


Mastering Machine Learning on
AWS

Advanced machine learning in Python using SageMaker,
Apache Spark, and TensorFlow

Dr. Saket S.R. Mengle
Maximo Gurmendez

BIRMINGHAM - MUMBAI



Mastering Machine Learning on AWS
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike
Content Development Editor: Nathanya Dias
Technical Editor: Utkarsha S. Kadam
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: May 2019

Production reference: 1150519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-979-5

www.packtpub.com

http://www.packtpub.com


I would like to dedicate this book in memory of my dad. Thanks for being there for me and
supporting my dreams. 

                                                                                                             – Dr. Saket S.R. Mengle 

This book is dedicated to Mateo and Paulina, who are my constant source of inspiration, joy and
purpose. 

                                                                                                               – Maximo Gurmendez



 

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks. 

https://mapt.io/
http://www.packt.com
http://www.packt.com


Contributors

About the authors
Dr. Saket S.R. Mengle holds a PhD in text mining from Illinois Institute of Technology,
Chicago. He has worked in a variety of fields, including text classification, information
retrieval, large-scale machine learning, and linear optimization. He currently works as
senior principal data scientist at dataxu, where he is responsible for developing and
maintaining the algorithms that drive dataxu's real-time advertising platform.

I would like to thank my wife, Sharvari, who gives me strength and inspires me to be the
best version of myself every day. This book would have not been possible without her love
and support. I would also like to thank my parents, Subhash and Rashmi Mengle, who
taught me the value of hard work. I would like to express my appreciation to my advisor,
Dr. Nazli Goharian, and Dr. Ophir Frieder, who introduced me to the world of Machine
Learning.

Maximo Gurmendez holds a master's degree in computer science/AI from Northeastern
University, where he attended as a Fulbright Scholar. Since 2009, he has been working with
dataxu as data science engineering lead. He's also the founder of Montevideo Labs (a data
science and engineering consultancy). Additionally, Maximo is a computer science
professor at the University of Montevideo and is director of its data science for business
program.

I'd like to deeply thank my wife Maggie for her sustained support, encouragement and
patience, especially throughout the long work days and busy weekends that writing this
book implied. Additionally, I’d like to thank my mother, Margarita, who taught me the
importance of learning, caring and hard-work through her own example. Finally, I’d like to
express my gratitude to the dataxu team from whom I learned so much in the past ten
years.



About the reviewer
Chirag Nayyar helps organizations initiate their digital transformation using the public
cloud. He has been actively working on cloud platforms since 2013, providing consultancy
to many organizations, ranging from small and mid-size businesses to enterprises. He
holds a wide range of certifications from all major public cloud platforms. He also runs a
meet-up group and is a regular speaker at various cloud events. He has also reviewed
Hands-On Machine Learning on Google Cloud Platform and Google Cloud Platform Cookbook, by
Packt Publishing.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com


Table of Contents
Preface 1

Section 1: Machine Learning on AWS
Chapter 1: Getting Started with Machine Learning for AWS 9

How AWS empowers data scientists 9
Using AWS tools for machine learning 11

Identifying candidate problems that can be solved using machine
learning 12
Machine learning project life cycle 13

Data gathering 13
Evaluation metrics 14
Algorithm selection 14

Deploying models 15
Summary 15
Exercise 15

Section 2: Implementing Machine Learning
Algorithms at Scale on AWS
Chapter 2: Classifying Twitter Feeds with Naive Bayes 17

Classification algorithms 18
Feature types 19

Nominal features 19
Ordinal features 19
Continuous features 19

Naive Bayes classifier 20
Bayes' theorem 20

Posterior  21
Likelihood 21
Prior probability 21
Evidence 22
How the Naive Bayes algorithm works 22

Classifying text with language models 24
Collecting the tweets 24
Preparing the data 25
Building a Naive Bayes model through SageMaker notebooks 26
Naïve Bayes model on SageMaker notebooks using Apache Spark 33
Using SageMaker's BlazingText built-in ML service 36

Naive Bayes – pros and cons 40



Table of Contents

[ ii ]

Summary 41
Exercises 42

Chapter 3: Predicting House Value with Regression Algorithms 43
Predicting the price of houses 43
Understanding linear regression 44

Linear least squares estimation 46
Maximum likelihood estimation 47
Gradient descent 47

Evaluating regression models 48
Mean absolute error 48
Mean squared error 49
Root mean squared error 49
R-squared 49

Implementing linear regression through scikit-learn 50
Implementing linear regression through Apache Spark 53
Implementing linear regression through SageMaker's linear Learner 55
Understanding logistic regression 59

Logistic regression in Spark 59
Pros and cons of linear models 60
Summary 60

Chapter 4: Predicting User Behavior with Tree-Based Methods 61
Understanding decision trees 61

Recursive splitting 63
Types of decision trees 63

Cost functions 64
Gini Impurity 64
Information gain 66

Criteria to stop splitting trees 67
Understanding random forest algorithms 68
Understanding gradient boosting algorithms 69
Predicting clicks on log streams 69

Introduction to Elastic MapReduce (EMR) 70
Training with Apache Spark on EMR 73

Getting the data 74
Preparing the data 74

Categorical encoding 78
One-hot encoding 78

Training a model 81
Evaluating our model 82

Area Under ROC Curve 83
Area under the precision-recall curve 84

Training tree ensembles on EMR 86
Training gradient-boosted trees with the SageMaker services 87

Preparing the data 87
Training with SageMaker XGBoost   88



Table of Contents

[ iii ]

Applying and evaluating the model 90
Summary 93
Exercises 94

Chapter 5: Customer Segmentation Using Clustering Algorithms 95
Understanding How Clustering Algorithms Work 95

k-means clustering 97
Euclidean distance 99
Manhattan distance 99

Hierarchical clustering 99
Agglomerative clustering 99
Divisive clustering 101

Clustering with Apache Spark on EMR 102
Clustering with Spark and SageMaker on EMR 111
Understanding the purpose of the IAM role 114

Summary 118
Exercises 118

Chapter 6: Analyzing Visitor Patterns to Make Recommendations 119
Making theme park attraction recommendations through Flickr data 119
Collaborative filtering 120

Memory-based approach 120
Model-based approach 121

Matrix factorization 121
Stochastic gradient descent 123
Alternating Least Squares 123

Finding recommendations through Apache Spark's ALS 124
Data gathering and exploration 124
Training the model 127
Getting recommendations 128

Recommending attractions through SageMaker Factorization
Machines 131

Preparing the dataset for learning 131
Training the model 135
Getting recommendations 137

Summary 139
Exercises 140

Section 3: Deep Learning
Chapter 7: Implementing Deep Learning Algorithms 142

Understanding deep learning 142
Applications of deep learning 143

Self-driving cars 144
Learning to play video games using a deep learning algorithm 145

Understanding deep learning algorithms 145



Table of Contents

[ iv ]

Neural network algorithms 146
Activation function 147
Backpropagation 148

Introduction to deep neural networks 149
Understanding convolutional neural networks 150
Summary 153
Exercises 154

Chapter 8: Implementing Deep Learning with TensorFlow on AWS 155
About TensorFlow 155
TensorFlow as a general machine learning library 156
Training and serving the TensorFlow model through SageMaker 160
Creating a custom neural net with TensorFlow 165
Summary 170
Exercises 170

Chapter 9: Image Classification and Detection with SageMaker 171
Introducing Amazon SageMaker for image classification 171
Training a deep learning model using Amazon SageMaker 173
Classifying images using Amazon SageMaker 179
Summary 182
Exercises 182

Section 4: Integrating Ready-Made AWS Machine
Learning Services
Chapter 10: Working with AWS Comprehend 184

Introducing Amazon Comprehend 184
Accessing AmazonComprehend 185
Named-entity recognition using Comprehend 186
Sentiment analysis using Comprehend 189
Text classification using Comprehend 191
Summary 200
Exercise 201

Chapter 11: Using AWS Rekognition 202
Introducing Amazon Rekognition 202
Implementing object and scene detection 203
Implementing facial analysis 206

Other Rekognition services 209
Image moderation 209
Celebrity recognition 210
Face comparison 211

Summary 213
Exercise 213



Table of Contents

[ v ]

Chapter 12: Building Conversational Interfaces Using AWS Lex 214
Introducing Amazon Lex 214
Building a custom chatbot using Amazon Lex 215
Summary 220
Exercises 221

Section 5: Optimizing and Deploying Models
through AWS
Chapter 13: Creating Clusters on AWS 223

Choosing your instance types 223
On-demand versus spot instance pricing 225
Reserved pricing 227
Amazon Machine Images (AMIs) 227
Deep learning hardware 228

Distributed deep learning 228
Model versus data parallelization 229
Distributed TensorFlow 229
Distributed learning through Apache Spark 231

Data parallelization 231
Model parallelization 232
Distributed hyperparameter tuning 232
Distributed predictions at scale 232

Parallelization in SageMaker 233
Summary 233

Chapter 14: Optimizing Models in Spark and SageMaker 234
The importance of model optimization 234
Automatic hyperparameter tuning 235
Hyperparameter tuning in Apache Spark 236
Hyperparameter tuning in SageMaker 238
Summary 243
Exercises 243

Chapter 15: Tuning Clusters for Machine Learning 244
Introduction to the EMR architecture 244

Apache Hadoop 245
Apache Spark 246
Apache Hive 246
Presto 247
Apache HBase 247
Yet Another Resource Negotiator 247

Tuning EMR for different applications 247
Configuring application properties 249

Maximize Resource Allocation 249
The AWS Glue Catalog 250



Table of Contents

[ vi ]

Managing data pipelines with Glue 250
Creating tables with Glue 250
Accessing Glue tables in Spark 253

Summary 256

Chapter 16: Deploying Models Built in AWS 257
SageMaker model deployment 257
Apache Spark model deployment 262
Summary 269
Exercises 269

Appendix A: Appendix: Getting Started with AWS 270

Other Books You May Enjoy 272

Index 275



Preface
AWS is constantly driving new innovations that empower data scientists to explore a
variety of machine learning cloud services. This book is your comprehensive reference for
learning about and implementing advanced machine learning algorithms in AWS.

As you go through this book, you'll gain insights into how these algorithms can be trained,
tuned, and deployed in AWS using Apache Spark on Elastic MapReduce, SageMaker, and
TensorFlow. While you focus on algorithms such as XGBoost, linear models, Factorization
Machines, and deep networks, the book will also provide you with an overview of AWS, as
well as detailed practical applications that will help you solve real-world problems. Every
practical application includes a series of companion notebooks with all the necessary code
to run on AWS. In the next few chapters, you will learn how to use SageMaker and EMR
notebooks to perform a range of tasks, from smart analytics and predictive modeling
through to sentiment analysis. 

By the end of this book, you will be equipped with the skills you need to effectively handle
machine learning projects and implement and evaluate algorithms on AWS.

Who this book is for
This book is for data scientists, machine learning developers, deep learning enthusiasts and
AWS users who want to build advanced models and smart applications on the cloud using
AWS and its integration services. Some understanding of machine learning concepts,
Python programming and AWS will be beneficial.

What this book covers
Chapter 1, Getting Started with Machine Learning for AWS, introduces machine learning to
the readers. It explains why it is necessary for data scientists to learn about machine
learning and how AWS can help them to solve various real-world problems. We also
discuss the AWS services and tools that we will be covered in the book.



Preface

[ 2 ]

Chapter 2, Classifying Twitter Feeds with Naive Bayes, introduces the basics of the Naive
Bayes algorithm and presents a text classification problem that will be addressed by the use
of this algorithm and language models. We'll provide examples explaining how to apply
Naive Bayes using scikit-learn and Apache Spark on SageMaker's BlazingText.
Additionally, we'll explore how to use the ideas behind Bayesian reasoning in more
complex scenarios. We will use the Twitter API to stream tweets from two different
political candidates and predict who wrote them. We will use scikit-learn, Apache Spark,
SageMaker, and BlazingText.

Chapter 3, Predicting House Value with Regression Algorithms, introduces the basics of
regression algorithms and applies them to predict the price of houses given a number of
features. We'll also introduce how to use logistic regression for classification problems.
Examples in SageMaker for scikit-learn and Apache Spark will be provided. We'll be using
the Boston Housing Price dataset https://www.kaggle.com/c/boston-housing/, along
with scikit-learn, Apache Spark, and SageMaker.

Chapter 4, Predicting User Behavior with Tree-Based Methods, introduces decision trees,
random forests, and gradient boosted trees. We will explore how to use these algorithms to
predict when users will click on ads. Additionally, we will explain how to use AWS
EMR and Apache Spark to engineer models at a large scale. We will use the Adform click
prediction dataset (https://doi.org/10.7910/DVN/TADBY7, Harvard Dataverse, V2). We
will use the xgboost, Apache Spark, SageMaker, and EMR libraries.

Chapter 5, Customer Segmentation Using Clustering Algorithms, introduces the main
clustering algorithms by exploring how to apply them for customer segmentation based on
consumer patterns. Through AWS SageMaker, we will show how to run these algorithms
in skicit-learn and Apache Spark. We will use the e-commerce data from Fabien Daniel
(https://www.kaggle.com/fabiendaniel/customer-segmentation/data) and scikit-learn,
Apache Spark, and SageMaker.

Chapter 6, Analyzing Visitor Patterns to Make Recommendations, presents the problem of
finding similar users based on their navigation patterns in order to recommend custom
marketing strategies. Collaborative filtering and distance-based methods will be introduced
with examples in scikit-learn and Apache Spark on AWS SageMaker. We will use Kwan
Hui Lim's Theme Park Attraction Visits Dataset (https://sites.google.com/site/
limkwanhui/datacode), Apache Spark, and SageMaker.

https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode


Preface

[ 3 ]

Chapter 7, Implementing Deep Learning Algorithms, introduces the reader to the main
concepts behind deep learning and explains why it has become so relevant in today's AI-
powered products. The aim of this chapter is to not discuss the theoretical details of deep
learning, but to explain the algorithms with examples and provide a high-level conceptual
understanding of deep learning algorithms. This will give the readers a platform to
understand what they are implementing in the next chapters.

Chapter 8, Implementing Deep Learning with TensorFlow on AWS, goes through a series of
practical image-recognition problems and explains how to address them with TensorFlow
on AWS. TensorFlow is a very popular deep learning framework that can be used to train
deep neural networks. This chapter will explain how TensorFlow can be installed by
readers and used to train deep learning models using toy datasets. In this chapter, we'll use
the MNIST handwritten digits dataset (http://yann.lecun.com/exdb/mnist/), along
with TensorFlow and SageMaker.

Chapter 9, Image Classification and Detection with SageMaker, revisits the image classification
problem we dealt with in the previous chapters, but using SageMaker's image classification
algorithm and object detection algorithm. We'll use the following datasets:

Caltech256 (http://www.vision.caltech.edu/Image_Datasets/Caltech256/)

We'll also use AWS Sagemaker.

Chapter 10, Working with AWS Comprehend, explains the functionality of an AWS tool
called Comprehend, which is an NLP tool that performs various useful tasks.

Chapter 11, Using AWS Rekognition, explains how to use Rekognition, which is an image
recognition tool that uses deep learning. The readers will learn an easy way of applying
image recognition in their applications.

Chapter 12, Building Conversational Interfaces Using AWS Lex, explains that AWS Lex is a
tool that allows programmers to build conversational interfaces. This chapter introduces
the readers to topics such as natural language understanding using deep learning.

http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/


Preface

[ 4 ]

Chapter 13, Creating Clusters on AWS, discusses that one of the key problems in deep
learning is understanding how to scale and parallelize learning on multiple machines. In
this chapter, we'll examine different ways to create clusters of learners. In particular, we'll
focus on how to parallelize deep learning pipelines through distributed TensorFlow and
Apache Spark.

Chapter 14, Optimizing Models in Spark and SageMaker, explains that the models that are
trained on AWS can be further optimized to run smoothly in production environments. In
this section, we will discuss various tricks that our readers can use to improve the
performance of their algorithms.

Chapter 15, Tuning Clusters for Machine Learning, explains that many data scientists and
machine learning practitioners face the problem of scale when attempting to run machine
learning data pipelines at scale. In this chapter, we focus primarily on EMR, which is a very
powerful tool for running very large machine learning jobs. There are many ways to
configure EMR, and not every setup works for every scenario. We will go through the main
configurations of EMR and explain how each configuration works for different objectives.
Additionally, we'll present other ways to run big data pipelines through AWS.

Chapter 16, Deploying Models Built on AWS, discusses deployment. At this point, readers
will have their models built on AWS and would like to ship them to production. We
understand that there are a variety of different contexts in which models should be
deployed. In some cases, it's as easy as generating a CSV of actions that would be fed to
some system. Often, we just need to deploy a web service that's capable of making
predictions. However, there are many times in which we need to deploy these models to
complex, low-latency, or edge systems. We will go through the different ways you can
deploy machine learning models to production.

To get the most out of this book
This book covers a number of different frameworks, such as Spark and Tensorflow.
However it is not meant to be a comprehensive guide for each. Instead we focus on the way
AWS empowers practical machine learning through the use of the different frameworks.
We encourage the readers to refer to other books with framework-specific content when
necessary. 



Preface

[ 5 ]

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-Machine-Learning-on-AWS. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781789349795_ColorImages

.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The following screenshot shows the first few lines of our df dataframe."

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/Mastering-Machine-Learning-on-AWS
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789349795_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789349795_ColorImages.pdf


Preface

[ 6 ]

A block of code is set as follows:

vectorizer = CountVectorizer(input=dem_text + gop_text,
                             stop_words=stop_words,
                             max_features=1200)

Any command-line input or output is written as follows:

wget -O /tmp/adform.click.2017.01.json.gz
https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistent
Id=doi:10.7910/DVN/TADBY7/JCI3VG

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You can also train a custom NER algorithm in AWS Comprehend
using the Customization | Custom entity recognition option in the left menu."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packt.com/submit-errata


Preface

[ 7 ]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com/
http://www.packt.com/


1
Section 1: Machine Learning on

AWS
The objective of this section is to introduce readers to machine learning in the context of
AWS cloud computing and services. We expect our audience to have some basic
knowledge of machine learning. However, we'll describe the nature of a typical successful
machine learning project and the challenges often faced. We will provide an overview of
the different AWS services and provide examples of typical machine learning pipelines,
along with the key aspects to consider in order to create smart AI-powered products.

This section contains the following chapter:

Chapter 1, Getting Started with Machine Learning for AWS



1
Getting Started with Machine

Learning for AWS
In this book, we focus on all three aspects of data science by explaining machine
learning (ML) algorithms in business applications, demonstrating how they can be
implemented in a scalable environment and how to evaluate models and present
evaluation metrics as business Key Performance Indicators (KPI). This book shows how
Amazon Web Services (AWS) Machine Learning tools can be effectively used on large
datasets. We present various scenarios where mastering machine learning algorithms in
AWS helps data scientists to perform their jobs more effectively.

Let's take a look at the topics we will cover in this chapter:

How AWS empowers data scientists
Identifying candidate problems that can be solved using machine learning
Machine Learning project life cycle
Deploying models

How AWS empowers data scientists
The number of digital data records that are stored on the internet has a lot in the last
decade. Due to the drop in storage costs, and new sources of digital data, it is predicted that
the amount of digital data available in 2025 will be 163 zettabytes (1,630,000,000,000
terabytes). Moreover, the amount of data that is generated every day is increasing at an
alarming pace, with almost 90% of current data only being generated during the last two
years. With more than 3.5 billion people with access to the internet, this data is not only
generated by professionals and large companies, but by each of the 3.5 billion internet
users.



Getting Started with Machine Learning for AWS Chapter 1

[ 10 ]

Moreover, since companies understand the importance of data, they store all of their
transactional data in the hope of analyzing it and uncovering interesting trends that could
help their business make important decisions. Financial investors also crave storing and
understanding every bit of information they can get about companies and train
their quantitative analysts or quants to make investment decisions.

It is up to the data scientists of the world to analyze this data and find gems of information
from it. In the last decade, the data science team has become one of the most important
teams in every organization. When data science teams were first created, most of the data
would fit in Microsoft Excel sheets and the task was to find statistical trends in the data and
provide actionable insights to business teams. However, as the amount of data has
increased and machine learning algorithms have become more sophisticated and potent,
the scope of data science teams has expanded.

In the following diagram, we can see the three basic skills that a data scientist needs:

The job description for a data scientists from company to company. However, in general, a
data scientist needs the following three crucial skills:

Machine learning: Machine learning algorithms provide tools to analyze and
learn from a large amount of data and provide predictions or recommendations
from that data. It is an important tool for analyzing structured (databases) and
unstructured (text documents) data and inferring actionable insights from them.
A data scientist should be an expert in a plethora of machine learning algorithms
and should understand what algorithm should be applied in a given situation.
As data scientists have access to a large library of algorithms that can solve a
given problem, they should know which algorithms should be used in each
situation.



Getting Started with Machine Learning for AWS Chapter 1

[ 11 ]

Computer programming: A data scientist should be an adept programmer who
can write code to access various machine learning and statistical libraries. There
are a lot of programming languages such as Scala, Python, and R that provide a
number of libraries that let us apply machine learning algorithms on a dataset.
Hence, knowledge of such tools helps a data scientist to perform complex tasks
in a feasible time. This is crucial in a business environment.
Communication: Along with discovering trends in the data and building
complex machine learning models, a data scientist is also tasked with explaining
these findings to business teams. Hence, a data scientist must not only possess
good communication skills but also good analytics and visualization skills. This
will help them present complex data models in a way that is easily understood
by people not familiar with machine learning. This also helps data scientists to
convey their findings to business teams and provide them with guidance on
expected outcomes.

Using AWS tools for machine learning
Machine learning research spans decades and has deep roots in mathematics and statistics.
ML algorithms can be used to solve problems in many business applications. In application
areas such as advertising, predictive algorithms are used to predict where to discover the
further customers based on trends from previous purchasers. Regression algorithms are
used to predict stock prices based on prior trends. Services such as Netflix use
recommendation algorithms to study the history of a user and enhance the discoverability
of new shows that they may be interested in. Artificial Intelligence (AI) applications such
as self-driving cars rely heavily on image recognition algorithms that utilize deep learning
to effectively discover and label objects on the road. It is important for a data scientist to
understand the nuances of different machine learning algorithms and understand where
they should be applied. Using pre-existing libraries helps a data scientist to explore various
algorithms for a given application area and evaluate them. AWS offers a large number of
libraries that can be used to perform machine learning tasks, as explained in the Machine
Learning algorithms and deep learning algorithms parts of this book.



Getting Started with Machine Learning for AWS Chapter 1

[ 12 ]

Identifying candidate problems that can be
solved using machine learning
It is also important for data scientists to be able to understand the scale of data that they are
working with. There might be tasks related to medical research that span thousands of
patients with hundreds of features that can be processed on a single node device. However,
tasks such as advertising, where companies collect several petabytes of data on customers
based on every online advertisement that is served to the user, may require several
thousand machines to compute and train machine learning algorithms. Deep learning
algorithms are GPU-intensive and require a different type of machine than other machine
learning algorithms. In this book, for each algorithm, we supply a description of how it is
implemented simply using Python libraries and then how it can be scaled on large AWS
clusters using technologies such as Spark and AWS SageMaker. We also discuss how
TensorFlow is used for deep learning applications.

It is crucial to understand the customer of their machine learning-related tasks. Although it
is challenging for data scientists to find which algorithm works for a specific application
area, it is also important to gather evidence on how that algorithm enhances the application
area and present it to the product-owners. Hence, we also discuss how to evaluate each
algorithm and visualize the results where necessary. AWS offers a large array of tools for
evaluating machine learning algorithms and presenting the results.

Finally, a data scientist also needs to be able to make decisions on what types of machines
are best fitted for their needs on AWS. Once the algorithm is implemented, there are
important considerations on how it can be deployed on large clusters in the most
economical way. AWS offers more than 25 hardware alternatives, called instance types,
which can be selected. We will discuss case studies on how an application is deployed on
production clusters and various issues a data scientist can face during this process.



Getting Started with Machine Learning for AWS Chapter 1

[ 13 ]

Machine learning project life cycle
A typical machine learning project life cycle starts by understanding the problem at hand.
Typically, someone in the organization (possibly a data scientist or business stakeholder)
feels that some part of their business can be improved by the use of machine learning. For
example, a music streaming company could conjecture that providing recommendations of
songs similar to those played by a user would improve user engagement with the platform.
Once we understand the business context and possible business actions to take, a data
science team will need to consider several aspects during the project life cycle.

The following diagram describes various steps in a machine learning project life cycle:

Data gathering
We need to obtain data and organize it appropriately for the current problem (in our
example, this could mean building a dataset linking users to songs they've listened to in the
past). Depending on the size of the data, we might pick different technologies for storing
the data. For example, it might be fine to train on a local machine using scikit-learn if
we're working through a few million records. However, if the data doesn't fit on a single
computer, then we must consider AWS solutions such as S3 for storage and Apache Spark,
or SageMaker's built-in algorithms for model building.



Getting Started with Machine Learning for AWS Chapter 1

[ 14 ]

Evaluation metrics
Before applying a machine learning algorithm, we need to consider how to assess the
effectiveness of our strategy. In some cases, we can use part of our data to simulate the
performance of the algorithm. However, on other occasions, the only viable way to evaluate
the application of an algorithm is by doing some controlled testing (A/B testing) and
determining whether the use cases in which the algorithm was applied resulted in a better
outcome. In our music streaming example, this could mean selecting a panel of users and
recommending songs to them using the new algorithm. We can run statistical tests to
determine whether these users effectively stayed longer on the platform. Evaluation metrics
should be determined based on the business KPI and should show significant improvement
over existing processes.

Algorithm selection
We need to iterate on the complex problem of the creating the algorithm. This entails
exploring the data to gain a deep understanding of the underlying variables. Once we have
an idea of the kind of algorithm we want to apply, we'll need to further prepare the data,
possibly combining it with other data sources (for example, census data). In our example,
this could mean creating a song similarity matrix. Once we have the data, we can train a
model (capable or making predictions) and test that model against holdout data to see how
it performs. There are many considerations in this process that make it complex:

How the data is encoded (for example, how the song matrix is constructed)
What algorithm is used (example, collaborative filtering or content-based
filtering)
What parameter values your model takes (for example, values for smoothing
constants or prior distributions)

Our goal in this book is to make this step easier for you by presenting iterations a data
scientist would undergo in the task of creating a successful model using real-world
applications as examples.



Getting Started with Machine Learning for AWS Chapter 1

[ 15 ]

Deploying models
Once we generate a model that abides by our initial KPI requirements, we need to deploy it
in the production environment. This could be something as simple as creating a list of
neighborhoods and political issues to address on each neighborhood or something as
complex as shipping the model to thousands of machines to make real-time decisions about
which advertisements to buy for a particular marketing campaign. Once deployed to
production, it is important to keep on monitoring those KPIs to make sure we're still
solving the problem we aimed for initially. Sometimes, the model could have negative
effects due to the change in trends and another model needs to be trained. For instance,
listeners over time may lose interest in continually hearing the same music style and the
process must start all over again.

Summary
In this chapter, we first learned how AWS empowers machine learning practitioners and
data scientists. We then looked at the various AWS tools that are available for machine
learning, after which we learned about the machine learning life cycle. And finally, we
learned how to deploy models.

In the next chapter, we will discuss various popular machine learning algorithms and see
how to implement them at scale on AWS. Before continuing to the next chapter we advice
readers who are new to AWS to go through the appendix, getting started with AWS, which
covers the process of creating a new AWS account.

Exercise
Define three applications you can identify on your mobile phone that implement1.
machine learning. For each of the application, define what the project life cycle is
based on the steps presented in this chapter.
Search for three data scientist job positions and carefully review the job2.
requirements. For each of the requirements, classify whether the skill falls under
communication, machine learning, or computer programming. 
As a data scientist, it is important to be aware of the applications around you that3.
are generating data that can be used for machine learning. Based on the
electronic devices you use, make a list of data that you generate every day.
Define three machine learning applications that can use the data that you
generate.



2
Section 2: Implementing

Machine Learning Algorithms at
Scale on AWS

In this section, we will discuss various popular machine learning algorithms and how they
work. We will provide examples of situations in which they work well and when they
should be avoided. The reader will learn about different machine learning algorithms and
will be able to work with simple examples in scikit-learn and scale them into Apache Spark
in the context of AWS. After reading the section, we expect readers to have a working
knowledge of machine learning algorithms and how to implement them at scale in AWS.

This section contains the following chapters:

Chapter 2, Classifying Twitter Feeds with Naive Bayes
Chapter 3, Predicting House Value with Regression Algorithms
Chapter 4, Predicting User Behavior with Tree-Based Methods
Chapter 5, Customer Segmentation Using Clustering Algorithms
Chapter 6, Analyzing Visitor Patterns to Make Recommendations



2
Classifying Twitter Feeds with

Naive Bayes
Machine learning (ML) plays a major part in analyzing large datasets and extracting
actionable insights from the data. ML algorithms perform tasks such as predicting
outcomes, clustering data to extract trends, and building recommendation engines.
Knowledge of ML algorithms helps data scientists to understand the nature of data they are
dealing with and plan what algorithms should be applied to achieve desired outcomes
from the data. Although multiple algorithms are available to perform any tasks, it is
important for data scientists to know the pros and drawbacks of different ML algorithms.
The decision to apply ML algorithms can be based on various factors, such as the size of the
dataset, the budget for the clusters used for training and deployment of ML models, and
the cost of error rates. Although AWS offers a large number of options in terms of selecting
and deploying ML models, a data scientist has to knowledgeable in terms of what
algorithms should be used in different situations.

In this part of the book, we present various popular ML algorithms and examples of
applications where they can be applied effectively. We will explain the advantages and
disadvantages of each algorithm and situations when these algorithms should be selected
in AWS. As this book is written with data science students and professionals in mind, we
will present a simple example of how the algorithms can be implemented using simple
Python libraries, and then deployed on AWS clusters using Spark and AWS SageMaker for
larger datasets. These chapters should help data scientists to get familiar with the popular
ML algorithms and help them understand the nuances of implementing these algorithms in
big data environments on AWS clusters.

Chapter 2, Classifying Twitter Feeds with Naive Bayes, Chapter 3, Predicting House Value with
Regression Algorithms, Chapter 4, Predicting User Behavior with Tree-Based Methods, and
Chapter 5, Customer Segmentation Using Clustering Algorithms present four classification
algorithms that can be used to predict an outcome based on a feature set. Chapter
6, Analyzing Visitor Patterns to Make Recommendations, explains clustering algorithms and
demonstrates how they can be used for applications such as customer segmentation.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 18 ]

Chapter 7, Implementing Deep Learning Algorithms, presents a recommendation algorithm
that can be used to recommend new items to users based on their purchase history.

This chapter will introduce the basics of the Naive Bayes algorithm and present a text
classification problem that will be addressed by the use of this algorithm and language
models. We'll provide examples on how to apply it on scikit-learn, Apache Spark, and
on SageMaker's BlazingText. Additionally, we'll explore how to further use the ideas
behind Bayesian reasoning in more complex scenarios.

In this chapter, we will cover the following topics:

Classification algorithms
Naive Bayes classifier
Classifying text with language models
Naive Bayes — pros and cons

Classification algorithms
One of the popular subsets of ML algorithms are the classification algorithms. They are also
referred to as supervised learning algorithms. For this approach, we assume that we have a
rich dataset of features and events associated with those features. The task of the algorithm
is to predict an event given a set of features. The event is referred to as a class variable. For
example, consider the following dataset of features related to weather and if it snowed on
that day:

Table 1: Sample dataset

Temperature (in °F) Sky condition Wind Speed (in MPH) Snowfall
Less than 20 Sunny 30 False
20-32 Sunny 6 False
32-70 Cloudy 20 False
70 and above Cloudy 0 False
20-32 Cloudy 10 True
32-70 Sunny 15 False
Less than 20 Cloudy 8 True
32-70 Sunny 7 False
20-32 Cloudy 11 False
Less than 20 Sunny 13 True

In the dataset, a weather station has information about the temperature, the sky condition,
and the wind speed for the day. They also have records of when they received snowfall.
The classification problem they are working on is to predict snowfall based on features
such as temperature, sky condition, and wind speed.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 19 ]

Let's discuss some terminology that is used in ML datasets. For the example table, if the
classification problem is to predict snowfall, then the snowfall feature is referred to as a
class or target variable. Non-class values are referred to as attribute or feature variables.
Each row in this dataset is referred to as an observation.

Feature types
There are three types of features that are available in a classification dataset. The reason
why data scientists need to be able to differentiate between different features is that not
every ML algorithm supports each type of feature. So, if the type of feature set does not
match the desired algorithm, then the features need to be preprocessed to transform the
feature that the classification algorithm can process.

Nominal features
Nominal or categorical features are features that can have a finite set of categorical values,
and these values cannot be ordered in any specific order. In the example dataset, the sky
condition feature is a nominal feature. In the table, the value of the nominal feature is either
Sunny or Cloudy. Other examples of nominal features are gender and color. Nominal
features can be converted into continuous variables by using techniques such as one-hot
encoding.

Ordinal features
Ordinal features, similar to nominal features, also have a finite set of categorical values.
However, unlike nominal features, these categorical values can be put into a specific order.
In the previous example, the Temperature feature is an ordinal feature. The labels in this
category can be ordered from coldest to warmest. Ordinal features can be converted into
continuous variables by interpolating the range values to a defined scale. 

Continuous features
Continuous features can have infinite possible values. Unlike nominal and ordinal features,
which can only have a discrete set of values, continuous variables are numerical variables,
and are not compatible with some ML algorithms. However, continuous features can be
converted into ordinal features using a technique called discretization.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 20 ]

Although we will not discuss techniques to transform features from one form to another
here, we will demonstrate how it can be done in our example sections. We have selected
example datasets in this book where feature transformation is required. You should not
only learn about these various transformation techniques from this book, but also observe
how a data scientist analyzes a dataset and uses specific feature transformation techniques
based on the application. We have also provided examples to apply these techniques at
scale in Python and AWS SageMaker.

Naive Bayes classifier
Naïve Bayes classifier is a ML algorithm based on Bayes' theorem. The algorithm is
comparable to how a belief system evolves. Bayes' theorem was initially introduced by an
English mathematician, Thomas Bayes, in 1776. This algorithm has various applications,
and has been used for many historic tasks for more than two centuries. One of the most
famous applications of this algorithm was by Alan Turing during the Second World War,
where he used Bayes' theorem to decrypt the German Enigma code. Bayes' theorem has
also found an important place in ML for algorithms such as Bayesian Net and Naive Bayes
algorithm. Naïve Bayes algorithm is very popular for ML due to its low complexity and
transparency in why it makes the prediction. 

Bayes' theorem
In this section, we will first introduce Bayes' theorem and demonstrate how it is applied in
ML.

Bayes' theorem calculates the probability of an event given a condition, such that we have
prior knowledge about the event, the condition, and the probability of the condition when
the event occurs. In our snow prediction example, the event is when snow occurs. A
condition would be when the temperature is between 20°F and 32°F. And, based on the
data, we can calculate the likelihood of temperature being 20°F and 32°F when it snows.
Using this data, we can predict the probability of snow given the temperature being
between 20°F and 32°F.

Assume that we have a class variable C and a condition variable x. Bayes' theorem is
presented in formula 1. We also present a given simple way to remember different
components of the algorithm in formula 2.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 21 ]

Formula 1

   

Formula 2 

   

There are four terms that you need to remember from this formula.

Posterior  
The posterior probability is the chance of an event occurring given the existence of feature
variable x.

Likelihood 
Likelihood is the probability of a condition occurring for a given event. In our example,
likelihood means what the probability is of the temperature being between 20°F to 32°F
when it snows. Based on the data in the dataset, there is a 66.66% probability that the
temperature is 20°F-30°F when it snows. Training data can be used to calculate the
probability of each discrete value in the feature set.

Prior probability 
The prior probability is the overall probability of the event in the dataset. In our example,
this would be the overall probability that it snows in the dataset. Prior probability is
important in cases where the datasets are unbalanced, that is, the number of instances of
one class variable in the dataset is significantly higher than the other. This leads to bias in
the likelihood variable. Prior probabilities are used to renormalize these probabilities by
taking the bias in the dataset into account. For example, in our dataset, the prior probability
of a snow event is 30% and the prior probability of it not snowing is 70%. The probability of
cloudy conditions when it snows is 66%, while the likelihood of cloudy conditions when it
does not snow is 42.8%.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 22 ]

However, by taking the prior probabilities into account, although cloudy conditions are
more likely when it snows than when it does not, after multiplying the priors, the posterior
probability of snow when it is cloudy is 19% and the probability of not snowing when it is
cloudy is 30%. By multiplying the prior probabilities to the likelihood events, we inform
our posterior probability that there is a higher probability of it not snowing than snowing.

Evidence 
The evidence variable is the probability of a condition in the dataset. In our example, the
probability of temperature being 70°F or above is only 10%. Rare events have low evidence
probability. Evidence probabilities boost posterior probabilities of rare events. For the
purpose of the Naïve Bayes classifier, we do not need to consider the evidence variable,
since it is not dependent on the class variable.

So, Bayes' theorem is used to calculate the probability of an event given a single condition.
However, when we train ML algorithms, we use one or more features to predict the
probability of an event. In the next section, we will explain Naïve Bayes algorithm and how
it utilizes posterior probabilities of multiple features variables.

How the Naive Bayes algorithm works
The Naive Bayes algorithm uses Bayes' theorem to calculate the posterior probability of
every condition in the dataset and uses these probabilities to calculate the conditional
probability of an event given a set of conditions. The Naive Bayes algorithm assumes that
each conditional feature is independent of each other. This is an important assumption that
helps simplify how the conditional probability is calculated. The independence assumption
is the reason why the algorithm gets the name, Naive Bayes. 

In this section, instead of considering one x feature variable, we consider a vector of
features, , where n is the number of feature variables used to calculate
the class probability. We represent the conditional probability of a class variable for
the x vector in formula 3:

Formula 3

 



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 23 ]

As we have assumed that each feature variable is independent of each other, the
conditional probability of a class variable can be calculated as follows:

Formula 4

    

Based on posterior probability calculations shown in the previous sections, this formula can
be rewritten as follows:

Formula 5

  

Formula 5 explains how a probability of event C is calculated based on the 
 feature variables. An interesting thing to note in this formula is how easy

it is to calculate each element from the dataset. Also, since the evidence probability from
Bayes' theorem is not dependent on the class variable, it is not used in the Naive Bayes
formula.

The Naive Bayes algorithm only requires one pass over the dataset during the training
phase to calculate the probability of the value of a feature for each event. During the 
prediction phase, we calculate the probability of each event given the instance of the
features and predict the event with the highest probability. Formula 6 shows how the
prediction of a Naïve Bayes classifier is calculated when k events are possible. Argmax in
the formula means that the event with maximum probability is selected as the prediction:

 Formula 6

Naïve Bayes classifier is a multiclass classifier that can be used to train on a dataset where
two or more class variables need to be predicted. In the next chapters, we will present some
examples of binary classifiers that only work with two class variables needs to be predicted.
However, we will show you the methodologies of applying binary classifiers to multiclass
problems.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 24 ]

Classifying text with language models
Text classification is an application of classification algorithms. However, the text is a
combination of words in a specific order. Hence, you can observe that a text document with
a class variable is not similar to the dataset that we presented in table 1, in the Classification
algorithms section. 

A text dataset can be represented as shown in table 2.

Table 2: Example of a Twitter dataset

Tweet Account
The simplest way to protect Americans from gun violence is to actually talk about
common-sense gun laws. Democrats

This cannot be who we are as a country. We need to find out what happened and ensure
it never happens again (https://t.co/RiY7sjMfJK)) Democrats

Over the weekend, President Trump visited Arlington National Cemetery to honor fallen
soldiers. Republicans

This President has made it clear that he will secure this country—@SecNielsen. Republicans

For this chapter, we have built a dataset based on tweets from two different accounts. We
also have provided code in the following sections so that you can create your own datasets
to try this example. Our purpose is to build a smart application that is capable of predicting
the source of a tweet just by reading the tweet text. We will collect several tweets by the
United States Republican Party (@GOP) and the Democratic Party (@TheDemocrats) to build
a model that can predict which party wrote a given tweet. In order to do this, we will
randomly select some tweets from each party and submit them through the model to check
whether the prediction actually matched reality.

Collecting the tweets
We will start by using the Twython library to access the Twitter API and collect a series of
tweets, labeling them with the originating political party.

The details of the implementation can be found in our GitHub repository in the following
Jupyter Notebook: 

 chapter2/collect_tweets.ipynb 

https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK
https://t.co/RiY7sjMfJK


Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 25 ]

We need to invoke the following method in the Twython library to save tweets from @GOP
and @TheDemocrats onto some text files, gop.txt and dems.txt respectively:

twitter.get_user_timeline(screen_name='GOP', tweet_mode='extended',
count=500)

Each file contains 200 tweets. The following are some excerpts from the dems.txt file:

This cannot be who we are as a country. We need to find out
what happened and ensure it never happens again.

RT @AFLCIO: Scott Walker. Forever a national disgrace.

Preparing the data
Now that we have the source data in text files, we need to convert it to a format that can be
used as an input for a ML library. Most general-purpose ML packages, such as scikit-
learn and Apache Spark, only accept a matrix of numbers as input. Hence, feature
transformation is required for a text dataset. A common approach is to use language
models such as bag of words (BoW). In this example, we build a BoW for each tweet and
construct a matrix in which each row represents a tweet and each column signals the
presence of a particular word. We also have a column for the label that can distinguish
tweets from Republicans (1) or Democrats (0), as we can see in the following table:

Table 3: Converting text dataset to structured dataset

Immigration Medicaid Terrorism Class
Tweet 1 0 1 0 0
Tweet 2 1 0 1 1
Tweet 3 0 0 1 0

Table 2 represents the matrix that can be derived from tweets. However, there are many
points to remember when generating such a matrix. Due to the number of terms in the
language lexicon, the number of columns in the matrix can be very high. This poses a
problem in ML known as the curse of dimensionality (see section X). There are several
ways to tackle this problem; however, as our example is fairly small in terms of data, we
will only briefly discuss methods to reduce the number of columns.

Stopwords: Certain common words might add no value to our task (for example,
the words the, for, or as). We call these words stopwords, and we shall remove
these words from dems.txt and gop.txt.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 26 ]

Stemming: There may be many variants of a word that are used in the text. For
example, argue, argued, argues, and arguing all stem from the word argue.
Techniques such as stemming and lemmatization can be used to find the stem of
the word and replace variants of that word with the stem.
Tokenization: Tokenization can be used to combine various words into phrases
so that the number of features can be reduced. For example, tea party has a
totally different meaning, politically, than the two words alone. We won't
consider this for our simple example, but tokenization techniques help in finding
such phrases.

Another issue to consider is that words appearing more than once in a tweet have equal
importance on a training row. There are ways to utilize this information by using
multinomial or term frequency-inverse document frequency (TFIDF) models. Since tweets
are relatively short text, we will not consider this aspect in our implementation.

The table 2 matrix describes the words you would find for each class (that is each political
party). However, when we want to predict the source of the tweet, the inverse problem is
posed. Given a specific bag of words, we're interested in assessing how likely it is that the
terms are used by one party or another. In other words, we know the probability of a bag of
words given a particular party, and we are interested in the reverse: the probability of a
tweet being written by a party given a bag of words. This is where the Naive Bayes
algorithm is applied.

Building a Naive Bayes model through
SageMaker notebooks
Let's get started with SageMaker notebooks. This tool will help us run the code that will
train our model. SageMaker, among other things, allows us to create notebook instances
that host Jupyter Notebooks. Jupyter is a web UI that allows a data scientist or programmer
to code interactively by creating paragraphs of code that are executed on demand. It works
as an IDE, but with the additional ability to render the output of the code in visually
relevant forms (for example, charts, tables, and markdown), and also supports writing
paragraphs in different languages within the same notebook. We will use notebooks
extensively throughout this book, and we recommend its use as a way to share and present
data science findings. It allows users to achieve reproducible research, as the code
necessary for a particular research objective can be validated and reproduced by re-running
the code paragraphs in the notebook.

You can learn more on SageMaker's AWS console page at https://console.aws.amazon.
com/sagemaker/home?region=us-east-1#/dashboard.

https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/dashboard


Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 27 ]

Let's look at what Sagemaker's AWS console page looks in the following screenshot:

Click on Add repository, choose your authentication mechanism and add the repository
found at https://github.com/mg-um/mastering-ml-on-aws: 

https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws
https://github.com/mg-um/mastering-ml-on-aws


Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 28 ]

Before creating the notebook instance, it is possible that you would want to attach a Git
repository so that the notebooks available with this book are attached to the notebook, and
so are made available immediately as you will see later:



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 29 ]

We can now proceed to launch a notebook instance. There are several options to configure
the hardware, networking, and security of the server that will host the notebook. However,
we will not go into much detail for now, and will accept the defaults. The AWS
documentation is an excellent resource if you want to limit the access or power-up your
machine.

Since we attached the Git repository, once you open Jupyter, you should see the notebooks
we created for this book, and you can re-run them, modify them, or improve them:

In this section, we focus on the train_scikit Python notebook and go over code snippets
to explain how we can build and test a model for out tweet classification problem. We
encourage you to run all the paragraphs of this notebook to get an idea of the purpose of
this notebook. 

