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welcome 
Thanks for purchasing the MEAP for Effective Data Science Infrastructure. 
 
As noted in the introduction of the book, the biggest paradigm shifts in computing happen not 
when impossible things become possible, but when possible things become easy. Our industry, 
call it machine learning, artificial intelligence, or data science, is on the cusp of becoming 
radically more approachable than ever before: More people will be able to build more, smarter 
applications. This is super exciting! 
 
You can make the change happen. This book helps you design and build a radically approachable 
and productive data science infrastructure for yourself and your colleagues. The chapters distill 
my experiences in building such systems over the past 20 years. I hope the book manages to 
convey the main thing I have learned: Infrastructure exists to make people productive, so it 
makes sense to focus on the user experience. However, as you will learn, providing the best 
possible user experience requires a bunch of smart technical choices. 
 
Earlier, infrastructure of this nature was only achievable to the largest and most technically 
sophisticated companies, like Netflix, where many of the ideas presented in this book were 
developed and tested in practice. The advent of cloud computing has changed the picture 
dramatically: You are standing on the shoulders of giants and you can single-handedly build and 
operate systems that would have required teams of engineers in the past. This may sound like 
a daunting task but the book will teach you how. We will walk through the full software stack 
required by effective data science, step by step. I hope you will enjoy the journey! 
 
Before you go, I have a humble request for you: Please leave comments in the liveBook 
Discussion forum. Consider the book a community project: If there’s anything that doesn’t make 
sense to you or you feel that any information is missing, let us know. Your feedback will help 
me and all readers of the book. 
 
Best, 
Ville 

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion
https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion
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Introduction 

Machine Learning and Artificial Intelligence were born in academia in the 1950s. Applied 
statistics, the precursor of the modern Data Science, has even a longer history. For decades, 
these techniques have been used in a myriad of business applications from financial 
forecasting to chemical engineering. 

In the past when ML and data science were considered as advanced techniques used by PhD-
level scientists in specialized applications, there was no expectation that infrastructure would 
exist. Building specialized applications required a special level of effort, knowledge, and 
patience. Today, the world is a different place. You don’t need a PhD to develop a jaw-
dropping computer vision demo or a robust model for predicting sales. It is reasonable to 
expect that integrating such models in the surrounding business shouldn’t require a PhD in 
systems engineering. 

Technically, everything presented in this book has been possible to implement for decades, if 
time and cost were not a concern. However, for the past seven decades, nothing in this 
problem domain has been easy. As many companies have experienced, building applications 
powered by machine learning have required large teams of engineers with specialized 
knowledge, often working for years to deliver a well-tuned solution. If you look back in the 
history of computing, most society-wide shifts have happened, not when impossible things 
have become possible, but when possible things have become easy. Bridging the gap 
between possible and easy requires effective infrastructure, which is the topic of this book. 

Wikipedia defines infrastructure as “the physical components of interrelated systems 
providing commodities and services essential to enable, sustain, or enhance societal living 
conditions" which captures the high-level idea of this book. This book will cover all the 
necessary components of interrelated systems that enable, sustain, and enhance data 
science applications. The purpose of this book is to teach you how to build infrastructure that 
helps your organization to develop and deliver data science applications faster and more 
easily than ever before. 
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A WORD ABOUT TERMINOLOGY 

The phrase “data science” in its modern form was coined in the early 2000s. As noted above, 
terms “machine learning” and “artificial intelligence” have been used for decades prior to 
this, alongside with other related terms such as “data mining” or “expert systems” which 
used to be trendy at a time. 

A challenge is that there is no consensus what these terms mean exactly. Professionals in 
these fields recognize nuanced differences between “data science”, “machine learning”, and 
“artificial intelligence” but the boundaries between the terms are fuzzy, which must delight 
those who were excited about the term “fuzzy logic” in the 1970s and 80s! 

This book is targeted at the union of the modern fields of “data science”, “machine learning”, 
and “artificial intelligence”. For brevity, we have chosen to use the term “data science” to 
describe the union. The choice of term is meant to be inclusive: We are not excluding any 
particular approach or a set of methods. 

For the purposes of this book, the differences between these fields are not significant. In a 
few specific cases where we want to emphasize the differences, we will use more specific 
terms such as “machine learning” or “deep neural networks”. To summarize, whenever this 
book uses the term “data science”, you can substitute it with “machine learning” or “artificial 
intelligence” mentally if it makes the text more meaningful to you. 

If you ask someone in the field what’s the job of a data scientist, you might get a quick 
answer: Their job is to build models. While the answer is not incorrect, it is a bit narrow. 
Increasingly, data scientists are expected to build end-to-end solutions to business problems, 
which models are a small but important part of. Since this book focuses on end-to-end 
solutions, we say that the data scientist’s job is to build data science applications. Hence 
when you see the phrase “data science application” used in this book, consider that it means 
“models and everything else required by an end-to-end solution”. 

1.1 Why Data Science Infrastructure 
This book takes the topic of data science as given. Many great books have been written 
about what data science is, why it is beneficial, and how to apply it in various contexts. This 
book focuses on questions related to infrastructure. Before we go into details why we need 
infrastructure specifically for data science, let’s discuss briefly why any infrastructure exists 
at all. 

Consider how milk has been produced and consumed for millenia prior to the advent of 
industrial-scale farming in the 20th century. Many households had a cow or two, producing 
milk for the immediate needs of the family. Sustaining a cow required some expertise but 
not much technical infrastructure. If the family wanted to expand their dairy operation, it 
would have been challenging without investing in larger-scale feed production, headcount, 
and storage mechanisms. In short, they were able to operate a small-scale dairy business 
with minimal infrastructure but scaling up the volume of production would have required 
deeper investments than just acquiring another cow. 
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Even if the farm could have supported a larger number of cows, the extra milk would have 
needed to be distributed outside the household for sale. This presents a velocity problem: If 
the farmer can’t move the milk fast enough, other farmers may sell their produce first 
saturating the market. Worse, the milk may spoil which undermines the validity of the 
product. 

Maybe a friendly neighbor is able to help with distribution and transport the milk to a nearby 
town. Our enterprising farmer may find that the local marketplace has an oversupply of raw 
milk. Instead, customers demand a variety of refined dairy products, such as yogurt, 
cheese, or maybe even ice cream. The farmer would very much like to serve the customers 
(and get their money) but it is clear that their operation isn’t set up to deal with this level of 
complexity. 

Over time, a set of interrelated systems emerged to address these needs which today form 
the modern dairy infrastructure: Industrial-scale farms are optimized for volume. 
Refrigeration, pasteurization, and logistics provide the velocity needed to deliver high-quality 
milk to dairy factories that then churn out a wide variety of products which are distributed to 
grocery markets. 

Note that the dairy infrastructure didn’t displace all small-scale farmers: There is still a 
sizable market for specialized produce from organic, artisanal, family farms but it wouldn’t be 
feasible to satisfy all demand in this labor-intensive manner. 

1.1.1 Lifecycle of a Data Science Project 
For the past seven decades, most data science applications have been produced in a manner 
that can be described as artisanal - by having a team of senior software engineers to build 
the whole application from the ground up. As with dairy products, artisanal doesn’t imply 
“bad” - often quite the opposite. The artisanal way is often the right way to experiment with 
bleeding-edge innovations or produce highly specialized applications. However, as with dairy, 
as the industry matures and it needs to support a higher volume, velocity, validity, and 
variety1 of products, it becomes rational to build many, if not most, applications on a 
common infrastructure. 

You may have a rough idea how raw milk turns into cheese, and what infrastructure is 
required to support industrial-scale cheese production but what about data science? 
Figure 1.1 illustrates a typical data science project. 

 
1  The three V’s - volume, velocity, variety were originally used by Prof. Michael Stonebraker to classify database systems for big data. We added validity as 

the fourth dimension as it is highly relevant for data science. 
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Figure 1.1. Lifecycle of a data science project 

 At the center, we have a data scientist who is asked to solve a business problem, for 
instance, to create a model to estimate the lifetime value of a customer or to create a 
system that generates personalized product recommendations in an email newsletter. 

 The data scientist starts the project by coming up with hypotheses and experiments. 
They can start testing ideas using their favorite tools of the trade: Jupyter notebooks, 
specialized languages like R or Julia, or software packages like Matlab or Mathematica. 

 When it comes to prototyping machine learning or statistical models, there are 
excellent open-source packages available such as SciKit Learn, PyTorch, Tensorflow, 
Stan, and many others. Thanks to excellent documentation and tutorials available 
online, in many cases it doesn’t take long to put together an initial prototype using 
these packages. 

 However, every model needs data. Maybe suitable data exists in a database. 
Extracting a static sample of data for a prototype is often quite straightforward but 
handling a larger dataset, say, tens of gigabytes, may get more complicated. At this 
point we are not even worrying how to get the data to update automatically which 
would require more thinking. 
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 Where does the data scientist run the notebook? Maybe they can run it on a laptop but 
how are they going to share the results? What if their colleagues want to test the 
prototype but they don’t have a sufficiently powerful laptop? It might be convenient to 
execute the experiment on a shared server - in the cloud - where all collaborators can 
access it easily. However, someone needs to set up this environment first and make 
sure that the required tools and libraries, as well as data, is available on the server. 

 The data scientist was asked to solve a business problem. Very few companies 
conduct their business in notebooks or other data science tools. In order to prove the 
value of the prototype, it is not sufficient that the prototype exists in a notebook or 
other data science environment. It needs to be integrated into the surrounding 
business infrastructure. Maybe those systems are organized as microservices, so it 
would be beneficial if the new model could be deployed as a microservice too. Doing 
this may require quite a bit of experience and knowledge in infrastructure engineering. 

 Finally after the prototype has been integrated to surrounding systems, stakeholders - 
product managers and business owners - get to evaluate the results and give 
feedback to the data scientist. Two outcomes can occur: Either the stakeholders are 
optimistic with the results and they will shower the data scientist with further requests 
for improvement,  or they deem that the scientist’s time is better spent on other, 
more promising business problems. Remarkably, both outcomes lead to the same next 
step: The whole cycle starts again from the beginning, either focusing on refining the 
results or working on a new problem. 

Details of the life cycle will naturally vary between companies and projects: How you develop 
a predictive model for customer lifetime value differs greatly from building self-driving cars. 
However, all data science and machine learning projects have a few key elements in 
common: 

 In the technical point of view, all projects involve data and computation at their 
foundation. 

 Since this book focuses on practical applications of these techniques instead of pure 
research, we expect that all projects will eventually need to address the question of 
integrating results into production systems which typically involves a great deal 
of software engineering.    

 Finally, in the human point of view, all projects involve experimentation and 
iteration, which many consider to be the central activity of data science. 

While it is certainly possible for individuals companies or teams to come up with their own 
bespoke processes and practices to conduct data science projects, a common infrastructure 
can help to increase the number of projects that can be executed simultaneously (volume), 
speed up the time-to-market (velocity), ensure that the results are robust (validity), and 
make it possible to support a larger variety of projects. 

Note that the scale of the project, i.e. the size of the data set or model, is an orthogonal 
concern. In particular, it would be a mistake to think that only large-scale projects require 
infrastructure - often the situation is quite the opposite. We will talk more about this aspect 
in section 1.2.2. 
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IS THIS BOOK FOR ME? 

If the questions related to the lifecycle of a data science project resonate with you, you 
should find this book useful. If you are a data scientist, you may have experienced some of 
the challenges first hand. If you are an infrastructure engineer looking to design and build 
systems to help data scientists, you probably want to find scalable, robust solutions to these 
questions, so you don’t have to wake up at night when something breaks. 

In both of these cases this book will help. First, you will learn all the things you should be 
considering when you, or people you support, want to build effective data science 
applications, starting from the prototyping stage all the way to production. Next, if you have 
an opportunity to design and deploy new infrastructure for data science, this book will teach 
you how. 

We will systematically go through the interrelated systems that make a modern, effective 
infrastructure for data science. The principles covered in this book are not specific to any 
particular implementation but we will use an open-source framework, Metaflow, to show how 
the ideas can be put in practice. Alternatively you can customize your own solution by using 
other off-the-shelf libraries. This book will help you to choose the right set of tools for the 
job. 

It is worth noting that there are perfectly valid, important scenarios where this book does not 
apply. This book, and data science infrastructure in general, is probably not relevant for you 
if: 

• You are focusing on theoretical research and not applying the methods and results in 
practical use cases. 

• You are in the early phases (steps 1-4 as described above) of your first applied data 
science project and everything is going on smoothly. 

• You are working on a very specific, mature application, so optimizing the volume, 
velocity, and variety of projects don’t concern you. 

In these cases, you can return to this book later when more projects start coming up or you 
start hitting tough questions like the ones faced by our data scientist earlier. Otherwise, keep 
on reading! In the next section, we introduce an infrastructure stack that provides the overall 
scaffolding for everything that we will discuss in the later chapters. 

1.2 What is Data Science Infrastructure 
How does new infrastructure emerge? For the dairy industry, it must have been a gradual 
process that took place over many centuries, involving lots of trial, error, and spilled milk. 

A closer, more technical example is the infrastructure used by web applications. In the early 
days of the World Wide Web in the 1990s, no infrastructure existed besides primordial web 
browsers and servers. During the Dotcom boom, setting up an e-commerce store was a 
major technical feat, involving teams of people, lots of custom C or C++ code, and a deep-
pocketed venture capitalist. 
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Over the next decade, there was a Cambrian explosion of web frameworks which started to 
converge to common infrastructure stacks like LAMP (Linux, Apache, MySQL, 
PHP/Perl/Python). By 2020, a number of components, such as the operating system, the web 
server and databases, have become commodities which few people have to worry about, 
allowing most developers to focus on the user-facing application layer e.g. using ReactJS. 

The infrastructure for data science is going through a similar evolution. Primordial machine 
learning and optimization libraries have existed for decades without much other 
infrastructure. As of 2020, we are experiencing a Cambrian explosion of data science 
libraries, frameworks, and infrastructures, often driven by commercial interests, similar to 
what happened during the Dotcom boom. If the history is any proof, widely shared patterns 
will emerge from this soup which will form the basis of a common, open-source infrastructure 
stack for data science. 

1.2.1 The Infrastructure Stack for Data Science 
Thanks to the culture of open source and relatively free technical information sharing 
between companies in Silicon Valley and globally, we have been able to observe and collect 
common patterns in data science projects and infrastructure components. While 
implementation details vary, the major infrastructural layers are relatively uniform across a 
large number of projects. The purpose of this book is to distill and describe these layers and 
the infrastructure stack that they form for data science. 

Each layer can be implemented in various ways, driven by the specific needs of their 
environment and use cases but the big picture is remarkably consistent. Figure 1.2 shows 
the stack: 

 
Figure 1.2. The infrastructure stack for data science  
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This infrastructure stack for data science is organized so that the most fundamental, generic 
components are at the bottom of the stack. The layers become more specific to data science 
towards the top of the stack. 

The stack is the key mental model that binds together the chapters of this book. You will 
learn how to build an effective infrastructure for your company using this stack as a 
blueprint, by integrating independent systems represented by each layer, and how to use it 
to address issues faced throughout the lifecycle of data science projects. Naturally the stack 
proposed here is not the only way to build infrastructure for data science but we believe that 
it is a widely applicable and a particularly effective approach. 

What do the layers mean? Let’s illustrate them one by one, starting from the bottom up: 

DATA WAREHOUSE 

Data warehouse is the place where your data is stored. In our stack, it doesn’t do anything 
by itself but how data is stored is critical. A key challenge is to lay out the data in a way that 
makes it easily discoverable and efficiently accessible by data science applications while 
maintaining a high degree of durability - naturally the data warehouse must not lose data. In 
addition, many data science applications care a lot about granular historical data, which can 
be used to train models, which poses an extra challenge for many traditional data 
warehousing solutions. 

 
Figure 1.3. Data Warehouse 

COMPUTE RESOURCES 

Since the data warehouse doesn’t do anything by itself, we need to have a way to do 
something with data, in other words, take some data, apply an algorithm (the machine in the 
picture), and get results. A challenge is that algorithms come in many shapes and sizes and 
you need to run many of them, often in parallel, very frequently. We need a system that can 
provide computing resources on demand. 

Note that the compute layer doesn’t dictate what is computed. It blindly accepts an 
algorithm from the outside world and executes it, consuming and producing data. 
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Figure 1.4. Compute Resources 

JOB SCHEDULER 

Training a machine learning model or other data science application is rarely a one-time 
operation. More often it is a repeating process: We want to feed fresh data in the algorithm 
at a regular cadence. It is the job of the scheduling layer to keep all the data flowing and all 
the machines humming uninterruptedly. A key challenge is to keep the scheduling system 
itself up all the time and make sure it can manage almost any number of concurrent 
machines and data pipelines. 

 
Figure 1.5. Job Scheduler 
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ARCHITECTURE 

The previous layers, data warehouse, compute resources, and job scheduler, are generic in 
nature: They can be used to execute any workloads. At the architecture layer, you define 
what your application is and how it is going to work. This includes defining an algorithm or 
several algorithms and how the scheduling layer is supposed to connect the algorithms and 
the data pipelines together. A key challenge is that of software engineering in general: How 
to map a real-world problem into an effective and robust software architecture. 

 
Figure 1.6. Architecture 

VERSIONING 

Remember how in section 1.1.1 we identified “experimentation and iteration” as one of the  

common themes in data science projects. A concrete ramification of this is that architectures 
we define are always subject to change, so it makes sense to organize the work accordingly. 
To complicate matters further, in the case of data science the question of which version of 
the application is better is often non-trivial. To judge the versions properly, you may need to 
run multiple versions side by side. 

A key challenge is that you can evaluate results reliably only if the applications are well 
isolated, that is, they must not interfere with each other. You must isolate the algorithms 
themselves, the input and output data, and the scheduled pipelines. 

MODEL OPERATIONS 

Imagine that you have four versions of an application running, each with their own version of 
code and data. Each version may be built by a separate data scientist, all of whom are all 
iterating on their versions independently.  
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Figure 1.7. Versioning 

The result, unless organized properly, can be a logistical nightmare. It is the role of the 
model operations layer to help to deploy, monitor, and assure validity of all models at all 
times, without hindering the speed of experimentation. To make this possible, the 
infrastructure needs to track metadata about all executions and models, from prototype to 
production. 

 
Figure 1.8. Model Operations 
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FEATURE ENGINEERING 

Let’s zoom in the machine that runs our model. Typically, the raw input data is not fed 
directly into the model but it goes through a sequence of data transformations. Designing 
this sequence is a major part of the data scientist’s work when they are developing a new 
model or trying to improve performance of an existing model. Hence a key challenge is to 
make this process as efficient as possible, both in the point of view of human development 
time as well as computational complexity. 

 
Figure 1.9. Feature Engineering 

MODEL DEVELOPMENT 

Finally, at the very top of the stack there’s the layer of model development, in other words, 
finding and describing a mathematical model that transforms features into desired outputs. A 
key challenge, and the key expertise of a data scientist, is to understand what modeling 
approach is most appropriate for the task at hand and how to implement it typically using 
off-the-shelf libraries. 

Since the model development layer may be the most talked about layer of the stack, it 
comes as a surprise to many that it occupies only a tiny part of the end-to-end machinery 
that makes an effective data science application. One shouldn’t underestimate the effort that 
it takes to embed intelligence in the surrounding environment, which is what this stack is all 
about. In this sense, the modeling layer is similar to the human brain that is only 2-3% of 
the total body weight, resting in comfy isolation at the top of the body. 

12

https://livebook.manning.com/book/effective-data-science-infrastructure/discussion


 

©Manning Publications Co.  To comment go to  liveBook 

 
Figure 1.10. Model Development 

WHY THE STACK 

We just gave a glimpse of each of the eight layers of the data science infrastructure stack 
that this book introduces. Each layer of the stack is a complex system of its own, so we have 
dedicated a chapter for each one of them. By the end of this book, you will have learned 
what to consider when setting up each layer and how to integrate them together seamlessly. 

Remember why the stack exists: It is meant to cover the needs of a typical data science 
project, end-to-end, as described in section 1.1.1. We identified three common themes that 
are common to most data science projects. Figure 1.11 shows how the themes map to the 
stack. 

 
Figure 1.11. Concerns of a data science project mapped to the infrastructure layers 
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 It is easy to see that every data science project regardless of the problem domain 
needs to deal with data and compute, so these layers form the foundational 
infrastructure. These layers are agnostic of what exactly gets executed. 

 The middle layers define the software architecture of an individual data science 
application: What gets executed and how: the algorithms, data pipelines, deployment 
strategies, and how results should be distributed. Much about the work is about 
integrating existing software components together. 

 The top of the stack is the realm of data science: Defining a mathematical model and 
how to transform raw input to something that the model can process. In a typical data 
science project, these layers can evolve quickly as the data scientist experiments with 
different approaches. 

Note that there isn’t a one-to-one mapping between the layers and the themes. The 
concerns overlap. We use the stack as a blueprint for designing and building the 
infrastructure but the user shouldn’t have to care about it. In particular, they shouldn’t hit 
the seams between the layers but they should use the stack as one effective data science 
infrastructure. 

In the next chapter, we will introduce Metaflow, a framework that provides an example of 
how this can be achieved in practice. Alternatively, you can customize your own solution by 
combining frameworks that address different parts of the stack by following the general 
principles laid out in the coming chapters. 

ONE SIZE DOESN’T FIT ALL 

What if your company needs a highly specialized data science application: A self-driving car, 
a high-frequency trading system, or a miniaturized model that can be deployed on resource 
constrained Internet-of-Things devices. Surely the infrastructure stack would need to look 
very different for such applications? In many such cases, the answer is yes - at least initially. 

Remember the four V’s the presented as main motivations for data science infrastructure: 

 Volume - we want to support a large number of data science applications. 
 Velocity - we want to make it easy and quick to prototype and productionize data 
science applications. 

 Validity - we want to make sure that the results are valid and consistent. 
 Variety - we want to support many different kinds of data science models and 
applications. 

Let’s say your company wants to deliver the most advanced self-driving car to the market. 
The whole company is rallied around developing one data science application: The self-
driving car. Naturally such a complex project involves many subsystems but ultimately the 
end result is to produce one application, hence volume or variety are not the top concerns. 
Unquestionably velocity and validity matter but autonomous driving probably requires highly 
customized, bespoke solutions anyways. 

You can use the quadrants depicted in Figure 1.12 to evaluate whether your company needs 
a highly customized solution or a generalized infrastructure: 
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Figure 1.12. Types of infrastructure 

A self-driving car company has one special application, so they should focus on building a 
single custom application - they don’t have the variety and the volume that would 
necessitate a generalized infrastructure. A small startup pricing used cars using a predictive 
model can quickly put together a basic application to get the job done - again, no need to 
invest in infrastructure initially. 

