiler warning
class SwitchDemo:
val i = 1
val one = 1 // added
val x = (i: @switch) match
case one => "One" // replaced the '1'
case 2 => "Two"
case 3 => "Three"
case _ => "Other"
Again, compile the code with scalac, but right away you’ll see a warning message:
$ scalac SwitchDemo.scala
SwitchDemo.scala:7: warning: could not emit switch for @switch annotated match
val x = (i: @switch) match {
^
one warning found
This warning message means that neither a tableswitch nor a lookupswitch could be generated for the match expression. You can confirm this by running the javap command on the SwitchDemo.class file that was generated. When you look at that output, you’ll see that the tableswitch shown in the previous example is now gone.
In his book, Scala in Depth (Manning), Joshua Suereth states that the following conditions must be true for Scala to apply the tableswitch optimization:
The matched value must be a known integer.
The matched expression must be “simple.” It can’t contain any type checks, if statements, or extractors.
The expression must have its value available at compile time.
There should be more than two case statements.
Discussion
The examples in the Solution showed the two ways you can handle the default “catch all” case. First, if you’re not concerned about the value of the default match, you can catch it with the _ wildcard:
case _ => println("Got a default match")
Conversely, if you are interested in what fell down to the default match, assign a variable name to it. You can then use that variable on the right side of the expression:
case default => println(default)
Using a name like default often makes the most sense, but you can use any legal name for the variable:
case oops => println(oops)
It’s important to know that you can generate a MatchError if you don’t handle the default case. Given this match expression:
i match
case 0 => println("0 received")
case 1 => println("1 is good, too")
if i is a value other than 0 or 1, the expression throws a MatchError:
scala.MatchError: 42 (of class java.lang.Integer)
at .<init>(<console>:9)
at .<clinit>(<console>)
much more error output here ...
So unless you’re intentionally writing a partial function, you’ll want to handle the default case.
Do you really need a match expression?
Note that you may not need a match expression for examples like this. For instance, any time you’re just mapping one value to another, it may be preferable to use a Map:
val days = Map(
0 -> "Sunday",
1 -> "Monday",
2 -> "Tuesday",
3 -> "Wednesday",
4 -> "Thursday",
5 -> "Friday",
6 -> "Saturday"
)
println(days(0)) // prints "Sunday"
See Also
For more information on how JVM switches work, see the JVM spec on compiling switches.
Regarding the difference between a lookupswitch and tableswitch, this Stack Overflow page states, “The difference is that a lookupswitch uses a table with keys and labels, yet a tableswitch uses a table with labels only.” Again, see the “Compiling Switches” section of the Java Virtual Machine (JVM) specification for more details.
See Recipe 10.7, “Creating Partial Functions”, for more information on partial functions.
4.7 Matching Multiple Conditions with One Case Statement
Problem
You have a situation where several match conditions require that the same business logic be executed, and rather than repeating your business logic for each case, you’d like to use one copy of the business logic for the matching conditions.
Solution
Place the match conditions that invoke the same business logic on one line, separated by the | (pipe) character:
// `i` is an Int
i match
case 1 | 3 | 5 | 7 | 9 => println("odd")
case 2 | 4 | 6 | 8 | 10 => println("even")
case _ => println("too big")
This same syntax works with strings and other types. Here’s an example based on a String match:
val cmd = "stop"
cmd match
case "start" | "go" => println("starting")
case "stop" | "quit" | "exit" => println("stopping")
case _ => println("doing nothing")
This example shows how to match multiple objects on each case statement:
enum Command:
case Start, Go, Stop, Whoa
import Command.*
def executeCommand(cmd: Command): Unit = cmd match
case Start | Go => println("start")
case Stop | Whoa => println("stop")
As demonstrated, the ability to define multiple possible matches for each case statement can simplify your code.
See Also
See Recipe 4.12 for a related approach.
4.8 Assigning the Result of a Match Expression to a Variable
Problem
You want to return a value from a match expression and assign it to a variable, or use a match expression as the body of a method.
Solution
To assign the result of a match expression to a variable, insert the variable assignment before the expression, as with the variable evenOrOdd in this example:
val someNumber = scala.util.Random.nextInt()
val evenOrOdd = someNumber match
case 1 | 3 | 5 | 7 | 9 => "odd"
case 2 | 4 | 6 | 8 | 10 => "even"
case _ => "other"
This approach is commonly used to create short methods or functions. For example, the following method implements the Perl definitions of true and false:
def isTrue(a: Matchable): Boolean = a match
case false | 0 | "" => false
case _ => true
Discussion
You may hear that Scala is an expression-oriented programming (EOP) language. EOP means that every construct is an expression, yields a value, and doesn’t have a side effect. Unlike other languages, in Scala every construct like if, match, for, and try returns a value. See Recipe 24.3, “Writing Expressions (Instead of Statements)”, for more details.
4.9 Accessing the Value of the Default Case in a Match Expression
Problem
You want to access the value of the default “catch all” case when using a match expression, but you can’t access the value when you match it with the _ wildcard syntax.
Solution
Instead of using the _ wildcard character, assign a variable name to the default case:
i match
case 0 => println("1")
case 1 => println("2")
case default => println(s"You gave me: $default")
By giving the default match a variable name, you can access the variable on the right side of the expression.
Discussion
The key to this recipe is in using a variable name for the default match instead of the usual _ wildcard character. The name you assign can be any legal variable name, so instead of naming it default, you can name it something else, such as what:
i match
case 0 => println("1")
case 1 => println("2")
case what => println(s"You gave me: $what")
It’s important to provide a default match. Failure to do so can cause a MatchError:
scala> 3 match
| case 1 => println("one")
| case 2 => println("two")
| // no default match
scala.MatchError: 3 (of class java.lang.Integer)
many more lines of output ...
See the Discussion of Recipe 4.6 for more MatchError details.
4.10 Using Pattern Matching in Match Expressions
Problem
You need to match one or more patterns in a match expression, and the pattern may be a constant pattern, variable pattern, constructor pattern, sequence pattern, tuple pattern, or type pattern.
Solution
Define a case statement for each pattern you want to match. The following method shows examples of many different types of patterns you can use in match expressions:
def test(x: Matchable): String = x match
// constant patterns
case 0 => "zero"
case true => "true"
case "hello" => "you said 'hello'"
case Nil => "an empty List"
// sequence patterns
case List(0, _, _) => "a 3-element list with 0 as the first element"
case List(1, _*) => "list, starts with 1, has any number of elements"
// tuples
case (a, b) => s"got $a and $b"
case (a, b, c) => s"got $a, $b, and $c"
// constructor patterns
case Person(first, "Alexander") => s"Alexander, first name = $first"
case Dog("Zeus") => "found a dog named Zeus"
// typed patterns
case s: String => s"got a string: $s"
case i: Int => s"got an int: $i"
case f: Float => s"got a float: $f"
case a: Array[Int] => s"array of int: ${a.mkString(",")}"
case as: Array[String] => s"string array: ${as.mkString(",")}"
case d: Dog => s"dog: ${d.name}"
case list: List[_] => s"got a List: $list"
case m: Map[_, _] => m.toString
// the default wildcard pattern
case _ => "Unknown"
end test
The large match expression in this method shows the different categories of patterns described in the book Programming in Scala, including constant patterns, sequence patterns, tuple patterns, constructor patterns, and typed patterns.
The following code demonstrates all of the cases in the match expression, with the output of each expression shown in the comments. Note that the println method is renamed on import to make the examples more concise:
import System.out.{println => p}
case class Person(firstName: String, lastName: String)
case class Dog(name: String)
// trigger the constant patterns
p(test(0)) // zero
p(test(true)) // true
p(test("hello")) // you said 'hello'
p(test(Nil)) // an empty List
// trigger the sequence patterns
p(test(List(0,1,2))) // a 3-element list with 0 as the first element
p(test(List(1,2))) // list, starts with 1, has any number of elements
p(test(List(1,2,3))) // list, starts with 1, has any number of elements
p(test(Vector(1,2,3))) // vector, starts w/ 1, has any number of elements
// trigger the tuple patterns
p(test((1,2))) // got 1 and 2
p(test((1,2,3))) // got 1, 2, and 3
// trigger the constructor patterns
p(test(Person("Melissa", "Alexander"))) // Alexander, first name = Melissa
p(test(Dog("Zeus"))) // found a dog named Zeus
// trigger the typed patterns
p(test("Hello, world")) // got a string: Hello, world
p(test(42)) // got an int: 42
p(test(42F)) // got a float: 42.0
p(test(Array(1,2,3))) // array of int: 1,2,3
p(test(Array("coffee", "apple pie"))) // string array: coffee,apple pie
p(test(Dog("Fido"))) // dog: Fido
p(test(List("apple", "banana"))) // got a List: List(apple, banana)
p(test(Map(1->"Al", 2->"Alexander"))) // Map(1 -> Al, 2 -> Alexander)
// trigger the wildcard pattern
p(test("33d")) // you gave me this string: 33d
Note that in the match expression, the List and Map expressions that were written like this:
case m: Map[_, _] => m.toString
case list: List[_] => s"thanks for the List: $list"
could have been written as this instead:
case m: Map[A, B] => m.toString
case list: List[X] => s"thanks for the List: $list"
I prefer the underscore syntax because it makes it clear that I’m not concerned about what’s stored in the List or Map. Actually, there are times that I might be interested in what’s stored in the List or Map, but because of type erasure in the JVM, that becomes a difficult problem.
Type Erasure
When I first wrote this example, I wrote the List expression as follows:
case l: List[Int] => "List"
If you’re familiar with type erasure on the Java platform, you may know that this won’t work. The Scala compiler kindly lets you know about this problem with this warning message:
Test1.scala:7: warning: non-variable type argument Int in
type pattern List[Int] is unchecked since it is eliminated
by erasure case l: List[Int] => "List[Int]"
^
If you’re not familiar with type erasure, I’ve included a link in the See Also section of this recipe to a page that describes how it works on the JVM.
Discussion
Typically, when using this technique, your method will expect an instance that inherits from a base class or trait, and then your case statements will reference subtypes of that base type. This was inferred in the test method, where every Scala type is a subtype of Matchable. The following code shows a more obvious example.
In my Blue Parrot application, which either plays a sound file or “speaks” the text it’s given at random time intervals, I have a method that looks like this:
import java.io.File
sealed trait RandomThing
case class RandomFile(f: File) extends RandomThing
case class RandomString(s: String) extends RandomThing
class RandomNoiseMaker:
def makeRandomNoise(thing: RandomThing) = thing match
case RandomFile(f) => playSoundFile(f)
case RandomString(s) => speakText(s)
The makeRandomNoise method is declared to take a RandomThing type, and then the match expression handles its two subtypes, RandomFile and RandomString.
Patterns
The large match expression in the Solution shows a variety of patterns that are defined in the book Programming in Scala (which was cowritten by Martin Odersky, the creator of the Scala language). The patterns include:
Constant patterns
Variable patterns
Constructor patterns
Sequence patterns
Tuple patterns
Typed patterns
Variable-binding patterns
These patterns are briefly described in the following paragraphs.
Constant patterns
A constant pattern can only match itself. Any literal may be used as a constant. If you specify a 0 as the literal, only an Int value of 0 will be matched. Examples include:
case 0 => "zero"
case true => "true"
Variable patterns
This was not shown in the large match example in the Solution, but a variable pattern matches any object, just like the _ wildcard character. Scala binds the variable to whatever the object is, which lets you use the variable on the right side of the case statement. For example, at the end of a match expression you can use the _ wildcard character like this to catch anything else:
case _ => s"Hmm, you gave me something ..."
But with a variable pattern you can write this instead:
case foo => s"Hmm, you gave me a $foo"
See Recipe 4.9 for more information.
Constructor patterns
The constructor pattern lets you match a constructor in a case statement. As shown in the examples, you can specify constants or variable patterns as needed in the constructor pattern:
case Person(first, "Alexander") => s"found an Alexander, first name = $first"
case Dog("Zeus") => "found a dog named Zeus"
Sequence patterns
You can match against sequences like List, Array, Vector, etc. Use the _ character to stand for one element in the sequence, and use _* to stand for zero or more elements, as shown in the examples:
case List(0, _, _) => "a 3-element list with 0 as the first element"
case List(1, _*) => "list, starts with 1, has any number of elements"
case Vector(1, _*) => "vector, starts with 1, has any number of elements"
Tuple patterns
As shown in the examples, you can match tuple patterns and access the value of each element in the tuple. You can also use the _ wildcard if you’re not interested in the value of an element:
case (a, b, c) => s"3-elem tuple, with values $a, $b, and $c"
case (a, b, c, _) => s"4-elem tuple: got $a, $b, and $c"
Typed patterns
In the following example, str: String is a typed pattern, and str is a pattern variable:
case str: String => s"you gave me this string: $str"
As shown in the examples, you can access the pattern variable on the right side of the expression after declaring it.
Variable-binding patterns
At times you may want to add a variable to a pattern. You can do this with the following general syntax:
case variableName @ pattern => ...
This is called a variable-binding pattern. When it’s used, the input variable to the match expression is compared to the pattern, and if it matches, the input variable is bound to variableName.
The usefulness of this is best shown by demonstrating the problem it solves. Suppose you had the List pattern that was shown earlier:
case List(1, _*) => "a list beginning with 1, having any number of elements"
As demonstrated, this lets you match a List whose first element is 1, but so far, the List hasn’t been accessed on the right side of the expression. When accessing a List, you know that you can do this:
case list: List[_] => s"thanks for the List: $list"
so it seems like you should try this with a sequence pattern:
case list: List(1, _*) => s"thanks for the List: $list"
Unfortunately, this fails with the following compiler error:
Test2.scala:22: error: '=>' expected but '(' found.
case list: List(1, _*) => s"thanks for the List: $list"
^
one error found
The solution to this problem is to add a variable-binding pattern to the sequence pattern:
case list @ List(1, _*) => s"$list"
This code compiles, and works as expected, giving you access to the List on the right side of the statement.
The following code demonstrates this example and the usefulness of this approach:
case class Person(firstName: String, lastName: String)
def matchType(x: Matchable): String = x match
//case x: List(1, _*) => s"$x" // doesn’t compile
case x @ List(1, _*) => s"$x" // prints the list
//case Some(_) => "got a Some" // works, but can’t access the Some
//case Some(x) => s"$x" // returns "foo"
case x @ Some(_) => s"$x" // returns "Some(foo)"
case p @ Person(first, "Doe") => s"$p" // returns "Person(John,Doe)"
end matchType
@main def test2 =
println(matchType(List(1,2,3))) // prints "List(1, 2, 3)"
println(matchType(Some("foo"))) // prints "Some(foo)"
println(matchType(Person("John", "Doe"))) // prints "Person(John,Doe)"
In the two List examples inside the match expression, the commented-out line of code won’t compile, but the second line shows how to match the desired List object and then bind that list to the variable x. When this line of code matches a list like List(1,2,3), it results in the output List(1, 2, 3), as shown in the output of the first println statement.
The first Some example shows that you can match a Some with the approach shown, but you can’t access its information on the right side of the expression. The second example shows how you can access the value inside the Some, and the third example takes this a step further, giving you access to the Some object itself. When it’s matched by the second println call, it prints Some(foo), demonstrating that you now have access to the Some object.
Finally, this approach is used to match a Person whose last name is Doe. This syntax lets you assign the result of the pattern match to the variable p, and then access that variable on the right side of the expression.
Using Some and None in match expressions
To round out these examples, you’ll often use Some and None with match expressions. For instance, when you attempt to create a number from a string with a method like toIntOption, you can handle the result in a match expression:
val s = "42"
// later in the code ...
s.toIntOption match
case Some(i) => println(i)
case None => println("That wasn't an Int")
Inside the match expression you just specify the Some and None cases as shown to handle the success and failure conditions. See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for more examples of using Option, Some, and None.
See Also
A discussion of getting around type erasure when using match expressions on Stack Overflow
My Blue Parrot application
The type erasure documentation
4.11 Using Enums and Case Classes in match Expressions
Problem
You want to match enums, case classes, or case objects in a match expression.
Solution
The following example demonstrates how to use patterns to match enums in different ways, depending on what information you need on the right side of each case statement. First, here’s an enum named Animal that has three instances, Dog, Cat, and Woodpecker:
enum Animal:
case Dog(name: String)
case Cat(name: String)
case Woodpecker
Given that enum, this getInfo method shows the different ways you can match the enum types in a match expression:
import Animal.*
def getInfo(a: Animal): String = a match
case Dog(moniker) => s"Got a Dog, name = $moniker"
case _: Cat => "Got a Cat (ignoring the name)"
case Woodpecker => "That was a Woodpecker"
These examples show how getInfo works when given a Dog, Cat, and Woodpecker:
println(getInfo(Dog("Fido"))) // Got a Dog, name = Fido
println(getInfo(Cat("Morris"))) // Got a Cat (ignoring the name)
println(getInfo(Woodpecker)) // That was a Woodpecker
In getInfo, if the Dog class is matched, its name is extracted and used to create the string on the right side of the expression. To show that the variable name used when extracting the name can be any legal variable name, I use the name moniker.
When matching a Cat I want to ignore the name, so I use the syntax shown to match any Cat instance. Because Woodpecker isn’t created with a parameter, it’s also matched as shown.
Discussion
In Scala 2, sealed traits were used with case classes and case objects to achieve the same effect as the enum:
sealed trait Animal
case class Dog(name: String) extends Animal
case class Cat(name: String) extends Animal
case object Woodpecker extends Animal
As described in Recipe 6.12, “How to Create Sets of Named Values with Enums”, an enum is a shortcut for defining (a) a sealed class or trait along with (b) values defined as members of the class’s companion object. Both approaches can be used in the match expression in getInfo because case classes have a built-in unapply method, which lets them work in match expressions. I describe how this works in Recipe 7.8, “Implementing Pattern Matching with unapply”.
4.12 Adding if Expressions (Guards) to Case Statements
Problem
You want to add qualifying logic to a case statement in a match expression, such as allowing a range of numbers or matching a pattern, but only if that pattern matches some additional criteria.
Solution
Add an if guard to your case statement. Use it to match a range of numbers:
i match
case a if 0 to 9 contains a => println("0-9 range: " + a)
case b if 10 to 19 contains b => println("10-19 range: " + b)
case c if 20 to 29 contains c => println("20-29 range: " + c)
case _ => println("Hmmm...")
Use it to match different values of an object:
i match
case x if x == 1 => println("one, a lonely number")
case x if (x == 2 || x == 3) => println(x)
case _ => println("some other value")
As long as your class has an unapply method, you can reference class fields in your if guards. For instance, because a case class has an automatically generated unapply method, given this Stock class and instance:
case class Stock(symbol: String, price: BigDecimal)
val stock = Stock("AAPL", BigDecimal(132.50))
you can use pattern matching and guard conditions with the class fields:
stock match
case s if s.symbol == "AAPL" && s.price < 140 => buy(s)
case s if s.symbol == "AAPL" && s.price > 160 => sell(s)
case _ => // do nothing
You can also extract fields from case classes—and classes that have properly implemented unapply methods—and use those in your guard conditions. For example, the case statements in this match expression:
// extract the 'name' in the 'case' and then use that value
def speak(p: Person): Unit = p match
case Person(name) if name == "Fred" =>
println("Yabba dabba doo")
case Person(name) if name == "Bam Bam" =>
println("Bam bam!")
case _ =>
println("Watch the Flintstones!")
will work if Person is defined as a case class:
case class Person(aName: String)
or as a class with a properly implemented unapply method:
class Person(val aName: String)
object Person:
// 'unapply' deconstructs a Person. it’s also known as an
// extractor, and Person is an “extractor object.”
def unapply(p: Person): Option[String] = Some(p.aName)
See Recipe 7.8, “Implementing Pattern Matching with unapply”, for more details on how to write unapply methods.
Discussion
You can use if expressions like this whenever you want to add boolean tests to the left side of case statements (i.e., before the => symbol).
Note that all of these examples could be written by putting the if tests on the right side of the expressions, like this:
case Person(name) =>
if name == "Fred" then println("Yabba dabba doo")
else if name == "Bam Bam" then println("Bam bam!")
However, for many situations, your code will be simpler and easier to read by joining the if guard directly with the case statement; it helps to separate the guard from the later business logic.
Also note that this Person example is a little contrived, because Scala’s pattern-matching capabilities let you write the cases like this:
def speak(p: Person): Unit = p match
case Person("Fred") => println("Yabba dabba doo")
case Person("Bam Bam") => println("Bam bam!")
case _ => println("Watch the Flintstones!")
In this case, a guard would really be needed when Person is more complex and you need to do something more than match against its parameters.
Also, as demonstrated in Recipe 4.10, instead of using this code that’s shown in the Solution:
case x if (x == 2 || x == 3) => println(x)
another possible solution is to use a variable-binding pattern:
case x @ (2|3) => println(x)
This code can be read as, “If the match expression value (i) is 2 or 3, assign that value to the variable x, then print x using println.”
4.13 Using a Match Expression Instead of isInstanceOf
Problem
You want to write a block of code to match one type, or multiple different types.
Solution
You can use the isInstanceOf method to test the type of an object:
if x.isInstanceOf[Foo] then ...
However, the “Scala way” is to prefer match expressions for this type of work, because it’s generally much more powerful and convenient to use match than isInstanceOf.
For example, in a basic use case you may be given an object of unknown type and want to determine if the object is an instance of a Person. This code shows how to write a match expression that returns true if the type is Person, and false otherwise:
def isPerson(m: Matchable): Boolean = m match
case p: Person => true
case _ => false
A more common scenario is that you’ll have a model like this:
enum Shape:
case Circle(radius: Double)
case Square(length: Double)
and then you’ll want to write a method to calculate the area of a Shape. One solution to this problem is to write area using pattern matching:
import Shape.*
def area(s: Shape): Double = s match
case Circle(r) => Math.PI * r * r
case Square(l) => l * l
// examples
area(Circle(2.0)) // 12.566370614359172
area(Square(2.0)) // 4.0
This is a common use, where area takes a parameter whose type is an immediate parent of the types that you deconstruct inside match.
Note that if Circle and Square took additional constructor parameters, and you only needed to access their radius and length, respectively, the complete solution looks like this:
enum Shape:
case Circle(x0: Double, y0: Double, radius: Double)
case Square(x0: Double, y0: Double, length: Double)
import Shape.*
def area(s: Shape): Double = s match
case Circle(_, _, r) => Math.PI * r * r
case Square(_, _, l) => l * l
// examples
area(Circle(0, 0, 2.0)) // 12.566370614359172
area(Square(0, 0, 2.0)) // 4.0
As shown in the case statements inside the match expression, just ignore the parameters you don’t need by referring to them with the _ character.
Discussion
As shown, a match expression lets you match multiple types, so using it to replace the isInstanceOf method is just a natural use of the match/case syntax and the general pattern-matching approach used in Scala applications.
For the most basic use cases, the isInstanceOf method can be a simpler approach to determining whether one object matches a type:
if (o.isInstanceOf[Person]) { // handle this ...
However, for anything more complex than this, a match expression is more readable than a long if/then/else if statement.
ISINSTANCEOF IN OOP
In object-oriented programming, the use of isInstanceOf can be a sign that you’re not using inheritance properly. For example, someone may have written code like this:
enum Animal:
case Cat, Dog, Ostrich
and if for some reason you find yourself writing isInstanceOf code like this, it can be a sign that you’re doing something wrong:
if currentInstance.isInstanceOf[Ostrich] then ...
Instead, OOP code is intended to look like this:
val animal: Animal =
AnimalFactory.getAnimal("big flightless bird")
// some time later in your code ...
animal.walk()
or this:
val oz: Ostrich =
AnimalFactory.getAnimal(
"big flightless bird"
).asInstanceOf[Ostrich]
// some time later in your code ...
oz.tryToFly()
If you write code like this to receive an Animal, the code shouldn’t care whether the Animal you received is a Cat, Dog, or Ostrich, and if you immediately cast your object instance to an Ostrich, you know you can call any additional methods it has. Therefore, in OOP you should only rarely need to test an instance with isInstanceOf.
Conversely, in functional programming code, pattern matching with match expressions is used all the time to work with types.
See Also
Recipe 4.10 shows many more match techniques.
4.14 Working with a List in a Match Expression
Problem
You know that a List data structure is a little different than other sequential data structures: it’s built from cons cells and ends in a Nil element. You want to use this to your advantage when working with a match expression, such as when writing a recursive function.
Solution
You can create a List that contains the integers 1, 2, and 3 like this:
val xs = List(1, 2, 3)
or like this:
val ys = 1 :: 2 :: 3 :: Nil
As shown in the second example, a List ends with a Nil element, and you can take advantage of that when writing match expressions to work on lists, especially when writing recursive algorithms. For instance, in the following listToString method, if the current element is not Nil, the method is called recursively with the remainder of the List, but if the current element is Nil, the recursive calls are stopped and an empty String is returned, at which point the recursive calls unwind:
def listToString(list: List[String]): String = list match
case s :: rest => s + " " + listToString(rest)
case Nil => ""
The REPL demonstrates how this method works:
scala> val fruits = "Apples" :: "Bananas" :: "Oranges" :: Nil
fruits: List[java.lang.String] = List(Apples, Bananas, Oranges)
scala> listToString(fruits)
res0: String = "Apples Bananas Oranges "
The same approach can be used when dealing with lists of other types and different algorithms. For instance, while you could just write List(1,2,3).sum, this example shows how to write your own sum method using match and recursion:
def sum(list: List[Int]): Int = list match
case Nil => 0
case n :: rest => n + sum(rest)
Similarly, this is a product algorithm:
def product(list: List[Int]): Int = list match
case Nil => 1
case n :: rest => n * product(rest)
The REPL shows how these methods work:
scala> val nums = List(1,2,3,4,5)
nums: List[Int] = List(1, 2, 3, 4, 5)
scala> sum(nums)
res0: Int = 15
scala> product(nums)
res1: Int = 120
Don’t Forget reduce and fold
While recursion is great, Scala’s various reduce and fold methods on the collections classes are built to let you traverse a collection while applying an algorithm, and they often eliminate the need for recursion. For instance, you can write a sum algorithm using reduce in either of these two forms:
// long form
def sum(list: List[Int]): Int = list.reduce((x,y) => x + y)
// short form
def sum(list: List[Int]): Int = list.reduce(_ + _)
See Recipe 13.10, “Walking Through a Collection with the reduce and fold Methods”, for more details.
Discussion
As shown, recursion is a technique where a method calls itself in order to solve a problem. In functional programming—where all variables are immutable—recursion provides a way to iterate over the elements in a List to solve a problem, such as calculating the sum or product of all the elements in a List.
A nice thing about working with the List class in particular is that a List ends with the Nil element, so your recursive algorithms typically have this pattern:
def myTraversalMethod[A](xs: List[A]): B = xs match
case head :: tail =>
// do something with the head
// pass the tail of the list back to your method, i.e.,
// `myTraversalMethod(tail)`
case Nil =>
// end condition here (0 for sum, 1 for product, etc.)
// end the traversal
Variables in Functional Programming
In FP, we use the term variables, but since we only use immutable variables, it may seem that this word doesn’t make sense, i.e., we have a variable that can’t vary.
What’s going on here is that we really mean “variable” in the algebraic sense, not in the computer programming sense. For instance, in algebra we say that a, b, and c are variables when we write this algebraic equation:
a = b * c
However, once they’re assigned, they can’t vary. The term variable has the same meaning in functional programming.
See Also
I initially found recursion to be an unnecessarily hard topic to grasp, so I’ve written quite a few blog posts about it:
“Scala Recursion Examples (Recursive Programming)”
“Recursive: How Recursive Function Calls Work”
“Tail-Recursive Algorithms in Scala”
“Recursion: Visualizing the Recursive sum Function”
In “Recursion: Thinking Recursively”, I write about identity elements, including how 0 is an identity element for the sum operation, 1 is an identity element for the product operation, and "" (a blank string) is an identity element for working with strings.
4.15 Matching One or More Exceptions with try/catch
Problem
You want to catch one or more exceptions in a try/catch block.
Solution
The Scala try/catch/finally syntax is similar to Java, but it uses the match expression approach in the catch block:
try
doSomething()
catch
case e: SomeException => e.printStackTrace
finally
// do your cleanup work
When you need to catch and handle multiple exceptions, just add the exception types as different case statements:
try
openAndReadAFile(filename)
catch
case e: FileNotFoundException =>
println(s"Couldn’t find $filename.")
case e: IOException =>
println(s"Had an IOException trying to read $filename.")
You can also write that code like this, if you prefer:
try
openAndReadAFile(filename)
catch
case e: (FileNotFoundException | IOException) =>
println(s"Had an IOException trying to read $filename")
Discussion
As shown, the Scala case syntax is used to match different possible exceptions. If you’re not concerned about which specific exceptions might be thrown, and want to catch them all and do something with them—such as log them—use this syntax:
try
openAndReadAFile(filename)
catch
case t: Throwable => logger.log(t)
If for some reason you don’t care about the value of the exception, you can also catch them all and ignore them like this:
try
openAndReadAFile(filename)
catch
case _: Throwable => println("Nothing to worry about, just an exception")
Methods based on try/catch
As shown in this chapter’s introduction, a try/catch/finally block can return a value and therefore be used as the body of a method. The following method returns an Option[String]. It returns a Some that contains a String if the file is found, and a None if there is a problem reading the file:
import scala.io.Source
import java.io.{FileNotFoundException, IOException}
def readFile(filename: String): Option[String] =
try
Some(Source.fromFile(filename).getLines.mkString)
catch
case _: (FileNotFoundException|IOException) => None
This shows one way to return a value from a try expression.
These days I rarely write methods that throw exceptions, but like Java, you can throw an exception from a catch clause. However, because Scala doesn’t have checked exceptions, you don’t need to specify that a method throws the exception. This is demonstrated in the following example, where the method isn’t annotated in any way:
// danger: this method doesn’t warn you that an exception can be thrown
def readFile(filename: String): String =
try
Source.fromFile(filename).getLines.mkString
catch
case t: Throwable => throw t
That’s actually a horribly dangerous method—don’t write code like this!
To declare that a method throws an exception, add the @throws annotation to your method definition:
// better: this method warns others that an exception can be thrown
@throws(classOf[NumberFormatException])
def readFile(filename: String): String =
try
Source.fromFile(filename).getLines.mkString
catch
case t: Throwable => throw t
While that last method is better than the previous one, neither one is preferred. The “Scala way” is to never throw exceptions. Instead, you should use Option, as shown previously, or use the Try/Success/Failure or Either/Right/Left classes when you want to return information about what failed. This example shows how to use Try:
import scala.io.Source
import java.io.{FileNotFoundException, IOException}
import scala.util.{Try,Success,Failure}
def readFile(filename: String): Try[String] =
try
Success(Source.fromFile(filename).getLines.mkString)
catch
case t: Throwable => Failure(t)
Whenever an exception message is involved, I always prefer using Try or Either instead of Option, because they give you access to the message in Failure or Left, where Option only returns None.
A concise way to catch everything
Another concise way to catch all exceptions is with the allCatch method of the scala.util.control.Exception object. The following examples demonstrate how to use allCatch, first showing the success case and then the failure case. The output of each expression is shown after the comment on each line:
import scala.util.control.Exception.allCatch
// OPTION
allCatch.opt("42".toInt) // Option[Int] = Some(42)
allCatch.opt("foo".toInt) // Option[Int] = None
// TRY
allCatch.toTry("42".toInt) // Matchable = 42
allCatch.toTry("foo".toInt)
// Matchable = Failure(NumberFormatException: For input string: "foo")
// EITHER
allCatch.either("42".toInt) // Either[Throwable, Int] = Right(42)
allCatch.either("foo".toInt)
// Either[Throwable, Int] =
// Left(NumberFormatException: For input string: "foo")
See Also
See Recipe 8.7, “Declaring That a Method Can Throw an Exception”, for more examples of declaring that a method can throw an exception.
See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for more information on using Option/Some/None and Try/Success/Failure.
See the scala.util.control.Exception Scaladoc page for more allCatch information.
4.16 Declaring a Variable Before Using It in a try/catch/finally Block
Problem
You want to use an object in a try block, and need to access it in the finally portion of the block, such as when you need to call a close method on an object.
Solution
In general, declare your field as an Option before the try/catch block, then bind the variable to a Some inside the try clause. This is shown in the following example, where the sourceOption field is declared before the try/catch block, and assigned inside the try clause:
import scala.io.Source
import java.io.*
var sourceOption: Option[Source] = None
try
sourceOption = Some(Source.fromFile("/etc/passwd"))
sourceOption.foreach { source =>
// do whatever you need to do with 'source' here ...
for line <- source.getLines do println(line.toUpperCase)
}
catch
case ioe: IOException => ioe.printStackTrace
case fnf: FileNotFoundException => fnf.printStackTrace
finally
sourceOption match
case None =>
println("bufferedSource == None")
case Some(s) =>
println("closing the bufferedSource ...")
s.close
This is a contrived example—and Recipe 16.1, “Reading Text Files”, shows a much better way to read files—but it does show the approach. First, define a var field as an Option prior to the try block:
var sourceOption: Option[Source] = None
Then, inside the try clause, assign the variable to a Some value:
sourceOption = Some(Source.fromFile("/etc/passwd"))
When you have a resource to close, use a technique like the one shown (though Recipe 16.1, “Reading Text Files”, also shows a much better way to close resources). Note that if an exception is thrown in this code, sourceOption inside finally will be a None value. If no exceptions are thrown, the Some branch of the match expression will be evaluated.
Discussion
One key to this recipe is knowing the syntax for declaring Option fields that aren’t initially populated:
var in: Option[FileInputStream] = None
var out: Option[FileOutputStream] = None
This second form can also be used, but the first form is preferred:
var in = None: Option[FileInputStream]
var out = None: Option[FileOutputStream]
Don’t use null
When I first started working with Scala, the only way I could think to write this code was using null values. The following code demonstrates the approach I used in an application that checks my email accounts. The store and inbox fields in this code are declared as null fields that have the Store and Folder types (from the javax.mail package):
// (1) declare the null variables (don’t use null; this is just an example)
var store: Store = null
var inbox: Folder = null
try
// (2) use the variables/fields in the try block
store = session.getStore("imaps")
inbox = getFolder(store, "INBOX")
// rest of the code here ...
catch
case e: NoSuchProviderException => e.printStackTrace
case me: MessagingException => me.printStackTrace
finally
// (3) call close() on the objects in the finally clause
if (inbox != null) inbox.close
if (store != null) store.close
However, working in Scala gives you a chance to forget that null values even exist, so this is not a recommended approach.
See Also
See these recipes for more details on (a) how not to use null values, and (b) how to use Option, Try, and Either instead:
Recipe 24.5, “Eliminating null Values from Your Code”
Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”
Recipe 24.8, “Handling Option Values with Higher-Order Functions”
Whenever you’re writing code that needs to open a resource when you start and close the resource when you finish, it can be helpful to use the scala.util.Using object. See Recipe 16.1, “Reading Text Files”, for an example of how to use this object and a much better way to read a text file.
Also, Recipe 24.8, “Handling Option Values with Higher-Order Functions”, shows other ways to work with Option values besides using a match expression.
4.17 Creating Your Own Control Structures
Problem
You want to define your own control structures to customize the Scala language, simplify your code, or create a domain-specific language (DSL).
Solution
Thanks to features like multiple parameter lists, by-name parameters, extension methods, higher-order functions, and more, you can create your own code that works just like a control structure.
For example, imagine that Scala doesn’t have its own built-in while loop, and you want to create your own custom whileTrue loop, which you can use like this:
var i = 0
whileTrue (i < 5) {
println(i)
i += 1
}
To create this whileTrue control structure, define a method named whileTrue that takes two parameter lists. The first parameter list handles the test condition—in this case, i < 5—and the second parameter list is the block of code the user wants to run, i.e., the code in between the curly braces. Define both parameters to be by-name parameters. Because whileTrue is only used for side effects, such as updating mutable variables or printing to the console, declare it to return Unit. An initial sketch of the method signature looks like this:
def whileTrue(testCondition: => Boolean)(codeBlock: => Unit): Unit = ???
One way to implement the body of the method is to write a recursive algorithm. This code shows a complete solution:
import scala.annotation.tailrec
object WhileTrue:
@tailrec
def whileTrue(testCondition: => Boolean)(codeBlock: => Unit): Unit =
if (testCondition) then
codeBlock
whileTrue(testCondition)(codeBlock)
end if
end whileTrue
In this code, the testCondition is evaluated, and if the condition is true, codeBlock is executed, and then whileTrue is called recursively. It keeps calling itself until testCondition returns false.
To test this code, first import it:
import WhileTrue.whileTrue
Then run the whileTrue loop shown previously, and you’ll see that it works as desired.
Discussion
The creators of the Scala language made a conscious decision not to implement some keywords in Scala, and instead they implemented functionality through Scala libraries. For instance, Scala doesn’t have built-in break and continue keywords. Instead it implements them through a library, as I describe in my blog post “Scala: How to Use break and continue in for and while Loops”.
As shown in the Solution, the ability to create your own control structures comes from features like these:
Multiple parameter lists let you do what I did with whileTrue: create one parameter group for the test condition, and a second group for the block of code.
By-name parameters also let you do what I did with whileTrue: accept parameters that aren’t evaluated until they’re accessed inside your method.
Similarly, other features like infix notation, higher-order functions, extension methods, and fluent interfaces let you create other custom control structures and DSLs.
By-name parameters
By-name parameters are an important part of the whileTrue control structure. In Scala it’s important to know that when you define method parameters using the => syntax:
def whileTrue(testCondition: => Boolean)(codeBlock: => Unit) =
----- -----
you’re creating what’s known as a call-by-name or by-name parameter. A by-name parameter is only evaluated when it’s accessed inside your method, so, as I write in my blog posts “How to Use By-Name Parameters in Scala” and “Scala and Call-By-Name Parameters”, a more accurate name for these parameters is evaluate when accessed. That’s because that’s exactly how they work: they’re only evaluated when they’re accessed inside your method. As I note in that second blog post, Rob Norris makes the comparison that a by-name parameter is like receiving a def method.
Another example
In the whileTrue example, I used a recursive call to keep the loop running, but for simpler control structures you don’t need recursion. For instance, assume that you want a control structure that takes two test conditions, and if both evaluate to true, you’ll run a block of code that’s supplied. An expression using that control structure looks like this:
doubleIf(age > 18)(numAccidents == 0) { println("Discount!") }
In this case, define doubleIf as a method that takes three parameter lists, where again, each parameter is a by-name parameter:
// two 'if' condition tests
def doubleIf(test1: => Boolean)(test2: => Boolean)(codeBlock: => Unit) =
if test1 && test2 then codeBlock
Because doubleIf only needs to perform one test and doesn’t need to loop indefinitely, there’s no need for a recursive call in its method body. It simply checks the two test conditions, and if they evaluate to true, codeBlock is executed.
See Also
One of my favorite uses of this technique is shown in the book Beginning Scala by David Pollak (Apress). Although it’s rendered obsolete by the scala.util.Using object, I describe how the technique works in this blog post, “The using Control Structure in Beginning Scala”.
The Scala Breaks class is used to implement break and continue functionality in for loops, and I wrote about it: “Scala: How to Use break and continue in for and while Loops”. The Breaks class source code is fairly simple and provides another example of how to implement a control structure. You can find its source code as a link on its Scaladoc page.
Chapter 5. Classes
This chapter begins a series of four chapters that cover the concept of domain modeling in Scala 3. Domain modeling is how you use a programming language to model the world around you, i.e., how you model concepts like people, cars, financial transactions, etc. Whether you’re writing code in a functional programming or object-oriented programming style, this means that you model the attributes and behaviors of these things.
To provide flexibility to model the world around you, Scala 3 offers the following language constructs:
Classes
Case classes
Traits
Enums
Objects and case objects
Abstract classes
Methods, which can be defined within all of those constructs
This is a lot of ground to cover, so to help manage that complexity, Recipe 5.1 shows how to use these constructs when programming in the FP and OOP styles. After that, classes and case classes are covered in this chapter, traits and enums are covered in Chapter 6, objects are covered in Chapter 7, and recipes for methods are provided in Chapter 8. Abstract classes aren’t used very often, so they’re touched upon in Recipe 5.1.
Classes and Case Classes
Although Scala and Java share many similarities, the syntax related to classes and constructors represents some of the biggest differences between the two languages. Whereas Java tends to be more verbose—but obvious—Scala is more concise, and the code you write ends up generating other code. For example, this one-line Scala class compiles to at least 29 lines of Java code, most of which is boilerplate accessor/mutator code:
class Employee(var name: String, var age: Int, var role: String)
Because classes and constructors are so important, they’re discussed in detail in the initial recipes in this chapter.
Next, because the concept of what equals means is such an important programming topic, Recipe 5.9 spends a lot of time demonstrating how to implement an equals method in Scala.
Using Classes in match Expressions
When you want to use a class in a match expression, implement an unapply method inside the companion object of a class. Because this is something you do in an object, that topic is covered in Recipe 7.8, “Implementing Pattern Matching with unapply”.
The concept of accessing class fields is important, so Recipe 5.10 demonstrates how to prevent accessor and mutator methods from being generated. After that, Recipe 5.11 demonstrates how to override the default behaviors of accessor and mutator methods.
Accessors and Mutators
In Java, it seems correct to refer to accessor and mutator methods as getter and setter methods, primarily because of the JavaBeans get/set standard. In this chapter I use the terms interchangeably, but to be clear, Scala doesn’t follow the JavaBeans naming convention for accessor and mutator methods.
Next, two recipes demonstrate other techniques you’ll need to know related to parameters and fields. First, Recipe 5.12 shows how to assign a block of code to a lazy field in a class, and then Recipe 5.13 shows how to handle uninitialized var fields by using the Option type.
Finally, as you saw a few paragraphs ago, the OOP-style Scala Employee class is equivalent to 29 lines of Java code. By comparison, this FP-style case class is equivalent to well over one hundred lines of Java code:
case class Employee(name: String, age: Int, role: String)
Because case classes generate so much boilerplate code for you, their uses and benefits are discussed in Recipe 5.14. Also, because case classes are different than the default Scala class, constructors for case classes—they’re really factory methods—are discussed in Recipe 5.15.
5.1 Choosing from Domain Modeling Options
Problem
Because Scala offers traits, enums, classes, case classes, objects, and abstract classes, you want to understand how to choose from these domain modeling options when designing your own code.
Solution
The solution depends on whether you’re using a functional programming or object-oriented programming style. Therefore, these two solutions are discussed in the following sections. Examples are also provided in the Discussion, followed by a brief look at when abstract classes should be used.
Functional programming modeling options
When programming in an FP style, you’ll primarily use these constructs:
Traits
Enums
Case classes
Objects
In the FP style you’ll use these constructs as follows:
Traits
Traits are used to create small, logically grouped units of behavior. They’re typically written as def methods but can also be written as val functions if you prefer. Either way, they’re written as pure functions (as detailed in “Pure Functions”). These traits will later be combined into concrete objects.
Enums
Use enums to create algebraic data types (ADTs, as shown in Recipe 6.13, “Modeling Algebraic Data Types with Enums”) as well as generalized ADTs (GADTs).
Case classes
Use case classes to create objects with immutable fields (known as immutable records in some languages, such as the record type in Java 14). Case classes were created for the FP style, and they have several specialized methods that help in this style, including: parameters that are val fields by default, copy methods for when you want to simulate mutating values, built-in unapply methods for pattern matching, good default equals and hashCode methods, and more.
Objects
In FP you’ll typically use objects as a way to make one or more traits “real,” in a process that’s technically known as reification.
In FP, when you don’t need all the features of case classes, you can also use the plain class construct (as opposed to the case class construct). When you do this you’ll define your parameters as val fields, and then you can manually implement other behaviors, such as if you want to define an unapply extractor method for your class, as detailed in Recipe 7.8, “Implementing Pattern Matching with unapply”.
Object-oriented programming modeling options
When programming in an OOP style, you’ll primarily use these constructs:
Traits
Enums
Classes
Objects
You’ll use these constructs in these ways:
Traits
Traits are primarily used as interfaces. If you’ve used Java, you can use Scala traits just like interfaces in Java 8 and newer, with both abstract and concrete members. Classes will later be used to implement these traits.
Enums
You’ll primarily use enums to create simple sets of constants, like the positions of a display (top, bottom, left, and right).
Classes
In OOP you’ll primarily use plain classes—not case classes. You’ll also define their constructor parameters as var fields so they can be mutated. They’ll contain methods based on those mutable fields. You’ll override the default accessor and mutator methods (getters and setters) as needed.
Object
You’ll primarily use the object construct as a way to create the equivalent of static methods in Java, like a StringUtils object that contains static methods that operate on strings (as detailed in Recipe 7.4, “Creating Static Members with Companion Objects”).
When you want many or all of the features that case classes provide (see Recipe 5.14), you can use them instead of plain classes (though they’re primarily intended for coding in an FP style).
Discussion
To discuss this solution I’ll demonstrate FP and OOP examples separately. But before jumping into those individual examples, I’ll first show these enums, which are used by both:
enum Topping:
case Cheese, Pepperoni, Sausage, Mushrooms, Onions
enum CrustSize:
case Small, Medium, Large
enum CrustType:
case Regular, Thin, Thick
Using enums like this—technically as ADTs, as detailed in Recipe 6.13, “Modeling Algebraic Data Types with Enums”—shows some common ground between FP and OOP domain modeling.
An FP-style example
The pizza store example in Recipe 10.10, “Real-World Example: Functional Domain Modeling”, demonstrates the FP domain modeling approach in detail, so I’ll just quickly review it here.
First, I use those enums to define a Pizza class, using the case class construct:
case class Pizza(
crustSize: CrustSize,
crustType: CrustType,
toppings: Seq[Topping]
)
After that, I model additional classes as case classes:
case class Customer(
name: String,
phone: String,
address: Address
)
case class Address(
street1: String,
street2: Option[String],
city: String,
state: String,
postalCode: String
)
case class Order(
pizzas: Seq[Pizza],
customer: Customer
)
Case classes are preferred in FP because all the parameters are immutable, and case classes offer built-in methods to make FP easier (as shown in Recipe 5.14). Also, notice that these classes contain no methods; they’re just simple data structures.
Next, I write the methods that operate on those data structures as pure functions, and I group the methods into small, logically organized traits, or just one trait in this case:
trait PizzaServiceInterface:
def addTopping(p: Pizza, t: Topping): Pizza
def removeTopping(p: Pizza, t: Topping): Pizza
def removeAllToppings(p: Pizza): Pizza
def updateCrustSize(p: Pizza, cs: CrustSize): Pizza
def updateCrustType(p: Pizza, ct: CrustType): Pizza
Then I implement those methods in other traits:
trait PizzaService extends PizzaServiceInterface:
def addTopping(p: Pizza, t: Topping): Pizza =
// the 'copy' method comes with a case class
val newToppings = p.toppings :+ t
p.copy(toppings = newToppings)
// there are about two lines of code for each of these
// methods, so all of that code is not repeated here:
def removeTopping(p: Pizza, t: Topping): Pizza = ???
def removeAllToppings(p: Pizza): Pizza = ???
def updateCrustSize(p: Pizza, cs: CrustSize): Pizza = ???
def updateCrustType(p: Pizza, ct: CrustType): Pizza = ???
end PizzaService
Notice in this trait that everything is immutable. Pizzas, toppings, and crust details are passed into the methods, and they don’t mutate those values. Instead, they return new values based on the values that are passed in.
Eventually I make my services “real” by reifying them as objects:
object PizzaService extends PizzaService
I only use one trait in this example, but in the real world you’ll often combine multiple traits into one object, like this:
object DogServices extend TailService, RubberyNoseService, PawService ...
As shown, this is how you combine multiple granular, single-purpose services into one larger, complete service.
That’s all I’ll show of the pizza store example here, but for more details, see Recipe 10.10, “Real-World Example: Functional Domain Modeling”.
An OOP-style example
Next, I’ll create an OOP-style solution for this same problem. First, I create an OOP-style pizza class using the class construct and mutable parameters:
class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
val toppings: ArrayBuffer[Topping]
):
def addTopping(t: Topping): Unit =
toppings += t
def removeTopping(t: Topping): Unit =
toppings -= t
def removeAllToppings(): Unit =
toppings.clear()
The first two constructor parameters are defined as var fields so they can be mutated, and toppings is defined as an ArrayBuffer so its values can also be mutated.
Notice that whereas the FP-style case class contains attributes but no behaviors, with the OOP approach, the pizza class contains both, including methods that work with the mutable parameters. Each of those methods can be defined on one line, but I put the body of every method on a separate line to make them easy to read. But if you prefer, they can be written more concisely like this:
def addTopping(t: Topping): Unit = toppings += t
def removeTopping(t: Topping): Unit = toppings -= t
def removeAllToppings(): Unit = toppings.clear()
If you were to continue going down this road, you’d create additional OOP-style classes that encapsulate both attributes and behaviors. For instance, an Order class might completely encapsulate the concept of a series of line items that make up an Order:
class Order:
private lineItems = ArrayBuffer[Product]()
def addItem(p: Product): Unit = ???
def removeItem(p: Product): Unit = ???
def getItems(): Seq[Product] = ???
def getPrintableReceipt(): String = ???
def getTotalPrice(): Money = ???
end Order
// usage:
val o = Order()
o.addItem(Pizza(Small, Thin, ArrayBuffer(Cheese, Pepperoni)))
o.addItem(Cheesesticks)
This example assumes that you have a Product class hierarchy that looks like this:
// a Product may have methods to determine its cost, sales price,
// and other details
sealed trait Product
// each class may have additional attributes and methods
class Pizza extends Product
class Beverage extends Product
class Cheesesticks extends Product
I won’t go further with this example because I assume that most developers are familiar with the OOP style of encapsulating attributes and behaviors, with polymorphic methods.
One more thing: When to use abstract classes
Because traits can now take parameters in Scala 3, and classes can only extend one abstract class (while they can mix in multiple traits), the question comes up, “When should I use abstract classes?”
The general answer is “rarely.” A more specific answer is:
When using Scala code from Java, it’s easier to extend a class than a trait.
When I asked this question at the Scala Center, Sébastien Doeraene, the creator of Scala.js, wrote that “in Scala.js, a class can be imported from or exported to JavaScript.”
In that same discussion, Julien Richard-Foy, the director of education at the Scala Center, noted that abstract classes may have a slightly more efficient encoding than a trait, because as a parent, a trait is dynamic, whereas it’s statically known for an abstract class.
So my rule of thumb is to always use a trait and then fall back and use an abstract class when it’s necessary for one of these conditions (or possibly other conditions we didn’t think of).
See Also
In addition to helping you understand your domain modeling options, this recipe also serves as a pointer toward many other recipes that provide more details on each topic:
Classes are discussed in many recipes, beginning with Recipe 5.2.
Case classes are discussed in detail in Recipe 5.14.
The concept of using a trait as an interface is discussed in Recipe 6.1, “Using a Trait as an Interface”.
Using a trait as an abstract class is discussed in Recipe 6.3, “Using a Trait Like an Abstract Class”.
The concept of reifying traits into modules is covered in Recipe 6.11, “Using Traits to Create Modules”, and Recipe 7.7, “Reifying Traits as Objects”.
The FP-style pizza store example is covered in more detail in Recipe 10.10, “Real-World Example: Functional Domain Modeling”.
Many other FP concepts are discussed in Chapter 10.
If you’re interested in using Scala traits in your Java code, see Recipe 22.5, “Using Scala Traits in Java”.
5.2 Creating a Primary Constructor
Problem
You want to create a primary constructor for a Scala class, and you quickly find that the approach is different than Java (and other languages).
Solution
The primary constructor of a Scala class is a combination of:
The constructor parameters
Fields (variable assignments) in the body of the class
Statements and expressions that are executed in the body of the class
The following class demonstrates constructor parameters, class fields, and statements in the body of a class:
class Employee(var firstName: String, var lastName: String):
// a statement
println("the constructor begins ...")
// some class fields (variable assignments)
var age = 0
private var salary = 0d
// a method call
printEmployeeInfo()
// methods defined in the class
override def toString = s"$firstName $lastName is $age years old"
def printEmployeeInfo() = println(this) //uses toString
// any statement or field prior to the end of the class
// definition is part of the class constructor
println("the constructor ends")
// optional 'end' statement
end Employee
The constructor parameters, statements, and fields are all part of the class constructor. Notice that the methods are also in the body of the class, but they’re not part of the constructor.
Because the method calls in the body of the class are part of the constructor, when an instance of an Employee class is created, you’ll see the output from the println statements at the beginning and end of the class declaration, along with the call to the printEmployeeInfo method:
scala> val e = Employee("Kim", "Carnes")
the constructor begins ...
Kim Carnes is 0 years old
the constructor ends
val e: Employee = Kim Carnes is 0 years old
Discussion
If you’re coming to Scala from Java, you’ll find that the process of declaring a primary constructor in Scala is quite different. In Java it’s fairly obvious when you’re in the main constructor and when you’re not, but Scala blurs this distinction. However, once you understand the approach, it helps to make your class declarations more concise.
In the example shown, the two constructor arguments firstName and lastName are defined as var fields, which means that they’re variable, or mutable: they can be changed after they’re initially set. Because the fields are mutable—and also because they have public access by default—Scala generates both accessor and mutator methods for them. As a result, given an instance e of type Employee, you can change the values like this:
e.firstName = "Xena"
e.lastName = "Princess Warrior"
and you can access them like this:
println(e.firstName) // Xena
println(e.lastName) // Princess Warrior
Because the age field is declared as a var—and like constructor parameters, class members are public by default—it’s also visible and can be mutated and accessed:
e.age = 30
println(e.age)
Conversely, the salary field is declared to be private, so it can’t be accessed from outside the class:
scala> e.salary
1 |e.salary
|^^^^
|variable salary cannot be accessed as a member of (e: Employee)
When you call a method in the body of the class—such as the call to the printEmployeeInfo method—that’s a statement, and it’s also part of the constructor. If you’re curious, you can verify this by compiling the code to an Employee.class file with scalac and then decompiling it back into Java source code with a tool like the JAD decompiler. After doing so, this is what the Employee constructor looks like when it’s decompiled back into Java code:
public Employee(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;
super();
Predef$.MODULE$.println("the constructor begins ...");
age = 0;
double salary = 0.0D;
printEmployeeInfo();
Predef$.MODULE$.println("the constructor ends");
}
This clearly shows the two println statements and the printEmployeeInfo method call inside the Employee constructor, as well as the initial age and salary being set.
Primary Constructor Contents
In Scala, any statements, expressions, or variable assignments within the body of a class are a part of the primary class constructor.
As a final point of comparison, when you decompile the class file with JAD, and then you count the number of lines of source code in the Scala and Java files—using the same formatting style for each file—you’ll find that the Scala source code is nine lines long and the Java source code is 38 lines long. It’s been said that developers spend 10 times as much time reading code than we do writing code, so this ability to create code that’s concise and still readable—we call it expressive—is one thing that initially drew me to Scala.
5.3 Controlling the Visibility of Constructor Fields
Problem
You want to control the visibility of fields that are used as constructor parameters in a Scala class.
Solution
As shown in the following examples, the visibility of a constructor field in a Scala class is controlled by whether the field is declared as val or var, without either val or var, and whether private is added to the fields.
Here’s the short version of the solution:
If a field is declared as a var, Scala generates both getter and setter methods for that field.
If the field is a val, Scala generates only a getter method for it.
If a field doesn’t have a var or val modifier, Scala doesn’t generate a getter or a setter method for the field; it becomes private to the class.
Additionally, var and val fields can be modified with the private keyword, which prevents public getters and setters from being generated.
See the examples that follow for more details.
var fields
If a constructor parameter is declared as a var, the value of the field can be changed, so Scala generates both getter and setter methods for that field. In this example, the constructor parameter name is declared as a var, so the field can be accessed and mutated:
scala> class Person(var name: String)
scala> val p = Person("Mark Sinclair Vincent")
// getter
scala> p.name
val res0: String = Mark Sinclair Vincent
// setter
scala> p.name = "Vin Diesel"
scala> p.name
val res1: String = Vin Diesel
If you’re familiar with Java, you can also see that Scala does not follow the JavaBean getName/setName naming convention when generating accessor and mutator methods. Instead, you simply access a field by its name.
val fields
If a constructor field is defined as a val, the value of the field can’t be changed once it’s been set—it’s immutable, like final in Java. Therefore, it makes sense that it should have an accessor method, and should not have a mutator method:
scala> class Person(val name: String)
defined class Person
scala> val p = Person("Jane Doe")
p: Person = Person@3f9f332b
// getter
scala> p.name
res0: String = Jane Doe
// attempt to use a setter
scala> p.name = "Wilma Flintstone"
1 |p.name = "Wilma Flintstone"
|^^^^^^^^^
|Reassignment to val name
The last example fails because a mutator method is not generated for a val field.
Fields without val or var
When neither val nor var is specified on constructor parameters, the field becomes private to the class, and Scala doesn’t generate accessor or mutator methods. You can see that when you create a class like this:
class SuperEncryptor(password: String):
// encrypt increments each Char in a String by 1
private def encrypt(s: String) = s.map(c => (c + 1).toChar)
def getEncryptedPassword = encrypt(password)
and then attempt to access the password field, which was declared without val or var:
val e = SuperEncryptor("1234")
e.password // error: value password cannot be accessed
e.getEncryptedPassword // 2345
As shown, you can’t directly access the password field, but because the getEncryptedPassword method is a class member, it can access password. If you continue to experiment with this code, you’ll see that declaring password without val or var is equivalent to making it a private val.
In most cases I only use this syntax by accident—I forget to specify val or var for the field—but it can make sense if you want to accept a constructor parameter and then use that parameter within the class, but don’t want to make it directly available outside the class.
Adding private to val or var
In addition to these three basic configurations, you can add the private keyword to a val or var field. This prevents getter and setter methods from being generated, so the field can only be accessed from within members of the class, as shown with the salary field in this example:
enum Role:
case HumanResources, WorkerBee
import Role.*
class Employee(var name: String, private var salary: Double):
def getSalary(r: Role): Option[Double] = r match
case HumanResources => Some(salary)
case _ => None
In this code, getSalary can access the salary field because it’s defined inside the class, but the salary field can’t be directly accessed from outside the class, as demonstrated in this example:
val e = Employee("Steve Jobs", 1)
// to access the salary field you have to use getSalary
e.name // Steve Jobs
e.getSalary(WorkerBee) // None
e.getSalary(HumanResources) // Some(1.0)
e.salary // error: variable salary in class Employee cannot be accessed
Discussion
If any of this is confusing, it helps to think about the choices the compiler has when generating code for you. When a field is defined as a val, by definition its value can’t be changed, so it makes sense to generate a getter, but no setter. Similarly, by definition, the value of a var field can be changed, so generating both a getter and setter makes sense for it.
The private setting on a constructor parameter gives you additional flexibility. When it’s added to a val or var field, the getter and setter methods are generated as before, but they’re marked private. If you don’t specify val or var on a constructor parameter, no getter or setter methods are generated at all.
The accessors and mutators that are generated for you based on these settings are summarized in Table 5-1.
Visibility	Accessor?	Mutator?
var	Yes	Yes
val	Yes	No
Default visibility (no var or val)	No	No
Adding the private keyword to var or val	No	No
Case classes		
Parameters in the constructor of a case class differ from these rules in one way: case class constructor parameters are val by default. So if you define a case class field without adding val or var, like this:		
case class Person(name: String)		
you can still access the field, just as if it were defined as a val:		
scala> val p = Person("Dale Cooper")		
p: Person = Person(Dale Cooper)		
scala> p.name		
res0: String = Dale Cooper		
Although this is different than a regular class, it’s a nice convenience and has to do with the way case classes are intended to be used in functional programming, i.e., as immutable records.		
See Also		
See Recipe 5.11 for more information on manually adding your own accessor and mutator methods, and Recipe 5.3 for more information on the private modifier.		
See Recipe 5.14 for more information on how case classes work.		
5.4 Defining Auxiliary Constructors for Classes		
Problem		
You want to define one or more auxiliary constructors for a class so that consumers of the class can have multiple ways to create object instances.		
Solution		
Define the auxiliary constructors as methods in the class with the name this and the proper signature. You can define multiple auxiliary constructors, but they must have different signatures (parameter lists). Also, each constructor must call one of the previously defined constructors.		
To set up an example, here are two enum definitions that will be used in a Pizza class that follows:		
enum CrustSize:		
case Small, Medium, Large		
enum CrustType:		
case Thin, Regular, Thick		
Given those definitions, here’s a Pizza class with a primary constructor and three auxiliary constructors:		
import CrustSize.*, CrustType.*		
// primary constructor		
class Pizza (var crustSize: CrustSize, var crustType: CrustType):		
// one-arg auxiliary constructor		
def this(crustSize: CrustSize) =		
this(crustSize, Pizza.DefaultCrustType)		
// one-arg auxiliary constructor		
def this(crustType: CrustType) =		
this(Pizza.DefaultCrustSize, crustType)		
// zero-arg auxiliary constructor		
def this() =		
this(Pizza.DefaultCrustSize, Pizza.DefaultCrustType)		
override def toString = s"A $crustSize pizza with a $crustType crust"		
object Pizza:		
val DefaultCrustSize = Medium		
val DefaultCrustType = Regular		
Given those constructors, the same pizza can now be created in the following ways:		
import Pizza.{DefaultCrustSize, DefaultCrustType}		
// use the different constructors		
val p1 = Pizza(DefaultCrustSize, DefaultCrustType)		
val p2 = Pizza(DefaultCrustSize)		
val p3 = Pizza(DefaultCrustType)		
val p4 = Pizza		
All of those definitions result in the same output:		
A Medium pizza with a Regular crust		
Discussion		
There are several important points to this recipe:		
Auxiliary constructors are defined by creating methods named this.		
Each auxiliary constructor must begin with a call to a previously defined constructor.		
Each constructor must have a different parameter list.		
One constructor calls another constructor using the method name this and specifies the desired parameters.		
In the example shown, all the auxiliary constructors call the primary constructor, but this isn’t necessary; an auxiliary constructor just needs to call one of the previously defined constructors. For instance, the auxiliary constructor that takes the crustType parameter could have been written to call the CrustSize constructor:		
def this(crustType: CrustType) =		
this(Pizza.DefaultCrustSize)		
this.crustType = Pizza.DefaultCrustType		
Don’t Forget About Default Parameter Values		
Although the approach shown in the Solution is perfectly valid, before creating multiple class constructors like this, take a few moments to read Recipe 5.6. Using default parameter values as shown in that recipe can often eliminate the need for multiple constructors. For instance, this approach has almost the same functionality as the class shown in the Solution:		
class Pizza(
var crustSize: CrustSize = Pizza.DefaultCrustSize,		
var crustType: CrustType = Pizza.DefaultCrustType		
):		
override def toString =		
s"A $crustSize pizza with a $crustType crust"		
5.5 Defining a Private Primary Constructor		
Problem		
You want to make the primary constructor of a class private, such as to enforce the Singleton pattern.		
Solution		
To make the primary constructor private, insert the private keyword in between the class name and any parameters the constructor accepts:		
// a private one-arg primary constructor		
class Person private (var name: String)		
As shown in the REPL, this keeps you from being able to create an instance of the class:		
scala> class Person private(name: String)		
defined class Person		
scala> val p = Person("Mercedes")		
1	val p = Person("Mercedes")	
^^		
method apply cannot be accessed as a member of Person.type		
When I first saw this syntax I thought it was a little unusual, but if you read the code out loud as you scan it, you’ll read it as, “This is a Person class with a private constructor…” I find that the words “private constructor” in that sentence help me remember to put the private keyword immediately before the constructor parameters.		
Discussion		
To enforce the Singleton pattern in Scala, make the primary constructor private, and then create a getInstance method in the companion object of the class:		
// a private constructor that takes no parameters		
class Brain private:		
override def toString = "This is the brain."		
object Brain:		
val brain = Brain()		
def getInstance = brain		
@main def singletonTest =		
// this won’t compile because the constructor is private:		
// val brain = Brain()		
// this works:		
val brain = Brain.getInstance		
println(brain)		
You don’t have to name the accessor method getInstance; it’s only used here because of the Java convention. Name it whatever seems best to you.		
Companion Objects		
A companion object is simply an object that’s defined in the same file as a class and that has the same name as the class. If you declare a class named Foo in a file named Foo.scala, and then declare an object named Foo in that same file, the Foo object is the companion object of the Foo class.		
A companion object can be used for several purposes, and one purpose is that any method declared in a companion object will appear to be a static method on the object. See Recipe 7.4, “Creating Static Members with Companion Objects”, for more information on creating the equivalent of Java’s static methods, and Recipe 7.6, “Implementing a Static Factory with apply”, for examples of how (and why) to define apply methods in a companion object.		
Utility classes		
Depending on what you’re trying to accomplish, creating a private class constructor may not be necessary at all. For instance, in Java you’d create a file utilities class by defining static methods in a Java class, but in Scala you’d do the same thing by putting the methods in a Scala object:		
object FileUtils:		
def readFile(filename: String): String = ???		
def writeFile(filename: String, contents: String): Unit = ???		
This lets consumers of your code call those methods without needing to create an instance of the FileUtils class:		
val contents = FileUtils.readFile("input.txt")		
FileUtils.writeFile("output.txt", content)		
In a case like this, there’s no need for a private class constructor; just don’t define a class.		
5.6 Providing Default Values for Constructor Parameters		
Problem		
You want to provide a default value for a constructor parameter, which gives consumers of your class the option of specifying that parameter when calling the constructor, or not.		
Solution		
Give the parameter a default value in the constructor declaration. Here’s a declaration of a Socket class with one constructor parameter named timeout that has a default value of 10_000:		
class Socket(val timeout: Int = 10_000)		
Because the parameter is defined with a default value, you can call the constructor without specifying a timeout value, in which case you get the default value:		
val s = Socket()		
s.timeout // Int = 10000		
You can also specify a desired timeout value when creating a new Socket:		
val s = Socket(5_000)		
s.timeout // Int = 5000		
Discussion		
This recipe demonstrates a powerful feature that can eliminate the need for auxiliary constructors. As shown in the Solution, the following single constructor is the equivalent of two constructors:		
class Socket(val timeout: Int = 10_000)		
val s = Socket()		
val s = Socket(5_000)		
If this feature didn’t exist, two constructors would be required to get the same functionality—a primary one-arg constructor and an auxiliary zero-arg constructor:		
class Socket(val timeout: Int):		
def this() = this(10_000)		
Multiple parameters		
You can also provide default values for multiple constructor parameters:		
class Socket(val timeout: Int = 1_000, val linger: Int = 2_000):		
override def toString = s"timeout: $timeout, linger: $linger"		
Though you’ve defined only one constructor, your class now appears to have three constructors:		
println(Socket()) // timeout: 1000, linger: 2000		
println(Socket(3_000)) // timeout: 3000, linger: 2000		
println(Socket(3_000, 4_000)) // timeout: 3000, linger: 4000		
As shown in Recipe 8.3, “Using Parameter Names When Calling a Method”, if you prefer, you can also provide the names of constructor parameters when creating class instances:		
Socket(timeout=3_000, linger=4_000)		
Socket(linger=4_000, timeout=3_000)		
Socket(timeout=3_000)		
Socket(linger=4_000)		
5.7 Handling Constructor Parameters When Extending a Class		
Problem		
You want to extend a base class that has constructor parameters, and your new subclass may take additional parameters.		
Solution		
In this section I cover the case of extending a class that has one or more val constructor parameters. The solution for handling constructor parameters that are defined as var is more complicated and is handled in the Discussion.		
Working with val constructor parameters		
Assuming that your base class has only val constructor parameters, when you define your subclass constructor, leave the val declaration off the fields that are common to both classes. Then define new constructor parameters in the subclass as val (or var) fields.		
To demonstrate this, first define a Person base class that has a val parameter named name:		
class Person(val name: String)		
Next, define Employee as a subclass of Person, so that it takes the constructor parameter name and a new parameter named age. The name parameter is common to the parent Person class, so leave the val declaration off that field, but age is new, so declare it as a val:		
class Employee(name: String, val age: Int) extends Person(name):		
override def toString = s"$name is $age years old"		
Now you can create a new Employee:		
scala> val joe = Employee("Joe", 33)		
val joe: Employee = Joe is 33 years old		
This works as desired, and because the fields are immutable, there are no other issues.		
Discussion		
When a constructor parameter in the base class is defined as a var field, the situtation is more complicated. There are two possible solutions:		
Use a different name for the field in the subclass.		
Implement the subclass constructor as an apply method in a companion object.		
Use a different name for the field in the subclass		
The first approach is to use a different name for the common field in the subclass constructor. For instance, in this example I use the name _name in the Employee constructor, rather than using name:		
class Person(var name: String)		
// note the use of '_name' here		
class Employee(_name: String, var age: Int) extends Person(_name):		
override def toString = s"$name is $age"		
The reason for this is that this constructor parameter in the Employee class (̲name) ends up being generated as a field inside the Employee class. You can see this if you disassemble the Employee .class file:		
$ javap -private Employee		
public class Employee extends Person {		
private final java.lang.String _name; // name field		
private final int age; // age field		
public Employee(java.lang.String, int);		
public int age();		
public java.lang.String toString();		
}		
If you had named this field name, this field in the Employee class would essentially cover up the name field in the Person class. This causes problems, such as the inconsistent results you see at the end of this example:		
class Person(var name: String)		
// i incorrectly use 'name' here, rather than '_name'		
class Employee(name: String, var age: Int) extends Person(name):		
override def toString = s"$name is $age years old"		
// everything looks OK at first		
val e = Employee("Joe", 33)		
e // Joe is 33 years old		
// but problems show up when i update the 'name' field		
e.name = "Fred"		
e.age = 34		
e // "Joe is 34 years old" <-- error: this should be "Fred"		
e.name // "Fred" <-- this is "Fred"		
This happens in this example because I (incorrectly) name my field name in Employee, and this name collides with the name in Person. So, when extending a class that has a var constructor parameter, use a different name for that field in the subclass.		
This Creates a private val Field		
In this example, the approach shown creates a private val field named _name in the Employee class. However, that field can’t be accessed outside of this class, so this is a relatively minor issue. As long as you don’t use that field, nobody else can use it.		
Use an apply method in a companion object		
Because that solution does create a private val field named _name in the Employee class, you may prefer another solution.		
Another way to solve the problem is:		
Make the Employee constructor private.		
Create an apply method in the Employee companion object to serve as a constructor.		
For example, given this Person class with a var parameter named name:		
class Person(var name: String):		
override def toString = s"$name"		
you can create the Employee class with a private constructor and an apply method in its companion object, like this:		
class Employee private extends Person(""):		
var age = 0		
println("Employee constructor called")		
override def toString = s"$name is $age"		
object Employee:		
def apply(_name: String, _age: Int) =		
val e = new Employee()		
e.name = _name		
e.age = _age		
e		
Now when you run these steps, everything will work as desired:		
val e = Employee("Joe", 33)		
e // Joe is 33 years old		
// update and verify the name and age fields		
e.name = "Fred"		
e.age = 34		
e // "Fred is 34 years old"		
e.name // "Fred"		
This approach allows the Employee class to inherit the name field from the Person class and doesn’t require the use of a _name field, as shown in the previous solution. The trade-off is that this approach requires a little more code, though it’s a cleaner approach.		
In summary, if you’re extending a class that only has val constructor parameters, use the approach shown in the Solution. However, if you’re extending a class that has var constructor parameters, use one of these two solutions shown in the Discussion.		
5.8 Calling a Superclass Constructor		
Problem		
You want to control the superclass constructor that’s called when you define constructors in a subclass.		
Solution		
This is a bit of a trick question, because you can control the superclass constructor that’s called by the primary constructor in a subclass, but you can’t control the superclass constructor that’s called by an auxiliary constructor in the subclass.		
When you define a subclass in Scala, you control the superclass constructor that’s called by its primary constructor when you specify the extends portion of the subclass declaration. For instance, in the following code, the primary constructor of the Dog class calls the primary constructor of the Pet class, which is a one-arg constructor that takes name as its parameter:		
class Pet(var name: String)		
class Dog(name: String) extends Pet(name)		
Furthermore, if the Pet class has multiple constructors, the primary constructor of the Dog class can call any one of those constructors. In this next example, the primary constructor of the Dog class calls the one-arg auxiliary constructor of the Pet class by specifying that constructor in its extends clause:		
// (1) two-arg primary constructor		
class Pet(var name: String, var age: Int):		
// (2) one-arg auxiliary constructor		
def this(name: String) = this(name, 0)		
override def toString = s"$name is $age years old"		
// calls the Pet one-arg constructor		
class Dog(name: String) extends Pet(name)		
Alternatively, it can call the two-arg primary constructor of the Pet class:		
// call the two-arg constructor		
class Dog(name: String) extends Pet(name, 0)		
However, regarding auxiliary constructors, because the first line of an auxiliary constructor must be a call to another constructor of the current class, there’s no way for auxiliary constructors to call a superclass constructor.		
Discussion		
As shown in the following code, the primary constructor of the Employee class can call any constructor in the Person class, but the auxiliary constructors of the Employee class must call a previously defined constructor of its own class with the this method as its first line:		
case class Address(city: String, state: String)		
case class Role(role: String)		
class Person(var name: String, var address: Address):		
// no way for Employee auxiliary constructors to call this constructor		
def this(name: String) =		
this(name, null)		
address = null //don’t use null in the real world		
class Employee(name: String, role: Role, address: Address)		
extends Person(name, address):		
def this(name: String) =		
this(name, null, null)		
def this(name: String, role: Role) =		
this(name, role, null)		
def this(name: String, address: Address) =		
this(name, null, address)		
Therefore, there’s no direct way to control which superclass constructor is called from an auxiliary constructor in a subclass. In fact, because each auxiliary constructor must call a previously defined constructor in the same class, all auxiliary constructors will eventually call the same superclass constructor that’s called from the subclass’s primary constructor.		
5.9 Defining an equals Method (Object Equality)		
Problem		
You want to define an equals method for a class so you can compare object instances to each other.		
Solution		
This solution is easier to understand if I cover a bit of background, so first I’ll share three things you need to know.		
The first is that object instances are compared with the == symbol:		
"foo" == "foo" // true		
"foo" == "bar" // false		
"foo" == null // false		
null == "foo" // false		
1 == 1 // true		
1 == 2 // false		
case class Person(name: String)		
Person("Alex") == Person("Alvin") // false		
This is different than Java, which uses == for primitive values and equals for object comparisons.		
The second thing to know is that == is defined on the Any class, so (a) it’s inherited by all other classes, and (b) it calls the equals method that’s defined for a class. What happens is that when you write 1 == 2, that code is the same as writing 1.==(2), and then that == method invokes the equals method on the 1 object, which is an instance of Int in this example.		
The third thing to know is that properly writing an equals method turns out to be a difficult problem, so much so that Programming in Scala takes 23 pages to discuss it, and Effective Java takes 17 pages to cover object equality. Effective Java begins its treatment with the statement, “Overriding the equals method seems simple, but there are many ways to get it wrong, and the consequences can be dire.” Despite this complexity, I’ll attempt to demonstrate a solid solution to the problem, and I’ll also share references for further reading.		
Don’t implement equals unless necessary		
Before jumping into how to implement an equals method, it’s worth noting that Effective Java states that not implementing an equals method is the correct solution for the following situations:		
Each instance of a class is inherently unique. Instances of a Thread class are given as an example.		
There is no need for the class to provide a logical equality test. The Java Pattern class is given as an example; the designers didn’t think that people would want or need this functionality, so it simply inherits its behavior from the Java Object class.		
A superclass has already overridden equals, and its behavior is appropriate for this class.		
The class is private or package-private (in Java), and you are certain its equals method will never be invoked.		
Those are four situations where you won’t want to write a custom equals method for a Java class, and those rules make sense for Scala as well. The rest of this recipe focuses on how to properly implement an equals method.		
A seven-step process		
The fourth edition of Programming in Scala recommends a seven-step process for implementing an equals method for nonfinal classes:		
Create a canEqual method with the proper signature, taking an Any parameter and returning a Boolean.		
canEqual should return true if the argument passed into it is an instance of the current class, false otherwise. (The current class is especially important with inheritance.)		
Implement the equals method with the proper signature, taking an Any parameter and returning a Boolean.		
Write the body of equals as a single match expression.		
The match expression should have two cases. As you’ll see in the following code, the first case should be a typed pattern for the current class.		
In the body of this first case, implement a series of logical “and” tests for all the tests in this class that must be true. If this class extends anything other than AnyRef, you’ll want to invoke your superclass equals method as part of these tests. One of the “and” tests must also be a call to canEqual.		
For the second case, just specify a wildcard pattern that yields false.		
As a practical matter, any time you implement an equals method you should also implement a hashCode method. This is shown as an optional eighth step in the example that follows.		
I’ll show two examples in this recipe, one here, and another in the Discussion.		
Example 1: Implementing equals for a single class		
Here’s an example that demonstrates how to properly write an equals method for a small Scala class. In this example I create a Person class with two var fields:		
class Person(var name: String, var age: Int)		
Given those two constructor parameters, here’s the complete source code for a Person class that implements an equals method and a corresponding hashCode method. The comments show which steps in the solution the code refers to:		
class Person(var name: String, var age: Int):		
// Step 1 - proper signature for `canEqual`		
// Step 2 - compare `a` to the current class		
// (isInstanceOf returns true or false)		
def canEqual(a: Any) = a.isInstanceOf[Person]		
// Step 3 - proper signature for `equals`		
// Steps 4 thru 7 - implement a `match` expression		
override def equals(that: Any): Boolean =		
that match		
case that: Person =>		
that.canEqual(this) &&		
this.name == that.name &&		
this.age == that.age		
case _ =>		
false		
// Step 8 (optional) - implement a corresponding hashCode method		
override def hashCode: Int =		
val prime = 31		
var result = 1		
result = prime * result + age		
result = prime * result + (if name == null then 0 else name.hashCode)		
result		
end Person		
If you compare that code to the seven steps previously described, you’ll see that they match those definitions. A key to the solution is this code inside the first case statement:		
case that: Person =>		
that.canEqual(this) &&		
this.name == that.name &&		
this.age == that.age		
This code tests to see whether that is an instance of Person:		
case that: Person =>		
If that is not a Person, the other case statement is executed.		
Next, this line of code tests the opposite situation: that the current instance (this) is an instance of the class of that:		
that.canEqual(this) ...		
This is particularly important when inheritance is involved, such as when Employee is an instance of Person but Person is not an instance of Employee.		
After that, the rest of the code after canEqual tests the equality of the individual fields in the Person class.		
With the equals method defined, you can compare instances of a Person with ==, as demonstrated in the following ScalaTest unit tests:		
import org.scalatest.funsuite.AnyFunSuite		
class PersonTests extends AnyFunSuite:		
// these first two instances should be equal		
val nimoy = Person("Leonard Nimoy", 82)		
val nimoy2 = Person("Leonard Nimoy", 82)		
val nimoy83 = Person("Leonard Nimoy", 83)		
val shatner = Person("William Shatner", 82)		
// [1] a basic test to start with		
test("nimoy != null") { assert(nimoy != null) }		
// [2] these reflexive and symmetric tests should all be true		
// [2a] reflexive		
test("nimoy == nimoy") { assert(nimoy == nimoy) }		
// [2b] symmetric		
test("nimoy == nimoy2") { assert(nimoy == nimoy2) }		
test("nimoy2 == nimoy") { assert(nimoy2 == nimoy) }		
// [3] these should not be equal		
test("nimoy != nimoy83") { assert(nimoy != nimoy83) }		
test("nimoy != shatner") { assert(nimoy != shatner) }		
test("shatner != nimoy") { assert(shatner != nimoy) }		
All of these tests pass as desired. In the Discussion, the reflexive and symmetric comments are explained, and a second example shows how this formula works when an Employee class extends Person.		
IntelliJ IDEA		
At the time of this writing, when given a Person class with name and age fields, IntelliJ IDEA Version 2021.1.4 generates an equals method that is almost identical to the code shown in this solution.		
Discussion		
The way == works in Scala is that when it’s invoked on a class instance, as in nimoy == shatner, the equals method on nimoy is called. In short, this code:		
nimoy == shatner		
is the same as this code:		
nimoy.==(shatner)		
which is the same as this code:		
nimoy.equals(shatner)		
As shown, the == method is like syntactic sugar for calling equals. You could write nimoy.equals(shatner), but nobody does that because == is much easier for humans to read.		
THE EQUALS CONTRACT		
The Scaladoc for the equals method of the Any class essentially specifies the contract for how equals methods should be implemented. It begins by stating that “any implementation of this method should be an equivalence relation.” It further states that an equivalence relation should have these three properties:		
It is reflexive: for any instance x of type Any, x.equals(x) should return true.		
It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and only if y.equals(x) returns true.		
It is transitive: for any instances x, y, and z of type AnyRef, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.		
Finally it states that “if you override the equals method, you should verify that your implementation remains an equivalence relation.”		
The Person example meets that criteria.		
Now let’s look at how to handle this when inheritance is involved.		
Example 2: Inheritance		
An important benefit of this approach is that you can continue to use it when you use inheritance in classes. For instance, in the following code, the Employee class extends the Person class that’s shown in the Solution. It uses the same formula that was shown in the first example, with additional tests to (a) test the new role field in Employee, and (b) call super.equals(that) to verify that equals in Person is also true:		
class Employee(name: String, age: Int, var role: String)		
extends Person(name, age):		
override def canEqual(a: Any) = a.isInstanceOf[Employee]		
override def equals(that: Any): Boolean =		
that match		
case that: Employee =>		
that.canEqual(this) &&		
this.role == that.role &&		
super.equals(that)		
case _ =>		
false		
override def hashCode: Int =		
val prime = 31		
var result = 1		
result = prime * result + (if role == null then 0 else role.hashCode)		
result + super.hashCode		
end Employee		
Note in this code:		
canEqual checks for an instance of Employee (not Person).		
The first case expression also tests for Employee (not Person).		
The Employee case calls canEqual, tests the field(s) in its class, and also calls super.equals(that) to use the equals code in Person for its equality tests. This ensures that the fields in Person as well as the new role field in Employee are all equal.		
The following ScalaTest unit tests verify that the equals method in Employee is implemented correctly:		
import org.scalatest.funsuite.AnyFunSuite		
class EmployeeTests extends AnyFunSuite:		
// these first two instance should be equal		
val eNimoy1 = Employee("Leonard Nimoy", 82, "Actor")		
val eNimoy2 = Employee("Leonard Nimoy", 82, "Actor")		
val pNimoy = Person("Leonard Nimoy", 82)		
val eShatner = Employee("William Shatner", 82, "Actor")		
// equality tests (reflexive and symmetric)		
test("eNimoy1 == eNimoy1") { assert(eNimoy1 == eNimoy1) }		
test("eNimoy1 == eNimoy2") { assert(eNimoy1 == eNimoy2) }		
test("eNimoy2 == eNimoy1") { assert(eNimoy2 == eNimoy1) }		
// non-equality tests		
test("eNimoy1 != pNimoy") { assert(eNimoy1 != pNimoy) }		
test("pNimoy != eNimoy1") { assert(pNimoy != eNimoy1) }		
test("eNimoy1 != eShatner") { assert(eNimoy1 != eShatner) }		
test("eShatner != eNimoy1") { assert(eShatner != eNimoy1) }		
All the tests pass, including the comparison of the eNimoy and pNimoy objects, which are instances of the Employee and Person classes, respectively.		
Beware equals methods with var fields and mutable collections		
As a warning, while these examples demonstrate a solid formula for implementing equals and hashCode methods, the Artima blog post “How to Write an Equality Method in Java” explains that when equals and hashCode algorithms depend on mutable state, i.e., var fields like name, age, and role, this can be a problem for users in collections.		
The basic problem is that if users of your class put mutable fields into collections, the fields can change after they’re in the collection. Here’s a demonstration of this problem. First, create an Employee instance like this:		
val eNimoy = Employee("Leonard Nimoy", 81, "Actor")		
Then add that instance to a Set:		
val set = scala.collection.mutable.Set[Employee]()		
set += eNimoy		
When you run this code, you’ll see that it returns true, as expected:		
set.contains(eNimoy) // true		
But now if you modify the eNimoy instance and then run the same test, you’ll find that it (probably) returns false:		
eNimoy.age = 82		
set.contains(eNimoy) // false		
In regard to handling this problem, the Artima blog post suggests that in this situation you shouldn’t override hashCode and should name your equality method something other than equals. This way, your class will inherit the default implementations of hashCode and equals.		
Implementing hashCode		
I won’t discuss hashCode algorithms in depth, but in Effective Java, Joshua Bloch writes that the following statements comprise the contract for hashCode algorithms (which he adapted from the Java Object documentation):		
When hashCode is invoked on an object repeatedly within an application, it must consistently return the same value, provided that no information in the equals method comparison has changed.		
If two objects are equal according to their equals methods, their hashCode values must be the same.		
If two objects are unequal according to their equals methods, it is not required that their hashCode values be different. But producing distinct results for unequal objects may improve the performance of hash tables.		
As a brief survey of hashCode algorithms, the algorithm I used in the Person class is consistent with the suggestions in Effective Java:		
// note: the `if name == null then 0` test is required because		
// `null.hashCode` throws a NullPointerException		
override def hashCode: Int =		
val prime = 31		
var result = 1		
result = prime * result + age		
result = prime * result + (if name == null then 0 else name.hashCode)		
result		
Next, this is the hashCode method produced by making Person a case class, then compiling its code with the Scala 3 scalac command and decompiling it with JAD:		
public int hashCode() {		
int i = 0xcafebabe;		
i = Statics.mix(i, productPrefix().hashCode());		
i = Statics.mix(i, Statics.anyHash(name()));		
i = Statics.mix(i, age());		
return Statics.finalizeHash(i, 2);		
}		
The IntelliJ IDEA generate code option generates this code for a Scala 2.x version of the Person class:		
// scala 2 syntax		
override def hashCode(): Int = {		
val state = Seq(super.hashCode(), name, age)		
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)		
}		
See Also		
Programming in Scala, by Martin Odersky et al. (Artima Press).		
Effective Java, by Joshua Bloch (Addison-Wesley).		
The Artima blog post “How to Write an Equality Method in Java”.		
The Wikipedia definition of equivalence relation.		
See Recipe 23.11, “Controlling How Classes Can Be Compared with Multiversal Equality”, for a discussion of multiversal equality, and Recipe 23.12, “Limiting Equality Comparisons with the CanEqual Typeclass”, for a discussion of how to limit equality comparisons with the CanEqual typeclass.		
5.10 Preventing Accessor and Mutator Methods from Being Generated		
Problem		
When you define a class field as a var, Scala automatically generates accessor (getter) and mutator (setter) methods for it, and defining a field as a val automatically generates an accessor method, but you don’t want either an accessor or a mutator.		
Solution		
The solution is to either:		
Add the private access modifier to the val or var declaration so it can only be accessed by instances of the current class		
Add the protected access modifier so it can be accessed by classes that extend the current class		
The private modifier		
As an example of how the private access modifier works, this Animal class declares _numLegs as a private field. As a result, other non-Animal instances can’t access _numLegs, but notice that the iHaveMoreLegs method can access the _numLegs field of another Animal instance (as that._numLegs):		
class Animal:		
private var _numLegs = 2		
def numLegs = _numLegs // getter		
def numLegs_=(numLegs: Int): Unit = // setter		
_numLegs = numLegs		
// note that we can access the `_numLegs` field of		
// another Animal instance (`that`)		
def iHaveMoreLegs(that: Animal): Boolean =		
this._numLegs > that._numLegs		
Given that code, all the following ScalaTest assert tests pass:		
val a = Animal()		
assert(a.numLegs == 2) // getter test		
a.numLegs = 4		
assert(a.numLegs == 4) // setter test		
// the default number of legs is 2, so this is true		
val b = Animal()		
assert(a.iHaveMoreLegs(b))		
Also, if you attempt to access _numLegs from outside the class, you’ll see that this code won’t compile:		
//a._numLegs // error, cannot be accessed (others cannot access _numLegs)		
The protected modifier		
If you change the _numLegs field in Animal from private to protected, you can then create a new class that extends Animal, while overriding the _numLegs value:		
class Dog extends Animal:		
_numLegs = 4		
When you do this and then create two Dog instances, you’ll see that all of these tests pass, just like the previous tests:		
val a = Dog()		
assert(a.numLegs == 4)		
a.numLegs = 3		
assert(a.numLegs == 3)		
// the default number of legs is 4, so this is true		
val b = Dog()		
assert(b.iHaveMoreLegs(a))		
Similarly, _numLegs still can’t be accessed from outside the class, so this line of code won’t compile:		
a._numLegs // compiler error, cannot be accessed		
Discussion		
Scala constructor parameters and fields are publicly accessible by default, so when you don’t want those fields to have an accessor or a mutator, defining the fields as private or protected gives you the levels of control shown.		
DISASSEMBLE CLASSES TO SEE WHAT THE JVM SEES		
As a reminder, whenever you want to know more about how Scala works, it can help to create small tests and then decompile them with javap. For instance, here’s a class with two val fields, where i is public and d is private:		
class Foo(val i: Int, private val d: Double)		
When you compile that class with scalac and then disassemble it with javap, you can see what the JVM sees:		
$ javap -private Foo		
Compiled from "Foo.scala"		
public class Foo {		
public Foo(int, double);		
private final int i; // i is private and has		
public int i(); // a public accessor method		
private final double d; // d is private and has		
private double d(); // a private accessor method		
}		
Note that I added comments to this code to explain its output, but the rest of it is generated by the javap command. Type javap -help at your command line to see other options that are available for disassembling class files.		
5.11 Overriding Default Accessors and Mutators		
Problem		
You want to override the getter or setter methods that Scala generates for you.		
Solution		
This is a bit of a trick problem, because you can’t directly override the getter and setter methods Scala generates for you, at least not if you want to stick with the Scala naming conventions. For instance, if you have a class named Person with a constructor parameter named name, and attempt to create getter and setter methods according to the Scala conventions, your code won’t compile:		
// error: this won’t work		
class Person(private var name: String):		
def name = name		
def name_=(aName: String): Unit =		
name = aName		
Attempting to compile this code generates this error:		
2	def name = name	
^		
Overloaded or recursive method name needs return type		
I’ll examine these problems more in the Discussion, but the short answer is that both the constructor parameter and the getter method are named name, and Scala won’t allow that.		
To solve this problem, change the name of the field you use in the class constructor so it won’t collide with the name of the getter method you want to use. One approach is to add a leading underscore to the parameter name, so if you want to manually create a getter method called name, use the parameter name _name in the constructor, then declare your getter and setter methods according to the Scala conventions:		
class Person(private var _name: String):		
def name = _name // accessor		
def name_=(aName: String): Unit = _name = aName // mutator		
Notice the constructor parameter is declared private and var. The private keyword keeps Scala from exposing that field to other classes, and var lets the value of _name be changed.		
As you’ll see in the Discussion, creating a getter method named name and a setter method named name_= conforms to the Scala convention for a field named name, and it lets a consumer of your class write code like this:		
val p = Person("Winston Bishop")		
// setter		
p.name = "Winnie the Bish"		
// getter		
println(p.name) // prints "Winnie the Bish"		
If you don’t want to follow this Scala naming convention for getters and setters, you can use any other approach you want. For instance, you can name your methods getName and setName, following the JavaBeans style.		
To summarize this, the recipe for overriding default getter and setter methods is:		
Create a private var constructor parameter with a name you want to reference from within your class. In this example, the field is named _name.		
Define getter and setter method names that you want other classes to use. In the example, the getter method name is name, and the setter method name is name_= (which, combined with Scala’s syntactic sugar, lets users write p.name = "Winnie the Bish").		
Modify the body of the getter and setter methods as desired.		
Class Fields Work the Same Way		
While these examples use fields in a class constructor, the same principles hold true for fields defined inside a class.		
Discussion		
When you define a constructor parameter to be a var field and compile the code, Scala makes the field private to the class and automatically generates getter and setter methods that other classes can use to access the field. For instance, given this Stock class:		
class Stock(var symbol: String)		
after the class is compiled to a class file with scalac and then decompiled with a tool like JAD, you’ll see Java code like this:		
public class Stock {		
public Stock(String symbol) {		
this.symbol = symbol;		
super();		
}		
public String symbol() {		
return symbol;		
}		
public void symbol_$eq(String x$1) {		
symbol = x$1;		
}		
private String symbol;		
}		
You can see that the Scala compiler generates two methods: a getter named symbol and a setter named symbol_$eq. This second method is the same as a method you would name symbol_= in your Scala code, but under the hood Scala needs to translate the = symbol to $eq to work with the JVM.		
That second method name is a little unusual, but it follows a Scala convention, and when it’s mixed with some syntactic sugar, it lets you set the symbol field on a Stock instance like this:		
stock.symbol = "GOOG"		
The way this works is that behind the scenes, Scala converts that line of code into this line of code:		
stock.symbol_$eq("GOOG")		
This is something you generally never have to think about, unless you want to override the mutator method.		
5.12 Assigning a Block or Function to a (lazy) Field		
Problem		
You want to initialize a field in a class using a block of code, or by calling a method or function.		
Solution		
Assign the desired block of code or function to a field within the class body. Optionally, define the field as lazy if the algorithm requires a long time to run.		
In the following example class, the field text is set equal to a block of code—a try/catch block—which either returns (a) the text contained in a file, or (b) an error message, depending on whether the file exists and can be read:		
import scala.io.Source		
class FileReader(filename: String):		
// assign this block of code to the 'text' field		
val text =		
// 'fileContents' will either contain the file contents,		
// or the exception message as a string		
val fileContents =		
try		
Source.fromFile(filename).getLines.mkString		
catch		
case e: Exception => e.getMessage		
println(fileContents) // print the contents		
fileContents // return the contents from the block		
@main def classFieldTest =		
val reader = FileReader("/etc/passwd")		
Because the assignment of the code block to the text field is in the body of the FileReader class, this code is in the class’s constructor and will be executed when a new instance of the class is created. Therefore, when you compile and run this example it will print either the contents of the file or the exception message that comes from trying to read the file. Either way, the block of code is executed—including the println statement—and the result is assigned to the text field.		
Discussion		
When it makes sense, define a field like this to be lazy, which means that the field won’t be evaluated until it’s accessed. To demonstrate this, update the previous example by making text a lazy val field:		
import scala.io.Source		
class FileReader(filename: String):		
// the only difference from the previous example is that		
// this field is defined as 'lazy'		
lazy val text =		
val fileContents =		
try		
Source.fromFile(filename).getLines.mkString		
catch		
case e: Exception => e.getMessage		
println(fileContents)		
fileContents		
@main def classFieldTest =		
val reader = FileReader("/etc/passwd")		
Now when this example is run, nothing happens; you see no output, because the text field isn’t evaluated until it’s accessed. The block of code isn’t executed until you call reader.text, at which point you’ll see output from the println statement.		
This is how a lazy field works: even though it’s defined as a field in a class—meaning that it’s a part of the class constructor—that code won’t be executed until you explicitly ask for it.		
Defining a field as lazy is a useful approach when the field might not be accessed in the normal processing of your algorithms, or if running the algorithm will take long and you want to defer that to a later time.		
See Also		
try/catch expressions were used in these examples, but the code can be written more concisely using the Try classes. See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for details on how to use Try, Success, and Failure to make the code more concise.		
See Recipe 5.2 to understand how fields work in class constructors.		
5.13 Setting Uninitialized var Field Types		
Problem		
You want to set the type for an uninitialized var field in a class, so you begin to write code like this:		
var x =		
and then wonder how to finish writing the expression.		
Solution		
In general, the best approach is to define the field as an Option. For certain types, such as String and numeric fields, you can specify default initial values.		
For instance, imagine that you’re starting the next great social network, and to encourage people to sign up, you only ask for a username and password during the registration process. Therefore, you define username and password as fields in your class constructor:		
case class Person(var username: String, var password: String) ...		
However, later on you’ll also want to get other information from users, including their age, first name, last name, and address. Setting those first three var fields with default values is simple:		
var age = 0		
var firstName = ""		
var lastName = ""		
But what do you do when you get to the address? The solution is to define the address field as an Option, as shown here:		
case class Person(var username: String, var password: String):		
var age = 0		
var firstName = ""		
var lastName = ""		
var address: Option[Address] = None		
case class Address(city: String, state: String, zip: String)		
Later, when a user provides an address, you assign it using a Some, like this:		
val p = Person("alvinalexander", "secret")		
p.address = Some(Address("Talkeetna", "AK", "99676"))		
When you need to access the address field, there are a variety of approaches you can use, and these are discussed in detail in Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”. As one example, you can print the fields of an Address using foreach:		
p.address.foreach { a =>		
println(s"${a.city}, ${a.state}, ${a.zip}")		
}		
If the address field hasn’t been assigned, address will have the value None, and calling foreach on it does nothing. If the address field is assigned, it will be a Some that contains an Address, and the foreach method on Some extracts the value out of the Some and the data is printed with foreach.		
Discussion		
You can think of the body of None’s foreach method as being defined like this:		
def foreach[A,U](f: A => U): Unit = {}		
Because None is guaranteed to be empty—it’s an empty container—its foreach method is essentially a do-nothing method. (It’s implemented differently than this, but this is a convenient way to think about it.)		
Similarly, when you call foreach on Some, it knows that it contains one element—such as an instance of an Address—so it applies your algorithm to that element.		
See Also		
It’s important to stress that Scala provides a terrific opportunity for you to get away from ever using null values again. Recipe 24.5, “Eliminating null Values from Your Code”, shows ways to eliminate common uses of null values.		
In Scala frameworks, such as the Play Framework, Option fields are commonly used. See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for a detailed discussion of how to work with Option values.		
On a related note, there are times you may need to override the default type of a numeric field. For those occasions, see Recipe 3.3, “Overriding the Default Numeric Type”.		
5.14 Generating Boilerplate Code with Case Classes		
Problem		
You’re working with match expressions, Akka actors, or other situations where you want to use the case class syntax to generate boilerplate code, including accessor and mutator methods, along with apply, unapply, toString, equals, and hashCode methods, and more.		
Solution		
When you want your class to have many additional built-in features—such as creating classes in functional programming—define your class as a case class, declaring any parameters it needs in its constructor:		
// name and relation are 'val' by default		
case class Person(name: String, relation: String)		
Defining a class as a case class results in a lot of useful boilerplate code being generated, with the following benefits:		
Accessor methods are generated for the constructor parameters because case class constructor parameters are val by default. Mutator methods are also generated for parameters that are declared as var.		
A good default toString method is generated.		
An unapply method is generated, making it easy to use case classes in match expressions.		
equals and hashCode methods are generated, so instances can easily be compared and used in collections.		
A copy method is generated, which makes it easy to create new instances from existing instances (a technique used in functional programming).		
Here’s a demonstration of these features. First, define a case class and an instance of it:		
case class Person(name: String, relation: String)		
val emily = Person("Emily", "niece") // Person(Emily,niece)		
Case class constructor parameters are val by default, so accessor methods are generated for the parameters, but mutator methods are not generated:		
scala> emily.name		
res0: String = Emily		
// can’t mutate `name`		
scala> emily.name = "Miley"		
1	emily.name = "Miley"	
^^^^^^^^		
Reassignment to val name		
If you’re writing code in a non-FP style, you can declare your constructor parameters as var fields, and then both accessor and mutator methods are generated:
scala> case class Company(var name: String)
defined class Company
scala> val c = Company("Mat-Su Valley Programming")
c: Company = Company(Mat-Su Valley Programming)
scala> c.name
res0: String = Mat-Su Valley Programming
scala> c.name = "Valley Programming"
c.name: String = Valley Programming
Case classes also have a good default toString method implementation:
scala> emily
res0: Person = Person(Emily,niece)
Because an unapply method is automatically created for a case class, it works well when you need to extract information in match expressions:
scala> emily match { case Person(n, r) => println(s"$n, $r") }
(Emily,niece)
equals and hashCode methods are generated for case classes based on their constructor parameters, so instances can be used in maps and sets, and easily compared in if expressions:
scala> val hannah = Person("Hannah", "niece")
hannah: Person = Person(Hannah,niece)
scala> emily == hannah
res0: Boolean = false
A case class also generates a copy method that’s helpful when you need to clone an object and change some of the fields during the cloning process:
scala> case class Person(firstName: String, lastName: String)
// defined case class Person
scala> val fred = Person("Fred", "Flintstone")
val fred: Person = Person(Fred,Flintstone)
scala> val wilma = fred.copy(firstName = "Wilma")
val wilma: Person = Person(Wilma,Flintstone)
This technique is commonly used in FP, and I refer to it as update as you copy.
Discussion
Case classes are primarily intended to create immutable records when you write Scala code in an FP style. Indeed, pure FP developers look at case classes as being similar to immutable records found in ML, Haskell, and other FP languages. Because they’re intended for use with FP—where everything is immutable—case class constructor parameters are val by default.
Generated code
As shown in the Solution, when you create a case class, Scala generates a wealth of code for your class. To see the code that’s generated, first compile a simple case class, then disassemble it with javap. For example, put this code in a file named Person.scala:
case class Person(var name: String, var age: Int)
Then compile the file:
$ scalac Person.scala
This creates two class files, Person.class and Person$.class. The Person.class file contains the bytecode for the Person class, and you can disassemble its code with this command:
$ javap -public Person
That results in the following output, which is the public signature of the Person class:
Compiled from "Person.scala"
public class Person implements scala.Product,java.io.Serializable {
public static Person apply(java.lang.String, int);
public static Person fromProduct(scala.Product);
public static Person unapply(Person);
public Person(java.lang.String, int);
public scala.collection.Iterator productIterator();
public scala.collection.Iterator productElementNames();
public int hashCode();
public boolean equals(java.lang.Object);
public java.lang.String toString();
public boolean canEqual(java.lang.Object);
public int productArity();
public java.lang.String productPrefix();
public java.lang.Object productElement(int);
public java.lang.String productElementName(int);
public java.lang.String name();
public void name_$eq(java.lang.String);
public int age();
public void age_$eq(int);
public Person copy(java.lang.String, int);
public java.lang.String copy$default$1();
public int copy$default$2();
public java.lang.String _1();
public int _2();
}
Next, disassemble Person$.class, which contains the bytecode for the companion object:
$ javap -public Person$
Compiled from "Person.scala"
public final class Person$ implements
scala.deriving.Mirror$Product,java.io.Serializable {
public static final Person$ MODULE$;
public static {};
public Person apply(java.lang.String, int);
public Person unapply(Person);
public java.lang.String toString();
public Person fromProduct(scala.Product);
public java.lang.Object fromProduct(scala.Product);
}
As you can see, Scala generates a lot of source code when you declare a class as a case class.
As a point of comparison, if you remove the keyword case from that code—making it a regular class—and then compile it, it only creates the Person.class file. When you disassemble it, you’ll see that Scala only generates the following code:
Compiled from "Person.scala"
public class Person {
public Person(java.lang.String, int);
public java.lang.String name();
public void name_$eq(java.lang.String);
public int age();
public void age_$eq(int);
}
That’s a big difference. The case class results in a total of 30 methods, while the regular class results in only 5. If you need the functionality, this is a good thing, and indeed, in FP all of these methods are put to use. However, if you don’t need all of this additional functionality, consider using a regular class declaration instead, and adding to it as desired.
Case Classes Are Just a Convenience
It’s important to remember that while case classes are very convenient, there isn’t anything in them that you can’t code for yourself.
Case objects
Scala also has case objects, which are similar to case classes in that many similar additional methods are generated. Case objects are useful in certain situations, such as when creating immutable messages for Akka actors:
sealed trait Message
case class Speak(text: String) extends Message
case object StopSpeaking extends Message
In this example, Speak requires a parameter, so it’s declared as a case class, but StopSpeaking requires no parameters, so it’s declared as a case object.
However, note that in Scala 3, enums can often be used instead of case objects:
enum Message:
case Speak(text: String)
case StopSpeaking
See Also
Using case objects for Akka messages is discussed in Recipe 18.7, “Sending Messages to Actors”.
When you want to use multiple constructors with a case class, see Recipe 5.15.
See Recipe 6.12, “How to Create Sets of Named Values with Enums”, for more details on how to use enums.
5.15 Defining Auxiliary Constructors for Case Classes
Problem
Similar to the previous recipe, you want to define one or more auxiliary constructors for a case class rather than a plain class.
Solution
A case class is a special type of class that generates a lot of boilerplate code for you. Because of the way they work, adding what appears to be an auxiliary constructor to a case class is different than adding an auxiliary constructor to a regular class. This is because they’re not really constructors: they’re apply methods in the companion object of the class.
To demonstrate this, start with this case class in a file named Person.scala:
// initial case class
case class Person(var name: String, var age: Int)
This lets you create a new Person instance:
val p = Person("John Smith", 30)
While this code looks the same as a regular class, it’s actually implemented differently. When you write that last line of code, behind the scenes the Scala compiler converts it into this:
val p = Person.apply("John Smith", 30)
This is a call to an apply method in the companion object of the Person class. You don’t see this—you just see the line that you wrote—but this is how the compiler translates your code. As a result, if you want to add new constructors to your case class, you write new apply methods. (To be clear, the word constructor is used loosely here. Writing an apply method is more like writing a factory method.)
For instance, if you decide that you want to add two auxiliary constructors to let you create new Person instances, one without specifying any parameters and another by only specifying name, the solution is to add apply methods to the companion object of the Person case class in the Person.scala file:
// the case class
case class Person(var name: String, var age: Int)
// the companion object
object Person:
def apply() = new Person("<no name>", 0) // zero-args constructor
def apply(name: String) = new Person(name, 0) // one-arg constructor
The following code demonstrates that this works as desired:
val a = Person() // Person(<no name>,0)
val b = Person("Sarah Bracknell") // Person(Sarah Bracknell,0)
val c = Person("Sarah Bracknell", 32) // Person(Sarah Bracknell,32)
// verify the setter methods work
a.name = "Sarah Bannerman"
a.age = 38
println(a) // Person(Sarah Bannerman,38)
Finally, notice that in the apply methods in the companion object, the new keyword is used to create a new Person instance:
object Person:
def apply() = new Person("<no name>", 0)