The first thing we will do is load the stopwords and the two sets of tweets into variables:

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from scipy import sparse

SRC_PATH = '/home/ec2-user/SageMaker/mastering-ml-on-aws/chapter2/'
stop_words = [word.strip() for word in open(SRC_PATH +
'stop_words.txt').readlines()]
with open(SRC_PATH + 'dem.txt', 'r') as file:



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 30 ]

   dem_text = [line.strip('\n') for line in file]
with open(SRC_PATH + 'gop.txt', 'r') as file:
   gop_text = [line.strip('\n') for line in file]

We will then proceed to use the utilities in scikit-learn to construct our matrix. In order
to do that, we will use a CountVectorizer class, which is a class that knows how to
allocate the different words into columns while at the same time filtering the stopwords.
We will consider both sets of tweets; for our example, we'll just use the first 1200 words:

vectorizer = CountVectorizer(input=dem_text + gop_text,
                             stop_words=stop_words,
                             max_features=1200)

Through vectorizer we can now construct two matrices, one for republican party tweets
and one for democratic party tweets:

dem_bow = vectorizer.fit_transform(dem_text)
gop_bow = vectorizer.fit_transform(gop_text)

These two bag-of-words matrices (dem_bow and gop_bow) are represented in a sparse data
structure to minimize memory usage, but can be examined by converting them to arrays:

>>> gop_bow.toarray()

array([[0, 0, 1, ..., 0, 1, 0],
      [0, 0, 0, ..., 0, 0, 1],
      [0, 1, 0, ..., 0, 0, 0],
      ...,
      [0, 0, 0, ..., 0, 0, 0],
      [0, 1, 0, ..., 0, 0, 0],
      [0, 0, 0, ..., 0, 1, 0]], dtype=int64)

In order to train our model, we need to provide two arrays. The BoWs matrix (for both
parties), which we will call x, and the labels (class variables) for each of the tweets. To
construct this, we will vertically stack both matrices (for each party):

x = sparse.vstack((dem_bow, gop_bow))

To construct the labels vector, we will just assemble a vector with ones for Democrat
positions and zeros for Republican positions:

ones = np.ones(200)
zeros = np.zeros(200)
y = np.hstack((ones, zeros))



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 31 ]

Before we train our models, we will split the tweets (rows on our x matrix) randomly, so
that some are used to build a model and others are used to check whether the model
predicts the correct political party (label):

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25,
random_state=42)

Now that we have our training and testing datasets, we proceed to train our model using
Naive Bayes (a Bernoulli Naive Bayes, since our matrices are ones or zeros):

from sklearn.naive_bayes import BernoulliNB
naive_bayes = BernoulliNB()
model = naive_bayes.fit(x_train, y_train)

As you can see in the preceding code, it is very simple to fit a Naive Bayes model. We need
to provide the training matrices and the labels. A model is now capable of predicting the
label (political party) of arbitrary tweets (as long as we have them as a BoWs matrix
representation). Fortunately, we had separated some of the tweets for testing, so we can run
these through the model and see how often the model predicts the right label (note that we
know the actual party that wrote the tweet for every tweet in the testing dataset).

To get the predictions it's as simple as invoking the predict method of the model:

y_predictions = model.predict(x_test)

Now, we can see how many of the predictions match the ground truth:

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_predictions)

The output score of the code block is 0.95.

In this example, we are using accuracy as an evaluation metric. Accuracy can be calculated
using formula 7:

Formula 7



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 32 ]

There are various evaluation metrics that a data scientist can use to evaluate ML algorithm.
We will present evaluation measures such as precision, recall, F1 measure, root mean
squared error (RMSE), and area under curve (AUC) in our next chapters for different
examples. Evaluation metrics should be selected based on the business need of
implementing an algorithm, and should indicate whether or not the ML algorithm is
performing at the standards required to achieve a task. 

Since this is the first example we are working on, we will use the simplest evaluation
measure, which is accuracy. As specified in formula 7, accuracy is the ratio of correct
predictions to the total number of predictions made by the classifier. It turns out that our
Naive Bayes model is very accurate, with an accuracy of 95%. It is possible that some
words, such as the names of members of each party, can quickly make the model give a
correct prediction. We will explore this using decision trees in Chapter 4, Predicting User
Behavior with Tree-Based Methods.

Note that, during this process, we had to prepare and transform the data
in order to fit a model. This process is very common, and both scikit-
learn and Spark support the concept of pipelines, which allow the data
scientist to declare the necessary transformations needed to build a model
without having to manually obtain intermediary results.

In the following code snippet, we can see an alternative way to produce the same model by
creating a pipeline with the following two stages:

Count vectorizer
Naive Bayes trainer

from sklearn.pipeline import Pipeline
x_train, x_test, y_train, y_test = train_test_split(dem_text + gop_text, y,
test_size=0.25, random_state=5)
pipeline = Pipeline([('vect', vectorizer), ('nb', naive_bayes)])
pipeline_model = pipeline.fit(x_train, y_train)
y_predictions = pipeline_model.predict(x_test)
accuracy_score(y_test, y_predictions)

This allows our modeling to be a bit more concise and declarative. By calling the
pipeline.fit() method, the library applies any necessary transformations or estimations
necessary. Note that, in this case, we split the raw texts (rather than the matrices) as the
fit() method now receives the raw input. As we shall see in the next section, pipelines can
contain two kinds of stages, Transformers and Estimators, depending on whether the stage
needs to compute a model out of the data, or simply transform the data declaratively.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 33 ]

Naïve Bayes model on SageMaker notebooks
using Apache Spark
In the previous section Classifying text with language models, we saw how you can train a
model with scikit-learn on a SageMaker notebook instance. This is feasible for
examples as small as the ones we collected from Twitter. What if, instead, we had hundreds
of terabytes worth of tweet data? For starters, we would not be able to store the data in a 
single machine. Even if we could, it would probably take too long to train on such large
dataset. Apache Spark solves this problem for us by implementing ML algorithms that can
read data from distributed datasets (such as AWS S3) and can distribute the computing
across many machines. AWS provides a product called Elastic MapReduce (EMR) that is
capable of launching and managing clusters on which we can perform ML at scale.

Many of the ML algorithms require several passes over the data (although this is not the
case for Naive Bayes). Apache Spark provides a way to cache the datasets in memory, so
that one can efficiently run algorithms that require several passes over the data (such as
logistic regression or decision trees, which we will see in the following chapters). We will
show how to launch EMR clusters in Chapter 4, Predicting User Behavior with Tree-Based
Methods, however, in this section, we will present how similar it is to work with Apache
Spark compared to scikit-learn. In fact, many of the interfaces in Apache Spark (such as
pipelines, Transformers, and Estimators) were inspired by scikit-learn.

Apache Spark supports four main languages: R, Python, Scala, and Java. In this book we
will use the Python flavor, also called PySpark. Even though our spark code will run on a
single machine (that is, will run on our SageMaker notebook instance), it could run on
multiple machines without any code changes if our data was larger and we had a Spark
Cluster (in Chapter 4, Predicting User Behavior with Tree-Based Methods, we will dive into
creating Spark Clusters with EMR).

In Spark, the first thing we need to do is to create a Spark session. We do this by first
creating a Spark context, and then creating a session for SQL-like manipulation of data:

from pyspark.context import SparkContext
from pyspark.sql import SQLContext

sc = SparkContext('local', 'test')
sql = SQLContext(sc)

Since we will run Spark locally (on a single machine) we specify local. However, if we
were to run this on a cluster, we would need to specify the master address of the cluster
instead. Spark works with abstractions called DataFrames that allow us to manipulate huge
tables of data using SQL-like operations.

https://cdp.packtpub.com/mastering_machine_learning_on_aws/wp-admin/post.php?post=25&action=edit#post_27


Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 34 ]

Our first task will be to define DataFrames for our raw data:

from pyspark.sql.functions import lit

dems_df = sql.read.text("file://" + SRC_PATH + 'dem.txt')
gop_df = sql.read.text("file://" + SRC_PATH + 'gop.txt')
corpus_df = dems_df.select("value",
lit(1).alias("label")).union(gop_df.select("value", lit(0).alias("label")))

In the first two lines, we create DataFrames out of our raw tweets. We also
create corpus_df, which contains both sources of tweets, and add the label by creating a
column with a literal of 1 for Democrats and 0 for Republicans:

>>> corpus_df.select("*").limit(2).show()

+--------------------+-----+
|               value|label|
+--------------------+-----+
|This ruling is th...| 1 . |
|No president shou...| 1 . |
+--------------------+-----+

Spark works in a lazy fashion, so, even though we defined and unioned the DataFrame, no
actual processing will happen until we perform the first operation on the data. In our case,
this will be the splitting of the DataFrame into testing and training:

train_df, test_df = corpus_df.randomSplit([0.75, 0.25])

Now, we are ready to train our model. Spark supports the same concept of pipelines. We
will build a pipeline with the necessary transformations for our model. It's very similar to
our previous example, except that Spark has two separate stages for tokenization and stop
words remover:

from pyspark.ml import Pipeline
from pyspark.ml.feature import CountVectorizer, Tokenizer, StopWordsRemover
tokenizer = Tokenizer(inputCol="value", outputCol="words")
stop_words_remover = StopWordsRemover(inputCol="words",
outputCol="words_cleaned")
vectorizer = CountVectorizer(inputCol="words_cleaned",
outputCol="features")
cleaning_pipeline = Pipeline(stages = [tokenizer, stop_words_remover,
vectorizer])
cleaning_pipeline_model = cleaning_pipeline.fit(corpus_df)
cleaned_training_df = cleaning_pipeline_model.transform(train_df)
cleaned_testing_df = cleaning_pipeline_model.transform(test_df)



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 35 ]

A Spark ML pipeline consists of a series of stages. Each stage can be a
Transformer or an Estimator. Transformers apply a well-defined
transformation on a dataset, while Estimators have the added capability of
producing models by traversing the dataset. NaiveBayes and
CountVectorizer are examples of Estimators, while tokenizer and
StopWordsRemover are examples of Transformers. Models, in turn, are
Transformers, because they can provide predictions for all elements in a
dataset as a transformation.

As you can see in the preceding code, we defined a pipeline with all the necessary stages to
clean the data. Each stage will transform the original DataFrame (which only has two
columns value, which are the raw tweet text and label) and add more columns.

In the following code, the relevant columns used at training time are the features (a sparse
vector representing the BoWs exactly like our scikit-learn example) and the label:

>>> cleaned_training_df.show(n=3)

+-----------+------------------+-------------+--------------------+
| value     |label| . words .  |words_cleaned| features           |
+-----------+------------------+-------------+--------------------+
|#Tuesday...| 1 . |[#tuesday...|[#tuesday... |(3025,[63,1398,18...|
|#WorldAI...| 1 . |[#worlda....|[#worldai... |(3025,[37,75,155,...|
|@Tony4W....| 1 . |[.@tony4w...|[.@tony4w... |(3025,[41,131,160...|
+-----------------+------------+-------------+--------------------+

By specifying these columns to the NaiveBayes classifier we can train a model:

from pyspark.ml.classification import NaiveBayes
naive_bayes = NaiveBayes(featuresCol="features", labelCol="label")

The model is a transformer that can provide predictions for each row in our training
DataFrame:

naive_bayes_model = naive_bayes.fit(cleaned_training_df)
predictions_df = naive_bayes_model.transform(cleaned_testing_df)

>>> predictions_df.select("features", "label",
"prediction").limit(3).show()
+--------------------+-----+----------+
| features           |label|prediction|
+--------------------+-----+----------+
|(3025,[1303,1858,...| 1 . | 1.0      |
|(3025,[1,20,91,13...| 1 . | 1.0      |
|(3025,[16,145,157...| 1 . | 1.0      |
+--------------------+-----+----------+



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 36 ]

Similar to our previous example, we can evaluate the accuracy of our models. By using the
MulticlassClassificationEvaluator class and specifying the actual and predicted
labels, we can obtain accuracy:

from pyspark.ml.evaluation import MulticlassClassificationEvaluator
evaluator = MulticlassClassificationEvaluator(
   labelCol="label", predictionCol="prediction", metricName="accuracy")
evaluator.evaluate(predictions_df)

The output is 0.93, which is similar to the results we had on scikit-learn.

Using SageMaker's BlazingText built-in ML
service
We saw how to perform ML tasks using scikit-learn and Apache Spark libraries.
However, sometimes it's more appropriate to use a ML service. SageMaker provides ways
for us to create, tune, and deploy models supporting a variety of built-in ML algorithms by
just invoking a service. In a nutshell, you need to place the data in S3 (an Amazon service to
store large amounts of data) and call the SageMaker service providing all the necessary
details (actual ML algorithm, the location of the data, which kind and how many machines
should be used for training). In this section, we go through the process of training our
model for predicting tweets through SageMaker's BlazingText ML service. BlazingText is
an algorithm that supports text classification using word2vec, which is a way to transform
words into vectors in a way that captures precise syntactic and semantic word
relationships. We won't dive into the details of SageMaker's architecture yet, but we will
present the reader how we would use this AWS service as an alternative to scikit-learn
or Spark.

We will start by importing the SakeMaker libraries, creating a session, and obtaining a role
(which is the role that the notebook instance is using (see https://aws.amazon.com/blogs/
aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-
from-ec2).

https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2
https://aws.amazon.com/blogs/aws/iam-roles-for-ec2-instances-simplified-secure-access-to-aws-service-apies-from-ec2


Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 37 ]

Additionally, we specify the S3 bucket we will be using to store all our data and models:

import sagemaker
from sagemaker import get_execution_role
import json
import boto3

sess = sagemaker.Session()
role = get_execution_role()
bucket = "mastering-ml-aws"
prefix = "chapter2/blazingtext"

The next step is to put some data in S3 for training. The expected format for BlazingText is
to have each line in the __label__X TEXT  format. In our case, this means prefixing each
tweet by a label representing the originating party:

__label__1 We are forever g..
 __label__0 RT @AFLCIO: Scott Walker.
 __label__0 Democrats will hold this
 __label__1 Congratulations to hundreds of thousands ...

To do that, we perform some preprocessing of our tweets and prefix the right label:

with open(SRC_PATH + 'dem.txt', 'r') as file:
    dem_text = ["__label__0 " + line.strip('\n') for line in file]

with open(SRC_PATH + 'gop.txt', 'r') as file:
    gop_text = ["__label__1 " + line.strip('\n') for line in file]
corpus = dem_text + gop_text

We then proceed to create the sets for training and testing as text files:

from sklearn.model_selection import train_test_split
corpus_train, corpus_test = train_test_split(corpus, test_size=0.25,
random_state=42)

corpus_train_txt = "\n".join(corpus_train)
corpus_test_txt = "\n".join(corpus_test)

with open('tweets.train', 'w') as file:
    file.write(corpus_train_txt)
with open('tweets.test', 'w') as file:
    file.write(corpus_test_txt)



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 38 ]

Once we have our training and validation text files, we upload them into S3:

train_path = prefix + '/train'
validation_path = prefix + '/validation'

sess.upload_data(path='tweets.train', bucket=bucket, key_prefix=train_path)
sess.upload_data(path='tweets.test', bucket=bucket,
key_prefix=validation_path)

s3_train_data = 's3://{}/{}'.format(bucket, train_path)
s3_validation_data = 's3://{}/{}'.format(bucket, validation_path)

We then proceed to instantiate Estimator, by specifying all the necessary details: the type
and amount of machines to be used for training, as well as the location of the path in S3
where the models will be stored:

container = sagemaker.amazon.amazon_estimator.get_image_uri('us-east-1',
"blazingtext", "latest")

s3_output_location = 's3://{}/{}/output'.format(bucket, prefix)
bt_model = sagemaker.estimator.Estimator(container,
                                         role,
                                         train_instance_count=1,
train_instance_type='ml.c4.4xlarge',
                                         train_volume_size = 30,
                                         train_max_run = 360000,
                                         input_mode= 'File',
                                         output_path=s3_output_location,
                                         sagemaker_session=sess)

As we discussed in the previous section Naive Bayes model on SageMaker notebooks using
Apache Spark section, an estimator is capable of creating models by processing training data.
The next step will be to fit the model providing the training data:

bt_model.set_hyperparameters(mode="supervised", epochs=10, min_count=3,
learning_rate=0.05, vector_dim=10, early_stopping=False, patience=5,
min_epochs=5, word_ngrams=2) train_data =
sagemaker.session.s3_input(s3_train_data, distribution='FullyReplicated',
content_type='text/plain', s3_data_type='S3Prefix') validation_data =
sagemaker.session.s3_input(s3_validation_data,
distribution='FullyReplicated', content_type='text/plain',
s3_data_type='S3Prefix') data_channels = {'train': train_data,
'validation': validation_data}
bt_model.fit(inputs=data_channels, logs=True)



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 39 ]

Before we train the model we need to specify the hyperparameters. We won't go into much
detail about this algorithm in this section, but the reader can find the details in https://
docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html.

This particular algorithm also takes the validation data, as it runs over the data several
times (epochs) to improve the error. Once we fit the model, we can deploy the model as a
web service so that applications can use it: 

predictor = bt_model.deploy(initial_instance_count = 1,instance_type =
'ml.m4.xlarge')

In our case, we will just hit the endpoint to get the predictions and evaluate the accuracy: 

corpus_test_no_labels = [x[11:] for x in corpus_test]
payload = {"instances" : corpus_test_no_labels}
response = predictor.predict(json.dumps(payload))
predictions = json.loads(response)
print(json.dumps(predictions, indent=2))

After running the preceding code we get the following output:

[ { "prob": [ 0.5003 ], "label": [ "__label__0" ] }, { "prob": [ 0.5009 ], "label": [ "__label__1" ] }...

As you can see in the preceding code, each prediction comes along with a probability
(which we will ignore for now). Next, we compute how many of these labels matched the
original one:

predicted_labels = [prediction['label'][0] for prediction in predictions]
predicted_labels[:4]

After running the preceding code we get the following output:

['__label__0', '__label__1', '__label__0', '__label__0']

Then run the next line of code:

actual_labels = [x[:10] for x in corpus_test]
actual_labels[:4]

As you can see in the following output from the previous code block, some of the labels
matched the actual while some don't:

['__label__1', '__label__1', '__label__0', '__label__1']

https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html
https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html


Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 40 ]

Next, we run the following code to build a boolean vector containing true or false
depending on whether the actual matches the predicted result:

matches = [(actual_label == predicted_label) for (actual_label,
predicted_label) in zip(actual_labels, predicted_labels)]
matches[:4]

After running the preceding code we get the following output:

[False, True, True, False]

After we run the preceding output, we will run the following code to calculate the ratio of
cases that match out of the total instances:

matches.count(True) / len(matches)

The following output from the previous block shows the accuracy score:

0.61

We can see that the accuracy is lower than in our previous examples. This is for many
reasons. For starters, we did not invest too much in data preparation in this case (for
example, no stopwords are used in this case). However, the main reason for the lower
accuracy is due to the fact we're using such little data. These models work best on larger
datasets. 

Naive Bayes – pros and cons
In this section, we present the advantages and disadvantages in selecting the Naive Bayes
algorithm for classification problems:

Pros

Training time: Naive Bayes algorithm only requires one pass on the entire
dataset to calculate the posterior probabilities for each value of the feature in the
dataset. So, when we are dealing with large datasets or low-budget hardware,
Naive Bayes algorithm is a feasible choice for most data scientists.

Prediction time: Since all the probabilities are pre-computed in the Naive Bayes
algorithm, the prediction time of this algorithm is very efficient.



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 41 ]

Transparency: Since the predictions of Naive Bayes algorithms are based on the
posterior probability of each conditional feature, it is easy to understand which
features are influencing the predictions. This helps users to understand the
predictions.

Cons

Prediction accuracy: The prediction accuracy of the Naive Bayes algorithm is
lower than other algorithms we will discuss in the book. Algorithm prediction
accuracy is dataset dependent, a lot of research works have proved that
algorithms such as random forest, support vector machines (SVMs), and deep
neural networks (DNNs) outperform Naive Bayes algorithm in terms of
classification accuracy. 

Assumption of independence: Since we assume that each feature is independent
of each other, this algorithm may lose information for features that are
dependent on each other. Other advanced algorithms do use this dependence
information when calculating predictions. 

Summary
In this chapter, we introduced you to why ML is a crucial tool in a data scientist's
repository. We discussed what a structured ML dataset looks like and how to identify the
types of features in the dataset. 

We took a deep dive into Naive Bayes classification algorithm, and studied how Bayes'
theorem is used in Naive Bayes algorithm. Using Bayes' theorem, we can predict the
probability of an event occurring based on the values of each feature, and select the event
that has the highest probability.

We also presented an example of a Twitter dataset. We hope that you learned how to think
about a text classification problem, and  how to build a Naive Bayes classification model to
predict the source of a tweet. We also presented how the algorithm can be implemented in
SageMaker, and how it can also be implemented using Apache Spark. This code base
should help you tackle any text classification problems in the future. As the implementation
is presented using SageMaker services and Spark, it can scale to datasets that can be
gigabytes or terabytes in size.

We will look at how to deploy the ML models on actual production clusters in later
chapters. 



Classifying Twitter Feeds with Naive Bayes Chapter 2

[ 42 ]

Exercises
Bayes' Theorem is not only useful for the Naive Bayes algorithm, but is also used1.
for other purposes. Find two more algorithms where Bayes' theorem is applied,
and explain how they are different than the Naive Bayes algorithm.
In this chapter, we presented an example of a binary classifier. Based on our code2.
to download tweets, create a new dataset where you download tweets from five
different sources and build a Naive Bayes model that can predict the source of
each tweet. 
Identify scenarios for when you would use scikit-learn, Apache Spark, or3.
SageMaker services for a particular problem.



3
Predicting House Value with

Regression Algorithms
This chapter will introduce the basics of regression algorithms and apply them to predict
the price of houses given a number of features. We'll also introduce how to use logistic
regression for classification problems. Examples in SageMaker Notebooks for scikit-learn, 
Apache Spark, and SageMaker's linear learner will be provided.

In this chapter, we will cover the following topics:

Predicting the price of houses
Understanding linear regression
Evaluating regression models
Implementing linear regression through scikit-learn
Implementing linear regression through Apache Spark
Implementing linear regression through SageMaker's linear learner
Understanding logistic regression
Pros and cons of linear models

Predicting the price of houses
In this chapter, we will consider the problem of trying to predict the value of houses in
Boston's suburbs based on a number of variables, such as the number of rooms and house
age. The details of the dataset can be found here: https://www.kaggle.com/c/boston-
housing/. This problem is different to the one we considered in the last chapter, as the
variable we're trying to predict (price in dollars) is continuous. Models that are able to
predict continuous quantities are called regressors, or regression algorithms. There are
many such algorithms, but in this chapter, we will focus on the simplest (but very popular)
kind, linear regressors.

https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/
https://www.kaggle.com/c/boston-housing/


Predicting House Value with Regression Algorithms Chapter 3

[ 44 ]

Understanding linear regression
Regression algorithms are an important algorithm in a data scientist's toolkit as they can be
used for various non-binary prediction tasks. The linear regression algorithm models the
relationship between a dependent variable that we are trying to predict with a vector of
independent variables. The vector of variables is also called the regressor in the context of
regression algorithms. Linear regression assumes that there is a linear relationship between
the vector of independent variables and the dependent variable that we are trying to
predict. Hence, linear regression models learn the unknown variables and constants of a 
linear function using the training data, such that the linear function best fits the training
data. 

Linear regression can be applied in cases where the goal is to predict or forecast the
dependent variable based on the regressor variables. We will use an example to explain
how linear regression trains based on data.

The following table shows a sample dataset where the goal is to predict the price of a house
based on three variables:

Floor Size Number of Bedrooms Number of Bathrooms House Price
2500 4 2 6,00,000
2800 4 2 6,50,000
2700 4 3 6,50,000
4500 6 4 8,00,000
3500 4 2 7,50,000
3000 5 4 7,60,000
2000 3 2 5,00,000
4100 4 3 8,10,000

In this dataset, the variables Floor Size, Number of Bedrooms, and Number of
Bathrooms are assumed as independent in linear regression. Our goal is to predict the
House Price value based on the variables. 

Let's simplify this problem. Let's only consider the Floor Size variable to predict the
house price. Creating linear regression from only one variable or regressor is referred to as
a simple linear regression. If we create a scatterplot from the two columns, we can observe 
that there is a relationship between these two variables:



Predicting House Value with Regression Algorithms Chapter 3

[ 45 ]

Although there is not an exact linear relationship between the two variables, we can create
an approximate line that represents the trend. The aim of the modeling algorithm is to
minimize the error in creating this approximate line. 

As we know, a straight line can be represented by the following equation:

                              

Hence, the approximately linear relationship in the preceding diagram can also be
represented using the same formula, and the task of the linear regression model is to learn
the value of  and . Moreover, since we know that the relationship between the
predicted variable and the regressors is not strictly linear, we can add a random error
variable to the equation that models the noise in the dataset. The following formula
represents how the simple linear regression model is represented:

                     



Predicting House Value with Regression Algorithms Chapter 3

[ 46 ]

Now, let's consider the dataset with multiple regressors. Instead of just representing the
linear relationship between one variable  and , we will represent a set of regressors as 

. We will assume that a linear relationship between the dependent variable 
 and the regressors  is linear.  Thus, a linear regression model with multiple regressors is

represented by the following formula:

       

Linear regression, as we've already discussed, assumes that there is a linear relationship
between the regressors and the dependent variable that we are trying to predict. This is an
important assumption that may not hold true in all datasets. Hence, for a data scientist,
using linear regression may look attractive due to its fast training time. However, if the
dataset variables do not have a linear relationship with the dependent variable, it may lead
to significant errors. In such cases, data scientists may also try algorithms such as Bernoulli
regression, Poisson regression, or multinomial regression to improve prediction precision.
We will also discuss logistic regression later in this chapter, which is used when the
dependent variable is binary. 

During the training phase, linear regression can use various techniques for parameter
estimation to learn the values of , , and . We will not go into the details of these
techniques in this book. However, we recommend that you try using these parameter
estimation techniques in the examples that follow and observe their effect on the training
time of the algorithm and the accuracy of prediction. 

To fit a linear model to the data, we first need to be able to determine how well a linear
model fits the data. There are various models being developed for parameter estimation in
linear regression. Parameter estimation is the process of estimating the values of , , and 

. In the following sections, will briefly explain these two estimation techniques. 

Linear least squares estimation
Linear least squares (LLS) is an estimation approach that's used to estimate parameters
based on the given data. The optimization problem of the LLS estimation can be explained
as follows:

             



Predicting House Value with Regression Algorithms Chapter 3

[ 47 ]

LLS is a set of formulations that are used to get solutions to the statistical problem of linear
regression by estimating the values of  and . LLS is an optimization methodology for
getting solutions for linear regression. It uses the observed values of x and y to estimate the
values of  and . We encourage you to explore LLS solutions to understand how it
estimates the linear regression parameters. However, as the focus of this book is to
introduce you to these concepts and help you apply them in AWS, we won't go into detail
about this methodology.

Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a popular model that's used for estimating the
parameters of linear regression. MLE is a probabilistic model that can predict what values
of the parameters have the maximum likelihood to recreate the observed dataset. This is
represented by the following formula:

                           

For linear regression, our assumption is that the dependent variable has a linear
relationship with the model. MLE assumes that the dependent variable values have a
normal distribution. The idea is to predict the parameters for each observed value of X so
that it models the value of y. We also estimate the error for each observed value that models
how different the linear predicted value of y is from the actual value. 

Gradient descent 
The gradient descent algorithm is also popular for estimating parameters for linear
regression. The gradient descent algorithm is used to minimize a function. Based on what
we are predicting, we start with a set of initial values for the parameters and iteratively
move toward the parameters to minimize the error in the function. The function to
iteratively make steps in minimizing error is called gradient. The idea is to descend the
gradient toward the lowest point in the gradient plane. Different types of gradient descent
algorithms include batch gradient descent, which looks at all observed examples in each
example, and stochastic gradient descent, where we iterate with only one observation at a
time. For this reason, batch gradient descent is more accurate than stochastic gradient
descent, but is much slower and hence not suitable for larger datasets.



Predicting House Value with Regression Algorithms Chapter 3

[ 48 ]

There is a vast amount of research being done on regression algorithms as it is very well
suited for predicting continuous variables. We encourage you to learn more about linear
regression libraries and try different variants that are provided in the library to calculate
the efficiency and effectiveness of the test datasets.

Evaluating regression models 
Unlike the Naive Bayes classification model, the regression model provides a numerical
output as a prediction. This output can be used for binary classification by predicting the
value for both the events and using the maximum value. However, in examples such as
predicting a house value based on regressors, we cannot use evaluation metrics that rely on
just predicting whether we got the answer correct or incorrect. When we are predicting a
numerical value, the evaluation metrics should also quantify the value of error in
prediction. For example, if the house value is 600,000 and model A predicts it as 700,000
and model B predicts it as 1,000,000, metrics such as precision and recall will count both
these predictions as false positives. However, for regression models, we need evaluation
metrics that can tell us that model A was closer to the actual value than model B. Therefore,
in this section, we will present three metrics that are used for such numerical predictions. 

Mean absolute error
Mean absolute error (MAE) is the mean of the absolute values of the error. It can be 
represented with the following formula:

                              

MAE provides an average error between two vectors. In our case, MAE is the difference
between the actual value of  and the predicted value . MAE is used by a lot of researchers
since it gives a clear interpretation of the errors in the model's prediction. 



Predicting House Value with Regression Algorithms Chapter 3

[ 49 ]

Mean squared error
Mean squared error (MSE) is the mean of squares of the error values and is represented by
the following formula:

                             

MSE is useful in cases where the errors are very small. MSE incorporates both how far the
predicted values are from the truth and also the variance in the predicted values. 

Root mean squared error
Root mean squared error (RMSE) is the square root of the mean squared errors and is 
represented by the following formula:

RMSE, similar to MSE, captures the variance in predictions. However, in RMSE, since we
take the square root of the squared error values, the error can be comparable to MSE, and
also keep the advantages of MSE. 

R-squared
Another popular metric that's used in regression problems is the R-squared score, or
coefficient of determination. This score measures the proportion of the variance in the
dependent variable that is predictable from the independent variables:

Here,  represents the vector of actual values, while  and  represents the vector of
predicted values. The mean actual value is . The denominator of the quotient measures
how actual values typically differ from the mean, while the numerator measures how
actual values differ from predicted values. Note that differences are squared, similar to
MSE, and so large differences are penalized heavily.



Predicting House Value with Regression Algorithms Chapter 3

[ 50 ]

 In a perfect regressor, the numerator is 0, so the best possible value for R2 is 1.0. However,
we can see arbitrarily large negative values when the prediction errors are significant. 

All four types of evaluation metrics are implemented in machine learning packages and are
demonstrated in the following code examples. 

Implementing linear regression through
scikit-learn
Like we did in the previous chapter, we will show you how you can quickly use scikit-
learn to train a linear model straight from a SageMaker notebook instance. First, you must
create the notebook instance (choosing conda_python3 as the kernel).

We will start by loading the training data into a pandas dataframe:1.

housing_df = pd.read_csv(SRC_PATH + 'train.csv')
housing_df.head()

The preceding code displays the following output:

The last column (medv) stands for median value and represents the variable that2.
we're trying to predict (dependent variable) based on the values from the
remaining columns (independent variables).

As usual, we will split the dataset for training and testing:

from sklearn.model_selection import train_test_split

housing_df_reordered = housing_df[[label] + training_features]

training_df, test_df = train_test_split(housing_df_reordered,
                                        test_size=0.2)



Predicting House Value with Regression Algorithms Chapter 3

[ 51 ]

Once we have these datasets, we will proceed to construct a linear regressor:3.

from sklearn.linear_model import LinearRegression

regression = LinearRegression()

training_features = ['crim', 'zn', 'indus', 'chas', 'nox',
                     'rm', 'age', 'dis', 'tax', 'ptratio', 'lstat']

model = regression.fit(training_df[training_features],
                       training_df['medv'])

We start by constructing an estimator (in this case, linear regression) and fit the
model by providing the matrix of training
values, (training_df[training_features]), and the
labels, (raining_df['medv']).

After fitting the model, we can use it to get predictions for every row in our4.
testing dataset. We do this by appending a new column to our existing testing
dataframe:

test_df['predicted_medv'] =
model.predict(test_df[training_features])
test_df.head()

The preceding code displays the following output:

It's always useful to check our predictions graphically. One way to do this is by5.
plotting the predicted versus actual values as a scatterplot:

test_df[['medv', 'predicted_medv']].plot(kind='scatter',
                                         x='medv',
                                         y='predicted_medv')



Predicting House Value with Regression Algorithms Chapter 3

[ 52 ]

The preceding code displays the following output:

Note how the values are located mostly on the diagonal. This is a good sign, as a
perfect regressor would yield all data points exactly on the diagonal (every
predicted value would be exactly the same as the actual value).

In addition to this graphical verification, we obtain an evaluation metric that tells6.
us how good our model is at predicting the values. In this example, we use R-
squared evaluation metrics, as explained in the previous section, which is
available in scikit-learn.

Let's look at the following code block:

from sklearn.metrics import r2_score

r2_score(test_df['medv'], test_df['predicted_medv'])

0.695

A value near 0.7 is a decent value. If you want to get a sense of what a good R2 correlation
is, we recommend you play this game: http://guessthecorrelation.com/.

Our linear model will create a predicted price by multiplying the value of each feature by a
coefficient and adding up all these values, plus an independent term, or intercept.

http://guessthecorrelation.com/
http://guessthecorrelation.com/
http://guessthecorrelation.com/
http://guessthecorrelation.com/
http://guessthecorrelation.com/
http://guessthecorrelation.com/
http://guessthecorrelation.com/
http://guessthecorrelation.com/


Predicting House Value with Regression Algorithms Chapter 3

[ 53 ]

We can find the values of these coefficients and intercept by accessing the data members in
the model instance variable:

model.coef_

array([-7.15121101e-02, 3.78566895e-02, -4.47104045e-02, 5.06817970e+00,
      -1.44690998e+01, 3.98249374e+00, -5.88738235e-03, -1.73656446e+00,
       1.01325463e-03, -6.18943939e-01, -6.55278930e-01])

model.intercept_
32.20

It is usually very convenient to examine the coefficients of the different variables as they
can be indicative of the relative importance of the features in terms of their independent
predictive ability. 

By default, most linear regression algorithms such as scikit-learn or Spark will
automatically do some degree of preprocessing (for example, it will scale the variables to
prevent features with large values to introduce bias). Additionally, these algorithms
support regularization parameters and provide you with options to choose the optimizer
that's used to efficiently search for the coefficients that maximize the R2 score (or minimize
some loss function).

Implementing linear regression through
Apache Spark
You are likely interested in training regression models that can take huge datasets as input,
beyond what you can do in scikit-learn. Apache Spark is a good candidate for this
scenario. As we mentioned in the previous chapter, Apache Spark can easily run training
algorithms on a cluster of machines using Elastic MapReduce (EMR) on AWS. We will
explain how to set up EMR clusters in the next chapter. In this section, we'll explain how
you can use the Spark ML library to train linear regression algorithms.

The first step is to create a dataframe from our training data:1.

housing_df = sql.read.csv(SRC_PATH + 'train.csv', header=True,
inferSchema=True)



Predicting House Value with Regression Algorithms Chapter 3

[ 54 ]

The following image shows the first few rows of the dataset:

Typically, Apache Spark requires the input dataset to have a single column with2.
a vector of numbers representing all the training features. In Chapter
2, Classifying Twitter Feeds with Naive Bayes,we used the CountVectorizer to
create such a column. In this chapter, since the vector values are already available
in our dataset, we just need to construct such a column using a
VectorAssembler transformer:

from pyspark.ml.feature import VectorAssembler

training_features = ['crim', 'zn', 'indus', 'chas', 'nox',
                     'rm', 'age', 'dis', 'tax', 'ptratio', 'lstat']

vector_assembler = VectorAssembler(inputCols=training_features,
                                   outputCol="features")

df_with_features_vector = vector_assembler.transform(housing_df)

The following screenshot shows the first few rows of the df_with_features_vector
dataset:

Note how the vector assembler created a new column called features, which
assembles all the features that are used for training as vectors.

As usual, we will split our dataframe into testing and training:3.

train_df, test_df = df_with_features_vector.randomSplit([0.8, 0.2],
                                                        seed=17)



Predicting House Value with Regression Algorithms Chapter 3

[ 55 ]

We can now instantiate our regressor and fit a model:4.

from pyspark.ml.regression import LinearRegression

linear = LinearRegression(featuresCol="features", labelCol="medv")
linear_model = linear.fit(train_df)

By using this model, we find predictions for each value in the test dataset:5.

predictions_df = linear_model.transform(test_df)
predictions_df.show(3)

The output of the above show() command is:

We can easily find the R2 value by using a RegressionEvaluator:6.

from pyspark.ml.evaluation import RegressionEvaluator

evaluator = RegressionEvaluator(labelCol="medv",
                                predictionCol="prediction",
                                metricName="r2")
evaluator.evaluate(predictions_df)

In this case, we get an R2 of 0.688, which is a similar result to that of scikit-
learn.

Implementing linear regression through
SageMaker's linear Learner
Another alternative within AWS for training regression models is to use SageMaker's API
to build linear models. In the previous chapter, we explained the basics of this service when
we considered how to use BlazingText for our text classification problem. Similarly, we will
use Linear Learners in this section and go through the same process, which basically entails
three steps:

Stage the training and testing data in S31.
Invoke the API to train the model2.



Predicting House Value with Regression Algorithms Chapter 3

[ 56 ]

Use the model to obtain predictions3.

Unlike what we did in Chapter 2, Classifying Twitter Feeds with Naive Bayes, instead of
deploying an endpoint (that is, a web service) to obtain predictions, we will use a batch
transformer, which is a service that's capable of obtaining bulk predictions given a model
and some data in S3. Let's take a look at the following steps:

Assuming that we have prepared the training and testing datasets in a similar1.
way to the previous sections, we will create a SageMaker session and upload our
training and testing data to S3:

import sagemaker
from sagemaker import get_execution_role
import json
import boto3

sess = sagemaker.Session()
role = get_execution_role()

bucket = "mastering-ml-aws"
prefix = "chapter3/linearmodels"

train_path = prefix + '/train'
validation_path = prefix + '/validation'

sess.upload_data(path='training-housing.csv',
                 bucket=bucket,
                 key_prefix=train_path)
sess.upload_data(path='testing-housing.csv',
                 bucket=bucket,
                 key_prefix=validation_path)

s3_train_data = 's3://{}/{}'.format(bucket, train_path)
s3_validation_data = 's3://{}/{}'.format(bucket, validation_path)

Once the data is in S3, we can proceed to instantiate the estimator:2.

from sagemaker.amazon.amazon_estimator import get_image_uri
from sagemaker.session import s3_input

container = get_image_uri(boto3.Session().region_name, 'linear-
learner')
s3_output_location = 's3://{}/{}/output'.format(bucket, prefix)

linear = sagemaker.estimator.Estimator(container,
                                       role,



Predicting House Value with Regression Algorithms Chapter 3

[ 57 ]

                                       train_instance_count=1,
train_instance_type='ml.c4.xlarge',
output_path=s3_output_location,
                                       sagemaker_session=sess)

Next, we need to set the hyperparameters. Linear Learner in SageMaker takes a3.
large set of options, which can be found here https://docs.aws.amazon.com/
sagemaker/latest/dg/ll_hyperparameters.html. In Chapter 14, Optimizing
SageMaker and Spark Machine Learning Models, we will dive into how to find
suitable values for these parameters:

linear.set_hyperparameters(feature_dim=len(training_features),
predictor_type='regressor',
mini_batch_size=1)

linear.fit({'train': s3_input(s3_train_data,
content_type='text/csv'),
'test': s3_input(s3_validation_data,
content_type='text/csv')})

Once we fit the model, we can instantiate a transformer, which is capable of4.
computing predictions for our test dataset in S3:

transformer = linear.transformer(instance_count=1,
instance_type='ml.m4.xlarge', output_path=s3_output_location)

transformer.transform(s3_validation_data, content_type='text/csv')
transformer.wait()

This will create a file in s3 called testing-housing.csv.out with the following
format:

 {"score":18.911674499511719}
 {"score":41.916255950927734}
 {"score":20.833599090576172}
 {"score":38.696208953857422}

We can download this file and build a pandas dataframe with the predictions:5.

predictions = pd.read_json('testing-housing.csv.out',lines=True)

https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html
https://docs.aws.amazon.com/sagemaker/latest/dg/ll_hyperparameters.html


Predicting House Value with Regression Algorithms Chapter 3

[ 58 ]

The following screenshot shows the first few predictions:

Given that these scores follow the exact order found in the testing dataset, we can6.
then proceed to put together the actual and predicted columns by merging the
data series:

evaluation_df = pd.DataFrame({'actual':list(test_df[label]),
'predicted':list(predictions['score'])})

The preceding code displays the following output:

With this data frame, we can calculate the R2 score:7.

from sklearn.metrics import r2_score

r2_score(evaluation_df['actual'], evaluation_df['predicted'])

The result was 0.796, which is in line with the previous estimates, with a slight
improvement.



Predicting House Value with Regression Algorithms Chapter 3

[ 59 ]

Understanding logistic regression
Logistic regression is a widely used statistical model that can be used to model a binary
dependent variable. In linear regression, we assumed that the dependent variable is a
numerical value that we were trying to predict. Consider a case where the binary variable
has values of true and false. In logistic regression, instead of calculating the value of
numerical output using the formula we used in the Linear regression section, we estimate the
log odds of a binary event labeled True using the same formulation. The function that
converts log odds to the probability of the event labeled 1 occurring is called the logistic
function. 

The unit of measurement for log-odds scale is called logit. Log-odds are calculated using
the following formula:

                    

Thus, using the same methodology as linear regression, logistic regression is used for
binary dependent variables by calculating the odds of the True event occurring. The main
difference between linear regression and logistic regression is that linear regression is used
to predict the values of the dependent variable, while logistic regression is used to predict
the probability of the value of the dependent variable. Hence, as we emphasize in most of
this book, data scientists should look at what they want to predict and choose the
algorithms accordingly. 

The logistic regression algorithm is implemented in most popular machine learning
packages, and we will provide an example of how to use it in Spark in the following
section.

Logistic regression in Spark
The chapter3/train_logistic notebook shows how we can instantiate a
LogisticRegression Spark Trainer instead of NaiveBayes for the Twitter dataset we
dealt with in Chapter 2, Classifying Twitter Feeds with Naive Bayes and obtain a model just as
good as the one we constructed:

from pyspark.ml.classification import LogisticRegression
logistic_regression = LogisticRegression(featuresCol="features",
                                         labelCol="label")
logistic_model = logistic_regression.fit(cleaned_training_df)



Predicting House Value with Regression Algorithms Chapter 3

[ 60 ]

Pros and cons of linear models
Regression models are very popular in machine learning and are widely applied in many
areas. Linear regression's main advantage is its simplicity to represent the dataset as a
simple linear model. Hence, the training time for linear regression is fast. Similarly, the
model can be inspected by data scientists to understand which variable is contributing to
the decisions of the overall model. Linear regression is recommended in cases where the
problem statement is simple and fewer variables are used for predictions. As the
complexity of the dataset increases, linear regression may generate significant errors if the
data has a lot of noise in it. 

Linear regression makes a bold assumption that the dependent variable has a linear
relationship with the regressors. If this does not hold true, then the linear regression
algorithm may not be able to fit the data well. There are variants such as quadratic
regressions that can solve this issue. However, this leads to complexity in the model and
hence significantly increases training time. 

Summary
In this chapter, we started with the basics of regression algorithms and applied them to
predict the price of houses. We then learned how to evaluate regression models, were
introduced to linear regression through various libraries such as scikit-learn,  Apache
Spark and SageMaker's linear learner, and, finally, we saw how to use logistic regression
for classification problems, and the pros and cons of linear models.

In the next chapter, we will predict user behavior with tree-based methods.



4
Predicting User Behavior with

Tree-Based Methods
This chapter will introduce decision trees, random forests, and gradient-boosted trees.
Decision trees methodology is a popular technique used in data science that provides a
visual representation of how the information in the training set can be represented as a
hierarchy. Traversing the hierarchy based on an observation helps you to predict the
probability of that event.  We will explore how to use these algorithms can be used to
predict when a user may click on online advertisement based on existing advertising
click records. Additionally, we will show how to use AWS Elastic MapReduce (EMR)
with Apache Spark and the SageMaker XGBoost service to engineer models in the
context of big data. 

In this chapter, we will cover the following topics:

Understanding decision trees
Understanding random forests algorithms
Understanding gradient boosting algorithms
Predicting clicks on log streams

Understanding decision trees
Decision trees graphically show the decisions to be made, the observed events that may
occur, and the probabilities of the outcomes given a specific set of observable events
occurring together. Decision trees are used as a popular machine learning algorithm,
where, based on a dataset of observable events and the known outcomes, we can construct
a decision tree that can represent the probability of an event occurring.