In contrast, a large multinational bank has hundreds of data science applications from credit 
rating to risk analysis and trading, each of which can be solved using well-understood (albeit 
sophisticated - “common” doesn’t imply simple or unadvanced in this context) models, so a 
generalized infrastructure is well justified. A research institute for bioinformatics may have 
many highly specialized applications, which require very custom infrastructure. 

Over time companies tend to gravitate towards generalized infrastructure, no matter 
where they start. A self-driving car company that initially had one custom application will 
eventually need data science applications to support sales, marketing, or customer service. 
They may keep a specialized application or even custom infrastructure for their core 
technology while employing generalized infrastructure for the rest of the business. 

NOTE When deciding on your infrastructure strategy, consider the broadest set of use cases, including new 

and experimental applications. It is a common mistake to design the infrastructure around the needs of a 

few most visible applications, which may not represent the needs of the majority of (future) use cases. In 

fact, the most visible applications may require a custom approach that can co-exist alongside generalized 

infrastructure. 
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Custom applications may have unique needs when it comes to scale (think Google search), 
or performance (think high-frequency trading applications that must provide predictions in 
microseconds). Applications like this often necessitate an artisanal approach: They need to 
be carefully crafted by experienced engineers, maybe using specialized hardware. A 
downside is that specialized applications often have hard time optimizing for velocity and 
volume (special skills required limit the number of people who can work on the app) and 
they can’t support a variety of applications by design. 

Consider carefully what kind of applications you will need to build or support: Today, most 
data science applications can be supported by generalized infrastructure, which is the topic of 
this book. This is beneficial, as it allows you to optimize for volume, velocity, variety, and 
validity. If one of your applications has special needs, it may require a more custom 
approach. In this case, it might make sense to treat the special application as a special case 
while letting the other applications benefit from generalized infrastructure. 

1.2.2 Taming Complexity 
As we went through the eight layers of the infrastructure stack, you got a glimpse of the 
wide array of technical components that are needed to build modern data science 
applications. In fact, large-scale machine learning applications like personalized 
recommendations for YouTube or sophisticated models that optimize banner ads in real-time 
- a deliberately mundane example - are some of the most complex machines ever built by
the humankind, considering the hundreds of subsystems and tens of millions of lines of code
involved. Building infrastructure for the dairy industry, following our original example,
probably involves an order of magnitude less complexity than many production-grade data
science applications, if you consider all the layers that are required. Much of the complexity
is not visible at the surface but it surely becomes visible when things fail.

To illustrate the complexity, imagine having the aforementioned eight-layer stack powering a 
data science project. Remember how a single project can involve many machines connected 
together, each machine representing a sophisticated model. There is a constant flow of fresh 
data, potentially large amounts of it, going through these machines. The machines are 
powered by a compute platform that needs to manage thousands of machines of various 
sizes executing concurrently. The machines are orchestrated by a job scheduler that makes 
sure that data flows between the machines correctly and each machine executes at the right 
moment. 

We have a team of data scientists working on these machines, each of them experimenting 
with various versions of the machine that is allocated for them in rapid iterations. We want to 
ensure that each version produces valid results and we want to evaluate them in real-time 
by executing them side-by-side. Every version needs its own isolated environment to ensure 
that there is no interference between the versions. 

The above should evoke a picture of a factory, employing teams of people and hundreds of 
incessantly humming machines. In contrast to an industrial-era factory, this factory isn’t built 
only once but it is constantly evolving, changing its shape slightly multiple times a day, since 
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software isn’t bound by the limitations of the physical world but it is bound to produce ever 
increasing business value. 

The story doesn’t end here. A large or mid-size modern company doesn’t only have a single 
factory, a single data science application, but they can have any number of them. The sheer 
volume of applications causes operational burden but the main challenge is variety: Every 
real-world problem domain requires a different solution, each with their own requirements 
and characteristics, leading to a diverse set of applications that need to be supported. As a 
cherry on the complexity cake, the applications are often interdependent. 

As a concrete example, consider a hypothetical mid-size e-commerce store: They have a 
custom recommendation engine (“These products are recommended to you!”), a model to 
measure effectiveness of marketing campaigns (“Facebook ads seem to be performing better 
than Google ads in Connecticut”), an optimization model for logistics (“It is more efficient to 
dropship category B vs. keeping them in stock”), and a financial forecasting model 
estimating churn the customer lifetime value (“customers buying X seems to churn less”). 
Each of these four applications is a factory in itself: They may involve multiple models, 
multiple data pipelines, multiple people, and multiple versions. 

HOW THE INFRASTRUCTURE HELPS 

Let’s zoom out the infrastructure picture to illustrate the situation - see figure 1.13. 

 
Figure 1.13. An infrastructure with twelve interdependent applications   
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Figure 1.13 depicts a company-wide infrastructure with twelve applications. Each application 
is powered by our infrastructure stack. The applications have interdependencies: output of 
an application can be an input of another, as depicted by light gray arrows. Thanks to the 
common stack, we can collect metadata from all applications in a uniform manner. 

This complexity landscape poses a number of challenges to the infrastructure. There isn’t any 
nifty technical solution to the problem. Data science applications are intimately connected to 
the outside world which is full of irreducible complexity and entropy by nature: Employees 
join and leave the company leaving behind knowledge gaps, unpredictable events such as 
Covid-19 change distributions in data, and computers can fail in the most creative ways. 

Instead of treating complexity as a nuisance that can be swept or abstracted away, we treat 
it as a core design constraint. It is a core purpose of the infrastructure to make the 
complexity manageable. We address the challenge on multiple fronts: 

Implementation: Designing and implementing infrastructure that deals with this level of 
complexity is a non-trivial task. We will discuss strategies to address the engineering 
challenge below. 

Usability: It is a key challenge of effective infrastructure to make data scientists productive 
despite the complexities involved. This is the topic of the next section that introduces the 
concept of human-centric infrastructure. 

Operations: How do we keep the machines humming with minimal human intervention? 
Reducing the operational burden of data science applications is another key goal of the 
infrastructure, which is a common thread across chapters of this book. We will discuss 
operational challenges encountered in large environments in chapter 9. 

In all these cases, we must avoid introducing incidental complexity, i.e. complexity that is 
not necessitated by the problem itself but it is just an artifact of our approach. Incidental 
complexity is a huge problem for real-world data science because we have to deal with such 
a high level of inherent complexity that distinguishing between real problems and imaginary 
problems becomes hard. 

You may have heard of boilerplate code (code that just exists to make a framework happy), 
spaghetti pipelines (poorly organized relationships between systems), or dependency hells 
(managing a constantly evolving graph of 3rd party libraries is hard). On top of these 
technical concerns, we have incidental complexity caused by human organizations: 
sometimes we have to introduce complex interfaces between systems, not because they are 
necessary technically, but because they follow the organizational boundaries, e.g. between 
data scientists and data engineers2. 

An effective infrastructure helps to expose and manage inherent complexity, which is the 
natural state of the world we live in, while making a conscious effort to avoid introducing 
incidental complexity. Doing this well is hard and it requires constant judgement. 
Fortunately, there is one time-tested formula for keeping incidental complexity in check, 

 
2 You can read more about these issues in a frequently cited paper called “Hidden Technical Debt in Machine Learning Systems” which was published by 

Google in 2015. 
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namely simplicity. “Everything should be made as simple as possible, but no simpler” is a 
core design principle that applies to all parts of the effective data science infrastructure. 

1.2.3 Leveraging Existing Platforms 
Our job, as described in the previous sections, is to build effective, generalized infrastructure 
for data science which comprises eight layers of interdependent systems. We want to do this 
in a manner that makes inevitable real-world complexity manageable while minimizing extra 
complexity caused by the infrastructure itself. This sounds like a daunting effort! 

Very few companies can afford dedicating large teams of engineers for building and 
maintaining infrastructure for data science. Smaller companies may have one or two 
engineers dedicated to the task. Larger companies may have a small team. Ultimately, 
companies want to produce business value with data science applications - infrastructure is a 
means to this end, not a goal in itself - so it is rational to determine the size of the 
infrastructure investment accordingly. All in all, we can spend only a limited amount of time 
and effort in building and maintaining infrastructure. 

Luckily, as noted in the very beginning, everything presented in this book has been possible 
to implement technically for decades, so we don’t have to start from scratch. Instead of 
inventing new hardware, operating systems, or data warehouses, our job is to leverage the 
best-of-the-breed platforms that are available and integrate them together to make it easy 
to prototype and productionize data science applications. 

Engineers often underestimate the gap between “possible” and “easy”, as illustrated in 
Figure 1.14. As a result, resources are often spent in reinventing wheels, making possible 
things possible in a slightly different way. Only afterwards it is realized that there is no time 
or money left to cross the bridge from possible to easy. It is the right “easy” side of the 
canyon that enables us to maximize the four V’s, volume, velocity, variety, and validity of 
data science applications, so we shouldn’t spend too much time on the left bank. 
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Figure 1.14. Infrastructure makes possible things easy 

This book helps you to build the bridge first, which is a non-trivial undertaking by itself, 
leveraging existing components whenever possible. Thanks to our stack with distinct layers, 
we can let other teams and companies worry about individual components. If over time some 
of them turn out to be inadequate, we can replace them with better alternatives without 
disrupting users. 

HEAD IN THE CLOUDS 

Public clouds, such as Amazon Web Services, Google Compute Platform, and Microsoft Azure, 
have massively changed the infrastructure landscape by allowing anyone to access 
foundational layers that were previously available only for the largest companies. These 
services are not only technically available but also drastically cost-effective as well when 
used thoughtfully. 

Besides democratizing the lower layers of infrastructure, the clouds have qualitatively 
changed the way we should architect infrastructure. Previously, many challenges in 
architecting systems for high-performance computing revolved around resource 
management: How to guard and ration access to limited compute and storage resources, and 
correspondingly, how to make resource usage as efficient as possible. 

The cloud allows us to change the mindset. All the clouds provide a data layer like Amazon 
S3 which provide a virtually unlimited amount of storage with close to a perfect level of 
durability and high availability. Similarly, they provide a nearly infinite, elastically scaling, 
compute resources like Amazon EC2 and abstractions built on top of it. We can architect our 
systems with the assumption that there is an unconstrained amount of compute resources 
and storage available - a post-scarcity world - and focus on cost-effectiveness and 
productivity instead.  
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This book operates with the mindset that you have access to cloud-like foundational 
infrastructure. By far the easiest way to fulfill the requirement is to create an account with 
one of the cloud providers. You can build and test the stack for a few hundred dollars, or 
possibly for free by relying on the free tiers that many clouds offer. Alternatively, you can 
build or use an existing private cloud environment. How to build a private cloud is outside 
the scope of this book. 

All the clouds also provide higher-level products for data science, such as Azure ML Studio 
and AWS SageMaker. These products typically make it possible to use them as end-to-end 
platforms, requiring minimal customization, or alternatively you can integrate parts of them 
in your own systems This book takes the latter approach: You will learn how to build your 
own stack leveraging various services provided by the cloud as well as using open-source 
frameworks. While this approach requires more work, it affords you more flexibility and 
depending on your use cases, the end result may be more cost-efficient. 

To summarize, you can leverage the clouds to take care of low-level, undifferentiated 
technical heavy lifting. This allows you to focus your limited development budget on unique, 
differentiating business needs and most importantly, on optimizing data scientist productivity 
in your organization. We can use the clouds to increasingly shift our focus from technical 
matters to human matters as we will describe in the next section. 

1.3 Human-Centric Infrastructure 
In the previous section we described what we mean by effective data science infrastructure. 
It is a stack of interdependent systems, starting from foundational infrastructure advanding 
to model development. We talked about cases when you need generalized infrastructure, 
pitfalls of complexity, and how we can leverage existing platforms to build our stack. 

As a reminder, the reason why we are doing this is summarized by the four V’s: 

 Volume - we want to support a large number of data science applications. 
 Velocity - we want to make it easy and quick to prototype and productionize data 
science applications. 

 Validity - we want to make sure that the results are valid and consistent. 
 Variety - we want to support many different kinds of data science models and 
applications. 

We want to maximize all these outputs: more projects, delivered faster, with more reliable 
results, covering more business domains. If you are a systems engineer or an operations 
researcher, you may recognize that this is an optimization problem. You may ask what 
factors are constraining these variables today - why aren’t they already at the optimum? 

The exact answer naturally depends on the environment. Without focusing on any specific 
application, reasons like these seem common: 
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 Volume: We can’t support more data science applications simply because we don’t 
have enough data scientists to work on them. All our existing data scientists are busy 
improving and supporting existing applications. 

 Velocity: We can’t deliver results faster since developing a production-ready version 
of model X would be a major engineering effort. 

 Validity: A prototype of the model was working fine in a notebook but we didn’t 
consider that it might receive data like Y which broke it in production. 

 Variety: We would love to support a new use case Z but our data scientists know only 
Python and the systems around Z only support Java. 

A common element in all these cases is that humans are the bottleneck. Besides some 
highly specialized applications, it rarely happens that projects can’t be delivered because of 
fundamental limitations in hardware or software. A typical bottleneck is caused by the fact 
that humans can’t deliver software (or hardware, if operating outside the cloud) fast enough. 
Even if they were capable of hacking code fast enough, they may be busy maintaining 
existing systems, which is another critically human activity. 

This observation helps us to realize that although “infrastructure” sounds very technical, we 
are not building infrastructure for the machines - we are building infrastructure to make 
humans more productive. This realization has fundamental ramifications to how we should 
think about and design infrastructure for data scientists - for fellow human beings, instead of 
machines. 

For instance, if we assume that human-time is more expensive than computer-time, which is 
certainly true for most data scientists, it makes sense to use a highly expressive, 
productivity-boosting language like Python instead of a low-level language like C++, even if 
it makes workloads more inefficient to process. We will talk about exact tradeoffs and design 
choices in the coming chapters. 

In the previous section we noted how we want to leverage existing platforms to their fullest 
extent and integrate them together to form our infrastructure stack. Our goal should be to do 
this in a manner that provides a cohesive user experience, minimizing the cognitive overhead 
that the user would have to experience if they had to understand and operate each layer 
independently. Our hypothesis is that by reducing the cognitive overhead related to the 
infrastructure, we can boost productivity of data scientists in the area where it matters the 
most - namely data science itself. 

FREEDOM AND RESPONSIBILITY 

Netflix, the streaming video company, is well-known for its unique culture3. One of the core 
values of the company is “Freedom and Responsibility” which empowers all employees with a 
great degree of freedom to determine how they do their job. The other side of the coin is 
that the employees are always expected to consider what is in the best interest of the 
company and act responsibly. Metaflow, a framework for human-centric data science 
infrastructure which we will introduce in chapter 3, was born at Netflix where it was heavily 
influenced by the company’s culture. 

 
3 You can read all about Netflix’s culture in a book called No Rules Rules: Netflix And The Culture of Reinvention by Erin Meyer and Reed Hastings. 
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We can apply the concept of freedom and responsibility to the work of data scientists and to 
the data science infrastructure in general. We expect that data scientists are experts in their 
own domain, in matters related to model development, feature engineering etc. We don’t 
expect that they are experts in systems engineering or other topics related to infrastructure. 
However, we expect that they are responsible enough to choose to leverage data science 
infrastructure, if it is made available. 

We can map this idea to our infrastructure stack as shown in Figure 1.15. 

 
Figure 1.15. Infrastructure complements the interests of a data scientist 

The triangle on the left side depicts the areas of expertise and interest of data scientists. It is 
the widest at the top of the stack which is most specific to data science. The infrastructure 
should grant them the most freedom at these layers, allowing them to choose the best 
modeling approaches, libraries, and features freely based on their expertise. We expect data 
scientists to be autonomous - more about it below - so they should care about model 
operations, versioning, and architecture a bit, which is a part of their responsibility. 

The triangle on the right side depicts the freedom and responsibility of the infrastructure 
team. The infrastructure team should have the greatest degree of freedom to choose and 
optimize the lowest layers of the stack, which are critical in the technical point of view. They 
can do it without limiting the freedom of data scientists too much. However, their 
responsibility lessens towards the top of the stack: The infrastructure team can’t be 
responsible for the models themselves, since often they don’t have the expertise and 
definitely not the scale to support all use cases. 

The purpose of this arrangement is two-fold: On the one hand, we can maximize the 
productivity and happiness of an individual data scientist by letting them focus on things they 
like and know how to execute well with a great degree of freedom. On the other hand, we 
can realize the four V’s which are in the interest of the company by asking data scientists to 
use the stack responsibly, including the parts in the middle which they may feel less 
passionate about. The result is a healthy balance between the needs of the company and the 
happiness of the data scientist. 
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1.3.1 Data scientist autonomy 
This far, we have casually talked about “the infrastructure team” and “data scientists”. 
However, the actual cast of characters in a data science project can be more colorful: 

• Data Scientist or Machine Learning Researcher develops and prototypes machine 
learning or other data science models. 

• Machine Learning Engineer implements the model in a scalable, production-ready 
way. 

• Data Engineer sets up data pipelines for input and output data, including data 
transformations. 

• DevOps Engineer deploys applications in production and makes sure that all the 
systems stay up and running flawlessly. 

• Application Engineer integrates the model with other business components, e.g. 
web applications, which are the consumers of the model. 

• Infrastructure or Platform Engineer provides general pieces of infrastructure, 
such as data warehouses or compute platforms for many applications to use. 

In addition to this technical team, the data science project may have involvement from 
business owners, who understand the business context of the application, product 
managers who map the business context to technical requirements, and project/program 
managers who help to coordinate cross-functional collaboration. 

Anyone who has been involved in a project that involves many stakeholders knows how 
much communication and coordination is required to keep the project moving forward 
(velocity). Besides the coordination overhead, it can be challenging to increase the number 
of concurrent data science projects for the simple reason that there are not enough people to 
fill all the roles in all projects (volume). For these and many other reasons, many companies 
find it desirable to reduce the number of people involved in projects, as long as execution of 
projects doesn’t suffer. 

The goal of our infrastructure stack is to be able to make it possible to merge the first four 
technical roles so that the data scientist is empowered to take care of all these functions 
autonomously within a project. These roles may still exist in the company but instead of 
every project requiring these roles to be present, they can be assigned to a few key projects 
or they can support more horizontal, cross-project efforts. 

To summarize, the data scientist, who is not expected to suddenly become an expert DevOps 
or Data engineer, should be able to implement models in a scalable manner, to set up data 
pipelines, and to deploy and monitor models in production independently. They should be 
able to do this with minimal additional overhead, allowing them to maintain focus on data 
science. This is the key value proposition of our human-centric data science infrastructure, 
which we will start building in the next chapters from the ground up. 

24

https://livebook.manning.com/book/effective-data-science-infrastructure/discussion


 

©Manning Publications Co.  To comment go to  liveBook 

1.4 Summary 

 
Figure 1.16. How, what, and why of the data science infrastructure  

In this chapter, you learned the big picture of effective data science infrastructure, as 
summarized by Figure 1.16: 

• why companies need it (the four V’s: volume, velocity, variety, and validity), 
• what the infrastructure looks like (the stack with eight layers), and 
• how we are planning to use the stack to enhance data scientist productivity. 

We discussed the differences between specialized applications and generalized infrastructure, 
highlighting why this book focuses on the latter. We laid out a plan to tame complexity by 
leveraging existing frameworks and systems as much as possible, in particular public cloud 
providers. Finally, we emphasized how ultimately humans tend to be the bottleneck in data 
science projects and how we can address the issue by building our infrastructure with 
humans, not machines, in mind. 

With this picture as a backdrop, we can roll up our sleeves and start building the 
infrastructure. The next chapter will show how to get started quickly. After this, you will 
learn the details of each layer of the stack so you will be able to customize everything to 
your own taste. 
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The Toolchain of Data Science 

This chapter covers 

• The key activities that the data scientist engages in on a daily basis.
• The essential toolchain that makes the data scientist productive.
• The role of workflows in the infrastructure stack.

Every profession has its tools of the trade. If you are a carpenter, you need saws, measures, 
and chisels. If you are a dentist, you need mirrors, drills, and syringes. If you are a data 
scientist, what are the essential tools that you need in your daily job? 

Obviously, you need a computer. But what’s the purpose of the computer? Should it be used 
to run heavy computation, train models and such, or should it be just a relatively dumb 
terminal for typing code and analyzing results. Since production applications execute outside 
anyone’s personal laptop, maybe prototyping should happen as close to the real production 
environment as possible too? Answering questions like this can be surprisingly non-trivial and 
the answers can have deep implications for the whole infrastructure stack. 

As we highlighted in chapter 1, ultimately these tools exist to boost the productivity of the 
data scientist. We must carefully think through the actions that form the body of the data 
scientist’s daily work: Looking at data, writing code, evaluating it, and analyzing results. How 
can we make these actions as frictionless as possible, knowing that they may be repeated 
even hundreds of times every day? There isn’t a single right answer. This chapter will give 
you food for thought and some technical guidance for setting up a toolchain that works for 
your company and technical environment. 

You can think of the full stack of data science, which we introduced in section 1.2.1, as a jet 
fighter - a complex feat of engineering consisting of a myriad of interconnected components. 
This chapter deals with the cockpit and the dashboard that the pilot uses to operate the 
machine. In the engineering point of view, the cockpit might feel a bit secondary, essentially 
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just a control stick and a bunch of buttons (or in the case of data science, just an editor and 
a notebook) compared to 30,000 pounds of heavy engineering underneath but often it is the 
component that determines the success or failure of a mission. 

FOLLOWING THE JOURNEY OF A DATA SCIENTIST 

To make the discussion more concrete and grounded to the needs of real-world businesses, 
we will follow the journey of a hypothetical data scientist, Alex, throughout the book. Alex’s 
journey features typical challenges that a data scientist faces in a modern business 
environment. Alex helps to keep our focus on human-centric infrastructure, which we 
introduced in section 1.3, and to demonstrate how infrastructure can grow incrementally 
together with the company. Each section begins with a motivating scenario related to Alex’s 
life at work, which we will analyze and address in the section in detail. 

Besides Alex the data scientist, the cast of characters includes Harper, who is the founder of 
the startup where Alex works at. We will also meet Bowie who is an infrastructure engineer 
whose duties include providing support for data scientists. This book is targeted especially at 
all Bowies out there, but the technical context is useful for all curious Alexes too. 

Alex has a PhD in Marine Biology. After realizing that people with skills in statistical analysis, basic 
machine learning, and rudimentary knowledge of Python are highly valued as data scientists, Alex 
decides to move from academia to industry. 