This is one of the rare situations where new is required. In this situation, it tells the compiler to use the class constructor. If you leave new off, the compiler will assume that you’re referring to the apply method in the companion object, which creates a circular or recursive reference.
See Also
Recipe 5.14 details the nuts and bolts of how case classes work.
For more information on factories, see my Java factory pattern tutorial.
Chapter 6. Traits and Enums
Because traits and enums are fundamental building blocks of large Scala applications, they’re covered here in this second domain modeling chapter.
Traits can be used to define granular units of behavior, and then those granular units can be combined to build larger components. As shown in Recipe 6.1, in their most basic use, they can be used like a pre–Java 8 interface, where the primary reason you use them is to declare the signatures for abstract methods that extending classes must implement.
However, Scala traits are much more powerful and flexible than this, and you can use them to define concrete methods and fields in addition to abstract members. Classes and objects can then mix in multiple traits. These features are demonstrated in Recipes 6.2, 6.3, and 6.4.
As a quick demonstration of this approach, rather than attempt to define everything a dog can do in a single Dog class, Scala lets you define traits for smaller units of functionality like a tail, legs, eyes, ears, nose, and a mouth. Those smaller units are easier to think about, create, test, and use, and they can later be combined together to create a complete dog:
class Dog extends Tail, Legs, Ears, Mouth, RubberyNose
That’s a very limited introduction to what Scala traits can do. Additional features include:
Abstract and concrete fields (Recipe 6.2)
Abstract and concrete methods (Recipe 6.3)
Classes that can mix in multiple traits, as shown in Recipes 6.4 and 6.5
The ability to limit the classes your traits can be mixed into (demonstrated in Recipes 6.6, 6.7, and 6.8)
Traits that can be parameterized, to limit which classes they can be used with (Recipe 6.9)
Traits that can have constructor parameters, as shown in Recipe 6.10
The ability to use traits to build modules, as shown in Recipe 6.11, which is a terrific way to organize and simplify large applications
All of these features are discussed in the recipes in this chapter.
A Brief Introduction to Traits
As a quick example of how traits are used, here’s the source code for a trait named Pet, which has one concrete method and one abstract method:
trait Pet:
def speak() = println("Yo") // concrete implementation
def comeToMaster(): Unit // abstract method
As shown, a concrete method is a method that has an implementation—a body—and an abstract method is a method that has no body.
Next, here’s a trait named HasLegs, which has a concrete run method built in:
trait HasLegs:
def run() = println("I’m running!")
Finally, here’s a Dog class that mixes in both the Pet and HasLegs traits, while providing a concrete implementation of the comeToMaster method:
class Dog extends Pet, HasLegs:
def comeToMaster() = println("I'm coming!")
Now, when you create a new Dog instance and call its methods, you’ll see output like this:
val d = Dog()
d.speak() // yo
d.comeToMaster() // I’m coming!
d.run() // I’m running
That’s a small glimpse of some basic trait as an interface features. This is one way of mixing in multiple traits to create a class.
Trait Construction Order
One point that isn’t covered in the following recipes is the order in which traits are constructed when a class mixes in several traits. For example, given these traits:
trait First:
println("First is constructed")
trait Second:
println("Second is constructed")
trait Third:
println("Third is constructed")
and this class that mixes in those traits:
class MyClass extends First, Second, Third:
println("MyClass is constructed")
when a new instance of MyClass is created:
val c = MyClass()
it has this output:
First is constructed
Second is constructed
Third is constructed
MyClass is constructed
This demonstrates that the traits are constructed in order from left to right before the class itself is constructed.
After covering traits, the final two lessons cover the enum construct, which is new in Scala 3. An enum—an abbreviation for enumeration—is a shortcut for defining (a) a sealed class or trait along with (b) values defined as members of the class’s companion object.
While enums are a shortcut, they’re a powerful, concise shortcut. They can be used to create sets of constant named values and can also be used to implement algebraic data types (ADTs). Their use to define a set of constants is demonstrated in Recipe 6.12, and their use to define ADTs is shown in Recipe 6.13.
6.1 Using a Trait as an Interface
Problem
You’re used to creating pure interfaces in other languages—declaring method signatures without implementations—and want to create something like that in Scala and then use those interfaces with concrete classes.
Solution
At their most basic level, Scala traits can be used like pre–Java 8 interfaces, where you define method signatures but don’t provide an implementation for them.
For example, imagine that you want to write some code to model any animal that has a tail, like a dog or cat. A first thing you might think is that tails can wag, so you define a trait like this, with two method signatures and no method body:
trait HasTail:
def startTail(): Unit
def stopTail(): Unit
Those two methods don’t take any parameters. If the methods you want to define will take parameters, declare them as usual:
trait HasLegs:
def startRunning(speed: Double): Unit
def runForNSeconds(speed: Double, numSeconds: Int): Unit
Extending traits
On the flip side of this process, when you want to create a class that extends a trait, use the extends keyword:
class Dog extends HasTail
When a class extends multiple traits, use extends for the first trait, and separate subsequent traits with commas:
class Dog extends HasTail, HasLegs, HasRubberyNose
If a class extends a trait but doesn’t implement all of its abstract methods, the class must be declared abstract:
abstract class Dog extends HasTail, HasLegs:
// does not implement methods from HasTail or HasLegs so
// it must be declared abstract
But if the class provides an implementation for all the abstract methods of the traits it extends, it can be declared as a normal class:
class Dog extends HasTail, HasLegs:
def startTail(): Unit = println("Tail is wagging")
def stopTail(): Unit = println("Tail is stopped")
def startRunning(speed: Double): Unit =
println(s"Running at $speed miles/hour")
def runForNSeconds(speed: Double, numSeconds: Int): Unit =
println(s"Running at $speed miles/hour for $numSeconds seconds")
Discussion
As shown in those examples, at their most basic level traits can be used as simple interfaces. Classes then extend traits using the extends keyword, according to these rules:
If a class extends one trait, use the extends keyword.
If a class extends multiple traits, use extends for the first trait and separate the rest with commas.
If a class extends a class (or abstract class) and a trait, always list the class name first—using extends before the class name—and then use commas before the additional trait names.
As you’ll see in some of the following recipes, traits can also extend other traits:
trait SentientBeing:
def imAlive_!(): Unit = println("I’m alive!")
trait Furry
trait Dog extends SentientBeing, Furry
See Also
Objects can also extend traits to create modules, and that technique is demonstrated in Recipe 6.11.
6.2 Defining Abstract Fields in Traits
Problem
You want to declare that a trait should have a field, but you don’t want to give the field an initial value, i.e., you want it to be abstract.
Solution
Over time, Scala developers have learned that the simplest and most flexible way to define abstract fields in traits is to use a def:
trait PizzaTrait:
def maxNumToppings: Int
This lets you override the field in the classes (and traits) that extend your trait in a variety of ways, including as a val:
class SmallPizza extends PizzaTrait:
val maxNumToppings = 4
as a lazy val:
class SmallPizza extends PizzaTrait:
lazy val maxNumToppings =
// some long-running operation
Thread.sleep(1_000)
4
as a var:
class MediumPizza extends PizzaTrait:
var maxNumToppings = 6
or as a def:
class LargePizza extends PizzaTrait:
def maxNumToppings: Int =
// some algorithm here
42
Discussion
A field in a trait can be concrete or abstract:
If you assign it a value, it’s concrete.
If you don’t assign it a value, it’s abstract.
From an implementation standpoint, that’s as simple as this:
trait Foo:
def bar: Int // abstract
val a = 1 // concrete val
var b = 2 // concrete var
While those options are available, over time Scala developers learned that the most flexible way—and the most abstract way—to define fields in traits is to declare them as a def. As shown in the Solution, that gives you a wide variety of ways to implement the field in classes that extend the trait. Stated another way, if you define an abstract field as a var or val, you significantly limit your options in extending classes.
I’ve learned that an important consideration is to ask yourself, “When I say that a base trait should have a field, how specific do I want to be about its implementation?” By definition, when you define a trait that you want other classes to implement, the trait is meant to be abstract, and in Scala the way to declare that field in the most abstract manner is to declare it as a def. This is a way of saying that you don’t want to tie down the implementation; you want extending classes to implement it in the best way possible for their needs.
Concrete fields in traits
If you have a situation where you really do want to define a concrete val or var field in a trait, an IDE like IntelliJ IDEA or VS Code can help you determine what you can and can’t do in classes that extend your trait. For instance, if you specify a concrete var field in a trait, you’ll see that you can override that value in extending classes like this:
trait SentientBeing:
var uuid = 0 // concrete
class Person extends SentientBeing:
uuid = 1
Similarly, if you define a trait field as a concrete val, you’ll need to use the override modifier to change that value in an extending class:
trait Cat:
val numLives = 9 // concrete
class BetterCat extends Cat:
override val numLives = 10
In both cases, you can’t implement those fields as def or lazy val values in your classes.
See Also
Scala developers learned about the def approach over a period of time. Part of the reason for using this approach has to do with how the JVM works, and therefore how Scala compiles traits to work with the JVM. This is a long discussion, and if you’re interested in the details, I write about it in excruciating detail in my blog post “What def, val, and var Fields in Scala Traits Look Like After They’re Compiled (Including the Classes that Extend Them)”.
6.3 Using a Trait Like an Abstract Class
Problem
You want to use a trait as something like an abstract class in Java, defining both abstract and concrete methods.
Solution
Define both concrete and abstract methods in your trait as desired. In classes that extend the trait, you can override both types of methods, or, for the concrete methods, you can inherit the default behavior defined in the trait.
In the following example, a default, concrete implementation is provided for the speak method in the Pet trait, so implementing classes don’t have to override it. The Dog class chooses not to override it, whereas the Cat class does. Both classes must implement the comeToMaster method because it has no implementation in the Pet trait:
trait Pet:
def speak() = println("Yo") // concrete implementation
def comeToMaster(): Unit // abstract method
class Dog extends Pet:
// no need to implement `speak` if you don’t want to
def comeToMaster() = println("I'm coming!")
class Cat extends Pet:
override def speak() = println("meow")
def comeToMaster() = println("That’s not gonna happen.")
If a class extends a trait without implementing its abstract methods, it must be declared to be abstract. Because FlyingPet doesn’t implement comeToMaster, it must be declared abstract:
abstract class FlyingPet extends Pet:
def fly() = println("Woo-hoo, I’m flying!")
Discussion
Although Scala has abstract classes, it’s much more common to use traits than abstract classes to implement base behavior. A class can only extend one abstract class, but it can implement multiple traits, so using traits is more flexible. Because Scala 3 also lets traits have constructor parameters, traits will be used in even more situations.
See Also
See Recipe 6.9 for details on using trait parameters with Scala 3.
See “One more thing: When to use abstract classes” for information on when to use an abstract class instead of a trait.
6.4 Using Traits as Mixins
Problem
You want to design a solution where one or more traits can be mixed into a class to provide a robust design.
Solution
To use traits as mixins, define the methods in your traits as abstract or concrete methods, as usual, and then mix the traits into your classes using extends. This can be done in at least two different ways:
Constructing a class with traits
Mix in traits during variable construction
These approaches are discussed in the following sections.
Constructing a class with traits
A first approach is to create a class while extending one or more traits. For example, imagine that you have these two traits:
trait HasTail:
def wagTail() = println("Tail is wagging")
def stopTail() = println("Tail is stopped")
trait Pet:
def speak() = println("Yo")
def comeToMaster(): Unit // abstract
The methods in HasTail are both concrete, while the comeToMaster method in Pet is abstract because the method has no body. Now you can create a concrete Dog class by mixing in those traits and implementing comeToMaster:
class Dog(val name: String) extends Pet, HasTail:
def comeToMaster() = println("Woo-hoo, I'm coming!")
val d = Dog("Zeus")
Using the same approach, you can create a Cat class that implements comeToMaster differently, while also overriding speak:
class Cat(val name: String) extends Pet, HasTail:
def comeToMaster() = println("That’s not gonna happen.")
override def speak() = println("meow")
val c = Cat("Morris")
Mix in traits during variable construction
Another mixin approach is to add traits to a class at the same time as you create a variable. Imagine that you now have these three traits (which have no methods) and a Pet class:
trait HasLegs
trait HasTail
trait MansBestFriend
class Pet(val name: String)
Now you can create a new Pet instance while also mixing in the traits you want for this particular variable:
val zeus = new Pet("Zeus") with MansBestFriend with HasTail with HasLegs
Then you can create other variables by mixing in the traits that make sense:
val cat = new Pet("Morris") with HasTail with HasLegs
Discussion
I show both approaches because different people have different definitions of what mixin means. When I first learned about mixins, the primary use case was the second example, showing how to mix in a trait at the time you create a variable.
But these days the term mixin can be used any time multiple traits are used to compose a class. This is because those traits aren’t a sole parent of the class, but instead they’re mixed into the class. For instance, the Wikipedia mixin page provides a good way to think about this, stating that mixins are “described as being ‘included’ rather than ‘inherited.’”
This is a key benefit of traits: they let you build modular units of behavior by decomposing large problems into smaller problems. For instance, rather than attempting to design a large Dog class, it’s much easier to understand the smaller components that make up a dog and break the problem into traits related to having a tail, legs, fur, ears, etc., and then mixing those traits together to create a dog. By doing so you create small, granular modules that are easier to understand and test, and those modules can also be used to create other things like cats, horses, etc.
Several keys to using traits as mixins are:
Create small units of focused scope and functionality.
Implement the methods you can, and declare the others as abstract.
Because traits have a focused area of responsibility, they generally implement unrelated behavior (also known as orthogonal behavior).
Stackable Trait Pattern
To see a great demonstration of the power of mixins, read Bill Venners’ short Artima article on stackable trait patterns. By defining traits and classes as base, core, and stackable components, the article demonstrates how 16 different classes can be derived from three traits by stacking the traits together.
As a final note about mixins, the book Scala for the Impatient by Cay S. Horstmann (Addison-Wesley Professional) makes the point that philosophically, this code:
class Pet(val name: String) extends HasLegs, HasTail, MansBestFriend
isn’t read as “class Pet extends HasLegs ‘with HasTail and MansBestFriend’” but is instead read as “class Pet extends ‘HasLegs, HasTail, and MansBestFriend.’” It’s a subtle point that says that a class mixes in all of those traits equally, rather than favoring the first trait in any special way.
See Also
When you develop traits, you may want to limit the classes they can be mixed into. That can be done using the following techniques:
Recipe 6.6 shows how to mark traits so they can only be used by subclasses of a certain type.
Recipe 6.7 demonstrates the technique to use to make sure a trait can only be mixed into classes that have a specific method.
Recipe 6.8 shows how to limit which classes can use a trait by declaring inheritance.
Recipe 7.7, “Reifying Traits as Objects”, shows how to create an object that mixes in multiple traits.
Bill Venners’ short Artima article on stackable trait patterns demonstrates how many different classes can be derived from stacking traits together.
6.5 Resolving Method Name Conflicts and Understanding super
Problem
You attempt to create a class that mixes in multiple traits, but those traits have identical method names and parameter lists, resulting in a compiler error.
Solution
When two or more mixed-in traits share the same method name, the solution is to resolve the conflict manually. This can require understanding the meaning of super when referring to mixed-in traits.
As an example, imagine that you have two traits that both have a greet method:
trait Hello:
def greet = "hello"
trait Hi:
def greet = "hi"
Now if you attempt to create a Greeter class that mixes in both traits:
class Greeter extends Hello, Hi
you’ll see an error like this:
class Greeter extends Hello, Hi
^
class Greeter inherits conflicting members:
|method greet in trait Hello of type |=> String and
|method greet in trait Hi of type |=> String
(Note: this can be resolved by declaring an override in class Greeter.)
The error message tells you the solution—that you can override greet in the Greeter class. But it doesn’t give you details on how to do this.
There are three main solutions, all of which require that you override greet in Greeter:
Override greet with custom behavior.
Tell greet in Greeter to call the greet method from super, which raises the question, “What does super refer to when you’re mixing in multiple traits?”
Tell greet in Greeter to use the greet method from a specific trait that was mixed in.
The next sections cover each solution in detail.
Override greet with custom behavior
The first solution is to ignore the methods defined in the traits and implement some custom behavior by overriding the method:
// resolve the conflict by overriding 'greet' in the class
class Greeter extends Hello, Hi:
override def greet = "I greet thee!"
// the 'greet' method override works as expected
val g = Greeter()
g.greet == "I greet thee!" // true
This is a simple, straightforward solution for the situations where you don’t care how the traits have implemented this method.
Invoke greet using super
The second solution is to invoke the method as it’s defined in your immediate parent, i.e., the super instance. In this code the speak method in the Speaker class invokes super.speak:
trait Parent:
def speak = "make your bed"
trait Granddad:
def speak = "get off my lawn"
// resolve the conflict by calling 'super.speak'
class Speaker extends Parent, Granddad:
override def speak = super.speak
@main def callSuperSpeak =
println(Speaker().speak)
The question is, what does super.speak print?
The answer is that super.speak prints, "get off my lawn". In an example like this where a class mixes in multiple traits—and those traits have no mixin or inheritance relationships between themselves—super will always refer to the last trait that is mixed in. This is referred to as a back to front linearization order.
Control which super you call
In the third solution you specify which mixed-in trait’s method you want to call with a super[classname].methodName syntax. For instance, given these three traits:
trait Hello:
def greet = "hello"
trait Hi:
def greet = "hi"
trait Yo:
def greet = "yo"
you can create a Greeter class that mixes in those traits and then defines a series of greet methods that call the greet methods of those traits:
class Greeter extends Hello, Hi, Yo:
override def greet = super.greet
def greetHello = super[Hello].greet
def greetHi = super[Hi].greet
def greetYo = super[Yo].greet
end Greeter
You can test that configuration with this code in the REPL:
val g = Greeter()
g.greet // yo
g.greetHello // hello
g.greetHi // hi
g.greetYo // yo
The key to this solution is that the super[Hello].greet syntax gives you a way to reference the hello method of the Hello trait, and so on for the Hi and Yo traits. Note in the g.greet example that super again refers to the last trait that is mixed in.
Discussion
Naming conflicts only occur when the method names are the same and the method parameter lists are identical. The method return type doesn’t factor into whether a collision will occur. For example, this code results in a name collision because both versions of f have the type (Int, Int):
trait A:
def f(a: Int, b: Int): Int = 1
trait B:
def f(a: Int, b: Int): Long = 2
// won’t compile. error: “class C inherits conflicting members.”
class C extends A, B
But this code does not result in a collision, because the parameter lists have different types:
trait A:
def f(a: Int, b: Int): Int = 1 // (Int, Int)
trait B:
def f(a: Int, b: Long): Int = 2 // (Int, Long)
// this code compiles because 'A.f' and 'B.f' have different
// parameter lists
class C extends A, B
See Also
Traits can be combined in a technique known as stackable modifications.
The basic technique is well described in Chapter 12 of the first edition of Programming in Scala, which is freely available on the Artima website. See the “Traits as stackable modifications” section in that online chapter.
This knoldus.com article has a good discussion about how the linearization of traits that are mixed into classes works.
6.6 Marking Traits So They Can Only Be Used by Subclasses of a Certain Type
Problem
You want to mark your trait so it can only be used by types that extend a given base type.
Solution
To make sure a trait named MyTrait can only be mixed into a class that is a subclass of a type named BaseType, begin your trait with this syntax:
trait MyTrait:
this: BaseType =>
For instance, to make sure a StarfleetWarpCore can only be mixed into a class that also mixes in FederationStarship, begin the StarfleetWarpCore trait like this:
trait StarfleetWarpCore:
this: FederationStarship =>
// the rest of the trait here ...
Given that declaration, this code compiles:
// this compiles, as desired
trait FederationStarship
class Enterprise extends FederationStarship, StarfleetWarpCore
But other attempts like this will fail:
class RomulanShip
// this won’t compile
class Warbird extends RomulanShip, StarfleetWarpCore
^
illegal inheritance: self type
Warbird of class Warbird does not conform to self type
FederationStarship of parent trait StarfleetWarpCore
Explanation: You mixed in trait StarfleetWarpCore which requires self
type FederationStarship
The Discussion demonstrates how you can use this technique to require the presence of multiple other types.
Discussion
As shown in the error message, this approach is referred to as a self type (or self-type). The Scala glossary includes this statement as part of its description of a self type:
A self type of a trait is the assumed type of this, the receiver, to be used within the trait. Any concrete class that mixes in the trait must ensure that its type conforms to the trait’s self type.
One way to think about that statement is by evaluating what this means when using mixins to compose a class. For instance, given a trait named HasLegs:
trait HasLegs
you can define a trait named CanRun that requires the presence of HasLegs whenever CanRun is mixed into a concrete class:
trait CanRun:
this: HasLegs =>
So when you create a Dog class by mixing in HasLegs and CanRun, you can test what this means inside that class:
class Dog extends HasLegs, CanRun:
def whatAmI(): Unit =
if this.isInstanceOf[Dog] then println("Dog")
if this.isInstanceOf[HasLegs] then println("HasLegs")
if this.isInstanceOf[CanRun] then println("CanRun")
Now when you create a Dog instance and run whatAmI:
val d = Dog()
d.whatAmI()
you’ll see that it prints the following result, because this inside a Dog is an instance of all of those types:
Dog
HasLegs
CanRun
The important part to remember is that when you define a self-type like this:
trait CanRun:
this: HasLegs =>
the key is that CanRun knows that when a concrete instance of it is eventually created, this in that concrete instance can respond, “Yes, I am also an instance of HasLegs.”
A trait can call methods on the required type
A great feature of this approach is that because the trait knows that the other type must be present, it can call methods that are defined in that other type. For instance, if you have a type named HasLegs with a method named numLegs:
trait HasLegs:
def numLegs = 0
you might want to create a new trait named CanRun. CanRun requires the presence of HasLegs, so you make that a contractual requirement with a self-type:
trait CanRun:
this: HasLegs =>
Now you can take this a step further. Because CanRun knows that HasLegs must be present when CanRun is mixed in, it can safely call the numLegs methods:
trait CanRun:
this: HasLegs =>
def run() = println(s"I have $numLegs legs and I’m running!")
Now when you create a Dog class with HasLegs and CanRun:
class Dog extends HasLegs, CanRun:
override val numLegs = 4
@main def selfTypes =
val d = Dog()
d.run()
you’ll see this output:
I have 4 legs and I’m running!
This is a powerful and safe (compiler-enforced) technique.
Requiring multiple other types be present
A trait can also require that any type that wishes to mix it in must also extend multiple other types. The following WarpCore definition requires that any type that wishes to mix it in must extend WarpCoreEjector, FireExtinguisher, and FederationStarship:
trait WarpCore:
this: FederationStarship & WarpCoreEjector & FireExtinguisher =>
// more trait code here ...
Because the following Enterprise definition matches that signature, this code compiles:
class FederationStarship
trait WarpCoreEjector
trait FireExtinguisher
// this works
class Enterprise extends FederationStarship, WarpCore, WarpCoreEjector, ↵
FireExtinguisher
See Also
Regarding the def numLegs code, Recipe 6.2 explains why an abstract field in a trait is best declared as a def field.
6.7 Ensuring a Trait Can Only Be Added to a Type That Has a Specific Method
Problem
You only want to allow a trait to be mixed into a type (class, abstract class, or trait) that has a method with a given signature.
Solution
Use a variation of the self-type syntax that lets you declare that any class that attempts to mix in the trait must implement the method you describe.
In the following example, the WarpCore trait requires that any class that attempts to mix it in must have an ejectWarpCore method with the signature shown, taking a String parameter and returning a Boolean value:
trait WarpCore:
this: { def ejectWarpCore(password: String): Boolean } =>
// more trait code here ...
The following definition of the Enterprise class meets these requirements and therefore compiles:
class Starship:
// code here ...
class Enterprise extends Starship, WarpCore:
def ejectWarpCore(password: String): Boolean =
if password == "password" then
println("ejecting core!")
true
else
false
end if
Discussion
This approach is known as a structural type, because you’re limiting what classes the trait can be mixed into by stating that the class must have a certain structure, i.e., the method signatures you’ve specified.
A trait can also require that an implementing class have multiple methods. To require more than one method, add the additional method signatures inside the block. Here’s a complete example:
trait WarpCore:
this: {
// an implementing class must have methods with
// these names and input parameters
def ejectWarpCore(password: String): Boolean
def startWarpCore(): Unit
} =>
// more trait code here ...
class Starship
class Enterprise extends Starship, WarpCore:
def ejectWarpCore(password: String): Boolean =
if password == "password" then
println("core ejected")
true
else
false
end if
end ejectWarpCore
def startWarpCore() = println("core started")
In this example, because Enterprise includes the ejectWarpCore and startWarpCore methods that the WarpCore trait requires, Enterprise is able to mix in the WarpCore trait.
6.8 Limiting Which Classes Can Use a Trait by Inheritance
Problem
You want to limit a trait so it can only be added to classes that extend a specific superclass.
Solution
Use the following syntax to declare a trait named TraitName, where TraitName can only be mixed into classes that extend a type named SuperClass, where SuperClass may be a class or abstract class:
trait TraitName extends SuperClass
For example, in modeling a large pizza store chain that has a corporate office and many small retail stores, the legal department creates a rule that people who deliver pizzas to customers must be a subclass of StoreEmployee and cannot be a subclass of CorporateEmployee. To enforce this, begin by defining your base classes:
trait Employee
class CorporateEmployee extends Employee
class StoreEmployee extends Employee
Because someone who delivers food can only be a StoreEmployee, you enforce this requirement in the DeliversFood trait:
trait DeliversFood extends StoreEmployee

Now you can successfully define a DeliveryPerson class like this:
// this is allowed
class DeliveryPerson extends StoreEmployee, DeliversFood
But because the DeliversFood trait can only be mixed into classes that extend StoreEmployee, the following line of code won’t compile:
// won’t compile
class Receptionist extends CorporateEmployee, DeliversFood
The compiler error message looks like this:
illegal trait inheritance: superclass CorporateEmployee
does not derive from trait DeliversFood's super class StoreEmployee
This makes the people in the legal department happy.
Discussion
I don’t use this technique very often, but when you need to limit which classes a trait can be mixed into by requiring a specific superclass, this is an effective technique.
Note that this approach does not work when CorporateEmployee and StoreEmployee are traits instead of classes. When you need to use this approach with traits, see Recipe 6.6.
6.9 Working with Parameterized Traits
Problem
As you become more advanced in working with types, you want to write a trait whose methods can be applied to generic types, or limited to other specific types.
Solution
Depending on your needs you can use type parameters or type members with traits. This example shows what a generic trait type parameter looks like:
trait Stringify[A]:
def string(a: A): String
This example shows what a type member looks like:
trait Stringify:
type A
def string(a: A): String
Here’s a complete type parameter example:
trait Stringify[A]:
def string(a: A): String = s"value: ${a.toString}"
@main def typeParameter =
object StringifyInt extends Stringify[Int]
println(StringifyInt.string(100))
And here’s the same example written using a type member:
trait Stringify:
type A
def string(a: A): String
object StringifyInt extends Stringify:
type A = Int
def string(i: Int): String = s"value: ${i.toString}"
@main def typeMember =
println(StringifyInt.string(42))
Dependent Types
The free book The Type Astronaut’s Guide to Shapeless by Dave Gurnell (Underscore) shows an example where a type parameter and type member are used in combination to create something known as a dependent type.
Discussion
With the type parameter approach you can specify multiple types. For example, this is a Scala implementation of the Java Pair interface that’s shown on this Java documentation page about generic types:
trait Pair[A, B]:
def getKey: A
def getValue: B
That demonstrates the use of two generic parameters in a small trait example.
An advantage of parameterizing traits using either technique is that you can prevent things from happening that should never happen. For instance, given this trait and class hierarchy:
sealed trait Dog
class LittleDog extends Dog
class BigDog extends Dog
you can define another trait with a type member like this:
trait Barker:
type D <: Dog //type member
def bark(d: D): Unit
Now you can define an object with a bark method for little dogs:
object LittleBarker extends Barker:
type D = LittleDog
def bark(d: D) = println("wuf")
and you can define another object with a bark method for big dogs:
object BigBarker extends Barker:
type D = BigDog
def bark(d: D) = println("WOOF!")
Now when you create these instances:
val terrier = LittleDog()
val husky = BigDog()
this code will compile:
LittleBarker.bark(terrier)
BigBarker.bark(husky)
and this code won’t compile, as desired:
// won’t work, compiler error
// BigBarker.bark(terrier)
This demonstrates how a type member can declare a base type in the initial trait, and how more specific types can be applied in the traits, classes, and objects that extend that base type.
6.10 Using Trait Parameters
Problem
In Scala 3, you want to create a trait that takes one or more parameters, in the same way that a class or abstract class takes constructor parameters.
Solution
In Scala 3 a trait can have parameters, just like a class or abstract class. For instance, here’s an example of a trait that accepts a parameter:
trait Pet(val name: String)
However, per the Scala 3 trait parameters specification, there are limits on how this feature can be used:
A trait T can have one or more parameters.
A trait T1 can extend T, so long as it does not pass parameters to T.
If a class C extends T, and its superclass does not, C must pass arguments to T.
If a class C extends T, and its superclass does too, C may not pass arguments to T.
Getting back to the example, once you have a trait that accepts a parameter, a class can extend it like this:
trait Pet(val name: String)
// a class can extend a trait with a parameter
class Dog(override val name: String) extends Pet(name):
override def toString = s"dog name: $name"
// use the Dog class
val d = Dog("Fido")
Later in your code, another class can also extend the Dog class:
class SiberianHusky(override val name: String) extends Dog(name)
In a world where all cats are named “Morris,” a class can extend a trait with parameters like this:
class Cat extends Pet("Morris"):
override def toString = s"Cat: $name"
// use the Cat class
val c = Cat()
These examples show how traits are used in the previous first, third, and fourth bullet points.
One trait can extend another, with limits
Next, as stated previously, a trait can extend another trait that takes one or more parameters so long as it does not pass a parameter to it. Therefore, this attempt fails:
// won’t compile
trait Echidna(override val name: String) extends Pet(name)
^^^^^^^^^
trait Echidna may not call constructor of trait Pet
And this attempt, which does not attempt to pass a parameter to Pet, succeeds:
// works
trait FeatheredPet extends Pet
Then, when a class later extends FeatheredPet, the correct approach is to write your code like this:
class Bird(override val name: String) extends Pet(name), FeatheredPet:
override def toString = s"bird name: $name"
// create a new Bird
val b = Bird("Tweety")
Discussion
In this solution there’s a subtle distinction between these two approaches:
trait Pet(val name: String) // shown in the Solution
trait Pet(name: String)
When val is not used, name is a simple parameter, but it provides no getter method. When val is used, it provides a getter for name, and everything in the Solution works as shown.
When you leave val off the name field in Pet, all the following code works as before, except the Cat class, which will not compile:
trait Pet(name: String):
override def toString = s"Pet: $name"
trait FeatheredPet extends Pet
// `override` is not needed on these parameters
class Bird(val name: String) extends Pet(name), FeatheredPet:
override def toString = s"Bird: $name"
class Dog(val name: String) extends Pet(name):
override def toString = s"Dog: $name"
class SiberianHusky(override val name: String) extends Dog(name)
// this will not compile
class Cat extends Pet("Morris"):
override def toString = s"Cat: $name"
The Cat approach doesn’t compile because the name parameter in the Pet class isn’t defined as a val; therefore there is no getter method for it. Again, this is a subtle point, and how you define the initial field depends on how you want to access name in the future.
Trait parameters were added to Scala 3 at least in part to help eliminate a Scala 2 feature known as early initializers or early definitions. Somewhere in Scala 2 history, someone found out that you could write code like this:
// this is Scala 2 code. start with a normal trait.
trait Pet {
def name: String
val nameLength = name.length // note: this is based on `name`
}
// notice the unusual approach of initializing a variable after 'extends' and
// before 'with'. this is a Scala 2 “early initializer” technique:
class Dog extends {
val name = "Xena, the Princess Warrior"
} with Pet
val d = new Dog
d.name // Xena, the Princess Warrior
d.nameLength // 26
The purpose of this approach was to make sure that name was initialized early, so the nameLength expression wouldn’t throw a NullPointerException. Conversely, if you wrote the code like this, it will throw a NullPointerException when you try to create a new Dog:
// this is also Scala 2 code
trait Pet {
def name: String
val nameLength = name.length
}
class Dog extends Pet {
val name = "Xena, the Princess Warrior"
}
val d = new Dog //java.lang.NullPointerException
I never used this early initializer feature in Scala 2, but it’s known to be hard to implement properly, so it’s eliminated in Scala 3 and replaced by trait parameters.
Also note that trait parameters have no effect on how traits are initialized. Given these traits:
trait A(val a: String):
println(s"A: $a")
trait B extends A:
println(s"B: $a")
trait C:
println(s"C")
the following classes D and E show that the traits can be specified in any order when they are mixed in:
class D(override val a: String) extends A(a), B, C
class E(override val a: String) extends C, B, A(a)
The output of creating new instances of D and E is shown in the REPL:
scala> D("d")
A: d
B: d
C
scala> E("e")
C
A: e
B: e
As shown, the traits can be listed in any order.
6.11 Using Traits to Create Modules
Problem
You’ve heard that traits are the way to implement modules in Scala, and you want to understand how to use them in this manner.
Solution
At a detailed level there are several ways to solve this problem, but a common theme in the solutions is that you use objects to create modules in Scala.
The technique shown in this recipe is generally used for composing large systems, so I’ll start with a small example to demonstrate it. Imagine that you’ve defined a trait to implement a method that adds two integers:
trait AddService:
def add(a: Int, b: Int) = a + b
The basic technique to create a module is to create a singleton object from that trait. The syntax for doing this is:
object AddService extends AddService
In this case you create a singleton object named AddService from the trait AddService. You can do this without implementing methods in the object because the add method in the trait is concrete.
Reifying a Trait
Some people refer to this as reifying the trait, where the word reify means “taking an abstract concept and making it concrete.” I find that a way to remember that meaning is to think of it as real-ify, as in, “to make real.”
The way you use the AddService module—a singleton object—in the rest of your code looks like this:
import AddService.*
println(add(1,1)) // prints 2
Trying to keep things simple, here’s a second example of the technique where I create another module by mixing in two traits:
trait AddService:
def add(a: Int, b: Int) = a + b
trait MultiplyService:
def multiply(a: Int, b: Int) = a * b
object MathService extends AddService, MultiplyService
The rest of your application uses this module in the same way:
import MathService.*
println(add(1,1)) // 2
println(multiply(2,2)) // 4
While these examples are simple, they demonstrate the essence of the technique:
Create traits to model small, logically grouped areas of the business domain.
The public interface of those traits contains only pure functions.
When it makes sense, mix those traits together into larger logical groups, such as MathService.
Build singleton objects from those traits (reify them).
Use the pure functions from those objects to solve problems.
That’s the essence of the solution in two small examples. But because traits have all the other features shown in this chapter, in the real world the implementation can be as complicated as necessary.
Discussion
The name Scala comes from the word scalable, and Scala is intended to scale: to solve small problems easily, and also scale to solve the world’s largest computing challenges. The concept of modules and modularity is how Scala makes it possible to solve those large problems.
Programming in Scala, cowritten by Martin Odersky—creator of the Scala language—states that any technique to implement modularity in programming languages must provide several essentials:
First, a language needs a module construct that provides a separation between interface and implementation. In Scala, traits provide that functionality.
Second, there must be a way to replace one module with another that has the same interface, without changing or recompiling the modules that depend on the replaced one.
Third, there should be a way to wire modules together. This wiring task can be thought of as configuring the system.
Programming in Scala, specifically recommends that programs be divided into singleton objects, which again, you can think of as modules.
A larger example: An order-entry system
As a larger demonstration of how this technique works—while also incorporating other features from this chapter—let’s look at developing an order-entry system for a pizza store.
As the old saying goes, sometimes it helps to begin with the end in mind, and following that advice, here’s the source code for an @main method that I’ll create in this section:
@main def pizzaModuleDemo =
import CrustSize.*
import CrustType.*
import Topping.*
// create some mock objects for testing
object MockOrderDao extends MockOrderDao
object MockOrderController extends OrderController, ConsoleLogger:
// specify a concrete instance of an OrderDao, in this case a
// MockOrderDao for this MockOrderController
val orderDao = MockOrderDao
val smallThinCheesePizza = Pizza(
Small, Thin, Seq(Cheese)
)
val largeThickWorks = Pizza(
Large, Thick, Seq(Cheese, Pepperoni, Olives)
)
MockOrderController.addItemToOrder(smallThinCheesePizza)
MockOrderController.addItemToOrder(largeThickWorks)
MockOrderController.printReceipt()
You’ll see that when that code runs, it prints this output to STDOUT:
YOUR ORDER

Pizza(Small,Thin,List(Cheese))
Pizza(Large,Thick,List(Cheese, Pepperoni, Olives))
LOG:
YOUR ORDER

Pizza(Small,Thin,List(Cheese))
Pizza(Large,Thick,List(Cheese, Pepperoni, Olives))
To see how that code works, let’s dig into the code that’s used to build it. First, I start by creating some pizza-related ADTs using the Scala 3 enum construct:
enum CrustSize:
case Small, Medium, Large
enum CrustType:
case Thin, Thick, Regular
enum Topping:
case Cheese, Pepperoni, Olives
Next, create a Pizza class in a functional style—meaning that it’s a case class with immutable fields:
case class Pizza(
crustSize: CrustSize,
crustType: CrustType,
toppings: Seq[Topping]
)
This approach is similar to using a struct in other languages like C, Rust, and Go.
Next, I’ll keep the concept of an order simple. In the real world an order will have line items that may be pizzas, breadsticks, cheesesticks, soft drinks, and more, but for this example it will only hold a list of pizzas:
case class Order(items: Seq[Pizza])
This example also handles the concept of a database, so I create a database interface that looks like this:
trait OrderDao:
def addItem(p: Pizza): Unit
def getItems: Seq[Pizza]
A great thing about an interface is that you can create multiple implementations of it, and then construct your modules with those implementations. For instance, it’s common to create a mock database for use in testing, and then other code that connects to a real database server in production. Here’s a mock data access object (DAO) for testing purposes that simply stores its items in an ArrayBuffer in memory:
trait MockOrderDao extends OrderDao:
import scala.collection.mutable.ArrayBuffer
private val items = ArrayBuffer[Pizza]()
def addItem(p: Pizza) = items += p
def getItems: Seq[Pizza] = items.toSeq
To make things a little more complex, let’s assume that the legal department at our pizza store requires us to write to a separate log every time we create a receipt. To support that requirement I follow the same pattern, first creating an interface:
trait Logger:
def log(s: String): Unit
then creating an implementation of that interface:
trait ConsoleLogger extends Logger:
def log(s: String) = println(s"LOG: $s")
Other implementations might include a FileLogger, DatabaseLogger, etc., but I’ll only use the ConsoleLogger in this example.
At this point the only thing left is to create an OrderController. Notice in this code that Logger is declared as a self-type, and orderDao is an abstract field:
trait OrderController:
this: Logger => // declares a self-type
def orderDao: OrderDao // abstract
def addItemToOrder(p: Pizza) = orderDao.addItem(p)
def printReceipt(): Unit =
val receipt = generateReceipt
println(receipt)
log(receipt) // from Logger
// this is an example of a private method in a trait
private def generateReceipt: String =
val items: Seq[Pizza] = for p <- orderDao.getItems yield p
s"""
YOUR ORDER
${items.mkString("\n")}""".stripMargin
Notice that the log method from whatever Logger instance this controller mixes in is called in the printReceipt method. The code also calls the addItem method on the OrderDao instance, where that instance may be a MockOrderDao or any other implementation of the OrderDao interface.
When you look back at the source code, you’ll see that this example demonstrates several trait techniques, including:
How to reify traits into objects (modules)
How to use interfaces (like OrderDao) and abstract fields (orderDao) to create a form of dependency injection
How to use self-types, where I declare that OrderController must have a Logger mixed in
There are many ways to expand on this example, and I describe a larger version of it in my book Functional Programming, Simplified. For example, the OrderDao might grow like this:
trait OrderDao:
def addItem(p: Pizza): Unit
def removeItem(p: Pizza): Unit
def removeAllItems: Unit
def getItems: Seq[Pizza]
PizzaService then provides all the pure functions needed to update a Pizza:
trait PizzaService:
def addTopping(p: Pizza, t: Topping): Pizza
def removeTopping(p: Pizza, t: Topping): Pizza
def removeAllToppings(p: Pizza): Pizza
def setCrustSize(p: Pizza, cs: CrustSize): Pizza
def setCrustType(p: Pizza, ct: CrustType): Pizza
You’ll also want a function to calculate the price of a pizza. Depending on your design ideas you may want that code in PizzaService, or you might want a separate trait related to pricing named PizzaPricingService:
trait PizzaPricingService:
def pizzaDao: PizzaDao
def toppingDao: ToppingDao
def calculatePizzaPrice(
p: Pizza,
toppingsPrices: Map[Topping, Money],
crustSizePrices: Map[CrustSize, Money],
crustTypePrices: Map[CrustType, Money]
): Money
As shown in the first two lines, PizzaPricingService requires references to other DAO instances to get prices from the database.
In all of these examples I use the word “Service” as part of the trait names. I find that it’s a good name, because you can think of those traits as providing a related collection of pure functions or services, such as those you find in a web service or microservice. Another good word to use is Module, in which case you’d have PizzaModule and PizzaPricingModule. (Feel free to use any name that is meaningful to you.)
See Also
See Recipe 7.3, “Creating Singletons with object”, for more details on singleton objects.
I wrote about reification on my blog, “The Meaning of the Word Reify in Programming”.
The process of reifying traits as objects is discussed in Recipe 7.7, “Reifying Traits as Objects”.
See Recipe 6.13 for details about ADTs.
Recipes in Chapter 10 demonstrate other ways to create and use ADTs and pure functions.
6.12 How to Create Sets of Named Values with Enums
Problem
You want to create a set of constants to model something in the world, such as directions (north, south, east, west), positions on a display (top, bottom, left, right), toppings on a pizza, and other finite sets of values.
Solution
Define sets of constant named values using the Scala 3 enum construct. This example shows how to define values for crust sizes, crust types, and toppings when modeling a pizza store application:
enum CrustSize:
case Small, Medium, Large
enum CrustType:
case Thin, Thick, Regular
enum Topping:
case Cheese, Pepperoni, Mushrooms, GreenPeppers, Olives
Once you’ve created an enum, first import its instances, and then use them in expressions and parameters, just like a class, trait, or other type:
import CrustSize.*
if currentCrustSize == Small then ...
currentCrustSize match
case Small => ...
case Medium => ...
case Large => ...
case class Pizza(
crustSize: CrustSize,
crustType: CrustType,
toppings: ArrayBuffer[Topping]
)
Like classes and traits, enums can take parameters and have members, such as fields and methods. This example shows how a parameter named code is used in an enum:
enum HttpResponse(val code: Int):
case Ok extends HttpResponse(200)
case MovedPermanently extends HttpResponse(301)
case InternalServerError extends HttpResponse(500)
As described in the Discussion, instances of an enum are similar to case objects, so just like any other object, you access the code field directly on the object (like a static member in Java):
import HttpResponse.*
Ok.code // 200
MovedPermanently.code // 301
InternalServerError.code // 500
Members are shown in the discussion that follows.
Enums Contain Sets of Values
In this recipe the word set is used intentionally to describe enums. Like the Set class, all the values in an enum must be unique.
Discussion
An enum is a shortcut for defining (a) a sealed class or trait along with (b) values defined as members of the class’s companion object. For example, this enum:
enum CrustSize:
case Small, Medium, Large
is a shortcut for writing this more verbose code:
sealed class CrustSize
object CrustSize:
case object Small extends CrustSize
case object Medium extends CrustSize
case object Large extends CrustSize
In this longer code, notice how the enum instances are enumerated as case objects in the companion object. This was a common way to create enumerations in Scala 2.
Enums can have members
As demonstrated with the Planet example on this Scala 3 enum page, enums can also have members—i.e., fields and methods:
enum Planet(mass: Double, radius: Double):
private final val G = 6.67300E-11
def surfaceGravity = G * mass / (radius * radius)
def surfaceWeight(otherMass: Double) = otherMass * surfaceGravity
case Mercury extends Planet(3.303e+23, 2.4397e6)
case Earth extends Planet(5.976e+24, 6.37814e6)
// more planets here ...
Notice in this example that the parameters mass and radius are not defined as val or var fields. Because of this, they are private to the Planet enum. This means that they can be accessed in internal methods like surfaceGravity and surfaceWeight but can’t be accessed outside the enum. This is the same behavior you get when using private parameters with classes and traits.
When to use enums
It can seem like the line is blurry about when to use traits, classes, and enums, but a thing to remember about enums is that they’re typically used to model a small, finite set of possible values. For instance, in the Planet example, there are only eight (or nine) planets in our solar system (depending on who’s counting). Because this is a small, finite set of constant values, using an enum is a good choice to model the planets.
Compatibility with Java
If you want to define your Scala enums as Java enums, extend java.lang.Enum, which is imported by default:
enum CrustSize extends Enum[CrustSize]:
case Small, Medium, Large
As shown, you need to parameterize the java.lang.Enum with your Scala enum type.
See Also
See the Scala 3 enum documentation for more details on enum features.
The “Domain Modeling” chapter of the Scala 3 Book provides more details on enums.
Recipe 6.13 demonstrates additional uses of enums.
The Scala Planet example was initially derived from the enum types Java Tutorial.
6.13 Modeling Algebraic Data Types with Enums
Problem
When programming in a functional programming style, you want to model an algebraic data type using Scala 3.
Solution
There are two main types of ADTs:
Sum types
Product types
Both are demonstrated in the following examples.
Sum types
A Sum type is also referred to as an enumerated type because you simply enumerate all the possible instances of the type. In Scala 3, this is done with the enum construct. For instance, to create your own boolean data type, start by defining a Sum type like this:
enum Bool:
case True, False
This can be read as “Bool is a type that has two possible values, True and False.” Similarly, Position is a type with four possible values:
enum Position:
case Top, Right, Bottom, Left
Product types
A Product type is created with a class constructor. The Product name comes from the fact that the number of possible concrete instances of the class is determined by multiplying the number of possibilities of all of its constructor fields.
For example, this class named DoubleBoo has two Bool constructor parameters:
case class DoubleBoo(b1: Bool, b2: Bool)
In a small example like this, you can enumerate the possible values that can be created from this constructor:
DoubleBoo(True, True)
DoubleBoo(True, False)
DoubleBoo(False, True)
DoubleBoo(False, False)
As shown, there are four possible values. As implied by the name Product, you can also derive this answer mathematically. This is covered in the Discussion.
Discussion
Informally, an algebra can be thought of as consisting of two things:
A set of objects
The operations that can be applied to those objects to create new objects
Technically an algebra also consists of a third item—the laws that govern the algebra—but that’s a topic for a larger book on FP.
In the Bool example the set of objects is True and False. The operations consist of the methods you define for those objects. For instance, you can define and and or operations to work with Bool like this:
enum Bool:
case True, False
import Bool.*
def and(a: Bool, b: Bool): Bool = (a,b) match
case (True, True) => True
case (False, False) => False
case (True, False) => False
case (False, True) => False
def or(a: Bool, b: Bool): Bool = (a,b) match
case (True, _) => True
case (_, True) => True
case (_, _) => False
These examples show how those operations work:
and(True,True) // True
and(True,False) // False
or(True,False) // True
or(False,False) // False
The Sum type
A few important points about Sum types:
In Scala 3 they’re created as cases of the enum construct.
The number of enumerated types you list are the only possible instances of the type. In the previous example, Bool is the type, and it has two possible values, True and False.
The phrases is a and or a are used when talking about Sum types. For example, True is a Bool, and Bool is a True or a False.
Alternate Names for Sum Type Instances
People use different names for the concrete instances in a Sum type, including value constructors, alternates, and cases.
The Product type
As mentioned, the name Product type comes from the fact that you can determine the number of possible instances of a type by multiplying the number of possibilities of all of its constructor fields. In the Solution, I enumerated the four possible Bool values, but you can mathematically determine the number of possible instances like this:
b1 has two possibilities.
b2 has two possibilities.
Because there are two parameters, and each has two possibilities, the number of possible instances of DoubleBoo is 2 times 2, or 4.
Similarly, in this next example, TripleBoo has eight possible values, because 2 times 2 times 2 is 8:
case class TripleBoo(b1: Bool, b2: Bool, b3: Bool)
Using that logic, how many values can this Pair class have?
case class Pair(a: Int, b: Int)
If you answered “a lot,” that’s close enough. An Int has 232 possible values, so if you multiply the number of possible Int values by itself, you get a very large number.
Much more different than Scala 2
The enum type was introduced in Scala 3, and in Scala 2 you had to use this longer syntax to define a Sum type:
sealed trait Bool
case object True extends Bool
case object False extends Bool
Fortunately, the new syntax is much more concise, which you can appreciate when enumerating larger Sum types:
enum Topping:
case Cheese, BlackOlives, GreenOlives, GreenPeppers, Onions, Pepperoni,
Mushrooms, Sausage
WHY PROGRAMMERS DON’T USE STRING OR INT FOR CONSTANTS
The Product types portion of this recipe helps to explain why programmers don’t like to use strings or numbers for constants. To demonstrate this, let’s assume that you define all the sets of values related to a pizza as strings, starting like this:
val Small = "SMALL"
val Medium = "MEDIUM"
val Large = "LARGE"
If you keep doing that, you’ll end up with this Pizza class constructor:
case class Pizza(
crustSize: String,
crustType: String,
toppings: ArrayBuffer[String]
)
This approach has two problems:
Scala is a statically typed language, so strong typing should be used here so you can get all the benefits of type safety. The parameters should use types like CrustSize, CrustType, and Topping, but strings are used instead.
Knowing that this constructor creates a Product type, you also know that the number of possible values it can have are infinite: it has three constructor parameters that each have an infinite number of possibilities (and “infinity cubed” is infinity).
Conversely, when you use enums to model CrustSize, CrustType, and Topping, a Pizza with three possible crust sizes, three possible crust types, and 10 possible toppings has only 90 possibilities (3 × 3 × 10).
See Also
In addition to Sum and Product types, there are other types of ADTs, informally known as hybrid types. I discuss these in “Appendix: Algebraic Data Types in Scala”.
The “Algebraic Data Types” chapter of the Scala 3 Book provides more details about ADTs and generalized ADTs in Scala.
Chapter 7. Objects
Continuing the domain modeling chapters, the word object has a dual meaning in Scala. As with Java, you use the name to refer to an instance of a class, but in Scala object is much more well known as a keyword. This chapter demonstrates both meanings of the word.
The first two recipes look at an object as an instance of a class. They show how to cast objects from one type to another and demonstrate the Scala equivalent of Java’s .class approach.
The remaining recipes demonstrate how the object keyword is used for other purposes. In the most basic use, Recipe 7.3 shows how to use it to create singletons. Recipe 7.4 demonstrates how to use companion objects as a way to add static members to a class, and then Recipe 7.5 shows how to use apply methods in companion objects as an alternative way to construct class instances.
After those recipes, Recipe 7.6 shows how to create a static factory using an object, and Recipe 7.7 demonstrates how to combine one or more traits into an object in a process that’s technically known as reification. Finally, pattern matching is a very important Scala topic, and Recipe 7.8 demonstrates how to write an unapply method in a companion object so your classes can be used in match expressions.1
7.1 Casting Objects
Problem
You need to cast an instance of a class from one type to another, such as when creating objects dynamically.
Solution
In the following example I’ll work with the Sphinx-4 speech recognition library, which works in a manner similar to creating beans in older versions of the Spring Framework. In the example, the object returned by the lookup method is cast to an instance of a class named Recognizer:
val recognizer = cm.lookup("recognizer").asInstanceOf[Recognizer]
This Scala code is equivalent to the following Java code:
Recognizer recognizer = (Recognizer)cm.lookup("recognizer");
The asInstanceOf method is defined in the Scala Any class, and is therefore available on all objects.
Discussion
In dynamic programming, it’s often necessary to cast from one type to another. For instance, this approach is needed when reading a YAML configuration file with the SnakeYAML library:
val yaml = Yaml(new Constructor(classOf[EmailAccount]))
val emailAccount = yaml.load(text).asInstanceOf[EmailAccount]
The asInstanceOf method isn’t limited to only these situations. You can also use it to cast numeric types:
val a = 10 // Int = 10
val b = a.asInstanceOf[Long] // Long = 10
val c = a.asInstanceOf[Byte] // Byte = 10
It can be used in more complicated code too, such as when you need to interact with Java and send it an array of Object instances:
val objects = Array("a", 1)
val arrayOfObject = objects.asInstanceOf[Array[Object]]
AJavaClass.sendObjects(arrayOfObject)
If you’re programming with the java.net classes, you may need to use it when opening an HTTP URL connection:
import java.net.{URL, HttpURLConnection}
val connection = (new URL(url)).openConnection.asInstanceOf[HttpURLConnection]
Be aware that this type of coding can lead to a ClassCastException, as demonstrated in this REPL example:
scala> val i = 1
i: Int = 1
scala> i.asInstanceOf[String]
ClassCastException: java.lang.Integer cannot be cast to java.lang.String
As usual, use a try/catch expression to handle this situation.
7.2 Passing a Class Type with the classOf Method
Problem
When an API requires that you pass in a Class type, you’d call .class on an object in Java, but that doesn’t work in Scala.
Solution
Use the Scala classOf method instead of Java’s .class. The following example from a Java Sound API project shows how to pass a class of type TargetDataLine to a method named DataLine.Info:
val info = DataLine.Info(classOf[TargetDataLine], null)
By contrast, the same method call would be made like this in Java:
// java
info = new DataLine.Info(TargetDataLine.class, null);
The classOf method is defined in the Scala Predef object and is therefore available without requiring an import.
Discussion
Once you have a Class reference you can begin with simple reflection techniques. For instance, the following REPL example demonstrates how to access the methods of the String class:
scala> val stringClass = classOf[String]
stringClass: Class[String] = class java.lang.String
scala> stringClass.getMethods
res0: Array[java.lang.reflect.Method] = Array(public boolean
java.lang.String.equals(java.lang.Object), public java.lang.String
(output goes on for a while ...)
See Also
7.3 Creating Singletons with object
Problem
You want to create a singleton object to ensure that only one instance of a class exists.
Solution
Create singleton objects in Scala with the object keyword. For instance, you might create a singleton object to represent something you only want one instance of, such as a keyboard, mouse, or perhaps a cash register in a pizza restaurant:
object CashRegister:
def open() = println("opened")
def close() = println("closed")
With CashRegister defined as an object, there can be only one instance of it, and its methods are called just like static methods on a Java class:
@main def main =
CashRegister.open()
CashRegister.close()
Discussion
A singleton object is a class that has exactly one instance. Using this pattern is also a common way to create utility methods, such as this StringUtils object:
object StringUtils:
def isNullOrEmpty(s: String): Boolean =
if s==null || s.trim.equals("") then true else false
def leftTrim(s: String): String = s.replaceAll("^\\s+", "")
def rightTrim(s: String): String = s.replaceAll("\\s+$", "")
def capitalizeAllWordsInString(s: String): String =
s.split(" ").map(_.capitalize).mkString(" ")
Because these methods are defined in an object instead of a class, they can be called directly on the object, similar to a static method in Java:
scala> StringUtils.isNullOrEmpty("")
val res0: Boolean = true
scala> StringUtils.capitalizeAllWordsInString("big belly burger")
val res1: String = Big Belly Burger
Singleton case objects also make great reusable messages in certain situations, such as when using Akka actors. For instance, if you have a number of actors that can all receive start and stop messages, you can create singletons like this:
case object StartMessage
case object StopMessage
You can then use those objects as messages that can be sent to actors:
inputValve ! StopMessage
outputValve ! StopMessage
See Also
See Chapter 18 for more examples of passing messages to actors.
In addition to creating objects in this manner, you can give the appearance that a class has both static and nonstatic methods using an approach known as a companion object. See Recipe 7.4 for examples of that approach.
7.4 Creating Static Members with Companion Objects
Problem
You’ve come to Scala from a language like Java and want to create a class that has both instance and static members, but Scala doesn’t have a static keyword.
Solution
When you want nonstatic (instance) members in a class combined with static members, define the instance members in a class and define the members that you want to appear as “static” members in an object that has the same name as the class, and is in the same file as the class. This object is known as the class’s companion object (and the class is known as the object’s companion class).
Using this approach lets you create what appear to be static members on a class, as shown in this example:
// Pizza class
class Pizza (var crustType: String):
override def toString = s"Crust type is $crustType"
// companion object
object Pizza:
val CRUST_TYPE_THIN = "THIN" // static fields
val CRUST_TYPE_THICK = "THICK"
def getPrice = 0.0 // static method
With the Pizza class and Pizza object defined in the same file, members of the Pizza object can be accessed just as static members of a Java class:
println(Pizza.CRUST_TYPE_THIN) // THIN
println(Pizza.getPrice) // 0.0
You can also create a new Pizza instance and use it as usual:
val p = Pizza(Pizza.CRUST_TYPE_THICK)
println(p) // "Crust type is THICK"
Use enums for Constants
In the real world, don’t use strings for constant values. Use enumerations instead, as shown in Recipe 6.12, “How to Create Sets of Named Values with Enums”.
Discussion
Although this approach is different than Java, the recipe is straightforward:
Define your class and object in the same file, giving them the same name.
Define members that should appear to be “static” in the object.
Define nonstatic (instance) members in the class.
In this recipe I put the word static in quotation marks because Scala doesn’t refer to members in objects as static members, but in this context they serve the same purpose as static members in Java classes.
Accessing private members
It’s important to know that a class and its companion object can access each other’s private members. In the following code, the static method double in the object can access the private variable secret of the class Foo:
class Foo:
private val secret = 42
object Foo:
// access the private class field `secret`
def doubleFoo(foo: Foo) = foo.secret * 2
@main def fooMain =
val f = Foo()
println(Foo.doubleFoo(f)) // prints 84
Similarly, in the following code the instance member printObj can access the private field obj of the object Foo:
class Foo:
// access the private object field `obj`
def printObj = println(s"I can see ${Foo.obj}")
object Foo:
private val obj = "Foo’s object"
@main def fooMain =
val f = Foo()
f.printObj // prints "I can see Foo’s object"
See Also
See Recipe 7.6 for an example of how to implement a factory using this approach.
7.5 Using apply Methods in Objects as Constructors
Problem
In some situations it may be better, easier, or more convenient to create apply methods in a companion object to work as a class constructor, and you want to understand how to write these methods.
Solution
The techniques in Recipe 5.2, “Creating a Primary Constructor”, and Recipe 5.4, “Defining Auxiliary Constructors for Classes”, show how to create both single and multiple class constructors. But another technique you can use to create constructors is to define apply methods in a class’s companion object—an object that has the same name as the class and is defined in the same file as the class. Technically these aren’t constructors, they’re more like functions or factory methods, but they serve a similar purpose.
Creating a companion object with an apply method takes just a few steps. Assuming that you want to create constructors for a Person class:
Define a Person class and Person object in the same file (making them companions).
Make the Person class constructor private.
Define one or more apply methods in the object to serve as builders of the class.
For the first two steps, create the class and object in the same file, and make the Person class constructor private:
class Person private(val name: String):
// define any instance members you need here
object Person:
// define any static members you need here
Then create one or more apply methods in the companion object:
class Person private(val name: String):
override def toString = name
object Person:
// the “constructor”
def apply(name: String): Person = new Person(name)
Given this code, you can now create new Person instances, as shown in these examples:
val Regina = Person("Regina")
val a = List(Person("Regina"), Person("Robert"))
In Scala 2 a benefit of this approach was that it eliminated the need for the new keyword before the class name. But because new isn’t needed in most situations in Scala 3, you may want to use this technique because you prefer this factory approach, or because you need it in one of those rare situations.
Discussion
An apply method defined in the companion object of a class is treated specially by the Scala compiler. Essentially, there’s a little syntactic sugar baked into the compiler so that when it sees this code:
val p = Person("Fred Flintstone")
one of the things it does is to look around and see if it can find an apply method in a companion object. When it does, it turns that code into this code:
val p = Person.apply("Fred Flintstone")
Therefore, apply is often referred to as a factory method, function, or perhaps a builder. Technically it’s not a constructor.
When you want to use this technique and provide multiple ways to build a class, define multiple apply methods with the desired signatures:
class Person private(var name: String, var age: Int):
override def toString = s"$name is $age years old"
object Person:
// three ways to build a Person
def apply(): Person = new Person("", 0)
def apply(name: String): Person = new Person(name, 0)
def apply(name: String, age: Int): Person = new Person(name, age)
That code creates three ways to build new Person instances:
println(Person()) // is 0 years old
println(Person("Regina")) // Regina is 0 years old
println(Person("Robert", 22)) // Robert is 22 years old
Because apply is just a function, you can implement it however you see fit. For instance, you can construct a Person from a tuple, or even a variable number of tuples:
object Person:
def apply(t: (String, Int)) = new Person(t(0), t(1))
def apply(ts: (String, Int)*) =
for t <- ts yield new Person(t(0), t(1))
Those two apply methods are used like this:
// create a person from a tuple
val john = Person(("John", 30))
// create multiple people using a variable number of tuples
val peeps = Person(
("Barb", 33),
("Cheryl", 31)
)
See Also
For information on how to implement a static factory with apply, see Recipe 7.6.
See Recipe 5.2, “Creating a Primary Constructor”, for details on how to create a primary class constructor, and Recipe 5.4, “Defining Auxiliary Constructors for Classes”, for details on how to define auxiliary class constructors.
While apply is like a constructor, unapply is its opposite, known as an extractor, which is discussed in Recipe 7.8.
7.6 Implementing a Static Factory with apply
Problem
To keep object creation logic in one location, you want to implement a static factory in Scala.
Solution
A static factory is a simplified version of the factory pattern. To create a static factory, you can take advantage of Scala’s syntactic sugar and create the factory with an apply method in an object, typically a companion object.
For instance, suppose you want to create an Animal factory that returns instances of Cat and Dog classes based on what you ask for. By writing an apply method in the companion object of an Animal trait, users of your factory can create new Cat and Dog instances like this:
val cat = Animal("cat") // creates a Cat
val dog = Animal("dog") // creates a Dog
To implement this behavior, create a file named Animals.scala, and in that file create (a) a parent Animal trait, (b) the classes that extend that trait, and (c) a companion object with a suitable apply method:
package animals
sealed trait Animal:
def speak(): Unit
private class Dog extends Animal:
override def speak() = println("woof")
private class Cat extends Animal:
override def speak() = println("meow")
object Animal:
// the factory method
def apply(s: String): Animal =
if s == "dog" then Dog() else Cat()
Next, in a file named Factory.scala, define an @main method to test that code:
@main def test1 =
import animals.*
val cat = Animal("cat") // returns a Cat
val dog = Animal("dog") // returns a Dog
cat.speak()
dog.speak()
When you run that code, you see this output:
meow
woof
A benefit of this approach is that instances of the Dog and Cat classes can only be created through the factory method. Attempting to create them directly will fail:
val c = Cat() // compile error
val d = Dog() // compile error
Discussion
There are a variety of ways to implement a static factory, so experiment with different approaches, in particular regarding how you want to make the Cat and Dog classes accessible. The idea of the factory method is to make sure that concrete instances can only be created through the factory; therefore, the class constructors should be hidden from all other classes. The code in the Solution shows one possible solution to this problem.
See Also
This recipe demonstrates a simple static factory as a way to demonstrate features of a Scala object. For an example of how to create a true factory method in Scala, see my blog post “A Scala Factory Pattern Example”.
7.7 Reifying Traits as Objects
Problem
You’ve created one or more traits that contain methods, and now you want to make them concrete. Or, perhaps you’ve seen code like this and then wondered what that last line of code is all about:
trait Foo:
println("Foo")
// more code ...
object Foo extends Foo
Solution
When you see that an object extends one or more traits, the object is being used to reify the trait(s). The word reify means “to take an abstract concept and making it concrete,” in this case instantiating a singleton object from one or more traits.
For instance, given this trait and two classes that extend it:
trait Animal
// in a world where all dogs and cats have names
case class Dog(name: String) extends Animal
case class Cat(name: String) extends Animal
in a functional programming style you might also create a set of animal services as a trait:
// assumes that all animal have legs
trait AnimalServices:
def walk(a: Animal) = println(s"$a is walking")
def run(a: Animal) = println(s"$a is running")
def stop(a: Animal) = println(s"$a is stopped")
Once you have a trait like this, the next thing many developers do is reify the AnimalServices trait as an object:
object AnimalServices extends AnimalServices
Now you can use the AnimalServices functions:
val zeus = Dog("Zeus")
AnimalServices.walk(zeus)
AnimalServices.run(zeus)
AnimalServices.stop(zeus)
About the Name “Service”
The name service comes from the fact that these functions provide a series of public services that are available to external clients. I find that this name makes sense when you imagine that these functions are implemented as a series of web service calls. For instance, when you use Twitter’s REST API to write a Twitter client, the functions it makes available to you are considered to be a series of web services.
Discussion
The approach shown is used in functional programming, where data is typically modeled using case classes and the related functions are put in traits. The general recipe goes like this:
Model your data using case classes.
Put the related functions in traits.
Reify your traits as objects, combining multiple traits as needed for a solution.
A slightly more real-world implementation of the previous code might look as follows. First, a simple data model:
trait Animal
trait AnimalWithLegs
trait AnimalWithTail
case class Dog(name: String) extends Animal, AnimalWithLegs, AnimalWithTail
Next, create a series of services, i.e., sets of functions corresponding to the traits:
trait TailServices:
def wagTail(a: AnimalWithTail) = println(s"$a is wagging tail")
def stopTail(a: AnimalWithTail) = println(s"$a tail is stopped")
trait AnimalWithLegsServices:
def walk(a: AnimalWithLegs) = println(s"$a is walking")
def run(a: AnimalWithLegs) = println(s"$a is running")
def stop(a: AnimalWithLegs) = println(s"$a is stopped")
trait DogServices:
def bark(d: Dog) = println(s"$d says ‘woof’")
Now you can reify all those traits into a complete list of dog-related functions:
object DogServices extends DogServices, AnimalWithLegsServices, TailServices
Then you can use those functions:
import DogServices.*
val rocky = Dog("Rocky")
walk(rocky)
wagTail(rocky)
bark(rocky)
Even more specific!
There are times when you’ll want to be more specific with your code and parameterize your traits, like this:
trait TailServices[AnimalWithTail] ...

trait AnimalWithLegsServices[AnimalWithLegs] ...

This is a way of saying, “The functions in this trait can only be used with this type.” In larger applications, this technique can help other developers more easily understand the purpose of the trait. This is one of the advantages of using a statically typed language.
To use this technique with the current set of case classes, modify the traits like this:
trait TailServices[AnimalWithTail]:
def wagTail(a: AnimalWithTail) = println(s"$a is wagging tail")
trait AnimalWithLegsServices[AnimalWithLegs]:
def walk(a: AnimalWithLegs) = println(s"$a is walking")
trait DogServices[Dog]:
def bark(d: Dog) = println(s"$d says ‘woof’")
Then create the reified object like this:
object DogServices
extends DogServices[Dog], AnimalWithLegsServices[Dog], TailServices[Dog]
Finally, you’ll see that it works as before:
import DogServices.*
val xena = Dog("Xena")
walk(xena) // Dog(Xena) is walking
wagTail(xena) // Dog(Xena) is wagging tail
bark(xena) // Dog(Xena) says ‘woof’
See Also
When I first learned of the word reify I couldn’t understand why it was used in this context, so I researched it and summarized my findings on my blog.
See Recipe 6.11, “Using Traits to Create Modules”, for larger examples of using this technique to create modules.
7.8 Implementing Pattern Matching with unapply
Problem
You want to write an unapply method for a class so you can extract its fields in a match expression.
Solution
Write an unapply method in the companion object of your class with the proper return signature. The solution is shown here in two steps:
Writing an unapply method that returns a String
Writing an unapply method to work with a match expression
Writing an unapply method that returns a String
To begin demonstrating how unapply works, here’s a Person class with a corresponding companion object that has an unapply method that returns a formatted string:
class Person(val name: String, val age: Int)
object Person:
def unapply(p: Person): String = s"${p.name}, ${p.age}"
With this configuration you create a new Person instance as usual:
val p = Person("Lori", 33)
The benefit of an unapply method is that it gives you a way to deconstruct a person instance:
val personAsAString = Person.unapply(p) // "Lori, 33"
As shown, unapply deconstructs the Person instance it’s given into a String representation. In Scala, when you put an unapply method in a companion object, it’s said that you’ve created an extractor method, because you’ve created a way to extract the fields out of the object.
Writing an unapply method to work with a match expression
While that example shows how to deconstruct a Person into a String, if you want to extract the fields out of Person in a match expression, unapply needs to return a specific type:
If your class has only one parameter and it’s of type A, return an Option[A], i.e., the parameter value wrapped in a Some.
When your class has multiple parameters of types A1, A2, … An, return them in an Option[(A1, A2 ... An)], i.e., a tuple that contains those values, wrapped in a Some.
If for some reason your unapply method can’t deconstruct its parameters into proper values, return a None instead.
For example, if you replace the previous unapply method with this one:
class Person(val name: String, val age: Int)
object Person:
def unapply(p: Person): Option[(String, Int)] = Some(p.name, p.age)
you’ll see that you can now use Person in a match expression:
val p = Person("Lori", 33)
val deconstructedPerson: String = p match
case Person(n, a) => s"name: $n, age: $a"
case null => "null!"
The REPL shows the result:
scala> println(deconstructedPerson)
name: Lori, age: 33
Case classes generate this code automatically, but if you don’t want to use a case class and you do want your class to work in a match expression, this is how you enable an extractor in a class.
See Also
If you’re wondering about the name unapply, it’s used because this “deconstruction” process is basically the opposite of writing an apply method in a companion class. The apply methods in companion objects are used as factory methods to construct new instances, and they’re discussed in Recipe 5.15, “Defining Auxiliary Constructors for Case Classes”.
See the official Scala page on extractor objects for more details on writing unapply methods.
1
The previous version of this book covered package objects, but they’ll be deprecated after Scala 3.0, so they’re not discussed in this book.
Chapter 8. Methods
This final chapter on domain modeling covers methods, which can be defined inside classes, case classes, traits, enums, and objects. An important note—and a big change in Scala 3—is that methods can also be defined outside of those constructs. As a result, a complete Scala 3 application can look like this:
def printHello(name: String) = println(s"Hello, $name")
def printString(s: String) = println(s)
@main def hiMom =
printHello("mom")
printString("Look mom, no classes or objects required!")
Scala methods are similar to methods in other typed languages. They’re defined with the def keyword, typically take one or more parameters, have an algorithm that they perform, and return some sort of result. A basic method—one that doesn’t have generic types or using parameters—is defined like this:
def methodName(paramName1: type1, paramName2: type2, ...): ReturnType =
// the method body
// goes here
Declaring the method return type is optional, but I find that for maintaining applications I haven’t looked at in months or years, taking a few moments to declare the type now makes it easier to understand days, months, and years from now. When I don’t add the type—or when I use other dynamically typed languages—I find that I have to take a fair amount of time in the future to look through the method body to determine what the return type is, and the longer the method, the longer that takes. So most developers agree that it’s best to declare the return now, while it’s fresh in your mind. And as I write in “Scala/FP: Pure Function Signatures Tell All”, if you get into functional programming, you’ll find that pure function signatures are extraordinarily meaningful.
There are several keywords that can be prepended to def. For example, methods can be declared to be final if you don’t want inheriting classes to override them:
class Foo:
final def foo = "foo" // FINAL
class FooFoo extends Foo:
override def foo = "foo foo" // ERROR, won’t compile
Other keywords like protected and private are demonstrated in this chapter to show how to control method scope.
Scala is considered to be an expression-oriented programming language, meaning that every line of code is an expression: it returns a value and typically doesn’t have a side effect. As a result, methods can be extremely concise, because language constructs like if, for/yield, match, and try are all expressions that return values. Code that’s both concise and readable is called expressive, and to demonstrate this, I’ll show a small collection of expressive methods that use these constructs.
First, here are some examples that only use equality tests or if expressions as the method body:
// with return type
def isBetween(a: Int, x: Int, y: Int): Boolean = a >= x && a <= y
def max(a: Int, b: Int): Int = if a > b then a else b
// without return type
def isBetween(a: Int, x: Int, y: Int) = a >= x && a <= y
def max(a: Int, b: Int) = if a > b then a else b
You can also place the body of the method on a separate line, if that’s more readable to you:
def isBetween(a: Int, x: Int, y: Int): Boolean =
a >= x && a <= y
def max(a: Int, b: Int): Int =
if a > b then a else b
Next, here’s a match expression as the body of a method:
def sum(xs: List[Int]): Int = xs match
case Nil => 0
case x :: tail => x + sum(tail)
A for expression—a combination of for and yield—can also be used as a method body:
def allThoseBetween3and10(xs: List[Int]): List[Int] =
for
x <- xs
if x >= 3
if x <= 10
yield
x
println(allThoseBetween3and10(List(1,3,7,11))) // List(3, 7)
You can use the same technique with other constructs, such as try/catch expressions.
While those introductory examples show several Scala method features, there’s much more to know. The following recipes show how to:
Specify method access control, i.e., the visibility of methods (Recipe 8.1)
Call methods on a superclass or trait (Recipe 8.2)
Specify the names of method parameters when calling a method (Recipe 8.3)
Set default values for method parameters (Recipe 8.4)
Use varargs fields in methods (Recipe 8.5)
Force callers to leave parentheses off certain methods (Recipe 8.6)
Declare the exceptions a method can throw (Recipe 8.7)
Use special techniques to support a fluent method programming style (Recipe 8.8)
Use the new Scala 3 extension method syntax (Recipe 8.9)
Finally, in addition to defining methods, it’s important to know that you can also define functions in Scala using the val keyword. Functions aren’t discussed in this chapter, but they’re covered in several recipes in Chapter 10, and in “Scala: The Differences Between val and def When Creating Functions” I write at length about those differences.
8.1 Controlling Method Scope (Access Modifiers)
Problem
Scala methods are public by default, and you want to control their scope.
Solution
Scala lets you control method visibility in a granular and powerful way. In order from “most restrictive” to “most open,” Scala provides these scope options:
Private scope
Protected scope
Package scope
Package-specific scope
Public scope
These scopes are demonstrated in the examples that follow.
private[this] and protected[this]
Scala 2 has a notion of private[this] and protected[this] scope qualifiers, but those have been deprecated. See the Scala 3 reference page for a discussion of those features.
Private scope
The most restrictive access is to mark a method private, which makes the method available to (a) the current instance of a class and (b) other instances of the current class. This code shows how to mark a method as private and how it can be used by another instance of the same class:
class Cat:
private def isFriendlyCat = true
def sampleMethod(other: Cat) =
if other.isFriendlyCat then
println("Can access other.isFriendlyCat")
// ...
end if
end sampleMethod
end Cat
When a method is marked private it’s not available to subclasses. The following Dog class won’t compile because the heartBeat method is private to the Animal class:
class Animal:
private def heartBeat() = println("Animal heart is beating")
class Dog extends Animal:
heartBeat() // ERROR: Not found: heartBeat
To make the method available to the Dog class, use protected scope.
Protected scope
Marking a method protected modifies its scope so it (a) can be accessed by other instances of the same class, (b) is not visible in the current package, and (c) is available to subclasses. The following code demonstrates these points:
class Cat:
protected def isFriendlyCat = true
def catFoo(otherCat: Cat) =
if otherCat.isFriendlyCat then // this compiles
println("Can access 'otherCat.isFriendlyCat'")
// ...
end if
@main def catTests =
val c1 = Cat()
val c2 = Cat()
c1.catFoo(c2) // this works
// this code can’t access this method:
// c1.isFriendlyCat // does not compile
In that code:
The if other.isFriendlyCat expression in catFoo shows that one Cat instance can access isFriendlyCat in another instance.
The c1.catFoo(c2) expression demonstrates that one Cat instance can call catFoo on another instance, and catFoo can invoke isFriendlyCat on that other instance.
The commented-out c1.isFriendlyCat shows that one Cat instance can’t directly invoke isFriendlyCat on another Cat instance; protected doesn’t allow that, even though CatHouse is in the same package as Cat.
Because protected methods are available to subclasses, the following code also compiles:
class Animal:
protected def heartBeat() = println("Animal heart is beating")
class Dog extends Animal:
heartBeat() // this
Package scope
To make a method only available to all members of the current package, mark the method as being private to the current package with the private[packageName] syntax.
In the following example, the method privateModelMethod can be accessed by other classes in the same package—the model package—but privateMethod and protectedMethod can’t be accessed:
package com.devdaily.coolapp.model:
class Foo:
// this is in “package scope”
private[model] def privateModelMethod = ??? // can be accessed by
// classes in
// com.devdaily.coolapp.model
private def privateMethod = ???
protected def protectedMethod = ???
class Bar:
val f = Foo()
f.privateModelMethod // compiles
// f.privateMethod // won’t compile
// f.protectedMethod // won’t compile
Package-specific scope
Beyond making a method available to classes in the current package, Scala also allows a fine-grained level of access control that lets you make a method available at different levels in a class hierarchy. The following example demonstrates how you can make the methods doUnderModel, doUnderCoolapp, and doUnderAcme available to different package levels:
package com.devdaily.coolapp.model:
class Foo:
// available under com.devdaily.coolapp.model
private[model] def doUnderModel = ???
// available under com.devdaily.coolapp
private[coolapp] def doUnderCoolapp = ???
// available under com.devdaily
private[devdaily] def doUnderAcme = ???
import com.devdaily.coolapp.model.Foo
package com.devdaily.coolapp.view:
class Bar:
val f = Foo()
// f.doUnderModel // won’t compile
f.doUnderCoolapp
f.doUnderAcme
package com.devdaily.common:
class Bar:
val f = Foo()
// f.doUnderModel // won’t compile
// f.doUnderCoolapp // won’t compile
f.doUnderAcme
In this example, the methods can be seen as follows:
The method doUnderModel can be seen by other classes in the model package (com.devdaily.coolapp.model).
The method doUnderCoolapp can be seen by all classes under the com.devdaily.coolapp package level.
The method doUnderAcme can be seen by all classes under the com.devdaily level.
Public scope
If no access modifier is added to a method declaration, the method is public, meaning that any piece of code in any package can access it. In the following example, any class in any package can access the doPublic method:
package com.devdaily.coolapp.model:
class Foo:
def doPublic = ???
package some.other.scope:
class Bar:
val f = com.devdaily.coolapp.model.Foo()
f.doPublic
Discussion
The Scala approach to access modifiers is different than Java. Methods are public by default, and then when you need flexibility in how you provide access control, Scala offers the features demonstrated in the Solution.
As a summary, Table 8-1 describes the levels of access control that were demonstrated in the Solution.
Access modifier	Description
private | Available to the current instance and other instances of the class it’s declared in. |
protected | Available only to instances of the current class and subclasses of the current class. |
private[model] | Available to all classes beneath the com.devdaily.coolapp.model package. |
private[coolapp] | Available to all classes beneath the com.devdaily.coolapp package. |
private[devdaily] | Available to all classes beneath the com.devdaily package. |
(no modifier) | The method is public. |
8.2 Calling a Method on a Superclass or Trait
Problem
To keep your code DRY (don’t repeat yourself), you want to invoke a method that’s already defined in a parent class or trait.
Solution
There are several possible situations that need to be accounted for in this recipe:
A method in a class does not have the same name as a superclass method and wants to call that superclass method.
A method in a class with the same name as a superclass method and needs to call that superclass method.
A method in a class has the same name as multiple traits that it extends, and you want to choose which trait behavior to use.
The solutions for these problems are shown in the following sections.
walkThenRun calls walk and run
When a method in a class needs to invoke a method of a superclass, and the method name in the class is different than the name in the superclass, call the superclass method without using super:
class AnimalWithLegs:
def walk() = println("I’m walking")
def run() = println("I’m running")
class Dog extends AnimalWithLegs:
def walkThenRun() =
walk()
run()
In this example the method walkThenRun in the Dog class calls the walk and run methods that are defined in AnimalWithLegs. Because the method names are different, there’s no need to use a super reference. This is normal inheritance of methods in object-oriented programming.
While I show a superclass in this example, this discussion holds the same if AnimalWithLegs is a trait.
A walk method needs to call super.walk
When a method in a class has the same name as the method in the superclass, and you want to invoke the superclass method, define the class method with override, and then invoke the superclass method using super:
class AnimalWithLegs:
// the superclass 'walk' method.
def walk() = println("Animal is walking")
class Dog extends AnimalWithLegs:
// the subclass 'walk' method.
override def walk() =
super.walk() // invoke the superclass method.
println("Dog is walking") // add your own body.
In this example, the walk method in Dog has the same name as the method in the superclass, so it’s necessary to use super.walk to invoke the superclass walk method.
Now when you create a new Dog and invoke its walk method, you’ll see that both lines are printed:
val d = Dog()
d.walk()
Animal is walking
Dog is walking
In this situation, if you don’t want the superclass walk behavior—you just want to override it—don’t call the superclass method; just define your own method body:
class Dog extends AnimalWithLegs:
override def walk() =
println("Dog is walking")
Now when you create a new Dog instance and call its walk method, you’ll only see this output:
Dog is walking
As with the previous example, this discussion is the same if AnimalWithLegs is a trait.
Controlling which trait you call a method from
If your class inherits from multiple traits, and those traits implement the same method, you can select not only a method name but also a trait name when invoking a method using super. For instance, given these traits:
trait Human:
def yo = "Human"
trait Mother extends Human:
override def yo = "Mother"
trait Father extends Human:
override def yo = "Father"
The following code shows different ways to invoke the hello methods from the traits the Child class inherits from:
class Child extends Human, Mother, Father:
def printSuper = super.yo
def printMother = super[Mother].yo
def printFather = super[Father].yo
def printHuman = super[Human].yo
When you create a new Child instance and call its methods, you’ll see this output:
val c = Child()
println(c.printSuper) // Father
println(c.printMother) // Mother
println(c.printFather) // Father
println(c.printHuman) // Human
As shown, when a class inherits from multiple traits, and those traits have a common method name, you can choose which trait to run the method from with the super[traitName].methodName syntax. Also note that c.printSuper prints Father, because traits are constructed from left to right, and Father is the last trait mixed into Child:
class Child extends Human, Mother, Father:

When using this technique, you can’t continue to reach up through the parent class hierarchy unless you directly extend the target class or trait using the extends keyword. For instance, the following code won’t compile because this Child doesn’t directly extend the Human trait:
class Child extends Mother, Father: // removed `Human`
def printSuper = super.yo
def printMother = super[Mother].yo
def printFather = super[Father].yo
def printHuman = super[Human].yo // won’t compile
When you try to compile the code you get the error, “Human does not name a parent of class Child.”
8.3 Using Parameter Names When Calling a Method
Problem
You prefer a coding style where you specify the method parameter names when calling a method.
Solution
The general syntax for calling a method with named parameters is this:
methodName(param1=value1, param2=value2, ...)
This is demonstrated in the following example. Given this Pizza class definition:
enum CrustSize:
case Small, Medium, Large
enum CrustType:
case Regular, Thin, Thick
import CrustSize.*, CrustType.*
class Pizza:
var crustSize = Medium
var crustType = Regular
def update(crustSize: CrustSize, crustType: CrustType) =
this.crustSize = crustSize
this.crustType = crustType
override def toString = s"A $crustSize inch, $crustType crust pizza."
you can create a Pizza:
val p = Pizza()
You can then update the Pizza, specifying the parameter names and corresponding values when you call the update method:
p.update(crustSize = Large, crustType = Thick)
This approach has the added benefit that you can place the parameters in any order:
p.update(crustType = Thick, crustSize = Large)
Although this approach is more verbose than not using named parameters, it can also be more readable.
Discussion
This technique is especially useful when several parameters have the same type, such as having several Boolean or String parameters in a method. For instance, compare this method call, which does not use named parameters:
engage(true, true, true, false)
to this one, which does:
engage(
speedIsSet = true,
directionIsSet = true,
picardSaidMakeItSo = true,
turnedOffParkingBrake = false
)
When a method specifies default values for its parameters, as demonstrated in Recipe 8.4, you can use this approach to specify only the parameters you want to override. The combination of these two recipes makes for a flexible, powerful approach.
8.4 Setting Default Values for Method Parameters
Problem
You want to set default values for method parameters so the method can optionally be called without those parameters having to be assigned.
Solution
Specify the default value for parameters inside the method signature with this syntax:
parameterName: parameterType = defaultValue
For example, in the following code the timeout field is assigned a default value of 5_000 and the protocol field is given a default value of "http":
class Connection:
def makeConnection(timeout: Int = 5_000, protocol: String = "https") =
println(f"timeout = ${timeout}%d, protocol = ${protocol}%s")
// more code here
When you have a Connection instance c, this method can be called in the following ways, with the results shown in the comments:
val c = Connection()
c.makeConnection() // timeout = 5000, protocol = https
c.makeConnection(2_000) // timeout = 2000, protocol = https
c.makeConnection(3_000, "http") // timeout = 3000, protocol = http
If you like to call methods while supplying the names of the method parameters, makeConnection can also be called in these ways, as shown in Recipe 8.3:
c.makeConnection(timeout=10_000)
c.makeConnection(protocol="http")
c.makeConnection(timeout=10_000, protocol="http")
c.makeConnection(protocol="http", timeout=10_000)
As that shows, these two recipes can be used hand in hand to create readable code that can be useful in certain situations.
Discussion
Just as with constructor parameters, you can provide default values for method arguments. Because you’ve provided defaults, consumers of your method can either (a) supply an argument to override the default value, or (b) skip the argument, letting it use its default value.
Arguments are assigned from left to right, so the following call assigns no arguments and uses the default values for both timeout and protocol:
c.makeConnection()
This call sets timeout to 2_000 and leaves protocol to its default:
c.makeConnection(2_000)
This call sets both timeout and protocol:
c.makeConnection(3_000, "ftp")
Note that you can’t set protocol only with this approach—attempting to do so won’t compile—but as shown in the Solution, you can use a named parameter:
c.makeConnection(protocol="http")
If your method provides a mix of some fields that offer default values and others that don’t, list the fields that have default values last. This is because the default value fields can optionally be skipped, while the others can’t. This example shows the correct approach, with the default value field listed last:
class Connection:
// correct implementation, default value is listed last
def makeConnection(timeout: Int, protocol: String = "https") =
println(f"timeout = ${timeout}%d, protocol = ${protocol}%s")
val c = Connection()
c.makeConnection(1_000) // timeout = 1000, protocol = https
c.makeConnection(1_000, "http") // timeout = 1000, protocol = http
Conversely, this code helps demonstrate the problem that’s created when you list a default value field first:
class Connection:
// intentional error
def makeConnection(timeout: Int = 5_000, protocol: String) =
println(f"timeout = ${timeout}%d, protocol = ${protocol}%s")
This code compiles, and you’ll be able to create a new Connection, but you won’t be able to take advantage of the default, as shown in these examples:
val c = Connection()
c.makeConnection(1_000, "http") // timeout = 1000, protocol = http
c.makeConnection(2_000) // compiler error
c.makeConnection("https") // compiler error
// but this still works
c.makeConnection(protocol = "http") // timeout = 5000, protocol = http
8.5 Creating Methods That Take Variable-Argument Fields
Problem
To make a method more flexible, you want to define a method parameter that can take a variable number of arguments, i.e., a varargs field.
Solution
Define a varargs field in your method declaration by adding a * character after the field type:
def printAll(strings: String*) =
strings.foreach(println)
Given that declaration, printAll can now be called with zero or more parameters:
// these all work
printAll()
printAll("a")
printAll("a", "b")
printAll("a", "b", "c")
Use _* to adapt a sequence
By default you can’t pass a sequence—List, Seq, Vector, etc.—into a varargs parameter, but you can use Scala’s _* operator to adapt a sequence so it can be used as an argument for a varargs field:
val fruits = List("apple", "banana", "cherry")
printAll(fruits) // fails (Found: List[String]), Required: String)
printAll(fruits: _*) // works
Thinking of _* as “Splat”
If you come from a Unix background, it may be helpful to think of _* as a splat or xargs operator. This operator tells the compiler to pass each element of the sequence to printAll as a separate argument, instead of passing fruits as a single argument.
Discussion
When declaring that a method has a field that can contain a variable number of arguments, the varargs field must be the last field in the method signature. Attempting to define a field in a method signature after a varargs field returns an error:
// error: this won’t compile
def printAll(strings: String*, i: Int) =
strings.foreach(println)
Fortunately, the compiler error message is very clear:
def printAll(strings: String*, i: Int) =
^^^^^^^
varargs parameter must come last
As an implication of that rule, a method can have only one varargs field.
8.6 Forcing Callers to Leave Parentheses Off Accessor Methods
Problem
You want to enforce a coding style where accessor (getter) methods can’t have parentheses when they’re invoked.
Solution
Define your accessor method without parentheses after the method name:
class Pizza:
// no parentheses after 'crustSize'
def crustSize = 12
This forces consumers of your class to call crustSize without parentheses. Attempting to use parentheses results in a compiler error:
scala> val p = Pizza()
p: Pizza = Pizza@3a3e8692
// this fails because of the parentheses
scala> p.crustSize()
1 |p.crustSize()
|^^^^^
|method crustSize in class Pizza does not take parameters
// this works
scala> p.crustSize
res0: Int = 12
Discussion
The recommended strategy for calling accessor methods that have no side effects is to leave the parentheses off when calling the method. As stated in the Scala style guide:
Methods which act as accessors of any sort (either encapsulating a field or a logical property) should be declared without parentheses, except if they have side effects.
Because a simple accessor method like crustSize doesn’t have side effects, it shouldn’t be called with parentheses, and this recipe demonstrates how to enforce this convention. While this is only a convention, it’s a good practice when followed rigorously. For instance, although I know that a method named printStuff is probably going to print some output, an extra little warning light goes off in my head when I see it called as printStuff() instead; I know that it’s a method that has a side effect.
See Also
The Scala Style Guide on naming conventions and parentheses has more details on accessors, mutators, and the use of parentheses.
See Chapter 10 and Recipe 24.1, “Writing Pure Functions”, for discussions about side effects.
8.7 Declaring That a Method Can Throw an Exception
Problem
You want to declare that a method can throw an exception, either to alert callers to this fact or because your method will be called from Java code.
Solution
Use the @throws annotation to declare the exception(s) that can be thrown. You can declare that a method can throw one exception:
@throws(classOf[Exception])
def play =
// exception throwing code here ...
or multiple exceptions:
@throws(classOf[IOException])
@throws(classOf[FileNotFoundException])
def readFile(filename: String) =
// exception throwing code here ...
Discussion
In the two examples in the Solution, I declare that these methods can throw exceptions for two reasons. First, whether the consumers are using Scala or Java, if they’re writing robust code, they’ll want to know that an exception can be thrown.
Second, if they’re using Java, the @throws annotation is the Scala equivalent of providing the throws method signature to Java consumers. It’s just like declaring that a Java method throws an exception with this syntax:
// java
public void play() throws Exception {
// code here ...
}
it’s important to note that Scala’s philosophy regarding checked exceptions is different than Java’s. Scala doesn’t require that methods declare that exceptions can be thrown, and it also doesn’t require calling methods to catch them. For example, given this method:
def shortCircuit() = throw Exception("HERE’S AN EXCEPTION!")
It’s not necessary to declare that except throws an exception, and it’s also not necessary to wrap it in a try/catch block. But if you don’t, it will bring your application to a halt:
scala> shortCircuit()
java.lang.Exception: HERE’S AN EXCEPTION!
at rs$line$8$.except(rs$line$8:1)
much more output ...
JAVA EXCEPTION TYPES
As a quick review, Java has (a) checked exceptions, (b) descendants of Error, and (c) descendants of RuntimeException. Like checked exceptions, Error and RuntimeException have many subclasses, such as RuntimeException’s famous offspring, NullPointerException.
According to the Java documentation for the Exception class, “The class Exception and any subclasses that are not also subclasses of RuntimeException are checked exceptions. Checked exceptions need to be declared in a method or constructor’s throws clause if they can be thrown by the execution of the method or constructor and propagate outside the method or constructor boundary.”
The following links provide more information on Java exceptions and exception handling:
“The Catch or Specify Requirement” Java Tutorials page
“Unchecked Exceptions—The Controversy” Java Tutorials page
Wikipedia discussion of checked exceptions in the “Exception handling” entry
“Lesson: Exceptions” Java Tutorials page
The Java Exception class documentation
See Also
See Recipe 22.7, “Adding Exception Annotations to Scala Methods”, for other examples of adding exception annotations to methods.
See Recipe 10.8, “Implementing Functional Error Handling”, for details on how to handle exceptions in functional programming.
8.8 Supporting a Fluent Style of Programming
Problem
While creating classes in an OOP style, you want to design an API so developers can write code in a fluent programming style, also known as method chaining.
Solution
A fluent programming style lets users of your API write code by chaining method calls together, as in this example:
person.setFirstName("Frank")
.setLastName("Jordan")
.setAge(85)
.setCity("Manassas")
.setState("Virginia")
To support this style of programming:
If your class can be extended, specify this.type as the return type of fluent-style methods.
If your class can’t be extended, you can return this or this.type from your fluent-style methods. (See the note in the Discussion about class modifiers and extending classes.)
The following code demonstrates how to specify this.type as the return type of the set* methods shown:
class Person:
protected var _firstName = ""
protected var _lastName = ""
def setFirstName(firstName: String): this.type = // note `this.type`
_firstName = firstName
this
def setLastName(lastName: String): this.type = // note `this.type`
_lastName = lastName
this
end Person
class Employee extends Person:
protected var employeeNumber = 0
def setEmployeeNumber(num: Int): this.type =
this.employeeNumber = num
this
override def toString = s"$_firstName, $_lastName, $employeeNumber"
end Employee
The following code demonstrates how these methods can be chained together:
val employee = Employee()
// use the fluent methods
employee.setFirstName("Maximillion")
.setLastName("Alexander")
.setEmployeeNumber(2)
println(employee) // prints "Maximillion, Alexander, 2"
Discussion
If you’re sure your class won’t be extended, specifying this.type as the return type of your set* methods isn’t necessary; you can just return the this reference at the end of each fluent-style method. This approach is shown in the addTopping, setCrustSize, and setCrustType methods of the following Pizza class, which is declared to be final, which prevents the class from being extended:
enum CrustSize:
case Small, Medium, Large
enum CrustType:
case Regular, Thin, Thick
enum Topping:
case Cheese, Pepperoni, Mushrooms
import CrustSize.*, CrustType.*, Topping.*
final class Pizza:
import scala.collection.mutable.ArrayBuffer
private val toppings = ArrayBuffer[Topping]()
private var crustSize = Medium
private var crustType = Regular
def addTopping(topping: Topping) =
toppings += topping
this
def setCrustSize(crustSize: CrustSize) =
this.crustSize = crustSize
this
def setCrustType(crustType: CrustType) =
this.crustType = crustType
this
def print() =
println(s"crust size: $crustSize")
println(s"crust type: $crustType")
println(s"toppings: $toppings")
end Pizza
These methods are demonstrated with the following code:
val pizza = Pizza()
pizza.setCrustSize(Large)
.setCrustType(Thin)
.addTopping(Cheese)
.addTopping(Mushrooms)
.print()
That code results in the following output:
crust size: Large
crust type: Thin
toppings: ArrayBuffer(Cheese, Mushrooms)
CLASS MODIFIERS
Per the documentation for the new open keyword, when creating a class in Scala 3, “there are three possible expectations of extensibility”:
Declare the class as open to allow it to be extended.
Declare the class as final to prohibit the class from being extended.
Use no modifier if you haven’t made a firm decision either way.
In the third situation, the class can only be extended if one of these conditions is met:
The extending class is in the same file as the original class.
The language feature adhocExtensions is enabled for the extending class, such as by importing scala.language.adhocExtensions in the extending class source file.
The feature warning for adhocExtensions is not enabled for Scala 3.0, but it will be produced by default for Scala 3.1 and later versions.
See Also
Wikipedia’s definition of a fluent interface
Martin Fowler’s discussion of a fluent interface
8.9 Adding New Methods to Closed Classes with Extension Methods
Problem
You want to add new methods to closed classes, such as adding methods to String, Int, and other classes where you don’t have access to their source code.
Solution
In Scala 3 you define extension methods to create the new behavior you want. As an example, imagine that you want to add a method named hello to the String class so you can write code that works like this:
println("joe".hello) // prints "Hello, Joe"
To create this behavior, define hello as an extension method with the extension keyword:
extension (s: String)
def hello: String = s"Hello, ${s.capitalize}"
The REPL shows that this works as desired:
scala> println("joe".hello)
Hello, Joe
Defining multiple extension methods
To define additional methods, put them all under the extension declaration:
extension (s: String)
def hello: String = s"Hello, ${s.capitalize}"
def increment: String = s.map(c => (c + 1).toChar)
def hideAll: String = s.replaceAll(".", "*")
These examples show how those methods work:
"joe".hello // Hello, Joe
"hal".increment // ibm
"password".hideAll // ********
Extension methods that take a parameter
When you need to create an extension method that takes a parameter in addition to the type it works on, use this approach:
extension (s: String)
def makeInt(radix: Int): Int = Integer.parseInt(s, radix)
These examples show how makeInt works:
"1".makeInt(2) // Int = 1
"10".makeInt(2) // Int = 2
"100".makeInt(2) // Int = 4
"1".makeInt(8) // Int = 1
"10".makeInt(8) // Int = 8
"100".makeInt(8) // Int = 64
"foo".makeInt(2) // java.lang.NumberFormatException
I show that last example to be clear that, as written, this method doesn’t properly handle bad string input.
Discussion
Here’s a simplified description of how extension methods work in Scala 3, using the original hello example:
The compiler sees a String literal.
The compiler sees that you’re attempting to invoke a method named hello on a String.
Because the String class has no method named hello, the compiler starts looking around the known scope for methods named hello that take a single String parameter and return a String.
The compiler finds the extension method.
That’s an oversimplification of what happens, but it gives you the general idea of how extension methods work.
See Also
For more information on extension methods in Scala 3, read the extension methods documentation.
For a comparison of how this approach used to work in Scala 2, see my article “Implicit Methods/Functions in Scala 2 and 3 (Dotty Extension Methods)”.
Chapter 9. Packaging and Imports
Packages are used to build related modules of code, and to help prevent namespace collisions. In their most common form, you create Scala packages using the same syntax as Java, so most Scala source code files begin with a package declaration, like this:
package com.alvinalexander.myapp.model
class Person ...
However, Scala is also more flexible. In addition to that approach you can use a curly brace packaging style, similar to C++ and C# namespaces. That syntax is shown in Recipe 9.1.
The Scala approach to importing members is similar to Java, and more flexible. With Scala you can:
Place import statements anywhere
Import packages, classes, objects, and methods
Hide and rename members when you import them
All of these approaches are demonstrated in this chapter.
Before jumping into those recipes, it helps to know that two packages are implicitly imported into the scope of all of your source code files:
java.lang.*
scala.*
In Scala 3 the * character in import statements is similar to the * character in Java, so these statements mean “import every member” in those packages.
The Predef object
In addition to those two packages, all members from the scala.Predef object are also implicitly imported into your source code files.
If you want to understand how Scala works, I highly recommend taking a little time to dig into the Predef object source code. The code isn’t too long, and it demonstrates many of the features of the Scala language.
As I discuss in “Where do those methods come from?”, implicit conversions are brought into scope by the Predef object, and in the Scala 2.13 Predef object—which is still used by Scala 3.0—that code looks like this:
implicit def long2Long(x: Long): java.lang.Long = x.asInstanceOf[java.lang.Long]
implicit def Long2long(x: java.lang.Long): Long = x.asInstanceOf[Long]
// more implicit conversions ...
Similarly, if you ever wondered why you can invoke code like Map, Set, and println without needing import statements, you’ll find those in Predef as well:
type Map[A, +B] = immutable.Map[A, B]
type Set[A] = immutable.Set[A]
def println(x: Any) = Console.println(x)
def printf(text: String, xs: Any*) = Console.print(text.format(xs: _*))
def assert(assertion: Boolean) { ... }
def require(requirement: Boolean) { ... }
9.1 Packaging with the Curly Braces Style Notation
Problem
You want to use a nested style package notation, similar to the namespace notation in C++ and C#.
Solution
Wrap one or more classes inside a set of curly braces while supplying a package name, as shown in this example:
package com.acme.store {
class Foo:
override def toString = "I am com.acme.store.Foo"
}
The canonical name of that class is com.acme.store.Foo. It’s the same as if you declared the code like this:
package com.acme.store
class Foo:
override def toString = "I am com.acme.store.Foo"
Benefits
With this approach you can place multiple packages in one file, and you can also create nested packages. To demonstrate both approaches, the following example creates three Foo classes, all of which are in different packages:
package orderentry {
class Foo:
override def toString = "I am orderentry.Foo"
}
package customers {
class Foo:
override def toString = "I am customers.Foo"
package database {
class Foo:
override def toString = "I am customers.database.Foo"
}
}
// test/demonstrate the Foo classes.
// the output is shown after the comment tags.
@main def packageTests =
println(orderentry.Foo()) // I am orderentry.Foo
println(customers.Foo()) // I am customers.Foo
println(customers.database.Foo()) // I am customers.database.Foo
This demonstrates that each Foo class is in a different package, and that the database package is nested inside the customers package.
Discussion
I’ve looked at a lot of Scala code, and from what I’ve seen, declaring a package name at the top of a file is far and away the most popular packaging style:
package foo.bar.baz
class Foo:
override def toString = "I'm foo.bar.baz.Foo"
However, because Scala code can be very concise, the alternative curly brace packaging syntax can be convenient when you want to declare multiple classes and packages in one file. For instance, you’ll see that I often use this style in the source code repository for this book.
Chained package clauses
Sometimes when you look at Scala programs you’ll see multiple package declarations at the top of a source code file, like this:
package com.alvinalexander
package tests
...
That code is exactly the same as writing two nested packages, like this:
package com.alvinalexander {
package tests {
...
}
}
The reason the first form is used is because Scala programmers generally don’t like to indent their code using the curly brace style, especially in large files. So they use the first form.
The reason two package clauses are used instead of one has to do with what becomes available in the current scope with each approach. If you only use this one package statement:
package com.alvinalexander.tests
then only the members of com.alvinalexander.tests are brought into scope. But if you use these two package declarations:
package com.alvinalexander
package tests
...
members from both com.alvinalexander and com.alvinalexander.tests are brought into scope.
The reason for this approach has to do with a situation that was discovered in Scala 2.7 and resolved in Scala 2.8. For details on that, see Martin Odersky’s article on chained package clauses.
9.2 Importing One or More Members
Problem
You want to import one or more members into the scope of your current code.
Solution
Use this syntax to import one class:
import java.io.File
You can import multiple classes like this:
import java.io.File
import java.io.IOException
import java.io.FileNotFoundException
Or more concisely, like this:
import java.io.{File, IOException, FileNotFoundException}
I refer to this as the curly brace syntax, but it’s more formally known as the import selector clause.
This is how you import everything from the java.io package:
import java.io.*
Discussion
Scala is very flexible and lets you:
Place import statements anywhere, including the top of a class, within a class or object, within a method, or within a block of code. That technique is demonstrated in Recipe 9.6.
Import packages, classes, objects, and methods.
Hide and rename members when you import them. Those techniques are shown in Recipes 9.3 and 9.4.
9.3 Renaming Members on Import
Problem
You want to rename members when you import them to help avoid namespace collisions or confusion.
Solution
Give the class you’re importing a new name when you import it with this syntax:
import java.awt.{List as AwtList}
Then, within your code, refer to the class by the alias you’ve given it:
scala> val alist = AwtList(1, false)
val alist: java.awt.List = java.awt.List[list0,0,0,0x0,invalid,selected=null]
This lets you use the java.awt.List class by the name AwtList, while also using the Scala List class by its usual name:
scala> val x = List(1, 2, 3)
val x: List[Int] = List(1, 2, 3)
You can rename multiple classes at one time during the import process:
import java.util.{Date as JDate, HashMap as JHashMap}
You can also use the * character in the final import position to import everything else from that package (without renaming those other members):
import java.util.{Date as JDate, HashMap as JHashMap, *}
Because I create these aliases during the import process, I can’t use the original (real) name of the class in my code. For instance, after using that last import statement, the following code will fail because the compiler can’t find the java.util.HashMap class, because I renamed it:
scala> val map = HashMap[String, String]()
<console>:12: error: not found: type HashMap
val map = HashMap[String, String]
^
That fails as expected, but I can refer to this class with the alias I gave it:
scala> val map = JHashMap[String, String]()
map: java.util.HashMap[String,String] = {}
Because I imported everything else from the java.util package using the * at the end of the import statement, these lines of code that use other java.util classes also work:
scala> val x = ArrayList[String]()
x: java.util.ArrayList[String] = []
scala> val y = LinkedList[String]()
y: java.util.LinkedList[String] = []
Discussion
As shown, you can create a new name for a class when you import it and can then refer to it by the new name, or alias. Programming in Scala refers to this as a renaming clause.
This is helpful when you need to avoid namespace collisions and confusion. Class names like Listener, Message, Handler, Client, Server, and many more are all very common, and it can be helpful to give them aliases when you import them.
The syntax for this has changed in Scala 3. The following code shows the differences from Scala 2:
// scala 2
import java.util.{Date => JDate, HashMap => JHashMap, _}
// scala 3
import java.util.{Date as JDate, HashMap as JHashMap, *}
At the time of this writing you can still use the Scala 2 syntax in Scala 3 code, but because this underscore syntax will eventually be deprecated, the new syntax is preferred.
As a fun combination of several recipes, not only can you rename classes on import, you can also rename members from objects and static members from Java classes. For example, in shell scripts I tend to rename the println method to a shorter name, as shown in the REPL:
scala> import System.out.{println as p}
scala> p("hello")
hello
This works because out is a static final instance of a PrintStream in the java.lang.System class, and println is a PrintStream method. The end result is that p is an alias for the println method.
9.4 Hiding a Class During the Import Process
Problem
To avoid naming conflicts or confusion, you want to hide one or more classes while importing other members from the same package.
Solution
To hide a class during the import process, use the renaming syntax shown in Recipe 9.3, but point the class name to the _ character. The following example hides the Random class, while importing everything else from the java.util package:
import java.util.{Random => _, *}
This approach is confirmed in the REPL:
scala> import java.util.{Random => _, *}
import java.util.{Random=>_, _}
// can’t access Random
scala> val r = Random()
1 |val r = Random()
| ^^
| Not found: Random
// can access other members
scala> val x = ArrayList()
val x: java.util.ArrayList[Nothing] = []
Discussion
In that example, this portion of the code is what hides the Random class:
import java.util.{Random => _}
After that, the * character inside the curly braces is the same as stating that you want to import everything else in the package, like this:
import java.util.*
Note that the * import wildcard must be in the last position. It yields an error if you attempt to use it in other positions:
scala> import java.util.{*, Random => _}
1 |import java.util.{*, Random => _}
| ^^
| named imports cannot follow wildcard imports
This is because you may want to hide multiple members during the import process, and to do so you need to list them first.
To hide multiple members, list them before using the final wildcard import:
import java.util.{List => _, Map => _, Set => _, *}
After that import statement, you can use other classes from java.util:
scala> val x = ArrayList[String]()
val x: java.util.ArrayList[String] = []
You can also use the Scala List, Set, and Map classes without having a naming collision with the java.util classes that have the same names:
// these are all Scala classes
scala> val a = List(1, 2, 3)
val a: List[Int] = List(1, 2, 3)
scala> val b = Set(1, 2, 3)
val b: Set[Int] = Set(1, 2, 3)
scala> val c = Map(1 -> 1, 2 -> 2)
val c: Map[Int, Int] = Map(1 -> 1, 2 -> 2)
This ability to hide members on import is useful when you need many members from one package—and therefore want to use the * wildcard syntax—but you also want to hide one or more members during the import process, typically due to naming conflicts.
9.5 Importing Static Members
Problem
You want to import members in a way similar to the Java static import approach, so you can refer to member names directly, without having to prefix them with their package or class names.
Solution
Import the static members by name or with Scala’s * wildcard character. For example, this is how you import the static cos method from the scala.math package:
import scala.math.cos
val x = cos(0) // 1.0
This is how you import all members from the scala.math package:
import scala.math.*
With this syntax you can access all the static members of the scala.math package without having to precede them with the class name:
import scala.math.*
val a = sin(0) // Double = 0.0
val b = cos(Pi) // Double = −1.0
The Java Color class also demonstrates the usefulness of this technique:
import java.awt.Color.*
println(RED) // java.awt.Color[r=255,g=0,b=0]
println(BLUE) // java.awt.Color[r=0,g=0,b=255]
Discussion
Objects and enumerations are other great candidates for this technique. For instance, given this StringUtils object:
object StringUtils:
def truncate(s: String, length: Int): String = s.take(length)
def leftTrim(s: String): String = s.replaceAll("^\\s+", "")
you can import and use its methods like this:
import StringUtils.*
truncate("four score and seven ", 4) // "four"
leftTrim(" four score and ") // "four score and "
Similarly, given a Scala 3 enum:
package days {
enum Day:
case Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday
}
you can import and use the enumeration values like this:
// a different package
package bar {
import days.Day.*
@main def enumImportTest =
val date = Sunday
// more code here ...
if date == Saturday || date == Sunday then
println("It’s the weekend!")
}
Although some developers don’t like static imports, I find that this approach makes enums more readable. In my opinion, even the simple act of specifying the name of a class or enum before the constant makes the code less readable:
if date == Day.Saturday || date == Day.Sunday then
println("It’s the weekend!")
With the static import approach there’s no need for the leading "Day." in the code, and it’s easier to read:
if date == Saturday || date == Sunday then ...
9.6 Using Import Statements Anywhere
Problem
You want to use an import statement somewhere other than at the top of a file, generally to limit the scope of the import or to make your code clearer.
Solution
You can place an import statement almost anywhere inside a program. In the most basic use, you import members at the top of a class definition—just like with Java and other languages—and then use the imported resources later in your code:
package foo
import scala.util.Random
class MyClass:
def printRandom =
val r = Random() //use the imported class
For more control, you can import members inside a class:
package foo
class ClassA:
import scala.util.Random //inside ClassA
def printRandom =
val r = Random()
class ClassB:
// the import is not visible here
val r = Random() //error: not found: Random
This limits the scope of the import to the code inside ClassA that comes after the import statement.
You can also use import statements inside a method:
def getPandoraItem(): Any =
import com.alvinalexander.pandorasbox.*
val p = Pandora()
p.getRandomItem
You can even place an import statement inside a block, limiting the scope of the import to only the code inside that block that follows the statement. In the following example, the field r1 is declared correctly because it’s within the block and after the import statement, but the declaration for field r2 won’t compile because the Random class is not in scope at that point:
def printRandom =
{
import scala.util.Random
val r1 = Random() //this works, as expected
}
val r2 = Random() //error: not found: Random
Discussion
Import statements make imported members available after the point at which they are imported, which also limits their scope. The following code won’t compile because I attempt to reference the Random class before the import statement is declared:
// this does not compile
class ImportTests:
def printRandom =
val r = Random() //error: not found: type Random
import scala.util.Random
When you want to include multiple classes and packages in one file, you can combine import statements and the curly brace packaging approach (shown in Recipe 9.1) to limit the scope of the import statements, as shown in these examples:
package orderentry {
import foo.*
// more code here ...
}
package customers {
import bar.*
// more code here ...
package database {
import baz.*
// more code here ...
}
}
In this example, members can be accessed as follows:
Code in the orderentry package can access members of foo but can’t access members of bar or baz.
Code in customers and customers.database can’t access members of foo.
Code in customers can access members of bar.
Code in customers.database can access members in bar and baz.
The same concept applies when defining multiple classes in one file:
package foo
// available to all classes defined below
import java.io.File
import java.io.PrintWriter
class Foo:
// only available inside this class
import javax.swing.JFrame
// ...
class Bar:
// only available inside this class
import scala.util.Random
// ...
Although placing import statements at the top of a file or just before they’re used can be a matter of style, I find this flexibility to be useful when I have multiple classes or packages in one file. In these situations it’s nice to keep the imports in the smallest scope possible to limit namespace conflicts, and to make the code easier to refactor as it grows.
9.7 Importing Givens
Problem
You need to import one or more given instances into the current scope, while possibly importing types from that same package at the same time.
Solution
A given instance, known more simply as a given, will typically be defined in a separate module, and it must be imported into the current scope with a special import statement. For example, when you have this given code in an object named Adder, in a package named co.kbhr.givens:
package co.kbhr.givens
object Adder:
trait Adder[T]:
def add(a: T, b: T): T
given intAdder: Adder[Int] with
def add(a: Int, b: Int): Int = a + b
import it into the current scope with these two import statements:
@main def givenImports =
import co.kbhr.givens.Adder.* // import all nongiven definitions
import co.kbhr.givens.Adder.given // import all `given` definitions
def genericAdder[A](x: A, y: A)(using adder: Adder[A]): A = adder.add(x, y)
println(genericAdder(1, 1))
You can also combine the two import statements into one:
import co.kbhr.givens.Adder.{given, *}
You can import anonymous given instances by their type, as shown in the second import statement in this example:
package co.kbhr.givens
object Adder:
trait Adder[T]:
def add(a: T, b: T): T
given Adder[Int] with
def add(a: Int, b: Int): Int = a + b
given Adder[String] with
def add(a: String, b: String): String = "" + (a.toInt + b.toInt)
@main def givenImports =
// when put on separate lines, the order of the imports is important.
// the second import statement imports the givens by their type.
import co.kbhr.givens.Adder.*
import co.kbhr.givens.Adder.{given Adder[Int], given Adder[String]}
def genericAdder[A](x: A, y: A)(using adder: Adder[A]): A = adder.add(x, y)
println(genericAdder(1, 1)) // 2
println(genericAdder("2", "2")) // 4
In that example, these two lines of code show how the Adder trait and the givens are imported:
import co.kbhr.givens.Adder.*
import co.kbhr.givens.Adder.{given Adder[Int], given Adder[String]}
Depending on your needs, the givens can also be imported by their type, like this:
import co.kbhr.givens.Adder.*
import co.kbhr.givens.Adder.{given Adder[?]}
That second line can be read as, “Import an Adder given of any type, such as Adder[Int] or Adder[String].”
Discussion
Per the Scala 3 documentation on importing givens, there are two reasons and benefits for this new syntax:
It makes clearer where givens in scope are coming from.
It enables importing all givens without importing anything else.
Given instances replace implicits, which were used in Scala 2. As mentioned, a main goal of givens is to be clearer than implicits. One of the motivations for givens, and specifically for given import statements, is that in Scala 2 it wasn’t always clear how implicits were coming into the current scope.
In an effort to resolve this situation with givens in Scala 3, this new import given syntax was created. As you can see in these examples, it’s now very easy to look at a list of import statements to see where givens are coming from.
See Also
See Recipe 23.8, “Using Term Inference with given and using”, for more details on how to use givens.
See the Scala 3 documentation on given instances for more details on givens.
See the Scala 3 documentation on importing givens for more details on importing givens.
The Scala 3 documentation on contextual abstractions details the motivations behind changing from implicits to given instances.
Chapter 10. Functional Programming
Scala supports both object-oriented programming and functional programming styles. Indeed, as I recorded here on my website, at a presentation in 2018, Martin Odersky, the creator of the Scala language, stated that the essence of Scala is a “fusion of functional and object-oriented programming in a typed setting,” with “functions for the logic” and “objects for the modularity.” Many of the recipes in this book demonstrate that fusion, and this chapter focuses solely on functional programming techniques in Scala—what I’ll refer to as Scala/FP in this chapter.
FP is a big topic, and I wrote over seven hundred pages about it in my book Functional Programming, Simplified. While I can’t cover all of that material in this chapter, I’ll try to cover some of the main concepts. The initial recipes will show how to:
Write and understand function literals
Pass function literals (also known as anonymous functions) into methods
Write methods that accept functions as variables
After that you’ll see some very specific functional programming techniques:
Partially applied functions
Writing methods that return functions
Partial functions
The chapter finishes with two examples that help to demonstrate these techniques.
If you’re not familiar with FP, it can be perplexing at first, so it will definitely help to understand its goals and motivations. Therefore, in the next several pages I’ll try to provide the best introduction to functional programming I can offer. Functional Programming, Simplified consists of 130 short chapters, and this introduction is an extremely condensed version of the first 21 chapters of that book.
What Is Functional Programming?
Finding a consistent definition of FP is surprisingly hard, but in the process of writing that book I came up with this:
Functional programming is a way of writing software applications using only pure functions and immutable values.
As you’ll see in this chapter, pure functions are mathematical functions, just like writing algebraic equations.
Another nice definition comes from Mary Rose Cook, who states:
Functional code is characterised by one thing: the absence of side effects. It (a pure function) doesn’t rely on data outside the current function, and it doesn’t change data that exists outside the current function. Every other “functional” thing can be derived from this property.
I expand on these definitions in great detail in Functional Programming, Simplified, but for our purposes in this chapter, these definitions give us a solid starting point.
Pure Functions
To understand those definitions you also have to understand what a pure function is. In my world, a pure function is a function:
Whose algorithm and output depend only on (a) the function’s input parameters and (b) calling other pure functions
That doesn’t mutate the parameters it’s given
That doesn’t mutate anything anywhere else in the application (i.e., any sort of global state)
That doesn’t interact with the outside world, such as interacting with files, databases, networks, or users
Because of that criteria you can also make these statements about pure functions:
Their internal algorithm doesn’t call other functions whose responses vary over time, such as date, time, and random number (random anything) functions.
When called any number of times with the same input, a pure function always returns the same value.
Math functions are good examples of pure functions, including algorithms like min, max, sum, sin, cosine, tangent, etc. List-related functions like filter, map, and returning a sorted list from an existing list are also good examples. Called any number of times with the same input, they always return the same result.
Conversely, examples of impure functions are:
Any sort of input/output (I/O) function (including input from a user, output to the user, and reading from and writing to files, databases, and networks)
Functions that return different results at different times (date, time, and random functions)
A function that modifies mutable state (such as a mutable field in a class) somewhere else in the application
A function that receives a mutable type like Array or ArrayBuffer, and modifies its elements
A pure function gives you comfort that when you call it with a given set of inputs, you’ll always get the exact same answer back, such as:
"zeus".length // will always be `4`
sum(2,2) // will always be `4`
List(4,5,6).max // will always be `6`
Side Effects
It’s said that a purely functional program has no side effects. So what is a side effect?
A function that has a side effect modifies state, mutates variables, and/or interacts with the outside world. This includes:
Writing (or reading) data to (from) a file, database, or web service
Mutating the state of a variable that was given as input, changing data in a data structure, or modifying the value of a mutable field in an object
Throwing an exception, or stopping the application when an error occurs
Calling other functions that have side effects
Pure functions are much easier to test. Imagine writing an addition function, such as +. Given the two numbers 1 and 2, the result will always be 3. A pure function like this is a simple matter of (a) immutable data coming in and (b) a result coming out; nothing else happens. Because a function like this has no side effects and doesn’t rely on a mutable state somewhere outside of its scope, it’s simple to test.
See Recipe 24.1, “Writing Pure Functions”, for more details on writing pure functions.
Thinking in FP
Writing pure functions is relatively simple, and in fact, they tend to be a joy to write because you don’t have to think about the entire state of an application when writing them. All you have to think about is what’s coming in, and what’s going out.
The more difficult parts of FP have to do with (a) handling I/O and (b) gluing your pure functions together. To succeed in FP, I found that you must have a strong desire to see your code as math. You need to have a burning desire to see each function as an algebraic equation, where data goes in, data comes out, there are no side effects, nothing is mutated, and nothing can go wrong.
What happens is that you write one pure function, then another, then another. When they’re done, you create your application by combining your pure functions—algebraic equations—just like you’re a mathematician writing a series of equations on a chalkboard. I can’t stress the importance of this desire strongly enough. You must want to write code like this—like algebra.
For instance, in mathematics you might have a function like this:
f(x) = x^2 + 2x + 1
In Scala, that function is written like this:
def f(x: Int): Int = x*x + 2*x + 1
Notice a few things about this function:
The function result depends only on the value of x and the function’s algorithm.
The function only relies on the * and + operators, which can be thought of as calling other pure functions.
The function doesn’t mutate x.
Furthermore:
The function doesn’t mutate anything else anywhere in the world:
Its scope only deals with applying an algorithm to the input parameter x, and it doesn’t mutate any variables outside of that scope.
It doesn’t read from or write to anything else in the world: no user input, no files, no database, no network, etc.
If you call the function an infinite number of times with the same input (such as 2), it will always return the same value (such as 9).
The function is a pure function whose output only depends on its input. FP is about writing all of your functions like this, and then combining them together to create a complete application.
Referential Transparency and Substitution
Another important concept in FP is referential transparency (RT), which is the property that an expression can be replaced by its resulting value without changing the behavior of the program (and vice versa). Again, you can examine this by using algebra. For instance, if all of these symbols represent immutable values:
a = b + c
d = e + f + b
x = a + d
you can perform substitution rules to determine the value of x:
x = a + d
x = (b + c) + d // substitute for 'a'
x = (b + c) + (e + f + b) // substitute for 'd'
x = b + c + e + f + b // remove unneeded parentheses
x = 2b + c + e + f // can’t reduce the expression any more
When functional programmers say that a program “evaluates to a result,” or that you run a program by performing substitution rules, this is what they mean. Both you and the compiler can perform these substitutions. Conversely, if a value like b returns a random value or user input each time it’s called, you can’t reduce the equations.
While that example uses algebraic symbols, you can do the same thing with Scala code. For instance, in Scala/FP you write code that looks like this:
val a = f(x)
val b = g(a)
val c = h(y)
val d = i(b, c)
Assuming that f, g, h and i are pure functions—and assuming that all the fields are val fields—when you write simple expressions like this, both you and the compiler are free to rearrange the code. For instance, the first and third expressions can happen in any order—and can even run in parallel. The only requirement is that the first three expressions are evaluated before i is invoked.
Also, because the value a will always be exactly the same as f(x), f(x) can always be replaced by a, and vice versa. The same is also true for b, c, and d.
For instance, this equation:
val b = g(a)
is exactly the same as this equation:
val b = g(f(x))
Because all the fields are immutable and the functions are pure, both you and the compiler can continue moving equations around and performing substitutions, to the point that all of these expressions are equivalent:
val d = i(b, c)
val d = i(g(a), h(y))
val d = i(g(f(x)), h(y))
As mentioned, one great benefit of functional programming is that pure functions are easier to test than functions that have side effects, and now you can see a second benefit: with referentially transparent code like this, g(a) and h(y) can be run on separate threads (or the more random fibers) to take advantage of multiple cores. Because all the fields are immutable and the functions are pure, you can safely make these algebraic substitutions. But if the fields are mutable (var fields) and/or the functions are impure, the pieces can’t be moved around safely.
Lisp—originally named LISP, which stands for LISt Processor—is a programming language that was originally specified in 1958 and pioneered many important concepts in high-level programming languages, included higher-order functions. When you write code in an algebraic/functional style, it naturally leads to a way of thinking that’s described in the book Land of Lisp by Conrad Barski (No Starch Press):
Some advanced Lispers will cringe when someone says that a function “returns a value.” In the lambda calculus you “run” a program by performing substitution rules on the starting program to determine the result of a function. Hence, the result of a set of functions just sort of magically appears by performing substitutions; never does a function consciously “decide” to return a value. Because of this, Lisp purists prefer to say that a function “evaluates to a result.”
The previous examples demonstrate the meaning of that quote.
FP Is a Superset of Expression-Oriented Programming
For a language to support FP, it must first support expression-oriented programming. In EOP, every line of code is an expression, as opposed to a statement. An expression is a line of code that returns a result and doesn’t have a side effect. Conversely, statements are like calling println: they don’t return a result and are called only for their side effect. (Technically, statements return a result, but it’s a Unit result.)
A feature that makes Scala such a great FP language is that all of your code can be written as expressions, including if expressions:
val a = 1
val b = 2
val max = if a > b then a else b
match expressions:
val evenOrOdd: String = i match
case 1 | 3 | 5 | 7 | 9 => "odd"
case 2 | 4 | 6 | 8 | 10 => "even"
for expressions:
val xs = List(1, 2, 3, 4, 5)
val ys = for
x <- xs
if x > 2
yield
x * 10
Even try/catch blocks return a value:
def makeInt(s: String): Int =
try
s.toInt
catch
case _ : Throwable => 0
My Rules for Functional Programming in Scala
To help adopt the proper FP mindset, I developed these rules for writing Scala/FP code in my book Functional Programming, Simplified:
Never use null values. Forget that Scala even has a null keyword.
Write only pure functions.
Use only immutable values (val) for all fields.
Every line of code must be an algebraic expression. Whenever you use an if, you must always also use an else.
Pure functions should never throw exceptions; instead, they yield values like Option, Try, and Either.
Don’t create OOP “classes” that encapsulate data and behavior. Instead, create immutable data structures using case classes, and then write pure functions that operate on those data structures.
If you adopt these simple rules, you’ll find that:
Your brain will quit reaching for shortcuts to fight the system. (Throwing in the occasional var field or impure function will only slow down your learning process.)
Your code will become like algebra.
Over time you’ll come to understand the Scala/FP thought process; you’ll discover that one concept logically leads to another.
As an example of that last point, you’ll see that using only immutable fields naturally leads to recursive algorithms. Then you’ll see that you won’t need recursion that often because of all of the functional methods that are built into the immutable Scala collections classes.
Yes, FP Code Uses I/O
While there are different approaches to handling input/output (I/O), of course FP code uses I/O. This includes handling user I/O, and reading from and writing to files, databases, and across networks. No application would be useful without I/O, so Scala/FP (and all other functional languages) have facilities for working with I/O in a “functional” manner.
For example, Scala code that handles command-line I/O in a functional manner tends to look like this:
def mainLoop: IO[Unit] =
for
_ <- putStr(prompt)
cmd <- getLine.map(Command.parse _)
_ <- if cmd == Quit then
IO.unit
else
processCommand(cmd) >> mainLoop
yield
()
mainLoop.unsafeRunSync()
In that code, putStr is a functional replacement for println, and getLine is a functional method that lets you read user input. Also, notice that mainLoop calls itself recursively. This is how you create a loop with immutable variables.
Unfortunately, it takes a while to explain the techniques and philosophy behind these I/O functions—potentially one hundred pages or more, depending on your background—but I explain them in detail in my book Functional Programming, Simplified.
The Functional Cake and Imperative Icing
As I wrote in the first edition of this book, until you use an FP library like Cats, ZIO, or Monix, the best advice I can offer to people new to functional programming is to write the core of your applications using pure functions. This pure functional core can be thought of as the “cake,” and then the I/O functions that interact with the outside world can be thought of as the “icing” around that core. Depending on the application, you may end up with 80% cake (pure functions) and 20% icing (I/O functions), or it may be the opposite of that. Some developers describe this technique as having a “functional core and imperative shell.”
10.1 Using Function Literals (Anonymous Functions)
Problem
You want to use an anonymous function—also known as a function literal—so you can pass it into a method that takes a function, or assign it to a variable.
Solution
Given this List:
scala> val x = List.range(1, 10)
val x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
you can pass an anonymous function to the list’s filter method to create a new List that contains only even numbers:
val evens = x.filter((i: Int) => i % 2 == 0)

The anonymous function is underlined in that example. The REPL demonstrates that this expression yields a new List of even numbers:
scala> val evens = x.filter((i: Int) => i % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8)
In this solution, the following code is a function literal, and when it’s passed into a method like this it’s also known as an anonymous function, what some programming languages also refer to as a lambda:
(i: Int) => i % 2 == 0
Although that code works, it shows the most explicit form for defining a function literal. Thanks to several Scala shortcuts, the expression can be simplified to this:
val evens = x.filter(_ % 2 == 0)
The REPL shows that this returns the same result:
scala> val evens = x.filter(_ % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8)
Discussion
The first example in this recipe uses this function literal:
(i: Int) => i % 2 == 0
When you look at this code it helps to think of the => symbol as a transformer, because the expression transforms the parameter list on the left side of the symbol (an Int named i) into a new result using the algorithm on the right side of the symbol (in this case, a modulus test that results in a Boolean).
As mentioned, this example shows the long form for defining an anonymous function, which can be simplified in several ways. The first example shows the most explicit form:
val evens = x.filter((i: Int) => i % 2 == 0)
And because Scala can determine from the list that it contains integer values, the type declaration for i isn’t necessary:
val evens = x.filter((i) => i % 2 == 0)
When an anonymous function only has one parameter, the parentheses aren’t needed:
val evens = x.filter(i => i % 2 == 0)
Because Scala lets you use the _ symbol instead of a variable name when the parameter appears only once in your function, this code can be simplified even more:
val evens = x.filter(_ % 2 == 0)
In other situations you can simplify your anonymous functions further. For instance, beginning with the most explicit form, you can print each element in the list using this anonymous function with the foreach method:
x.foreach((i: Int) => println(i))
As before, the Int declaration isn’t required:
x.foreach((i) => println(i))
Because there’s only one argument, the parentheses around the i input parameter aren’t needed:
x.foreach(i => println(i))
Because i is used only once in the function body, the expression can be further simplified with the _ wildcard:
x.foreach(println(_))
Finally, if a function literal consists of one statement that takes a single argument, you don’t need to explicitly name and specify the argument, so the statement can be reduced to this:
x.foreach(println)
Anonymous functions that have multiple parameters
A Map provides a good example of an anonymous function that takes multiple parameters. For instance, given this Map:
val map = Map(1 -> 10, 2 -> 20, 3 -> 30)
this example shows the syntax for using an anonymous function with the transform method on an immutable Map instance, where the key and value from each element is passed to the anonymous function:
val newMap = map.transform((k,v) => k + v)
The REPL shows how this works:
scala> val map = Map(1 -> 10, 2 -> 20, 3 -> 30)
val map: Map[Int, Int] = Map(1 -> 10, 2 -> 20, 3 -> 30)
scala> val newMap = map.transform((k,v) => k + v)
val newMap: Map[Int, Int] = Map(1 -> 11, 2 -> 22, 3 -> 33)
While that’s not a particularly useful algorithm, the important part is that it shows the syntax for working with the key/value pairs your anonymous function receives from every Map entry:
(k,v) => k + v
Can Also Treat Map Elements as a Tuple
Depending on the need, another potential approach is to treat each Map element as a two-element tuple:
scala> map.foreach(x => println(s"${x._1} --> ${x._2}"))
1 --> 10
2 --> 20
3 --> 30
See Also
For much more detail on this topic, see my post “Explaining Scala’s val Function Syntax”.
10.2 Passing Functions Around as Variables
Problem
You want to create a function as a variable and pass it around, just like you pass String, Int, and other variables around in an object-oriented programming language.
Solution
Use the syntax shown in Recipe 10.1 to define a function literal, and then assign that literal to a variable. For instance, the following code defines a function literal that takes an Int parameter and returns a value that is twice the amount of the Int that’s passed in:
(i: Int) => i * 2
As mentioned in Recipe 10.1, you can think of the => symbol as a transformer. In this case, the function transforms the Int value i into an Int value that’s twice the value of i.
Now you can assign that function literal to a variable:
val double = (i: Int) => i * 2
When you paste that code into the REPL, you’ll see that it recognizes double as a function that transforms an Int into another Int, as shown in this underlined code:
scala> val double = (i: Int) => i * 2
val double: Int => Int = Lambda ...