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 62 ]

The following table shows a very simple example of how decision trees can be generated:

Car Make Year Price
BMW 2015 >$40K
BMW 2018 >$40K
Honda 2015 <$40K
Honda 2018 >$40K
Nissan 2015 <$40K
Nissan 2018 >$40K

This is a very simple dataset that is represented by the following decision tree:

The aim of the machine learning algorithm is to generate decision trees that best represent
the observations in the dataset. For a new observation, if we traverse the decision tree, the
leaf nodes represent the class variable or event that is most likely to occur. In the preceding
example, we have a dataset that has information regarding the make and the year of a used
car. The class variable (also called the feature label) is the price of the car. We can observe
in the dataset that, irrespective of the year variable value, the price of a BMW car is greater
than $40,000. However, if the make of the car is not BMW, the cost of the car is determined
by the year the car was produced. The example is based on a very small amount of data.
However, the decision tree represents the information in the dataset, and if we have to
determine the cost of a new car where the make is BMW and year is 2015, then we can
predict that the cost is greater than $40,000. For more complex decision trees, the leaf nodes
also have a probability associated with them that represents the probability of the class
value occurring. In this chapter, we will study algorithms that can be used to generate such
decision trees. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 63 ]

Recursive splitting
Decision trees can be built by recursively splitting the dataset into subsets. During each
split, we evaluate splits based on all the input attributes and use a cost function to
determine which split has the lowest cost. The cost functions generally evaluate the loss of
information when we split the dataset into two branches. This partitioning of the dataset
into smaller subsets is also referred to as recursive partitioning. The cost of splitting the
datasets into subsets is generally determined by how records with similar class variables
are grouped together in each dataset. Hence, the most optimal split would be when
observations in each subset will have the same class variable values. 

Such recursive splitting of decision trees is a top-down approach in generating decision
trees. This is also a greedy algorithm since we made the decision at each point on how to
divide the dataset, without considering how it may affect the later splits. 

In the preceding example, we made the first split based on the make of the car. This is
because one of our subsets, where the make is BMW, has a 100% probability of the price of
the car being greater than $40,000. Similarly, if we had made a split based on the year, we
would also get a subset of the year equal to 2018 that also has a 100% probability of the cost
of the car is greater than $40,000. Hence, for the same dataset, we can generate multiple
decision trees that represent the dataset. There are various cost functions that we will look
at that generate different decision trees based on the same dataset.

Types of decision trees
There are following two main types of decision trees that most data scientists have to work
with based on the class variables in the dataset:

Classification trees: Classification trees are decision trees that are used to predict
discrete values. This means that the class variable of the dataset used to generate
classification trees is a discrete value. The preceding example regarding car
prices at the start of this section is a classification tree as it only has two values of
the class variable. 
Regression trees: Regression trees are decision trees that are used to predict real
numbers, such as the example in Chapter 3, Predicting House Value with Regression
Algorithms, where we were predicting the price of the house.



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 64 ]

The term Classification and Regression Trees (CART) is used to describe the algorithm for
generating decision trees. CART is a popular algorithm for decision trees. Other popular
decision tree algorithms include ID3 and C4.5. These algorithms are different from each
other in terms of the cost functions they use for splitting the dataset and the criteria used to
determine when to stop splitting. 

Cost functions 
As discussed in the section on Recursive splitting, we need cost functions to determine
whether splitting on a given input variable is better than other variables. The effectiveness
of these cost functions is crucial for the quality of the decision trees being built. In this
section, we'll discuss two popular cost functions for generating a decision tree. 

Gini Impurity
Gini Impurity is defined as the measurement of the likelihood of incorrect classification of a
random observation, given the random observation is classified based on the distribution of
the class variables in the dataset. Consider a dataset with   class variables, and   is the
fraction of observations in the dataset labeled as . Gini Impurity can be calculated using the
following formula:

      .. 4.1

Gini Impurity tells us the amount of noise present in the dataset, based on
the distributions of various class variables.

For example, in the car price dataset presented at the start of Understanding Decision Trees
section, we have two class variables: greater than 40,000 and less than 40,000. If we had to
calculate the Gini Impurity of the dataset, it could be calculated as shown in the following
formula:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 65 ]

Hence, there is a lot of noise in the base dataset since each class variable has 50% of the
observations. 

However, when we create a branch where the make of the car, the Gini Impurity of that
subset of the dataset is calculated as follows:

Since the branch of for BMW only contains class values of >40K, there is no noise in the
branch and the value of Gini Impurity is 0. Note that when the subset of the data only has
one class value, the Gini Impurity value is always 0.

Gini Impurity is used to calculate the Gini Index for each attribute. The Gini Index is a
weighted sum of all the values of an attribute on which we create branches. For an
attribute, , that has  unique values, Gini Gain is calculated using formula below.  is the
fraction of observations in the dataset where the value of the attribute, , is :

     

Hence, in our preceding example, the Gini Index for the Make attribute that has three
distinct values is calculated as follows: 

Similarly, we calculate the Gini Index for other attributes. In our example, the Gini Index
for the Year attribute is 0.4422. We encourage you to calculate this value on your own. Our
aim is to pick the attribute that generates the lowest Gini Index score. For a perfect
classification, where all the class values in each branch are the same, the Gini Index score
will be 0. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 66 ]

Information gain
Information gain is based on the concept of entropy, which is commonly used in physics to
represent the unpredictability in a random variable. For example, if we have an unbiased
coin, the entropy of the coin is represented as 1, as it has the highest unpredictability.
However, if a coin is biased, and has a 100% chance of heads, the entropy of the coin is 0.

This concept of entropy can also be used to determine the unpredictability of the class
variable in a given branch. The entropy, denoted as H, of a branch is calculated using the
formula below.  represents the entropy of the attribute.  is the number of class
variables in the dataset.  is the fraction of observations in the dataset that belong to the
class, :

           

Step 1: In our example, for the entire dataset, we can calculate the entropy of the dataset as
follows.

Step 2: In our decision tree, we split the tree based on the make of the car. Hence, we also
calculate the entropy of each branch of the tree, as follows: 

Step 3: Based on the entropy of the parent and the branches, we can evaluate the branch
using a measure called information gain. For a parent branch, , and attribute, ,
information gain is represented as follows:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 67 ]

 is the weighted sum of the entropy of the children. In our example,  of
the Make attribute is calculated as follows: 

Hence, the information gain for the Make attribute is calculated as follows: 

Similarly, we can calculate the information gain score for other attributes. The attribute
with the highest information gain should be used to split the dataset for the highest quality
of a decision tree. Information gain is used in the ID3 and C4.5 algorithms. 

Criteria to stop splitting trees
As decision tree generation algorithms are recursive, we need a criterion that indicates
when to stop splitting the trees. There are various criteria we can set to stop splitting the
trees. Let us now look at the list of commonly used criteria:

Number of observations in the node: We can set criteria to stop the recursion in
a branch if the number of observations is less than a pre-specified amount. A
good rule of thumb is to stop the recursion when there is fewer than 5% of the
total training data in a branch. If we over split the data, such that each node only
has one data point, it leads to overfitting the decision tree to the training data.
Any new observation that has not been previously seen will not be accurately
classified in such trees. 
Purity of the node: In the Gini Impurity section, we learned to calculate the
likelihood of error in classifying a random observation. We can also use the same
methodology to calculate the purity of the dataset. If the purity of the subset in a
branch is greater than a pre-specified threshold, we can stop splitting based on
that branch.
The depth of the tree: We can also pre-specify the limit on the depth of the tree.
If the depth of any branch exceeds the limit, we can stop splitting the branch
further. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 68 ]

Pruning trees: Another strategy is to let the trees grow fully. This avoids the
branch splitting being terminated prematurely, without looking ahead. However,
after the full tree is built, it is likely that the tree is large and there may be
overfitting in some branches. Hence, pruning strategies are applied to evaluate
each branch of the tree; any branch that introduces less than the pre-specified
amount of impurity in the parent branch is eliminated. There are various
techniques to prune decision trees. We encourage our readers to explore this
topic further in the libraries that they implement their decision trees in. 

Understanding random forest algorithms
 There are two main disadvantages to using decision trees. First, the decision trees use
algorithms that make a choice to split on an attribute based on a cost function. The decision
tree algorithm is a greedy algorithm that optimizes toward a local optimum when making
every decision regarding splitting the dataset into two subsets. However, it does not
explore whether making a suboptimal decision while splitting over an attribute, would lead
to a more optimal decision tree in the future. Hence, we do not get a globally optimum tree
when running this algorithm. Second, decision trees tend to overfit to the training data. For
example, a small sample of observations available in the dataset may lead to a branch that
provides a very high probability of a certain class event occurring. This leads to the decision
trees being really good at generating correct predictions for the dataset that was used for
training. However, for observations that they have never seen before, decision trees may
not be accurate due to overfitting to the training data. 

To tackle these issues, the random forest algorithm can be used to improve the accuracy of
the existing decision tree algorithms. In this approach, we divide the training data into
random subsets and create a collection of decision trees, each based on a subset. This
tackles the issue of overfitting, as we no longer rely on one tree to make the decision that
has overfit to the entire training set. Secondly, this also helps with the issue of splitting on
only one attribute based on a cost function. Different decision trees in random forests may
make decisions on splitting based on different attributes, based on the random sample they
are training on. 

During the prediction phase, the random forest algorithm gets a probability of an event
from each branch and uses a voting methodology to generate a prediction. This helps us
suppress predictions from trees that may have overfitted or made sub-optimal decisions
when generating the trees. Such an approach to divide the training set into random subsets
and train multiple machine learning models is known as Bagging. The Bagging approach
can also be applied to other machine learning algorithms. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 69 ]

Understanding gradient boosting algorithms
Gradient boosting algorithms are also used to address the disadvantages of the decision
tree algorithm. However, unlike the random forests algorithm, which trains multiple trees
based on random subsets of training data, gradient-boosting algorithms train multiple trees
sequentially by reducing the errors in the decision trees. Gradient boosting decision trees
are based on a popular machine learning technique called Adaptive Boosting, where we
learn why a machine learning model is making errors, and then train a new machine
learning model that reduces the errors from the previous models.

Gradient boosting algorithms discover patterns in the data that are difficult to represent in
the decision trees, and add a greater weight to the training examples, which can lead to
correct predictions. Thus, similar to random forests, we generate multiple decision trees
from subsets of the training data. However, during each step, the subset of training data is
not selected randomly. Instead, we create a subset of training data, where the examples that
would lead to fewer errors in decision trees are prioritized. We stop this process when we
cannot observe patterns in errors that may lead to more optimizations. 

Examples of how random forest algorithms and gradient-boosting algorithms are
implemented are provided in the next section. 

Predicting clicks on log streams
In this section, we will show you how to use tree-based methods to predict who will click
on a mobile advertisement given a set of conditions, such as region, where the ad is shown,
time of day, location of the banner, and the application delivering the advertisement.  

The dataset we will use throughout the rest of the chapter is obtained from Shioji, Enno,
2017, Adform click prediction dataset, https://doi.org/10.7910/DVN/TADBY7, Harvard
Dataverse, V2.

The main task is to build a classifier capable of predicting whether a user will click on an
advertisement given the conditions. Having such a model is very useful for ad-tech
platforms that select which ads to show to users and when. These platforms can use these
models to only show ads to users who are likely to click on the ad being delivered. 

https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7
https://doi.org/10.7910/DVN/TADBY7


Predicting User Behavior with Tree-Based Methods Chapter 4

[ 70 ]

The dataset is large enough (5 GB) to justify the use of technologies that span multiple
machines to perform the training. We will first look at how to use AWS EMR to carry out
this task with Apache Spark. We will also show how to do this with SageMaker services. 

Introduction to Elastic MapReduce (EMR)
EMR is an AWS service that allows us to run and scale Apache Spark, Hadoop, HBase,
Presto, Hive, and other big data frameworks. We will cover more EMR details in Chapter
15, Tuning Clusters for Machine Learning. However, for now, let's think of EMR as a service
that allows us to launch several interconnected machines with running software, such as
Apache Spark, that coordinates distributed processing. EMR clusters have a master and
several slaves. The master typically orchestrates the jobs, whereas the slaves process and
combine the data to provide the master with a result. This result can range from a simple
number (for example, a count of rows) to a machine learning model capable of making
predictions. The Apache Spark Driver is the machine that coordinates the jobs necessary to
complete the operation. The driver typically runs on the master node but it can also be
configured to run on a slave node. The Spark executors (the demons that Spark uses to
crunch the data) typically run on the EMR slaves. 

EMR can also host notebook servers that connect to the cluster. This way, we can run our
notebook paragraphs and this will trigger any distributed processing through Apache
Spark. There are two ways to host notebooks on Apache Spark: EMR notebooks and
JupyterHub EMR Application. We will use the first method in this chapter, and will
cover JupyterHub in Chapter 15, Tuning Clusters for Machine Learning.

Through EMR notebooks, you can launch the cluster and the notebook at the same time
through the EMR notebooks link on the console (https://console.aws.amazon.com/
elasticmapreduce/home).

https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home


Predicting User Behavior with Tree-Based Methods Chapter 4

[ 71 ]

You can create the cluster and notebook simultaneously by clicking on the Create
Notebook button, as seen in the following screenshot:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 72 ]

Once you create the notebook, it will click on the Open button, as shown in the following
screenshot:

Clicking on the Open button opens the notebook for us to start coding. The notebook is a
standard Jupyter Notebook as it can be seen in the following screenshot:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 73 ]

Alternatively, you can create the cluster separately and attach the notebook to the cluster.
The advantage of doing so is that you have access to additional advanced options.

We recommend at least 10 machines (for instance, 10 m5.xlarge nodes) to
run the code from this chapter in a timely fashion.  Additionally, we
suggest you increase the Livy session timeout if your jobs take longer than
an hour to complete. For such jobs, the notebook may get disconnected
from the cluster. Livy is the software responsible for the communication
between the notebook and the cluster. The following screenshot shows the
create cluster options including a way to extend the Livy session timeout:

On Chapter 15, Tuning Clusters for Machine Learning, we will cover more details regarding
cluster configuration. 

Training with Apache Spark on EMR
Let's now explore the training with Apache Spark on EMR.



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 74 ]

Getting the data
The first step is to upload the data to EMR. You can do this straight from the notebook or
download the dataset locally and then uploaded it to S3 using the command-line tools from
AWS (awscli). In order to use the command-line tools from AWS, you need to create AWS
access keys on the IAM console. Details on how to do that can be found here: https://
docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html.

Once you have your AWS access and secret keys, you can configure them by executing aws
configure on the command line. 

First, we will get a portion of the dataset through the following wget command:

wget -O /tmp/adform.click.2017.01.json.gz
https://dataverse.harvard.edu/api/access/datafile/:persistentId/?persistent
Id=doi:10.7910/DVN/TADBY7/JCI3VG

Next, we will unzip and upload the CSV dataset onto a s3 bucket called mastering-ml-
aws as shown by the following command:

gunzip /tmp/adform.click.2017.01.json.gz

aws s3 cp /tmp/adform.click.2017.01.json s3://mastering-ml-
aws/chapter4/training-data/adform.click.2017.01.json

Once the data is in S3, we can come back to our notebook and start coding to train the
classifier. 

Preparing the data
The EMR notebooks, as opposed to the examples we ran locally in previous chapters
(Chapter 2, Classifying Twitter Feeds with Naive Bayes and Chapter 3, Predicting House Value
with Regression Algorithms) have implicit variables to access the Spark context. In particular,
the Spark session is named spark. The first paragraph run will always initialize the context
and trigger the Spark driver.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html


Predicting User Behavior with Tree-Based Methods Chapter 4

[ 75 ]

In the following screenshot, we can see the spark application starting and a link to the
Spark UI:

The next step is to load our dataset and explore the different the first few rows by running
the following snippet:

ctr_df = spark.read.json(s3_train_path)
ctr_df.show(5)

The output of the above show command is:

The spark.read.json  method, the first command from the preceding code block, reads
the JSON data into a dataset similar to what we've done before with CSV using
spark.read.csv. We can observe our dataset has 10 features and an l column indicating
the label which we're trying to predict, that is, if the user clicked (1) or didn't click (0) in the
advertisement. You might realize that some features are multivalued (more than one value
in a cell) and some are null. To simplify the code examples in this chapter we will just pick
the first five features by constructing a new dataset and name these features f0 through f4
while also replacing null features with the value 0 and only taking the first value in the case
of multivalued features:

df = ctr_df.selectExpr("coalesce(c0[0],0) as f0",
                       "coalesce(c1[0],0) as f1",
                       "coalesce(c2[0],0) as f2",
                       "coalesce(c3[0],0) as f3",
                       "coalesce(c4[0],0) as f4",
                       "l as click")



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 76 ]

The selectExpr command above allows us to use SQL-like operations. In this particular
case we will use coalesce operation which transforms any null expressions into the value 0.
Also note that we're always just taking the first value for multivalued features.

Generally, it's a bad idea to discard features as they might carry important
predictive value. Likewise, replacing nulls for a fixed value can also be
sub-optimal. We should consider common imputation techniques for
missing values such as replacing with a point estimate (medians, modes,
and means are commonly used). Alternatively, a model can be trained to
fill in the missing value from the remaining features. In order to keep our
focus on using trees in this chapter, we won't go deeper on the issue of
missing values.

Our df dataset now looks as follows:

Now we do something quite Spark specific, which is to reshuffle the different portions of
the CSV into different machines and cache them in memory. The command to do such
thing is as follows:

df = df.repartition(100).cache()

Since we will repeatedly iterate on processing the same dataset, by loading it in memory, it
will significantly speed up any future operation made for df . The repartitioning helps to
make sure the data is better distributed throughout the cluster, hence increasing the
parallelization.

The describe() method builds a dataframe with some basic stats (min, max,
mean,  count) of the different fields in our dataset, as seen in the following screenshot:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 77 ]

We can observe that most features range from low negative values to very large integers,
suggesting these are anonymized feature values for which a hash function was applied. 
The field we're trying to predict is click, which is 1 when the user clicked on the
advertisement and 0 when the user didn't click.  The mean value for the click column
informs us that there is certain degree of label imbalance (as about 18% of the instances are
clicks). Additionally, the count row tell us that there is a total of 12,000,000 rows on our
dataset. 

Another useful inspection is to understand the cardinality of the categorical values.   The
following screenshot from our notebooks shows the different number of unique values each
feature gets:

As you can see, the f4 feature is an example of a category that has many distinct values.
These kinds of features often require special attention, as we will see later in this section. 

Decision trees and most of Spark ML libraries require our features to be numerical only. It
happens by chance that our features are already in numerical form, but these really
represent categories which were hashed into numbers. In Chapter 2, Classifying Twitter
Feeds with Naive Bayes, we learned that in order to train a classifier, we need to provide a
vector of numbers. For this reason, we need to transform our categories into numbers in
our dataset to include them in our vectors. This transformation is often called feature
encoding. There are two popular ways to do this: through one-hot encoding or categorical
encoding (also called string indexing).



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 78 ]

In the following generic examples, we assume that the site_id feature could only take up
to three distinct values: siteA, siteB, and siteC.  These examples will also illustrate the 
case in which we have string features to encode into numbers (not integer hashes as in our
dataset). 

Categorical encoding 
Categorical encoding (or string indexing) is the simplest kind of encoding, in which we
assign a number to each site value. Let's look at an example in the following table:

site_id site_id_indexed

siteA 1

siteB 2

siteC 3

One-hot encoding
In this kind of encoding, we create new binary columns for each possible site value and set
the value as 1 when the value is present, as shown in the following table:

site_id siteA siteB siteC

siteA 1 0 0

siteB 0 1 0

siteC 0 0 1

Categorical encoding is simple; however, it may create an artificial ordering of the features,
and some ML algorithms are sensitive to that. One-hot encoding has the additional benefit
of supporting multi-valued features (for example, if a row has two sites, we can set a 1 in
both columns). However, one-hot encoding adds more features to our dataset, which
increases the dimensionality. Adding more dimensions to our dataset makes the training
more complex and may reduce its predictive ability. This is known as the curse of
dimensionality. 

Let's see how we would use categorical encoding on a sample of our dataset to transform
the C1 feature (a categorical feature) into numerical values:

from pyspark.ml.feature import StringIndexer

string_indexer = StringIndexer(inputCol="f0", outputCol="f0_index")
string_indexer_model = string_indexer.fit(df)
ctr_df_indexed = string_indexer_model.transform(df).select('f0','f0_index')
ctr_df_indexed.show(5)



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 79 ]

 The preceding code first instantiates a StringIndexer that will encode column f0 into a
new column f0_index upon fitting, goes through the dataset and finds distinct feature
values that assign an index based on the popularity of such values. Then we can use
the transform() method to get indices for each value. The output of the preceding final
show() command is shown in the following screenshot:

In the above screenshot we can see the numerical value that each  raw (hashed) categorical
value was assigned to.

To perform one-hot encoding on the values, we use the OneHotEncoder transformer:

from pyspark.ml.feature import OneHotEncoder

encoder = OneHotEncoder(inputCol="f0_index", outputCol="f0_encoded")
encoder.transform(ctr_df_indexed).distinct().show(5)

The preceding commands generates the following output:

Note how the different f0 values get mapped to the corresponding boolean vector. We did
the encoding for just one feature; however, for training, we need to go through the same
process for several features. For this reason, we built a function that builds all the indexing
and encoding stages necessary for our pipeline:

def categorical_one_hot_encoding_stages(columns):
    indexers = [StringIndexer(inputCol=column,
                              outputCol=column + "_index",



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 80 ]

                              handleInvalid='keep')
                for column in columns]
    encoders = [OneHotEncoder(inputCol=column + "_index",
                              outputCol=column + "_encoded")
                for column in columns]
    return indexers + encoders

The following code builds a training pipeline, including the DecisionTree estimator:

from pyspark.ml.feature import OneHotEncoder
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import ChiSqSelector
from pyspark.ml import Pipeline
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier

categorical_columns = ['f0','f1','f2','f3','f4']
encoded_columns = [column + '_encoded' for column in categorical_columns]

categorical_stages =
categorical_one_hot_encoding_stages(categorical_columns) vector_assembler =
VectorAssembler(inputCols=encoded_columns,
                                   outputCol="features")
selector = ChiSqSelector(numTopFeatures=100, featuresCol="features",
                         outputCol="selected_features", labelCol="click")
decision_tree = DecisionTreeClassifier(labelCol="click",
                                       featuresCol="selected_features")

pipeline = Pipeline(stages=categorical_stages + [vector_assembler,
selector,
                                                 decision_tree])

In the preceding code,VectorAssembler constructs a vector with all features that require
encoding as well as the numerical features ( VectorAssembler can take as input columns
that can be vectors or scalars so you can use numerical features directly if existent in your
dataset). Given the high number of one-hot-encoded values, the feature vector can be huge
and make the trainer very slow or require massive amounts of memory. One way to
mitigate that is to use a chi-squared feature selector. In our pipeline, we have selected the
best 100 features. By best, we mean the features that have more predictive power—note
how the chi-squared estimator takes both the features and the label to decide on the best
features. Finally, we include the decision engine estimator stage, which is the one that will
actually create the classifier. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 81 ]

 If we attempt to string index features with very large cardinality, the
driver will collect all possible values (in order to keep a value-to-index
dictionary for transformation). In such an attempt, the driver will most
likely run out of memory as we're looking at millions of distinct values to
keep. For these cases, you need other strategies, such as keeping only the
features with the most predictive ability or considering only the most
popular values. Check out our article, which includes a solution to this
problem at https://medium.com/dataxutech/how-to-write-a-custom-
spark-classifier-categorical-naive-bayes-60f27843b4ad.

Training a model
Our pipeline is now constructed, so we can proceed to split our dataset for testing and
training and then we fit the model:

train_df, test_df = df.randomSplit([0.8, 0.2], seed=17)
pipeline_model = pipeline.fit(train_df)

Once this is executed, the Spark Driver will figure out the best plan for distributing the
processing necessary to train the model across many machines.

By following the Spark UI link shown at the beginning of this section, we can see the status
of the different jobs running on EMR:

https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad
https://medium.com/dataxutech/how-to-write-a-custom-spark-classifier-categorical-naive-bayes-60f27843b4ad


Predicting User Behavior with Tree-Based Methods Chapter 4

[ 82 ]

Once the model is trained, we can explore the decision tree behind it. We can do this by
inspecting the last stage of the pipeline (that is, the decision tree model). 

The following code snippet shows the result of outputting the decision tree in text format:

print(pipeline_model.stages[-1].toDebugString)

DecisionTreeClassificationModel (uid=DecisionTreeClassifier_3cc3252e8007)
of depth 5 with 11 nodes
  If (feature 3 in {1.0})
   Predict: 1.0
  Else (feature 3 not in {1.0})
   If (feature 21 in {1.0})
    Predict: 1.0
   Else (feature 21 not in {1.0})
    If (feature 91 in {1.0})
     Predict: 1.0
    Else (feature 91 not in {1.0})
     If (feature 27 in {1.0})
      Predict: 1.0
     Else (feature 27 not in {1.0})
      If (feature 29 in {1.0})
       Predict: 1.0
      Else (feature 29 not in {1.0})
       Predict: 0.0

Note how each decision is based on a feature that takes a value of 0 or 1. This is because we
have used one-hot encoding on our pipeline. If we had used the categorical encoding
(string indexing), we would have seen a condition that involves several indexed values,
such as the following example:

 If (feature 1 in {3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,17.0,27.0})
       Predict: 0.0
 Else (feature 1 not in {3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,17.0,27.0})
       Predict: 1.0

Evaluating our model
Contrary to our Twitter classification problem in Chapter 2, Classifying Twitter Feeds with
Naive Bayes, the label in this dataset is very skewed. This is because there are only a few
occasions where users decide to click on ads. The accuracy measurement we used in
Chapter 2, Classifying Twitter Feeds with Naive Bayes, would not be suitable, as a model that
never predicts a click would still have very high accuracy (all non-clicks would result in
correct predictions). Two possible alternatives for this case could be to use metrics derived
from the ROC or precision-recall curves, which can be seen in the following section.



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 83 ]

Area Under ROC Curve
The Receiver Operating Characteristic (ROC) is a representation of a trade-off between
true-positive rates and false-positive rates. True-positive rates describe how good a model
is at predicting a positive class when the actual class is positive. True-positive rates are
calculated as the ratio of true positives predicted by a model, to the sum of true positives
and false negatives. False-positive rates describe how often the model predicts the positive
class, when the actual class is negative. False-positive rates are calculated as the ratio of
false positives, to the sum of false positives and true negatives. ROC is a plot where the x
axis is represented by the false-positive rate with a range of 0-1, while the y axis is
represented as the true-positive rate. Area Under Curve (AUC) is the measure of the area
under the ROC curve. AUC is a measure of predictiveness of a classification model. 

Three examples of receiver operator curves are seen in the following screenshot:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 84 ]

In the preceding plot, the dotted line represents an example of when AUC is 1. Such AUCs
occur when all the positive outcomes are classified correctly. The solid line represents the
AUC that is 0.5. For a binary classifier, the AUC is 0.5 when the predictions coming from the
machine learning model are similar to randomly generating an outcome. This indicates that
the machine learning model is no better than a random-number generator in predicting
outcomes. The dashed line represents the AUC that is 0.66. This happens when a machine
learning model predicts some examples correctly, but not all. However, if the AUC is higher
than 0.5 for the binary classifier, the model is better than just randomly guessing the
outcome. However, if it is below 0.5, this means that the machine learning model is worse
than a random-outcome generator. Thus, AUC is a good measure of comparing machine
learning models and evaluating their effectiveness.

Area under the precision-recall curve
The precision-recall curve represents a tradeoff between precision and recall in a prediction
model. Precision is defined as the ratio of true positives to the total number of positive 
predictions made by the model. Recall is defined as the ratio of positive predictions to the 
total number of actual positive predictions. 

Note that the precision-recall curve does not model true negative values.
This is useful in cases of the unbalanced dataset. ROC curves may provide
a very optimistic view of a model if the model is good at classifying true
negatives and generates a smaller number of false positives. 

The following plot shows an example of a precision-recall curve:



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 85 ]

In the preceding screenshot, the dashed line shows when the area under precision-recall
curve is 0.5. This indicates that the precision is always 0.5, which is similar to a random-
number generator. The solid line represents the precision-recall curve that is better than
random. The precision recall curve also can be used to evaluate a machine learning model,
similar to the ROC area. However, the precision-recall curve should be used when the
dataset is unbalanced, and the ROC should be used when the dataset is balanced.

So, going back to our example, we can use Spark's BinaryClassificationEvaluator to
calculate the scores by providing the actual and predicted labels on our test dataset. First
we will apply the model on our test dataset to get the predictions and scores:

test_transformed = pipeline_model.transform(test_df)

By applying the previous transformation test_transformed will have all columns
included in test_df plus an additional one called rawPrediction which will have a score
which can be used for evaluation:

from pyspark.ml.evaluation import BinaryClassificationEvaluator

evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction",
                                          labelCol="click")
evaluator.evaluate(test_transformed,
                   {evaluator.metricName: "areaUnderROC"})



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 86 ]

The output of the preceding command is 0.43. The fact that we got an ROC metric lower
than 0.5 means that our classifier is even worse than random classifier and hence it is not a
good model for predicting clicks! In the next section, we will show how to use ensemble
models to improve our predictive ability. 

Training tree ensembles on EMR
Decision trees can be useful for understanding the decisions made by our classifier,
especially when decision trees are small and readable. However, decision trees tend to
overfit the data (by learning the details of the training dataset and not being able to
generalize on new data). For this reason, ML practitioners tend to use tree ensembles, such
as random forests and gradient-boosted trees, which are explained in the previous sections
in this chapter under Understanding gradient boosting algorithms and Understanding random
forest algorithms.

In our code examples, to use random forests or gradient boosted trees, we just need to
replace the last stage of our pipeline with the corresponding constructor:

from pyspark.ml.classification import RandomForestClassifier

random_forest = RandomForestClassifier(labelCol="click",
                                       featuresCol="features")

pipeline_rf = Pipeline(stages=categorical_stages + \
                              [vector_assembler, random_forest])

Note how we get a better ROC value with random forests on our sampled dataset:

rf_pipeline_model = pipeline_rf.fit(train_df)

evaluator.evaluate(rf_pipeline_model.transform(test_df),
                   {evaluator.metricName: "areaUnderROC"})

>> 0.62

We can see that now we get a ROC greater than 0.5 which means that our model has
improved an is now better than random guessing. Similarly, you can train a gradient
boosted tree with the pyspark.mllib.tree.GradientBoostedTrees class. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 87 ]

Training gradient-boosted trees with the
SageMaker services
In the Training a model and Evaluating our model sections, we learned how to build and
evaluate a random forest classifier using Spark on EMR. In this section, we will see how to
train a gradient boosted tree using the SageMaker services through the SageMaker
notebooks. The XGBoost SageMaker service allows us to train gradient-boosted trees in a
distributed fashion. Given that our clickthrough data is relatively large, it will be
convenient to use such a service. 

Preparing the data
In order to use the SageMaker services, we will need to place our training and testing data
in S3. The documentation at https://docs.aws.amazon.com/sagemaker/latest/dg/
xgboost.html requires us to drop the data as CSV files where the first column indicates the
training label (target feature) and the rest of the columns represent the training features
(other formats are supported but we will use CSV in our example). For splitting and
preparing the data in this way, EMR is still the best option as we want our data preparation
to be distributed as well. Given our testing and training Spark datasets from the last
Preparing the data section, we can apply the pipeline model, not for getting predictions in
this case, but instead, for obtaining the selected encoded features for each row.  

In the following snippet, for both test_df and train_df we apply the model
transformation:

test_transformed = model.transform(test_df)
train_transformed = model.transform(train_df)

The following screenshot shows the last three columns of the test_transformed
dataframe:

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html


Predicting User Behavior with Tree-Based Methods Chapter 4

[ 88 ]

The transformed datasets includes the feature vector column (named selected_features
with a size of 100). We need to transform these two columns into a CSV with 101 columns
(the click and the selected_features vectors flattened out). A simple transformation in
Spark allows us to do this. We define a deconstruct_vector function, which we will use
to obtain a Spark dataframe with the label and each vector component as a distinct column.
We then save that to S3 both for training and testing as a CSV without headers, as
SageMaker requires.

In the following code snippet, we provide the deconstruct_vector function as well as
the series of transformations needed to save the dataframe:

def deconstruct_vector(row):
    arr = row['selected_features'].toArray()
    return tuple([row['click']] + arr.tolist())

df_for_csv = train_transformed.select("click", "selected_features") \
                .rdd.map(deconstruct_vector).toDF()

df_for_csv.write.csv('s3://mastering-ml-aws/chapter4/train-trans-vec-
csv-1/',
                     header=False)

In a similar fashion, we will save an additional CSV file that will not include the label (just
the features) under the s3://mastering-ml-aws/chapter4/test-trans-vec-csv-no-
label path. We will use this dataset to score the testing dataset through the SageMaker
batch transform job in the next section, Training with SageMaker XGBoost.

Training with SageMaker XGBoost   
Now that our datasets for training and testing are in S3 in the right format, we can launch
our SageMaker notebook instance and start coding our trainer. Let's perform the following
steps:

Instantiate the SageMaker session, container, and variables with the location of1.
our datasets:

import sagemaker
from sagemaker import get_execution_role
import boto3

sess = sagemaker.Session()
role = get_execution_role()
container = sagemaker.amazon.amazon_estimator.get_image_uri('us-
east-1',
'xgboost',



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 89 ]

'latest')

s3_validation_data = \
    's3://mastering-ml-aws/chapter4/test-trans-vec-csv-1/'
s3_train_data = \
    's3://mastering-ml-aws/chapter4/train-trans-vec-csv-1/'
s3_test_data = \
    's3://mastering-ml-aws/chapter4/test-trans-vec-csv-no-label/'
s3_output_location = \
    's3://mastering-ml-aws/chapter4/sagemaker/output/xgboost/'

Create a classifier by instantiating a SageMaker estimator and providing the basic2.
parameters, such as the number and type of machines to use (details can be
found in the AWS documentation at https://sagemaker.readthedocs.io/en/
stable/estimators.html ):

sagemaker_model = sagemaker.estimator.Estimator(container,
    role,
    train_instance_count=1,
    train_instance_type='ml.c4.4xlarge',
    train_volume_size=30,
    train_max_run=360000,
    input_mode='File',
    output_path=s3_output_location,
    sagemaker_session=sess)

Set the hyperparameters of our trainer. The details can be found in the3.
documentation (and we will cover it in more detail in Chapter 14, Optimizing
SageMaker and Spark Machine Learning Models). The main parameter to look at
here is the objective, which we have set for binary classification (using a logistic
regression score, which is the standard way XGBoost performs classification).
XGBoost can also be used for other problems, such as regressions or multi-class
classification:

sagemaker_model.set_hyperparameters(objective='binary:logistic',
    max_depth=5,
    eta=0.2,
    gamma=4,
    min_child_weight=6,
    subsample=0.7,
    silent=0,
    num_round=50)

https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html
https://sagemaker.readthedocs.io/en/stable/estimators.html


Predicting User Behavior with Tree-Based Methods Chapter 4

[ 90 ]

Before fitting the model, we need to specify the location and format of the input4.
(there are a couple of formats accepted; we have chosen CSV for our example):

train_data = sagemaker.session.s3_input(s3_train_data,
    distribution='FullyReplicated',
    content_type='text/csv',
    s3_data_type='S3Prefix')

validation_data = sagemaker.session.s3_input(s3_validation_data,
    distribution='FullyReplicated',
    content_type='text/csv',
    s3_data_type='S3Prefix')

data_channels = {'train': train_data,
                 'validation': validation_data}

sagemaker_model.fit(inputs=data_channels,
                    logs=True)

Invoking the fit function will train the model with the data provided (that is,5.
the data we saved in S3 through our EMR/Spark preparation):

INFO:sagemaker:Creating training-job with name:
xgboost-2019-04-27-20-39-02-968
2019-04-27 20:39:03 Starting - Starting the training job...
2019-04-27 20:39:05 Starting - Launching requested ML
instances......
...
train-error:0.169668#011validation-error:0.169047
2019-04-27 20:49:02 Uploading - Uploading generated training model
2019-04-27 20:49:02 Completed - Training job completed
Billable seconds: 480

The logs will show the some details about the training and validation error being optimized
by XGBoost, as well as the status of the job and training costs.

Applying and evaluating the model
The following steps will show you how to use sagemaker to create batch predictions so
you can evaluate the model.



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 91 ]

In order to obtain predictions, we can use a batch transform job:

transformer = sagemaker_model.transformer(instance_count=1,
                                          instance_type='ml.m4.2xlarge',
                                          output_path=s3_output_location)
transformer.transform(s3_test_data,
                      content_type='text/csv',
                      split_type='Line')
transformer.wait()

For every file in the input s3 directory, the batch transform job will produce a file with the
scores:

aws s3 ls s3://mastering-ml-aws/chapter4/sagemaker/output/xgboost/ | head

The preceding command generates the following output:

2019-04-28 01:29:58 361031 part-00000-19e45462-84f7-46ac-87bf-d53059e0c60c-
c000.csv.out
2019-04-28 01:29:58 361045 part-00001-19e45462-84f7-46ac-87bf-d53059e0c60c-
c000.csv.out

We can then load this single-column CSV file into a pandas dataframe:

import pandas as pd

scores_df = pd.read_csv(output_path + \
   'part-00000-19e45462-84f7-46ac-87bf-d53059e0c60c-c000.csv.out',
    header=None,
    names=['score'])

These scores represent probabilities (derived via logistic regression). If we had set the
objective to binary: hinge, we would get actual predictions instead. Choosing which kind to
use depends on the type of application. In our case, it seems useful to gather probabilities,
as any indication of a particular user being more likely to perform clicks would help to
improve the marketing targeting.

One of the advantages of SageMaker XGBoost is that it provides a serialization in S3 of a
compatible XGBoost model with Python’s standard serialization library (pickle). As an
example, we will take a portion of our test data in S3 and run the model to get scores. With
this, we can compute the area under the ROC curve by performing the following steps:

Locate the model tarball in s3:1.

aws s3 ls --recursive s3://mastering-ml-
aws/chapter4/sagemaker/output/xgboost/ | grep model



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 92 ]

The output looks as follows:

chapter4/sagemaker/output/xgboost/xgboost-2019-04-27-20-39-02-968/o
utput/model.tar.gz

Copy the model from S3 to our local directory and uncompress the tarball:

aws s3 cp s3://mastering-ml-
aws/chapter4/sagemaker/output/xgboost/xgboost-2019-04-27-20-39-02-9
68/output/model.tar.gz /tmp/model.tar.gz
tar xvf model.tar.gz

Here is the output of the preceding command, showing the name of the file
uncompressed from the tarball:

xgboost-model

Once the model is locally downloaded and untared, we can load the model in3.
memory via the pickle serialization library:

import xgboost
import pickle as pkl

model_local = pkl.load(open('xgboost-model', 'rb'))

Define the names of our columns (f0 to f99 for the features, and click as the4.
label) and load the validation data from S3:

column_names = ['click'] + ['f' + str(i) for i in range(0, 100)]
validation_df = pd.read_csv(s3_validation_data + \
                            'part-00000-25f35551-
ffff-41d8-82a9-75f429553035-c000.csv',
                            header=None,
                            names=column_names)

To create predictions with xgboost, we need to assemble a matrix from our5.
pandas dataframe. Select all columns except the first one (which is the label), and
then construct a DMatrix. Call the predict method from the xgboost model to
get the scores for every row:

import xgboost
matrix = xgboost.DMatrix(validation_df[column_names[1:]])
validation_df['score'] = model_local.predict(matrix)



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 93 ]

In the following screenshot, the reader can see how the dataframe looks:

Given the click column and the score column, we can construct the ROC AUC:6.

from sklearn.metrics import roc_auc_score
roc_auc_score(validation_df['click'], validation_df['score'])

For our sample, we get a AUC value of 0.67, which is comparable to the value we got with
Spark's random forests.

In this chapter, we did not focus on building the most optimal model for our dataset.
Instead, we focused on providing simple and popular transformations and tree models you
can use to classify large volumes of data.

Summary
In this chapter, we covered the basic theoretical concepts for understanding tree ensembles
and showed ways to train and evaluate these models in EMR, through Apache Spark, as
well as through the SageMaker XGBoost service. Decision tree ensembles are one of the
most popular classifiers, for many reasons:

They are able to find complex patterns in relatively short training time and with
few resources. The XGBoost library is known as the most popular classifier
among Kaggle competition winners (these are competitions held to find the best
model for an open dataset).
It's possible to understand why the classifier is predicting a given value.
Following the decision tree paths or just looking at the feature importance are
quick ways to understand the rationale behind the decisions made by tree
ensembles. 
Implementations of distributed training are available through Apache Spark and
XGBoost. 



Predicting User Behavior with Tree-Based Methods Chapter 4

[ 94 ]

In the next chapter, we will look into how to use machine learning to cluster customers
based on their behavioral patterns. 

Exercises
What is the main difference between random forests and gradient-boosted trees?1.
Explain why the Gini Impurity may be interpreted as the misclassification rate.2.
Explain why it is necessary to perform feature encoding for categorical features.3.
In this chapter, we provided two ways to do feature encoding. Find one other4.
way to encode categorical features. 
Explain why the accuracy metric we used in Chapter 2, Classifying Twitter Feeds5.
with Naive Bayes, is not suitable for predicting clicks on our dataset.
Find other objectives we can use for the XGBoost algorithm. When would you6.
use each objective?



5
Customer Segmentation Using

Clustering Algorithms
This chapter will introduce the main clustering algorithms by exploring how to apply them
to customer segmentation based on their behavioral patterns. In particular, we will
demonstrate how Apache Spark and Amazon SageMaker can seamlessly interoperate to
perform clustering. Throughout this chapter, we will be using the Kaggle Dataset E-
Commerce data from Fabien Daniel, which can be downloaded from https://www.
kaggle.com/fabiendaniel/customer-segmentation/data. 

Let's take a look at the topics we will be  covering:

Understanding how clustering algorithms work
Clustering with Apache Spark on Elastic MapReduce (EMR)
Clustering using SageMaker through Spark integration

Understanding How Clustering Algorithms
Work
Cluster analysis, or clustering, is a process of grouping a set of observations based on their
similarities. The idea is that the observations in a cluster are more similar to one another
than the observations from other clusters. Hence, the outcome of this algorithm is a set of
clusters that can identify the patterns in the dataset and arrange the data into different
clusters.

https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data
https://www.kaggle.com/fabiendaniel/customer-segmentation/data


Customer Segmentation Using Clustering Algorithms Chapter 5

[ 96 ]

Clustering algorithms are referred to as unsupervised learning algorithms. Unsupervised 
learning does not depend on predicting ground truth and is designed to discover the
natural patterns in the data. Since there is no ground truth provided, it is difficult to
compare different unsupervised learning models. Unsupervised learning is generally used
for exploratory analysis and dimensionality reduction. Clustering is an example of
exploratory analysis. In this task, you are looking for patterns and structure in the dataset.

This is different than the algorithms we have been studying so far in the book. Naive
Bayes, linear regression, and decision trees algorithms are all examples of supervised
learning. There is an assumption that each dataset has a set of observations and an event
class associated with those observations. Hence, the data is already grouped based on the
actual outcome event for each observation. However, not every dataset has labeled
outcomes associated with each event. For example, consider a dataset where you have
information regarding each transaction on an e-commerce website: 

SKU Item name Customer ID Country
12423 iPhone 10 USA
12423 iPhone 11 USA
12423 iPhone 12 USA
11011 Samsung S9 13 UK
11011 Samsung S9 10 USA
11011 Samsung S9 14 UK

This dataset is a list of transactions but does not have any class variable that informs us
regarding what kind of users buy specific products. Hence, if the task is to identify patterns
from this dataset, we cannot use any algorithms that can predict a specific event. That is
where clustering algorithms come into the picture. We want to explore whether we can find
trends in the transactions on the website based on the dataset. Let's look at a simple
example. Consider that the dataset only had one feature: Item name. We will discover that
the data can be arranged in three clusters, namely, iPhone, Samsung S9, and Pixel 2.
Similarly, if we consider that the only feature to cluster on is Country, the data can be
clustered into two clusters: USA and UK. Once you generate the clusters, you can analyze
the statistics in each cluster to understand the type of audience buying certain things. 

However, in most of your experiences, you will have to cluster the data based on more than
one feature. There are many clustering algorithms that you can deploy in clustering the
data into clusters. The following diagram shows an example of how clusters would look for
the dataset:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 97 ]

Clustering helps us get an outcome where we can group the data into two clusters and
understand the patterns in each cluster. We may be able to cluster the customers into users
who buy a certain kind of phone. By analyzing the clusters, we can learn the patterns of
which users buy an iPhone or Samsung S9 phone. 

 In this chapter, we will study two common clustering approaches: 

k-means clustering
Hierarchical clustering

k-means clustering 
The k-means clustering algorithm aims to cluster a dataset into k clusters by selecting k 
centroids in the dataset. Each record is evaluated based on its distance to the centroid and
assigned a cluster. Centroids are observations that are at the center of each cluster. To
define k-means clustering formally, we are optimizing the Within-Cluster Sum of the
Square (WCSS) distance of observations. Hence, the most optimal clustering would ensure
that each cluster has all the observations close to its centroid, and as far away from the
other centroids as possible. 