2.1 Setting up a Development Environment 
Alex joins Harper’s startup, Caveman Cupcakes that manufactures and delivers soon-to-be-
personalized paleo cupcakes, as their first data scientist. Bowie, who is an infrastructure 
engineer at Caveman, helps Alex to get started. Alex asks Bowie if data scientists at 
Caveman can use Jupyter notebooks to get their job done. It would be great if they did, 
since Alex got very familiar with notebooks in academia. Hearing this makes Bowie realize 
that data scientists have special tooling needs: What tools should they install and how should 
they be configured to make Alex most productive? 
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If you have time to set up only one piece of infrastructure well, make it the development 
environment for data scientists. While this may sound obvious, you would be surprised to 
know how many companies have well-tuned, scalable production infrastructure but the 
question of how the code is developed, debugged, and tested in the first place is solved in an 
ad-hoc manner. Instead of treating personal workstations merely as an IT problem, we 
should consider the development environment as an integral part of the effective 
infrastructure. After all, arguably the most important success factor of any data science 
project is the people involved and their productivity.  

The development environment for data science needs to optimize the ergonomics1 of two 
human activities: prototyping and interaction with production deployments. The 
former is the iterative process that translates human knowledge and expertise into functional 
code and models. The latter connects the models to the surrounding systems, so they can 
start producing actual business value. 

The prototyping loop, which is depicted in the Figure 2.1, is familiar to software developers2: 
You develop some code in an editor, evaluate it with an interactive interpreter or a terminal, 
and analyze the results. Based on the results you fix and improve the code and restart the 
loop. The loop works similarly for data science: You develop a model, evaluate it, which may 
involve training and validation of the model, and analyze the results. 

1 The dictionary definition of “ergonomics” is “the study of people's efficiency in their working environment” which is exactly what this chapter is about. 
2 In software engineering, the loop is also known as Read-Eval-Print Loop (REPL). 
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Figure 2.1: Prototyping Loop 

To boost the productivity of data scientists, we want to make each iteration of this loop as 
quick and effortless as possible. This involves both optimizing each step as well as transitions 
between the steps: How long it takes to take the code and evaluate it? How easily can you 
fetch the results and start analyzing them? Is it easy to explore, analyze, and understand the 
outcomes and turn them into actionable changes in the code? Ultimately we will need all 
layers of the infrastructure stack to answer these questions but we will start laying the 
groundwork in the subsections below. 

After countless iterations of the prototyping loop, the data scientist has a piece of code that 
seems to produce a promising model. While this is a big milestone for the data scientist, 
many open questions remain: Will the model produce expected results over time when 
connected to real-world data? Will the model scale to all the data it needs to handle? Will 
there be any other operational surprises? 

Answering these questions in a prototyping environment is hard. Instead, we want to make it 
easy to deploy the model to a production environment so we can observe how the model 
performs in practice. It is expected that the first versions of the model don’t work flawlessly 
but production failures provide invaluable information that helps to improve the model. 

Conducting controlled empirical experiments like this is the core of the scientific method: The 
scientist formulates a hypothesis, performs an experiment, and analyzes the results. 
Compare this to how SpaceX developed a new reusable rocket, Falcon 9, iteratively through 
20 test launches before the first successful booster landing as depicted in Figure 2.2. 
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Figure 2.2. SpaceX iterating on Falcon 9 

This cycle of deploying to production, observing issues, and fixing them using the prototyping 
loop forms a higher-order loop which we call interaction with production deployments: 

Figure 2.3. Interaction with production deployments 

As shown in Figure 2.3, a production deployment is not a one-way waterfall but an iterative 
loop, working in conjunction with the prototyping loop. We want to make it easy for the data 
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scientist to understand how and why the model fails in production and help them reproduce 
any issues locally, so they can improve the model using their familiar prototyping loop. 
Notably, in successful projects, these loops become infinite loops: A successful model is 
subject to never-ending improvement and debugging. 

While there are ways to provide a relatively smooth prototyping loop without support from 
specialized infrastructure, it is hard to support seamless interaction with production 
deployments in an ad-hoc manner. As discussed in section 1.3 about human-centric 
infrastructure, boosting data scientist’s productivity through these two loops is a key reason 
for building data science infrastructure in the first place. 

The two loops introduced above are abstract sequences of actions that the scientist repeats 
to develop, deploy, and debug data science applications. The remaining of this chapter will 
make them more concrete: We will cover the actual tools that the data scientist should use 
and discuss how to best set them up. While it is impossible to prescribe a single correct way 
of configuring your data science environment - details depend on your surrounding business 
infrastructure - we will provide enough technical background and evaluation rubrics so you 
will be able to make informed decisions based on your exact needs. 

Figure 2.4 gives you an idea of what to expect: 

Figure 2.4. The elements of the data science toolchain 
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1. Our focal point is the data scientist. They will use the toolchain to power the two core
activities: Prototyping loop (A) and interaction with production deployments (B).

2. In the subsections below, we will cover the key productivity tools that we should
provide for the scientist.

3. In section 2.2, we will highlight why it is useful to structure data science applications
as workflows.

4. We will also make the case for running the prototyping loop in an environment that
resembles the production environment as closely as possible - in practice, backing the
prototyping loop with a cloud instance.

5. This chapter introduces a user interface, a cockpit that the scientist uses to command
and control the production environment that will be covered in detail by the
subsequent chapters.

2.1.1 Cloud Account 
The infrastructure we will be building in this book assumes that you have an account with a 
public cloud provider such as Amazon Web Services (AWS), Google Cloud Platform (GCP), or 
Microsoft Azure. We will use AWS as the example case, as it is the most widely used cloud 
platform as of today, but you can adapt the examples and concepts to other cloud 
environments, including private clouds, relatively easily. 

AWS provides a free tier that allows you to set up a bare-bones infrastructure introduced in 
this book with minimal or no cost. Hence it is highly encouraged that you create an AWS 
account, unless you have one already. Creating one is easy - you can just follow the 
instructions available online. 

Many companies have existing cloud accounts. You should be able to use them for the 
purposes of this book. We won’t cover how to configure user accounts, authentication and 
authorization (e.g. IAM users and policies for AWS). These concerns are not specific to data 
science and you should be able to use the same policies that you have used before. 

2.1.2 Data Science Workstation 
The data scientist needs a workstation that they use to drive the prototyping loop, that is, 
develop, test, and deploy code and models. These days, the physical workstation is typically 
a personal laptop. However, the production code and models should never run on a laptop, 
for the reasons of high availability and scalability. Instead, the production models are 
deployed in some cloud environment3. In addition to differences in development and 
production hardware, the operating system is often different: It is common to use either OS 
X or Windows on laptops and Linux on servers. 

Hence there can be an obvious technical gap between the development workstation and the 
production environment, which can cause friction when interacting with production 
deployments (remember figure 2.4). The gap is not unique to data science: For instance, 
web application developers often operate in a similar environment. However, there are a few 

3 As mentioned in section 1.2.1, we use the term “cloud” to refer to both private on premise cloud-like environments and public clouds like AWS or Azure. 
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reasons why the gap is especially problematic for data science. The modern modeling 
libraries tend to be highly optimized to specific GPU and CPU architectures, in contrast to, 
say, Javascript libraries. Also large-scale data processing tends to push both hardware and 
software much harder than typical non-data science applications, which amplifies any 
differences in behavior between the environments. 

As many software developers have experienced the hard way, it can be frustrating to debug 
your code when the production environment differs significantly from the development 
environment. We can address the gap by unbundling the prototyping loop: Instead of 
running every step, Development, Evaluation, and Analysis on laptops, we can run any or all 
of these steps in the cloud. In practice, this means that we need a semi-persistent Linux 
instance or a container in the cloud that the data scientist can connect to. 

Setting up a system that can launch and terminate such instances on demand basis requires 
upfront configuration as well as training for data scientists. When deciding whether you want 
to provide a fully local (laptop-based), a fully remote (cloud-based), or a hybrid solution, you 
can consider a list of pros and cons presented in table 2.1. 
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Table 2.1. Laptops vs. Cloud Instance as development environment 

Laptop Cloud Instance 

Ease of setup Instantly familiar Has a learning curve 

Ease of use Easy initially, harder for complex 
cases e.g. deployments 

Harder initially, benefits become 
clearer in more complex cases 

Speed of prototyping loop Rapid transitions between steps 
but the evaluation speed may be 
slower because of limited 
hardware 

Potentially slower transitions 
between steps but higher 
evaluation speed  

Ease of support  Harder to monitor, harder to 
provide interactive support 
remotely   

Easy - a support person can use 
standard monitoring tools to 
observer the instance and/or login 
to the instance remotely 

Scalability Not scalable - the hardware is 
fixed 

Scalable - the instance size can be 
chosen based on the use case 

Interaction with production 
deployments  

Potential cross-platform issues 
(OS X vs. Linux) 

Minimal difference between 
prototyping and production 
environments 

Security Many issues since the same 
laptop is used for many purposes 
besides data science. The laptop 
may get lost physically 

Easier to secure and monitor - 
similar to any other cloud 
instance. It is possible to use 
standard cloud-based 
authentication and authorization 
systems like AWS IAM. 

Homogeneity Every data scientist is likely to 
have a slightly different 
environment which makes issues 
harder to debug 

Easier to ensure that the 
environments are highly uniform 
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To summarize Table 2.1, a cloud-based workstation requires more upfront work on the 
infrastructure side but it can pay big dividends when it comes to security, operational 
concerns, scalability, and interaction with production deployments. This will become more 
clear as you go through the later chapters in the book. However, you can certainly get 
started quickly with a laptop-based approach and revisit the decision later as your needs 
grow. 

How to provide a cloud-based workstation depends on your business environment: What 
cloud providers you use (if any), how the rest of your infrastructure is set up, and what kind 
of security policies data scientists need to comply with. To give you an idea of available 
options, we listed a few prototypical examples below. It is likely that new solutions will 
become available over the coming years, so the list is far from comprehensive: 

A GENERAL-PURPOSE CLOUD IDE: AWS CLOUD9 

AWS Cloud9 is a general-purpose cloud-based integrated development environment (IDE), 
i.e. a code editor, that works in the browser which is backed by an EC2 instance running
Linux. Using AWS Cloud9 feels pretty similar to using your laptop:

• The editor feels like a local editor and it comes with a built-in debugger. The
command-line session feels like a local terminal.

• It manages a standard EC2 instance attached to an editor session which can be used
to back the prototyping loop and to interact with production deployments.
Alternatively, you can configure it to connect to an existing EC2 instance for more
control.

• There is no extra cost besides the usual EC2 fees and unused instances are stopped
automatically, so it can be a very cost-effective solution.

A downside is that AWS Cloud 9 doesn’t have any built-in support notebooks (more about 
notebooks in the next section), although with some custom work, it is possible to use the 
underlying EC2 to back notebook kernels too. 

A DATA SCIENCE-SPECIFIC ENVIRONMENT: AWS SAGEMAKER STUDIO 

AWS SageMaker Studio is a hosted version of JupyterLab data science environment, which is 
tightly integrated with AWS’ data science services. Although you can use it as a general-
purpose code editor, similar to AWS Cloud9, it is more centered around notebooks: 

• SageMaker Studio manages instances backing notebooks and terminals for you,
similar to AWS Cloud9, but instead of using normal EC2 instances, it uses more
expensive ML-specific instance types.

• Existing users of Jupyter and JupyterLab will feel right at home.
• The integration to AWS’ data science services is handy if you use them.

Other cloud providers have similar offerings as a part of their platform, such as Azure 
Machine Learning Studio by Microsoft. A complete data science environment is most useful if 
you want to leverage the provider’s other services that are integrated with it. Otherwise, a 
simpler editor might be easier to use and operate. 
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A LOCAL EDITOR BACKED BY A CLOUD INSTANCE: VISUAL STUDIO CODE 

Both AWS Cloud9 and Sagemaker Studio are fully cloud-based, including a browser-based 
editor. While this approach has many benefits - it is easy operationally and can be very 
secure - some people find browser-based editors more cumbersome to use than local editors. 
A happy medium can be to use a local editor, like PyCharm or Visual Studio Code (VSCode), 
backed by a cloud instance. 

In particular, VSCode is a popular, very capable editor which comes with a well-integrated 
support for remote code execution, called “Visual Studio Code Remote - SSH”. Using this 
feature, you can evaluate any code using an arbitrary cloud instance of your choosing. Also, 
VSCode comes with built-in support for notebooks, which it can run on the same remote 
instance providing a frictionless user experience for data scientists. 

The main downside of the hybrid approach is that you have to build a custom mechanism to 
manage the cloud instances used by the local editor. For instance, a relatively simple 
approach could be to launch a container for each user and configure their editors to connect 
to their personal container automatically. 

2.1.3 Notebooks 
The previous section covered the very basics of the prototyping loop: Develop code in an 
editor, evaluate it in a terminal, and analyze results printed out on the terminal. This has 
been the classic way of developing software for decades. 

Many data scientists are familiar with another way of software development: Writing and 
evaluating code in a single document called a notebook. A defining feature of the notebook 
approach is that code can be authored incrementally as small snippets, or cells, which can be 
evaluated on the fly so that their results are shown and stored next to the code. Notebooks 
support rich output types, so instead of just outputting plain text as in a terminal, the output 
can include arbitrary visualizations. This is very convenient when prototyping new data 
science applications or analyzing existing data or models. 

There are many independent notebook environments, most of them targeting specific 
programming languages. Well-known environments include RMarkdown Notebooks for R, 
Zeppelin and Polynote for Scala, Mathematica for Wolfram Language, and Jupyter for Python 
(and other languages) which is the most popular notebook environment today. 

Given the ubiquity and usefulness of notebooks in data science, it would be hard to imagine 
an infrastructure for data science which didn’t support notebooks. Some infrastructures take 
the approach to the extreme and suggest that all data science code is authored in notebooks, 
as notebooks. While notebooks are undoubtedly useful for exploratory programming, 
analysis, teaching, and quick prototypes, it is less clear if they are the best approach for 
general software development which is a big part of real-world data science projects. 

To better understand the role of notebooks in the data science stack, let’s start by looking at 
their unique benefits: 
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• The prototyping loop is extremely fast: You write a snippet of code in a cell and with a
click of a button you can evaluate it and see the results next to the code. No need to
switch between windows or tabs.

• Results can be plots, graphs, or arbitrary visualizations. Data frames, tables of data,
are automatically visualized in a tabular format.

• The notebook format encourages creation of linear narratives, which can be easy for
humans to read and understand. The result can look like an executable research
paper.

• Most notebooks GUIs work in the browser with a simple backend process that can be
run locally, so one can get started with minimal setup.

• In particular Jupyter notebooks are widely used, taught, and supported by different
platforms. Correspondingly, there are tons of materials and examples available online.

• Many modern data science libraries are designed to be used in notebooks. They come
with built-in visualizations and APIs that make notebook use convenient.

All the benefits of notebooks relate to the user experience - they can make data scientists, 
not computers, more effective and efficient. Going back to our human-centered ethos 
introduced in section 1.3, this is a hugely important feature which makes notebooks a must 
component in our infrastructure stack. 

On the flip side, notebooks require a stack of infrastructure of their own, which results in 
extra complexity which can lead to brittleness. Since computers don’t care about notebooks, 
we can execute code without them when humans are not involved. 

Another question relates to the linear, narrative nature of notebooks. While humans are good 
at reading and understanding linearly progressing stories, like the one you are reading right 
now, computer programs tend to be nonlinear in nature. It is considered a good software 
engineering practice to structure a program as independent but interacting modules, each of 
which have a clear logical role. The modules call each other arbitrarily, forming a call graph 
rather than a linear narrative. 

These modules can also be reused and shared across many projects, complicating the 
dependency graph further. To manage a large software project, a version control system like 
Git is a must. While technically it is possible to write arbitrary code in notebooks, version 
control them, and maybe even create composable notebooks, this is pushing the limits of the 
paradigm, requiring layers of non-standard tooling. 

Whereas notebooks with their mixed-media outputs are great for exploration and analysis, 
traditional IDEs and code editors are optimized for structured programming: They make it 
easy to manage and author even large codebases that are divided across multiple files. Some 
modern IDEs like PyCharm, VSCode, or JupyterLab support both the modalities in a single 
interface, trying to combine the best of both worlds. 

This book advocates for a pragmatic approach: We can use notebooks for the use cases 
where they shine and stick with traditional software engineering tools elsewhere. Figure 2.5 
extends the earlier figure 2.3 by overlaying the suggested tools in the prototyping and 
production loops: 
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Figure 2.5: Suggested tools for the prototyping and production loops 

Imagine starting to work on a new data science project. Even before you start creating the 
first prototype, i.e. enter the prototyping loop, you might want to spend some time just 
understanding the data and the problem domain. Notebooks are a good tool for such open-
ended exploration, which doesn’t aim at producing any persistent software artifacts. 

After the initial exploration phase, you start prototyping a solution. The solution, a data 
science application, is fundamentally a piece of software often consisting of multiple 
modules, so we can use a tool optimized for this purpose, an IDE or a code editor. The result 
is an application, a script, which we can evaluate as plain code both locally and in production 
without any added complexity. When things fail, or you want to improve the model, you can 
go back to notebooks again for analysis and exploration. We will see in later chapters what 
this might look like in practice. 

As noted before, modern IDEs can make switching between the notebook and the editor 
modes seamless, so transitioning between the steps of the loop can happen with minimal 
friction. 

SETTING UP A JUPYTER NOTEBOOK ENVIRONMENT 

What does setting up a notebook environment mean in practice? First, let’s consider the 
high-level architecture of Jupyter (many other notebook environments have a similar 
architecture), as presented in figure 2.6: 
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Figure 2.6. Jupyter client and server 

Notebooks consist of two major parts: A web-based UI that runs in the browser and a 
backend process, a kernel, which manages all state and computation requested by the UI. 
Each notebook session is backed by a unique kernel, so it is common to have multiple 
kernels running in parallel when multiple notebooks are open in separate browser tabs. 

In the point of view of infrastructure, the key question is where to run the kernel: It is a 
Python process that needs to be executed on a server of some kind. The simplest option is to 
run the kernel on the user’s laptop as a local process, which is the leftmost option 1 
presented in figure 2.7. 
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Figure 2.7. Three options for running the Jupyter kernel 

In option 1, all computation initiated by the notebook happens on the user’s laptop, similar 
to any Python script. This approach has all the pros and cons of local code evaluation, which 
we covered in Table 2.1. In particular, the environment is unscalable and hard to control in a 
uniform manner. The main upside of this approach is simplicity: You can get going by 
executing the following commands on your laptop: 

# pip install jupyter 
# jupyter-notebook 

Option 2 works around the limitations of the local approach by running the kernel on a cloud 
instance, the same cloud workstation that we discussed in the previous section. The cloud 
workstation can be scaled based on the needs of the user and use case and it can provide a 
uniform environment for all data scientists. A downside is that an infrastructure team needs 
to set up the workstation, including a secure network connection, e.g. a virtual private 
network (VPN), between the cloud workstation and local laptop. However, after the initial 
configuration cost, this can be a highly productive setup for data science. 
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Option 3 is a “serverless” approach to notebooks: Whereas the option 2 provides an illusion 
of a persistent, stateful laptop-in-the-cloud, a personal workstation, the option 3 gets rid of 
the notion that any server is required to run the kernel in the first place. After all, all the user 
sees is the browser-based Jupyter UI, so they shouldn’t have to care about the backend. 

In practice, option 3 requires a portal which allows one to open a notebook. When a 
notebook is opened, an ephemeral instance is provisioned for the notebook on the fly. 
Examples of this approach include Google Colab and an open-source mybinder.org. 

The main downside of this approach, besides operational complexity, is that notebooks are 
stateless: There is no persistent local filesystem nor dependencies that automatically persist 
across notebook kernels - this makes the experience quite different from a local laptop that 
maintains state until you explicitly erase it. Also, this approach doesn’t allow interaction with 
local editors, e.g. VSCode, which is possible with the option 2. 

The option 3 can be great for quick scratchpad environments or for users who don’t need a 
full-fledged persistent workstation.  

2.1.4 Putting things together 
Let’s summarize what we have covered in the previous sections: 

1. To boost the productivity of data scientists, we should optimize the ergonomics of
two key activities: The prototyping loop and interaction with production
deployments.

2. There are many good reasons to enable data scientists work seamlessly with the
cloud from the get go. In particular, it will make interaction with production
deployments easier.

3. Modern editors make it possible to push code evaluation to the cloud. This can
make the evaluation environments more scalable, easier to manage, and closer to the
production deployments than evaluating code on the laptop. However, this requires
some upfront configuration effort by the infrastructure team.

4. Notebooks are an indispensable tool for some data science activities,
complementing traditional software development tools. You can run notebooks on the
same cloud workstation that supports other code evaluation.

Figure 2.8 illustrates the architecture of a cloud workstation for data science. There are many 
ways to implement the setup in practice: You can pick an editor or an IDE that works for 
your needs. You can use notebooks either stand-alone in the browser or embedded in the 
editor, e.g. using Visual Studio Code, PyCharm. Or, you can pick a notebook environment 
that includes a full-fledged code editor, e.g. JupyterLab. The workstation instance can be a 
container running on a cloud-based container platform, e.g. on AWS’ Elastic Container 
Service (ECS). 
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Figure 2.8. Cloud Workstation for Data Science 

Figure 2.9: it shows a Visual Studio Code session with an embedded editor, terminal, and 
notebook. With a single click, the scientist can execute the code in the editor on the 
terminal. With another click, they can update the notebook view that visualizes the results. 
The terminal and the notebook kernel can either execute locally or on a cloud workstation. 
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Figure 2.9. A Visual Studio Code setup that covers the complete prototyping loop 

With a setup like this, the scientist can quickly iterate through the steps of the prototyping 
loop as overlaid in the figure. 

NOTE See the online resources for this book for examples on how to configure a development environment 

that follows an architecture depicted in Figure 2.8. 

2.2 Introducing Workflows 
On the second day at Caveman, Alex joins an onboarding session led by Harper. Harper 
explains how the company sources their organic ingredients from multiple vendors, how they 
produce a wide variety of cupcakes using artisanal methods, and how they handle nation-
wide logistics. Alex is puzzled by the intricate value chain that it takes to produce paleo 
cupcakes. How are data scientists at the company supposed to process all relevant data, 
keep models up to date, and send updated predictions to various business systems? The 
level of complexity seems to be beyond what Alex had had to deal with previously in 
academia using notebooks. 
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The development environment we introduced in the previous section was the very first stop 
in our journey in producing robust, production-ready data science applications. It provides 
the means to write code, evaluate it, and analyze the results. Now, what code should we 
write and how? 

When terms like “Machine Learning”, “Artificial Intelligence”, or “Data Science” are 
mentioned, they often evoke the idea of a model. By “model”, we mean any kind of 
computational abstraction of the world which takes some input, performs some computation, 
and produces an output, as concisely depicted in figure 2.10. In the realm of data science, 
these models are often expressed as artificial neural networks or using statistical methods 
like logistic regression. 