At this point the variable double is a variable instance, just like an instance of a String, Int, or other type, but in this case it’s an instance of a function, known as a function value. You can now invoke double just like calling a method:
double(2) // 4
double(3) // 6
Beyond just invoking double like this, you can also pass it to any method that takes a function parameter that matches its signature. For instance, the map method on a sequence class like List takes a function parameter that transforms a type A into a type B, as shown by its signature:
def map[B](f: (A) => B): List[B]

Because of this, when you’re working with a List[Int], you can give map the double function, which transforms an Int into an Int:
scala> val list = List.range(1, 5)
list: List[Int] = List(1, 2, 3, 4)
scala> list.map(double)
res0: List[Int] = List(2, 4, 6, 8)
In this example the generic type A is an Int and the generic type B also happens to be an Int, but in more complicated examples they can be other types. For instance, you can create a function that transforms a String to an Int:
val length = (s: String) => s.length
Then you can use that String-to-Int function with the map method on a list of strings:
scala> val lengths = List("Mercedes", "Hannah", "Emily").map(length)
val lengths: List[Int] = List(8, 6, 5)
Welcome to the world of functional programming.
Functions and Methods are Generally Interchangeable
While the first example shows a double function created as a val variable, you can also define methods using def and generally use them the same way. See the Discussion for details.
Discussion
You can declare a function literal in at least two different ways. This modulus function value—which returns true if i is an even number—infers that the return type of the function literal is Boolean:
val f = (i: Int) => { i % 2 == 0 } // sometimes easier to read with parentheses
val f = (i: Int) => i % 2 == 0 // same function without parentheses
In this case, the Scala compiler is smart enough to look at the body of the function and determine that it returns a Boolean value.
However, if you prefer to explicitly declare the return type of a function literal, or want to do so because your function is more complex, the following examples show different forms you can use to explicitly declare that this isEven function returns a Boolean:
val isEven: (Int) => Boolean = i => { i % 2 == 0 }
val isEven: Int => Boolean = i => { i % 2 == 0 }
val isEven: Int => Boolean = i => i % 2 == 0
val isEven: Int => Boolean = _ % 2 == 0
A second example helps demonstrate the difference of these approaches. These functions all take two Int parameters and return a single Int value, which is the sum of the two input values:
// implicit approach
val add = (x: Int, y: Int) => { x + y }
val add = (x: Int, y: Int) => x + y
// explicit approach
val add: (Int, Int) => Int = (x,y) => { x + y }
val add: (Int, Int) => Int = (x,y) => x + y
I show the curly braces around the method body in some of these examples because I find that the code is more readable, especially if this is your first exposure to the function syntax. While I’m in this neighborhood, here’s an example of a multiline function, without parentheses:
val addThenDouble: (Int, Int) => Int = (x,y) =>
val a = x + y
2 * a
Using a def method like a val function
Scala is very flexible, and thanks to a technology known as Eta Expansion, just like you can define a function and assign it to a val, you can also define a method using def and then pass it around as an instance variable. Again using a modulus algorithm, you can define a def method in any of these ways:
def isEvenMethod(i: Int) = i % 2 == 0
def isEvenMethod(i: Int) = { i % 2 == 0 }
def isEvenMethod(i: Int): Boolean = i % 2 == 0
def isEvenMethod(i: Int): Boolean = { i % 2 == 0 }
When a method is passed into another method that expects a function parameter, Eta Expansion transparently transforms that method into a function. Therefore, any of these isEven methods can be passed into another method that takes a function parameter that is defined to take an Int and return a Boolean. For instance, the filter method on sequence classes is defined to take a function that transforms a generic type A to a Boolean:
def filter(p: (A) => Boolean): List[A]

Because in this next example you have a List[Int], you can pass filter the isEvenMethod, since it transforms an Int to a Boolean:
val list = List.range(1, 10)
list.filter(isEvenMethod)
Here’s what that looks like in the REPL:
scala> def isEvenMethod(i: Int) = i % 2 == 0
def isEvenMethod(i: Int): Boolean
scala> val list = List.range(1, 10)
val list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> list.filter(isEvenMethod)
val res0: List[Int] = List(2, 4, 6, 8)
As noted, this is similar to the process of defining a function literal and assigning it to a variable. For instance, here you can see that isEvenFunction works just like isEvenMethod:
val isEvenFunction = (i: Int) => i % 2 == 0
list.filter(isEvenFunction) // List(2, 4, 6, 8)
From your programming standpoint, the obvious difference is that isEvenMethod is a method, whereas isEvenFunction is a function that’s assigned to a variable. But as a programmer, it’s great that both approaches work.
Assigning an existing function/method to a function variable
Continuing this exploration, you can also assign an existing method or function to a function variable. For instance, you can create a new function named c from the scala.math.cos method like this:to function variables
scala> val c = scala.math.cos
val c: Double => Double = Lambda ...
The resulting function value c is called a partially applied function. It’s partially applied because the cos method requires one argument, which you haven’t yet supplied.
Now that you have c as a function value, you can use it just like you would have used cos:
scala> c(0)
res0: Double = 1.0
Improved Eta Expansion in Scala 3
In Scala 2 an underscore was required for this example:
val c = scala.math.cos _
But thanks to the improved Eta Expansion technology in Scala 3, this is no longer required.
This next example shows how to use this technique to create a square function from the pow method in scala.math. Note that pow takes two parameters, where the second parameter is the power that should be applied to the first parameter:
scala> val square = scala.math.pow(_, 2)
val square: Double => Double = Lambda ...
Again, square is a partially applied function. I supply the power parameter, but not the value parameter, so now square is waiting to receive one additional parameter, the value to be squared:
scala> square(3)
val res0: Double = 9.0
scala> square(4)
val res1: Double = 16.0
This example shows a typical way of using this technique: you create a more specific function (square) from a more general method (pow). See Recipe 10.5 for more information.
Reading square’s REPL Output
Notice that when you create square, you can tell that it still requires a parameter, because the REPL output shows its type signature:
val square: Double => Double ...

This means that it’s a function that takes a Double parameter and returns a Double value.
In summary, here are a few notes about function variables:
Think of the => symbol as a transformer. It transforms the input data on its left side to some new output data, using the algorithm on its right side.
Use def to define a method, val to create a function.
When assigning a function to a variable, a function literal is the code on the right side of the expression.
Storing functions in a Map
When I say that functions are variables, I mean that they can be used just like a String or Int variable in all ways. They can be used as function parameters, as shown in several recipes in this chapter. And as this example shows, you can also store functions (or methods) in a Map:
def add(i: Int, j: Int) = i + j
def multiply(i: Int, j: Int) = i * j
// store the functions in a Map
val functions = Map(
"add" -> add,
"multiply" -> multiply
)
// get a function out of the Map and use it
val f = functions("add")
f(2, 2) // 4
Functions and methods truly are variables, in every sense of the word.
See Also
For more information on Eta Expansion, see my article “Using Scala Methods as If They Were Functions (Eta Expansion)”.
For much more detail on val functions and def methods, see my blog post “Scala: The Differences Between val and def When Creating Functions”.
See Recipe 10.5 for more examples and details about partially applied functions.
10.3 Defining a Method That Accepts a Simple Function Parameter
Problem
You want to create a method that takes a simple function as a method parameter.
Solution
This solution follows a three-step process:
Define your method, including the signature for the function you want to take as a method parameter.
Define one or more functions that match this signature.
Sometime later, pass the function(s) as a parameter to your method.
To demonstrate this, define a method named executeFunction, which takes a function as a parameter. The method takes one parameter named callback, which is a function. That function must have no input parameters and must return nothing:
def executeFunction(callback:() => Unit) =
callback()
Two notes about this code:
The callback:() syntax specifies a function that has no input parameters. If the function had parameters, the types would be listed inside the parentheses.
The => Unit portion of the code indicates that this callback function returns nothing.
I’ll discuss this syntax shortly.
Next, define a function or method that matches this signature. For example, both sayHelloF and sayHelloM take no input parameters and return nothing:
val sayHelloF = () => println("Hello") // function
def sayHelloM(): Unit = println("Hello") // method
In the last step of the recipe, because both sayHelloF and sayHelloM match callback’s type signature, they can be passed to the executeFunction method:
executeFunction(sayHelloF)
executeFunction(sayHelloM)
The REPL demonstrates how this works:
scala> val sayHelloF = () => println("Hello")
val sayHelloF: () => Unit = Lambda ...
scala> def sayHelloM(): Unit = println("Hello")
def sayHelloM(): Unit
scala> executeFunction(sayHelloF)
Hello
scala> executeFunction(sayHelloM)
Hello
Discussion
In this recipe I create a method that takes a simple function so you can see how this process works with a function that takes no parameters and returns nothing (Unit). In the next recipe you’ll see examples of more complicated function signatures.
There isn’t anything special about the callback name used in this example. When I first learned how to pass functions to methods, I preferred the name callback because it made the meaning clear, but it’s just the name of a method parameter. These days, just as I name an Int parameter i, I name a function parameter f:
def runAFunction(f:() => Unit) = f()
The part that is special is that any function you pass into the method must match the function parameter signature you define. In this case, I declare that a function that’s passed in must take no arguments and must return nothing:
f:() => Unit
More generally, the syntax for defining a function as a method parameter is:
parameterName: (parameterType(s)) => returnType
In the runAFunction example, the parameterName is f, the parameterType area is empty because the function doesn’t take any parameters, and the return type is Unit because the function doesn’t return anything:
runAFunction(f:() => Unit)
As another example, to define a function parameter that takes a String and returns an Int, use one of these two signatures:
executeFunction(f: String => Int)
executeFunction(f: (String) => Int)
See the next recipe for more complicated function signature examples.
A Note About Unit
The Scala Unit shown in these examples is similar to Void in Java and None in Python. It’s used in situations like this to indicate that a function returns nothing.
See Also
The syntax for function parameters is similar to the syntax for by-name parameters, which are discussed in “By-name parameters”.
10.4 Declaring More Complex Higher-Order Functions
Problem
You want to define a method that takes a function as a parameter, and that function may have one or more input parameters and may return a value other than Unit. Your method may also have additional parameters.
Solution
Following the approach described in Recipe 10.3, define a method that takes a function as a parameter. Specify the function signature you expect to receive, and then execute that function inside the body of the method.
The following example defines a method named exec that takes a function as an input parameter. That function must take one Int as an input parameter and return nothing:
def exec(callback: Int => Unit) =
// invoke the function we were given, giving it an Int parameter
callback(1)
Next, define a function that matches the expected signature. Both this function and this method match callback’s signature because they take an Int argument and return nothing:
val plusOne = (i: Int) => println(i+1)
def plusOne(i: Int) = println(i+1)
Now you can pass either version of plusOne into the exec function:
exec(plusOne)
Because plusOne is called inside the method, this code prints the number 2.
Any function that matches this signature can be passed into the exec method. For instance, define a new function (or method) named plusTen that also takes an Int and returns nothing:
val plusTen = (i: Int) => println(i+10)
def plusTen(i: Int) = println(i+10)
Now you can pass it into your exec function, and see that it also works:
exec(plusTen) // prints 11
Although these examples are simple, you can see the power of the technique: you can easily swap in interchangeable algorithms. As long as the signature of the function or method that’s passed in matches what your method expects, your algorithms can do anything you want. This is comparable to swapping out algorithms in the OOP Strategy design pattern.
Discussion
Not including other features like givens (see Recipe 23.8, “Using Term Inference with given and using”), the general syntax for describing a function as a method parameter is this:
parameterName: (parameterType(s)) => returnType
Therefore, to define a function that takes a String and returns an Int, use one of these two signatures:
exec(f: (String) => Int)
exec(f: String => Int)
The second example works because the parentheses are optional when a function is declared to have only one input parameter. As an example of something more complicated, here’s the signature of a function that takes two Int values and returns a Boolean:
exec(f: (Int, Int) => Boolean)
Finally, this exec method expects a function that takes String, Int, and Double parameters and returns a Seq[String]:
exec(f: (String, Int, Double) => Seq[String])
Passing in a function with other parameters
A function parameter is just like any other method parameter, so a method can accept other parameters in addition to a function, and indeed, this is often the case.
The following code demonstrates this. First, define a method named executeXTimes that takes two parameters, a function and an Int:
def executeXTimes(callback:() => Unit, numTimes: Int): Unit =
for i <- 1 to numTimes do callback()
As its name implies, executeXTimes calls the callback function numTimes times, so if you pass in a 3, callback will be called three times.
Next, define a function or method that matches callback’s signature:
val sayHello = () => println("Hello")
def sayHello() = println("Hello")
Now pass either version of sayHello and an Int into executeXTimes:
scala> executeXTimes(sayHello, 3)
Hello
Hello
Hello
This demonstrates that you can use this technique to pass variables into a method, and those variables can then be used by the function inside the method body.
As another example, create this method named executeAndPrint that takes a function and two Int parameters:
def executeAndPrint(f:(Int, Int) => Int, x: Int, y: Int): Unit =
val result = f(x, y)
println(result)
In this case the function f takes two Int parameters and returns an Int. This executeAndPrint method is more interesting than the previous example because it takes the two Int parameters it’s given and passes them to the function parameter it’s given in this line of code:
val result = f(x, y)
To demonstrate this, create two functions that match the signature of the function that executeAndPrint expects, a sum function and a multiply function:
val sum = (x: Int, y: Int) => x + y
def sum(x: Int, y: Int) = x + y
val multiply = (x: Int, y: Int) => x * y
def multiply(x: Int, y: Int) = x * y
Now you can call executeAndPrint as follows, passing in the different functions, along with two Int parameters:
executeAndPrint(sum, 2, 9) // prints 11
executeAndPrint(multiply, 3, 9) // prints 27
This is cool because the executeAndPrint method doesn’t know what algorithm is actually run. All it knows is that it passes the parameters x and y to the function it’s given and then prints the result from that function. This is a little like defining an interface in OOP and then providing concrete implementations of that interface.
Here’s one more example of this three-step process:
// 1 - define the method
def exec(callback: (Any, Any) => Unit, x: Any, y: Any): Unit =
callback(x, y)
// 2 - define a function to pass in
def printTwoThings(a: Any, b: Any): Unit =
println(a)
println(b)
// 3 - pass the function and some parameters to the method
case class Person(name: String)
exec(printTwoThings, "Hello", Person("Dave"))
The output from that last line of code looks like this in the REPL:
scala> exec(printTwoThings, "Hello", Person("Dave"))
Hello
Person(Dave)
See Also
The syntax for function parameters is similar to the syntax for by-name parameters, which are discussed in “By-name parameters”.
10.5 Using Partially Applied Functions
Problem
You want to eliminate repetitively passing variables into a function by (a) passing common variables into the function to (b) create a new function that is preloaded with those values, and then (c) use the new function, passing it only the unique variables it needs.
Solution
The classic example of a partially applied function begins with a sum function:
val sum = (a: Int, b: Int, c: Int) => a + b + c
There’s nothing special about sum, it’s just a function that sums three Int values. But things get interesting when you supply two of the parameters when calling sum but don’t provide the third parameter:
val addTo3 = sum(1, 2, _)
Because you haven’t provided a value for the third parameter, the resulting variable addTo3 is a partially applied function. You can see this in the REPL. First, paste in the sum function:
scala> val sum = (a: Int, b: Int, c: Int) => a + b + c
val sum: (Int, Int, Int) => Int = Lambda ...
The REPL result shows this output:
val sum: (Int, Int, Int) => Int = Lambda ...
------------- ---
This output verifies that sum is a function that takes three Int input parameters and returns an Int. Next, give sum only two of the three input parameters it wants, while assigning the result to addTo3:
scala> val addTo3 = sum(1, 2, _)
val addTo3: Int => Int = Lambda ...

The underlined portion of the REPL result shows that addTo3 is a function that transforms a single Int input parameter into an output Int parameter. addTo3 is created by giving sum the input parameters 1 and 2, and now addTo3 is a function that can take one more input parameter. So now when you give addTo3 an Int, such as the number 10, you magically get the sum of the three numbers that have been passed into the two functions:
scala> addTo3(10)
res0: Int = 13
Here’s a summary of what just happened:
The first two numbers (1 and 2) were passed into the original sum function.
That process creates the new function named addTo3, which is a partially applied function.
Sometime later in the code, the third number (10) is passed into addTo3.
Note that in this example I create sum as a val function, but it can also be defined as a def method, and it will work exactly the same:
scala> def sum(a: Int, b: Int, c: Int) = a + b + c
def sum(a: Int, b: Int, c: Int): Int
scala> val addTo3 = sum(1, 2, _)
val addTo3: Int => Int = Lambda ...
scala> addTo3(10)
val res0: Int = 13
Discussion
In functional programming languages, when you call a function that has parameters, you are said to be applying the function to the parameters. When all the parameters are passed to the function—something you always do with languages like Java—you have fully applied the function to all the parameters. But when you give only a subset of the parameters to the function, the result of the expression is a partially applied function.
As demonstrated in the example, the resulting partially applied function is a variable that you can pass around. For instance, this code shows how the partially applied function addTo3 can be passed into a wormhole, through the wormhole, and out the other side before it’s executed:
def sum(a: Int, b: Int, c: Int) = a + b + c
val addTo3 = sum(1, 2, _)
def intoTheWormhole(f: Int => Int) = throughTheWormhole(f)
def throughTheWormhole(f: Int => Int) = otherSideOfWormhole(f)
// supply 10 to whatever function you receive:
def otherSideOfWormhole(f: Int => Int) = f(10)
intoTheWormhole(addTo3) // 13
As the comment in the last line shows, the result of calling intoTheWormhole will be 13 when addTo3 is finally executed by otherSideOfWormhole.
Function variables are also called function values, and as shown, when you later provide all the parameters needed to fully apply the function value, a result is yielded.
Real-world use
One use of this technique is to create a more-specific version of a general function. For instance, when working with HTML, you may have a method that adds a prefix and a suffix to an HTML snippet:
def wrap(prefix: String, html: String, suffix: String) =
prefix + html + suffix
If at a certain point in your code you know that you always want to add the same prefix and suffix to different HTML strings, you can apply those two parameters to the method, without applying the html parameter:
val wrapWithDiv = wrap("<div>", _, "</div>")
Now you can call the resulting wrapWithDiv function, just passing it the HTML you want to wrap:
scala> wrapWithDiv("<p>Hello, world</p>")
res0: String = <div><p>Hello, world</p></div>
scala> wrapWithDiv("""""")
res1: String = <div></div>
The wrapWithDiv function is preloaded with the <div> and </div> tags you applied, so it can be called with just one argument, the HTML you want to wrap.
As a nice benefit, you can still call the original wrap function if you want:
wrap("<pre>", "val x = 1", "</pre>")
In general, you can use partially applied functions to make programming easier by binding some arguments to an existing method (or function) and leaving the others to be filled in.
Improved Type Inference in Scala 3
In Scala 2 it was often necessary to specify the type of an omitted parameter, such as specifying the String type for the previous example:
val wrapWithDiv = wrap("<div>", _: String, "</div>")

But so far with Scala 3 I haven’t needed that. I just declare the missing field with the _ character, as shown in the examples:
val wrapWithDiv = wrap("<div>", _, "</div>")
10.6 Creating a Method That Returns a Function
Problem
You want to return a function (algorithm) from a function or method.
Solution
Define an anonymous function, and return that from your method. Then assign that to a function variable, and later invoke that function variable as needed.
For example, assuming that a variable named prefix exists in the current scope, this code declares an anonymous function that takes a String argument named str and returns that string with prefix prepended to it:
(str: String) => s"$prefix $str"
Now you can return that anonymous function from the body of another function as follows:
// single line syntax
def saySomething(prefix: String) = (str: String) => s"$prefix $str"
// multiline syntax, which might be easier to read
def saySomething(prefix: String) = (str: String) =>
s"$prefix $str"
That example doesn’t show saySomething’s return type, but you can declare it as (String => String) if you prefer:
def saySomething(prefix: String): (String => String) = (str: String) =>
s"$prefix $str"
Because saySomething returns a function that transforms one String to another String, you can assign that resulting function to a variable. saySomething also takes the String parameter named prefix, so give it that parameter as you create a new function named sayHello:
val sayHello = saySomething("Hello")
When you paste that code into the REPL, you can see that sayHello is a function that transforms a String to a String:
scala> val sayHello = saySomething("Hello")
val sayHello: String => String = Lambda ...

sayHello is essentially the same as saySomething, but with prefix preloaded to the value "Hello". Looking back at the anonymous function, you see that it takes a String parameter s and returns a String, so you pass it a String:
sayHello("Al")
Here’s what these steps look like in the REPL:
scala> def saySomething(prefix: String) = (str: String) =>
| s"$prefix $str"
def saySomething(prefix: String): String => String
// assign "Hello" to prefix
scala> val sayHello = saySomething("Hello")
val sayHello: String => String = Lambda ...
// assign "Al" to str
scala> sayHello("Al")
res0: String = Hello Al
Discussion
You can use this approach any time you want to encapsulate an algorithm inside a method. A bit like the object-oriented Factory or Strategy patterns, the function your method returns can be based on the input parameter it receives. For example, create a greeting method that returns an appropriate greeting based on the language specified:
def greeting(language: String) = (name: String) =>
language match
case "english" => s"Hello, $name"
case "spanish" => s"Buenos dias, $name"
If it doesn’t seem clear that greeting is returning a String => String function, you can make the code more explicit by (a) specifying the method return type and (b) creating function values inside the method:
// [a] declare the 'String => String' return type
def greeting(language: String): (String => String) = (name: String) =>
// [b] create the function values here, then return them from the
// match expression
val englishFunc = () => s"Hello, $name"
val spanishFunc = () => s"Buenos dias, $name"
language match
case "english" => println("returning the english function")
englishFunc()
case "spanish" => println("returning the spanish function")
spanishFunc()
Here’s what this second method looks like when it’s invoked in the REPL:
scala> val hello = greeting("english")
val hello: String => String = Lambda ...
scala> val buenosDias = greeting("spanish")
val buenosDias: String => String = Lambda ...
scala> hello("Al")
returning english function
val res0: String = Hello, Al
scala> buenosDias("Lorenzo")
returning spanish function
val res1: String = Buenos dias, Lorenzo
You can use this recipe any time you want to encapsulate one or more functions behind a method.
Returning methods from a method
Also, if you prefer, thanks to Scala’s Eta Expansion technology, you can also declare and return methods from inside a method:
def greeting(language: String): (String => String) = (name: String) =>
def englishMethod = s"Hello, $name"
def spanishMethod = s"Buenos dias, $name"
language match
case "english" => println("returning the english method")
englishMethod
case "spanish" => println("returning the spanish method")
spanishMethod
The only change to greeting is that this version declares and returns englishMethod and spanishMethod. I find that the method syntax is easier to read, so I prefer this approach, and to callers of greeting, everything else looks exactly the same.
Same Technique, Different Uses
In the first example, prefix was used to preload a value in the resulting function. In the second example, the language parameter was used to select which algorithm to return, something like the object-oriented programming Strategy or Template patterns.
10.7 Creating Partial Functions
Problem
You want to define a function that only works for a subset of possible input values, or you want to define a series of functions that only work for a subset of input values and then combine those functions to completely solve a problem.
Solution
A partial function is a function that does not provide an answer for every possible input value it can be given. It provides an answer only for a subset of possible data and defines the data it can handle. In Scala, a partial function can also be queried to determine if it can handle a particular value.
For example, imagine a normal function that divides one number by another:
val divide = (x: Int) => 42 / x
As defined, this function blows up when the input parameter is zero:
scala> divide(0)
java.lang.ArithmeticException: / by zero
Although you could handle this particular situation by catching and throwing an exception, Scala lets you define the divide function as a PartialFunction. When doing so, you also explicitly state that the function is defined when the input parameter is not zero:
val divide = new PartialFunction[Int, Int] {
def apply(x: Int) = 42 / x
def isDefinedAt(x: Int) = x != 0
}
In this approach, the apply method defines the function signature and body. Now you can do several nice things. One thing is to test the function before you attempt to use it:
scala> divide.isDefinedAt(0)
res0: Boolean = false
scala> divide.isDefinedAt(1)
res1: Boolean = true
scala> val x = if divide.isDefinedAt(1) then Some(divide(1)) else None
val x: Option[Int] = Some(42)
In addition to this, you’ll see shortly that other code can take advantage of partial functions to provide elegant and concise solutions.
Whereas that divide function is explicit about what data it handles, partial functions can also be written using case statements:
val divide2: PartialFunction[Int, Int] =
case d if d != 0 => 42 / d
With this approach, Scala can infer that divide2 takes an Int input parameter based on this part of the code:
PartialFunction[Int, Int]

Although this code doesn’t explicitly implement the isDefinedAt method, it works the same as the previous divide function definition:
scala> divide2.isDefinedAt(0)
res0: Boolean = false
scala> divide2.isDefinedAt(1)
res1: Boolean = true
Discussion
The PartialFunction Scaladoc describes partial functions like this:
A partial function of type PartialFunction[A, B] is a unary function where the domain does not necessarily include all values of type A. The function isDefinedAt allows [you] to test dynamically if a value is in the domain of the function.
This helps to explain why the last example with the case statement works: the isDefinedAt method dynamically tests to see if the given value is in the domain of the function, i.e., whether it is handled or accounted for. The signature of the PartialFunction trait looks like this:
trait PartialFunction[-A, +B] extends (A) => B
As discussed in other recipes, the => symbol can be thought of as a transformer, and in this case, the (A) => B can be interpreted as a function that transforms a type A into a resulting type B.
The divide2 method transforms an input Int into an output Int, so its signature looks like this:
val divide2: PartialFunction[Int, Int] = ...

But if it returned a String instead, it would be declared like this:
val divide2: PartialFunction[Int, String] = ...

As an example, the following method uses this signature:
// converts 1 to "one", etc., up to 5
val convertLowNumToString = new PartialFunction[Int, String] {
val nums = Array("one", "two", "three", "four", "five")
def apply(i: Int) = nums(i-1)
def isDefinedAt(i: Int) = i > 0 && i < 6
}
Chaining partial functions with orElse and andThen
A terrific feature of partial functions is that you can chain them together. For instance, one method may only work with even numbers, and another method may only work with odd numbers, and together they can solve all integer problems.
To demonstrate this approach, the following example shows two functions that can each handle a small number of Int inputs and convert them to String results:
// converts 1 to "one", etc., up to 5
val convert1to5 = new PartialFunction[Int, String] {
val nums = Array("one", "two", "three", "four", "five")
def apply(i: Int) = nums(i-1)
def isDefinedAt(i: Int) = i > 0 && i < 6
}
// converts 6 to "six", etc., up to 10
val convert6to10 = new PartialFunction[Int, String] {
val nums = Array("six", "seven", "eight", "nine", "ten")
def apply(i: Int) = nums(i-6)
def isDefinedAt(i: Int) = i > 5 && i < 11
}
Taken separately, they can each handle only five numbers. But combined with orElse, the resulting function can handle 10:
scala> val handle1to10 = convert1to5 orElse convert6to10
handle1to10: PartialFunction[Int,String] = <function1>
scala> handle1to10(3)
res0: String = three
scala> handle1to10(8)
res1: String = eight
The orElse method comes from the PartialFunction trait, which also includes the andThen method to further help chain partial functions together.
Partial functions in the collections classes
It’s important to know about partial functions, not just to have another tool in your toolbox but also because they are used in the APIs of some libraries, including the Scala collections library.
One example of where you’ll run into partial functions is with the collect method on collections classes. The collect method takes a partial function as input, and as its Scaladoc describes, collect “builds a new collection by applying a partial function to all elements of this list on which the function is defined.”
For instance, the divide function shown earlier is a partial function that is not defined at the Int value zero. Here’s that function again:
val divide: PartialFunction[Int, Int] =
case d: Int if d != 0 => 42 / d
If you attempt to use this partial function with the map method and a list that contains 0, it will explode with a MatchError:
scala> List(0,1,2).map(divide)
scala.MatchError: 0 (of class java.lang.Integer)
stack trace continues ...
However, if you use the same function with the collect method, it won’t throw an exception:
scala> List(0,1,2).collect(divide)
res0: List[Int] = List(42, 21)
This is because the collect method is written to test the isDefinedAt method for each element it’s given. Conceptually, it’s similar to this:
List(0,1,2).filter(divide.isDefinedAt(_))
.map(divide)
As a result, collect doesn’t run the divide algorithm when the input value is 0 but does run it for every other element.
You can see the collect method work in other situations, such as passing it a List that contains a mix of data types, with a function that works only with Int values:
scala> List(42, "cat").collect { case i: Int => i + 1 }
res0: List[Int] = List(43)
Because it checks the isDefinedAt method under the covers, collect can handle the fact that your anonymous function can’t work with a String as input.
Another use of collect is when a list contains a series of Some and None values and you want to extract all the Some values:
scala> val possibleNums = List(Some(1), None, Some(3), None)
val possibleNums: List[Option[Int]] = List(Some(1), None, Some(3), None)
scala> possibleNums.collect{case Some(i) => i}
val res1: List[Int] = List(1, 3)
Or Use flatten
Another approach to reducing a Seq[Option] to only the values inside its Some elements is to call flatten on the list:
scala> possibleNums.flatten
val res0: List[Int] = List(1, 3)
This works because Option is like a list that contains zero or one value, and flatten’s purpose in life is to convert a “list of lists” down to a single list. See Recipe 13.6, “Flattening a List of Lists with flatten”, for more details.
See Also
Portions of this recipe were inspired by Erik Bruchez’s blog post “Scala Partial Functions (Without a PhD)”.
See the PartialFunction Scaladoc for more details.
10.8 Implementing Functional Error Handling
Problem
You’ve started to write code in a functional programming style, but you’re not sure how to handle exceptions and other errors when writing pure functions.
Solution
Because writing functional code is like writing algebraic equations—and because algebraic equations always return a value and never throw an exception—your pure functions don’t throw exceptions. Instead, you handle errors with Scala’s error handling types:
Option/Some/None
Try/Success/Failure
Either/Left/Right
My canonical example for this is writing a makeInt method. Imagine for a moment that Scala doesn’t include a makeInt method on a String, so you want to write your own method. A correct solution looks like this:
def makeInt(s: String): Option[Int] =
try
Some(Integer.parseInt(s))
catch
case e: NumberFormatException => None
This code returns a Some[Int] if makeInt can convert the String to an Int, otherwise it returns a None. Callers of this method use it like this:
makeInt("1") // Option[Int] = Some(1)
makeInt("a") // Option[Int] = None
makeInt(aString) match
case Some(i) => println(s"i = $i")
case None => println("Could not create an Int")
Given a list of strings listOfStrings that may or may not convert to integers, you can also use makeInt like this:
val optionalListOfInts: Seq[Option[Int]] =
for s <- listOfStrings yield makeInt(s)
This is great because makeInt doesn’t throw an exception and blow up that for expression. Instead, the for expression returns a Seq that contains Option[Int] values. For instance, if listOfStrings contains these values:
val listOfStrings = List("a", "1", "b", "2")
then optionalListOfInts will contain these values:
List(None, Some(1), None, Some(2))
To create a list that contains only the values that were successfully converted to integers, just flatten that list like this:
val ints = optionalListOfInts.flatten // List(1, 2)
In addition to using the Option types for this solution, you can also use the Try and Either types. Much shorter versions of the makeInt method that use these three error-handling types look like this:
import scala.util.control.Exception.*
import scala.util.{Try, Success, Failure}
def makeInt(s: String): Option[Int] = allCatch.opt(Integer.parseInt(s))
def makeInt(s: String): Try[Int] = Try(Integer.parseInt(s))
def makeInt(s: String): Either[Throwable, Int] =
allCatch.either(Integer.parseInt(s))
These examples show the success and error cases for those three approaches:
// Option
makeInt("1") // Some(1)
makeInt("a") // None
// Try
makeInt("1") // util.Try[Int] = Success(1)
makeInt("a") // util.Try[Int] = Failure(java.lang.NumberFormatException:
// For input string: "a")
// Either
makeInt("1") // Either[Throwable, Int] = Right(1)
makeInt("a") // Either[Throwable, Int] = Left(java.lang.NumberFormatException:
// For input string: "a")
The key to all of these approaches is that you don’t throw exceptions; instead, you return these error-handling types.
Using Either Gets You Ready for FP Libraries Like ZIO
Hermann Hueck, one of the reviewers of this book, made the point that two benefits of using Either are that (a) it’s more flexible than Try, because you can control the error type, and (b) it gets you ready to use FP libraries like ZIO, which use Either and similar approaches extensively.
Discussion
A bad (non-FP) approach to this problem is to write the method like this to throw an exception:
// don’t write code like this!
@throws(classOf[NumberFormatException])
def makeInt(s: String): Int =
try
Integer.parseInt(s)
catch
case e: NumberFormatException => throw e
You don’t write code like this in FP because when other people use your method, it will blow up their equations when an exception occurs. For instance, imagine that someone writes this for expression that uses this version of makeInt:
val possibleListOfInts: Seq[Int] =
for s <- listOfStrings yield makeInt(s)
If listOfStrings contains the same values that were shown in the Solution:
val listOfStrings = List("a", "1", "b", "2")
their for expression—which they want to be an algebraic equation—will blow up on the first element, the "a" in the list.
Again, because algebraic equations don’t throw exceptions, pure functions don’t throw them either.
See Also
See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for more details on using the Option, Try, and Either error-handling types.
10.9 Real-World Example: Passing Functions Around in an Algorithm
As a bit of a real-world example, in this lesson I’ll show how to pass methods and functions around as part of an algorithm that I used back in my aerospace engineering days.
Newton’s Method is a mathematical method that can be used to solve the roots of equations. For instance, this example will find a possible value of x for this equation:
3x + sin(x) - Ex = 0
As you can see in the following code, the method named newtonsMethod takes functions as its first two parameters. It also takes two other Double parameters and returns a Double:
/**
* Newton’s Method for solving equations.
* @param fx The equation to solve.
* @param fxPrime The derivative of `fx`.
* @param x An initial “guess” for the value of `x`.
* @param tolerance Stop iterating when the iteration values are
within this tolerance.
* @todo Check that `f(xNext)` is greater than a second tolerance value.
* @todo Check that `f'(x) != 0`
*/
def newtonsMethod(
fx: Double => Double,
fxPrime: Double => Double,
x: Double,
tolerance: Double
): Double =
/**
* most FP approaches don’t use a `var` field,
* but some people believe that `var` fields are acceptable
* when they are contained within the scope of a method/function.
*/
var x1 = x
var xNext = newtonsMethodHelper(fx, fxPrime, x1)
while math.abs(xNext - x1) > tolerance do
x1 = xNext
println(xNext) // debugging (intermediate values)
xNext = newtonsMethodHelper(fx, fxPrime, x1)
end while
// return xNext:
xNext
end newtonsMethod
/**
* This is the `x2 = x1 - f(x1)/f'(x1)` calculation.
*/
def newtonsMethodHelper(
fx: Double => Double,
fxPrime: Double => Double,
x: Double
): Double =
x - fx(x) / fxPrime(x)
The two functions that are passed into newtonsMethod should be the original equation (fx) and the derivative of that equation (fxPrime). Don’t worry too much about the details inside the two methods: I’m only interested in focusing on how functions are passed around in a real-world algorithm like this.
The method newtonsMethodHelper also takes two functions as parameters, so you can see how the functions are passed from newtonsMethod to newtonsMethodHelper.
Here’s an @main driver method that shows how to use Newton’s Method to find the roots of the fx equation:
/**
* A “driver” function to test Newton’s method. Start with:
* - the desired `f(x)` and `f'(x)` equations
* - an initial guess, and
* - a tolerance value
*/
@main def driver =
// The `f(x)` and `f'(x)` functions. Both functions take a `Double`
// parameter named `x` and return a `Double`.
def fx(x: Double): Double = 3*x + math.sin(x) - math.pow(math.E, x)
def fxPrime(x: Double): Double = 3 + math.cos(x) - math.pow(math.E, x)
val initialGuess = 0.0
val tolerance = 0.00005
// pass `f(x)` and `f'(x)` to the Newton’s Method function, along with
// the initial guess and tolerance.
val answer = newtonsMethod(fx, fxPrime, initialGuess, tolerance)
// note: this is not an FP approach to printing output
println(answer)
The output from this example is:
0.3333333333333333
0.3601707135776337
0.36042168047601975
0.3604217029603242
As you can see, the majority of this code involves defining methods and functions, passing functions into methods, and then invoking the functions from within the methods. This gives you an idea of how FP works, especially when writing code for an algorithm like this.
The method named newtonsMethod works for any two functions fx and fxPrime, where fxPrime is the derivative of fx, within the limits of the @todo items that are not implemented. To experiment with this example, try changing the functions fx and fxPrime, or implement the @todo items.
Source of the Algorithm
The algorithm shown comes from a 1980s version of the college textbook Applied Numerical Analysis by Curtis Gerald and Patrick Wheatley (Pearson), where the approach was demonstrated in pseudocode.
10.10 Real-World Example: Functional Domain Modeling
As something of a real-world example, let’s look at how to organize an FP-style order-entry application for a pizza store. The code in this example will only focus on pizzas—no breadsticks, cheesesticks, soft drinks, or salads—but it will model customers, addresses, and orders, and the operations (pure functions) on those data types.
The Data Model
To get started, here are some enums a pizza class will need. To be clear about what we’re doing, place this code in a file named Nouns.scala:
enum Topping:
case Cheese, Pepperoni, Sausage, Mushrooms, Onions
enum CrustSize:
case Small, Medium, Large
enum CrustType:
case Regular, Thin, Thick
Next, those enums are used to define a Pizza class. Add this case class to Nouns.scala:
case class Pizza(
crustSize: CrustSize,
crustType: CrustType,
toppings: Seq[Topping]
)
Finally, these classes are used to model the concepts of customers and orders:
case class Customer(
name: String,
phone: String,
address: Address
)
case class Address(
street1: String,
street2: Option[String],
city: String,
state: String,
postalCode: String
)
case class Order(
pizzas: Seq[Pizza],
customer: Customer
)
Add that code to Nouns.scala as well.
That’s all there is to the data model. Notice that the classes are simple, immutable data structures, defined with enums and case classes. Unlike OOP classes, you don’t encapsulate the behaviors (methods) inside the classes. As a result, this approach feels a lot like defining a database schema.
Skinny Domain Objects
In his book, Functional and Reactive Domain Modeling (Manning), Debasish Ghosh states that where OOP practitioners describe their classes as “rich domain models” that encapsulate data and behaviors, FP data models can be thought of as “skinny domain objects.” That’s because, as this lesson shows, the data models are defined using enums and case classes with attributes, but no behaviors.
Functions That Operate on That Model
Now all you have to do is create a series of pure functions to operate on those immutable data structures. A good way to do this is to first sketch out the desired interface using one or more traits. For the functions that operate on a Pizza I’ll define one trait. Place this code in a file named Verbs.scala:
trait PizzaServiceInterface:
def addTopping(p: Pizza, t: Topping): Pizza
def removeTopping(p: Pizza, t: Topping): Pizza
def removeAllToppings(p: Pizza): Pizza
def updateCrustSize(p: Pizza, cs: CrustSize): Pizza
def updateCrustType(p: Pizza, ct: CrustType): Pizza
Once you create a concrete implementation of that trait—which you’ll do in a few moments—you can write code like this:
import Topping.*, CrustSize.*, CrustType.*
@main def pizzaServiceMain =
// PizzaService is a trait that extend PizzaServiceInterface
import PizzaService.*
object PizzaService extends PizzaService
// an initial pizza
val p = Pizza(Medium, Regular, Seq(Cheese))
// demonstrating the PizzaService functions
val p1 = addTopping(p, Pepperoni)
val p2 = addTopping(p1, Mushrooms)
val p3 = updateCrustType(p2, Thick)
val p4 = updateCrustSize(p3, Large)
// this is *not* a functional approach to printing output.
// result:
// Pizza(LargeCrustSize,ThickCrustType,List(Cheese, Pepperoni, Mushrooms))
println(p4)
Place that code in a file named Driver.scala.
Because I’m satisfied with how that API looks, I then create a concrete implementation of the PizzaServiceInterface trait. To do so, add this code to the Verbs.scala file:
import ListUtils.dropFirstMatch
trait PizzaService extends PizzaServiceInterface:
def addTopping(p: Pizza, t: Topping): Pizza =
val newToppings = p.toppings :+ t
p.copy(toppings = newToppings)
def removeTopping(p: Pizza, t: Topping): Pizza =
val newToppings = dropFirstMatch(p.toppings, t)
p.copy(toppings = newToppings)
def removeAllToppings(p: Pizza): Pizza =
val newToppings = Seq[Topping]()
p.copy(toppings = newToppings)
def updateCrustSize(p: Pizza, cs: CrustSize): Pizza =
p.copy(crustSize = cs)
def updateCrustType(p: Pizza, ct: CrustType): Pizza =
p.copy(crustType = ct)
end PizzaService
That code requires a method named dropFirstMatch that drops the first matching element in a list, which I put in a ListUtils object:
object ListUtils:
/**
* Drops the first matching element in a list, as in this example:
* {{{
* val xs = List(1,2,3,1)
* dropFirstMatch(xs, 1) == List(2,3,1)
* }}}
*/
def dropFirstMatch[A](xs: Seq[A], value: A): Seq[A] =
val idx = xs.indexOf(value)
for
(x, i) <- xs.zipWithIndex
if i != idx
yield
x
For our purposes, this method works to drop the first occurrence of a Topping that’s found in a list of toppings:
val a = List(Pepperoni, Mushrooms, Pepperoni)
val b = dropFirstMatch(a, Pepperoni)
// result: b == List(Mushrooms, Pepperoni) // first Pepperoni is removed
As shown with PizzaServiceInterface and PizzaService, the implementation of the functions (the verbs) is often a two-step process. In the first step, you sketch the contract of your API as an interface. In the second step you create a concrete implementation of that interface. This gives you the flexibility of being able to create multiple concrete implementations of the base interface.
At this point you have a complete, working small application. Experiment with the application to see if you like the API as it is, or if you want to modify it.
Nouns and Verbs
I specifically use the filenames Nouns.scala and Verbs.scala to emphasize this FP approach to writing code. As shown, your data model just consists of the nouns in your application, and the functions are where the action is, i.e., the verbs.
Use Traits To Create a Dependency Injection Framework
One benefit of using a trait as an interface and then implementing it in another trait (or object) is that you can use the design to create a dependency injection framework. For example, imagine that you want to write some code to calculate the price of a pizza, and that code requires access to a database. One approach to the problem is:
Create a data access object (DAO) interface named PizzaDaoInterface.
Create different implementations of that DAO interface for your Development, Test, and Production environments.
Create a “pizza pricer” trait that references PizzaDaoInterface.
Create specific pizza pricer implementations for the Development, Test, and Production environments.
Create unit tests to test your code (or in our case, an @main driver application to demonstrate the solution).
These steps are shown in the following example.
1. Create a DAO interface
First, create a file named Dao.scala, and then place this interface in that file to declare what you want your DAO to look like:
trait PizzaDaoInterface:
def getToppingPrices(): Map[Topping, BigDecimal]
def getCrustSizePrices(): Map[CrustSize, BigDecimal]
def getCrustTypePrices(): Map[CrustType, BigDecimal]
In the real world, because accessing a database can fail, these methods will return a type like Option, Try, or Either wrapped around each Map, but I omit those to make the code a little simpler.
2. Create multiple implementations of that DAO
Next, create concrete implementations of that DAO interface for your Development, Test, and Production environments. Normally you’ll create one concrete implementation for each environment, but for our purposes I’ll just create one “mock” DAO for the Development environment named DevPizzaDao. The purpose of this is to have a fast, simulated database during your local development (and testing) process. To do this, place this code in Dao.scala as well:
object DevPizzaDao extends PizzaDaoInterface:
def getToppingPrices(): Map[Topping, BigDecimal] =
Map(
Cheese -> BigDecimal(1), // simulating $1 each
Pepperoni -> BigDecimal(1),
Sausage -> BigDecimal(1),
Mushrooms -> BigDecimal(1)
)
def getCrustSizePrices(): Map[CrustSize, BigDecimal] =
Map(
Small -> BigDecimal(0),
Medium -> BigDecimal(1),
Large -> BigDecimal(2)
)
def getCrustTypePrices(): Map[CrustType, BigDecimal] =
Map(
Regular -> BigDecimal(0),
Thick -> BigDecimal(1),
Thin -> BigDecimal(1)
)
end DevPizzaDao
In the real world you might use this DAO for development and testing, and use a ProductionPizzaDao for your Production environment. Or you might use a separate DAO for your Test environment, or wherever you test your code against a Test database.
3. Create a “pizza pricer” trait
Next, go back to the Verbs.scala file, and create a “pizza pricer” trait that references PizzaDaoInterface:
trait PizzaPricerTrait:
// this base trait references the DAO interface
def pizzaDao: PizzaDaoInterface
def calculatePizzaPrice(p: Pizza): BigDecimal =
// the key thing here is the use of `pizzaDao`
val crustSizePrice: BigDecimal =
pizzaDao.getCrustSizePrices()(p.crustSize)
val crustTypePrice: BigDecimal =
pizzaDao.getCrustTypePrices()(p.crustType)
val toppingPrices: Seq[BigDecimal] =
for
topping <- p.toppings
toppingPrice = pizzaDao.getToppingPrices()(topping)
yield
toppingPrice
val totalToppingPrice: BigDecimal = toppingPrices.reduce(_ + _) //sum
val totalPrice: BigDecimal =
crustSizePrice + crustTypePrice + totalToppingPrice
totalPrice
// other price-related functions ...
end PizzaPricerTrait
Two keys of this part of the solution are:
Declare the pizzaDao reference as a def of type PizzaDaoInterface. It will be replaced by val fields in the concrete objects that you’ll develop next.
As shown, calculatePizzaPrice can be implemented in this base trait. This way you only need to implement it in one place, and it will be available in the concrete objects that extend PizzaPricerTrait.
4. Create specific pricers for your environments
Next, in the final step of the recipe, create concrete pizza pricer objects for your Development, Test, and Production environments:
object DevPizzaPricerService extends PizzaPricerTrait:
val pizzaDao = DevPizzaDao // dev environment
object TestPizzaPricerService extends PizzaPricerTrait:
val pizzaDao = TestPizzaDao // test environment
object ProductionPizzaPricerService extends PizzaPricerTrait:
val pizzaDao = ProductionPizzaDao // production environment
Because PizzaPricerTrait completely implements its calculatePizzaPrice method, all these objects need to do is connect to their respective data access objects, as shown.
In the source code for this project, you’ll see that I created a DevPizzaPricer in the Verbs.scala file. (Note that in this example, DevPizzaPricerService compiles and runs because I implemented DevPizzaDao, but TestPizzaPricerService and ProductionPizzaPricerService will not compile because I haven’t implemented TestPizzaDao and ProductionPizzaDao.)
The Uniform Access Principle
In PizzaPricerTrait, pizzaDao is defined as a def:
def pizzaDao: PizzaDaoInterface
but in the concrete DevPizzaPricerService object I define that field as a val:
val pizzaDao = DevPizzaDao
This works because of the Uniform Access Principle (UAP) implementation in Scala. That link is from the Scala Glossary, which says “The uniform access principle states that variables and parameterless functions should be accessed using the same syntax. Scala supports this principle by not allowing parentheses to be placed at call sites of parameterless functions. As a result, a parameterless function definition can be changed to a val, or vice versa, without affecting client code.”
5. Create unit tests or a driver app
In the real world you’ll create unit tests to test your code, but for our purposes here I’ll create an @main application to demonstrate the solution. This pizzaPricingMain application shows how to access and use the pizza pricer algorithm in the Development environment by using the DevPizzaPricerService (which in turn uses the DevPizzaDao):
@main def pizzaPricingMain =
object PizzaService extends PizzaService
import PizzaService.*
import DevPizzaPricerService.*
// create a pizza
val p = Pizza(
Medium,
Regular,
Seq(Cheese, Pepperoni, Mushrooms)
)
// determine the pizza price
val pizzaPrice = calculatePizzaPrice(p)
// print the pizza and its price (in a nonfunctional way)
println(s"Pizza: $p")
println(s"Price: $pizzaPrice")
When you run that code you’ll see this output:
Pizza: Pizza(Medium,Regular,List(Cheese, Pepperoni, Mushrooms))
Price: 11.0
This “wiring” technique uses the concepts of modules in Scala, as described in Recipe 6.11, “Using Traits to Create Modules”. A significant benefit of this approach is that you can use the DevPizzaPricerService in your Development environment, TestPizzaPricerService in Test, and ProductionPizzaPricerService in Production. This technique uses the features of the Scala language to create your own dependency-injection framework.
IMPROVE THIS CODE WITH OPAQUE TYPES
This code can be improved by using opaque types in at least two places:
Where I use a String for a postalCode field
Where I use BigDecimal for a field to represent currency
If you use opaque types, you can refer to those fields like this instead:
case class Address(
street1: String,
street2: Option[String],
city: String,
state: String,
postalCode: PostalCode // use PostalCode
// instead of String
)
// in the PizzaDaoInterface:
def getToppingPrices(): Map[Topping, Money]
The advantages of creating custom types like this are that (a) everyone can more easily see what those fields are, and (b) you can add custom methods and extension methods to work with those types, such as validating postal code fields.
To keep this recipe relatively simple I didn’t make these changes, but if you’re interested in using this technique to create more meaningful types, see Recipe 23.7, “Creating Meaningful Type Names with Opaque Types”.
See Also
For more examples of the module technique shown in this recipe, see Recipe 6.11, “Using Traits to Create Modules”, and Recipe 7.7, “Reifying Traits as Objects”.
The source code for this example is in the source code repository for this book, at github.com/alvinj/ScalaCookbook2Examples.
Chapter 11. Collections: Introduction
This is the first of five chapters that cover the Scala collections classes. Because collections are so important to any programming language, these chapters provide in-depth coverage of Scala’s collections classes and methods. Furthermore, these chapters have been completely reorganized in this second edition of the Scala Cookbook to make the recipes easier for you to find.
This first collections chapter provides an introduction to the collections classes. The intent of this chapter is to demonstrate how the classes are organized, and to help you choose a collections class for your needs. For example, if you want an indexed, immutable sequence, Vector is recommended as the go-to sequence, but if you want an indexed, mutable sequence, ArrayBuffer is recommended instead.
After this chapter, Chapter 12 covers the most commonly used Scala sequence classes, including Vector, ArrayBuffer, List, and Array. Additional recipes cover ListBuffer and LazyList.
Chapter 13 provides recipes for the most common methods that are available on the Scala sequence classes. The collections classes are well known for the depth of the built-in methods that are available, and that chapter demonstrates those methods.
Chapter 14 covers the Map types. Scala maps are like the Java Map, Ruby Hash, or Python dictionary, in that they consist of key/value pairs, where the key must be unique. Scala has both immutable and mutable maps, and they’re both covered in this chapter.
Finally, Chapter 15 covers other collection types, including the commonly used tuple and Range types, along with sets, queues, and stacks.
Scala Is Not Java
Scala’s collections classes are rich, deep, and differ significantly from collections classes in other languages like Java. In the short term this might be a bit of a speed bump, but in the long term you’ll come to appreciate their elegance and built-in methods.
Because of the depth of these methods, you’ll very rarely have to write (or read) custom for loops. It turns out that many of those custom for loops developers have been writing for many years follow certain patterns, so those loops are encapsulated in built-in collections methods like filter, map, foreach, etc. When the first edition of the Scala Cookbook was released in 2013, the wealth of the collections methods could be quite a shock to someone with a Java background, but now that the Java collections have more functional interfaces, the transition should be much easier.
However, when you begin working with Scala it’s still best to forget the Java collections classes and focus on the Scala collections. For instance, when a Java developer first comes to Scala, they might think, “OK, I’ll use lists and arrays, right?” Well, no, not really. The Scala List class is very different from the Java List classes—including the part where the Scala List is immutable. And while the Scala Array is a wrapper around the Java array type, and it provides many built-in methods for working with an array, it’s not even recommended as a go-to sequential collections class.
In my own experience, I came to Scala from Java and kept trying to use the Java collections classes in my Scala applications. This was a big waste of time. While it’s true that the Java collections work well in Scala, this functionality is really intended only for interoperating with Java code. In retrospect, trying to use the Java collections classes as the default collections in my Scala applications only slowed down my learning curve. Rather than do what I did, I encourage you to dive right in and learn the Scala way! This chapter will help you find the classes you need.
The Scala 2.13 Collections Overhaul
As a final introductory note, the Scala 2.13 release—which concluded in 2018—was known for its major overhaul to the collections. While the “behind the scenes” implementation of the collections involved significant changes to traits and type inheritance, for the most part the changes are transparent to end users.
This is a good thing, because Scala developers enjoy the end result of the collections. Therefore, the external API—the classes you use, like List, Vector, ArrayBuffer, Map, and Set—remain largely the same. If anything, Scala 2.13 and Scala 3 have simplified these internal representations, so your code and types are simpler than ever before.
I mention this overhaul because Scala 3 quickly follows behind Scala 2.13, so with the exception of tuples—which have been significantly updated in Scala 3—many of the collections work just like they did in Scala 2.13. Again, this is a good thing.
If you’re interested in the details of the Scala 2.13 overhaul, here are three great resources that tell the story behind the changes:
The Scala 3 page about Scala 2.13’s collections
The Scala 3 page about the architecture of Scala 2.13’s collections
An overview of the Scala 2.13 class hierarchy
Understanding the Collections Hierarchy
A first thing to know about the collections is that they are all contained in the packages shown in Table 11-1. In general, the collections in scala.collection are superclasses (or, more accurately, supertypes) of the collections in scala.collection.immutable and scala.collection.mutable. This means that the base operations are supplied to the types in scala.collection, and the immutable and mutable operations are added to the types in the other two packages.
Character sequence | Description |
---|---|
scala.collection | Collections here may be immutable or mutable. |
scala.collection.immutable | The immutable collections. They never change after they’re created. |
scala.collection.mutable | The mutable collections. They have some (or many) methods that allow the collection’s elements to be changed. |
The Collections Are Deep and Wide
The Scala collections hierarchy is very rich—both deep and wide—and understanding how it’s organized can be helpful when choosing a collections class or method to solve a problem.
Figure 11-1 shows the traits inherited by the Vector class and demonstrates some of the complexity of the Scala collections hierarchy.
Figure 11-1. The traits inherited by the Vector class
Because (a) Scala classes can inherit from traits and (b) well-designed traits are granular, a class hierarchy can look like this. However, don’t let Figure 11-1 throw you for a loop: you don’t need to know all those traits to use a Vector. In fact, using a Vector is straightforward:
val x = Vector(1, 2, 3)
x.sum // 6
x.filter(_ > 1) // Vector(2, 3)
x.map(_ * 2) // Vector(2, 4, 6)
x.takeWhile(_ < 3) // Vector(1, 2)
At a high level, Scala’s collection classes begin with the Iterable trait and extend into the three main categories of sequences (Seq), sets (Set), and maps (Map). Sequences further branch off into indexed and linear sequences, as shown in Figure 11-2.
Figure 11-2. A high-level view of the Scala collections
The Iterable trait defines an iterator, which lets you loop through a collection’s elements one at a time. But when using an iterator, the collection can be traversed only once, because each element is consumed during the iteration process.
Sequences
Digging a little deeper into the sequence hierarchy, Scala contains a large number of sequence types. The most common immutable sequences are shown in Figure 11-3, and the most common mutable sequences are shown in Figure 11-4.
Figure 11-3. A portion of the Scala immutable sequence hierarchy
Figure 11-4. A portion of the Scala mutable sequence hierarchy
As shown in Figure 11-3, the immutable sequences branch off into two main categories: indexed sequences and linear sequences (linked lists). An IndexedSeq indicates that random access of elements is efficient, such as accessing a Vector element as xs(1_000_000). By default, specifying that you want an IndexedSeq with Scala 3 creates a Vector:
scala> val x = IndexedSeq(1,2,3)
x: IndexedSeq[Int] = Vector(1, 2, 3)
A LinearSeq implies that a collection can be efficiently split into head and tail components, and it’s common to work with them using the head, tail, and isEmpty methods. Note that creating a LinearSeq in Scala 3 creates a List, which is a singly linked list:
scala> val xs = scala.collection.immutable.LinearSeq(1,2,3)
xs: scala.collection.immutable.LinearSeq[Int] = List(1, 2, 3)
Of the mutable sequences shown in Figure 11-4, ArrayBuffer is the most commonly used and is recommended when you need a mutable sequence. Here’s a quick look at how to use ArrayBuffer:
scala> import scala.collection.mutable.ArrayBuffer
scala> val xs = ArrayBuffer(1,2,3)
val xs: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)
scala> xs.addOne(4)
val res0: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)
scala> xs.addAll(List(5,6,7))
val res1: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6, 7)
I show the addOne and addAll methods, but those are relatively new additions; historically it’s been more common to use += and ++= for these purposes:
scala> xs += 8
val res2: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)
scala> xs ++= List(9,10)
val res3: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Maps
Like a Java Map, Ruby Hash, or Python dictionary, a Scala Map is a collection of key/value pairs, where all the keys must be unique. The most common immutable and mutable Map classes are shown in Figures 11-5 and 11-6, respectively.
Figure 11-5. The most common immutable Map classes
Figure 11-6. Common mutable Map classes
Map types are covered in Recipe 14.1, “Creating and Using Maps”, but as a brief introduction, when you just need a simple immutable map, you can create one without requiring an import statement:
scala> val m = Map(1 -> "a", 2 -> "b")
val m: Map[Int, String] = Map(1 -> a, 2 -> b)
The mutable map is not in scope by default, so you must import it or specify its full path to use it:
scala> val mm = collection.mutable.Map(1 -> "a", 2 -> "b")
val mm: scala.collection.mutable.Map[Int, String] = HashMap(1 -> a, 2 -> b)
Sets
Like a Java Set, a Scala Set is a collection of unique elements. The common immutable and mutable Set classes are shown in Figures 11-7 and 11-8, respectively.
Figure 11-7. The most common immutable Set classes
Figure 11-8. Common mutable Set classes
Set traits and classes are covered in Recipe 15.3, “Creating a Set and Adding Elements to It”, but as a quick preview, if you just need an immutable set, you can create it like this, without needing an import statement:
scala> val set = Set(1, 2, 3)
val set: Set[Int] = Set(1, 2, 3)
Just like a map, if you want to use a mutable set, you must import it or specify its complete path:
scala> val mset = collection.mutable.Set(1, 2, 3)
val mset: scala.collection.mutable.Set[Int] = HashSet(1, 2, 3)
In summary, this is an overview of the Scala collections hierarchy.
11.1 Choosing a Collections Class
Problem
You want to choose a Scala collections class to solve a particular problem.
Solution
There are three main categories of collections classes to choose from:
Sequence
Map
Set
A sequence is a linear collection of elements and may be indexed or linear (a linked list). A map contains a collection of key/value pairs with unique keys, like a Java Map, Ruby Hash, or Python dictionary. A set is a sequence that contains no duplicate elements.
In addition to these three main categories, there are other useful collection types, including Range, Stack, and Queue. A few other classes act like collections, including tuples and the Option, Try, and Either error-handling classes.
Choosing a sequence
When choosing a sequence—a sequential collection of elements—you have two main decisions:
Should the sequence be indexed, allowing rapid access to any elements, or should it be implemented as a linked list?
Do you want a mutable or immutable collection?
Beginning with Scala 2.10 and continuing with Scala 3, the recommended general-purpose go-to sequential collections for the combinations of mutable/immutable and indexed/linear are shown in Table 11-2.
| Immutable | Mutable |
---|---|---|
Indexed | Vector | ArrayBuffer |
Linear (Linked lists) | List | ListBuffer |
As an example of reading that table, if you want an immutable, indexed collection, in general you should use a Vector; if you want a mutable, indexed collection, use an ArrayBuffer (and so on).
While those are the general-purpose recommendations, there are many more sequence alternatives. The most common immutable sequence choices are shown in Table 11-3.
Class | IndexedSeq | LinearSeq | Description |
---|---|---|---|
LazyList | | ✓ | Similar to List, it’s a linked list, but it’s lazy, and its elements are memoized. Good for large or infinite sequences. (Replaces the Scala 2 Stream class.) |
List | | ✓ | The go-to immutable linear sequence, it is a singly linked list. Suited for prepending elements, and for recursive algorithms that work by operating on the list’s head and tail. |
Queue | | ✓ | A first-in, first-out data structure. Available in immutable and mutable versions. |
Range | ✓ | | A range of evenly spaced whole numbers or characters. |
Vector | ✓ | | The go-to immutable indexed sequence. The Scaladoc states, “It provides random access and updates in effectively constant time, as well as very fast append and prepend.” |
The most common mutable sequence choices are shown in Table 11-4. Queue and Stack are also in this table because there are immutable and mutable versions of these classes. All quotes in the descriptions come from the Scaladoc for each class.
Class | IndexedSeq | LinearSeq | Buffer | Description |
---|---|---|---|---|
Array | ✓ | | | Backed by a Java array, its elements are mutable, but it can’t change in size. |
ArrayBuffer | ✓ | | ✓ | The go-to class for a mutable indexed sequence. “Uses an array internally. Append, update and random access take constant time (amortized time). Prepends and removes are linear in the buffer size.” |
ArrayDeque | ✓ | | | A double-ended queue, it’s a superclass of the mutable Stack and Queue classes. “Append, prepend, removeFirst, removeLast and random-access take amortized constant time.” |
ListBuffer | | ✓ | ✓ | Like an ArrayBuffer, but backed by a list. The documentation states, “If you plan to convert the buffer to a list, use ListBuffer instead of ArrayBuffer.” Offers constant-time prepend and append; most other operations are linear. |
Queue | ✓ | | | A first-in, first-out data structure. |
Stack | ✓ | | | A last-in, first-out data structure. |
StringBuilder | ✓ | | | “A builder for mutable sequence of characters. Provides an API mostly compatible with java.lang.StringBuilder.” |
Note that I list ArrayBuffer and ListBuffer under two columns. That’s because while they are both descendants of Buffer—which is a Seq that can grow and shrink—ArrayBuffer behaves like an IndexedSeq and ListBuffer behaves like a LinearSeq.
In addition to the information shown in these tables, performance can be a consideration. See Recipe 11.2 if performance is important to your selection process.
When creating an API for a library, you may want to refer to your sequences in terms of their superclasses. Table 11-5 shows the traits that are often used when referring generically to a collection in an API. Note that all quotes in the descriptions come from the Scaladoc for each class.
Trait | Description |
---|---|
IndexedSeq | A sequence that implies that random access of elements is efficient. “Have efficient apply and length.” |
LinearSeq | A sequence that implies that linear access to elements is efficient. “Have efficient head and tail operations.” |
Seq | The base trait for sequential collections. Use when it isn’t important to indicate that the sequence is indexed or linear in nature. |
Iterable | The highest collection level. Use it when you want to be very generic about the type being returned. (It’s the rough equivalent of declaring that a Java method returns Collection.) |
Choosing a Map
While you can often use the base immutable or mutable Map classes, there are many more types at your disposal. The Map class options are shown in Table 11-6. Note that all quotes in the descriptions come from the Scaladoc for each class.
Class | Immutable | Mutable | Description |
---|---|---|---|
CollisionProofHashMap | | ✓ | “Implements mutable maps using a hashtable with red-black trees in the buckets for good worst-case performance on hash collisions.” |
HashMap | ✓ | ✓ | The immutable version “implements maps using a hash trie”; the mutable version “implements maps using a hashtable.” |
LinkedHashMap | | ✓ | “Implements mutable maps using a hashtable.” Returns elements by the order in which they were inserted. |
ListMap | ✓ | ✓ | A map implemented using a list data structure. Returns elements in the opposite order by which they were inserted, as though each element is inserted at the head of the map. |
Map | ✓ | ✓ | The base map, with both mutable and immutable implementations. |
SeqMap | | ✓ | “A generic trait for ordered mutable maps.” |
SortedMap | ✓ | ✓ | A base trait that stores its keys in sorted order. |
TreeMap | ✓ | ✓ | A sorted map, implemented as a red-black tree. See the Scaladoc for multiple performance notes. |
TreeSeqMap | ✓ | | Preserves order. Uses insertion order by default, but modification order can be used. |
VectorMap | ✓ | | Uses a vector/map-based data structure, which preserves insertion order. “Has amortized effectively constant lookup at the expense of using extra memory and generally lower performance for other operations.” |
WeakHashMap | | ✓ | A hash map with weak references, it’s a wrapper around java.util.WeakHashMap. |
See Recipe 14.1, “Creating and Using Maps”, for details about the basic Map classes, Recipe 14.2, “Choosing a Map Implementation”, for more information about selecting Map classes, and Recipe 14.10, “Sorting an Existing Map by Key or Value”, for details about sorting Map classes.
Choosing a Set
When choosing a set there are base mutable and immutable set classes, a SortedSet to return elements in sorted order by key, a LinkedHashSet to store elements in insertion order, and other sets for special purposes. The common classes are shown in Table 11-7. Note that all quotes in the descriptions come from the Scaladoc for each class.
Class | Immutable | Mutable | Description |
---|---|---|---|
BitSet | ✓ | ✓ | A set of “non-negative integers represented as variable-size arrays of bits packed into 64-bit words.” Used to save memory when you have a set of small integers. |
HashSet | ✓ | ✓ | The immutable version “implements sets using a hash trie”; the mutable version “implements sets using a hashtable.” |
LinkedHashSet | | ✓ | A mutable set implemented using a hashtable. Returns elements in the order in which they were inserted. |
ListSet | ✓ | | A set implemented using a list structure. “Suitable only for a small number of elements.” |
TreeSet | ✓ | ✓ | The immutable version “implements immutable sorted sets using a tree.” The mutable version is “implemented using a mutable red-black tree.” |
Set | ✓ | ✓ | Generic base traits, with both mutable and immutable implementations. |
SortedSet | ✓ | ✓ | The base traits for sorted sets. |
See Recipe 15.3, “Creating a Set and Adding Elements to It”, for details about the basic Set classes, and Recipe 15.5, “Storing Values in a Set in Sorted Order”, for details about sortable sets.
Types that act like collections
Scala offers other collection types, and some types that act like collections because they have methods like map, filter, etc. Table 11-8 provides descriptions of several types that act somewhat like collections, even though they aren’t.
Class/Trait | Description |
---|---|
Iterator | Isn’t a collection but instead gives you a way to access the elements in a collection. It does, however, define many of the methods you’ll see in a normal collections class, including foreach, map, flatMap, etc. You can also convert an iterator to a collection when needed. |
Option | Acts as a collection that contains zero or one element. The Some class and None object extend Option. Some is a container for one element, and None holds zero elements. |
Tuple | Supports a heterogeneous collection of elements. Has some collection-like methods, including drop, head, map, size, tail, take, splitAt, and toList. |
Because I mention Option in Table 11-8, it’s worth noting that the Either/Left/Right and Try/Success/Failure classes also have a few collection-like methods such as flatten and map, but not nearly as many as Option offers.
Strict and lazy collections
Another way to think about collections is whether they are strict or nonstrict (also known as lazy). To understand strict and lazy collections, it helps to first understand the concept of a transformer method.
A transformer method constructs a new collection from an existing collection. This includes methods like map, filter, reverse, etc.—any method that transforms the input collection to a new output collection. Other methods that don’t return a new collection—methods like foreach, size, head, etc.—are not transformers.
Given that definition, collections can also be thought of in terms of being strict or lazy. In a strict collection, memory for the elements is allocated immediately, and all of its elements are immediately evaluated when a transformer method is invoked. Conversely, in a lazy collection, memory for the elements is not allocated immediately, and transformer methods do not construct new elements until they are demanded.
In Scala, all collections are strict except for two situations:
LazyList is a lazy version of List.
When you create a view on a collection—such as calling Vector(1,2,3).view—the transformer methods of the resulting view are lazy.
See Recipe 11.4, “Creating a Lazy View on a Collection”, for more details about views.
See Also
In addition to my own experience using the collections, most of the information used to create these tables comes from the Scaladoc of each type, and these Scala pages:
11.2 Understanding the Performance of Collections
Problem
When choosing a collection for an application where performance is important, you want to choose the right collection for the algorithm.
Solution
In many cases, you can reason about the performance of a collection by understanding its basic structure. For instance, a List is a singly linked list, and because it’s not indexed, if you need to access an element like list(1_000_000), that requires traversing one million elements. Therefore it’s going to be much slower than accessing the one-millionth element of a Vector, because Vector is indexed.
In other cases, it can help to look at the tables. For instance, Table 11-10 shows that the append operation on a Vector is eC, or effectively constant time. As a result, I can create a large Vector in the REPL on my computer in under a second like this:
var a = Vector[Int]()
for i <- 1 to 50_000 do a = a :+ i
However, as the table shows, the append operation on a List requires linear time, so attempting to create a List of the same size takes a much longer time—over 15 seconds.
Note that neither of those approaches is recommended for real-world code. I only use them to demonstrate the performance difference between Vector and List for append operations.
Performance characteristic keys
Before looking at the performance tables, Table 11-9 shows the performance characteristic keys that are used in the tables that follow it.
Key | Description |
---|---|
Con | The operation takes (fast) constant time. |
eC | The operation takes effectively constant time, but this might depend on some assumptions, such as maximum length of a vector, or distribution of hash keys. |
aC | The operation takes amortized constant time. Some invocations of the operation might take longer, but if many operations are performed, on average only constant time per operation is taken. |
Log | The operation takes time proportional to the logarithm of the collection size. |
Lin | The operation is linear, so the time is proportional to the collection size. |
- | The operation is not supported. |
Performance characteristics for sequential collections
Table 11-10 shows the performance characteristics for operations on immutable and mutable sequential collections.
| head | tail | apply | update | prepend | append | insert |
---|---|---|---|---|---|---|---|
Immutable | | | | | | | |
List | Con | Con | Lin | Lin | Con | Lin | - |
LazyList | Con | Con | Lin | Lin | Con | Lin | - |
ArraySeq | Con | Lin | Con | Lin | Lin | Lin | - |
Vector | eC | eC | eC | eC | eC | eC | - |
Queue | aC | aC | Lin | Lin | Lin | Con | - |
Range | Con | Con | Con | - | - | - | - |
String | Con | Lin | Con | Lin | Lin | Lin | - |
Mutable | | | | | | | |
ArrayBuffer | Con | Lin | Con | Con | Lin | aC | Lin |
ListBuffer | Con | Lin | Lin | Lin | Con | Con | Lin |
StringBuilder | Con | Lin | Con | Con | Lin | aC | Lin |
Queue | Con | Lin | Lin | Lin | Con | Con | Lin |
ArraySeq | Con | Lin | Con | Con | - | - | - |
Stack | Con | Lin | Lin | Lin | Con | Lin | Lin |
Array | Con | Lin | Con | Con | - | - | - |
ArrayDeque | Con | Lin | Con | Con | aC | aC | Lin |
Table 11-11 describes the column headings used in Table 11-10.
Operation | Description |
---|---|
head | Selecting the first element of the sequence. |
tail | Producing a new sequence that consists of all elements of the sequence except the first one. |
apply | Indexing. |
update | Functional update for immutable sequences, side-effecting update for mutable sequences. |
prepend | Adding an element to the front of the sequence. For immutable sequences, this produces a new sequence. For mutable sequences, it modifies the existing sequence. |
append | Adding an element at the end of the sequence. For immutable sequences, this produces a new sequence. For mutable sequences, it modifies the existing sequence. |
insert | Inserting an element at an arbitrary position in the sequence. This is supported directly only for mutable sequences. |
Map and Set performance characteristics
Table 11-12 shows the performance characteristics for Scala’s common map and set types, using the keys from Table 11-9.
| lookup | add | remove | min |
---|---|---|---|---|
Immutable | | | | |
HashSet/HashMap | eC | eC | eC | Lin |
TreeSet/TreeMap | Log | Log | Log | Log |
BitSet | Con | Lin | Lin | eC |
VectorMap | eC | eC | aC | Lin |
ListMap | Lin | Lin | Lin | Lin |
Mutable | | | | |
HashSet/HashMap | eC | eC | eC | Lin |
WeakHashMap | eC | eC | eC | Lin |
BitSet | Con | aC | Con | eC |
TreeSet | Log | Log | Log | Log |
Table 11-13 provides descriptions for the column headings (operations) used in Table 11-12.
Operation | Description |
---|---|
lookup | Testing whether an element is contained in a set, or selecting a value associated with a map key. |
add | Adding a new element to a set or key/value pair to a map. |
remove | Removing an element from a set or a key from a map. |
min | The smallest element of the set, or the smallest key of a map. |
Discussion
As you can tell from the descriptions of the keys in Table 11-9, when choosing a collection you’ll generally want to look for the Con, eC, and aC keys to find your best performance.
For instance, because List is a singly linked list, accessing the head and tail elements are fast operations, as is the process of prepending elements, so those operations are shown with the Con key in Table 11-10. But appending elements to a List is a very slow operation—linear in proportion to the size of the List—so the append operation is shown with the Lin key.
See Also
With permission from EPFL, the tables in this recipe have been reproduced from the performance characteristics Scala documentation page.
11.3 Understanding Mutable Variables with Immutable Collections
Problem
You may have seen that mixing a mutable variable (var) with an immutable collection makes it appear that the collection is somehow mutable. For instance, when you create a var field with an immutable Vector, it appears you can somehow add new elements to the Vector:
var x = Vector(1) // x: Vector(1)
x = x :+ 2 // x: Vector(1, 2)
x = x ++ List(3, 4) // x: Vector(1, 2, 3, 4)
How can this be?
Solution
Though it looks like you’re mutating an immutable collection in that example, what’s really happening is that the variable x points to a new sequence each time you add elements. The variable x is mutable—like a non-final field in Java—so what’s going on is that it’s being reassigned to a new sequence during each step. The end result is similar to these lines of code:
var x = Vector(1)
x = Vector(1, 2) // reassign x
x = Vector(1, 2, 3, 4) // reassign x again
In the second and third lines of code, the x reference is changed to point to a new sequence.
You can demonstrate that the vector itself is immutable. Attempting to mutate one of its elements—which doesn’t involve reassigning the variable—results in an error:
scala> x(0) = 100
1 |x(0) = 100
|^
|value update is not a member of Vector[Int] - did you mean
|Vector[Int].updated?
Discussion
This recipe is included among the first collection-related recipes because when you start working with Scala, the behavior of a mutable variable with an immutable collection can be surprising. To be clear about variables:
A mutable variable (var) can be reassigned to point at new data.
An immutable variable (val) is like a final variable in Java; it can never be reassigned.
To be clear about collections:
The elements in a mutable collection (like ArrayBuffer) can be changed.
The elements in an immutable collection (like Vector or List) cannot be changed.
In pure functional programming you will use immutable variables in combination with immutable collections, but in less strict programming styles you can use other combinations. For instance, these two combinations are also common:
Immutable variables with mutable collections (e.g., val with ArrayBuffer)
Mutable variables with immutable collections (e.g., var with Vector)
Many recipes in these collection chapters, as well as the domain-modeling chapters, demonstrate these techniques.
11.4 Creating a Lazy View on a Collection
Problem
You’re working with a large collection and want to create a lazy version of it so it will only compute and return results as they are needed.
Solution
Create a view on the collection by calling its view method. That creates a new collection whose transformer methods are implemented in a nonstrict, or lazy, manner. For example, given a large list:
val xs = List.range(0, 3_000_000) // a list from 0 to 2,999,999
imagine that you want to call several transformation methods on it, such as map and filter. This is a contrived example, but it demonstrates a problem:
val ys = xs.map(_ + 1)
.map(_ * 10)
.filter(_ > 1_000)
.filter(_ < 10_000)
If you attempt to run that example in the REPL, you’ll probably see this fatal “out of memory” error:
scala> val ys = xs.map(_ + 1)
java.lang.OutOfMemoryError: GC overhead limit exceeded
Conversely, this example returns almost immediately and doesn’t throw an error because all it does is create a view and then four lazy transformer methods:
val ys = xs.view
.map(_ + 1)
.map(_ * 10)
.filter(_ > 1_000)
.filter(_ < 10_000)
// result: ys: scala.collection.View[Int] = View(<not computed>)
Now you can work with ys without running out of memory:
scala> ys.take(3).foreach(println)
1010
1020
1030
Calling view on a collection makes the resulting collection lazy. Now when transformer methods are called on the view, the elements will only be calculated as they are accessed, and not “eagerly,” as they normally would be with a strict collection.
Discussion
The Scala documentation states that a view “constructs only a proxy for the result collection, and its elements get constructed only as one demands them…a view is a special kind of collection that represents some base collection, but implements all transformers lazily.”
A transformer is a method that constructs a new collection from one or more existing collections. This includes methods like map, filter, take, and many more.
An Official Description of Transformer Methods
While there is some debate about whether methods like filter are transformer methods, the book Programming in Scala states, “We call such methods transformers because they take at least one collection as their receiver object and produce another collection in their result.” In that statement the authors are referring specifically to the map, filter, and ++ methods.
Other methods like foreach that don’t transform a collection are evaluated eagerly. This explains why transformer methods like these return a view:
val a = List.range(0, 1_000_000)
val b = a.view.map(_ + 1) // SeqView[Int] = SeqView(<not computed>)
val c = b.take(3) // SeqView[Int] = SeqView(<not computed>)
and why foreach causes action to happen:
scala> c.foreach(println)
1
2
3
The use case for views
The main use case for using a view is performance, in terms of speed, memory, or both.
Regarding performance, the example in the Solution first demonstrates (a) a strict approach that runs out of memory, and then (b) a lazy approach that lets you work with the same dataset. The problem with the first solution is that it attempts to create new, intermediate collections each time a transformer method is called:
val b = a.map(_ + 1) // 1st copy of the data
.map(_ * 10) // 2nd copy of the data
.filter(_ > 1_000) // 3rd copy of the data
.filter(_ < 10_000) // 4th copy of the data
If the initial collection a has one billion elements, the first map call creates a new intermediate collection with another billion elements. The second map call creates another collection, so now we’re attempting to hold three billion elements in memory, and so on.
To drive that point home, that approach is the same as if you had written this:
val a = List.range(0, 1_000_000_000) // 1B elements in RAM
val b = a.map(_ + 1) // 1st copy of the data (2B elements in RAM)
val c = b.map(_ * 10) // 2nd copy of the data (3B elements in RAM)
val d = c.filter(_ > 1_000) // 3rd copy of the data (~4B total)
val e = d.filter(_ < 10_000) // 4th copy of the data (~4B total)
Conversely, when you immediately create a view on the collection, everything after that essentially just creates an iterator:
val ys = a.view
.map ... // this DOES NOT create another one billion elements
As usual with anything related to performance, be sure to test using a view versus not using a view in your application to find what works best.
Another performance-related reason to understand views is that it’s become very common to work with large datasets in a streaming manner, and views work very similar to streams. See the Spark recipes in this book, such as Recipe 20.1, “Getting Started with Spark”, for examples of working with large datasets and streams.
Chapter 12. Collections: Common Sequence Classes
In this chapter on the Scala collections, we’ll examine the most common sequence classes. As mentioned in Recipe 11.1, “Choosing a Collections Class”, the general sequence class recommendations are to use:
Vector as your go-to immutable indexed sequence
List as your go-to immutable linear sequence
ArrayBuffer as your go-to mutable indexed sequence
ListBuffer as your go-to mutable linear sequence
Vector
As discussed in Recipe 11.1, “Choosing a Collections Class”, Vector is the preferred immutable indexed sequence class because of its general performance characteristics. You’ll use it all the time when you need an immutable sequence.
Because Vector is immutable, you apply filtering and transformation methods on one Vector to create another one. As a quick preview, these examples show how to create and use a Vector:
val a = Vector(1, 2, 3, 4, 5)
val b = a.filter(_ > 2) // Vector(3, 4, 5)
val c = a.map(_ * 10) // Vector(10, 20, 30, 40, 50)
List
If you’re coming to Scala from Java, you’ll quickly see that despite their names, the Scala List class is nothing like the Java List classes, such as the Java ArrayList. The Scala List class is immutable, so its size as well as the elements it contains can’t change. It’s implemented as a linked list, where the preferred approach is to prepend elements. Because it’s a linked list, you typically traverse the list from head to tail, and indeed, it’s often thought of in terms of its head and tail methods (along with isEmpty).
Like Vector, because a List is immutable, you apply filtering and transformation methods on one list to create another list. As a quick preview, these examples show how to create and use a List:
val a = List(1, 2, 3, 4, 5)
val b = a.filter(_ > 2) // List(3, 4, 5)
val c = a.map(_ * 10) // List(10, 20, 30, 40, 50)
List Versus Vector
You may wonder when you should use a List instead of a Vector. The performance characteristics detailed in Recipe 11.2, “Understanding the Performance of Collections”, provide the general rules about when to select one or the other.
In an interesting experiment, Martin Odersky, the creator of the Scala language, notes in this thread on the Scala Contributors website that Tiark Rompf once tried to replace every List in the Scala compiler with Vector, and the performance was about 10% slower. This is believed to be because Vector has a certain overhead that makes it less efficient with small sequences.
So List definitely has its uses, especially when you think of it as what it is, a simple singly linked list. (In the comment after Mr. Odersky’s, Viktor Klang—Java Champion and cocreator of Scala futures—notes that he thinks of List as being an excellent stack.)
ArrayBuffer
ArrayBuffer is the preferred mutable indexed sequence class. Because it’s mutable, you apply transformation methods directly on it to update its contents. For instance, where you use the map method with a Vector or List and assign the result to a new variable:
val x = Vector(1, 2, 3)
val y = x.map(_ * 2) // y: ArrayBuffer(2, 4, 6)
with ArrayBuffer you use mapInPlace instead of map, and it modifies the value in place:
import collection.mutable.ArrayBuffer
val ab = ArrayBuffer(1, 2, 3)
ab.mapInPlace(_ * 2) // ab: ArrayBuffer(2, 4, 6)
Buffers
In Scala, a buffer is just a sequence that can grow and shrink.
Array
The Scala Array is unique: it’s mutable in that its elements can be changed, but immutable in size—it can’t grow or shrink. By comparison, other collections like List and Vector are completely immutable, and ArrayBuffer is completely mutable.
Array has the unique distinction of being backed by the Java array, so a Scala Array[Int] is backed by a Java int[].
Although the Array may often be demonstrated in Scala examples, the recommendation is to use the Vector class as your go-to immutable indexed sequence class, and ArrayBuffer as your mutable indexed sequence of choice. In keeping with this suggestion, in my real-world code, I use Vector and ArrayBuffer for those use cases, and then convert them to an Array when needed.
For some operations the Array can have better performance than other collections, so it’s important to know how it works. See Recipe 11.2, “Understanding the Performance of Collections”, for those details.
12.1 Making Vector Your Go-To Immutable Sequence
Problem
You want a fast general-purpose immutable sequential collection type for your Scala applications.
Solution
The Vector class is considered the go-to general-purpose indexed immutable sequential collection. Use a List if you prefer working with a linear immutable sequential collection.
Creating Vectors
Create and use a Vector just like other immutable sequences. You can create a Vector with initial elements, and then access the elements efficiently by index:
val v = Vector("a", "b", "c")
v(0) // "a"
v(1) // "b"
Because Vector is indexed, this call to x(9_999_999) returns almost instantly:
val x = (1 to 10_000_000).toVector
x(9_999_999) // 10000000
You can also create an empty Vector and add elements to it, remembering to assign the result to a new variable:
val a = Vector[String]() // a: Vector[String] = Vector()
val b = a ++ List("a", "b") // b: Vector(a, b)
Adding, appending, and prepending elements
You can’t modify a vector, so you add elements to an existing vector as you assign the result to a new variable:
val a = Vector(1, 2, 3)
val b = a ++ List(4, 5) // b: Vector(1, 2, 3, 4, 5)
val c = b ++ Seq(6) // c: Vector(1, 2, 3, 4, 5, 6)
You append and prepend elements to a Vector just like other immutable sequences, with the following methods:
The +: method, which is an alias for prepended
++: is an alias for prependedAll
:+ is an alias for appended
:++ is an alias for appendedAll
Here are some examples where I use a var variable and assign the results of each operation back to that variable:
// prepending
var a = Vector(6)
a = 5 +: a // a: Vector(5, 6)
a = a.prepended(4) // a: Vector(4, 5, 6)
a = List(2,3) ++: a // a: Vector(2, 3, 4, 5, 6)
a = a.prependedAll(Seq(0,1)) // a: Vector(0, 1, 2, 3, 4, 5, 6)
// appending
var b = Vector(1)
b = b :+ 2 // b: Vector(1, 2)
b = b.appended(3) // b: Vector(1, 2, 3)
b = b :++ List(4,5) // b: Vector(1, 2, 3, 4, 5)
b = b.appendedAll(List(6,7)) // b: Vector(1, 2, 3, 4, 5, 6, 7)
Modifying elements
To modify an element in a Vector, call the updated method to replace one element while assigning the result to a new variable, setting the index and elem parameters:
val a = Vector(1, 2, 3)
val b = a.updated(index=0, elem=10) // b: Vector(10, 2, 3)
val c = b.updated(1, 20) // c: Vector(10, 20, 3)
Similarly, use the patch method to replace multiple elements at one time:
val a = Vector(1, 2, 3, 4, 5, 6)
// specify (a) the index to start at, (b) the new sequence
// you want, and (c) the number of elements to replace
val b = a.patch(0, List(10,20), 2) // b: Vector(10, 20, 3, 4, 5, 6)
val b = a.patch(0, List(10,20), 3) // b: Vector(10, 20, 4, 5, 6)
val b = a.patch(0, List(10,20), 4) // b: Vector(10, 20, 5, 6)
val b = a.patch(2, List(30,40), 2) // b: Vector(1, 2, 30, 40, 5, 6)
val b = a.patch(2, List(30,40), 3) // b: Vector(1, 2, 30, 40, 6)
val b = a.patch(2, List(30,40), 4) // b: Vector(1, 2, 30, 40)
With patch you can insert elements by specifying 0 for the number of elements to replace:
val a = Vector(10, 20, 30)
val b = a.patch(1, List(15), 0) // b: Vector(10, 15, 20, 30)
val b = a.patch(2, List(25), 0) // b: Vector(10, 20, 25, 30)
Discussion
The Scala documentation on concrete immutable collection classes states the following:
Vector is a collection type that addresses the inefficiency for random access on lists. Vectors allow accessing any element of the list in “effectively” constant time….Because vectors strike a good balance between fast random selections and fast random functional updates, they are currently the default implementation of immutable indexed sequences.
As noted in “Understanding the Collections Hierarchy”, when you create an instance of an IndexedSeq, Scala returns a Vector:
scala> val x = IndexedSeq(1,2,3)
x: IndexedSeq[Int] = Vector(1, 2, 3)
As a result, I’ve seen some developers use an IndexedSeq in their code rather than a Vector to express their desire to create an indexed immutable sequence and leave the implementation details to the compiler.
12.2 Creating and Populating a List
Problem
You want to create and populate a List.
Solution
There are many ways to create and initially populate a List, and the following code shows six examples, starting with two basic, general use cases:
// (1) basic, general use cases
val xs = List(1, 2, 3) // List(1, 2, 3)
val xs = 1 :: 2 :: 3 :: Nil // List(1, 2, 3)
val xs = 1 :: List(2, 3)
// (2) both of these create an empty list
val xs: List[String] = List()
val xs: List[String] = Nil
Next, these examples demonstrate how to let the compiler implicitly set the List type, and then how to explicitly control the type:
// (3a) implicit and explicit types, with mixed values
val xs = List(1, 2.0, 33D, 4_000L) // implicit type (List[AnyVal])
val xs: List[Double] = List(1, 2.0, 33D, 4_000L) // explicit type
// (3b) another example of explicitly setting the list type,
// where the second example declares the type to be List[Long]
val xs = List(1, 2, 3) // List[Int] = List(1, 2, 3)
val xs: List[Long] = List(1, 2, 3) // List[Long] = List(1, 2, 3)
These examples demonstrate a number of ways to create lists from ranges, including the to and by methods that are available on the Int and Char types (thanks to implicit conversions on those types):
// (4) using ranges
val xs = List.range(1, 10) // List(1, 2, 3, 4, 5, 6, 7, 8, 9)
val xs = List.range(0, 10, 2) // List(0, 2, 4, 6, 8)
(1 to 5).toList // List(1, 2, 3, 4, 5)
(1 until 5).toList // List(1, 2, 3, 4)
(1 to 10 by 2).toList // List(1, 3, 5, 7, 9)
(1 to 10 by 3).toList // List(1, 4, 7, 10)
('a' to 'e').toList // List(a, b, c, d, e)
('a' to 'e' by 2).toList // List(a, c, e)
These examples demonstrate a variety of ways to fill and populate lists:
// (5) different ways to fill lists
val xs = List.fill(3)("foo") // xs: List(foo, foo, foo)
val xs = List.tabulate(5)(n => n * n) // xs: List(0, 1, 4, 9, 16)
val xs = "hello".toList // xs: List[Char] = List(h,e,l,l,o)
// create a list of alphanumeric characters
val alphaNum = (('a' to 'z') ++ ('A' to 'Z') ++ ('0' to '9')).toList
// result contains 52 letters and 10 numbers
// create a list of 10 printable characters
val r = scala.util.Random
val printableChars = (for i <- 0 to 10 yield r.nextPrintableChar).toList
// result is like: List(=, *, W, ?, W, 1, L, <, F, d, O)
Finally, if you want to use a List, but the data is frequently changing, use a ListBuffer while the data is changing, and then convert it to a List when the data changes stop:
// (6) use a ListBuffer while data is frequently changing
import collection.mutable.ListBuffer
val a = ListBuffer(1) // a: ListBuffer(1)
a += 2 // a: ListBuffer(1, 2)
a += 3 // a: ListBuffer(1, 2, 3)
// convert it to a List when the changes stop
val b = a.toList // b: List(1, 2, 3)
A ListBuffer is a Buffer that’s backed by a linked list. It offers constant-time prepend and append operations, and most other operations are linear.
Discussion
It’s important to know that the Scala List class is not at all like the Java List classes, such as the Java ArrayList. For example, Recipe 22.1, “Using Java Collections in Scala”, shows that a java.util.List converts to a Scala Buffer or Seq, not a Scala List.
A List in Scala is simply a sequential collection of elements that ends with a Nil element:
// empty list
val xs: List[String] = Nil // List[String] = List()
// three elements that end with a Nil element
val xs = 1 :: 2 :: 3 :: Nil // List(1, 2, 3)
// this is an error, because it does not end with a Nil
val xs = 1 :: 2 :: 3 // error
// prepending a `1` to a `List(2, 3)`
val xs = 1 :: List(2, 3) // List(1, 2, 3)
As shown, the :: method—called cons—takes two arguments:
A head element, which is a single element
A tail, which is either the remaining List or the Nil value
The :: method and Nil value have their roots in the Lisp programming language, where lists like this are heavily used. An important thing about List is that when you add elements to it, it’s intended to be used in a manner where you always prepend elements to it, like this:
val a = List(3) // List(3)
val b = 2 :: a // List(2, 3)
val c = 1 :: b // List(1, 2, 3)
This quote from the List class Scaladoc discusses the important properties of the List class:
This class is optimal for last-in-first-out (LIFO), stack-like access patterns. If you need another access pattern, for example, random access or FIFO, consider using a collection more suited to this than List. List has O(1) prepend and head/tail access. Most other operations are O(n) on the number of elements in the list.
See Also
Recipe 4.14, “Working with a List in a Match Expression”, shows how to handle a List in a match expression, especially the Nil element.
See Recipe 11.2, “Understanding the Performance of Collections”, for more information on the List performance characteristics.
Adding elements to a List is discussed more in Recipe 12.3.
12.3 Adding Elements to a List
Problem
You want to add elements to a List that you’re working with.
Solution
“How do I add elements to a List?” is a bit of a trick question, because a List is immutable, so you can’t actually add elements to it. If you want a List that’s constantly changing, consider using a ListBuffer (as described in Recipe 12.5), and then convert it to a List when necessary.
That advice holds true if you’re constantly modifying data in a list structure, but if you just want to add a few elements to a list—rather than continuously updating it—prepending elements to a List is a fast operation. The preferred approach is to prepend elements with the :: method, while assigning the results to a new List:
val a = List(2) // a: List(2)
// prepend with ::
val b = 1 :: a // b: List(1, 2)
val c = 0 :: b // c: List(0, 1, 2)
You can also use the ::: method to prepend one list in front of another:
val a = List(3, 4) // a: List(3, 4)
val b = List(1, 2) ::: a // b: List(1, 2, 3, 4)
Rather than continually reassigning the result of prepend operations to a new variable, you can declare your variable as a var and reassign the result to it:
var x = List(5) // x: List[Int] = List(5)
x = 4 :: x // x: List(4, 5)
x = 3 :: x // x: List(3, 4, 5)
x = List(1, 2) ::: x // x: List(1, 2, 3, 4, 5)
As these examples illustrate, the :: and ::: methods are right-associative. This means that lists are constructed from right to left, which you can see more clearly in these examples:
val a = 3 :: Nil // a: List(3)
val b = 2 :: a // b: List(2, 3)
val c = 1 :: b // c: List(1, 2, 3)
val d = 1 :: 2 :: Nil // d: List(1, 2)
To be clear about how :: and ::: work, it can help to know that the Scala compiler converts the code in this first example to the code shown in the second example:
List(1, 2) ::: List(3, 4) // what you type
List(3, 4).:::(List(1, 2)) // how the compiler interprets that code
Both result in a List(1,2,3,4).
Discussion
This style of creating a list has its roots in the Lisp programming language:
val x = 1 :: 2 :: 3 :: Nil // x: List(1, 2, 3)
Amazingly, Lisp was first specified in 1958, and because this is such a direct way of creating a linked list, this style is still used today.
Other methods to prepend, append
Though using :: and ::: are the common methods with lists, there are additional methods that let you prepend or append single elements to a List:
val x = List(1)
// prepend
val y = 0 +: x // y: List(0, 1)
// append
val y = x :+ 2 // y: List(1, 2)
But remember that appending to a List is a relatively slow operation, and it’s not recommended to use this approach, especially with large lists. As the List class Scaladoc states, “This class is optimal for last-in-first-out (LIFO), stack-like access patterns. If you need another access pattern, for example, random access or FIFO, consider using a collection more suited to this than List.” See Recipe 11.2, “Understanding the Performance of Collections”, for a discussion of List class performance.
If you don’t work with the List class a lot, another way to concatenate two lists into a new list is with the ++ or concat methods:
val a = List(1, 2, 3)
val b = List(4, 5, 6)
// '++' is an alias for 'concat', so they work the same
val c = a ++ b // c: List(1, 2, 3, 4, 5, 6)
val c = a.concat(b) // c: List(1, 2, 3, 4, 5, 6)
Because these methods are used consistently across immutable collections, they can be easier to remember.
Methods that end in :
Any Scala method that ends with a : character is evaluated from right to left. This means that the method is invoked on the right operand. You can see how this works by analyzing the following code, where both methods print the number 42:
@main def rightAssociativeExample =
val p = Printer()
p >> 42 // prints "42"
42 >>: p // prints "42"
class Printer:
def >>(i: Int) = println(s"$i")
def >>:(i: Int) = println(s"$i")
In addition to using the methods as shown in that example, the two methods can also be invoked like this:
p.>>(42)
p.>>:(42)
In summary, by defining the second method to end in a colon, it can be used as a right-associative operator.
See Also
You can also concatenate two lists to create a new list. See Recipe 13.12, “Merging Sequential Collections”, for examples.
If you want to use a mutable linear list, see Recipe 12.5 for examples of how to use the ListBuffer class.
12.4 Deleting Elements from a List (or ListBuffer)
Problem
You want to delete elements from a List or ListBuffer.
Solution
Use methods like filter, take, and drop to filter the elements in a List, and methods like -=, --=, and remove to delete elements in a ListBuffer.
List
A List is immutable, so you can’t delete elements from it, but you can filter out the elements you don’t want while you assign the result to a new variable:
val a = List(5, 1, 4, 3, 2)
val b = a.filter(_ > 2) // b: List(5, 4, 3)
val b = a.take(2) // b: List(5, 1)
val b = a.drop(2) // b: List(4, 3, 2)
val b = a diff List(1) // b: List(5, 4, 3, 2)
Rather than continually assigning the result of operations like this to a new variable, you can declare your variable as a var and reassign the result of the operation back to itself:
var x = List(5, 1, 4, 3, 2)
x = x.filter(_ > 2) // x: List(5, 4, 3)
See Recipe 13.7, “Using filter to Filter a Collection”, for other ways to get subsets of a collection using methods like filter, partition, splitAt, and take.
ListBuffer
If you’re going to be modifying a list frequently, it can be better to use a ListBuffer instead of a List. A ListBuffer is mutable, so as with other mutable collections, use the -= and --= methods to delete elements. For example, assuming you’ve created a ListBuffer like this:
import scala.collection.mutable.ListBuffer
val x = ListBuffer(1, 2, 3, 4, 1, 2, 3, 4)
// result: x: scala.collection.mutable.ListBuffer[Int] =
// ListBuffer(1, 2, 3, 4, 1, 2, 3, 4)
You can delete one element at a time by value using -=:
x -= 2 // x: ListBuffer(1, 3, 4, 1, 2, 3, 4)
Note that only the first occurrence of the number 2 is removed from the x.
You can delete two or more elements by value using --=:
val x = ListBuffer(1, 2, 3, 4, 5, 6)
// 1, 2, and 3 are removed:
x --= Seq(1,2,3) // x: ListBuffer(4, 5, 6)
// nothing matched, so nothing removed:
x --= Seq(8, 9) // x: ListBuffer(4, 5, 6)
You can use remove to delete elements by index position. Either supply the index, or the starting index and the number of elements to delete:
val x = ListBuffer(1, 2, 3, 4, 5, 6)
// remove the 0th element
val a = x.remove(0) // a=1, x=ListBuffer(2, 3, 4, 5, 6)
// remove three elements, starting from index 1. this `remove`
// method does not return a value.
x.remove(1, 3) // x: ListBuffer(2, 6)
// be aware that `remove` can throw an exception
x.remove(100) // java.lang.IndexOutOfBoundsException
Discussion
When you first start using Scala, the wealth of methods whose names are only symbols (e.g., methods like ++, --, and --=) can seem daunting. But ++ and -- are used consistently with immutable collections, and -= and --= are used consistently across mutable collections, so it quickly becomes second nature to use them.
See Also
Because filtering can be a form of deleting when working with immutable collections, see the filtering recipes in Chapter 13.
12.5 Creating a Mutable List with ListBuffer
Problem
You want to use a mutable list—e.g., a LinearSeq, as opposed to an IndexedSeq—but a List isn’t mutable.
Solution
To work with a mutable list, use a ListBuffer as long as the data is changing, and convert the ListBuffer to a List when needed.
The following examples demonstrate how to create a ListBuffer, then add and remove elements as desired, and finally convert it to a List when finished:
import scala.collection.mutable.ListBuffer
// create an empty ListBuffer[String]
val b = new ListBuffer[String]()
// add one element at a time to the ListBuffer
b += "a" // b: ListBuffer(a)
b += "b" // b: ListBuffer(a, b)
b += "c" // b: ListBuffer(a, b, c)
// add multiple elements (++= is an alias for addAll)
b ++= List("d", "e", "f") // b: ListBuffer(a, b, c, d, e, f)
b.addAll(Vector("d", "e", "f")) // b: ListBuffer(a, b, c, d, e, f, d, e, f)
// remove the first "d"
b -= "d" // b: ListBuffer(a, b, c, e, f, d, e, f)
// remove multiple elements specified by another sequence
b --= Seq("e", "f") // b: ListBuffer(a, b, c, d)
// convert the ListBuffer to a List when you need to
val xs = b.toList // xs: List(a, b, c, d)
Discussion
Because a List is immutable, if you need to create a list that is constantly changing, it can be better to use a ListBuffer while the list is being modified, then convert it to a List when a List is needed.
The ListBuffer Scaladoc states:
ListBuffer is “a Buffer implementation backed by a list. It provides constant-time prepend and append. Most other operations are linear.”
So, don’t use ListBuffer if you want to access elements arbitrarily, such as accessing items by index (like list(1_000_000)); use ArrayBuffer instead. See Recipe 11.2, “Understanding the Performance of Collections”, for more information.
Small lists
Depending on your needs, it can be OK to create a new List from an existing List, especially if they’re small and you’re OK prepending elements as you create the new List:
val a = List(2) // a: List(2)
val b = 1 :: a // b: List(1, 2)
val c = 0 :: b // c: List(0, 1, 2)
This technique is discussed more in Recipe 12.3.
12.6 Using LazyList, a Lazy Version of a List
Problem
You want to use a collection that works like a List but invokes its transformer methods (map, filter, etc.) lazily.
Solution
A LazyList is like a List, except that its elements are computed lazily, in a manner similar to how a view creates a lazy version of a collection. Because LazyList elements are computed lazily, a LazyList can be long…infinitely long. Like a view, only the elements that are accessed are computed. Other than this behavior, a LazyList behaves similar to a List.
For instance, just like a List can be constructed with ::, a LazyList can be constructed with the #:: method, using LazyList.empty at the end of the expression instead of Nil:
scala> val xs = 1 #:: 2 #:: 3 #:: LazyList.empty
val xs: LazyList[Int] = LazyList(<not computed>)
The REPL output shows that the LazyList has not been computed yet. This means that the LazyList has been created, but no elements have been allocated yet. As another example, you can create a LazyList with a range:
scala> val xs = (1 to 100_000_000).to(LazyList)
val xs: LazyList[Int] = LazyList(<not computed>)
Now you can attempt to access the head and tail of the LazyList. The head is returned immediately:
scala> xs.head
res0: Int = 1
but the tail isn’t evaluated yet:
scala> xs.tail
val res1: LazyList[Int] = LazyList(<not computed>)
The output still shows “not computed.” As discussed in Recipe 11.4, “Creating a Lazy View on a Collection”, transformer methods are computed lazily, so when transformers are called, you see the “<not computed>” output in the REPL:
scala> xs.take(3)
val res2: LazyList[Int] = LazyList(<not computed>)
scala> xs.filter(_ < 200)
val res3: LazyList[Int] = LazyList(<not computed>)
scala> xs.filter(_ > 200)
val res4: LazyList[Int] = LazyList(<not computed>)
scala> xs.map { _ * 2 }
val res5: LazyList[Int] = LazyList(<not computed>)
However, be careful with methods that aren’t transformers. Calls to the following strict methods are evaluated immediately and can easily cause java.lang.OutOfMemoryError errors:
xs.max
xs.size
xs.sum
Transformer Methods
Transformer methods are collection methods that convert a given input collection to a new output collection, based on an algorithm you provide to transform the data. This includes methods like map, filter, and reverse. When using these methods, you’re transforming the input collection to a new output collection.
Methods like max, size, and sum don’t fit that definition, so they attempt to operate on the LazyList, and if the LazyList requires more memory than you can allocate, you’ll get an java.lang.OutOfMemoryError.
As a point of comparison, if I had attempted to use a List in these examples, I would have encountered a java.lang.OutOfMemory error as soon as I attempted to create the List:
val xs = (1 to 100_000_000).toList
// result: java.lang.OutOfMemoryError: Java heap space
Conversely, a LazyList gives you a chance to specify a huge list and begin working with its elements:
val xs = (1 to 100_000_000).to(LazyList)
xs(0) // returns 1
xs(1) // returns 2
Discussion
In the Scala 2.13 collections redesign, LazyList replaced the Stream class, which has been deprecated. Per the official blog post about the collections redesign, this was partially done within the overall effort to reduce confusion in the collections design. Also per that blog post, both the head and tail of a LazyList are accessed lazily, whereas in Stream only the tail was accessed lazily.
The LazyList Scaladoc contains several more key performance-related notes, including these:
Elements are memoized, meaning that the value of each element is computed at most once.
Elements are computed in order and never skipped.
A LazyList can be infinite in length, in which case methods like count, sum, max, and min will not terminate.
See that Scaladoc page for more details and examples.
See Also
Recipe 11.4, “Creating a Lazy View on a Collection”, shows how to create views on collections, which work like LazyList.
12.7 Making ArrayBuffer Your Go-To Mutable Sequence
Problem
You want to create an array whose size can change, i.e., a completely mutable array.
Solution
An Array is mutable in that its elements can change, but its size can’t change. To create a mutable indexed sequence whose size can change, use the ArrayBuffer class.
To use an ArrayBuffer, import it into scope and then create an instance. You can declare an ArrayBuffer without initial elements by specifying the type it contains, and then add elements later:
import scala.collection.mutable.ArrayBuffer
val a = ArrayBuffer[String]()
a += "Ben" // a: ArrayBuffer(Ben)
a += "Jerry" // a: ArrayBuffer(Ben, Jerry)
a += "Dale" // a: ArrayBuffer(Ben, Jerry, Dale)
ArrayBuffer has all the methods you’ll find with other mutable sequences. These are some common ways to add elements to an ArrayBuffer:
import scala.collection.mutable.ArrayBuffer
// initialize with elements
val characters = ArrayBuffer("Ben", "Jerry")
// add one element
characters += "Dale"
// add multiple elements with any IterableOnce type
characters ++= List("Gordon", "Harry")
characters ++= Vector("Andy", "Big Ed")
// another way to add multiple elements
characters.appendAll(List("Laura", "Lucy"))
// `characters` now contains these strings:
ArrayBuffer(Ben, Jerry, Dale, Gordon, Harry, Andy, Big Ed, Laura, Lucy)
Adding elements as shown in the previous examples is appending. The following examples show a few ways to prepend elements to an ArrayBuffer:
val a = ArrayBuffer(10) // a: ArrayBuffer[Int] = ArrayBuffer(10)
a.prepend(9) // a: ArrayBuffer(9, 10)
a.prependAll(Seq(7,8)) // a: ArrayBuffer(7, 8, 9, 10)
// `+=:` is an alias for `prepend`, `++=:` is an alias for `prependAll`
6 +=: a // a: ArrayBuffer(6, 7, 8, 9, 10)
List(4,5) ++=: a // a: ArrayBuffer(4, 5, 6, 7, 8, 9, 10)
Discussion
Here are a few ways to update ArrayBuffer elements in place:
import scala.collection.mutable.ArrayBuffer
// creates an ArrayBuffer[Char]
val a = ArrayBuffer.range('a', 'f') // a: ArrayBuffer(a, b, c, d, e)
a.update(0, 'A') // a: ArrayBuffer(A, b, c, d, e)
a(2) = 'C' // a: ArrayBuffer(A, b, C, d, e)
a.patchInPlace(0, Seq('X', 'Y'), 2) // a: ArrayBuffer(X, Y, C, d, e)
a.patchInPlace(0, Seq('X', 'Y'), 3) // a: ArrayBuffer(X, Y, d, e)
a.patchInPlace(0, Seq('X', 'Y'), 4) // a: ArrayBuffer(X, Y)
When using patchInPlace:
The first Int parameter is the element index where you want the replacing to start.
The second Int is the number of elements you want to replace.
The first example shows how to replace two elements with two new elements. The last example shows how to replace four old elements with two new elements.
Notes about ArrayBuffer and ListBuffer
The ArrayBuffer Scaladoc provides these details about ArrayBuffer performance: “Append, update, and random access take constant time (amortized time). Prepends and removes are linear in the buffer size.”
If you need a mutable sequential collection that works more like a List (i.e., a linear sequence rather than an indexed sequence), use ListBuffer instead of ArrayBuffer. The Scala documentation on the ListBuffer states, “A Buffer implementation backed by a list. It provides constant time prepend and append. Most other operations are linear.” See Recipe 12.5 for more ListBuffer details.
12.8 Deleting Array and ArrayBuffer Elements
Problem
You want to delete elements from an Array or ArrayBuffer.
Solution
An ArrayBuffer is a mutable sequence, so you can delete elements with the usual -=, --=, remove, and clear methods.
With an Array, you can’t change its size, so you can’t directly delete elements. But you can reassign the elements in an Array, which has the effect of replacing them.
You can also apply other functional methods to both ArrayBuffer and Array while assigning the results to a new variable.
Deleting ArrayBuffer elements
Given this ArrayBuffer:
import scala.collection.mutable.ArrayBuffer
val x = ArrayBuffer('a', 'b', 'c', 'd', 'e')
you can remove one or more elements by value with -= and --=:
// remove one element
x -= 'a' // x: ArrayBuffer(b, c, d, e)
// remove multiple elements
x --= Seq('b', 'c') // x: ArrayBuffer(d, e)
As shown in that last example, use --= to remove multiple elements that are declared in any collection that extends IterableOnce:
val x = ArrayBuffer.range('a', 'f') // ArrayBuffer(a, b, c, d, e)
x --= Seq('a', 'b') // x: ArrayBuffer(c, d, e)
x --= Array('c') // x: ArrayBuffer(d, e)
x --= Set('d') // x: ArrayBuffer(e)
Use the remove method to delete one element by its index in the ArrayBuffer, or a series of elements beginning at a starting index:
val x = ArrayBuffer('a', 'b', 'c', 'd', 'e', 'f')
x.remove(0) // x: ArrayBuffer(b, c, d, e, f)
// delete three elements, starting at index 1 (results in deleting c, d, and e)
x.remove(1, 3) // x: ArrayBuffer(b, f)
The clear method removes all the elements from an ArrayBuffer:
val x = ArrayBuffer(1,2,3,4,5)
x.clear // x: ArrayBuffer[Int] = ArrayBuffer()
clearAndShrink removes all elements from an ArrayBuffer and resizes its internal representation:
// create and populate an ArrayBuffer
val x = ArrayBuffer.range(1, 1_000_000)
// remove all elements and resize the internal representation
x.clearAndShrink(0) // x: ArrayBuffer[Int] = ArrayBuffer()
clear and clearAndShrink
Per the ArrayBuffer Scaladoc, clear “does not actually resize the internal representation; see clearAndShrink if you want to also resize internally.” The clearAndShrink Scaladoc states, “Clears this buffer and shrinks to @param size (rounding up to the next natural size).”
Replacing elements in an Array
The size of an Array can’t be changed, so you can’t directly delete elements. But you can reassign the elements in an Array, which has the effect of replacing them:
val a = Array("apple", "banana", "cherry")
a(0) = "" // a: Array("", banana, cherry)
a(1) = null // a: Array("", null, cherry)
Discussion
With both Array and ArrayBuffer you can also use the usual functional filtering methods to filter out elements as you assign the result to a new sequence:
val a = Array(1,2,3,4,5) // a: Array[Int] = Array(1, 2, 3, 4, 5)
val b = a.filter(_ > 3) // b: Array(4, 5)
val c = a.take(2) // c: Array(1, 2)
val d = a.drop(2) // d: Array(3, 4, 5)
val e = a.find(_ > 3) // e: Some(4)
val f = a.slice(0, 3) // f: Array(1, 2, 3)
Use other functional filtering methods as desired with both Array and ArrayBuffer.
12.9 Creating and Updating an Array
Problem
You want to create and optionally populate an Array.
Solution
There are several different ways to define and populate an Array. You can create an array with initial values, in which case Scala can determine the array type implicitly:
val nums = Array(1,2,3) // Array[Int] = Array(1, 2, 3)
val fruits = Array("a", "b", "c") // Array[String] = Array(a, b, c)
If you don’t like the type Scala determines, you can assign it manually:
val a = Array(1, 2) // a: Array[Int] = Array(1, 2)
val a = Array[Long](1, 2) // a: Array[Long] = Array(1, 2)
You can create an empty array and then add new elements to it while assigning the result to a new variable:
val a = Array[Int]() // a: Array[Int] = Array()
// append one element or multiple elements
val b = a :+ 1 // b: Array(1)
val c = b ++ Seq(2,3) // c: Array(1, 2, 3)
// prepend one element or multiple elements
val d = 10 +: c // d: Array(10, 1, 2, 3)
val e = Array(8,9) ++: d // e: Array(8, 9, 10, 1, 2, 3)
Similarly, you can define an array with an initial size and type and then populate it later. In the first step, this example creates an Array[String] with one thousand initial null elements, and then I start adding elements to it:
// create an array with an initial size
val babyNames = new Array[String](1_000)
// somewhere later in the code ...
babyNames(0) = "Alvin" // Array(Alvin, null, null ...)
babyNames(1) = "Alexander" // Array(Alvin, Alexander, null ...)
While we generally try to avoid null values in Scala, you can create a null var reference to an array, and then assign it later:
// this makes `fruits` a null value
var fruits: Array[String] = _ // fruits: Array[String] = null
// later in the code ...
fruits = Array("apple", "banana") // fruits: Array(apple, banana)
The following examples show a handful of other ways to create and populate an Array:
val x = (1 to 5).toArray // x: Array(1, 2, 3, 4, 5)
val x = Array.range(1, 5) // x: Array(1, 2, 3, 4)
val x = Array.range(0, 10, 2) // x: Array(0, 2, 4, 6, 8)
val x = List(1, 2, 3).toArray // x: Array(1, 2, 3)
"Hello".toArray // x: Array[Char] = Array(H,e,l,l,o)
val x = Array.fill(3)("foo") // x: Array(foo, foo, foo)
val x = Array.tabulate(5)(n => n * n) // x: Array(0, 1, 4, 9, 16)
Discussion
The Array is an interesting creature:
It’s backed by a Java array, but Scala arrays can also be generic, so that you can have an Array[A].
Like the Java array, it’s mutable in that its elements can be changed, but it’s immutable in that its size cannot be changed.
It’s compatible with Scala sequences, so if a function expects a Seq[A] you can pass it an Array[A].
Because arrays can be mutated, you definitely don’t want to use them when writing code in a functional programming style.
In regard to being backed by a Java array, the Scala 2.13 arrays page states this about the Array type:
Scala arrays correspond one-to-one to Java arrays. That is, a Scala array Array[Int] is represented as a Java int[], an Array[Double] is represented as a Java double[], etc.
You can see that for yourself if you create a file named Test.scala with this code:
class Test:
val nums = Array(1, 2, 3)
If you compile that file with scalac and then decompile it with a tool like JAD, you’ll see this Java code:
private final int nums[] = {
1, 2, 3
};
Accessing and updating elements
The Array is an indexed sequential collection, so accessing and changing values by their index position is straightforward and fast. Once you’ve created an Array, access its elements by enclosing the desired element number in parentheses:
val a = Array('a', 'b', 'c')
val elem0 = a(0) // elem0: a
val elem1 = a(1) // elem1: b
Just as you access an array element by index, you update elements in a similar way:
a(0) = 'A' // a: Array(A, b, c)
a(1) = 'B' // a: Array(A, B, c)
Why use Array?
Because the Array type has a combination of immutable and mutable characteristics, you may wonder when it should be used. One reason is performance. Certain Array operations are faster than other collections. For instance, in tests on my current computer, running b.sortInPlace with an Array of five million randomized Int values consistently takes about 500 ms:
import scala.util.Random
val v: Vector[Int] = (1 to 5_000_000).toVector
// create a randomized Array[Int]
val a: Array[Int] = Random.shuffle(v).toArray
a.sortInPlace // takes ~500ms
Conversely, creating a randomized Vector in the same way and calling its sorted method consistently takes over three seconds:
randomVector.sorted // takes about 3,100ms
So in this example, sorting the Array[Int] with sortInPlace is about six times faster than sorting a Vector[Int] with sorted. As the saying goes, your mileage (performance) may vary, but it’s important to know that in some situations an Array can be faster than other collection types. The See Also section has links related to sequence performance.
How Does Array Work Like Other Sequences?
When you realize that the Scala Array is backed by the Java array, you may wonder how Array can possibly work like other Scala sequences. The fourth edition of the book Programming in Scala states that “arrays are compatible with sequences, because there’s an implicit conversion from Array to ArraySeq.” Also, another implicit conversion related to ArrayOps “adds all sequence methods to arrays, but does not turn the array into a sequence.”
See Also
The official Scala website’s page on arrays has a thorough discussion of them including background on its implementation.
Recipe 11.2, “Understanding the Performance of Collections”, discusses Array class performance.
In his 2016 blog post, “Benchmarking Scala Collections”, Li Haoyi describes running a series of performance benchmarks, showing where Array performs well. His benchmark code is available at github.com/lihaoyi/scala-bench.
12.10 Creating Multidimensional Arrays
Problem
You need to create a multidimensional array, i.e., an array with two or more dimensions.
Solution
There are two main solutions:
Use Array.ofDim to create a multidimensional array. You can use this approach to create arrays of up to five dimensions. With this approach you need to know the number of rows and columns at creation time.
Create arrays of arrays as needed.
Both approaches are shown in this solution.
Using Array.ofDim
Use the Array.ofDim method to create the array you need:
val rows = 2
val cols = 3
val a = Array.ofDim[String](rows, cols)
// `a` now looks like this:
Array[Array[String]] = Array(
Array(null, null, null),
Array(null, null, null)
)
After declaring the array, add elements to it:
a(0)(0) = "a" // row 1
a(0)(1) = "b"
a(0)(2) = "c"
a(1)(0) = "d" // row 2
a(1)(1) = "e"
a(1)(2) = "f"
Access the elements using parentheses, similar to a one-dimensional array:
a(0)(0) // a
a(1)(2) // f
Iterate over the array with a for loop:
scala> for
| i <- 0 until rows
| j <- 0 until cols
| do println(s"($i)($j) = ${a(i)(j)}")
(0)(0) = a
(0)(1) = b
(0)(2) = c
(1)(0) = d
(1)(1) = e
(1)(2) = f
To create an array with more dimensions, just follow that same pattern. Here’s the code for a three-dimensional array:
val x, y, z = 10
val a = Array.ofDim[Int](x,y,z)
for
i <- 0 until x
j <- 0 until y
k <- 0 until z
do
println(s"($i)($j)($k) = ${a(i)(j)(k)}")
Using an array of arrays
Another approach is to create an array whose elements are arrays:
val a = Array(
Array("a", "b", "c"),
Array("d", "e", "f")
)
val x = a(0) // x: Array(a, b, c)
val x = a(1) // x: Array(d, e, f)
val x = a(0)(0) // x: a
This gives you more control of the process and lets you create “ragged” arrays (where each contained array may be a different size):
val a = Array(
Array("a", "b", "c"),
Array("d", "e"),
Array("f")
)
You can also declare your variable as a var and create the same array in multiple steps:
var arr = Array(Array("a", "b", "c"))
arr ++= Array(Array("d", "e"))
arr ++= Array(Array("f"))
// result:
Array(Array(a, b, c), Array(d, e), Array(f))
Discussion
Decompiling the Array.ofDim solution helps to understand how this works behind the scenes. If you create the following Scala class in a file named Test.scala:
class Test:
val arr = Array.ofDim[String](2, 3)
then compile that class with scalac, and then decompile it with a tool like JAD, you can see the Java code that’s created:
private final String arr[][];
Similarly, creating a Scala three-dimensional Array like this:
val arr = Array.ofDim[String](2, 2, 2)
results in a Java array like this:
private final String arr[][][];
As you might expect, the code generated by using the “array of arrays” approach is more complicated.
The Array.ofDim approach is unique to the Array class; there is no ofDim method on a List, Vector, ArrayBuffer, etc. But the “array of arrays” solution is not unique to the Array class; you can have a “list of lists,” “vector of vectors,” and so on.
Finally, if you have an array of arrays, remember that if needed, you can convert it to a single array with flatten:
val a = Array.ofDim[Int](2, 3) // a: Array(Array(0, 0, 0), Array(0, 0, 0))
val b = a.flatten // b: Array(0, 0, 0, 0, 0, 0)
12.11 Sorting Arrays
Problem
You want to sort the elements in an Array (or ArrayBuffer).
Solution
Use the sorting methods shown in Recipe 13.14, “Sorting a Collection”, (sortBy, sorted, sortWith, sortInPlace, sortInPlaceBy, and sortInPlaceWith), or use the special scala.util.Sorting.quickSort method. This solution demonstrates the quickSort method.
If you’re working with an Array that holds elements of a type that extends scala.math.Ordered, or that has an implicit or explicit Ordering, you can sort the Array in place using the scala.util.Sorting.quickSort method. For example, because the String class has an implicit Ordering, it can be used with quickSort:
val fruits = Array("cherry", "apple", "banana")
scala.util.Sorting.quickSort(fruits)
fruits // Array(apple, banana, cherry)
Notice that quickSort sorts the Array in place; there’s no need to assign the result to a new variable. This example works because the String class (via StringOps) has an implicit Ordering.
Discussion
A simple class like this Person class won’t work with Sorting.quickSort because it doesn’t provide any information on how the data should be sorted:
class Person(val firstName: String, val lastName: String):
override def toString = s"$firstName $lastName"
val peeps = Array(
Person("Jessica", "Day"),
Person("Nick", "Miller"),
Person("Winston", "Bishop"),
Person("", "Schmidt"),
Person("Coach", ""),
)
Attempting to sort that Array results in an error:
// results in this error: “No implicit Ordering defined for Person”
scala.util.Sorting.quickSort(peeps)
The solution is to extend the scala.math.Ordered trait, as demonstrated in Recipe 13.14, “Sorting a Collection”, or provide an implicit or explicit Ordering. This solution demonstrates an explicit Ordering:
object LastNameOrdering extends Ordering[Person]:
def compare(a: Person, b: Person) = a.lastName compare b.lastName
scala.util.Sorting.quickSort(peeps)(LastNameOrdering)
// result: Array(Coach , Winston Bishop, Jessica Day, Nick Miller, Schmidt)
This approach works because one of the overloaded quickSort methods accepts an (implicit) Ordering argument in its second parameter list, as shown in its type signature:
def quickSort[K](a: Array[K])(implicit arg0: math.Ordering[K]): Unit