There are two important parameters in k-means clustering. Firstly, we need to discover the
centroids in our dataset. One of the popular methodologies for selecting centroids is called
Random partitioning. This methodology uses a technique called Expectation
Maximization (EM) to achieve high-quality clusters. In the first step, we randomly assign a
cluster to each observation. Once each observation is assigned to a cluster, we calculate the
quality of the cluster using the WCSS methodology:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 98 ]

J represents the WCSS score for the clusters that are generated where we have M
observations and have generated K clusters.  is 1 if the observation i belongs to cluster
k, and 0 if the observation i does not belong to cluster k.  is the observation, while  is
the centroid of cluster k. The difference between  and  represents the distance between
the observation and the centroid. Our aim is to minimize the value of J.

In the next step, we calculate new centroids again based on the current clusters in the first
step. This is the maximization step in the EM algorithm, where we try to step toward more
optimal cluster assignments for records. The new centroid values are calculated using the
following formula:

This represents the fact that we recalculate the centroids based on the mean of the clusters
created in the previous steps. Based on the new centroids, we assign each observation in the
dataset to a centroid based on their distance to the centroids. Distance is the measure of
similarity between two observations. We will discuss the concept of how to calculate
distance later in this section. We recalculate the WCSS score for the new clusters and repeat
the minimization step again. We repeat these steps until the assignments of the
observations in the cluster do not change. 

Although the random partition algorithm allows the k-means algorithm to discover
centroids with a low WCSS score, they do not guarantee a global optimum solution. This is
because the EM algorithm may greedily find a local optimum solution and stop exploring,
for a more optimum solution. Also, selecting different random centroids in the first step
may lead to different optimal solutions at the end of this algorithm. 

To address this issue, there are other algorithms such as the Forgy algorithm, where we 
choose random observations from the dataset as centroids in the first step. This leads to
more spread out centroids in the first step, compared to the random partition algorithm. 

As we discussed before, we have to calculate the distance between the observations and the
centroid of the cluster. There are various methodologies to calculate this distance. The two
popular methodologies are the Euclidean distance and the Manhattan distance. 



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 99 ]

Euclidean distance
The Euclidean distance between two points is the length of the line connecting them. For
the n-dimensional points P and Q, where both the vectors have n values, the Euclidean
distance is calculated using this formula: 

If the values of the data points are categorical values, then  is 1 if both the
observations have the same values for a feature and 0 if the observations have different
values. For continuous variables, we can calculate the normalized distance between the
values of the attributions. 

Manhattan distance
The Manhattan distance is the sum of absolute differences between two data points. For
the n-dimensional points P and Q, where both the vectors have n values, we calculate the
Manhattan distance using the following formula:

The Manhattan distance reduces the effects of outliers in the data, and hence, should be
used when we have noisy data with a lot of outliers. 

Hierarchical clustering
Hierarchical clustering aims to build a hierarchical structure of clusters from the
observations. There are two strategies for generating the hierarchy:

Agglomerative clustering: In this approach, we use a bottom-up methodology,
where each observation starts as its own cluster and clusters are merged at each
stage of generating a hierarchy. 
Divisive clustering: In this approach, we use a top-down methodology, where
we divide the observations into smaller clusters as we move down the stages of
the hierarchy. 



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 100 ]

Agglomerative clustering
In agglomerative clustering, we start with each observation as its own cluster and combine
these clusters based on certain criteria so that we end up with one cluster that contains all
the observations. Similar to k-means clustering, we use distance metrics such as the
Manhattan distance and the Euclidean distance in order to calculate the distance between
two observations. We also use linkage criteria, which can represent the distance between
two clusters. In this section, we study three linkage criteria, namely, complete-linkage
clustering, single-linkage clustering, and average-linkage clustering. 

Complete-linkage clustering calculates the distance between two clusters as the maximum
distance between observations from two clusters and is represented as follows:

Single-linkage clustering calculates the distance between two clusters as the minimum
distance between observations from two clusters and is represented as follows:

Average-linkage clustering calculates the distance between each observation from cluster A
with cluster B and normalizes it based on the observations in cluster A and B. This is
represented as follows:

Thus, in the first step of agglomerative clustering, we use distance methodology to calculate
the distance between each observation and merge observations with the smallest distance.
For the second step, we calculate the distances between each cluster using linkage criteria
based on the methodologies just presented. We run the necessary iterations until we only
have one cluster left with all observations in it.

The following diagram shows how agglomerative clustering would work for observations
with only one continuous variable:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 101 ]

In this example, we have five observations with one continuous feature. In the first
iteration, we look at the Euclidean distance between each observation and can deduce that
records 1 and 2 are closest to each other. Hence, in the first iteration, we merge the
observations 1 and 2. In the second iteration, we discover that the observations 10 and 15
are the closest records and create a new cluster from it. In the third iteration, we observe
that the distance between the (1,2) cluster and the (10,15) cluster is smaller than any of those
clusters and observation 90. Hence, we create a cluster of (1,2,10,15) in the third iteration.
Finally, in the last iteration, we add element 90 to the cluster and terminate the process of
agglomerative clustering. 

Divisive clustering
Divisive clustering is a top-bottom approach where we first start with a large cluster with
all observations and, at iteration, we split the clusters into smaller clusters. The process is
similar to using distances and linkage criteria such as agglomerative clustering. The aim is
to find an observation or cluster in the larger cluster that has the furthest distance from the
rest of the cluster. In each iteration, we look at a cluster and recursively split the larger
clusters by finding clusters that have the farthest distance from one another. Finally, the
process is stopped when each observation is its own cluster. Divisive clustering uses an
exhaustive search to find the perfect split in each cluster, which may be computationally
very expensive. 



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 102 ]

Hierarchical clustering approaches are computationally more expensive than a k-means
approach. Hence, even on medium-sized datasets, hierarchical cluster approaches may
struggle to generate results compared to a k-means approach. However, since we do not
need to start with a random partition at the start of hierarchical clustering, they remove the
risks in the k-means approach where a bad random partition may hurt the clustering
process. 

Clustering with Apache Spark on EMR
In this section, we step through the creation of a clustering model capable of grouping 
consumer patterns in three distinct clusters. The first step will be to launch an EMR
notebook along with a small cluster (a single m5.xlarge node works fine as the dataset we
selected is not very large). Simply follow these steps:

The first step is to load the dataframe and inspect the dataset:1.

df = spark.read.csv(SRC_PATH + 'data.csv',
                    header=True,
                    inferSchema=True)

The following screenshot shows the first few lines of our df dataframe:

As you see, the dataset involves transactions of products bought by different
customers at different times and in different locations. We attempt to cluster these
customer transactions using k-means by looking at three factors:

The product (represented by the StockCode column)
The country where the product was bought
The total amount spent by the customer across all products



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 103 ]

Note that this last factor is not directly available in the dataset, but it seems like an
intuitively valuable feature (whether the client is a big spender or not).
Oftentimes, during our feature preparation, we need to find aggregate values and
plug them into our dataset.

On this occasion, we first find the total amount spent by each customer by2.
multiplying the Quantity and UnitPrice columns on a new column:

df = df.selectExpr("*",
                   "Quantity * UnitPrice as TotalBought")

The following screenshot shows the first few lines of our modified df dataframe:

Then, we proceed to aggregate the TotalBought column by a customer:3.

customer_df = df.select("CustomerID","TotalBought")
   .groupBy("CustomerID")
   .sum("TotalBought")
   .withColumnRenamed('sum(TotalBought)','SumTotalBought')

The following screenshot shows the first few lines of the customer_df
dataframe:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 104 ]

We can then join back this new column back to our original dataset based on the4.
customer:

from pyspark.sql.functions import *
joined_df = df.join(customer_df, 'CustomerId')

The following screenshot shows the first few lines of the joined_df dataframe:

Note that two of the features that we are interested in using for clustering (Country and
StockCode) are categorical. Hence, we need to find a way to encode those two numbers,
similar to what we did in the previous chapter. String indexing these features would not be
suitable in this case, as k-means works by computing distances between data points.
Distances between artificial indices assigned to string values do not convey a lot of
information. Instead, we apply one hot encoding to these features so that the vector
distances represent something meaningful (note that two data points coinciding on most
vector components have a cosine or Euclidean distance closer to 0).

Our pipeline will consist of two one hot encoding steps (for Country and Product), and a
column that represents whether a customer is a big, normal, or small spender. To determine
this, we discretize the SumTotalBought column into three values using a
QuantileDiscretizer, which will result in three buckets depending on the quantile each
customer falls into. We use the vector assembler to compile a vector of features. Given that
the k-means algorithm works by computing distances, we normalize the feature vector so
that the third feature (spender bucker) does not have a higher influence on the distance, as
it has larger absolute values in the vector component. Finally, our pipeline will run the k-
means estimator.

In the following code block, we define the stages of our pipeline and fit a model:1.

from pyspark.ml import Pipeline
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import Normalizer
from pyspark.ml.feature import OneHotEncoder
from pyspark.ml.feature import QuantileDiscretizer
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 105 ]

stages = [
   StringIndexer(inputCol='StockCode',
                 outputCol="stock_code_index",
                 handleInvalid='keep'),
   OneHotEncoder(inputCol='stock_code_index',
                 outputCol='stock_code_encoded'),
   StringIndexer(inputCol='Country',
                 outputCol='country_index',
                 handleInvalid='keep'),
   OneHotEncoder(inputCol='country_index',
                 outputCol='country_encoded'),
   QuantileDiscretizer(numBuckets=3,
                       inputCol='SumTotalBought',
                       outputCol='total_bought_index'),
   VectorAssembler(inputCols=['stock_code_encoded',
                              'country_encoded',
                              'total_bought_index'],
                   outputCol='features_raw'),
   Normalizer(inputCol="features_raw",
              outputCol="features", p=1.0),
   KMeans(featuresCol='features').setK(3).setSeed(42) ]

pipeline = Pipeline(stages=stages)
model = pipeline.fit(joined_df)

Once we have a model, we apply that model to our dataset to obtain the clusters2.
each transaction falls into:

df_with_clusters = model.transform(joined_df).cache()

The following screenshot shows the first lines of the df_with_clusters
dataframe:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 106 ]

Note the new prediction column, which holds the value of cluster each row3.
belongs to. We evaluate how well the clusters were formed by using the
silhouette metric, which measures how similar data points are within their
cluster compared to other clusters:

from pyspark.ml.evaluation import ClusteringEvaluator

evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(df_with_clusters)

In this example, we got a value of 0.35, which is average as a clustering score
(ideally it's near 1.0, but at least it's positive). One main reason for not having a
larger value is because we did not reduce the dimensionality of our vectors.
Typically, before clustering, we apply some transformation for reducing the
cardinality of the feature vector, such as principal component analysis (PCA).
We didn't include such a step in this example for simplicity.

We can now examine each cluster to have a sense of how the data was clustered.4.
The first thing to look at is the size of each cluster. As we can see in the following,
the clusters vary in size, where one cluster captures more than half of the data
points:

df_with_clusters
.groupBy("prediction")
.count()
.toPandas()
.plot(kind='pie',x='prediction', y='count')

The following diagram shows the relative sizes of the different clusters:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 107 ]

If we look at the countries contained on each cluster, we can see that two clusters5.
just contain data points from the UK, and the third cluster only contains points
from the rest of the countries. We first inspect the counts for cluster 0:

df_with_clusters \
.where(df_with_clusters.prediction==0) \
.groupBy("Country") \
.count() \
.orderBy("count", ascending=False) \
.show()

+--------------+------+
| Country      | count|
+--------------+------+
|United Kingdom|234097|
+--------------+------+

Similarly, the count for cluster 1 is displayed:

df_with_clusters \
.where(df_with_clusters.prediction==1) \
.groupBy("Country") \
.count() \
.orderBy("count", ascending=False) \
.show()

+--------------+------+
| Country .    | count|
+--------------+------+
|United Kingdom|127781|
+--------------+------+

Finally, the count for cluster 2 is shown:

df_with_clusters \
.where(df_with_clusters.prediction==2) \
.groupBy("Country") \
.count() \
.orderBy("count", ascending=False) \
.show()

+---------------+-----+
| Country       |count|
+---------------+-----+
| Germany       | 9495|
| France        | 8491|



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 108 ]

.

.
| USA           | 291 |
+---------------+-----+

An interesting observation is that the different clusters seem to have very6.
different spending profiles:

pandas_df = df_with_clusters \
   .limit(5000) \
   .select('CustomerID','InvoiceNo','StockCode',
           'Description','Quantity','InvoiceDate',
           'UnitPrice','Country','TotalBought',
            'SumTotalBought','prediction') \
   .toPandas()

pandas_df.groupby('prediction') \
.describe()['SumTotalBought']['mean'] \
.plot(kind='bar',
      title = 'Mean total amount bought per cluster')

The preceding plot() command produces the following diagram:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 109 ]

To have a sense of how each cluster classifies the products, we look at the7.
product description field of the different clusters. A nice visual representation is
to use a word cloud with the words that appear on the product descriptions of
each cluster. Using the Python wordcloud library, we can create a function that
strips out the words of the products and constructs a wordcloud:

import itertools
import re
from functools import reduce
import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS

def plot_word_cloud(description_column):
   list_of_word_sets = description_column \
        .apply(str.split) \
        .tolist()
   text = list(itertools.chain(*list_of_word_sets))
   text = map(lambda x: re.sub(r'[^A-Z]', r'', x), text)
   text = reduce(lambda x, y: x + ' ' + y, text)
   wordcloud = WordCloud(
       width=3000,
       height=2000,
       background_color='black',
       stopwords=STOPWORDS,
       collocations=False).generate(str(text))
   fig = plt.figure(
       figsize=(10, 5),
       facecolor='k',
       edgecolor='k')
   plt.imshow(wordcloud, interpolation='bilinear')
   plt.axis('off')
   plt.tight_layout(pad=0)
   plt.show()

We call this function on each cluster and obtain the following:8.

plot_word_cloud(pandas_df[pandas_df.prediction==0].Description)



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 110 ]

The resulting word cloud for cluster 0 is as follows:

Take a look at the following code:9.

plot_word_cloud(pandas_df[pandas_df.prediction==1].Description)

The resulting word cloud for cluster 1 is as follows:



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 111 ]

Take a look at the following code:

plot_word_cloud(pandas_df[pandas_df.prediction==2].Description)

The resulting word cloud for cluster 2 is as follows:

We can see in the word clouds that, despite some very common words, the relative
importance of a few words such as Christmas or retrospot comes out with a higher weight on
one of the clusters. 

Clustering with Spark and SageMaker on EMR
In this section, we will show how Spark and SageMaker can work together seamlessly
through code integration. 

In the previous chapter, regarding decision trees, we performed the data preparation in
Apache Spark through EMR and uploaded the prepared data in S3 to then open a
SageMaker notebook instance using the SageMaker Python library to perform the training.
There is an alternative way of doing the same thing, which, on many occasions, is more
convenient, using the sagemaker_pyspark library. This library allows us to perform the
training stage through SageMaker services just by adding a special stage to our pipeline. To
do this, we will define a pipeline identical to the one we wrote in the previous section, with
the difference being the last stage.



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 112 ]

Instead of including Apache Spark's implementation of KMeans, we will
use  KMeansSageMakerEstimator:

Firstly, we will import all the necessary dependencies:1.

from pyspark.ml import Pipeline
from pyspark.ml.clustering import KMeans
from pyspark.ml.feature import Normalizer
from pyspark.ml.feature import OneHotEncoder
from pyspark.ml.feature import QuantileDiscretizer
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler
from sagemaker_pyspark import IAMRole
from sagemaker_pyspark.algorithms import KMeansSageMakerEstimator

Next, we start by defining the IAM role to use and the full pipeline:2.

role = 'arn:aws:iam::095585830284:role/EMR_EC2_DefaultRole'

kmeans = KMeansSageMakerEstimator(
  sagemakerRole=IAMRole(role),
  trainingInstanceType="ml.m4.xlarge",
  trainingInstanceCount=1,
  endpointInstanceType="ml.m4.xlarge",
  endpointInitialInstanceCount=1)
kmeans.setK(3)
kmeans.setFeatureDim(3722)

stages = [
   StringIndexer(inputCol='StockCode',
outputCol="stock_code_index", handleInvalid='keep'),
   OneHotEncoder(inputCol='stock_code_index',
outputCol='stock_code_encoded'),
   StringIndexer(inputCol='Country', outputCol='country_index',
handleInvalid='keep'),
   OneHotEncoder(inputCol='country_index',
outputCol='country_encoded'),
   QuantileDiscretizer(numBuckets=3,
inputCol='SumTotalBought',outputCol='total_bought_index'),
   VectorAssembler(inputCols=['stock_code_encoded',
'country_encoded', 'total_bought_index'],
                   outputCol='features_raw'),
   Normalizer(inputCol="features_raw",
              outputCol="features", p=1.0),
              kmeans ]

pipeline = Pipeline(stages=stages)
model = pipeline.fit(joined_df)



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 113 ]

KMeansSageMakerEstimator implements the estimator interface from Apache Spark, so it
is included as any other estimator or transformer on our pipelines. Through the
KMeansSageMakerEstimator constructor, we define the amount and type of machines to
use as well as the IAM role. We explain the purpose of the role in the next
subsection, Understanding the purpose of the IAM Role. Additionally, we set the number of
clusters we want to create (value of k) as well as the length of the vectors we'll be using for
training (which we find by examining the output rows from the last section).

Let's look at what happens under the hood when we call fit() on the pipeline. The first
part of the pipeline works exactly the same as before, whereby the different stages launch
Spark jobs that run a series of transformations to the dataset by appending columns
(for example, the encoded vectors or discretized features). The last stage, being a
SageMaker estimator, works in a slightly different way. Instead of using the EMR cluster
resources to compute and train the clustering model, it saves the data in S3 and makes an
API call to the SageMaker KMeans service pointing to that S3 temporary location. The
SageMaker service, in turn, spins up EC2 servers to perform the training and creates both a
SageMaker model and endpoint. Once the training is complete, the
KMeansSageMakerEstimator stores a reference to the newly created endpoint that is used
each time the model's transfom() method is called.

You can find the models and endopoints created by  KMeansSageMakerEstimator by
inspecting the SageMaker AWS console at https://console.aws.amazon.com/sagemaker/.

Now, follow these steps:

Let's examine what happens when we call the transform() method of the1.
pipeline:

df_with_clusters = model.transform(joined_df)

The first series of transformations (the data preparation stages) will run on the EMR cluster
through Spark jobs. As the final transformation is a SageMaker model, it relies on the
SageMaker endpoint to obtain the predictions (in our case, the cluster assignment).

You should remember to delete the endpoint (for example using the
console) once it's no longer required.

https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/
https://console.aws.amazon.com/sagemaker/


Customer Segmentation Using Clustering Algorithms Chapter 5

[ 114 ]

Then, run the following code:2.

df_with_clusters.show(5)

Take a look at the following screenshot:

(The image has been truncated to show just the last few columns.)

Note how the two columns were added by the  distance_to_cluster and
closest_cluster pipelines.

By instructing the cluster evaluator to use this column, we can evaluate the3.
clustering ability:

evaluator = ClusteringEvaluator()
evaluator.setPredictionCol("closest_cluster")
silhouette = evaluator.evaluate(df_with_clusters)

The silhouette value we get is almost the same as the one using Spark's algorithm.

Understanding the purpose of the IAM role
SageMaker is a managed service on AWS that manages the hardware responsible for
training and inference. In order for SageMaker to perform such tasks on your behalf, you
need to allow it through IAM configuration. For example, if you're running on EMR, the
EC2 instances (that is, the computers) in the cluster are running with a specific role. This
role can be found by going to the cluster page on the EMR console: https://console.aws.
amazon.com/elasticmapreduce/.

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/


Customer Segmentation Using Clustering Algorithms Chapter 5

[ 115 ]

The following screenshot shows the cluster details, including the security and access
information:

The role under EC2 instance profile in the previous screenshot is the one we are using, that
is, EMR_EC2_DefaultRole.



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 116 ]

We then go to the IAM console at https://console.aws.amazon.com/iam/home to edit the
permissions of that role to grant access to SageMaker resources, as well as allow the role to
be assumed:

In the Trust relationships section, we click on the Edit trust relationship button to open
the dialog that will allow us to add the settings:

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home


Customer Segmentation Using Clustering Algorithms Chapter 5

[ 117 ]

You can edit and allow the role to be assumed as follows:

The previous changes are required to allow our EMR cluster to talk to SageMaker and
enable the kind of integration described in this section.



Customer Segmentation Using Clustering Algorithms Chapter 5

[ 118 ]

Summary
In this chapter, we studied the difference between supervised and unsupervised learning
and looked at situations when unsupervised learning is applied. We studied the
exploratory analysis application of unsupervised learning, where clustering approaches are
used. We studied the k-means clustering and hierarchical clustering approaches in detail
and looked at examples of how they are applied. 

We also looked at how clustering approaches can be implemented on Apache Spark on
AWS clusters. In our experience, clustering tasks are generally done on larger datasets, and,
hence, taking the setup of the cluster into account for such tasks is important. We discussed
these nuances in this chapter. 

As a data scientist, there have been many situations where we analyze data with the sole
purpose of extracting value from the data. You should consider clustering approaches in
these cases as it will help you to understand the inherent structure in your data. Once you
discover the patterns in your data, you can identify events and categories by which your
data is arranged. Once you have established your clusters, you can also evaluate any new
observation based on which cluster it may belong to and predict that the observation will
exhibit similar behavior to other observations in the cluster. 

In the next chapter, we will cover a very interesting problem: how to make
recommendations through machine learning by finding products that similar users find
relevant.

Exercises
What are the situations where you would apply the k-means algorithm1.
compared to hierarchical clustering?
What is the difference between a regular Spark estimator and an estimator that2.
calls SageMaker?
For a dataset that takes too long to train, why would it not be a good idea to3.
launch such a job using a SageMaker estimator?
Research and establish other alternative metrics for cluster evaluation. 4.
Why is string indexing not a good idea when encoding features for k-means?5.



6
Analyzing Visitor Patterns to

Make Recommendations
This chapter will focus on the problem of finding similar visitors based on the theme park
attractions they attend, to make improved marketing recommendations. Collaborative
filtering methods will be introduced with examples showing how to train and obtain
custom recommendations both in Apache Spark (EMR) and through the AWS SageMaker
built-in algorithms. Many companies leverage the kinds of algorithms we describe in this
chapter to improve the engagement of their customers by recommending products that
have a proven record of being relevant to similar customers.  

We will cover the following topics in this chapter:

Making theme park attraction recommendations through Flickr data
Finding recommendations through Apache Spark's Alternating Least Squares
method
Recommending attractions through SageMaker Factorization Machines

Making theme park attraction
recommendations through Flickr data
Throughout this chapter, we will make use of the dataset from https://sites.google.
com/site/limkwanhui/datacode, which consists of Flickr data from users who take photos
at different locations, these photos are then mapped to known theme park attractions.
Flickr is an image-hosting service. Let's assume Flickr wants to create a plug-in on their
mobile app that, as users take photos on the different attractions, identifies user preferences
and provides recommendations on other attractions that might be of interest to them.

https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode


Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 120 ]

Let's also suppose that the number of photos a user takes on a particular attraction is an
indicator of their interest in the attraction. Our goal is to analyze a dataset with triples of
the user ID, attraction, number of photos taken form so that given an arbitrary set of attractions
visited by a user, the model is able to recommend new attractions that similar users found
interesting.  

Collaborative filtering
Collaborative filtering is a process for providing recommendations to users based on their
behavior by analyzing the behaviors of a lot of users. We observe the effects of this
algorithm in our day-to-day life in a large number of applications. For example, when you
are using streaming services, such as Netflix or YouTube, it recommends videos that you
may be interested in based on your streaming history. Social networks, such as Twitter and
LinkedIn, suggest people for you to follow or connect with based on your current contacts.
Services such as Instagram and Facebook curate posts from your friends and tailor your
timeline based on the posts that you read or like. As a data scientist, collaborative filtering
algorithms are really useful when you are building recommendation systems based on a
large amount of user data. 

There are various ways in which collaborative filtering can be implemented on a dataset. In
this chapter, we will be discussing the memory-based approach and the model-based
approach. 

Memory-based approach
In the memory-based approach, we generate recommendations in two phases. Consider a 
situation where we are trying to generate recommendations for a given user based on their
interests. In the first phase, we discover users who are similar to the given user based on
their interests. We rank all the users based on how similar they are to a given user. In the
second phase, we discover the top interests among the group of users that are most similar
to a given user. The top interests are ranked based on their similarity to the set of top-
ranked users. This ranked list of interests is then presented to the original user as
recommendations. 

For example, in the process of movie recommendations, we look at the movies a user is
interested in or has watched recently and discover other users who have watched similar
movies. Based on the top-ranked list of similar users, we look at the movies they have
watched recently and rank them based on the similarity to the list of ranked users. Then,
the top-ranked movies are then presented as recommendations to the user. 



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 121 ]

To find a similarity between users, we use functions called similarity measures. Similarity
measures are popularly used in search engines to rank a similarity between query terms
and documents. In this section, we discuss the cosine similarity measure, which is
commonly used in collaborative filtering. We treat each user's interest as a vector. To
discover users with similar interests, we calculate the cosine of the angle between two
users' interest vector. It can be represented as follows:

Based on the similarity between a given user and all users in the dataset, we select the top k
users. We then aggregate the interest vectors of all users to discover the top-ranked
interests and recommend it to the user. 

Note that memory-based models do not use any modeling algorithms that were discussed
in the previous chapters. They only rely on simple arithmetic to generate recommendations
for users based on their interests. 

Model-based approach
For the model-based approach, we use machine learning techniques to train a model that
can predict the probability of each interest being relevant to a given user. Various
algorithms, such as Bayesian models or clustering models, can be applied for model-based
collaborative filtering. However, in this chapter, we focus on the matrix-factorization-based
approach. 

Matrix factorization
The matrix factorization approach works by decomposing a matrix of users and the 
interests of the users. In this methodology, we map the user data and the information about
the interests to a set of factors. The score of a user to interest is calculated by taking a dot
product of the vector scores for the user and the interest.  These factors can be inferred from
the user ratings or from the external information about the interests in the algorithm. 



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 122 ]

For example, consider a matrix where one dimension represents the users and the other
dimension represents the movies the users have rated:

Avengers Jumanji Spiderman
User 1 4 4
User 2 1 5 2
User n 5 2 4

The values in the matrix are the ratings provided by the users. The matrix factorization
methodology maps the movies into shorter vectors that represent concepts, such as the
genre of the movie. These vectors are known as latent factors. We map the movies to genres
and also map what genres users are interested in based on how they rate movies in each
genre. Using this information, we can calculate the similarity between a user and movie
based on the dot product (multiplying the interest of the user in genres by the likelihood of
the movie to belong to genres) between both the vectors. Thus, the unknown ratings in the
matrix can be predicted using the knowledge of known ratings by consolidating the users
and interests to less granular items (that is, genres). In our previous example, we assume
that we already have a known mapping of movies to genre. However, we cannot make an
assumption that we will always have explicit data to generate such mappings to latent
factors.

Hence, we explore methodologies that can help us generate such mappings automatically
based on the data.  Matrix factorization models therefore need to be able to generate a map
between users and interests through a latent factors vector. To ensure we can generate a dot
product between the latent factors of a user and the item, the length of the latent factors is
set to a fixed value. Each interest item, , is represented by a vector, , and each user, , is
represented by a vector, . The  and  vectors are both latent factors that are derived
from the data. The rating for an item, , for a user, , is represented as follows:

 In general, if we already have a partial set of ratings from users to interests, we can use that
to model ratings between other users and interests. We use optimization techniques to
calculate this. Our objective is to predict the values of  and . Hence, we do that by
minimizing the regularized error when predicting these vectors by using the known
ratings. This is represented in the following formula: 



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 123 ]

Here, k is a set of  where the rating, , is known. Now, let's look at study two
approaches for minimizing the preceding equation. 

Stochastic gradient descent
We studied the stochastic gradient-descent algorithm in Chapter 3, Predicting House Value
with Regression Algorithms regarding linear regression. A similar methodology is used to
minimize the function to predict the correct latent factors for each user and interest. We use
an iterative approach, where during each iteration, we calculate the error of predicting 
and  based on all the known ratings:

Based on the magnitude of error, we update the values of   and  in the opposite
direction of the error:

We stop the iterations after the values of  and  converge. Stochastic gradient descent is
also used in algorithms such as Factorization Machines (FMs), which uses it to compute 
values of vectors. FMs are a variant of support vector machine (SVM) models that can be
applied in a collaborative filtering framework. We do not explain support vector machines
or FMs in detail in this book, but encourage you to understand how they work. 

Alternating Least Squares 
One of the challenges of minimizing the optimization function to predict the values of both 

 and  is that the equation is not convex. This is because we are trying to optimize two
values at the same time. However, if we used a constant for one of the values, or  or ,
we can solve the equation optimally for the other variable. Hence, in the Alternating Least
Squares technique, we alternatively set the values of  and  as constant while
optimizing for the other vector.



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 124 ]

Hence, in the first step, we set base values for both the vectors. Assuming that one of the
values is constant, we use linear programming to optimize the other vector. In the next
step, we set the value of the optimized vector as constant and optimize for the other
variable. We will not explain how linear programming is used to optimize for quadratic
questions as it is an entire field of study and not in the scope of this book. This
methodology optimizes each vector until convergence. 

The advantage of stochastic gradient descent is that it is faster than the ALS method, as it
depends on predicting the values of both the vectors in each step while modifying the
vectors based on the proportion of errors. However, in the ALS methodology, the system
calculates the values of each vector independently, and hence leads to better optimization.
Moreover, when the matrix is dense, the gradient descent methodology has to learn from
each set of data, making it less efficient than the ALS methodology. 

Finding recommendations through Apache
Spark's ALS
In this section, we will go through the process of creating recommendations in Apache
Spark using Alternating Least Squares (ALS).

Data gathering and exploration
The first step is to download the data from https://sites.google.com/site/limkwanhui/
datacode . We will be using the poiList-sigir17 dataset with photos taken by users at
different theme park attractions (identified as points of interest by Flickr). There are
following two datasets we're interested in:

The list of points of interests, which captures the names and other properties of
each attraction:

poi_df = spark.read.csv(SRC_PATH + 'data-sigir17/poiList-sigir17',
                        header=True, inferSchema=True, sep=';')

https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode
https://sites.google.com/site/limkwanhui/datacode


Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 125 ]

The following screenshot shows the first few lines of the poi_df dataframe:

The photos taken by Flickr users at different points of interest:

visits_path = SRC_PATH+'data-sigir17/userVisits-sigir17'
visits_df = spark.read.csv(visits_path,
                           header=True,
                           inferSchema=True, sep=';')

The following screenshot shows a sample of the visits_df dataframe:

In this dataset, we will be using the nsid field (indicating the user taking the
photo) and poiID, which indicates the actual point of interest or attraction visited
while taking the photo. For our purposes, we will ignore the rest of the fields.

Let's do some basic inspection on our dataset. The dataset has about 300,000 rows of data.
By taking a sample of 1,000 entries, we can see that there are 36 unique Flickr users:

sample_df = visits_df.limit(1000).toPandas()
sample_df.describe()



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 126 ]

The output of the preceding describe() command is as follows:

count 1000
 unique 36
 top 10182842@N08
 freq 365

This is important, as we need to have enough entries per user to ensure we have enough
information about users to make predictions. Furthermore, it's actually more relevant to
know whether users visit different attractions. One the nice things about Apache Spark is
that one can work on datasets using SQL. Finding the number of distinct attractions users
see on average can easily be done with SQL.

In order to work with SQL, we first need to give a table name to the dataset. This is done by
registering a temp table:

poi_df.createOrReplaceTempView('points')
visits_df.createOrReplaceTempView('visits')

Once we register the tables, we can do queries, such as finding the number of unique
attractions:

spark.sql('select distinct poiID from visits').count()
31

Or we can combine SQL with other dataset operations, such as .describe():

spark.sql('select nsid,count(distinct poiID) as cnt from visits group by
nsid').describe().show()

The following screenshot contains the result of the output of the show() command:



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 127 ]

The preceding SQL command finds the number of distinct attractions each user visits. The
describe dataset operation finds statistics on these users, which tells us that, on average,
users visit about five different locations. This is important as we need to have enough
attractions per user to be able to correctly identify user patterns.

Similarly, we should look at the number of photos users take at each location, to validate
that in fact we can use the number of photos taken as an indicator of the user's interest. We
do that through the following command:

spark.sql('select nsid,poiID,count(*) from visits group by
nsid,poiID').describe().show()

The output of the preceding command is shown by the following screenshot:

The SQL command counts the number of entries for each user and attraction, and then we
find a statistical summary using the describe. We can conclude therefore that on average,
each user takes about eight pictures at every location they visit.

Training the model
To train our model, we will construct a dataset that computes the number of photos taken
by each user at each location:

train_df = spark.sql('select hash(nsid) as user_hash_id, poiID, count(*) as
pictures_taken from visits group by 1,2')

The following screenshot shows the first few lines of the train_df dataframe:



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 128 ]

We hash the user because the ALS trainer just supports numerical values
as features.

To train the model, we simply need to construct an instance of ALS and provide the user
column, item column (in this case the attraction IDs), and the rating column (in this
case, pictures_takes is used as a proxy for rating). coldStartStrategy is set to drop as
we're not interested in making predictions for users or attractions not present in the dataset
(that is, predictions for such entries will be dropped rather than returning NaN):

from pyspark.ml.recommendation import ALS

recommender = ALS(userCol="user_hash_id",
                  itemCol="poi_hash_id",
                  ratingCol="pictures_taken",
                  coldStartStrategy="drop")

model = recommender.fit(train_df)

Getting recommendations
Once we build a model, we can generate predictions for all users in our dataset:

recommendations = model.recommendForAllUsers(10)

The preceding command will pick the top 10 recommendations for each user. Note that
because of how ALS works, it might actually recommend attractions already visited by the
user, so we need to discard that for our purposes, as we will see later on.

The recommendations look as follows:



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 129 ]

Each user gets a list of tuples with the recommended attraction as well as the score for the
recommendation. In this case, the score represents the estimated number of photos we
would expect each user to take at the recommended location. Even though the model just
provides the IDs of the attractions, we would like to inspect a few of these
recommendations to make sure they are good. In order to do that, we will construct a
dictionary of IDs to attraction names (point of interest names) by collecting the result of a
query that finds the name of each attraction in the points table:

row_list = spark.sql('select distinct p.poiName, p.poiID from visits v join
points p on (p.poiID=v.poiID) ').collect()
id_to_poi_name = dict(map(lambda x: (x.poiID, x.poiName), row_list))

The map contains the following entries:

{1: 'Test Track',
 10: 'Golden Zephyr',
 19: "Tarzan's Treehouse",
 22: 'Country Bear Jamboree'
 ....
 }

For each user, we want to remove the recommendations for already-visited sites and output
the recommendations. To do that, we need to process the list of tuples on each row. Apache
Spark provides a convenient way to do this by allowing users to create custom SQL
functions, or user-defined functions (UDFs). We will define and register a UDF that is
capable of extracting the names of each recommended attraction through the use of the
preceding map:

def poi_names(recommendations, visited_pois):
   visited_set = set([id_to_poi_name[poi] for poi in visited_pois])
   recommended = str([(id_to_poi_name[poi], weight) \
                      for (poi,weight) in recommendations
                      if id_to_poi_name[poi] not in visited_set])
   return "recommended: %s ; visited: %s "%(recommended, visited_set)

spark.udf.register("poi_names", poi_names)

The poi_names function receives the recommendations tuple for a user as well as the
attractions visited and then returns a string that contains all recommended attraction names
that were not in the set of visited, as well as an enumeration of the visited attractions.



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 130 ]

We then register the recommendations as a table so it can be used in our next query:

recommendations.createOrReplaceTempView('recommendations')

recommendation_sample = spark.sql('select user_hash_id,
collect_list(poiID), poi_names(max(recommendations), collect_list(poiID))
as recommendation from recommendations r join visits v on (r.user_hash_id =
hash(v.nsid)) group by 1')\
   .sample(fraction=0.1, withReplacement=False) \
   .collect()

The preceding query joins the user recommendations table with the visits table and joins by
user, collecting all points of interest visited by each user, and through the UDF it outputs
the recommended attractions as well as the names of the already-visited attractions. We
sample and collect a few instances of the table to inspect. In the companion notebook, we
can observe the entries:

print(recommendation_sample[0].recommendation)

recommended: [("It's A Small World", 31.352962493896484), ('Walt Disney
World Railroad', 23.464025497436523), ('Pirates of the Caribbean',
21.36219596862793), ('Buzz Lightyear Astro Blasters', 17.21680450439453),
('Haunted Mansion', 15.873616218566895), ('Country Bear Jamboree',
9.63521957397461), ('Astro Orbiter', 9.164801597595215), ('The Great Movie
Ride', 8.167647361755371)] ; visited: {"California Screamin'", 'Sleeping
Beauty Castle Walkthrough', 'Voyage of The Little Mermaid', "Tarzan's
Treehouse", 'Main Street Cinema', 'The Many Adventures of Winnie the Pooh',
'Jungle Cruise', 'Tom Sawyer Island', 'Test Track', 'The Twilight Zone
Tower of Terror'}

We can observe that this user visited a number of adventure-like attractions and the model
recommended a few more. Here, the reader can inspect a couple more recommendations:

print(recommendation_sample[200].recommendation)

recommended: [('Splash Mountain', 0.9785523414611816), ('Sleeping Beauty
Castle Walkthrough', 0.8383632302284241), ("Pinocchio's Daring Journey",
0.7456990480422974), ('Journey Into Imagination With Figment',
0.4501221477985382), ("California Screamin'", 0.44446268677711487), ('Tom
Sawyer Island', 0.41949236392974854), ("It's A Small World",
0.40130260586738586), ('Astro Orbiter', 0.37899214029312134), ('The
Twilight Zone Tower of Terror', 0.3728359639644623)] ; visited: {"Snow
White's Scary Adventures"}

print(recommendation_sample[600].recommendation)

recommended: [('Fantasmic!', 20.900590896606445), ('Pirates of the
Caribbean', 9.25596809387207), ("It's A Small World", 8.825133323669434),



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 131 ]

('Buzz Lightyear Astro Blasters', 5.474684715270996), ('Main Street
Cinema', 5.1001691818237305), ('Country Bear Jamboree',
4.3145904541015625), ("California Screamin'", 3.717888832092285), ("It's A
Small World", 3.6027705669403076), ('The Many Adventures of Winnie the
Pooh', 3.429044246673584)] ; visited: {'Haunted Mansion', 'The Twilight
Zone Tower of Terror', 'Journey Into Imagination With Figment'}

Recommending attractions through
SageMaker Factorization Machines
FMs are one of the most widely used algorithms for making recommendations when it
comes to very sparse input. It is similar to the stochastic gradient descent (SGD) algorithm
we discussed under the model-based matrix factorization methodology. In this section, we
will show how to use AWS' built-in algorithm implementation of FMs to get
recommendations for our theme park visitors.  

Preparing the dataset for learning
In order to use such an algorithm, we need to prepare our dataset in a different way. We
will pose the recommendation problem as a regression problem in which the input are a
pair of user and attraction, and the output is the expected level of interest this user will
have toward the attraction. The training dataset must have the actual empirical interest
(measured by the number of photos taken) for each pair of user and attraction. With this
data, the FM model will then be able to predict the interest of an arbitrary attraction for any
user. Hence, to obtain recommendations for a user, we just need to find the list of
attractions that yields the highest predicted level of interest.

So then how do we encode the user and the attractions in a dataset?

Given that FMs are extremely good at dealing with high-dimensional features, we can one-
hot encode our input. Since there are 8,903 users and 31 attractions, our input vector will be
of length 8,934 where the first 31 vector components will correspond to the 31 different
attractions, and the remaining positions correspond to each user. The vector will always
have zeros except for the positions corresponding to the user and attraction, which will
have a value of 1. The target feature (label) used in our model will be the level of interest,
which we will discretize to a value of 1 to 5 by normalizing the number of pictures taken
according to their corresponding quantile. 



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 132 ]

The following figure shows how such a training dataset could look:

As you can imagine, this matrix is extremely sparse, therefore we need to encode our rows
using a sparse representation. Like most SageMaker algorithms, we must drop our data in
S3 to allow SageMaker to train the data. In past chapters, we used CSV as an input.
However, CSV is not a good representation for our dataset; given its sparse nature, it would
occupy too much space (with a lot of repeated zeros!). In fact, at the time of writing,
SageMaker doesn't even support CSV as an input format. In a sparse representation, each
vector must indicate the following three values:

The size of the vector
The positions in which we have a value other than 0
The values at each of these non-zero positions

For example, the sparse representation for the first row in the preceding figure would be
the following:

Vector size = 8934
Non-zero positions = [1, 33]
Values at non-sero positions = [1, 1]

The only input format FMs currently supports is called protobuf recordIO. Protobuf, short
for Protocol buffers, is a language-neutral, platform-neutral extensible mechanism for 
serializing structured data initially developed by Google. In our case, the structure will be
the sparse representation of our matrix. Each record in the protobuf file we store in S3 will
have all three items necessary for sparse representation, as well as the target feature (label).



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 133 ]

Following, we will go through the process of preparing the dataset and uploading it to S3.

We will start with the Spark dataframe that we used for training in the previous section
(train_df) and apply a Pipeline that does the one-hot encoding as well as normalizing
the photos-taken target feature:

from pyspark.ml.feature import OneHotEncoder
from pyspark.ml.feature import StringIndexer
from pyspark.ml import Pipeline
from pyspark.ml.feature import QuantileDiscretizer
from pyspark.ml.feature import VectorAssembler

pipeline = Pipeline(stages = [
   StringIndexer(inputCol='user_hash_id',
                 outputCol="user_hash_id_index",
                 handleInvalid='keep'),
   OneHotEncoder(inputCol='user_hash_id_index',
                 outputCol='user_hash_id_encoded'),
   StringIndexer(inputCol='poiID',
                 outputCol='poi_id_indexed',
                 handleInvalid='keep'),
   OneHotEncoder(inputCol='poi_id_indexed',
                 outputCol='poi_id_encoded'),
   QuantileDiscretizer(numBuckets=5,
                       inputCol='pictures_taken',
                       outputCol='interest_level'),
   VectorAssembler(inputCols=['poi_id_encoded', 'user_hash_id_encoded'],
                   outputCol='features'),
])

model = pipeline.fit(train_df)

The pipeline is similar to pipelines we've built in the previous chapters, the difference being
that we have not included a machine learning algorithm as a final step (since this stage will
run through SageMaker's FMs once the dataset is in S3). We first string index the user and
attraction (point of interest) features, and then chain them into a one-hot encoder. The
quantile discretizer will reduce the photos taken feature into five buckets according to their
percentile. We will name this feature interest_level. Additionally, we will assemble a
vector with these encoded attractions and user vectors.

Next, we transform the training dataset by applying the model:

sparse_df = model.transform(train_df)



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 134 ]

This will produce a dataset:

Note how the encoded fields (user_hash_id_encoded, poi_id_encoded, and features)
show the sparse representation of the vectors.

Once we have this encoded dataset, we can split them into testing and training. SageMaker
will use the training dataset for fitting and the test dataset for finding the validation errors
at each epoch upon training. We need to convert each of these datasets into recordio format
and upload them to s3.

If we were working in Scala (the native programming language used by Spark), we could
do something like this:

sagemaker_train_df.write.format("sagemaker") \
  .option("labelColumnName", "interest_level") \
  .option("featuresColumnName", "features") \
  .save("s3://mastering-ml-aws/chapter6/train-data")

Unfortunately, pyspark does not support writing a dataframe directly into recordio format
at the time of this writing. Instead we will collect all our spark dataframes in memory and
convert each row to a sparse vector, and then upload it to S3.

The following spark_vector_to_sparse_matrix function does exactly that. It takes a
Spark dataframe row and converts it into a sparse csr_matrix (from scipy, a Python
library with scientific utilities). The upload_matrices_to_s3 function receives a Spark
dataset (either training or testing), collects each row, builds a sparse vector with the
features, and stacks them into a matrix. Additionally, it builds a target feature vector with
all the interest levels. Given this matrix and label vector, we use the utility
function write_spmatrix_to_sparse_tensor, of the sagemaker library to write the
data in recordio format. Finally, we upload that object to S3. To do this, let's first import all
the necessary dependencies:

from scipy.sparse import csr_matrix
import numpy as np
import boto3
import io
import numpy as np
import scipy.sparse as sp
import sagemaker.amazon.common as smac



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 135 ]

Next, let's define two auxiliary functions: spark_vector_to_sparse_matrix, which will
take a row and produce a scipy sparse matrix, and upload_matrices_to_s3, which is
responsible for uploading the test or training dataset to s3:

def spark_vector_to_sparse_matrix(row):
   vect = row['features']
   return csr_matrix((vect.values, vect.indices, np.array([0,
vect.values.size])),
                     (1, vect.size),
                      dtype=np.float32)

def upload_matrices_to_s3(dataframe, dataset_name):
   features_matrices =
        dataframe.select("features") \
                 .rdd.map(spark_vector_to_sparse_matrix).collect()
   interest_levels =
        dataframe.select("interest_level") \
                 .rdd.map(lambda r: r['interest_level']).collect()

   interest_level_vector = np.array(interest_levels, dtype=np.float32)
   buffer = io.BytesIO()
   smac.write_spmatrix_to_sparse_tensor(buffer, \
                                        sp.vstack(features_matrices), \
                                        interest_level_vector)
   buffer.seek(0)
   bucket = boto3.resource('s3').Bucket('mastering-ml-aws')
   bucket.Object('chapter6/%s-
data.protobuf'%dataset_name).upload_fileobj(buffer)

Finally, we need to upload the training and testing dataset by calling
the upload_matrices_to_s3 method on both variables:

upload_matrices_to_s3(sagemaker_train_df, 'train')
upload_matrices_to_s3(sagemaker_test_df, 'test')

Training the model
Now that we have the data in S3 in the right format for learning, we can start training our
model to get recommendations.