Figure 2.10. A single model 

Building accurate models for real-world phenomena is not easy. Historically, it has been done 
by scientists who have gone through an extensive theoretical training for the job. Depending 
on the company, there may be an expectation that data scientists mainly focus on building 
models. However, building practically useful models in a business context is quite a different 
experience than publishing model designs in a research paper. 
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Consider a common business context like that of Caveman Cupcakes introduced above. Alex 
the data scientist faces three challenges: 

Firstly, it is probably not feasible to model the whole business of Caveman Cupcakes as a 
single model. Instead, the data scientist is expected to focus on modeling some specific 
business problems, e.g. to build a computer vision model to detect faulty cupcakes on the 
production line automatically, or use mixed integer programming to optimize logistics. As a 
result, over time data scientists at the company will produce a set of models, each with their 
own requirements and characteristics. 

Secondly, in a business context, the model can’t be just an abstract mathematical construct. 
It needs to perform the computation in practice, which means that it needs to be 
implemented in a programming language and it needs to execute reliably. This can be a 
highly non-trivial exercise in software engineering, in particular since we can’t wait for the 
results infinitely. We may need to run some operations in parallel and some on specialized 
hardware like GPUs. 

Thirdly, besides the enticing big circle in Figure 2.10, the model, we must not forget the two 
arrows - the input and the output: Our model needs to receive accurate, often constantly 
updating data, which is a non-trivial feat. Finally, the results of a model need to end up 
somewhere where they can benefit the business - maybe a database, a planning 
spreadsheet, or another software component. 

To summarize, the data scientist needs to understand the business problem that needs to be 
solved, design a model, implement it as software, make sure it gets the correct data, and 
figure out where to send the results. To make this happen, the data scientist spends a good 
amount of time in the prototyping loop we introduced in the previous section. 

Once this particular business problem has been solved adequately, the same process gets 
repeated for another business problem. This cycle gets repeated infinitely. The models are 
never perfect and rarely a company runs out of business problems to optimize. 

Furthermore, all these systems must be kept running reliably, preferably 24/7. This requires 
a lot of interaction with production deployments, as models are constantly exposed to real-
world entropy, data, which erodes them as any real-world machine that is exposed to 
elements. This is the second loop we discussed in the previous section. 

As a result, we get a jungle of data pipelines and models - a big humming factory as 
depicted in figure 2.11 which requires constant maintenance. To keep the factory 
understandable and operable, we need to impose some structure on how these models are 
built. This is the main motivation for making the modeling and data pipelines, or workflows, 
as first-class entities in our infrastructure. 
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Figure 2.11. Many models and data pipelines 

2.2.1 The basics of workflows 
In this context, a workflow is a directed graph, i.e. a set of nodes or steps (depicted as 
circles in figure 2.12) connected by directional edges (arrows). This representation captures 
the before-after relationship between steps. For instance, in figure 2.12 we know 
unambiguously that A must happen before B. 

Figure 2.12. A workflow where A happens before B 

The order of steps isn’t always fully unambiguous. In figure 2.13, we know that A must 
execute before B and C that execute before D, but the mutual order between B and C is left 
undefined. 
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Figure 2.13. A workflow where B and C may be executed in any order 

We can use workflows like this to indicate that we don’t care whether B executes before C, as 
long as both of them are executed before D. This is a useful feature as it allows us to execute 
B and C in parallel. 

Figure 2.14 depicts a directed graph that has a cycle: After C, we go back to A again. 
Naturally, this results in an infinite loop unless we define some kind of conditional that 
defines a stopping condition. Alternatively, we can just disallow graphs with cycles and 
decide that only such graphs, Directed Acyclic Graphs or DAGs, are valid workflows. In fact, 
just supporting DAGs is a common choice made by made workflow engines. 

Figure 2.14. A workflow with a cycle, a cyclic graph 

Why should Alex or any other data scientist care about DAGs? Consider the following three 
reasons: 

1. They introduce a common vocabulary - steps and transitions between them - which
make it easier to write and understand non-trivial applications that are structured as
DAGs.

2. They allow us to be explicit about the order of operations. This is useful especially
when the order is anything more complex than a simple linear order like what you see
in a notebook. By making the order of operations clear and explicit, our jungle of data
pipelines and models becomes more manageable.
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3. They allow us to indicate when the order of operations doesn’t matter, like in
Figure 2.13. We can parallelize these operations automatically, which is the key to
high performance. There are plenty of opportunities for parallelization in a typical data
science application but in most cases computers can’t figure them out automatically if
they are not made explicit.

To summarize, at the high-level you can view DAGs as a language - not so much a 
programming language rather than a formal construct for human-to-human communication. 
They allow us to speak about even complex sequences of operations in a concise and 
understandable manner. 

2.2.2 Executing workflows 
If DAGs are just an abstract way to talk about things, how does the rubber meet the road, 
meaning, how do workflows get executed in practice? Ultimately, executing a workflow is a 
job of a workflow framework which we will cover in the next subsection. Before we dive 
deeper in various frameworks - there are hundreds of them - it is useful to take a deeper 
look at the concerns that are required to turn an abstract DAG into executing code. 

Concrete workflows involve three separate concerns: What code should be executed (i.e. 
what’s inside a step), where the code should be executed concretely (a computer somewhere 
needs to execute the code), and how the steps should be orchestrated. The three concerns 
map to the different layers of the infrastructure stack we introduced in Chapter 1, as 
depicted in figure 2.15: 

Figure 2.15. The three concerns of workflow execution 

The architecture layer defines what code the data scientist is supposed to write in a step. It 
is the user interface layer to workflows. Different workflow frameworks provide different 
kinds of abstractions, optimized for different use cases: Some of them are graphical (you can 
define a workflow by dragging and dropping circles), some configuration-based, and some 
defined as code. 
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In the data scientist’s point of view, the architecture layer is the most visible part of 
workflows - as we mentioned in figure 1.15, the layers towards the top of the stack tend to 
matter more in the data scientist point view. The architecture layer pretty much defines what 
kind of data science applications are natural to express in the system, which makes it maybe 
the most important consideration when choosing a workflow framework. 

The compute resources layer determines where the user’s code is executed concretely. 
Imagine a workflow with 600 parallel steps. Each step executes for 30 seconds on a 16-core 
CPU. If the compute layer includes only one 16-core instance (maybe the compute layer is a 
laptop!), executing the steps takes five hours. In contrast, if the compute layer is a cluster of 
100 instances, the steps execute in three minutes. As you can see, the compute layer makes 
a big difference for the scalability of workflows, i.e. the throughput of the system, which we 
will discuss in detail in Chapter 3. 

Finally, we need a system that walks through the DAG, sending each step to the compute 
layer and waiting for their completion before continuing. We call this system a Job Scheduler. 
The Job Scheduler layer doesn’t need to care about what code is being executed and where 
computers that execute the code reside exactly. Its sole responsibility is to schedule the 
steps in the right order as defined by the DAG, making sure that a step finishes successfully 
before its successors in the graph are executed (the technical term for this is “topological 
order”). 

While this may sound deceptively simple, the Job Scheduler layer is the guarantor of 
robustness and operability of workflows. It needs to monitor whether the compute layer 
completes steps successfully and if it doesn’t, it needs to retry them. It may need to do this 
for hundreds of thousands of concurrently executing steps across tens of thousands of 
workflows. In the user’s point of view, it is desirable that the job scheduler has a way to 
observe executions, maybe a GUI, and a way to alert owners if their workflow fails. 

Besides operational concerns, we can distinguish between two major types of job schedulers 
based on how they want the DAG to be specified: Schedulers that require the DAG to be fully 
specified before an execution starts are called to schedule static DAGs. The other type of 
schedulers allow the DAG to be constructed incrementally during execution, which is called a 
dynamic DAG. Both the approaches have their pros and cons. 

Every workflow framework needs to address all the three concerns. Each concern is a deep 
topic in itself, requiring non-trivial efforts in engineering. On top of this, the concerns interact 
in various ways. Different frameworks end up making different technical choices affecting 
scalability and robustness, and choices that affect the user experience, depending on what 
use cases they target and what kind of trade offs they are ready to make. As a result, there 
are hundreds of workflow frameworks that all look seemingly similar on the surface - all of 
them claim to execute DAGs - but there are significant differences under the hood. 

2.2.3 The world of workflow frameworks 
The Wikipedia article for Scientific workflow systems lists 20 notable workflow frameworks 
that target scientific applications. Another article for Workflow management system lists 20+ 
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systems for business-oriented use cases. Both the lists miss many popular open-source 
frameworks and well-funded startups. The landscape is also changing quickly, so by the time 
you are reading this book, any attempt to list all frameworks would be woefully outdated. 

Instead of trying to rank all frameworks out there, we provide a rubric for evaluating 
frameworks. The rubric is based on the three concerns we covered in the previous section: 

1. Architecture - what the actual code looks like and how the system looks and feels to
the data scientist. Do the abstractions provided by the system make data scientists
more productive and allow them to ship end-to-end data science applications faster?

2. Job scheduler - how workflows are triggered, executed, and monitored and how
failures are handled. How easy it is to manage a whole jungle of workflows without
downtime?

3. Compute resources - where the code executes in practice. Can the system handle
steps with different resource requirements, e.g. GPUs, and how many steps the
system can execute in parallel?

Your particular use cases and business environment should determine how you weigh these 
three dimensions. For a small startup with a handful of small use cases, compute resources 
might not be a big concern. For a company that has one large-scale use case, compute 
resources may be more important than anything else. A desirable architecture looks very 
different for a tightly-knit team of Haskell experts vs. a large distributed organization of data 
scientists with diverse backgrounds. 

Table 2.2 provides an example rubric for comparing workflow frameworks. We chose five 
popular frameworks for illustration. Since this book is about infrastructure for data science, 
we focused the comparison to things that matter to data science applications: 

• Is the architecture specifically designed to support data science applications or is it
generic in nature?

• Is the scheduler highly available (HA) by design, that is, is the scheduler itself a single
point of failure? This is important, since none of the workflows can be more reliable
than the scheduler that orchestrates them. Optimally, we would like to be able to
keep any number of workflows running without having to worry about the scheduler
ever failing.

• How flexible is the support for compute resources? Data science applications tend to
be compute-heavy and sometimes finicky about their hardware requirements (e.g.
particular models of GPUs), so this is a useful feature.

50

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion


©Manning Publications Co.  To comment go to  liveBook 

Table 2.2. An example rubric for evaluating workflow frameworks 

Architecture Scheduler Compute 

Apache Airflow Arbitrary Python code, 
not specific to data 
science. 

Nice GUI, scheduler not 
HA. 

Many backends 
supported through 
executors. 

Luigi Arbitrary Python code, 
not specific to data 
science. 

Bare bones, not HA. By default, the scheduler 
executed Python classes, 
Tasks, locally. They can 
push work to other 
systems. 

Kubeflow Pipelines Python, targeting data 
science use cases. 

Nice GUI. Uses a project 
called Argo under the 
hood. Some HA provided 
by Kubernetes. 

Steps are run on a 
Kubernetes cluster. 

AWS Step Functions JSON-based 
configuration called 
Amazon States 
Language. 

HA by design, managed 
by AWS. 

Integrations with some 
AWS services. 

Metaflow Python, targeting data 
science use cases. 

Local scheduler for 
prototyping, supports HA 
schedulers like Step 
Functions for production. 

Supports local tasks as 
well as external compute 
platforms. 

Here’s a quick overview of the covered frameworks: 

• Apache Airflow is a popular, open-source workflow management system that was
released by AirBnB in 2015. It is implemented in Python and it uses Python to define
workflows. Multiple commercial vendors, including AWS and GCP, provide managed
Airflow as a service.

• Luigi is another well-known Python-based framework that was open-sourced by
Spotify in 2012. It is based on the idea of dynamic DAGs, defined through data
dependencies.

• Kubeflow Pipelines is a workflow system embedded in the open-source Kubeflow
framework for data science applications running on Kubernetes. The framework was
published by Google in 2018. Under the hood, the workflows are scheduled by an
open-source scheduler called Argo that is popular in the Kubernetes ecosystem.
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• AWS Step Functions is a managed, not open-source, service that AWS released in
2016. DAGs are defined in the JSON format using Amazon States Language. A unique
feature of Step Functions is that workflows can run for a very long time, up to a year,
relying on the guarantees of high availability provided by AWS.

• Metaflow is a framework for data science applications, originally authored by the
author of this book and open-sourced by Netflix in 2019. Metaflow focuses on
providing a delightful, productivity boosting user experience to data scientists, using
workflows as an architectural construct. Workflows written with Metaflow can be
scheduled by other highly available schedulers like AWS Step Functions.

Besides the frameworks listed above, there are many other promising frameworks, some of 
which target data science applications specifically. Instead of focusing on any particular 
framework, which are typically well documented online, the purpose of this book is to 
introduce the full stack of data science infrastructure, which workflows are a part of, so that 
you can choose the best technical approach for each layer. 

When choosing a workflow framework specifically for data science use cases, keep the 
following factors in mind: 

1. In most business environments, productivity of data scientists should be a top priority.
Choose a framework with an architecture that works well for data science use cases
specifically. Building data science applications takes much more than just workflows,
so consider the full data science stack (Figure 1.3) when making the choice, not just
the scheduler layer.

2. In the long term, operational concerns such as robustness, scalability, and high
availability of the system tend to dominate other technical concerns. These features
are both an emergent characteristic of the design of the system as well as a result of
years of battle-hardening with actual use cases, so fixing them overnight is not easy.
Hence it makes sense to choose a system with an established track record of
operability and scalability. We will cover this topic in detail in Chapter 4.

3. Not being constrained by compute resources can be a huge productivity boost, so
choose a framework that integrates seamlessly with your compute layer. More about
this in Chapter 3.

In the following chapters we will use Metaflow, which hits the three marks listed above, as an 
example framework. The principles and examples are generic enough so that it shouldn’t be 
hard to adapt the examples to other frameworks if needed. 

If setting up everything we covered in this chapter feels like a large investment, don’t worry 
- you can scale the capabilities of the toolchain in stages as the needs of your business grow.
Table 2.3 provides recommended configurations for organizations of different sizes, based on
the number of data scientists served by the infrastructure. The options in parentheses refer
to figure 2.7.
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Table 2.3: How much to invest in Development Environment 

Small (1-3 users) Medium (3-20) Large (20+) 

Cloud account Recommended Must Must 

Data Science 
Workstation 

Laptop will suffice. 
Specify a common setup 
for all data scientists.  

Consider an off-the-shelf 
cloud offering or a 
simple manually 
launched cloud 
workstation with an 
integrated IDE. 

Invest in a self-service, 
automatically 
provisioned workstation 
with an integrated IDE.  

Notebooks Run notebook kernels 
locally on laptops (option 
1). 

A simple approach is to support notebook kernels on 
the cloud workstation (option 2). If notebooks are 
leveraged actively, consider providing ephemeral 
notebooks too (option 3). 

Workflows Highly recommended. 
You can run workflows 
on a single instance 
using a simple scheduler. 

Choose a workflow 
scheduler that 
maximizes productivity 
and speed of iteration. 

Choose a scheduler that 
provides high-availability, 
observability, and 
scalability, in addition to 
productivity. 
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2.3 Summary 
• Data scientists need a development environment that provides excellent ergonomics 

for two key activities: 

1. Prototyping loop: Writing, evaluating, and analyzing application code. 
2. Interaction with production deployments: Deploying, monitoring, and 

debugging production applications. 

• A cloud-backed data science workstation is an effective way to handle the two 
activities: Code can be developed locally but it is evaluated in an environment that 
resembles production. 

• Notebooks are a necessary but not a sufficient part of the data science toolchain. 
Notebooks excel at scratchpad-style prototyping and at analyzing results. You can 
integrate them to work in tandem with an IDE and a terminal on the workstation. 

• Workflows are a useful abstraction for structuring data science applications. 
Workflows provide a number of benefits: They are easy to understand and explain, 
they help in managing complexity as the number of data science applications grows, 
and they can make execution more scalable and performant. 

• There are tens of different workflow frameworks. Pick one that provides excellent 
ergonomics for building data science applications specifically. This book will use 
Metaflow as an example framework but you can adapt the concepts to other 
frameworks too.  

• Job Scheduler is the system that executes a workflow. Pick a scheduler that integrates 
well with your computation infrastructure and that provides the level of high 
availability and scalability that matches your company’s expectations. 
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Introducing Metaflow 

This chapter covers

• Defining a workflow in Metaflow that accepts input data and produces useful outputs.
• Optimizing performance of workflows with parallel computation on a single instance.
• Analyzing results of workflows in notebooks.
• Developing a simple end-to-end application in Metaflow.

You are probably anxious to roll up sleeves and start hacking some actual data science code, 
now that we have a productivity-boosting development environment set up! In this chapter, 
you will learn the basics of developing data science applications using Metaflow, a framework 
that shows how different layers of the infrastructure stack can work together seamlessly. 

The development environment, which we discussed in the previous chapter, determines how 
the data scientist develops applications: by writing code in an editor, evaluating it in a 
terminal, and analyzing results in a notebook. On top of this toolchain, the data scientist 
uses Metaflow to determine what code gets written and why, which is the topic of this 
chapter. The next chapters will then cover the infrastructure that determines where and 
when the workflows get executed. 

We will introduce Metaflow from the ground up. You will first learn the syntax and the basic 
concepts that allow you to define basic workflows in Metaflow. After this, we will introduce 
branches in workflows. Branches are a straightforward way to embed concurrency in 
workflows, which often leads to higher performance through parallel computation. 

Finally, we put all these concepts into action by building a realistic classifier application. By 
going through an end-to-end project, you will learn how Metaflow powers the prototyping 
loop by providing tools for local code evaluation, debugging, and result inspection in 
notebooks. 
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After reading this chapter, you, or the data scientists you support, will be able to develop 
fully functional data science applications by combining Metaflow with other off-the-shelf 
libraries. The subsequent chapters will build on this foundation and show how you can make 
applications more scalable, highly available, and amenable to collaboration by utilizing the 
full infrastructure stack. 

3.1 Basics of Metaflow 
Alex realizes that the job of a data scientist entails much more than just building models. As 
the first (and at this point, only) data scientist at Caveman Cupcakes, Alex has a great 
opportunity to help the company by building complete data science solutions independently. 
Alex finds the situation both exhilarating and terrifying: Alex is a marine biologist by training, 
not a software engineer - hopefully building the necessary software around models won’t be 
too daunting. Bowie recommends that they take a look at Metaflow: a framework that is 
supposed to make building end-to-end data science applications easy. 

Metaflow was started at Netflix in 2017 to help data scientists build, deliver, and operate 
complete data science applications independently. The framework was designed to address a 
practical business need: A large company like Netflix has tens if not hundreds of potential 
use cases for data science, similar to those of Caveman Cupcake’s. The company wants to 
test new ideas quickly in a realistic setup, preferably without having to allocate a large team 
to work on an experimental idea, and then promote the most promising experiments to 
production without too much overhead. 

The ideas introduced in Chapter 1 serve as a motivation for Metaflow: We need to account 
for the full stack of data science, we want to cover the whole lifecycle of projects from 
prototype to production, and we want to do this by focusing on data scientist productivity. 
We can use the four V’s introduced in Chapter 1 to answer the question “why Metaflow”: 
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• Volume - Metaflow helps to deliver more data science applications with fewer human
resources involved. It reduces accidental complexity (see section 1.2.2) in the
humming factory of data science applications by providing a uniform way to build
them, leveraging the common language of workflows.

• Variety - Metaflow helps to deliver a diverse set of applications - it is not optimized
for any particular types of data science problems. It does it by being more
opinionated at the lower layers of the stack and less opinionated about the top,
domain-specific layers (see Figure 1.16).

• Velocity - Metaflow speeds up the prototyping loop, as well as interaction with
production deployments. It does it by prioritizing human productivity in all parts of
the framework e.g. by allowing data scientists use idiomatic Python (see section 1.3).

• Validity - Metaflow makes applications more robust by enforcing best practices that
make building and operating production-grade applications feasible even by data
scientists without DevOps background.

In the data scientist’s point of view, Metaflow is all about making the prototyping loop and 
interaction with production deployments, which we introduced in section 2.1, as smooth as 
possible. Doing this well requires that all layers of the infrastructure stack are integrated 
together seamlessly: Whereas some frameworks only tackle workflows, compute resources, 
or model operations, Metaflow1 aims to address the full stack of data science, as depicted in 
figure 3.1. 

Figure 3.1: Metaflow binds together the layers of the data science stack 

In the engineering point of view, Metaflow acts as a substrate for integrations rather than as 
an attempt to reinvent individual layers of the stack. Companies have built or bought great 
solutions for data warehousing, ETL, compute platforms, and job scheduling - not to mention 

1 Hence the name meta-flow, i.e. a higher-level system that describes how other systems and (Tensor)flows should work together 
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the vibrant ecosystem of open-source machine learning libraries. It would be unnecessary 
and unproductive to try to replace the existing established systems to accommodate the 
needs of data scientists. We should want to integrate data science applications to the 
surrounding business systems, not isolate them on an island. 

Metaflow is based on a plugin architecture that allows different backends to be used for 
different layers of the stack, as long as the layers can support a set of basic operations. In 
particular, Metaflow is designed to be a cloud-native framework, relying on basic compute 
and storage abstractions provided by all major cloud providers. 

Metaflow has a gentle adoption curve: You can get started with the “single player mode” on a 
laptop and gradually scale the infrastructure out to the cloud as your needs grow. In the 
remaining sections of this chapter, we will introduce the basics of Metaflow. In the chapters 
to follow, we will expand its footprint and show how to address increasingly complex data 
science applications, spanning all the layers of the stack, and collaboration between multiple 
data scientists. 

If you want to build your infrastructure using other frameworks besides Metaflow, you can 
read the next sections for inspiration - the concepts are applicable to many other frameworks 
too - or you can jump straight into Chapter 4 that focuses on the bottom two layers of the 
stack: compute resources and data. 

INSTALLING METAFLOW 

Metaflow greatly benefits from a cloud-based development environment introduced in section 
2.1, notebooks included. However, you can get started with just a laptop. As of writing of 
this book, Metaflow supports OS X and Linux but not Windows. If you want to test Metaflow 
on Windows, you can use either the Windows Subsystem for Linux, a local Linux-based 
Docker container, or a cloud-based editor as discussed in section 2.1.2. 

Metaflow supports any Python version greater than Python 3.5. After installing a Python 
interpreter, you can install Metaflow as any other Python package using pip:

# pip install metaflow 

NOTE In all examples, we assume that the pip and python commands refer to the latest version Python 

that should be higher than Python 3.5. In some systems, the correct commands are called pip3 and 
python3. In this case, substitute the commands in examples accordingly.