Using a given ordering
As mentioned, arg0 is marked as an implicit parameter. A parameter that’s marked implicit is the Scala 2 equivalent of a Scala 3 using parameter. This means that when a math.Ordering given value is in the current scope, it will automatically be used as the arg0 parameter in that parameter group; you don’t even need to specify it.
For example, first define a given value that’s an instance of Ordering[Person]:
given personOrdering: Ordering[Person] with
def compare(a: Person, b: Person) = a.lastName compare b.lastName
Then when you call quickSort on the peeps array, the result is the same as the previous example:
import scala.util.Sorting.quickSort
quickSort(peeps)
// result: peeps: Array[Person] =
// Array(Coach , Winston Bishop, Jessica Day, Nick Miller, Schmidt)
Notice that when I call quickSort, it isn’t necessary to pass in the personOrdering instance(!). Because personOrdering is defined as a given value, the compiler is nice enough to find it for us. It knows it needs an Ordering[Person] parameter, and personOrdering has that type, and it’s marked as a given value.
This is what Scala 2 implicit parameters—and Scala 3 using parameters—do for us, in combination with given values. It’s just as though we had written the quickSort code like this, manually passing the personOrdering parameter into the second parameter group:
quickSort(peeps)(personOrdering)

Note that because the personOrdering name really isn’t needed in the code, the given parameter could have also been declared without a variable name, like this:
given Ordering[Person] with
def compare(a: Person, b: Person) = a.lastName compare b.lastName
For more details on this approach, see Recipe 23.8, “Using Term Inference with given and using”.
Performance
I demonstrate this solution because it’s unique to the Array class, and it may also have better performance for an Array than the solutions shown in Recipe 13.14, “Sorting a Collection”. For instance, my tests show that quickSort may be a little faster than sortInPlace for arrays of integers with a few million elements. But as with any performance discussion, be sure to test the alternatives in your own application.
See Also
The Scaladoc pages for the Sorting, Ordered, and Ordering types are very good, so see these pages for more examples and details:
See Recipe 13.14, “Sorting a Collection”, for information about how to mix the Ordered trait into your own custom classes.
Chapter 13. Collections: Common Sequence Methods
Where the two previous chapters primarily focused on sequence classes, this chapter focuses on sequence methods, specifically the most commonly used sequence methods. But before digging into those recipes, there are a few important concepts to know when working with collections class methods:
Predicates
Anonymous functions
Implied loops
Predicate
A predicate is simply a method, function, or anonymous function that takes one or more input parameters and returns a Boolean value. For instance, the following method returns either true or false, so it’s a predicate:
def isEven(i: Int): Boolean =
i % 2 == 0
A predicate is a simple concept, but you’ll hear the term so often when working with collection methods that it’s important to mention it.
Anonymous Functions
The concept of an anonymous function is also important. It’s described in depth in Recipe 10.1, “Using Function Literals (Anonymous Functions)”, but as a quick example, this code shows the long form for an anonymous function that does the same work as the isEven method:
(i: Int) => i % 2 == 0
Here’s the short form of the same function:
_ % 2 == 0
That doesn’t look like much by itself, but when it’s combined with the filter method on a collection, it makes for a lot of power in just a little bit of code:
scala> val list = List.range(1, 10)
list: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> val events = list.filter(_ % 2 == 0)
events: List[Int] = List(2, 4, 6, 8)
Implied Loops
The filter method is a nice lead-in to the third topic: implied loops. As you can see from that example, filter contains a loop that applies your function to every element in the collection and returns a new collection. You could live without the filter method and write equivalent code like this:
for
e <- list
if e % 2 == 0
yield
e
But I think you’ll agree that the filter approach is both more concise and easier to read.
Collection methods like filter, foreach, map, reduceLeft, and many more have loops built into their algorithms. Because of these built-in methods, you’ll write far fewer custom for loops when writing Scala code than with many other languages.
Recipes in This Chapter
While sequence classes have over one hundred built-in methods, the recipes in this chapter focus on the most commonly used methods, including:
filter, which lets you filter a collection with a given predicate
map, which lets you apply a transformation function to each element in a collection
Methods to extract sequences and subsets of an existing sequence
Methods to find unique elements in a sequence
Methods to merge and zip sequences together
Methods to randomize and sort sequences
Two methods you can use to convert sequences into strings
These capabilities—and several more—are demonstrated in the following recipes.
13.1 Choosing a Collection Method to Solve a Problem
Problem
There are a large number of methods available to Scala collections classes, and you need to choose a method to solve a problem.
Solution
The Scala collections classes provide a wealth of methods that can be used to manipulate data. Most methods take either a function or a predicate as an argument.
The methods that are available are listed in two ways in this recipe. In the next few paragraphs, the methods are grouped into categories to help you find what you need. Then in the tables that follow, a brief description and method signature are provided.
Methods organized by category
Filtering methods
Methods that can be used to filter a collection include collect, diff, distinct, drop, dropRight, dropWhile, filter, filterNot, filterInPlace, find, foldLeft, foldRight, head, headOption, init, intersect, last, lastOption, slice, tail, take, takeRight, takeWhile, and union.
Transformer methods
Transformer methods take at least one input collection to create a new output collection, typically using an algorithm you provide. They include +, ++, +:, ++:, appended, appendedAll, diff, distinct, collect, concat, flatMap, flatten, inits, map, mapInPlace, patch, reverse, sorted, sortBy, sortWith, sortInPlace, sortInPlaceWith, sortInPlaceBy, tails, takeWhile, updated, zip, and zipWithIndex.
Grouping methods
These methods let you take an existing collection and create multiple groups from that one collection. They include groupBy, grouped, groupMap, partition, sliding, span, splitAt, and unzip.
Informational and mathematical methods
These methods provide information about a collection, and include canEqual, contains, containsSlice, count, endsWith, exists, find, findLast, forAll, indexOf, indexOfSlice, indexWhere, isDefinedAt, isEmpty, last, lastOption, lastIndexOf, lastIndexOfSlice, lastIndexWhere, length, lengthIs, max, maxBy, maxOption, maxByOption, min, minBy, minOption, minByOption, nonEmpty, product, segmentLength, size, sizeIs, startsWith, and sum. The methods foldLeft, foldRight, reduceLeft, and reduceRight can also be used with a function you supply to obtain information about a collection.
Others
A few other methods are hard to categorize, including view, foreach, addString, and mkString. view creates a lazy view on a collection (see Recipe 11.4, “Creating a Lazy View on a Collection”); foreach is like a for loop, letting you iterate over the elements in a collection and perform a side effect on each element; addString and mkString let you build a String from a collection.
There are even more methods than those listed here. For instance, there’s a collection of to* methods that let you convert the current collection (a List, for example) to other collection types (toArray, toBuffer, toVector, etc.). Check the Scaladoc for your collections class to find more built-in methods.
Common collection methods
The following tables list the most common collection methods. Note that all quotes in the descriptions come from the Scaladoc for each class.
Table 13-1 lists methods that are common to all collections via Iterable. The following symbols are used in the first column of the table:
c refers to a sequential collection.
f refers to a function.
p refers to a predicate.
n refers to a number.
Additional methods for mutable and immutable collections are listed in Tables 13-2 and 13-3, respectively.
Method	Description
c collect f	Builds a new collection by applying a partial function to all elements of the collection on which the function is defined.
c count p	Counts the number of elements in the collection for which the predicate is satisfied.
c drop n	Returns all elements in the collection except the first n elements.
c dropWhile p	Returns a collection that contains the “longest prefix of elements that satisfy the predicate.”
c exists p	Returns true if the predicate is true for any element in the collection.
c filter p	Returns all elements from the collection for which the predicate is true.
c filterNot p	Returns all elements from the collection for which the predicate is false.
c find p	Returns the first element that matches the predicate as Option[A].
c flatMap f	Returns a new collection by applying a function to all elements of the collection c (like map), and then flattening the elements of the resulting collections.
c flatten	Converts a collection of collections (such as a list of lists) to a single collection (single list).
c foldLeft(s)(f)	Applies the operation f to successive elements, going from left to right (left associative), starting with the seed value s.
c foldRight(s)(f)	Applies the operation f to successive elements, going from right to left (right associative), starting with the seed value s.
c forAll p	Returns true if the predicate is true for all elements, false otherwise.
c foreach f	Applies the function f to all elements of the collection (where f is typically a side-effecting function).
c groupBy f	Partitions the collection into a Map of collections according to the function.
c head	Returns the first element of the collection. Throws a NoSuchElementException if the collection is empty.
c headOption	Returns the first element of the collection as Some[A] if the element exists, or None if the collection is empty.
c init	Selects all elements from the collection except the last one. Throws an UnsupportedOperationException if the collection is empty.
c inits	“Iterates over the inits of this iterable collection.”
c isEmpty	Returns true if the collection is empty, false otherwise.
c knownSize	“The number of elements in the collection, if it can be cheaply computed, -1 otherwise. Cheaply usually means: Not requiring a collection traversal.”
c last	Returns the last element from the collection. Throws a NoSuchElementException if the collection is empty.
c lastOption	Returns the last element of the collection as Some[A] if the element exists, or None if the collection is empty.
c1 lazyZip c2	A lazy version of the zip method.
c map f	Creates a new collection by applying the function to all the elements of the collection.
c max	Returns the largest element from the collection. Can throw java.lang.UnsupportedOperationException.
c maxOption	Returns the largest element from the collection as an Option.
c maxBy f	Returns the largest element as measured by the function f. Can throw java.lang.UnsupportedOperationException.
c maxByOption	Returns the largest element as an Option, as measured by the function f.
c min	Returns the smallest element from the collection. Can throw java.lang.UnsupportedOperationException.
c minOption	Returns the smallest element from the collection as an Option.
c minBy	Returns the smallest element as measured by the function f. Can throw java.lang.UnsupportedOperationException.
c minByOption	Returns the smallest element as an Option, as measured by the function f.
c mkString	Several options to convert the sequence into a string.
c nonEmpty	Returns true if the collection contains at least one element, false otherwise.
c partition p	Returns two collections according to the predicate algorithm.
c product	Returns the multiple of all elements in the collection.
c reduceLeft op	The same as foldLeft, but begins at the first element of the collection. Can throw java.lang.UnsupportedOperationException.
c reduceRight op	The same as foldRight, but begins at the last element of the collection. Can throw java.lang.UnsupportedOperationException.
c scanLeft op	Similar to reduceLeft, but returns an Iterable.
c scanRight op	Similar to reduceRight, but returns an Iterable.
c size	Returns the size of the collection.
c1 sizeCompare(c2)	Compare the size of c1 to the size of c2. Returns <0 if c1 is smaller; 0 if they are the same size; >0 if c1 is larger.
c sizeIs n	Compare the size of a collection to the integer n while traversing as few elements as possible.
c slice(from, to)	Returns the interval of elements beginning at element from and ending at element to.
c sliding(size,step)	Works by passing a sliding window over the sequence, returning sequences of a length given by size. The step parameter lets you skip over elements.
c span p	Returns a collection of two collections; the first created by c.takeWhile(p) and the second created by c.dropWhile(p).
c splitAt n	Returns a collection of two collections by splitting the collection c at element n.
c sum	Returns the sum of all elements in the collection.
c tail	Returns all elements from the collection except the first element.
c tails	Iterates over the tails of the sequence.
c take n	Returns the first n elements of the collection.
c takeWhile p	Returns elements from the collection while the predicate is true. Stops when the predicate becomes false.
c tapEach f	Applies a side-effecting function f to each element in c, while also returning c. Lets you insert a side effect in a chain of method calls, such as logging.
c unzip	The opposite of zip, breaks a collection into two collections by dividing each element into two pieces, as in breaking up a collection of Tuple2 elements.
c view	Returns a nonstrict (lazy) view of the collection.
c1 zip c2	Creates a collection of pairs by matching the element 0 of c1 with element 0 of c2, element 1 of c1 with element 1 of c2, etc.
c zipWithIndex	Zips the collection with its indices.
There are additional methods, but these are the most common. See the Scaladoc for the collection you’re working with for more methods.	
Mutable collection methods	
Table 13-2 shows methods that are commonly available on mutable collections. (Although these are all methods, some of them look like built-in operators.)	
Method	Description
---	---
c += x	Adds the element x to the collection c. An alias for addOne.
c1 ++= c2	Adds the elements in the collection c2 to the collection c1. An alias for addAll.
c −= x	Removes the element x from the collection c. An alias for subtractOne.
c −= (x,y,z)	Removes the elements x , y, and z from the collection c.
c1 −−= c2	Removes the elements in the collection c2 from the collection c1. An alias for subtractAll.
c(n) = x	Assigns the value x to the element c(n).
c append x	Appends the element x to the collection c.
c1 appendAll c2	Appends the elements in c2 to the collection c1.
c clear	Removes all elements from the collection.
c filterInPlace p	Retains all elements in the collection for which the predicate is true.
c flatMapInPlace f	Assuming that c is a list of lists, updates all elements by applying the function f to the elements. Works like map and then flatten.
c mapInPlace f	Updates all elements in the collection by applying the function to the elements.
c1.patchInPlace(i,c2,n)	Starting at index i, patch in the sequence c2, replacing the number of elements n. Set n to 0 to insert the new sequence at index i.
c prepend x	Prepends the element x to the collection c.
c1 prependAll c2	Prepends the elements in c2 to the collection c1.
c sortInPlace	Sort the collection in place according to an Ordering.
c sortInPlaceBy f	Sorts the collection in place according to an implicitly given Ordering with the transformation function f.
c sortInPlaceWith f	Sorts the collection in place according to the comparison function f.
c remove i	Removes the element at index i.
c.remove(i, len)	Removes the elements beginning at index i and continuing for length len.
c.update(i,e)	Updates the element at index i with the new value e.
Note that symbolic method names like += and -= are now aliases for named methods. For instance, += is an alias for addOne. See the Scaladoc for the mutable collection you’re working with for more methods.	
Immutable collection methods	
Table 13-3 shows the common methods for working with immutable collections. Note that immutable collections can’t be modified, so the result of each expression in the first column must be assigned to a new variable. (Also, see Recipe 11.3, “Understanding Mutable Variables with Immutable Collections”, for details on using a mutable variable with an immutable collection.)	
Method	Description
---	---
c1 ++ c2	Creates a new collection by appending the elements in the collection c2 to the collection c1. An alias for concat.
c :+ e	Returns a new collection with the element e appended to the collection c. An alias for appended.
c1 :++ c2	Returns a new collection with the elements in c2 appended to the elements in c1. An alias for appendedAll.
e +: c	Returns a new collection with the element e prepended to the collection c. An alias for prepended.
c1 ++: c2	Returns a new collection with the elements in c1 prepended to the elements in c2. An alias for prependedAll.
e :: list	Returns a List with the element e prepended to the List named list. (:: works only on List.)
list1 ::: list2	Returns a List with the elements in list1 prepended to the elements in list2. (::: works only on List.)
c updated(i,e)	Returns a copy of c with the element at index i replaced by e.
Note that symbolic method names like ++ and ++= are now aliases for named methods. For instance, ++ is an alias for concat. Also note that the two methods - and -- were deprecated for most sequences several versions ago and are only available on sets currently, so use the filtering methods listed in Table 13-1 to return a new collection with the desired elements removed.	
This table lists only the most common methods available on immutable collections. There are other methods available, such as the - and -- methods being available on an immutable Set. See the Scaladoc for your current collection for even more methods.	
Maps	
Maps have additional methods, as shown in Table 13-4. In this table, the following symbols are used in the first column:	
m, m1, and m2 refer to a map.	
mm refers to a mutable map.	
k, k1, and k2 refer to map keys.	
p refers to a predicate (a function that returns true or false).	
v, v1, and v2 refer to map values.	
c refers to a collection.	
Map method	Description
---	---
Methods for immutable maps	
m + (k->v)	Returns a map with a new key/value pair added. Can also be used to update the key/value pair with key k. An alias for updated.
m1 ++ m2	Returns the combination of maps m1 and m2. Can also be used to update key/value pairs. An alias for concat.
m ++ Seq(k1->v1, k2->v2)	Returns the combination of map m and the elements in the Seq. Can also be used to update key/value pairs. An alias for concat.
m - k	Returns a map with the key k (and its corresponding value) removed. An alias for removed.
m - Seq(k1, k2, k3)	Returns a map with the keys k1, k2, and k3 removed. An alias for removed.
m -- k m -- Seq(k1,k2)	Returns a map with the key(s) removed. Although Seq is shown, this can be any IterableOnce. An alias for removedAll.
Methods for mutable maps	
mm(k) = v	Assigns the value v to the key k.
mm += (k -> v)	Adds the key/value pair(s) to the mutable map mm. An alias for addOne.
mm ++= Map(k1 -> v1, k2 -> v2)	Adds the key/value pair(s) to the mutable map mm. An alias for addAll.
mm ++= List(k1 -> v1, k2 -> v2)	Adds the elements in the collection c to the mutable map mm. An alias for addAll.
mm -= k	Removes map entries from the mutable map mm based on the given key. An alias for subtractOne.
mm --= Seq(k1, k2, k3)	Removes map entries from the mutable map mm based on the given key(s). An alias for subtractAll.
Methods for both mutable and immutable maps	
m(k)	Returns the value associated with the key k.
m contains k	Returns true if the map m contains the key k.
m filter p	Returns a map whose keys and values match the condition of the predicate p.
m get k	Returns the value for the key k as Some[A] if the key is found, None otherwise.
m getOrElse(k, d)	Returns the value for the key k if the key is found, otherwise returns the default value d.
m isDefinedAt k	Returns true if the map contains the key k.
m keys	Returns the keys from the map as an Iterable.
m keyIterator	Returns the keys from the map as an Iterator.
m keySet	Returns the keys from the map as a Set.
m values	Returns the values from the map as an Iterable.
m valuesIterator	Returns the values from the map as an Iterator.
You can also update Map values with the updatedWith and updateWith methods, which are available on immutable and mutable maps, respectively.	
For additional methods, see the mutable map class Scaladoc and the immutable map class Scaladoc.	
Discussion	
As you can see, Scala collection classes contain a wealth of methods (and methods that appear to be operators). Understanding these methods will help you become more productive, because as you understand them, you’ll write less code and fewer loops and instead write short functions and predicates to work with these methods.	
13.2 Looping Over a Collection with foreach	
Problem	
You want to iterate over the elements in a collection with the foreach method.	
Solution	
Supply the foreach method a function, anonymous function, or method that matches the signature foreach is looking for, while also solving your problem.	
The foreach method on Scala sequences has this signature:	
def foreach[U](f: (A) => U): Unit	
That means that it takes a function as its only parameter, and the function takes a generic type A and returns nothing (Unit). As a practical matter, A is the type that’s contained in your collection, such as Int and String.	
The way foreach works is that it passes one element at a time from the collection to your function, starting with the first element and ending with the last element. The function you supply does whatever you want it to do with each element, though your function can’t return anything. (If you want to return something, see the map method.)	
As an example, a common use of foreach is to print information. Given a Vector[Int]:	
val nums = Vector(1, 2, 3)	
you can write a function that takes an Int parameter and returns nothing:	
def printAnInt(i: Int): Unit = println(i)	
Because printAnInt matches the signature foreach requires, you can use it with nums and foreach:	
scala> nums.foreach(i => printAnInt(i))	
1	
2	
3	
You can also write that expression like this:	
nums.foreach(printAnInt(_))	
nums.foreach(printAnInt) // most common	
The last example shows the most commonly used form.	
Similarly, you can also solve this problem by writing an anonymous function that you pass into foreach. These examples are all identical to using the printAnInt function:	
nums.foreach(i => println(i))	
nums.foreach(println(_))	
nums.foreach(println) // most common	
foreach on Maps	
foreach is also available on Map classes. The Map implementation of foreach has this signature:	
def foreach[U](f: ((K, V)) => U): Unit	
That means that it takes a function that expects two parameters (K and V, standing for key and value) and returns U, which stands for Unit. Therefore, foreach passes two parameters to your function. You can handle those parameters as a tuple:	
val m = Map("first_name" -> "Nick", "last_name" -> "Miller")	
m.foreach(t => println(s"${t._1} -> ${t._2}")) // tuple syntax	
You can also use this approach:	
m.foreach {	
(fname, lname) => println(s"$fname -> $lname")	
}	
See Recipe 14.9, “Traversing a Map”, for other ways to iterate over a map.	
Side Effects	
As shown, foreach applies your function to each element of the collection, but it requires that your function not return a value, and foreach also does not return a value. Because foreach doesn’t return anything, it must logically be used for some other reason, such as printing output or mutating other variables. Therefore, it’s said that foreach—and any other method that returns Unit—must be used for its side effect. Therefore, foreach is a statement, not an expression. See my blog post “A Note About Expression-Oriented Programming” for more details on statements and expressions.	
Discussion	
To use foreach with a multiline function, pass the function as a block enclosed in curly braces:	
val longWords = StringBuilder()	
"Hello world it’s Al".split(" ").foreach { e =>	
if e.length > 4 then longWords.append(s" $e")	
else println("Not added: " + e)	
}	
When that code is run in the REPL, it produces this output:	
Not added: it’s	
Not added: Al	
val longWords: StringBuilder = Hello world	
See Also	
You can iterate over the elements in a collection using for loops and for expressions, as detailed in Chapter 4.	
13.3 Using Iterators	
Problem	
You want (or need) to work with an iterator in a Scala application.	
Solution	
There are several important points to know about working with iterators in Scala:	
Unlike with Java while loops, Scala developers generally don’t directly use the hasNext and next methods of an Iterator.	
Using iterators makes sense for performance reasons, such as reading large files.	
Iterators are exhausted after using them.	
While an iterator is not a collection, it has the usual collection methods.	
Iterator tranformer methods are lazy.	
A subclass of Iterator named BufferedIterator provides head and headOption methods so you can peek at the value of the next element.	
These points (and solutions) are covered in the following sections.	
Scala developers don’t directly access hasNext and next	
Although using an iterator with hasNext() and next() has historically been a common way to loop over a collection in Java, Scala developers normally don’t directly access those methods. Instead, we use collections methods like map, filter, and foreach to loop over collections, or for loops. To be clear, whenever I have an iterator in Scala, I’ve never directly written code like this:	
val it = Iterator(1, 2, 3)	
// we don’t do this	
val it = collection.iterator	
while (it.hasNext) ...	
Conversely, I do write code like this:	
val a = it.map(_ * 2) // a: Iterator[Int] = <iterator>	
val b = it.filter(_ > 2) // b: Iterator[Int] = <iterator>	
val c = for e <- it yield e*2 // c: Iterator[Int] = <iterator>	
Iterators makes sense for performance reasons	
While we don’t directly call hasNext() and next(), iterators are an important concept in Scala. For example, when you read a file with the io.Source.fromFile method, it returns an iterator that lets you read one line at a time from the file. This makes sense, because it’s not practical to read large data files into memory.	
Iterators are also used in the transformer methods of views, which are lazy. For example, the book Programming in Scala demonstrates that a lazyMap function would be implemented with an iterator:	
def lazyMap[T, U](coll: Iterable[T], f: T => U) =	
new Iterable[U] {	
def iterator = coll.iterator map f	
}	
As shown in Recipe 11.4, “Creating a Lazy View on a Collection”, using a view on a large collection can be an important performance-improving tip.	
Iterators are exhausted after using them	
An important part of using an iterator is knowing that it’s exhausted (empty) after you use it. As you access each element, you mutate the iterator (see the Discussion) and the previous element is discarded. For instance, if you use foreach to print an iterator’s elements, the call works the first time:	
scala> val it = Iterator(1,2,3)	
it: Iterator[Int] = nonempty iterator	
scala> it.foreach(print)	
123	
but when you attempt the same call a second time you won’t get any output, because the iterator has been exhausted:	
scala> it.foreach(print)	
(no output here)	
An iterator behaves like a collection	
Technically, an iterator isn’t a collection; instead, it gives you a way to access the elements in a collection, one by one. But an iterator does define many of the methods you’ll see in a normal collection class, including foreach, map, filter, etc. You can also convert an iterator to a collection when needed:	
val i = Iterator(1,2,3) // i: Iterator[Int] = <iterator>	
val a = i.toVector // a: Vector[Int] = Vector(1, 2, 3)	
val i = Iterator(1,2,3) // i: Iterator[Int] = <iterator>	
val b = i.toList // b: List[Int] = List(1, 2, 3)	
Iterators are lazy	
Another important point is that iterators are lazy, meaning that their transformer methods are evaluated in a nonstrict, or lazy, manner. For example, notice that the following for loop and the map and filter methods don’t return a concrete result, they simply return an iterator:	
val i = Iterator(1,2,3) // i: Iterator[Int] = <iterator>	
val a = for e <- i yield e*2 // a: Iterator[Int] = <iterator>	
val b = i.map(_ * 2) // b: Iterator[Int] = <iterator>	
val c = i.filter(_ > 2) // c: Iterator[Int] = <iterator>	
Like other lazy methods, they’re only evaluated when they’re forced to, such as by calling a strict method like foreach:	
scala> i.map(_ + 10).foreach(println)	
11	
12	
13	
BufferedIterator lets you peek ahead	
A buffered iterator is an iterator that lets you peek at the next element without moving the iterator forward. You can create a BufferedIterator from an Iterator by calling its buffered method:	
val it = Iterator(1,2) // it: Iterator[Int] = <iterator>	
val bi = it.buffered // bi: BufferedIterator[Int] = <iterator>	
After that, you can call the head method on the BufferedIterator, and it won’t affect the iterator:	
// call 'head' as many times as desired	
bi.head // 1	
bi.head // 1	
bi.head // 1	
On the other hand, notice what happens when you call next on an Iterator or BufferedIterator:	
// 'next' advances the iterator	
bi.next // 1	
bi.next // 2	
bi.next // java.util.NoSuchElementException: next on empty iterator	
Beware Calling Head	
As discussed in Recipe 13.1, you’ll generally want to call headOption instead of head, because head will throw an exception if you call it on an empty list, or at the end of a list:	
// create a one-element BufferedIterator	
val bi = Iterator(1).buffered	
// result: BufferedIterator[Int] = <iterator>	
// 'head' works fine	
bi.head // 1	
// advance the iterator	
bi.next // 1	
bi.headOption // None (headOption works as intended)	
// 'head' blows up	
bi.head	
// result: java.util.NoSuchElementException:	
// next on empty iterator	
Discussion	
Conceptually, an iterator is like a pointer. When you create an iterator on a List, it initially points to the list’s first element:	
val x = 1 :: 2 :: Nil	
^	
Then when you call the iterator’s next method, it points at the next element in the collection:	
val x = 1 :: 2 :: Nil	
^	
Finally, when the iterator gets to the end of the collection, it’s considered to be exhausted. It doesn’t go back to point at the first element:	
val x = 1 :: 2 :: Nil	
^	
As shown in the Solution, attempting to call next or head at this point will throw a java.util.NoSuchElementException.	
See Also	
The iterators overview Scala documentation.	
The iterator Scaladoc.	
The BufferedIterator Scaladoc.	
Recipe 11.4, “Creating a Lazy View on a Collection”, has more information on views, iterators, and performance.	
13.4 Using zipWithIndex or zip to Create Loop Counters	
Problem	
You want to loop over a sequence with a for loop or foreach method, and you’d like to have access to a counter in the loop, without having to manually create a counter.	
Solution	
Use the zipWithIndex or zip method to create a counter. For example, assuming you have a list of characters:	
val chars = List('a', 'b', 'c')	
one way to print the elements in the list with a counter is by using zipWithIndex, foreach, and a case statement in curly braces:	
chars.zipWithIndex.foreach {	
case (c, i) => println(s"character '$c' has index $i")	
}	
// output:	
character 'a' has index 0	
character 'b' has index 1	
character 'c' has index 2	
As you’ll see in the Discussion, this solution works because zipWithIndex returns a series of two-element tuples (tuple-2) in a sequence, like this:	
List((a,0), (b,1), ...	
It also works because the case statement in the code block matches a tuple-2. Because foreach passes a tuple-2 to your algorithm, you can also write your code like this:	
chars.zipWithIndex.foreach { t =>	
println(s"character '${t._1}' has index ${t._2}")	
}	
Finally, you can also use a for loop:	
for	
(c, i) <- chars.zipWithIndex	
do	
println(s"character '$c' has index $i")	
All the loops have the same output.	
Control the starting value with zip	
When you use zipWithIndex, the counter always starts at 0. If you want to control the starting value, use zip instead:	
for (c, i) <- chars.zip(LazyList from 1) do	
println(s"${c} is #${i}")	
That loop’s output is:	
a is #1	
b is #2	
c is #3	
Discussion	
When called on a sequence, zipWithIndex returns a sequence of tuple-2 elements. For instance, given a List[Char], you can see that zipWithIndex yields a list of tuple-2 values:	
scala> val chars = List('a', 'b', 'c')	
val chars: List[Char] = List(a, b, c)	
scala> val zwi = chars.zipWithIndex	
val zwi: List[(Char, Int)] = List((a,0), (b,1), (c,2))	
Using a case statement in curly braces	
As shown in the Solution, you can use a case statement inside curly braces with foreach:	
chars.zipWithIndex.foreach {	
case (c, i) => println(s"character '$c' has index $i")	
}	
This approach can be used anywhere a function literal is expected. In other situations, you can use as many case alternatives as needed.	
Prior to Scala 2.13, that example could only be written with the case keyword, but with Scala 2.13 and newer that line of code can be written in any of these ways:	
case(c, i) => println(s"character '$c' has index $i") // shown previously	
case(c -> i) => println(s"character '$c' has index $i") // alternate	
(c, i) => println(s"character '$c' has index $i") // without the 'case'	
Using a lazy view	
Because zipWithIndex creates a new sequence from an existing sequence, you may want to call view before invoking zipWithIndex, especially when working with large sequences:	
scala> val zwi2 = chars.view.zipWithIndex	
zwi2: scala.collection.View[(Char, Int)] = View(<not computed>)	
As discussed in Recipe 11.4, “Creating a Lazy View on a Collection”, this creates a lazy view on chars, meaning:	
An intermediate sequence is not created.	
The tuple elements won’t be created until they’re needed, although in the case of loops they will generally always be needed, unless your algorithm contains a break or exception.	
Because using view prevents an intermediate collection from being created, calling view before calling zipWithIndex can help when looping over large collections. As usual, when performance is a concern, test your code with and without a view.	
13.5 Transforming One Collection to Another with map	
Problem	
Like the previous recipe, you want to transform one collection into another by applying an algorithm to every element in the original collection.	
Solution	
Rather than using the for/yield combination as shown in Recipe 4.4, “Creating a New Collection from an Existing Collection with for/yield”, call the map method on your collection, passing it a function, an anonymous function, or a method to transform each element. These examples show how to use anonymous functions:	
val a = Vector(1,2,3)	
// add 1 to each element	
val b = a.map(_ + 1) // b: Vector(2, 3, 4)	
val b = a.map(e => e + 1) // b: Vector(2, 3, 4)	
// double each element	
val b = a.map(_ * 2) // b: Vector(2, 4, 6)	
val b = a.map(e => e * 2) // b: Vector(2, 4, 6)	
These examples show how to use a function (or method):	
def plusOne(i: Int) = i + 1	
val a = Vector(1,2,3)	
// three ways to use plusOne with map	
val b = a.map(plusOne) // b: Vector(2, 3, 4)	
val b = a.map(plusOne(_)) // b: Vector(2, 3, 4)	
val b = a.map(e => plusOne(e)) // b: Vector(2, 3, 4)	
Writing a method to work with map	
When writing a method to work with map:	
Define the method to take a single input parameter that’s the same type as the collection.	
The method return type can be whatever type you need.	
For example, imagine that you have a list of strings that can potentially be converted to integers:	
val strings = List("1", "2", "hi mom", "4", "yo")	
You can use map to convert that list of strings to a list of integers. The first thing you need is a method that (a) takes a String and (b) returns an Int. For instance, as a first step to demonstrate the approach, if you want to determine the length of each string in the list, this lengthOf method works just fine:	
def lengthOf(s: String): Int = s.length	
val x = strings.map(lengthOf) // x: List(1, 1, 6, 1, 2)	
However, because I really want to convert each string to an integer—and because some of the strings won’t properly convert to integers—what I really need is a function that returns Option[Int]:	
import scala.util.Try	
def makeInt(s: String): Option[Int] = Try(Integer.parseInt(s)).toOption	
When given a "1" string, that method returns Some(1), and when given a string like "yo", it returns a None.	
Now you can use makeInt with map to start converting each string in the list to an integer. A first attempt returns a List of Option[Int], i.e., the type List[Option[Int]]:	
scala> val intOptions = strings.map(makeInt)	
val intOptions: List[Option[Int]] = List(Some(1), Some(2), None, Some(4), None)	
But once you know the collection methods that are available to you, you’ll know that you can flatten that List[Option[Int]] into a List[Int]:	
scala> val ints = strings.map(makeInt).flatten	
val ints: List[Int] = List(1, 2, 4)	
Discussion	
When I first came to Scala my background was in Java, so I initially wrote for/yield loops. They were an imperative solution that I was more comfortable with. But eventually I realized that map is the same as a for/yield expression without any guards, and with only one generator:	
val list = List("a", "b", "c") // list: List(a, b, c)	
// map	
val caps1 = list.map(_.capitalize) // caps1: List(A, B, C)	
// for/yield	
val caps2 = for e <- list yield e.capitalize // caps2: List(A, B, C)	
Once I understood this, I began using map.	
This is a key concept about the dozens of functional methods you’ll find on Scala collections classes: methods like map, filter, take, etc. are all replacements for custom for loops. There are many benefits to using these built-in functional methods, but two important benefits are:	
You don’t have to write custom for loops.	
You don’t have to read custom for loops written by other developers.	
I don’t mean those lines to be a snarky comment; instead, I mean it as a way of saying that for loops require a lot of boilerplate code that you have to read just to find the custom algorithm—the intent. Conversely, when you use Scala’s built-in collections methods, it’s much easier to see that intent.	
As a small example, given a list like this:	
val fruits = List("banana", "peach", "lime", "pear", "cherry")	
an imperative solution to (a) find all the strings that are more than two characters long and (b) less than six characters long, and then (c) capitalize those remaining strings, which looks like this:	
val newFruits = for	
f <- fruits	
if f.length < 6	
if f.startsWith("p")	
yield f.capitalize	
Because of Scala’s syntax that’s not too hard to read, but notice at least two things:	
You have to explicitly write f <- fruits, i.e., “for each fruit in fruits.”	
Part of the algorithm is inside the for expression, and another part of it comes after the yield keyword.	
Conversely, the idiomatic Scala solution to the same problem looks like this:	
val newFruits = fruits.filter(_.length > 2)	
.filter(_.startsWith("p"))	
.map(_.capitalize)	
Even in a small example like this you can see that you’re writing (a) what you want instead of (b) a step-by-step imperative algorithm to get what you want. Once you understand how to use the Scala collections methods, you’ll find that you can focus more on your intent than on writing the details of a custom for loop, and your code will become more concise but still very readable—what we call expressive.	
Think of map as transform	
When I was just starting to use Scala and the map method, I initially found it helpful to say transform every time I typed map. That is, I wished the method was named transform instead of map:	
fruits.map(_.capitalize) // what it’s named	
fruits.transform(_.capitalize) // what i wish it was named	
This is because map applies your function to each element in the initial list, and transforms those elements into a new list.	
(As I explain in my blog post “The ‘Great FP Terminology Barrier’”, the name map comes from the field of mathematics.)	
13.6 Flattening a List of Lists with flatten	
Problem	
You have a list of lists—or more generally a sequence of sequences—and want to create one list (sequence) from them.	
Solution	
Use the flatten method to convert a list of lists into a single list. To demonstrate this, first create a list of lists:	
val lol = List(List(1,2), List(3,4))	
Calling the flatten method on this list of lists creates one new list:	
val x = lol.flatten // x: List(1, 2, 3, 4)	
As shown, flatten does what its name implies, flattening the two lists held inside the outer list into one resulting list.	
Though I use the term list here, the flatten method isn’t limited to a List; it works with other sequences (Array, ArrayBuffer, Vector, etc.) as well:	
val a = Vector(Vector(1,2), Vector(3,4))	
val b = a.flatten // b: Vector(1, 2, 3, 4)	
Discussion	
In a social-networking application, you might do the same thing with a list of your friends and their friends:	
val myFriends = List("Adam", "David", "Frank")	
val adamsFriends = List("Nick K", "Bill M")	
val davidsFriends = List("Becca G", "Kenny D", "Bill M")	
val franksFriends: List[String] = Nil	
val friendsOfFriends = List(adamsFriends, davidsFriends, franksFriends)	
Because friendsOfFriends is a list of lists:	
List(
List("Nick K", "Bill M"),	
List("Becca G", "Kenny D", "Bill M"),	
List()	
)	
you can use flatten to accomplish many tasks with it, such as creating a unique list of the friends of your friends:	
scala> val uniqueFriendsOfFriends = friendsOfFriends.flatten.distinct	
uniqueFriendsOfFriends: List[String] = List(Nick K, Bill M, Becca G, Kenny D)	
flatten with Seq[Option]	
flatten is particularly useful when you have a list of Option values. Because an Option can be thought of as a container that holds zero or one elements, flatten has a very useful effect on a sequence of Some and None elements. Because Some is like a list with one element, and None is like a list with no elements, flatten extracts the values out of the Some elements and drops the None elements as it creates a new list:	
val x = Vector(Some(1), None, Some(3), None) // x: Vector[Option[Int]]	
val y = x.flatten // y: Vector(1, 3)	
If you’re new to Option/Some/None values, it can help to think of a list of Some and None values as being similar to a list of lists, where each list contains one or zero items:	
List(Some(1), None, Some(2)).flatten // List(1, 2)	
List(List(1), List(), List(2)).flatten // List(1, 2)	
See Recipe 24.6, “Using Scala’s Error-Handling Types (Option, Try, and Either)”, for more information on working with Option values.	
Combining map and flatten with flatMap	
If you ever need to call map on a sequence followed by flatten, you can use flatMap instead. For instance, given this nums list and makeInt method, which returns an Option:	
val nums = List("1", "2", "three", "4", "one hundred")	
import scala.util.{Try,Success,Failure}	
def makeInt(s: String): Option[Int] = Try(Integer.parseInt(s.trim)).toOption	
you can calculate the sum of the strings in that list that properly convert to integers using map followed by flatten:	
nums.map(makeInt).flatten // List(1, 2, 4)	
However, whenever you’re working with a list like this, you can use flatMap instead:	
nums.flatMap(makeInt) // List(1, 2, 4)	
This always makes me think that this method should be called “map flat” instead, but the name flatMap has been around for a long time, and this is just one possible use of it.	
13.7 Using filter to Filter a Collection	
Problem	
You want to filter the items in a collection to create a new collection that contains only the elements that match your filtering criteria.	
Solution	
To filter a sequence:	
Use the filter method on immutable collections.	
Use filterInPlace on mutable collections.	
Depending on your needs, you can also use the other functional methods described in Recipe 13.1 to filter a collection.	
Use filter on immutable collections	
This is the signature for the filter method on a Seq:	
def filter(p: (A) => Boolean): Seq[A] // general case	
Therefore, as a concrete example, this is what that signature looks like when you have a Seq[Int]:	
def filter(p: (Int) => Boolean): Seq[Int] // specific case for Seq[Int]	
This means that filter takes a predicate—a function that returns true or false—and returns a sequence. The predicate you supply should take an input parameter of the type that’s held in the sequence (such as Int) and return a Boolean. Your function should return true for the elements you want to retain in the new collection, and false for elements you want to drop. Remember to assign the results of the filtering operation to a new variable.	
For instance, the following examples demonstrate how to use filter with a list of integers and two different algorithms:	
val a = List.range(1, 10) // a: List(1, 2, 3, 4, 5, 6, 7, 8, 9)	
// create a new list of all elements that are less than 5	
val b = a.filter(_ < 5) // b: List(1, 2, 3, 4)	
val b = a.filter(e => e < 5) // b: List(1, 2, 3, 4)	
// create a list of all the even numbers in the list	
val evens = x.filter(_ % 2 == 0) // evens: List(2, 4, 6, 8)	
As shown, filter returns all elements from a sequence that return true when your function/predicate is called. There’s also a filterNot method that returns all elements from a list for which your function returns false.	
Use filterInPlace on mutable collections	
When you have a mutable collection like ArrayBuffer, use filterInPlace rather than filter:	
import scala.collection.mutable.ArrayBuffer	
val a = ArrayBuffer.range(1,10) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)	
a.filterInPlace(_ < 5) // a: ArrayBuffer(1, 2, 3, 4)	
a.filterInPlace(_ > 2) // a: ArrayBuffer(3, 4)	
Because ArrayBuffer is mutable, you don’t have to assign the result of filterInPlace to another variable; the contents of the variable a are directly changed.	
Discussion	
The main methods you can use to filter a collection are listed in Recipe 13.1 and are repeated here for your convenience: collect, diff, distinct, drop, dropRight, dropWhile, filter, filterNot, filterInPlace, find, foldLeft, foldRight, head, headOption, init, intersect, last, lastOption, slice, tail, take, takeRight, takeWhile, and union.	
Unique characteristics of filter (and filterInPlace) compared to these other methods include:	
filter walks through all the elements in the collection; some of the other methods stop before reaching the end of the collection.	
filter lets you supply a predicate to filter the elements.	
Your predicate controls the filtering	
How you filter the elements in your collection is entirely up to your algorithm. Using an immutable collection and filter, the following examples show a few ways to filter a list of strings:	
val fruits = List("orange", "peach", "apple", "banana")	
val x = fruits.filter(f => f.startsWith("a")) // List(apple)	
val x = fruits.filter(_.startsWith("a")) // List(apple)	
val x = fruits.filter(_.length > 5) // List(orange, banana)	
Using the collect method to filter a collection	
The collect method is an interesting filtering method. The collect method is defined in the IterableOnceOps trait, and per the IterableOnceOps Scaladoc, collect builds a new list “by applying a partial function to all elements of this list on which the function is defined.” Because of this, it can be a nice way to filter lists with a single case statement, as shown in these REPL examples:	
scala> val x = List(0,1,2)	
val x: List[Int] = List(0, 1, 2)	
scala> val y = x.collect{ case i: Int if i > 0 => i }	
val y: List[Int] = List(1, 2)	
scala> val x = List(Some(1), None, Some(3))	
val x: List[Option[Int]] = List(Some(1), None, Some(3))	
scala> val y = x.collect{ case Some(i) => i}	
val y: List[Int] = List(1, 3)	
These examples work because (a) as discussed in Recipe 13.4, the case expression creates an anonymous function and (b) the collect method works with partial functions. Note that while these examples show how collect works, the second example with the List[Option] values is more easily reduced with flatten:	
scala> x.flatten	
val res0: List[Int] = List(1, 3)	
On a related note, there’s also a collectFirst method, which returns the first element it matches as an Option:	
scala> val firstTen = (1 to 10).toList	
val firstTen: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	
scala> firstTen.collectFirst{case x if x > 1 => x}	
val res0: Option[Int] = Some(2)	
scala> firstTen.collectFirst{case x if x > 99 => x}	
val res1: Option[Int] = None	
13.8 Extracting a Sequence of Elements from a Collection	
Problem	
You want to extract a sequence of contiguous elements from a collection, by specifying either a starting position and length, or a function.	
Solution	
There are quite a few collection methods you can use to extract a contiguous list of elements from a sequence, including drop, dropWhile, head, headOption, init, last, lastOption, slice, tail, take, and takeWhile.	
Given the following Vector:	
val x = (1 to 10).toVector	
the drop method drops the number of elements you specify from the beginning of the sequence:	
val y = x.drop(3) // y: Vector(4, 5, 6, 7, 8, 9, 10)	
dropRight works like drop but starts at the end of the collection and works forward, dropping elements from the end of the sequence:	
val y = x.dropRight(4) // y: Vector(1, 2, 3, 4, 5, 6)	
dropWhile drops elements as long as the predicate you supply returns true:	
val y = x.dropWhile(_ < 6) // y: Vector(6, 7, 8, 9, 10)	
take extracts the first N elements from the sequence:	
val y = x.take(3) // y: Vector(1, 2, 3)	
takeRight works the same way as take, but takes elements from the end of the sequence:	
val y = x.takeRight(3) // y: Vector(8, 9, 10)	
takeWhile returns elements as long as the predicate you supply returns true:	
val y = x.takeWhile(_ < 5) // y: Vector(1, 2, 3, 4)	
Performance Note	
Because of the way the List class is constructed, methods like dropRight and takeRight will perform slowly on linear sequences like a List. If you need to use these methods with large sequences, use an indexed sequence like Vector instead.	
slice(from, until) returns a sequence beginning at the index from until the index until, not including until, and assuming a zero-based index:	
val chars = Vector('a', 'b', 'c', 'd')	
chars.slice(0,1) // Vector(a)	
chars.slice(0,2) // Vector(a, b)	
chars.slice(1,1) // Vector()	
chars.slice(1,2) // Vector(b)	
chars.slice(1,3) // Vector(b, c)	
chars.slice(2,3) // Vector(c)	
chars.slice(2,4) // Vector(c, d)	
All of these methods provide another way to filter sequences, with their distinguishing feature being that they return a contiguous sequence of elements.	
Discussion	
There are even more methods you can use. Given this list:	
val nums = Vector(1, 2, 3, 4, 5)	
the comments after the following expressions show the values that are returned by each method:	
nums.head // 1	
nums.headOption // Some(1)	
nums.init // Vector(1, 2, 3, 4)	
nums.tail // Vector(2, 3, 4, 5)	
nums.last // 5	
nums.lastOption // Some(5)	
Generally the way those methods work is apparent from their name, but two that might need a little explanation are init and tail. The init method returns all elements from the sequence except for the last element. The tail method returns all of the elements except the first one.	
As a word of caution, be aware that head, init, tail, and last will throw a java.lang.UnsupportedOperationException on empty sequences. In functional programming, a pure function is total—meaning that it’s defined for every input and doesn’t throw exceptions—and because of this, pure functional programmers generally don’t use these methods,. When they do, they’re careful to check that their sequence isn’t empty.	
13.9 Splitting Sequences into Subsets	
Problem	
Based on an algorithm or location you define, you want to partition a sequence into two or more sequences that are subsets of the original sequence.	
Solution	
Use the groupBy, splitAt, partition, or span methods to partition a sequence into subsequences. These methods are demonstrated in the following examples.	
groupBy	
The groupBy method lets you split a sequence into subsets according to a predicate function you provide:	
val xs = List(15, 10, 5, 8, 20, 12)	
val groups = xs.groupBy(_ > 10)	
// Map(false -> List(10, 5, 8), true -> List(15, 20, 12))	
groupBy partitions the collection into a Map of N sequences based on your function. In this example there are two resulting sequences, but depending on your algorithm you may end up with any number of sequences in a map.	
In this particular example, the true key references the elements for which your predicate returns true, and the false key references the elements that return false. The sequences in the Map that groupBy creates can be accessed like this:	
val listOfTrues = groups(true) // List(15, 20, 12)	
val listOfFalses = groups(false) // List(10, 5, 8)	
Here’s another algorithm that demonstrates how many lists may be created by groupBy:	
val xs = List(1, 3, 11, 12, 101, 102)	
// you can also use 'scala.math.log10' for this algorithm	
def groupBy10s(i: Int): Int =	
assert(i > 0)	
if i < 10 then 1	
else if i < 100 then 10	
else 100	
xs.groupBy(groupBy10s) // result: HashMap(
// 1 -> List(1, 3),	
// 10 -> List(11, 12),	
// 100 -> List(101, 102)	
//)	
splitAt, partition, span	
splitAt lets you create two subsequences from an initial sequence by supplying an index at which to split the original sequence:	
val xs = List(15, 5, 20, 10)	
val ys = xs.splitAt(1) // ys: (List(15), List(5, 20, 10))	
val ys = xs.splitAt(2) // ys: (List(15, 5), List(20, 10))	
partition and span let you split a sequence into two sequences held in a tuple-2, according to a predicate function:	
val xs = List(15, 5, 25, 20, 10)	
val ys = xs.partition(_ > 10) // ys: (List(15, 25, 20), List(5, 10))	
val ys = xs.partition(_ < 25) // ys: (List(15, 5, 20, 10), List(25))	
val ys = xs.span(_ < 20) // ys: (List(15, 5), List(25, 20, 10))	
val ys = xs.span(_ > 10) // ys: (List(15), List(5, 25, 20, 10))	
The splitAt, partition, and span methods create a tuple-2 of sequences that are of the same type as the original collection. This is how they work:	
splitAt splits the original list according to the element index value you supplied.	
partition creates two lists, one containing values for which your predicate returned true, and the other containing the elements that returned false.	
span returns a tuple-2 based on your predicate p, consisting of “the longest prefix of this list whose elements all satisfy p, and the rest of this list.”1	
When a tuple-2 of sequences is returned, its two sequences can be accessed like this:	
scala> val (a,b) = xs.partition(_ > 10)	
val a: List[Int] = List(15, 20)	
val b: List[Int] = List(5, 10)	
Discussion	
While those are the grouping methods I most commonly use, there are others, including sliding and unzip.	
sliding	
The sliding(size,step) method is an interesting creature that can be used to break a sequence into multiple groups. It can be called with just a size, or both a size and step:	
val a = Vector(1,2,3,4,5)	
// size = 2	
val b = a.sliding(2).toList // b: List(Array(1, 2), Array(2, 3),	
// Array(3, 4), Array(4, 5))	
// size = 2, step = 2	
val b = a.sliding(2,2).toList // b: List(Vector(1, 2), Vector(3, 4),	
// Vector(5))	
// size = 2, step = 3	
val b = a.sliding(2,3).toList // b: List(Vector(1, 2), Vector(4, 5))	
As shown, sliding works by passing a “sliding window” over the original sequence, returning sequences of a length given by size. The step parameter lets you skip over elements, as shown in the last two examples.	
unzip	
The unzip method is also interesting. It can be used to take a sequence of tuple-2 values and create two resulting lists: one that contains the first element of each tuple, and another that contains the second element from each tuple:	
val listOfTuple2s = List((1,2), ('a','b'))	
val x = listOfTuple2s.unzip // (List(1, a),List(2, b))	
For instance, given a list of couples, you can unzip the list to create a list of women and a list of men:	
val couples = List(("Wilma", "Fred"), ("Betty", "Barney"))	
val (women, men) = couples.unzip // val men: List(Fred, Barney)	
// val women: List(Wilma, Betty)	
As you might guess from its name, unzip is the opposite of zip:	
val couples = women zip men // List((Wilma,Fred), (Betty,Barney))	
See the Scaladoc for any sequence (List, Vector, etc.) for many more methods.	
13.10 Walking Through a Collection with the reduce and fold Methods	
Problem	
You want to walk through all the elements in a sequence, applying an algorithm to all the neighboring elements to obtain a single scalar result from the operations, such as a sum, product, max, min, etc.	
Solution	
Use the reduceLeft, foldLeft, reduceRight, and foldRight methods to walk through the elements in a sequence and apply your custom algorithm to the elements yielding a single scalar result. reduceLeft is demonstrated here in the Solution, and the other methods are shown in the Discussion (along with related methods, such as scanLeft and scanRight, which return a sequence as their final result).	
For example, use reduceLeft to walk through a sequence from left to right, from the first element to the last. Per the IterableOnceOps trait Scaladoc, where these methods are defined, you pass in an associative binary operator, and then reduceLeft starts by applying your operator (algorithm) to the first two elements in the sequence to create an intermediate result. Next, your algorithm is applied to that intermediate result and the third element, and that application yields a new result. This process continues until the end of the sequence is reached.	
If you’ve never used these methods before, you’ll see that they give you a surprising amount of power. The best way to show this is with some examples. First, create a sample sequence to experiment with:	
val xs = Vector(12, 6, 15, 2, 20, 9)	
Given that sequence, use reduceLeft to determine different properties about the sequence. This is how you calculate the sum of the elements in the sequence:	
val sum = xs.reduceLeft(_ + _) // 64	
Don’t let the underscores throw you for a loop; they just stand for the two parameters that reduceLeft passes to your function. You can write your anonymous function like this, if you prefer:	
xs.reduceLeft((x,y) => x + y)	
These examples show how to use reduceLeft to get the product of all elements in the sequence, the smallest value in the sequence, and the largest value:	
xs.reduceLeft(_ * _) // 388800	
xs.reduceLeft(_ min _) // 2	
xs.reduceLeft(_ max _) // 20	
Note that reduceLeft works if the element only contains one element:	
List(1).reduceLeft(_ * _) // 1	
List(1).reduceLeft(_ min _) // 1	
List(1).reduceLeft(_ max _) // 1	
However, it throws an exception if the sequence it’s given is empty:	
val emptyVector = Vector[Int]()	
val sum = emptyVector.reduceLeft(_ + _)	
// result: java.lang.UnsupportedOperationException: empty.reduceLeft	
Because of this exception behavior, you’ll want to check the collection size before using reduceLeft, or use foldLeft, which lets you provide an initial seed value in a first parameter group, helping to avoid this problem:	
val emptyVector = Vector[Int]()	
emptyVector.foldLeft(0)(_ + _) // 0	
emptyVector.foldLeft(1)(_ * _) // 1	
Discussion	
You can demonstrate how reduceLeft works by creating a method to work with it. The following method does a max comparison like the last example, but it has some extra debugging code so you can see how reduceLeft works as it marches through the sequence. Here’s the function:	
def findMax(x: Int, y: Int): Int =	
val winner = x max y	
println(s"compared $x to $y, $winner was larger")	
winner	
Now call reduceLeft again on the sequence, this time giving it the findMax method:	
scala> xs.reduceLeft(findMax)	
compared 12 to 6, 12 was larger	
compared 12 to 15, 15 was larger	
compared 15 to 2, 15 was larger	
compared 15 to 20, 20 was larger	
compared 20 to 9, 20 was larger	
res0: Int = 20	
The output shows how reduceLeft marches through the elements in the sequence, and how it calls the method at each step. Here’s how the process works:	
reduceLeft starts by calling findMax to test the first two elements in the sequence, 12 and 6. findMax returns 12, because 12 is larger than 6.	
reduceLeft takes that result (12) and calls findMax(12, 15). 12 is the result of the first comparison, and 15 is the next element in the collection. 15 is larger, so it becomes the new result.	
reduceLeft keeps taking the result from the method and comparing it to the next element in the sequence, until it marches through all the elements in the sequence, ending up with the result, 20.	
A subtraction algorithm	
I’ve mentioned in this recipe that the “left” methods (reduceLeft and foldLeft) start from the beginning of the collection and move to the end, and the “right” methods start at the end of the collection and move to the beginning. A good way to demonstrate this is with a subtraction algorithm, which is not commutative and therefore produces a different result when you traverse a list from left to right, or right to left.	
For example, given this list and subtract algorithm:	
val xs = List(1, 2, 3)	
def subtract(a: Int, b: Int): Int =	
println(s"a: $a, b: $b")	
val result = a - b	
println(s"result: $result\n")	
result	
the REPL demonstrates how reduceLeft and reduceRight work:	
scala> xs.reduceLeft(subtract)	
a: 1, b: 2	
result: -1	
a: -1, b: 3	
result: -4	
val res0: Int = -4	
scala> xs.reduceRight(subtract)	
a: 2, b: 3	
result: -1	
a: 1, b: -1	
result: 2	
val res1: Int = 2	
As shown, reduceLeft and reduceRight produce different results with the subtract algorithm, because the first traverses the list from left to right and the second traverses the list from right to left.	
Writing Reduce Algorithms	
One subtle but important note about the reduce methods: the custom function you supply must return the same data type that’s stored in the collection. This is necessary so the reduce algorithms can compare the result of your function to the next element in the collection.	
foldLeft, reduceRight, and foldRight	
The foldLeft method works just like reduceLeft, but it lets you set a seed value to be used for the first element. The following examples demonstrate a sum algorithm, first with reduceLeft and then with foldLeft, to demonstrate the difference:	
val xs = List(1, 2, 3)	
xs.reduceLeft(_ + _) // 6	
xs.foldLeft(20)(_ + _) // 26	
xs.foldLeft(100)(_ + _) // 106	
In the last two examples, foldLeft uses 20 and then 100 for its first element, which affects the resulting sum as shown.	
If you haven’t seen syntax like that before, foldLeft takes two parameter lists. The first parameter list takes one field, the seed value. The second parameter list is the block of code you want to run (your algorithm). Recipe 4.17, “Creating Your Own Control Structures”, provides more information on the use of multiple parameter lists.	
The reduceRight and foldRight methods work similarly to the reduceLeft and foldLeft methods, respectively, but they begin at the end of the collection and work from right to left, i.e., from the end of the collection back to the beginning.	
fold algorithms and identity values	
The fold algorithms are related to something known as an identity value for the type of a list and the operation you’re performing on that list. For example:	
When operating on a Seq[Int], the value 0 adds nothing to an addition or sum algorithm.	
Similarly, the value 1 adds nothing to a product algorithm.	
When operating on a Seq[String], the empty string—""—adds nothing to an addition or product algorithm.	
Therefore, you may see fold operations written like this:	
listOfInts.foldLeft(0)(_ + _)	
listOfInts.foldLeft(1)(_ * _)	
// concatenate a list of strings:	
listOfStrings.foldLeft("")(_ + _)	
Using these values lets you use fold methods with empty lists. I write more about identity values in “Tail-Recursive Algorithms in Scala”.	
Summary of how the fold and reduce methods work	
Here are the key points to know about the fold and reduce methods:	
They walk through the entire sequence.	
As shown in max and min algorithms, you compare neighboring elements in the sequence.	
As shown in the sum and product algorithms, you create an accumulator as you walk through the sequence.	
Fold and reduce algorithms are generally used to yield a single scalar value in the end (rather than another sequence).	
Your custom function must accept two parameters of the type contained in the collection, and it must return that same type.	
scanLeft and scanRight	
Two methods named scanLeft and scanRight walk through a sequence like reduceLeft and reduceRight, but they return a sequence instead of a single value. For instance, per its Scaladoc, scanLeft “produces a collection containing cumulative results of applying the operator going left to right.” To understand how it works, create another function with a little debug code in it:	
def product(x: Int, y: Int): Int =	
val result = x * y	
println(s"multiplied $x by $y to yield $result")	
result	
Here’s what scanLeft looks like when it’s used with that function and a seed value:	
scala> val xs = Vector(1, 2, 3)	
xs: Vector[Int] = Vector(1, 2, 3)	
scala> xs.scanLeft(10)(product)	
multiplied 10 by 1 to yield 10	
multiplied 10 by 2 to yield 20	
multiplied 20 by 3 to yield 60	
res0: Vector[Int] = Vector(10, 10, 20, 60)	
As shown, like the map method, scanLeft returns a new sequence rather than a single value. The scanRight method works the same way but marches through the collection from right to left.	
See the Scaladoc for your sequence for a few more related methods, including reduce, reduceLeftOption, and reduceRightOption.	
See Also	
If you want even more details and illustrations, I dive deeper into the fold and reduce methods in “Recursion Is Great, but Check out Scala’s fold and reduce!”.	
13.11 Finding the Unique Elements in a Sequence	
Problem	
You have a sequence that contains duplicate elements, and you want to remove the duplicates, leaving you with only the unique elements.	
Solution	
Either call the distinct method on the sequence or call toSet:	
val x = Vector(1, 1, 2, 3, 3, 4)	
val y = x.distinct // Vector(1, 2, 3, 4)	
val z = x.toSet // Set(1, 2, 3, 4)	
Both approaches return a new sequence with the duplicate values removed, but distinct returns the same sequence type that you started with, while toSet returns a Set.	
Discussion	
To use these approaches with your own classes, you’ll need to implement the equals and hashCode methods. For instance, case classes implement those methods for you, so you can use this Person class with distinct:	
case class Person(firstName: String, lastName: String)	
val dale1 = Person("Dale", "Cooper")	
val dale2 = Person("Dale", "Cooper")	
val ed = Person("Ed", "Hurley")	
val list = List(dale1, dale2, ed)	
// correct solution: only one Dale Cooper appears in this result:	
val uniques = list.distinct // List(Person(Dale,Cooper), Person(Ed,Hurley))	
val uniques = list.toSet // Set(Person(Dale,Cooper), Person(Ed,Hurley))	
If you don’t want to use a case class, see Recipe 5.9, “Defining an equals Method (Object Equality)”, for a discussion of how to implement the equals and hashCode methods.	
13.12 Merging Sequential Collections	
Problem	
You want to join two sequences into one sequence, either keeping all the original elements, finding the elements that are common to both collections, or finding the difference between the two sequences.	
Solution	
There are a variety of solutions to this problem, depending on your needs:	
Use the ++ or concat methods to merge all elements from two mutable or immutable sequences into a new sequence.	
Use the ++= method to merge the elements of a sequence into an existing mutable sequence.	
Use ::: to merge two Lists into a new List.	
Use the intersect method to find the intersection of two sequences.	
Use the diff method to find the difference of two sequences.	
As shown in the following examples, you can also use distinct and toSet to reduce sequences down to their unique elements.	
The ++ or concat methods	
The ++ method is an alias for the concat method, so use either one of them to merge two mutable or immutable sequences while assigning the result to a new variable:	
val a = List(1,2,3)	
val b = Vector(4,5,6)	
val c = a ++ b // c: List[Int] = List(1, 2, 3, 4, 5, 6)	
val c = a.concat(b) // c: List[Int] = List(1, 2, 3, 4, 5, 6)	
val d = b ++ a // d: Vector[Int] = Vector(4, 5, 6, 1, 2, 3)	
val d = b.concat(a) // d: Vector[Int] = Vector(4, 5, 6, 1, 2, 3)	
The ++= method	
Use the ++= method to merge a sequence into an existing mutable sequence like an ArrayBuffer:	
import collection.mutable.ArrayBuffer	
// merge sequences into an ArrayBuffer	
val a = ArrayBuffer(1,2,3)	
a ++= Seq(4,5,6) // a: ArrayBuffer(1, 2, 3, 4, 5, 6)	
a ++= List(7,8) // a: ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)	
Use ::: to merge two Lists	
If you happen to be working with a List, use the ::: method to prepend the elements of one list to another list, assigning the result to a new variable:	
val a = List(1,2,3,4)	
val b = List(4,5,6,7)	
val c = a ::: b // c: List(1, 2, 3, 4, 4, 5, 6, 7)	
intersect and diff	
The intersect method finds the intersection of two sequences—the elements that are common to both sequences:	
val a = Vector(1,2,3,4,5)	
val b = Vector(4,5,6,7,8)	
val c = a.intersect(b) // c: Vector(4, 5)	
val c = b.intersect(a) // c: Vector(4, 5)	
The diff method provides the difference between two sequences—those elements that are in the first sequence but not in the second sequence. Because of that definition, its result depends on which sequence it’s called on:	
val a = List(1,2,3,4)	
val b = List(3,4,5,6)	
val c = a.diff(b) // c: List(1, 2)	
val c = b.diff(a) // c: List(5, 6)	
val a = List(1,2,3,4,1,2,3,4)	
val b = List(3,4,5,6,3,4,5,6)	
val c = a.diff(b) // c: List(1, 2, 1, 2)	
val c = b.diff(a) // c: List(5, 6, 5, 6)	
The Scaladoc for the diff method states that it returns “a new list which contains all elements of this list except some [occurrences of the] elements that also appear in that. If an element value x appears n times in that, then the first n occurrences of x will not form part of the result, but any following occurrences will.” Because of that behavior you may also need to use the distinct method to create lists of distinct elements:	
val a = List(1,2,3,4,1,2,3,4)	
val b = List(3,4,5,6,3,4,5,6)	
val c = a.diff(b) // c: List(1, 2, 1, 2)	
val c = b.diff(a) // c: List(5, 6, 5, 6)	
val c = a.diff(b).distinct // c: List(1, 2)	
val c = b.diff(a).distinct // c: List(5, 6)	
Discussion	
You can use diff to get the relative complement of two sets. The relative complement of a set A with respect to a set B is the set of elements in B that are not in A.	
On a recent project, I needed to find a list of unique elements in one sequence that were not in another sequence. I did this by first calling distinct on the two sequences and then using diff to compare them. For instance, given these two vectors:	
val a = Vector(1,2,3,11,4,12,4,4,5)	
val b = Vector(6,7,4,4,5)	
one way to find the relative complement of each vector is to first call distinct on that vector and then compare it to the other with diff:	
// the elements in a that are not in b	
val uniqToA = a.distinct.diff(b) // Vector(1, 2, 3, 11, 12)	
// the elements in b that are not in a	
val uniqToB = b.distinct.diff(a) // Vector(6, 7)	
If desired, you can then sum those results to get the list of elements that are either in the first set or the second set, but not both sets:	
val uniqs = uniqToA ++ uniqToB // Vector(1, 2, 3, 11, 12, 6, 7)	
While I’m examining this problem, here’s another way to get that same result:	
// create a list of unique elements that are common to both lists	
val i = a.intersect(b).toSet // Set(4, 5)	
// subtract those elements from the original lists	
val uniqToA = a.toSet -- i // HashSet(1, 2, 12, 3, 11)	
val uniqToB = b.toSet -- i // Set(6, 7)	
val uniqs = uniqToA ++ uniqToB // HashSet(1, 6, 2, 12, 7, 3, 11)	
Note that I use toSet in this solution because it’s another way to create a list of unique elements in a sequence.	
13.13 Randomizing a Sequence	
Problem	
You want to randomize (shuffle) an existing sequence, or get a random element from a sequence.	
Solution	
To randomize a sequence, import scala.util.Random, then apply its shuffle method to an existing sequence while assigning the result to a new sequence:	
import scala.util.Random	
// List	
val xs = List(1,2,3,4,5)	
val ys = Random.shuffle(xs) // 'ys' will be shuffled, like List(4,1,3,2,5)	
// also works with other sequences	
val x = Random.shuffle(Vector(1,2,3,4,5)) // x: Vector(5,3,4,1,2)	
val x = Random.shuffle(Array(1,2,3,4,5)) // x: mutable.ArraySeq(1,3,2,4,5)	
import scala.collection.mutable.ArrayBuffer	
val x = Random.shuffle(ArrayBuffer(1,2,3,4,5)) // x: ArrayBuffer(4,2,3,1,5)	
As usual with functional methods, a key to this solution is knowing that shuffle doesn’t randomize the list it’s given; instead it returns a new list that has been randomized (shuffled).	
Discussion	
That solution works great when you want to randomize an entire list. But if you just want to get a random element from a list, a method like this is much more efficient:	
import scala.util.Random	
// throws an IllegalArgumentException if `seq` is empty	
def getRandomElement[A](seq: Seq[A]): A =	
seq(Random.nextInt(seq.length))	
As long as the sequence you pass in contains at least one element, that function will work as desired. It works because nextInt returns a value between 0 (inclusive) and seq.length (exclusive). So if the sequence contains 100 elements, nextInt returns a value between 0 and 99, which matches the possible indexes in the sequence.	
Now whenever you have a sequence, you can use this function to get a random element from the sequence:	
val randomNumber = getRandomElement(List(1,2,3))	
val randomString = getRandomElement(List("a", "b", "c"))	
13.14 Sorting a Collection	
Problem	
You want to (a) sort a sequential collection, (b) implement the Ordered trait in a custom class so you can use the sorted method or operators like <, <=, >, and >= to compare instances of your class, or (c) use an implicit or explicit Ordering when sorting.	
Solution	
See Recipe 12.11, “Sorting Arrays”, for information on how to sort an Array. Otherwise, use the sorted, sortWith, or sortBy methods to sort immutable sequences, and sortInPlace, sortInPlaceWith, and sortInPlaceBy to sort mutable sequences. Implement the Ordered or Ordering traits as needed.	
Using sorted, sortWith, and sortBy with immutable sequences	
The sorted method on sequences can sort collections with type Double, Int, String, and any other type that has an implicit scala.math.Ordering:	
List(10, 5, 8, 1, 7).sorted // List(1, 5, 7, 8, 10)	
List("dog", "mouse", "cat").sorted // List(cat, dog, mouse)	
The sortWith method lets you provide your own sorting algorithm. The following examples demonstrate how to sort a sequence of String or Int in both directions:	
// short form: sorting algorithm uses '_' references	
Vector("dog", "mouse", "cat").sortWith(_ < _) // Vector(cat, dog, mouse)	
Vector("dog", "mouse", "cat").sortWith(_ > _) // Vector(mouse, dog, cat)	
// long form: sorting algorithm uses a tuple-2	
Vector(10, 5, 8, 1, 7).sortWith((a,b) => a < b) // Vector(1, 5, 7, 8, 10)	
Vector(10, 5, 8, 1, 7).sortWith((a,b) => a > b) // Vector(10, 8, 7, 5, 1)	
Your sorting function needs to take two parameters and can be as simple or complicated as it needs to be. If your sorting function gets longer, first declare it as a method:	
def sortByLength(s1: String, s2: String): Boolean =	
println(s"comparing $s1 & $s2")	
s1.length > s2.length	
Then use it by passing it into the sortWith method:	
scala> val a = List("dog", "mouse", "cat").sortWith(sortByLength)	
comparing mouse & dog	
comparing cat & mouse	
comparing mouse & cat	
comparing cat & dog	
comparing dog & cat	
a: List[String] = List(mouse, dog, cat)	
Per the Scaladoc, the sortBy method “sorts a sequence according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.” The sortBy signature for a List looks like this:	
def sortBy[B](f: (A) => B)(implicit ord: Ordering[B]): List[A]	
Here are a few examples of how to sort with sortBy:	
val a = List("peach", "apple", "pear", "fig")	
val b = a.sortBy(s => s.length) // b: List(fig, pear, peach, apple)	
// the Scaladoc shows an example like this that works “because scala.Ordering	
// will implicitly provide an Ordering[Tuple2[Int, Char]]”	
val b = a.sortBy(s => (s.length, s.head)) // b: List(fig, pear, apple, peach)	
// a way to sort from the longest to the shortest string, and then	
// by the string	
val a = List("fin", "fit", "fig", "pear", "peas", "peach", "peat")	
val b = a.sortBy(s => (-s.length, s))	
// b: List(peach, pear, peas, peat, fig, fin, fit)	
Using sortInPlace, sortInPlaceWith, and sortInPlaceBy with mutable sequences	
With mutable sequences like ArrayBuffer you can use the sortInPlace, sortInPlaceWith, and sortInPlaceBy methods. If the data type in your sequence supports sorting with an implicit Ordering or by implementing Ordered, sortInPlace is a direct solution:	
import scala.collection.mutable.ArrayBuffer	
val a = ArrayBuffer(3,5,1)	
a.sortInPlace // a: ArrayBuffer(1, 3, 5)	
val b = ArrayBuffer("Mercedes", "Hannah", "Emily")	
b.sortInPlace // b: ArrayBuffer(Emily, Hannah, Mercedes)	
sortInPlaceWith is similar to sortWith:	
import scala.collection.mutable.ArrayBuffer	
val a = ArrayBuffer(3,5,1)	
a.sortInPlaceWith(_ < _) // a: ArrayBuffer(1, 3, 5)	
a.sortInPlaceWith(_ > _) // a: ArrayBuffer(5, 3, 1)	
sortInPlaceBy works like sortBy, letting you specify a function to sort with:	
import scala.collection.mutable.ArrayBuffer	
val a = ArrayBuffer("kiwi", "apple", "fig")	
a.sortInPlaceBy(_.length) // a: ArrayBuffer(fig, kiwi, apple)	
Discussion	
The following discussion demonstrates how to use Ordering and Ordered using immutable sequences, but the discussion also applies to mutable sequences.	
Having an implicit Ordering	
If the type that a sequence is holding doesn’t have an implicit Ordering, you won’t be able to sort it with sorted. For instance, given this Person class and List[Person]:	
class Person(val name: String):	
override def toString = name	
val dudes = List(
Person("Bill"),	
Person("Al"),	
Person("Adam")	
)	
if you try to sort this list in the REPL, you’ll see an error stating that the Person class doesn’t have an implicit Ordering:	
scala> dudes.sorted	
1	dudes.sorted
^	
No implicit Ordering defined for B	
where: B is a type variable with constraint >: Person	
I found:	
scala.math.Ordering.ordered[A](/* missing	
*/summon[scala.math.Ordering.AsComparable[B]])	
But no implicit values were found that match type	
scala.math.Ordering.AsComparable[B].	
You can’t use sorted with the Person class as it’s written, so one solution is to write an anonymous function to sort the Person elements by the name field using sortWith:	
dudes.sortWith(_.name < _.name) // List(Adam, Al, Bill)	
dudes.sortWith(_.name > _.name) // List(Bill, Al, Adam)	
Providing an explicit Ordering with sorted	
If your class doesn’t have an implicit Ordering, one solution is to provide an explicit Ordering. For example, by default this Person class doesn’t provide any information about how sorting should work:	
class Person(val firstName: String, val lastName: String):	
override def toString = s"$firstName $lastName"	
Because of that, trying to sort a list of Person instances with sorted won’t work, as just shown:	
val peeps = List(
Person("Jessica", "Day"),	
Person("Nick", "Miller"),	
Person("Winston", "Bishop")	
)	
scala> peeps.sorted	
1	peeps.sorted
^	
No implicit Ordering defined for B ... (long error message) ...	
A solution to this problem is to create an explicit Ordering that works with Person:
object LastNameOrdering extends Ordering[Person]:
def compare(a: Person, b: Person) = a.lastName compare b.lastName
Now when you use LastNameOrdering with sorted, sorting works as desired:
scala> val sortedPeeps = peeps.sorted(LastNameOrdering)
val sortedPeeps: List[Person] = List(Winston Bishop, Jessica Day, Nick Miller)
This solution works because (a) sorted is defined to take an implicit Ordering parameter:
def sorted[B >: A](implicit ord: Ordering[B]): List[A]

and (b) I provide that parameter explicitly:
val sortedPeeps = peeps.sorted(LastNameOrdering)