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 136 ]

We will instantiate the SageMaker session and define the paths where to read and write the
data:

import sagemaker
from sagemaker import get_execution_role
import json
import boto3

sess = sagemaker.Session()
role = get_execution_role()
container = sagemaker.amazon.amazon_estimator.get_image_uri('us-east-1',
     "factorization-machines",
     "latest")

s3_train_data = 's3://mastering-ml-aws/chapter6/train-data.protobuf'
s3_test_data = 's3://mastering-ml-aws/chapter6/train-data.protobuf'
s3_output_location = 's3://mastering-ml-aws/chapter6/sagemaker/output/'

With the session, we can instantiate the SageMaker estimator by setting the number and
type of computers to use. We also specify the hyperparameters. Two important parameters
to consider are the feature dim (which is the length of our training vectors) and the
predictor type. Since our problem is posed as a regression, we will use regressor. If instead
of interest level, we had modeled it as a presence/no presence of interest, we would have
used the binary_classifier value:

from sagemaker.session import s3_input

recommender = sagemaker.estimator.Estimator(container,
                                            role,
                                            train_instance_count=1,
train_instance_type='ml.c4.xlarge',
                                            output_path=s3_output_location,
                                            sagemaker_session=sess)

recommender.set_hyperparameters(predictor_type='regressor',
                                feature_dim=8934,
                                epochs=200,
                                mini_batch_size=100,
                                num_factors=128)

recommender.fit({'train': s3_input(s3_train_data), \
                 'test': s3_input(s3_test_data)})



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 137 ]

The logs will show some validation stats and a confirmation for when the model has
completed:

[02/23/2019 22:01:02 INFO 140697667364672] #test_score (algo-1) : ('rmse',
0.19088356774389661)
2019-02-23 22:01:11 Uploading - Uploading generated training model
 2019-02-23 22:01:11 Completed - Training job completed

Getting recommendations
Once the model is fitted, we can launch a predictor web service:

predictor = recommender.deploy(instance_type='ml.c5.xlarge',
initial_instance_count=1)

This will launch the web service endpoint that hosts the trained model and is now ready to
receive requests with predictions. Let's take one user from our recommendations made
with Spark's ALS and compare it to the predictions made by SageMaker:

print(recommendation_sample[1].user_hash_id)
-525385694

We can collect the features of that user:

sagemaker_test_df.select('features').where('user_hash_id=-525385694') \
                 .rdd.map(build_request).collect()

[{'data': {'features': {'shape': [8934],
   'keys': [4, 3297],
   'values': [1.0, 1.0]}}}]

Here, build_request is a convenient function to create a JSON request compatible with
how SageMaker expects the sparse-encoded requests:

def build_request(row):
   vect = row['features']
   return {'data':{ 'features': {'shape':[int(vect.size)],
                                 'keys':list(map(int,vect.indices)),
                                 'values':list(vect.values)}}}



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 138 ]

As we know, the user ID position in the vector is 3297 and the attraction position is 4. We
can call the service to get a prediction for the service:

import json

predictor.content_type = 'application/json'
predictor.predict(json.dumps({'instances': [
    {'data': {'features': {'shape': [8934], 'keys': [4, 3297],
              'values': [1, 1]}}}]}))

Here's the output:

{'predictions': [{'score': 0.8006305694580078}]}

More details about the formats of the JSON requests and responses can be
found here: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-
inference.html.

Since we can ask the predictor for the score for an arbitrary pair of (user, attraction), we'll
find the scores of all 31 attractions for the user in question and then sort by score:

def predict_poi(poi_position):
   prediction = predictor.predict(
           json.dumps({'instances': [{'data':
                        {'features': {'shape': [8934],
                                      'keys': [poi_position, 3297],
                                      'values': [1, 1]}}}]}))
   return prediction['predictions'][0]['score']

predictions = [(poi_position, predict_poi(poi_position)) for poi_position
in range(0,31)]
predictions.sort(key=lambda x:x[1], reverse=True)

Given those scores, we can find the names of the highest-ranking attractions, excluding
those already visited:

user_visited_pois =
     [id_to_poi_name[x] for x in
set(recommendation_sample[1]['collect_list(poiID)'])]

for (poi_position, score) in predictions[:10]:
  recommended_poi =
id_to_poi_name[int(model.stages[2].labels[poi_position])]
  if recommended_poi not in user_visited_pois:
       print(recommended_poi)

https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html
https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-inference.html


Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 139 ]

The output is as follows:

Test Track
 Walt Disney World Railroad
 Main Street Cinema
 Tom Sawyer Island
 Tarzan's Treehouse
 Mark Twain Riverboat
 Sleeping Beauty Castle Walkthrough
 Snow White's Scary Adventures

Let's compare this with the recommendations made by Spark:

print(recommendation_sample[1].recommendation)
recommended: [("Pinocchio's Daring Journey", 3.278768539428711), ('Tom
Sawyer Island', 2.78713321685791), ('Splash Mountain', 2.114530324935913),
("Tarzan's Treehouse", 2.06896710395813), ('Fantasmic!',
1.9648514986038208), ("Snow White's Scary Adventures", 1.8940000534057617),
('Main Street Cinema', 1.6671074628829956), ('Mark Twain Riverboat',
1.314055323600769), ('Astro Orbiter', 1.3135600090026855)] ; visited: {'The
Many Adventures of Winnie the Pooh', 'Rose & Crown Pub Musician', 'Golden
Zephyr', "It's A Small World"}

As the reader might notice, there are many overlapping recommendations. For a more
thorough analysis regarding the quality of the model and its predictive power, we can use
the evaluation methods discussed in Chapter 3, Predicting House Value with Regression
Algorithms, as this problem is posed as a regression.

Summary
In this chapter, we studied a new type of machine learning algorithm called collaborative
filtering. This algorithm is used in recommendation systems. We looked at memory-based
approaches that use similarity measures to find users similar to a given user and discover
recommendations based on the collective interests of the top-ranked similar users. We also
studied a model-based approach called matrix factorization, that maps users and interests
to latent factors and generate recommendations based on these factors. We also studied the
implementations of various collaborative filtering approaches in Apache Spark and
SageMaker.

In the next chapter, we will focus on a very popular topic: deep learning. We will cover the
theory behind this advanced field as well as a few modern applications. 



Analyzing Visitor Patterns to Make Recommendations Chapter 6

[ 140 ]

Exercises
Find an example of a recommendation system that is not described in this1.
chapter. Evaluate which approach of collaborative filtering would fit that
approach.
For a movie-recommendation engine, explore how the issue of sparsity of data2.
affects each algorithm listed in this chapter. 



3
Section 3: Deep Learning

One of the main innovations in the field of AI and machine learning is the advent of deep
learning algorithms. We dedicate this part of the book to deep learning algorithms and
explain how readers can implement them using various technologies in AWS. We take a
practical approach to explaining deep learning algorithms rather than a theoretical
approach, and explain how deep learning works with help of several real-world examples.
Readers will learn what deep learning is, the applications of deep learning, and how to
implement deep learning systems on AWS.

This section contains the following chapters:

Chapter 7, Implementing Deep Learning Algorithms
Chapter 8, Implementing Deep Learning with TensorFlow on AWS
Chapter 9, Image Classification and Detection with SageMaker



7
Implementing Deep Learning

Algorithms
Deep learning is an area of machine learning that has gained significantly in terms of
popularity in recent years. Deep learning, which is also referred to as deep structured
learning or hierarchical learning refers to using multiple layers of artificial neural networks
to train from data. Over the last few years, it has become possible to perform certain tasks,
such as image recognition, better than human beings.

We will cover the following topics in this chapter:

Understanding deep learning
Applications of deep learning
Understanding deep neural networks
Understanding convolutional neural networks

Understanding deep learning
Deep learning algorithms have gained in popularity over the last decade. Technologies
such as self-driving cars, speech recognition, and robotics have improved significantly on
account of deep learning algorithms. Deep learning has helped researchers to significantly
reduce the number of errors when training models to perform such tasks and also
surpassed humans in performing certain tasks. However, what is most interesting is that
deep learning algorithms are inspired by how human brains work. 



Implementing Deep Learning Algorithms Chapter 7

[ 143 ]

Let's take an example of image recognition. We see objects and are able to recognize them
based on past experiences of when we saw these objects. However, let's break this process
down into what exactly happens. First, light hits the object, enters our eye, and hits the
retina. The retina is a sensory membrane that converts this light into nerve signals. This
signal is then passed through various layers behind the retina to the brain. Our brain
identifies the number of objects that exist in the scene before our eyes. Based on past
references, our brain can identify the objects. 

There is no one process of us looking at the object and recognizing it. There are various
levels of abstractions between when the light enters our eyes and when our brain identifies
the object. There is no specific process when our brain stops and decides what features in
the signal it is trying to interpret. Such a feature extraction process occurs automatically. 

Deep learning algorithms also follow a similar process. Deep learning breaks the tasks of
getting the data into the various layers of abstractions, such that each layer interprets the
input data, and provides a meaningful output for the next layer of abstraction. For example,
in image recognition tasks, the input may be a set of pixels from the image. In the first layer,
the pixels can be processed to find edges in the image. In the second layer, this information
regarding edges can be processed to detect corners between these edges. In the next layer,
these corners and edges can be used to detect objects in the image. And the next layer may
predict what each object is. These layers of abstractions do not need to be defined by us, but
can train automatically by themselves. 

In algorithms such as Naive Bayes and linear regression, we always used hand-crafted
features. We already had analysts look at the incoming dataset and define feature sets
based on the data. We labeled each category as categorical or continuous. However, in deep
learning methodologies, we only require datasets with simple features and use layers of
abstractions to create additional abstract features. Hence, in tasks such as image
recognition, where the datasets are sets of pixels, traditional algorithms would need help
in identifying objects in the images before they can learn how to classify them. We would
also have to extract features from the objects, such as color and size before we can feed
these features to the classification models. However, for deep learning algorithms, we use
pixels of the image as input to the algorithm with labeled objects such that the deep
learning models can identify when errors are made and undertake self-correction. 

Deep learning algorithms can perform both supervised and unsupervised learning
algorithms. 

Applications of deep learning
We will present examples of popular deep learning algorithm applications in this section.



Implementing Deep Learning Algorithms Chapter 7

[ 144 ]

Self-driving cars
Self-driving cars have become a mainstay in the auto industry, with every major company
investing in building the next generation of self-driving cars. Most companies offer some
level of autopilot capabilities in their latest cars. These algorithms are mostly powered by
deep learning algorithms. Let's take a look at how self-driving algorithms are developed
using deep learning. 

The task of the self-driving algorithm is to analyze the conditions on the road and react to
them correctly in order to drive the car from the origin to the destination address. The input
for this algorithm is the video feed they receive from the cameras fitted on all sides of the
car. The output of the algorithm is the signals to the steering wheel, accelerator, and
brakes. 

This task is extremely complicated since the driver needs to make split-second decisions
when dealing with road conditions. The driver not only has to remember which turns to
take in order to reach the destination or the speed limits on the road, but also has to
monitor the movements of other cars on the road and pedestrians who may cross the
roads. 

Creating a rules-based algorithm for such a task is very difficult as there are a vast number
of permutations that can occur on the road. Moreover, generating any labeled dataset with
well-defined features is also difficult since the number of situations that could arise is very
hard to label in a comprehensive dataset. 

Deep learning algorithms are perfect in such situations because automatically extracting
features from the video feed and training the models based on a reward function helps us
to abstract the issues in self-driving cars. We can set the input of the deep learning
algorithm as the pixels in the video feed and the reward function as our progress toward
the destination while obeying all traffic rules. Simulators are used to train these models.
Such simulations mimic the actual conditions on the road.

Deep learning algorithms can automatically determine how to generate the layers of
abstractions to translate the pixels from the video feed to detecting edges and objects,
similar to image recognition models. Once the objects are detected, based on the mistakes
and corrections made by the car, we train the models to learn how to output the accelerator,
brakes, and steering wheel instructions. Initially, when running the models, self-driving
cars make mistakes and crash into objects. However, with sufficient iterations, deep
learning models can learn how to avoid such mistakes and drive on a predetermined path.
Thus, without extracting the features manually from the video feeds, and without
generating any structured datasets, deep learning algorithms can automatically learn to
achieve certain objectives. 



Implementing Deep Learning Algorithms Chapter 7

[ 145 ]

Learning to play video games using a deep
learning algorithm
Another popular example of using deep learning is to train a machine to play computer
games. Researchers across the world tested their deep learning algorithms by training
models to play 2D platforming titles, such as Super Mario. The input to the model is the
pixels on the screen, while the output generated by the model is a sequence of controller
instructions that control the characters and finish the objectives in the game. 

We do not need to teach deep learning models that this is a video game and that a character
named Mario has to jump on platforms to finish the levels. We just have to define a reward
function such that if the character moves to the next platform without dying, we reward the
deep learning model, and if the character dies, we penalize the model. As mentioned
before, the deep learning model automatically divides the problem into multiple levels of
abstractions. 

The model learns how to detect edges and platforms on the screen automatically. It starts
by making random movements with the character and quickly learns how the pixels on the
screen are manipulated when different controller buttons are pushed. Based on the
movements of the character, the model learns how to move the main character forward.
Similar to the self-driving car, it will also automatically learn that touching certain objects
on the screen leads to a penalty, and jumping on certain edges on the screen leads to the
player falling into pits. Hence, based on these reward functions giving feedback to the
model, the model learns how to navigate the obstacles in the level to move the player in the
right direction. With further training, it can also learn how to solve puzzles in the game. 

Thus, just by providing the screen pixels to the deep learning model, we can train a
machine to play video games. You see examples of these implementations everywhere
around you. Soon, machines will learn how to solve complex puzzles by thinking rationally
based on these machine learning models. 

Understanding deep learning algorithms
In the next section, we study one of the most popular deep learning algorithm, called deep
neural networks. 



Implementing Deep Learning Algorithms Chapter 7

[ 146 ]

Before we look at what deep neural networks are, we will study what neural networks are.
Then, we will learn what deep neural network algorithms are and why they are an
improvement over neural networks. Finally, we will study convolutional neural
networks—which is a variant of neural networks that is used in the field of image
recognition – and show how we can automatically learn layers of abstractions from the
pixels in the image. 

Neural network algorithms
Neural network algorithms are machine learning algorithms that are inspired by biological
neural network algorithms. Neural networks mimic how our neurons in our brain work.
They have input nodes where the information is fed into the network, and an output layer
that transmits a specific action or prediction.  Neural networks define a structure in which
the information of the machine learning model is stored.

The following screenshot shows a neural network structure:

The input features from a dataset are fed into neural network input nodes. For example, if
we have a dataset that has features such as temperature, cloud conditions, and wind speed,
and our task is to predict whether it will rain on a given day, then such features are fed to
the neural networks as input. These features can either be in binary or continuous values.
Note that each input feature corresponds to one input node. 



Implementing Deep Learning Algorithms Chapter 7

[ 147 ]

The information regarding the model is stored on the edges and the nodes in the hidden
layer. There are various algorithms that can be used to train neural networks. Most
algorithms iteratively pass input parameters in the neural network and predict the values
of output nodes based on the weights in the hidden nodes. Based on the error in prediction,
these weights are adjusted to improve the model. 

The output nodes correspond to the expected actions or predictions that the neural network
algorithms need to make. Our aim is to train the weights in the hidden nodes such that the
values of the output nodes are accurate. 

Thus, the neural networks are loosely based on biological neurons that can process an input
signal and produce an output based on the function of that neuron. 

Activation function
Now, let's look at how a neural network algorithm is trained to calculate the weights of
each hidden node. Before we begin training a neural network model, we need to define
how each hidden node will process the input signal and produce an output. The function
that is used to calculate the output of a hidden node based on an input function is called the
activation function. Activation functions define the range of output that can be generated
by the hidden nodes. In its simplest form, an activation function can be a step function
where the node output is either 0 or 1 based on the input. A simple example in our weather
dataset is this: if the sky is cloudy, the output of a hidden node might be 1 as a prediction
for rain, and if the sky is sunny, the output of the hidden node is 0.

Such a step activation function is defined as follows:

Similarly, if we plan to use a logistic or sigmoid step function, the range of the output is
from  to .

A logistic step function is defined as follows:

Based on the learning algorithm we are using, we can select activation functions. Most
machine learning libraries that support neural network learning also support using various
activation functions. 



Implementing Deep Learning Algorithms Chapter 7

[ 148 ]

Each edge between nodes is assigned a weight, , such that that link is between neuron 
and neuron . 

Backpropagation
Once we have established the weights of the connections in the neural networks and the
activation function, a neural network is able to effectively produce an output based on a
given input. However, this is an untrained neural network, and an algorithm is needed to
modify and adapt a neural network based on the errors it makes when predicting an
output. 

The weight updates for backpropagation using stochastic gradient descent can be executed
using the following equation.

The backpropagation algorithm is one of the popular mechanisms that can achieve this
outcome. Backpropagation algorithms define a methodology for how the errors in the
output can be propagated through the connections by modifying the values of the
connections. The intuition behind the algorithm is very simple. Consider a child touching a
very hot pan and learning not to touch pans that are situated on top of a stove. The child
makes a mistake, but learns from it and avoids making the same mistake again.
Backpropagation algorithms also allow neural networks to make errors. The difference
between the predicted output and the expected output can be calculated using formulas,
such as mean squared errors. Once we quantify the error, we can use algorithms, such as
gradient descent, to determine how to modify the weights of the connections. We also used
the algorithm of gradient descent for the linear regression algorithm in Chapter 3,
Predicting House Value with Regression Algorithms. The backpropagation process is similar to
how we learn the coefficients for the linear regression algorithm. However, instead of
learning the values of the regressors, we are estimating the value of the weights of the
connections in neural networks. 

The weight updates for backpropagation using stochastic gradient descent can be done
using the following equation:



Implementing Deep Learning Algorithms Chapter 7

[ 149 ]

In this equation,  is the learning rate of the neural network. This is a tunable parameter
and defines how quickly the neural network can adapt to the training dataset. The weight, 

, is calculated based on the previous weight of the connection. The value of
change in the weight is determined by the learning rate, which is the difference between the
error, the previous weight, and a stochastic term. 

We iterate over the training data by passing it through the neural network and modifying
the weights of the connections during each iteration. The weights are modified such that
the error rates reduce with each iteration. Although stochastic gradient descent does not
achieve a global maxima, it is effective in training a neural network to reduce errors. We
terminate the iteration when the error is below a certain acceptable value, or it converges
such that the improvements in accuracy are minimal. 

Neural networks can be used to train supervised learning as well as unsupervised
learning. 

Introduction to deep neural networks
A deep neural network (DNN) is a variant of neural networks where we use more than 
one hidden layer. The data has to pass through more than one hidden layer for a network
to qualify as a deep neural network. This adds complexity to the neural network model as it
drastically increases the connections in the network, and thus the learning time.

A representation of a deep neural network is shown here:



Implementing Deep Learning Algorithms Chapter 7

[ 150 ]

However, having additional hidden layers also allows the network to pass the input data
through multiple layers of pattern recognition. Each hidden layer gets the input from the
previous hidden layers. Hence, they can recognize more complex patterns than the
previous layers. This happens as the previous layers aggregate, and recombines the features
from the previous layers. This is called the feature hierarchy. The features that are deeper in
the DNN can recognize more complex patterns. Hence, DNN is more capable of handling
datasets with complex patterns. Moreover, since the hidden layers automatically generate
these layers of abstractions, domain expertise is not required for feature extraction. For
example, in image recognition, we do not need to label the edges of objects in the image
since initial layers can learn to identify edges, while deeper layers learn to identify the
objects that may be generated by those edges. 

Deep learning and DNN are popular buzzwords that data scientists hear about in the
industry. For most applications, such as self-driving cars or robotics, DNN is synonymous
with  artificial intelligence. Due to the advances in GPU architectures, which suit the
generation of these DNN structures, such algorithms are not able to process large datasets
in order to train highly accurate machine learning algorithms. 

Understanding convolutional neural
networks
In this section, we will take a look at a variant of DNNs, where the structure of the network
is modified for image recognition tasks. 

In the neural networks that we've discussed in this chapter so far, we've seen that all the
input layers are one dimensional. However, images are two-dimensional. To capture how
images are fed to a neural network for training, we have to modify the structure of the
input layer. Traditional algorithms require humans to label the edges of the objects in the
image. Convolutional neural networks (CNNs) can automatically detect the objects in the
image with enough training and, based on the labels of the image, they can learn how to
identify objects in the images without explicitly labeling the edges in the image.

CNNs require a preprocessing phase where the image has to be prepared into a specific
data structure that is used as an input for feed-forward DNNs. The first task in the
preprocessing phase is to break the picture down into smaller images, such that we do not
lose any information from the image. The inspiration for a CNN comes from the
organization of the visual cortex in humans. Our neurons respond to visuals that are seen
in a specific field of vision. This is called the local receptive field. These local receptive
fields overlap with each other. Similarly, in CNN, we take an image as an input and
represent overlapping subsections of an image as local receptive fields.



Implementing Deep Learning Algorithms Chapter 7

[ 151 ]

The following diagram shows how a sliding window is used to generate feature maps from
an image using the concept of local receptive fields:

The advantage of using this methodology is that it eliminates the issues of size and position
of an object in an image. For example, imagine there is a cat in the image. Based on our
training examples, we have labeled images with pictures of cats. Using local receptive
fields, we detect that cat and label the feature map as having a picture of a cat in the image.
In a new image, irrespective of the location of the cat in the image, we will find a feature
map that has an image of a cat, since we create multiple sub-images using this sliding
window approach. This layer of feature maps generated from the image is called the
convolutional layer. 

We can also generate multiple feature maps from the same set of pixels by applying various
filters to the process. For example, we can apply color filters to the pixels and generate three
feature maps from the same set of pixels. As a data scientist, you would have to design the
CNNs based on the amount of information that you want to extract from the image, as well
as the amount of processing power that we can use when generating these networks. 

Once the convolution layers are generated, we create condensed feature maps from the
image by using a process called pooling. This helps us to represent the feature maps in
smaller feature maps. There are two popular pooling processes that can be applied when
condensing a feature map. In a max-pooling approach, reduce the dimensionality of the
feature map by only selecting the maximum value from each grid.



Implementing Deep Learning Algorithms Chapter 7

[ 152 ]

The following screenshot shows how max-pooling takes the maximum value from each
feature map and reduces the dimensionality of the feature map from a matrix of 4x4 to 2x2:

Another type of pooling is called average pooling, which is where we select the average of
the values in a grid when pooling the data. The following diagram shows how average
pooling works:

Max-pooling is generally preferred over average pooling as it acts as a noise suppressant
and removes the non-dominant features when reducing the dimensionality of a feature
map. Similar to a convolutional layer, a pooling layer can also use overlapping windows to
create a smaller feature map. Note that these decisions can be made based on the level of
detail you want to capture from an image. 

Another component of a CNN is the convolution layer. When we design a CNN, a set of
images might determine what feature maps we extract from the image. However, based on
the application, we would want to extract different features from the images. For example,
if our image recognition software is detecting charts generated by a seismometer (a device
that detects earthquakes), our feature maps would have black and white graphs, where our
algorithm needs to be sensitive to detecting the edges in time-series. In such cases, we can
design a convolution kernel that can translate certain patterns in a feature graph into
another feature graph that can annotate such patterns. Similarly, if you are processing
colored images with objects, creating three feature maps for each color, detecting edges,
and then merging the feature maps, is helpful. Thus, convolutional layers help scientists
who design such neural networks to adapt them to specific applications. We are not going
to explain the details of how convolution layers can be set up, as most libraries allow you to
use predesigned CNNs to apply to your applications. 



Implementing Deep Learning Algorithms Chapter 7

[ 153 ]

Thus, using local receptive fields, convolution layers, and pooling, we construct the
following structure to flatten an image into input for a DNN:

An image is translated into feature maps using the first layer of convolution by employing
the local perceptive fields methodology. Then, we reduce the dimensions of the feature
maps by pooling the data, so as to reduce the dimensionality of feature maps from 20x20 to
10x10. In the next phase, we translate the pooled feature maps into more feature maps
based on a kernel we might have selected. These kernels may translate the feature maps
that detect straight lines or intersections. We then pool the output of the convolution layer
into 4x4 feature maps. At this point, the original image is translated into information that is
specific to the task of a DNN. These feature maps represent the spatial components of the
images too. The DNN then trains based on this data and learns to predict output based on
what the feature maps may represent. 

Summary
In this chapter, we explained what deep learning means and how it is applied in real-world
applications. We also studied applications, such as self-driving cars and a video game bot,
and how they can automatically learn how to perform tasks using deep learning. We
explained what neural networks are and how DNNs are an improved version of them. We
also studied a variant of DNNs, called CNNs and presented the various components of a
CNN. 



Implementing Deep Learning Algorithms Chapter 7

[ 154 ]

Our aim in this chapter was to provide you with information about deep learning
algorithms so that you could understand how they can be applied in the real world.
Although we did not dive deep into the mathematics of deep learning, or provide all details
on concepts such as activation function, we hope that you gained a working knowledge in
the field of deep learning. For those curious minds out there, there is a vast amount of
ongoing research in this field and we implore you to learn more about the algorithms that
you are interested in. 

In the next chapter, we will look at how deep learning can be implemented using popular
technologies, such as TensorFlow and MXNet. This knowledge will help you to implement
a large array of deep learning algorithms. 

Exercises
If you own a smartphone, you have a lot of apps on your phone that employ1.
deep learning. Explore which apps on your phone use one of the algorithms
listed in this chapter and examine how to design such an algorithm.
List the various components of CNN and design a CNN that would detect the2.
features of a human face.



8
Implementing Deep Learning

with TensorFlow on AWS
TensorFlow is a very popular deep learning framework that can be used to train deep
neural networks, such as those described in the previous chapter.

In this chapter, we will cover the following topics:

About TensorFlow
TensorFlow as a general machine learning library
Training and serving the TensorFlow model through SageMaker
Creating a custom neural net with TensorFlow

About TensorFlow
TensorFlow is a library for deep learning, first released by Google in 2015. Initially, it
included a core library that allowed users to work with tensors (multidimensional arrays)
in symbolic form, thus enabling low-level neural network design and training at high
performance. Nowadays, it's a fully fledged deep learning library that allows data scientists
to build models for complex problems, such as image recognition, using high-level
primitives. You can also use TensorFlow for solving standard machine learning problems,
such as the ones we've been considering in the past chapters. TensorFlow has similar
abstractions to the ones we have been using in scikit-learn, Apache Spark, and
SageMaker. For example, it allows the user to create classification models or regression
models using high-level abstractions, such as estimators, predictors, and evaluators.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 156 ]

TensorFlow as a general machine learning
library
 In this section we will  show how we use TensorFlow to create a regression model for the
house estimation problem of Chapter 3, Predicting House Value with Regression
Algorithms. To get started, we will first launch a SageMaker notebook and choose the
TensorFlow kernel (conda_tensorflow_p36), which has all the necessary TensorFlow
dependencies needed for this section:



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 157 ]

Now, let's consider the estimation problem from Chapter 3, Predicting House Value with
Regression Algorithms. Recall that we had a set of indicators (age of the house, distance to
nearest center, and so on) to estimate the median value of the house (expressed in the medv
column, which is our target feature), as shown in the following screenshot:

In Chapter 3, Predicting House Value with Regression Algorithms, we identified 11 learning
features to use for predicting the target feature (medv):

training_features = ['crim', 'zn', 'indus', 'chas', 'nox',
'rm', 'age', 'dis', 'tax', 'ptratio', 'lstat']

label = 'medv'

With this information, we define a TensorFlow linear regressor capable of solving our
regression problem with a pre-built neural net:

tf_regressor = tf.estimator.LinearRegressor(
    feature_columns=[tf.feature_column.numeric_column('inputs',
                                  shape=(11,))])

For the regressor, we decided to create a single-feature input, which assembles the rest of
the features into a vector of numbers that will represent the input layer. It is also possible to
create one named feature per training feature (as we did in Chapter 3, Predicting House
Value with Regression Algorithms), but we'll just have a single vector feature to simplify the
prediction service discussed at the end of the section.

To construct a regressor, we need to pass in the TensorFlow feature columns, which can be
of several different kinds. The tf.feature_column package provides functions to
construct different kinds of columns, depending on the encoding being used by the model
(for example, categorical, bucketized, and so on.). The feature columns inform the model on
the expected format of the data being submitted as input. In our case, we will just tell the
model to expect vector rows of length 11.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 158 ]

To construct the actual data to be passed into the model, we need to create a matrix.
The pandas library has a convenient method, as_matrix(), so we'll slice the training
features and build a matrix:

training_df[training_features].as_matrix()

 Similarly, we'll create the vector of features:

training_df[label].as_matrix()

Once we have these two things, we can start plugging the data into the model. TensorFlow
expects the data to be fed by defining a function that knows how to source the data into
tensors (the building blocks of TensorFlow that represents a multidimensional array).

The following is the code block for plugging in the data:

training_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'inputs': training_df[training_features].as_matrix()},
    y=training_df[label].as_matrix(),
    shuffle=False,
    batch_size=1,
    num_epochs=100,
    queue_capacity=1000,
    num_threads=1)

The tf.estimator.inputs.numpy_input_fn utility is able to construct such a function
by providing the training matrix and target feature vectors. It will also create partitions of
the data for running through the network a number of epochs. It also allows the user to
pick the size of the batch (recall the mini-batch method mentioned in Chapter 3, Predicting
House Value with Regression Algorithms, for stochastic gradient descent) and other data
feeding parameters. In essence, the underlying regressor's neural network relies on the
training_input_fn function for creating the input tensors at each stage of the algorithm.

Likewise, we create a similar function for feeding the testing data, in preparation for model
evaluation:

test_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'inputs': test_df[training_features].as_matrix()},
    y=test_df[label].as_matrix(),
    shuffle=False,
    batch_size=1)

To train the model, we call the usual fit() method, providing the function we created for
sourcing the data:

tf_regressor.train(input_fn=training_input_fn, steps=50000)



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 159 ]

The steps argument is a limit we can impose on the number of total
steps. A step, here, is one gradient descent update for one batch. Hence,
each epoch runs a number of steps. 

Once it completes the training, TensorFlow will output the loss metric in the final epoch:

INFO:tensorflow:Loss for final step: 1.1741621.

We can then evaluate the accuracy of our model by running the test dataset (by providing
the test dataset sourcing function):

tf_regressor.evaluate(input_fn=test_input_fn)

The preceding code generates the following output:

{'average_loss': 37.858795,
'label/mean': 22.91492,
'loss': 37.858795,
'prediction/mean': 21.380392,
'global_step': 26600}

The average loss depends on the units of the target feature, so let's look at building a scatter
plot like the one we created in Chapter 3, Predicting House Value with Regression Algorithms,
to compare actual versus predicted house values. To do that, we first need to obtain
predictions.

We simply call the predict() function to get predictions, again providing the test
dataset sourcing function:

predictions = tf_regressor.predict(input_fn=test_input_fn)

The predictions returned a value that is actually a Python generator of single-value
vectors, so we can obtain a list of predictions by constructing the list-through-list
comprehension:

predicted_values = [prediction['predictions'][0] for prediction in
predictions]

We can thus examine predicted_values:

predicted_values[:5]

The preceding code generates the following output:

[22.076485, 23.075985, 17.803957, 20.629128, 28.749748]



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 160 ]

We can plug in the predicted values as a column to our original pandas test dataframe:

test_df['prediction'] = predicted_values

This allows us to use the pandas plotting method to create the chart:

test_df.plot(kind='scatter', x=label, y='prediction')

We can see the result in the following screenshot:

Note that there is a clear correlation. To improve the performance, we would have to tune
our regression model, the size of the batches, steps, epochs, and so on.

Training and serving the TensorFlow model
through SageMaker
Instead of training the model in a notebook instance, we train the model using the
SageMaker infrastructure. In previous chapters, we used built-in estimators, such as
BlazingText, XGBoost, and Factorization Machines (FMs). In this section, we will show
how we can build our own TensorFlow models and train them through SageMaker, much
like we did with these pre-built models. To do this, we just have to teach SageMaker how
our TensorFlow model should be constructed and comply with some conventions
regarding the format, location, and structure of the data. Through a Python script, we
specify all of this.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 161 ]

SageMaker will rely on this Python script to perform the training within SageMaker
training instances:

import sagemaker
from sagemaker import get_execution_role
import json
import boto3
from sagemaker.tensorflow import TensorFlow

sess = sagemaker.Session()
role = get_execution_role()
tf_estimator = TensorFlow(entry_point='tf_train.py', role=role,
                          train_instance_count=1,
train_instance_type='ml.m5.large',
                          framework_version='1.12', py_version='py3')
tf_estimator.fit('s3://mastering-ml-aws/chapter8/train-data/')

The first few lines in the preceding code block are the usual imports and session creation
necessary for getting started with SageMaker. The next important thing is the creation of a
TensorFlow estimator. Note how we provide the constructor with a Python script,
TensorFlow version, and Python version, as well as the usual parameters for instance
number and type.

Upon calling the tf_estimator.fit(training_data_s3_path) function, SageMaker
will do the following tasks:

Launch an EC2 instance (server).1.
Download the S3 data to a local directory.2.
Call the tf_train.py Python script to train the model. The Python script is3.
expected to store the model on a certain local directory of the EC2 instance.
Package the stored model in a .tar.gz file and upload it to S3. Additionally, it4.
will create an Amazon container and SageMaker model identifier.

Hence, the training happens on a SageMaker managed server, but the model it produces is
a SageMaker compatible model, which can be used to serve predictions or run batch
transform jobs, like the ones we worked with in previous chapters.

Let's take a look at the tf_train.py Python script, which is responsible for the model
training and saving the model.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 162 ]

This Python script must receive some information from the SageMaker container. In
particular, it must receive the following:

The local directory where SageMaker has downloaded the data (from S3)
The location where the Python script needs to store the trained model
Other hyperparameters needed by the model (we will not dive into this yet and
work with just fixed values, but we will show in Chapter 14, Optimizing Models
in Spark and SageMaker, how these can be used for hyperparameter tuning)

Take a look at the following code:

import pandas as pd
import argparse
import os
import tensorflow as tf

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch_size', type=int, default=1)
    parser.add_argument('--steps', type=int, default=12000)
    parser.add_argument('--model_dir', type=str)
    parser.add_argument('--local_model_dir', type=str,
default=os.environ.get('SM_MODEL_DIR'))
    parser.add_argument('--train', type=str,
default=os.environ.get('SM_CHANNEL_TRAINING'))

    args, _ = parser.parse_known_args()
    housing_df = pd.read_csv(args.train + '/train.csv')
    training_features = ['crim', 'zn', 'indus', 'chas', 'nox',
                         'rm', 'age', 'dis', 'tax', 'ptratio', 'lstat']
    label = 'medv'
    tf_regressor = tf.estimator.LinearRegressor(
        feature_columns=[tf.feature_column.numeric_column('inputs',
                                  shape=(11,))])
    training_input_fn = tf.estimator.inputs.numpy_input_fn(
        x={'inputs': housing_df[training_features].as_matrix()},
        y=housing_df[label].as_matrix(),
        shuffle=False,
        batch_size=args.batch_size,
        num_epochs=args.epochs,
        queue_capacity=1000,
        num_threads=1)
    tf_regressor.train(input_fn=training_input_fn, steps=args.steps)

    def serving_input_fn():



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 163 ]

        feature_spec = tf.placeholder(tf.float32, shape=[1, 11])
        return tf.estimator.export.build_parsing_serving_input_receiver_fn(
                {'input': feature_spec})()

    tf_regressor.export_savedmodel(export_dir_base=args.local_model_dir +
'/export/Servo',
serving_input_receiver_fn=serving_input_fn)

The first part of the script is just setting up an argument parser. Since SageMaker calls this
script as a black box, it needs to be able to inject such arguments to the script. With these
arguments, it can train the TensorFlow model. You might notice that the training is exactly
the same as what we did in the previous section. The only new part is saving the model and
the definition of a new kind of function (serving_input_fn). This function has a similar
purpose to the ones we used for training and testing, but instead, it will be used at the
serving time (that is, each time a prediction request is made to the service). It is responsible
for defining the necessary transformation from an input tensor placeholder to the features
expected by the model. The
tf.estimator.export.build_parsing_serving_input_receiver_fn utility can
conveniently build a function for such purposes. It builds a function that expects
tf.Example (a protobuf-serialized dictionary of features) fed into a string placeholder, so
that it can parse such examples into feature tensors. In our case, we just have a single vector
as input, so the transformation is straightforward. The last line in our script saves the
model into the location requested by SageMaker through the local_model_dir argument.
In order for the deserialization and unpacking to work, the convention is to save the model
in a /export/Servo subdirectory.

Once we run the fit() command, we can deploy the model as usual:

predictor = tf_estimator.deploy(instance_type='ml.m5.large',
initial_instance_count=1)

For this example, we used a non-GPU instance type, but these are largely
recommended for serious serving and training. We will dive into this in
Chapter 15, Tuning Clusters for Machine Learning.

The deploy() command will launch a container capable of serving the model we
constructed. However, constructing the payload to send to such service is not as trivial as
the examples in the previous chapter, as we need to construct tf.Example.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 164 ]

At prediction time we want to obtain the price given a specific feature vector. Suppose we
want to find the price for these features:

features_vector = [0.00632, 18.0, 2.31, 0.0, 0.538, 6.575, 65.2, 4.09,
296.0, 15.3, 4.98]

The first step is to construct a tf.train.Example instance, which in our case consists of a
single feature called inputs with the floating point values of features_vector:

model_input = tf.train.Example(features=tf.train.Features(

    feature={"inputs":
tf.train.Feature(float_list=tf.train.FloatList(value=features_vector))}))

The next step is to serialize the model_input protobuf message using
SerializeToString:

model_input = model_input.SerializeToString()

Since this is really a string of bytes, we need to further encode model_input so that it can
be sent in the payload as a string without special characters. We use base64 encoding to do
such a thing:

encoded = base64.b64encode(model_input).decode()

Lastly, we call our predictor service by assembling a JSON request:

predictor.predict('{"inputs":[{"b64":"%s"}]}' % encoded)

Note there is a special convention used for sending base64, encoded protobuf examples by
creating a dictionary keyed with b64. The output decoded from JSON is a dictionary with
the following prediction:

{'outputs': [[24.7537]]}

The inputs and outputs payload JSON keys are part of the contract for
SageMaker and should not be confused with the name of our single
feature, inputs, which can be an arbitrary string.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 165 ]

Creating a custom neural net with
TensorFlow 
In the previous section, Training and serving the TensorFlow model through SageMaker, we
used the high-level library of TensorFlow to construct a regression model using a
LinearRegressor. In this section, we will show how we can construct an actual neural 
network using the Keras library from TensorFlow. Keras facilitates the design of neural
networks by hiding some of the complexity behind the core (low-level) TensorFlow library.

In this chapter, we will use the ubiquitous MNIST dataset, which consists of a series of
images of handwritten digits along with the real label (values between 0 and 1). The MNIST
dataset can be downloaded from https://www.kaggle.com/c/digit-recognizer/data.

The dataset comes as a CSV with 784 columns corresponding to each of the pixels in the 28
x 28 image. The values for each column represent the strength of the pixel in a gray scale
from 0 to 255. It also has an additional column for the label with a value between 0 and 9,
corresponding to the actual digit.

Let's download the dataset and do our usual splitting into testing and training using
pandas and scikit-learn:

import pandas as pd
from sklearn.model_selection import train_test_split

mnist_df = pd.read_csv('mnist/train.csv')
train_df, test_df = train_test_split(mnist_df, shuffle=False)

We can inspect the dataset through train.head():

As we can see, the columns are labeled pixelX, where x is a number between 0 and 783.
Let's define the names of these columns in distinct variables:

pixel_columns = ['pixel' + str(i) for i in range(0, 784)]
label_column = 'label'

https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data


Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 166 ]

Each row in this dataset becomes a training example and thus represent the input layer of
our network. On the other end of the network, we will have 10 nodes, each representing the
probability of each digit given each input vector. For our example, we will just use one
middle layer.

The following diagram depicts our network structure:

To define such a network in Keras is very simple:

import tensorflow as tf
from tensorflow import keras

model = keras.Sequential([
    keras.layers.InputLayer(input_shape=(784,), batch_size=5),
    keras.layers.Dense(256, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

Note how easy it is to define such a model. It consists of three layers:

An input layer, where each vector is of size 784, and each gradient descent
update will feed a mini-batch of five examples
A middle dense layer (meaning each node will connect to every other node in the
next layer) with a Rectified Linear Unit (ReLU) activation function on each node
An output layer of size 10 using a softmax activation function (as we want a
probability distribution over the digits)



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 167 ]

In addition to defining the network through a sequence of layers, TensorFlow will need to
compile the model. This basically entails providing the kind of optimization method to use,
the loss function, and the required metrics:

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

The next stage will be to fit the model with our data. In order to feed the dataset into
TensorFlow, we need to create numpy matrices, where each row is a training instance and
each column represents a node in the input layer. Conveniently, the pandas
method dataframe.as_matrix() does exactly that, so we will slice the dataset to include
the training columns and construct such a matrix. Additionally, we will normalize the
matrix to have each grayscale value between 0 and 1:

import numpy as np

vectorized_normalization_fn = np.vectorize(lambda x: x / 255.0)
normalized_matrix =
      vectorized_normalization_fn(train_df
[pixel_columns].as_matrix())

Likewise, we obtain the labels vector by transforming the pandas series into a vector of
digits:

labels = train_df[label_column].as_matrix()

Now that we have our training matrix and labels, we are ready to fit our model. We do this
by simply calling fit() and providing the labeled training data:

model.fit(normalized_matrix, labels, epochs=3)

The training will end with the loss and accuracy metrics on the training dataset:

Epoch 3/3
31500/31500 [==============================] - 16s 511us/sample - loss:
0.0703 - acc: 0.9775

In order to determine whether our model is overfitting (that is, it just learns how to classify
the images in our training dataset but fails to generalize over new images), we need to test
our model in the testing dataset. For this, we will perform the same transformations we 
made on our training dataset, but for the test dataset.



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 168 ]

The evaluate() function of our model will provide accuracy evaluation metrics:

normalized_test_matrix =
vectorized_normalization_fn(test_df[pixel_columns].as_matrix())
test_labels = test_df[label_column].as_matrix()
_, test_acc = model.evaluate(normalized_test_matrix, test_labels)

print('Accuracy on test dataset:', test_acc)

The preceding code generates the following output:

Accuracy on test dataset: 0.97

Note that our simple model is, in fact, fairly accurate. Let's examine a few images in the
testing dataset to see how the prediction matches the actual digit. For doing this, we will
plot the images and compare them to the predicted digit by performing the following steps:

First, we will define a function that obtains the predicted label for a particular1.
row (index) on our testing dataset matrix:

def predict_digit(index):
    predictions = model.predict(normalized_test_matrix[index:index
+ 1])
    return np.argmax(predictions, axis=1)[0]

model.predict() will obtain the predictions given a matrix of features. In this
case, we just need one single row, so we slice our matrix into a single row to
obtain the prediction for just the index in question. The predictions will be a
vector of 10 components, each representing the strength of each digit. We use the
argmax function to find the digit that maximizes the strength (that is, finding the
most probable digit).

Next, we define a function, show_image(), which, given an index, will plot the2.
image:

from IPython.display import display
from PIL import Image

def show_image(index):
    print("predicted digit: %d" % predict_digit(index))
    print("digit image:")
    vectorized_denormalization_fn = np.vectorize(lambda x:
np.uint8(x * 255.0))
    img_matrix = normalized_test_matrix[index].reshape(28, 28)
    img_matrix = vectorized_denormalization_fn(img_matrix)
    img = Image.fromarray(img_matrix, mode='L')
    display(img)



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 169 ]

We rely on the PIL library to perform the plotting. In order to plot the image, we
need to denormalize our values back to the 0-255 range and reshape the 784 pixels
into a 28x28 image.

Let's examine a few instances in the following screenshots:

And the second instance:

The following images were not able to be recognized correctly by the model:

And the second instance:



Implementing Deep Learning with TensorFlow on AWS Chapter 8

[ 170 ]

You may probably agree that even a human could make similar mistakes.

So, how can we build a service on top of our model?

One simple way to do this is to create an estimator instance from our model:

estimator = tf.keras.estimator.model_to_estimator(model)

Recall that LinearRegressor we used in the previous section was also an
estimator instance, so the same process for training, serializing, and serving the model
would apply starting from this estimator instance.