You can confirm that Metaflow works simply by executing 

# metaflow 

If Metaflow was installed correctly, this should print a top-level help with a header like 

Metaflow (2.2.5): More data science, less engineering 

You can follow the examples in this chapter without a cloud (AWS) account but you will need 
one for the next chapters as discussed in section 2.1.1. 
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3.1.1 Writing a basic workflow 
As described in section 2.2, the concept of a workflow helps to structure a data science 
application. It is considerably easier to think of your application in terms of steps of a 
workflow rather than as a set of arbitrary Python modules - in particular if you are not a 
software engineer by training. 

Imagine Alex, our protagonist, writing a Metaflow workflow: Alex is already familiar with 
notebooks, so the concept of writing small snippets of Python as steps sounds similar: steps 
are like notebook cells on steroids. It would require much more cognitive effort to piece 
together an application using arbitrary Python classes, functions, and modules. 

Let’s start with a classic Hello World example. Everything in Metaflow is centered around the 
concept of a workflow, or simply a flow, which is a Directed Acyclic Graph (DAG) as discussed 
in section 2.2. Our HelloWorldFlow, defined in Listing 3.1, corresponds to the DAG depicted in 
figure 3.2. 

Figure 3.2. HelloWorldFlow 

To define a workflow in Metaflow, you must follow these six simple rules: 

1. A flow is defined as a Python class that is derived from the FlowSpec class. You can
name your flows freely. In this book, by convention the flow class names end with a
Flow suffix, as in HelloWorldFlow. You can include any methods (functions) in this
class but methods annotated with @step are treated specially.

2. A step (node) of the flow is a method of the class, annotated with the @step
decorator. You can write arbitrary Python in the method body but the last line is
special as described below. You can include an optional docstring in the method,
explaining the purpose of the step. After the first example, we will omit docstrings to
keep listings concise in the book but it is advisable to use them in real-life code.

3. Metaflow executes the method bodies as an atomic unit of computation called a task.
In a simple flow like this, there is a one-to-one correspondence between a step and a
task but that’s not always the case as we will see later.

4. The first step must be called start, so the flow has an unambiguous starting point.
5. The edges (arrows) between steps are defined by calling self.next(step_name)  on

the last line of the method where step_name is the name of the next step to be
executed.
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6. The last step must be called end. Since the end step finishes the flow, it doesn’t need
a self.next transition on the last line.

7. One Python file (module) must contain only a single flow. You should instantiate the
flow class at the bottom of the file inside a if __name__ == ‘__main__’ conditional,
which causes the class to be evaluated only if the file is called as a script.

The corresponding source code is listed in Listing 3.1: 

Listing 3.1 Hello World 

from metaflow import FlowSpec, step 

class HelloWorldFlow(FlowSpec):    #A 

   @step    #B 
   def start(self):    #C 

  “””Starting point””” 
  print(“This is start step”) 
  self.next(self.hello)    #D 

   @step 
   def hello(self): 

  “””Just saying hi””” 
  print(“Hello World!”) 
  self.next(self.end) 

   @step 
   def end(self):    #E 

  “””Finish line””” 
  print(“This is end step”) 

if __name__ == '__main__': 
   HelloWorldFlow()    #F 

#A A workflow is defined by subclassing from FlowSpec 
#B The @step decorator denotes a step in the workflow 
#C The first step must be called start 
#D A call to self.next() denotes an edge in the workflow 
#E The last step must be called end 
#F Instantiating the workflow allows it to be executed 

Here’s how to read and comprehend code that corresponds to a Metaflow flow: 

1. First, find the start method. You know that this is where the execution starts. You
can read the method to understand what it is doing.

2. See what’s the next step by looking at the last line of start. In this case, it is
self.hello, i.e. the hello method.

3. Read the code for the next step and identify the step after. Keep doing this until you
reach the end step.

Doing this is much simpler than trying to understand an arbitrary set of Python functions and 
modules that don’t even have a clear beginning and end. 
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Save the code in a file, e.g. helloworld.py. You can execute the Python as any Python
script. First, try running 

# python helloworld.py 

This will validate the flow structure without executing any steps. Metaflow has a number of 
rules for what is considered a valid DAG. For instance, all steps must be connected to each 
other and there must not be any cycles in the graph. If Metaflow detects any issues with 
your DAG, a helpful error message is shown. 

Metaflow also runs a basic code check, a linter, every time you execute the script. It can 
detect typos, missing functions, and other such syntactic errors. If any issues are found, an 
error is shown and nothing else is run. This can be a huge time saver, since issues can be 
detected before any time is spent on running the code. However, sometimes the linter can 
produce false positives. In this case, you can disable it by specifying 

# python helloworld.py --no-pylint 

Next, try running 

# python helloworld.py show 

This should print out a textual representation of the DAG which for HelloWorldFlow
corresponds to figure 3.2. You can see that docstrings are included in the output, so you can 
use the show command to get a quick idea of what an unfamiliar flow does.

Now, the moment of truth - let’s execute the flow! We call an execution of a flow a run. 

# python helloworld.py run 

This command executes the start, hello, and end methods in order. If all goes well, you
should see a bunch of lines printed out that look like this: 

Every line printed from your flow to the standard output (aka stdout) or the standard error 
(aka stderr) streams will get a header like above. Let’s parse the header: 

• Timestamp denotes when the line was output. You can take a look at consecutive
timestamps to get a rough idea of how long different segments of the code take to
execute. There may be a short delay between a line being output and the minting of a
timestamp, so don’t rely on the timestamps for anything that requires accurate
timekeeping.

• The information inside the square brackets identifies a task.
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o Every Metaflow run gets a unique ID, a run ID.
o A run executes the steps in order. The step that is currently being executed is

denoted by step name.
o A step may spawn multiple tasks (see section 2.3.3) which are identified by a task

ID.
o The combination of a flow name, run ID, step name, and a task ID, uniquely

identify a task in your Metaflow environment, amongst all runs of any flows. Here,
the flow name is omitted since it is the same for all lines. We call this globally
unique identifier a pathspec.

o Each task is executed by a separate process in your operating system, identified
by a process ID aka pid. You can use any operating system level monitoring tools
such as top to monitor resource consumption of a task based on its process ID.

• After the square bracket comes a log message that may be a message output by
Metaflow itself, like “Task is starting” in this example, or a line output by your code.

What’s the big deal about the IDs? Running a countless number of quick experiments is a 
core activity in data science - remember the prototyping loop we discussed earlier. Imagine 
hacking many different variations of the code, running them, and seeing slightly different 
results every time. After a while, it is easy to lose track of results: Was it the third version 
that produced promising results or the sixth one? 

In the old days, a diligent scientist might have recorded all their experiments and their 
results in a lab notebook. A decade ago, a spreadsheet might have served the same role, but 
keeping track of experiments was still a manual, error-prone process. Today, a modern data 
science infrastructure keeps track of experiments automatically through an experiment 
tracking system. 

An effective experiment tracking system allows a data science team to inspect what has been 
run, identify each run or experiment unambiguously, access any past results, visualize them, 
and compare experiments against each other. Moreover, it is desirable to be able to rerun a 
past experiment and reproduce their results. Doing this accurately is much harder than it 
sounds, so we have dedicated many pages for the topic of reproducibility in chapter 6. 

There are stand-alone experiment tracking products which can work with any piece of code, 
as long as the code is instrumented appropriately to send metadata to the tracking system. 
If you use Metaflow to build data science applications, you get experiment tracking for free: 
Metaflow tracks all executions automatically. The IDs shown above are a part of this system 
- they allow you to identify and access results immediately after a task has completed.

We will talk more about accessing past results in section 3.3.2 but you can get a taste by 
using the logs command, which allows you to inspect output of any past run. Use the logs
command with a pathspec corresponding to the task you want to inspect. For instance, you 
can copy-paste a pathspec from the output your run produces and execute: 

# python helloworld.py logs 1609557277904772/start/1 
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You should see a line of output that corresponds to the print statement in the step you
inspected. The logs subcommand has a few options which you can see by executing logs --
help.

Finally, notice how Metaflow turns a single Python file into a command line application 
without any boilerplate. You don’t have to worry about parsing command line arguments or 
capturing logs manually. Every step is executed as a separate operating system level 
subprocess, so they can be monitored independently. This is also a key feature enabling 
fault-tolerance and scalability, as we will learn in Chapter 4. 

3.1.2 Managing data flow in workflows 
Data science applications are all about processing data. A prototypical application ingests raw 
data from a data warehouse, transforms it in various ways, turns it into features, and maybe 
trains a model or does inference with an existing model. A trained model or predictions are 
then the output data of the workflow. 

To be able to build a workflow like this, you need to answer three questions: 

1. How should the workflow access the input data?
2. How should the workflow move transformed data, that is, the workflow’s internal state

across steps?
3. How should the workflow make its outputs accessible by outside systems?

By answering the three questions, you determine the data flow of the application, i.e. the 
mechanisms for transporting data through the workflow. Figure 3.3 depicts data flow in the 
context of a workflow that consists of three steps, A, B, and C. 

Figure 3.3. Data flow from input to output 

In the workflow depicted in Figure 3.3, the step A comes before B. Since steps are executed 
in order, any data processed by A could be made available to B but not vice versa. This way, 
the workflow order determines how data can flow through the graph: Using Metaflow’s 
terminology, data flows from the start step towards the end step, like water flowing in a
river from upstream to downstream but never the reverse. 

To illustrate why being explicit about the data flow and state is useful, consider the example 
in Figure 3.4 that shows a simple Jupyter notebook. 
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Figure 3.4. Hidden state and undefined data flow in a notebook 

The output may seem surprising: Why is the value of x printed out as 2, even though it was
just assigned to be 1 in the cell above? In this case, the user first evaluated all cells from the 
top to the bottom and then decided to re-evaluate the middle cell. Evaluating cells out-of-
order is a common practice in notebooks. It is a part of their appeal as an unconstrained 
scratchpad. 

The Jupyter kernel maintains the state of all variables under the hood. It lets the user 
evaluate the cells in whichever order, based on its hidden state. Like in this case, the results 
can be very surprising and practically impossible to reproduce. In contrast, workflows solve 
the problem by making the evaluation order and the corresponding data flow explicit. 

Instead of using a notebook, the three cells could be organized as a workflow like the one 
depicted in Figure 3.3, which would make it impossible to produce inconsistent results. 
Notebooks have an important role in the data science stack - they are convenient for quick 
explorations and analysis. However, as exemplified above, it is better to structure any 
serious application or modeling code as a workflow with an unambiguous data flow. 

TRANSFERRING AND PERSISTING STATE IN A WORKFLOW 

What does the data flow look like in practice? If all steps were executed within a single 
process on a single computer, we could keep the state in memory, which is the ordinary way 
of building software. A challenge for data science workflows is that we may want to execute 
steps on different computers in parallel or to access special hardware like GPUs. Hence, we 
need to be able to transfer state between steps which may execute on physically separate 
computers. 

We can do this by persisting state, that is, by storing all data that is relevant for 
subsequent steps, after a step completes. Then, when a new step starts, even on another 
computer, we can load the state back and continue execution. Figure 3.5 illustrates the idea. 
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Figure 3.5. Transferring state between steps through a common data store 

In Figure 3.5, the state consists of a single variable, x. The variable is first initialized in step
A and then incremented by steps B and C. When a step finishes, the value of x is persisted.
Before a step starts, its value is loaded back. Naturally, the process needs to be repeated for 
every piece of state, for every variable, that needs to be accessed across steps. 

The idea of a persisted state can be implemented in many different ways. Many workflow 
frameworks are not particularly opinionated about it. It is up to the user to decide how to 
load and store state, maybe using a database as the persistence layer. The resulting 
workflow code can resemble the figure 3.6: Each step includes code for loading and storing 
data. While this approach is flexible, it adds quite a bit of boilerplate code. Worse, it adds 
cognitive overhead to the data scientist, as they have to decide explicitly what data to persist 
and how. 

Figure 3.6. Persisting state manually 

In our experience, data scientists can be quite conservative when storing data that may feel 
superfluous, in particular the workflow’s internal state, if they need to make an explicit 
choice about it like in figure 3.6. If the workflow framework makes it tedious to move state 
between steps, the user may be tempted to pack many unrelated operations in a single step, 
to avoid having to add boilerplate code for loading and storing data. Or, they may choose to 
persist only the outputs that are absolutely required by downstream consumers. 

While technically such a parsimonious approach can work, being too frugal with data is not 
great for the long-term health of the application. Firstly, the workflow structure should 
primarily optimize for the logical structure of the application, so it is easy to understand by 
other human readers. For instance, it makes sense to have separate steps for data 
preprocessing and model training - you shouldn’t merge the steps just to avoid having to 
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transfer state. Secondly, imagine the workflow failing in production: You want the maximum, 
not minimal, amount of information to understand what went wrong. 

To summarize, it is beneficial to have a mechanism for state transfer that makes it 
nearly transparent to the user. We don’t want the user to have to worry about the 
technical detail that the steps may execute on physically distinct computers. Also, we don’t 
want them to compromise the readability of the workflow to avoid boilerplate code. 

Most importantly, we want to encourage the user to persist data liberally, even if persisting it 
is not strictly necessary to make the workflow functional. The more data is persisted for 
every run, the more observable the workflow becomes, complementing metadata stored by 
the experiment tracking system. If enough data is persisted after each step, we can get a 
comprehensive idea of the workflow’s status during and after execution, as illustrated by 
figure 3.7. 

 
Figure 3.7. Persisted state allows you to observe workflow execution 

This approach pays great dividends in the long term: You will be able to monitor and debug 
workflows more effectively and reproduce, reuse and share their results without extra work. 
On the flip side, storing data costs money but thanks to the cloud, storage costs are getting 
quite insignificant compared to the data scientist's time. Besides, we are not advocating for 
storing copies of the input data over and over again - more about this in Chapter 4.  

METAFLOW ARTIFACTS 

To give an example of how you can make the data flow nearly transparent to the user, let’s 
consider Metaflow. Metaflow automatically persists all instance variables, i.e. anything 
assigned to self in the step code. We call these persisted instances variables artifacts. 
Artifacts can be any data: Scalar variables, models, dataframes, or anything else you need to 
process either during or after a run. Artifacts are stored in a common data repository called 
datastore which is a layer of persisted state managed by Metaflow. 
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Each step may produce any number of artifacts. After a step has completed, its artifacts are 
persisted as immutable units of data in the datastore. Those artifacts are permanently bound 
to the step, identified by a pathspec, which produced them. This is crucial for experiment 
tracking: We want to produce an accurate and unmodifiable audit trail of what was produced 
during a run. However, subsequent steps may read the artifact and produce their own 
version of it. 

To make this more concrete, let’s start with a simple example that adds state, a counter 
variable count, in a slightly modified version of HelloWorldFlow that we introduced in 
Listing 3.1. For clarity, let’s rename the flow to CounterFlow. 

As illustrated in figure 3.8, we initialize a counter variable, count, to zero in the start step. 
We do this simply by creating an instance variable in Python as usual, self.count = 0. In 
the following add step we increment count by one, self.count += 1. We increment the 
count once more in the end step before printing out the final value, which is 2. 

 
Figure 3.8. CounterFlow 

Listing 3.2 shows the corresponding code: 
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Listing 3.2 A simple flow that maintains state 

from metaflow import FlowSpec, step 

class CounterFlow(FlowSpec): 

   @step 
   def start(self): 

  self.count = 0  #A 
  self.next(self.add) 

   @step 
   def add(self): 

  print(“The count is”, self.count, “before incrementing”) 
  self.count += 1    #B 
  self.next(self.end) 

   @step 
   def end(self): 

  self.count += 1    #B 
  print(“The final count is”, self.count)    #C 

if __name__ == '__main__': 
   CounterFlow() 

#A Initialize the count to zero 
#B Increment the count by one 
#C Show the final count 

Save the flow code to a file called counter.py and execute it as before: 

# python counter.py run 

In addition to the usual messages output by Metaflow, you should see a line saying “the 
count is 0 before incrementing” and “The final count is 2”. Assuming you are already familiar 
with the basics of Python2, you can notice that the flow behaves like any Python object when 
self.start(), self.add(), and self.end() are called in a sequence.

By design, the syntax of managing state in Metaflow looks like idiomatic, straightforward 
Python - just create instance variables with self as usual. It is equally easy to exclude
temporary values that are not worth saving: Just create ordinary, non-instance variables, 
which will get cleaned up after the scope (e.g. a method) exits. 

RULE OF THUMB Use instance variables, i.e. self, to store any data and objects that may have value 

outside the step. Use local variables only for intermediary, temporary data. When in doubt, use instance 

variables since they make debugging easier.  

By design, the state management looks almost trivially simple in Metaflow but there is a lot 
happening under the hood. Metaflow must address two key challenges related to data flow: 

2 For a refresher of how instance variables aka data attributes work in Python, take a look at the Python tutorial section about “Instance variables”. 

68

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables
https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables


 

©Manning Publications Co.  To comment go to  liveBook 

1. Each task is executed as a separate process, possibly on a separate physical 
computer. We must concretely move state across processes and instances. 

2. Runs may fail. We want to understand why they failed, which requires understanding 
of the state of the flow prior to the failure. Also, we may want to restart failed steps 
without having to restart the whole flow from the beginning. All these features require 
us to persist state. 

To address these challenges, Metaflow snapshots and stores the state of the workflow, as 
stored in self, after every task. Snapshotting is one the key features of Metaflow which 
enables many other features, such as resuming workflows and executing tasks on disparate 
compute environments, and, in particular, easy observability of workflows. 

You can observe instance variables as soon as a task completes, even when a run is still 
executing. There are multiple ways of doing this but an easy way is to use the dump 
command, which works similar to the logs command that we used earlier. Just copy-paste a 
pathspec of a task that you want to observe, for instance: 

# python counter.py dump 1609651059708222/end/3 

If you used a pathspec corresponding to the end task, like in the example above, you should 
see a line printed out that says count has the value of 2. Expectedly, the value will be lower 
for earlier steps. Besides the dump command, you can access artifacts programmatically e.g. 
in a notebook using the Metaflow Client API, which we will cover in section 3.3.2. 

This discussion covered only the basics of artifacts. The next section about Parameters shows 
how artifacts can be passed into a run from outside the flow. The next chapter will go into 
details about how to deal with large datasets, which sometimes require special treatment. 
Later in chapter 6 we will discuss how to handle complex objects, such as machine learning 
models, as artifacts.  

HOW METAFLOW’S DATASTORE WORKS 

You don’t need these technical details to use or operate Metaflow successfully but in case you 
are curious, here is how Metaflow’s datastore works under the hood.  

After Metaflow completes evaluating a task, it inspects what instance variables have been 
created by the user code. All variables are serialized, i.e. converted to bytes, and stored in a 
datastore managed by Metaflow. These serialized objects are called artifacts. They are a key 
concept in the Metaflow universe. 

Figure 3.9 illustrates how data gets moved and persisted in the datastore in the case of 
CounterFlow. After the start step finishes, Metaflow detects the count variable. Its value of 0 
gets serialized to bytes, currently using the Python’s built-in Pickle library but this is 
considered an internal implementation detail that is subject to change. Let’s assume the byte 
sequence corresponding to 0 is ab0ef2. These bytes get stored in the datastore (unless they 
exist there already) as an immutable blob, an artifact. After this, internal metadata is 
updated so that the count variable refers to the artifact ab0ef21 at the start step. 
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When the add step accesses count for the first time, Metaflow fetches it from the datastore 
based on metadata - we know that add gets its values from start because of the flow order. 
The add step increments the value of count, which causes a new artifact being created. It is 
important to note that we don’t change the previously stored value of count, as its historical 
value at start hasn’t changed. Each step has its own set of artifacts. The process is repeated 
for the end step. 

 
Figure 3.9: How datastore handles artifacts internally 

Metaflow’s datastore is organized as a content-addressed storage, bearing conceptual 
similarity to the Git version control system. Internally, artifacts are named using the hash of 
their contents and hence only one copy of its unique value needs to be stored. In other 
words, the datastore de-duplicates artifacts automatically. This means that disk space is 
used efficiently and in most cases you don’t have to worry about creating too many artifacts 
in order to conserve space. 

WHAT SHOULD BE A STEP? 

When you are developing a new flow, you may wonder what operations should belong to the 
same step and when it makes sense to split a large step into multiple separate steps. 

While there isn’t a single right answer, it may be helpful to think steps as checkpoints. As 
discussed above, artifacts are persisted when a step (a task launched by the step, to be 
precise) finishes. After artifacts have been persisted successfully, they become available for 
inspection as described in section 3.3.2. Also you will be available to resume execution at an 
arbitrary step, as described in section 3.3.3. Hence it makes sense to keep steps reasonably 
small in terms of execution time, so if failures happen, you won’t lose too much work. Or, if 
you want to monitor the state of a run in near real-time, you will need small steps too. 
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On the other hand, persisting artifacts and launching tasks has some overhead. If your steps 
are way too small, the overhead starts dominating the total execution time. This overhead is 
quite easy to notice though, so you can always merge tiny steps back together if it becomes 
an issue. 

Another consideration is the readability of the code. If you execute 

# python myflow.py show 

do you find the graph meaningful? It is likely that steps that are too large hurt 
comprehensibility more than steps that are too small. 

RULE OF THUMB Keep steps as small as possible but not smaller. 

3.1.3 Parameters 
In the previous section we learned how we can pass data downstream in a flow using 
artifacts, that is, by assigning variables to self. But what if you want to pass in data to
start, e.g. to set parameters for the flow?

For instance, imagine that you are experimenting with a new model and you train it with 
various parameterizations. When you analyze the results of your experiments afterwards, it 
is imperative that you know what parameters were used to train a particular version of the 
model. As a solution, Metaflow provides special artifacts called Parameter which can be used
to pass data into a run. Parameter artifacts are tracked like any other artifacts, so you are
able to check the parameters assigned to any past run.

Parameters are a flow-level, i.e. a class-level construct - they are not bound to any particular 
step and they are automatically made available to all steps, including start.

To define a Parameter, you have to specify the following four elements:

1. Create a Parameter instance at the class level.
2. Assign the parameter to an artifact, e.g. animal and count in listing 3.3.
3. Specify the name of the parameter that is shown to the user, e.g. creature and

count below. The artifact name and the parameter name can be the same but they
don’t have to be.

4. Decide the type of the parameter. By default, parameters are strings. You can change
the type either by specifying a default value for the parameter, like for count below,
or by explicitly setting the type to one the basic scalar types of Python, str, float,
int, or bool, as for ratio in listing 3.3.