Another approach is to declare LastNameOrdering with the implicit keyword, and then call sorted:
implicit object LastNameOrdering extends Ordering[Person]:
def compare(a: Person, b: Person) = a.lastName compare b.lastName
val sortedPeeps = peeps.sorted
// sortedPeeps: List(Winston Bishop, Jessica Day, Nick Miller)
In this solution, because LastNameOrdering is defined with the implicit keyword, it’s magically pulled in and used as the implicit Ordering parameter that sorted is looking for.
Mix in the Ordered trait to use sorted
If you want to use the Person class with the sorted method, another solution is to mix the Ordered trait into Person, and then implement the Ordered trait’s abstract compare method. This technique is shown in the following code:
class Person(var name: String) extends Ordered[Person]:
override def toString = name
// return 0 if the same, negative if this < that, positive if this > that
def compare(that: Person): Int =
// depends on the definition of `==` for String
if this.name == that.name then
0
else if this.name > that.name then
1
else
-1
Now this new Person class can be used with sorted:
val dudes = List(
Person("Bill"),
Person("Al"),
Person("Adam")
)
val x = dudes.sorted // x: List(Adam, Al, Bill)
The compare method in Ordered is abstract, so you implement it in your class to provide the sorting capability. As shown in the comments, compare works like this:
Return 0 if the two objects are the same (defining equality however you want to, but typically using the equals method of your class).
Return a negative value if this is less than that.
Return a positive value if this is greater than that.
How you determine whether one instance is greater than another instance is entirely up to your compare algorithm.
Note that because this compare algorithm only compares two String values, it could have been written like this:
def compare (that: Person) = this.name.compare(that.name)
However, I wrote it as shown in the first example to be clear about the approach.
An added benefit of mixing the Ordered trait into your class is that it lets you compare object instances directly in your code:
val bill = Person("Bill")
val al = Person("Al")
val adam = Person("Adam")
if adam > bill then println(adam) else println(bill)
This works because the Ordered trait implements the <=, <, >, and >= methods, and they call your compare method to make those comparisons.
See Also
For more information, the Ordered and Ordering Scaladoc is excellent, with several good examples:
13.15 Converting a Collection to a String with mkString and addString
Problem
You want to convert elements of a collection to a String, possibly adding a field separator, prefix, and suffix.
Solution
Use the mkString or addString methods to print a collection as a String.
mkString
Given a simple collection:
val x = Vector("apple", "banana", "cherry")
you can convert the elements to a String using mkString:
x.mkString // "applebananacherry"
That doesn’t look too useful, so add a separator:
x.mkString(" ") // "apple banana cherry"
x.mkString("|") // "apple|banana|cherry"
x.mkString(", ") // "apple, banana, cherry"
mkString is overloaded, so you can add a prefix and suffix when creating a string:
x.mkString("[", ", ", "]") // "[apple, banana, cherry]"
There’s also an mkString method on Map classes:
val a = Map(1 -> "one", 2 -> "two")
a.mkString // "1 -> one2 -> two"
a.mkString("|") // "1 -> one|2 -> two"
a.mkString("| ", " | ", " |") // "| 1 -> one | 2 -> two |"
addString
Beginning with Scala 2.13, a new addString method is similar to mkString, but lets you fill a mutable StringBuilder with the contents of the sequence. As with mkString, you can use addString by itself, with a separator, and with start, end, and separator strings:
val x = Vector("a", "b", "c")
val sb = StringBuilder()
val y = x.addString(sb) // y: StringBuilder = abc
val sb = StringBuilder()
val y = x.addString(sb , ", ") // y: StringBuilder = "a, b, c"
val sb = StringBuilder()
val y = x.addString(
sb, // StringBuilder
"[", // start
", ", // separator
"]" // end
)
// result of the last expression:
y: StringBuilder = [a, b, c]
y(0) // Char = '['
y(1) // Char = 'a'
Because this technique uses a StringBuilder instead of a String, it should be faster with large datasets. (As usual, always test any performance-related concern.)
Discussion
The strings that are created with these techniques are based on the string representations of the elements in the sequence, i.e., what you would get by calling their toString methods. So the technique works well for types like strings and integers, but if you have a simple class like this Person class that doesn’t implement a toString method, and then put a Person in a List, the resulting string won’t be very useful:
class Person(val name: String)
val xs = List(Person("Schmidt"))
xs.mkString // Person@1b17b5cb (not a useful result)
To solve that problem, properly implement the toString method in your class:
class Person(val name: String):
override def toString = name
List(Person("Schmidt")).mkString // "Schmidt"
Creating a string from a repeated character
In a slightly related note, you can fill a sequence with a Char or String using this technique:
val list = List.fill(5)('-') // List(-, -, -, -, -)
You can then convert that list to a String:
val list = List.fill(5)('-').mkString // "-----"
I’ve used that approach to generate an underline for a sentence, such as creating 10 underline characters when I knew the length of a sentence was 10 characters. But a simpler technique is to multiply a desired string to create a resulting string, like this:
"\u2500" * 10 // String = ──────────
I write more about these techniques in “Scala Functions to Repeat a Character n Times (Blank Padding)”.
1
See the span method documentation on the Scala List class Scaladoc page for more information.
Chapter 14. Collections: Using Maps
Scala Map types are like the Java Map, Ruby Hash, or Python dictionary, in that they consist of key/value pairs, and the key values must be unique. Recipe 14.1 provides an introduction to the basics of creating and using immutable and mutable maps.
After that introduction to maps, Recipe 14.2 helps you choose a map implementation for the times you need to use special map features. Following that, Recipes 14.3 and 14.4 cover the processes of adding, updating, and removing elements in immutable and mutable maps, respectively.
If you’re coming to Scala from Java, one big difference with maps is that the default Map in Scala is immutable, so if you’re not used to working with immutable collections, this can be a big surprise when you attempt to add, delete, or change elements in the map.
In addition to adding, removing, and replacing map elements, other common map tasks are working with their keys and values (shown in Recipes 14.5 through 14.8), as well as traversing (Recipe 14.9), sorting (Recipe 14.10), and filtering (Recipe 14.11) maps.
14.1 Creating and Using Maps
Problem
You want to create and use a Map in a Scala application, i.e., a data structure that contains key/value pairs, like a Java map, Python dictionary, or Ruby hash.
Solution
For the times when you need a key/value pair data structure, Scala lets you create both immutable and mutable Map types.
Immutable map
To create an immutable map, you don’t need an import statement, just create a Map:
val a = Map(
"AL" -> "Alabama",
"AK" -> "Alaska"
)
That example creates an immutable Map with type [String, String], meaning that both the key and value have type String. For the first element, the string AL is the key, and Alabama is the value.
Once you have an immutable Map you can specify elements to be added, updated, and removed, while assigning the resulting Map to a new variable, as shown in these examples:
// create a map
val a = Map(1 -> "a")
// adding elements
val b = a + (2 -> "b")
val c = b ++ Map(3 -> "c", 4 -> "d")
val d = c ++ List(5 -> "e", 6 -> "f")
// current result:
d: Map[Int, String] = HashMap(5 -> e, 1 -> a, 6 -> f, 2 -> b, 3 -> c, 4 -> d)
// update where the key is 1
val e = d + (1 -> "AA")
// e: HashMap(5 -> e, 1 -> AA, 6 -> f, 2 -> b, 3 -> c, 4 -> d)
// update multiple elements at one time
val f = e ++ Map(2 -> "BB", 3 -> "CC")
val g = f ++ List(2 -> "BB", 3 -> "CC")
// g: HashMap(5 -> e, 1 -> AA, 6 -> f, 2 -> BB, 3 -> CC, 4 -> d)
// remove elements by specifying the keys to remove
val h = g - 1
val i = h -- List(1, 2, 3)
// i: HashMap(5 -> e, 6 -> f, 4 -> d)
When working with an immutable map you can create your variable as a var field, so you don’t have to keep using different variable names:
// reassign each update to the 'map' variable
var map = Map(1 -> "a")
map = map + (2 -> "b") // map: Map(1 -> a, 2 -> b)
map = map + (3 -> "c") // map: Map(1 -> a, 2 -> b, 3 -> c)
Mutable map
To create a mutable map, either use an import statement to bring it into scope, or specify the full path to the scala.collection.mutable.Map class when you create an instance. Once you have a mutable map in scope, you can use it as described in the following recipes. Here’s a brief demonstration of some basic features:
// create an empty, mutable map
val m = scala.collection.mutable.Map[Int, String]()
// adding by assignment
m(1) = "a" // m: HashMap(1 -> a)
// adding with += and ++=
m += (2 -> "b") // m: HashMap(1 -> a, 2 -> b)
m ++= Map(3 -> "c", 4 -> "d") // m: HashMap(1 -> a, 2 -> b, 3 -> c, 4 -> d)
m ++= List(5 -> "e", 6 -> "f") // m: HashMap(1 -> a, 2 -> b, 3 -> c, 4 -> d,
// 5 -> e, 6 -> f)
// remove elements by specifying the keys to remove
m -= 1 // m: HashMap(2 -> b, 3 -> c, 4 -> d, 5 -> e, 6 -> f)
m --= List(2,3) // m: HashMap(4 -> d, 5 -> e, 6 -> f)
// updating
m(4) = "DD" // m: HashMap(4 -> DD, 5 -> e, 6 -> f)
Discussion
Like maps in other programming languages, maps in Scala are a collection of key/value pairs. If you’ve used a map in Java, a dictionary in Python, or a hash in Ruby, Scala maps are straightforward. You only need to know a couple new things, including the methods available on map classes and the specialty maps that can be useful in certain situations, such as using sorted maps.
Note that the syntax that’s used inside parentheses in a map creates a tuple:
"AL" -> "Alabama"
Because you can also declare a tuple-2 as ("AL", "Alabama"), you may see maps created like this:
val states = Map(
("AL", "Alabama"),
("AK", "Alaska")
)
If you want to make it clear that you’re using a mutable map, one technique is to give the mutable Map class an alias when you import it, and then refer to it using that alias, as shown here:
import scala.collection.mutable.{Map => MMap}
// MMap is really scala.collection.mutable.Map
val m = MMap(1 -> 'a') // m: Map[Int, Char] = HashMap(1 -> a)
m += (2 -> 'b') // m: HashMap(1 -> a, 2 -> b)
This aliasing technique is described more in Recipe 9.3, “Renaming Members on Import”.
14.2 Choosing a Map Implementation
Problem
You need to choose a Map class for a particular problem.
Solution
Scala has a wealth of Map types to choose from, and you can even use Java Map classes. The Discussion provides a comprehensive list of most of the classes, but some of the most popular ones are:
The immutable Map
A basic immutable map, with no guarantee about the order its keys are returned in
The mutable Map
A basic mutable map, with no guarantee about the order its keys are returned in
SortedMap
Returns its elements in sorted order by its keys
LinkedHashMap
Returns elements in the order they’re inserted in
VectorMap
Preserves insertion order by storing elements in a vector/map-based data structure
WeakHashMap
Per its Scaladoc, “a map entry is removed if the key is no longer strongly referenced”
The basic immutable and mutable maps are covered in detail in several other recipes, so they’re not covered here. The SortedMap and LinkedHashMap are covered in Recipe 14.10, so they’re only touched on here.
Basic immutable and mutable maps
If you’re looking for a basic Map class, where sorting or insertion order doesn’t matter, you can either choose the default immutable Map, or import the mutable Map, as shown in Recipe 14.1.
SortedMap
If you want a Map that returns its elements in sorted order by keys, use a SortedMap:
import scala.collection.SortedMap
val x = SortedMap(
2 -> "b",
4 -> "d",
3 -> "c",
1 -> "a"
)
If you paste that code into the REPL, you’ll see this result:
val x: scala.collection.SortedMap[Int, String]
= TreeMap(1 -> a, 2 -> b, 3 -> c, 4 -> d)
Remember the insertion order with LinkedHashMap, VectorMap, or ListMap
If you want a Map that remembers the insertion order of its elements, use a LinkedHashMap, VectorMap, or possibly a ListMap. The LinkedHashMap only comes in a mutable form, so first import it:
import collection.mutable.LinkedHashMap
Now when you create a LinkedHashMap, it stores the elements in the order in which they’re inserted:
val x = LinkedHashMap(// x: LinkedHashMap(1 -> a, 2 -> b)
1 -> "a",
2 -> "b"
)
x += (3 -> "c") // x: LinkedHashMap(1 -> a, 2 -> b, 3 -> c)
x += (4 -> "d") // x: LinkedHashMap(1 -> a, 2 -> b, 3 -> c, 4 -> d)
Per its Scaladoc, VectorMap “implements immutable maps using a vector/map-based data structure, which preserves insertion order…VectorMap has amortized effectively constant lookup at the expense of using extra memory and generally lower performance for other operations.” It works like the base immutable map but preserves the insertion order:
import collection.immutable.VectorMap
val a = VectorMap(// a: VectorMap(10 -> a)
10 -> "a"
)
val b = a ++ Map(7 -> "b") // b: VectorMap(10 -> a, 7 -> b)
val c = b ++ Map(3 -> "c") // c: VectorMap(10 -> a, 7 -> b, 3 -> c)
You can also use an immutable ListMap, but it’s a bit of an unusual creature. Internally, elements are stored like a List, with the most recent element stored in the head position. But per the ListMap Scaladoc, “List map iterators and traversal methods visit key-value pairs in the order they were first inserted,” which is a tail-to-head walk. Because of this, performance can be poor, so ListMap is only suitable for small collections. See the immutable ListMap Scaladoc for more performance details.
Discussion
Table 14-1 shows a summary of the basic Scala map classes and traits and provides a brief description of each. The text in quotes comes from the Scaladoc for each class.
Class or trait	Description
collection.immutable.Map	This is the default immutable map you get if you don’t import anything.
collection.mutable.Map	A mutable version of the basic map.
collection.immutable.VectorMap	“A vector/map-based data structure, which preserves insertion order; has amortized effectively constant lookup at the expense of using extra memory and generally lower performance for other operations.”
collection.mutable.LinkedHashMap	“The iterator and all traversal methods visit elements in the order they were inserted.”
collection.immutable.SortedMap	Keys of the map are returned in sorted order: “key-value pairs are sorted according to a scala.math.Ordering on the keys.”
Although those are the most commonly used maps, Scala offers even more map types. They are summarized in Table 14-2, where the text in quotes comes from the Scaladoc for each class.	
Class or trait	Description
---	---
collection.immutable.HashMap	“Implements immutable maps using a Compressed Hash-Array Mapped Prefix-tree.”
collection.immutable.TreeMap	“This class is optimal when range queries will be performed, or when traversal in order of an ordering is desired.”
collection.mutable.WeakHashMap	A wrapper around java.util.WeakHashMap, “a map entry is removed if the key is no longer strongly referenced.”
collection.immutable.ListMap	“Implements immutable maps using a list-based data structure”; several operations are O(n), “which makes this collection suitable only for a small number of elements.”
There are a few more map classes in the scala-collection-contrib library, which “provides various additions to the Scala 2.13 standard collections.” Its MultiDict class replaces the old MultiMap class, and “can associate a set of values to a given key.” There’s also a SortedMultiDict, which is a sorted version of MultiDict.	
Parallel map classes	
Starting with Scala 2.13, the parallel collections library was moved to a separate JAR file, and it’s now maintained on GitHub. That library includes parallel/concurrent map implementations such as collection.parallel.immutable.ParMap, collection.parallel.immutable.ParHashMap, collection.parallel.mutable.ParHashMap, and others. See that project for more details.	
See Also	
When map performance is important, see Recipe 11.2, “Understanding the Performance of Collections”.	
14.3 Adding, Updating, and Removing Immutable Map Elements	
Problem	
You want to add, update, or delete elements when working with an immutable map.	
Solution	
You can’t update an immutable Map in place, so:	
Apply a functional method for each purpose.	
Remember to assign the result to a new variable.	
To be clear about the approach, the following examples use an immutable map with a series of val variables. First, create an immutable map as a val:	
val a = Map(1 -> "a") // a: Map[Int, String] = Map(1 -> a)	
Adding elements	
Add one key/value pair with the + method, assigning the result to a new variable during the process:	
// add one element	
val b = a + (2 -> "b") // b: Map(1 -> a, 2 -> b)	
Add two or more key/value pairs using ++ and a collection:	
// add multiple elements	
val c = b ++ Map(3 -> "c", 4 -> "d")	
// c: Map(1 -> a, 2 -> b, 3 -> c, 4 -> d)	
val d = c ++ List(5 -> "e", 6 -> "f")	
// d: HashMap(5 -> e, 1 -> a, 6 -> f, 2 -> b, 3 -> c, 4 -> d)	
Updating elements	
To update one key/value pair with an immutable map, reassign the key and value while using the + method, and the new values replace the old:	
val e = d + (1 -> "AA")	
// e: HashMap(5 -> e, 1 -> AA, 6 -> f, 2 -> b, 3 -> c, 4 -> d)	
To update multiple key/value pairs, supply the new values as a map or as a sequence of tuples:	
// update multiple elements at once with a Map	
val e = d ++ Map(2 -> "BB", 3 -> "CC")	
// e: HashMap(5 -> e, 1 -> a, 6 -> f, 2 -> BB, 3 -> CC, 4 -> d)	
// update multiple elements at once with a List	
val e = d ++ List(2 -> "BB", 3 -> "CC")	
// e: HashMap(5 -> e, 1 -> a, 6 -> f, 2 -> BB, 3 -> CC, 4 -> d)	
Removing elements	
To remove one element, use the - method, specifying the key to remove:	
val e = d - 1 // e: HashMap(5 -> e, 6 -> f, 2 -> b, 3 -> c, 4 -> d)	
To remove multiple elements, use the -- method:	
val e = d -- List(1, 2, 3) // e: HashMap(5 -> e, 6 -> f, 4 -> d)	
Discussion	
You can also declare an immutable map as a var, and then reassign the result of each operation back to the same variable. Using a var, the previous examples look like this:	
// declare the map variable as a `var`	
var a = Map(1 -> "a")	
// add one element	
a = a + (2 -> "b")	
// add multiple elements	
a = a ++ Map(3 -> "c", 4 -> "d")	
a = a ++ List(5 -> "e", 6 -> "f")	
// update where the key is 1	
a = a + (1 -> "AA")	
// update multiple elements at one time	
a = a ++ Map(2 -> "BB", 3 -> "CC")	
a = a ++ List(4 -> "DD", 5 -> "EE")	
// remove one element by specifying its key	
a = a - 1	
// remove multiple elements	
a = a -- List(2, 3)	
In these examples, because a is defined as a var, it’s being reassigned during each step in the process.	
14.4 Adding, Updating, and Removing Elements in Mutable Maps	
Problem	
You want to add, remove, or update elements in a mutable map.	
Solution	
Add elements to a mutable map by:	
Assigning them with this syntax: map(key) = value	
Using +=	
Using ++=	
Remove elements with:	
-=	
--=	
Update elements by reassigning their keys to new values. The Discussion shows additional methods you can use, including put, filterInPlace, remove, and clear.	
Given a new, mutable Map:	
val m = scala.collection.mutable.Map[Int, String]()	
you can add an element to a map by assigning a key to a value:	
m(1) = "a" // m: HashMap(1 -> a)	
You can also add individual elements with the += method:	
m += (2 -> "b") // m: HashMap(1 -> a, 2 -> b)	
Add multiple elements from another collection using ++=:	
m ++= Map(3 -> "c", 4 -> "d")	
// m: HashMap(1 -> a, 2 -> b, 3 -> c, 4 -> d)	
m ++= List(5 -> "e", 6 -> "f")	
// m: HashMap(1 -> a, 2 -> b, 3 -> c, 4 -> d, 5 -> e, 6 -> f)	
Remove a single element from a map by specifying its key with the -= method:	
m -= 1 // m: HashMap(2 -> b, 3 -> c, 4 -> d, 5 -> e, 6 -> f)	
Remove multiple elements by key with the --= method:	
m --= List(2,3) // m: HashMap(4 -> d, 5 -> e, 6 -> f)	
Update elements by reassigning their key to a new value:	
m(4) = "DD" // m: HashMap(4 -> DD, 5 -> e, 6 -> f)	
The Discussion shows more ways to modify mutable maps.	
Discussion	
The methods shown in the Solution demonstrate the most common approaches. You can also use:	
put to add a key/value pair, or replace an existing value	
filterInPlace to keep only the elements in the map that match the predicate you supply	
remove to remove an element by its key value	
clear to delete all elements in the map	
For example, given this mutable Map:	
val m = collection.mutable.Map(
"AK" -> "Alaska",	
"IL" -> "Illinois",	
"KY" -> "Kentucky"	
)	
those methods are shown in the following examples:	
// returns None if the key WAS NOT in the map	
val x = m.put("CO", "Colorado")	
// x: Option[String] = None	
// m: HashMap(AK -> Alaska, IL -> Illinois, CO -> Colorado, KY -> Kentucky)	
// returns Some if the key WAS in the map	
val x = m.put("CO", "Colorado")	
// x: Option[String] = Some(Colorado)	
// m: HashMap(AK -> Alaska, IL -> Illinois, CO -> Colorado, KY -> Kentucky)	
m.filterInPlace((k,v) => k == "AK")	
// m: HashMap(AK -> Alaska)	
// `remove` returns a Some if the key WAS in the map	
val x = m.remove("AK")	
// x: Option[String] = Some(Alaska)	
// m: collection.mutable.Map[String, String] = HashMap()	
// `remove` returns a None if the key WAS NOT in the map	
val x = m.remove("FOO")	
// x: Option[String] = None	
// m: collection.mutable.Map[String, String] = HashMap()	
m.clear // m: HashMap()	
The comments in the examples explain when methods like put and remove return Some and None values.	
14.5 Accessing Map Values (Without Exceptions)	
Problem	
You want to access individual values stored in a map without throwing an exception. For example, given a little map:	
val states = Map(
"AL" -> "Alabama",	
)	
you can access the value associated with a key just like you access array elements:	
val s = states("AL") // s: Alabama	
However, a java.util.NoSuchElementException exception is thrown if the map doesn’t contain the requested key:	
val s = states("YO") // java.util.NoSuchElementException: key not found: YO	
Solution	
To avoid exceptions, use:	
withDefaultValue when creating the map	
getOrElse when accessing elements	
get to return map values as a Some or None	
For example, given a map:	
val states = Map(
"AL" -> "Alabama",	
"AK" -> "Alaska",	
"AZ" -> "Arizona"	
)	
one way to avoid this problem is to create the map with the withDefaultValue method:	
val states = Map(
"AL" -> "Alabama"	
).withDefaultValue("Not found")	
As the name implies, this creates a default value that will be returned by the map whenever a key isn’t found:	
val x = states("AL") // x: Alabama	
val x = states("yo") // x: Not found	
Another solution is to use the getOrElse method when attempting to find a value. It returns the default value you specify if the key isn’t found:	
val s = states.getOrElse("yo", "No such state") // s: No such state	
Yet another solution is to use the get method, which returns an Option:	
val x = states.get("AZ") // x: Some(Arizona)	
val x = states.get("yo") // x: None	
Having these three options is nice because they give you different ways to work, depending on your preferred programming style.	
14.6 Testing for the Existence of a Key or Value in a Map	
Problem	
You want to test whether a map contains a given key or value.	
Solution	
To test for the existence of a key in a map, use the contains or get methods. To test for the existence of a value in a map, use the valuesIterator method.	
Testing for keys	
To test for the existence of a key in a map, using the contains method is a straightforward solution:	
val states = Map(
"AK" -> "Alaska",	
"IL" -> "Illinois",	
"KY" -> "Kentucky"	
)	
states.contains("FOO") // false	
states.contains("AK") // true	
Depending on your needs, you can also call get on the map and see if it returns a None or a Some:	
states.get("FOO") // None	
states.get("AK") // Some(Alaska)	
For instance, this approach can be used in a match expression:	
states.get("AK") match	
case Some(state) => println(s"state = $state")	
case None => println("state not found")	
As shown in the previous recipe, note that attempting to use a key that isn’t in the map will throw an exception:	
states("AL") // java.util.NoSuchElementException: key not found: AL	
Testing for values	
To test whether a value exists in a map, use the valuesIterator method to search for the value using contains:	
states.valuesIterator.contains("Alaska") // true	
states.valuesIterator.contains("Kentucky") // true	
states.valuesIterator.contains("ucky") // false	
This works because (a) the valuesIterator method returns an Iterator:	
states.valuesIterator // Iterator[String] = <iterator>	
and (b) contains returns true if the element you supply is a value in the map. If you need to perform more of a search operation on your map values, you can also use these approaches:	
states.valuesIterator.exists(_.contains("ucky")) // true	
states.valuesIterator.exists(_.matches("Ala.*")) // true	
Because exists takes a function, you can use this technique with more complex key values and your own algorithm.	
Discussion	
When chaining methods like this together, be careful about intermediate results, especially with large collections. For this recipe I originally used the values methods to get the values from the map, but this produces a new intermediate collection. If you have a large map, this can consume a lot of memory. Conversely, the valuesIterator method returns a lightweight iterator.	
See Also	
Recipe 14.5 shows how to avoid an exception while accessing a map key.	
Recipe 14.7 demonstrates the values and valuesIterator methods.	
14.7 Getting the Keys or Values from a Map	
Problem	
You want to get all of the keys or values from a map.	
Solution	
Keys	
To get the keys, use these methods:	
keySet to get the keys as a Set	
keys to get an Iterable	
keysIterator to get the keys as an iterator	
These methods are shown in the following examples:	
val states = Map("AK" -> "Alaska", "AL" -> "Alabama", "AR" -> "Arkansas"	
states.keySet // Set[String] = Set(AK, AL, AR)	
states.keys // Iterable[String] = Set(AK, AL, AR)	
states.keysIterator // Iterator[String] = <iterator>	
Values	
To get the values from a map, use:	
the values method to get the values as an Iterable	
valuesIterator to get them as an Iterator	
These methods are shown in the following examples:	
states.values // Iterable[String] = Iterable(Alaska, Alabama, Arkansas)	
states.valuesIterator // Iterator[String] = <iterator>	
Discussion	
As shown in these examples, keysIterator and valuesIterator return an iterator from the map data. You’ll generally want to use these methods when you have a large map, because they don’t create a new collection; they just provide an iterator to walk over the existing elements.	
Also note that if you want to transform the map’s values, use the view.mapValues or transform methods, as shown in Recipe 14.9.	
14.8 Finding the Largest (or Smallest) Key or Value in a Map	
Problem	
You want to find the largest or smallest key or value in a map.	
Solution	
Depending on your needs and the map data, use the max and min methods on the map, or use the map’s keysIterator or valuesIterator with other approaches.	
Two approaches to finding the largest and smallest keys are shown here in the Solution, and approaches to finding the largest and smallest values are shown in the Discussion.	
To demonstrate the approach to working with Map keys, first create a sample Map:	
val grades = Map(
"Al" -> 80,	
"Kim" -> 95,	
"Teri" -> 85,	
"Julia" -> 90	
)	
In this map, the key has the type String, so which key is “largest” depends on your definition. You can find the largest or smallest key using the natural String sort order by calling the max and min methods on the map:	
grades.max // (Teri,85)	
grades.min // (Al,80)	
Because the T in Teri is furthest down the alphabet in the names, it’s returned as the max. Al is returned as the min for the same reason.	
You can also call keysIterator—which returns a scala.collection.Iterator—to get an iterator over the map keys and call its max and min methods:	
grades.keysIterator.max // Teri	
grades.keysIterator.min // Al	
Additionally, you can find the same max and min values by getting the keysIterator and using reduceLeft:	
scala> grades.keysIterator.reduceLeft((x,y) => if x > y then x else y)	
val res2: String = Teri	
scala> grades.keysIterator.reduceLeft((x,y) => if x < y then x else y)	
val res3: String = Al	
This approach is flexible, because if your definition of largest is the longest string, you can compare string lengths instead:	
scala> grades.keysIterator.reduceLeft((x,y) => if x.length > y.length then x else y)	
res4: String = Julia	
Discussion	
When you need to find the largest and smallest values in a Map, use the valuesIterator method to iterate through the values, while calling the max or min method on the iterator:	
grades.valuesIterator.max // 95	
grades.valuesIterator.min // 80	
This works because the values in the Map are of the type Int, which has an implicit Ordering. Per the official documentation for implicit conversions, an “implicit method Int => Ordered[Int] is provided automatically through scala.Predef.intWrapper.”	
Conversely, if the type that’s used as the value in a Map doesn’t provide an Ordering, this approach won’t work. See Recipe 13.14, “Sorting a Collection”, and Recipe 12.11, “Sorting Arrays”, for more details about implementing the scala.math.Ordered or scala.math.Ordering traits.	
Similarly, you can also use max and min with reduceLeft, if you prefer:	
grades.valuesIterator.reduceLeft(_ max _) // 95	
grades.valuesIterator.reduceLeft(_ min _) // 80	
The benefit of using reduceLeft is that you can compare any type of value with your own custom algorithm, which is representative of what you may need to do with more complex data types. These examples demonstrate how to use reduceLeft with a slightly more complicated algorithm:	
// max	
scala> grades.valuesIterator.reduceLeft((x,y) => if x > y then x else y)	
val res5: Int = 95	
// min	
scala> grades.valuesIterator.reduceLeft((x,y) => if x < y then x else y)	
val res6: Int = 80	
Now that you’ve seen how to access those x and y values, you can create any algorithm necessary for your comparison.	
See Also	
14.9 Traversing a Map	
Problem	
You want to iterate over the elements in a map.	
Solution	
There are several different ways to iterate over the elements in a map. Given a sample map:	
val ratings = Map(
"Lady in the Water"-> 3.0,	
"Snakes on a Plane"-> 4.0,	
"You, Me and Dupree"-> 3.5	
)	
a nice way to loop over all the map elements is with this for loop syntax:	
for (k,v) <- ratings do println(s"key: $k, value: $v")	
Using foreach with an anonymous function is also a very readable approach:	
ratings.foreach {	
case(movie, rating) => println(s"key: $movie, value: $rating")	
}	
This approach shows how to use the tuple syntax to access the key and value fields:	
ratings.foreach(x => println(s"key: ${x._1}, value: ${x._2}"))	
Note: Those are not my movie ratings. They are taken from the book, Programming Collective Intelligence by Toby Segaran (O’Reilly).	
Discussion	
Note that the foreach method with an anonymous function can be written three different ways with Scala 3:	
ratings.foreach {	
(movie, rating) => println(s"key: $movie, value: $rating")	
}	
ratings.foreach {	
case movie -> rating => println(s"key: $movie, value: $rating")	
}	
// works with Scala 2	
ratings.foreach {	
case(movie, rating) => println(s"key: $movie, value: $rating")	
}	
In each of those examples, the code inside the curly braces serves as an anonymous function.	
Depending on how you want to traverse the map, you may just want to access the map’s keys or values.	
Keys	
If you just want to access the keys in the map, you can use keysIterator to get all the keys as a lightweight Iterator:	
val i = ratings.keysIterator	
// the iterator provides access to the map’s keys	
i.toList // List(Lady in the Water, Snakes on a Plane, You, Me and Dupree)	
The keys method returns an Iterable, so it involves creating a new intermediate collection (which can be a performance issue if you have a large map), but it works easily:	
scala> ratings.keys.foreach((m) => println(s"$m rating is ${ratings(m)}"))	
Lady in the Water rating is 3.0	
Snakes on a Plane rating is 4.0	
You, Me and Dupree rating is 3.5	
Values	
If you want to traverse the map to perform an operation on its values, the mapValues method—which is defined in the MapView trait—may be what you need. First call view on your map to create a MapView, then call mapValues. It lets you apply a function to each map value and returns the modified map:	
val a = Map(1 -> "ay", 2 -> "bee")	
// a: Map[Int, String] = Map(1 -> ay, 2 -> bee)	
val b = a.view.mapValues(_.toUpperCase).toMap // Map(1 -> AY, 2 -> BEE)	
Because a view implements its transformer methods in a nonstrict or lazy manner, creating a view before calling mapValues only creates a lightweight iterator:	
// `view` uses an iterator	
a.view // MapView(<not computed>)	
This approach can be especially beneficial if the map is very large. See Recipe 11.4, “Creating a Lazy View on a Collection”, for more details on views.	
Conversely, you can use the values method and map to solve this problem:	
a.values.map(_.toUpperCase) // List(AY, BEE)	
But be aware that the first step in this process creates an intermediate Iterable:	
a.values // Iterable(ay, bee)	
So for a large map, this approach can create a performance or memory problem because of that additional intermediate collection.	
If you need to transform the values	
If you want to traverse a map to transform the map values, the transform method gives you another way to create a new map from an existing map. Unlike mapValues, you can use both the key and value to transform the values:	
val map1 = Map(1 -> 10, 2 -> 20, 3 -> 30)	
// use the map keys and values to create new values	
val map2 = map1.transform((k,v) => k + v)	
// map2: Map(1 -> 11, 2 -> 22, 3 -> 33)	
For more complicated situations you can also create a view on the initial Map and then call the map method on that MapView, which gives you access to the Map keys and values:	
val map3 = map1.view.map((k,v) => (k, k + v)).toMap	
14.10 Sorting an Existing Map by Key or Value	
Problem	
You have an unsorted map and want to sort the elements in the map by the key or value.	
Solution	
Given a basic immutable Map:	
val grades = Map(
"Kim" -> 90,	
"Al" -> 85,	
"Melissa" -> 95,	
"Emily" -> 91,	
"Hannah" -> 92	
)	
you can sort the map by key, from low to high, using sortBy, and then store the result in a mutable LinkedHashMap or immutable VectorMap. Two solutions are shown here:	
import scala.collection.mutable.LinkedHashMap	
// Version 1: sorts by key by accessing each tuple as '(k,v)'	
val x = LinkedHashMap(grades.toSeq.sortBy((k,v) => k):_*)	
// x: LinkedHashMap(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90,	
// Melissa -> 95)	
// Version 2: sorts by key using the tuple '._1' syntax	
val x = LinkedHashMap(grades.toSeq.sortBy(_._1):_*)	
// x: LinkedHashMap(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90,	
// Melissa -> 95)	
You can also sort the keys in ascending or descending order using sortWith and your own custom algorithm, again storing the result in a LinkedHashMap:	
// sort by key, low to high	
val x = LinkedHashMap(grades.toSeq.sortWith(_._1 < _._1):_*)	
// x: LinkedHashMap(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90,	
// Melissa -> 95)	
// sort by key, high to low	
val x = LinkedHashMap(grades.toSeq.sortWith(_._1 > _._1):_*)	
// x: LinkedHashMap(Melissa -> 95, Kim -> 90, Hannah -> 92, Emily -> 91,	
// Al -> 85)	
This syntax is explained in the Discussion.	
You can sort the map by value using sortBy:	
// value, low to high, accessing elements as `(k,v)`	
val x = LinkedHashMap(grades.toSeq.sortBy((k,v) => v):_*)	
// x: LinkedHashMap(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92,	
// Melissa -> 95)	
// value, low to high, using the tuple `_` syntax	
val x = LinkedHashMap(grades.toSeq.sortBy(_._2):_*)	
// x: LinkedHashMap(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92,	
// Melissa -> 95)	
You can also sort by value in ascending or descending order using sortWith:	
// sort by value, low to high	
val x = LinkedHashMap(grades.toSeq.sortWith(_._2 < _._2):_*)	
// x: LinkedHashMap(Al -> 85, Kim -> 90, Emily -> 91, Hannah -> 92,	
// Melissa -> 95)	
// sort by value, high to low	
val x = LinkedHashMap(grades.toSeq.sortWith(_._2 > _._2):_*)	
// x: LinkedHashMap(Melissa -> 95, Hannah -> 92, Emily -> 91, Kim -> 90,	
// Al -> 85)	
In addition to using a LinkedHashMap, you can also store the results in an immutable VectorMap. When performance is a concern, be sure to test both map types to see which works best for your situation.	
Discussion	
To understand these solutions, it’s helpful to break them down into smaller pieces. First, start with the basic immutable Map:	
val grades = Map(
"Kim" -> 90,	
"Al" -> 85,	
"Melissa" -> 95,	
"Emily" -> 91,	
"Hannah" -> 92	
)	
Next, you can see that grades.toSeq creates a sequence of two-element tuple values, i.e., Seq[(String, Int)]:	
val x = grades.toSeq	
// x: ArrayBuffer((Hannah,92), (Melissa,95), (Kim,90), (Emily,91), (Al,85))	
You make the conversion to a Seq because it has sorting methods you can use:	
// sort by key	
val x = grades.toSeq.sortBy(_._1)	
// x: Seq[(String, Int)] =	
// ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))	
// sort by key	
val x = grades.toSeq.sortWith(_._1 < _._1)	
// x: Seq[(String, Int)] =	
// ArrayBuffer((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))	
In these examples, the _._1 syntax refers to the first element of each tuple, which is the key. Similarly, _._2 refers to the value.	
Once you have the map data sorted as desired, store it in a LinkedHashMap, VectorMap, or ListMap to retain the sorted order:	
val x = LinkedHashMap(grades.toSeq.sortBy(_._1):_*)	
// x: scala.collection.mutable.LinkedHashMap[String,Int] =	
// Map(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)	
LinkedHashMap is only available as a mutable class, and VectorMap is an immutable map. There’s also an immutable ListMap, but it’s only recommended for small maps. Use whichever is best for your situation.	
About that _*	
The _* portion of the code takes a little getting used to. It’s a special syntax used to convert the data so it will be passed as multiple parameters to LinkedHashMap (or VectorMap or ListMap). If you’ve ever used the xargs command on Unix systems, it works in a similar way, taking a sequence of elements as input and passing one element at a time to the next command.	
You can see this by again breaking down the code into separate lines. The sortBy method returns a Seq[(String, Int)], i.e., a sequence of tuples:	
val seqOfTuples = grades.toSeq.sortBy(_._1)	
// seqOfTuples: Seq[(String, Int)] =	
// List((Al,85), (Emily,91), (Hannah,92), (Kim,90), (Melissa,95))	
Unfortunately, you can’t construct a VectorMap, LinkedHashMap, or ListMap with a sequence of tuples:	
scala> VectorMap(seqOfTuples)	
1	VectorMap(seqOfTuples)
^^^^^	
Found: (seqOfTuples : Seq[(String, Int)])	
Required: (Any, Any)	
But because the apply method in the VectorMap companion object accepts a tuple-2 varargs parameter, you can adapt seqOfTuples to work with it by using _* to convert the sequence of tuple-2 elements into a series of individual tuple-2 values. This gives the VectorMap’s apply method what it wants:	
val x = VectorMap(seqOfTuples: _*)	
// x: scala.collection.immutable.VectorMap[String, Int] =	
// VectorMap(Al -> 85, Emily -> 91, Hannah -> 92, Kim -> 90, Melissa -> 95)	
Another way to see how _* works is to define your own method that takes a varargs parameter. The following printAll method takes one parameter, a varargs field of type String:	
def printAll(strings: String*): Unit = strings.foreach(println)	
If you then create a List like this:	
// a sequence of strings	
val fruits = List("apple", "banana", "cherry")	
you’ll see that you can’t pass that List into printAll; it fails like the previous example:	
scala> printAll(fruits)	
1	printAll(fruits)
^^	
Found: (fruits : List[String])	
Required: String	
But you can use _* to adapt the List to work with printAll, like this:
// this works
scala> printAll(fruits: _*)
apple
banana
cherry
If you come from a Unix background, it may be helpful to think of _* as a splat operator. This operator tells the compiler to pass each element of the sequence to printAll as a separate argument, instead of passing fruits as a single List argument.
14.11 Filtering a Map
Problem
You want to filter the elements contained in a map, either by directly modifying a mutable map or by applying a filtering algorithm on an immutable map to create a new map.
Solution
Use the filterInPlace method to define the elements to retain when using a mutable map, and use filterKeys or filter to filter the elements in a mutable or immutable map, remembering to assign the result to a new variable.
Mutable maps
You can filter the elements in a mutable map using the filterInPlace method to specify which elements should be retained:
val x = collection.mutable.Map(
1 -> 100,
2 -> 200,
3 -> 300
)
x.filterInPlace((k,v) => k > 1) // x: HashMap(2 -> b, 3 -> c)
x.filterInPlace((k,v) => v > 200) // x: HashMap(3 -> 300)
As shown, filterInPlace modifies a mutable map in place. As implied by the anonymous function signature used in that example:
(k,v) => ...
your algorithm can test both the key and value of each element to decide which elements to retain in the map.
Depending on your definition of “filter,” you can also remove elements from a map using methods like remove and clear, which are shown in Recipe 14.3.
Mutable and immutable maps
When working with a mutable or immutable map, you can use a predicate with the filterKeys method to define which map elements to retain. To use this method you’ll first need to call the view method on your Map to create a MapView. Then remember to assign the filtered result to a new variable:
val x = Map(
1 -> "a",
2 -> "b",
3 -> "c"
)
val y = x.view.filterKeys(_ > 2).toMap // y: Map(3 -> c)
The predicate you supply should return true for the elements you want to keep in the new collection, and false for the elements you don’t want.
Notice that with this approach, if you don’t call toMap at the end, you’ll see this result in the REPL:
scala> val y = x.view.filterKeys(_ > 2)
val y: scala.collection.MapView[Int, String] = MapView(<not computed>)
Here you see MapView(<not computed>) because calling view creates a lazy view on the initial map, and the calculation isn’t actually performed until you force it to be performed by calling a method such as toMap. (See Recipe 11.4, “Creating a Lazy View on a Collection”, for more details on how views work.)
If your algorithm is longer, you can define a function (or method) and then pass it to filterKeys, rather than using an anonymous function. For example, first define your method, such as this somewhat verbose (but clear) method, which returns true when the value the method is given is 1:
def only1(i: Int) = if i == 1 then true else false
Then pass the method to the filterKeys method:
val x = Map(1 -> "a", 2 -> "b", 3 -> "c")
val y = x.view.filterKeys(only1).toMap // y: Map(1 -> a)
You can also use a Set with filterKeys to define the elements to retain:
val x = Map(1 -> "a", 2 -> "b", 3 -> "c")
val y = x.view.filterKeys(Set(2,3)).toMap
// y: Map[Int, String] = Map(2 -> b, 3 -> c)
The Discussion demonstrates other filtering methods, such as how to filter a Map by its values.
Discussion
You can use all the filtering methods that are shown in Recipe 13.7, “Using filter to Filter a Collection”. For instance, the Map version of the filter method lets you filter the map elements by key, value, or both. The filter method provides your predicate a tuple-2, so you can access the key and value as shown in these examples:
// an immutable map
val a = Map(1 -> "a", 2 -> "b", 3 -> "c")
// filter by the key
val b = a.filter((k,v) => k > 1) // b: Map(2 -> b, 3 -> c)
// filter by the value
val c = a.filter((k,v) => v != "b") // c: Map(1 -> a, 3 -> c)
Your filter algorithm can also use a tuple, if you prefer:
// filter by the key (t._1)
val b = a.filter((t) => t._1 > 1) // b: Map(2 -> b, 3 -> c)
// filter by the value (t._2)
val b = a.filter((t) => t._2 != "b") // b: Map(1 -> a, 3 -> c)
The take method lets you “take” (keep) the first N elements from the map:
val b = a.take(2) // b: Map(1 -> a, 2 -> b)
See the filtering recipes in Recipe 13.7, “Using filter to Filter a Collection”, for examples of other methods that you can use, including takeWhile, drop, and slice.
Chapter 15. Collections: Tuple, Range, Set, Stack, and Queue
Compared to the previous collection chapters, this chapter covers collection classes that tend to be a little different than your standard sequence and map types.
A tuple is essentially a sequence, but like a class or trait, it can contain any number of different types, as shown in this REPL example:
scala> (1, 2.2, "a", 'a')
val res0: (Int, Double, String, Char) = (1, 2.2, a, a)
Tuples are convenient to use when you just want a container for a series of potentially mixed types like this. Recipe 15.1 demonstrates the use of tuples.
A range is an evenly spaced sequence of whole numbers or characters and is often used in for loops and to populate other collections. Their use is covered in Recipe 15.2.
A set is a collection that contains only unique elements, where uniqueness is determined by the == method of the type the set contains. Because a set only contains unique elements, if you attempt to add duplicate elements to it, the set ignores the request. Scala has both immutable and mutable versions of its base Set implementation and offers additional set classes for other needs, such as having sorted sets. Sets are covered in Recipes 15.3 through 15.5.
A queue is a first-in, first-out data structure, and a stack is a last-in, first-out structure. Scala has both mutable and immutable versions of each type, and they’re demonstrated in Recipes 15.6 and 15.7, respectively.
15.1 Creating Heterogeneous Lists with Tuples
Problem
You want to create a small collection of heterogeneous elements, but without having to create a List[Matchable], List[Any], or a class-like structure.
Solution
Where collections like Vector and ArrayBuffer are generally intended to contain a sequence of homogeneous elements such as Vector[Int] or ArrayBuffer[String], a tuple lets you create a collection of heterogeneous elements in a sequence.
To create a tuple, just put the values you want inside parentheses, separated by commas. For instance, these examples show how to create tuples that contain two, three, and four values of different types, as shown in the comments:
(1, 1.1) // (Int, Double)
(1, 1.1, 'a') // (Int, Double, Char)
(1, 1.1, 'a', "a") // (Int, Double, Char, String)
Tuples are great for those times where you want a little collection of miscellaneous heterogeneous elements. For example, here’s a method that returns a two-element tuple:
// return the user name and age
def getUserInfo(): (String, Int) =
// do whatever you need to do to get the data and then
// return it as a tuple
("johndoe", 42)
The (String, Int) return type shows how to declare a tuple as a return type. Specifically, this is a two-element tuple composed of a String and an Int. You can also declare that return type as a Tuple2, like this:
def getUserInfo(): Tuple2[String, Int] = ("johndoe", 42)
With either approach, when you call that method, you create a tuple variable:
val userInfo = getUserInfo() // (String, Int)
With Scala 2 you could only access the tuple elements using this underscore syntax:
userInfo._1 // "johndoe"
userInfo._2 // 42
But with Scala 3 you can also access the elements by their index number, just like using other sequences:
userInfo(0) // "johndoe"
userInfo(1) // 42
Another common way to create variables from a tuple is to use pattern matching to deconstruct the tuple values into variables. This example binds the "johndoe" and 42 values to the variables name and age, respectively:
val (name, age) = getUserInfo()
name // "johndoe"
age // 42
Because Scala 3 tuples are more like lists, they have several of the usual collections methods:
val t = (1, 2.2, "yo")
t.size // 3
t.head // Int = 1
t.tail // (Double, String) = (2.2,yo)
t.drop(1) // (Double, String) = (2.2,yo)
You can also concatenate two tuples:
val t = (1, "a") ++ (3.3, 'd') // (Int, String, Double, Char) = (1,a,3.3,d)
There’s also a swap method that’s available with two-element tuples:
val t = (1, 2.2) // (Int, Double) = (1,2.2)
t.swap // (Double, Int) = (2.2,1)
However, as you can imagine, it would be hard to implement all the standard collection methods on a tuple, because it can contain mixes types, like Int, Double, and String all in one tuple. So only a limited set of methods is available.
Discussion
Tuples in Scala 3 build on the heterogeneous list (HList) construct that was originally created by Miles Sabin in his shapeless library for Scala 2. The HList is a very interesting construct in that it’s something of a cross between a sequence and a class (or at least a record type).
Tuples are like lists
In theory, you can create sequences of heterogeneous elements using implicit or explicit typing:
val xs = List(1, 2.2, "a", 'b') // List[Matchable] = List(1, 2.2, a, b)
val xs: List[Any] = List(1, 2.2, "a", 'b') // List[Any] = List(1, 2.2, a, b)
However, the problem with this is that you lose the type details. By contrast, a tuple keeps those details:
(1, 2.2, "a", 'b') // (Int, Double, String, Char) = (1,2.2,a,b)
An important thing to know is that in Scala 3 you can also create tuples with this *: syntax:
1 *: "a" *: 2.2 *: EmptyTuple // (Int, String, Double) = (1,a,2.2)
This is similar to creating a List like this:
1 :: 2 :: Nil // List[Int] = List(1, 2)
It’s important to know about the *: syntax because you’ll also see it in the REPL output when working with tuples:
scala> val z = (1,2).zip("a", "b")
val z: (Int, String) *:
scala.Tuple.Zip[Int *: scala.Tuple$package.EmptyTuple.type, String *:
scala.Tuple$package.EmptyTuple.type] = ((1,a),(2,b))
scala> z
val res0: (Int, String) *: (Int, String) *: EmptyTuple = ((1,a),(2,b))
That last line of output can be read as “res0 is a tuple variable that consists of a (Int, String) tuple combined with another (Int, String) tuple.” You can tell that res0 is a tuple because it consists of tuple types that are glued together with the *: symbol and ends with the EmptyTuple.
Tuples and classes
Tuples are nice because in some situations they can be a replacement for a class, as shown with the getUserInfo method, which returns a tuple instead of a class. Like other Scala features such as type inference and union and intersection types, tuples are a feature that makes Scala feel like a dynamic language.
Another use related to classes is that you can convert a simple case class to a tuple, as shown in this example:
// [1] create a case class and instance of it
case class Stock(symbol: String, price: Double)
val aapl = Stock("AAPL", 123.45)
// [2] create a tuple from the case class
val t = Tuple.fromProductTyped(aapl) // (String, Double) = (AAPL,123.45)
The benefit of converting a case class to a tuple is that you can write generic methods like this one that accept any (String, Double) tuple:
def handleTuple(t: (String, Double)): Unit =
println(s"String: ${t(0)}, Double: ${t(1)}")
While this is a simple example, the technique has significant benefits when it comes to generic programming. See the blog post “Tuples Bring Generic Programming to Scala 3” for more details on converting between case classes and tuples.
Tuples and maps
Finally, you may also see two-element tuples used to create maps. This syntax isn’t commonly used, but for the times you run into it, it helps to know that this possibility exists:
val m = Map(
(1, "a"),
(2, "b")
)
In a related note, you can also create a two-element tuple using this arrow syntax:
1 -> "a" // (Int, String) = (1,a)
This is the same arrow syntax that’s typically used when creating a map:
val m = Map(
1 -> "a",
2 -> "b"
)
See Also
The blog post “Tuples Bring Generic Programming to Scala 3” has more details on tuples and generic programming.
The Type Astronaut’s Guide to Shapeless is available for free in HTML and PDF formats and begins by describing uses of the original HList that was created by Miles Sabin.
15.2 Creating Ranges
Problem
You need to create a range of values, such as in a for loop, or create a sequence of numbers or characters from a range, typically for testing purposes.
Solution
Use the to or until methods of the Int (or Char) class to create a Range with the desired elements. You can then convert that range to a sequence, if desired. To populate a sequence you can also use the range method of the desired sequence class (List, Vector, etc.).
Creating a range with to
A simple way to create a range is with the to method:
scala> val r = 1 to 5
r: scala.collection.immutable.Range.Inclusive = Range 1 to 5
When using to, you can set an optional step with the by method:
val r = 1 to 10 by 2 // will contain Range(1, 3, 5, 7, 9)
val r = 1 to 10 by 3 // will contain Range(1, 4, 7, 10)
Ranges are commonly used in for loops:
scala> for i <- 1 to 3 do println(i)
1
2
3
Ranges are created lazily, so when you create one in the REPL you’ll see output like this:
scala> 1 to 10 by 2
val res0: Range = inexact Range 1 to 10 by 2
To verify the actual contents of a range, you can convert it to a sequence with methods like toList, toVector, etc.:
scala> (1 to 10 by 2).toList
val res1: List[Int] = List(1, 3, 5, 7, 9)
Creating a range with until
You can also create a range with until instead of to:
scala> for i <- 1 until 3 do println(i)
1
2
until doesn’t include the last element you specify, so it’s considered exclusive, while to is inclusive, as shown in these examples:
(1 to 3).toVector // Vector(1, 2, 3)
(1 until 3).toVector // Vector(1, 2)
(1 to 10 by 3).toList // List(1, 4, 7, 10)
(1 until 10 by 3).toList // List(1, 4, 7)
Populating sequences
As mentioned, once you have a Range you can convert it to other sequences. This is a common way to populate a sequence, such as for testing purposes:
(1 to 5).toList // List[Int] = List(1, 2, 3, 4, 5)
(1 until 5).toVector // Vector[Int] = Vector(1, 2, 3, 4)
(1 to 5).toBuffer // mutable.Buffer[Int] = ArrayBuffer(1, 2, 3, 4, 5)
(1 to 5).toSeq // immutable.Range = Range 1 to 5
(1 to 5).toSet // Set[Int] = Set(5, 1, 2, 3, 4)
(1 to 5).to(LazyList) // LazyList[Int] = LazyList(<not computed>)
Notice from the results shown in the comments that most ranges are converted to actual sequences, while toSeq and to(LazyList) remain lazy (lazily evaluated).
Discussion
When you create a Range, the REPL output looks like this:
scala> val r = 1 to 5
r: scala.collection.immutable.Range.Inclusive = Range 1 to 5

In this way a Range initially behaves like a lazy collection. Indeed, you can run this code in the REPL and you’ll quickly see the REPL output, and not run out of memory:
scala> 1 to 999_999_999
res0: scala.collection.immutable.Range.Inclusive = Range 1 to 999999999
However, as soon as you force the Range to become a sequence, such as a Vector, the elements are created and memory is consumed:
scala> (1 to 999_999_999).toVector
java.lang.OutOfMemoryError: GC overhead limit exceeded
Should you really need a list that large, you can create a range and convert it to a LazyList:
scala> (1 to 999_999_999).to(LazyList)
val res1: LazyList[Int] = LazyList(<not computed>)
That approach returns almost immediately and doesn’t allocate memory for its elements. You can also create a LazyList with its range method:
scala> LazyList.range(1, 999_999_999)
res1: scala.collection.immutable.LazyList[Int] = LazyList(<not computed>)
Using the range method on sequences
As just shown in the LazyList.range example, you can create specific sequence types with their range methods:
Vector.range(1, 3) // Vector(1, 2)
Array.range(1, 6, 2) // Array(1, 3, 5)
List.range(1, 6, 2) // List(1, 3, 5)
import collection.mutable.ArrayBuffer
ArrayBuffer.range(1, 3) // ArrayBuffer(1, 2)
The second parameter is not included in the result, so it works like the until method. The third parameter is the step size, which defaults to 1:
List.range(1, 10) // List(1, 2, 3, 4, 5, 6, 7, 8, 9)
List.range(1, 10, 2) // List(1, 3, 5, 7, 9)
List.range(1, 10, 3) // List(1, 4, 7)
List.range(1, 10, 4) // List(1, 5, 9)
Char ranges
You can use the same approaches with Char values:
// 'to' and 'until' are lazy
'a' to 'e' // NumericRange a to e
'a' until 'e' // NumericRange a until e
// 'to' is inclusive, 'until' is not
('a' to 'e').toList // List(a, b, c, d, e)
('a' until 'e').toList // List(a, b, c, d)
// you can also use a step with Char
('a' to 'e' by 2).toList // List(a, c, e)
('a' to 'e').by(2).toList // List(a, c, e)
THE DETAILS
Behind the scenes, the to and until methods are available because of implicit conversions on the Int and Char classes. Per the Scaladoc of those classes:
For the Int class, the to and until methods are “added by an implicit conversion from Int to scala.runtime.RichInt, performed by method intWrapper in scala.LowPriorityImplicits.”
For Char, the to and until methods are “added by an implicit conversion from Char to scala.runtime.RichChar, performed by method charWrapper in scala.LowPriorityImplicits.”
For example, when you type the following portion of code, you’re invoking the to method of the RichInt class:
1 to
Therefore, these two pieces of code are equivalent:
1 to 5
1.to(5)
Furthermore, you can clearly see that to, by, and until are methods in these examples:
(1 to 10 by 3).toVector // Vector(1, 4, 7, 10)
(1 to 10).by(3).toVector // Vector(1, 4, 7, 10)
1.to(10).by(3).toVector // Vector(1, 4, 7, 10)
1.until(10).by(3).toVector // Vector(1, 4, 7)
More ways to populate collections with ranges
By using the map method with a Range, you can create sequences with elements other than type Int or Char:
scala> val x = (1 to 5).map(_ * 2.0)
val x: IndexedSeq[Double] = Vector(2.0, 4.0, 6.0, 8.0, 10.0)
This can be a nice way to create sample data for testing. Using a similar approach, you can also return a sequence of Tuple2 elements:
scala> val x = (1 to 5).map(e => (e,e))
val x: IndexedSeq[(Int, Int)] = Vector((1,1), (2,2), (3,3), (4,4), (5,5))
That sequence easily converts to a Map:
scala> val map = (1 to 5).map(e => (e,e)).toMap
val map: Map[Int, Int] = HashMap(5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
On a note related to populating collections with data, you can also use the tabulate and fill methods:
List.tabulate(3)(_ + 1) // List(1, 2, 3)
List.tabulate(3)(_ * 2) // List(0, 2, 4)
List.tabulate(4)(_ * 2) // List(0, 2, 4, 6)
Vector.fill(3)("a") // Vector(a, a, a)
Those examples show the Vector and List classes, but they work with ArrayBuffer, Array, and other collections classes.
15.3 Creating a Set and Adding Elements to It
Problem
You want to create a new immutable or mutable set and add elements to it.
Solution
A set is a sequence that contains only unique elements. Immutable and mutable sets are handled differently, as demonstrated in the following examples.
Immutable Set
The following examples show how to create a new immutable set and then add elements to it. First, create an immutable set:
val s1 = Set(1, 2) // s1: Set[Int] = Set(1, 2)
Notice that there’s no need to import the immutable Set; it’s available by default.
As with other immutable collections, use the + and ++ methods to add new elements to an immutable Set, remembering to assign the result to a new variable:
// add one element
val s2 = s1 + 3 // s2: Set(1, 2, 3)
// add multiple elements from another sequence
val s3 = s2 ++ List(4, 5) // s3: Set(5, 1, 2, 3, 4)
I show these examples with immutable variables—val fields—just to be clear about how the approach works. You can also declare your variable as a var and reassign the resulting set back to the same variable:
var s = Set(1, 2) // s: Set[Int] = Set(1, 2)
s = s + 3 // s: Set(1, 2, 3)
s += 4 // s: Set(1, 2, 3, 4)
s = s ++ List(5, 6) // s: HashSet(5, 1, 6, 2, 3, 4)
See Recipe 11.3, “Understanding Mutable Variables with Immutable Collections”, for more information on the difference between mutable/immutable variables and mutable/immutable collections.
Mutable Set
As with other mutable collections, add elements to a mutable Set with the +=, ++=, and add* methods:
// declare that you want a set of Ints
val s = scala.collection.mutable.Set[Int]()
// s: Set[Int] = HashSet()
// add one element; += is an alias for addOne
s += 1 // s: HashSet(1)
s.addOne(2) // s: HashSet(1, 2)
// add multiple elements; ++= is an alias for addAll
s ++= List(3, 4) // s: HashSet(1, 2, 3, 4)
s.addAll(List(5, 6)) // s: HashSet(1, 2, 3, 4, 5, 6)
// note that there is no error when you attempt to add a duplicate element
s += 2 // s: HashSet(1, 2, 3, 4, 5, 6)
// add elements from any sequence (any IterableOnce)
s ++= Vector(7, 8) // s: HashSet(1, 2, 3, 4, 5, 6, 7, 8)
// the `add` method returns true if the element is added to the set,
// false otherwise
val res = s.add(99) // res=true, s=HashSet(1, 2, 3, 99, 4, 5, 6, 7, 8)
val res = s.add(1) // res=false, s=HashSet(1, 2, 3, 99, 4, 5, 6, 7, 8)
The last two examples demonstrate a unique characteristic of the add method on a mutable set: it returns true or false depending on whether or not the element was added. The other methods silently fail if you attempt to add an element that’s already in the set. If necessary, you can test to see whether a set contains an element before adding it:
s.contains(5) // true
Whereas the first example demonstrated how to create an empty set, you can also add elements to a mutable set when you declare it, just like other collections:
import scala.collection.mutable.Set
val s = Set(1, 2, 3)
// s: scala.collection.mutable.Set[Int] = HashSet(1, 2, 3)
15.4 Deleting Elements from Sets
Problem
You want to remove elements from a mutable or immutable set.
Solution
Immutable and mutable sets are handled differently, as demonstrated in the following examples.
Immutable Set
By definition, when using an immutable set you can’t remove elements from it, but you can use the usual - and -- methods to remove elements while assigning the result to a new variable:
// create an immutable set
val s1 = Set(1, 2, 3, 4, 5, 6) // s1: Set[Int] = HashSet(5, 1, 6, 2, 3, 4)
// remove one element
val s2 = s1 - 1 // s2 == HashSet(5, 6, 2, 3, 4)
// remove multiple elements defined in another sequence
val s3 = s2 -- Seq(4, 5) // s3 == HashSet(6, 2, 3)
You can also use all the filtering methods shown in Recipe 13.7, “Using filter to Filter a Collection”. For instance, you can use methods like filter, take, and drop:
val s1 = Set(1, 2, 3, 4, 5, 6) // s1: Set[Int] = HashSet(5, 1, 6, 2, 3, 4)
val s2 = s1.filter(_ > 3) // s2: HashSet(5, 6, 4)
val s3 = s1.take(2) // s3: HashSet(5, 1)
val s4 = s1.drop(2) // s4: HashSet(6, 2, 3, 4)
However, be aware that because the order in which elements are stored in a set depends on the value and number of its elements, methods like take and drop are rarely used with them:
val set = List.range(0, 1_000_000).toSet
set.take(3) // HashSet(769962, 348877, 864012)
In my experience they’re mostly used when you want to extract a subset of a set for testing purposes.
Mutable Set
Remove elements from a mutable set using the -= and --= methods, as shown in the following examples. First, create a mutable set:
val s = scala.collection.mutable.Set(1, 1, 1, 2, 3, 4, 5, 6, 7, 8)
// s: scala.collection.mutable.Set[Int] = HashSet(1, 2, 3, 4, 5, 6, 7, 8)
Notice in the result of that example that the duplicate 1 values are dropped, because sets only contain unique elements.
Now you can remove one element using the -= method, or subtractOne:
// '-=' is an alias for 'subtractOne'
s -= 1 // s: HashSet(2, 3, 4, 5, 6, 7, 8)
s.subtractOne(2) // s: HashSet(3, 4, 5, 6, 7, 8)
You can also remove multiple elements that are defined in another sequence using --= or subtractAll:
// '--=' is an alias for 'subtractAll'
s --= List(3,4,5) // s: HashSet(6, 7, 8)
s.subtractAll(List(6,7)) // s: HashSet(8)
Notice that attempting to remove elements that don’t exist doesn’t throw an exception and doesn’t report an error; use the remove method (which is shown in a few moments) to obtain that information:
s -= 99 // s: HashSet(8)
With a mutable set you can use other methods like filterInPlace, clear, and remove, depending on your needs. These examples demonstrate the first two methods:
val s = scala.collection.mutable.Set(1, 2, 3, 4, 5)
s.filterInPlace(_ > 2) // s: HashSet(3, 4, 5)
s.clear // s: HashSet()
These examples demonstrate that remove returns true if an element is removed, and false otherwise:
val s = scala.collection.mutable.Set(1, 2, 3, 4, 5)
val res = s.remove(2) // res=true, s=HashSet(1,3,4,5)
val res = s.remove(99) // res=false, s=HashSet(1,3,4,5)
15.5 Storing Values in a Set in Sorted Order
Problem
You want to be able to store elements in a set in a sorted order.
Solution
To store elements in a set in sorted order, use a SortedSet, which comes in both immutable and mutable versions. To store elements in a set in the order in which elements were inserted, use a LinkedHashSet.
SortedSet
A SortedSet returns elements in a sorted order. Here are two examples with an immutable SortedSet:
import scala.collection.immutable.SortedSet
val s = SortedSet(10, 4, 8, 2) // s: TreeSet(2, 4, 8, 10)
val s = SortedSet('b', 'a', 'd', 'c') // s: TreeSet(a, b, c, d)
As with other immutable collections, you can use methods like + and ++ to add elements, and - and -- to remove elements:
val s1 = SortedSet(10) // s1: TreeSet(10)
val s2 = s1 + 4 // s2: TreeSet(4, 10)
val s3 = s2 ++ List(8, 2) // s3: TreeSet(2, 4, 8, 10)
val s4 = s3 - 8 // s4: TreeSet(2, 4, 10)
val s5 = s4 -- List(2, 10) // s5: TreeSet(4)
LinkedHashSet
A LinkedHashSet is a mutable set that saves elements in the order in which they were inserted:
import scala.collection.mutable.LinkedHashSet
val s = LinkedHashSet(10, 4, 8, 2) // s: LinkedHashSet(10, 4, 8, 2)
As with other mutable collections, you can use methods like += and ++= to add elements, and -= and --= to remove elements:
val s = LinkedHashSet(10) // s: LinkedHashSet(10)
s += 4 // s: LinkedHashSet(10, 4)
s ++= List(8, 2) // s: LinkedHashSet(10, 4, 8, 2)
s -= 4 // s: LinkedHashSet(10, 8, 2)
s --= List(8, 10) // s: LinkedHashSet(2)
// attempting to add an element that’s already in the set
// is quietly rejected
val s = LinkedHashSet(2) // s: LinkedHashSet(2)
s += 2 // s: LinkedHashSet(2)
s ++= List(2,2,2) // s: LinkedHashSet(2)
Discussion
The examples shown in the Solution work because the types used in the sets have an implicit Ordering. Custom types won’t work unless you provide an implicit Ordering. See Recipe 12.11, “Sorting Arrays”, and Recipe 13.14, “Sorting a Collection”, for details on how to extend the scala.math.Ordered trait, or provide an implicit or explicit Ordering when sorting.
See Also
For more information about the Ordered and Ordering traits, see Recipe 12.11, “Sorting Arrays”, and Recipe 13.14, “Sorting a Collection”.
See the base SortedSet trait Scaladoc for other subclasses.
15.6 Creating and Using a Stack
Problem
You want to use a last-in, first-out (LIFO) data structure in a Scala application.
Solution
A stack is a LIFO data structure. In most programming languages you add elements to a stack using a push method and take elements off the stack with pop, and Scala is no different.
Scala has both immutable and mutable versions of a stack; the following examples demonstrate how to use the mutable Stack class.
You can create an empty mutable stack:
import scala.collection.mutable.Stack
val ints = Stack[Int]()
val strings = Stack[String]()
You can also populate a stack with elements when you create it:
val chars = Stack('a', 'b', 'c') // Stack[Char] = Stack(a, b, c)
val ints = Stack(1, 2, 3) // Stack[Int] = Stack(1, 2, 3)
val ints: Stack[Int] = Stack(1,2,3) // Stack[Int] = Stack(1, 2, 3)
Once you have a mutable stack, push elements onto it with push:
import scala.collection.mutable.Stack
val s = Stack[String]() // s: Stack[String] = Stack()
// add one element at a time
s.push("a") // s: Stack(a)
s.push("b") // s: Stack(b, a)
// add multiple elements
s.push("c", "d") // s: Stack(d, c, b, a)
To take elements off the stack, pop them off the top of the stack:
val next = s.pop // next=d, s=Stack(c, b, a)
You can peek at the next element on the stack without removing it, using top:
val top = s.top // top=c, s=Stack(c, b, a)
But be careful with pop and top, because they will throw a java.util.NoSuchElementException if the stack is empty.
You can empty a mutable stack with clear or clearAndShrink:
// creates a stack from 0 to 999_999
val nums = Stack.range(0, 1_000_000)
nums.clear // nums: Stack[String] = Stack()
nums.clearAndShrink(0) // nums: Stack[String] = Stack()
clear removes all elements, but does not resize the internal representation of the stack. clearAndShrink reduces the size of the internal representation to the value you specify.
Discussion
I’ve seen several people recommend using a List instead of an immutable stack for this use case. A List has at least one less layer of code, and you can push elements onto the List with :: and access the first element with methods like head and headOption.
Other methods
Like other collections classes, Stack has dozens of other methods, including these:
val s = Stack("apple", "banana", "kiwi")
s.size // 3
s.isEmpty // false
s.count(_.length > 4) // 2
s.filter(_.length > 4) // Stack(apple, banana)
In any programming language, stack constructs typically have push and pop methods, and Table 15-1 shows some of the push/pop methods that are available in the Scala Stack.
Method	Description
pop | Remove the top element and return it |
popAll | Remove all elements and return them as a Seq |
popWhile | Remove all elements while the predicate is true |
push | Push one or multiple elements onto the stack |
pushAll | Push all elements in a traversable onto the stack |
These examples show how those methods work:
val s = Stack[Int]() // s: collection.mutable.Stack[Int] = Stack()
s.push(1) // s: Stack(1)
s.push(2,3) // s: Stack(3, 2, 1)
s.pushAll(List(4,5)) // s: Stack(5, 4, 3, 2, 1)
val a = s.pop // a=5, s=Stack(4, 3, 2, 1)
val b = s.popWhile(_ > 2) // b=List(4, 3), s=Stack(2, 1)
val c = s.popAll // c=List(1, 2), s=Stack()
Stack Extends ArrayDeque
Starting with Scala 2.13, the mutable Stack class is based on the ArrayDeque class, whose Scaladoc states, “Append, prepend, removeFirst, removeLast and random-access (indexed-lookup and indexed-replacement) take amortized constant time. In general, removals and insertions at i-th index are O(min(i, n-i)) and thus insertions and removals from end/beginning are fast.”
15.7 Creating and Using a Queue
Problem
You want to create and use a first-in, first-out (FIFO) data structure in a Scala application.
Solution
A queue is a FIFO data structure, and Scala offers both immutable and mutable queues. This solution demonstrates the mutable queue. The immutable queue is briefly demonstrated in the Discussion.
You can create an empty mutable queue:
import scala.collection.mutable.Queue
val q = Queue[Int]()
val q = Queue[String]()
You can also create a queue with initial elements:
val q = Queue(1, 2, 3) // q: Queue[Int] = Queue(1, 2, 3)
Once you have a mutable queue, add elements to it using +=, ++=, enqueue, and enqueueAll, as shown in the following examples:
import scala.collection.mutable.Queue
val q = new Queue[String] // q: collection.mutable.Queue[String] = Queue()
// add elements to the queue
q += "a" // q: Queue(a)
q ++= List("b", "c") // q: Queue(a, b, c)
q.enqueue("d") // q: Queue(a, b, c, d)
q.enqueue("e", "f") // q: Queue(a, b, c, d, e, f)
q.enqueueAll(List("g", "h")) // q: Queue(a, b, c, d, e, f, g, h)
Notice that new elements are added to the end of the queue. Because a queue is a FIFO, you typically remove elements from the head of the queue, one element at a time, using dequeue:
import scala.collection.mutable.Queue
val q = Queue(1, 2, 3) // q: mutable.Queue[Int] = Queue(1, 2, 3)
// take an element from the head of the queue
val next = q.dequeue // next=1, q=Queue(2, 3)
val next = q.dequeue // next=2, q=Queue(3)
val next = q.dequeue // next=3, q=Queue()
// `q` is now empty; beware calling dequeue on an empty Queue:
val next = q.dequeue
// result: java.util.NoSuchElementException: empty collection
You can also use the dequeueFirst and dequeueAll methods to remove elements from the queue by specifying a predicate:
import scala.collection.mutable.Queue
val q = Queue(1,2,3,4,5) // q: Queue(1, 2, 3, 4, 5)
// found the number 3, so remove it from the queue
val res = q.dequeueFirst(_ > 2) // res=Some(3), q=Queue(1, 2, 4, 5)
// no matches
val res = q.dequeueFirst(_ > 5) // res=None, q=Queue(1, 2, 4, 5)
// match three elements, remove them from the queue
val res = q.dequeueAll(_ > 1) // res=List(2, 4, 5), q=Queue(1)
// no matches
val res = q.dequeueAll(_ > 1) // res=List(), q=Queue(1)
Discussion
Like other collections classes, the queue classes have dozens of other methods, including these:
import scala.collection.mutable.Queue
val q = Queue(1,2,3,4,5)
q.size // 5
q.isEmpty // false
q.count(_ > 3) // 2
q.filter(_ > 3) // Queue(4, 5)
Immutable queues
When working with the immutable Queue class, you generally add elements with enqueue and enqueueAll, and remove elements with dequeue:
import scala.collection.immutable.Queue
val q1 = Queue[Int]() // q1: Queue[Int] = Queue()
val q2 = q1.enqueue(1) // q2: Queue(1)
val q3 = q2.enqueueAll(List(2,3)) // q3: Queue(1, 2, 3)
val (a, q4) = q3.dequeue // a=1, q4=Queue(2, 3)
val (b, q5) = q4.dequeue // b=2, q5=Queue(3)
val (c, q6) = q5.dequeue // c=3, q6=Queue()
// `q6` is now empty; beware calling dequeue on an empty queue:
val (d, q7) = q6.dequeue
// result: java.util.NoSuchElementException: dequeue on empty queue
As shown in those examples, remember to assign the result to a new variable, because the data in the queue can’t be mutated.
Chapter 16. Files and Processes
When it comes to working with files, many of the solutions in this chapter use Java classes, but for some situations the scala.io.Source class and its companion object offer some nice simplifications compared to Java. Not only does Source make it easy to open and read text files, but it also makes it easy to accomplish other tasks, such as downloading content from URLs or substituting a String for a File.
File recipes in this chapter will demonstrate how to:
Read and write text and binary files
Use the Loan Pattern with scala.util.Using to automatically close resources
Process every character in a file
Treat a String as a File, typically for the purpose of testing
Serialize and deserialize objects to files
List files and directories
Next, when it comes to working with processes, the Scala process classes are written as a DSL so you can execute external system commands in a way that feels similar to Unix. The ability to run system commands is useful for applications, and it’s terrific for scripts.
The classes and methods of the scala.sys.process package let you run external system commands from Scala, with code that looks like this:
val result: String = "ls -al".!!
val result = Seq("ls", "-al").!!
val rootProcs = ("ps aux" #| "grep root").!!.trim
val contents: LazyList[String] =
sys.process.Process("find /Users -print").lazyLines
The Scala process DSL provides five primary ways to execute external commands:
Use the run method to run an external command asynchronously, retrieving its exit status when it finishes running.
Use the ! method to execute a command, and block while waiting for it to return its exit status.
Use the !! method to execute a command, and block while waiting for it to return its output.
Use the lazyLines method to execute the command asynchronously, and return its results as a LazyList[String].
lazyLines will throw an exception if the exit status is nonzero, so use the lazyLines_! if you don’t want that behavior.
The process recipes in this chapter will demonstrate how to:
Execute external commands and access their exit status and output
Run those commands synchronously and asynchronously
Access the STDOUT and STDERR from those commands
Execute command pipelines and use wildcard characters
Execute commands in different directories, and configure environment variables for them
BOUNDARIES ON WHAT IS POSSIBLE
Conceptually, one important point to know about the limitations of these classes is made in the process library Scala documentation:
The underlying basis for the whole package is Java’s Process and ProcessBuilder classes. While there’s no need to use these Java classes, they impose boundaries on what is possible. One cannot, for instance, retrieve a process ID for whatever is executing.
If you wonder why certain things are the way they are, it’s important to remember this point.
16.1 Reading Text Files
Problem
You want to open a text file and process the lines in that file.
Solution
There are many ways to open and read text files in Scala, with many of those approaches using Java libraries, but the solutions shown in this recipe focus on ways to open and read text files using scala.io.Source.
The two Source solutions in this recipe demonstrate how to use:
A concise, one-line syntax. This has the side effect of leaving the file open but can be useful in short-lived programs, like shell scripts.
A longer approach that properly closes the file.
Using the concise syntax
In Scala shell scripts, where the JVM is started and stopped in a relatively short period of time, it may not matter that the file is closed, so you can use the Scala scala.io.Source.fromFile method. For instance, to handle each line in the file as it’s read, use this approach:
import scala.io.Source
for line <- Source.fromFile("/etc/passwd").getLines do
// do whatever you need to do with each line in the file
println(line)
As a variation of this, use the following approaches to get all the lines from the file as a List or String:
val linesAsList = Source.fromFile("/etc/passwd").getLines.toList
val linesAsString = Source.fromFile("/etc/passwd").getLines.mkString
The fromFile method returns a scala.io.BufferedSource, and its Scaladoc says its getLines method treats “any of \r\n, \r, or \n as a line separator (longest match),” so in the case of the List, each element in the sequence is a line from the file.
This approach has the side effect of leaving the file open as long as the JVM is running, but for short-lived shell scripts this shouldn’t be an issue; the file is closed when the JVM shuts down.
Properly closing the file and handling exceptions
To properly close the file and handle exceptions, use the scala.util.Using object, which automatically closes the resources for you. If you want to read a file into a sequence, use one of these approaches:
import scala.util.Using
import scala.util.{Try, Success, Failure}
def readFileAsSeq(filename: String): Try[Seq[String]] =
Using(io.Source.fromFile(filename)) { bufferedSource =>
bufferedSource.getLines.toList
}
def readFileAsSeq(filename: String): Try[Seq[String]] =
Using(io.Source.fromFile(filename)) { _.getLines.toList }
To work with each line as you read the file, use this approach:
def readFileAsSeq(filename: String): Try[Seq[String]] =
Using(io.Source.fromFile(filename)) { bufferedSource =>
val ucLines = for
line <- bufferedSource.getLines
// 'line' is a String. can work with each Char here,
// if desired, like this:
// char <- line
yield
// work with each 'line' as a String here
line.toUpperCase
ucLines.toSeq
}
As shown in the first comment in that code, work with line inside the for loop if you want to process each character in the file.
The benefit of using scala.util.Using is that it handles closing the resource for you automatically. The Using object implements the Loan Pattern, whose basic approach is:
Create a resource that can be used
“Loan” that resource to other code
Automatically close/destroy the resource when that other code is finished with it, such as by automatically calling close on a BufferedSource
Per the Using object Scaladoc, it “can be used to perform an operation using resources, after which it releases the resources in reverse order of their creation.” For the approach needed to open and close multiple resources, see that Scaladoc.
Discussion
As mentioned, the first solution leaves the file open as long as the JVM is running:
// leaves the file open
for (line <- io.Source.fromFile("/etc/passwd").getLines)
println(line)
// also leaves the file open
val contents = io.Source.fromFile("/etc/passwd").mkString
On Unix systems you can show whether a file is left open by running an lsof (list open files) command in another terminal while your app is running. For example, here are three lsof commands you can use:
lsof -c java | grep '/etc/passwd'
sudo lsof /etc/passwd
sudo lsof -u Al | grep '/etc/passwd'
The first command lists all the open files for processes whose command begins with the string java and then searches its output for the /etc/passwd file. If this filename is in the output, it means that it’s open, so you’ll see something like this:
java 17148 Al 40r REG 14,2 1475 174214161 /etc/passwd
Then, when you shut down the REPL—thereby stopping the JVM process—you’ll see that the file no longer appears in the lsof output.
Automatically closing the resource
When working with files and other resources that need to be properly closed, it’s best to use the Loan Pattern, as shown in the second Solution example.
In Scala, this can be ensured with a try/finally clause. In the early Scala 2 days I first saw this solution implemented in a using method in the first edition of Beginning Scala (Apress):
// a Scala 2 approach (circa 2009)
import scala.language.reflectiveCalls
object Control:
def using[A <: { def close(): Unit }, B](resource: A)(fun: A => B): B =
try
fun(resource)
finally
resource.close()
As shown, resource is defined as a parameter that must have a close() method (otherwise the code won’t compile). That close() method is then called in the finally clause of the try block.
Many io.Source methods
The scala.io.Source object has many methods for reading from different types of sources, including:
Eight fromFile methods
fromInputStream methods, to read from java.io.InputStream resources
fromIterable, to create a Source from an Iterable
fromString, to create a Source from a String
fromURI, to read from a java.net.URI
Four fromURL methods, to read from java.net.URL sources
stdin, to create a Source from System.in
As just one example, if you want to read from a file while specifying an encoding, use this syntax:
Source.fromFile("example.txt", "UTF-8")
Terrific Java Integration
Because Scala works so well with Java, you can use the Java FileReader and BufferedReader classes, as well as other Java libraries, like the Apache Commons FileUtils class, to read files.
See Also
The scala.util.Using object Scaladoc.
The scala.io.Source Scaladoc.
You can also read text files with the Java BufferedReader and FileReader classes. I wrote a blog post where I demonstrate “Five Good Ways (and Two Bad Ways) to Read Large Text Files with Scala”.
16.2 Writing Text Files
Problem
You want to write plain text to a file, such as a text data file or other plain-text document.
Solution
Scala doesn’t offer any special file-writing capability, so fall back and use the usual Java approaches. Ignoring possible exceptions, this is a simple approach that uses a FileWriter and BufferedWriter:
import java.io.{BufferedWriter, File, FileWriter}
// FileWriter
val file = File("hello.txt")
val bw = BufferedWriter(FileWriter(file))
bw.write("Hello, world\n")
bw.write("It’s Al")
bw.close()
If you need to append data to a text file, add the true parameter when creating the FileWriter:
val bw = BufferedWriter(FileWriter("notes.txt", true))

You can also use the java.nio classes. This example shows how to write a string to a file using the Paths and Files classes:
import java.nio.file.{Files,Paths}
val text = "Hello, world"
val filepath = Paths.get("nio_paths_files.txt")
Files.write(filepath, text.getBytes)
That’s a useful approach if you have one string that you want to write to a file, because it writes the entire string and then closes the file. This example shows how to write and then append a Seq[String] to a text file using NIO classes, while also showing how to work with character sets:
import java.nio.file.{Files,Paths,StandardOpenOption}
import java.nio.charset.StandardCharsets
import scala.collection.JavaConverters.*
// WRITE
val seq1 = Seq("Hello", "world")
val filepath = Paths.get("paths_seq.txt")
Files.write(filepath, seq1.asJava)
// APPEND
val seq2 = Seq("It’s", "Al")
Files.write(
filepath,
seq2.asJava,
StandardCharsets.UTF_8,
StandardOpenOption.APPEND
)
This approach adds a newline character after every string in your sequence, so the resulting file has these contents:
Hello
world
It’s
Al
Exceptions
All file-reading and file-writing code can throw exceptions. See Recipe 16.1 for code that shows how to handle exceptions.
Discussion
If you don’t specify a character set with FileWriter, it uses the platform default Charset. To control the Charset, use these FileWriter constructors:
FileWriter(File file, Charset charset)
FileWriter(File file, Charset charset, boolean append)
FileWriter(String fileName, Charset charset)
FileWriter(String fileName, Charset charset, boolean append)
See the FileWriter and Charset Javadoc pages for more details on the available options.
If you want to control the character encoding when using a BufferedWriter, create it using an OutputStreamWriter and FileOutputStream, as shown in this solution:
import java.io.*
import java.nio.charset.StandardCharsets
val bw = BufferedWriter(
OutputStreamWriter(
FileOutputStream("file.txt"),
StandardCharsets.UTF_8
)
)
bw.write("Hello, world\n")
bw.write("It’s Al")
bw.close()
Using macOS, you can confirm the file’s character encoding with the -I option of the file command:
$ file -I file.txt
file.txt: text/plain; charset=utf-8
See Also
See these Javadoc pages for more details:
16.3 Reading and Writing Binary Files
Problem
You want to read data from a binary file or write data to a binary file.
Solution
Scala doesn’t offer any special conveniences for reading or writing binary files, so use the Java FileInputStream and FileOutputStream classes and their buffered wrapper classes.
Reading binary files
Ignoring exceptions, this code demonstrates how to read a file using FileInputStream and BufferedInputStream:
import java.io.{FileInputStream, BufferedInputStream}
val bis = new BufferedInputStream(FileInputStream("/etc/passwd"))
Iterator.continually(bis.read())
.takeWhile(_ != -1)
.foreach(b => print(b.toChar)) // print the Char values
bis.close
This solution is intended for reading binary files, but I read a plain text file here to create an example you can easily experiment with.
A key to this solution is knowing that the Iterator object has a continually method that simplifies this process. Per its Scaladoc, continually “creates an infinite-length iterator returning the results of evaluating an expression. The expression is recomputed for every element.” If you prefer, you can also use the continually method of the LazyList object, which has the same effect.
Writing binary files
To write a binary file, use the FileOutputStream and BufferedOutputStream classes, as shown in this example:
import java.io.{FileOutputStream, BufferedOutputStream}
val bos = new BufferedOutputStream(FileOutputStream("file.dat"))
val bytes = "Hello, world".getBytes
bytes.foreach(b => bos.write(b))
bos.close
Discussion
There are many more ways to read and write binary files, but because all the solutions use Java classes, search the internet for different approaches, or check the Java Cookbook by Ian F. Darwin (O’Reilly).
A Caveat
Many solutions you’ll find on the internet don’t use buffering. If you’re going to read and write large files, always use buffering. For example, when I read an Apache access log file on my computer that’s 650,000 lines long with only a FileInputStream, it takes 181 seconds to read the file. By wrapping that FileInputStream with a BufferedInputStream—as shown in the Solution—that same file is read in just 1.6 seconds.
See Also
The Apache Commons FileUtils class has many methods for reading and writing files.
16.4 Pretending That a String Is a File
Problem
Typically for the purposes of making code testable, you want to pretend that a String is a file.
Solution
Because Scala.fromFile and Scala.fromString both extend scala.io.Source, they are easily interchangeable. As long as your method takes a Source reference, you can pass it the BufferedSource you get from calling Source.fromFile, or the Source you get from calling Source.fromString.
For example, the following function takes a Source object and prints the lines it contains:
import io.Source
def printLines(source: Source) =
for line <- source.getLines do
println(line)
It can be called when the source is constructed from a String:
val source = Source.fromString("foo\nbar\n")
printLines(source)
It can also be called when the source is a file:
val source = Source.fromFile("/Users/Al/.bash_profile")
printLines(source)
Discussion
When writing unit tests, you might have a method like this that you’d like to test:
object FileUtils:
def getLinesUppercased(source: io.Source): List[String] =
source.getLines.map(_.toUpperCase).toList
In unit tests you can test the getLinesUppercased method by passing it either a Source from a File or a String:
import scala.io.Source
var source: Source = null
// test with a File
source = Source.fromFile("foo.txt") // a file with "foo" as its first line
val lines = FileUtils.getLinesUppercased(source)
assert(lines(0) == "FOO")
// test with a String
source = Source.fromString("foo\n")
val lines = FileUtils.getLinesUppercased(source)
assert(lines(0) == "FOO")
In summary, if you’re interested in making your function easily testable with a String instead of a file, define it to take a Source instance.
16.5 Serializing and Deserializing Objects to Files
Problem
You want to serialize an instance of a Scala class and save it as a file, or send it across a network.
Solution
The general approach is the same as Java, but the syntax to make a Scala class serializable is different. To make a Scala class serializable, extend the Serializable type and add the @SerialVersionUID annotation to the class:
@SerialVersionUID(1L)
class Stock(var symbol: String, var price: BigDecimal) extends Serializable:
override def toString = s"symbol: $symbol, Price: $price"
Because Serializable is a type—technically a type alias for java.io.Serializable—you can mix it into a class even if the class already extends another class:
@SerialVersionUID(1L)
class Employee extends Person with Serializable ...
After marking the class serializable, use the same techniques to write and read the objects as you did in Java, including the Java deep clone technique that uses serialization, which I discuss in my blog post “A Java Deep Clone (Deep Copy) Example”.
Discussion
Ignoring possible exceptions, the following code demonstrates the complete deep clone approach. The comments in the code explain the process:
import java.io.*
// create a serializable Stock class
@SerialVersionUID(1L)
class Stock(var symbol: String, var price: BigDecimal) extends Serializable:
override def toString = f"$symbol%s is ${price.toDouble}%.2f"
@main def serializationDemo =
val filename = "nflx.obj"
// (1) create a Stock instance
val nflx = Stock("NFLX", BigDecimal(300.15))
// (2) write the object instance out to a file
val oos = ObjectOutputStream(FileOutputStream(filename))
oos.writeObject(nflx)
oos.close
// (3) read the object back in
val ois = ObjectInputStream(FileInputStream(filename))
val stock = ois.readObject.asInstanceOf[Stock]
ois.close
// (4) print the object that was read back in
println(stock)
This code prints the following output when run:
NFLX is 300.15
Serialization Is Going Away (At Some Point)
Note that the current form of serialization in Java may be going away at some point in the future. This is discussed in a 2018 article from ADTmag, “Removing Serialization from Java Is a Long-Term Goal at Oracle”.
16.6 Listing Files in a Directory
Problem
You want to create a list of files or directories in a directory, potentially limiting the list with a filtering algorithm.
Solution
Scala doesn’t offer any special methods for working with directories, so use the listFiles method of the Java File class. For instance, this function creates a list of all files in a directory:
// assumes that `dir` is a directory known to exist
def getListOfFiles(dir: File): Seq[String] =
dir.listFiles
.filter(_.isFile) // list only files
.map(_.getName)
.toList
This algorithm does the following:
Uses the listFiles method of the File class to list all the files in dir as an Array[File]
Uses filter to trim that list to contain only files
Uses map to call getName on each file to return an array of file names (instead of File instances)
Uses toList to convert that to a List[String]
This function returns an empty list—List()—if there are no files in the directory, and a List[File] if the directory has one or more files. The REPL demonstrates this:
scala> getListOfFiles(File("/tmp/empty"))
val res0: List[String] = List()
scala> getListOfFiles(File("/tmp"))
val res1: List[String] = List(/tmp/foo.log, /tmp/bar.txt)
Similarly, this approach creates a list of all directories under dir:
def getListOfSubDirectories(dir: File): Seq[String] =
dir.listFiles
.filter(_.isDirectory) // list only directories
.map(_.getName)
.toList
To list all files and directories, remove the filter(_.isFile) line from the code:
def getListOfSubDirectories(dir: File): Seq[String] =
dir.listFiles
.map(_.getName)
.toList
Discussion
If you want to limit the list of files that are returned based on their filename extension, in Java you’d implement a FileFilter with an accept method to filter the filenames that are returned.
In Scala, you can write the equivalent code without requiring a FileFilter. Assuming that the File you’re given represents a directory that’s known to exist, the following function shows how to filter a set of files based on the filename extensions that should be returned:
import java.io.File
def getListOfFiles(dir: File, extensions: Seq[String]): Seq[File] =
dir.listFiles
.filter(_.isFile)
.filter(file => extensions.exists(file.getName.endsWith(_)))
.toList
As an example, you can call this function as follows to list all .wav and .mp3 files in a given directory:
val okFileExtensions = Seq("wav", "mp3")
val files = getListOfFiles(File("/tmp"), okFileExtensions)
For many other file and directory tasks, a great solution is to use the FileUtils class of the Apache Commons IO library. It has dozens of methods for working with files and directories.
See Also
If you want to go deeper and traverse an entire directory tree, and process every file and directory in that tree, check out the details in my blog post “Scala: How to Search a Directory Tree with SimpleFileVisitor and Files.walkFileTree”. I wrote my Scala FileFind command-line utility using that approach.
16.7 Executing External Commands
Problem
You want to execute an external (system) command from within a Scala application. You’re not concerned about the output from the command, but you are interested in its exit code.
Solution
There are two possible approaches:
Use the ! method to execute the command, and block while waiting for it to return its exit status.
Use the run method to run an external command asynchronously, retrieving its exit status when it finishes running.
Using the ! method
To execute a command and wait (block) to get its exit status, import the necessary members, put the desired command in a string, and then run it with the ! method:
// necessary import
scala> import sys.process.*
// run a system command
scala> val exitStatus = "ls -al".!
total 32
drwxr-xr-x 3 al staff 96 Feb 17 20:34 .
drwxr-xr-x 22 al staff 704 Feb 17 20:34 ..
-rw-r--r-- 1 al staff 13112 Feb 17 20:34 simpletest_3.0.0-M3-0.2.0.jar
val exitStatus: Int = 0
scala> println(exitStatus)
0
On Unix systems, an exit status of 0 means that the command executed successfully, and a nonzero exit status means there was some sort of problem. For instance, you get an exit status of 1 if you try to use the ls command on a file that doesn’t exist:
scala> val exitStatus = "ls -l noSuchFile.txt".!
ls: noSuchFile.txt: No such file or directory
val exitStatus: Int = 1
The output shows that the exitStatus is 1 after that command is run.
As you saw in these examples, you can invoke the ! method after a decimal:
"ls -al".!
You can also invoke it after a blank space by including this import statement:
import scala.language.postfixOps
"ls -al" !
All of those commands assume that you have imported import sys.process.*.
Be aware that if your command fails, it can throw an exception:
scala> "foo".!
java.io.IOException: Cannot run program "foo": error=2, No such file
or directory at java.lang.ProcessBuilder.start
Therefore, be sure to wrap it with an error-handling type like Try:
scala> val result = Try(Seq(
| "/bin/sh",
| "-c",
| "ls -l foo.bar"
|).!!)
ls: foo.bar: No such file or directory
val result: scala.util.Try[String] =
Failure(java.lang.RuntimeException: Nonzero exit value: 1)
As will be shown in the Discussion, you can also run system commands using a Seq:
val exitStatus = Seq("ls", "-a", "-l", "/tmp").!
Run an external command asynchronously
You can run an external command asynchronously by using the run method:
// necessary imports
scala> import sys.process.*
scala> val process = "ls -al".run
val process: scala.sys.process.Process = scala.sys.process.ProcessImpl ...
total 32
drwxr-xr-x 3 al staff 96 Feb 17 20:34 .
drwxr-xr-x 22 al staff 704 Feb 17 20:34 ..
-rw-r--r-- 1 al staff 13112 Feb 17 20:34 simpletest_3.0.0-M3-0.2.0.jar
With this approach the external command immediately begins running, and you can call these methods on the resulting process object:
isAlive returns true if the process is still running, false otherwise
destroy lets you kill a running process
exitStatus lets you get the exit status of the command
A long-running example in the REPL shows how this works:
start the process
scala> val process = "sleep 20".run
val process: scala.sys.process.Process = scala.sys.process.ProcessImpl ...
10 seconds later, it’s still alive
scala> process.isAlive
val res1: Boolean = true
21 seconds later
scala> process.isAlive
val res2: Boolean = false
scala> process.exitValue
val res3: Int = 0
When using this approach, don’t call exitValue until isAlive is false. If you call exitValue while the process is still running, it will block until the process is finished.
Discussion
In addition to calling ! after a String, you can also invoke ! after a Seq. This is especially useful when you have a variable number of command arguments.
When using a Seq, the first element should be the name of the command you want to run, and subsequent elements are considered to be arguments to it, as shown in these examples:
import sys.process.*
val exitStatus = Seq("ls", "-al").!
val exitStatus = Seq("ls", "-a", "-l").!
val exitStatus = Seq("ls", "-a", "-l", "/tmp").!
I’ve omitted the output from those examples, but each command provides the same ls directory listing you’d get at the Unix command line.
Using a Process
If you don’t like using implicit conversions with a String or Seq, you can create a Process object to execute external commands:
import sys.process.*
val status = sys.process.Process("ls -al").!
val status = sys.process.Process(Seq("ls", "-al")).!
Beware whitespace
When running these commands, be aware of whitespace around your command and arguments. All the following examples fail because of extra whitespace:
" ls".! // java.io.IOException: Cannot run program ""
Seq(" ls ", "-al").! // java.io.IOException: Cannot run program " ls "
Seq("ls", " -al ").! // ls: -al : No such file or directory
If you type the strings yourself, leave the whitespace out, and if you get the strings from user input, be sure to trim them.
External commands versus built-in commands
As a final note, you can run any external command from Scala that you can run from the Unix command line. However, there’s a big difference between an external command and a shell built-in command. The ls command is an external command that’s available on all Unix systems and can be found as a file in the /bin directory:
$ which ls
/bin/ls
Some other commands that can be used at a Unix command line—such as the cd or for commands—are actually built into your shell, such as the Bash shell; you won’t find them as files on the filesystem. Therefore, these commands can’t be executed unless they’re executed from within a shell. See Recipe 16.10 for an example of how to execute a shell built-in command.
16.8 Executing External Commands and Reading Their STDOUT
Problem
You want to run an external command and then use the standard output (STDOUT) from that process in your Scala program.
Solution
Use either of these methods to access the STDOUT from your command:
Use the !! method to execute the command synchronously, and block while waiting to receive its output as a String.
Use the lazyLines method to execute the command asynchronously, and return its results as a LazyList[String].
If your command’s exit status is nonzero, lazyLines can throw an exception when you try to use its result, so use lazyLines_! (optionally with a ProcessLogger) if you want to avoid that.
Synchronous solution with !!
Just like the ! command in the previous recipe, you can use !! after a String to execute a command, and it returns the STDOUT from the command rather than the command’s exit code. The result is a multiline string, which you can process in your application.
Ignoring exception handling, this example shows how to use !! with a String:
import sys.process.*
val result: String = "ls -al".!!
println(result)
The output of that command is a multiline string, which begins like this:
total 64
drwxr-xr-x 10 Al staff 340 May 18 18:00 .
drwxr-xr-x 3 Al staff 102 Apr 4 17:58 ..
more output here ...
For more complicated situations where you want to add error handling, use the Try/Success/Failure classes:
import sys.process.*
import scala.util.{Try,Success,Failure}
val result: Try[String] = Try("ls -al fred".!!)
result match
case Success(out) => println(s"OUTPUT:\n$out")
case Failure(f) => println("Exception happened:\n$f")
Assuming that you don’t have a file named fred in the current directory, the output of that code will be:
ls: fred: No such file or directory
Exception happened:
val result: util.Try[String] =
Failure(java.lang.RuntimeException: Nonzero exit value: 1)
In addition to using !! with a String, you can use it with a Seq:
val result: String = Seq("ls", "-al").!!
Asynchronous solution with lazyLines
Use the lazyLines method to run a command asynchronously and access its STDOUT as a LazyList[String]. For example, this command may run for a long time on Unix systems and can result in thousands of lines of output:
val contents: LazyList[String] =
sys.process.Process("find /Users/al -print").lazyLines
As soon as you issue that line of code in the REPL, the Unix find command begins running. You won’t see any output in the REPL, but you can see that it’s running by opening another terminal window and running the Unix top command, or a ps command like this:
$ ps a | grep 'find /Users'
19837 s004 S+ 0:00.14 find /Users/al -print
As that output shows, your find command is indeed running, in this case as process ID (PID) 19837.
Back in the REPL you can read from the LazyList and process the command output as desired, such as with foreach:
scala> contents.foreach(println)
Asynchronous solution with lazyLines_!
If the exit status of your command is nonzero, lazyLines will throw an exception if you try to use the resulting LazyList. For instance, this command with lazyLines initially writes its “No such file” output to STDERR:
scala> val x = "ls no_such_file".lazyLines
ls: no_such_file: No such file or directory
val x: LazyList[String] = LazyList(<not computed>)
If you then try to access the contents of x, you’ll throw an exception:
scala> x.foreach(println)
java.lang.RuntimeException: Nonzero exit code: 1 at
scala.sys.process.BasicIO$LazilyListed$...
much more exception output here ...
By using lazyLines_! instead of lazyLines, you can eliminate the exception when you use x:
scala> val x = "ls no_such_file".lazyLines_!
val x: LazyList[String] = LazyList(<not computed>)
ls: no_such_file: No such file or directory
scala> x.foreach(println)
(no output here)
If desired, you can also suppress the STDERR output with this technique:
scala> val x = "ls no_such_file" lazyLines_! ProcessLogger(line => ())
val x: LazyList[String] = LazyList(<not computed>)
(there is no STDERR output here)
Seq and Process
If you don’t like working with implicit methods on a String or Seq, you can work with a Process:
import sys.process.*
val result: String = sys.process.Process("ls -al").!!
val result: String = sys.process.Process(Seq("ls","-al")).!!
val result: LazyList[String] =
sys.process.Process("find /Users/al -print").lazyLines
16.9 Handling Both STDOUT and STDERR of Commands
Problem
You want to run an external command and get access to both its standard output (STDOUT) and standard error (STDERR).
Solution
The simplest way to do this is to run your commands as shown in previous recipes and then capture the output with a ProcessLogger. This code demonstrates the approach:
import sys.process.*
val stdout = StringBuilder()
val stderr = StringBuilder()
val status = "ls -al . cookie" ! ProcessLogger(stdout append _, stderr append _)
println(s"status: '$status'")
println(s"stdout: '$stdout'")
println(s"stderr: '$stderr'")
Because I have a few files in the current directory, but none of them are named cookie, I see output like this when I run that script:
status: '1'
stdout: '(a lot of output from the 'ls .' command here)'
stderr: 'ls: cookies: No such file or directory'
Because I use the ! method, when this script is run the status variable contains the exit status of the command, which is 1 because the file cookie doesn’t exist. The stdout variable contains the STDOUT of the command, and in this example it contains output thanks to the ls . portion of the command. The stderr variable contains the STDERR from the command if there are problems. If, as in the case of this command, the command you run writes to both STDOUT and STDERR, both stdout and stderr will contain data.
Make Sure You Understand the Exit Status Codes
Note that when the find command runs but doesn’t find a file, it can still return an exit status of 0. This status just means that the find command ran as desired and there were no exceptions. Always check the exit status of your system commands at the command line to be sure about how their status codes work:
[1] no files found, but no errors
$ find . -name NonExistentFile.txt
$ echo $?
0
[2] a non-zero exit status because the directory doesn’t exist
$ find NonExistentDirectory
find: NonExistentDirectory: No such file or directory
$ echo $?
1
Discussion
Here’s another example that uses a Seq and writes to STDOUT and STDERR:
val status = Seq(
"find",
"/usr",
"-name",
"make"
) ! ProcessLogger(stdout append _, stderr append _)
When you look at either of these examples, it can be surprising that this code works:
String ! ProcessLogger(stdout append _, stderr append _)
Seq ! ProcessLogger(stdout append _, stderr append _)
The reason this works is that the scala.sys.process authors have created a little DSL for you. In the first example shown, this code:
"ls -al . cookie" ! ProcessLogger(stdout append _, stderr append _)
is turned into this code by the compiler:
"ls -al . cookie".!(ProcessLogger(stdout append _, stderr append _))
The way this works is:
The ! method is added to a String as an implicit conversion.
The ! method has an overloaded constructor whose signature is !(log: ProcessLogger): Int.
While this can be a little hard to grok when symbols are used, if the ! method had been named exec instead, that code would look like this:
// if '!' was named 'exec' instead
"ls -al . cookie".exec(ProcessLogger(stdout append _, stderr append _))
I find that spelling out the method calls is another way to make this code more readable, and therefore more maintainable:
val exitStatus = "ls -al . cookie".!(
ProcessLogger(
arg1 => stdout.append(arg1),
arg2 => stdout.append(arg2)
)
)
Also note that depending on your needs, writing to STDOUT and STDERR can get more complicated very quickly. The Scaladoc states, “If one desires full control over input and output, then a ProcessIO can be used with run.” See the scala.sys.process API documentation for the ProcessLogger and ProcessIO classes for more examples.
See Also
See the ProcessBuilder Scaladoc for more details on methods like !, !!, and run.
16.10 Building a Pipeline of External Commands
Problem
You want to execute a series of external commands, redirecting the output from one command to the input of another command, i.e., you want to pipe the commands together.
Solution
Use the #| method to pipe the output from one command into the input stream of another command. When doing this, use the run, !, !!, lazyLines, or lazyLines_! methods at the end of the pipeline to run the complete series of external commands.
The !! approach is shown in the following example, where the output from the ps command is piped as the input to the wc command:
import sys.process.*
val numRootProcs = ("ps aux" #| "grep root" #| "wc -l").!!.trim
println(s"# root procs: $numRootProcs")
Because the output from the ps command is piped into grep and then into a line-count command (wc -l), that code prints the number of processes running on a Unix system that have the string root in their ps output. Similarly, the following commands create a list of all processes running that contain the string root:
val rootProcs: String = ("ps auxw" #| "grep root").!!.trim
val rootProcs: LazyList[String] = ("ps auxw" #| "grep root").lazyLines
Discussion
If you come from a Unix background, the #| method makes sense because it’s just like the Unix pipe symbol (|), but preceded by a # character. In fact, with the exception of the ### operator (which is used instead of the Unix ; symbol), the Scala process library is generally consistent with the equivalent Unix commands.
Piping in a string won’t work without a shell
Note that attempting to pipe commands together inside a String and then executing them with ! or !! won’t work:
// won’t work
scala> val result = ("ls -al | grep Foo").!!
ls: Foo: No such file or directory
ls: grep: No such file or directory
ls: |: No such file or directory
java.lang.RuntimeException: Nonzero exit value: 1
at scala.sys.process.ProcessBuilderImpl ...
more exception output here ...
This doesn’t work because the piping capability comes from a shell (Bourne shell, Bash, etc.), and when you run a command like this, you don’t have a shell.
To execute a series of commands in a shell, such as the Bourne shell, use a Seq with multiple parameters, like this:
// this works as desired, piping the 'ps' output into 'grep'
val result = Seq(
"/bin/sh",
"-c",
"ps aux | grep root"
).!!
As described in that recipe, this approach runs the ps aux | grep root command inside a Bourne shell instance.
Chapter 17. Building Projects with sbt
Although you can use tools like Ant, Maven, and Gradle to build your Scala projects, sbt—originally named Simple Build Tool—is the de facto build tool for Scala applications. sbt makes the basic build and dependency management tasks simple and lets you use the Scala language itself to conquer more difficult tasks.
sbt uses the same directory structure as Maven, and like Maven, it uses a “convention over configuration” approach that makes the build process incredibly easy for basic projects. Because it provides a well-known, standard build process, if you work on one Scala project that’s built with sbt, it’s easy to move to another project that also uses sbt. The project’s directory structure will be the same, and you’ll know that you should look at the build.sbt file and the optional project/*.sbt files to see how the build process is configured.
Starting with version 1.3.0, sbt began using Coursier for library management, a task the Coursier website refers to as artifact fetching. Prior to 1.3.0, sbt used Apache Ivy for this task, but Coursier aims to be a faster alternative. When you specify managed dependencies in your build.sbt file, Coursier is the tool that retrieves the JAR files for you.
In addition to handling managed dependencies, you can also place unmanaged dependencies—plain old JAR files—in your project’s lib folder, and sbt will automatically find them.
As a result of all these features, with very little effort on your part, sbt lets you build projects that contain both Scala and Java code, unit tests, and both managed and unmanaged dependencies.
sbt’s features
As a brief summary, sbt’s main features are:
It uses Maven’s standard directory structure, so it’s easy to build standard Scala projects, and easy to move between different sbt projects.
Small projects require very little configuration.
Build definition files use a Scala DSL, so you use Scala code to build Scala projects.
sbt supports compiling Scala and Java source code files in the same project.
It supports both managed and unmanaged dependencies.
You can use multiple testing frameworks, including ScalaTest, ScalaCheck, and MUnit, and JUnit is supported with a plugin.
Source code can be compiled in interactive or batch modes.
Support for continuous compilation and testing.
Support for incremental compilation and testing (only changed source code files are recompiled).
Support for multiple subprojects.
The ability to package and publish JAR files.
Generating and packaging project documentation.
Simple integration with IntelliJ IDEA and VS Code.
You can start a Scala REPL from within sbt, and all project classes and dependencies are automatically available on the classpath.
Parallel task and test execution.
Understanding the sbt Philosophy
To use sbt it helps to understand its key concepts. The first thing to know is that sbt is a build tool—it’s used to build Scala projects. You can use other tools like Ant, Maven, Gradle, and Mill to build Scala projects, but sbt was the first Scala build tool, and it remains widely used.
Directory Structure
A second thing to know is that sbt uses the same directory structure that Maven uses, so a simple project with one unmanaged dependency (a JAR file), one source code file, and one test file has this directory structure:
.
|-- build.sbt
|-- lib
|-- my-library.jar
|-- project
| `-- build.properties
`-- src
|-- main
| `-- scala
| `-- example
| `-- Hello.scala
`-- test
`-- scala
`-- example
`-- HelloTest.scala
As shown, Scala source code files go under src/main/scala, and test files go under src/test/scala. If you want to include Java source code files in your project, they go under src/main/java and src/test/java. As mentioned, JAR files in the lib directory will automatically be used as a dependency when you compile, test, and build your project.
Configuration Files Aren’t Necessary, But…
Strictly speaking, for an extremely simple project, the build.properties and even the build.sbt file aren’t necessary, but as a practical matter you’ll find them on every serious project.
build.sbt
The next thing to know is that most—if not all—of your project’s configuration information goes in a file named build.sbt that belongs in the root directory of your project. Things to know about build.sbt include:
It consists of settings, in a form of key/value pairs (name := MyProject), and Scala code written with sbt’s custom DSL.
Most projects start with at least three settings: the project name, the project version, and the Scala version that’s used to compile the project. These are specified with keys named name, version, and scalaVersion.
Small projects may consist of just a few settings, while large projects may consist of dozens of lines of settings and Scala code.
Managed dependencies are also specified in this file using the libraryDependencies key.
As a preview of that last point, the libraryDependencies setting looks like this:
libraryDependencies ++= Seq(
"org.typelevel" %% "cats-core" % "2.6.0",
"org.typelevel" %% "cats-effect" % "3.1.0"
)
Notice how this is just normal Scala code.
Other Notes
A few other things to know about sbt are:
You can include multiple projects inside one sbt project. I demonstrate this in my blog post “How to Create an sbt Project with Subprojects”.
You can add your own import statements to the build.sbt file to use your own classes in the build. These packages are imported by default:
sbt.*
sbt.Keys.*
Process.*
As a final note, all the recipes in this chapter were tested with sbt version 1.5.1.
17.1 Creating a Project Directory Structure for sbt
Problem
You want to create the initial files and directories that are needed for a new Scala/sbt project.
Solution
Use either a shell script or the sbt new command to create new projects. Both approaches are shown here.
Option 1: Use a shell script
sbt uses the same directory structure as Maven, so if you’re on a Unix system you can generate a compatible structure using a shell script. For example, the following shell script creates the initial set of files and directories you’ll want for most projects:
#!/bin/sh
mkdir -p src/{main,test}/{java,resources,scala}
mkdir project
create an initial build.sbt file
echo 'name := "MyProject"
version := "0.1"
scalaVersion := "3.0.0"
// libraryDependencies ++= Seq(
// "org.scalatest" %% "scalatest" % "3.2.3" % "test"
//)
' > build.sbt
create a project/build.properties file with the desired sbt version
echo 'sbt.version=1.5.1' > project/build.properties
Just save that code as a shell script on Unix systems, make it executable, and run it inside a new project directory to create all the subdirectories and files sbt needs. For example, assuming this script is on your path and is named mkdirs4sbt, the process looks like this:
/Users/Al/Projects> mkdir MyNewProject
/Users/Al/Projects> cd MyNewProject
/Users/Al/Projects/MyNewProject> mkdirs4sbt
If you have the tree command installed on your system and run it from the current directory, you’ll see that those commands create these files and directories:
$ tree .
.
├── build.sbt
├── project
│ └── build.properties
└── src
├── main
│ ├── java
│ ├── resources
│ └── scala
└── test
├── java
├── resources
└── scala
As implied by the shell script, the build.sbt file has these contents:
name := "MyProject"
version := "0.1"
scalaVersion := "3.0.0"
// libraryDependencies ++= Seq(
// "org.scalatest" %% "scalatest" % "3.2.3" % "test"
//)
The first three lines set key/value pairs that you’ll want in every sbt project:
name declares the name of your project.
version sets the project’s version level.
scalaVersion sets the version of Scala used for compilation.
After that the libraryDependencies line declares any dependencies your project has. Because I use ScalaTest on most projects, I include it here.
I also declare libraryDependencies as a Seq because I usually have more than one dependency in my projects. If you’re only adding one dependency you can declare that line like this instead:
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.3" % "test"
Notice that in the first case I use ++= and in the second example I use +=. In both cases this is because I’m adding this dependency to any other dependencies that may be previously defined. Contrast this with the first three parameters, which are set with :=. In those lines I’m setting a single value, but libraryDependencies lets you add multiple dependencies.
With this shell script, the project/build.properties file is created with these contents:
sbt.version=1.5.1
This tells the sbt launcher that I want to use version 1.5.1 of sbt on this project.
This is just a simple starter script, and I show it first to demonstrate how easy it is to create an sbt project. For a more complete shell script, sbtmkdirs, see my blog post “sbtmkdirs: A Shell Script to Create a Scala SBT Project Directory Structure”.
Controlling scalac
In my projects I typically add a series of options to control how the scalac compiler works with sbt. These are a few of the options I use with Scala 3:
scalacOptions ++= Seq(
"-deprecation",
"-explain",
"-explain-types",
"-new-syntax",
"-unchecked",
"-Xfatal-warnings",
"-Xmigration"
)
You can add those options to the end of the build.sbt file, or inside the settings method you’ll see in the sbt new section that follows.
Option 2: Use sbt new
While that script shows how simple it is to stub out an initial sbt project, you can also use the sbt new command to create new projects from prebuilt templates. These templates are open source and created by other sbt users, and they’re used to create skeleton sbt projects that are preconfigured to use one or more Scala tools, such as ScalaTest, Akka, and others. I’ve found that the templates also use different coding styles, which can be helpful when you want to see different sbt configuration features.
To demonstrate how it works, this sbt new command is the approximate equivalent of the shell script that I just showed:
$ sbt new scala/scala3.g8
This is what the process looks like from your operating system command line:
$ sbt new scala/scala3.g8
// some initial output here ...
A template to demonstrate a minimal Scala 3 application
name [Scala 3 Project Template]: My New Project
Template applied in ./my-new-project
The my-new-project directory now contains a build.sbt file and other directories and files so you can use it for a new Scala/sbt project.
Discussion
The sbt new approach differs significantly from using a shell script, so it warrants some further discussion. First, a few notes about how sbt new works:
There are several templates available, but the sbt new scala/scala3.g8 command finds and runs a template named scala3.g8 using a tool named Giter8.
In this example, the scala3.g8 template can be found at this GitHub page.
Per the Giter8 website, “Giter8 is a command line tool to generate files and directories from templates published on GitHub or any other Git repository.”
Because this command pulls a template from GitHub, it may take a few moments to run.
The command converts the project name “My New Project” into a directory named my-new-project.
Because of the template approach, the directory structure and files this command creates may change over time, but the structure created from the scala3.g8 template at the time of this writing looks like this:
$ tree .
.
├── README.md
├── build.sbt
├── project
│ └── build.properties
└── src
├── main
│ └── scala
│ └── Main.scala
└── test
└── scala
└── Test1.scala
Files created by the template
The template’s build.sbt file looks like this:
val scala3Version = "3.0.0"
lazy val root = project
.in(file("."))
.settings(
name := "scala3-simple",
version := "0.1.0",
scalaVersion := scala3Version,
libraryDependencies += "com.novocode" % "junit-interface" % "0.11" % "test"
)
As usual, the project/build.properties file contains the latest sbt version:
sbt.version=1.5.1
The build.sbt syntax is different than what I use in my shell script. While I find the style in my shell script is easier to read when you’re first learning sbt, this second style is preferred as your project gets larger, in part because it looks more like Scala code, so it’s more like controlling your Scala project configuration with Scala code.
As your needs grow you’ll see additional build.sbt variables. For instance, if you’re publishing a library to a public repository and want to control what goes in the pom.xml file, you’ll want to specify organization-related parameters:
organization := "com.alvinalexander"
organizationName := "Alvin Alexander"
organizationHomepage := Some(url("https://alvinalexander.com"))
Other parameters you might want to configure for this use case are shown on the sbt project metadata page, including:
homepage := Some(url("https://www.scala-sbt.org"))
startYear := Some(2008)
description := "A build tool for Scala."
licenses += "GPLv2" -> url("https://www.gnu.org/licenses/gpl-2.0.html")
In summary, the main benefits of using the sbt new command are:
Templates have been created to help you get started with ScalaTest, Akka, the Play Framework, Lagom, Scala Native, and more.
The templates currently generate build.sbt files that are all a little different, so you can see different configuration approaches, i.e., what other users prefer.
You can find a list of templates that work with sbt new at the sbt website.
Files and Directories in .gitignore
Assuming that you’re keeping your code in a Git repository, you’ll also want to create a .gitignore file to tell Git which sbt files and directories it should ignore. These are two initial directories that you’ll want to tell Git to ignore:
target/
project/target/
My sbtmkdirs script adds many other entries to account for tools like IntelliJ IDEA, VS Code, Bloop, and Metals.
17.2 Building Projects with the sbt Command
Problem
You need to see how to compile, test, and run your projects with sbt commands.
Solution
Use the sbt command to build, compile, test, and package your projects. For instance, this command compiles your project:
$ sbt compile
If you have a testing framework like ScalaTest configured in your project, this command runs your project tests:
$ sbt test
And this command runs the main method in your project:
$ sbt run
Creating a JAR file from an sbt project is covered in detail in Recipes 17.4 and 17.11, but as a quick introduction, you use the package command to package a simple project into a JAR file:
$ sbt package
Multiple @main Methods
If your project has multiple @main methods, see Recipe 17.10 for information about how to work with them when using the run and package commands.
Discussion
An important point to understand is that the sbt command on your system is just a launcher. It starts the overall sbt process, but because sbt is capable of using different versions of Scala and sbt, the sbt command just starts the process. When it starts, it downloads any resources it needs, including the versions of Scala and sbt you want to use in your project. (In fact, when you run sbt you’re actually running a Bash script on Unix systems and a batch file on Windows.)
Because of this, it’s recommended that you put a setting like this in your project’s project/build.properties file:
sbt.version=1.5.1
This tells the sbt launcher that you want to use sbt version 1.5.1 when running commands on this project. This is done to make sure that in a team environment, everyone is using the same version of sbt for the build process. If you don’t set that value, sbt will set it to its latest version the first time it runs.
Batch and interactive modes
One other note about the sbt command is that it can be run in batch mode or interactively. The commands I showed previously are batch mode commands:
$ sbt compile
$ sbt test
$ sbt run
$ sbt package
They’re run from your operating system command line. They start the sbt launcher and then run whatever command(s) you specify. Because they’re run from your operating system command line, it takes sbt a little while to start up, so this is not the preferred way to run sbt, unless you’re running it from a script, such as in a Unix cron process. (The cron system in Unix is a way of scheduling jobs to be run at certain dates and times.)
The preferred way is to run sbt in interactive mode. In this mode you start sbt once from the operating system command line:
$ sbt
Then you run commands from inside the sbt shell:
> compile
> test
> run
> package
These commands run significantly faster because sbt is already running, warmed up, and ready to go. You can also continuously run the compile and test commands, as shown in Recipe 17.6. In this use, these commands are run every time you change a file in your project.
sbt Only Requires Java
You don’t need to have Scala installed to run sbt. It only requires that you have the Java JDK installed.
17.3 Understanding build.sbt Syntax Styles
Problem
You need to write a build.sbt file in a more complicated style in order to take advantage of more powerful sbt features.
Solution
In Recipe 17.1 I showed that you can use this syntax for a simple project:
name := "MyProject"
version := "0.1"
scalaVersion := "3.0.0"
It’s also important to know that because of the power and flexibility of sbt, you can also write that configuration in more of a Scala style, like this:
// define the “subproject” located in the current directory
lazy val root = (project in file("."))
.settings(
name := "MyProject",
version := "0.1",
scalaVersion := "3.0.0"
)
or this bare style:
ThisBuild / scalaVersion := "3.0.0"
ThisBuild / version := "0.1"
ThisBuild / name := "MyProject"
These Styles Are Preferred
At the time of this writing in mid-2021, these styles are now preferred. It’s also important to know about them because you’ll see them if you use the sbt new templates, and you’ll want to be comfortable with them when your builds get more complicated.
You can also combine these styles. Here’s a combination of the last two examples with added dependencies:
ThisBuild / scalaVersion := "3.0.0"
ThisBuild / version := "0.1"
val catsCore = "org.typelevel" %% "cats-core" % "2.6.0",
val catsEffect = "org.typelevel" %% "cats-effect" % "3.1.0"
lazy val root = (project in file("."))
.settings(
name := "MyProject",
libraryDependencies ++= Seq(
catsCore,
catsEffect
)
)
When your projects get more complicated to build, it’s nice to know that you can build them with a combination of the sbt DSL and plain Scala code.
Discussion
An important thing to know is that in these examples, this syntax:
(project in file("."))
creates an instance of an sbt Project. Therefore, the .settings code that follows it is a method that you’re calling on a Project object.
Another important thing to know is that this project in file line of code refers to an sbt project that can be found in the current directory, where the . syntax refers to the current directory. See my “How to Create an sbt Project with Subprojects” blog post for more details on this syntax.
17.4 Compiling, Running, and Packaging a Scala Project
Problem
You want to use sbt to compile and run a Scala project, and package the project as a JAR file.
Solution
Create an sbt directory structure, add your code, then run sbt compile to compile your project, sbt run to run your project, and sbt package to package your project as a JAR file. Use these commands in either batch mode or interactive mode.
To demonstrate this, create a new sbt project as shown in Recipe 17.1, and then create a file named Hello.scala in the src/main/scala directory with these contents:
package foo.bar.baz
@main def main = println("Hello, world")
As shown, in Scala the file’s package name doesn’t have to match the name of the directory it’s in. In fact, for simple tests like this, you can place this file in the root directory of your sbt project, if you prefer.
From the root directory of the project, this is how you compile the project:
$ sbt compile
run the project:
$ sbt run
and package the project:
$ sbt package
Those commands show sbt’s batch mode. When you’re working on a project, it’s generally faster to run the same commands from inside the sbt shell in interactive mode:
$ sbt
sbt> compile
sbt> run
sbt> package
Note that the package command doesn’t show the name of the output JAR file it creates. To see that name, run show package instead:
sbt> show package
// the output file name and location is shown here
Discussion
The first time you run sbt it may take a while to download everything it needs, but after that first run it only downloads new dependencies as needed.
When you create a JAR file with the package command, it creates a normal JAR file, whose contents you can show with the jar tvf command:
$ jar tvf ./target/scala-3.0.0/my-project_3.0.0-0.1.0.jar
288 Thu Jan 01 00:00:00 MST 1970 META-INF/MANIFEST.MF
969 Thu Jan 01 00:00:00 MST 1970 Main$.class
350 Thu Jan 01 00:00:00 MST 1970 Main.class
649 Thu Jan 01 00:00:00 MST 1970 Main.tasty
Interactive mode
Running sbt in interactive mode is preferred because it’s much faster; the JVM is already loaded into memory, so there’s no initial startup lag time. Here’s the output from running the clean, compile, and run commands from within the sbt interpreter:
$ sbt
sbt> clean
[success] Total time: 0 s
sbt> compile
[info] compiling 1 Scala source ...
[success] Total time: 2 s
sbt> run
[info] Running foo.bar.baz.main
Hello, world
[success] Total time: 1 s
You can also run one command after the other in sbt. This is how you run the clean command before the compile command:
sbt> clean; compile
Passing arguments to sbt at the command line
While I almost always run sbt in interactive mode, when you run sbt from your operating system command line and need to pass arguments to your application, you’ll need to put sbt’s run command in quotes along with the arguments. For example, given this little application that prints its command-line arguments:
@main def hello(args: String*) =
print(s"Hello, ")
for a <- args do print(s"$a ")
to pass command-line arguments to this application when running it with sbt, enclose the run command and the arguments in quotes, like this:
$ sbt "run Charles Carmichael"
// omitted sbt output here ...
Hello, Charles Carmichael
Whether you’re running an application in sbt with this technique or starting sbt to run it in interactive mode, you can pass JVM options to sbt. For instance, this example shows how to use sbt’s -J and -D options to pass arguments to the JVM while running the same application:
$ sbt -v -J-Xmx2048m -Duser.timezone=America/Denver "run Charles Carmichael"
[process_args] java_version = 11
Executing command line:
java
-Dfile.encoding=UTF-8
-Xmx2048m
-Duser.timezone=America/Denver
-jar
/Users/al/bin/sbt/bin/sbt-launch.jar
"run Charles Carmichael"
// omitted sbt output here ...
Hello, Charles Carmichael
The -v option stands for verbose, so in addition to seeing the output from my application at the very end, the earlier verbose output demonstrates that the -J and -D arguments are successfully passed into sbt.
Running in a Different JVM
Per the sbt page on forking, “the run task runs in the same JVM as sbt.” I’ve found that at times—such as when creating a JavaFX or other multithreaded application—this can be a problem. To fork a new JVM when running your application from the sbt prompt, add a line like this to your build.sbt file:
fork := true
There are several other options that let you control the forking process. See that documentation page for more details.
17.5 Understanding Other sbt Commands
Problem
You need to know what other common sbt commands are available, including how to list all the commands and tasks that are available.
Solution
There are many sbt commands available to you in addition to the clean, compile, run, and package commands. You can list the available commands in at least three ways:
help prints a list of high-level commands.
tasks shows a list of tasks that are defined for the current project (including clean, compile, and run).
You can also press the Tab key twice at the sbt prompt and it will show all the commands that can be run—over three hundred commands with sbt 1.5.1.
You can get additional help on each command by typing help <command> or inspect <command>. For example:
help package provides help on the package command.
inspect package provides in-depth details on how the package command runs.
Table 17-1 contains descriptions of the most common sbt commands.
Command	Description
clean | Removes files produced by the build, including compiled classes, task caches, and generated sources. |
compile | Compiles source code files in src/main/scala, src/main/java, and the root directory of the project. |
~ compile | Automatically recompiles source code files while you’re running sbt in interactive mode. |
console | Compiles the source code files in the project, puts them on the classpath, and starts the Scala interpreter (REPL). |
consoleQuick | Starts the Scala REPL with the project dependencies on the classpath, but without compiling project source code files. |
doc | Generates API documentation from your Scala source code. |
help [arg] | Issued by itself, it lists the common commands that are currently available. When given an argument, it provides a description of that task or key. |
inspect [arg] | Displays details about how a given setting or task works (such as inspect package). |
package | Creates a JAR file containing the files in src/main/scala, src/main/java, and resources in src/main/resources. |
packageDoc | Creates a JAR file containing API documentation generated from your Scala source code. |
publish | Publishes your project to a remote repository. See Recipe 17.12. |
publishLocal | Publishes project artifacts to a local Ivy repository. |
reload | Reloads the build definition files. Needed in interactive mode if you change any of these files. |
run | Compiles your code, and runs the main class from your project. If your project has multiple main methods, you’ll be prompted to select one to run. |
settings [arg] | Displays the settings defined for the current project. -v displays more settings, --v displays even more, and -V displays all settings. |
show [setting] | Displays the value of a setting, such as show sbtVersion. |
show [task] | Evaluates the task and displays the value returned by it. |
test | Compiles and runs all tests. |
testQuick [test*] | Runs the tests that have not been run yet, failed the last time they were run, or had any transitive dependencies recompiled since the last successful run |
~ test | Automatically recompiles and reruns tests when project source code files change. |
test:console | Compiles the source code files in the project, puts them on the classpath, and starts the Scala REPL in test mode (so you can use ScalaTest, MUnit, ScalaCheck, etc.). |
In addition to the built-in commands, when you use plugins they can also make their own tasks available. For instance, the Scala.js plugin adds a fastLinkJS command to sbt.
Discussion
As just one example of these commands, the console command starts a Scala REPL session from your sbt command prompt:
sbt:MyProject> console
[info] Compiling 10 Scala sources to target/scala-3.0.0/classes ...
[info] Done compiling.
[info] Starting scala interpreter...
scala> _
At this point you can use this just like a normal Scala REPL, with the added benefit that all of your project’s classes are available to you.
See Also
The sbt command-line reference provides more examples and discussion of the available commands.
17.6 Continuous Compiling and Testing
Problem
You want to have sbt continuously compile and test your application’s source code while you’re making changes to it.
Solution
You can continuously compile and test your code by running these commands from sbt’s interactive mode, i.e., inside the sbt shell:
~compile
~test
~testQuick
When you run any of these commands, sbt watches your source code files and automatically recompiles them whenever it sees a file change. The ~compile command simply recompiles your code when a file change is detected, while the test commands additionally run your tests, as described in Table 17-2.
To demonstrate this, start the sbt shell from the root directory of an sbt project:
$ sbt
Then issue the ~compile command:
sbt:Packaging> ~ compile
[success] Total time: 0 s
[info] 1. Monitoring source files for root/compile ...
[info] Press <enter> to interrupt or ? for more options.
Now, any time you change and save a source code file, sbt automatically recompiles it. You’ll see new lines of output like these when sbt recompiles the code:
[info] Build triggered by src/main/scala/Foo.scala. Running 'compile'.
[info] compiling 1 Scala source to target/scala-3.0.0/classes ...
[success] Total time: 0 s
[info] 2. Monitoring source files for root/compile ...
[info] Press <enter> to interrupt or '?' for more options
Similarly, you can use these sbt commands to automatically run your project’s tests whenever a change is made:
~ test
~ testQuick
Notice that with all of these commands, spacing after the ~ character is optional.
Table 17-2 provides descriptions of these commands.
Command | Description |
---|---|
~ compile | Automatically recompiles source code files while you’re running sbt in interactive mode |
~ test | Automatically recompiles and reruns tests when project source code files change |
~ testQuick | Automatically recompiles and reruns the tests that have not been run yet, failed the last time they were run, or had any transitive dependencies recompiled since the last successful run |
Using these commands is a little like using a continuous integration server on your local system, albeit with your own code.
17.7 Managing Dependencies with sbt
Problem
You want to use one or more external libraries (dependencies) in your Scala/sbt projects.
Solution
You can use both managed and unmanaged dependencies in your sbt projects, as described in the following sections.
Unmanaged dependencies
If you have JAR files—unmanaged dependencies, or, more accurately, manage-it-yourself dependencies—that you want to use in your project, just put them in the lib folder under the root directory of your sbt project, and sbt will find them automatically. (You’ll need to run reload if you’re already in an sbt session.) If those JARs depend on other JAR files, you’ll have to manually download those other JAR files and copy them to the lib directory as well.
Managed dependencies
If you have a single managed dependency that you want to use in your project, such ase the Cats core library, add a libraryDependencies line like this to your build.sbt file:
libraryDependencies += "org.typelevel" %% "cats-core" % "2.6.0"
A simple but complete build.sbt file with one dependency looks like this:
name := "MyCatsProject"
version := "0.1"
scalaVersion := "3.0.0"
libraryDependencies += "org.typelevel" %% "cats-core" % "2.6.0"
To add multiple managed dependencies to your project, add them using a Seq in your build.sbt file:
libraryDependencies ++= Seq(
"org.typelevel" %% "cats-core" % "2.6.0",
"org.typelevel" %% "cats-effect" % "3.1.0"
)
Using Scala 2.13 dependencies in Scala 3 builds
When you want to use a Scala 2.13 dependency in a Scala 3 build.sbt file, use this cross(CrossVersion.for3Use2_13) syntax:
libraryDependencies ++= Seq(
("org.scala-js" %%% "scalajs-dom" % "1.1.0").cross(CrossVersion.for3Use2_13),
("org.querki" %%% "jquery-facade" % "2.0").cross(CrossVersion.for3Use2_13)
)
This technique is demonstrated in Recipe 21.2, “Responding to Events with Scala.js”, and Recipe 21.3, “Building Single-Page Applications with Scala.js”, where I include Scala 2.13 dependencies into a Scala 3 sbt build file.
You can use Scala 2.13 dependencies in a Scala 3 build, unless those dependencies use Scala 2 macros. See the Scala 3 Migration Guide for the latest integration details.
Discussion
A managed dependency is a dependency that’s managed by your build tool, in this case sbt. In this situation, if library a.jar depends on b.jar, and that library depends on c.jar, and those JAR files are kept in a Maven repository along with this relationship information, then all you have to do is add a line to your build.sbt file like this:
libraryDependencies += "org.typelevel" %% "cats-core" % "2.6.0"
Through the magic of sbt, Coursier, and other tools in the ecosystem, the other JAR files will be downloaded and included in your project automatically.
When using a standalone JAR file as an unmanaged dependency, you have to manage this yourself. Given the same situation as the previous paragraph, if you want to use the library a.jar in your project, you must manually download a.jar, and then you have to know about the dependency on b.jar and the transitive dependency on c.jar, then download all those files yourself and place them in your project’s lib directory.
Most Projects Use Managed Dependencies
Manually managing JAR files in the lib directory can work for very small projects, but quickly becomes much harder when transitive dependencies creep in.
As mentioned in Chapter 17, under the hood, sbt uses Coursier for library management. As a result, sbt lets you easily use the wealth of Java libraries that have been created over the years in your Scala projects.
The libraryDependencies syntax
There are two general forms for adding a managed dependency to a build.sbt file. In the first form, you specify the groupID, artifactID, and revision:
libraryDependencies += groupID % artifactID % revision
In the second form, you add an optional configuration parameter:
libraryDependencies += groupID % artifactID % revision % configuration
The groupID, artifactID, and revision strings correspond to what tools like Coursier and Apache Ivy require to retrieve the library you want:
groupID is typically a Java/Scala-style package name, such as "org.typelevel".
artifactID states what specific product you want, such as "cats-core".
revision declares the version/revision of the artifact (module) you want, such as "2.6.0".
Typically, the module developer states this information in their documentation. For instance, at the time of this writing, the MUnit GitHub page has a maven-central link on it, and when you click that you’re taken to an index.scala-lang.org page. The Version Matrix on that page shows that when using Scala 3.0.0, the latest MUnit version is 0.7.25, and it provides this libraryDependencies string for you:
libraryDependencies += "org.scalameta" %% "munit" % "0.7.25"
To show the relationship between this string and the Maven information for this artifact, you can also use that same web page and click on the Maven tab, where you’ll see this information:
<dependency>
<groupId>org.scalameta</groupId>
<artifactId>munit_3.0.0</artifactId>
<version>0.7.25</version>
</dependency>
That shows the correspondence between the sbt configuration strings and the parameter names in a Maven XML file.
Methods used to build libraryDependencies
The symbols +=, %, and %% used in build.sbt are part of sbt’s DSL. They’re described in Table 17-3.
Method | Description |
---|---|
+= | Appends to the key’s value. The build.sbt file works with settings defined as key/value pairs. In the examples shown, libraryDependencies is a key, and it’s shown with several different values. |
% | A method used to construct an Apache Ivy “Module ID” from the strings you supply. |
%% | When used after the groupID, it automatically adds your project’s Scala version to the end of the artifact name. |
%%% | Use this instead of %% when using artifacts for Scala.js and Scala Native. |
You can specify %, %%, or %%% after the groupID. This Scala 2.13 example shows the % method:
libraryDependencies += "org.scalatest" *%* "scalatest_2.13" % "3.0.5" % "test"
I always declare the Scala version I’m using in my project with the scalaVersion parameter—2.13, in this case—so redeclaring it here can be error-prone. Therefore, the %% method is almost always used:
libraryDependencies += "org.scalatest" *%%* "scalatest" % "3.0.5" % "test"
When your Scala version is 2.13.x, those two examples are equivalent. The %% method adds your project’s major Scala version to the end of the artifact name. Adding the Scala version to the artifactID is required because modules may be compiled for different Scala versions.
Dependencies for Scala.js and Scala Native
When specifying dependencies that have been specifically packaged for Scala.js and Scala Native, use three percent symbols between the groupID and artifactID fields, as shown here:
libraryDependencies += "org.querki" %%% "jquery-facade" % "1.2"