Summary
In this chapter, we went through the process of creating two different TensorFlow models:
one using the high-level library of estimators, and the other using Keras to build a custom
neural network. In the process, we also showed how SageMaker can seamlessly handle the
training and serving of TensorFlow models.

In the next chapter, Image Classification and Detection with SageMaker,  we will show how to
use deep learning out-of-the-box on AWS to detect and recognize images.  

Exercises
The following are the questions for this chapter:

What is the difference between an epoch, batch, and step?
How would you design a network that would be able to provide
recommendations for the theme park dataset considered in Chapter 6, Analyzing
Visitor Patterns to Make Recommendations?
How would you build a network that is capable of classifying the ads in Chapter
5, Customer Segmentation Using Clustering Algorithms, as clicks/not-clicks?



9
Image Classification and

Detection with SageMaker
We have studied a type of deep learning algorithm called a Convolutional Neural
Network (CNN), which is capable of classifying images. However, implementing such an
algorithm in practice is extremely complex and requires a lot of
expertise. Amazon SageMaker offers features that allow you to train machine learning
models such as image classification algorithms using deep learning capabilities. 

We'll cover the following topics in this chapter:

Introducing Amazon SageMaker for image classification
Training a deep learning model using Amazon SageMaker  
Classifying images using Amazon SageMaker

Introducing Amazon SageMaker for image
classification
The field of data science has been revolutionized because of services such as Tensorflow
and SageMaker. Complex algorithms, such as Deep learning, were only accessible to large
corporations and research labs in the past. However, thanks to services such as SageMaker,
anyone who can write code to call these services can train and use sophisticated machine
learning algorithms. This has enabled teenagers, with a working knowledge of machine
learning, to create applications that can perform complex machine learning tasks. You will
have the power to perform machine learning tasks at the same level as the world's top
scientists by accessing state-of-the-art machine learning models in SageMaker marketplace. 



Image Classification and Detection with SageMaker Chapter 9

[ 172 ]

Amazon SageMaker offers a large number of algorithms that data scientists can use to train
their machine learning models, and it also offers tools to generate predictions on a batch of
test data or create an endpoint to use the model as a service. When we work on smaller test
datasets, we can use Python machine learning libraries, such as scikit-learn. However,
when we are working on a larger dataset, we have to rely on frameworks, such as Apache
Spark, and use the libraries, such as MLLib.

Amazon offers a suite of machine learning libraries in SageMaker where we can use pre-
tuned models from various vendors to train our machine learning models. Hence, when
you are working on a problem, you can search the Amazon SageMaker marketplace to find
algorithms that are already available. If there are multiple algorithms and models available
from different vendors, you can choose between algorithms based on their pricing models
and accuracy.  

The SageMaker marketplace can be used to select models offered by vendors other than
Amazon. Hence, if you need a specialized algorithm that is tuned to functions in the field of
genetic engineering or a specialized version of an image classification algorithm, such as
Construction-worker Detector, you can select one of the pre-trained models and directly
get predictions. 

Amazon SageMaker also offers jobs to tune parameters of the algorithms that are available
in the marketplace so that they can be adapted to your cluster size and applications. Such
jobs are called Hyperparameter-tuning Jobs. You can provide various values of parameters
to check an algorithm. Amazon SageMaker can then automatically train to select what
tuning parameters would work best for your application. You can also set the values of
these parameters manually.

In this chapter, we'll present how to use Amazon SageMaker using an example of an image
classifier. This algorithm learns from a labeled set of images and then detects objects in the
testing dataset by assigning a probability of the existence of each object in the test image.
For this test, we use a publicly available dataset called Caltech265 (http://www.vision.
caltech.edu/Image_Datasets/Caltech256/). This dataset contains 30,608 images. The
dataset is labeled with 256 objects. 

Please download the following dataset files to your AWS S3
bucket: http://data.mxnet.io/data/caltech-256/caltech-256-60-
train.rec  and   http://data.mxnet.io/data/caltech-256/caltech-
256-60-val.rec

For the purpose of our experiment, we'll store the training data files in the AWS bucket
under the image-classification-full-training/train folder. This file
contains 15,420 image files that are resized to 224 x 224 pixels. 

http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-train.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec
http://data.mxnet.io/data/caltech-256/caltech-256-60-val.rec


Image Classification and Detection with SageMaker Chapter 9

[ 173 ]

Training a deep learning model using
Amazon SageMaker
In this section, we will show how to train image classification models using this dataset.
Similarly, download the validation file to the AWS bucket under the image-
classification-full-training/validation folder.

In Chapter 7, Implementing Deep Learning Algorithms, we studied an algorithm called
a CNN, which uses deep neural networks to build an object detection model. This model
trains on labeled images and learns how to identify objects in an image using various layers
of deep neural networks. Building this deep learning model from scratch is difficult.
Amazon SageMaker offers an easy way to train image classification algorithms using your
own dataset and then deploys that model to detect objects in images. We'll provide a code
example of training a model using the caltech256 dataset and then we'll test it on image
files in the next section, Classifying images using Amazon SageMaker. 

Similar to Chapter 8, Implementing Deep Learning with TensorFlow on AWS, you will have to
start a new SageMaker instance and use Jupyter Notebooks to start the test. Amazon
SageMaker already offers a large amount of example code for you to get started. To access
these examples, please refer to the SageMaker Examples tab:

The code that we use in this chapter is also a modification of the image classification
example provided by SageMaker. You can create a new notebook with the kernel
of conda_python3:

In chapters such as Chapter 5, Customer Segmentation Using Clustering
Algorithms, and Chapter 6, Analyzing Visitor Patterns to Make
Recommendations, we used the high-level sagemaker Python library
provided by Amazon. Here, we have chosen to show how to use the
SageMaker generic client from the boto3 library. This library provides a
declarative interface that more closely resembles the API behind
SageMaker. Hopefully, you the reader can grasp the lower-level calls
made to the API through the examples in this chapter.



Image Classification and Detection with SageMaker Chapter 9

[ 174 ]

We provide a code example here on how to use the boto3 client to create an image
classification model using Amazon Sagemaker.

Initialize the role and the image-classification image that we want to use in1.
SageMaker, then specify the name of our bucket:

import boto3
import re
from sagemaker import get_execution_role
from sagemaker.amazon.amazon_estimator import get_image_uri

role = get_execution_role()

bucket='mastering-ml-aws'

training_image = get_image_uri(boto3.Session().region_name, 'image-
classification')

The training image called image-classification is a Docker image of the image-
classification algorithm. Amazon SageMaker provides a large variety of such
images, which you can use to train your classifiers. Each image has its own tuning
parameters, which you can also provide when training that algorithm.

We will declare these tuning parameters, in the following code block:2.

# Define Parameters

num_layers = "18"
image_shape = "3,224,224"
num_training_samples = "15420"
num_classes = "257"
mini_batch_size =  "64"
epochs = "2"
learning_rate = "0.01"

An image classification algorithm uses deep neural networks; these parameters
will be familiar to you as we studied them in Chapter 7, Implementing Deep
Learning Algorithms.



Image Classification and Detection with SageMaker Chapter 9

[ 175 ]

We define the number of hidden layers that will be used by the deep learning
algorithm. We also have to specify the number of channels and the size of each
image. We define the number of training images and the number of classes (object
types). The number of epochs defines the number of times we will iterate over the
training dataset. The accuracy of the deep learning classifier increases with the
number of iterations we have over the dataset. The learning rate defines the
number of changes the deep learning algorithm is allowed to make to the
weights.

We would recommend that you run this algorithm with different parameters to
observe the effects on evaluation and training time. 

Once we define the parameters, we initialize the boto3 client for S3, where we3.
have stored our training and validation files. 

import time
import boto3
from time import gmtime, strftime

# caltech-256
s3_train_key = "image-classification-full-training/train"
s3_validation_key = "image-classification-full-training/validation"
s3_train = 's3://{}/{}/'.format(bucket, s3_train_key)
s3_validation = 's3://{}/{}/'.format(bucket, s3_validation_key)

s3 = boto3.client('s3')

We construct a JSON with all the parameters required to train our image4.
classifier:

# create unique job name
job_name_prefix = 'example-imageclassification'
timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())
job_name = job_name_prefix + timestamp
training_params = \
{
    # specify the training docker image
    "AlgorithmSpecification": {
        "TrainingImage": training_image,
        "TrainingInputMode": "File"
    },
    "RoleArn": role,
    "OutputDataConfig": {
        "S3OutputPath": 's3://{}/{}/output'.format(bucket,
job_name_prefix)



Image Classification and Detection with SageMaker Chapter 9

[ 176 ]

    },
    "ResourceConfig": {
        "InstanceCount": 1,
        "InstanceType": "ml.p2.xlarge",
        "VolumeSizeInGB": 50
    },
    "TrainingJobName": job_name,
    "HyperParameters": {
        "image_shape": image_shape,
        "num_layers": str(num_layers),
        "num_training_samples": str(num_training_samples),
        "num_classes": str(num_classes),
        "mini_batch_size": str(mini_batch_size),
        "epochs": str(epochs),
        "learning_rate": str(learning_rate)
    },
    "StoppingCondition": {
        "MaxRuntimeInSeconds": 360000
    },
    "InputDataConfig": [
        {
            "ChannelName": "train",
            "DataSource": {
                "S3DataSource": {
                    "S3DataType": "S3Prefix",
                    "S3Uri": s3_train,
                    "S3DataDistributionType": "FullyReplicated"
                }
            },
            "ContentType": "application/x-recordio",
            "CompressionType": "None"
        },
        {
            "ChannelName": "validation",
            "DataSource": {
                "S3DataSource": {
                    "S3DataType": "S3Prefix",
                    "S3Uri": s3_validation,
                    "S3DataDistributionType": "FullyReplicated"
                }
            },
            "ContentType": "application/x-recordio",
            "CompressionType": "None"
        }
    ]
}



Image Classification and Detection with SageMaker Chapter 9

[ 177 ]

There are a lot of things to learn in this JSON. We define the algorithm that we want to use
for training in the AlgorithmSpecification section. OutputDataConfig defines where
the model will be stored. ResourceConfig defines the instance type to be used for a
training job. Note that tasks such as image classification run faster on GPU-based instances
on AWS. All the parameters for the algorithm are defined in the HyperParameters section.
We set the training dataset and the validation dataset under the InputDataConfig section
of JSON. This JSON configuration will be used in the next code block to set parameters for
the training job. 

The following code block starts a sagemaker training job:

# create the Amazon SageMaker training job

sagemaker = boto3.client(service_name='sagemaker')
sagemaker.create_training_job(**training_params)

After you start the training job, you can observe its progress of the training job on your
Amazon SageMaker dashboard:

This dashboard also shows you statistics for your model, including the CPU and GPU
usage, and the memory utilization. You can also observe the training and validation
accuracy of the model we're training on this dashboard.



Image Classification and Detection with SageMaker Chapter 9

[ 178 ]

Since we are only using two epochs, the training accuracy of this model is low:

You have successfully trained an image classification model using SageMaker. SageMaker
is very easy to use, as you just have to select the algorithm image, select the training
dataset, and set the parameters for the algorithm. SageMaker automatically trains the
model based on this information and also stores the model on your S3 bucket. 



Image Classification and Detection with SageMaker Chapter 9

[ 179 ]

Classifying images using Amazon
SageMaker
The SageMaker models that you have trained are now available to be used to predict
objects in images. As we discussed at the beginning of the chapter, SageMaker offers a
marketplace where you can use many models directly to perform your tasks.

Since we trained our own machine learning model, we will have to create a1.
SageMaker model that can be used for prediction. The following code shows how
to generate a usable model in Amazon Sagemaker

import boto3
from time import gmtime, strftime

sage = boto3.Session().client(service_name='sagemaker')

model_name="example-full-image-classification-model"

info = sage.describe_training_job(TrainingJobName=job_name)
model_data = info['ModelArtifacts']['S3ModelArtifacts']

hosting_image = get_image_uri(boto3.Session().region_name, 'image-
classification')

primary_container = {
    'Image': hosting_image,
    'ModelDataUrl': model_data,
}

create_model_response = sage.create_model(
    ModelName = model_name,
    ExecutionRoleArn = role,
    PrimaryContainer = primary_container)

To create a model in SageMaker, we have to specify the model name that was generated in
the previous steps. In our example, the model name was set to example-full-image-
classification-model. We also have to specify the container in which the model will be
stored. Since we used the image-classification Docker image to generate this model, we
have to specify it as a parameter. This image will help SageMaker read the trained model
and define how it can be used for prediction. 

The create_model function will create the model and return an Amazon Resource
Name (ARN ) for the model. This can be used to call the model to generate predictions. 



Image Classification and Detection with SageMaker Chapter 9

[ 180 ]

For testing, we will download the raw images from the Caltech256 dataset and store them
in an S3 bucket. We will use these images to generate predictions:

!wget -r -np -nH --cut-dirs=2 -P /tmp/ -R "index.html*"
http://www.vision.caltech.edu/Image_Datasets/Caltech256/images/008.bathtub/

batch_input = 's3://{}/image-classification-full-
training/test/'.format(bucket)
test_images = '/tmp/images/008.bathtub'

!aws s3 cp $test_images $batch_input --recursive --quiet

Once we have downloaded all the images and stored them in an S3 bucket, we specify the
parameters for running a batch prediction job. This job will predict the probability of each
of the 256 objects being present in an image:

timestamp = time.strftime('-%Y-%m-%d-%H-%M-%S', time.gmtime())
batch_job_name = "image-classification-model" + timestamp
request = \
{
    "TransformJobName": batch_job_name,
    "ModelName": model_name,
    "MaxConcurrentTransforms": 16,
    "MaxPayloadInMB": 6,
    "BatchStrategy": "SingleRecord",
    "TransformOutput": {
        "S3OutputPath": 's3://{}/{}/output'.format(bucket, batch_job_name)
    },
    "TransformInput": {
        "DataSource": {
            "S3DataSource": {
                "S3DataType": "S3Prefix",
                "S3Uri": batch_input
            }
        },
        "ContentType": "application/x-image",
        "SplitType": "None",
        "CompressionType": "None"
    },
    "TransformResources": {
            "InstanceType": "ml.p2.xlarge",
            "InstanceCount": 1
    }
}

print('Transform job name: {}'.format(batch_job_name))
print('\nInput Data Location: {}'.format(s3_validation))



Image Classification and Detection with SageMaker Chapter 9

[ 181 ]

As you might have guessed, we have to specify the model name in the ModelName
parameter and the input folder in the TransformInput parameter. We also have to specify
the output folder where the predictions are stored. We have to specify the instance type
that we are using in the TransformResources parameter and the max number of files to
process in the MaxConcurrentTransforms parameter. 

The following code uses the parameters and starts the create_transform_job:

sagemaker = boto3.client('sagemaker')
sagemaker.create_transform_job(**request)

You can monitor your transforms job on the SageMaker dashboard under Inference | Batch
Transforms Jobs section. Once the task is finished, you can access the predictions in the S3
bucket you specified as the output folder.

The predictions can be seen in the following format:

{
  "prediction": [
    0.0002778972266241908,
    0.05520012229681015,
...
    ]
}

Since our model had 256 object categories, the output specifies the probability of each object
being present in the image. You can run the model on various datasets to check whether
your model can predict the objects in the dataset correctly. 

SageMaker offers a very easy-to-use service to not only train deep learning models but also
to use them in applications to generate predictions. Although the service is very intuitive,
SageMaker is expensive when you use the pre-built models on a large dataset to generate
predictions. Based on the application being developed, data scientists should always
consider the overall cost they would incur when using such services compared to building
the same models on their own clusters in Apache Spark. 



Image Classification and Detection with SageMaker Chapter 9

[ 182 ]

Summary
In this chapter, we studied how Amazon SageMaker offers various ready-to-use machine
learning models to generate predictions, as well as algorithm images that can be used to
train your models. Amazon SageMaker generates a layer of abstraction between you and
the messy details of setting up your own clusters to train and create your own machine
learning model. Amazon SageMaker dashboards also offer a place to store your trained
models and monitor your batch-processing jobs for predictions. 

You can also train your own machine learning models using your own datasets in
SageMaker. We presented an example of training a machine learning model that is capable
of performing object detection in images. We demonstrated how this model can then be
deployed on SageMaker and used for running batch-prediction jobs. You will be able to use
this as a template to work on other algorithms in Amazon SageMaker.

In this book, our aim is to provide you with an understanding of how machine learning
algorithms work and how you can utilize powerful tools such as Apache Spark,
Tensorflow, and SageMaker to deploy large-scale training and prediction jobs using
machine learning. 

Exercises
For each of the examples provide in previous chapters, find an algorithm in1.
Amazon SageMaker Marketplace that would be applicable to solve that problem.
Amazon SageMaker also provides a service to create endpoints to generate2.
predictions. For the preceding example, create an endpoint for the model that we
trained and generate predictions for one image. 



4
Section 4: Integrating Ready-

Made AWS Machine Learning
Services

The objective of this section is to introduce readers to various machine learning services
that are provided by AWS to perform specific machine learning tasks. As the readers will
be well-versed with machine learning by this point in the book, they will learn how to use
the tools provided by AWS for machine learning tasks such as image recognition and
natural language processing.

This section contains the following chapters:

Chapter 10, Working with AWS Comprehend
Chapter 11, Using AWS Rekognition
Chapter 12, Building Conversational Interfaces Using AWS Lex



10
Working with AWS

Comprehend
As a data scientist, knowing how machine learning algorithms work is very important.
However, it may not be efficient to build your own machine learning models to perform
certain tasks, as it takes a lot of effort and time to design an optimal algorithm. In Chapter
10, Working with AWS Comprehend, Chapter 11, Using AWS Rekognition and Chapter
12, Building Conversational Interfaces Using AWS Lex, we will look at the machine learning as
a service (MLaaS) product that you can access in AWS. These products allow you to use
models that are pre-trained in AWS using either the AWS dashboard or API calls. 

In this chapter, we will cover the following topics:

Introducing Amazon Comprehend
Accessing Amazon Comprehend
Testing entity recognition using Comprehend
Testing sentiment analysis using Comprehend
Implementing text classification using Comprehend APIs

Introducing Amazon Comprehend
Amazon Comprehend is a service available in AWS that offers natural language
processing (NLP) algorithms. NLP is a field in machine learning that analyzes human
(natural) languages and can identify various attributes of these languages. In most of our
previous chapters, we looked at examples of structured data. The data had predefined
features and was organized as rows of observations. However, a natural language dataset is
more complicated to process. Such datasets are called unstructured datasets, as the
structure of the features is not well-defined.



Working with AWS Comprehend Chapter 10

[ 185 ]

Hence, algorithms are needed to extract structure and information from a text document.
For example, a natural language has words that are arranged using a
grammatical structure. Natural-language sentences also have keywords, which contain
more information regarding places, people, and other details. They also have a context,
which is very hard to learn, and the same words may convey different meanings based on
how they are arranged. 

The field of NLP studies how to process these text documents and extract information from
them. NLP not only involves clustering and classifying the documents, but also
preprocessing the data to extract important keywords and entity information from the text.
Based on the domain of the text documents, different preprocessing is required, as the
styles of written documents change. For example, medical and legal texts are written with a
lot of jargon and are well-structured. However, if you are using an NLP algorithm to
process Twitter data, the text may be composed of poor grammar and hashtags. Hence,
based on the domain of the data, you need a separate process to preprocess the data and
how the models should be trained. Domain expertise is generally required when training
NLP models. 

AWS Comprehend provides tools to both train machine learning models and use pre-
trained models to perform NLP tasks. It provides real-time dashboards to analyze text data
and also provides tools to train machine learning algorithms using their UI.

In this chapter, we will explore four NLP tasks that can be accomplished using AWS
Comprehend. We will also suggest when a data scientist should employ ready-to-use tools
and when they should invest time in building their own machine learning algorithms. 

Accessing AmazonComprehend
Amazon Comprehend is available to use on the AWS Console. When you log into the AWS
Management Console, search for Amazon Comprehend in the AWS Services box. Selecting
Amazon Comprehend will take you to the AWS Comprehend start screen, as shown in the
following screenshot: 

https://aws.amazon.com/comprehend/
https://aws.amazon.com/comprehend/


Working with AWS Comprehend Chapter 10

[ 186 ]

Click on Launch Comprehend when you get to this screen, which will take you to the AWS
Comprehend dashboard. You should be able to access the algorithms used in the following
sections from this page. 

Named-entity recognition using
Comprehend
Named-entity recognition (NER) is a field in NLP that tags mentions of named entities in
unstructured text. Named entities are names of people, places, organizations, and so on. For
example, consider the following sentence:

Tim Cook traveled to New York for an Apple store opening.

In this sentence, there are three named entities. Tim Cook is the name of a person, New
York is the name of a city (location), and Apple is the name of an organization. Hence, we
need an NER model that can detect these entities. Note that Apple is an ambiguous noun,
as it can be the name of a company or a fruit. The NER algorithm should understand the
context in which the term is used and identify it accordingly. 

AWS Comprehend offers a good NER tool that can be used to identify entities. This tool can
be used in real-time via their dashboard or using their APIs. AWS Comprehend detects the
following entities:

Commercial Item: Brand names
Date: Dates in different formats
Event: Names of concerts, festivals, elections, and so on
Location: Names of cities, countries, and so on



Working with AWS Comprehend Chapter 10

[ 187 ]

Organization: Names of companies and governmental organizations
Person: Names of people
Quantity: Commonly used units used to quantify a number
Title: Names of movies, books, and so on

To access the AWS dashboard for NER, go to the Real-time Analysis tab in the menu. You
can then add input text in the text box provided on the page. The following screenshot
demonstrated how Amazon Comprehend performs the NER task:

You can see that the NER tool in Amazon Comprehend automatically labels the entities in
the sentence. Along with labeling the categories of the entities, it also gives us a confidence
score. This score can be used to determine whether we trust the results from the tool. 

The NER tool in Amazon Comprehend can also be accessed using the API provided by
AWS.

The following code shows how you can call the Comprehend tool to get the entity scores:

import boto3
import json

comprehend = boto3.client(service_name='comprehend')



Working with AWS Comprehend Chapter 10

[ 188 ]

text = "Tim Cook traveled to New York for an Apple store opening"

print(json.dumps(comprehend.detect_entities(Text=text, LanguageCode='en'),
sort_keys=True, indent=4))

You use the boto3 package, which is an AWS tool package for Python. We first initialize
the Comprehend client and then pass our text to the client to get a JSON response with
information about the named entities. In the following code block we can see the response
we receive from the client:

{
  "Entities": [
    {
      "Score": 0.9999027252197266,
      "Type": "PERSON",
      "Text": "Tim Cook",
      "BeginOffset": 0,
      "EndOffset": 8
    },
    {
      "Score": 0.992688775062561,
      "Type": "LOCATION",
      "Text": "New York",
      "BeginOffset": 21,
      "EndOffset": 29
    },
    {
      "Score": 0.9699087738990784,
      "Type": "ORGANIZATION",
      "Text": "Apple",
      "BeginOffset": 37,
      "EndOffset": 42
    }
  ]
}

Thus, parsing the JSON can get us information regarding the entities in the text. 

You can also train a custom NER algorithm in AWS Comprehend using the Customization
| Custom entity recognition option in the left-hand side menu. You can add training
sample documents and a list of annotations for entities. The algorithm automatically learns
how to label these entities in the correct context and updates the existing models. 



Working with AWS Comprehend Chapter 10

[ 189 ]

NER algorithms are applied in various applications. One of their important applications is
in the field of News Aggregation. You can automatically generate tags for a document so
that users can search for documents based on the entities in them. NER is also useful in the
field of recommendation algorithms, where NER is used to detect keywords and we can
create a news-recommendation algorithm. We can build a collaborative filtering model that
can recommend articles about entities that readers of a current article may also be
interested in.

Sentiment analysis using Comprehend
Sentiment analysis algorithms analyze text and categorize it based on the sentiments or 
opinions in the text. Sentiment analysis detects subjective opinions that are expressed in
text. For example, reviews on Amazon Marketplace give a good or a bad review of a
product. Using sentiment analysis, we can detect whether a review is positive or negative.
We can also recognize emotional nuances in a review, such as whether the reviewer was
angry, excited, or neutral about a given product. In this age of social media, we have a large
number of avenues to voice our opinions on products, movies, politics, and so on. Data
scientists use sentiment analysis algorithms to analyze a large amount of data and extract
opinions regarding a certain entity based on unstructured text data. 

Amazon Comprehend makes the task of sentiment analysis easy by providing a real-time
dashboard to analyze the sentiment in text. You can access the Sentiment Analysis
dashboard the same way you did for the NER algorithm. We'll provide two examples of
how Comprehend can perform sentiment analysis on our data. I looked at two reviews on
Amazon that were positive and negative and used Comprehend to perform sentiment
analysis on them. Consider the first example, as seen in the following screenshot:



Working with AWS Comprehend Chapter 10

[ 190 ]

In this example, the reviewer has used words such as disappointed. These terms have
negative connotations. However, sentiment analysis algorithms can detect that the user also
used a negative before this word and correctly predict that this text has a positive
sentiment. Similarly, consider the following example:

You can see that the reviewer was initially happy regarding the product, but then had
issues. Hence, the reviewer was not happy with the product. Hence, the sentiment analysis
algorithm correctly predicts that the confidence of the review being negative is 70%.
However, it also predicts that there are some mixed sentiments in this review and provides
confidence of 22%. We use the soft-max methodology to pixel the sentiment with the
highest confidence. 

Sentiment analysis can also be accessed using the Amazon API. Here, we provide example
code that shows how we can call the sentiment analysis API using the boto3 Python
package: 

import boto3
import json

comprehend = boto3.client(service_name='comprehend')

text = " It worked fine for the first 6 weeks, then I lost battery power I
turned the phone off at night while charging, did not help. Then every else
started to fail."

print(json.dumps(comprehend.detect_sentiment(Text=text, LanguageCode='en'),
sort_keys=True, indent=4))



Working with AWS Comprehend Chapter 10

[ 191 ]

This API call returns the following JSON with the data regarding the sentiment of the text:

{
    "Sentiment": {
        "Sentiment": "NEGATIVE",
        "SentimentScore": {
            "Positive": 0.03148878738284111,
            "Negative": 0.6730570793151855,
            "Neutral": 0.047707948833703995,
            "Mixed": 0.24774616956710815
        }
    }
}

You can use the API to classify a large number of reviews to detect what the overall
sentiment is for a given product. 

Sentiment analysis is a very powerful tool that companies use to analyze social media data
to detect the overall sentiment regarding their products and also to determine why users
are unhappy with their products. Movie review aggregators, such as Rotten Tomatoes, also
use them to detect whether reviews are positive or negative so that they can classify them
and generate aggregated scores. 

Text classification using Comprehend
Text classification is the process of classifying text documents into categories. Similar to the 
classification algorithms that we studied in Chapter 2, Classifying Twitter Feeds with Naive
Bayes to Chapter 6, Analyzing Visitor Patterns to Make Recommendations, text classification
algorithms also generate models based on labeled training observations. The classification
model can then be applied to any observation to predict its class. Moreover, the same
algorithms that we studied in the previous chapters, such as Chapter 2, Classifying Twitter
Feeds with Naive Bayes, Chapter 3, Predicting House Value with Regression Algorithms, and
Chapter 4, Predicting User Behavior with Tree-Based Methods, can also be used for text
classification. 

Text data is unstructured data. Hence, we need to generate features from text documents so
that those features can be used as input for our classification model. For text datasets,
features are generally terms in the document. For example, consider the following sentence:

Tim Cook traveled to New York for an Apple store opening.



Working with AWS Comprehend Chapter 10

[ 192 ]

Let's consider the class of this document as Technology. This sentence will be translated
into structured data, as follows:

Tim
Cook

traveled to
New
York

Apple Store Opening Microsoft Google Class

1 1 1 1 1 1 1 0 0 Technology

Each term will be considered a feature in the dataset. Hence, for a large dataset with many
documents, the feature set can be as large as the lexicon of that language. The value of the
features is set to 0 or 1 based on whether that term exists in that document. As our example
contains words such as Tim Cook and New York, the value of those features for this
observation is set to 1. As the terms Microsoft and Google are not present in the sentence,
the value of those features is set to 0. The Class variable is set to Technology. 

In this section, we will show a step-by-step methodology on how to train custom classifiers
on Comprehend. We'll use a popular text classification dataset called 20 Newsgroups to
generate a machine learning model that can mark a review as positive or negative. The
dataset can be downloaded from https://archive.ics.uci.edu/ml/datasets/
Twenty+Newsgroups.

The dataset can be downloaded as separate text files that are organized into 20 folders.
Each folder name represents the category of documents in the folder. The dataset is a
publicly available dataset. It contains news articles that are categorized into the following
categories:

alt.atheism

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

misc.forsale

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups


Working with AWS Comprehend Chapter 10

[ 193 ]

sci.med

sci.space

soc.religion.christian

talk.politics.guns

talk.politics.mideast

talk.politics.misc

talk.religion.misc

You can use the following steps to train the classifier:

The first step is to download and preprocess the data into a format that is1.
readable by the Comprehend tools. Comprehend requires the training data to be
in the following format in CSV (comma-separated values):

Category Document

Hence, once you download the dataset, convert the data into the preceding
format and upload it to your S3 bucket. 

You can access the Custom Classification tool on the Comprehend dashboard,2.
on the left-hand side under the Customization tab. To train the model, you have
to click on the Train Classifier option. Note that Comprehend allows you to train
your machine learning models and store them on this dashboard so that you can
use them in the future. 

When you click on the Train Classifier option, you will see the following
screenshot:



Working with AWS Comprehend Chapter 10

[ 194 ]



Working with AWS Comprehend Chapter 10

[ 195 ]

Name the classifier and select the language of the documents. Add your S33.
location, where the training CSV document is stored. After you select the correct
role, you can tag the classifier with relevant values, which can help you to search
them in the future. Once you have added all the information, click on Train
classifier:

You will be taken back to the dashboard screen where you will see that the4.
classifier training is in progress. Once the training is done, the status of the
classifier will be marked as Trained:



Working with AWS Comprehend Chapter 10

[ 196 ]

You can then click on the classifier to see the evaluation metrics of the model. As5.
you can see, our classification model has an accuracy of 90%:

As we now have a classifier that is trained, you can get predictions for any6.
document using this model. We create a test.csv file that contains 100
documents to get predictions from this model. We preprocess the data to create a
CSV file with one document per line. To start the prediction process, click on
the Create Job option shown on the preceding screen.



Working with AWS Comprehend Chapter 10

[ 197 ]

This will take you to another screen, where you can add details on which file
you want to use for testing and where the output should be stored:



Working with AWS Comprehend Chapter 10

[ 198 ]

On the Create analysis job screen, add the details about the classifier to be used:
where the input data is stored (on S3) and an S3 location where the output is
stored. You can either specify the input data as one document per line or one
document per file and point the input data to the directory that contains all the
files. In our example, since the test.csv file contains one document on each line,
we use that format. 

Once you click on Create Job, it will automatically classify the documents and7.
store the output in the output location. The output is stored in JSON format,
where each line of the output file contains JSON that gives the analysis of that
line.

The following is an example of the output that was generated:

{
  "File": "test_2.csv",
  "Line": "0",
  "Classes": [
    {
      "Name": "alt.atheism",
      "Score": 0.8642
    },
    {
      "Name": "comp.graphics",
      "Score": 0.0381
    },
    {
      "Name": "comp.os.ms-windows.misc",
      "Score": 0.0372
    },
    ...
    {
      "Name": "talk.religion.misc",
      "Score": 0.0243
    }
  ]
}

Thus, you can see that our model labeled the first line in our input file as "alt.atheism"
with a confidence score of 86.42%.



Working with AWS Comprehend Chapter 10

[ 199 ]

You can also create a document classifier and prediction jobs using the Amazon
Comprehend APIs: 

import boto3

client = boto3.client('comprehend')
response = client.create_document_classifier(
    DocumentClassifierName='20NG-test',
    DataAccessRoleArn='Data Access ARN value',
     InputDataConfig={
         'S3Uri': 's3://masteringmlsagemaker/comprehend/train.csv'
     },
     OutputDataConfig={
         'S3Uri': 's3://masteringmlsagemaker/comprehend/'
     },
    LanguageCode='en')

Running this function will automatically generate the same classifier that we created in the
previous steps. You can access your ARN value from the Roles tab on the My Security
Credentials page. This is the ARN value of the same IAM role we created in step 3. The
output data config location will automatically get a confusion metric of the evaluation of
the classifier and the response string will be returned as follows:

{
    'DocumentClassifierArn': 'string'
}

The string will be the Amazon resource name that identifies the classifier. You can also run
prediction jobs using the API. The following code can be used to generate the predictions
for your input files:

import boto3

client = boto3.client('comprehend')
response = client.start_document_classification_job( JobName='Testing
Model', DocumentClassifierArn='<ARN of classifier returned in the previous
step>', InputDataConfig={ 'S3Uri':
's3://masteringmlsagemaker/comprehend/test.csv', 'InputFormat':
'ONE_DOC_PER_LINE' }, OutputDataConfig={ 'S3Uri':
's3://masteringmlsagemaker/comprehend/', }, DataAccessRoleArn='<Data Access
ARN value>')



Working with AWS Comprehend Chapter 10

[ 200 ]

The preceding code will start the exact same classification job that we created on the
dashboard. Thus, you can control when you want to use a certain classifier and generate
predictions on different datasets as required. The response of the function will be the status
of the job. The job will also generate a job ID, that you can ping to check the status of the job
using the describe_document_classification_job() function.

Thus, we have generated a custom document classifier using Comprehend tools on AWS.
These tools will help you to create these classifiers quickly without having to worry about
what classification algorithms to select, how to tune the parameters, and so on. Amazon
automatically updates the algorithms used by Comprehend based on the expertise of their
research teams. However, the main disadvantage is that Comprehend tools can be costly if
you are running operations on large datasets, as they charge you per prediction. You can
access the pricing information for AWS Comprehend at https://aws.amazon.com/
comprehend/pricing/.

Summary
In this chapter, we studied how to use a built-in machine learning tool called Comprehend
in AWS. We briefly discussed the field of NLP and provided an introduction to its sub-
fields, such as NER and sentiment analysis. We also studied how to create a custom
document classifier in Comprehend using the dashboard it provides. Moreover, we studied
how to access Comprehend's APIs using the boto3 package in Python. 

These tools are fascinating as they will help you to create complex machine learning models
quickly and start applying them in your applications. A data scientist who has cursory
knowledge in the field of NLP can now train sophisticated machine learning models and
use them to make optimal decisions. However, the question most data scientists face is
whether the pricing provided by such tools is more economical than building algorithms
in-house using Python packages. Note that Comprehend adds a layer of abstraction
between data scientists and the machine learning models by making them worry about the
underlying cluster configurations. In our experience, we use these tools during the rapid
prototyping phases of our projects to evaluate a product. If we decide to move to
production, it is easy to calculate the cost differences between using the AWS tools
versus building algorithms in-house and maintaining them on our clusters. 

We will introduce the Amazon Rekognition in the next chapter. This service is used for
image recognition and is an out of the box solution for Object detection and similar
applications

https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/
https://aws.amazon.com/comprehend/pricing/


Working with AWS Comprehend Chapter 10

[ 201 ]

Exercise
Your task is to perform NER on a large dataset using APIs provided by Amazon1.
Comprehend. Use the annotated NER dataset provided in the Kaggle
competition to create a custom entity recognition in Comprehend (https://www.
kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-
etities).
Apply sentiment analysis on the Yelp dataset in Kaggle and then evaluate2.
whether your predictions match the review score (https://www.kaggle.com/
yelp-dataset/yelp-dataset).

https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/abhinavwalia95/chemdner-iob-annotated-chemical-named-etities
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset


11
Using AWS Rekognition

We have studied deep learning algorithms and how to implement them using SageMaker
in Chapter 7, Implementing Deep Learning Algorithms, and Chapter 9, Image Classification and
Detection with SageMaker. You must have realized that training a good Convolutional
Neural Network (CNN) takes a lot of expertise and resources. Moreover, it also requires a
large number of labeled images with objects. Amazon has an out-of-box solution for image
recognition, called Amazon Rekognition, that offers various tools for image recognition
using pretrained image recognition models. 

In this chapter, we will cover the following topics:

Introducing Amazon Rekognition
Implementing object and scene detection
Implementing facial analysis

Introducing Amazon Rekognition
Building image recognition models using deep learning is very challenging. Firstly, you
need a large, labeled dataset in order to train the deep learning model to perform specific
tasks. Secondly, you need knowledge of how to design a network and tune the parameters
to get the best accuracy. Finally, training such deep learning models at scale requires
expensive GPU-based clusters to train these models. 

Amazon Rekognition (https://aws.amazon.com/rekognition/) is a tool offered by AWS
featuring image recognition models that are already pretrained for use in your applications.
Amazon Rekognition models are based on an analysis of billions of videos and images.
Similar to how Amazon Comprehend offers NLP models as a service, Rekognition offers
various image recognition models that can perform specific tasks. The advantage of using
Amazon Rekognition is that you can simply use dashboards and APIs to perform image
recognition tasks at high accuracy, without the high-level expertise required to train such
machine learning models. 

https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/


Using AWS Rekognition Chapter 11

[ 203 ]

Amazon Rekognition only offers a limited number of models that perform specific tasks. In
this section, we'll look at the various tools available in the Amazon Rekognition dashboard.
We'll also look at how we can access these features using AWS APIs in Python. 

Implementing object and scene detection
Object and scene detection algorithms can recognize various objects in the image and assign
confidence to each prediction. This algorithm uses a hierarchy of labels to label objects and 
returns all the nodes of the leaf when it detects an object. Object detection is a classic
application of image recognition. It allows us to identify what is inside an image and label
it. For example, consider a newsroom where photographers are submitting hundreds of
images and videos every day. You need people to label such images so that if you wish to
access an image of a celebrity who was pictured during a car crash, these image libraries
can be searchable. 

Object detection allows you to automatically label these images so that they can be stored,
organized, and retrieved efficiently. One of the key features of an object detection algorithm
is that they have to be comprehensive and should be able to detect a large array of objects.
Moreover, such algorithms also detect the edges of the object and should be able to return
the bounding box for an object. Amazon Rekognition performs both these tasks effectively. 

You can access the Amazon Rekognition dashboard using the AWS Console. Just search for
Rekognition in the search bar and you will be able to access the demo for Amazon
Rekognition. The demo shows you how the tools work, but you would need to use the API
if you want to analyze multiple images. 

Once, you are on the demo screen, select Object and Scene detection to access a demo
where you can select a single image and detect the images in the object.

For the purpose of this demo, I have used a screenshot of the Chicago river with ferry boats
on the river:



Using AWS Rekognition Chapter 11

[ 204 ]

As you can see from the preceding screenshot, the object detection tool returns a ranked list
of objects in the image along with the confidence of detection. As we mentioned previously,
since the tool uses a hierarchy of categories, it may detect similar categories at the top. For
example, it was able to detect the boat in the image. However, it also returned Vehicle and
Transportation categories with the same confidence score. We can also see that the demo
shows bounding boxes for each of the objects that it detected in the image. 

However, using this tool to perform object detection may be tedious as it only handles one
image at a time. So, we can also use an API to access the Amazon Rekognition tool. You
need to upload your images to a folder in S3 bucket in order to use object detection on
them.

The following Python code can be used to perform the same operation on the image: 

import boto3
import json

client = boto3.client('rekognition')
response = client.detect_labels(
                Image={
                    'S3Object':
                            {
                                 'Bucket': 'masteringmlsagemaker',
                                 'Name':
'ImageRecognition/chicago_boats.JPG'
                            }
                    },



Using AWS Rekognition Chapter 11

[ 205 ]

                MaxLabels=5,
                MinConfidence=90
)

print(json.dumps(response, sort_keys=True, indent=4))

The image has to be in the S3 bucket and you have to specify the bucket name and image
name as a parameter of the request function. The response is long, so we only show the
format of the first prediction in the response JSON:

{
  "LabelModelVersion": "2.0",
  "Labels": [
    {
      "Confidence": 99.86528778076172,
      "Instances": [
        {
          "BoundingBox": {
            "Height": 0.29408860206604004,
            "Left": 0.5391838550567627,
            "Top": 0.6836633682250977,
            "Width": 0.25161588191986084
          },
          "Confidence": 99.86528778076172
        },
        {
          "BoundingBox": {
            "Height": 0.11046414822340012,
            "Left": 0.23703880608081818,
            "Top": 0.6440696120262146,
            "Width": 0.07676628232002258
          },
          "Confidence": 99.5784912109375
        },
        {
          "BoundingBox": {
            "Height": 0.040305182337760925,
            "Left": 0.5480409860610962,
            "Top": 0.5758911967277527,
            "Width": 0.04315359890460968
          },
          "Confidence": 77.51519012451172
        }
      ],
      "Name": "Boat",
      "Parents": [
        {
          "Name": "Vehicle"



Using AWS Rekognition Chapter 11

[ 206 ]

        },
        {
          "Name": "Transportation"
        }
      ]
    },
...
  ]
}

As you can observe from the response, we found three instances of the Boat object in the
image. The response provides the bounding box for each of the objects found in the image.
Moreover, you can observe that the boat in the far right is small, so the confidence in 
detecting it is much lower than the other two boats in the image. The response also
returned the parents of the object in the hierarchy. So, if you have hundreds of images to
categorize, you can add them all to an S3 bucket and use this code to iterate through them
and detect labels for those objects. Because of tools such as Amazon Rekognition, data
scientists now have access to world-class deep learning models that they can apply in the
tools that they are building. However, such an object detection algorithm only works for a
limited number of objects. For example, we tried the algorithm on x-ray images of cancer in
this tool and it was not able to return any results. If you are working on a very specialized
product where you are trying to detect medical images of tumors or images from a space
telescope, you would need to train your own models based on a large number of labeled
images.

Implementing facial analysis
Amazon Rekognition also offers a powerful tool for performing facial analysis on images. It
can predict interesting attributes such as age and gender based on looking at the image. It
can also detect features such as a smile or whether the person is wearing glasses from this
model. Such models would be trained by analyzing a lot of labeled facial images and
training an image recognition model to recognize these features. The CNN models that we
studied in Chapter 7, Implementing Deep Learning Algorithms, would be a good fit for such
applications as it can automatically generate feature maps using local receptive fields
methodology from the image and detect boxes that would contain evidence of these facial
features. 

The facial analysis demo can be accessed in the same way as the object detection demo. In
order to test the model, we picked the picture of Mona Lisa by Leonardo Da Vinci. One of
the long-standing mysteries about the image is whether the lady in the image is smiling or
not.



Using AWS Rekognition Chapter 11

[ 207 ]

In the following screenshot, we can see how the facial analysis demo provides features of
the face from the image:

The facial analysis model does predict that there is a face in the image and creates a correct
box around it. It correctly predicted that the image is female and predicts an age range for
that person. It predicted that the person in the image is not smiling. It also correctly
predicted that the person is not wearing any glasses. 

You can also access this same information using an API call.

With the following Python code, you can perform the same task of facial analysis as in the
preceding demo:

import boto3
import json

client = boto3.client('rekognition')
response = client.detect_faces(
    Image={



Using AWS Rekognition Chapter 11

[ 208 ]

        'S3Object': {
            'Bucket': 'masteringmlsagemaker',
            'Name': 'ImageRecognition/monalisa.jpg'
        }
    },
    Attributes=['ALL']
)

print(json.dumps(response, sort_keys=True, indent=4))

You have to store your image on an S3 bucket and provide the bucket and image name to
the API call. You can also specify what attributes you need to be returned, or specify All in
case you need all the attributes.

The response of this call is in JSON format and looks as follows:

{
    "FaceDetails": [
        {
            "BoundingBox": {
                "Width": 0.22473210096359253,
                "Height": 0.21790461242198944,
                "Left": 0.35767847299575806,
                "Top": 0.13709242641925812
            },
            "AgeRange": {
                "Low": 26,
                "High": 43
            },
            "Smile": {
                "Value": false,
                "Confidence": 96.82086944580078
            },
            "Gender": {
                "Value": "Female",
                "Confidence": 96.50946044921875
            },
          "Emotions": [
                {
                    "Type": "CALM",
                    "Confidence": 34.63209533691406
                },
                {
                    "Type": "SAD",
                    "Confidence": 40.639801025390625
                }
            ],
            "Landmarks": [



Using AWS Rekognition Chapter 11

[ 209 ]

                {
                    "Type": "eyeLeft",
                    "X": 0.39933907985687256,
                    "Y": 0.23376932740211487
                },
                {
                    "Type": "eyeRight",
                    "X": 0.49918869137763977,
                    "Y": 0.23316724598407745
                },
            "Confidence": 99.99974060058594
        }
    ]
}

We have edited this response to maintain brevity. However, you can observe that you can
see information about Age, Gender, and Smile as we saw in the demo. However, it also
identifies emotions on the face such as sadness and calm. It also locates landmarks on the
face such as the eyes, nose, and lips. 

Such tools are used in current smartphones where a smile can trigger a photo. It is used in
consumer surveys in restaurants to gauge the demographics of people in the restaurant and
whether they are happy with the service. 

Other Rekognition services
Amazon Rekognition also offers other image recognition services. You can use the API as in
the examples in this chapter to access these services. We will list some of the services and
their applications here. 