Besides these required elements, Parameter supports a set of optional arguments. Typical
options include help, which specifies a user-visible help text, and required=True which
indicates that the user must supply a value for the parameter. By default, all parameters are 
optional - they receive the value of None if no default is specified and the user didn’t
provide a value. Listing 3.3 shows an example. 
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Listing 3.3 A flow with parameters 

from metaflow import FlowSpec, Parameter, step 
 
class ParameterFlow(FlowSpec): 
 
    animal = Parameter(‘creature’,    #A 
                       help=”Specify a creature”, 
                       required=True) 
 
    count = Parameter(‘count’,    #A   
                      help=”Number of creatures”, 
                      default=1) 
 
    ratio = Parameter(‘ratio’,    #A 
                      help=”Ratio between 0.0 and 1.0”, 
                      type=float) 
 
    @step 
    def start(self): 
        print(self.animal, “is a string of”, len(self.animal), “characters”) 
        print(“Count is an integer: %s+1=%s” % (self.count, self.count + 1)) 
        print(“Ratio is a”, type(self.ratio), “whose value is”, self.ratio) 
        self.next(self.end) 
 
    @step 
    def end(self): 
        print(‘done!’) 
 
if __name__ == '__main__': 
    ParameterFlow() 

#A Parameters are defined at the class-level, outside steps 

Save the code to a file called parameters.py and try to run it as usual: 

# python parameters.py run 

This fails with an error: Missing option '--creature'. This is due to the fact that the 
creature Parameter has required=True. If this was a real flow, this error would be a good 
reason to check the help for the flow: 

# python parameters.py run --help 

You see a bunch of options being listed. The user-defined parameters are at the top of the 
option list with their help texts shown. Try setting a value for --creature: 

# python parameters.py run --creature seal 

The flow should run and you see an output corresponding to the assigned parameter values. 
Note that ratio doesn’t have a default, so it is set to None. Let’s try specifying all the 
values: 

# python parameters.py run --creature seal --count 10 --ratio 0.3 

Notice how count and ratio are converted to the correct Python types automatically. 
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NOTE Parameters are constant, immutable values. You can’t change them in your code. If you want to 

mutate a parameter, create a copy of the parameter value and assign it to another artifact. 

SPECIFYING PARAMETERS AS ENVIRONMENT VARIABLES 

If you execute the same run command line frequently, maybe with slight modifications, it 
may get frustrating to specify the same parameters over and over again. For convenience, 
you can specify any options as environment variables too. 

To do this, set an environment variable whose name matches with the option name, prefixed 
with METAFLOW_RUN_. For instance, we can fix the value of creature for parameters.py as
follows: 

# export METAFLOW_RUN_CREATURE=dinosaur 

Now you can run ParameterFlow without specifying --creature, as its value specified via an
environment variable: 

# python parameters.py run --ratio 0.25 

If both an environment variable and a command-line option are set, the latter takes the 
precedence as you can see by executing: 

# python parameters.py run --creature otter --count 10 --ratio 0.3 

The creature should be set to otter, not dinosaur.

COMPLEX PARAMETERS 

The above mechanism works for basic scalar parameters that are strings, integers, floating 
point numbers, or boolean values. Most basic flows need nothing besides these basic types 
as parameters. 

But sometimes you might need a parameter that is a list or a mapping of some sort, or a 
complex combination of these. A challenge is that since parameters are typically (but not 
always, as we will learn in Chapter 5) defined on the command line as a string, we need a 
way to define non-scalar values as strings so they can be passed in as a Parameter. This is
where JSON-encoded parameters come in handy. 

Listing 3.4 shows a simple example that accepts a dictionary as a parameter: 
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Listing 3.4 A flow with a JSON-typed parameter 

from metaflow import FlowSpec, Parameter, step, JSONType    #A 
 
class JSONParameterFlow(FlowSpec): 
 
    mapping = Parameter(‘mapping’, 
                        help=”Specify a mapping”, 
                        default=’{“some”: “default”}’, 
                        type=JSONType)    #A 
 
    @step 
    def start(self): 
        for key, value in self.mapping.items(): 
            print(‘key’, key, ‘value’, value) 
        self.next(self.end) 
 
    @step 
    def end(self): 
        print(‘done!’) 
 
if __name__ == '__main__': 
    JSONParameterFlow() 

#A to define a JSON-typed parameter, import JSONType and specify it as the parameter type 

Save the snippet to a file called json_parameter.py. You can pass in a mapping, a 
dictionary, on the command line as follows: 

# python json_parameter.py run --mapping ‘{“mykey”: “myvalue”}’ 

Note that the dictionary is enclosed in single quotes to avoid the special characters from 
confusing the shell. 

It is not convenient to specify a large JSON object in-line on the command line. For large 
JSON objects, a better approach is to read the value from a file using a standard shell 
expression. If you don’t have a large JSON file for testing handy, you can create one, let’s 
call it myconfig.json, as follows: 

# echo ‘{“largekey”: “largevalue”}’ > myconfig.json 

Now you can provide this file as a parameter: 

# python parameters.py run --mapping “$(cat myconfig.json)” 

The shell expression, $(cat myconfig.json), substitutes the value on the command line 
with the contents of a file, myconfig.json. In this case, we must enclose the shell 
expression in double quotes. 

FILES AS PARAMETERS 

The mechanisms shown above allow you to parametrize a run with small values, or maybe 
configuration files, passed on the command line. They are not intended to be a mechanism 
for passing in large amounts of input data. 
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In real-life data science applications, however, it is not always easy to draw the line between 
parameters and input data. Large configuration files may be larger than the smallest data 
sets. Or there may be a medium-size auxiliary data set that feels like a parameter, while the 
actual input data is provided through a separate channel. 

Metaflow provides a special parameter called IncludeFile which can be used to include
small or medium size datasets in a run as an artifact - a typical example would be a CSV 
(comma-separated value) file. There isn’t an exact limit for the size of files that can be 
handled by IncludeFile but its performance isn’t optimized for big data, say, files larger
than a gigabyte. Consider it a supersized Parameter, as illustrated in figure 3.10, rather than
a mechanism for large-scale data processing which will be covered in chapter 4. 

Figure 3.10. Parameters are only meant for small and medium-size data 

Let’s take a look at an example in Listing 3.5: it accepts a CSV file as a parameter and 
parses it. The example uses Python’s built-in CSV parser from the csv module, so it can
handle quoted values and configurable field delimiters. You can change the default delimiter, 
a comma, by specifying the --delimiter option.

To test the flow, you can create a simple CSV file, test.csv, that contains any comma-
separated values, like here: 

first,second,third 
a,b,c 

The csv.reader function will take the CSV data as a file object, so we wrap our string-valued
self.data artifact in a StringIO which makes it an in-memory file object. In IncludeFile,
is_text=True indicates that the corresponding artifact should be returned as a Unicode
string instead of a bytes object. 
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Listing 3.5 A flow that includes a CSV file as a parameter 

from metaflow import FlowSpec, Parameter, step, IncludeFile 

from io import StringIO 
import csv 

class CSVFileFlow(FlowSpec): 

   data = IncludeFile('csv', 
   help="CSV file to be parsed", 
   is_text=True) 

   delimiter = Parameter('delimiter', 
 help="delimiter", 
 default=',') 

   @step 
   def start(self): 

  fileobj = StringIO(self.data) 
  for i, row in enumerate(csv.reader(fileobj, delimiter=self.delimiter)): 

   print(“row %d: %s” % (i, row)) 
  self.next(self.end) 

   @step 
   def end(self): 

  print(‘done!’) 

if __name__ == '__main__': 
   CSVFileFlow() 

Save the code to csv_file.py. You can run it as follows:

# python csv_file.py run --csv test.csv 

You should see parsed fields of the CSV file printed out. You might wonder how this simple 
example is different from just opening the CSV file directly in the code, e.g. by doing 
csv.reader(open(‘test.csv’)). The key difference is that IncludeFile reads the file and
persists it as an immutable Metaflow artifact, attached to the run. Consequently the input file 
is snapshotted and versioned together with the run, so you can access the original data even 
if test.csv gets changed or lost. This can be very useful for reproducibility, as we will learn
in chapter 6. 

Now you know how to define sequential workflows that may receive data from the outside 
world through parameters and process it in multiple steps that share state via artifacts. In 
the next section we will learn how to run many such sequences of steps concurrently.  

3.2 Branching and merging 
Alex is positively surprised by the fact that defining basic workflows in Metaflow isn’t much 
harder than writing code in notebooks. But is there any benefit to writing code this way? At 
this point, purported benefits of workflows seem quite abstract. Alex chats with Bowie over 
coffee, reminiscing about a project that took nine minutes to execute in a notebook. Bowie 
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points out that workflows make it easy to execute operations parallel, which can make 
processing much faster. The idea of getting stuff done faster resonates with Alex - maybe 
this is the killer feature of workflows! 

Workflows provide an abstraction of concurrency, branching, that allow efficient use of 
parallel compute resources, such as multi-core CPUs and distributed compute clusters. While 
there are many other paradigms that enable parallel computing, many of them are 
notoriously hard to get right - multithreaded programming being a well-known example. 
Workflows are uniquely powerful because they make parallelism accessible to non-expert 
software developers, including data scientists. 

When should one use branches? Let’s start by considering a linear workflow that doesn’t 
have branches. Designing a linear workflow isn’t too hard typically: It is often quite evident 
that we must do A before B and only after B can C happen. The A→B→C order is imposed by 
the data flow: C needs some data from B that needs data from A. 

Correspondingly, you should use branches whenever the data flow allows it: If A produces 
data that can be used by both B and C, and there’s no other data being shared amongst B 
and C, then B and C should branch off from A, so they can be run concurrently. Figure 3.11 
gives a concrete example of this: In order to train any models, we need to fetch a data set 
which is performed by the step A. We want to train two separate versions of the model using 
the data produced by A. There’s nothing that B requires from C or vice versa, so we should 
specify them as independence branches. After B and C complete, we want to choose the best 
model in step D which obviously requires input from both B and C. 
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Figure 3.11. A basic workflow with two branches 

We could express the DAG of figure 3.11 as a linear DAG, A→B→C→D or A→C→B→D, and 
get exactly the same results. These DAGs would be slower to execute since Metaflow 
wouldn’t be able to run B and C in parallel. Besides performance benefits, branches can 
make workflows more readable by highlighting the actual data flow and interdepencies 
between steps. 

Hence, we can recommend the following best practice: 

RULE OF THUMB Whenever you have two or more steps that can be executed independently, make them 

parallel branches. It will make your workflow easier to understand, as the reader can see what steps don’t 
share data just by looking at the workflow structure. It will make your workflow faster too. 

You may wonder if the system could figure out an optimal DAG structure automatically. 
Automatic parallelization has been an active research topic in Computer Science for decades 
but, alas, it is practically impossible to do this arbitrary, idiomatic Python code. The main 
obstacle is that often the flow code itself does not contain enough information about what 
can be parallelized, since the steps interact with other 3rd party libraries and services. We 
have found that letting the user stay in control is less confusing than relying on a half-baked, 
error-prone automation. Also, ultimately, workflows are a medium of human communication. 
No automated system can decide what’s the most understandable way to describe a business 
problem to a human being. 

3.2.1 Valid DAG structures 
We call a step that fans out branches, like the step A in figure 3.11, a split step. 
Correspondingly, we call a step that fans in branches, like the step D in figure 3.11, a join 
step. To keep the data flow easy to understand, Metaflow requires that every split step has a 
corresponding join step. You can think of split as the left parenthesis, (, and join as the right 
one, ). A properly parenthesized expression (like this one) needs parentheses on both sides. 
You can nest splits and joins as deeply as needed. 

Figure 3.12 shows an example of a valid DAG with nested branches. The graph has three 
split steps, shaded light gray. Each split step is matched by a join step, shaded dark gray.  
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Figure 3.12. A valid DAG with two levels of nested branches 

nested branches. The graph has three split steps, shaded light gray. Each split step is 
matched by a join step, shaded dark gray. Note that just having the same number of splits 
and joins isn’t sufficient - there’s another rule to follow: 

RULE A join step can only join steps that have a common split parent. 

Figure 3.13 shows an DAG with two invalid splits: Dark and light gray. The dark split should 
have a corresponding dark join but here the dark join tries to join a light step, which is not 
allowed - a join step can only join steps from a common split parent. When you plot a valid 
Metaflow DAG, edges (arrows) never have to cross. 

Figure 3.13. An invalid DAG where splits and joins don’t match 

The reason for these rules go back to the data flow: We need to keep track of the lineage of 
artifacts, which could get very confusing in a graph with crossing edges. 

3.2.2 Static branches 
In section 2.2.2, we introduced the concept of a static DAG, i.e. a DAG whose structure is 
fully known before execution begins. All examples depicted above, for instance the one in 
figure 3.11, have been static DAGs with static branches. In this section, we will show how 
static branches are defined in Metaflow. 
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Before we get to the syntax of splits and joins, there is one important topic that we need to 
cover: In branches, the data flow, i.e. artifacts, will diverge by design. When we reach a join 
step, we must decide what to do with diverged values, in other words, we must merge the 
artifacts. The question of merging often trips new users of Metaflow, so let’s start with a 
simple example. 

Let’s expand our original CounterFlow example from Listing 3.2 by adding another branch,
as depicted in figure 3.14. Here, start is our split step. We have one branch, add_one,
which increments count by one, and another branch, add_two, which increments it by two.
Now going in the join step, we have two possible values for count, 1 and 2. We must decide
which one is the right value going forward.  

Figure 3.14. CounterBranchFlow 

In this example, similar to real-life flows, there isn’t an unambiguous right or wrong answer 
for what value count should get in the join step. The right choice depends on the application:
Maybe it should be the maximum of the two, like in Listing 3.6 below, maybe the average, or 
maybe the sum. It is up to the user to define how the values should be merged. For 
instance, considering the “choose the best model” step in figure 3.11, the step would iterate 
through the models X and Y and choose the one with the highest score. 

While it is easy to see that the question of count needs to be resolved in figure 3.14, there’s
an additional challenge: Metaflow can’t detect reliably which artifacts have been modified, so 
a join step needs to decide what to do with all artifacts coming upstream. If you don’t do 
anything in a join step, downstream steps won’t have access to any data prior to the join, 
except parameters that are constant and hence guaranteed to be always available. 

RULE Join steps act as barriers in the data flow. You must explicitly merge all artifacts except parameters 

to let data flow through downstream. 

In Listing 3.6 below that corresponds to figure 3.14 we added another artifact, creature, to
demonstrate this. If the join step doesn’t do anything with creature, it won’t be available in
the end step, although the branches didn’t modify it at all.
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The syntax for defining a split for a static branch is simple: Just list all branches as 
arguments to self.next. Join steps take an extra argument that is by convention called
inputs, which gives you access to artifacts from each inbound branch. A join step doesn’t
have to be called join - it is recognized as a join step solely based on the extra argument.

The inputs object allows you to access the branches in three different ways: 

1. You can iterate over inputs. It is common to merge artifacts using Python’s built-in
functions like min, max, or sum with a generator expression that loops over the inputs.
This is how we pick the maximum of counts in Listing 3.6 below.

2. With static branches, you can refer to branches by their names, like in the print
statements in Listing 3.6.

3. You can refer to branches by index. It is common to use the first branch, inputs[0], to
re-assign artifacts that are known to be constant across all branches. This is how we
reassign the creature artifact in Listing 3.6.

Listing 3.6 A flow with static branches 

from metaflow import FlowSpec, step 

class CounterBranchFlow(FlowSpec): 

   @step 
   def start(self): 

  self.creature = "dog" 
  self.count = 0 
  self.next(self.add_one, self.add_two)    #A 

   @step 
   def add_one(self): 

  self.count += 1 
  self.next(self.join) 

   @step 
   def add_two(self): 

  self.count += 2 
  self.next(self.join) 

   @step 
   def join(self, inputs):  #B 

  self.count = max(inp.count for inp in inputs)    #C 
  print("count from add_one", inputs.add_one.count)    #D 
  print("count from add_two", inputs.add_two.count)    #D 

  self.creature = inputs[0].creature    #E 
  self.next(self.end) 

   @step 
   def end(self): 

  print("The creature is", self.creature) 
  print("The final count is", self.count) 

if __name__ == '__main__': 
   CounterBranchFlow() 
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#A A static branch is defined by giving all outbound steps as arguments to self.next 
#B A join step is defined by an extra inputs argument to step 
#C We take the maximum of two counts by iterating over inputs 
#D We can also print out values from specific named branches 
#E To re-assign unmodified artifacts, we can just refer to the first branch by index 

Save the code to counter_branch.py. You can run it as follows:

# python counter_branch.py run 

The final count that is printed out should be 2, i.e. the maximum of the two branches. You 
can try commenting out the self.creature line in the join step to see what happens when
not all artifacts required by the downstream steps, end in this case, are handled by join. It
will crash since self.creature is not found.

In the logs, notice how the pid, the process identifier, is different for add_one and add_two. 
Metaflow executes the two branches as separate processes. If your computer has multiple 
CPU cores, which is almost certain on any modern system, the operating system is likely to 
execute the processes on separate CPU cores which means that the computation is physically 
happening in parallel. This means that you can get results up to twice as fast compared to 
running them sequentially. 

MERGE HELPER 

You may wonder what happens if you have many artifacts: is it really necessary to re-assign 
all of them explicitly? All of them need to be reassigned but to avoid boilerplate code, 
Metaflow provides a helper function, merge_artifacts, which does most of the grunt work
for you. To see it in action, you can replace the line that re-assigns the constant artifact: 

self.creature = inputs[0].creature 

with this line: 

self.merge_artifacts(inputs) 

If you run the flow again, you see that it works equally well with merge_artifacts.

As you can imagine, merge_artifacts can’t do all merging for you. It doesn’t know that you
want to use the maximum of counts, for instance. It relies on you first merging all diverged
artifacts explicitly, like we did with count in Listing 3.6. When you call merge_artifacts 
after all diverged artifacts have been reassigned, it will reassign all the remaining, non-
divergent artifacts, i.e. artifacts that have the same value in all branches, for you 
automatically. It will fail loudly if any divergent artifacts remain. 

Sometimes you may have artifacts that don’t have to be visible downstream, so you don’t 
want to merge them, but they would confuse merge_artifacts. Listing 3.7 demonstrates
such a case: We define an artifact, increment, in the two branches with two different values.
We consider it as an internal detail to the step, so we don’t want to merge it. However, we 
want to save it in an artifact in case we need to debug code later. 
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We can use the exclude option in merge_artifacts to list all artifacts that can be safely 
ignored: 

Listing 3.7 Merging branching using the merge helper 

from metaflow import FlowSpec, step 
 
class CounterBranchHelperFlow(FlowSpec): 
 
    @step 
    def start(self): 
        self.creature = "dog" 
        self.count = 0 
        self.next(self.add_one, self.add_two) 
     
    @step 
    def add_one(self): 
        self.increment = 1    #A 
        self.count += self.increment 
        self.next(self.join) 
     
    @step 
    def add_two(self): 
        self.increment = 2    #A 
        self.count += self.increment 
        self.next(self.join) 
 
    @step 
    def join(self, inputs): 
        self.count = max(inp.count for inp in inputs) 
        print("count from add_one", inputs.add_one.count)        
        print("count from add_two", inputs.add_two.count)     
        self.merge_artifacts(inputs, exclude=['increment'])    #B 
        self.next(self.end) 
 
    @step 
    def end(self): 
        print("The creature is", self.creature) 
        print("The final count", self.count) 
 
if __name__ == '__main__': 
    CounterBranchHelperFlow() 

#A The value of increment diverges between the two branches 
#B We must explicitly ignore the diverged artifact, since we are not handling it explicitly 

Save the code to counter_branch_helper.py. You can run it as follows: 

# python counter_branch_helper.py run 

The output is the same as in Listing 3.6. You can remove the exclude option to see the error 
that merge_artifacts raises when it faces artifacts with diverged values. Besides exclude, 
merge_artifacts has a few more convenient options that you can peruse in the online 
documentation of Metaflow. 
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3.2.3 Dynamic branches 
In the previous section we showed how you can fan out to a predefined list of named steps, 
each performing a different operation. Concurrent operations like this are sometimes called 
Task parallelism. In contrast, what if you want to perform essentially the same operation but 
with different input data? Data parallelism like this is extremely common in data science 
applications. 

Wikipedia3 describes the two types of parallelism as follows: 

Data parallelism involves running the same task on different components of data, whereas 
task parallelism is distinguished by running many different tasks at the same time on the 
same data. 

In the context of data science, data parallelism occurs in many contexts, for instance, when 
you train or score models in parallel, process shards of data in parallel, or do 
hyperparameter searches in parallel. In Metaflow, data parallelism is expressed via the 
foreach construct. We call foreach branches dynamic branches, since the width or the 
cardinality of the branch is determined dynamically at the runtime based on data, not in the 
code as with static branches. 

NOTE Whereas static branches are suitable for expressing concurrency in code, i.e. operations that are 

always concurrent no matter what data is being processed, dynamic branches are suitable for expressing 
concurrency in data.  

In figure 3.11 we sketched how a static DAG could be used to build two models, X and Y, in 
parallel. The structure makes sense if training X and Y require substantially different code - 
maybe X is a decision tree and Y is a deep neural network. However, this approach wouldn’t 
make sense if the code in various branches is equal but only the data is different. For 
instance, consider training a decision tree model for each country in the world as depicted in 
figure 3.15.  

3 See the Wikipedia article about Task Parallelism 
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Figure 3.15. A workflow with dynamic, data-driven branches 

A construct called foreach in Metaflow allows you to run a copy of a step for each value of a 
given list, hence the name for-each. Many programming languages, including Python, 
provide a similar function called map4. Like map, foreach takes a user-defined function (a 
step in Metaflow) and applies it to each item of the given list, saving and returning the result 
(artifacts in Metaflow). 

The logistics of splitting and joining work exactly the same way as with static branches, 
besides a slightly different syntax used in the split step. In particular, you need to merge 
artifacts for foreach similarly as with static branches. 

Llisting 3.8 demonstrates the syntax for foreach: 

4 Metaflow avoids calling the operation map just because the term “map” is so ambiguous. Also technically a map is supposed to return a single output 
value like a well-behaving mathematical function, whereas foreach may return any number of values through artifacts. 
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Listing 3.8 A flow with a foreach branch 

from metaflow import FlowSpec, step 

class ForeachFlow(FlowSpec): 

   @step 
   def start(self): 

  self.creatures = ['bird', 'mouse', 'dog'] 
  self.next(self.analyze_creatures, foreach='creatures')    #A 

   @step 
   def analyze_creatures(self): 

  print("Analyzing", self.input)    #B 
  self.creature = self.input 
  self.score = len(self.creature) 
  self.next(self.join) 

   @step 
   def join(self, inputs): 

  self.best = max(inputs, key=lambda x: x.score).creature 
  self.next(self.end) 

   @step 
   def end(self): 

  print(self.best, 'won!') 

if __name__ == '__main__': 
   ForeachFlow() 

#A A foreach branch is defined with the foreach keyword that refers to a list 
#B self.input points to an item of the foreach list 

A foreach split is defined by calling self.next with a reference to a step as usual and a
keyword argument foreach which takes an artifact name, a string, as its value. The artifact
referred to by foreach should be a Python list. In this example, the foreach artifact is called
creatures.