As just shown in the previous "org.scalatest" example, you use %% to include libraries that are compiled for Scala, but when a library is compiled for Scala.js or Scala Native, use %%% instead. As explained in “Simple Command Line Tools with Scala Native,” just as two percent symbols tell sbt to use the right version of a dependency, three percent symbols tell sbt to use the correct target environment, currently either Scala.js or Scala Native.
The configuration field
Note that in some of the examples, the value Test or the string "test" is added after the revision:
libraryDependencies += "com.typesafe.akka" %% "akka-testkit" % "2.5.19" % Test
libraryDependencies += "org.scalatest" %% "scalatest" % "3.0.5" % "test"
These examples specify the configuration field for adding a dependency:
libraryDependencies += groupID % artifactID % revision % configuration
This configuration parameter is typically used for testing dependencies, and you declare them with "test" or Test, as shown. Dependencies declared like this will only be added to the classpath for sbt’s test configuration. This is useful for adding dependencies like ScalaTest, MUnit, and Mockito, which are used when you test your application but not when you compile and run the application.
Where are the dependencies?
You may wonder where your project’s JAR files are located after they’re downloaded. Per the Coursier cache documentation, its cache location is platform-dependent, and the files it downloads are kept in these locations:
On macOS: ~/Library/Caches/Coursier
On Linux, ~/.cache/coursier/v1 (this also applies to Linux-based CI environments, and FreeBSD too)
On Windows: %LOCALAPPDATA%\Coursier\Cache\v1, which, for user Alex, typically corresponds to C:\Users\Alex\AppData\Local\Coursier\Cache\v1
For instance, when you’re using macOS and have a dependency like this in your build.sbt file while using Scala 2.13:
libraryDependencies += "org.scalatest" %% "scalatest" % "3.2.3" % "test"
the resulting JAR file will be found in a directory like this:
/Users/al/Library/Caches/Coursier/v1/https/repo1.maven.org/maven2/org/ ↵
scala-lang/scala-library/2.13.3/scala-library-2.13.3.jar
Use Debug Mode When Curious
When you’re curious about how things work inside the sbt shell, issue its debug command before running your other commands:
sbt> debug
Now when you run sbt commands like this, you’ll see dozens of lines of output, maybe hundreds:
sbt> clean; compile
After you’ve seen what you wanted to see, you can switch back to other logging modes, such as error, warning, or info.
Repositories
sbt uses the standard Maven Central repository by default, so it can locate most libraries when you add a libraryDependencies line to a build.sbt file. In these cases, there’s no need for you to tell sbt where to look for the file. However, when a library is not in a standard repository, you can tell sbt how to find the file on the internet. This process is referred to as adding a resolver, and you can learn more about it in the sbt resolvers documentation.
17.8 Controlling Which Version of a Managed Dependency Is Used
Problem
In a Scala/sbt project you want to make sure you always have the desired version of a managed dependency, including the latest integration release, the milestone release, or other versions.
Solution
The revision field in the libraryDependencies setting isn’t limited to specifying a single, fixed version. According to the Apache Ivy dependency documentation you can specify strings such as latest.integration, latest.milestone, and other terms.
As an example of this flexibility, rather than specifying version 1.8 of a foobar module, as shown here:
libraryDependencies += "org.foobar" %% "foobar" % "1.8"
you can request the latest.integration version like this:
libraryDependencies += "org.foobar" %% "foobar" % "latest.integration"
The module developer documentation often tells you what versions are available and should be used, depending on your desires. You can also find all the module versions on Maven Central, such as all the ScalaTest versions from MvnRepository.
Revision field options
Once you know what version(s) you want, you can specify tags to control the version of the module that will be downloaded and used. Although as of version 1.3, sbt now uses Coursier for artifact fetching (rather than Ivy), sbt still supports the Ivy syntax, and the Ivy dependency documentation states that the following tags can be used:
latest.integration.
latest.[any status], such as latest.milestone.
You can end the revision with a + character. This selects the latest subrevision of the dependency module. For instance, if the dependency module exists in revisions 1.0.3, 1.0.7, and 1.1.2, specifying 1.0.+ as your dependency will result in 1.0.7 being selected.
You can use version ranges, as shown in the following examples:
[1.0,2.0] matches all versions greater or equal to 1.0 and lower or equal to 2.0
[1.0,2.0[matches all versions greater or equal to 1.0 and lower than 2.0
]1.0,2.0] matches all versions greater than 1.0 and lower or equal to 2.0
]1.0,2.0[matches all versions greater than 1.0 and lower than 2.0
[1.0,) matches all versions greater or equal to 1.0
]1.0,) matches all versions greater than 1.0
(,2.0] matches all versions lower or equal to 2.0
(,2.0[matches all versions lower than 2.0
These configuration examples are courtesy of the Apache Ivy dependency documentation.
Discussion
To demonstrate a couple of these revision field options, this example shows the latest.integration tag used with ScalaTest:
libraryDependencies += "org.scalatest" %% "scalatest" % "latest.integration" ↵
% "test"
At the time of this writing that configuration retrieves 15 ScalaTest JAR files with names like these:
scalatest_2.13-3.3.0-SNAP3.jar
scalatest-core_2.13-3.3.0-SNAP3.jar
scalatest-funspec_2.13-3.3.0-SNAP3.jar
You can see that output by putting that configuration line in a build.sbt file, running reload if you’re in sbt interactive mode, and then running commands like update or compile.
As a second example, this is how you use the + tag:
libraryDependencies += "org.scalatest" %% "scalatest" % "3.0.+" % "test"
When I run the update command after adding that configuration line, I see that it retrieves these JAR files:
scalactic_2.13-3.0.9.jar
scalatest_2.13-3.0.9.jar
See Also
For more information on managing sbt dependency versions, see these scala-sbt.org pages:
17.9 Generating Project API Documentation
Problem
In an sbt project, you’ve marked up your Scala source code with Scaladoc comments and want to generate the API documentation for your project.
Solution
Depending on your documentation needs, use any of the sbt commands listed in Table 17-4.
sbt Command	Description
doc | Creates Scaladoc API documentation from the Scala source code files located in src/main/scala |
Test / doc | Creates Scaladoc API documentation from the Scala source code files located in src/test/scala |
packageDoc | Creates a JAR file containing the API documentation created from the Scala source code in src/main/scala |
Test / packageDoc | Creates a JAR file containing the API documentation created from the Scala source code in src/test/scala |
publish | Publishes artifacts to the repository defined by the publish-to setting |
publishLocal | Publishes artifacts to the local Ivy repository as described |
For example, to generate API documentation, use the doc command:
$ sbt doc
When you run this command, its output is written under the target/scala-3.0.0/api directory, where the 3.0.0 portion represents the Scala version you’re using in your project, in this case Scala 3.0.0. Similarly, Test/doc output is written to the target/scala-3.0.0/test-api/ subdirectory, and output from publishLocal is written under a $HOME/.ivy2/local/ProjectName directory on your system, where ProjectName is the name of your sbt project. The other commands also show where their output is written.
Discussion
Some sbt commands don’t show the output files they generate, so if you want to see those filenames, precede commands like doc or package with show, like this:
sbt> show doc
target/scala-3.0.0/api
sbt> show Test/doc
[info] target/scala-3.0.0/test-api
sbt> show package
target/scala-3.0.0/stringutils_3.0.0-1.0.jar
The commands run as usual and then show their output files when they finish.
See Also
The sbt command line reference has more information on these commands.
The Scaladoc tags (@see, @param, etc.) are listed on this Scaladoc for library authors page.
See Recipe 17.12 for examples of using publish and publishLocal.
17.10 Specifying a Main Class to Run with sbt
Problem
You have multiple main methods in a Scala/sbt project and you want to specify (a) which main method should be run when you type sbt run, or (b) the main method that should be invoked when your project is packaged as a JAR file.
Solution
There are slightly different solutions depending on whether you want to run a main method with sbt run, or your application is packaged as a JAR file.
Specifying a main method for sbt run
If you have multiple main methods in your project and want to specify which main method to run when typing sbt run, add a line like this to your build.sbt file:
// set the main class for the 'sbt run' task
Compile / run / mainClass := Some("com.alvinalexander.Main1")
In this example, Main1 is an @main method in the com.alvinalexander package.
Another option is to use sbt’s run-main command to specify the class to run. This is how it works from your operating system command line:
$ sbt "runMain com.alvinalexander.Main1"
[info] Running com.alvinalexander.Main1
hello
[success] Total time: 1 s
This is how it works inside the sbt shell:
$ sbt
sbt> runMain com.alvinalexander.Main1
[info] Running com.alvinalexander.Main1
hello
[success] Total time: 1 s
Specifying a main method for a packaged JAR file
To specify the class that will be added to the manifest when your application is packaged as a JAR file, add this line to your build.sbt file:
Compile / packageBin / mainClass := Some("com.alvinalexander.Main2")
Now when you create a JAR file for your application using the package or show package commands:
sbt> show package
[info] target/scala-3.0.0/myapp_3.0.0-1.0.jar
The resulting META-INF/MANIFEST.MF file inside the JAR file that’s created contains the main class you specified:
Main-Class: com.alvinalexander.Main2
Discussion
If you have only one @main method in your application, sbt automatically runs that method. In this case, these configuration lines aren’t necessary.
If you have multiple @main methods in your project and don’t use any of the approaches shown in the Solution, sbt will prompt you with a list of @main methods it finds when you execute sbt run:
Multiple main classes detected, select one to run:
[1] com.alvinalexander.myproject.Foo
[2] com.alvinalexander.myproject.Bar
The following code shows what a build.sbt file with both of the mainClass settings looks like:
name := "MyProject"
version := "0.1"
scalaVersion := "3.0.0"
// set the main class for the 'sbt run' task
Compile / run / mainClass := Some("com.alvinalexander.myproject.Foo")
// set the main class for the 'sbt package' task
Compile / packageBin / mainClass := Some("com.alvinalexander.myproject.Foo")
Those mainClass settings are for an @main method named Foo in the package com.alvinalexander.myproject.
See Also
See Recipe 1.4, “Compiling with scalac and Running with scala”, for more details on @main methods and main methods in objects.
17.11 Deploying a Single Executable JAR File
Problem
You’re building a Scala application with sbt that has multiple dependencies, and you want to deploy a single executable JAR file.
Solution
The sbt package command creates a JAR file that includes the class files it compiles from your source code, along with the resources in your project in src/main/resources, but it doesn’t include your project dependencies or the libraries from the Scala distribution that are needed to execute the JAR file with the java command. Therefore, use the sbt-assembly plugin to create a single JAR file that includes all of these resources.
Using sbt-assembly
The installation instructions for sbt-assembly may change, but at the time of this writing all you have to do is create a project/assembly.sbt file under your project’s root directory that contains this line:
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.15.0")
After that, just reload your sbt project and sbt-assembly is ready to use.
Now—assuming that your project has a single @main method—run the sbt assembly command to create a single executable JAR file:
sbt> assembly
To see the location of the output JAR file when running assembly, prepend that command with show:
sbt> show assembly
[info] compiling 1 Scala source to target/scala-3.0.0/classes ...
[info] target/scala-3.0.0/MyApp.jar
As a more concrete example, I’ve written a “Knowledge Browser” with Scala and JavaFX, and when I build it with sbt-assembly I can see all the dependencies it’s including, as well as the location of the final JAR file:
[info] Including from cache: rome-1.8.1.jar
[info] Including from cache: scala-xml_2.12-1.0.6.jar
// more ooutput here ...
[info] Including from cache: jsoup-1.11.2.jar
[info] Including from cache: jfxrt.jar
[info] Packaging target/scala-2.12/Knol-assembly-1.0.jar ...
[info] Done packaging.
The sbt-assembly plugin works by copying the class files from your source code, your dependencies, and the Scala library into one single JAR file that can be executed with the java interpreter.
Discussion
You can customize how sbt-assembly works in a variety of ways. First, if your project has multiple @main methods, add this setting to your build.sbt file to specify the @main method for your assembled JAR file:
assembly / mainClass := Some("com.alvinalexander.myproject.Foo")
That setting is for an @main method named Foo in the package com.alvinalexander.myproject.
To set the name of the generated JAR file, use this setting:
assembly / assemblyJarName := "MyApp.jar"
To skip running the tests during assembly, use this setting:
assembly / test := {}
You can verify that the assemblyJarName setting works when you run the show assembly command. To verify the mainClass setting, cd into the directory where your JAR file is located, extract the META-INF/MANIFEST.MF file from that JAR file, and then examine its contents:
$ cd target/scala-3.0.0
$ jar xvf MyApp.jar META-INF/MANIFEST.MF
inflated: META-INF/MANIFEST.MF
$ cat META-INF/MANIFEST.MF
Manifest-Version: 1.0
Main-Class: com.alvinalexander.myproject.Foo
// more output ...
As shown, the Main-Class setting in that file matches the mainClass setting in the build.sbt file.
See Also
The sbt-assembly project.
Currently, it’s easiest to see the latest assembly version and other information on this index.scala-lang.org page.
17.12 Publishing Your Library
Problem
You’ve created a Scala project or library with sbt that you want to share with other users, creating all the files you need for a Maven/Ivy repository.
Solution
There are just a couple steps for this solution:
Define your repository information.
Publish your project with sbt publish or sbt publishLocal.
For my StringUtils library I create a build.sbt file that contains the usual project name, version, and scalaVersion settings. Then I add a publishTo configuration line that configures the location for where the publish task should send its output:
lazy val root = (project in file("."))
.settings(
name := "StringUtils",
version := "1.0",
scalaVersion := "3.0.0"
)
// for the 'publish' task; tells sbt to write its output to the
// "out" subdirectory
publishTo := Some(Resolver.file("file", new File("./out")))
Now when I run sbt publish, I see sbt output that looks like this:
sbt> publish
[info] published sutils_3.0.0 to
out/sutils/sutils_3.0.0/1.0.part/sutils_3.0.0-1.0.pom
[info] published sutils_3.0.0 to
out/sutils/sutils_3.0.0/1.0.part/sutils_3.0.0-1.0.jar
[info] published sutils_3.0.0 to
out/sutils/sutils_3.0.0/1.0.part/sutils_3.0.0-1.0-sources.jar
[info] published sutils_3.0.0 to
out/sutils/sutils_3.0.0/1.0.part/sutils_3.0.0-1.0-javadoc.jar
In that output I changed the actual out/stringutils output directory name to out/sutils so it would fit in the width allowed (i.e., the actual directory name is out/stringutils).
Next, without doing anything to define a local Ivy repository, I get the following results when running the publishLocal task:
sbt> publishLocal
[info] Main Scala API documentation successful.
[info] :: delivering :: sutils#sutils_3.0.0;1.0 :: 1.0 ...
[info] delivering ivy file to target/scala-3.0.0/ivy-1.0.xml
[info] published sutils_3.0.0 to
~/.ivy2/local/sutils/sutils_3.0.0/1.0/poms/sutils_3.0.0.pom
[info] published sutils_3.0.0 to
~/.ivy2/local/sutils/sutils_3.0.0/1.0/jars/sutils_3.0.0.jar
[info] published sutils_3.0.0 to
~/.ivy2/local/sutils/sutils_3.0.0/1.0/srcs/sutils_3.0.0-sources.jar
[info] published sutils_3.0.0 to
~/.ivy2/local/sutils/sutils_3.0.0/1.0/out/sutils_3.0.0-javadoc.jar
[info] published ivy to ~/.ivy2/local/sutils/sutils_3.0.0/1.0/ivys/ivy.xml
Again, in that output I changed the name of my library from stringutils to sutils so the output would fit without wrapping.
Discussion
The sbt publishing documentation says publishing “consists of uploading a descriptor, such as an Ivy file or Maven POM, and artifacts, such as a jar or war, to a repository so that other projects can specify your project as a dependency.”
It further provides these descriptions of the publish and publishLocal tasks:
The publish action is used to publish your project to a remote repository. To use publishing, you need to specify the repository to publish to and the credentials to use. Once these are set up, you can run publish.
The publishLocal action is used to publish your project to a local Ivy repository. You can then use this project from other projects on the same machine.
In my example I use publish to publish my project to a local directory. The sbt publishing page discusses the steps necessary to publish your artifacts to a remote repository.
See Also
The sbt artifacts page describes how to control what artifacts should be created during a build.
The sbt cross building page shows how to “build and publish your project against multiple versions of Scala.”
Chapter 18. Concurrency with Scala Futures and Akka Actors
In Scala, you can still use Java threads:
val thread = new Thread {
override def run =
// put your long-running code here ...
Thread.sleep(100)
println("Hello, world")
}
thread.start
However, futures and the Actor model are the preferred approaches for concurrency:
Futures
Are good for one-shot, “handle this relatively slow and potentially long-running computation, and call me back with a result when you’re done” processing.
Actors
Are good for processes that run in parallel, live for a long time, and may respond to many requests during their lifetime.
Both futures and actors let you write code at a much higher level of abstraction than threads, and once you’re comfortable with them, they let you focus on solving the problem at hand, rather than having to worry about the low-level problems of threads, locks, and shared data.
Akka and Scala 3
At the time of this writing, Akka has not been ported to Scala 3. Therefore, all the examples in this chapter use the latest version of Scala 2.
Futures
The Future Scaladoc states, “A Future represents a value which may or may not currently be available, but will be available at some point, or an exception if that value could not be made available.”
The Scala Future is a nice improvement over the Java Thread in several ways:
Like the typical use of a Thread, a Future is used when you want to create a little “pocket of concurrency” to run a relatively short-lived task in parallel.
When a Future is finished it’s said to be completed, and when it’s completed you can process its result using many different callback and transformation methods, including onComplete, andThen, foreach, map, and recoverWith.
Several of these methods are demonstrated in this chapter.
Akka and the Actor Model
Akka is an Actor model library for Scala and Java programmers. The first edition of this book covered what is now known as Akka Classic actors. Classic uses untyped actors, and I found them very easy to get started with back in 2013, and they’re still supported today.
These days the new approach is called Akka Typed, and as the name implies, these actors are much more type-safe than the Classic actors, helping to eliminate errors at compile time. This edition of the book covers Akka Typed.
The Actor model
Before digging into the Akka recipes in this chapter, it will help to understand the Actor model. The first thing to understand about it is the concept of an actor:
An actor is the smallest unit when building an actor-based system, like a class in an OOP system.
Like a class, an actor encapsulates state and behavior.
You can’t peek inside an actor to get its state. You can send an actor a message requesting state information—like asking a person how they’re feeling—but you can’t reach in and execute one of its methods, or access its fields.
An actor has a mailbox—an inbox—and its purpose in life is to process the messages in its inbox.
You communicate with an actor by sending it an immutable message. Like sending someone an email message, these messages go into the actor’s mailbox.
When an actor receives a message, it’s like taking a letter out of its mailbox. It opens the letter, processes the message using one of its algorithms, then moves on to the next letter in the mailbox. If there are no more messages, the actor waits until it receives one.
In an application, actors form hierarchies, like a family or a business organization. Lightbend—the company that created and is the lead maintainer of Akka—recommends thinking of an actor as being like a person, such as a person in a business organization:
An actor has one parent (supervisor): the actor that created it.
An actor may have children. Thinking of this as a business, a president may have a number of vice presidents (VPs). Those VPs will have many subordinates, and so on.
An actor may have siblings. For instance, there may be 10 VPs directly under the president in an organization.
A best practice of developing actor systems is to delegate, delegate, delegate, especially if behavior will block. In a business, the president may want something done, so he delegates that work to a VP. That VP delegates work to a manager, and so on, until the work is eventually performed by one or more subordinates.
Delegation is important. Imagine that the work takes several person-years. If the president had to handle that work himself, he couldn’t respond to other needs—while the VPs and other employees would all be idle.
In addition to those general statements about actors, there are a few important things to know about Akka’s implementation of the Actor model:
You can’t reach into an Akka actor to get information about its state. When you instantiate an Actor in your code, Akka gives you an ActorRef, which is essentially a façade between you and the actor.
Behind the scenes, Akka actors run on real threads; many actors may share one thread.
There are different mailbox implementations to choose from, and you can also create your own mailbox type.
When an actor terminates (intentionally or unintentionally), messages in its mailbox go into the system’s “dead letter mailbox,” as discussed in Recipe 18.8.
Benefits of actors
In general, the Actor model—which has been implemented in other languages such as Erlang and Dart—gives you the benefit of offering a high level of abstraction for achieving long-running concurrency and parallelism. Beyond that, the Akka actor library adds these benefits:
Lightweight, event-driven processes
The documentation states that there can be approximately 2.5 million actors per gigabyte of RAM, and they can process up to 50 million messages per second.
Fault tolerance
Akka actors can be used to create “self-healing systems.”
Location transparency
Akka actors can span multiple JVMs and servers; they’re designed to work in a distributed environment using pure message-passing.
A “high level of abstraction” can also be read as “ease of use.” It doesn’t take very long to understand the Actor model, and once you do, you’ll be able to write complex concurrent applications much more easily than you can with the basic Java libraries. Writing actors is like modeling the real world, so for a pizza store you can write one actor to make the pizza, another to take orders, another one to deliver orders, etc.
While I generally think of actors as being like humans that act independent of other humans, I also like to think of them as being like a web service on someone else’s servers that I can’t control. I can send messages to that web service to ask it for information, but I can’t reach into the web service to modify its state or access its resources; I can only work through its API, which is just like sending immutable messages with actors.
Hopefully, these notes about the Actor model in general, and the Akka implementation specifically, will be helpful in understanding the recipes in this chapter.
One More Thing: Parallel Collections Classes
The Scala parallel collections classes used to be integrated with the main Scala release, but they are now available as a separate project.
This example from the first edition of this book gives you an idea of how parallel collections classes work:
import scala.collection.parallel.immutable.ParVector
val v = ParVector.range(0, 10) // ParVector(0,1,2,3,4,5,6,7,8,9)
v.foreach{ e => Thread.sleep(10); print(e) } // 0516273849
As shown in the foreach output, because collections like ParVector are truly implemented in a parallel manner, output from their methods—even a simple method like foreach—is indeterminate. For more information, see my blog post “Examples of How to Use Parallel Collections in Scala”.
Parallel Versus Concurrent
There are interesting debates about what the terms concurrent and parallel mean. I tend to use them interchangeably, but for one interesting discussion of their differences—such as concurrency being one vending machine with two lines and parallelism being two vending machines and two lines—see the blog post “Parallelism and Concurrency Need Different Tools” by Yossi Kreinin.
18.1 Creating a Future
Problem
You want a simple way to run a task concurrently with Future and are willing to block your application thread until the task is finished.
Solution
A future gives you a simple way to run an algorithm concurrently. A future starts running concurrently when you create it and returns a result at some point, well…in the future. In Scala, it’s said that a future returns eventually.
The following example shows how to create a future and then block to wait for its result. Blocking when writing parallel algorithms is not a good thing—you should only block if you really, really have to. But this is useful as an initial example, first because it’s a little easier to reason about and second because it gets the bad stuff out of the way early.
This code performs the calculation 1 + 1 at some time in the future. When it’s finished with the calculation, it returns its result:
// 1 - the necessary imports
import scala.concurrent.{Await, Future}
import scala.concurrent.duration.*
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.Random
import Thread.sleep
@main def futures1 =
// 1: create a Future that runs in a separate thread and
// returns “eventually”
val f = Future {
// this could be any long-running algorithm
sleep(Random.nextInt(500))
1 + 1
}
// 2: this is blocking, i.e., pausing the current thread to wait for a
// result from another thread
val result = Await.result(f, 1.second)
println(result)
sleep(1_000)
Here’s how this code works:
The import statements bring the code into scope that’s needed.
The ExecutionContext.Implicits.global import statement imports the “default global execution context.” You can think of an execution context as being a thread pool, and this is a simple way to get access to a thread pool.
A Future is created after the first comment. As shown, creating a future is simple; just pass it a block of code you want to run. This is the code that will be executed concurrently, and it will return at some point in the future.
The Await.result method call declares that it will wait for up to one second for the Future to return. If the Future doesn’t return within that time, it throws a java.util.concurrent.TimeoutException.
The sleep statement at the end of the code is used so the program will keep running while the Future is off being calculated. You won’t need this in real-world programs, but in small example programs like this, you have to keep the main JVM thread running.
It’s worth repeating that blocking is bad; you shouldn’t write code like this unless you have to. The examples in the recipes that follow show much better approaches.
If your future takes longer than the wait time you specify, you’ll get an exception that looks like this:
java.util.concurrent.TimeoutException: Future timed out after [1 second]
You can demonstrate this for yourself by changing the Random.nextInt(500) in the code to a value like 2_000.
Discussion
Although using a future is straightforward, there are many concepts behind it. The following statements describe the basic concepts of a future, as well as the ExecutionContext that a future relies on:
The futures and promises page on the official Scala website defines a future “as a type of read-only placeholder object created for a result which doesn’t yet exist.”
Similar to the way an Option[A] is a container that holds either a Some[A] or a None, a Future[A] is a container that runs a computation concurrently and at some future time may return either (a) a result of type A or (b) an exception.
Your algorithm starts running at some nondeterministic time after the future is created, running on a thread assigned to it by the execution context.
The result of the computation becomes available once the future completes.
When it returns a result, a future is said to be completed. It may be either successfully completed or failed.
As shown in the next several recipes, a future provides an API for reading the value that has been computed. This includes callback and transformation methods such as foreach, onComplete, map, etc. A for comprehension can also be used and is shown in Recipe 18.4.
An ExecutionContext executes a task it’s given. You can think of it as being like a thread pool.
In my code I provide the default global execution context using this ExecutionContext import statement:
import scala.concurrent.ExecutionContext.Implicits.global
In reviewing this book, Hermann Hueck noted that there are many ways to import and use an ExecutionContext. For example, given this initial import statement:
import scala.concurrent.ExecutionContext
these are different ways you can provide an ExecutionContext to your code:
// define a given with name 'ec'
given ec: ExecutionContext = ExecutionContext.global
// for this example we just need the type; the name is not relevant
given ExecutionContext = ExecutionContext.global
// imports all givens in Implicits
import ExecutionContext.Implicits.given
// imports the given of the type ExecutionContext
import ExecutionContext.Implicits.{given ExecutionContext}
When you need flexibility in working with an ExecutionContext, it’s helpful to know all of these approaches.
See Also
The futures and promises page on the official Scala website covers futures (and promises, which I don’t cover) in depth, with many examples.
The scala.concurrent.ExecutionContext Scaladoc.
18.2 Using Callback and Transformation Methods with Futures
Problem
You want to run a task concurrently, including having different ways to handle its result when the task finishes.
Solution
The previous recipe showed a simple way to use a Future, but because it blocks, that technique should only be used very rarely. Much better approaches are shown in this recipe.
Common code
To simplify the following code, please note that all the following examples depend on these import statements:
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success, Random}
import Thread.sleep
Solution 1: Use onComplete
The Future class has three callback methods: onComplete, andThen, and foreach. The following example demonstrates onComplete:
def getMeaningOfLife() =
sleep(Random.nextInt(500))
42
@main def callbacks1 =
println("starting calculation ...")
val f = Future {
getMeaningOfLife()
}
println("before onComplete")
f.onComplete {
case Success(value) => println(s"Got the callback, meaning = $value")
case Failure(e) => e.printStackTrace
}
// do the rest of your work
println("A ..."); sleep(100)
println("B ..."); sleep(100)
println("C ..."); sleep(100)
println("D ..."); sleep(100)
println("E ..."); sleep(100)
println("F ..."); sleep(100)
sleep(2_000)
This example returns the meaning of life (42) after a random delay. The important part of this example is the f.onComplete method call and the code that follows it. Here’s how that code works:
The future f is ready to be run as soon as it’s created (though the actual time it starts running is nondeterministic).
The type of f is Future[Int].
The f.onComplete method call sets up the callback, i.e., what should happen when the future completes.
The type signature of onComplete shows that it takes a function that transforms a Try input parameter into a Unit result. Therefore, in the f.onComplete code block, your code handles the future result as a Success or Failure.
The println statements with the slight delays represent other work your code may be doing on the main thread while the future is off and running on a parallel thread.
Because the Future is running concurrently on some other thread, and you don’t know exactly when the result will be computed, the output from this code is nondeterministic, but it can look like this:
starting calculation ...
before onComplete
A ...
B ...
C ...
D ...
E ...
Got the callback, meaning = 42
F ...
Because the Future returns eventually—at some nondeterministic time—the “Got the callback” message may appear anywhere in that output.
As mentioned, the onComplete type signature shows that it takes a function that transforms a Try parameter:
def onComplete[U](f: (Try[T]) => U)(implicit executor: ExecutionContext): Unit
As a result, another approach you can use here is to replace the previous f.onComplete code with a fold call on the Try parameter:
f.onComplete (_.fold(
_.printStackTrace,
value => println(s"Got the callback, meaning = $value")
)
)
In this case, fold takes two parameters:
The first parameter is a function to apply if Try is a Failure.
The second parameter is a function to apply if Try is a Success.
See the Try class Scaladoc for more details on this approach.
Solution 2: Use andThen or foreach
There may be times when onComplete isn’t exactly what you want, and in those situations you can use the andThen and foreach callback methods instead. Here’s an example of how to use andThen:
@main def callbacks2 =
println("Creating the future")
val f: Future[Int] = Future {
// sleep for a random time before returning 42
val sleepTime = Random.nextInt(500)
sleep(sleepTime)
println("Leaving the future")
if sleepTime > 250 then throw new Exception("Ka-boom")
42
}
// handle the result of f with andThen
println("Before andThen")
f andThen {
case Success(x) =>
val y = x * 2
println(s"andThen: $y")
case Failure(t) =>
println(s"andThen: ${t.getMessage}")
}
println("After andThen")
sleep(1_000)
This code is similar to the onComplete example but has these changes:
The Future block is wired to throw an exception about half the time. If it doesn’t throw an exception, it eventually yields the value 42.
andThen block is run after the Future completes.
andThen blocks are implemented with partial functions. If you don’t want to implement the Failure portion of the case statement, you don’t have to.
When an exception is thrown, the output from this app is:
Creating the future
Before andThen
After andThen
Leaving the future
andThen: Ka-boom
When it doesn’t throw an exception, the output is:
Creating the future
Before andThen
After andThen
Leaving the future
andThen: 84
Next, here’s a shorter version of the previous example, using foreach instead of andThen:
@main def callbacks3 =
val f: Future[Int] = Future {
val sleepTime = Random.nextInt(500)
sleep(sleepTime)
if sleepTime > 250 then throw new Exception("Ka-boom")
42
}
f.foreach(println)
sleep(1_000)
In this case, this example prints 42 when an exception is not thrown and prints nothing at all when an exception is thrown. The Future class Scaladoc tells us why nothing is printed: “WARNING: (foreach) will not be called if this future is never completed or if it is completed with a failure. Since this method executes asynchronously and does not produce a return value, any nonfatal exceptions thrown will be reported to the ExecutionContext.”
Future has many more callback methods that are categorized as transformation methods, including transform, collect, fallbackTo, map, recover, and recoverWith. Here’s a short example of using fallbackTo:
def getMeaningOfLife() = Future {
sleep(Random.nextInt(500))
42
}
val meaning = getMeaningOfLife() fallbackTo Future(0)
meaning.foreach(println)
The Future class Scaladoc has good examples for other transformation methods.
Discussion
The following statements describe the use of the callback and transformation methods that can be used with futures:
Callback and transformation methods are called asynchronously when a future completes.
onComplete, andThen, foreach, and fallbackTo are demonstrated in this recipe.
A callback method is executed by some thread, some time after the future is completed. From the futures and promises page on the official Scala website, “There is no guarantee that it will be called by the thread that completed the future or the thread that created the callback.”
The order in which callbacks are executed is not guaranteed.
onComplete takes a callback function of type Try[A] => B.
andThen takes a partial function. You only need to handle the desired case. (See Recipe 10.7, “Creating Partial Functions”, for more information on partial functions.)
onComplete and foreach have the result type Unit, so they can’t be chained together.
18.3 Writing Methods That Return Futures
Problem
You want to write a method or function that returns a Future.
Solution
In the real world you’ll want to create methods that return futures. The following example defines a method named longRunningComputation that returns a Future[Int]:
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success, Random}
import Thread.sleep
@main def futuresFunction =
// a function that returns a Future
def longRunningComputation(i: Int): Future[Int] = Future {
sleep(100)
i + 1
}
// this does not block
longRunningComputation(11).onComplete {
case Success(result) => println(s"result = $result")
case Failure(e) => e.printStackTrace
}
// keep the jvm from shutting down
sleep(1_000)
In this example I create the body of the method longRunningComputation as a code block wrapped in a Future. The code block is passed into the apply method of the Future object. This starts the computation asynchronously and returns a Future[A]—a Future[Int] in this case—that will hold the result of the computation. This is a common way to define methods that return a future.
Discussion
In a similar technique, because Future takes a block of code as its input parameter, you can wrap existing methods that don’t run concurrently inside a Future like this:
// some existing function that does not run concurrently
def getMeaningOfLife() = ???
// wrap that existing function in a Future
val meaning = Future { getMeaningOfLife() }
Again, this approach works because:
The method is passed to the apply method in the scala.concurrent.Future object (the Future object, not the Future class).
That apply method takes a call-by-name block of code as a parameter, as you can tell from its signature on the Future object Scaladoc page:
final def apply[T](body: => T)(implicit executor: ExecutionContext): Future[A]

Because a method (or function) is equivalent to a call-by-name block, you can wrap nonconcurrent methods with a Future as shown.
18.4 Running Multiple Futures in Parallel
Problem
Futures generally start running as soon as they’re created, and you want to see how to run multiple futures in parallel, and join their results together when they have all completed.
Solution
If you want to create multiple Scala futures and merge their results together to get a result in a for expression, the correct approach is:
Create the futures.
Merge their results in a for expression.
Extract the merged result using onComplete or a similar technique.
The correct approach (simplified)
I show the correct approach to using multiple futures in a for expression in the following code. The important point is to create your futures as shown in Step A, prior to using them in the for expression in Step B:
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}
import Thread.sleep
@main def multipleFutures1 =
// (a) create the futures
val f1 = Future { sleep(800); 1 }
val f2 = Future { sleep(200); 2 }
val f3 = Future { sleep(400); 3 }
// (b) run them simultaneously in a for-comprehension
val result = for
r1 <- f1
r2 <- f2
r3 <- f3
yield (r1 + r2 + r3)
// (c) process the result
result.onComplete {
case Success(x) => println(s"result = $x")
case Failure(e) => e.printStackTrace
}
// important for a little parallel demo: keep the jvm alive
sleep(3_000)
A thorough example for verification
There’s no way to tell from reading that code that this is the correct approach, so I also created this next example to show how it works:
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}
import Thread.sleep
def slowlyDouble(
x: Int,
startTime: Long,
delay: Int,
name: String
): Future[Int] = Future {
println(s"entered $name: ${delta(startTime)}")
sleep(delay)
println(s"leaving $name: ${delta(startTime)}")
x * 2
}
// time-related functions that are used in the code
def delta(t: Long) = System.currentTimeMillis - t
def time() = System.currentTimeMillis
@main def multipleFutures2 =
val t0 = System.currentTimeMillis
// Future #1
println(s"creating f1: ${delta(t0)}")
val f1 = slowlyDouble(x=1, t0, delay=1500, name="f1")
// Future #2
sleep(100)
println(s"\ncreating f2: ${delta(t0)}")
val f2 = slowlyDouble(x=2, t0, delay=250, name="f2")
// Future #3
sleep(100)
println(s"\ncreating f3: ${delta(t0)}")
val f3 = slowlyDouble(x=3, t0, delay=500, name="f3")
println(s"\nentering `for`: ${delta(t0)}")
val result = for
r1 <- f1
r2 <- f2
r3 <- f3
yield (r1 + r2 + r3)
println("\nBEFORE onComplete")
result.onComplete {
case Success(x) => {
println(s"\nresult = $x (delta = ${delta(t0)})")
println("note: you don’t get the result until the last future completes")
}
case Failure(e) => e.printStackTrace
}
println("AFTER onComplete\n")
// important for a little parallel demo: keep the jvm alive
sleep(3_000)
If you run that code you’ll see output that looks like this:
creating f1: 0
entered f1: 0
creating f2: 105
entered f2: 105
creating f3: 210
entering `for`: 211
entered f3: 211
BEFORE onComplete
AFTER onComplete
leaving f2: 359
leaving f3: 713
leaving f1: 1501
result = 12 (delta = 1502)
note: you don’t get the result until the last future completes
The output shows several interesting points:
f1, f2, and f3 begin running immediately. You can’t tell it from this code, but they immediately begin running on new threads.
The output rapidly passes over the onComplete statement.
After a short pause, the leaving statements are printed, followed quickly by the result.
Notice that the delta printed with the result is just a little larger than the delta for f1. That’s because f1 has the longest sleep time. It makes sense that the total run time of three futures running in parallel is just a little larger than the future with the longest run time.
I encourage you to play with that code and make it your own until you’re completely satisfied that you understand how Scala futures work with a for expression.
Discussion
You can also confirm that the previous approach is correct by doing the wrong thing. Given the same imports and slowlyDouble, delta, and time methods as the previous example, the following code shows the wrong way to use futures in a for expression:
@main def multipleFuturesWrong =
val t0 = System.currentTimeMillis
// WARNING: THIS IS THE INTENTIONALLY WRONG APPROACH
println(s"\nentering `for`: ${delta(t0)}")
val result = for
r1 <- slowlyDouble(x=1, t0, delay=1500, name="f1")
r2 <- slowlyDouble(x=2, t0, delay=250, name="f2")
r3 <- slowlyDouble(x=3, t0, delay=500, name="f3")
yield (r1 + r2 + r3)
println("\nBEFORE onComplete")
result.onComplete {
case Success(x) => {
println(s"\nresult = $x (delta = ${delta(t0)})")
println("note that you don't get the result until the last future completes")
}
case Failure(e) => e.printStackTrace
}
println("AFTER onComplete\n")
// important for a little parallel demo: keep the jvm alive
sleep(3_000)
When you run that code you’ll see output similar to this:
entering `for`: 0
entered f1: 1
BEFORE onComplete
AFTER onComplete
leaving f1: 1503
entered f2: 1503
leaving f2: 1758
entered f3: 1758
leaving f3: 2260
result = 12 (delta = 2261)
That output shows:
The f1 future is quickly entered (at delta = 1).
The f1 future is exited about 1,500 ms later.
f2 is entered at that time—after f1 finishes—and does not exit for more than 250 ms
After f2 finishes, f3 is entered, and the code pauses for another 500+ ms.
This shows that f1, f2, and f3 are not run in parallel but are instead run serially, one after the other. To be clear, this is wrong and not what you want.
A warning: Future is not referentially transparent
If you’re interested in functional programming, it’s important to know that the Scala Future is not referentially transparent, and therefore it’s not suitable for FP. Because Future is eager and begins running immediately, you can’t refactor your code by replacing an expression with its result (or vice versa).
If you’re interested in functional ways of writing future-like code, see the ZIO library, the Cats Effect IO monad—discussed in the Typelevel Scala blog post “Concurrency in Cats Effect 3”—and the Monix task for their approaches to writing functional, lazy, asynchronous code.
18.5 Creating OOP-Style Actors
Problem
From the introduction to this chapter, you know that you can create Akka Typed actors in an OOP or FP style and you want to see and understand the OOP style.
Solution
The OOP solution is a combination of a class and companion object:
In the object you define (a) the messages your actor can handle and (b) an apply factory method.
The class extends the Akka AbstractBehavior class and implements the onMessage method.
The class is defined to be private so that no one else can access its constructor, and callers must use the object’s apply method.
Here’s an example of an object named Tom, based on the Tom character in the movie 50 First Dates. It defines a Message trait, and a Hello case object that extends that trait. Based on these definitions and the match expression shown in the class, Hello is the only message this actor can handle.
A Note About Sealed Traits
The sealed trait isn’t necessary for this simple example; you could just use a single case object for the message. But because this is the pattern you’ll follow in the real world, I show it like this in this example.
The object also defines an apply method that others will use to construct this actor. As I mentioned in Recipe 5.4, “Defining Auxiliary Constructors for Classes”, an apply method in an object works like a factory method, letting you construct instances of a class.
Note that the apply method uses the Akka Behaviors.setup method to create a new instance of the Tom class:
object Tom {
// “messages” that Tom can handle
sealed trait Message
case object Hello extends Message
// the factory/constructor method
def apply(): Behavior[Message] =
Behaviors.setup(context => new Tom(context))
}
Per its Scaladoc, Behaviors.setup “is a factory for a behavior. Creation of the behavior instance is deferred until the actor is started….The factory function passes the ActorContext as parameter and that can be used for spawning child actors. setup is typically used as the outermost behavior when spawning an actor.”
After creating that object, I define the Tom class like this:
import Tom.{Message, Hello}
private class Tom(context: ActorContext[Message])
extends AbstractBehavior[Message](context) {
override def onMessage(message: Message): Behavior[Message] = {
message match {
case Hello =>
println("Hi, I’m Tom.")
this // return the current behavior
// Behaviors.same
}
}
}
A few points about this class:
I first import the messages from the Tom object to make the remainder of the class easier to read.
I make the class constructor private, so only the companion object can access it.
The constructor receives an ActorContext instance, typed with the Message that’s defined in the companion object.
The class extends the Akka AbstractBehavior class, and implements its abstract onMessage method.
onMessage receives an instance of a Message.
onMessage has a return type of Behavior[Message], so I return Behavior.same. Although this feels like overkill in this small example, the Behavior Scaladoc states that this “advises the system to reuse the previous behavior.” This makes more sense when you work with complicated actors that have multiple behaviors, and you can use this return value to change behaviors as needed. See Recipe 18.8 for details on changing states.
In this example I also handle the Message in a match expression. This isn’t needed for this small example, but it’s a common way to handle messages, so I show it right away.
Now that we have the Tom class and companion object, this example App shows how it works:
import akka.actor.typed.Behavior
import akka.actor.typed.ActorSystem
import akka.actor.typed.scaladsl.ActorContext
import akka.actor.typed.scaladsl.Behaviors
import akka.actor.typed.scaladsl.AbstractBehavior
object HiImTomOop extends App {
val actorSystem: ActorSystem[Tom.Message] =
ActorSystem.create(Tom(), "50FirstDatesSystem")
actorSystem ! Tom.Hello
actorSystem ! Tom.Hello
actorSystem ! Tom.Hello
Thread.sleep(500)
actorSystem.terminate()
}
A few notes about this code:
HiImTomOop is a normal Scala 2 application that’s created with an App object.
An ActorSystem is created with the type Tom.Message. I could have imported Tom.Message and Tom.Hello as I did earlier, but I thought I’d show what this code looks like without those imports.
The code Tom() calls the apply method in the Tom companion object, constructing an instance of the Tom class.
"50FirstDatesSystem" is a name I gave to the ActorSystem instance. The name can be anything, but if you’ve seen the movie 50 First Dates, you’ll understand why I chose the name Tom for this actor.
At the end of the App I call this line of code three times:
actorSystem ! Tom.Hello
That results in this output at the sbt prompt:
Hi, I’m Tom.
Hi, I’m Tom.
Hi, I’m Tom.
Creating the Actor and ActorSystem at the Same Time
In this code I create the Tom actor and the actor system at the same time:
val actorSystem: ActorSystem[Tom.Message] =
ActorSystem.create(Tom(), "50FirstDatesSystem")
This is a little unusual, but what happens here is that because ActorSystem extends ActorRef, the actorSystem variable is both an ActorSystem and an ActorRef. That is, actorSystem is essentially an instance of Tom, and it would have been just as valid to name the variable tom instead of actorSystem.
I took this approach in this recipe to try to write as little code as possible here, and I show the more common technique in later recipes when I create the ActorSystem as a Supervisor or Guardian.
Discussion
As a brief reminder of what I mentioned in the introduction to this chapter, at the time of this writing Akka has not been ported to Scala 3, so the examples in this chapter use the latest version of Scala 2.
Behaviors
If you’re familiar with Akka Classic, the first thing you’ll probably notice about this example is the lack of an Actor class. In Akka Typed the concept of an actor is replaced by the concept of behaviors. I found this confusing at first, until I saw this quote in the book, Learn Scala Programming, by Slava Schmidt (Packt):
“Any well-defined behavior is a computational entity, and thus can be an actor.”
So, a main concept to know is that in Akka Typed you’ll focus on behaviors rather than actors.
A repetitive pattern
A second thing to know about Akka Typed OOP-style behaviors is that creating them follows a consistent pattern. OOP-style behaviors have this template:
object OopActor {
// “messages” that OopActor can handle
sealed trait Message
final case object Message1 extends Message
final case class Message2(param: SomeType) extends Message
// the factory/constructor method
def apply(): Behavior[Message] =
Behaviors.setup(context => new OopActor(context))
}
private class OopActor(context: ActorContext[OopActor.Message])
extends AbstractBehavior[OopActor.Message](context) {
override def onMessage(msg: OopActor.Message): Behavior[OopActor.Message] =
msg match
case Message1 =>
// handle this message here
Behaviors.same
case Message2(param) =>
// handle this message here
Behaviors.same
}
Behaviors.same
Because onMessage is an overridden method that has a Behavior return type, for a simple example like this, each case of the match expression will return Behaviors.same. This indicates that the next behavior will be the same as the current one. Because an actor can potentially have many behaviors, you’ll see alternatives to this in Recipe 18.8. Also, in the OOP style you can also return this rather than Behaviors.same, so you may see both styles.
18.6 Creating FP-Style Actors
Problem
From the introduction to this chapter, you know that you can create Akka Typed actors in an OOP or FP style, and you want to learn and understand the FP style.
Solution
The FP-style solution is shorter than the OOP solution shown in the previous recipe, only requiring the creation of an object with an apply method that’s implemented with Behavior.setup, and the same messages I used with the OOP style:
object Tom {
// the “messages” this actor can respond to
sealed trait Message
final case object Hello extends Message
// the factory method
def apply(): Behavior[Message] = Behaviors.setup {
context: ActorContext[Message] =>
Behaviors.receiveMessage { message: Message =>
message match {
case Hello =>
println("Hi, I’m Tom.")
Behaviors.same
}
}
}
}
A few notes about the code:
As with the previous recipe, this object defines the messages that Tom can handle, in this case the Hello message.
The body of the apply method is implemented with the help of the Akka Behavior.setup method.
That method passes an ActorContext—typed with Message—to the Behaviors.receiveMessage helper method.
Inside the receiveMessage block of code, the Message that is received is handled in a match expression.
As with the OOP style in the previous recipe, the match expression is overkill for this example, but since it’s what you typically use in the real world, I show it here.
As I explain in “Creating the Actor and ActorSystem at the Same Time”, an ActorSystem is an ActorRef, so actorSystem is essentially an actor, and it would be equally valid to name it tom.
A Note About Sealed Traits
The sealed trait isn’t necessary for this simple example; you could just use a single case object for the message. But because this is the pattern you’ll follow in the real world, I show it like this in this example.
I’ll discuss Behaviors.setup and Behaviors.receiveMessage in the Discussion, but for now, this App lets me test the Tom FP-style actor:
import akka.actor.typed.{ActorRef, ActorSystem, Behavior}
import akka.actor.typed.scaladsl.{ActorContext, Behaviors}
object HiImTomFp extends App {
import Tom.{Message, Hello}
val actorSystem: ActorSystem[Message] = ActorSystem(
Tom(),
"50FirstDatesSystem"
)
actorSystem ! Hello
actorSystem ! Hello
actorSystem ! Hello
Thread.sleep(500)
actorSystem.terminate()
}
In this code:
I import the Message and Hello messages from the Tom object to make the rest of the code easier to read.
I create an ActorSystem with the type Message (i.e., Tom.Message).
The Tom() reference calls the apply method in the Tom object to create a new instance of Tom.
The string "50FirstDatesSystem" can be any legal string, but since this example is modeled after the actor Tom in the movie 50 First Dates, I use this name.
I send three Hello messages to the Tom actor with the ! syntax.
Those last three lines of code result in this output at the sbt prompt:
Hi, I’m Tom.
Hi, I’m Tom.
Hi, I’m Tom.
Discussion
As I discussed in the previous recipe, a big concept here is that Akka Typed does not use the word “actor,” but instead uses the words Behavior and Behaviors. So, again, an important concept to know is that in Akka Typed you’ll focus on behaviors rather than actors.
The Behaviors Scaladoc states that setup is a factory for a behavior, i.e., for the definition of a behavior. It’s used in both the FP and OOP styles.
Behaviors.receiveMessage is one of several ways you can define the body of an actor/behavior. receiveMessage is used in places where you already have an ActorContext—which you receive through Behaviors.setup—and only want to implement the body of the actor by accessing the message it receives.
Common methods you’ll use in this place are shown in Table 18-1.
Method	Description
Behaviors.receiveMessage | Shown in this recipe, you receive a message and handle it, typically with a match expression. |
Behaviors.receiveMessagePartial | The same as receiveMessage, but implement the body of the method with a PartialFunction, typically implementing only a subset of the messages an actor can handle. |
Behaviors.receive | Receive both an ActorContext and the message. |
Behaviors.receivePartial | The same as receive, but implement the body of the method with a PartialFunction, typically implementing only a subset of the messages an actor can handle. |
See the Behaviors object Scaladoc for detailed descriptions of the different methods that are available.
A nice thing about Akka Typed is that its developers let you create actors (behaviors) in either an OOP style or FP style, and you can use both styles in the same application. Use whichever style you’re comfortable with.
18.7 Sending Messages to Actors
Problem
You want to see how to send messages to Akka Typed actors.
Solution
The solution to send a message to an Akka Typed actor is the same as the solution for an Akka Classic actor. First, you need a reference to its ActorRef. Once you have that, send asynchronous messages to it using the ! method:
anActorRef ! "Hello"
You can also send synchronous messages to it using the ask method, but that should be used very rarely, because ask blocks until it gets a reply, and blocking is bad in asynchronous code.
Import statements
These import statements are required by the code that follows:
import akka.actor.typed.{ActorRef, ActorSystem, Behavior}
import akka.actor.typed.scaladsl.{AbstractBehavior, ActorContext, Behaviors}
Modeling the messages
The following example shows how to send messages to Akka Typed actors, and how to receive them in the actor. It uses an example of a smart thermostat and also uses the FP-style actors that are shown in Recipe 18.6.
The first two thoughts I normally have when designing Akka actors are:
What does the actor do?
What messages should the actor receive?
In the case of a smart thermostat, three of the things it does is to allow querying the current temperature, increasing the temperature, and decreasing the temperature. This corresponds to the messages it should be able to receive and handle:
What is the current temperature setting? (CurrentTemperature)
Increase the temperature X degrees. (IncreaseTemperature)
Decrease the temperature X degrees. (DecreaseTemperature)
Assuming that the smart thermostat receives these messages from an actor with the type ActorRef[SystemMessage]—more on this in a moment—with Akka Typed you model those messages like this:
object ThermostatActor {
import ThermostatSupervisor.{SystemMessage, StringMessage}
// our API, i.e., the messages we can respond to
sealed trait MessageToThermostat {
def sender: ActorRef[SystemMessage]
}
final case class CurrentTemperature(sender: ActorRef[SystemMessage])
extends MessageToThermostat
final case class IncreaseTemperature(
sender: ActorRef[SystemMessage],
amount: Int
) extends MessageToThermostat
final case class DecreaseTemperature(
sender: ActorRef[SystemMessage],
amount: Int
) extends MessageToThermostat
// more code here ...
If you’re coming to Akka Typed from Akka Classic, the most unusual thing about this code is that the messages the ThermostatActor can receive also include information about a sender:
sender: ActorRef[SystemMessage]
With Akka Typed messages, it’s common to include a reference to the ActorRef that sent the message to you. In this case I think of myself as being the ThermostatActor, and actors that contact me should have the type shown, ActorRef[SystemMessage].
Programmers typically give this field names like replyTo or sender. The SystemMessage type refers to the type of message the sender is capable of receiving when you send a message back to it, as you’ll see shortly in the Supervisor portion of the code.
The rest of the ThermostatActor code is similar to what I showed in Recipe 18.6: an apply method implemented with Behaviors.setup, Behaviors.receiveMessage, and a match expression:
object ThermostatActor {
// our API, i.e., the messages we can respond to are
// enumerated here ...
var currentTemp = 72
// we respond to `MessageToThermostat` queries
def apply(): Behavior[MessageToThermostat] = Behaviors.setup {
context: ActorContext[MessageToThermostat] =>
Behaviors.receiveMessage { message => message match {
case CurrentTemperature(sender) =>
sendReply(sender)
Behaviors.same
case IncreaseTemperature(sender, amount) =>
currentTemp += amount
sendReply(sender)
Behaviors.same
case DecreaseTemperature(sender, amount) =>
currentTemp -= amount
sendReply(sender)
Behaviors.same
}}
} // Behaviors.setup/apply
private def sendReply(sender: ActorRef[SystemMessage]) = {
val msg = s"Thermostat: Temperature is $currentTemp degrees"
println(msg)
sender ! StringMessage(msg)
}
}
This is standard Scala and Akka Typed code that was explained in Recipe 18.6, so I won’t cover it in detail here. The important part is that the match expression enables the ThermostatActor to respond to all of its messages.
Unless you have an actual thermostat you can connect to, that’s all you have to do to implement a ThermostatActor. Now we just need to write some code to test it.
Creating a supervisor
Next, we’ll create a supervisor actor. This supervisor will create the ThermostatActor, send messages to it, and receive messages back from it. I’ve added comments to the source code that explain how it works:
// import the “messages” from the ThermostatActor
import ThermostatActor.*
object ThermostatSupervisor {
// these are the messages we can receive. some will be sent to us from the
// App, which you’ll see shortly. others are sent to us by the
// ThermostatActor.
sealed trait SystemMessage
case object StartSendingMessages extends SystemMessage
case object StopSendingMessages extends SystemMessage
case class StringMessage(msg: String) extends SystemMessage
// this is the usual `apply` template.
def apply(): Behavior[SystemMessage] = Behaviors.setup[SystemMessage] {
actorContext =>
// when we’re created, the first thing we do is create a
// ThermostatActor. technically, it is a “child” to us.
val thermostat = actorContext.spawn(
ThermostatActor(),
"ThermostatActor"
)
// this is where we set up the handling of messages that can be
// sent to us.
Behaviors.receiveMessage {
// when we receive the message StartSendingMessages,
// send three messages to the ThermostatActor.
case StartSendingMessages =>
thermostat ! CurrentTemperature(actorContext.self)
thermostat ! IncreaseTemperature(actorContext.self, 1)
thermostat ! DecreaseTemperature(actorContext.self, 2)
Behaviors.same
case StopSendingMessages =>
Behaviors.stopped
case StringMessage(msg) =>
println(s"MSG: $msg")
Behaviors.same
}
}
}
A test application
With those two pieces in place, all we need now is an App to test our system:
object ThermostatApp extends App {
import ThermostatSupervisor.{
SystemMessage, StartSendingMessages, StopSendingMessages
}
val actorSystem: ActorSystem[SystemMessage] = ActorSystem(
ThermostatSupervisor(),
"ThermostatSupervisor"
)
actorSystem ! StartSendingMessages
Thread.sleep(1_000)
actorSystem ! StopSendingMessages
Thread.sleep(500)
actorSystem.terminate()
}
This App does the following things:
Imports the messages from the ThermostatSupervisor to make the rest of the code easier to read
Creates an ActorSystem by creating an instance of ThermostatSupervisor and giving the system a name
Sends a StartSendingMessages message to the ThermostatSupervisor
Sleeps for 100 ms, then sends a StopSendingMessages message to the ThermostatSupervisor
Note that when the ThermostatSupervisor receives the StartSendingMessages message, it responds by sending three messages to the ThermostatActor:
case StartSendingMessages =>
thermostat ! CurrentTemperature(actorContext.self)
thermostat ! IncreaseTemperature(actorContext.self, 1)
thermostat ! DecreaseTemperature(actorContext.self, 2)
Behaviors.same
The output of the App looks like this:
Thermostat: Temperature is 72 degrees
Thermostat: Temperature is 73 degrees
Thermostat: Temperature is 71 degrees
MSG: Thermostat: Temperature is 72 degrees
MSG: Thermostat: Temperature is 73 degrees
MSG: Thermostat: Temperature is 71 degrees
Although the order in which messages are delivered in a concurrent system isn’t guaranteed, Figure 18-1 gives you an idea of how the initial messages are sent and replied to in this App.
Figure 18-1. A simplified UML Sequence Diagram that shows the initial messages between the actors
Discussion
In this app, notice that the ThermostatSupervisor sends its own ActorRef to the ThermostatActor using actorContext.self and the ThermostatActor messages:
thermostat ! CurrentTemperature(actorContext.self)
Those messages are then received in the match expression of the ThermostatActor as the sender variable, as in this case:
case CurrentTemperature(sender) =>
sendReply(sender)
Sending ActorRefs
Sending an ActorRef as part of a message is a common pattern with Akka Typed. As shown in my blog post “Akka Typed: Finding Actors with the Receptionist”, you can also look up actor references, but it’s significantly easier if the actor that contacts you gives you a way to respond back to it. This is like putting the return address on an envelope when you send someone a letter, or your email address when you send someone an email.
Messages as being an actor’s API
I find it helpful to think of these messages as being the actor’s API. They are your way of declaring the types of messages an actor can receive. In the OOP world, it’s the equivalent of declaring a class that has these methods:
def currentTemperature(): Int = ???
def increaseTemperature(amount: Int) = ???
def decreaseTemperature(amount: Int) = ???
Or, more accurately:
def currentTemperature(sender: ActorRef[SystemMessage]): Int = ???
def increaseTemperature(sender: ActorRef[SystemMessage], amount: Int) = ???
def decreaseTemperature(sender: ActorRef[SystemMessage], amount: Int) = ???
See Also
There are times when you won’t be able to pass an ActorRef to another actor. In that situation you’ll need to look up the other actor via the Akka Receptionist. I wrote a long blog post about this, “Akka Typed: Finding Actors with the Receptionist”.
18.8 Creating Actors That Have Multiple States (FSM)
Problem
You want to create an actor that can have different behaviors (or states) over time, i.e., you want to implement a finite-state machine (FSM) with Akka Typed.
Solution
With Akka Classic we use a become approach to implement an actor that can have multiple states, but with Akka Typed the approach is different. The solution is to:
Define a function for each state the actor can be in.
Define a unique set of messages that should be handled by each state.
For example, imagine modeling Clark Kent and Superman. They are the same actor, but they can be in two different states at different times, and each state handles different messages. With Akka Typed, you model the messages like this:
sealed trait BaseBehaviors
// clark kent actions
sealed trait ClarkKentBehaviors extends BaseBehaviors
final case object WorkAtNewspaper extends ClarkKentBehaviors
final case object PutOnGlasses extends ClarkKentBehaviors
final case object BecomeSuperman extends ClarkKentBehaviors
// superman actions
sealed trait SupermanBehaviors extends BaseBehaviors
final case object Fly extends SupermanBehaviors
final case object SavePeople extends SupermanBehaviors
final case object BecomeClarkKent extends SupermanBehaviors
Notice that the behaviors are distinct: Clark Kent works at the newspaper, puts on his glasses so nobody will recognize him, and can become Superman. But he doesn’t Fly, SavePeople, or BecomeClarkKent. Each state has its own behaviors.
Given those messages, and these import statements:
import akka.actor.typed.{ActorRef, ActorSystem, Behavior}
import akka.actor.typed.scaladsl.{AbstractBehavior, ActorContext, Behaviors}
The rest of the solution is to define an actor that has two functions, one for each state:
clarkKentState
supermanState
Here’s the source code:
object ClarkKent {
// initial state
def apply(): Behavior[BaseBehaviors] = clarkKentState()
private def clarkKentState(): Behavior[BaseBehaviors] =
Behaviors.receiveMessagePartial[BaseBehaviors] { message: BaseBehaviors =>
message match {
case WorkAtNewspaper =>
println("normalState: WorkAtNewspaper")
Behaviors.same
case PutOnGlasses =>
println("normalState: PutOnGlasses")
Behaviors.same
case BecomeSuperman =>
println("normalState: BecomeSuperman")
supermanState()
}
}
/**
* `Behaviors.receiveMessagePartial`: Construct an actor `Behavior` from a
* partial message handler which treats undefined messages as unhandled.
*/
private def supermanState(): Behavior[BaseBehaviors] =
Behaviors.receiveMessagePartial[BaseBehaviors] { message: BaseBehaviors =>
message match {
case Fly =>
println("angryState: Fly")
// supermanState()
Behaviors.same
case SavePeople =>
println("angryState: SavePeople")
// supermanState()
Behaviors.same
case BecomeClarkKent =>
println("normalState: BecomeClarkKent")
clarkKentState()
}
}
}
The pattern of that code should be familiar from the previous recipes. The first change is that rather than put all the behavior inside the apply method, apply simply declares the initial behavior:
def apply(): Behavior[BaseBehaviors] = clarkKentState()
Then, when the clarkKentState receives a BecomeSuperman message, it switches the state to supermanState:
case BecomeSuperman =>
println("normalState: BecomeSuperman")
supermanState()
Some time later supermanState may receive a BecomeClarkKent message, and it responds by switching to the clarkKentState:
case BecomeClarkKent =>
println("normalState: BecomeClarkKent")
clarkKentState()
The second change is that I use the receiveMessagePartial method rather than receiveMessage to implement each function. I go over this in the Discussion.
A test App
At this point all we need is a test App to demonstrate the system. If you’ve read the previous recipes, this pattern will look familiar:
object ClarkKentApp extends App {
val actorSystem: ActorSystem[BaseBehaviors] = ActorSystem(
ClarkKent(),
"SupermanSystem"
)
actorSystem ! WorkAtNewspaper
// these will fail because the system is in the wrong state
actorSystem ! Fly
actorSystem ! SavePeople
actorSystem ! BecomeClarkKent
// this will work
actorSystem ! WorkAtNewspaper
// now these will work
actorSystem ! BecomeSuperman
actorSystem ! Fly
actorSystem ! SavePeople
actorSystem ! BecomeClarkKent
Thread.sleep(500)
actorSystem.terminate()
}
I added some comments to the code to explain what happens when you send messages to an actor that has multiple states. I wrote this code this way to demonstrate that when you send SupermanBehaviors messages to the actor when the clarkKentState is responding to messages, you’ll generate errors, and when you send ClarkKentBehaviors to the actor when supermanState is handling the messages, you’ll also generate errors.
As a result, the output of this App looks like this:
normalState: WorkAtNewspaper
normalState: WorkAtNewspaper
normalState: BecomeSuperman
angryState: Fly
angryState: SavePeople
normalState: BecomeClarkKent
[date time] [INFO] [akka.actor.LocalActorRef]
[SupermanSystem-akka.actor.default-dispatcher-3] [akka://SupermanSystem/user]
- Message [clark_kent.Fly$] to Actor[akka://SupermanSystem/user] was
unhandled. [1] dead letters encountered. This logging can be turned off or
adjusted with configuration settings 'akka.log-dead-letters' and
'akka.log-dead-letters-during-shutdown'.
more “dead letter” logging here ...
Discussion
As I mentioned in Recipe 18.6, with Behaviors.receiveMessagePartial you implement the body of the method with a PartialFunction, implementing only a subset of the messages an actor can handle. Messages that you don’t handle in your match expression are considered unhandled messages, and if they are sent to your actor, they’ll end up in the dead letter system.
In this code I take an approach of defining BaseBehaviors as the root of all behaviors this actor can handle. Then I handle ClarkKentBehaviors in the clarkKentState method and handle the SupermanBehaviors in the supermanState method. Because I use a sealed trait and final case objects, the Scala compiler is able to determine that I handle a subset of all the messages in each method, and it treats those match expressions as partial functions.
Dead letters
In a post office system in the physical world, such as in the United States, a dead letter is a letter that cannot be delivered for a variety of reasons, such as a bad address, so that letter is sent to a dead letter office. (I have no idea what happens to the letter there.)
Similarly, as described in this Akka reference page, “Messages which cannot be delivered (and for which this can be ascertained) will be delivered to a synthetic actor called /deadLetters. This delivery happens on a best-effort basis; it may fail even within the local JVM….The main use of this facility is for debugging.”
In my example I don’t make any attempt to monitor these dead letters, I just let the logging facility print them to the console. If you want to monitor dead letters on the local system, create an actor that subscribes to the akka.actor.DeadLetter class. This process is described on this Akka event bus page, and the process of subscribing is similar to the process of finding actors and listening to them, which I demonstrate in my blog post “Akka Typed: Finding Actors with the Receptionist”.
Note that per the documentation, “dead letters are not propagated over the network,” so if you have a distributed system and want to collect them all in one place, “you will have to subscribe one actor per network node and forward them manually.”
Chapter 19. Play Framework and Web Services
This chapter demonstrates recipes for working with web services in Scala, including how to handle server-side HTTP requests, how to convert between JSON and Scala objects, and how to write client-side HTTP requests.
In 2021 there are several great libraries for server-side development with Scala, which you can find on the Awesome Scala list. This chapter focuses on the Play Framework (Play) because it’s popular, well supported, and relatively easy to get started with, especially if you’ve used a framework like Ruby on Rails previously.
One important note is that at the time this book was being produced, Play was not yet updated to work with Scala 3. Therefore, the Play examples you’ll see in this chapter use the Scala 2 syntax. That being said, the Play API has been fairly stable going back to 2013 and the release of the first edition of the Scala Cookbook, so these examples are expected to translate well to Play when it’s available for Scala 3.
The initial recipes in this chapter focus on server-side development with Play. These recipes include:
Recipe 19.1, creating a first Play project
Recipe 19.2, creating a new endpoint, i.e., a URL for a server-side REST service
Recipe 19.3, returning JSON from a Play GET request
Recipe 19.4, converting a Scala object to JSON
Recipe 19.5, converting JSON to a Scala object
Then the last recipes demonstrate techniques that can work with server- or client-side development:
Recipe 19.6, using the Play JSON library without the Play Framework
Recipe 19.7, using the sttp HTTP client
19.1 Creating a Play Framework Project
Problem
Most recipes in this chapter use the Play Framework (Play), and if you haven’t used Play before, you need to know how to create a new Play project.
Solution
The easiest way to create a new Play project is with the sbt seed template:
$ sbt new playframework/play-scala-seed.g8
When that command runs, you just need to give it a project name and organization name, then cd into the new directory, as shown in this interaction:
$ sbt new playframework/play-scala-seed.g8
[info] Set current project to play ...
This template generates a Play Scala project
name [play-scala-seed]: hello-world
organization [com.example]: com.alvinalexander
Template applied in hello-world
$ cd hello-world
Then inside that project directory, run the sbt run command:
$ sbt run
// a LOT of output here ...
[info] loading settings for project hello-world-build from plugins.sbt ...
[info] loading settings for project root from build.sbt ...
[info] set current project to hello-world ...
--- (Running the application, auto-reloading is enabled) ---
[info] p.c.s.AkkaHttpServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000
(Server started, use Enter to stop and go back to the console...)
The first time you run that command there will be a lot of output, hopefully ending with those last three lines, which indicate that the Play server is running on port 9000.
Now when you open the http://localhost:9000 URL in a browser, you’ll see a “Welcome to Play” web page that looks like the one in Figure 19-1.
Figure 19-1. The “Welcome to Play!” greeting
If you need to run Play on a port other than 9000, use this command at your operating system command line:
$ sbt "run 8080"
Or use this command from inside the sbt shell:
sbt> run 8080
Discussion
A Play application consists of the following components:
The sbt build.sbt file that contains application dependencies and other configuration information.
Controllers that are placed in the app/controllers folder.
Models in the app/models folder. This folder is usually not automatically created.
Templates that contain HTML, JavaScript, CSS, and Scala code snippets are placed in the app/views folder.
A conf/routes file that maps URIs and HTTP methods to controller methods.
Other important files include:
Application configuration information in the conf/application.conf file. This includes information on how to access databases.
Database evolution scripts in the conf/evolutions folder.
Design assets for the template files are placed in the public/images, public/javascripts, and public/stylesheets folders.
Because this chapter is about building web services—and not Web 1.0 applications—the primary focus is on these directories and files:
The conf/routes routing file
Your custom controllers in app/controllers
The conf/routes file
To understand the files in the project, first look at the conf/routes file. The current Play 2.8 template creates a file with these contents:
Routes
This file defines all application routes (Higher priority routes first)
https://www.playframework.com/documentation/latest/ScalaRouting
An example controller showing a sample home page
GET / controllers.HomeController.index
Map static resources from the /public folder to the /assets URL path
GET /assets/*file controllers.Assets.versioned(path="/public", file: Asset)
To understand how the welcome page is displayed, this is the important line in that file:
GET / controllers.HomeController.index
This line can be read as, “When the HTTP GET method is called on the / URI, call the index method defined in the HomeController class that’s in the controllers package.” If you’ve used other frameworks like Ruby on Rails, you’ve seen this sort of thing before. It binds a specific HTTP method—such as GET or POST—and a URI to a method in a class.
Two important things to know about routing are:
The conf/routes file is compiled, so you’ll see routing errors directly in your browser.
As you’re about to see in the controller class code, it uses dependency injection. Per the Play documentation, “Play’s default routes generator creates a router class that accepts controller instances in an @Inject-annotated constructor. That means the class is suitable for use with dependency injection and can also be instantiated manually using the constructor.”
The controller
Next, open the app/controllers/HomeController.scala file and look at its index method:
package controllers
import javax.inject._
import play.api._
import play.api.mvc._
/**
* This controller creates an `Action` to handle HTTP requests to the
* application's home page.
*/
@Singleton
class HomeController @Inject()(val controllerComponents: ControllerComponents)
extends BaseController {
/**
* Create an Action to render an HTML page.
*
* The configuration in the `routes` file means that this method
* will be called when the application receives a `GET` request with
* a path of `/`.
*/
def index() = Action { implicit request: Request[AnyContent] =>
Ok(views.html.index())
}
}
This is a normal Scala source code file, with one method named index. This method implements a Play Action by calling a method named Ok, and passing in the content shown. The code views.html.index is the Play way of referring to the app/views/index.scala.html template file. A terrific thing about the Play architecture is that Play templates are compiled to Scala functions, so what you’re seeing in this code is a normal function call:
Ok(views.html.index())
This code essentially calls a function named index in the views.html package.
The view templates
Knowing that a template compiles to a normal Scala function, open the app/views/index.scala.html template file, where you see the following contents:
@()
@main("Welcome to Play") {
<h1>Welcome to Play!</h1>
}
Notice the first line of code:
@()
If you think of the template as a function, this is the parameter list of the function. In this example the parameter list is empty, but if this template took one string parameter that you named message, that line would look like this:
@(message: String)
The @ symbol in this file is a special character in a Play template file. It indicates that what follows after it is a Scala expression. For instance, in the line of code shown, the @ character precedes the function parameter list. In the third line of code, the @ character precedes a call to a function named main. Notice in that line of code, the string “Welcome to Play” is passed to the main method.
As you might have guessed, though main looks like a function, it’s also a template file. When the code calls main, it actually invokes the app/views/main.scala.html template. Here’s the default source code for main.scala.html:
@(title: String)(content: Html)
<!DOCTYPE html>
<html lang="en">
<head>
@* Here's where we render the page title `String`. *@
<title>@title</title>
<link rel="stylesheet" media="screen"
href="@routes.Assets.versioned("stylesheets/main.css")">
<link rel="shortcut icon" type="image/png"
href="@routes.Assets.versioned("images/favicon.png")">
</head>
<body>
@* And here's where we render the `Html` object containing
* the page content. *@
@content
<script src="@routes.Assets.versioned("javascripts/main.js")"
type="text/javascript"></script>
</body>
</html>
This file is the default wrapper template file for the project. If every other template file calls main the same way the index.scala.html file calls it, you can be assured that those templates will be wrapped with this same HTML, CSS, and JavaScript. As a result, all of your pages will have the same look and feel.
For the purposes of the lessons in this chapter you won’t need to know these details, but I wanted to show you these two initial files to give you a flavor of what web applications look like in Play.
Single-Page Applications
When I say “web applications,” I mean applications written in HTML—or in this case, a templating system that supports a mix of HTML and Scala snippets—with JavaScript and CSS added into the HTML. For single-page applications (SPAs) written in JavaScript, where you want to use Play on the server side, you don’t need to know much more about Scala’s templating system.
The sbt/Play console
While you’re developing an application, start sbt in the root directory of your project:
$ sbt
From there you can run all the usual sbt commands, and you can also start your application. As shown in the Solution, this command starts the application on the default 9000 port:
[play01] $ run
(lots of output here ...)
--- (Running the application, auto-reloading is enabled) ---
[info] p.c.s.AkkaHttpServer - Listening for HTTP on /0:0:0:0:0:0:0:0:9000
(Server started, use Enter to stop and go back to the console ...)
The last line of the sbt output shows that you press Enter to stop the server and return to the sbt prompt.
As you’ll see in some of the following recipes, you can also issue a console command inside sbt:
sbt> console
[info] Starting scala interpreter...
Welcome to Scala 2.13
Type in expressions for evaluation. Or try :help.
scala> _
This starts a Scala REPL with all of your project dependencies loaded. From here you test Play JSON code and other Play code, including using your custom classes, models, etc.
See Also
For more “getting started” information see the Play Framework website.
Although it was written for an earlier version of Play, my Play Framework Recipes booklet is free to download.
See Chapter 17 for many examples of how to use sbt.
See Recipe 21.3, “Building Single-Page Applications with Scala.js” for details about how to create single-page applications with Scala.js.
19.2 Creating a New Play Framework Endpoint
Problem
When using Play as a RESTful server for a single-page application, you want to create a new endpoint (a term that’s also referred to as a URL, URI, or route when talking about REST services).
Solution
Creating a new endpoint in a Play application involves creating a new route, a controller method, and typically a new model or adding to an existing model. The specific steps are:
Create a new route in the conf/routes file.
The new route points to a controller method, so create that controller method; also create the controller class if it doesn’t already exist.
The controller method typically requires a model class, so create that class as needed.
Test your new service.
To demonstrate this process, you’ll add on to the skeleton project created in the previous recipe. In this solution you’ll create new code that responds to a GET request at a /hello URI. When that request is received, your controller method returns a string as a text/plain response.
1. Create a new route
To begin, you know you want to handle a new URI at /hello, so add a new route to the conf/routes file. You also know this will be an HTTP GET request, so map the URI by adding these lines to the end of the file:
our app
GET /hello controllers.HelloController.sayHello
This can be read as, “When a GET request is made at the /hello URI, invoke the sayHello method of the HelloController class in the controllers package.”
2. Create a new controller method
Next, create the HelloController class in a HelloController.scala file in the app/controllers directory. Add the following code to that class:
package controllers
import javax.inject._
import play.api._
import play.api.mvc._
import models._
@Singleton
class HelloController @Inject()(val controllerComponents: ControllerComponents)
extends BaseController {
def sayHello() = Action {
Ok("Hello, world")
}
}
When the sayHello method in this class is invoked, it returns an instance of an Action, with the Ok method implemented as shown. This code is explained in the Discussion.
3. Create a model
In most situations in the real world you’ll create a model class and database-related code, but for a small example like this, that isn’t needed.
4. Test your service
With the parts in place—and because this is a simple GET request that doesn’t pass cookies or header information to the server—you can test this in your browser. Go to the http://localhost:9000/hello URI in your browser, where you should see the words Hello, world printed.
You can also test this with a command-line tool like curl:
$ curl --request GET http://localhost:9000/hello
Hello, world
If you want to see the headers that Play returns, use the curl --head command:
$ curl --head http://localhost:9000/hello
HTTP/1.1 200 OK
Date: (the date and time are shown here)
Content-Type: text/plain; charset=UTF-8
Content-Length: 12
(other headers have been omitted)
Notice that when a String is passed into Ok, the content type is automatically set to text/plain.
Discussion
When you examine the sayHello method, you’ll see that it returns a Play Action:
def sayHello() = Action {
Ok("Hello, world")
}
An Action is a function that handles a request and creates a result that is sent to the client. More specifically, Action is a function that takes a Request and returns a Result. Its signature is defined like this:
play.api.mvc.Request => play.api.mvc.Result
In this example I don’t deal with the Request, and the Result is the value that’s returned to the client. It represents the HTTP response that you create.
Explaining the Ok method
The Ok method used as the last line of the sayHello method constructs a “200 OK” response. Using Ok inside Action is equivalent to writing this much longer code:
def sayHello = Action {
Result(
header = ResponseHeader(200, Map.empty),
body = HttpEntity.Strict(
ByteString("Hello, world"),
Some("text/plain")
)
)
}
In addition to Ok, other common response methods include Forbidden, NotFound, BadRequest, MethodNotAllowed, and Redirect. You can also set the status code manually like this:
Status(5150)("Van Halen status")
When you access the endpoint, that method results in output that looks like this:
$ curl http://localhost:9000/hello
Van Halen status
$ curl --head http://localhost:9000/hello
HTTP/1.1 5150
(other output not shown)
All the available helper methods can be found in the play.api.mvc.Results Scaladoc.
This code responds to a simple GET request
It’s important to note that the code that’s shown responds to a simple GET request—it expects no parameters from the client. For instance, if you call the URL with query parameters, they’re happily ignored by Play:
$ curl --request GET "http://localhost:9000/hello?x=1&y=2"
Hello, world
You configure what parameters your service can handle in the conf/routes file, and since I didn’t declare that the /hello URI takes any parameters, ones that are passed to it are ignored.
Additionally, Play will throw an error if you attempt to use another method to call this URI, such as PUT, POST, DELETE, or other non-GET methods:
$ curl --request POST http://localhost:9000/hello
(long error message here ...)
Handling query parameters
To handle query parameters with a GET request, follow the same steps:
1. Create a new route
Add a new line for the new service at the end of the conf/routes file, defining it to take a parameter named name:
GET /hi/:name controllers.HelloController.sayHi(name: String)
This can be read as, “When a GET request is made at the /hi URI with the name parameter, pass that name to the sayHi method of the HelloController.”
2. Create a new controller method
Next, update the HelloController class. Add this new sayHi method after the original sayHello method:
def sayHi(theName: String) = Action {
Ok(s"Hi, $theName")
}
Notice that this method takes a String parameter, and also that it doesn’t need to have the same name that’s used in the routes file.
3. Create a model
In this case you don’t need a model, so skip this step.
4. Test your service
Test this new service by going to this URL in your browser or by using curl:
$ curl --request GET http://localhost:9000/hi/Darja
Hi, Darja
There are several more ways to handle routes and query parameters with Play. See the Play Scala HTTP Routing page for more details.
See Also
See the Play Framework page on actions, controllers, and results for more details on creating actions and controllers.
See Play’s Scala HTTP Routing page for more details on defining routes.
19.3 Returning JSON from a GET Request with Play
Problem
You want to know how to write a Play Framework controller method that returns JSON in response to a GET request.
Solution
The general solution is:
Add an entry to the conf/routes file to define your new endpoint.
Create a controller class and method that matches the description in that file.
Create the necessary model, and code to serialize that model to JSON.
Test your new service with your browser, or a tool like curl.
Depending on your preferred coding approach, the first three steps can happen in any order. Typically you want to work either from the endpoint back to the model as shown, or from the model forward to the endpoint.
In this solution you’ll follow the order in the list to create a REST service that returns information about movies in response to a GET request.
1. Add an entry to the routes file
Following the steps shown, this solution creates the endpoint first and then creates everything that’s needed to fulfill that service. The first step is to add this code to your conf/routes file to create that endpoint:
GET /movies controllers.MovieController.getMovies
This can be read as “When a GET request is called at the /movies URI, invoke the getMovies method in the MovieController class in the controllers package.”
2. Create a controller and method
Next, create the getMovies method in the MovieController class. To keep this as simple as possible initially, the code will convert a list of strings—the names of movies—into JSON and then return that JSON. The list of movies and the JSON conversion process are shown in this controller code:
package controllers
import javax.inject._
import play.api.mvc._
import play.api.libs.json._
import models.Movie
@Singleton
class MovieController @Inject()(val controllerComponents: ControllerComponents)
extends BaseController {
/**
* Let Play convert the `List[String]` to JSON for you.
*/
def getMovies = Action {
// these three steps are shown explicitly so you
// can see the types:
val goodMovies: Seq[String] = Movie.goodMovies()
val json: JsValue = Json.toJson(goodMovies)
Ok(json)
}
}
A few notes about this code:
It’s a new controller, just like the ones created in the previous recipes.
The Json.toJson method knows how to convert a Seq[String] into JSON.
The Ok method constructs a “200 OK response.”
The last two points are detailed in the Discussion.
3. Create a model
Now all you have to do is create a model to match that code:
package models
object Movie {
def goodMovies(): Seq[String] = List(
"The Princess Bride",
"The Matrix",
"Firefly"
)
}
In the real world—and in the following recipes—a model will be more complicated. But to keep this example as simple as possible, goodMovies is defined as a method that returns a List[String]. (In the real world, goodMovies retrieves that data from a database or other data store.)
4. Access the endpoint with your browser or curl
For a GET request like this that doesn’t pass any custom header information to the server, you can test your code with a browser. Just access the http://localhost:9000/movies URL in your browser, and you should see this JSON output:
["The Princess Bride","The Matrix","Firefly"]
You can also use a command-line tool like curl:
$ curl --request GET http://localhost:9000/movies
["The Princess Bride","The Matrix","Firefly"]
Assuming you see that—congratulations—you created a Play Framework action that responds to a GET request and returns JSON output.
Discussion
Let’s look at how the controller code works.
Json.toJson
This step in the code works because the Json.toJson method knows how to convert a list of strings—our movies—into JSON:
val json: JsValue = Json.toJson(goodMovies)
The way this works in Scala 2 is that the toJson method is defined like this:
Json.toJsonT(implicit writes: Writes[T])
As shown in Recipe 19.4, a Writes value is a converter that knows how to convert a Scala type into JSON. Play comes with prebuilt Writes converters for basic types like Int, Double, String, etc. These converters are brought into scope when you import the types in the play.api.libs.json._ package.
It also has implicit Writes implementations for collections, so if a type A has a Writes[A] converter, the Json.toJson method can convert a collection that contains that type A. In this example Play supplies a Writes[String] converter for us, so it can also convert a Seq[String].
The Ok method
The Ok method used as the last line of the getMovies method constructs a “200 OK” response. It’s equivalent to writing this longer code:
def index = Action {
Result(
header = ResponseHeader(200, Map.empty),
body = HttpEntity.Strict(
//JSON here ...
Some("application/json")
)
)
}
As shown, when Ok returns a JsValue object, it sets the content type to "application/json". You can confirm this in the output of this curl command:
$ curl -I http://localhost:9000/movies
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 45
(other output not shown)
The Play JSON types
Like other JSON frameworks, Play has implementations of types that correspond to the JSON types:
JsString
JsNumber
JsObject
JsNull
JsBoolean
JsArray
JsUndefined
Each of those types is a subtype of JsValue. Note that JsArray is a sequence, and can contain a heterogeneous or homogeneous collection of the other JsValue types.
These types are in the play.api.libs.json package, and you can use them in your code by importing play.api.libs.json._.
How to use Play/JSON in the Scala REPL
You can see how those types work in the Play/sbt REPL. To see this, first start sbt in the root directory of your Play project:
$ sbt
Then inside the sbt shell, issue its console command:
sbt> console
This starts a Scala REPL. In addition to being a normal REPL, you also have access to all of your project’s classes on the classpath. So you can import the JSON types:
scala> import play.api.libs.json._
Then you can run any experiment you like. These examples show some expressions you can execute, and their resulting types:
JsString("hi") // JsString = "hi"
JsNumber(100) // JsNumber = 100
JsNumber(1.23) // JsNumber = 1.23
JsNumber(BigDecimal(1.23)) // JsNumber = 1.23
JsBoolean(true) // JsBoolean = true
val x = Json.toJson(4) // JsValue = 4
val x = Json.toJson(false) // JsValue = false
// Sequences
Json.toJson(Seq("A", "B", "C")) // JsValue = ["A","B","C"]
JsArray(Array(Json.toJson(1))) // JsArray = [1]
JsArray(Seq(Json.toJson("Hi"))) // JsArray = ["Hi"]
JsArray(Array(1)) // does not compile
// Map
val map = Map("1" -> "a", "2" -> "b")
Json.toJson(map) // JsValue = {"1":"a","2":"b"}
// Some
val number = Json.toJson(Some(100)) // JsValue = 100
val number = Json.toJson(Some("Hi")) // JsValue = "Hi"
// None
val x: Option[Int] = None
val number = Json.toJson(x) // JsValue = null
See Also
19.4 Serializing a Scala Object to a JSON String
Problem
You want to convert a Scala object to a JSON string using the Play Framework.
Solution
The preferred approach is to create an implicit Writes converter for your class and then use the Json.toJson method to convert (serialize) your class to a JSON string value.
For example, given this Movie class:
case class Movie(title: String, year: Int, rating: Double)
create an implicit Writes value for Movie like this:
import play.api.libs.json._
implicit val movieWrites = new Writes[Movie] {
def writes(m: Movie) = Json.obj(
"title" -> m.title,
"year" -> m.year,
"rating" -> m.rating
)
}
Now you can create an instance of your class:
val pb = Movie("The Princess Bride", 1987, 8.5)
and then convert it to JSON using Json.toJson:
scala> val json = Json.toJson(pb)
val json: play.api.libs.json.JsValue =
{"title":"The Princess Bride","year":1987,"rating":8.5}
A sequence of objects
A great thing about this approach is that it also works for collections of objects. Just create your collection:
val goodMovies = List(
Movie("The Princess Bride", 1987, 8.5),
Movie("The Matrix", 1999, 8.8),
Movie("Firefly", 2002, 9.2)
)
then serialize it to JSON:
scala> val json = Json.toJson(goodMovies)
val json: play.api.libs.json.JsValue = [
{"title":"The Princess Bride","year":1987,"rating":8.5},
{"title":"The Matrix","year":1999,"rating":8.8},
{"title":"Firefly","year":2002,"rating":9.2}
]
As you’ll see in the Discussion, the approach also works for nested objects.
Discussion
This approach works because Json.toJson is designed to use an implicit Writes value that’s available in the current scope:
Json.toJsonT(implicit writes: Writes[T])
Writes is a trait in the play.api.libs.json package, and when you define an implicit Writes instance for your class, like this:
implicit val movieWrites = new Writes[Movie] ...
and then import it into the current scope, the Json.toJson method can then process the conversion. As shown in the Solution, it works for a single instance of a class as well as a collection of that type.
Nested objects
The same Writes technique also supports nested objects. For instance, given these two case classes:
case class Address(
street: String,
city: String,
state: String,
postalCode: String
)
case class Person(name: String, address: Address)
you create implicit Writes converters for them:
object WritesConverters {
import play.api.libs.json._
implicit val addressWrites = new Writes[Address] {
def writes(a: Address) = Json.obj(
"street" -> a.street,
"city" -> a.city,
"state" -> a.state,
"postalCode" -> a.postalCode,
)
}
implicit val personWrites = new Writes[Person] {
def writes(p: Person) = Json.obj(
"name" -> p.name,
"address" -> p.address
)
}
}
Then, after you import them into scope, you can create a Person instance that contains an Address and convert the Person to JSON. This process is shown in this Scala 2 App:
object JsonWrites2AddressPerson extends App {
import WritesConverters._
val stubbs = Person(
"Stubbs",
Address(
"123 Main Street",
"Talkeetna",
"Alaska",
"99676"
)
)
val jsValue = Json.toJson(stubbs)
println(jsValue)
}
When that code runs you’ll see that jsValue has this type and data:
jsValue: JsValue = {
"name":"Stubbs",
"address":{
"street":"123 Main Street",
"city":"Talkeetna",
"state":"Alaska","postalCode":"99676"
}
}
Other approaches you can use
With Play you can use other approaches to serialize Scala objects into JSON, but the Writes approach is straightforward, so there doesn’t seem to be a huge advantage to using other approaches.
As a quick look at one alternative technique, this code shows another way to convert a Movie instance named m into a JsValue:
import play.api.libs.json._
val json: JsValue = JsObject(
Seq(
"title" -> JsString(m.title),
"year" -> JsNumber(m.year),
"rating" -> JsNumber(m.rating)
)
)
See the Play page on JSON basics for details on other conversion approaches.
19.5 Deserializing JSON into a Scala Object
Problem
Your Play Framework code is going to receive a JSON that corresponds to a Scala class, and you need to know how to convert the JSON to a single Scala object, or potentially to a sequence of Scala objects.
Solution
Handling JSON for a single Scala object is shown in this Solution. Handling JSON that represents a sequence of objects is shown in the Discussion.
To convert a JSON string to a single Scala object, follow these steps:
Create a class to match the JSON.
Create a Play Reads converter.
Receive the JSON in a Play controller method.
Convert the JSON string to your Scala object, validating the JSON during the process.
This is essentially the reverse of the previous recipe, with the additional validation step. Where the previous recipe used an implicit Writes value, this approach uses an implicit Reads value.
1. Create a Scala class to match the JSON
For example, given a JSON string that represents a Movie class:
val jsonString = """{"title":"The Princess Bride","year":1987,"rating":8.5}"""
create a case class that corresponds to the JSON:
case class Movie(title: String, year: Int, rating: Double)
2. Create a Reads converter
Then create an implicit Reads converter for the Movie type:
import play.api.libs.json._
import play.api.libs.functional.syntax._
// conversion without validation
implicit val movieReads: Reads[Movie] = (
(JsPath \ "title").read[String] and
(JsPath \ "year").read[Int] and
(JsPath \ "rating").read[Double]
)(Movie.apply _)
Without using validation, you can transform the JSON string into a Scala Movie object using Json.fromJson:
val json: JsValue = Json.parse(jsonString)
val movie = Json.fromJson(json)
// JsResult[Movie] = JsSuccess(Movie(The Princess Bride,1987,8.5),)
However, you’ll always want to validate any external data coming into your application, so a more real-world approach is to add validation to each value:
// conversion with validation.
// minLength, min, and max are validation methods that come with
// the Reads object.
import play.api.libs.json._
import play.api.libs.functional.syntax._
import play.api.libs.json.Reads._
implicit val movieReads: Reads[Movie] = (
(JsPath \ "title").read[String](minLength[String](2)) and
(JsPath \ "year").read[Int](min(1920).keepAnd(max(2020))) and
(JsPath \ "rating").read[Double](min(0d).keepAnd(max(10d)))
)(Movie.apply _)
Functions like min, minLength, and max are helper validation methods that come with the Reads object, and those examples show how to apply them to the three incoming fields.
Readability
If your code gets too difficult to read when you add validators, consider working with one JsPath field at a time.
3. Receive the JSON in a controller method
This step isn’t used in this recipe, but you’ll want to use a controller method. See the Discussion for more details.
4. Convert the JSON to a Scala object
Now you can attempt to parse and validate the JSON to construct a Scala object:
val json: JsValue = Json.parse(jsonString)
val jsResult = json.validate[Movie]
When the validation works, jsResult will have this type and data:
jsResult: JsResult[Movie] = JsSuccess(Movie(The Princess Bride,1987,8.5),)
One way to handle the jsResult value—which is either a JsSuccess or a JsError—is to use a match expression:
jsResult match {
case JsSuccess(movie,_) => println(movie)
case e: JsError => println(s"error: $e")
}
That’s a common approach, and the JsResult type also has other methods you can use, including asOpt, fold, foreach, and getOrElse.
Discussion
This solution is similar to the last recipe, but instead of going from a Scala object to a JSON string, this recipe does the opposite, going from a JSON string to a Scala object. Where the last recipe uses an implicit Writes converter and Json.toJson method, this recipe uses an implicit Reads converter with the Json.fromJson and json.validate methods.
JSON and controller methods
Controller methods aren’t shown in this recipe, but they are shown in Recipes 19.1 and 19.2.
When working with JSON in a controller method, you’ll work with the request object, using code like this:
// one option
def yourMethod = Action { request: Request[AnyContent] =>
val json: Option[JsValue] = request.body.asJson
// more the json here ...
}
// another option ("body parser")
def yourMethod = Action(parse.json) { request: Request[JsValue] =>
// work with 'request' as JSON here
val name = request.body \ "username").as[String]
}
See the Play Framework documentation for more details on using Action, JSON, and a topic known as body parsers.
Using JsPath
The pattern shown in the solution is known as the combinator pattern:
(JsPath \ "title").read[String] and
(JsPath \ "year").read[Int] and
(JsPath \ "rating").read[Double]
In this code, JsPath is a class that represents a path to a JsValue—i.e., its location in a JsValue structure. Its use is meant to be analogous to using XPath for working with XML, and it traverses JsValue structures for the search pattern you provide.
For nested objects, use a search path like this:
val city = JsPath \ "address" \ "city"
For sequences of objects, access sequence elements like this:
val friend0 = (JsPath \ "friends")(0)
See the “Reads” section of the Play documentation on Reads/Writes/Format combinators for more JsPath details.
Handling bad data
When the data you receive doesn’t pass the validation process, the validate step returns a JsError. For example, this JSON string uses the incorrect key name instead of the correct key title:
// intentional mistake here (using 'name' instead of 'title'):
val jsonString = """{"name":"The Princess Bride","year":1987,"rating":8.5}"""
So when you run the validate method, it returns a JsError:
scala> json.validate[Movie]
val res0: play.api.libs.json.JsResult[Movie] =
JsError(List((/title,List(JsonValidationError(List(error.path.missing),
ArraySeq())))))
Now when you use a match expression, the JsError case is triggered:
jsResult match {
case JsSuccess(movie,_) => println(movie)
case e: JsError => println(s"error: $e")
}
// output:
JsError(List(
(/title,List(JsonValidationError(List(error.path.missing),ArraySeq())))))
Validators
As shown in the validation example, Play has several validation helpers built in. They’re contained in the Reads object and are imported like this:
import play.api.libs.json.Reads._
The current built-in validators are:
email validates that a string has the proper email format.
minLength validates the minimum length of a collection or string.
min validates that a value is greater than a minimum.
max validates that a value is less than a maximum.
It also has the keepAnd, andKeep, and or methods, which work as operators. See the Play JSON documentation on Reads/Writes/Format combinators for details on these combinator methods.
Handling a sequence of JSON data
The same approach works when your method receives a sequence of JSON data for a model. The only thing you have to do is change Movie in this line of code:
val jsResult = json.validate[Movie]
to Seq[Movie]:
val jsResult = json.validate[Seq[Movie]]
You can demonstrate this by starting the sbt console in the root directory of a Play project:
$ sbt
play> console
scala> _
Then when you paste this code into the REPL:
import play.api.libs.json._
import play.api.libs.json.Reads._
import play.api.libs.functional.syntax._
case class Movie(title: String, year: Int, rating: Double)
val jsonString = """[
{"title":"The Princess Bride","year":1987,"rating":8.5},
{"title":"The Matrix","year":1999,"rating":8.8},
{"title":"Firefly","year":2002,"rating":9.2}
]"""
implicit val movieReads: Reads[Movie] = (
(JsPath \ "title").read[String](minLength[String](2)) and
(JsPath \ "year").read[Int](min(1920).keepAnd(max(2020))) and
(JsPath \ "rating").read[Double](min(0d).keepAnd(max(10d)))
)(Movie.apply _)
val json: JsValue = Json.parse(jsonString)
val jsResult = json.validate[Seq[Movie]]
you’ll see that jsResult contains the list of movies inside a JsSuccess value:
jsResult: play.api.libs.json.JsResult[Seq[Movie]] =
JsSuccess(List(Movie(The Princess Bride,1987,8.5) ...
scala> jsResult.get.foreach(println)
Movie(The Princess Bride,1987,8.5)
Movie(The Matrix,1999,8.8)
Movie(Firefly,2002,9.2)
See Also
The Scaladoc for the Play Reads object provides more details on the helper methods that are available.
19.6 Using the Play JSON Library Outside of the Play Framework
Problem
Because you’re comfortable using the Play JSON library inside the Play Framework, you want to be able to use it outside of the Framework as well.
Solution
Play JSON exists as a standalone library, so you can use it in your Scala projects outside of the Play environment. For instance, when using sbt, just add its dependency to your build.sbt file:
"com.typesafe.play" %% "play-json" % "2.9.1"
A complete build.sbt file that uses Play JSON and sttp looks like this:
name := "PlayJsonWithoutPlay"
version := "0.1"
scalaVersion := "2.13.5"
libraryDependencies ++= Seq(
"com.typesafe.play" %% "play-json" % "2.9.1",
"com.softwaremill.sttp.client3" %% "core" % "3.2.3"
)
Once you’ve added the dependency, write your JSON application code just as though you are writing code using the Play Framework.
From a Scala object to JSON
This example shows how to go from a Scala object to JSON with a Writes converter:
import play.api.libs.json._
case class Movie(title: String, year: Int, rating: Double)
object JsonWithoutPlay_WritesExample extends App {
implicit val movieWrites = new Writes[Movie] {
def writes(m: Movie) = Json.obj(
"title" -> m.title,
"year" -> m.year,
"rating" -> m.rating
)
}
val pb = Movie("The Princess Bride", 1987, 8.5)
println(Json.toJson(pb))
}
From JSON to a Scala object
This example shows how to use sttp to access a REST API, and then convert the JSON it receives into a Scala object using Play JSON. Because all of this code is shown in other recipes, the comments describe how it works:
import play.api.libs.json._
import play.api.libs.functional.syntax._
import play.api.libs.json.Reads._
import sttp.client3._
// a case class to model the data received from the REST url
case class ToDo(
userId: Int,
id: Int,
title: String,
completed: Boolean
)
object JsonWithoutPlay_ReadsExample extends App {
// the Reads implementation that matches the data.
// the first three fields are also validated.
implicit val todoReads: Reads[ToDo] = (
(JsPath \ "userId").read[Int](min(0)) and
(JsPath \ "id").read[Int](min(0)) and
(JsPath \ "title").read[String](minLength[String](2)) and
(JsPath \ "completed").read[Boolean]
)(ToDo.apply _)
// make the GET request with sttp
val response = basicRequest
.get(uri"https://jsonplaceholder.typicode.com/todos/1")
.send(HttpURLConnectionBackend())
// get the JSON from the response, then convert the JSON string
// to a Scala `ToDo` instance
response.body match {
case Left(e) => println(s"Response error: $e")
case Right(jsonString) =>
val json: JsValue = Json.parse(jsonString)
val jsResult = json.validate[ToDo]
jsResult match {
case JsSuccess(todo,_) => println(todo)
case e: JsError => println(s"JsError: $e")
}
}
}
JSONPlaceholder is a popular service used for testing REST calls and currently serves about 900 million test requests per month. When you access the URL shown in the code with curl, you see this JSON result:
$ curl https://jsonplaceholder.typicode.com/todos/1
{
"userId": 1,
"id": 1,
"title": "delectus aut autem",
"completed": false
}
This JSON is transformed into the values you see in the jsResult and todo variables:
jsResult: JsSuccess(ToDo(1,1,delectus aut autem,false),)
ToDo(1,1,delectus aut autem,false)
Discussion
The sttp HTTP client library is used in this example; it’s explained in detail in Recipe 19.7. The important things to know for this example are:
It makes an HTTP GET request to the URL shown.
It returns an HTTP response, whose type is Either[String,String].
The JSON String is extracted in the Right case of the response.body match expression.
Other Scala JSON libraries
There are several other Scala libraries for working with JSON. Circe is one of the most popular alternatives. As described in its documentation, Circe is a fork of the Java Argonaut library and relies on the Cats functional programming library.
uJson, which includes the uPickle project, is another popular JSON library. Its value is that its API attempts to be similar to JSON libraries in languages like Python, Ruby, and JavaScript. Also, while most Scala JSON libraries treat JSON as being immutable, uJson lets you mutate the JSON representation.
19.7 Using the sttp HTTP Client
Problem
You need a Scala HTTP client for your applications and want to learn how to use the popular sttp client library.
Solution
sttp can handle all of your HTTP client needs, including GET, POST, and PUT requests; request headers, cookies, redirects, and setting timeouts; and using synchronous and asynchronous backend libraries for making HTTP connections.
In this solution I demonstrate several of sttp’s capabilities.
Basic GET request
This example shows how to make a synchronous GET request with sttp, using the default backend engine. It doesn’t use any query parameters, headers, or cookies.
First, create an sbt project with the necessary sttp client3 dependency in the build.sbt file:
lazy val root = project
.in(file("."))
.settings(
name := "Sttp",
version := "0.1.0",
scalaVersion := "3.0.0",
libraryDependencies ++= Seq(
"com.softwaremill.sttp.client3" %% "core" % "3.2.3"
)
)
It’s assumed that this build.sbt file is used in the remainder of this recipe.
Given that configuration, make a GET request to a URL like this:
import sttp.client3.*
@main def basicGet =
val backend = HttpURLConnectionBackend()
val response = basicRequest
.get(uri"http://httpbin.org/get")
.send(backend)
println(response)
The resulting response looks like this:
Response(Right({
"args": {},
"headers": {
"Accept": "text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2",
"Accept-Encoding": "gzip, deflate",
"Host": "httpbin.org",
"User-Agent": "Java/11.0.9",
"X-Amzn-Trace-Id": "Root=1-6068ea23-1354da2305a7c4b12b4dd4dc"
},
"origin": "148.69.71.19",
"url": "http://httpbin.org/get"
}
),200,OK,
Vector(much more output here ...
While response has the nested type Response(Right(...)), it’s surprisingly easy to work with. You can use various methods to check the status code, headers, and see if the request was redirected:
response.code // sttp.model.StatusCode = 200
response.is200 // true
response.isClientError // false
response.statusText // "OK"
response.headers // Seq[sttp.model.Header]
response.header("Content-Length") // Some("344")
response.isRedirect // false
When you access the response body, the type is an Either, which is a Right when accessing the URL is successful:
response.body // Either[String, String] = Right(...
The use of Either lets you work with both successful and unsuccessful outcomes. For instance, you can use a match expression to handle the result:
response.body match
case Left(error) => println(s"LEFT: $error")
case Right(result) => println(s"RIGHT: $result")
Because response.body has the type Either[String, String], you can also use methods like foreach, getOrElse, isRight, map, etc. to work with the result.
Backends
It’s important to understand that sttp consists of a frontend, which is the API you just saw, and a backend. For example, you saw in the previous code that a backend is referenced:
// create a backend
val backend = HttpURLConnectionBackend()
// send the Request to the backend
val response = basicRequest
.get(uri"http://httpbin.org/get")
.send(backend)
This portion of that code creates a Request:
val request = basicRequest.get(uri"http://httpbin.org/get")
The important pieces in the request are the method (GET, in this case), the uri string, and whether or not there is a body in the request. The output is a little long, so for more details, run that code on your system.
When the send method is called, this request is sent to the configured backend. The backend is an instance of an SttpBackend, and per the sttp documentation, it’s where most of the work happens:
The request is translated to a backend-specific form.
A connection is opened, data is sent and received.
The backend-specific response is translated to sttp’s Response.
Backends can be synchronous or asynchronous, and they manage the connection pool, thread pools for handling responses, and have configuration options. According to the sttp documentation, sttp currently supports at least five backends, including, “ones based on akka-http, async-http-client, http4s, OkHttp, and HTTP clients which ship with Java.” These backends integrate with Akka, Monix, fs2, cats-effect, scalaz, and ZIO.
See the sttp backends documentation for more details on how to configure and use different backends.
Discussion
This discussion demonstrates a few more sttp capabilities.
A GET request with a header
When you make a request to the GitHub REST API v3, you’re encouraged to send this header with your request:
Accept: application/vnd.github.v3+json
To do that with sttp, just add a header method to your query. A complete Scala 3 application looks like this:
import sttp.client3.*
@main def basicGetHeader =
val backend = HttpURLConnectionBackend()
// note: all data is sent and received as json
val response = basicRequest
.header("Accept", "application/vnd.github.v3+json")
.get(uri"https://api.github.com")
.send(backend)
println(response.body)
That query returns a long JSON response from GitHub that begins like this:
{"current_user_url":"https://api.github.com/user" ...
A GET request with query parameters
The sttp documentation shows how to create a GET request with query parameters, using the current GitHub API:
import sttp.client3.*
@main def getWithQueryParameters =
val query = "http language:scala"
val request = basicRequest.get(
uri"https://api.github.com/search/repositories?q=$query"
)
val backend = HttpURLConnectionBackend()
val response = request.send(backend)
println(s"URL: ${request.toCurl}") // prints the URL that’s created
println(response.body)
When you look at the result of the first println statement to see the URL that’s created, you’ll see output like this:
URL: curl -L --max-redirs 32 -X GET
'https://api.github.com/search/repositories?q=http+language:scala'
That output shows how sttp translates the query parameters into a GET URL that you can also test with the curl command that’s shown. Also note that the query parameter is automatically URL-encoded.
A POST example
With sttp you can create queries using any HTTP method, including the POST method. Here’s an example that sends a POST query to the httpbin.org test service:
import sttp.client3.*
@main def post =
val backend = HttpURLConnectionBackend()
val response = basicRequest
.body("Hello, world!")
.post(uri"https://httpbin.org/post?hello=world")
.send(backend)
println(response)
That query returns a JSON response of over five hundred characters, including a set of headers, and this data:
"data": "Hello, world!"
Cookies
You can also set and access cookies with sttp. This example shows how to set two cookies when calling a httpbin.org URL:
import sttp.client3.*
@main def cookies =
val backend = HttpURLConnectionBackend()
val response = basicRequest
.get(uri"https://httpbin.org/cookies")
.cookie("first_name", "sam")
.cookie("last_name", "weiss")
.send(backend)
println(response)
The response looks like this:
Response(Right({
"cookies": {
"first_name": "sam",
"last_name": "weiss"
}
}
),200,OK,
more output omitted ...
Setting timeout values
In production code I always set a timeout on HTTP queries. This code shows how to set timeout values on both the connection and read attempts:
import sttp.client3.*
import scala.concurrent.duration.*
@main def timeout =
// specify backend options, like a connection timeout
val backend = HttpURLConnectionBackend(
options = SttpBackendOptions.connectionTimeout(5.seconds)
)
// can also set a read timeout
val request = basicRequest
.get(uri"https://httpbin.org/get")
.readTimeout(5.seconds)
val response = request.send(backend)
println(response)
Note that this code can throw an SttpClientException.ConnectException or SttpClientException.ReadException, so be sure to handle those in your code.
Chapter 20. Apache Spark
This chapter demonstrates recipes for Apache Spark, a unified data analytics engine for large-scale data processing.
The Spark website describes Spark as a “unified analytics engine for large-scale data processing.” This means that it’s a big data framework that lets you analyze your data with different techniques—such as treating the data as a spreadsheet or as a database—and runs on distributed clusters. You can use Spark to analyze datasets that are so large that they span thousands of computers.
While Spark is designed to work with enormous datasets on clusters of computers, a great thing about it is that you can learn how to use Spark on your own computer with just a few example files.
Spark 3.1.1
The examples in this chapter use Spark 3.1.1, which was released in March 2021 and is the latest release at the time of this writing. Spark currently works only with Scala 2.12, so the examples in this chapter also use Scala 2.12. However, because working with Spark generally involves using collections methods like map and filter, or SQL queries, you’ll barely notice the difference between Scala 2 and Scala 3 in these examples.
The recipes in this chapter show how to work with Spark on your own computer, while demonstrating the key concepts that work on datasets that span thousands of computers. Recipe 20.1 demonstrates how to get started with Spark and digs into one of its fundamental concepts, the Resilient Distributed Dataset, or RDD. An RDD lets you treat your data like a large distributed spreadsheet.
That first recipe shows how to create an RDD from a collection inside the REPL, and then Recipe 20.2 demonstrates how to read a data file into an RDD. It shows several ways to read data files, manipulate that data using Scala and Spark methods, and write data to other files.
Next, using a sample dataset from MovieLens, Recipe 20.3 shows how to model a row in a CSV file with a Scala case class, and then read the data in that file into an RDD and work with it as desired.
Recipe 20.4 then shows how to convert an RDD into a DataFrame. This process lets you query your data using a SQL-like API. The examples show how to use that query syntax, as well as how to define a schema to represent your data.
Recipe 20.5 picks up from there, showing how to read a MovieLens CSV file into a DataFrame and again query that data. This recipe takes the process a step further and shows how to create a SQL view on that data, which lets you use a regular SQL query string to query your data.
As the examples continue to use the MovieLens dataset, Recipe 20.6 shows how to read multiple CSV files into DataFrames, create views on those, and then query the data with traditional SQL queries—including joins—like this:
val query = """
select * from movies, ratings
where movies.movieId == ratings.movieId
and rating == 5.0
"""
Finally, Recipe 20.7 shows the complete process of creating a Spark application that can be packaged as a JAR file using sbt and run from the command line.
Spark is a huge topic, and thick books have been written about it. The goal of the recipes in this chapter is to get you quickly up and running with some of its main techniques. For more details, see the book Spark: The Definitive Guide by Bill Chambers and Matei Zaharia (O’Reilly).
The MovieLens dataset
The examples in this chapter use the MovieLens dataset. That dataset includes real-world movie ratings in the form of CSV files that are hundreds of megabytes in size and contain ratings and details from over 62,000 movies. For details on that dataset, see the seminal paper by F. Maxwell Harper and Joseph A. Konstan, “The MovieLens Datasets: History and Context,” ACM Transactions on Interactive Intelligent Systems 5, no. 4 (2016): 1–19, https://doi.org/10.1145/2827872.
20.1 Getting Started with Spark
Problem
You’ve never used Spark before and want to get started with it.
Solution
When you use Spark professionally, your data will probably be spread across multiple computers—maybe thousands of computers—but to get started with Spark, you can do all of your work on one computer system in local mode. The easiest way to do this is to start the Spark shell, create an array, and go from there.
The Spark installation instructions may vary over time, but currently you just download Spark from its download page. The download is a tgz file, so just unpack that and move it to your bin directory, just like you manually install other downloaded applications. For example, I install Spark under my /Users/al/bin directory.
Once you have Spark installed, start the Scala Spark shell like this:
$ spark-shell
The Spark shell is a modified version of the normal Scala shell you get with the scala command, so anything you can do in the Scala shell you can also do in the Spark shell, such as creating an array:
val nums = Array.range(0, 100)
Once you have something like an array or map, you can create a Spark Resilient Distributed Dataset (RDD) by calling the Spark Context’s parallelize method:
scala> val rdd = spark.sparkContext.parallelize(nums)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize
at <console>:25
Notice from the output that rdd has the type RDD[Int]. As you’ll see in the Discussion, an RDD is one of Spark’s basic building blocks. For now you can think of it as being a collections class like a list or array, but its data can be spread across all the computers in a cluster. It also has additional methods that can be called. Here are some examples of methods that look familiar from the Scala collections classes:
rdd.count // Long = 100
rdd.first // Int = 0
rdd.min // Int = 0
rdd.max // Int = 99
rdd.take(3) // Array[Int] = Array(0, 1, 2)
rdd.take(2).foreach(println) // prints 0 and 1 on separate lines
Here are a few RDD methods that may not look familiar:
// “sample” methods return random values from the RDD
rdd.sample(false, 0.05).collect // Array[Int] = Array(0, 16, 22, 27, 60, 73)
rdd.takeSample(false, 5) // Array[Int] = Array(35, 65, 31, 27, 1)
rdd.mean // Double = 49.5
rdd.stdev // Double = 28.866070047722115
rdd.getNumPartitions // Int = 8
rdd.stats // StatCounter = (count: 100, mean: 49.500000,
// stdev: 28.866070, max: 99.000000,
// min: 0.000000)
You can also use familiar collection methods like map and filter:
scala> rdd.map(_ + 5).filter(_ < 8)
res0: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[10] at filter at
<console>:26
scala> rdd.filter(_ > 10).filter(_ < 20)
res1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[12] at filter at
<console>:26
However, notice that these methods don’t return a result, at least not the result you were expecting. In Spark, transformation methods like these are evaluated lazily, so we refer to them as lazy or nonstrict. To get a result from them, you have to add an action method. An RDD has a collect method, which is an action method that forces all previous transformation methods to be run, and then it brings the result back to the computer your code is being run on. In these examples, adding collect causes a result to be calculated:
scala> rdd.map(_ + 5).filter(_ < 8).collect
res0: Array[Int] = Array(5, 6, 7)
scala> rdd.filter(_ > 10).filter(_ < 20).collect
res1: Array[Int] = Array(11, 12, 13, 14, 15, 16, 17, 18, 19)
Discussion
In production situations Spark will work with data that’s spread across clusters of computers, but as shown, in Spark’s local mode all the processing is done on your local computer.
The spark object and spark context
In the Solution I created an RDD in the Spark shell with these two lines of code:
val nums = Array.range(0, 100)
val rdd = spark.sparkContext.parallelize(nums)
As you might guess, spark is a prebuilt object that’s available in the shell. You can see the type of spark and spark.sparkContext using the shell’s :type command:
scala> :type spark
org.apache.spark.sql.SparkSession
scala> :type spark.sparkContext
org.apache.spark.SparkContext
You’ll use these two objects quite a bit in your Spark programming. Because you use the SparkContext so often, there’s a shortcut available for it in the shell named sc, so instead of typing this:
val rdd = spark.sparkContext.parallelize(nums)
you can just type this:
val rdd = sc.parallelize(nums)
RDD
While there are higher-level ways to work with data in Spark—which you’ll see in the following recipes—the RDD is a fundamental data structure. The Spark RDD Programming Guide describes it as “a collection of elements partitioned across the nodes of the cluster that can be operated on in parallel.” The Spark creators recommend thinking of an RDD as a large distributed spreadsheet.
Technically, an RDD is an immutable, fault-tolerant, parallel data structure. The book Beginning Apache Spark 2 by Hien Luu (Apress) states that an RDD is represented by five pieces of information:
A set of partitions, which are the chunks that make up the dataset.
A set of dependencies on parent RDDs.
A function for computing all the rows in the dataset.
Metadata about the partitioning scheme (optional).
Where the data lives on the cluster (optional). If the data lives on the HDFS, then it would be where the block locations are located.
When we say that an RDD is a parallel data structure, this means that a single large file can be split across many computers. In typical use cases, a dataset is so large that it can’t fit onto a single node, so it ends up being partitioned across multiple nodes in a cluster. Some basic things to know about partitions are:
The partition is the main unit of parallelism in Spark.
Every node in a Spark cluster contains one or more partitions.
The number of partitions is configurable.
Spark provides a default value, but you can tune it.
Partitions do not span multiple nodes.
Spark runs one task for each partition of the cluster.
When you use an RDD, each row in the data is typically represented as a Java/Scala object. The structure of this object is unknown to Spark, so it can’t help you with your processing, other than providing methods like filter and map, which know how to work with an RDD created from a file (as discussed in Recipe 20.2) that’s broken into chunks and spread across many computers.
When I say that Spark can’t help with your processing, what this means is that Spark also provides higher-level techniques that you’ll see in later recipes that demonstrate the Spark DataFrame and Dataset. When you use these data structures you’ll be able to use SQL queries, and Spark has an optimization engine that can help with the execution of your queries.
Three ways to create an RDD
There are three ways to create an RDD:
Call parallelize on a collection.
Read the data from one or more files into an RDD (as you’ll see in the next recipe).
Call a transformation method on an existing RDD to create a new RDD.
The parallelize method is shown in the Solution. This method is generally only used for testing, and per the “Parallelized Collections” section of the RDD Programming Guide, it copies the contents of a collection “to create a distributed dataset that can be operated on in parallel.”
The parallelize method takes an optional parameter that lets you specify the number of partitions the dataset can be broken into:
val rdd = spark.sparkContext.parallelize(nums, 20)
rdd.getNumPartitions // Int = 20
RDD methods
There are dozens of methods available on an RDD. You can see these in the REPL as usual by creating an RDD, then typing a decimal and pressing the Tab key after the decimal. This includes implementations of the usual Scala collections methods like distinct, filter, foreach, map, and take, as well as other methods unique to Spark. There are dozens of methods, so see the RDD class Scaladoc and RDD Programming Guide for more details on the available methods.
See Also
These articles provide more details on Spark partitions:
“How Data Partitioning in Spark Helps Achieve More Parallelism?”
“An Intro to Apache Spark Partitioning”
“Spark Partitions”
20.2 Reading a File into a Spark RDD
Problem
You want to start reading data files into a Spark RDD.
Solution
The canonical example for showing how to read a data file into an RDD is a word count application, so not to disappoint, this recipe shows how to read the text of the Gettysburg Address by Abraham Lincoln and find out how many times each word in the text is used.
After starting the Spark shell, the first step in the process is to read a file named Gettysburg-Address.txt using the textFile method of the SparkContext variable sc that was introduced in the previous recipe:
scala> val fileRdd = sc.textFile("Gettysburg-Address.txt")
fileRdd: org.apache.spark.rdd.RDD[String] = Gettysburg-Address.txt
MapPartitionsRDD[1] at textFile at <console>:24
This example assumes that Gettysburg-Address.txt is in the current directory.
The textFile method is used to read plain text files, and it returns an object of type RDD[String]. It’s also lazy, which means that nothing happens yet. In fact, if you spell the filename incorrectly, you won’t find out until some time later when you call a nonlazy action method.
The rest of the word count solution is pure Scala code. You just call a series of transformation methods on the RDD to get the solution you want:
val counts = fileRdd.map(_.replaceAll("[.,]", ""))
.map(_.replace("—", " "))
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
.sortBy(_._2)
.collect
The only things unique to Spark in this solution are:
Calling a map method on fileRdd (which has the type RDD[String])
Calling the collect method at the end
As mentioned in the previous recipe, because all the Spark transformation methods are lazy, you have to call an eager action method like collect to get the action started.
Pasting Multiline Expressions
With Spark 3.1, when you have a multiline expression like this, you have to paste it into the Spark shell using its :paste command. The steps are:
Type :paste in the shell
Copy your expression from a text editor and paste it into the REPL using Command+V or similar
Type Control+D to end the past operation
The shell will then interpret your expression.
Discussion
Here’s an explanation of how that code works. First, I create fileRdd as an RDD[String] with this code:
val fileRdd = sc.textFile("Gettysburg-Address.txt")
Because textFile is lazy, nothing actually happens yet.
Next, because I want to count words, I get rid of decimals, commas, and hyphens in the text using these two map transformation calls:
.map(_.replaceAll("[.,]", ""))
.map(_.replace("—", " "))
Then, I use this flatMap expression to convert the text into an array of words:
.flatMap(line => line.split(" "))
If you look at the result of the two map expressions and this flatMap expression, you’d see an Array[String]:
Array(Four, score, and, seven, years, ago, our, fathers ...
To get from this Array[String] to a solution that has a set of all words and the number of times they occur—a Map[String, Int]—the next step is to turn each word into a tuple:
.map(word => (word, 1))
At this point the intermediate data looks like this:
Array[(String, Int)] = Array((Four,1), (score,1), (and,1), (seven,1) ...
Next, I use reduceByKey:
.reduceByKey(_ + _)
This transforms the intermediate data into this data structure:
Array[(String, Int)] = Array((nobly,1), (under,1), (this,4), (have,5) ...
As shown, this is an array of tuples, where the first value of each tuple is a word from the speech and the second value is a count of how many times that word occurs. This is what reduceByKey does for us.
Next, you can sort that data by the second tuple element:
.sortBy(_._2)
Finally, you invoke the collect method to force all the transformations to be run:
.collect
Because the data structure has the type Array[(String, Int)], you can call counts.foreach(println) on it. The end of its output shows the most common words in the speech:
scala> counts.foreach(println)
[data omitted here]
(here,8)
(we,8)
(to,8)
(the,9)
(that,13)
Methods to read text files into an RDD
There are two main methods to read text files into an RDD:
sparkContext.textFile
sparkContext.wholeTextFiles
The textFile method reads a file as a collection of lines. It can read a file from the local filesystem, or from a Hadoop or Amazon S3 filesystem using "hdfs://" and "s3a://" URLs, respectively.
Per the RDD Programming Guide, textFile “takes an optional second argument for controlling the number of partitions of the file. By default, Spark creates one partition for each block of the file (blocks being 128 MB by default in HDFS), but you can also ask for a higher number of partitions by passing a larger value.”
Here are some examples of how to use textFile:
textFile("/foo/file.txt") // read a file, using the default
// number of partitions
textFile("/foo/file.txt", 8) // same, but with 8 partitions
textFile("/foo/bar.txt", "/foo/baz.txt") // read multiple files
textFile("/foo/ba*.txt") // read multiple files
textFile("/foo/*") // read all files in 'foo'
textFile("/a/1.txt", "/b/2.txt") // multiple files in different
// directories
textFile("hdfs://.../myfile.csv") // use a Hadoop URL
textFile("s3a://.../myfile.csv") // use an Amazon S3 URL
Note that the s3a URL prefix is the name of the Hadoop S3 connector and was previously named s3 and s3n, so you may see those uses in older documentation.
The wholeTextFiles method reads the entire file into a single String and returns an RDD that contains a tuple, so its return type is RDD[(String, String)]. The first string in the tuple is the filename that was read, and the second string is the entire contents of the file. This example shows how that works:
scala> val rdd = sc.wholeTextFiles("Gettysburg-Address.txt")
rdd: org.apache.spark.rdd.RDD[(String, String)] = Gettysburg-Address.txt
MapPartitionsRDD[5] at wholeTextFiles at <console>:24
scala> rdd.foreach(t => println(s"${t._1} | ${t._2.take(15)}"))
file:/Users/al/Projects/Books/ScalaCookbook2Examples/16_Ecosystem/Spark/ ↵
SparkApp1/Gettysburg-Address.txt | Four score and
The output from the second expression shows that the tuple contains the filename and file content.
Spark also contains other methods for reading files into a DataFrame or Dataset:
spark.read.text() is used to read a text file into DataFrame.
spark.read.textFile() is used to read a text file into a Dataset[String].
spark.read.csv() and spark.read.format("csv").load("<path>") are used to read a CSV file into a DataFrame.
These methods are demonstrated in the following recipes.
Saving an RDD to disk
When you obtain your final result using RDD transformation and action methods, you may want to save your results. You can save an RDD to disk using its saveAsTextFile method. This command saves an RDD to a directory named MyRddOutput under the /tmp directory:
myRdd.saveAsTextFile("/tmp/MyRddOutput")
After you do this you’ll find a series of files under /tmp/MyRddOutput that represent the RDD named myRdd. Note that if the directory already exists, this operation will fail with an exception.
Reading more complicated text file formats
On a macOS system, the /etc/passwd file contains seven fields that are delimited by the : character, but it also contains initial lines of comments, with each comment line beginning with the # character. To read this file into an RDD you need to skip those initial comment lines.
One way to do this is to read the file into an RDD as usual:
val fileRdd = spark.sparkContext.textFile("/etc/passwd")
Next, create a case class to model the seven-column format:
case class PasswordRecord (
username: String,
password: String,
userId: Int,
groupId: Int,
comment: String,
homeDirectory: String,
shell: String
)
Now you can convert fileRdd into a new RDD by first filtering out all records that start with the # character and then converting the remaining seven-column fields into a PasswordRecord:
val rdd = fileRdd
.filter(! _.startsWith("#"))
.map { line =>
val row = line.split(":")
PasswordRecord(
row(0), row(1), row(2).toInt, row(3).toInt, row(4), row(5), row(6)
)
}
After doing this, you’ll see that rdd only contains the colon-separated rows from the file:
scala> rdd.take(3)
res1: Array[PasswordRecord] = Array(
PasswordRecord(nobody,*,-2,-2,Unprivileged User,/var/empty,/usr/bin/false),
PasswordRecord(root,*,0,0,System Administrator,/var/root,/bin/sh),
PasswordRecord(daemon,*,1,1,System Services,/var/root,/usr/bin/false)
)
Now you can work with this RDD as shown previously.
See Also
The SparkByExamples.com page on reading text files is an excellent resource.
20.3 Reading a CSV File into a Spark RDD
Problem
You want to read a CSV file into an RDD.
Solution
To read a well-formatted CSV file into an RDD:
Create a case class to model the file data.
Read the file using sc.textFile.
Create an RDD by mapping each row in the data to an instance of your case class.
Manipulate the data as desired.
The following example demonstrates those steps, using a file named TomHanksMoviesNoHeader.csv, which has these contents:
1995, Toy Story, 8.3
2000, Cast Away, 7.8
2006, The Da Vinci Code, 6.6
2012, Cloud Atlas, 7.4
1994, Forrest Gump, 8.8
1. Create a case class to model the file data
First, create a case class that matches the data in the file:
case class Movie(year: Int, name: String, rating: Double)
2. Read the file
Next, read the file into an initial RDD:
val fileRdd = sc.textFile("TomHanksMoviesNoHeader.csv")
3. Create an RDD by mapping each row to the case class
Then call map on the fileRdd to create a new RDD named movies:
val movies = fileRdd.map{ row =>
val fields = row.split(",").map(_.trim)
Movie(fields(0).toInt, fields(1), fields(2).toDouble)
}
The first line in the block splits each row on the comma character and then trims each resulting field in the row. When the block completes, movies has the type org.apache.spark.rdd.RDD[Movie].
4. Manipulate the data as desired
Now you can work with the movies RDD as desired, using the transformation and action methods demonstrated in the previous recipes:
scala> :type movies
org.apache.spark.rdd.RDD[Movie]
scala> movies.first
res0: Movie = Movie(1995,Toy Story,8.3)
scala> movies.take(2)
res1: Array[Movie] = Array(Movie(1995,Toy Story,8.3), Movie(2000,Cast Away,7.8))
scala> movies.filter(_.rating > 7).filter(_.year > 2000).collect
res2: Array[Movie] = Array(Movie(2012,Cloud Atlas,7.4))
Discussion
This recipe shows how to read a CSV file into an RDD. You can also work with CSV files using SQL—from the Spark SQL module—and that’s demonstrated in Recipes 20.5 and 20.6.
Working with a CSV file without using a case class
You can read a CSV file into an RDD without using a case class, but the process is a little more cumbersome. If you want to use this approach, start by reading the file as before:
// RDD[String]
val fileRdd = sc.textFile("TomHanksMoviesNoHeader.csv")
Then split each row on the comma character, and trim each resulting field:
// movies: RDD[Array[String]]
val movies = rdd.map(row => row.split(",")
.map(field => field.trim))
As shown in the comment, movies has the type RDD[Array[String]]. Now you can work with the data as desired, but you’ll have to treat each row as an array of strings:
scala> movies.take(2)
Array[Array[String]] = Array(Array(Year, Name, IMDB),
Array(1995, Toy Story, 8.3))
scala> movies.filter(row => row(0).toInt > 2000).collect
res0: Array[Array[String]] = Array(
Array(2006, The Da Vinci Code, 6.6),
Array(2012, Cloud Atlas, 7.4)
)
20.4 Using Spark Like a Database with DataFrames
Problem
Rather than using RDDs, you want to use Spark like a SQL database so you can query your data with SQL commands.
Solution
To begin using Spark like a database, use a DataFrame rather than an RDD. A DataFrame is the rough equivalent of a database table, though of course in Spark the DataFrame may be spread out over thousands of computers.
To begin, create an array, and then create an RDD from the array, just like you did in Recipe 20.1:
val nums = Array.range(1, 10) // Array[Int] = Array(1,2,3,4,5,6,7,8,9)
val rdd = sc.parallelize(nums) // RDD[Int]
Next, convert that RDD to a DataFrame using the RDD’s toDF method. When using an array, the resulting dataset only has one column of data, and this command gives that column the name "num" as it creates a DataFrame:
val df = rdd.toDF("num") // org.apache.spark.sql.DataFrame
As shown in the comment, the variable df has the type org.apache.spark.sql.DataFrame. Now you can begin using some SQL-like capabilities of the DataFrame. First, here are some database-like metadata methods:
scala> df.printSchema
root
|-- num: integer (nullable = false)
scala> df.show(2)
+---+
|num|
+---+
| 1|
| 2|
+---+
only showing top 2 rows
scala> df.columns
res0: Array[String] = Array(num)
scala> df.describe("num").show
+-------+------------------+
|summary| num|
+-------+------------------+
| count| 9|
| mean| 5.0|
| stddev|2.7386127875258306|
| min| 1|
| max| 9|
+-------+------------------+
Once again, transformation methods are evaluated lazily, so I use the show method to see a result in the Spark shell.
Once you have a DataFrame, you can perform SQL-like queries with the Spark SQL API:
scala> df.select('num).show(2)
+---+
|num|
+---+
| 1|
| 2|
+---+
only showing top 2 rows
scala> df.select('num).where("num > 6").show
+---+
|num|
+---+
| 7|
| 8|
| 9|
+---+
scala> df.select('num)
.where("num > 6")
.orderBy(col("num").desc)
.show
+---+
|num|
+---+
| 9|
| 8|
| 7|
+---+
Those examples show that there are several different ways to refer to column names. The following queries show the different approaches, and they all return the same result:
df.select('num)
df.select(col("num"))
df.select(column("num"))
df.select($"num")
df.select(expr("num"))
As you can see, working with DataFrame queries is similar to working with SQL queries and a database, although with Spark you use its Spark SQL API to make your queries.
Discussion
In the example shown in the Solution, I let the data source—my array—implicitly define the schema. By converting that array to an RDD and then to a DataFrame with toDF, Spark was able to infer the type of my data. This approach where you let Spark infer the data types is called schema-on-read, and it can often be useful.
Explicitly defining the schema
Like a spreadsheet or database table, a DataFrame consists of a series of records, and those records are modeled by a Spark SQL Row. Using Row and StructType and StructField types, you can also explicitly define the schema, similar to the way you work with a traditional SQL database and schema.
To demonstrate this, first create a new RDD with five columns:
import org.apache.spark.sql.Row
val rdd = sc.parallelize(
Array(
Row(1L, 0L, "zero", "cero", "zéro"),
Row(2L, 1L, "one", "uno", "un"),
Row(3L, 2L, "two", "dos", "deux"),
Row(4L, 3L, "three", "tres", "trois"),
Row(5L, 4L, "four", "cuatro", "quatre")
)
)
As shown, each row in the data has five columns. Next, you define a schema that describes those columns using the Spark SQL StructType and StructField classes:
import org.apache.spark.sql.types._
// 'schema' has the type org.apache.spark.sql.types.StructType
val schema = StructType(
Array(
StructField("id", LongType, false), // not nullable
StructField("value", LongType, false), // not nullable
StructField("name", StringType, true), // nullable (English)
StructField("nombre", StringType, true), // nullable (Spanish)
StructField("nom", StringType, true) // nullable (French)
)
)
That code declares that the data consists of five columns with these names and attributes:
id is a long number and is not nullable.
value is a long number and is not nullable.
name is a string and can contain null values (these are the English names of the numbers).
nombre is also a string and can contain null values (these are the Spanish names).
nom is also a string and can contain null values (these are the French names).
With everything in place, you can create a DataFrame using the RDD and the schema:
scala> val df = spark.createDataFrame(rdd, schema)
df: org.apache.spark.sql.DataFrame = [id: bigint, name: string ... 1 more field]
scala> df.printSchema
root
|-- id: long (nullable = false)
|-- value: long (nullable = false)
|-- name: string (nullable = true)
|-- nombre: string (nullable = true)
|-- nom: string (nullable = true)
Querying the DataFrame
Now you can query the DataFrame as before:
scala> df.select('id, 'name, 'nombre)
.limit(2)
.show
+---+----+------+
| id|name|nombre|
+---+----+------+
| 1|zero| cero|
| 2| one| uno|
+---+----+------+
scala> df.where("value > 1").show(2)
+---+-----+-----+------+-----+
| id|value| name|nombre| nom|
+---+-----+-----+------+-----+
| 3| 2| two| dos| deux|
| 4| 3|three| tres|trois|
+---+-----+-----+------+-----+
only showing top 2 rows
scala> df.select('value, 'name, 'nombre, 'nom)
.where("id > 1")
.where("id < 4")
.show
+-----+----+------+----+
|value|name|nombre| nom|
+-----+----+------+----+
| 1| one| uno| un|
| 2| two| dos|deux|
+-----+----+------+----+
scala> df.where('id > 1)
.orderBy('name)
.show
+---+-----+-----+------+------+
| id|value| name|nombre| nom|
+---+-----+-----+------+------+
| 5| 4| four|cuatro|quatre|
| 2| 1| one| uno| un|
| 4| 3|three| tres| trois|
| 3| 2| two| dos| deux|
+---+-----+-----+------+------+
scala> df.select('name, 'nombre, 'nom)
.where("name = 'two'")
.show
+----+------+----+
|name|nombre| nom|
+----+------+----+
| two| dos|deux|
+----+------+----+
scala> df.filter('nom.like("tro%")).show
+---+-----+-----+------+-----+
| id|value| name|nombre| nom|
+---+-----+-----+------+-----+
| 4| 3|three| tres|trois|
+---+-----+-----+------+-----+
In addition to SQL-like queries, when you’re working with huge datasets it can help to look at a small subset of the data. Spark SQL has a sample method to help this situation. sample takes three parameters:
val withReplacement = false
val fraction = 0.2
val seed = 31
When you call sample it returns a subset of the data, with the number of rows roughly corresponding to the fraction parameter:
scala> df.sample(withReplacement, fraction, seed).show
+---+-----+-----+------+-----+
| id|value| name|nombre| nom|
+---+-----+-----+------+-----+
| 3| 2| two| dos| deux|
| 4| 3|three| tres|trois|
+---+-----+-----+------+-----+
For more sample details, see the Spark Dataset documentation.
Why Search for “Dataset”?
When you need to search for DataFrame methods like sample in the Spark documentation, it can help to search for "Dataset" rather than "DataFrame". This is because a DataFrame is just a special instance of a Dataset. Specifically, a DataFrame is a Dataset of Row types.
select and selectExpr
While I tend to use 'foo or col("foo") to refer to a column named "foo", another approach is to refer to it as expr("foo"). Using this syntax, queries look like this:
df.select(expr("value")).show
df.select(expr("value"), expr("value")).show
Because this is such a common programming pattern, there’s also a method named selectExpr that combines select and expr into one method. Here are a few examples of its usage:
scala> df.selectExpr("value").show(2)
+-----+
|value|
+-----+
| 0|
| 1|
+-----+
only showing top 2 rows
scala> df.selectExpr("avg(value)").show
+----------+
|avg(value)|
+----------+
| 2.0|
+----------+
scala> df.selectExpr("count(distinct(value))").show
+---------------------+
|count(DISTINCT value)|
+---------------------+
| 5|
+---------------------+
scala> df.selectExpr("count(distinct(nombre))").show
+----------------------+
|count(DISTINCT nombre)|
+----------------------+
| 5|
+----------------------+
See Also
There are performance considerations when using schema-on-read and its counterpart, schema-on-write. Search for those terms for the best up-to-date articles on performance issues.
The Spark DataTypes Javadoc shows the different DataType values that are available when defining a StructField. Those types are: BinaryType, BooleanType, ByteType, CalendarIntervalType, DateType, DoubleType, FloatType, IntegerType, LongType, NullType, ShortType, StringType, and TimestampType.
The Spark Dataset Javadoc shows all the methods that can be called on a DataFrame (or Dataset).
20.5 Reading Data Files into a Spark DataFrame
Problem
You want to read a CSV file into a DataFrame.
Solution
Given a file named TomHanksMoviesNoHeader.csv:
1995, Toy Story, 8.3
2000, Cast Away, 7.8
2006, The Da Vinci Code, 6.6
2012, Cloud Atlas, 7.4
1994, Forrest Gump, 8.8
specify a schema to read the file using either of these two options:
import org.apache.spark.sql.types._
// syntax option 1
val schema = StructType(
Array(
StructField("year", IntegerType, false),
StructField("name", StringType, false),
StructField("rating", DoubleType, false)
)
)
// syntax option 2
val schema = new StructType()
.add("year", IntegerType, false)
.add("name", StringType, false)
.add("rating", DoubleType, false)
Then read the file into a DataFrame like this:
// paste this into the spark shell with ":paste"
val df = spark.read
.format("csv")
.schema(schema)
.option("delimiter", ",")
.load("TomHanksMoviesNoHeader.csv")
For a true CSV file like this one, the delimiter setting isn’t necessary, but I demonstrate it for when your files have different separators like a tab, |, or other character.
Once you’ve loaded the file like that, you can work with it as shown in the previous recipe:
scala> df.printSchema
root
|-- year: long (nullable = true)
|-- name: string (nullable = true)
|-- rating: double (nullable = true)
scala> df.show(2)
+----+----------+------+
|year| name|rating|
+----+----------+------+
|1995| Toy Story| 8.3|
|2000| Cast Away| 7.8|
+----+----------+------+
only showing top 2 rows
scala> df.select('year, 'name, 'rating).limit(2).show
+----+----------+------+
|year| name|rating|
+----+----------+------+
|1995| Toy Story| 8.3|
|2000| Cast Away| 7.8|
+----+----------+------+
scala> df.where('year > 1998).where('rating > 7.5).show
+----+----------+------+
|year| name|rating|
+----+----------+------+
|2000| Cast Away| 7.8|
+----+----------+------+
scala> df.where('rating > 7.5).orderBy('rating.desc).show
+----+-------------+------+
|year| name|rating|
+----+-------------+------+
|1994| Forrest Gump| 8.8|
|1995| Toy Story| 8.3|
|2000| Cast Away| 7.8|
+----+-------------+------+
scala> df.filter('name.like("%T%")).show
+----+------------------+------+
|year| name|rating|
+----+------------------+------+
|1995| Toy Story| 8.3|
|2006| The Da Vinci Code| 6.6|
+----+------------------+------+
Discussion
Per the Spark DataTypes Javadoc, you can use the following data types when creating a StructField: BinaryType, BooleanType, ByteType, CalendarIntervalType, DateType, DoubleType, FloatType, IntegerType, LongType, NullType, ShortType, StringType, and TimestampType. Most of those type names are self-explanatory, but see that Javadoc page for more details, and see this MungingData article, for many more details on handling null values.
When reading a CSV file you can specify the options as a Map, if you prefer:
val df = spark.read
.options(
Map(
"header" -> "true",
"inferSchema" -> "true",
"delimiter" -> ","
)
)
.csv("TomHanksMoviesNoHeader.csv")
Also, as discussed in Recipe 20.1, the spark variable is an instance of SparkSession. Its read method returns a DataFrameReader, which is described as an “interface used to load a Dataset from external storage systems.” That Javadoc page shows over two dozen options for working with CSV files.
Writing a DataFrame to a file
Once you have the results you want in a DataFrame, you can write them out to a directory. The example writes the results to a directory named DataFrameResults in the current directory:
df.write
.option("header","true")
.csv("DataFrameResults")
That directory has a CSV file that contains the results contained in the DataFrame.
Creating a SQL view on a DataFrame
The next recipe shows how to use a DataFrame even more like a database table, but as a preview, when you call the DataFrame method createOrReplaceTempView, you create a database-like view:
val df = spark.read
.format("csv")
.schema(schema)
.option("delimiter", ",")
.load("TomHanksMoviesNoHeader.csv")
df.createOrReplaceTempView("movies")
createOrReplaceTempView creates a local temporary view—like a lazy view, as detailed in Recipe 11.4, “Creating a Lazy View on a Collection”—and once you have that, you can use normal SQL to query your data:
val query = "select * from movies where rating > 7.5 order by rating desc"
scala> spark.sql(query).show
+----+-------------+------+
|year| name|rating|
+----+-------------+------+
|1994| Forrest Gump| 8.8|
|1995| Toy Story| 8.3|
|2000| Cast Away| 7.8|
+----+-------------+------+
More examples of this syntax are shown in the next recipe.
20.6 Using Spark SQL Queries Against Multiple Files
Problem
You’d like to see how to use real SQL queries against a dataset, including the use of joins on multiple files.
Solution
This recipe uses the MovieLens dataset, which contains data from over 62,000 movies. To follow along with this recipe, see that link for information on how to download the dataset.
After you’ve downloaded that data, you can look at the first lines of the CSV files to see their format. These Unix head commands show the first lines of the three files used in this recipe, including the header rows at the top of each file:
$ head -3 movies.csv
movieId,title,genres
1,Toy Story (1995),Adventure|Animation|Children|Comedy|Fantasy
2,Jumanji (1995),Adventure|Children|Fantasy
$ head -3 ratings.csv
userId,movieId,rating,timestamp
1,296,5.0,1147880044
1,306,3.5,1147868817
$ head -3 tags.csv
userId,movieId,tag,timestamp
3,260,classic,1439472355
3,260,sci-fi,1439472256
With those data files in the current directory, start the Spark shell with the spark-shell command. Then read each file into a DataFrame, as shown in the previous recipe:
// paste these into the REPL with ":paste"
val moviesDf = spark.read
.option("header", "true")
.option("inferSchema", "true")
.csv("movies.csv")
val ratingsDf = spark.read
.option("header", "true")
.option("inferSchema", "true")
.csv("ratings.csv")
val tagsDf = spark.read
.option("header", "true")
.option("inferSchema", "true")
.csv("tags.csv")
It will take a few moments for that data to be read in. Next, create temporary views on each file, giving the views the names shown in each method call:
moviesDf.createOrReplaceTempView("movies")
ratingsDf.createOrReplaceTempView("ratings")
tagsDf.createOrReplaceTempView("tags")
Now you can use real SQL queries as desired to work with the data. For example, to see all movies and their ratings, join the movies and ratings views:
val query = """
select * from movies, ratings
where movies.movieId == ratings.movieId
and rating == 5.0
"""
spark.sql(query).limit(4).show
Without the limit, that query will return over 3.6 million rows, but with the limit, the output looks like this:
+-------+--------------------+----------------+------+-------+------+----------+
|movieId| title| genres|userId|movieId|rating| timestamp|
+-------+--------------------+----------------+------+-------+------+----------+
| 296| Pulp Fiction (1994)|Comedy|Crime|Dra| 1| 296| 5.0|1147880044|
| 307|Three Colors: Blu...| Drama| 1| 307| 5.0|1147868828|
| 665| Underground (1995)|Comedy|Drama|War| 1| 665| 5.0|1147878820|
| 1237|Seventh Seal, The...| Drama| 1| 1237| 5.0|1147868839|
+-------+--------------------+----------------+------+-------+------+----------+
As another example, this query shows one way to find all five-star-rated comedy/romance movies:
val query = """
select distinct(m.title), r.rating, m.genres
from movies m, ratings r
where m.movieId == r.movieId
and m.genres like \'%Comedy%Romance%'
and r.rating == 5.0
order by m.title"""
scala> spark.sql(query).show
+--------------------+------+--------------------+
| title|rating| genres|
+--------------------+------+--------------------+
|(500) Days of Sum...| 5.0|Comedy|Drama|Romance|
| (Girl)Friend (2018)| 5.0| Comedy|Romance|
| 10 (1979)| 5.0| Comedy|Romance|
|10 Items or Less ...| 5.0|Comedy|Drama|Romance|
output continues ...
When you know SQL and the organization of the data, you can run other queries like this one, which provides a sorted count of all five-star ratings for all comedy/romance movies:
val query = """
select m.title, count(1) as the_count
from movies m, ratings r
where m.movieId == r.movieId
and m.genres like \'%Comedy%Romance%'
and r.rating == 5.0
group by m.title
order by the_count desc
"""
// using 'false' in 'show' tells spark to print the full column widths
spark> spark.sql(query).show(100, false)
+--+---------+
|title |the_count|
+--+---------+
|Forrest Gump (1994) |25918 |
|Princess Bride, The (1987) |13311 |
|Amelie (Fabuleux destin d'Amélie Poulain, Le) (2001) |10395 |
|Life Is Beautiful (La Vita è bella) (1997) |8466 |
(the output continues ...)
Discussion
As shown, views are created by calling createOrReplaceTempView on a DataFrame or Dataset:
moviesDf.createOrReplaceTempView("movies")
This command creates (or replaces) a temporary table with the name movies. The lifetime of this view is tied to the SparkSession that was used to create the DataFrame. Use this command if you want to drop the view:
spark.catalog.dropTempView("movies")
Performance
Spark performance is a huge topic, but one important concept to know is the difference between narrow transformations and wide transformations. A narrow transformation (also called a narrow dependency) is one where all the data that’s required to calculate the results of a single partition lives in that partition. In a wide transformation (or wide dependency), all the elements that are required to calculate a result may reside in multiple different partitions.
A wide transformation leads to a shuffle, which occurs when data has to be rearranged between partitions. Moving data around significantly slows down processing speed, so shuffling is bad for performance. Narrow transformations tend to involve methods like filter and map, while wide transformations involve methods like groupByKey and reduceByKey.
For narrow transformations, Spark can pipeline multiple transformations, meaning that they’ll all be performed in memory. The same cannot happen for wide transformations, and when a shuffle has to be performed, results are written to disk.
Google currently returns several hundred thousand results for the search phrase “spark minimize data shuffling,” so you know this is a big topic.
Using explain to understand queries
As you learn more about Spark SQL, it can sometimes help to use its explain method to understand how queries work. You call explain on a DataFrame, and when you do so, you’ll see output like this:
scala> moviesDf.where('movieId > 100).explain
== Physical Plan ==
*(1) Project [movieId#16, title#17, genres#18]
+- *(1) Filter (isnotnull(movieId#16) AND (movieId#16 > 100))
+- FileScan csv [movieId#16,title#17,genres#18] Batched: false,
DataFilters: [isnotnull(movieId#16), (movieId#16 > 100)],
Format: CSV, Location: InMemoryFileIndex[file:/Users/al/...,
PushedFilters: [IsNotNull(movieId), GreaterThan(movieId,100)],
ReadSchema: struct<movieId:int,title:string,genres:string>
and this:
scala> moviesDf.sort("title").explain
== Physical Plan ==
*(1) Sort [title#17 ASC NULLS FIRST], true, 0
+- Exchange rangepartitioning(title#17 ASC NULLS FIRST, 200), true, [id=#667]
+- FileScan csv [movieId#16,title#17,genres#18] Batched: false,
DataFilters: [], Format: CSV, Location: InMemoryFileIndex[file:/Users/al...,
PartitionFilters: [], PushedFilters: [],
ReadSchema: struct<movieId:int,title:string,genres:string>
A few notes about the explain output:
The first part of the output shows the final result.
Other portions of the output explain the data sources.
The keywords at the beginning of each line tend to be important, and in these examples you see words like Filter, FileScan, Sort, and Exchange.
For more details on the explain operator, this Medium article on mastering query plans by David Vrba is a good resource, and his video “Physical Plans in Spark SQL” is too.
Handling timestamps
Spark SQL includes several methods for working with timestamps. The from_unixtime shows one way to display timestamp fields:
val query = """
select userId,movieId,tag,from_unixtime(timestamp) as time
from tags
limit 3
"""
scala> spark.sql(query).show
+------+-------+--------------------+-------------------+
|userId|movieId| tag| time|
+------+-------+--------------------+-------------------+
| 3| 260| classic|2015-08-13 07:25:55|
| 3| 260| sci-fi|2015-08-13 07:24:16|
| 4| 1732| dark comedy|2019-11-16 15:33:18|
+------+-------+--------------------+-------------------+
See Also
If you want to use a schema when reading data files, see how Recipes 20.4 and 20.5 use the MovieLens dataset. For details on that dataset, see the seminal paper by F. Maxwell Harper and Joseph A. Konstan.
20.7 Creating a Spark Batch Application
Problem
You want to write a Spark application that will be run periodically in a batch mode.
Solution
While all the previous recipes show how to use Spark from its command-line shell (REPL), in this recipe you’ll create a batch command-line version of the word count application that was shown in Recipe 20.2.
You create a Spark application just like you create other Scala applications, using a build tool like sbt and importing the Spark dependencies you require.
Start by creating a build.sbt file:
name := "SparkApp1"
version := "0.1"
scalaVersion := "2.12.12"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-sql" % "3.1.1"
)
At the time of this writing, Spark 3.1 currently works with Scala 2.12, which is why I specify that Scala version.
Next, create your application. For a little one-file application like this, you can put the following code in a file named WordCount.scala in the root directory of your sbt project:
import org.apache.spark.sql.SparkSession
import org.apache.spark.rdd.RDD
object WordCount {
def main(args: Array[String]) {
val file = "Gettysburg-Address.txt"
val spark: SparkSession = SparkSession.builder
.appName("Word Count")
.config("spark.master", "local")
.getOrCreate()
val fileRdd: RDD[String] = spark.sparkContext.textFile(file)
val counts = fileRdd.map(_.replaceAll("[.,]", ""))
.map(_.replace("—", " "))
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
.sortBy(_._2)
.collect
println("--")
counts.foreach(println)
println("--")
spark.stop()
}
}
The keys to this solution are knowing how to create a SparkSession with SparkSession.builder, how to configure that session, and how to read a file as an RDD. The rest of the application is normal Scala code.
Now build the JAR file for your application:
$ sbt package
Once that JAR file is created, run it with the spark-submit command:
$ spark-submit --class WordCount target/scala-2.12/sparkapp1_2.12-0.1.jar
You’ll see a lot of output, and if everything goes well, you’ll see the output from the counts.foreach statement.
Discussion
For larger real-world applications you’ll need to use an sbt plugin like sbt-assembly to create a single JAR file that contains all of your application code and dependencies. See Recipe 17.11, “Deploying a Single Executable JAR File”, for a discussion of sbt-assembly.
When your application uses different Spark features, you’ll also need to include other Spark dependencies. The latest Spark JAR files, including the Spark machine learning library and Streaming library can be found in the org.apache.spark Maven listings. At the time of this writing, the current dependency URLs look like this:
"org.apache.spark" %% "spark-mllib" % "3.1.1" % Provided
"org.apache.spark" %% "spark-streaming" % "3.1.1" % Provided
Also, the Provided keyword at the end of those dependencies is the sbt way of stating that they are only needed for tasks like compiling and testing, and that they will be provided by some other means later. In this case the dependencies aren’t needed in production because the Spark runtime environment already includes them.
In the real world you’ll also need to include the -master option to specify the master URL for your cluster. In addition to that, there are many other spark-submit options that can be specified. This example command comes from the Spark “Submitting Applications” page, which shows examples of real-world options for spark-submit:
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master mesos://207.184.161.138:7077 \
--deploy-mode cluster \
--supervise \
--executor-memory 20G \
--total-executor-cores 100 \
http://path/to/examples.jar \
1000
See Also
The Spark “Submitting Applications” page shows how to run applications with spark-submit.
The Spark “Getting Started” page shows how to create and configure a SparkSession.
Spark is a big topic, and it’s hard to do it justice in one chapter. For much deeper coverage, see Spark: The Definitive Guide.
Chapter 21. Scala.js, GraalVM, and jpackage
The Scala.js project lets you write Scala code as a powerful, type-safe replacement for JavaScript. In short, when you need to write JavaScript, use Scala.js instead, and use sbt and the Scala.js plugin to compile your Scala.js code into JavaScript. Just like scalac compiles your code into .class files that work with the JVM, the Scala.js plugin compiles your Scala code into JavaScript code that runs in the browser.
The Scala.js website describes Scala.js as “a safer way to build robust front-end web applications.” With benefits like being able to use classes, modules, a strong type system, a huge collection of libraries, and IDE support for easy refactoring, code completion, and much more, Scala.js is a strong alternative to JavaScript and other JavaScript replacements like CoffeeScript, Dart, and TypeScript. Scala.js lets you use the same tools you use for server-side development to write client-side code.
The benefits of Scala.js compared to other browser technologies are summarized in Figure 21-1, which is reproduced here courtesy of the Scala.js website.
This chapter includes three Scala.js recipes to help you get started:
Recipe 21.1 demonstrates how to get the Scala.js environment up and running.
With your environment set up, Recipe 21.2 shows how to write Scala/Scala.js code to respond to events like button clicks.
Recipe 21.3 then shows how to get started writing single-page web applications.
Figure 21-1. The advantages of Scala.js (courtesy of scala-js.org)
After that, Recipe 21.4 demonstrates GraalVM and its native-image command. As its name implies, this command lets you turn your Scala application into a native image. By creating a native executable—e.g., an .exe file on Microsoft Windows—your application will start up immediately, without the initial lag you feel when a JVM application initially starts.
Finally, a great tool that comes with the Java 14 JDK is the jpackage command. It lets you package your JVM applications as native applications for the macOS, Windows, and Linux platforms. jpackage works with any language that generates class files for the JVM, so Recipe 21.5 shows how to use it to bundle Scala applications as native applications.
21.1 Getting Started with Scala.js
Problem
You want to start using Scala.js and need to know how to install it and create a “Hello, world” example.
Solution
This recipe demonstrates how to get started with Scala.js, and assumes that you are familiar with JavaScript, HTML, and the Document Object Model (DOM).
Getting started with Scala.js is a multistep process:
Handle the prerequisites
Create a new sbt project that uses the Scala.js plugin
Create a Scala/Scala.js file
Compile and run the Scala code
1. Prerequisites
To get started you’ll need to have these tools installed on your system:
On a macOS system, I installed Node.js with the brew install node command, but you can also follow that link to install it with the provided installers.
2. Create a new sbt project
Create a new sbt project directory structure, as shown in Recipe 17.1, “Creating a Project Directory Structure for sbt”. Then edit the build.sbt file to have these contents:
ThisBuild / scalaVersion := "3.0.0"
// enable the plugin that’s in 'project/plugins.sbt'
enablePlugins(ScalaJSPlugin)
// this states that this is an application with a main method
scalaJSUseMainModuleInitializer := true
lazy val root = project
.in(file("."))
.settings(
name := "ScalaJs Hello World",
version := "0.1.0"
)
If you’re following along on your computer, I strongly recommend that you use the exact contents that are shown, because they affect the filename that’s created when your Scala code is compiled to a JavaScript file.
Finally, add this line to your project/plugins.sbt file:
addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.5.1")
That line tells sbt how to download the Scala.js library.
3. Create a Scala/Scala.js file
With sbt set up, create a simple Scala “Hello, world” application. To do this, create a Scala source code file named src/main/scala/hello/Hello1.scala with these contents:
package hello
@main def hello() = println("Hello, world")
This code doesn’t do anything specific to Scala.js, but when you compile and run it, you’ll see how the compilation process works with sbt and the Scala.js plugin.
4. Compile and run the Scala code
To run the Hello1.scala code, first start the sbt shell:
$ sbt
Now issue the run command inside the sbt shell, where you may see a lot of initial output, eventually finishing with the output from your program:
sbt> run
// possibly more output here ...
[info] compiling 1 Scala source to target/scala-3.0.0/classes ...
[info] Fast optimizing target/scala-3.0.0/scalajs-hello-world-fastopt
[info] Running hello.hello. Hit any key to interrupt.
Hello, world
As shown, Hello, world is printed out after your Scala code is compiled to JavaScript. After that, as noted in the scala-js.org basic tutorial, “this code is actually run by a JavaScript interpreter, namely Node.”
An important thing to notice is that the sbt run command creates this directory:
target/scala-3.0.0/scalajs-hello-world-fastopt
A few notes about this directory:
The directory name is based on the sbt project name (“Scala.js Hello World”). This is why I recommended earlier that you use my project name in your build.sbt file—so our resulting directory names would be the same.
The Scala.js file-naming process adds -fastopt to the end of that directory name.
Inside that directory you’ll find two files, main.js and main.js.map.
If you look at the resulting target/scala-3.0.0/scalajs-hello-world-fastopt/main.js file with cat, more, or another tool, you’ll see that it contains over two thousand lines of some hard-to-read JavaScript source code.
At the end of that file you’ll see a line of code that looks like this:
$s_Lhello_hello__main__AT__V(new ($d_T.getArrayOf().constr)([]));
While it’s hard to read, the hello and main references are an indication that this code results from your Scala @main method.
Congratulations, you just compiled your first Scala code to JavaScript.
Discussion
That’s a great first step in getting started with Scala.js. Of course, you want to see your code running in a browser, and you can do this with just a few more steps:
Update build.sbt.
Create an HTML file.
Update your Scala code.
Run the application with fastLinkJS.
Open the HTML file in a browser.
5. Update build.sbt
For the next step, add this line to the end of your build.sbt file:
libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "1.1.0"
This lets us use a Scala.js DOM library in our Scala code, which we’ll do in a few moments. Note that this particular DOM library is just one of many JavaScript facade libraries for Scala.js.
If you’re still in the sbt shell, reload the configuration files:
sbt> reload
6. Create hello1.html
Next, create an HTML file named hello1.html in the root directory of your sbt project with these contents:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Scala.js Hello, World</title>
</head>
<body>
<!-- include the Scala.js compiled code -->
<script type="text/javascript"
src="./target/scala-3.0.0/scalajs-hello-world-fastopt.js">
</script>
</body>
</html>
Notice that the script tag includes the target/scala-3.0.0/scalajs-hello-world-fastopt.js JavaScript file you’re going to generate from your Scala code in a few moments. Also notice that this filename is different than the name that was generated by the code in the Solution.
7. Update Hello1.scala
Now update the Hello1.scala file to have these contents:
package hello
import org.scalajs.dom
import dom.document
@main def hello1() =
val parNode = document.createElement("p")
val textNode = document.createTextNode("Hello, world")
parNode.appendChild(textNode)
document.body.appendChild(parNode)
In the example shown in the Solution, this file contained plain Scala code, but now it uses the DOM library to create code that looks a lot like JavaScript code. This code creates a paragraph tag, puts some text inside of it, and then adds the paragraph node to the document body.
8. Compile the code with fastLinkJS
Next, generate the JavaScript file from your Scala source code file. You do this with the sbt fastLinkJS command:
sbt> fastLinkJS
This command generates the target/scala-3.0.0/scalajs-hello-world-fastopt.js file that you just included in the HTML file.
Showing the Generated Filename
To see the filename that’s generated by fastLinkJS, prepend show to the fastLinkJS command:
sbt> show fastLinkJS
[info] target/scala-3.0.0/scalajs-hello-world-fastopt.js
9. Open hello1.html in a browser
Now open the HTML file in a browser. On macOS you can do this from the command line with this command:
$ open hello1.html
You can also open the file with a file: URL that depends on your project path in the filesystem. It will look something like file:///Users/al/ScalaJSHelloWorld/hello1.html.
Assuming that works, you should see the “Hello, world” text in the browser.
Have a little fun
As a bonus, if you want to have a little fun, feel free to experiment with this code. I recommend putting these two lines of code anywhere inside the @main method in the Hello1.scala file:
println("foo")
System.err.println("bar")
After adding those lines, run the fastLinkJS command again, reload your web page, and look at your browser console, such as with these steps:
Chrome and Firefox: Right-click → Inspect → Console
In the browser console you should see that foo is printed in a normal color and bar is printed in red. This can be a simple way to help debug your Scala.js apps.
See Also
The Scala.js home page.
This initial recipe is based heavily on the basic Scala.js tutorial.
21.2 Responding to Events with Scala.js
Problem
You want to learn how to respond to events using Scala.js, such as handling a button click.
Solution
In the previous recipe I showed how to set up a Scala.js working environment. This solution builds on that recipe by showing how to respond to the click on an HTML button using Scala/Scala.js code. As with the previous recipe, this recipe assumes that you’re familiar with HTML, JavaScript, and the DOM.
This is a multistep solution that builds on the sbt project created in the previous recipe:
Create a new HTML page.
Make the sbt updates that are needed to use jQuery.
Write the new Scala/Scala.js code.
Set the main class in sbt.
Run the code.
These steps are demonstrated in the following sections.
1. Create a new HTML page
Assuming that you’re using the sbt project created in Recipe 21.1, the first step is to create a new HTML web page. Name this file hello2.html, and place it in the root directory of your project with these contents:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Scala.js, Hello World 2</title>
</head>
<body>
<button type="button" id="hello-button">
Click me!
</button>
<!-- the 'jsdeps' file must be first -->
<script type="text/javascript"
src="./target/scala-3.0.0/scalajs2-jsdeps.js"></script>
<script type="text/javascript"
src="./target/scala-3.0.0/scalajs2-fastopt.js"></script>
</body>
</html>
The important changes to this file compared to the HTML file in the previous recipe are:
This page has a <button> element.
This page includes a new file named scalajs2-jsdeps.js. As the name jsdeps implies, this file contains dependencies for our code, specifically dependencies that scalajs2-fastopt.js relies on. You’ll learn more about these dependencies in a few moments.
The new file our Scala/Scala.js code is generating is named scalajs2-fastopt.js. As mentioned in the previous recipe, this name is based on the project name specified in build.sbt.
2. Make sbt updates to use jQuery
To update our sbt configuration, first update the project/plugins.sbt file so it has these contents:
addSbtPlugin("org.scala-js" % "sbt-scalajs" % "1.5.1")
// for adding webjars
addSbtPlugin("org.scala-js" % "sbt-jsdependencies" % "1.0.1")
The first line was used in the previous recipe, and it adds the Scala.js sbt plugin to the project. The last configuration line is new for this recipe, and it’s the first step in letting us use the WebJars library in our code. (More on this shortly.)
Next, the easiest way to handle an HTML button click from Scala.js code is to use a Scala.js jQuery facade library along with Scala.js. There are multiple facade libraries available, and to use the library named jquery-facade in this project, add this line to the libraryDependencies in the build.sbt file:
("org.querki" %%% "jquery-facade" % "2.0").cross(CrossVersion.for3Use2_13)
(You’ll see the complete build.sbt file in a few moments.)
The jquery-facade library is written in Scala, and adding that line in the build.sbt file adds it as a dependency for this project. An important point about this line is that the cross(CrossVersion.for3Use2_13) setting is the magic incantation that lets you use a Scala 2.13 library in a Scala 3 project.
Next, you also need to include the actual jQuery library—written in JavaScript—in the HTML file. You could just include a line of code like this in the HTML file:
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.2.1/jquery.min.js">
</script>
But, sbt gives you another way to bring the jQuery JavaScript library into the project. To use the sbt approach, add this line to the build.sbt file:
jsDependencies += "org.webjars" % "jquery" % "2.2.1" / "jquery.js" minified ↵
"jquery.min.js"
This line lets you use the WebJars “client-side web libraries as packaged JAR files” in the project. It specifically brings in version 2.2.1 of the jQuery JavaScript library—the actual JavaScript library, not the Scala facade—and then when you run the fastLinkJS command in sbt, that JavaScript code is written to the local target/scala-3.0.0/scalajs2-jsdeps.js file. This step isn’t necessary—you can include jQuery using the <script> tag as shown previously—but this demonstrates a possible way to add JavaScript libraries/dependencies to Scala.js/sbt projects.
At this point, these two lines in the hello2.html file should now make sense:
<!-- the 'jsdeps' file must be first -->
<script type="text/javascript"
src="./target/scala-3.0.0/scalajs2-jsdeps.js"></script>
<script type="text/javascript"
src="./target/scala-3.0.0/scalajs2-fastopt.js"></script>
The first line brings our JavaScript dependencies into our HTML file (jQuery, in this case), and the second line contains the JavaScript that’s generated from the custom Scala/Scala.js code you’re writing in src/main/scala/hello/Hello2.scala.
Finally, because the Scala code you’re about to write depends on the jQuery dependency, the jsdeps file needs to be included first in the HTML file.
3. Write the new Scala/Scala.js code
Now that you have the new HTML file and jQuery is ready to be used in the project, the main thing that’s left to do is write some Scala/Scala.js code to respond to the <button> click. Before doing this, an important point to notice is that the <button> in hello2.html has an id of hello-button:
<button type="button" id="hello-button">