Image moderation
We can use Rekognition to monitor images and check whether the content is suggestive or
unsafe. Such techniques are used to moderate live video services, such as Twitch or
Facebook Live, where Artificial Intelligence (AI) can automatically detect unsafe content.
As services such as YouTube or Instagram see an unimaginable amount of data being
uploaded on them every day, using such AI techniques can help to lower the cost of
moderating the platform. 



Using AWS Rekognition Chapter 11

[ 210 ]

The following screenshot shows how the image moderation tool can detect suggestive
themes in the image and automatically label them:

Celebrity recognition
Recognition can also be used to detect celebrities in pictures or videos automatically. This
can be done by an image recognition model learning from labeled images and videos. Deep
learning algorithms can automatically extract facial features and then compare them to
predict who the celebrity may be. For example, many of the movies and TV shows on
services such as Amazon Prime can show the names of actors on the screen using this
technique. Manually labeling these scenes with the names of actors may be a very tedious
task; however, deep learning algorithms can do this automatically.



Using AWS Rekognition Chapter 11

[ 211 ]

In the following example, Amazon Rekognition detects an image of Jeff Bezos and labels it
correctly:

Face comparison
Celebrity recognition technology can be further extended to do facial comparisons and
detect faces that are similar. For example, your Facebook account automatically matches the
faces in an image you upload with your friends and tags the images automatically. They
use such image recognition algorithms to train models for each face and run those models
on your uploaded images to detect whether your friends are in that picture. Amazon
Rekognition also offers a feature called face comparison that compares faces between two
images and detects whether the same people appear in both pictures. 

In the following screenshot, we can observe that the face comparison algorithm can
automatically match the faces in two images and detect which faces are similar to each
other:



Using AWS Rekognition Chapter 11

[ 212 ]

Amazon Rekognition also offers another tool that can detect text in a picture. This model is
similar to what we built in Chapter 8, Implementing Deep Learning with TensorFlow on AWS,
where our model was able to detect numbers. This tool is also very useful for reading text
in the real world. Applications such as Google Translate can analyze camera images and
can translate them to your native language. Self-driving cars can also use this technology to
read road signs and react accordingly.

The following screenshot shows how Amazon Rekognition can detect text inside an image:

Recognition does not do an accurate job with this image, but is able to box and recreate the
text in this image. 



Using AWS Rekognition Chapter 11

[ 213 ]

We have not given code examples for these services in this section. The API calls are similar
to what we discussed in the first two tools presented in this section. We encourage you to
try the API calls for these services and test how they work. 

Summary
Amazon Rekognition allows data scientists to access high-quality image recognition
algorithms using API calls. One of the biggest obstacles in using deep learning is generating
large datasets and running expensive GPU-based clusters to train the models. AWS
Rekognition makes it easier for users to access these features without the prerequisite
expertise required to train such models. The application developers can concentrate on
building functionality without having to spend a lot of time on deep learning tasks. In this
chapter, we studied various tools that are available in Amazon Rekognition and also
learned how to make API calls and read the response JSON. Moreover, we also studied
various applications where these tools can be useful. 

In the next chapter, we will demonstrate how you can build automated chat bots using a
service called Amazon Lex.

Exercise
Create an app using Python where you can pass a photo of a group and detect1.
what the mood of the room was at that time. Provide details on what your code
detected based on the facial analysis tools and how you summarized the results
to find the mood in the photo. 
Create a tool that would recognize the actors in a movie clip. Provide the time at2.
which the actors appeared on the screen. 



12
Building Conversational

Interfaces Using AWS Lex
One of the most popular applications of machine learning is chatbots; they can talk to you
like a human being and understand your instructions. These chatbots use natural language
processing (NLP) to decipher instructions and return a query or answer based on your
questions. Amazon offers a service called Lex (it is a short form of Alexa), where you can
build sophisticated chatbots that can perform various tasks. 

In this chapter, we will cover the following topics:

Introducing Amazon Lex
Building custom chatbot using Amazon Lex

Introducing Amazon Lex
Amazon Lex (https://aws.amazon.com/lex/) offers services that can be used to create
conversational bots. Conversational bots use various machine learning technologies such as
speech recognition, NLP, and deep learning. Due to advances in these fields in recent
years, conversational bots have become a mainstay in our everyday life. Millions of people
use Amazon Alexa, Google Assistant, Siri, or Cortana as a conversational device to perform
various tasks. These devices can perform simple tasks, such as tell you the weather, call an
Uber for you, order a pizza, and control your lighting. Many businesses offer chatbots for
customer support. For example, Verizon FIOS, which is an internet provider, offers a
chatbot that can perform tasks such as pointing you to the correct troubleshooting
documentation or resetting your router based on a chat with you. Many companies also use
such conversational bots to make robocalls (automated calls), where it is very hard for a
person to tell whether the caller on the other side is not a real human being. 

https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/


Building Conversational Interfaces Using AWS Lex Chapter 12

[ 215 ]

Building such conversational bots from scratch is not easy. As we studied in Chapter
10, Working with AWS Comprehend, natural language does not follow a
rigid grammatical structure and we have multiple ways to convey the same meaning. So, a
conversational bot needs to be able to decipher the relevant data from a natural language
query and respond with the most likely answer. Devices such as Amazon Echo can
understand the query in different formats and discover what is the most
relevant information that can be presented to the user. Firstly, such devices need to
understand the speech and convert it into text that the machine can understand. Secondly,
they need to trigger the correct skill that can answer that question and present the user
input to that skill. Once the skill generates the answer, it has to be translated back to speech
using text-to-speech transformers. All these steps require dedicated and high-quality deep
learning models to perform these tasks. For example, Amazon uses a deep learning model
to determine the pauses between words in their text-to-speech transformers. 

Although building such conversational bots may sound like a daunting task, Amazon also
offers services where you utilize their models to generate such tasks. This service is called
Amazon Lex and you access it using the AWS console. 

Building a custom chatbot using Amazon
Lex
In this section, we will build a simple custom conversational bot using Amazon Lex. To
access the Amazon Lex dashboard, simply go to the AWS console and search for this
service. Once you reach the dashboard, you will have an option to create a new bot. You
can build separate bots that can handle specific tasks. In this example, we provide the
following steps to create a bot that the user can ask to order food from a specific restaurant
at a specified time:

To get started, click on the Create bot option on the dashboard. You will be able1.
to access the following screenshot:



Building Conversational Interfaces Using AWS Lex Chapter 12

[ 216 ]

You will have to specify the bot name on this screen and the voice that you want
to select when testing the bot. You can also specify when the session times out so
that a person who has left the order incomplete and left their machine are not at
risk of someone else continuing their chat session. We are creating a custom bot in
this example. However, you can also access sample bots to test the service and see
how those bots were created.



Building Conversational Interfaces Using AWS Lex Chapter 12

[ 217 ]

When you click on the Create button, you will be taken to the next screen where2.
you have to enter information regarding how your bot works. Firstly, you will
have to specify how your specific bot is triggered in the chat screen. In our case,
there are various ways in which a user can let the chat window know that they
are hungry, so you should add samples of what queries should trigger your bot.
Such queries are called utterances in Amazon Lex. We added the following
utterances that would trigger our bot:

Amazon Lex will use machine learning to expand the list of utterances, so that if3.
a user asks a question such as Can you order some food, our bot will still be
triggered, as the utterance is similar to the one we specified. 
Once we specify what will trigger our bot, we have to specify what happens4.
when the bot starts. You can either use the Lambda function on AWS that can
perform a specific task, or use the dashboard to design the chat. Since designing
lambda functions is not in the scope of this book, we will use the dashboard to
ask the user what they would like to order. The following screen options show
how we can add information that we expect from the users:



Building Conversational Interfaces Using AWS Lex Chapter 12

[ 218 ]

We define three variables that we would like our chatbot to get inputs on. For5.
example, we would want to know the name of the restaurant they want to order
from, what they want to order, and the time they want their food to be ready.
Amazon Lex offers pre-built slots (variable types) that you can select when
getting the inputs. For example, the AMAZON.Food slot type will try to ensure
that the value of the variable is a type of food, while the AMAZON.Time
variable type will ensure that the time added is a valid time.
Once our bot has information for all the variables that are required, you have to6.
specify how the bot will respond. In our case, to keep it simple, we will just tell
the user that we have ordered the food (please note that this code does not really
order food). If you were building a real application that orders food, you can also
invoke a lambda function that can run custom code with the variable names. The
following screenshot shows how you can add the information about how the bot
responds, along with a confirmation screen:

If the user confirms, you can provide a thank you message to the user using the7.
following Fulfillment option:



Building Conversational Interfaces Using AWS Lex Chapter 12

[ 219 ]

Once you are done filling out the form, you can build your bot using the build8.
option on the screen. If you made any errors on the screen, the build will prompt
you to fix them. Finally, once you have built your bot successfully, you can test it
by selecting the Test Chatbot option on the right-hand side. The following screen
shows how our chatbot works. As you can see, we were able to chat with our
chatbot and (pretend to) order food from it, as shown in the following
screenshot:



Building Conversational Interfaces Using AWS Lex Chapter 12

[ 220 ]

Amazon Lex makes creating chatbots very accessible to everyone by adding a layer of
abstraction between the actual machine learning models and the users. You can concentrate
on building a bot that best fits your needs, without worrying about the algorithms behind
the scenes. As Amazon Lex is a service, AWS charges you based on the calls you make to
their machine learning models. 

Moreover, Amazon Lex models can be exported to the Alexa Skills kit easily using the
Export option in the Actions drop-down menu for each bot. So, by using Amazon Lex, you
can design chatbots in a matter of minutes and publish them to be used by Alexa. Amazon
Lex also has APIs that you can use to build the bots, so that you can update or edit your
utterances or slots using your code. Please refer to the boto3 API (https://boto3.
amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html)
documentation to learn how to use the API. The calls to APIs use codes similar to the
examples we presented in Chapter 10, Working with AWS Comprehend, and Chapter 11,
Using AWS Rekognition.

Summary
Amazon Lex makes building conversational bots easier and more accessible for everyone.
Conversational bots use a lot of machine learning models to provide users with quick
answers to their queries. Amazon Lex provides a graphical interface where you can specify
what utterances your bot should respond to, slots of information it should collect, and
confirmation questions that your bot should ask the user. Such tools can be tested directly
on the dashboard, as we demonstrated in the previous section. 

As data scientists need to build applications that wow the customers, using tools such as
Amazon Comprehend, Rekognition, and Lex is a good way to build these prototypes
rapidly. However, these services may prove to be expensive when used on a large scale. In
such cases, we always work on building our own models using frameworks such as
Apache Spark or SageMaker. 

In the next chapter, we will study how to set up new AWS clusters, and examine the
nuances of how to select the correct cluster for your task.

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lex-models.html


Building Conversational Interfaces Using AWS Lex Chapter 12

[ 221 ]

Exercises
Create a chatbot that provides you with the status of a flight based on the1.
information provided by the user.
Create a chatbot that can answer various weather-related questions.2.



5
Section 5: Optimizing and

Deploying Models through AWS
After mastering the use of various tools regarding machine learning on AWS, one
important step that the readers have to master is optimizing these models and deploying
them to production. In this part of the book, we discuss how machine learning models
trained using AWS tools can be optimized and made ready to be deployed in production
environments

This section contains the following chapters:

Chapter 13, Creating Clusters on AWS
Chapter 14, Optimizing Models in Spark and SageMaker
Chapter 15, Tuning Clusters for Machine Learning
Chapter 16, Deploying Models Built on AWS



13
Creating Clusters on AWS

One of the key problems in machine learning is understanding how to scale and parallelize
the learning across multiple machines. Whether you are training deep learning models,
which are very heavy on hardware usage, or just launching machines for creating
predictions it is essential that we select the appropriate hardware configuration, both for
const considerations and runtime performance reasons. 

In this chapter, we will cover the following topics:

Choosing your instance types
Distributed deep learning

Choosing your instance types
In the Chapter 4, Predicting User Behavior with Tree-Based Methods, and other chapters, we
had to launch EMR clusters and SageMaker instances (servers) for learning and model
serving. In this section, we discuss the characteristics of the different instance types. In this
chapter, you can find all supported instance types AWS provides at https://aws.amazon.
com/ec2/instance-types/.

Depending on the task at hand, we should use different instance types. For example, we
may require an instance type with GPUs rather than CPUs for deep learning. When
launching a large iterative Extract, Transform, and Load (ETL) job (that is, a data
transformation job) on Apache Spark, we might need large amounts of memory. To make it
easier for the users, AWS has classified the instances into families that are catered for
different use cases. Additionally, AWS constantly provides newer hardware configurations
for each family. These are called generations. Typically, a new generation provides
improved performance over the previous generation. However, older generations are
usually still available. In turn, each family has machines of different sizes in terms of
compute and memory capabilities.

http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.
http://localhost/.


Creating Clusters on AWS Chapter 13

[ 224 ]

The most commonly used families are as follows:

Compute optimized (C-family)
Memory optimized (M-family)
Accelerated computing (P-family)
Storage optimized (I-family)
General purpose (R-family)

There are other families for each optimization objective, but in the previous list, we list the
most commonly used family for each. Each family may have a different configuration. The
following table shows a few configurations for the C and M families. Each configuration
has a different price. For example, the fifth generation, xlarge, and C-family machine costs
$0.085 at the time of this writing on the us-east-1 region of AWS. As you can see, at a given
price level, the user can choose to pay for a configuration that has more memory power and
less compute power or vice versa. The Memory (GB) column in the following table shows
values in gigabytes and the vCPUs are units of processing power in virtual machines, as
measured by AWS. The prices shown in the table are just reference prices that correspond
to the Virginia data center region on AWS as priced in March, 2019. Currently, AWS
charges for the use of the instances for each second the machine is up (that is, even though
the price is shown as an hourly amount, a machine can be launched for 120 seconds and the
user would only need to pay the corresponding fraction of the hourly price):

Model vCPU Memory (GB) On-demand price (us-east-1 region)

c5.large 2 4 $0.085 per hour

c5.xlarge 4 8 $0.17 per hour

c5.2xlarge 8 16 $0.34 per hour

c5.4xlarge 16 32 $0.68 per hour



Creating Clusters on AWS Chapter 13

[ 225 ]

m5.large 2 8 $0.096 per hour

m5.xlarge 4 16 $0.192 per hour

m5.2xlarge 8 32 $0.384 per hour

The price for a given configuration can change due to a number of factors, namely, the
following:

The region (data center) of the machine
Whether the instance is requested as spot or on-demand
The use of reserved pricing

On-demand versus spot instance pricing
On-demand is the most flexible way to request machines from the cloud. Prices for on-
demand instances are fixed and once you launch the machine, it is guaranteed to remain up
(unless an error occurs or AWS is experimenting capacity issues, which is extremely rare).
On the other hand, spot pricing is based on auctions. AWS has a set of excess capacity
machines that are auctioned, typically at a lower price than on-demand. To obtain such
machines, at launch time, the user needs to specify how much he or she is willing to spend
on such an instance. If the current market price is below the bid value, the machine is
successfully provisioned. As soon as the market price exceeds the bid, the machine can be
taken away from the user. So, if you use spot pricing, you need to know that the machine
can go down at any moment. That said, based on our experience, spot pricing can be
reliably for large scale (thousands of machines) production workloads successfully. It is
important to choose the bid price and machine configuration adequately and be ready to
change these every so often upon the changes in the spot market prices.



Creating Clusters on AWS Chapter 13

[ 226 ]

In the following link, you can inspect the market value of each instance type in different
regions and availability zones (these are distinct isolated data centers within a region)
at https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#:

The preceding diagram shows the market price for c5.4xlarge machines between March and
February, 2019. The reader might observe that the region us-east-1d seems to have a lower
market price than the rest of the regions. This means that whenever possible, you could
request spot instances on that region at a lower bid price. 

Currently, SageMaker does not support spot pricing, and only on-demand instances are
allowed. Additionally, there is a different price chart for SageMaker-supported instances,
which can be found via the following link: https://aws.amazon.com/sagemaker/pricing/.
 There are different prices for the different things you can do with SakeMaker (notebooks,
training jobs, batch transform jobs, endpoints, and so on.).

https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://console.aws.amazon.com/ec2sp/v1/spot/home?region=us-east-1#
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/


Creating Clusters on AWS Chapter 13

[ 227 ]

As for Elastic MapReduce (EMR), it does support spot instances. However, there is a minor
additional cost added to the raw instance type cost when launched through EMR.

Reserved pricing
Costs can be reduced if you have an accurate estimate of you compute needs ahead. In that
case, you can pay AWS upfront and get significant discounts for on-demand instances. For
example, if you plan to spend USD 1,000 on m5.xlarge machines over the course of a year,
you can opt to pay upfront the USD 1,000 amount and obtain a 40% saving. The more you
pay upfront, the larger the savings rate.

Details can be found in the following link: https://aws.amazon.com/ec2/pricing/
reserved-instances/pricing/.   

Amazon Machine Images (AMIs)
Machines can be launched outside EMR or SageMaker directly via the Elastic Compute
service (https://aws.amazon.com/ec2). This is useful when you want to handle the
deployment of your own application on the AWS cloud or want to custom-configure the
packages that you have available on the instance. When you launch an instance through
EC2, you can select an AMI and the machine will come up with all the libraries and
packages necessary for your application. You can create your own AMI from a running
instance for re-use at a later time or through Docker specs. However, AWS provides several
pre-backed AMIs that are very useful for deep learning. We highly encourage you to take a
look at the available AMIs via this link: https://aws.amazon.com/machine-learning/
amis/. These AMIs include the most common machine learning packages (such as
TensorFlow, Anaconda, and scikit-learn) installed in a way that ensures compatibility
between the different library versions (typically, a tricky task). These Deep Learning AMIs
are typically referred to as DLAMIs.

https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/
https://aws.amazon.com/machine-learning/amis/


Creating Clusters on AWS Chapter 13

[ 228 ]

Deep learning hardware
Most of the instance types in AWS are based on CPUs. CPU instances are typically optimal
for performing various sequential tasks. However, the accelerated computing instance
types (for example, the P or G families) are based on graphical processing units (GPUs).
These kinds of instances, which were originally popular on gaming consoles, turned out to
be ideal for deep learning. GPUs are characterized by having more cores than CPUs, but
with less processing power. Thus, GPUs are capable of fast parallel processing of simpler
instructions.

In particular, GPUs allow for the very fast and parallel multiplication of matrices. Recall
from Chapter 7, Implementing Deep Learning Algorithms, that deep learning involves
multiplying the weights by the signals on different layer inputs, much like a vector dot-
product. In fact, matrix multiplications involve doing several dot products between several
columns and rows simultaneously. Matrix multiplication is usually the main bottleneck in
deep learning, and GPUs are extremely good at performing such operations as there is an
opportunity to perform tons of calculations in parallel.

In the following table, we can see typical machine configurations used for deep learning
and their relevant characteristics. The number of GPUs and networking performance are
especially important when it comes to distributing the deep learning workloads, as we will
discuss in the following sections:

Model GPUs vCPU Mem (GiB) GPU Mem (GiB) Networking
performance

p3.2xlarge 1 8 61 16 Up to 10 gigabits
p3.8xlarge 4 32 244 64 10 gigabits
p3.16xlarge 8 64 488 128 25 gigabits

Elastic Inference Acceleration
In 2018, AWS announced a new feature that allows us to combine regular
instances attached through GPU-based accelerator devices via a network
at a fraction of the having a GPU instance. Details can be found at https:/
/docs.aws.amazon.com/sagemaker/latest/dg/ei.htm.

Distributed deep learning
Let's explore the distributed deep learning concept next.

https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm
https://docs.aws.amazon.com/sagemaker/latest/dg/ei.htm


Creating Clusters on AWS Chapter 13

[ 229 ]

Model versus data parallelization
When are training large amounts of data, or when the network structure is huge, we
usually need to distribute the training across different machines/threads so that learning
can be performed in parallel. This parallelization may happen within a single machine with
several GPUs or across several machines synchronizing through a network. The two main
strategies for distributing deep learning workloads are data parallelization and model
parallelization.

In data parallelization, we run a number of mini-batches in parallel using the same weights
(that is, the same model). This implies synchronizing the weights of the different mini-
batches upon a series of runs. One strategy for combining the weights of the different
parallel runs is to average the weights resulting of each parallel mini-batch. An efficient
way to average out the gradients of each machine or thread is to use algorithms such as
AllReduce that allow combining the gradients in a distributed fashion without the need of
a central combiner. Other alternatives involve hosting a parameter server that acts as a
central location for synchronizing weights.

Model parallelism, on the other hand, involves having different threads or machines
processing the same mini-batch in parallel while distributing the actual processing. The
algorithm being run needs to be able to distribute the work in different threads. This
typically works well on machines with multiple GPUs that share a high-speed bus, because
model parallelization typically only requires synchronizing the outputs of each layer after
each forward pass. However, this synchronization might involve more or less data than the
weights synchronization in data parallelism, depending on the structure of the network.

Distributed TensorFlow
TensorFlow natively supports data parallelization on a single machine with more than one
GPU, using AllReduce. The algorithms for distributing the learning through TensorFlow is
an active area of development within TensorFlow.



Creating Clusters on AWS Chapter 13

[ 230 ]

For example, we can launch a notebook instance with more than one GPU:

In this example, we have a four-GPU machine. Let's examine how we would change the
code to our regressor estimator that we considered in Chapter 8, Implementing Deep
Learning with TensorFlow on AWS. Recall we used LinearRegressor for solving our house
value estimation. To enable the distributed learning across GPUs, we need to define a
distribution strategy.

The simplest is MirroredStrategy, which uses the AllReduce technique. This strategy is
instantiated and submitted to the regressor as an input, as we show in the following code
block:

distribution = tf.contrib.distribute.MirroredStrategy(num_gpus=4)
config = tf.estimator.RunConfig(train_distribute=distribution)

tf_regressor = tf.estimator.LinearRegressor(
  config=config,
  optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.0000001),
  feature_columns=[tf.feature_column.numeric_column('inputs',
                                  shape=(11,))],
)



Creating Clusters on AWS Chapter 13

[ 231 ]

Currently, the distribution strategy supports GradientDescentOptimizer that accepts a
learning rate as input. Also, the way to provide the input functions needs to change slightly
compared to what we did in Chapter 8, Implementing Deep Learning with TensorFlow on
AWS. In distributed processing, the input function needs to return tf.Dataset that we
create from tensors obtained through the pandas as_matrix() function:

def training_input_fn():
  return tf.data.Dataset.from_tensor_slices(
        ({'inputs': training_df[training_features].as_matrix()},
         training_df[label].as_matrix())).repeat(50).batch(1)

The training is done in the same way as we did in Chapter 8, Implementing Deep Learning
with TensorFlow on AWS:

tf_regressor.train(input_fn=training_input_fn)

In the train_distributed_tensorflow.ipynb notebook, you can see the full example.
In this particular toy example, the distributed learning is not justifiable. However, it should 
serve the reader as a reference, as there is currently not much documentation and or many
examples available regarding how to successfully perform the training on a multi-CPU
environment.  

Distributed learning through Apache Spark
In previous chapters, we showed how to use Apache Spark for distributed machine
learning though the Spark ML library. However, if you want to combine Apache Spark
with deep learning libraries such as TensorFlow, it is possible to obtain significant benefits.

Data parallelization
In this scheme, the same mini-batches run in parallel throughout the Spark executors (in a
map-like transformation) and the weights are averaged (in a reduce-like operation). Tools
such as SparkFlow (https://github.com/lifeomic/sparkflow) allow us to define a simple
TensorFlow model (such as the one we developed in Chapter 8, Implementing Deep Learning
with TensorFlow on AWS) and perform parallel training by making the Spark driver act as a 
parameter server. Through this library, we can work with pipeline abstractions (estimators
and transformers) that work as smart wrappers of TensorFlow graphs. Similarly, BigDL
(https://bigdl-project.github.io) allows us to distribute deep learning training using
allreduce stochastic gradient descent (SGD) implementations.

https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://github.com/lifeomic/sparkflow
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/
https://bigdl-project.github.io/


Creating Clusters on AWS Chapter 13

[ 232 ]

Model parallelization
At the time of this chapter writing, there is no native library that allows us to do model 
parallelization with TensorFlow through Apache Spark. However, Apache Spark does
come with an implementation of a multilayer perceptron classifier (MLPC) ( https://
spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-
perceptron-classifier) that implements model parallelization through Apache Spark.
This implementation is relatively simplistic compared to the power of libraries such as
TensorFlow. For example, the network structure and the activation functions are fixed. You
can only define the number of layers and a few other parameters. That said, it is a good
way to get started with distributed deep learning, as your data pipelines are already in
Spark.

Distributed hyperparameter tuning
By having a Spark cluster, it is possible to train variants of the same neural network on
different machines. Each of these variants could be different hyperparameters, or even
slightly different network structures. For example, you might want to switch the activation
functions on a particular layer. If we can predefine all these combinations of neural
networks beforehand, a simple map() transformation can be performed through Spark.
Each parallel training job can return the generated model, as well as the loss metric.
Libraries such as sparkdl (https://github.com/databricks/spark-deep-learning) come
with good tools for performing such tasks (especially if you're working with images). We'll
cover hyperparameter tuning in more detail in Chapter 15, Tuning Clusters for Machine
Learning.

Distributed predictions at scale
Once we have a serialized model, it is possible to make predictions in parallel by sending
the model to the different executors and applying it to the data distributed by Spark. The
sparkdl library, for example, implements a Keras transformer that makes distributed
predictions, given a Keras model such as the one we developed in Chapter 8, Implementing
Deep Learning with TensorFlow on AWS.

https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning


Creating Clusters on AWS Chapter 13

[ 233 ]

Parallelization in SageMaker
Many of the use cases identified in the previous section can also easily be addressed just by
using SageMaker. With SageMaker, we can launch several instances performing parallel
training variants of different models. Many of SageMaker's built-in algorithms are designed
to perform model parallelization, which is why we usually specify the number (and type)
of machines to be used for training. Additionally, it comes with advanced parameter-tuning
capabilities that we'll explore in Chapter 15, Tuning Clusters for Machine Learning. Lastly,
the distributed predictions are done through batch transform jobs such as the ones we
showed in Chapter 4, Predicting User Behavior with Tree-Based Methods.

Summary
In this chapter, we covered the basic considerations regarding how to choose the kinds of
machines for the training clusters. These involve making tradeoffs between costs, memory
sizes, compute power, and provisioning limitations. As for deep learning, we provided a
concrete example on how to run distributed TensorFlow on SageMaker notebooks and
some guidelines on how to further distribute your deep learning pipelines through Apache
Spark on EMR. In the next chapter, Optimizing Models in Spark and SageMaker, we will dive
into the problem of tuning our models for optimal performance from the standpoint
of model accuracy. 



14
Optimizing Models in Spark and

SageMaker
The models that are trained on AWS can be further optimized by modifying the training
directives or hyperparameters. In this chapter, we will discuss various techniques that our
readers can use to improve the performance of their algorithms.

In this chapter, we will cover the following topics:

The importance of model optimization
Automatic hyperparameter tuning
Hyperparameter tuning in Apache Spark and SageMaker

The importance of model optimization
Very few algorithms produce optimized models on a first attempt. This is because the
algorithm might need some parameter tuning from the data scientist to improve their
accuracy or performance. For example, the learning rate we mentioned in Chapter 7,
Implementing Deep Learning Algorithms, for deep neural networks needs to be manually
tuned. A low learning rate may lead the algorithm to take longer (and hence be more
expensive if we're running on a cloud), whereas a high learning rate might miss the optimal
set of weights. Likewise, a tree with more levels may take more time to train, but could
create a model with better predictive capabilities (though it could also cause the tree to
overfit). These parameters that direct the learning of the algorithms are called
hyperparameters, and contrary to the model parameters (for example, the weights of a
network), these are not learned throughout the training process. Some hyperparameters are
not just used to optimize or tune the model, but also to define or constrain the problem. For
example, the number of clusters is also considered a hyperparameter, though it's not really
about optimization here, but rather is used to define the problem being solved.



Optimizing Models in Spark and SageMaker Chapter 14

[ 235 ]

It is not trivial to adjust these hyperparameters for best performance, and in many cases it
requires understanding the data at hand, as well as how the underlying algorithm works.
So why not learn these hyperparameters? Many data scientists use algorithms that tweak
the values of these hyperparameters to see whether they produce more accurate results.
The problem with this approach is that we could be finding the hyperparameters that are
optimal on the testing dataset, and we might think our model has a better accuracy when
we're just overfitting the testing dataset. For this reason, we typically split the dataset
into three partitions: the training dataset, which is used for training the model, the
validation dataset, which is used to perform parameter tuning, and the testing dataset,
which is just used to assess the final accuracy of the model once the parameter tuning is
complete.

Automatic hyperparameter tuning
The simplest way to perform hyperparameter tuning is called grid search. We define 
different values we would like to try for each hyperparameter. For example, if we are 
training trees, we may want to try depths of 5, 10, and 15. At the same time, we'd like to see
whether the best impurity measure is information gain or gini. This creates a total of six
combinations that have to be tested for accuracy. As you might be anticipating, the number
of combinations will grow exponentially with the number of hyperparameters to consider.
For this reason, other techniques are used to avoid testing all possible combinations. A
simple approach is to randomize the combinations be tried. Some combinations will be
missed, but some variations will be tested without an inductive bias.

AWS SageMaker provides a service for hyperparameter tuning that is smart in choosing the
hyperparameters to test. In both grid search and randomization, each training run doesn't
use information about the accuracy obtained in previous runs. SageMaker uses a technique
called Bayesian optimization that is able to select the next set of hyperparameter
combinations to test based on the accuracy values of previously tested combinations. The
main idea behind this algorithm is to construct a probability distribution over the
hyperparameter space. Each time we obtain the accuracy of a given combination, the
probability distribution is adjusted to reflect the new information. A successful
optimization will exploit information of known combinations that yielded good accuracy,
as well as sufficient exploration of new combinations that could lead to potential
improvements. You will appreciate that this is an extremely hard problem to solve, as each
training run is slow and probably expensive. We usually can't afford to test too many
combinations.



Optimizing Models in Spark and SageMaker Chapter 14

[ 236 ]

Hyperparameter tuning in Apache Spark
Recall our regression problem from Chapter 3, Predicting House Value with Regression
Algorithms, in which we constructed a linear regression to estimate the value of houses. At
that point, we used a few arbitrary values for our hyperparameters.

In the following code block, we will show how Apache Spark can test 18 different
hyperparameter combinations for elasticNetParam, regParam, and solver:

from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml import Pipeline

linear = LinearRegression(featuresCol="features", labelCol="medv")
param_grid = ParamGridBuilder() \
  .addGrid(linear.elasticNetParam, [0.01, 0.02, 0.05]) \
  .addGrid(linear.solver, ['normal', 'l-bfgs']) \
  .addGrid(linear.regParam, [0.4, 0.5, 0.6]).build()

pipeline = Pipeline(stages=[vector_assembler, linear])
crossval = CrossValidator(estimator=pipeline,
                        estimatorParamMaps=param_grid,
                        evaluator=evaluator,
                        numFolds=10)
optimized_model = crossval.fit(housing_df)

We will start by constructing our classifier as usual, without providing any
hyperparameters. We store the regressor in the linear variable. Next, we define the
different values to test for each hyperparameter by defining a parameter grid. The
functional reference to the methods that set the values is passed to a ParamGridBuilder
which is responsible for keeping the combinations to test out.

As usual, we can define our pipeline with any preprocessing stages (in this case, we use a
vector assembler). CrossValidator takes the pipeline, parameter grid, and evaluator.
Recall that the evaluator was used to obtain a specific score using a test dataset:

evaluator = RegressionEvaluator(labelCol="medv",
predictionCol="prediction", metricName="r2")

In this case, we will be using the R2 metric as we did in Chapter 3, Predicting House Value
with Regression Algorithms. CrossValidator, upon the call to fit(), will run all
combinations and find the hyperparameter that achieves the highest R2 value.



Optimizing Models in Spark and SageMaker Chapter 14

[ 237 ]

Once it completes, we can inspect the underlying best model by accessing it through the
optimized_model.bestModel reference. Through it, we can show the actual set of
hyperparameters used in the best model found:

[(k.name, v) for (k, v) in
optimized_model.bestModel.stages[1].extractParamMap().items()]

The output of the above statement is as follows:

[('epsilon', 1.35),
('featuresCol', 'features'),
('predictionCol', 'prediction'),
('loss', 'squaredError'),
('elasticNetParam', 0.02),
('regParam', 0.6),
('maxIter', 100),
('labelCol', 'medv'),
('tol', 1e-06),
('standardization', True),
('aggregationDepth', 2),
('fitIntercept', True),
('solver', 'l-bfgs')]

However, more interesting than the actual parameters used is to see the accuracy changes
across the different combinations tested. The optimized_model.avgMetrics values will
show the accuracy values for all 18 combinations of hyperparameters:

[0.60228046689935, 0.6022857524897973, ... 0.6034106428627964,
0.6034118340373834]

We can use the optimized_model, returned by CrossValidator, to obtain predictions
using the best model, as it is also a transformer:

_, test_df = housing_df.randomSplit([0.8, 0.2], seed=17)
evaluator.evaluate(optimized_model.transform(test_df))

In this case, we obtain an R2 of 0.72, which is slightly better than what we got with our
arbitrary set of hyperparameters in Chapter 3, Predicting House Value with Regression
Algorithms.



Optimizing Models in Spark and SageMaker Chapter 14

[ 238 ]

Hyperparameter tuning in SageMaker
As we mentioned in the previous section,  Automatic hyperparameter tuning,  SageMaker has
a library for smart parameter tuning using Bayesian Optimization. In this section, we will 
show how we can further tune the model we created in Chapter 4, Predicting User Behavior
with Tree-based Methods. Recall from that chapter that we posed a binary classification
problem for trying to predict whether a user would click on an advertisement. We had used
an xgboost model, but at that point we hadn't performed any parameter tuning.

We will start by creating the SageMaker session and choosing the xgboost:

import boto3
import sagemaker
from sagemaker import get_execution_role

sess = sagemaker.Session()
role = get_execution_role()
container = sagemaker.amazon.amazon_estimator.get_image_uri('us-east-1',
"xgboost", "latest")

s3_validation_data = 's3://mastering-ml-aws/chapter4/test-vector-csv/'
s3_train_data = 's3://mastering-ml-aws/chapter4/training-vector-csv/'
s3_output_location = 's3://mastering-ml-aws/chapter14/output/'

Next, we define the estimator just as we did in Chapter 4, Predicting User Behavior with Tree-
Based Methods:

sagemaker_model = sagemaker.estimator.Estimator(container,
                                                role,
                                                train_instance_count=1,
train_instance_type='ml.c4.4xlarge',
                                                train_volume_size=30,
                                                train_max_run=360000,
                                                input_mode='File',
output_path=s3_output_location,
                                                sagemaker_session=sess)

sagemaker_model.set_hyperparameters(objective='binary:logistic',
                                    max_depth=5,
                                    eta=0.2,
                                    gamma=4,
                                    min_child_weight=6,
                                    subsample=0.7,
                                    silent=0,
                                    num_round=50)

https://cdp.packtpub.com/mastering_machine_learning_on_aws/wp-admin/post.php?post=39&action=edit#post_27


Optimizing Models in Spark and SageMaker Chapter 14

[ 239 ]

As we always do with SageMaker service calls, we define the location and format of the
input data for training and validation:

train_data = sagemaker.session.s3_input(s3_train_data,
distribution='FullyReplicated',
                                        content_type='text/csv',
s3_data_type='S3Prefix')

validation_data = sagemaker.session.s3_input(s3_validation_data,
distribution='FullyReplicated',
                                             content_type='text/csv',
s3_data_type='S3Prefix')

data_channels = {'train': train_data, 'validation': validation_data}

With the base estimator defined and the input data determined, we can now construct a
training job that will take this estimator, and run a series of training jobs varying the
hyperparameters:

from sagemaker.tuner import HyperparameterTuner,
ContinuousParameter,IntegerParameter

tree_tuner = HyperparameterTuner
(estimator=sagemaker_model,
                              objective_metric_name='validation:auc',
max_jobs=10,
max_parallel_jobs=3,
hyperparameter_ranges={'lambda':
ContinuousParameter(0, 1000),
                                                               'max_depth':
IntegerParameter(3,7),
'eta':ContinuousParameter(0.1, 0.5)})

tree_tuner.fit(inputs=data_channels, logs=True)

SageMaker: Creating hyperparameter tuning job with name:
xgboost-190407-1532



Optimizing Models in Spark and SageMaker Chapter 14

[ 240 ]

The first step is to create an instance of HyperparameterTuner in which we set the
following:

The base estimator upon which the hyperparameters will be varied.
The objective metric, which will be used to find the best possible combination of
hyperparameters. Since we're dealing with a binary classification problem, using
the area under the curve metric on the validation data is a good choice. 
The different ranges we'd like to test for each hyperparameter. These ranges can
be specified for parameters that vary continuously
using ContinuousParameter, or discretely using IntegerParameter
or CategoricalParameter.
The number of jobs to run, as well as the maximum amount of jobs to run in
parallel. There is a trade off here between accuracy and speed. The more parallel
jobs you run, the less data about prior job metrics will be used to inform the next
set of hyperparameters to try. This leads to a sub-optimal range search. However,
it will complete the tuning faster. In this example, we just run 10 jobs. We
typically want to run more than that to obtain significant improvements. Here
we just present a low value so that the reader can get fast results.

The fitting can be monitored through the AWS console (https://console.aws.amazon.
com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs) or through methods in the
python SDK, we can see the status of the jobs.

https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs
https://console.aws.amazon.com/sagemaker/home?region=us-east-1#/hyper-tuning-jobs


Optimizing Models in Spark and SageMaker Chapter 14

[ 241 ]

Once it's complete, the AWS Console should look like the following screenshot; in it, you
can see the different jobs that ran and the different performance metrics that were obtained:

Let us inspect which training job yields the best performance using the SDK. The first thing
is to find the name of the best job:

tree_tuner.best_training_job()

'xgboost-190407-1342-001-5c7e2a26'

Using the methods in the session object, we can show the values of the hyperparameters for
the optimal training job:

sess.sagemaker_client.describe_training_job(TrainingJobName=tree_tuner.best
_training_job())

The output of the previous describe command is as follows:

{'TrainingJobName': 'xgboost-190407-1532-005-0e830ada',
 'TrainingJobArn': 'arn:aws:sagemaker:us-east-1:095585830284:training-
job/xgboost-190407-1532-005-0e830ada',



Optimizing Models in Spark and SageMaker Chapter 14

[ 242 ]

 'TuningJobArn': 'arn:aws:sagemaker:us-east-1:095585830284:hyper-parameter-
tuning-job/xgboost-190407-1532',
 'ModelArtifacts': {'S3ModelArtifacts': 's3://mastering-ml-
aws/chapter14/output/xgboost-190407-1532-005-0e830ada/output/model.tar.gz'}
,
 'TrainingJobStatus': 'Completed',
 'SecondaryStatus': 'Completed',
 'HyperParameters': {'_tuning_objective_metric': 'validation:auc',
 'eta': '0.4630125855085939',
 'gamma': '4',
 'lambda': '29.566673825272677',
 'max_depth': '7',
 'min_child_weight': '6',
 'num_round': '50',
 'objective': 'binary:logistic',
 'silent': '0',
 'subsample': '0.7'},....}

Using the describe_hyper_parameter_tuning_job() method, we can also get the final
value of the optimal AUC metric:

sess.sagemaker_client.describe_hyper_parameter_tuning_job(HyperParameterTun
ingJobName='xgboost-190407-1532')

The following output is the result of the preceding command:

{'HyperParameterTuningJobName': 'xgboost-190407-1532',
 'HyperParameterTuningJobArn': 'arn:aws:sagemaker:us-
east-1:095585830284:hyper-parameter-tuning-job/xgboost-190407-1532',
 'HyperParameterTuningJobConfig': {'Strategy': 'Bayesian',
 'HyperParameterTuningJobObjective': {'Type': 'Maximize',
 'MetricName': 'validation:auc'},
 'ResourceLimits': {'MaxNumberOfTrainingJobs': 10,
 'MaxParallelTrainingJobs': 3},
 ....
 'FinalHyperParameterTuningJobObjectiveMetric': {'MetricName':
'validation:auc',
 'Value': 0.6545940041542053},
 '
 ...}

You should explore the full API and Python SDK for a complete set of features and options
regarding the automatic tuning. Please check
out: https://github.com/aws/sagemaker-python-sdk  We hope this introduction can
help to get started on how to fine-tune the models. 

https://github.com/aws/sagemaker-python-sdk


Optimizing Models in Spark and SageMaker Chapter 14

[ 243 ]

Summary
In this chapter, we covered the importance of model tuning through hyperparameter
optimization. We provided examples of doing grid search in Apache Spark, as well as how
to use SageMaker's advanced parameter tuning. 

In the next chapter we will focus on optimizing the hardware and cluster set up upon
which we train and apply models. Both model optimization and hardware optimization are
important for successful and cost-effective AI processes.

Exercises
Regarding ways to find the best hyperparameters, compare the advantages and1.
disadvantages of grid search, random search, and Bayesian optimization as they
apply to hyperparameter tuning.
Why do we typically need three splits of data when we do hyperparameter2.
tuning?
Which metric do you think would be best for our xgboost example:3.
validation:auc or training:auc?



15
Tuning Clusters for Machine

Learning
Many data scientists and machine learning practitioners face the problem of scale when
attempting to run ML data pipelines over big data. In this chapter, we will focus primarily
on Elastic MapReduce (EMR), which is a very powerful tool for running very large
machine learning jobs. There are many ways to configure EMR and not every setup works
for every scenario. In this chapter, we will outline the main configurations of EMR and how
each configuration works for different objectives. Additionally, we will present AWS Glue
as a tool to catalog the results of our big data pipelines.

In this chapter, we will cover the following topics:

Introduction to the EMR architecture
Tuning EMR for different applications
Managing data pipelines with Glue

Introduction to the EMR architecture
In Chapter 4, Predicting User Behavior with Tree-Based Methods, we introduced EMR, which
is an AWS service that allows us to run and scale Apache Spark, Hadoop, HBase, Presto,
Hive, and other big data frameworks. These big data frameworks typically require a cluster
of machines running specific software that are correctly configured so that the machines are
able to communicate with each other. Let's look at the most commonly used products
within EMR.



Tuning Clusters for Machine Learning Chapter 15

[ 245 ]

Apache Hadoop
Many applications, such as Spark and HBase, require Hadoop. The basic installation of
Hadoop comes with two main services:

Hadoop Distributed Filesystem (HDFS): This is a service that allows us to store
large amounts of data (for example, files that cannot be stored on a single
machine) across many servers. A NameNode server is responsible for indexing
which blocks of which file are stored in which server. The blocks of each file are
replicated across the cluster so that if a machine goes down, we don't lose any
information. DataNode servers are responsible for keeping and serving the data
on each machine. Many other EMR services, such as Apache HBase, Presto, and
Apache Spark, are able to use HDFS to read and write data. HDFS works well
when you are using long-running clusters. For clusters that are launched just for
the purpose of a single job (such as a training job), you should consider having
the data storage in S3 instead.
MapReduce: This framework was the basis for big data crunching for many
years. By allowing users to specify two functions (a map function and a reduce
function), many big data workloads were made possible. The map function is 
responsible for taking chunks of data and transforming them in a one-to-one
fashion (for example, take the price of every transaction). The reduce function
takes the output of the map function and aggregates it in some way (such
as finding the average transaction price per region). MapReduce was designed so
that the processing was done on the same machines that we store the HDFS file
blocks on, to avoid sending large amounts of data over the network. This data
locality principle proved to be very effective for running big data jobs on
commodity hardware and with limited network speeds.

EMR allows you to create clusters with three types of nodes:

Master node: This is unique in a cluster and is typically responsible for
orchestrating work throughout other nodes in the cluster.
Core nodes: These kinds of nodes will host HDFS blocks and run a DataNode
server, hence job tasks running on these nodes may take advantage of data
locality.
Task nodes: These nodes do not host HDFS blocks but can run arbitrary job
tasks. Tasks running on these nodes will need to read data from filesystems
hosted on other machines (for example, core nodes or S3 servers).



Tuning Clusters for Machine Learning Chapter 15

[ 246 ]

Apache Spark
Apache Spark is one of the most popular big data frameworks. It extends the idea of
MapReduce by allowing the user to specify additional high-level functions on top of the
data. It can perform map and reduce functions but also supports filter, group, join, window
functions, and many other operations. Additionally, as we have seen throughout this book,
we can use SQL operations to perform ETL and analytics. Apache Spark was designed to
cache large amounts of data in-memory to speed up algorithms that require several passes
of the data. For example, algorithms that require several iterations of gradient descent can
run orders of magnitude faster if the datasets are cached in-memory.