The analyze_creatures step will be called for each item of the list, in this case, three times.
In the foreach step, you have access to a special attribute called self.input which contains
an item from the foreach list which is assigned for the currently executing branch. Note that 
self.input is not available outside foreach, so if you want to keep the value, you should 
assign it to another artifact, like we did with self.creature below.

This example also demonstrates a common pattern of picking a branch that maximizes some 
artifact value, in this case score. Python’s built-in max function accepts an optional key
argument, which defines a function that produces a sort key that is used to define the 
maximum. In effect, this is an implementation of arg max in Python, which is a very common 
operation in data science especially in the context of foreaches. 

Save the code to foreach.py and run it as follows:

# python foreach.py run 
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You can see that three instances of analyze_creatures were running concurrently, each
getting a different value from the creatures list. Each creature was scored based on the
length of their name and mouse won.

This is the first example that shows how a single step spawns multiple tasks. In the logs, you 
can see each task having a unique ID, like analyze_creatures/2 and
analyze_creatures/3, which are used to uniquely identify branches of the foreach.

NUMERICAL COMPUTING LOVES DYNAMIC BRANCHING 

The pattern of executing a piece of code for different parts of data in parallel and then 
collecting the results is universal in numerical computing. In the literature, the pattern goes 
by names such as 

• Bulk Synchronous Parallel (a concept first introduced in the 1980s)
• MapReduce (popularized by an open-source data processing framework Hadoop)
• Fork-Join model (e.g. java.util.concurrent.ForkJoinPool in Java)
• Parallel Map (e.g. in Python’s multiprocessing module)

If you are curious, you can see Wikipedia for more details about these concepts. They are all 
similar to the foreach construct in Metaflow. 

In a typical data science application, parallelism takes place at many levels. For instance, at 
the application level you can use Metaflow’s foreach to define a workflow that trains a 
separate model for each country, like in Figure 3.15. Then at the low level, close to the 
metal, models are trained using an ML library like TensorFlow that parallelizes matrix 
calculations over multiple CPU cores using a similar pattern internally. 

The philosophy of Metaflow is to focus on the high-level, human-centric concerns regarding 
the overall structure of the application and let off-the-shelf ML libraries handle machine-
centric optimizations. 

3.2.4 Controlling Concurrency 
A single foreach can be used to fan out even tens of thousands of tasks. In fact, foreach is a 
key element of the scalability story of Metaflow, as described in chapter 4. As a side effect, a 
foreach branch can accidentally launch so many concurrent tasks on your laptop that it starts 
glowing red hot. To make life easier for your laptop (or data center), Metaflow provides a 
mechanism for controlling the number of concurrent tasks. 

The concurrency limit doesn’t change the workflow structure in any way - the code stays 
intact. By default, the limit is enforced during execution by Metaflow’s built-in local 
scheduler that takes care of executing the workflow when you type run. As mentioned in
section 2.2.3, Metaflow supports other schedulers for use cases that require higher 
availability and scalability. They may provide more fine-grained controls for concurrency, 
which we will cover in chapter 5. 

To see how the concurrency limit works in practice, let’s use Listing 3.9 as an example. It 
shows a flow that includes a foreach over a list with a thousand items. 
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Listing 3.9 A flow with a 1000-way foreach 

from metaflow import FlowSpec, step 

class WideForeachFlow(FlowSpec): 

   @step 
   def start(self): 

  self.ints = list(range(1000)) 
  self.next(self.multiply, foreach='ints') 

   @step 
   def multiply(self): 

  self.result = self.input * 1000 
  self.next(self.join) 

   @step 
   def join(self, inputs): 

  self.total = sum(inp.result for inp in inputs) 
  self.next(self.end) 

   @step 
   def end(self): 

  print('Total sum is', self.total) 

if __name__ == '__main__': 
   WideForeachFlow() 

Save the code to wide_foreach.py. Try running it as follows:

# python wide_foreach.py run 

This should fail with an error message about start spawning too many child tasks. Since
defining foreaches is so easy in Metaflow, one can inadvertently use a very large list in 
foreach, possibly including millions of items. Running a flow like this would take a good while 
to execute. 

To prevent silly (and possibly expensive) mistakes from happening, Metaflow has a 
safeguard for the maximum size of a foreach. You can raise the limit with the --max-num-
splits option, like here

# python foreach.py run --max-num-splits 10000 

If you run wide foreaches all the time, it might be easier to set an environment variable 

# export METAFLOW_RUN_MAX_NUM_SPLITS=100000 

Theoretically, all the 1000 tasks of the foreach in listing 3.9 could be run concurrently. 
However, remember that each task becomes a process of its own, so it is likely that your 
operating system wouldn’t be too happy managing a thousand active processes running 
concurrently. Besides, it wouldn’t make things any faster since your computer doesn’t have 
1000 CPU cores, so most of the time tasks would just idle in the operating system’s 
execution queue. 
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To power the prototyping loop, the run command in particular, Metaflow includes a built-in
workflow scheduler similar to those listed in section 2.2.3. Metaflow refers to this scheduler 
as the local scheduler, distinguishing it from other schedulers that can orchestrate Metaflow 
flows, as we will learn in chapter 5. The local scheduler behaves like a proper workflow 
scheduler: It processes steps in the flow order, translating steps to tasks and executing tasks 
as processes. Importantly, it can control how many tasks are executed concurrently. 

You can use an option --max-workers to control the maximum number of concurrent
processes launched by the scheduler. By default, the maximum is 16. For local runs, like the 
ones we have been executing this far, there isn’t much benefit in setting the value higher 
than the number of CPU cores in your development environment. Sometimes you may want 
to lower the value to conserve resources on your computer: for instance, if a task requires 
4GB of memory, you can’t run 16 of them concurrently unless your computer has at least 
16*4=64GB of memory available. 

You can experiment with different values of max-workers. For instance, compare the
execution times 

# time python wide_foreach.py run --max-num-splits 1000 --max-workers 8 

versus 

# time python wide_foreach.py run --max-num-splits 1000 --max-workers 64 

We will learn more about the effects of max-workers in chapter 5.

Figure 3.16 summarizes the two options. The step A is a foreach split that spawns 8 tasks of 
step B. In this case, if you specified any value lower than 8 for --max-num-splits, the run
would crash, since the option controls the maximum width of the foreach branch. All 8 tasks 
will be run regardless of the value of --max-workers, since it only controls concurrency.
Here, setting --max-workers=2 informs the local scheduler to run at most two tasks
concurrently, so the eight tasks will be executed as four mini-batches. 

Figure 3.16. The effect of max-num-splits and max-workers 

Congratulations! You are now able to define arbitrary workflows in Metaflow, manage data 
flow through branches, and execute even large-scale test cases on your laptop without 
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melting it! With this foundation, we can proceed to building our first real-life data science 
application. 

3.3 Metaflow in Action 
As the first actual data science project, Harper suggests that Alex could build an application 
that predicts the type of a promotional cupcake that a new customer is most likely to enjoy, 
given a set of known attributes about the customer. Luckily, this far customers have 
manually picked their favorites, so their past choices can be used as labels in the training 
set. Alex recognizes that this is a simple classification task, which shouldn’t be too hard to 
implement using an off-the-shelf machine learning library. Alex starts developing a prototype 
using Metaflow. 

Now that we have covered the basics of Metaflow, we can build a simple but functional data 
science application. The application creates a dataset for training and testing, trains two 
different classifier models and chooses the best performing one. The workflow resembles the 
one in figure 3.11.  

Don’t worry if you are not an expert in machine learning. The application, like all the other 
examples in this book, demonstrates the development experience and infrastructure for data 
science, not modeling techniques. If you are curious about the modeling side of things, you 
can learn more in the tutorial for Scikit Learn which this example is based on. 

We will build the example incrementally through multiple iterations, as we would if we were 
prototyping a real-life application. This is a good opportunity to put the workstation setup 
with an IDE, notebooks, and a cloud instance outlined in Chapter 2 into action too. 
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3.3.1 Starting a new project 
Starting a new project from scratch can feel overwhelming: You are staring at a blank file in 
the editor, not knowing how and where to begin. Thinking the project in terms of a workflow 
can help: We might have only a faint idea of what needs to be done but at least we know 
that the workflow will have a start step in the beginning and an end step in the end.

Correspondingly, we know that the workflow will need to get some input data and it will need 
to write the results somewhere. We know that some processing will need to happen between 
start and end but we can figure it out iteratively. Figure 3.17 summarizes the approach as a
spiral (or an upside down snail which might be easier to remember): 

Figure 3.17. The spiral recipe for starting a new project 

Follow the path indicated by the black arrows when starting a new project: 

1. What is the business problem we are trying to solve?
2. What input data can we use? How and where can we read it?
3. What should be the output data? How and where should we write it?
4. What techniques can we use to produce a better output based on the input?

The gray arrows show the workflow order. You can see that we build the workflow from 
outside-in. This spiral approach is useful for a number of reasons which have been proven 
true over many data science projects: 

1. It is easy to overlook details of the actual problem we are trying to solve, especially
when dealing with a new and exciting model. The problem should dictate the solution,
not the other way around.

2. Discovering, verifying, cleaning, and transforming suitable input data is almost always
harder than expected. Better to start the process as early as possible.

3. Integrating the results to the surrounding business systems can be harder than
expected - better to start early. Also there may be surprising requirements for the
outputs which may inform the modeling approach.
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4. Start with the simplest possible modeling approach and get an end-to-end workflow
working with it. After a basic application works, we can measure results in the real
business context using real data, which makes it possible to start improving the model
rigorously. If the project is successful, this step never ends: There are always ways to
improve the model.

Infrastructure should make it easy to follow the spiral recipe - it should support iterative 
development out of the box. Let’s see how the recipe works in practice with Metaflow. 

PROJECT SKELETON 

Our toy business problem is to classify wine - not exactly cupcakes but close enough. 
Conveniently, a suitable dataset is packaged with Scikit Learn. The example will contain 
nothing specific to this dataset, so you can use the same template to test other datasets too. 

We start by installing the Scikit Learn package: 

# pip install sklearn 

We will learn more sophisticated ways of handling dependencies in chapter 6 but installing 
the package system-wide works for now. 

Following the spiral, we start with a simple skeleton version of the flow that only loads the 
input data. We will add more functionality in this flow later, as depicted in Figure 3.18. The 
corresponding code is shown in Listing 3.10. 

Figure 3.18. The first iteration of ClassifierTrainFlow 
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Listing 3.10 First iteration of ClassifierTrainFlow 

from metaflow import FlowSpec, step 

class ClassifierTrainFlow(FlowSpec): 

   @step 
   def start(self): 

  from sklearn import datasets    #A 
  from sklearn.model_selection import train_test_split    #A 

 X, y = datasets.load_wine(return_X_y=True)    #B 
  self.train_data,\ 
  self.test_data,\ 
  self.train_labels,\ 
  self.test_labels = train_test_split(X, y, test_size=0.2, random_state=0)  #C 
  print(“Data loaded successfully”) 
  self.next(self.end) 

   @step 
   def end(self): 

  self.model = ‘nothingburger’    #D 
  print(‘done’) 

if __name__ == '__main__': 
   ClassifierTrainFlow() 

#A Do imports inside the step code, not at the top of the file 
#B Load the dataset 
#C Split the dataset into a test set containing 20% of the rows and a training set with the rest 
#D Dummy placeholder for the actual model  

We use functions from Scikit Learn to load the dataset (load_wine) and split it into a train
and test sets (train_test_split). You can look up the functions online for more information
but it is not essential for this example.  

NOTE It is considered a good practice in Metaflow to have import statements inside the steps that use the 

modules and not at the top of the file. This way imports are only executed when needed. 

Save the code to classifier_train.py and run it:

# python classifier_train.py run 

The code should execute successfully. To confirm that some data has been loaded, you can 
execute a command like  

# python classifier_train.py dump 1611541088765447/start/1 

Replace the pathspec with a real one that you can copy-paste from the output of the 
previous command. The command should show that some artifacts have been created but 
they are too large to be shown. This is promising - some data was fetched - but it would be 
nice to actually see the data. Next, we will learn how to do this.  
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3.3.2 Accessing results with the Client API 
In section 3.1.2 we learned that Metaflow persists all instance variables, such as train_data
and test_data in Listing 3.10, as artifacts in its own datastore. After artifacts have been
stored, you can read them programmatically using the Metaflow Client, or the Client API. The 
Client API is the key mechanism that allows you to inspect results and use them across 
flows. 

NOTE You can use the Client API to read artifacts. Artifacts can’t be mutated after they have been created 

by a run. 

The Client API exposes a hierarchy of containers which can be used to refer to different parts 
of a run, i.e. an execution of a flow. Besides a single run, the containers allow you to 
navigate the whole Metaflow universe, including all runs by you and your colleagues, 
assuming you use a shared metadata server. More about this in chapter 4. 

The container hierarchy is depicted in Figure 3.19. 

Figure 3.19. The container hierarchy of the Client API 

Here is what you can find inside each container: 

• Metaflow contains all flows. You can use it to discover flows created by you and your
colleagues.

• Flow contains all runs that have been executed with a FlowSpec class.
• Run contains all steps of a flow whose execution was started during this run. Run is

the core concept of the hierarchy, since all other objects are produced through runs.
• Step contains all tasks that were started by this step. Only foreach steps contain

more than one task.
• Task contains all data artifacts produced by this task.
• Data Artifact contains a piece of data produced by task.
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Besides acting as containers, the objects contain other metadata, such as the time of 
creation and tags, which we will cover in chapter 6. Notably, you can also access logs 
through the Task object.

There are three main ways how you can instantiate a Client API object: 

1. You can instantiate any object directly with a pathspec that uniquely identifies the
object in the hierarchy. For instance, you can access data of a particular run with
Run(pathspec), e.g. Run(“ClassifierTrainFlow/1611541088765447”).

2. You can access a child object with the bracket notation. E.g.
Run(“ClassifierTrainFlow/1611541088765447”)[‘start’] returns the start Step.

3. You can iterate over any container to access its children. For instance,
list(Run(“ClassifierTrainFlow/1611541088765447”)) returns a list of all Step
objects that correspond to the given Run.

In addition, the Client API contains a number of handy shortcuts for navigating the hierarchy 
which we will cover in the coming examples. 

INSPECTING RESULTS IN A NOTEBOOK 

You can use the Client API anywhere Python is supported: in a script, with an interactive 
Python interpreter (just execute python to open one), or in a notebook. Notebook is a
particularly handy environment for inspecting results since it allows rich visualizations. 

Let’s inspect the results of ClassifierTrainFlow from listing 3.10 in a notebook. First, open
a notebook either in your editor or by executing jupyter-notebook on the command line
(see section 2.1.3 for installation instructions) in the same working directory where you 
executed your Metaflow runs. 

We can use the notebook to inspect the data we loaded earlier. Specifically, we want to 
inspect an artifact called train_data that was created at the start step. To do this, copy
the lines from listing 3.11 in a notebook cell. 

Listing 3.11 Inspect data in a notebook 

From metaflow import Flow 
run = Flow(‘ClassifierTrainFlow’).latest_run 
run[‘start’].task.data.train_data 

Using the Client API is all about navigating the object hierarchy shown in figure 3.19: 
Flow.latest_run is a shortcut that gives the latest Run of the given Flow. We use
[‘start’] to access the desired Step, then .task shortcut to get the corresponding Task
object, and .data to take a peek at the given artifact. The result should look something like
figure 3.20. 
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Figure 3.20. Using the Client API in a notebook 

The Client API is meant for easy exploration of data. Here are some exercises you can try by 
yourself: 

• Try inspecting other artifacts created by the run, e.g. train_labels or model.
• Run the flow again. Note how .latest_run returns a different Run ID. Now try to

inspect a previous run.
• Try exploring other attributes of the objects, e.g. .created_at. Hint: You can use

help() to see documentation - try e.g. help(run).

ACCESSING DATA ACROSS FLOWS 

The figure 3.21 shows how our project has progressed through the first two steps, from the 
business problem definition to setting up the input data in ClassifierTrainFlow. Now that
we have confirmed that the input data has been loaded correctly, we can proceed to the next 
step in our spiral, namely outputs of the project: We would like to use a model, to be trained 
by ClassifierTrainFlow, to classify unseen data points, in this case, wines.
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Figure 3.21. Focusing on the outputs of the project next 

It is common to split a predictive application like this into two flows: A flow that trains a 
model and another one that uses the model to provide predictions for unseen data. The split 
is useful, since the prediction flow5 is often run independently and more frequently than the 
training flow. For instance, we may train a new model once a day but predict new data once 
an hour. 

Let’s prototype a prediction flow, ClassifierPredictFlow, to accompany our training flow
ClassifierTrainFlow. The key idea is to be able to access a previously trained model
which we can do using the Client API. For this example, we accept a data point to be 
classified as a numerical vector specified as a JSON-typed Parameter (see listing 3.4 for a
reminder how they work). As an exercise, you can replace this with a CSV file of data points 
(see listing 3.5 for an example), which would be a more realistic approach. 

The first iteration of the flow is shown in listing 3.12. 

5 Prediction flow is also commonly called “inference flow” or “scoring flow”. 
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Listing 3.12 First iteration of ClassifierPredictFlow 

from metaflow import FlowSpec, step, Flow, Parameter, JSONType 

class ClassifierPredictFlow(FlowSpec): 

   vector = Parameter('vector', type=JSONType, required=True) 

   @step 
   def start(self): 

  run = Flow('ClassifierTrainFlow').latest_run    #A 
  self.train_run_id = run.pathspec    #B 
  self.model = run['end'].task.data.model    #C 
  print("Input vector", self.vector) 
  self.next(self.end) 

   @step 
   def end(self): 

  print('Model', self.model) 

if __name__ == '__main__': 
 ClassifierPredictFlow() 

#A Find the latest training run using the Client API 
#B Save the pathspec of the training run for lineage tracking 
#C Obtain the actual model object 

Save the code to classifier_predict.py and run it:

# python classifier_predict.py run --vector ‘[1,2]’ 

The run should report the model as “nothingburger” as specified in our project skeleton in 
listing 3.10. This is the spiral approach in action: We establish and verify connections 
between all parts of the end-to-end application before worrying about the actual model. 

Note how we persist an artifact train_run_id that includes the pathspec of the training run. 
We can use this artifact to keep track of model lineage: If predictions contain surprises, 
we can track down the exact training run that produced the model that produced the results. 

3.3.3 Debugging failures 
Now that we have a skeleton flow both for the input and the output of the project, we get to 
the fun part: Defining a machine learning model. As it commonly happens in real-world 
projects, the first version of the model won’t work. We will get to practice how to debug 
failures with Metaflow. 

Another common characteristic of a data science project is that initially we are not sure what 
kind of model would work best for the given data. Maybe we should train two different types 
of models and choose the one that performs the best, as we discussed in the context of 
figure 3.11. 

Inspired by the Scikit Learn tutorial, we train a K-nearest neighbor (KNN) classifier and a 
Support Vector Machine (SVM). Don’t worry if these techniques are not familiar to you - 
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knowing them is not essential for this example. You can refer to the Scikit Learn tutorial for 
more information about the models. 

Training a model is often the most time-consuming part of a flow, so it makes sense to train 
models in parallel steps to speed up execution. Listing 3.13 expands the earlier 
ClassifierTrainFlow skeleton from Listing 3.10 by adding three new steps in the middle:
train_knn and train_svm, which are parallel branches, and choose_model that chooses the
best performing model of the two. 

Listing 3.13 Almost working ClassifierTrainFlow 

from metaflow import FlowSpec, step 

class ClassifierTrainFlow(FlowSpec): 

   @step 
   def start(self):    #A 

  from sklearn import datasets 
  from sklearn.model_selection import train_test_split 

  X, y = datasets.load_wine(return_X_y=True) 
  self.train_data,\ 
  self.test_data,\ 
  self.train_labels,\ 
  self.test_labels = train_test_split(X, y, test_size=0.4, random_state=0) 
  self.next(self.train_knn, self.train_svm) 

   @step 
   def train_knn(self):    #B 

  from sklearn.neighbors import KNeighborsClassifier 

  self.model = KNeighborsClassifier() 
  self.model.fit(self.train_data, self.train_labels) 
  self.next(self.choose_model) 

   @step 
   def train_svm(self):    #B 

  from sklearn import svm 

  self.model = svm.SVC(kernel='polynomial')    #D 
  self.model.fit(self.train_data, self.train_labels) 
  self.next(self.choose_model) 

   @step 
   def choose_model(self, inputs):    #B 

  def score(inp): 
   return inp.model,\ 

  inp.model.score(inp.test_data, inp.test_labels) 

  self.results = sorted(map(score, inputs), key=lambda x: -x[1]) 
  self.model = self.results[0][0] 
  self.next(self.end) 

   @step 
   def end(self):    #C 

  print('Scores:') 
  print('\n'.join('%s %f' % res for res in self.results)) 
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if __name__ == '__main__': 
   ClassifierTrainFlow() 

#A No changes in the start step besides updated self.next() 
#B New training steps added in the middle of the flow 
#C The end step is modified to print out information about the models 
#D This line will cause an error: the argument should be ‘poly’ 

The two train_ steps fit a model using training data from artifacts train_data and
train_labels that we initialized in the start step. This straightforward approach works well
for small and medium-size datasets. Training larger models using larger amounts of data 
sometimes requires different techniques which we will discuss in Chapter 4. 

The choose_model step uses Scikit Learn’s score method to score each model using test
data. The models are sorted in the descending order (thanks to -x[1] which negates the
score in the sort key) by their score. We store the best model in the model artifact which will
be used later by ClassifierPredictFlow. Note that all models and their scores are stored in
the results artifact, which allows us to inspect the results later in a notebook.

Save the code again to classifier_train.py and run it:

# python classifier_train.py run 

Ouch! The code in listing 3.13 fails with an error like ValueError: 'polynomial' is not in 
list.

Errors such as this are an expected part of the prototyping loop. In fact, many features of 
Metaflow and other similar frameworks are specifically designed to make debugging failures 
easier. Whenever something fails, you can triage and fix the issue by following the steps 
suggested in Figure 3.22. 