You’ll refer to this id in the Scala code that follows.
The Scala code to respond to a button click and display a JavaScript window with the jQuery facade library is surprisingly simple. Save this code to a file named src/main/scala/hello/Hello2.scala:
import org.scalajs.dom
import org.querki.jquery.*
@main def hello2 =
// handle the login button click
$("#hello-button").click{ () =>
dom.window.alert("Hello, world")
}
If you’ve used jQuery before, this code will look familiar. It can be read as, “Find the HTML element with the id value hello-button, and when it’s clicked, run this little algorithm to display a JavaScript alert window with the text Hello, world.” It’s nice that you can use the $ symbol in your Scala code, because that’s consistent with using jQuery in JavaScript.
4. Set the main class in sbt
Before running this example, you need to do one more thing: update the build.sbt file to account for the fact that there are now two main methods in the project—one in Hello1.scala from Recipe 21.1 and a new one in Hello2.scala. To do this, add this line to the build.sbt file, just below the scalaJSUseMainModuleInitializer setting:
Compile/mainClass := Some("hello.Hello2")
With all the changes in this recipe, your complete build.sbt file should now have these contents:
ThisBuild / scalaVersion := "3.0.0"
// enable the plugin that’s in 'project/plugins.sbt'
enablePlugins(ScalaJSPlugin)
// this states that this is an application with a main method
scalaJSUseMainModuleInitializer := true
Compile/mainClass := Some("hello.Hello2")
lazy val root = project
.in(file("."))
.settings(
name := "ScalaJs2",
version := "0.1",
libraryDependencies ++= Seq(
("org.scala-js" %%% "scalajs-dom" % "1.1.0")
.cross(CrossVersion.for3Use2_13),
("org.querki" %%% "jquery-facade" % "2.0")
.cross(CrossVersion.for3Use2_13)
),
)
// this includes jquery with webjars.
// see: https://github.com/scala-js/jsdependencies
enablePlugins(JSDependenciesPlugin)
jsDependencies += "org.webjars" % "jquery" % "2.2.1" / "jquery.js" ↵
minified "jquery.min.js"
Other notes about this file:
The enablePlugins(ScalaJSPlugin) line is part of the recipe to use Scala.js in an sbt project.
The scalaJSUseMainModuleInitializer says that this is an application with a main method.
The Compile/mainClass setting declares that the main method for the build is hello.Hello2 (a Hello2 main method in the hello package).
I changed the project name to "ScalaJs2".
When you include dependencies compiled for Scala.js, use %%% to reference them (instead of %% for regular Scala dependencies).
Lastly, the cross(CrossVersion.for3Use2_13) syntax lets you use Scala 2.13 dependencies in a Scala 3 project. If the two libraryDependencies entries were Scala 3 libraries, you’d refer to them like this:
// if this was a Scala 3 library
libraryDependencies += "org.scala-js" %%% "scalajs-dom" % "1.1.0"
But when you need to use a Scala 2.13 library in a Scala 3 project, you use this syntax instead:
// using a Scala 2.13 library in a Scala 3 build
("org.scala-js" %%% "scalajs-dom" % "1.1.0").cross(CrossVersion.for3Use2_13)
5. Run the code
Now you’re ready to run this example. Assuming that you’re still in the sbt console, run the reload command to read in the configuration file changes:
sbt> reload
After that, run the fastLinkJS command to compile the Hello2.scala code to JavaScript:
sbt> fastLinkJS
Now open the hello2.html file in your browser. On macOS you can do this with the open command at the Terminal command line:
$ open hello2.html
You can also open the file with a file URL that depends on your project path in the filesystem. It will look something like file:///Users/al/ScalaJSHelloWorld/hello2.html.
When the file opens in your browser you should see a “Click me” button like the one shown in Figure 21-2.
Figure 21-2. The “Hello, world” button in the HTML page
When you click that button you should then see an alert dialog like the one shown in Figure 21-3.
Figure 21-3. The JavaScript alert window that’s displayed when the button is clicked
Assuming that everything worked, congratulations—you’ve just written some Scala.js code to respond to an HTML button click, thanks to Scala, sbt, Scala.js, jQuery, and the jQuery facade library (and the Scala.JS DOM library, Node.js, etc.).
Discussion
It’s worth noting again that when you add dependencies that are built for Scala.js to the build.sbt file, you use three percent symbols:
("org.querki" %%% "jquery-facade" % "2.0").cross(CrossVersion.for3Use2_13)

The way this works is that you use %% to include libraries that are compiled for Scala, but if a library has been compiled for Scala.js, you use %%%. As it’s explained in “Simple Command Line Tools with Scala Native”, just as two percent symbols tell sbt to use the right version of a dependency and three percent symbols tell sbt to use the correct target environment, currently either Scala Native, or in this case, Scala.js.
Continuously compile with fastLinkJS
In the Solution I show the fastLinkJS command in the sbt shell, but as you’re developing code in the real world, a better solution is to run it like this:
sbt> ~ fastLinkJS
Just like continuously compiling your code with ~compile or testing it with ~test, this command tells sbt to watch the files in your project and rerun the fastLinkJS command any time a source code file changes. When you first issue this command you should see some output like this:
sbt:ScalaJs2> ~ fastLinkJS
[success] Total time: 0 s, completed Apr 30, 2021, 8:45:03 AM
[info] 1. Monitoring source files
[info] Press <enter> to interrupt or ? for more options.
Then when you make a change to your code, you’ll see this output get updated. As a developer this is great, because all you need to do now is refresh your page in the browser when you make code changes.
See Also
The jquery-facade library.
You can find a list of other facades on the Scala.js JavaScript library facades page.
The WebJars project.
21.3 Building Single-Page Applications with Scala.js
Problem
You want to learn how to build single-page web applications with Scala.js.
Solution
This solution demonstrates how to start building single-page applications (SPA) with Scala.js. In the previous two recipes I showed how to set up a Scala.js working environment, and this recipe builds on the sbt project created in those two recipes. As with the previous projects, this recipe assumes that you’re familiar with HTML, JavaScript, and the DOM.
The steps in this recipe are:
Update build.sbt.
Create a new HTML file.
Create a new Scala/Scala.js file.
Run the code.
These steps are demonstrated in the following sections.
1. Update build.sbt
This recipe uses the Scalatags library, so the first step is to add it as a dependency to your build.sbt file. If this was a Scala 3 library you’d use this entry:
libraryDependencies += "com.lihaoyi" %%% "scalatags" % "0.9.4"
But because it’s a Scala 2.13 library, and you’re using it in a Scala 3 project, you use this syntax instead:
("com.lihaoyi" %%% "scalatags" % "0.9.4").cross(CrossVersion.for3Use2_13)
Also, because you’ll be creating a new Hello3.scala file for this recipe, change the mainClass setting in build.sbt to reference that file (which you’ll create shortly):
Compile/mainClass := Some("hello.Hello3")
With the changes to the build.sbt file made in this recipe and the previous two recipes, your build.sbt file should look like this:
ThisBuild / scalaVersion := "3.0.0"
// enable the plugin that’s in 'project/plugins.sbt'
enablePlugins(ScalaJSPlugin)
// this states that this is an application with a main method
scalaJSUseMainModuleInitializer := true
Compile/mainClass := Some("hello.Hello3")
lazy val root = project
.in(file("."))
.settings(
name := "ScalaJs3",
version := "0.1",
libraryDependencies ++= Seq(
("org.scala-js" %%% "scalajs-dom" % "1.1.0") ↵
.cross(CrossVersion.for3Use2_13),
("org.querki" %%% "jquery-facade" % "2.0") ↵
.cross(CrossVersion.for3Use2_13),
("com.lihaoyi" %%% "scalatags" % "0.9.4") ↵
.cross(CrossVersion.for3Use2_13)
),
)
enablePlugins(JSDependenciesPlugin)
jsDependencies += "org.webjars" % "jquery" % "2.2.1" / "jquery.js" minified ↵
"jquery.min.js"
The jQuery dependencies aren’t necessary for this tutorial, but I added them during the last tutorial, and you’ll generally want them if you decide to build your own SPAs using Scala.js. (Also, if you’re not going to use jQuery, then it’s not necessary to import the jsdeps JavaScript file into your HTML page.)
2. Create a new HTML file
Next, create a hello3.html file in the project’s root directory with these contents:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Scala.js—Hello, world, Part 3</title>
</head>
<body>
<div id="root"></div>
<!-- "jsdeps" must be listed first -->
<script type="text/javascript"
src="./target/scala-3.0.0/scala-js-hello-world-jsdeps.js"></script>
<script type="text/javascript"
src="./target/scala-3.0.0/scalajs3-fastopt.js"></script>
</body>
</html>
The big change from hello2.html in the last recipe to hello3.html is the removal of the HTML button and the addition of this code:
<div id="root"></div>
You’ll use this root id in the Scala code we’ll create next. Also, if you’re new to SPAs, notice how little HTML is in this “HTML” file(!).
3. Create Hello3.scala
Next, create a Scala source code file named Hello3.scala in the src/main/scala/hello directory with these contents:
package hello
import org.scalajs.dom
import dom.document
import scalatags.JsDom.all.*
@main def hello3 =
// create an html button with scalatags
val btn = button(
"Click me",
onclick := { () =>
dom.window.alert("Hello, world")
}
)
// this is intentional overkill to demonstrate scalatags.
// the most important thing is that the button is added here.
val content =
div(id := "foo",
div(id := "bar",
h2("Hello"),
btn
)
)
val root = dom.document.getElementById("root")
root.innerHTML = ""
root.appendChild(content.render)
Here’s a quick description of this code. First, I create a Scalatags button. The button label is Click me, and when it’s clicked I show a JavaScript alert window, similar to what I did in the previous recipe:
val btn = button(
"Click me",
onclick := { () =>
dom.window.alert("Hello, world")
}
)
Next, just to demonstrate how Scalatags works, I create a div with the class name foo, then put another div inside it with the class name bar, then put an h2 element and the button inside those two divs. The most important thing to notice is that this is where the button object btn is added to the DOM:
val content =
div(id := "foo",
div(id := "bar",
h2("Hello"),
btn
)
)
The extra div tags aren’t necessary—I just added them to demonstrate how Scalatags works. One thing I like about Scalatags is how this Scala code corresponds so well to the HTML code it’s going to emit. Another great thing is that Scalatags is supported by your IDE, so the code-completion feature of your IDE is a great help in figuring out how to use Scalatags features.
Finally, I connect my Scala code to the root element of my HTML web page with this code:
val root = dom.document.getElementById("root")
root.innerHTML = ""
root.appendChild(content.render)
If you’re familiar with working with the DOM when writing JavaScript, this code should look familiar. One important note is that you need to remember to call the render method on your Scalatags code to make this work:
root.appendChild(content.render)

In my code I tend to forget that part, so it’s worth mentioning it.
4. Run the code
With everything in place you can now compile this Scala code to JavaScript. Go back to the sbt console, and assuming that it’s still running the ~fastLinkJS command from the last recipe, hit the Enter key to stop it. Then issue the reload command to bring in the build.sbt changes:
sbt> reload
Then restart ~fastLinkJS:
sbt> ~fastLinkJS
Showing the Files Generated by fastLinkJS
If you need to know what files are generated when you run fastLinkJS, run the command as show fastLinkJS instead. It shows the names of any files that are generated:
sbt:ScalaJs3> show fastLinkJS
[info] Attributed(target/scala-3.0.0/scalajs3-fastopt.js)
Now open the hello3.html file in your browser. On macOS you can do this with the open command:
$ open hello3.html
Otherwise, the URL for your file will be something like file:///Users/al/ScalaJSHelloWorld/hello3.html.
When you open this file you should see the result shown in Figure 21-4 in your browser.
Figure 21-4. The “Click me” button in the HTML page
Now click the “Click me” button, and you should see the result shown in Figure 21-5.
Figure 21-5. The JavaScript alert window that’s displayed when the button is clicked
If you followed along, congratulations, you just created a single-page web application with Scala.js!
Discussion
If you’ve created SPAs before, hopefully you can see the potential of this approach: it lets you create single-page web apps using the power of the Scala programming language.
The next step in the process of writing SPAs is to handle HTTP requests. This scala-js.org page shows that creating and using an XMLHttpRequest is almost identical in JavaScript ES6 and Scala.js.
The scala-js-dom website shows how similar (and easy) it is to use an XMLHttpRequest in Scala.js:
def main(pre: html.Pre) = {
val xhr = new dom.XMLHttpRequest()
xhr.open(
"GET",
"http://api.openweathermap.org/data/2.5/weather?q=Singapore"
)
xhr.onload = { (e: dom.Event) =>
if (xhr.status == 200) {
pre.textContent = xhr.responseText
}
}
xhr.send()
}
That page also shows how to use a WebSocket and how to use the dom.ext.Ajax object’s get and post methods as a simpler alternative to XmlHttpRequests.
See Also
For more information on creating SPAs with Scala.js, see these resources:
The Scala.js website.
The Scalatags library.
This Scala.js for JavaScript developers page provides an introduction to using XMLHttpRequest.
If you want to try writing a Scala.js WebSocket application, I created this Play Framework and WebSocket example that includes some JavaScript code that can be converted to Scala.js.
21.4 Building Native Executables with GraalVM
Problem
You want to build a native executable from your Scala code, so your application will start up faster and potentially run faster and consume less memory.
Solution
Build a standalone JAR file as usual, such as with sbt package or sbt assembly, and then use the GraalVM sbt-native-image plugin to build your native image—a native binary executable for your operating system platform.
For example, I created a little command-line Scala application named sbtmkdirs to generate new sbt project directory structures. To make sbtmkdirs start almost instantly, I compile it to a native executable with the sbt-native-image plugin. The steps are:
Configure your sbt project to use the sbt-native-image plugin.
Create the native executable with the sbt nativeImage command (which is available via the plugin).
1. Configure your sbt project
At the time of this writing, the sbt-native-image plugin is at version 0.3.0, and the configuration steps are as follows. First, create an sbt project as described in Recipe 17.1, “Creating a Project Directory Structure for sbt”. Then add this line to your project/plugins.sbt file:
addSbtPlugin("org.scalameta" % "sbt-native-image" % "0.3.0")
Next, update your build.sbt file to look like this:
lazy val root = (project in file("."))
.enablePlugins(NativeImagePlugin)
.settings(
name := "Sbtmkdirs",
version := "0.2",
scalaVersion := "3.0.0",
Compile / mainClass := Some("sbtmkdirs.Sbtmkdirs")
)
Then change the name, version, scalaVersion, and mainClass values as needed for your project.
For this recipe, the key lines in that file are:
The enablePlugins line tells sbt to use the plugin.
The mainClass line tells sbt that my @main application is named Sbtmkdirs, and it’s in the sbtmkdirs package.
The other lines are commonly used in a standard sbt build.sbt file.
2. Create the native executable
Given that setup, just run the nativeImage command inside the sbt shell, or at your operating system command line:
$ sbt nativeImage
This command compiles your code and builds the native image. The first time it runs, it may need to download many artifacts, including GraalVM and its native-image command. Once it finishes you should see a result like this:
[info] Native image ready!
[info] target/native-image/Sbtmkdirs
[success] Total time: 42 s
Now you can test the native image by moving into the target/native-image directory and running your new command:
$ cd target/native-image
$./Sbtmkdirs
You can also use this plugin command to generate the native image and run it as soon as it’s built:
$ sbt nativeImageRun
Discussion
Per the native-image documentation:
GraalVM Native Image allows you to ahead-of-time compile Java code to a standalone executable, called a native image. This executable includes the application classes, classes from its dependencies, runtime library classes from JDK and statically linked native code from JDK. It does not run on the Java VM, but includes necessary components like memory management and thread scheduling from a different virtual machine, called ‘Substrate VM.’ The resulting program has faster startup time and lower runtime memory overhead compared to a Java VM.
Note that some other features, such as using Java’s java.net network libraries, require the use of command-line flags to work:
--enable-http enable http support in the generated image
--enable-https enable https support in the generated image
Running native-image separately
You can also run the native-image command yourself, but this requires quite a bit more work. If you’re interested in trying this, the first step is to download and install GraalVM, and use it as your Java library. Set your JAVA_HOME and PATH on Unix systems like this:
$ export JAVA_HOME=~/bin/graalvm-ce-java11-21.1.0/Contents/Home/
$ export PATH=~/bin/graalvm-ce-java11-21.1.0/Contents/Home/bin:$PATH
Then you need to install the GraalVM native-image command separately, as described on this GraalVM page.
You’ll also need to have Scala installed, as usual. After that, create a shell script like this one that I used with Scala 2.13:
SCALA_HOME needs to be set
export SCALA_HOME=~/bin/scala-2.13.3
this script assumes that this file was already created
in this directory with `sbt package` or `sbt assembly`
JAR_FILE=sbtmkdirs_2.13-0.2.jar
JAR_DIR=../target/scala-2.13
echo "deleting old JAR file ..."
rm $JAR_FILE 2> /dev/null
echo "copying JAR file to current dir ..."
cp ${JAR_DIR}/${JAR_FILE} .
echo "running 'native-image' command on ${JAR_FILE} ..."
create a native image from the jar file and name
the resulting executable 'sbtmkdirs'
native-image -cp .:${SCALA_HOME}/lib/scala-library.jar:${JAR_FILE} \
--no-server \
--no-fallback \
--initialize-at-build-time \
-jar ${JAR_FILE} sbtmkdirs
That script assumes that your JAR file has the name shown and is in the target directory shown. It uses that JAR file as input to create the native image.
See Also
At the time of this writing, GraalVM native-image features are still changing rapidly. See the GraalVM Native Image documentation for the most up-to-date information.
21.5 Bundling Your Application with jpackage
Problem
You want to package a Scala application to make it look and feel like a native application, such as creating an “.app” distribution that works as a native macOS application (“App”).
Solution
Build your Scala application as desired, typically using sbt-assembly or a similar tool to create one JAR file. Then use the jpackage utility that comes with JDK 14 and newer releases to package your application for the macOS, Linux, or Windows platforms.
For example, imagine that you’ve created this Scala/Swing text editor application and want to bundle it as a macOS App:
package com.alvinalexander.myapp
import java.awt.{BorderLayout,Dimension}
import javax.swing.*
@main def mySwingApp =
val frame = JFrame("My App")
val textArea = JTextArea("Hello, Scala 3 world")
val scrollPane = JScrollPane(textArea)
SwingUtilities.invokeLater(new Runnable {
def run =
frame.getContentPane.add(scrollPane, BorderLayout.CENTER)
frame.setSize(Dimension(400,300))
frame.setLocationRelativeTo(null)
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
frame.setVisible(true)
})
The first thing you’ll want to do is package your application as a single JAR file, using the sbt-assembly techniques shown in Recipe 17.11, “Deploying a Single Executable JAR File”. At the time of this writing, configuring sbt-assembly only requires adding this line to a project/plugins.sbt configuration file in your sbt build:
// note: the version number changes several times a year
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.15.0")
After that, create the output JAR file using the assembly command at the sbt shell prompt:
sbt:MySwingApp> assembly
Because I can never remember where assembly writes its output file, I usually use this command instead:
sbt:MySwingApp> show assembly
[info] target/scala-3.0.0-RC1/MySwingApp-assembly-0.1.0.jar
As shown, the output of that command prints the location where the output JAR file is written.
Now that I have a single JAR file, the next step is to create a subdirectory where I build the App, so I create a subdirectory named jpackage and move into that directory:
$ mkdir jpackage
$ cd jpackage
Inside that directory I create two subdirectories named Input and Output:
$ mkdir Input
$ mkdir Output
The Input directory is where I put resources that are used to build the App, and the Output directory is where the resulting App will be built.
Now I create a shell script to build the App. I’ll name this file BuildApp.sh:
this requires JDK 14+
the jar file must be built with sbt-assembly or similar
JAR_FILE=MySwingApp-assembly-0.1.0.jar
MAIN_CLASS=com.alvinalexander.myapp.mySwingApp
APP_NAME=MyApp
TARGET_DIR=../target/scala-3.0.0-RC1
rm Input/${JAR_FILE} 2> /dev/null
rm -rf Output/${APP_NAME}.app 2> /dev/null
get the latest sbt-assembly jar file
cp ${TARGET_DIR}/${JAR_FILE} Input
creates Output/MyApp.app (a MacOS app)
echo "Creating a macOS app with jpackage ..."
jpackage \
--name $APP_NAME \
--type app-image \
--input Input \
--dest Output \
--main-jar $JAR_FILE \
--main-class $MAIN_CLASS
optional: specify an app icon
--icon Input/MyApp.icns \
echo "Created Output/MyApp.app (hopefully)"
That script:
Deletes old artifacts in the Input and Output directories
Copies the latest sbt-assembly JAR file into the Input directory
Runs the jpackage command to create a macOS App
If you’re not familiar with what a macOS App is, it’s just a collection of files and directories underneath a directory whose name ends with the .app extension. The files and directory under .app must be in a proper format and include certain configuration files, and jpackage does that work for you.
Next, I make that script executable and then run it:
$ chmod +x BuildApp.sh
$./BuildApp.sh
Creating a macOS app with jpackage ...
Created Output/MyApp.app (hopefully)
The script doesn’t account for errors, but assuming that everything works, it creates a macOS App named MyApp.app under the Output directory. On a macOS system you can run your App with the open command:
$ open Output/MyApp.app
Assuming that everything works, that opens the Scala/Swing text editor application, as shown in Figure 21-6.
Figure 21-6. The Scala/Swing application, shown next to its macOS menu
Discussion
In the example I use this jpackage argument to build a macOS App:
--type app-image
In addition to specifying app-image for the type, the jpackage help text shows that you can also build other types of packages:
--type -t <type>
The type of package to create
Valid values are: {"app-image", "dmg", "pkg"}
If this option is not specified a platform dependent
default type will be created.
"dmg" and "pkg" represent two types of installers for the macOS platform. jpackage can also create packages on Linux and Windows systems.
The solution shows only a minimum set of jpackage options. This example shows the options I use to build a real-world Scala/JavaFX application for macOS:
APP_DIR_NAME=CliffsNotesFx.app
APP_NAME=CliffsNotesFx
APP_MAIN=com.alvinalexander.cliffsnotes.CliffsNotesGui
INPUT_JAR_FILE=${ASSEMBLY_JAR_FILENAME}
ICON_FILE=AlsNotes.icns
jpackage \
--type app-image \
--verbose \
--input input \
--dest release \
--name $APP_NAME \
--main-jar $INPUT_JAR_FILE \
--main-class $APP_MAIN \
--icon $ICON_FILE \
--module-path ~/bin/adopt@1.14.0-1/Contents/Home/jmods \
--add-modules java.base,javafx.controls,javafx.web (many more modules) ... \
--mac-package-name $APP_NAME \
--mac-package-identifier $APP_MAIN \
--app-version 1.1 \
--description "A CliffsNotes browser" \
--vendor "Alvin J. Alexander" \
--java-options -Dapple.laf.useScreenMenuBar=true \
--java-options '--add-opens javafx.base/com.sun.javafx.reflect=ALL-UNNAMED' \
--java-options -Xmx2048m
If you want to distribute your application on the Apple App Store, you’ll also need to sign your App. The jpackage command includes these options for that process:
--mac-sign
--mac-signing-keychain <file path>
--mac-signing-key-user-name <team name>
What jpackage creates
As mentioned, the jpackage command does a lot of work for you when creating a macOS App. To help demonstrate what it does, here’s the pruned output of the tree command on the MyApp.app directory:
$ tree MyApp.app
MyApp.app
└── Contents
├── Info.plist
├── MacOS
│ ├── MyApp
│ └── libapplauncher.dylib
├── PkgInfo
├── Resources
│ └── MyApp.icns
├── app
│ ├── MyApp.cfg
│ ├── MyApp.icns
│ └── MySwingApp-assembly-0.1.0.jar
└── runtime
└── Contents
│ a copy of the JVM is under here ...
│ ...
82 directories
Notice that your JAR file is copied into this directory structure. I also used an icon file named MyApp.icns for my build, and notice that it’s copied under MyApp.app as well. A copy of the JVM is also added here, so users of your app won’t need to have Java installed on their system. The JVM is started with the launcher that’s provided by jpackage.
See Also
“Packaging Tool User’s Guide” is Oracle’s documentation for packaging applications.
The jpackage command help page shows all the options that are available.
Chapter 22. Integrating Scala with Java
This book was completed in 2021, so this chapter focuses on the integration of Scala 3 and Java 11, which is Oracle’s current Long-Term-Support release. This is important to mention because there are currently two major Java version releases planned for every year.
In general, the ability to mix Scala and Java code is pretty seamless. In most cases, you can create an sbt project, put your Scala code in src/main/scala, put your Java code in src/main/java, and it just works.
The recipes in this chapter cover issues with converters, traits and interfaces, exceptions, the conversion of numeric types, and more.
In my Scala/Java interactions, the biggest issues I’ve run into deal with the differences between their collections libraries. However, I’ve always been able to work through those problems with Scala’s CollectionConverters objects. Starting with Scala 2.13, there are now two CollectionConverters objects:
Extension methods for use in Scala code are in scala.jdk.CollectionConverters
Conversion methods for your Java code are in scala.jdk.javaapi.CollectionConverters
Similarly, conversion methods between Scala’s Option and Java’s Optional are handled by these conversion objects:
Extension methods for Scala are in scala.jdk.OptionConverters
Conversion methods for Java are in scala.jdk.javaapi.OptionConverters
These conversion methods are shown in this chapter’s initial recipes.
After the conversion recipes, Recipes 22.5 and 22.6 dig into the relationship between Scala traits and Java interfaces. Thanks to the features of interfaces in Java 8 and newer, traits and interfaces are more closely aligned than they were in the first edition of the Scala Cookbook.
Other integration points between Scala and Java require the use of annotations, and these are covered in the recipes on exceptions (@throws), varargs parameters (@varargs), and serialization (@SerialVersionUID).
Finally, if you’re familiar with Java but new to Scala, it’s important to mention that everything in Scala is an object. Specifically this means that Scala doesn’t have primitive numeric data types. This is shown in Figure 22-1, where I type the number 1 into the Scala REPL, followed by a decimal and then the Tab key, and the REPL shows all the methods that are available on an Int instance.
Figure 22-1. In Scala everything is an object, even an integer
22.1 Using Java Collections in Scala
Problem
You’re using Java classes in a Scala application, and those classes either return Java collections or require Java collections in their method calls, and you need to integrate those with your use of Scala collections.
Solution
Use the extension methods of the scala.jdk.CollectionConverters object in your Scala code to make the conversions work. For example, if you have a method named getNumbers in a public Java class named JavaCollections:
// java
public static List<Integer> getNumbers() {
return new ArrayList<Integer>(List.of(1,2,3));
}
you can convert that Java list to a Scala Seq in your Scala code like this:
// scala
import scala.jdk.CollectionConverters.*
import java.util.List
def testList =
println("Using a Java List in Scala")
val jlist: java.util.List[Integer] = JavaCollections.getNumbers
// jlist.getClass is "class java.util.ArrayList"
// note that this is `Seq[Integer]` and not `Seq[Int]`:
val slist: Seq[Integer] = jlist.asScala.toSeq
slist.foreach(println)
Similarly, if you have a Java method that returns a Map:
// java
public static Map<String, String> getPeeps() {
return new HashMap<String, String>(Map.of(
"Captain", "Kirk",
"Mr.", "Spock"
));
}
you can convert that to a Scala Map like this:
// scala
import scala.jdk.CollectionConverters.*
import java.util.{Map => JavaMap}
import scala.collection.mutable.{Map => ScalaMap}
@main def testMap =
println("use a Java Map in Scala")
val jmap: JavaMap[String,String] = JavaCollections.getPeeps
val smap: ScalaMap[String,String] = jmap.asScala
for (k,v) <- smap do println(s"key: '$k', value: '$v'")
Similarly, this example shows how to convert a Java Properties object to a Scala Map:
// [1] create and populate a Java Properties object
val javaProps = new java.util.Properties
javaProps.put("first_name", "Charles")
javaProps.put("last_name", "Carmichael")
// [2] convert Java Properties to Scala Map
import scala.jdk.CollectionConverters.*
val scalaProps = javaProps.asScala
println(scalaProps)
The println statement in that code prints output like this:
Map(last_name -> Carmichael, first_name -> Charles)
Discussion
This recipe shows how to perform collection conversions in Scala. To perform conversions in your Java code, see the next recipe.
Type conversions
The first example in the Solution shows how to create a Scala Seq[Integer] from a Java java.util.List<Integer>:
val slist: Seq[Integer] = jlist.asScala.toSeq
Assuming that you really want a Seq[Int]—and not Seq[Integer]—you’ll need to add an Integer-to-Int conversion process to your code:
def integer2Int(i: Integer): Int = i
val jlist2: java.util.List[Integer] = MyJavaClass.getNumbers()
val slist2: Seq[Int] = jlist2.asScala.map(i => integer2Int(i)).toSeq
That code does the following:
Creates jlist2 as a java.util.List[Integer]
Converts that code to a Scala Buffer[Integer] using asScala
Converts that Buffer[Integer] to a Buffer[Int] with the map method and integer2Int function
Creates the final Seq[Int] with the toSeq call
Conversion methods
Code like this works because of conversion methods in the CollectionConverters object. Table 22-1 shows the two-way conversions that are possible using the asScala and asJava methods.
Scala collection | Java collection |
---|---|
scala.collection.Iterable | java.lang.Iterable |
scala.collection.Iterator | java.util.Iterator |
scala.collection.mutable.Buffer | java.util.List |
scala.collection.mutable.Set | java.util.Set |
scala.collection.mutable.Map | java.util.Map |
scala.collection.concurrent.Map | java.util.concurrent.ConcurrentMap |
For example, you can convert a Scala Buffer to a Java List using asJava, and perform the opposite conversion using asScala.
Table 22-2 shows additional two-way conversions. The conversions to Scala are supported with asScala, and the specially named extension methods let you convert the Scala collections to Java collections.
Scala collection | Java collection |
---|---|
scala.collection.Iterable | java.util.Collection (via asJavaCollection) |
scala.collection.Iterator | java.util.Enumeration (via asJavaEnumeration) |
scala.collection.mutable.Map | java.util.Dictionary (via asJavaDictionary) |
Table 22-3 lists one-way conversions that are possible with asJava.
Scala collection | Java collection |
---|---|
scala.collection.Seq | java.util.List |
scala.collection.mutable.Seq | java.util.List |
scala.collection.Set | java.util.Set |
scala.collection.Map | java.util.Map |
Table 22-4 lists one-way conversions that are possible with asScala.
Scala collection | Java collection |
---|---|
java.util.Properties | scala.collection.mutable.Map[String,String] |
See Also
scala.jdk.CollectionConverters for converting from Java to Scala
scala.javaapi.CollectionConverters for converting from Scala to Java
scala.jdk.javaapi.StreamConverters for creating Java streams that work with Scala collections
22.2 Using Scala Collections in Java
Problem
You need to access Scala collections classes in a Java application, converting those Scala classes into Java classes.
Solution
In your Java code, use the methods of Scala’s scala.javaapi.CollectionConverters object to make the conversions work. For example, if you have a List[String] like this in a Scala class:
// scala
class ScalaClass:
val strings = List("a", "b")
you can access that Scala List in your Java code like this:
// java
import scala.jdk.javaapi.CollectionConverters;
ScalaClass sc = new ScalaClass();
// access the `strings` field as `sc.strings()`
scala.collection.immutable.List<String> xs = sc.strings();
// create a Java List<String>
java.util.List<String> listOfStrings = CollectionConverters.asJava(xs);
A few points to notice about that code:
In your Java code you create an instance of ScalaClass just like an instance of a Java class.
ScalaClass has a field named strings, but from Java you access that field as a method, for example, as sc.strings().
I wrote that code in a long form to help emphasize those points, but you can also perform the conversion in one step like this:
java.util.List<String> listOfStrings2 = CollectionConverters.asJava(
(new ScalaClass()).strings()
);
Discussion
This recipe shows how to perform collections conversions in Java. To perform conversions in your Scala code, see the previous recipe.
In some cases you can run into an issue with type erasure. For instance, given this ints field in a Scala class:
class ScalaClass:
val ints = Seq(1,2,3)
you have to access that Scala Seq as a List<Object> in Java:
// java
ScalaClass sc = new ScalaClass();
java.util.List<Object> listInt = CollectionConverters.asJava(sc.ints());
// this also works
java.util.List listInt = CollectionConverters.asJava(sc.ints());
You can see the type erasure problem when you compile the Scala class with scalac, then disassemble it with javap, where you see this:
public scala.collection.immutable.Seq<java.lang.Object> ints();
As shown, the class file only knows that there’s an ints() method that returns Seq<java.lang.Object>.
If you have access to the Scala source code, you can make a Seq[Int] easier to access from Java by first converting it to a Seq[Integer]:
// in a scala class
val jIntegers: Seq[java.lang.Integer] = Seq(1,2,3).map(i => i:java.lang.Integer)
Now you can access that as a List<Integer> in a Java class like this:
// java
java.util.List<Integer> listIntegers =
CollectionConverters.asJava(sc.jIntegers());
If you can’t modify the Scala code, you may have to perform other casting-related work to handle the java.util.List<Object>, depending on your needs.
See Also
The scala.jdk.javaapi.CollectionConverters object supports the same two-way conversions as the scala.jdk.CollectionConverters object shown in the previous recipe. See that recipe for those conversions, and these links for more details:
scala.jdk.CollectionConverters for converting from Java to Scala
scala.javaapi.CollectionConverters for converting from Scala to Java
scala.jdk.javaapi.StreamConverters for creating Java streams that work with Scala collections
22.3 Using Java Optional Values in Scala
Problem
You need to use a Java Optional value in your Scala code.
Solution
When writing Scala code, import the scala.jdk.OptionConverters object and then use the toScala extension method to convert a Java Optional value to a Scala Option.
To demonstrate this, create a Java class with two Optional<String> values, one containing a string and the other one empty:
// java
import java.util.Optional;
public class JavaClass {
static Optional<String> oString = Optional.of("foo");
static Optional<String> oEmptyString = Optional.empty();
}
Then in your Scala code you can access those fields. If you just access them directly, they will both be Optional values:
// scala
import java.util.Optional
val optionalString = JavaClass.oString // Optional[foo]
val eOptionalString = JavaClass.oEmptyString // Optional.empty
But by using the scala.jdk.OptionConverters methods, you can convert them to Scala Option values:
import java.util.Optional
import scala.jdk.OptionConverters.*
val optionalString = JavaClass.oString // Optional[foo]
val optionString = optionalString.toScala // Some(foo)
val eOptionalString = JavaClass.oEmptyString // Optional.empty
val eOptionString = eOptionalString.toScala // None
This syntax works because toScala is defined as an extension method, so it can be used on an Optional instance.
Numeric values
Numeric values also convert well from Java to Scala. Given this Java code:
// java
import java.util.Optional;
import java.util.OptionalInt;
public class JOptionalNumericToScala {
static Optional<Integer> oInt = Optional.of(1);
static Optional<Integer> oEmptyInt = Optional.empty();
static OptionalInt optionalInt = OptionalInt.of(1);
}
you can work with these Optional<Integer> and OptionalInt fields in your Scala code, as shown previously:
// scala
import java.util.Optional
// Optional[Int]
val optionalInt = JOptionalNumericToScala.oInt // Optional[1]
val optionInt = optionalInt.toScala // Some(1)
// Optional[Int] (empty)
val eOptionalInt = JOptionalNumericToScala.oEmptyInt // Optional.empty
val eOptionInt = eOptionalInt.toScala // None
// OptionalInt
val optionalInt2 = JOptionalNumericToScala.optionalInt // OptionalInt[1]
val sOptionalInt2 = optionalInt2.toScala // Some(1)
Discussion
If you have access to the Java source code, you can also use the conversion methods from scala.jdk.javaapi.OptionConverters to convert Optional values to Option values in your Java code rather than in your Scala code. Notice that this object is also named OptionConverters, but the two objects are used to convert Optional values in different places:
Use scala.jdk.OptionConverters in your Scala code
Use scala.jdk.javaapi.OptionConverters in your Java code
Convert Optional to Option on the Java side
This example shows how to convert Optional fields to Option values in your Java code, using the methods of the scala.jdk.javaapi.OptionConverters object:
// java
import java.util.Optional;
import java.util.OptionalInt;
import scala.jdk.javaapi.OptionConverters;
import scala.Option;
public class JOptionalNumericToScala {
static Option<Integer> oInt1 = OptionConverters.toScala(Optional.of(1));
static Option<Integer> oInt2 = OptionConverters.toScala(OptionalInt.of(2));
}
Notice that the first example uses Optional and the second example uses OptionalInt, and both convert to a Scala Option. When they’re converted like this in the Java code, they appear as Option values in your Scala code:
// scala
val oInt1 = JOptionalNumericToScala.oInt1 // Some(1)
val oInt2 = JOptionalNumericToScala.oInt2 // Some(2)
See Also
The two Scala objects for converting Optional and Option values are:
scala.jdk.OptionConverters for use in your Scala code
scala.jdk.javaapi.OptionConverters for use in your Java code
22.4 Using Scala Option Values in Java
Problem
You want to access a Scala Option value in your Java code.
Solution
You can convert a Scala Option value to a Java Optional value in your Scala code or in your Java code. The Scala solution is shown here, and the Java solution is shown in the Discussion.
In your Scala code, use the toJava extension method to convert a Scala Option to a Java Optional value, after importing scala.jdk.OptionConverters.
To demonstrate this, create a Scala class with two Option[String] values, one containing a string and the other one empty, and convert those Option[String] values into java.util.Optional[String] using toJava:
// scala
import scala.jdk.OptionConverters.*
// create java.util.Optional[String] values
object Scala:
// convert a Some to Optional
val scalaStringSome = Option("foo").toJava
// convert a None to Optional
val scalaStringNone = Option.empty[String].toJava
Then in your Java code, access those fields directly as Optional values:
// java
import java.util.Optional;
Optional<String> stringSome = Scala.scalaStringSome(); // Optional[foo]
Optional<String> stringNone = Scala.scalaStringNone(); // Optional.empty
The two fields are available as Optional values, and the only difference you see in your Java code is that Scala fields like scalaStringSome appear as methods in your Java code—scalaStringSome() rather than as fields.
Options containing numeric values
Converting numeric values that are wrapped in a Scala Option can take a little more work, but they can also be converted to Java Optional values. The scala.jdk.OptionConverters object provides several methods for these situations. For example, given this Scala code, which creates Optional and OptionalInt values:
// scala
import scala.jdk.OptionConverters.*
object Scala:
val intOptional1 = Option(1).toJava // Optional[Int], or
// Optional[Object]
val optionalInt = Option(1).toJavaPrimitive // OptionalInt
val optionalInt2 = optionalInt.toJavaGeneric // Optional[Int]
those fields can be accessed in your Java code like this:
// java
import java.util.Optional;
import java.util.OptionalInt;
Optional intOptional1 = Scala.intOptional1(); // Optional[1]
OptionalInt optionalInt = Scala.optionalInt(); // OptionalInt[1]
Optional optionalInt2 = Scala.optionalInt2(); // Optional[1]
A key to this solution is that the Optional fields in your Java code need to be declared in one of these ways:
Optional x = ...
Optional<Object> x = ...
OptionalInt x = ...
Because of type erasure, attempting to declare the field type like this will result in a compile-time error:
Optional<Integer> intOptional1 = ... // error
Discussion
If you’re working on the Java side and the Scala code only offers you an Option value, you can convert it into an Optional value on the Java side. Just use the toJava* methods in the scala.jdk.javaapi.OptionConverters object.
Same Name, Different Package
Note that while this object has the same name as the object shown in the Solution (OptionConverters), they’re in different packages, and this object is meant to be used in Java code.
To demonstrate converting an Option into an Optional value in Java, first create an Option[String] in your Scala code:
// scala
object Scala:
val optionString = Option("foo")
Now you can convert that to an Optional<String> in your Java code using the toJava method from OptionConverters:
// java
import scala.jdk.javaapi.OptionConverters.toJava;
Optional<String> stringOptional = toJava(Scala.optionString());
In addition to toJava, other conversion methods you can use in your Java code are:
toJavaOptionalDouble
toJavaOptionalInt
toJavaOptionalLong
See Also
The two Scala objects for converting Optional and Option values are:
scala.jdk.OptionConverters for use in your Scala code
scala.jdk.javaapi.OptionConverters for use in your Java code
22.5 Using Scala Traits in Java
Problem
You’ve written a Scala trait with implemented methods and want to use those methods in a Java application.
Solution
This book was tested with Java 11, and with Java 11 you can use a Scala trait just like a Java interface, even if the trait has implemented methods. For example, given these two Scala traits, one with an implemented method and one with only an interface:
// scala
trait SAddTrait:
def sum(x: Int, y: Int) = x + y // implemented
trait SMultiplyTrait:
def multiply(x: Int, y: Int): Int // abstract
a Java class can implement both of those interfaces, and implement the multiply method:
// java
class JMath implements SAddTrait, SMultiplyTrait {
public int multiply(int a, int b) {
return a * b;
}
}
JMath jm = new JMath();
System.out.println(jm.sum(3,4)); // 7
System.out.println(jm.multiply(3,4)); // 12
Discussion
This solution used to require wrapping the Scala trait in a class so the Java application could use it, but these days the solution is to use the Scala trait just as though it was a Java interface.
22.6 Using Java Interfaces in Scala
Problem
You want to implement a Java interface in a Scala application.
Solution
In your Scala application, use the extends keyword and commas to implement your Java interfaces, just as though they were Scala traits.
For example, given these three Java interfaces:
// java
interface Animal {
void speak();
}
interface Wagging {
void wag();
}
interface Running {
// an implemented method
default void run() {
System.out.println("I’m running");
}
}
you can create a Dog class in Scala with the usual extends keyword, just as though you were using traits. All you have to do is implement the speak and wag methods:
// scala
class Dog extends Animal, Wagging, Running:
def speak() = println("Woof")
def wag() = println("Tail is wagging")
Discussion
Notice that the Java Running interface declares a default method named run. As shown, default methods in Java interfaces are easily used in Scala.
Static methods in Java interfaces are also easily used in Scala:
// java
interface Mathy {
static int add(int a, int b) {
return a + b;
}
}
// scala
println(Mathy.add(1,1)) // prints "2"
22.7 Adding Exception Annotations to Scala Methods
Problem
You want to let Java users know that a Scala method can throw one or more exceptions, so they can handle those exceptions with try/catch blocks.
Solution
Add the @throws annotation to your Scala methods so Java consumers will know the exceptions they can throw.
For example, this Scala exceptionThrower method is annotated to declare that it throws an Exception:
// scala
object SExceptionThrower:
@throws(classOf[Exception])
def exceptionThrower = throw new Exception("Exception from Scala!")
As a result, this Java code won’t compile because I don’t handle the exception:
// java: won’t compile
public class ScalaExceptionsInJava {
public static void main(String[] args) {
SExceptionThrower.exceptionThrower();
}
}
The compiler gives this error:
[error] ScalaExceptionsInJava: unreported exception java.lang.Exception;
must be caught or declared to be thrown
[error] SExceptionThrower.exceptionThrower()
This is good—it’s what you want: the annotation tells the Java compiler that exceptionThrower can throw an exception. Now when you’re writing Java code you must handle the exception with a try block or declare that your Java method throws an exception:
public static void main(String[] args) throws Exception ...

Conversely, if you leave the annotation off the Scala exceptionThrower method, the Java code will compile. This is probably not what you want, because the Java code may not account for the Scala method throwing the exception.
Discussion
To declare that a Scala method can throw multiple exceptions, use multiple throws annotations before declaring your method:
// scala
@throws(classOf[FooException])
@throws(classOf[BarException])
def baz() = ...
Then in your Java code, catch those exceptions as usual:
try {
baz();
} catch(FooException e) {
// handle the exception
} catch(BarException e) {
// handle the exception
} finally {
// code here as needed
}
See Also
While this recipe shows how to annotate exception-throwing methods to work with Java, the “Scala way” is that your methods should never throw an exception. See Recipe 10.8, “Implementing Functional Error Handling”, for details on the preferred approach to working with possible errors.
22.8 Annotating varargs Methods to Work with Java
Problem
You’ve created a Scala method with a varargs field, and would like to be able to call that method from Java code.
Solution
Mark the Scala method with the @varargs annotation. For example, the printAll method in this Scala class declares a varargs field—String*—and is marked with @varargs:
// scala
import annotation.varargs
object VarargsPrinter:
@varargs def printAll(args: String*): Unit = args.foreach(println)
Because printAll is declared with the @varargs annotation, it can be called from a Java program with a variable number of parameters, as shown in this example:
// java
public class JVarargs {
public static void main(String[] args) {
VarargsPrinter.printAll("Hello", "world");
}
}
When this code is run, it results in the following output:
Hello
world
Discussion
If the @varargs annotation isn’t used on the printAll method, the Java code shown won’t even compile, failing with the following compiler errors:
[error] JVarargs.java: method printAll in class VarargsPrinter cannot be
applied to given types;
[error] required: scala.collection.immutable.Seq<java.lang.String>
[error] found: java.lang.String,java.lang.String
[error] reason: actual and formal argument lists differ in length
[error] VarargsPrinter.printAll
From a Java perspective, without the @varargs annotation, the printAll method appears to take a scala.collection.immutable.Seq<java.lang.String> as its argument.
Calling a Java varargs method
Calling a Java varargs method from Scala generally just works. For instance, this Java method:
// java
public class JVarargs {
// a java method with a varargs parameter
static void jPrintAll(String... args) {
for (String s: args) {
System.out.println(s);
}
}
}
can be called from this Scala code, and it works as expected:
// scala
@main def jVarargs =
JVarargs.jPrintAll()
JVarargs.jPrintAll("foo")
JVarargs.jPrintAll("foo", "bar")
22.9 Using @SerialVersionUID and Other Annotations
Problem
You want to specify that a Scala class is serializable and set the serialVersionUID.
Solution
Use the Scala @SerialVersionUID annotation while also having your class extend the Serializable type:
@SerialVersionUID(123L)
class Sheep(val name: String) extends Serializable:
override def toString = name
@transient val greet: String = s"Hello, $name"
Given that class and this deepClone function:
// this code ignores possible exceptions
def deepClone(obj: Object): Object =
import java.io.*
val baos = ByteArrayOutputStream()
val oos = ObjectOutputStream(baos)
oos.writeObject(obj)
val bais = ByteArrayInputStream(baos.toByteArray())
val ois = ObjectInputStream(bais)
ois.readObject()
you can clone a Sheep:
// the original sheep
val d = Sheep("Dotty")
println(d) // Dotty
println(d.greet) // Hello, Dotty
// the cloned sheep
val d2 = deepClone(d).asInstanceOf[Sheep]
println(d2) // Dotty
println(d2.greet) // null
Cloning the Sheep succeeds as expected, but because the greet field has the @transient annotation, it’s null in the cloned sheep. A solution to this problem is shown in the Discussion.
@transient
The @transient annotation means this field should not be serialized.
That code succeeds, but if you attempt to do the same thing with this plain Cat class, it will throw an exception when you call deepClone:
class Cat(val name: String):
override def toString = name
val c = Cat("Morris")
val c2 = deepClone(c) // error: java.io.NotSerializableException
This code fails because it does not use @SerialVersionUID and Serializable.
Discussion
The Sheep class shown in the Solution works as expected, but as shown, after the serialization/deserialization process the greet field ends up null. A solution to this problem is to make the greet field a transient lazy val:
@SerialVersionUID(123L)
class Sheep(val name: String) extends Serializable:
override def toString = name
@transient lazy val greet: String = s"Hello, $name"
By using @transient and lazy val together:
As before, the greet field is not serialized.
After the deepClone serialization/deserialization process, the greet field is recalculated when it’s accessed as d2.greet.
The result is that greet won’t be null.
Other annotations
Table 22-5 shows other Scala annotations and their Java equivalents. Several of these annotations are demonstrated in this chapter.
Scala | Java |
---|---|
scala.deprecated | Used to mark a member as deprecated (shown in an example below). |
scala.serializable | java.io.Serializable (shown in this recipe). |
scala.SerialVersionUID | serialVersionUID field (shown in this recipe). |
scala.throws | throws keyword (shown in Recipe 22.7). |
scala.transient | transient keyword (shown in this recipe). |
scala.annotation.varargs | Used on a field in a method, function, or constructor, it instructs the compiler to generate a Java varargs-style parameter (shown in Recipe 22.8). |
@threadUnsafe | When used on a lazy val field, the field will be initialized faster, but in a manner that is not thread-safe. |
@targetName | Define an alternative name for a member. The defined method name is used in Scala, and the targetName is accessed from another language like Java. |
These examples demonstrate a few of those annotations:
@deprecated("wow this method is old", "Version 0.1")
def veryOldMethod(s: String) = ???
@throws(classOf[Exception])
def exceptionThrower = throw new Exception("Exception from Scala!")
import annotation.varargs
@varargs def printAll(args: String*): Unit = args.foreach(println)
This example shows the Scala and Java code necessary to use the @targetName annotation:
// scala: define a '++' method with the target name 'plus1'
object TargetNameDemo:
import scala.annotation.targetName
@targetName("plus1")
def ++(i: Int): Int = i + 1
// use '++' in scala code
@main def usePlusPlus =
import TargetNameDemo.++
println(++(1))
// java
// use 'plus1' in java code
int i = TargetNameDemo.plus1(1);
System.out.println(i);
This is a nice new way to provide easily usable names in Java code.
See Also
Recipe 22.7 demonstrates the @throws annotation.
Recipe 22.8 demonstrates the @varargs annotation.
The Scala 3 @targetName documentation provides more details on its use.
Chapter 23. Types
As you can tell from one look at the Scaladoc for the collections classes, Scala has a powerful type system. However, unless you’re the creator of a library, you can go a long way in Scala without having to go too far down into the depths of Scala types. But once you start creating libraries for other users, you will need to learn them.
This chapter provides recipes for the most common type-related problems you’ll encounter, but when you need to go deeper, I highly recommend the book Programming in Scala (Artima). Martin Odersky, one of its authors, is the creator of the Scala programming language, and I think of that book as “the reference” for Scala.
Scala’s type system uses a set of symbols to express different generic type concepts, including the concepts of bounds, variance, and constraints. Before jumping into the recipes, the most common of these symbols are summarized in the following sections.
A Note About Programming Levels and Types
Way back in January 2011, Martin Odersky defined six levels of knowledge that are needed for different types of Scala programmers. He uses the levels A1-A3 for application programmers, and L1-L3 for library designers. The type-related techniques that are demonstrated in this chapter correspond to his levels L1 through L3.
Generic Type Parameters
When you first begin writing Scala code, you’ll use types like Int, String, and custom types you create, like Person, Employee, and Pizza. Then you’ll create traits, classes, and methods that use those types. Here’s an example of a method that uses the Int type, as well as a Seq[Int]:
// ignore possible errors that can occur
def first(xs: Seq[Int]): Int = xs(0)
Seq[Int] is a situation where one type is a container of another type. List[String] and Option[Int] are also examples of types that contain another type.
As you become more experienced in working with types, when you look at the first method you’ll see that its return type has no dependency at all on what’s inside the Seq container. The Seq can contain types like Int, String, Fish, Bird, and so on, and the body of the method would never change. As a result, you can rewrite that method using a generic type, like this:
def first[A](xs: Seq[A]): A = xs(0)
___ _ _
The underlined portions of the code show how a generic type is specified. Reading from right to left in the code:
As noted, the type is not referenced in the method body; there’s only xs(0).
A is used as the method return type, instead of Int.
A is used inside the Seq, instead of Int.
A is specified in brackets, just prior to the method declaration.
Regarding the last point, specifying the generic type in brackets just before the method signature is the way that you tell the compiler—and readers of the code—that the generic type may be used in the (a) method signature, (b) return type, or (c) method body, or any combination of those three locations.
Writing generic code like this makes your code more useful to more people. Instead of just working for a Seq[Int], the method now works for a Seq[Fish], Seq[Bird], and in general—hence the word generic—a Seq of any type.
By convention, when you declare generic types in Scala, the first generic type that’s specified uses the letter A, the second generic type is B, and so on. For instance, if Scala didn’t include tuples and you wanted to declare your own class that can contain two different types, you’d declare it like this:
class Pair[A,B](val a: A, val b: B)
Here are a few examples of how to use that class:
Pair(1, 2) // A and B are both Int
Pair(1, "1") // A is Int, B is String
Pair("1", 2.2) // A is String, B is Double
In the first example, A and B happen to have the same type, and in the last two examples, A and B have different types.
Finally, to round out our first generic type examples, let’s create a trait that uses generic parameters, and then a class that implements that trait. First, let’s create two little classes that the example will need, along with our previous Pair class:
class Cat
class Dog
class Pair[A,B](val a: A, val b: B)
Given that as background, this is how you create a parameterized trait with two generic type parameters:
trait Foo[A,B]:
def pair(): Pair[A, B]
Notice that you declare the types you need after the trait name, then reference those types inside the trait.
Next, here’s a class that implements that trait for dogs and cats:
class Bar extends Foo[Cat, Dog]:
def pair(): Pair[Cat, Dog] = Pair(Cat(), Dog())
This first line of code declares that Bar works for Cat and Dog types, with Cat being a specific replacement for A and Dog being a replacement for B:
class Bar extends Foo[Cat, Dog]:
If you want to create another class that extends Foo and works with a String and Int, you’d write it like this:
class Baz extends Foo[String, Int]:
def pair(): Pair[String, Int] = Pair("1", 2)
These examples demonstrate how generic type parameters are used in different situations.
As you work more with generic types, you’ll find that you want to define certain expectations and limits on those types. To handle those situations you’ll use bounds, variance, and type constraints, which are discussed next.
Bounds
Bounds let you place restrictions on type parameters. For instance, imagine that you want to write a method that returns the uppercase version of the name field of a type:
// this code won’t compile
def upperName[A](a: A) = a.name.toUpperCase
That code is in the ballpark of what you want, but it won’t work because there’s no guarantee that the type A has a name field. As a solution to this problem, if you have a type like SentientBeing, which declares a name field:
trait SentientBeing:
def name: String
you can correctly implement the upperName method by using a bound, as shown in this underlined code:
def upperName[A <: SentientBeing](a: A) = a.name.toUpperCase

This tells the compiler that whatever type A is, it must be a subclass of SentientBeing, which is guaranteed to have a name field. So if you have classes like these that are subclasses of SentientBeing:
case class Dog(name: String) extends SentientBeing
case class Person(name: String, age: Int) extends SentientBeing
case class Snake(name: String) extends SentientBeing
the upperName method will work as desired with all of those:
upperName(Dog("rover")) // "ROVER"
upperName(Person("joe", 25)) // "JOE"
upperName(Snake("Noodles")) // "NOODLES"
This is the essence of working with bounds. They give you a way to define limits—bounds, or boundaries—on the possibilities of a generic type. Table 23-1 provides descriptions of the common bounds symbols.
| Bound | Description |
---|---|---|
A <: B | Upper bound | A must be a subtype of B. See Recipe 23.5. |
A >: B | Lower bound | A must be a supertype of B. |
A <: Upper >: Lower | Lower and upper bounds used together | The type A has both an upper and lower bound. |
Lower bounds are demonstrated in several methods of the collections classes. To find examples of them, search the Scaladoc of classes like List for the >: symbol.
Variance
As its name implies, variance is a concept that’s related to how generic type parameters can vary when subclasses of your type are created. Scala uses what’s known as declaration-site variance, which means that you—the library creator—declare variance annotations on your generic type parameters when you create new types like traits and classes. (This is the opposite of Java, which uses use-site variance, meaning that clients of your library are responsible for understanding these annotations.)
Because we use collections like List and ArrayBuffer all the time, I find that it’s easiest to demonstrate variance when creating new types like those. So as an example, I’ll create a new type named Container that contains one element. When I define Container, variance has to do with whether I define its generic type parameter A as A, +A, or -A:
class Container[A](a: A) ... // invariant
class Container[+A](a: A) ... // covariant
class Container[-A](a: A) ... // contravariant
How I declare A now affects how Container instances can be used later. For example, variance comes into play in discussions like this:
When I define a new Container type using one of those annotations and if I also define a class Dog that is a subtype of Animal, is Container[Dog] a subtype of Container[Animal]?
In concrete terms, what this means is that if you have a method like this that’s defined to accept a parameter of type Container[Animal]:
def foo(c: Container[Animal]) = ???
can you pass a Container[Dog] into foo?
Two ways to simplify variance
Variance can take a few steps to explain because you have to talk about both (a) how the generic parameter is initially declared and (b) how instances of your container are later used, but I’ve found that there are two ways to simplify the topic.
1. If everything is immutable
The first way to simplify variance is to know that if everything in Scala was immutable, there would be little need for variance. Specifically, in a totally immutable world where all fields are val and all collections are immutable (like List), if Dog is a subclass of Animal, Container[Dog] will definitely be a subclass of Container[Animal].
In an Immutable World, Invariance Isn’t Needed
In the following discussion, in a completely immutable world, the need for invariance goes away.
This is demonstrated in the following code. First I create an Animal trait and then a Dog case class that extends Animal:
sealed trait Animal:
def name: String
case class Dog(name: String) extends Animal
Now I define my Container class, declaring its generic type parameter as +A, making it covariant. While that’s a fancy mathematical term, it just means that when a method is declared to take a Container[Animal], you can pass it a Container[Dog]. Because the type is covariant, it’s flexible and is allowed to vary in this direction (i.e., allowed to accept a subtype):
class Container[+A](a: A):
def get: A = a
Then I create an instance of a Dog as well as a Container[Dog] and then verify that the get method in the Container works as desired:
val d = Dog("Fido")
val h = Container[Dog](d)
h.get // Dog(Fido)
To finish the example, I define a method that takes a Container[Animal] parameter:
def printName(c: Container[Animal]) = println(c.get.name)
Finally, I pass that method a Container[Dog] variable, and the method works as desired:
printName(h) // "Fido"
To recap, all of that code works because everything is immutable, and I define Container with the generic parameter +A.
Note that if I defined that parameter as just A or as -A, that code would not compile. (For more information on this, read on.)
2. Variance is related to the type’s “in” and “out” positions
There’s also a second way to simplify the concept of variance, which I summarize in the following three paragraphs:
As you just saw, the get method in the Container class only uses the type A as its return type. This is no coincidence: whenever you declare a parameter as +A, it can only ever be used as the return type of Container methods. You can think of this as being an out position, and your container is said to be a producer: methods like get produce the type A. In addition to the Container[+A] class just shown, other producer examples are the Scala List[+A] and Vector[+A] classes. With these classes, once an instance of them is created, you can never add more A values to them. Instead, they’re immutable and read-only, and you can only access their A values with the methods that are built into them. You can think of List and Vector as being producers of elements of type A (and derivations of A).
Conversely, if the generic type parameter you specify is only used as input parameters to methods in your container, declare the parameter to be contravariant using -A. This declaration tells the compiler that values of type A will only ever be passed into your container’s methods—the “in” position—and will never be returned by them. Therefore, your container is said to be a consumer. (Note that this situation is rare compared to the other two possibilities, but in the producer/consumer discussion, it’s easiest to mention it second.)
Finally, if the generic parameter is used both in the method return type position and as a method parameter inside your container, define the type to be invariant by declaring it with the symbol A. Using this type declares that your class is both a producer and a consumer of the A type, and as a side effect of this flexibility, the type is invariant—meaning that it cannot vary. When a method is declared to accept a Container[Dog], it can only accept a Container[Dog]. This type is used when defining mutable containers, such as the ArrayBuffer[A] class, to which you can add new elements, edit elements, and access elements.
Here are examples of these three producer/consumer situations.
In the first case, when a generic type is only used as a method return type, the container is a producer, and you mark the type as covariant with +A:
// covariant: A is only ever used in the “out” position.
trait Producer[+A]:
def get: A
Note that for this use case, the C# and Kotlin languages—which also use declaration-site variance—use the keyword out when defining A. If Scala used out instead of +, the code would look like this:
trait Producer[out A]: // if Scala used 'out' instead
def get: A
For the second situation, if the generic type parameter is only used as the input parameter to your container methods, the container can be thought of as a consumer. Mark the generic type as contravariant using -A:
// contravariant: A is only ever used in the “in” position.
trait Consumer[-A]:
def consume(a: A): Unit
In this case, C# and Kotlin use the keyword in to indicate that A is only used as a method input parameter (the “in” position). If Scala had that keyword, your code would look like this:
trait Consumer[in A]: // if Scala used 'in' instead
def consume(a: A): Unit
Finally, when a generic type parameter is used as both method input parameters and method return parameters, it’s considered invariant—not allowed to vary—and designated as A:
// invariant: A is used in the “in” and “out” positions
trait ProducerConsumer[A]:
def consume(a: A): Unit
def produce(): A
One Way to Remember the Variance Symbols
While I generally prefer the keywords out and in to declare the variance of generic parameters—at least in simple, one-parameter declarations—I’ve found that I can remember the Scala symbols this way:
+ means that variance is allowed in the positive (subtype) direction.
- means that variance is allowed in the negative (supertype) direction.
No additional symbol means that no variance is allowed.
Because the subtype direction is far more common than the supertype direction, it’s easy to think of this as being the “positive” direction.
Table 23-2 provides a summary of this terminology, including examples of each from the Scala standard library.
Variance | Symbol | In or Out | Producer/Consumer | Examples |
---|---|---|---|---|
Covariant | +A | Out | Producer | List[+A], Vector[+A] |
Contravariant | -A | In | Consumer | The -T1 parameter in Function1[-T1, +R] |
Invariant | A | Both | Both | Array[A], ArrayBuffer[A], mutable.Set[A] |
It’s actually hard to find a consistent definition of these variance terms, but this Microsoft “Covariance and Contravariance in Generics” page provides good definitions, which I’ll rephrase slightly here:
Covariance (+A in Scala)
Lets you use a “more derived” type than what is specified. This means that you can use a subtype where a parent type is declared. In my example this means that you can pass a Container[Dog] where a Container[Animal] method parameter is declared.
Contravariance (-A)
Essentially the opposite of covariance, you can use a more generic (less derived) type than what is specified. For instance, you can use a Container[Animal] where a Container[Dog] is specified.
Invariance (A)
This means that the type can’t vary—you can only use the type that’s specified. If a method requires a parameter of the type Container[Dog], you can only give it a Container[Dog]; it won’t compile if you try to give it a Container[Animal].
Testing variance with an implicitly trick
As demonstrated in this Stack Overflow post, and in the book Zionomicon by John De Goes and Adam Fraser (Ziverge), you can use the implicitly method—which is defined in the Predef object Scaladoc and automatically in the scope of all your code—to test variance definitions.
For instance, using this code from my initial variance example:
sealed trait Animal:
def name: String
case class Dog(name: String) extends Animal
class Container[+A](a: A):
def get: A = a
These REPL examples show that by using implicitly, the Scala compiler confirms that a Container[Dog] is a subtype of a Container[Animal]:
scala> implicitly[Dog <:< Animal]
val res0: Dog <:< Animal = generalized constraint
scala> implicitly[Container[Dog] <:< Container[Animal]]
val res1: Container[Dog] <:< Container[Animal] = generalized constraint
You can tell that these examples work because the code compiles without error. Conversely, if you define Container with -A or A, as in this example:
class Container[A](a: A):
def get: A = a
the implicitly code will fail to compile:
scala> implicitly[Container[Dog] <:< Container[Animal]]
1 |implicitly[Container[Dog] <:< Container[Animal]]
| ^
| Cannot prove that Container[Dog] <:< Container[Animal].
This turns out to be a nice trick/technique you can use to test your variance code.
Note that in this example, the expression A <:< B means that when working with implicit parameters, A must be a subtype of B. This type relation symbol isn’t discussed in this book, but see Twitter’s Scala School page on advanced types for good examples of when and where it is needed.
Contravariance is rarely used
To keep things consistent, I’ve mentioned contravariance second in the preceding discussions, but as a practical matter, contravariant types are rarely used. For instance, the Scala Function1 class is one of the few classes in the standard library that declares a generic parameter to be contravariant, the T1 parameter in this case:
Function1[-T1, +R]
Because it’s not used that often, contravariance isn’t covered in this book, but there’s a good example of it in the free Scala 3 Book’s “Variance” section.
Multiple Generic Type Parameters with Variance
Also note from the Function1 example that a class can accept multiple generic parameters that are declared with variance. -T1 is a parameter that’s only ever consumed in the Function1 class, and +R is a type that’s only ever produced in Function1.
Given all this background information, two solutions to common variance problems are shown in Recipes 23.3 and 23.4.
Type Constraints
In addition to bounds and variance, Scala lets you specify additional type constraints. These are written with these symbols:
A =:= B // A must be equal to B
A <:< B // A must be a subtype of B
These symbols are not covered in this book. See Programming in Scala for details and examples. Twitter’s Scala School Advanced Types page also shows brief examples of their use, where they are referred to as type relation operators.
Several Other Type Examples
For the first edition of the Scala Cookbook I wrote about how to create a timer and how to create your own Try classes. (I excerpted it for my website). That code uses types heavily and is still relevant for Scala 3.
23.1 Creating a Method That Takes a Simple Generic Type
Problem
You’re not concerned about type variance and want to create a method (or function) that takes a generic type, such as a method that accepts a Seq[A] parameter.
Solution
Specify the generic type parameter in brackets, such as [A]. For example, when creating a lottery-style application to draw a random name from a list of names, you might follow the “do the simplest thing that could possibly work” credo and initially create a method without using generics:
def randomName(names: Seq[String]): String =
val randomNum = util.Random.nextInt(names.length)
names(randomNum)
As written, this works with a sequence of String values:
val names = Seq("Aleka", "Christina", "Emily", "Hannah")
val winner = randomName(names)
Then at some point in the future, you realize that you could really use a general-purpose method that returns a random element from a sequence of any type. So, you modify the method to use a generic type parameter, like this:
def randomElement[A](seq: Seq[A]): A =
val randomNum = util.Random.nextInt(seq.length)
seq(randomNum)
With this change, the method can now be called with a variety of types in immutable sequences:
randomElement(Seq("Emily", "Hannah", "Aleka", "Christina"))
randomElement(List(1,2,3))
randomElement(List(1.0,2.0,3.0))
randomElement(Vector.range('a', 'z'))
Discussion
This is a relatively simple example that shows how to pass a generic collection to a method that doesn’t attempt to mutate the collection. See Recipes 23.3 and 23.4 for more complicated situations you can run into.
23.2 Creating Classes That Use Simple Generic Types
Problem
You want to create a class (and associated methods) that uses a simple generic type.
Solution
As a library writer, you’ll define generic types when declaring your classes. For instance, here’s a small linked-list class that’s written so that you can add new elements to it. It’s mutable in that way, like an ArrayBuffer:
class LinkedList[A]:
private class Node[A] (elem: A):
var next: Node[A] = _
override def toString = elem.toString
private var head: Node[A] = _
def add(elem: A): Unit =
val n = new Node(elem)
n.next = head
head = n
private def printNodes(n: Node[A]): Unit =
if n != null then
println(n)
printNodes(n.next)
def printAll() = printNodes(head)
Notice how the generic type A is sprinkled throughout the class definition. This generic type is a placeholder for actual types like Int and String, which the user of your class can specify.
For example, to create a list of integers with this class, first create an instance of it, declaring the type that it will contain to be the type Int:
val ints = LinkedList[Int]()
Then populate it with Int values:
ints.add(1)
ints.add(2)
Because the class uses a generic type, you can also create a LinkedList of type String:
val strings = LinkedList[String]()
strings.add("Emily")
strings.add("Hannah")
strings.printAll()
or any other type you want to use:
val doubles = LinkedList[Double]()
doubles.add(1.1)
doubles.add(2.2)
This demonstrates the basic use of a generic type when creating a class.
Discussion
When you use a simple generic parameter like A when defining a class, you can also define methods inside and outside of that class that use exactly that type. To explain what this means, start with this type hierarchy:
trait Person { def name: String }
class Employee(val name: String) extends Person
class StoreEmployee(name: String) extends Employee(name)
You might use this type hierarchy when modeling a point-of-sales application for a pizza store chain, where a StoreEmployee is someone who works at a store location. (You might then also have an OfficeEmployee type for people who work in the corporate office.)
The relationship is expressed visually in the class diagram in Figure 23-1.
Figure 23-1. A class diagram for the Person and Employee classes
Given this type hierarchy, you can create a method to print a LinkedList[Employee], like this:
def printEmps(es: LinkedList[Employee]) = es.printAll()
Now you can give printEmps a LinkedList[Employee], and it will work as desired:
// works
val emps = LinkedList[Employee]()
emps.add(Employee("Al"))
printEmps(emps)
So far, so good; this works as desired.
The limits of this approach
Where this simple approach doesn’t work is if you try to give printEmps a LinkedList[StoreEmployee]():
val storeEmps = LinkedList[StoreEmployee]()
storeEmps.add(StoreEmployee("Fred"))
// this line won’t compile
printEmps(storeEmps)
This is the error you get when you try to write that code:
printEmps(storeEmps)
^^^^^^^^^
Found: (storeEmps : LinkedList[StoreEmployee])
Required: LinkedList[Employee]
The last line won’t compile because:
printEmps expects a LinkedList[Employee].
storeEmps is a LinkedList[StoreEmployee].
LinkedList elements are mutable.
If the compiler allowed this, printEmps could add plain old Employee elements to the StoreEmployee elements in storeEmps. This can’t be allowed.
As discussed in “Variance”, the problem here is that when a generic parameter is declared as A in a class like LinkedList, that parameter is invariant, which means that the type is not allowed to vary when used in methods like printEmps. A detailed solution to this problem is shown in Recipe 23.3.
Type parameter symbols
If a class requires more than one type parameter, use the symbols shown in Table 23-3. For instance, in the official Java documentation on generic types, Oracle shows an interface named Pair, which takes two types:
public interface Pair<K, V> {
public K getKey();
public V getValue();
}
You can port that interface to a Scala trait as follows:
trait Pair[K, V]:
def getKey: K
def getValue: V
If you were to take this further and implement the body of a Pair class (or trait), the type parameters K and V would be spread throughout your class, just as the symbol A was used in the LinkedList example.
Generic Symbol Standards
I generally prefer using the symbols A and B for the first two generic type declarations in a class, but in a case like this where the types clearly refer to key and value—such as in a Map class—I prefer K and V. But use whatever makes sense to you.
The documentation mentioned also lists the Java type parameter naming conventions. These are similar in Scala, except that Java starts naming simple type parameters with the letter T, and then uses the characters U and V for subsequent types. The Scala standard is that the first type should be declared as A, the next with B, and so on, as shown in Table 23-3.
Symbol | Description |
---|---|
A | Refers to a simple type, such as List[A]. |
B, C, D |
Used for the second, third, fourth types, etc. For example: class List[A]: |
K | Typically refers to a key in a Java map. (I also prefer K in this situation.) |
N | Refers to a numeric value. |
V | Typically refers to a value in a Java map. (I also prefer V in this situation.) |
See Also
Oracle’s Java documentation on generic types.
You can find a little more information on Scala’s generic type naming conventions at the Scala Style Guide’s page on naming conventions.
23.3 Making Immutable Generic Parameters Covariant
Problem
You want to create a class whose generic parameters can’t be changed (they’re immutable) and want to understand how to specify it.
Solution
To declare that generic type parameter elements can’t be changed, declare them to be covariant by defining them with a leading + symbol, such as +A. As an example of this, immutable collections classes like List, Vector, and Seq are all defined to use covariant generic type parameters:
class List[+T]
class Vector[+A]
trait Seq[+A]
By making the type parameter covariant, the generic parameter can’t be mutated, but the benefit is that the class can later be used in a more flexible manner.
To demonstrate the usefulness of this, modify the example from the previous recipe slightly. First, define the class hierarchy:
trait Animal:
def speak(): Unit
class Dog(var name: String) extends Animal:
def speak() = println("Dog says woof")
class SuperDog(name: String) extends Dog(name):
override def speak() = println("I’m a SuperDog")
Next, define a makeDogsSpeak method, but instead of accepting a mutable ArrayBuffer[Dog] as in the previous recipe, accept an immutable Seq[Dog]:
def makeDogsSpeak(dogs: Seq[Dog]): Unit = dogs.foreach(_.speak())
As with the ArrayBuffer in the previous recipe, you can pass a Seq[Dog] into makeDogsSpeak without a problem:
// this works
val dogs = Seq(Dog("Nansen"), Dog("Joshu"))
makeDogsSpeak(dogs)
However, in this case, you can also pass a Seq[SuperDog] into the makeDogsSpeak method successfully:
// this works too
val superDogs = Seq(
SuperDog("Wonder Dog"),
SuperDog("Scooby")
)
makeDogsSpeak(superDogs)
Because Seq is immutable and defined with a covariant generic type parameter as Seq[+A], makeDogsSpeak can accept both Seq[Dog] and Seq[SuperDog], without the conflict that was built up in Recipe 23.4.
Discussion
You can further demonstrate this by creating your own custom class with a covariant generic type parameter. To do this—and to keep things simple—create a collections class that can hold one element. Because you don’t want the collection element to be mutated, define the parameter as a val, and make it covariant with +A:
class Container[+A] (val elem: A)

Using the same type hierarchy that’s shown in the Solution, modify the makeDogsSpeak method to accept a Container[Dog]:
def makeDogsSpeak(dogHouse: Container[Dog]): Unit = dogHouse.elem.speak()
With this setup, you can pass a Container[Dog] into makeDogsSpeak:
val dogHouse = Container(Dog("Xena"))
makeDogsSpeak(dogHouse)
Finally, because you declared the element to be covariant with the + symbol, you can also pass a Container[SuperDog] into makeDogsSpeak:
val superDogHouse = Container(SuperDog("Wonder Dog"))
makeDogsSpeak(superDogHouse)
Because the Container element is immutable and its generic type parameter is marked as covariant, all of this code works successfully. Note that if you change the Container’s type parameter from +A to A, the last line of code won’t compile.
As discussed in “Variance” and demonstrated in these examples, defining a container type class with an immutable generic type parameter makes the collection more flexible and useful throughout your code. As shown in this example, you can pass a Container[SuperDog] into a method that expects to receive a Container[Dog].
+A Refers to the “Out” Position
“Variance” also notes that the +A symbol is your way of telling the compiler that the generic parameter A will only be used as the return type of methods in this class (i.e., the “out” position). For instance, in this example, this code is valid:
class Container[+A] (val elem: A):
// 'A' is correctly used in the “out” position
def getElemAsTuple: (A) = (elem)
But any attempt to use an element of type A as a method input parameter inside the class will fail with this error:
class Container[+A] (val elem: A):
def foo(a: A) = ???
^^^^
error: covariant type A occurs in contravariant position
in type A of parameter a
As that code shows, even though I don’t even try to implement the body of the foo method, the compiler states that the A type can’t be used in the “in” position.
23.4 Creating a Class Whose Generic Elements Can Be Mutated
Problem
You want to create a collection-like class whose elements can be mutated and want to know how to specify the generic type parameter for its elements.
Solution
When defining a parameter that can be changed (mutated), its generic type parameter should be declared as [A], making it invariant. Therefore, this recipe is similar to the example shown in Recipe 23.2.
An example of this is that elements in a Scala Array or ArrayBuffer can be mutated, and their signatures are declared like this:
class Array[A] ...
class ArrayBuffer[A] ...
Discussion
Declaring a type as invariant has two main effects:
The container can hold the specified type as well as subtypes of that type.
There are later restrictions on how methods can use the container.
To create an example of the first point, the following class hierarchy states that the Dog and SuperDog classes both extend the Animal trait:
trait Animal:
def speak(): Unit
class Dog(var name: String) extends Animal:
def speak() = println("woof")
override def toString = name
class SuperDog(name: String) extends Dog(name):
def useSuperPower() = println("Using my superpower!")
Given these classes, you can create a Dog and a SuperDog:
val fido = Dog("Fido")
val wonderDog = SuperDog("Wonder Dog")
When you later declare an ArrayBuffer[Dog], you can add both Dog and SuperDog instances to it:
import collection.mutable.ArrayBuffer
val dogs = ArrayBuffer[Dog]()
dogs += fido
dogs += wonderDog
So a collection with an invariant type parameter can contain (a) elements of the base type and (b) subtypes of the base type.
The second effect of declaring an invariant type is that there are restrictions on how the type can later be used. Given that same code, you can define a method as follows to accept an ArrayBuffer[Dog] and then have each Dog speak:
import collection.mutable.ArrayBuffer
def makeDogsSpeak(dogs: ArrayBuffer[Dog]) =
dogs.foreach(_.speak())
This works fine when you pass it an ArrayBuffer[Dog]:
val dogs = ArrayBuffer[Dog]()
dogs += fido
makeDogsSpeak(dogs)
However, the makeDogsSpeak call won’t compile if you attempt to pass it an ArrayBuffer[SuperDog]:
val superDogs = ArrayBuffer[SuperDog]()
superDogs += wonderDog
makeDogsSpeak(superDogs) // ERROR: won't compile
This code won’t compile because of the conflict built up in this situation:
Elements in an ArrayBuffer can be mutated.
makeDogsSpeak is defined to accept a parameter of type ArrayBuffer[Dog].
You’re attempting to pass in superDogs, whose type is ArrayBuffer[SuperDog].
If the compiler allowed this, makeDogsSpeak could replace SuperDog elements in superDogs with plain old Dog elements. This can’t be allowed.
In summary, a main reason this conflict is created is because ArrayBuffer elements can be mutated. If you want to write a method to make all Dog types and subtypes speak, define it to accept a collection of immutable elements by specifying the type as +A, which is what is done in immutable classes such as List, Seq, and Vector. See Recipe 23.3 for details on that approach.
Examples in the standard library
The elements of mutable collections classes like Array, ArrayBuffer, and ListBuffer are defined with invariant type parameters:
class Array[T]
class ArrayBuffer[A]
class ListBuffer[A]
Conversely, immutable collections classes identify their generic type parameters with the + symbol, as shown here:
class List[+T]
class Vector[+A]
trait Seq[+A]
The + symbol used on the type parameters of the immutable collections defines their parameters to be covariant. Because their elements can’t be mutated, they can be used more flexibly, as discussed in Recipe 23.3.
See Also
You can find the source code for Scala classes by following the “Source code” links in their Scaladoc.
To see a good example of an invariant type parameter in a class, the source code for the ArrayBuffer class isn’t too long, and it shows how the type parameter A ends up sprinkled throughout the class.
23.5 Creating a Class Whose Parameters Implement a Base Type
Problem
You want to specify that a class has a generic type parameter, and that parameter is limited so it can only be (a) a base type or (b) a subtype of that base type.
Solution
Define the class or method by specifying the type parameter with an upper bound. For example, given this type hierarchy:
sealed trait CrewMember
class Officer extends CrewMember
class RedShirt extends CrewMember
trait Captain
trait FirstOfficer
trait ShipsDoctor
trait StarfleetTrained
this is how you create a class named Crew that is parameterized so it will only ever store instances that are either a CrewMember or subtype of CrewMember:
class Crew[A <: CrewMember]:
import scala.collection.mutable.ArrayBuffer
private val list = ArrayBuffer[A]()
def add(a: A): Unit = list += a
def printAll(): Unit = list.foreach(println)
To demonstrate how this works, first create some objects that extend Officer:
val kirk = new Officer with Captain
val spock = new Officer with FirstOfficer
val bones = new Officer with ShipsDoctor
Given this setup, you can create a Crew that contains only instances of Officer:
val officers = Crew[Officer]()
officers.add(kirk)
officers.add(spock)
officers.add(bones)
The first line lets you create officers as a collection that can only contain types that are an Officer or subtype of an Officer. A benefit of this approach is that instances that are of type RedShirt won’t be allowed in the collection because they don’t extend Officer:
val redShirt = RedShirt()
officers.add(redShirt) // error: this won’t compile:
// Found: (redShirt), Required: (Officer)
A key to this solution is the way the parameter A is defined:
class Crew[A <: CrewMember] ...