Apache Spark also comes with a number of very useful libraries for streaming, graph
manipulation, and the machine learning ones that we have used throughout this book. We
encourage you to explore these additional libraries as they are extremely high-quality and
useful. Spark is unique in that it seamlessly integrates many well-developed libraries
together, such as TensorFlow and scikit-learn. You can build excellent models with
both of these tools, but they do not currently allow us to read and prepare data by
parallelizing the work in a cluster like Spark does. In other words, Apache Spark provides
the full stack of packages, from data ingestion to model generation. Some people refer to
Spark as the operating system for big data. Often, data scientists and engineers use Spark to
perform data preparation at scale and then use other tools, such as TensorFlow and
SageMaker to build and deploy specialized models. In Chapter 5 , Customer Segmentation
Using Clustering Algorithms, we saw how we can smoothly integrate Apache Spark and
SageMaker through the use of SageMaker Spark estimators.

Apache Hive
Apache Hive was born as a translator from SQL to MapReduce jobs. You can specify Data
Definition Language (DDL) and Data Manipulation Language (DML) statements and
work with SQL as if you were working on a standard database management system using
Apache Hive. Many non-technical users that knew SQL could perform analytics at scale
when Hive first appeared, which was one of the reasons for its popularity. What happens
under the hood with Hive (and with Spark SQL) is that the SQL statement is parsed and a
series of MapReduce jobs are constructed on the fly and run on the cluster to perform the
declarative operation described by the SQL statement.



Tuning Clusters for Machine Learning Chapter 15

[ 247 ]

Presto
Presto is a product developed by Facebook that also translates SQL into big data workloads
but is tailored for interactive analytics. It is extremely fast and is specially optimized for
when you have a large fact table and several smaller-dimension tables (such as a
transaction and other joined tables, such as a product and clients). AWS provides a
serverless alternative based on Presto, called Athena, which is great when your data is on
S3. Athena queries are charged based on how much data is scanned. For this reason, it has
become extremely popular for big data analytics.

Apache HBase
HBase is a product similar to Google's Bigtable. Conceptually, it can be seen as a huge
distributed key-value store. HBase is not as popular anymore due to the appearance of 
technologies such as AWS DynamoDB, which is serverless and, in our experience, more
reliable. However, it can be a cost-effective way to store data when you need to access it
through keys. For example, you could use HBase to store a custom model for each user (on
the assumption that you have billions of users to justify it).

Yet Another Resource Negotiator
Apache Hadoop also developed Yet Another Resource Negotiator (YARN), which is the
fundamental tool with which EMR schedules and coordinates different applications. YARN
is effectively the cluster manager behind EMR and is responsible for launching the
necessary daemons on different machines. When you configure a cluster through EMR, you
can specify the different applications that you want to run. Examples of such applications
are Spark, HBase, and Presto. YARN is responsible for launching the necessary processes.
In the case of Spark, YARN will launch Spark executors and drivers as needed. Each of
these processes reports the necessary memory and CPU code consumption to YARN. That
way, YARN can make sure that the cluster load is properly managed and not overloaded.

Tuning EMR for different applications
in this section we will consider the aspects involved in tuning the clusters we use for
machine learning. When you launch an EMR cluster, you can specify the different
applications you want to run.



Tuning Clusters for Machine Learning Chapter 15

[ 248 ]

The following screenshot shows the applications available in EMR version 5.23.0:

Upon launching an EMR cluster, these are the most relevant items that need to be
configured:

Applications: Applications such as Spark).
Hardware: We covered this in Chapter 10, Creating Clusters on AWS.
Use of the Glue Data Catalog: We'll cover this in the last section of this
chapter, Managing data pipelines with Glue).
Software configuration: These are properties that we can specify to configure
application-specific properties. In the next section, Configuring application
properties, we'll show how to customize the behavior of Spark through specific
properties.
Bootstrap actions: These are user-specific scripts (typically located in S3) that
will run on every node of the cluster as it boots up. Bootstrap actions are useful,
for example, when you want to install a specific package on all the machines of
the cluster upon startup.



Tuning Clusters for Machine Learning Chapter 15

[ 249 ]

Steps: These are the different jobs that the user wants to run once the
applications are up. For example, if we want to launch a cluster that runs a
training job in Spark and then we want to shut down the cluster, we would
specify a Spark job step and check the auto-terminate cluster after the last step is
complete option. Such a use case is pertinent when we are launching a cluster
programmatically (via the AWS API). Scheduled or event-driven AWS Lambda
functions can use libraries such as boto3 to launch clusters programmatically
upon the occurrence of an event, or on a regular schedule. More information
about AWS Lambda can be found at https://docs.aws.amazon.com/lambda/.

Configuring application properties
In the preceding screenshot, you might have noticed that there is a space called Software
Settings for customizing the configuration of different applications. There are different
categories of configurations, named classifications, that allow you to override the
default configuration of the different applications by changing the values for a chosen set of
properties.

In the following code block, we provide a very useful set of properties to configure Spark
for two things: maximizing resource allocation and enabling the AWS Glue metastore:

classification=spark,properties=[maximizeResourceAllocation=true]
classification=spark-
defaults,properties=[spark.sql.catalogImplementation=hive]
classification=spark-hive-
site,properties=[hive.metastore.connect.retries=50,hive.metastore.client.fa
ctory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClie
ntFactory]

Let's look at the effect of each of these configurations.

Maximize Resource Allocation
When you enable maximizeResourceAllocation, EMR and Spark will figure out how to
configure Spark so as to use all of the available resources (for example, memory and CPU).
The alternative is to manually configure properties such as the number of executors, Java
heap space for each executor, and the number of cores (that is, threads) for each executor. If
you choose to do this manually, you need to take great care not to exceed the available
resources of the cluster (and also not to underuse the available hardware). We recommend
having this setting always set by default.

https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/


Tuning Clusters for Machine Learning Chapter 15

[ 250 ]

The AWS Glue Catalog
AWS Glue provides a service that is known as a Hive metastore. The purpose of this service
is to keep track of all the data in our data lake by defining tables that describe the data. A
data lake is typically hosted on S3 or HDFS. Any data that lies on these distributed
filesystems, and has a tabular format, such as Parquet or CSV, can be added to the
metastore. This does not copy or move the data; it is just a way of keeping a catalog of all
our data. By configuring the hive.metastore.client.factory.class property in the
cluster configuration, we allow Spark to use all the tables registered in the Glue Catalog.
Additionally, Spark can also create a new table or modify the catalog through Spark SQL
statements. In the next section, we will show a concrete example of how Glue is useful.

Managing data pipelines with Glue
Data scientists and data engineers run different jobs to transform, extract, and load data
into systems such as S3. For example, we might have a daily job that processes text data
and stores a table with the bag-of-words table representation that we saw in Chapter 2,
Classifying Twitter Feeds with Naive Bayes. We might want to update the table each day to
point to the latest available data. Upstream processes can then only rely on the table name
to find and process the latest version of the data. If we do not catalog this data properly, it
will be very hard to combine the different data sources or even to know where the data is
located, which is where AWS Glue metastore comes in. Tables in Glue are grouped into
databases. However, tables in different databases can be joined and referenced.

Creating tables with Glue
You can access the Glue console on AWS by going to https://console.aws.amazon.com/
glue/home?region=us-east-1#catalog:tab=databases.

In the console, create a new database, as shown in the following screenshot:

https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=databases


Tuning Clusters for Machine Learning Chapter 15

[ 251 ]

Once the database is created, you can switch to the Athena AWS service and start creating
tables from our data in S3 to run queries for analytics. The AWS Athena console can be
accessed at https://console.aws.amazon.com/athena/home.

Let's create a table in S3 for the Boston house prices dataset that we worked on in Chapter
3, Predicting House Value with Regression Algorithms.

In the following screenshot we can see how the create table SQL statement will specify the
name, format, and fields of the table from our CSV data located in S3:

Note, that the location specifies a folder (not a file). In our case, we have a single CSV folder
at s3://mastering-ml-aws/chapter3/linearmodels/train/training-
housing.csv. However, we could have many CSVs on the same folder and all would be
linked to the house_prices table we just created. Once we create the table, since the data
is in S3, we can start querying our table as follows:

https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home


Tuning Clusters for Machine Learning Chapter 15

[ 252 ]

Note how the data is tabulated correctly. This is because we have told Glue the right format
and location of our data. Now we can run ultra-fast analytics using SQL with Presto-as-a-
service through Athena. 

We just performed a create table operation; however, often, we want to
perform alter table commands to switch the underlying data behind a
table to a more recent version. It's also very common to perform add-
partition operations to incrementally add data to a table (such as new
batches or dates). Partitions also help the query engine to filter the data
more effectively.



Tuning Clusters for Machine Learning Chapter 15

[ 253 ]

Accessing Glue tables in Spark
Once the table created is in Glue, it will also become available on every EMR Spark cluster
(as long as we configure the hive.metastore.client.factory.class described in the
previous section,  Tuning EMR for different applications). Let's launch an EMR cluster with
the JupyterHub application enabled. The JupyterHub application is an alternative to the
EMR notebooks feature we used throughout Chapter 2, Classifying Twitter Feeds with Naive
Bayes, to Chapter 6, Analyzing Visitor Patterns to Make Recommendations. Consider using
JupyterHub when you have a team of data scientists reusing the same cluster and running
different notebooks. You can learn more on JupyterHub at https://docs.aws.amazon.com/
emr/latest/ReleaseGuide/emr-jupyterhub.html.

The following screenshot shows our cluster created with the Glue metastore enabled and
JupyterHub as the application:

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-jupyterhub.html


Tuning Clusters for Machine Learning Chapter 15

[ 254 ]

If you click on the JupyterHub link, it will take you to an authentication page, such as the
following:

The default configuration of JupyterHub has a default user account with a username
of jovyan and a password of jupyter available. The authentication can be customized
through the EMR configuration if needed.

Once we authenticate, we can start creating notebooks exactly as we did with EMR
notebooks. In this case, we will create a PySpark3 notebook:



Tuning Clusters for Machine Learning Chapter 15

[ 255 ]

Now, notebooks can use SparkMagic to interleave paragraphs in Python and SQL. Let's
look at the following notebook example:

The first paragraph runs a SQL on the table we just created through Glue/Athena through
SparkMagic's %%sql magic (more on SparkMagic can be found at https://github.com/
jupyter-incubator/sparkmagic). The second paragraph constructs a Spark DataFrame 
through a simple SQL statement that selects two fields from our table. The third paragraph
runs a Spark job (that is, the describe command) over the Spark DataFrame we constructed.
You will appreciate how easy it is to handle, integrate, and process data once we have
properly cataloged it in our Glue metastore.

https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic
https://github.com/jupyter-incubator/sparkmagic


Tuning Clusters for Machine Learning Chapter 15

[ 256 ]

Summary
In this chapter, we looked at the main configuration parameters of EMR and how they can
help us run many big data frameworks, such as Spark, Hive, and Presto. We also explored
the AWS services of Athena and Glue as a way to catalog the data on our data lake so that
we can properly synchronize our data pipelines. Finally, we demonstrated how Glue can
also be used in EMR, with smooth integration for JupyterHub with SparkMagic.

In the next chapter, Deploying Models Built in AWS, we will cover how to deploy machine
learning models in different environments.



16
Deploying Models Built in AWS

At this point, we have our models built in AWS and would like to ship them to production.
We know that there is a variety of different contexts in which models should be deployed.
In some cases, it's as easy as generating a CSV of actions that would be fed to some system.
Often we just need to deploy a web service capable of making predictions. However, there
are special circumstances in which we need to deploy these models to complex, low-
latency, or edge systems. In this chapter, we will look at the different ways to deploy
machine learning models to production.

In this chapter, we will cover the following topics:

SageMaker model deployment
Apache Spark model deployment

SageMaker model deployment
In Chapter 2, Classifying Twitter Feeds with Naive Bayes, we deployed our first model with
SageMaker. At that point, we had trained our classifier using BlazingText and stored it in a
variable called bt_model. To deploy the model, we just need to call the deploy method
stating the number and kinds of machines to use:

bt_model.deploy(initial_instance_count = 1,instance_type = 'ml.m4.xlarge')

SageMaker can balance the requests made to the endpoint across the
number of instances and automatically scale up or down the depending
on the service load. Details can be found at https://docs.aws.amazon.
com/sagemaker/latest/dg/endpoint-auto-scaling.html.

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html


Deploying Models Built in AWS Chapter 16

[ 258 ]

Once we invoke the deploy method, an endpoint should appear in the AWS SageMaker
console at https://console.aws.amazon.com/sagemaker. The following screenshot shows
the endpoint for our BlazingText example:

By clicking on the endpoint in the console, we can find further details:

In particular, we can see that the endpoint has a specific URL in which the service is hosted.
If we attempt to call this URL directly via HTTP tools, such as curl, we would get the
following result:

curl -X POST \
>
https://runtime.sagemaker.us-east-1.amazonaws.com/endpoints/blazingtext-end
point-2019-01-04-01/invocations \
> -H 'cache-control: no-cache' \
> -H 'content-type: application/json' \
> -H 'postman-token: 7hsjkse-f24f-221e-efc9-af4c654d677a' \
> -d '{"instances": ["This new deal will be the most modern, up-to-date,
and balanced trade agreement in the history of our country, with the most
advanced protections for workers ever developed"]}'

https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/sagemaker


Deploying Models Built in AWS Chapter 16

[ 259 ]

{"message":"Missing Authentication Token"}

This is because every request made to SageMaker endpoints must be properly signed to
ensure authentication. Only users with role permissions to call the Amazon SageMaker
InvokeEndpoint API will be allowed to make calls to SageMaker endpoints. In order for the
HTTP service behind SageMaker to be able to identify and authenticate the caller, the http
request needs to be properly signed. More information about signing requests can be found
at https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html.
An alternative to signing the requests—if we want to expose our model endpoint
publicly—would be to create a lambda function in AWS and expose it behind an API
Gateway. More information about how to do that can be found here: https://docs.aws.
amazon.com/sagemaker/latest/dg/getting-started-client-app.html.

Fortunately, if we are calling the endpoint from within an AWS instance, we can avoid
manually signing the requests by using the sagemaker library. Let's recap how such calls
can be made.

As usual, we first import the necessary Python libraries:

import sagemaker
from sagemaker import get_execution_role

sess = sagemaker.Session()
role = get_execution_role()

Next, if we know the name of the endpoint, we can create a RealTimePredictor instance
in order to make real-time predictions:

from sagemaker.predictor import json_serializer, RealTimePredictor

predictor = RealTimePredictor(endpoint='blazingtext-
endpoint-2019-01-04-01', serializer=json_serializer)

In this case, we are using json_serializer, which is a convenient and human-readable
format for our example. To invoke the endpoint, we just need to call the predict()
method:

predictor.predict({"instances": ["This new deal will be the most modern,
up-to-date, and balanced trade agreement in the history of our country,
with the most advanced protections for workers ever developed"]})

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html
https://docs.aws.amazon.com/sagemaker/latest/dg/getting-started-client-app.html


Deploying Models Built in AWS Chapter 16

[ 260 ]

Here is the output:

b'[{"prob": [0.5000401735305786], "label": ["__label__1"]}]'

You can go back to Chapter 2, Classifying Twitter Feeds with Naive Bayes, for an
interpretation of this output, but the important point here is that the RealTimePredictor
instance did all the proper authentication, request signing, and endpoint invocation on our
behalf.

In addition to the URL and basic information about the endpoint, the AWS console also
shows the endpoint configuration:

Through the configuration, we can follow the model and training job that originated from
this endpoint. Let's follow the link to inspect the originating model. We then get the
following screen:



Deploying Models Built in AWS Chapter 16

[ 261 ]

In the model description, we can find details such as the S3 location of the model. This
model serialization is specific to each kind of model. In Chapter 4, Predicting User Behavior
with Tree-Based Methods, we saw that the format of such a model was conveniently in an
xgboost pickle-serialized-compatible format.

You may also have noticed that there is an image associated to this model. SageMaker 
creates an image of the machine that hosts this model in the Amazon Elastic Container
Registry (ECR). Typically these are Docker images under the hood.

The following link is a great resource on the inner workings of
deployment and how containerization works within SageMaker: https://
sagemaker-workshop.com/custom/containers.html.

https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html
https://sagemaker-workshop.com/custom/containers.html


Deploying Models Built in AWS Chapter 16

[ 262 ]

Apache Spark model deployment
Apache Spark does not come with an out-of-the-box method for exposing models as
endpoints, like SageMaker does. However, there are easy ways to load Spark models on
standard web services using the serialization and deserialization capabilities of Spark's ML
package. In this section, we will show how to deploy the model we created in Chapter
3, Predicting House Value with Regression Algorithms, to serve predictions through a simple
endpoint. To do this, we will save a trained model to disk so that we can ship that model to
the machine that is serving the model through an endpoint.

We'll start by training our model. In Chapter 3, Predicting House Value with Regression
Algorithms, we loaded the housing data into a dataframe:

housing_df = sql.read.csv(SRC_PATH + 'train.csv',
                          header=True, inferSchema=True)

To simplify this example, we're going to use a reduced set of features to build a model that
will be exposed as an endpoint. Of all the features, we are going to select just three training
features (crim, zn, and indus):

reduced_housing_df = housing_df.select(['crim', 'zn', 'indus', 'medv'])

You might recall that medv was the actual house value (which is the value we're trying to
predict). Now that we have our dataframe, we can create a pipeline just like we did
before:

from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorAssembler

training_features = ['crim', 'zn', 'indus']
vector_assembler = VectorAssembler(inputCols=training_features,
               outputCol="features")
linear = LinearRegression(featuresCol="features", labelCol="medv")
pipeline = Pipeline(stages=[vector_assembler, linear])
model = pipeline.fit(reduced_housing_df)

With the model instance, we can save it to disk by calling the save() method:

model.save("file:///tmp/linear-model")



Deploying Models Built in AWS Chapter 16

[ 263 ]

This serialized model representation can then be shipped to the location in which we want
to serve predictions (for example, a web server). In such a context, we can load back the
model by invoking the PipelineModel.load() static method, as follows:

from pyspark.ml import PipelineModel
loaded_model = PipelineModel.load('/tmp/linear-model')

Let's use this model to obtain predictions for the first few rows of our reduced dataset:

loaded_model.transform(reduced_housing_df.limit(3)).show()

The output of the preceding command is as follows:

+-------+----+-----+----+-------------------+------------------+
| crim  | zn |indus|medv| features          | prediction       |
+-------+----+-----+----+-------------------+------------------+
|0.00632|18.0| 2.31|24.0|[0.00632,18.0,2.31]|27.714445239256854|
|0.02731| 0.0| 7.07|21.6| [0.02731,0.0,7.07]|24.859566163416336|
|0.03237| 0.0| 2.18|33.4| [0.03237,0.0,2.18]| 26.74953947801712|
+-------+----+-----+----+-------------------+------------------+

Look at how the pipeline model started from the raw CSV and applied all the
transformation steps in the pipeline to finish with a prediction. Of course, it's not as
interesting to obtain predictions from our training dataset. Realistically, on an endpoint
serving predictions, we want to receive arbitrary values of our three features and obtain a
prediction. At the time of this writing, Apache Spark can only obtain predictions given a
dataframe. So, each time we want to obtain predictions for a few values, we need to
construct a dataframe, even if we just need to find the prediction for a single row.

Suppose we want to find the prediction for this combination of features: crim=0.00632,
zn=18.0, indus=2.31. The first step is to define the schema of our features as Spark will 
expect the dataframe to be in the exact format that was used for training.

We define the schema as follows:

from pyspark.sql.types import *

schema = StructType([StructField('crim', DoubleType(), True),
                    StructField('zn', DoubleType(), True),
                    StructField('indus', DoubleType(), True)])



Deploying Models Built in AWS Chapter 16

[ 264 ]

In the preceding schema definition, we place the names and types of each field. With the
schema in place, we can construct a one-row dataframe with the feature values we're
interested in:

from pyspark.sql import Row

predict_df =
sql.createDataFrame([Row
(crim=0.00632, zn=18.0,
indus=2.31)],
schema=schema)

This is how the dataframe looks:

+-------+----+-----+
| crim  | zn |indus|
+-------+----+-----+
|0.00632|18.0| 2.31|
+-------+----+-----+

With this short dataframe and the loaded model, we can obtain predictions for our
arbitrary features:

loaded_model.transform(predict_df).show()

Here is the output of the preceding command:

+-------+----+-----+-------------------+------------------+
| crim  | zn |indus| features          |        prediction|
+-------+----+-----+-------------------+------------------+
|0.00632|18.0| 2.31|[0.00632,18.0,2.31]|27.714445239256854|
+-------+----+-----+-------------------+------------------+

So, with the preceding ideas in mind, how can we construct an endpoint capable of serving
this model? The simplest way is to use packages, such as Flask, that allow us to easily
expose an endpoint on any machine of our choice. Details about flask can be found
at http://flask.pocoo.org. To run a flask web service, we just need to write a Python file
that knows how to respond to different endpoint requests. In our case, we will just create
one endpoint to respond with a prediction given the values of our three features. We will
implement a simple GET endpoint in which the three features will be passed as URL
params.

The call to the service when running on our local host will be as follows:

curl 'http://127.0.0.1:5000/predict?crim=0.00632&zn=18.0&indus=2.31'

http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/


Deploying Models Built in AWS Chapter 16

[ 265 ]

Here is the output of the service:

27.71

To start the flask service on the machine, perform these three steps:

Create a python file that specifies how to respond to the endpoint. We will name1.
this file deploy_flask.py.
Set the FLASK_APP environment variable to point to the python file we just2.
created.
Run the flask run command.3.

In deploy_flask.py, we put together the preceding ideas regarding how to load the
model and construct the dataframe for prediction:

from flask import Flask
from flask import request
from pyspark.ml import PipelineModel
from pyspark.sql import Row
from pyspark.sql.types import *
from pyspark.sql import SQLContext
from pyspark.context import SparkContext

sc = SparkContext('local', 'test')
sql = SQLContext(sc)
app = Flask(__name__)
loaded_model = PipelineModel.load('/tmp/linear-model')

schema = StructType([StructField('crim', DoubleType(), True),
                    StructField('zn', DoubleType(), True),
                    StructField('indus', DoubleType(), True)])

@app.route('/predict', methods=['GET'])
def predict():
   crim = float(request.args.get('crim'))
   zn = float(request.args.get('zn'))
   indus = float(request.args.get('indus'))
   predict_df = sql.createDataFrame([Row(crim=crim, zn=zn,
indus=indus)],schema=schema)
   prediction = loaded_model.transform(predict_df).collect()[0].prediction
   return str(prediction)



Deploying Models Built in AWS Chapter 16

[ 266 ]

The only new parts in the deploy_flask.py file are the initialization of the flask app and
the definition of the predict method, in which we extract the three features granted as
URL params. Next, we set the mentioned environmental variable and run the service:

export FLASK_APP=deploy_flask.py
flask run

In the logs, you can see how the service and Spark are initialized, as well as calls made to
the service:

* Serving Flask app "deploy_flask.py"
* Environment: production
  WARNING: Do not use the development server in a production environment.
  Use a production WSGI server instead.
* Debug mode: off
Using Spark's default log4j profile: org/apache/spark/log4j-
defaults.properties
Setting default log level to "WARN".
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
127.0.0.1 - - [13/Apr/2019 19:13:03] "GET
/predict?crim=0.00632&zn=18.0&indus=2.31 HTTP/1.1" 200 -

As the flask logs mention, if you are thinking about serious production load, consider
running flask behind a WSGI server. More information about this can be found in the flask
documentation.

SageMaker is also able to host any arbitrary model. To do so, we need to create a Docker
image that responds to two endpoints: /ping and /invocations. It's that simple. In our
case, the /invocations endpoint would use the loaded Spark model to respond with the
predictions. Once the Docker image is created, we need to upload it to AWS ECR. As soon
as it's loaded on ECR, we can create a SageMaker model just by providing the ECR image
identifier.



Deploying Models Built in AWS Chapter 16

[ 267 ]

In the AWS Console (or through the API), choose to create a model:



Deploying Models Built in AWS Chapter 16

[ 268 ]

Once you provide the basic model details, input the ECR location of your custom inference
endpoint:

Like any SageMaker model, you can deploy it to an endpoint with the usual means. We
won't go through the process of the Docker image creation in this chapter, but notebooks
are available at our GitHub repository (https://github.com/mg-um/mastering-ml-on-aws)
under Chapter 16, Deploying Models Built in AWS, that explain how to do so.

https://github.com/mg-um/mastering-ml-on-aws


Deploying Models Built in AWS Chapter 16

[ 269 ]

Even if your production environment is outside of AWS, SageMaker and Spark in EMR can
be of great use, as models can be trained in AWS offline and shipped to a different
environment. Also, the artifacts created by AWS as models can usually be obtained and
used offline (this was the case for the xgboost model). If you need to port the Spark ML
models to an environment in which you can't instantiate a local Spark session or need a
very low-latency predictor, consider using the following tool: https://github.com/
TrueCar/mleap.

Summary
In this chapter, we looked at how models are deployed through SageMaker and covered
how the endpoints are defined and invoked. Through the use of Spark's model serialization
and deserialization, we illustrated how models can be shipped to other environments, such
as a custom web service implementation in flask. Finally, we outlined how your Spark
model (or any other arbitrary model) can be served through SageMaker by registering a
custom Docker image in AWS ECR.

Exercises
Why do SageMaker endpoints respond with a missing authentication token1.
message when you attempt to access the service directly?
Name two alternatives to solve the preceding problem.2.
Provide two means to deploy a model built on Apache Spark onto an endpoint.3.
Using our flask example as a basis, construct a Docker image that servers the4.
/invocations and /ping endpoint and then deploys a model through
SageMaker.

https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap
https://github.com/TrueCar/mleap


Appendix: Getting Started with
AWS

Since we will focus on machine learning on AWS it’s very important that the you get started
with AWS by creating an account if not done already. Please visit https://portal.aws.
amazon.com/billing/signup#/start . You will need to provide some credit card details,
but you will only get charged after you effectively use the different services. Consider that
many of the services have a free tier which you can start using at no cost. Once you sign up,
the next step is to create a user on the platform which you will use for programmatic access.

Navigate to https://console.aws.amazon.com/iam/home and create user:

https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://portal.aws.amazon.com/billing/signup#/start
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home


Appendix: Getting Started with AWS

[ 271 ]

Once you create the user, grant some permissions (in our example we will grant full
access):

You can optionally set tags to better track costs in case you have multiple users, but we
won't focus on that on this book. Once you create the user, you can navigate to that user
and create keys:

Once you generate those keys, you can store them in ~/.aws/credentials on your machine, as
explained in https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.
html.  By storing the credentials on that file, the code you run on your machine will know
how to authenticate with AWS.

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html


Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Effective Amazon Machine Learning
Alexis Perrier

ISBN: 9781785883231

Learn how to use the Amazon Machine Learning service from scratch for
predictive analytics 
Gain hands-on experience of key Data Science concepts
Solve classic regression and classification problems
Run projects programmatically via the command line and the python SDK 
Leverage the Amazon Web Service ecosystem to access extended data sources
Implement streaming and advanced projects

https://www.packtpub.com/big-data-and-business-intelligence/effective-amazon-machine-learning


Other Books You May Enjoy

[ 273 ]

Machine Learning with AWS
Jeffrey Jackovich, Ruze Richards

ISBN: 9781789806199

Get up and running with machine learning on the AWS platform
Analyze unstructured text using AI and Amazon Comprehend
Create a chatbot and interact with it using speech and text input
Retrieve external data via your chatbot
Develop a natural language interface
Apply AI to images and videos with Amazon Rekognition

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-aws


Other Books You May Enjoy

[ 274 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

2
20 Newsgroups
   reference  192

A
Adaptive Boosting  69
agglomerative clustering  99, 100, 101
Alexa  214
Alternating Least Squares (ALS)  124
Amazon Comprehend
   about  184, 202
   accessing  185
Amazon Lex
   about  214
   used, for building custom chatbot  215, 217, 219,

220

Amazon Machine Images (AMIs)  227
Amazon Rekognition
   about  202
   celebrity recognition  210
   face comparison  211, 212
   facial analysis, implementing  206, 209
   image moderation  209
   object, implementing  203, 206
   scene detection, implementing  203, 206
Amazon Resource Name (ARN )  180
Amazon SageMaker
   used, for classifying images  179, 181
   used, for image classification  171, 172
   used, for training deep learning model  173, 175,

177, 178
Amazon Web Services (AWS)  9
Apache Hadoop  245
Apache Hadoop, services
   Hadoop Distributed Filesystem (HDFS)  245
   MapReduce  245

Apache HBase  247
Apache Hive  246
Apache Spark model deployment  262, 263, 266,

269

Apache Spark's ALS
   recommendations, finding  124
Apache Spark
   about  246
   distributed deep learning  231
   hyperparameter tuning  236, 237
   linear regression  53, 55
   used, for clustering on EMR  102, 104, 106, 108,

111

   used, for training naïve Bayes model on
SageMaker Notebooks  33, 35

Area Under Curve (AUC)  32, 83
Argmax  23
artificial intelligence (AI)  209
attractions, recommending through SageMaker

Factorization Machines
   about  131
   dataset, preparing  131, 133, 135
   model, training  135
   recommendations, obtaining  137, 139
automatic hyperparameter tuning  235
average-linkage clustering  100
AWS Comprehend
   used, for Named-Entity recognition (NER)  186,

187, 189
   used, for sentiment analysis  189, 190
   used, for text classification  191, 193, 196, 200
AWS tools
   using, for machine learning  11

B
backpropagation algorithm  148, 149
Bagging  68



[ 276 ]

batch gradient descent  47
Bayes' theorem
   about  20
   evidence variable  22
   likelihood probability  21
   posterior probability  21
   prior probability  21
Bayesian optimization  235
BigDL
   reference  231

C
Caltech265
   reference  172
celebrity recognition  210
classification algorithms  18, 19
Classification and Regression Trees (CART)  64
classification trees  63
cluster analysis  95
clustering algorithms
   about  97
   working  95
clustering approaches
   hierarchical clustering  99
   k-means clustering  97, 98
clustering
   on EMR, Apache Spark used  102, 104, 106,

108, 111
collaborative filtering  120
collaborative filtering, ways
   memory-based approach  120, 121
   model-based approach  121
complete-linkage clustering  100
Construction-worker Detector  172
convolutional neural network (CNN)  150, 152,

153, 171, 173, 202
cost functions
   about  64
   Gini Impurity  64
   information gain  66, 67
curse of dimensionality  25, 78
custom chatbot
   building, with Amazon Lex  215, 217, 219, 220
custom neural net
   creating, with TensorFlow for image recognition 

165, 167, 170
customer segmentation
   reference  95

D
data parallelization
   about  231
   versus model parallelization  229
data pipelines
   managing, with Glue  250
data scientists
   about  9
   skill  10
decision trees algorithm  96
decision trees, types
   about  63
   classification trees  63
   regression trees  63
decision trees
   about  61, 62
   cost functions  64
   criteria, to stop splitting trees  67
deep learning  142, 143, 214
deep learning algorithms
   about  146
   convolutional neural network (CNN)  150, 153
   deep neural network (DNN)  149, 150
   used, for training to play video games  145
deep learning hardware  228
deep learning model
   training, with Amazon SageMaker  173, 175, 178
deep learning, applications
   about  143
   self-driving car algorithm  144
deep neural network (DNN)  41, 145, 149, 150
discretization  19
distributed deep learning, with Apache Spark
   data parallelization  231
   distributed hyperparameter tuning  232
   distributed predictions  232
   model parallelization  232
distributed deep learning
   about  228
   distributed TensorFlow  229, 231
   model parallelization, versus data parallelization 



[ 277 ]

229

   SageMaker  233
   with Apache Spark  231
distributed hyperparameter tuning  232
distributed predictions  232
distributed TensorFlow  229, 231
divisive clustering  99, 101
DLAMIs  227

E
Elastic Compute  227
Elastic Container Registry (ECR)  261
Elastic MapReduce (EMR)
   about  33, 53, 61, 70, 73, 95, 227, 244
   clustering, with Apache Spark  102, 104, 106,

108, 111
   clustering, with SageMaker  111, 114
   clustering, with Spark  111, 114
   training, with Apache  73
   training-tree ensembles  86
   tuning, for applications  247
   tuning, for different applications  249
EMR architecture
   about  244
   Apache Hadoop  245
   Apache HBase  247
   Apache Hive  246
   Apache Spark  246
   Presto  247
   Yet Another Resource Negotiator (YARN)  247
EMR notebooks  70
EMR, tuning for application
   AWS Glue Catalog  250
   maximizeResourceAllocation, enabling  249
   properties, configuring  249
Euclidean distance  98, 99
Expectation Maximization (EM)  97
Extract, Transform, and Load (ETL)  223

F
face comparison  211, 212
facial analysis
   implementing  206, 209
Factorization Machines  123
feature encoding  77

feature label
   about  62
   recursive splitting  63
feature types, classification algorithms
   about  19
   continuous features  19
   nominal features  19
   ordinal features  19
Flickr data
   theme park attraction recommendations ,

creating  119
Forgy algorithm  98

G
generations  223
Gini Impurity  64
Glue tables
   accessing, in Spark  253, 255
Glue
   used, for creating tables  250, 252
   used, for managing data pipelines  250
gradient  47
gradient descent  246
gradient descent algorithm  47
Gradient-Boosted Trees, training with SageMaker

services
   data, preparing  87, 88
   model, applying  90, 93
   model, evaluating  90, 93
Gradient-Boosted Trees
   training, with SageMaker services  87
   training, with SageMaker XGBoost  88, 90
gradient-boosting algorithms  69
graphical processing units (GPUs)  228
grid search  235

H
hierarchical clustering
   about  99
   agglomerative clustering  99
   divisive clustering  99
Hive metastore  250
hyperparameter tuning
   in Apache Spark  236, 237
   in SageMaker  238, 240, 242



[ 278 ]

hyperparameter-tuning Jobs  172
hyperparameters  234

I
IAM role  114, 116, 117
image classification
   about  174
   with Amazon SageMaker  171, 172
image moderation  209
images
   classifying, with Amazon SageMaker  179, 181
information gain  66, 67
instance types
   about  12
   Amazon Machine Images (AMIs)  227
   deep learning hardware  228
   on-demand instance pricing, versus spot instance

pricing  225, 226
   reserved pricing  227
   selecting  223, 225

K
k-means clustering
   about  97, 98
   Euclidean distance  99
   Manhattan distance  99
Key Performance Indicators (KPI)  9

L
language models
   used, for classifying text  24
Least Squares
   alternating  123
linear least squares estimation  46
linear models
   advantages  60
   disadvantages  60
linear regression algorithm  96
linear regression
   about  44, 46
   gradient descent algorithm  47
   linear least squares estimation  46
   maximum likelihood estimation (MLE)  47
   with Apache Spark  53, 55
   with SageMaker's Linear Learner  55, 58

   with scikit-learn  50, 52, 53
log streams
   clicks, predicting on  69
logistic function  59
logistic regression
   about  33, 59
   in Spark  59
logit  59

M
machine learning (ML)
   about  9, 17
   AWS tools, using  11
   candidate problems, identifying  12
machine learning project life cycle
   about  13
   algorithm selection  14
   data gathering  13
   evaluation metrics  14
Manhattan distance  98, 99
matrix factorization  121, 123
maximum likelihood estimation (MLE)  47
mean absolute error (MAE)  48
mean squared error (MSE)  49
Memory (GB)  224
memory-based approach  120, 121
model optimization
   significance  234
model parallelization  232
model-based approach
   about  121
   Least Squares, alternating  123
   matrix factorization  121, 123
   stochastic gradient descent (SGD)  123
models
   deploying  15
multilayer perceptron classifier (MLPC)
   reference  232

N
Naive Bayes algorithm
   about  96
   advantages  40
   disadvantages  40
   working  22, 23



[ 279 ]

Naive Bayes classifier  20
Naive Bayes model
   building, through SageMaker notebooks  26, 29,

32

Named-Entity recognition (NER)
   about  186
   with AWS Comprehend  186, 187, 189
natural language processing (NLP)  184, 214
Naïve Bayes model
   training, on SageMaker Notebooks with Apache

Spark  33, 35
neural network algorithms
   about  146, 147
   Activation Function  147
   backpropagation algorithm  148, 149
nodes, for creating cluster in EMR
   core nodes  245
   master node  245
   task nodes  245

P
pooling  151
precision-recall curves  82
prediction  84
Presto  247
price of houses
   predicting  43
principal component analysis (PCA)  106
Protocol buffers  132
PySpark  33

R
R-squared  49
random forests algorithms  68
Random partitioning  97
recall  84
recommendations, finding through Apache Spark's

ALS
   data exploration  124, 126, 127
   data gathering  124, 126, 127
   model, training  127
   obtaining  128, 130
Rectified Linear Units (ReLU)  166
recursive splitting  63
regression algorithms  43

regression models
   evaluating  48
   mean absolute error (MAE)  48
   mean squared error (MSE)  49
   R-squared  49
   root mean squared error (RMSE)  49
regression trees  63
regressors  43
reserved pricing  227
root mean squared error (RMSE)  32, 49

S
SageMaker Factorization Machines
   attractions, recommending  131
SageMaker model deployment  257, 259, 260,

261

SageMaker notebooks
   Naive Bayes model, building  26, 29, 32
SageMaker services
   used, for training Gradient-Boosted Trees  87
SageMaker XGBoost
   used, for training Gradient-Boosted Trees  88, 90
SageMaker's BlazingText built-in ML service
   using  36, 38, 40
SageMaker's Linear Learner
   linear regression  55, 58
SageMaker
   about  233
   hyperparameter tuning  238, 240, 242
   TensorFlow model, serving  160, 164
   TensorFlow model, training  160, 164
   used, for clustering on EMR  111, 114
scikit-learn
   linear regression  50, 52, 53
sentiment analysis
   with AWS Comprehend  189, 190
simple linear regression  44
single-linkage clustering  100
Software Settings  249
Spark
   Glue tables, accessing  253, 255
   logistic regression  59
   used, for clustering on EMR  111, 114
sparkdl
   reference  232



SparkFlow
   reference  231
speech recognition  214
spot instance pricing
   versus on-demand instance pricing  225, 226
stochastic gradient descent (SGD)  47, 123, 131,

231

string indexing  77
support vector machine (SVM)  41, 123

T
tables
   creating, with Glue  250
TensorFlow model
   serving, through SageMaker  160, 164
   training, through SageMaker  160, 164
TensorFlow
   about  155
   used, for creating custom neural for image

recognition  165, 167, 170
   using, as general ML library  156, 158, 160
text classification
   with AWS Comprehend  191, 193, 196, 200
text, classifying with language models
   data, preparing  25, 26
   tweets, collecting  24
theme park attraction recommendations

   creating, through Flickr data  119
training, with Apache Spark on EMR
   about  73
   categorical encoding  78
   data, obtaining  74
   data, preparing  74, 77, 78
   model, evaluating  82
   model, evaluating under precision-recall curve 

84, 85
   model, evaluating under ROC curve  83
   model, training  81, 82
   one-hot encoding  78, 80
training-tree ensembles
   on EMR  86

U
unstructured datasets  185
unsupervised learning algorithms  96
user-defined functions (UDFs)  129
utterances  217

W
Within-Cluster Sum of the Square (WCSS)  97

Y
Yet Another Resource Negotiator (YARN)  247


	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Machine Learning on AWS
	Chapter 1: Getting Started with Machine Learning for AWS
	How AWS empowers data scientists
	Using AWS tools for machine learning

	Identifying candidate problems that can be solved using machine learning
	Machine learning project life cycle
	Data gathering
	Evaluation metrics
	Algorithm selection

	Deploying models
	Summary
	Exercise

	Section 2: Implementing Machine Learning Algorithms at Scale on AWS
	Chapter 2: Classifying Twitter Feeds with Naive Bayes
	Classification algorithms
	Feature types
	Nominal features
	Ordinal features
	Continuous features


	Naive Bayes classifier
	Bayes' theorem
	Posterior  
	Likelihood 
	Prior probability 
	Evidence 
	How the Naive Bayes algorithm works


	Classifying text with language models
	Collecting the tweets
	Preparing the data
	Building a Naive Bayes model through SageMaker notebooks
	Naïve Bayes model on SageMaker notebooks using Apache Spark
	Using SageMaker's BlazingText built-in ML service

	Naive Bayes – pros and cons
	Summary
	Exercises

	Chapter 3: Predicting House Value with Regression Algorithms
	Predicting the price of houses
	Understanding linear regression
	Linear least squares estimation
	Maximum likelihood estimation
	Gradient descent 

	Evaluating regression models 
	Mean absolute error
	Mean squared error
	Root mean squared error
	R-squared

	Implementing linear regression through scikit-learn
	Implementing linear regression through Apache Spark
	Implementing linear regression through SageMaker's linear Learner
	Understanding logistic regression
	Logistic regression in Spark

	Pros and cons of linear models
	Summary

	Chapter 4: Predicting User Behavior with Tree-Based Methods
	Understanding decision trees
	Recursive splitting
	Types of decision trees

	Cost functions 
	Gini Impurity
	Information gain

	Criteria to stop splitting trees

	Understanding random forest algorithms
	Understanding gradient boosting algorithms
	Predicting clicks on log streams
	Introduction to Elastic MapReduce (EMR)
	Training with Apache Spark on EMR
	Getting the data
	Preparing the data
	Categorical encoding 
	One-hot encoding

	Training a model
	Evaluating our model
	Area Under ROC Curve
	Area under the precision-recall curve

	Training tree ensembles on EMR

	Training gradient-boosted trees with the SageMaker services
	Preparing the data
	Training with SageMaker XGBoost   
	Applying and evaluating the model



	Summary
	Exercises

	Chapter 5: Customer Segmentation Using Clustering Algorithms
	Understanding How Clustering Algorithms Work
	k-means clustering 
	Euclidean distance
	Manhattan distance

	Hierarchical clustering
	Agglomerative clustering
	Divisive clustering


	Clustering with Apache Spark on EMR
	Clustering with Spark and SageMaker on EMR
	Understanding the purpose of the IAM role

	Summary
	Exercises

	Chapter 6: Analyzing Visitor Patterns to Make Recommendations
	Making theme park attraction recommendations through Flickr data
	Collaborative filtering
	Memory-based approach
	Model-based approach
	Matrix factorization
	Stochastic gradient descent
	Alternating Least Squares 


	Finding recommendations through Apache Spark's ALS
	Data gathering and exploration
	Training the model
	Getting recommendations

	Recommending attractions through SageMaker Factorization Machines
	Preparing the dataset for learning
	Training the model
	Getting recommendations

	Summary
	Exercises

	Section 3: Deep Learning
	Chapter 7: Implementing Deep Learning Algorithms
	Understanding deep learning
	Applications of deep learning
	Self-driving cars
	Learning to play video games using a deep learning algorithm

	Understanding deep learning algorithms
	Neural network algorithms
	Activation function
	Backpropagation

	Introduction to deep neural networks

	Understanding convolutional neural networks
	Summary
	Exercises

	Chapter 8: Implementing Deep Learning with TensorFlow on AWS
	About TensorFlow
	TensorFlow as a general machine learning library
	Training and serving the TensorFlow model through SageMaker
	Creating a custom neural net with TensorFlow 
	Summary
	Exercises

	Chapter 9: Image Classification and Detection with SageMaker
	Introducing Amazon SageMaker for image classification
	Training a deep learning model using Amazon SageMaker
	Classifying images using Amazon SageMaker
	Summary
	Exercises

	Section 4: Integrating Ready-Made AWS Machine Learning Services
	Chapter 10: Working with AWS Comprehend
	Introducing Amazon Comprehend
	Accessing AmazonComprehend
	Named-entity recognition using Comprehend
	Sentiment analysis using Comprehend
	Text classification using Comprehend
	Summary
	Exercise

	Chapter 11: Using AWS Rekognition
	Introducing Amazon Rekognition
	Implementing object and scene detection
	Implementing facial analysis
	Other Rekognition services
	Image moderation
	Celebrity recognition
	Face comparison


	Summary
	Exercise

	Chapter 12: Building Conversational Interfaces Using AWS Lex
	Introducing Amazon Lex
	Building a custom chatbot using Amazon Lex
	Summary
	Exercises

	Section 5: Optimizing and Deploying Models through AWS
	Chapter 13: Creating Clusters on AWS
	Choosing your instance types
	On-demand versus spot instance pricing
	Reserved pricing
	Amazon Machine Images (AMIs)
	Deep learning hardware

	Distributed deep learning
	Model versus data parallelization
	Distributed TensorFlow
	Distributed learning through Apache Spark
	Data parallelization
	Model parallelization
	Distributed hyperparameter tuning
	Distributed predictions at scale

	Parallelization in SageMaker

	Summary

	Chapter 14: Optimizing Models in Spark and SageMaker
	The importance of model optimization
	Automatic hyperparameter tuning
	Hyperparameter tuning in Apache Spark
	Hyperparameter tuning in SageMaker
	Summary
	Exercises

	Chapter 15: Tuning Clusters for Machine Learning
	Introduction to the EMR architecture
	Apache Hadoop
	Apache Spark
	Apache Hive
	Presto
	Apache HBase
	Yet Another Resource Negotiator

	Tuning EMR for different applications
	Configuring application properties
	Maximize Resource Allocation
	The AWS Glue Catalog


	Managing data pipelines with Glue
	Creating tables with Glue
	Accessing Glue tables in Spark

	Summary

	Chapter 16: Deploying Models Built in AWS
	SageMaker model deployment
	Apache Spark model deployment
	Summary
	Exercises

	Appendix: Getting Started with AWS
	Other Books You May Enjoy
	Index