This states that any instance of Crew can only ever have elements that are of type CrewMember or one of its subtypes. Then when I create a concrete instance of Crew, I declare that I only want this instance to take types that implement Officer:
val officers = Crew[Officer]()

It also prevents you from writing code like this, because StarTrekFan does not extend CrewMember:
class StarTrekFan
val officers = Crew[StarTrekFan]() // error: won’t compile
// error message:
// Type argument StarTrekFan does not conform to upper bound CrewMember
Note that in addition to creating a Crew[Officer], you can also create a Crew[RedShirt], if desired:
val redshirts = Crew[RedShirt]()
val redShirt = RedShirt()
redshirts.add(redShirt)
Discussion
Typically, you’ll define a class like Crew so you can create specific instances like Crew[Officer] and Crew[RedShirt]. The class you create will also typically have methods like add that are specific to the parameter type you declare, such as CrewMember in this example. By controlling what types are added to Crew, you can be assured that your methods will work as desired. For instance, Crew could have methods like beamUp, beamDown, goWhereNoOneElseHasGone, etc.—any method that makes sense for a CrewMember.
Extending multiple traits
Use the same technique when you need to limit your class to take a type that extends multiple traits. For example, to create a Crew that only allows types that extend CrewMember and StarfleetTrained, declare the first line of the Crew class like this:
class Crew[A <: CrewMember & StarfleetTrained]:
Now when you adapt the officer instances to work with this new trait:
val kirk = new Officer with Captain with StarfleetTrained
val spock = new Officer with FirstOfficer with StarfleetTrained
val bones = new Officer with ShipsDoctor with StarfleetTrained
you can still construct a list of officers:
class Crew[A <: CrewMember & StarfleetTrained]:
import scala.collection.mutable.ArrayBuffer
private val list = new ArrayBuffer[A]()
def add(a: A): Unit = list += a
def printAll(): Unit = list foreach println
val officers = Crew[Officer & StarfleetTrained]()
officers.add(kirk)
officers.add(spock)
officers.add(bones)
This approach works as long as the instances kirk, spock, and bones have the Officer and StarfleetTrained types somewhere in their type hierarchy.
23.6 Using Duck Typing (Structural Types)
Problem
You’re used to duck typing (structural types) from another language like Python or Ruby and want to use this feature in your Scala code.
Solution
Scala’s version of duck typing is known as using a structural type. As an example of this approach, the following Scala 3 code shows how a callSpeak method can require that its obj type parameter have a speak() method:
import reflect.Selectable.reflectiveSelectable
def callSpeak[A <: {def speak(): Unit}](obj: A): Unit =
obj.speak()
Given that definition—including the required import statement—an instance of any class that has a speak method that takes no parameters and returns nothing can be passed as a parameter to callSpeak. For example, the following code demonstrates how to invoke callSpeak on both a Dog and a Klingon:
import reflect.Selectable.reflectiveSelectable
def callSpeak[A <: {def speak(): Unit}](obj: A): Unit = obj.speak()
class Dog:
def speak() = println("woof")
class Klingon:
def speak() = println("Qapla!")
callSpeak(Dog())
callSpeak(Klingon())
Running this code in the REPL prints the following output:
woof
Qapla!
The class hierarchy of the instance that’s passed in doesn’t matter at all: the only requirement for the parameter obj is that it’s an instance of a class that has a speak():Unit method.
Discussion
The structural type syntax is necessary in this example because the callSpeak function invokes a speak method on the object that’s passed in. In a statically typed language, there must be some guarantee that the object that’s passed in will have this method, and this recipe shows the syntax for that situation.
Had the method been written with only the generic type A, it wouldn’t compile, because the compiler can’t guarantee that the type A has a speak method:
import reflect.Selectable.reflectiveSelectable
// won’t compile
def callSpeak[A](obj: A): Unit = obj.speak()
This is one of the great benefits of type safety in Scala.
Understanding the solution
To understand how this works, it may help to break down the structural type syntax. First, here’s the entire method:
def callSpeak[A <: {def speak(): Unit}](obj: A): Unit = obj.speak()
The type parameter A that precedes the list of method parameters is defined as a structural type like this:
[A <: { def speak(): Unit }]
The <: symbol in the code is used to define an upper bound. This is described in detail in Recipe 23.3. As shown in that recipe, an upper bound is usually defined like this:
class Stack[A <: Animal] (val elem: A)

This states that the type parameter A must be a subtype of Animal.
However, in this recipe I use a variation of that syntax to state that A must be a subtype of a type that has a speak():Unit method. Specifically, this code can be read as, “A must be a subtype of a type that has a speak method. The speak method can’t take any parameters and must not return anything.”
To be clear, the underlined portion of this code states that the type passed in must have a speak method that takes no input parameters:
[A <: { def speak(): Unit }]

And this underlined code states that speak must return Unit (i.e., nothing):
[A <: { def speak(): Unit }]

To demonstrate another example of the structural type signature, if you wanted to state that the speak method must take a String parameter and return a Boolean, the structural type signature would look like this:
[A <: {def speak(s: String): Boolean}]
Structural Types Require Reflection
As a word of caution, at the time of this writing this technique only works with Scala on the Java virtual machine (JVM) and requires Java reflection.
23.7 Creating Meaningful Type Names with Opaque Types
Problem
In keeping with practices like domain-driven design (DDD), you want to give values that have simple types like String and Int more meaningful type names to make your code safer.
Solution
In Scala 3, use opaque types to create meaningful type names. For an example of the problem, when a customer orders something on an ecommerce website, you may add it to a cart using the customerId and the productId:
def addToCart(customerId: Int, productId: Int) = ...
Because both types are Int, it’s possible to confuse them. For instance, developers will call this method with integers like this:
addToCart(1001, 1002)
And because both fields are integers, it’s possible to confuse them again later in the code:
// are you sure you have the right id here?
if (id == 1000) ...
The solution to this problem is to create custom types as opaque types. A complete solution looks like this:
object DomainObjects:
opaque type CustomerId = Int
object CustomerId:
def apply(i: Int): CustomerId = i
given CanEqual[CustomerId, CustomerId] = CanEqual.derived
opaque type ProductId = Int
object ProductId:
def apply(i: Int): ProductId = i
given CanEqual[ProductId, ProductId] = CanEqual.derived
This lets you write code like this:
@main def opaqueTypes =
// import the types
import DomainObjects.*
// use the `apply` methods
val customerId = CustomerId(101)
val productId = ProductId(101)
// use the types
def addToCart(customerId: CustomerId, productId: ProductId) = ...
// pass the types to the function
addToCart(customerId, productId)
The given CanEqual portion of the solution also creates a compiler error if you attempt incorrect type comparisons at some future time:
// error: values of types DomainObjects.CustomerId and Int
// cannot be compared with == or !=
if customerId == 1000
// also an error: this code will not compile
if customerId == productId ...
Discussion
When you work in a DDD style, one of the goals is that the names you use for your types should match the names used in the business domain. For example, when it comes to variable types you can say:
A domain expert thinks about things like CustomerId, ProductId, Username, Password, SocialSecurityNumber, CreditCardNumber, etc.
Conversely, they don’t think about things like Int, String, and Double.
Beyond DDD, an even more important consideration is functional programming. One of the benefits of writing code in a functional style is that other programmers should be able to look at our function signatures and quickly see what our function does. For example, take this function signature:
def f(s: String): Int
Assuming the function is pure, we see that it takes a String and returns an Int. Given only those facts we can quickly deduce that the function probably does one of these things:
Determines the string length
Does something like calculating the checksum of the string
We also know that the function doesn’t attempt to convert the string to an int, because that process can fail, so a pure function that converts a string to an int will return the possible result in an error-handling type, like this:
def f(s: String): Option[Int]
def f(s: String): Try[Int]
def f(s: String): Either[Throwable, Int]
Given that pure function signatures are so important, we also don’t want to write types like this:
def validate(
username: String,
email: String,
password: String
)
Instead, our code will be easier to read and much more type-safe if we create our types like this:
def validate(
username: Username,
email: EmailAddress,
password: Password
)
This second approach—using opaque types—improves our code in several ways:
In the first example, all three parameters are strings, so it can be easy to call validate with the parameters in the wrong order. Conversely, it will be much more difficult to pass the parameters into the second validate method in the wrong order.
The validate type signature will be much more meaningful to other programmers in their IDEs and in the Scaladoc.
We can add validators to our custom types, so we can validate the username, email address, and password fields when they are created.
By deriving CanEqual when creating opaque types, you can make it impossible for two different types to be compared using == and !=. (See Recipe 23.12 for more details on using CanEqual.)
Your code more accurately reflects the verbiage of the domain.
As shown in the Solution, opaque types are a terrific way to create types like Username, EmailAddress, and Password.
Benefits of the three-step solution
The code in the solution looks like this:
opaque type CustomerId = Int
object CustomerId:
def apply(i: Int): CustomerId = i
given CanEqual[CustomerId, CustomerId] = CanEqual.derived
While it’s possible to create an opaque type with this one line of code:
opaque type CustomerId = Int
each step in the three-step solution serves a purpose:
The opaque type declaration creates a new type named CustomerId. (Behind the scenes, a CustomerId is an Int.)
The object with the apply method creates a factory method (constructor) for new CustomerId instances.
The given CanEqual declaration states that a CustomerId can only be compared to another CustomerId. Attempting to compare a CustomerId to a ProductId or Int will create a compiler error; it’s impossible to compare them. (See Recipe 23.12 for more details on using CanEqual.)
History
There were several attempts to try to achieve a similar solution in Scala 2:
Type aliases
Value classes
Case classes
Unfortunately, all of these approaches had weaknesses, as described in the Scala Improvement Process (SIP) page for opaque types. The goal of opaque types, as described in that SIP, is that “operations on these wrapper types must not create any extra overhead at runtime while still providing a type safe use at compile time.” Opaque types in Scala 3 have achieved that goal.
Rules
There are a few rules to know about opaque types:
They must be defined within the scope of an object, trait, or class.
The type alias definition is visible only within that scope. (Within that scope, your code can see that a CustomerId is really an Int.)
Outside the scope, only the defined alias is visible. (Outside that scope, other code can’t tell that CustomerId is really an Int.)
As an important note for high-performance situations, the SIP also states “opaque type aliases are compiled away and have no runtime overhead.”
23.8 Using Term Inference with given and using
Problem
You have a value that’s passed into a series of function calls, such as using an ExecutionContext when you’re working with futures or Akka actors:
doX(a, executionContext)
doY(b, c, executionContext)
doZ(d, executionContext)
Because this type of code is repetitive and makes the code harder to read, you’d prefer to write it like this instead:
doX(a)
doY(b, c)
doZ(d)
Therefore, you want to know how to use Scala 3 term inference, what used to be known in Scala 2 as implicits.
Solution
This solution involves multiple steps:
Define your given instances using the Scala 3 given keyword.
This typically involves the use of a base trait and multiple given instances that implement that trait.
When declaring the implicit parameter your function will use, put it in a separate parameter group and define it with the using keyword.
Make sure your given value is in the current context when your function is called.
In the following example I’ll demonstrate the use of an Adder trait and two given values that implement the Adder trait’s add method.
1. Define your given instances
In the first step you’ll typically create a parameterized trait like this:
trait Adder[T]:
def add(a: T, b: T): T
Then you’ll implement the trait using one or more given instances, which you define like this:
given intAdder: Adder[Int] with
def add(a: Int, b: Int): Int = a + b
given stringAdder: Adder[String] with
def add(a: String, b: String): String = s"${a.toInt + b.toInt}"
In this example, intAdder is an instance of Adder[Int], and defines an add method that works with Int values. Similarly, stringAdder is an instance of Adder[String] and provides an add method that takes two strings, converts them to Int values, adds them together, and returns the sum as a String. (To keep things simple I don’t account for errors in this code.)
If you’re familiar with creating implicits in Scala 2, this new approach is similar to that process. The idea is the same, it’s just that the syntax has changed.
2. Declare the parameter your function will use with the using keyword
Next, declare your functions that use the Adder instances. When doing this, specify the Adder parameter with the using keyword. Put the parameter in a separate parameter group, as shown here:
def genericAdder[T](x: T, y: T)(using adder: Adder[T]): T =
adder.add(x, y)
The keys here are that the adder parameter is defined with the using keyword in that separate parameter group:
def genericAdder[A](x: A, y: A)(using adder: Adder[A]): A =

Also notice that genericAdder declares the generic type A. This function doesn’t know if it will be used to add two integers or two strings; it just calls the add method of the adder parameter.
Context Parameters
In Scala 2, parameters like this were declared using the implicit keyword, but now, as the entire programming industry has various implementations of this concept, it is known as a context parameter, and it’s declared with the using keyword as shown.
3. Make sure everything is in the current context
Finally, assuming that intAdder, stringAdder, and genericAdder are all in scope, your code can call the genericAdder function with Int and String values, without having to pass instances of intAdder and stringAdder into genericAdder:
println(genericAdder(1, 1)) // 2
println(genericAdder("2", "2")) // 4
The Scala compiler is smart enough to know that intAdder should be used in the first instance, and stringAdder should be used in the second instance. This is because the first example uses two Int parameters and the second example uses two String values.
Anonymous givens and unnamed parameters
There’s often no reason to give a given a name, so you can also use this “anonymous given” syntax instead of the previous syntax:
given Adder[Int] with
def add(a: Int, b: Int): Int = a + b
given Adder[String] with
def add(a: String, b: String): String = "" + (a.toInt + b.toInt)
If you don’t reference a context parameter inside your method, it doesn’t require a name, so if genericAdder didn’t reference the adder parameter, this line:
def genericAdder[A](x: A, y: A)(using adder: Adder[A]): A = ...
could be changed to this:
def genericAdder[A](x: A, y: A)(using Adder[A]): A = ...
Discussion
In the example shown in the Solution you could have passed the intAdder and stringAdder values in manually:
println(genericAdder(1, 1)(using intAdder))
println(genericAdder("2", "2")(using stringAdder))
But the point of using given values in Scala 3 is to avoid this repetitive code.
The reason for the significant syntax change in Scala 3 is that the Scala creators felt that the implicit keyword was overused in Scala 2: it could be used in several different places, with different meanings in each place.
Conversely, the new given and using syntax is more consistent and more obvious. For example, you might read the earlier code as, “Given an intAdder and a stringAdder, use those values as the adder parameter in the genericAdder method.”
Create your own API with extension methods
You can combine this technique with extension methods—which are demonstrated in Recipe 8.9—to create your APIs. For example, given this trait that has two extension methods:
trait Math[T]:
def add(a: T, b: T): T
def subtract(a: T, b: T): T
// extension methods: create your own api
extension (a: T)
def + (b: T) = add(a, b)
def - (b: T) = subtract(a, b)
you can create two given instances as before:
given intMath: Math[Int] with
def add(a: Int, b: Int): Int = a + b
def subtract(a: Int, b: Int): Int = a - b
given stringMath: Math[String] with
def add(a: String, b: String): String = "" + (a.toInt + b.toInt)
def subtract(a: String, b: String): String = "" + (a.toInt - b.toInt)
Then you can create genericAdd and genericSubtract functions:
// `+` here refers to the extension method
def genericAdd[T](x: T, y: T)(using Math: Math[T]): T =
x + y
// `-` here refers to the extension method
def genericSubtract[T](x: T, y: T)(using Math: Math[T]): T =
x - y
Now you can use the genericAdd and genericSubtract functions without manually passing them the intMath and stringMath instances:
println("add ints: " + genericAdd(1, 1)) // 2
println("subtract ints: " + genericSubtract(1, 1)) // 0
println("add strings: " + genericAdd("2", "2")) // 4
println("subtract strings: " + genericSubtract("2", "2")) // 0
Once again the compiler can determine that the first two examples need the intMath instance, and the last two examples need the stringMath instance.
Alias givens
The given documentation states “an alias can be used to define a given instance that is equal to some expression.” To demonstrate this, imagine that you’re creating a search engine that understands different contexts. This might be a search engine like Google, or a tool like Siri and Alexa, where you want your algorithm to participate in an ongoing conversation with a human.
For example, when someone performs a series of searches, they may be interested in a particular context like “food” or “life”:
enum Context:
case Food, Life
Given those possible contexts, you can write a search function to look up word definitions based on the context:
import Context.*
// imagine some large decision-tree that uses the Context
// to determine the meaning of the word that’s passed in
def search(s: String)(using ctx: Context): String = ctx match
case Food =>
s.toUpperCase match
case "DATE" => "like a big raisin"
case "FOIL" => "wrap food in foil before baking"
case _ => "something else"
case Life =>
s.toUpperCase match
case "DATE" => "like going out to dinner"
case "FOIL" => "argh, foiled again!"
case _ => "something else"
In an ongoing conversation between a human and your algorithm, if the current context is Food, you’ll have a given like this:
given foodContext: Context = Food
That syntax is known as an alias given, and foodContext is a given of type Context. Now when you call the search function, that context is magically pulled in:
val date = search("date")
This results in date being assigned the value “looks like a big raisin.” Note that you can still pass in the Context explicitly, if you prefer:
val date = search("date")(using Food) // "looks like a big raisin"
val date = search("date")(using Life) // "like going out to dinner"
But again, the assumption here is that a function like search may be called many times, and the desire is to avoid having to manually declare the context parameter.
Importing givens
When a given is defined in a separate module, which it usually will be, it must be imported into scope with a special import statement. That syntax is demonstrated in Recipe 9.7, and this example also shows the technique:
object Adder:
trait Adder[T]:
def add(a: T, b: T): T
given intAdder: Adder[Int] with
def add(a: Int, b: Int): Int = a + b
@main def givenImports =
import Adder.* // import all nongiven definitions
import Adder.given // import the `given` definition
def genericAdder[A](x: A, y: A)(using adder: Adder[A]): A = adder.add(x, y)
println(genericAdder(1, 1))
Per the documentation on importing givens, there are two benefits to this new import syntax:
Compared to Scala 2, it’s more clear where givens in scope are coming from.
It enables importing all givens without importing anything else.
Note that the two import statements can be combined into one:
import Adder.{given, *}
It’s also possible to import given values by their type:
object Adder:
trait Adder[T]:
def add(a: T, b: T): T
given Adder[Int] with
def add(a: Int, b: Int): Int = a + b
given Adder[String] with
def add(a: String, b: String): String =
s"${a.toInt + b.toInt}"
@main def givenImports =
// when put on separate lines, the order of the imports is important
import Adder.*
import Adder.{given Adder[Int], given Adder[String]}
def genericAdder[A](x: A, y: A)(using adder: Adder[A]): A = adder.add(x, y)
println(genericAdder(1, 1)) // 2
println(genericAdder("2", "2")) // 4
In this example the given imports can also be specified like this:
import Adder.{given Adder[?]}
or this:
import Adder.{given Adder[_]}
See the Importing Givens documentation for all up-to-date import usages.
See Also
See the Scala 3 documentation on given instances for more details on givens.
See the Scala 3 documentation on importing givens for more details on importing givens.
This Scala 3 page on contextual abstractions details the motivations behind changing from implicits to given instances.
23.9 Simulating Dynamic Typing with Union Types
Problem
You have a situation where it would be helpful if a value could represent one of several different types, without requiring those types to be part of a class hierarchy. Because the types aren’t part of a class hierarchy, you’re essentially declaring them in a dynamic way, even though Scala is a statically typed language.
Solution
In Scala 3, a union type is a value that can be one of several different types. Union types can be used in a few ways.
In one use, union types let us write functions where a parameter can potentially be one of several different types. For example, this function, which implements the Perl definition of true and false, takes a parameter that can be either an Int or a String:
// Perl version of "true"
def isTrue(a: Int | String): Boolean = a match
case 0 => false
case "0" => false
case "" => false
case _ => true
Even though Int and String don’t share any direct parent types—at least not until you go up the class hierarchy to Matchable and Any—this is a type-safe solution. The compiler is smart enough to know that if I attempt to add a case that tests the parameter against a Double, it will be flagged as an error:
case 1.0 = > false // ERROR: this line won’t compile
In this example, stating that the parameter a is either an Int or a String is a way of dynamic typing in a statically typed language. If you wanted to match additional types, you could just list them all, even if they don’t share a common type hierarchy (besides Matchable and Any):
class Person
class Planet
class BeachBall
// the type parameter:
a: Int | String | Person | Planet | BeachBall
An Improvement in Scala 3
The only way to write that function prior to Scala 3 was to make the function parameter have the type Any, and then match the Int and String cases in the match expression. (In Scala 2 you would use the type Any, and in Scala 3 you would use the type Matchable.)
In other uses, a function can return a union type, and a variable can be a union type. For example, this function returns a union type:
def aFunction(): Int | String =
val x = scala.util.Random.nextInt(100)
if (x < 50) then x else s"string: $x"
You can then assign the result of that function to a variable:
val x = aFunction()
val x: Int | String = aFunction()
In either of those uses, x will have the type Int | String, and will contain an Int or String value.
Discussion
A union type is a value that can be one of several different types. As shown, it’s a way to create function parameters, function return values, and variables that can be one of many types, without requiring traditional forms of inheritance for that type. Union types provide an ad hoc way of combining types.
Combining union types with literal types
In another use, you can combine union types with literal types to create code like this:
// create a union type from two literal types
type Bool = "True" | "False"
// a function to use the union type
def handle(b: Bool): Unit = b match
case "True" => println("true")
case "False" => println("false")
handle("True")
handle("False")
handle("Fudge") // error, won’t compile
// this also works
val t: Bool = "True"
val f: Bool = "False"
val x: Bool = "Fudge" // error, won’t compile
The ability to create your own types using the combined power of literal types and union types gives you more flexibility to craft your own APIs.
See Also
23.10 Declaring That a Value Is a Combination of Types
Problem
You want a way to state that a value consists of a combination of types.
Solution
Similar to the way that union types let you state that a value can be one of many possible types, intersection types provide an ad hoc way of saying that a value is a combination of types.
For example, given these traits:
trait A:
def a = "a"
trait B:
def b = "b"
trait C:
def c = "c"
you can define a method that requires its parameter’s type to be a combination of those types:
def handleABC(x: A & B & C): Unit =
println(x.a)
println(x.b)
println(x.c)
Now you can create a variable that matches that type and pass it into handleABC:
class D extends A, B, C
val d = D()
handleABC(d)
A terrific thing about intersection types is that the order in which the class you’re creating implements the other types doesn’t matter, so other examples like these also work:
class BCA extends B, C, A
class CAB extends C, A, B
// i use 'new' here to make this code easier to read:
handleABC(new BCA)
handleABC(new CAB)
Discussion
An intersection type lets you declare that a value is a combination of multiple types. As shown in the examples, intersection types are commutative, so the order in which the types are declared doesn’t affect the match. The intent with Scala 3 is that A & B will replace A with B.
Here’s another example that demonstrates the difference between union types and intersection types:
trait HasLegs:
def run(): Unit
trait HasWings:
def flapWings(): Unit
class Pterodactyl extends HasLegs, HasWings:
def flapWings() = println("Flapping my wings")
def run() = println("I’m trying to run")
override def toString = "Pterodactyl"
class Dog extends HasLegs:
def run() = println("I’m running")
override def toString = "Dog"
// returns a union type
def getThingWithLegsOrWings(i: Int): HasLegs | HasWings =
if i == 1 then Pterodactyl() else Dog()
// returns an intersection type
def getThingWithLegsAndWings(): HasLegs & HasWings =
Pterodactyl()
@main def unionAndIntersection =
// union type
val d1 = getThingWithLegsOrWings(0)
val p1: HasLegs | HasWings = getThingWithLegsOrWings(1)
// intersection type
val p2 = getThingWithLegsAndWings()
val p3: HasLegs & HasWings = getThingWithLegsAndWings()
// these True/NotTrue tests use my SimpleTest library.
// they all evaluate to 'true'.
True(d1.isInstanceOf[Dog])
NotTrue(d1.isInstanceOf[Pterodactyl])
True(p1.isInstanceOf[Pterodactyl])
True(p1.isInstanceOf[HasLegs])
True(p1.isInstanceOf[HasWings])
NotTrue(p1.isInstanceOf[Dog])
// p2 and p3 are the same, so the p3 tests aren’t shown
True(p2.isInstanceOf[Pterodactyl])
True(p2.isInstanceOf[HasLegs])
True(p2.isInstanceOf[HasWings])
True(p2.isInstanceOf[HasLegs & HasWings])
As mentioned in the comments in the source code, all of those tests in the @main method evaluate to true, confirming that the types work as expected. And as these examples show, the ad hoc use of union and intersection types makes Scala feel even more like a dynamic programming language.
See Also
The tests shown in the last example use my SimpleTest testing library.
23.11 Controlling How Classes Can Be Compared with Multiversal Equality
Problem
In Scala 2, and by default in Scala 3, any custom object can be compared to any other object:
class Person(var name: String)
class Customer(var name: String)
val p = Person("Kim") // `new` is required before `Person` and
val c = Customer("Kim") // `Customer` in Scala 2
p == c
You may get a warning message to the effect that “this comparison will always be false,” but code like this will still compile.
To prevent potential errors in situations like this, you want to limit how objects can be compared to each other in Scala 3.
Solution
To completely disallow different types from being compared to each other, enable the Scala 3 strict equality feature in one of two ways:
Import scala.language.strictEquality in files where you want to control equality comparisons.
Use the -language:strictEquality command-line option to enable strict equality comparisons in all code.
After that, use the Scala 3 CanEqual typeclass to control what instances can be compared.
Import scala.language.strictEquality
This example shows how to disable comparisons of objects created from different classes by importing the strictEquality setting:
import scala.language.strictEquality
case class Dog(name: String)
case class Cat(name: String)
val d = Dog("Fido")
val c = Cat("Morris")
// this line will not compile with strictEquality enabled
println(d == c)
The last line of that code results in the compiler error “Values of types Dog and Cat cannot be compared with == or !=.”
Note that this setting is extremely limiting. With strictEquality enabled, you can’t even compare two instances of the same custom type:
case class Person(name: String)
scala> Person("Ken") == Person("Ken")
1 |Person("Ken") == Person("Ken")
|Values of types Person and Person cannot be compared with == or !=
You must enable equality comparisons
With strictEquality enabled, you can only compare two instances of the same class by making sure your custom class derives the Scala 3 CanEqual typeclass:
import scala.language.strictEquality
case class Person(name: String) derives CanEqual
// this now works, and results in `true`
Person("Ken") == Person("Ken")
See the next recipe for more details about using CanEqual.
Discussion
This recipe and the next recipe are all about type safety. Because Scala is a type-safe language, the goal of these recipes is to use that type safety to eliminate potential errors at compile-time.
23.12 Limiting Equality Comparisons with the CanEqual Typeclass
Problem
The previous recipe shows how to disable comparisons between different types. Now you want to enable comparisons between two instances of a custom type, or between two instances of different types.
Solution
When you use the strictEquality settings described in the previous recipe, you can’t even compare two instances of the same class:
import scala.language.strictEquality
case class Person(name: String)
Person("Al") == Person("Al")
// error: Values of types Person and Person cannot be compared with == or !=
Assuming that you’ve disabled comparisons of custom types with the strictEquality setting, to enable instances of your custom classes to be compared to each other, there are two possible solutions:
Have the class derive the CanEqual typeclass.
Use a given approach with CanEqual that accomplishes the same thing.
Derive CanEqual
The first solution is simple: just add derives CanEqual to the end of your class definition:
case class Person(name: String) derives CanEqual
Now Person comparisons will work:
import scala.language.strictEquality
Person("Al") == Person("Al") // this works, and results in `true`
Person("Joe") == Person("Fred") // false
The given+CanEqual approach
A second approach is to use the given syntax to accomplish the same result:
case class Person(name: String)
given CanEqual[Person, Person] = CanEqual.derived
The given code states that you want to allow two Person types to be compared to each other, so once again this code compiles:
import scala.language.strictEquality
Person("Al") == Person("Al") // this works, and results in `true`
This approach is more flexible than the first approach because you can apply it to objects as well as classes, and you can also use it to declare that you want to be able to compare two different types.
For example, imagine a situation where you have a Customer class and an Employee class. If you’re an enormous store, you may want to know if a customer is also an employee so you can give them a discount. Therefore, you’ll want to allow Customer instances to be compared to Employee instances, so you’ll write some code like this:
import scala.language.strictEquality
case class Customer(name: String):
def canEqual(a: Any) = a.isInstanceOf[Customer] || a.isInstanceOf[Employee]
override def equals(that: Any): Boolean =
if !canEqual(that) then return false
that match
case c: Customer => this.name == c.name
case e: Employee => this.name == e.name
case _ => false
case class Employee(name: String):
def canEqual(a: Any) = a.isInstanceOf[Employee] || a.isInstanceOf[Customer]
override def equals(that: Any): Boolean =
if !canEqual(that) then return false
that match
case c: Customer => this.name == c.name
case e: Employee => this.name == e.name
case _ => false
given CanEqual[Customer, Customer] = CanEqual.derived
given CanEqual[Employee, Employee] = CanEqual.derived
given CanEqual[Customer, Employee] = CanEqual.derived
given CanEqual[Employee, Customer] = CanEqual.derived
val c = Customer("Barb S.")
val e = Employee("Barb S.")
c == c // true
e == e // true
c == e // true
e == c // true
Customer("Cheryl") == Employee("Barb") // false
I took some shortcuts in writing that code, but the keys are:
The strictEquality setting limits what types can be compared.
The equals methods in the Customer and Employee classes allow themselves to be compared.
The first two given lines allow customers to be compared to customers, and employees to be compared to employees.
The second two given lines allow customers to be compared to employees, and employees to be compared to customers.
The rest of the code demonstrates a few equality comparisons.
Note that if you want to compare a customer to an employee (c == e) and an employee to a customer (e == c), you must include both of the last two CanEqual expressions:
given CanEqual[Customer, Employee] = CanEqual.derived // Customer to Employee
given CanEqual[Employee, Customer] = CanEqual.derived // Employee to Customer
For a proper way to write equals methods, see Recipe 5.9, “Defining an equals Method (Object Equality)”.
Reflexive and Symmetric Comparisons
When we say that a type Customer can be compared to another Customer, this is a reflexive property (e.g., a == a). When we say that a Customer can be compared to an Employee, and an Employee can be compared to a Customer, this is a symmetric property (e.g., a == b and b == a).
Discussion
As with the previous recipe, this approach is all about type safety. First you enable strictEquality, as shown in the previous recipe, and then you enable only type comparisons between the types you want to compare. This approach creates compile-time errors, so it’s impossible to compare types that you don’t enable.
Note that with the given approach you can enable comparisons between types you don’t control. For example, initially this comparison is not allowed:
2 == "2" // error: Values of types Int and String cannot be
// compared with == or !=
But when you declare that you want to allow String to be compared to Int, the comparison is allowed:
given CanEqual[String, Int] = CanEqual.derived
given CanEqual[Int, String] = CanEqual.derived
2 == "2" // false, but the comparison is allowed
"2" == 2 // also false
Chapter 24. Best Practices
When I first came to Scala from Java in 2010, I was happy with the small things, such as eliminating a lot of ;, (), and {} characters, and working with a less verbose language that reminded me of Ruby. Not knowing much about the history of programming languages, I thought of Scala as being “Ruby with types,” and all of these were nice little wins that made for “a better Java.”
Over time, I wanted to add more to my repertoire and use Scala the way it’s intended to be used. As Ward Cunningham is quoted in the book Clean Code by Robert C. Martin (Prentice Hall), I wanted to write code that “makes it look like the language was made for the problem,” so I learned the collections classes and their methods, for expressions, match expressions, and modular development. That’s what this chapter is about: trying to share some of the best practices of Scala programming so you can write code in the “Scala way.”
Before jumping into the recipes in this chapter, here’s a short summary of the best Scala practices I know.
At the application level:
As Martin Odersky has stated, write functions for the logic, and create objects for the modularity.
When you write functions, try to write as many of them as you can as pure functions. Following the 80/20 rule, this is like writing 80% of your application as pure functions, with a thin layer of other code on top of those functions for things like I/O. As someone once wrote, it’s like putting a thin layer of impure icing on a pure FP cake (though there are also ways of handling that “impure” code).
Move behavior from classes into granular traits. I describe this approach in Chapter 6.
Use the Scala Future class and Akka library to implement concurrency.
As you move more into FP, use libraries like Cats, Monix, and ZIO (which also provide support for concurrency).
At the daily coding level:
Learn how to write pure functions (Recipe 24.1). At the very least, they simplify what you have to think about.
Related to the first point, don’t write functions that throw exceptions. Return types like Option, Try, or Either instead.
Similarly, don’t use methods like head, tail, and last that throw exceptions.
Learn how to pass functions around as variables (see Chapter 10).
Learn how to use the Scala collections API. Know the most common classes and methods. Knowing the methods will keep you from writing more verbose custom for loops.
Prefer immutable code. Use val fields and immutable collections first (Recipe 24.2).
Learn expression-oriented programming (Recipe 24.3).
Functional programming languages are pattern-matching languages, so become an expert on match expressions (Recipe 24.4).
Drop the null keyword from your vocabulary (Recipe 24.5). Use the Option, Try, and Either types instead (Recipe 24.6).
Organize your code in modules (Recipe 24.7).
Use test-driven development and/or behavior-driven development testing tools like ScalaTest and MUnit, and a property-based testing tool like ScalaCheck.
As you become more proficient with Scala, learn how to use higher-order functions as a replacement for match expressions when handling the Option, Try, and Either types Recipe 24.8.
Outside the code:
Learn how to use sbt (as covered in Chapter 17) or other automated build tools.
Keep a REPL session open while you’re coding so you can run small tests as needed (Recipe 1.1, “Getting Started with the Scala REPL”), or use online tools like Scastie or ScalaFiddle.
Other Resources
In addition to the practices shared in this chapter, Twitter’s “Effective Scala” page remains a good resource. The Twitter team has been a big user and proponent of Scala, and this document summarizes its experiences.
The Scala Style Guide is also a good resource that shares examples of how to write code in the Scala style.
24.1 Writing Pure Functions
Problem
You want to write pure functions and also understand the benefits of writing them.
Solution
It’s surprisingly hard to find a consistent definition of a pure function, so I’ll give you the summary definition that I use in my book Functional Programming, Simplified:
A pure function is a function that depends only on its declared input parameters and its algorithm to produce its output. It doesn’t read any other values from “the outside world”—the world outside of the function’s scope—and it doesn’t modify any values in the outside world. A pure function is total, meaning that its result is defined for every possible input, and it’s deterministic, meaning that it always returns the same value for a given input.
To show how to write pure functions and their benefits, in this recipe I’ll convert the methods in an object-oriented programming style class into pure functions.
The OOP approach
To simplify this solution, the following OOP-style class intentionally has a few flaws. It not only has the ability to store information about a Stock but also can access the internet to get the current stock price, and it further maintains a list of historical prices for the stock:
// a poorly written OOP-style class
class Stock (
var symbol: String,
var company: String,
var price: BigDecimal,
var volume: Long
):
var html: String = _ // null
// create a url based on the stock symbol
def buildUrl(stockSymbol: String): String = ...
// this method calls out to the internet to get the url content,
// such as getting a page from yahoo finance or a similar site
def getUrlContent(url: String): String = ...
def setPriceFromHtml(html: String): Unit =
this.price = ...
def setVolumeFromHtml(html: String): Unit =
this.volume = ...
def setHighFromHtml(html: String): Unit =
this.high = ...
def setLowFromHtml(html: String): Unit =
this.low = ...
// some DAO-like functionality
private val _history: ArrayBuffer[Stock] = ...
def getHistory = _history
Besides attempting to do too many things, from an FP perspective, it has these other problems:
All the fields are mutable.
All the set* methods mutate the class fields.
The getHistory method returns a mutable data structure.
The getHistory method is easily fixed by converting the ArrayBuffer to an immutable sequence like Vector before sharing it, but this class has deeper problems. Let’s fix them.
Fixing the problems
The first fix is to separate two concepts that are buried in the class. First, there should be a concept of a Stock, where a Stock consists only of a symbol and company name. You can make this a case class:
case class Stock(symbol: String, company: String)
Examples of this are Stock("AAPL","Apple") and Stock("GOOG","Google").
Second, at any moment in time there is information related to a stock’s performance on the stock market. You can call this data structure a StockInstance and also define it as a case class:
case class StockInstance(
symbol: String,
datetime: String,
price: BigDecimal,
volume: Long
)
A StockInstance example looks like this:
StockInstance("AAPL", "Mar. 1, 2021 5:00pm", 127.79, 107_183_333)
That covers the data portion of the solution. Now let’s look at how to handle the behaviors.
Behaviors
Going back to the original class, the getUrlContent method isn’t specific to a stock and should be moved to a different object, such as a general-purpose NetworkUtils object:
object NetworkUtils:
def getUrlContent(url: String): String = ???
This method takes a URL as a parameter and returns the HTML content from that URL.
Similarly, the ability to build a URL from a stock symbol should be moved to an object. Because this behavior is specific to a stock, put it in an object named StockUtils:
object StockUtils:
def buildUrl(stockSymbol: String): String = ???
The ability to extract the stock price from the HTML (i.e., screen scraping) can also be written as a pure function and should be moved into the same object:
object StockUtils:
def buildUrl(stockSymbol: String): String = ???
def getPrice(html: String): String = ???
In fact, all of the methods named set* in the previous class should be get* methods in StockUtils:
object StockUtils:
def buildUrl(stockSymbol: String): String = ???
def getPrice(symbol: String, html: String): String = ???
def getVolume(symbol: String, html: String): String = ???
def getHigh(symbol: String, html: String): String = ???
def getLow(symbol: String, html: String): String = ???
The methods getPrice, getVolume, getHigh, and getLow are all pure functions: given the same HTML string and stock symbol, they always return the same values, and they don’t have side effects.
Following this thought process, the code will require date and time functions, so I put them in a DateUtils object:
object DateUtils:
def currentDate: String = ???
def currentTime: String = ???
These aren’t pure functions, but at least they’re in a logical location.
With this new design, you create an instance of a Stock for the current date and time as a simple series of expressions. First, retrieve the HTML that describes the stock from a web page:
val stock = Stock("AAPL", "Apple")
val url = StockUtils.buildUrl(stock.symbol)
val html = NetworkUtils.getUrlContent(url)
Once you have the HTML, extract the desired stock information, get the date, and create the Stock instance:
val price = StockUtils.getPrice(html)
val volume = StockUtils.getVolume(html)
val high = StockUtils.getHigh(html)
val low = StockUtils.getLow(html)
val date = DateUtils.currentDate
val stockInstance = StockInstance(symbol, date, price, volume, high, low)
Notice that all the variables are immutable, and each line is an expression. In fact, the code is now so simple that you can eliminate all the intermediate variables, if desired:
val html = NetworkUtils.getUrlContent(url)
val stockInstance = StockInstance(
symbol,
DateUtils.currentDate,
StockUtils.getPrice(html),
StockUtils.getVolume(html),
StockUtils.getHigh(html),
StockUtils.getLow(html)
)
This simplicity is a great benefit of using pure functions. “Output depends only on input, no side effects” is a simple mantra for pure functions.
As mentioned earlier, the methods getPrice, getVolume, getHigh, and getLow are all pure functions. But what about methods like getDate? It’s not a pure function, but the fact is, you need the date and time to solve the problem. This is part of what’s meant by having a healthy, balanced attitude about pure functions.
Other Approaches to Handle Impure Functions
There are more powerful ways to handle impure functions, and those approaches will return Option, Try, or Either or use external libraries like Cats or ZIO. However, those approaches take a long time to introduce. Please see Functional Programming, Simplified for more details on some of those approaches.
As a final note about this example, there’s no need for the Stock class to maintain a mutable list of stock instances. Assuming that the stock information is stored in a database, you can create a StockDao (“data access object”) to retrieve the data:
object StockDao:
def getStockInstances(symbol: String): Seq[StockInstance] = ???
// other code ...
Though getStockInstances isn’t a pure function, the resulting Seq class is immutable, so you can feel free to share it without worrying that it might be modified somewhere else in your application.
get and set Aren’t Necessary
Although I use the prefix get in many of those method names, it’s not necessary (or common) to follow a JavaBeans-like naming convention. In fact, partly because you write setter methods in Scala without beginning their names with set and partly to follow the uniform access principle, many Scala APIs don’t use get or set at all.
For example, think of Scala classes. Their accessors and mutators don’t use get or set:
class Person(var name: String)
val p = Person("William")
p.name // accessor
p.name = "Bill" // mutator
StockUtils or Stock object?
The methods that were moved to the StockUtils class in the previous examples can also be placed in the companion object of the Stock class. That is, you could have placed the Stock class and object in a file named Stock.scala:
case class Stock(symbol: String, company: String)
object Stock:
def buildUrl(stockSymbol: String): String = ???
def getPrice(symbol: String, html: String): String = ???
def getVolume(symbol: String, html: String): String = ???
def getHigh(symbol: String, html: String): String = ???
def getLow(symbol: String, html: String): String = ???
For the purposes of this example, I put these methods in a StockUtils class to be clear about separating the concerns of the Stock class and object. In your own practice, use whichever approach you prefer. See Recipe 7.5 for more details on companion objects.
Discussion
If you’re coming to Scala from a pure OOP background, it can be surprisingly difficult to write pure functions. Speaking for myself, prior to 2010 my code had followed the OOP paradigm of encapsulating data and behavior in classes, and as a result, my methods almost always mutated the internal state of objects. Switching to pure functions and immutable values took a while to get comfortable with.
But a major benefit of writing pure functions is that it naturally leads you into a functional programming style, where you write your code as algebraic expressions and then combine those expressions to solve larger problems. A benefit of this coding style is that pure functions are easier to test.
For instance, attempting to test the set methods in the original code is harder than it needs to be. For each field (price, volume, high, and low), you have to follow these steps:
Set the html field in the object.
Call the current set method, such as setPriceFromHtml.
Internally, this method reads the private html class field.
When the method runs, it mutates a field in the class (price).
You have to get that field to verify that it was changed.
In more complicated classes, it’s possible that the html and price fields may be mutated by other methods in the class.
The test code for the original class looks like this:
val stock = Stock("AAPL", "Apple", 0, 0)
stock.buildUrl
val html = stock.getUrlContent
stock.getPriceFromHtml(html)
assert(stock.getPrice == 200.0)
This is a simple example of testing one method that has side effects, but of course this can get much more complicated in a large application.
By contrast, testing a pure function is easier:
Call the function, passing in a known value.
Get a result back from the function.
Verify that the result is what you expected.
The functional approach results in test code like this:
val url = NetworkUtils.buildUrl("AAPL")
val html = NetworkUtils.getUrlContent(url)
val price = StockUtils.getPrice(html)
assert(price == 200.0)
Although the code shown isn’t much shorter, it is much simpler. And as shown in other examples in this book, because pure functions are expressions, they can be reduced to this form, if you prefer:
val price = getPrice(getUrlContent(buildUrl("AAPL")))
assert(price == 200.0)
In many other situations where you have a series of pure expressions that don’t depend on being run in a specific order, both you and the compiler are free to run them in parallel.
24.2 Using Immutable Variables and Collections
Problem
To make your code easier to write, read, test, and use in parallel/concurrent situations, you want to reduce the use of mutable objects and data structures in your code.
Solution
Begin with this simple philosophy, stated in the book Programming in Scala: “Prefer val fields, immutable objects, and methods without side effects. Reach for them first.” Then use other approaches with justification.
There are two components to “prefer immutability”:
Prefer immutable collections. For instance, use immutable sequences like List and Vector before reaching for the mutable ArrayBuffer.
Prefer immutable variables. That is, prefer val to var.
In Java, mutability is the default, and it can lead to unnecessarily dangerous code and hidden bugs. In the following example, even though the List parameter taken by the trustMeMuHaHa method is marked as final, the method can still mutate the collection:
// java
class EvilMutator {
// trust me ... mu ha ha (evil laughter)
public static void trustMeMuHaHa(final List<Person> people) {
people.clear();
}
}
Although Scala treats method arguments as val fields, you leave yourself open to the exact same problem by passing around a mutable collection, like an ArrayBuffer:
def evilMutator(people: ArrayBuffer[Person]) =
people.clear()
Just as with the Java code, the evilMutator method can call clear because the contents of an ArrayBuffer are mutable.
Though nobody would write malicious code like this intentionally, accidents do happen. To make your code safe from this problem, if there’s no reason for a sequence to be changed, don’t use a mutable sequence class. By changing the sequence to a Seq, List, or Vector, you eliminate the possibility of this problem. In fact, the following code won’t even compile:
def evilMutator(people: Seq[Person]) =
// ERROR - won’t compile
people.clear()
Because Seq, List, and Vector are immutable sequences, any attempt to add or remove elements will fail.
Discussion
There are at least two major benefits to using immutable variables (val) and immutable collections:
They represent a form of defensive coding; you don’t have to worry about your data being accidentally changed.
They’re easier to reason about.
The examples shown in the Solution demonstrate the first benefit: if there’s no need for other code to mutate your reference or collection, don’t let them do it. Scala makes this easy.
The second benefit can be thought of in many ways, but I like to think about it when using actors and concurrency: If I’m using immutable collections, I can pass them around freely. There’s no concern that another thread will modify my collection.
Using val + mutable, and var + immutable
When you write pure FP code everything is immutable, but if you’re not writing pure FP code you can combine these tools. For instance, some developers like to use these combinations:
A mutable collection field declared as a val
An immutable collection field declared as a var
These approaches generally seem to be used as follows:
A mutable collection field declared as a val is typically made private to its class (or method).
An immutable collection field declared as a var in a class is more often made publicly visible, that is, it’s made available to other classes.
As an example of the first approach, the current Akka FSM class (scala.akka.actor.FSM) defines several mutable collection fields as private val fields, like this:
private val timers = mutable.Map[String, Timer]()
// some time later ...
timers -= name
timers.clear()
This is safe to do because the timers field is private to the class, so its mutable collection isn’t shared with others.
An approach I used on a teaching project is a variation of this theme:
enum Topping { case Cheese, Pepperoni, Mushrooms }
class Pizza:
private val _toppings = collection.mutable.ArrayBuffer[Topping]()
def toppings = _toppings.toSeq
def addTopping(t: Topping): Unit = _toppings += t
def removeTopping(t: Topping): Unit = _toppings -= t
This code defines _toppings as a mutable ArrayBuffer but makes it a val that’s private to the Pizza class. Here’s my rationale for this approach:
I made _toppings an ArrayBuffer because I knew that elements (toppings) would often be added and removed.
I made _toppings a val because there was no need for it to ever be reassigned.
I made it private so its accessor wouldn’t be visible outside of my class.
I created the methods toppings, addTopping, and removeTopping to let other code manipulate the collection.
When other code calls the toppings method, I can give it an immutable copy of the toppings.
The more you learn about functional programming the more you’ll find that mutable code like this isn’t necessary. But until you become proficient with libraries like Cats, Monix, or ZIO, this can be a useful compromise.
In summary, always begin with the “prefer immutability” approach and only relax that philosophy when it makes sense for the current situation, that is, when you can properly rationalize your decision. The further you get into functional programming, the less you’ll need to reach for mutable tools.
24.3 Writing Expressions (Instead of Statements)
Problem
You’re used to writing statements in another programming language and want to learn how to write expressions in Scala, as well as the benefits of the expression-oriented programming philosophy.
Solution
To understand EOP, you have to understand the difference between a statement and an expression. Wikipedia’s EOP page provides a concise distinction between the two:
Statements do not return results and are executed solely for their side effects, while expressions always return a result and often do not have side effects at all.
So statements are like this:
order.calculateTaxes()
order.updatePrices()
println(s"The product $name costs $price.")
and expressions are like this:
val tax = calculateTax(order)
val price = calculatePrice(order)
val s = s"The product $name costs $price."
Wikipedia’s EOP page also states:
An expression-oriented programming language is a programming language where every (or nearly every) construction is an expression, and thus yields a value.
Because purely functional programs are written entirely with expressions, it further states that all pure FP languages are expression-oriented.
An example
The following example helps to demonstrate EOP. This recipe is similar to Recipe 24.1, so it reuses the class from that recipe to show an initial OOP-style design:
// an intentionally poor design
class Stock(
var symbol: String,
var company: String,
var price: String,
var volume: String,
var high: String,
var low: String
):
var html: String = _
def buildUrl(stockSymbol: String): String = ???
def getUrlContent(url: String): String = ???
def setPriceUsingHtml(): Unit = this.price = ???
def setVolumeUsingHtml(): Unit = this.volume = ???
def setHighUsingHtml(): Unit = this.high = ???
def setLowUsingHtml(): Unit = this.low = ???
Using this class results in code like this:
val stock = Stock("GOOG", "Google", "", "", "", "")
val url = stock.buildUrl(stock.symbol)
stock.html = stock.getUrlContent(url)
// a series of calls on an object (i.e, “statements”)
stock.setPriceUsingHtml()
stock.setVolumeUsingHtml()
stock.setHighUsingHtml()
stock.setLowUsingHtml()
Although the implementation code isn’t shown, all of these set methods extract data from the HTML that was downloaded from a Yahoo Finance page for a given stock, and then they update the fields in the current object.
After the first two lines, this code is not expression-oriented at all; it’s a series of calls on an object to populate (mutate) the class fields, based on other internal data. These are statements, not expressions; they don’t yield values, and they do mutate state.
Recipe 24.1 shows that by refactoring this class into several different components with mostly pure functions, you’ll end up with the following code:
// a series of expressions
val url = StockUtils.buildUrl(symbol)
val html = NetworkUtils.getUrlContent(url)
val price = StockUtils.getPrice(html)
val volume = StockUtils.getVolume(html)
val high = StockUtils.getHigh(html)
val low = StockUtils.getLow(html)
val date = DateUtils.getDate()
val stockInstance = StockInstance(symbol, date, price, volume, high, low)
This code is expression-oriented. It consists of a series of simple expressions that pass values into pure functions (except for getDate), and each function returns a value that’s assigned to a variable. The functions don’t mutate the data they’re given, and they don’t have side effects, so they’re easy to read, easy to reason about, and easy to test. Because they are simple expressions, most of them can be run in any order, and even run in parallel.
Discussion
In Scala, most expressions are obvious. For instance, the following two expressions both return results, which you expect:
val x = 2 + 2 // 4
val xs = List(1,2,3,4,5).filter(_ > 2) // List(3, 4, 5)
However, for anyone coming from an OOP-style language, it can be more of a surprise that an if/else expression returns a value:
val max = if a > b then a else b
Match expressions also return a result:
val evenOrOdd = i match
case 1 | 3 | 5 | 7 | 9 => "odd"
case 2 | 4 | 6 | 8 | 10 => "even"
Even a try/catch block returns a value:
val result = try
"1".toInt
catch
case _ => 0
Writing expressions like this is a feature of functional programming languages, and Scala makes using them feel natural and intuitive, and they also result in concise, expressive code.
Benefits
Because expressions always return a result and generally don’t have side effects, there are several benefits to EOP:
Pure functions are easier to reason about. Inputs go in, a result is returned, and there are no side effects. You don’t have to worry that you just mutated state somewhere else in the application.
As I demonstrate in Recipe 24.1, pure functions are easier to test.
Combined with Scala’s syntax, EOP results in concise, expressive code.
Although it has only been hinted at in these examples, expressions can often be executed in any order. This subtle feature lets you execute expressions in parallel, which can be a big help when you’re trying to take advantage of multiple multicore CPUs.
See Also
The Wikipedia definition of a statement, and the difference between a statement and an expression
The Wikipedia expression-oriented programming language (EOP) page
24.4 Using Match Expressions and Pattern Matching
Problem
Pattern matching is a major feature of the Scala programming language, and you want to see examples of how to use it in different situations.
Solution
Match expressions—match/case statements—and pattern matching are used all the time in Scala code. If you’re coming to Scala from Java, the most obvious uses of match expressions are:
As a replacement for the Java switch statement
To replace unwieldy if/then statements
However, pattern matching is so common, you’ll find that match expressions are used in many more situations:
As the body of a function
Handling Option variables
Case statements are also used in:
try/catch expressions
The receive method of Akka Classic actors
The following examples demonstrate these techniques.
Replacement for the Java switch statement and unwieldy if/then statements
Recipe 4.7, “Matching Multiple Conditions with One Case Statement”, shows that a match expression can be used like a Java switch statement:
val month = i match
case 1 => "January"
// the rest of the months here ...
case 12 => "December"
case _ => "Invalid month" // the default, catch-all case
It can be used in the same way to replace unwieldy if/then/else statements:
val evenOrOdd = i match
case 1 | 3 | 5 | 7 | 9 => "odd"
case 2 | 4 | 6 | 8 | 10 => "even"
These are simple uses of match expressions, but they’re a good start.
As the body of a function or method
As you get comfortable with match expressions, you’ll use them as the body of your functions, such as this function that determines whether the value it’s given is true, using the Perl definition of “true”:
def isTrue(a: Matchable): Boolean = a match
case false | 0 | "" => false
case _ => true
See Recipe 4.8, “Assigning the Result of a Match Expression to a Variable”, for more examples of using match expressions like this.
Use with Option variables
Match expressions work well with the Option/Some/None types. For instance, given this method makeInt that returns an Option:
import scala.util.control.Exception.allCatch
def makeInt(s: String): Option[Int] = allCatch.opt(s.trim.toInt)
you can handle the result from makeInt with a match expression:
makeInt(aString) match
case Some(i) => println(i)
case None => println("Error: Could not convert String to Int.")
In a similar way, match expressions are a popular way of handling form verifications with the Play Framework:
verifying("If age is given, it must be greater than zero",
model =>
model.age match {
case Some(age) => age > 0
case None => false
}
)
You can also use the fold method on Option values to handle situations like this. For instance, those two examples can be written like this:
// first example
makeInt(aString).fold(println("Error..."))(println)
// second example
makeInt(aString).fold(false)(_ > 0)
See Recipe 24.6 for more details and other ways to handle these situations.
In try/catch expressions
Case statements are also used in try/catch expressions. The following example shows how to write a try/catch expression that returns an Option when lines are successfully read from a file and returns None if an exception is thrown during the file-reading process:
def readTextFile(filename: String): Option[List[String]] =
try
Some(Source.fromFile(filename).getLines.toList)
catch
case ioe: IOException =>
None
case fnf: FileNotFoundException =>
None
Note that if the specific error is important in a situation like this, use the Either/Left/Right or Try/Success/Failure classes so you can return the failure information to the caller. See Recipe 24.6 for more details.
In Akka actors
If you use the original Akka Classic “untyped” library, it helps to get comfortable with the use of case statements because they’re used with Akka actors as the primary way to handle incoming messages:
class SarahsBrain extends Actor {
def receive = {
case StartMessage => handleStartMessage()
case StopMessage => handleStopMessage()
case _ => log.info("Got something unexpected.")
}
// other code here ...
}
See Also
match expressions are demonstrated in many examples in Chapter 4.
As detailed in Recipe 24.8, you can use higher-order functions to work with Option, Either, and Try values.
24.5 Eliminating null Values from Your Code
Problem
In keeping with modern best practices, you want to eliminate null values from your code.
Solution
David Pollak, author of the first edition of the book Beginning Scala and creator of the Lift Framework, offers a wonderfully simple rule about null values:
Ban null from any of your code. Period.
Although I’ve used null values in this book to make some examples easier, in my own practice I no longer use them. I just imagine that there is no such thing as a null and write my code in other ways.
There are several common situations where you may be tempted to use null values, so this recipe demonstrates how not to use null values in those situations:
When a var field in a class or method doesn’t have an initial default value, declare it as an Option.
When a function doesn’t produce the intended result, you may be tempted to return null. Use Option, Try, or Either instead.
If you’re working with a Java library that returns null, convert it to an Option or something else.
Let’s look at each of these techniques.
Initialize var fields with Option, not null
Possibly the most tempting time to use a null value is when a field in a class or method won’t be initialized immediately. For instance, imagine that you’re writing code for the next great social network app. To encourage people to sign up, during the registration process, the only information you ask for is an email address and a password. Because everything else is initially optional, when you write code in an OOP style, you might be tempted to write some code like this:
case class Address(city: String, state: String, zip: String)
class User(var email: String, var password: String):
var firstName: String = _
var lastName: String = _
var address: Address = _
The User class is bad news because firstName, lastName, and address are all declared to be null and can cause problems in your application if they’re not assigned before they’re accessed. The preferred approach is to define each optional field as an Option:
class User(var email: String, var password: String):
var firstName = None: Option[String]
var lastName = None: Option[String]
var address = None: Option[Address]
Now you can create a User like this:
val u = User("al@example.com", "secret")
Then at some point later you can assign the other values like this:
u.firstName = Some("Al")
u.lastName = Some("Alexander")
u.address = Some(Address("Talkeetna", "AK", "99676"))
Later in your code, you can access the fields like this:
u.address.foreach { a =>
println(a.city)
println(a.state)
println(a.zip)
}
or this:
println(firstName.getOrElse("<not assigned>"))
In both cases, if the values are assigned, they’ll be printed. In the first example, if address is None, the foreach loop won’t be executed, so the print statements are never reached. This is because an Option can be thought of as a collection with zero or one element: if the value is None, it has zero elements, and if it’s a Some, it has one element—the value it contains. With the getOrElse example, if the value isn’t assigned, the string <not assigned> is printed.
On a related note, you should also use an Option in a constructor when a field is optional:
case class Address(
street1: String,
street2: Option[String],
city: String,
state: String,
zip: String
)
Don’t return null from methods
Because you should never use null in your code, the rule for returning null values from functions is easy: don’t do it.
If you can’t return null, what can you do? Return an Option. Or, if you need to know about an error that may have occurred in the method, use Try or Either instead of Option.
With an Option, your function signatures should look like this:
def doSomething: Option[String] = ???
def makeInt(s: String): Option[Int] = ???
def lookupPerson(name: String): Option[Person] = ???
For instance, when reading a file, a function could return null if the process fails, but this code shows how to read a file and return an Option instead:
def readTextFile(filename: String): Option[List[String]] =
try
Some(io.Source.fromFile(filename).getLines.toList)
catch
case e: Exception => None
This method returns a List[String] wrapped in a Some if the file can be found and read, or None if an exception occurs. If you want the error information, use the Try/Success/Failure classes (or Either/Right/Left) instead of Option/Some/None:
import scala.util.{Try, Success, Failure}
def readTextFile(filename: String): Try[List[String]] =
Try(io.Source.fromFile(filename).getLines.toList)
This code returns the lines of the file as a List[String] wrapped in a Success if the file can be read, or it returns an exception wrapped in a Failure if something goes wrong:
java.io.FileNotFoundException: Foo.bar (No such file or directory)
As a word of caution (and balance), the Twitter Effective Scale page recommends not overusing Option, and using the null object pattern where it makes sense. As usual, use your own judgment, but try to eliminate all null values with one of these approaches.
Null Objects
A null object is an object that extends a base type with a null or neutral behavior. Here’s a Scala implementation of Wikipedia’s Java example of a null object:
trait Animal:
def makeSound(): Unit
class Dog extends Animal:
def makeSound(): Unit = println("woof")
class NullAnimal extends Animal:
def makeSound(): Unit = () // just returns Unit
The makeSound method in the NullAnimal class has a neutral, “do nothing” behavior. Using this approach, a method defined to return an Animal can return NullAnimal rather than null.
For more details on why you should never return null from a function, see my blog post “Pure Function Signatures Tell All”.
Converting a null into an Option, or something else
The third major place you’ll run into null values is in working with legacy Java code. There is no magic formula here, other than to capture the null value and return something else from your code. That may be an Option, a null object, an empty list, or whatever else is appropriate for the problem at hand.
For instance, the following getName method converts a result from a Java method that may be null and returns an Option[String] instead:
def getName(): Option[String] =
val name = javaPerson.getName()
if name == null then None else Some(name)
Discussion
Tony Hoare, inventor of the null reference for the ALGOL W programming language way back in 1965, refers to the creation of the null value as his “billion-dollar mistake”. Languages like Java initially dealt with null references and NullPointerException’s with the use of try/catch constructs, but modern languages like Scala use other techniques to eliminate them entirely.
Eliminating null values in your code leads to these benefits:
You completely eliminate an entire class of errors: null pointer exceptions.
You’ll never have to wonder, “Does this method return null if something goes wrong?”
You won’t have to write if statements to check for null values.
Adding an Option[T] return type declaration to a method is a terrific way to indicate that something is happening in the method such that the caller may receive a None instead of a Some[T]. Using Option, Try, and Either is a much better approach than returning null from a method that is expected to return an object.
You’ll become more comfortable using Option, Try, and Either, and as a result, you’ll be able to take advantage of how they’re used in the collection libraries and other frameworks.
Explicit nulls in Scala 3
At the time of this writing, Scala 3.0.0 includes an opt-in compiler feature named Explicit Nulls. When you enable this feature, it changes the Scala type hierarchy so that Null is only a subtype of Any, instead of being a subtype of every reference type. Therefore, all the reference types—i.e., any type that extends AnyRef, such as String, List, and your custom types like User—are non-nullable.
You enable this feature with this scalac option:
-Yexplicit-nulls
When you enable this option, code like this no longer compiles:
val s: String = null
For more details on how this works, see the Explicit Nulls page.
See Also
Tony Hoare’s “billion-dollar mistake” quote on Wikipedia
Wikipedia’s page on null object patterns
The Scala 3 explicit nulls documentation
24.6 Using Scala’s Error-Handling Types (Option, Try, and Either)
Problem
For a variety of reasons, including removing null values from your code, you want to effectively use the Option/Some/None, Try/Success/Failure, and Either/Left/Right classes.
Solution
There is some overlap between this recipe and Recipe 24.5. That recipe shows how to use Option instead of null in the following situations:
Using Option in function and constructor parameters
Using Option to initialize class fields (instead of using null)
Converting null results from other code (such as Java code) into an Option
Returning Option from methods
See Recipe 24.5 for examples of how to use Option in those situations. This recipe adds these solutions:
Extracting the value from an Option
Using Option with collections
Using Option with frameworks
Using Try/Success/Failure when you need the error message
Using Either/Left/Right when you need the error message
Extracting the value from an Option
Here are two ways to define a makeInt function that catches the exceptions that can be thrown by toInt and return an Option:
import scala.util.control.Exception.allCatch
def makeInt(s: String): Option[Int] = allCatch.opt(s.trim.toInt)
import scala.util.{Try, Success, Failure}
def makeInt(s: String): Option[Int] = Try(s.trim.toInt).toOption
As a consumer of a method that returns an Option, there are several good ways to call it and access its result:
Use a match expression
Use foreach
Use getOrElse
Use other higher-order functions (HOFs)
Depending on your needs, a good way to access the makeInt result is with a match expression. You can return a value from a match expression:
val result = makeInt(aString) match
case Some(i) => i
case None => 0
You can also use a match expression to produce a side effect, such as printing to the outside world:
makeInt(aString) match
case Some(i) => println(i)
case None => println(0)
Because you can think of an Option as a collection with zero or one element, the foreach method can be used in situations where you handle the result as a side effect:
makeInt(aString).foreach{ i =>
println(s"Got an int: $i")
}
That example prints the value if makeInt returns a Some, but it bypasses the println statement if makeInt returns a None.
To (a) extract the value if the method succeeds or (b) use a default value if the method fails, use getOrElse:
val x = makeInt("1").getOrElse(0) // 1
val y = makeInt("A").getOrElse(0) // 0
You can also use the HOFs that are available on Option, as shown in Recipe 24.8.
Using Option with Scala collections
Another great feature of Option is that it’s used often in the Scala collections. For instance, starting with a list of strings like this:
val possibleNums = List("1", "2", "foo", "3", "bar")
imagine that you want a list of all the integers that can be converted from that list of strings. By passing the makeInt method into the map method, you can convert every element in the collection into a Some or None value:
scala> possibleNums.map(makeInt)
res0: List[Option[Int]] = List(Some(1), Some(2), None, Some(3), None)
This is a good start. As shown in “flatten with Seq[Option]”, because an Option can be thought of as a collection of zero or one element, you can convert this List[Option[Int]] values into a List[Int] by adding flatten after map:
val a = possibleNums.map(makeInt).flatten // a: List[Int] = List(1, 2, 3)
As shown in Recipe 13.6, “Flattening a List of Lists with flatten”, this is the same as calling flatMap:
val a = possibleNums.flatMap(makeInt) // a: List[Int] = List(1, 2, 3)
The collect method provides another way to achieve the same result:
scala> possibleNums.map(makeInt).collect{case Some(i) => i}
res0: List[Int] = List(1, 2, 3)
That example works because the collect method takes a partial function, and in this case the anonymous function that I pass in is only defined for Some values; it ignores the None values. (See Recipe 10.7, “Creating Partial Functions”, for more details on the collect method.)
All of these examples work for several reasons:
makeInt is defined to return an Option, specifically an Option[Int].
Collections methods like flatten, flatMap, and collect are built to work with Option values.
You can pass methods, functions, and anonymous functions into the methods of collections classes.
Using Option with other frameworks
When you use third-party Scala libraries, you’ll find that Option is used to handle situations where a variable is optional. For instance, they’re baked into the Play Framework’s Anorm database library, where you use Option values for database table fields that can be null. The following example shows how to write a SQL SELECT statement with Anorm. Here, the third field may be null in the database, so I use pattern matching with Some and None values in a collect method:
def getAll() : List[Stock] =
DB.withConnection { implicit connection =>
sqlQuery().collect {
// use Some when the 'company' field has a value
case Row(id: Int, symbol: String, Some(company: String)) =>
Stock(id, symbol, Some(company))
// use None when the 'company' field does not have a value
case Row(id: Int, symbol: String, None) =>
Stock(id, symbol, None)
}.toList
}
Option is also used extensively in Play Framework validation methods. In this example, model.age is an Option[Int]:
verifying("If age is given, it must be greater than zero",
model => model.age match
case Some(age) => age < 0
case None => true
)
scala.util.control.Exception.allCatch
The scala.util.control.Exception object gives you another way to use Option, Try, and Either values. For instance, you can remove try/catch blocks from functions and replace them with allCatch:
import scala.util.control.Exception.allCatch
import scala.io.Source
def readTextFile(f: String): Option[List[String]] =
allCatch.opt(Source.fromFile(f).getLines.toList)
allCatch is a Catch object that catches everything. The opt method returns None if an exception is caught—such as a FileNotFoundException—and a Some if the block of code succeeds. Other allCatch methods support the Try and Either approaches.
Use Try or Either when you want access to the failure reason
When you want to use the Option/Some/None approach but also want to write a method that returns error information in the failure case, there are two similar sets of error-handling classes:
Try, Success, and Failure
Either, Left, and Right
In this section I’ll demonstrate the Try/Success/Failure classes.
Try is similar to Option, but it returns exception information in a Failure object, as opposed to None, which doesn’t give you this information. The result of a computation wrapped in a Try will be one of its subclasses:
Success (which is like Some)
Failure (which is similar to None)
If the computation succeeds, a Success instance is returned and contains the desired result; if an exception was thrown, a Failure is returned and holds information about what failed.
To demonstrate this, first import the classes and create a test function:
import scala.util.{Try,Success,Failure}
def divideXByY(x: Int, y: Int): Try[Int] = Try(x/y)
This function returns a successful result as long as y is not zero. When y is zero, an ArithmeticException is thrown. However, the exception isn’t thrown out of the method—it’s caught by the Try, and Try returns a Failure object from the method. The REPL demonstrates how the Success and Failure cases work:
scala> divideXByY(1,1)
res0: scala.util.Try[Int] = Success(1)
scala> divideXByY(1,0)
res1: scala.util.Try[Int] = Failure(java.lang.ArithmeticException: / by zero)
As with Option, you access the Try result using a match expression, foreach, getOrElse, or the HOFs shown in Recipe 24.8. For instance, one way to access the information in the Failure message is with a match expression:
divideXByY(1, 1) match
case Success(i) => println(s"Success, value is: $i")
case Failure(s) => println(s"Failed, message is: $s")
As with Option, foreach works well for side effects like printing:
divideXByY(1, 1).foreach(println) // prints 1
divideXByY(1, 0).foreach(println) // no output is printed
If you don’t care about the error message and just want a result, use getOrElse:
val x = divideXByY(1, 1).getOrElse(0) // x: 1
val y = divideXByY(1, 0).getOrElse(0) // y: 0
With the Try class you can chain operations together, catching exceptions as you go. For example, the following code won’t throw an exception, regardless of what the actual values of x and y are:
// 'x' and 'y' are String values
val z = for
a <- Try(x.toInt)
b <- Try(y.toInt)
yield
a * b
val answer = z.getOrElse(0) * 2
If x and y are String values like "1" and "2", this code works as expected, with answer resulting in an Int value. If either x or y is a String that can’t be converted to an Int, z will have a Failure value:
z: scala.util.Try[Int] =
Failure(java.lang.NumberFormatException: For input string: "one")
If x or y is null, z will have this value:
z: scala.util.Try[Int] = Failure(java.lang.NumberFormatException: null)
In either Failure case, the code handles the cases gracefully.
Discussion
You can also use the Either, Left, and Right classes instead of Option or Try. This code shows two ways to write divideXByY while returning an Either type:
// 1st approach
import scala.util.control.Exception.allCatch
def divideXByY(x: Int, y: Int): Either[Throwable, Int] = allCatch.either(x/y)
// 2nd approach
import scala.util.{Try,Success,Failure}
def divideXByY(x: Int, y: Int): Either[Throwable, Int] = Try(x/y).toEither
As shown in Either’s type signature, you declare both types that can be returned by your method. By convention, the Left type contains the failure information you want to return, and the Right type contains the success value.
Either is more flexible than Try in that it’s more general; it’s really just a value that contains one of two possible types (technically known as a disjoint union). You can see from its type signature that it’s a container of two possible types, A or B:
Either[+A, +B]
When used in error handling, Left typically contains a Throwable or String that represents the error, but because Either is really just a container of two types, it can be used for anything. This code shows one way to write the makeInt method using Either, where the left value is now a String:
def makeInt(s: String): Either[String, Int] =
try
Right(s.trim.toInt)
catch
case e: Exception => Left(e.getMessage)
These examples show two possible results from calling makeInt:
makeInt("1") // Right(1)
makeInt("a") // Left(For input string: "a")
Either is right-biased, which means that Right is the default case to operate on, so methods like map work on the default case:
makeInt("1").map(_ * 2) // Right(2)
makeInt("a").map(_ * 2) // Left(For input string: "a")
Because of this, Either works well in for expressions:
val x =
for
a <- makeInt("1")
b <- makeInt("2")
yield
a + b
// result: x == Right(3)
match expressions work just like Option and Try:
makeInt(aString) match
case Right(x) => println(s"Success, x = $x")
case Left(s) => println(s"Failure, message = $s")
Using Either is Preparation for Working with FP Libraries
While reviewing this chapter, Hermann Hueck made the point that two benefits of using Either are that (a) it’s more flexible than Try, because you can control the error type, and (b) using it gets you ready to use FP libraries like Cats and ZIO, which use Either and similar approaches extensively.
Don’t use the get method
When you first come to Scala you may be tempted to use the get method to access the result:
val x = makeInt("5").get // x: 5
But don’t do this. It isn’t any better than a NullPointerException:
val x = makeInt("foo").get // java.util.NoSuchElementException: None.get
It’s a best practice to never call get on an Option. The preferred approaches are to use a match expression, foreach, getOrElse, or the HOFs shown in Recipe 24.8. As with null values, I find it best to imagine that get doesn’t exist.
Other methods
Another distinguishing feature of these types is the methods they support. For instance, Option, Try, and Either have these common methods:
Collections-like methods in flatMap, flatten, fold, foreach, and map
Methods to access the enclosed value like getOrElse and orElse
Option and Try have these additional common methods:
collect, filter
Option has these additional collection-like methods:
contains, empty, exists, forall, isDefined, isEmpty, nonEmpty, reduce, take, and takeWhile
Try has additional methods to help you recover from errors:
recover, recoverWith, and transform, which let you gracefully handle Success and Failure results
Either has these additional methods:
contains, filterOrElse, forall, and more generally, additional left/right manipulation methods like joinLeft, joinRight, left, and swap
See Also
24.7 Building Modular Systems
Problem
You’re familiar with Martin Odersky’s statement that Scala developers should use “functions for the logic, and objects for the modularity,” so you want to know how to build modules in Scala.
Solution
To understand this solution, you have to understand the concept of a module. The book Programming in Scala describes a module as “a ‘smaller program piece’ with a well defined interface and a hidden implementation.” More importantly, it adds this discussion:
Any technique that aims to facilitate this kind of modularity needs to provide a few essentials. First, there should be a module construct that provides a good separation of interface and implementation. Second, there should be a way to replace one module with another that has the same interface without changing or recompiling the modules that depend on the replaced one. Lastly, there should be a way to wire modules together. This wiring task can be thought of as configuring the system.
Regarding these three points, Scala provides these solutions:
Inheritance and mixins with traits, classes, and objects provide a good separation of interface and implementation.
Inheritance also provides a mechanism for one module to be replaced by another.
Creating objects (reifying them) from traits provides a way to wire modules together.
With a modular approach you write code like this:
trait Database { ... }
object MockDatabase extends Database { ... }
object TestDatabase extends Database { ... }
object ProductionDatabase extends Database { ... }
Using this approach you define the desired method signatures—the interface—in the base Database trait, and potentially you implement some behavior there as well. Then you create the three objects for your Dev, Test, and Production environments. The actual implementation may be a little more complicated than this, but that’s the basic idea.
Programming with modules in Scala goes like this:
Think about your problem, and create one or more base traits to model the interface for the problem.
Implement your interfaces with pure functions in more traits that extend the base trait.
Combine (compose) the traits together as needed to create other traits.
When necessary and desirable, create an object from those traits.
An example
Here’s an example of this technique. Imagine that you want to define the behaviors for a dog, let’s say an Irish setter. One way to do this is to jump right in and create an IrishSetter class:
class IrishSetter { ... }
This is generally a bad idea. A better idea is to think about the interfaces for different types of dog behaviors and then build a specific implementation of an Irish setter when you’re ready.
For example, an initial thought is that a dog is an animal:
trait Animal
More specifically, a dog is an animal with a tail, and that tail has a color:
import java.awt.Color
abstract class AnimalWithTail(tailColor: Color) extends Animal
Next, you might think, “Since a dog has a tail, what kind of behaviors can a tail have?” With that thought, you’ll sketch a trait like this:
trait DogTailServices:
def wagTail = ???
def lowerTail = ???
def raiseTail = ???
Next, because you know that you only want this trait to be mixed into classes that extend AnimalWithTail, you’ll add a self-type to the trait:
trait DogTailServices:
// implementers must be a sub-type of AnimalWithTail
this: AnimalWithTail =>
def wagTail = ???
def lowerTail = ???
def raiseTail = ???
As shown in Recipe 6.6, “Marking Traits So They Can Only Be Used by Subclasses of a Certain Type”, this peculiar looking line declares a self-type:
this: AnimalWithTail =>
This self-type means, “This trait can only be mixed into other traits, classes, and objects that extend AnimalWithTail.” Trying to mix it into other types results in a compiler error.
To keep this example simple, I’ll go ahead and implement the functions (services) in the DogTailServices trait like this:
trait DogTailServices:
this: AnimalWithTail =>
def wagTail() = println("wagging tail")
def lowerTail() = println("lowering tail")
def raiseTail() = println("raising tail")
Next, as I think more about a dog, I know that it has a mouth, so I sketch another trait like this:
trait DogMouthServices:
this: AnimalWithTail =>
def bark() = println("bark!")
def lick() = println("licking")
I could keep going on like this, but I hope you see the idea: you think about the services—the behaviors or functions—that are associated with a domain object (like a dog), and then you sketch those services as pure functions in logically organized traits.
Don’t Get Bogged Down
When it comes to designing traits, just start with your best ideas, then reorganize them as your thinking becomes more clear. As an example, the Scala collections classes have been redesigned several times as the designers understood the problems better.
Now I’ll stop defining new dog-related behaviors and will create a module as an implementation of an Irish setter with the services I’ve defined so far:
object IrishSetter extends
AnimalWithTail(Color.red),
DogTailServices,
DogMouthServices
If you start the REPL and import the necessary Color class:
scala> import java.awt.Color
import java.awt.Color
and then import all of those traits into the REPL (not shown here), you’ll see that you can call the functions/services on your IrishSetter:
scala> IrishSetter.wagTail()
wagging tail
scala> IrishSetter.bark()
bark!
While this is a relatively simple example, it shows the general process of programming with modules in Scala.
About service
The name service comes from the fact that these functions provide a series of public services that are essentially available to other programmers. Although you’re welcome to use any name, I find that this name makes sense when you imagine that these functions are implemented as a series of web service calls. For instance, when you use Twitter’s REST API to write a Twitter client, the functions made available to you in that API are considered to be a series of web services.
Discussion
The reasons for adopting a modular programming approach are described in Programming in Scala:
As a program grows in size, it becomes increasingly important to organize it in a modular way. First, being able to compile different modules that make up the system separately helps different teams work independently. In addition, being able to unplug one implementation of a module and plug in another is useful, because it allows different configurations of a system to be used in different contexts, such as unit testing on a developer’s desktop, integration testing, staging, and deployment.
Regarding the first point, in functional programming it’s nice to be able to say, “Hey, Team A, how about if you work on the Order functions and Team B works on the Pizza functions?”
Regarding the second point, a good example is that you might use a mock database in your Dev environment and then use real databases in the Test and Production environments. In this case you’ll create traits like these:
trait Database { ... }
object MockDatabase extends Database { ... }
object TestDatabase extends Database { ... }
object ProductionDatabase extends Database { ... }
A detailed variation of this example is shown in Chapter 27 of Programming in Scala.
24.8 Handling Option Values with Higher-Order Functions
Problem
Using match expressions to handle Option values works well but is somewhat verbose, and you want to use higher-order functions as a more advanced and concise way to handle Option values.
Solution
This recipe shows advanced ways to work with Option values in different circumstances, specifically how to use higher-order functions as alternatives to match expressions, which are very readable but can be verbose. Some of the examples also apply to the Try and Either types.
Sample data
The advanced HOF techniques are demonstrated in Table 24-1. The idea of this table is that rather than use the match expressions shown in the second column, you can use the more concise HOF solutions shown in the third column.
The table is sorted by the result type of each match expression, which is what you’re thinking about when trying to solve a problem, e.g., “I need to print the value in a Some, and I know this is a side effect that returns Unit, how do I do that?” In this case you look into the table knowing this and find the solution in the first row. Therefore, you can use the match expression in the second column, or the other options shown in the third column. Similarly, use the solutions shown in the second and third rows when you want to extract the value out of the Some, or use the default value; in both solutions the result has the type A.
As a setup for those solutions, here are some functions and values that will be used in the table:
// functions
def p(i: Int): Boolean = i == 1 // type: A => Boolean (a predicate)
def f(i: Int): Int = i * 2 // type: A => A
def fo(i: Int): Option[Int] = Some(i * 2) // type: A => Option[A]
// values
val option: Option[Int] = Some(1)
val none: Option[Int] = None
val default = 0
val defaultSome = Some(0)
val stringOption = Option("foo")
In that code:
p is a predicate of type Int => Boolean (or more generally, A => Boolean)
f is a function of type Int => Int (or more generally, A => A)
fo is a function that returns an Option (so fo’s type signature is A => Option[A])
Regarding the examples in Table 24-1:
Because you know what result type you want when working with an Option in a specific situation, the table is sorted by the expression return type, which is shown in the first column.
While my code uses Int values, in all but one example you can think of the expressions as using a generic type A.
Given that background, Table 24-1 shows the examples, with the relatively long match expressions and their equivalent HOFs.
Result Type | Match Expression | HOF |
---|---|---|
Unit | // use match for a side effect option match case Some(i) => println(i) case None => () | option.foreach(println) // or this: for o <- option do println(o) |
A | option match case Some(i) => i case None => default | option.getOrElse(default) option.fold(default)(x => x) |
A | // apply a function to the // option value option match case Some(i) => f(i) case None => default | option.map(f) .getOrElse(default) option.fold(default)(f) |
Option[A] | option match case Some(i) => fo(i) case None => None | option.map(f) option.flatMap(i => fo(i)) for i <- option yield f(i) |
Option[A] | option match case Some(x) => Some(x) case None => defaultSome | option.orElse(defaultSome) |
Option[A] | option match case Some(x) if p(x) => Some(x) case _ => None | option.filter(p) option.find(p) |
Option[A] | option match case Some(x) if !p(x) => Some(x) case None => None | option.filterNot(p) |
Boolean | option match case Some(x) => p(x) case None => true | option.forall(p) |
Boolean | option match case Some(x) => p(x) case None => false | option.exists(p) |
Boolean | option match case Some(a) => false case None => true | option.isEmpty |
Boolean | option match case Some(x) => true case None => false | option.isDefined option.nonEmpty |
Boolean | // the example uses 'x == 1' // because I use Option[Int] option match case Some(x) => x == 1 case None => false | option.contains(1) |
Int | option match case Some(x) => 1 case None => 0 | option.size |
Int | option match case Some(x) if p(x) => 1 case _ => 0 | option.count(p) |
Seq, List , etc. | option match case Some(x) => Seq(x) case None => Nil | option.toSeq option.toList (also toVector, toArray, toSet, etc.) |
Either[Int,Int] = Right | option match case Some(x) => Right(x) case None => Left(default) | option.toRight(default) |
Either[Int,Int] = Left | option match case Some(x) => Left(x) case None => Right(default) | option.toLeft(default) |
A or null | stringOption match case Some(x) => x case None => null | // only use this for Java APIs // that need it stringOption.orNull |
Note that I put the null example in the last row because you should never use that, unless you’re interacting with a Java API that needs it.
Discussion
Here are some examples to show how the HOFs in the third column of Table 24-1 work:
option.fold(default)(f) // 2
none.fold(default)(f) // 0
option.map(f).getOrElse(default) // 2
none.map(f).getOrElse(default) // 0
option.flatMap(i => fo(i)) // Some(2)
none.flatMap(i => fo(i)) // None
option.orElse(defaultSome) // Some(1)
none.orElse(defaultSome) // Some(0)
option.forall(p) // true
option.find(p) // Some(1)
option.filter(p) // Some(1)
option.toSeq // Seq[Int] = List(1)
none.toSeq // Seq[Int] = List()
Some examples like the fold example might be a little hard to grasp at first glance, but if you think about it, its use is consistent with sequences, where fold takes an initial seed value and a folding function. Because an Option can be thought of as a collection of zero or one element, the seed value works as the default in the case where the Option is None, and the function you supply is applied in the case where Option is a Some. That being said, I always think that being able to read code in the future—code maintenance—is extremely important, so I recommend only using code that you think you’re comfortable with.
See Also
For more examples of these techniques, watch this LambdaConf 2015 video by Marconi Lanna, which helps to round out the last few examples in the table.
Index
Symbols
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
About the Author
After graduating from Texas A&M University with a degree in Aerospace Engineering, Alvin Alexander became a practicing engineer and was put in charge of maintaining his group’s FORTRAN software applications. He quickly came to enjoy this work, and wanting to learn more about programming, he taught himself the C programming language. That was followed by Unix and network administration, Perl, Java, Python, Ruby, and more recently Scala and Kotlin. During this process he started a software consulting firm, grew it to 15 people, sold it, and moved to Alaska. After returning to the lower 48, he self-published two books, How I Sold My Business: A Personal Diary and A Survival Guide for New Consultants. Since then he has written three more books: Scala Cookbook; Functional Programming, Simplified; and Hello, Scala. He also created alvinalexander.com, which receives millions of page views every year, and started a new consulting firm, Valley Programming, just outside of Boulder, Colorado.
Colophon
The animal on the cover of Scala Cookbook is a long-beaked echidna—genus Zaglossus—of which there are three living mammal species (Z. bruijni, Z. bartoni, and Z. attenboroughi) found only on the island of New Guinea. Weighing up to 35 pounds, long-beaked echidnas are nocturnal insectivores that prefer to live in forests at higher altitudes.
The first specimen was found in 1961 on New Guinea’s Cyclops Mountains, and the entire species was thought to be extinct in that area until evidence of their activity was found in 2007. According to data collected in 1982, only 1.6 echidnas existed per square kilometer of suitable habitat across New Guinea, adding up to a total of 300,000 individuals. Since then, that number has dropped significantly due to habitat loss as large areas are exploited for farming, logging, and mining. Hunting also remains a large problem since the long-beaked echidna is considered a delicacy by locals in Papua New Guinea. The low population numbers and rapid destruction of habitat make the long-beaked echidna an endangered species, while the short-beaked variety fares slightly better in both New Guinea and Australia.
The echidna is classified as a monotreme, or a mammal that lays eggs. The mother holds one egg at a time in her body, providing it with nutrients and a place to live after it hatches. The only surviving monotremes are the four species of echidna and the platypus. All of these mammals are native to Australia and New Guinea, although there is evidence that they were once more widespread. With origins in the Jurassic era some sixty million years ago, monotremes offer evidence of mammal evolution away from reptilian forms of reproduction.
Instead of having teeth, echidnas’ tongues are covered in spikes that help draw earthworms and ants into the mouth. The entire body is also covered in fur and spikes that are used for protection; much like a hedgehog, echidnas can curl up into a spiny ball when threatened. Although very little echidna behavior has been observed in the wild, they are believed to be solitary creatures; the short-beaked echidna displays little evidence of grooming, aggression, courting, or maternal behavior. In captivity, these creatures can live up to thirty years.
The cover image is a color illustration by Karen Montgomery, based on a black and white engraving from Natural History of Animals by Vogt & Specht. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.
Table of Contents
Conventions Used in This Book
Using Code Examples
O’Reilly Online Learning
How to Contact Us
1.1. Getting Started with the Scala REPL
1.2. Loading Source Code and JAR Files into the REPL
1.3. Getting Started with the Ammonite REPL
1.4. Compiling with scalac and Running with scala
1.5. Disassembling and Decompiling Scala Code
1.6. Running JAR Files with Scala and Java
2.1. Testing String Equality
2.2. Creating Multiline Strings
2.3. Splitting Strings
2.4. Substituting Variables into Strings
2.5. Formatting String Output
2.6. Processing a String One Character at a Time
2.7. Finding Patterns in Strings
2.8. Replacing Patterns in Strings
2.9. Extracting Parts of a String That Match Patterns
2.10. Accessing a Character in a String
2.11. Creating Your Own String Interpolator
2.12. Creating Random Strings
3.1. Parsing a Number from a String
3.2. Converting Between Numeric Types (Casting)
3.3. Overriding the Default Numeric Type
3.4. Replacements for ++ and −−
3.5. Comparing Floating-Point Numbers
3.6. Handling Large Numbers
3.7. Generating Random Numbers
3.8. Formatting Numbers and Currency
3.9. Creating New Date and Time Instances
3.10. Calculating the Difference Between Two Dates
3.11. Formatting Dates
3.12. Parsing Strings into Dates
4.1. Looping over Data Structures with for
4.2. Using for Loops with Multiple Counters
4.3. Using a for Loop with Embedded if Statements (Guards)
4.4. Creating a New Collection from an Existing Collection with for/yield
4.5. Using the if Construct Like a Ternary Operator
4.6. Using a Match Expression Like a switch Statement
4.7. Matching Multiple Conditions with One Case Statement
4.8. Assigning the Result of a Match Expression to a Variable
4.9. Accessing the Value of the Default Case in a Match Expression
4.10. Using Pattern Matching in Match Expressions
4.11. Using Enums and Case Classes in match Expressions
4.12. Adding if Expressions (Guards) to Case Statements
4.13. Using a Match Expression Instead of isInstanceOf
4.14. Working with a List in a Match Expression
4.15. Matching One or More Exceptions with try/catch
4.16. Declaring a Variable Before Using It in a try/catch/finally Block
4.17. Creating Your Own Control Structures
5.1. Choosing from Domain Modeling Options
5.2. Creating a Primary Constructor
5.3. Controlling the Visibility of Constructor Fields
5.4. Defining Auxiliary Constructors for Classes
5.5. Defining a Private Primary Constructor
5.6. Providing Default Values for Constructor Parameters
5.7. Handling Constructor Parameters When Extending a Class
5.8. Calling a Superclass Constructor
5.9. Defining an equals Method (Object Equality)
5.10. Preventing Accessor and Mutator Methods from Being Generated
5.11. Overriding Default Accessors and Mutators
5.12. Assigning a Block or Function to a (lazy) Field
5.13. Setting Uninitialized var Field Types
5.14. Generating Boilerplate Code with Case Classes
5.15. Defining Auxiliary Constructors for Case Classes
6.1. Using a Trait as an Interface
6.2. Defining Abstract Fields in Traits
6.3. Using a Trait Like an Abstract Class
6.4. Using Traits as Mixins
6.5. Resolving Method Name Conflicts and Understanding super
6.6. Marking Traits So They Can Only Be Used by Subclasses of a Certain Type
6.7. Ensuring a Trait Can Only Be Added to a Type That Has a Specific Method
6.8. Limiting Which Classes Can Use a Trait by Inheritance
6.9. Working with Parameterized Traits
6.10. Using Trait Parameters
6.11. Using Traits to Create Modules
6.12. How to Create Sets of Named Values with Enums
6.13. Modeling Algebraic Data Types with Enums
7.1. Casting Objects
7.2. Passing a Class Type with the classOf Method
7.3. Creating Singletons with object
7.4. Creating Static Members with Companion Objects
7.5. Using apply Methods in Objects as Constructors
7.6. Implementing a Static Factory with apply
7.7. Reifying Traits as Objects
7.8. Implementing Pattern Matching with unapply
8.1. Controlling Method Scope (Access Modifiers)
8.2. Calling a Method on a Superclass or Trait
8.3. Using Parameter Names When Calling a Method
8.4. Setting Default Values for Method Parameters
8.5. Creating Methods That Take Variable-Argument Fields
8.6. Forcing Callers to Leave Parentheses Off Accessor Methods
8.7. Declaring That a Method Can Throw an Exception
8.8. Supporting a Fluent Style of Programming
8.9. Adding New Methods to Closed Classes with Extension Methods
9.1. Packaging with the Curly Braces Style Notation
9.2. Importing One or More Members
9.3. Renaming Members on Import
9.4. Hiding a Class During the Import Process
9.5. Importing Static Members
9.6. Using Import Statements Anywhere
9.7. Importing Givens
10.1. Using Function Literals (Anonymous Functions)
10.2. Passing Functions Around as Variables
10.3. Defining a Method That Accepts a Simple Function Parameter
10.4. Declaring More Complex Higher-Order Functions
10.5. Using Partially Applied Functions
10.6. Creating a Method That Returns a Function
10.7. Creating Partial Functions
10.8. Implementing Functional Error Handling
10.9. Real-World Example: Passing Functions Around in an Algorithm
10.10. Real-World Example: Functional Domain Modeling
11.1. Choosing a Collections Class
11.2. Understanding the Performance of Collections
11.3. Understanding Mutable Variables with Immutable Collections
11.4. Creating a Lazy View on a Collection
Collections: Common Sequence Classes
12.1. Making Vector Your Go-To Immutable Sequence
12.2. Creating and Populating a List
12.3. Adding Elements to a List
12.4. Deleting Elements from a List (or ListBuffer)
12.5. Creating a Mutable List with ListBuffer
12.6. Using LazyList, a Lazy Version of a List
12.7. Making ArrayBuffer Your Go-To Mutable Sequence
12.8. Deleting Array and ArrayBuffer Elements
12.9. Creating and Updating an Array
12.10. Creating Multidimensional Arrays
12.11. Sorting Arrays
Collections: Common Sequence Methods
13.1. Choosing a Collection Method to Solve a Problem
13.2. Looping Over a Collection with foreach
13.3. Using Iterators
13.4. Using zipWithIndex or zip to Create Loop Counters
13.5. Transforming One Collection to Another with map
13.6. Flattening a List of Lists with flatten
13.7. Using filter to Filter a Collection
13.8. Extracting a Sequence of Elements from a Collection
13.9. Splitting Sequences into Subsets
13.10. Walking Through a Collection with the reduce and fold Methods
13.11. Finding the Unique Elements in a Sequence
13.12. Merging Sequential Collections
13.13. Randomizing a Sequence
13.14. Sorting a Collection
13.15. Converting a Collection to a String with mkString and addString
14.1. Creating and Using Maps
14.2. Choosing a Map Implementation
14.3. Adding, Updating, and Removing Immutable Map Elements
14.4. Adding, Updating, and Removing Elements in Mutable Maps
14.5. Accessing Map Values (Without Exceptions)
14.6. Testing for the Existence of a Key or Value in a Map
14.7. Getting the Keys or Values from a Map
14.8. Finding the Largest (or Smallest) Key or Value in a Map
14.9. Traversing a Map
14.10. Sorting an Existing Map by Key or Value
14.11. Filtering a Map
Collections: Tuple, Range, Set, Stack, and Queue
15.1. Creating Heterogeneous Lists with Tuples
15.2. Creating Ranges
15.3. Creating a Set and Adding Elements to It
15.4. Deleting Elements from Sets
15.5. Storing Values in a Set in Sorted Order
15.6. Creating and Using a Stack
15.7. Creating and Using a Queue
16.1. Reading Text Files
16.2. Writing Text Files
16.3. Reading and Writing Binary Files
16.4. Pretending That a String Is a File
16.5. Serializing and Deserializing Objects to Files
16.6. Listing Files in a Directory
16.7. Executing External Commands
16.8. Executing External Commands and Reading Their STDOUT
16.9. Handling Both STDOUT and STDERR of Commands
16.10. Building a Pipeline of External Commands
17.1. Creating a Project Directory Structure for sbt
17.2. Building Projects with the sbt Command
17.3. Understanding build.sbt Syntax Styles
17.4. Compiling, Running, and Packaging a Scala Project
17.5. Understanding Other sbt Commands
17.6. Continuous Compiling and Testing
17.7. Managing Dependencies with sbt
17.8. Controlling Which Version of a Managed Dependency Is Used
17.9. Generating Project API Documentation
17.10. Specifying a Main Class to Run with sbt
17.11. Deploying a Single Executable JAR File
17.12. Publishing Your Library
Concurrency with Scala Futures and Akka Actors
18.1. Creating a Future
18.2. Using Callback and Transformation Methods with Futures
18.3. Writing Methods That Return Futures
18.4. Running Multiple Futures in Parallel
18.5. Creating OOP-Style Actors
18.6. Creating FP-Style Actors
18.7. Sending Messages to Actors
18.8. Creating Actors That Have Multiple States (FSM)
Play Framework and Web Services
19.1. Creating a Play Framework Project
19.2. Creating a New Play Framework Endpoint
19.3. Returning JSON from a GET Request with Play
19.4. Serializing a Scala Object to a JSON String
19.5. Deserializing JSON into a Scala Object
19.6. Using the Play JSON Library Outside of the Play Framework
19.7. Using the sttp HTTP Client
20.1. Getting Started with Spark
20.2. Reading a File into a Spark RDD
20.3. Reading a CSV File into a Spark RDD
20.4. Using Spark Like a Database with DataFrames
20.5. Reading Data Files into a Spark DataFrame
20.6. Using Spark SQL Queries Against Multiple Files
20.7. Creating a Spark Batch Application
Scala.js, GraalVM, and jpackage
21.1. Getting Started with Scala.js
21.2. Responding to Events with Scala.js
21.3. Building Single-Page Applications with Scala.js
21.4. Building Native Executables with GraalVM
21.5. Bundling Your Application with jpackage
22.1. Using Java Collections in Scala
22.2. Using Scala Collections in Java
22.3. Using Java Optional Values in Scala
22.4. Using Scala Option Values in Java
22.5. Using Scala Traits in Java
22.6. Using Java Interfaces in Scala
22.7. Adding Exception Annotations to Scala Methods
22.8. Annotating varargs Methods to Work with Java
22.9. Using @SerialVersionUID and Other Annotations
23.1. Creating a Method That Takes a Simple Generic Type
23.2. Creating Classes That Use Simple Generic Types
23.3. Making Immutable Generic Parameters Covariant
23.4. Creating a Class Whose Generic Elements Can Be Mutated
23.5. Creating a Class Whose Parameters Implement a Base Type
23.6. Using Duck Typing (Structural Types)
23.7. Creating Meaningful Type Names with Opaque Types
23.8. Using Term Inference with given and using
23.9. Simulating Dynamic Typing with Union Types
23.10. Declaring That a Value Is a Combination of Types
23.11. Controlling How Classes Can Be Compared with Multiversal Equality
23.12. Limiting Equality Comparisons with the CanEqual Typeclass
24.1. Writing Pure Functions
24.2. Using Immutable Variables and Collections
24.3. Writing Expressions (Instead of Statements)
24.4. Using Match Expressions and Pattern Matching
24.5. Eliminating null Values from Your Code
24.6. Using Scala’s Error-Handling Types (Option, Try, and Either)
24.7. Building Modular Systems
24.8. Handling Option Values with Higher-Order Functions