Figure 3.22. The debugging loop 

Let’s go through the steps one by one: 

1. FINDING ERROR MESSAGES IN LOGS 

The first step is to try to understand what failed exactly, in particular which step failed and 
with what error message? If you are running flows manually, you should see a stack trace on 
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the terminal, prefixed with the step name (train_svm in the case of ClassifierTrainFlow 
above).  

Especially with wide foreaches it is possible that there are so many error messages on the 
terminal that reading them becomes hard. In this situation, the logs command (see section
3.1.1) which can be used to show the output of an individual task can come in handy. 
However, the command is useful only if you know what step or task might have failed - it is 
not helpful for finding a failed needle in a haystack. 

Alternatively, you can use the Client API e.g. in a notebook to comb through all tasks 
automatically. You can copy-paste the snippet from listing 3.14 in a notebook.  

Listing 3.14 Accessing logs with the Client API 

from metaflow import Flow 
for step in Flow("ClassifierTrainFlow").latest_run: 
   for task in step: 

  if not task.successful: 
   print("Task %s failed:" % task.pathspec) 
   print("-- Stdout --") 
   print(task.stdout) 
   print("-- Stderr --") 
   print(task.stderr) 

You can replace Flow().latest_run with a Run object referring to a specific run, e.g.
Run(“ClassifierTrainFlow/1611603034239532”) to analyze logs of any past run. A benefit
of using the Client API is that you can use the full power of Python to find what you need. For 
instance, you can see only logs containing a specific term by adding a conditional like 

if ‘svm’ in task.stderr: 

in the code. 

2. UNDERSTANDING WHY THE CODE FAILED

Once you have figured out what failed, you can start analyzing why it failed. Often, this step 
involves double-checking the documentation (and googling!) of the API that failed. Metaflow 
supports debugging-as-usual with a few extra tools: 

Use the Client API to inspect artifacts that represent the state of the execution before the 
failure. A major motivation for storing as much information as possible as artifacts is to help 
reconstructing the state of the flow before a failure. You can load artifacts in a notebook, 
inspect them, and use them to test hypotheses related to the failure. Learn to love the 
artifacts! 

Metaflow is compatible with debuggers, like the one embedded in Visual Studio Code and 
PyCharm. Since Metaflow executes tasks as separate processes, debuggers need a bit of 
extra configuration to work correctly. You can find instructions for configuring debuggers in 
popular editors in the online documentation of Metaflow. Once you have a debugger 
configured, you can use it to inspect live code as usual. 
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Commonly, computationally intensive code involving large amounts of data fails because of 
resource exhaustion, e.g. running out of memory. We will provide more information about 
how to deal with these issues in Chapter 4. 

3. TESTING FIXES 

Finally, you can attempt to fix the code. A hugely beneficial feature of Metaflow is that you 
don’t have to restart the whole run from the beginning to test the fix. Imagine having a flow 
that first spends 30 minutes processing input data, then 3 hours training a model, and then 
fails at the end step due to a misspelled name. The typo can be fixed in a minute but it would
be frustrating to have to wait for 3.5 hours to confirm that the fix works. 

Instead, you can use the resume command. Let’s use it to fix the error in Listing 3.13.
Instead of “polynomial” as an argument to the model in the train_svm step, the argument
should be “poly”. Replace the incorrect line with this:

svm.SVC(kernel='poly') 

You could run the code again with the run command but instead of doing that, try

# python classifier_train.py resume 

This command will find the previous run, clone results of all steps that succeeded, and 
resume execution from the step that failed. In other words, it won’t spend time re-executing 
already successful steps, which in the above example would have saved 3.5 hours of 
execution time! 

If your attempt to fix the code wasn’t successful, you can try another idea and resume again.
You can keep iterating on fixes for as long as needed, as depicted by the back-arrow in 
figure 3.22. 

In the above example, resume reuses the results of the train_knn step that succeeded.
However, in some cases fixing one step might necessitate changes in successful steps too, 
which then you may want to resume as well. You can do this by instructing resume to
resume execution from any step that precedes the failed step, such as 

# python classifier_train.py resume train_knn 

This will force resume to rerun both the train_knn and train_svm steps, as well as any
subsequent steps. Failed steps and steps that follow them are always rerun. 

By default, resume finds the latest run ID that was executed in the current working directory
and uses it as the origin run, i.e. the run whose results are cloned for the resumed run. You 
can change the origin run to any other run of the same flow using the --origin-run-id
option: 

# python classifier_train.py resume --origin-run-id 1611609148294496 train_knn 

This will resume the execution of a past run 1611609148294496 starting from the train_knn
step using the latest version of the code in classifier_train.py. The origin run doesn’t
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have to be a failed run, nor it doesn’t have to be a run executed by you! In chapter 5, we will 
use this feature to resume failed production runs locally. 

Resumed runs are registered as normal runs. They will get their own unique Run ID, so you 
can access their results using the Client API as those of any other run. However, you won’t 
be able to change parameters of the run that was resumed, since changing them might 
affect the results of tasks to be cloned which could lead to inconsistent results overall. 

3.3.4 Finishing touches 
After fixing ClassifierTrainFlow, it should complete successfully and produce a valid
model. To complete ClassifierPredictFlow (listing 3.12) add the following line in its end
step 

print("Predicted class", self.model.predict([self.vector])[0]) 

To test predictions, you have to supply a vector on the command line. The wine dataset 
contains 13 attributes for each wine - you can find their definitions in the Scikit Learn’s 
dataset page. For instance, here’s an example that uses a vector from the training set: 

# python classifier_predict.py run --vector 
'[14.3,1.92,2.72,20.0,120.0,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280.0]' 

The predicted class should be 0. Congratulations - we have a working classifier! 

What if the classifier produces incorrect results? You can use the combination of Scikit’s 
model insight tools and the Client API to inspect the models as shown in Figure 3.23. 
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Figure 3.23. A notebook for inspecting a classifier model 

Now that the application seems to work end-to-end, let’s summarize what we built. The 
application demonstrates many key concepts of Metaflow and data science applications in 
general. Figure 3.24 illustrates the overall architecture of our final application: 
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Figure 3.24. The architecture of classifier application 

Reading the figure from the top down: 

1. We obtained input data and split it to a train and test sets which were stored as
artifacts.

2. We trained two alternative models as parallel branches...
3. ...and chose the best performing one based on the accuracy with test data.
4. The chosen model was stored as an artifact, which we can inspect together with other

artifacts in a notebook using the Client API.
5. A separate prediction flow can be called as often as needed to classify new vectors

using the trained model.

While this section featured a minimal toy example (can you imagine that we implemented 
the application depicted in Figure 3.24 in less than 100 lines of code!), the architecture is 
perfectly valid for production-grade applications. You can replace the input data with your 
own dataset, improve the modeling steps according to your actual needs, add more details in 
the notebook to make it more informative, and replace the single --vector input for
predictions e.g. with a CSV file. 

The rest of this book answers questions that you are likely to face when you adapt this 
application, and other data science applications of similar nature, to real-world use cases: 
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• What if I have to handle a terabyte of input data?
• What if I want to train 2000 models instead of 2 and training each model takes an

hour?
• After adding the actual modeling and data processing code in the flow, the file is

getting quite long. Can we split the code to multiple files?
• Am I supposed to keep running flows manually in production? Can we schedule them

to run automatically?
• When I call Flow().latest_run I want to be sure that the latest run refers to my

latest run, not to my colleague’s latest run. Can we isolate our runs somehow?
• Our production flows run with an older version of Scikit Learn but I want to prototype

a new model using the latest experimental version of Scikit - any ideas?

...any many others. Fear not - the rest of the infrastructure will build on the foundation that 
we laid out in this chapter seamlessly. If you made it this far, you have a good grasp of the 
essentials and you can skip any sections in subsequent chapters which are not relevant for 
your use cases. 

3.4 Summary 
• How to define workflows with Metaflow

o You can define basic workflows in Metaflow and test them on your laptop or a
cloud workstation. This allows you to develop new projects in rapid iterations,
following the prototyping loop.

o Metaflow tracks all executions automatically, giving them unique IDs, so your
project stays organized throughout iterations without extra effort. Unique IDs
allow you to find logs and data related to any task easily.

o You don’t have to worry about storing or moving data within workflows. Metaflow
takes care of it automatically through artifacts. You can also parametrize
workflows using special artifacts called Parameter.

o Use notebooks with the Client API to analyze, visualize, and compare
metadata and artifacts from any past runs.

• How to do parallel computation with Metaflow

o Use branches to make your application more understandable by making data
dependencies explicit as well as to achieve higher performance.

o You can run either one operation on multiple pieces of data using dynamic
branches, for instance to train a separate model for every country. Or, you can
run many distinct operations in parallel using static branches, for instance to
train two different types of models for the same piece of data.

• How to develop a simple end-to-end application

o It is best to develop applications iteratively, starting from the integrations to
the outside world which can take time to get right: inputs and outputs. Models in
the middle can be iterated endlessly.
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o In some cases, you may want to run different parts of the application, e.g. training
and inference, at different schedules, e.g. predict daily but train a new model
weekly. You can do this by dividing your application into multiple flows.

o If and when something fails, you can follow a three-step process for
debugging the problem: Access logs to see what failed, inspect artifacts to
understand why it failed, and use resume to iterate on a fix quickly.

o Finally, Metaflow is designed to be used with off-the-shelf data science
libraries like Scikit Learn. Use them in the flows to solve business problems and
in notebook to monitor workflows and visualize results.
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Scaling with The Compute Layer 

This chapter covers 

• Designing scalable infrastructure that allows data scientists to handle computationally
demanding projects.

• Choosing a cloud-based compute layer that matches your needs.
• Configuring and using compute layers in Metaflow.
• Developing robust workflows that handle failures gracefully.

What are the most fundamental building blocks of all data science projects? First, by 
definition data science projects use data. There isn’t always huge amounts of data involved 
but arguably you can’t do machine learning and data science without any data. Second, the 
science part of data science implies that we do something with the data, that is, we execute 
some computation to process data. 

Correspondingly, data and compute are the two most foundational layers of our data 
science infrastructure stack, depicted in Figure 4.1. 
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Figure 4.1. Data science infrastructure stack with the compute layer highlighted 

How to manage and access data is such a deep and broad topic that we postpone an in-
depth discussion about it until Chapter 8. In this chapter, we focus on the compute layer 
which answers a seemingly simple question: After a data scientist has defined a piece of 
code, such as a step in a workflow, where should we execute it? 

A straightforward answer, which we touched in Chapter 2, is to execute the task on a laptop 
or on a cloud workstation. But what if the task is too demanding for the laptop, say, it 
processes a data set that requires 64GB of memory? Or, what if the workflow includes a 
foreach construct that launches a hundred tasks. A single workstation can’t run them in 
parallel and running them sequentially may be annoyingly slow. This chapter introduces a 
new capability in the stack: We can execute the tasks on a remote system, outside the 
personal workstation using a separate cloud-based compute layer. 

There are many ways to implement the compute layer. The exact choice depends on your 
specific requirements and use cases. We will walk through a number of common options and 
discuss how you can choose one that fits your needs. We will use one easy-to-use option, 
AWS Batch, to demonstrate the compute layer in action in conjunction with Metaflow. 
Building on the foundation laid in this chapter, the next chapter will provide even more 
hands-on examples. 

Fundamentally, the reason why we care about the compute layer is that it allows projects to 
handle more computation and more data. In other words, the compute layer allows projects 
to be more scalable. Before we dive deep into the technical details of the compute layer, we 
start by exploring what scalability, and its sibling concept performance mean, and why and 
when they matter for data science projects. As you will learn, the topic of scalability is a 
surprisingly nuanced one. Understanding it better will help you make the right technical 
choices for your projects. 
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From the infrastructure point of view, our aspirational goal is to allow data scientists to work 
on any business problem effectively and efficiently without being constrained by the size of 
the problem. Many data scientists feel that being able to harness large amounts of data and 
compute resources gives them superpowers. The feeling is justified: Using the techniques 
introduced in this chapter a data scientist can harness computing power that would have 
required a supercomputer a few decades ago with just tens of lines of Python. 

A downside of any compute layer is that tasks can fail in surprising ways compared to the 
tight confines of a laptop. To boost the productivity of data scientists, we want to handle as 
many errors automatically as possible. When unrecoverable errors happen, we want to make 
the debugging experience as painless as possible. We will discuss this towards the end of the 
chapter. 

4.1 What is Scalability 
Alex feels a great sense of pride for having built the first application that trains a model and 
produces predictions. But Bowie is concerned - as their cupcake business grows, hopefully 
exponentially, can Alex’s Python scripts handle the scale of data that they might be facing in 
the future? Alex is no scalability expert. While Bowie’s concerns are understandable, Alex 
feels that they might be a bit premature - their business is nowhere near such scale yet. In 
any case, if Alex could choose, the easiest solution would be to get a big enough laptop that 
can run the existing scripts with bigger data. Instead of spending time re-engineering the 
existing scripts, Alex would rather focus on perfecting the models and understanding the 
data better. 

In this scenario, whose concerns are more valid? Bowie has a valid concern from the 
engineering point of view: The Python scripts running on Alex’s laptop won’t be able to 
handle data of arbitrary size. Alex’s concern is valid too: The scripts may be adequate for 
their situation today and possibly for the near future. In the business point of view, it might 
make more sense to focus on the quality of results rather than the scale. 
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Also, while Alex’s dream of handling scalability just by getting a bigger laptop may sound 
silly and unrealistic in the technical point of view, it is a totally reasonable idea from the 
productivity point of view: It would be the easiest approach for Alex since it requires no 
changes in the existing code, allowing Alex to focus on the concerns at the top of the 
infrastructure stack. 

If you were Harper, the business leader, would you side with Bowie and suggest that Alex re-
engineers the code to make it scalable, diverting Alex’s attention from the models, or let Alex 
focus on improving the models which may lead to failures in the future? It is not an easy call. 
Many people would say “it depends”. A wise leader might prefer a balanced approach that 
makes the code just scalable enough so that it won’t collapse under realistic loads in the near 
future, and let Alex spend the remaining time on ensuring the quality of the results. 

Finding such a balanced approach is the main theme of this section: We want to optimize the 
productivity of data scientists, business needs, and engineering concerns simultaneously, 
emphasizing the dimensions that are most pertinent for each use case. We want to provide 
generalized infrastructure that allows each application to find a balance that suits their 
specific needs, rather than requiring that all applications optimize for the same dimension. 

SCALABILITY ACROSS THE STACK 

If you have worked on a data science project which involves demanding training or data 
processing steps, it is likely that you have heard or thought questions like “does it scale?” or 
“is it fast enough?”. In casual discussions, the terms scalability and performance are used 
interchangeably but they are in fact independent concerns. 

Let’s start with the definition of scalability: 

Scalability is the property of a system to handle a growing amount of work by adding 
resources to the system. 

Let’s unpack the definition. 

1. Scalability is about growth. It doesn’t make sense to talk about the scalability of a
static system with static inputs. However, you can talk about the performance of such
a system - more about that soon.

2. Scalability implies that the system has to perform more work, e.g. handle more data
or train a larger number of models. Scalability is not about optimizing the performance
for a fixed amount of work.

3. Scalable systems leverage additional resources added to the system efficiently. If
the system is able to handle more work by adding some resources, e.g. more
computers or more memory, the system is scalable.

Whereas scalability is about growth, performance is about capabilities of the system 
independent of growth. For instance, we can measure your performance in making an 
omelette: How quickly can you make one, what’s the quality of the result, or how much 
waste is produced as a side effect? There isn’t a single measure of performance or scalability 
- you have to define the dimension you are interested in.
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If you are building a single application, you can focus on making that particular application 
scalable. When building infrastructure, you need to consider not only how individual 
applications can be made scalable but also how the whole infrastructure scales when the 
number of distinct applications grows. Also, the infrastructure needs to support a growing 
number of engineers and data scientists who build the applications. 

Hence when building effective infrastructure, we are not only concerned about scalability of a 
particular algorithm or a workflow. Rather, we want to optimize scalability across all layers of 
the infrastructure stack. Remember the four V’s we introduced in Chapter 1:  

1. Volume - we want to support a large number of data science applications.
2. Velocity - we want to make it easy and quick to prototype and productionize data

science applications.
3. Validity - we want to make sure that the results are valid and consistent.
4. Variety - we want to support many different kinds of data science models and

applications.

Almost all the V’s are related to scalability or performance: Volume is concerned about a 
growing number of applications, which is the motivation for having generalized infrastructure 
in the first place. Velocity is concerned about speed - speed of code, projects, and people, 
that is, performance. Contrasting Validity against scalability is such an important topic that it 
deserves a discussion of its own in the next chapter. Finally, variety refers to our ability to 
work on an increasingly diverse set of use cases, using a diverse set of tools - we shouldn’t 
assume that there’s a silver bullet solution to scalability, despite what ads may try to tell 
you. All in all, scalability in its different forms is a fundamental thread that runs throughout 
this book. 

Figure 4.2 shows how scalability touches all layers of the data science infrastructure stack. 

Figure 4.2 Types of scalability across the infrastructure stack 
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Let’s unpack the figure: On the leftmost column, we have the building blocks of a data 
science application. They form a hierarchy: An algorithm is contained by a task which is 
contained by a workflow etc. This hierarchy expands the one we covered in the context of 
Metaflow in Figure 3.19. 

Each of these building blocks can scale independently. Following our definition, scalability 
involves two factors: more work and more resources. The “more work” column shows the 
type of work that the corresponding building block needs to handle, i.e. its major dimension 
of scalability. The “more resources” column shows resources we can add to the building block 
to make it scale. The “infrastructure layers” column shows the piece of infrastructure that 
manages the resources. By design, the layers cooperate, so there’s some overlap between 
their responsibilities. 

Let’s go through the blocks one by one: 

• At the core of an application, there’s typically an algorithm that performs numerical
optimization, trains a model etc. Often, the algorithm is provided by an off-the-shelf
library like TensorFlow or Scikit Learn. Usually the algorithm needs to scale when it
needs to handle a larger amount of data but other dimensions of scalability exist as
well, e.g. the complexity of the model. Modern algorithms can utilize all available
resources, CPU cores, GPUs, and RAM on the compute instance effectively, so you can
scale them by increasing the capacity of the instance.

• The algorithm doesn’t run itself. It needs to be called by the user code, such as a
Metaflow task. The task is an operating system level process. To make it scale, you
can use various tools and techniques (more about them in section 4.2) to utilize all
available CPU cores and RAM on the instance. Often when using highly optimized
algorithms, you can outsource all scalability concerns to the algorithm and the task
can stay relatively simple, like we did with Scikit Learn in section 3.3.

• A data science application or workflow consists of multiple tasks. In fact, a workflow
can spawn an arbitrary number of tasks when leveraging data parallelism, i.e.
dynamic branches which we covered in section 3.2.3. To handle a large number of
concurrent tasks, the workflow can fan out the work to multiple compute instances.
We will practice these topics later in this chapter and in the next chapter.

• Since data science is all about experimentation, we want to encourage data scientists
to test multiple different versions of their workflows, maybe with slightly different
variations in data or the model architecture. To save time, it is convenient to be able
to test the versions in parallel. To handle multiple parallel workflow executions, we
need a scalable workflow orchestrator (see chapter 6) as well as many compute
instances.

• It is common for a data science organization to work on a wide variety of data science
projects concurrently. Each project has its own business goals, represented by
bespoke workflows and versions. It is important that we minimize interference
between projects. Each project should be able to choose their architecture,
algorithms, and scalability requirements independently. Chapter 7 will shed more light
on the questions of versioning, namespaces, and dependency management.

• It is desirable for the organization to be able to scale the number of concurrent
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projects by hiring more people. Importantly, a well-designed infrastructure can help 
with this scalability challenge as well, as discussed below. 

We can summarize the list concisely by focusing on the resources column: 

SCALABILITY TIP The raw materials of scalable data science are people and compute resources 

of different shapes and sizes. It is a job of the data science infrastructure to match the two 
resources effectively. 

An important take-home message from Figure 4.2 is that data science tends to be a very 
compute-heavy endeavor. It is not only individual algorithms and tasks that need CPU cycles 
but also the culture of testing and experimentation, as highlighted by the “more resources” 
column. We want to encourage users to create new versions, workflows, and projects 
relatively freely. 

4.1.1 Scaling organizations 
The price of compute cycles has gone down drastically over time, partly thanks to the cloud, 
whereas the price of talented people has gone up. An effective infrastructure can arbitrage 
this imbalance: We can provide the expensive people with easy access to cheap compute 
resources to maximize their productivity. We want to enable access in a manner that allows 
the organization itself to scale. 

A fundamental reason why scaling organizations is hard is the communication overhead: For 
a group of N people to communicate with one another, they need N2  lines of communication. 
In other words, the communication overhead grows quadratically with the number of people. 
A classic solution to the problem is a hierarchical organization, which restricts the information 
flow to avoid quadratic growth. However, many modern, innovative data science 
organizations would rather avoid a strict hierarchy and information bottlenecks. 

Why do people need to communicate in the first place? Coordination and knowledge sharing 
are common reasons. Historically, in many environments accessing shared resources, like 
computers, has required quite a bit of both. This situation is illustrated in Figure 4.3. 

Figure 4.3 Coordinating access to shared compute resources 
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Imagine you worked at a college computer lab in the 1960s. The lab might have a single 
computer, a large mainframe. Since the compute power and storage was extremely limited, 
you probably needed to coordinate with all your colleagues who got to use the computer, 
how, and when. The communication overhead would be quadratic with the number of 
colleagues. In an environment like this, to maintain your sanity, you would actively try to 
limit the number of people who can access the computer. 

Let’s say you worked at a mid-size company in the early 2000s. The company has their own 
datacenter, where they can provision compute resources like fixed-size clusters to different 
teams based on business requirements and guidance from the capacity planning team. This 
model is clearly more scalable than the mainframe model, since each individual team can 
coordinate access to their dedicated resources amongst themselves. A downside is that the 
model is quite rigid: Provisioning more resources as a team’s needs grow could take weeks if 
not months. 

Today, the cloud provides a semblance of unlimited compute capacity. The compute 
resources are not scarce anymore. Since the paradigm shift has happened quite quickly, it is 
understandable that many organizations still treat the cloud as if it was a fixed-size cluster or 
a mainframe. However, the cloud allows us to change the mindset and get rid of the 
coordination overhead altogether. 

Instead of humans carefully coordinating access to a shared, scarce resource amongst 
themselves, we can rely on the infrastructure to facilitate relatively open access to the 
cornucopia of compute resources. A cloud-based compute layer, which we discuss in the next 
section, makes it easy to execute nearly arbitrary amounts of compute in a cost-effective 
manner. It allows data scientists to experiment freely and handle large datasets without 
having to constantly worry about resource overconsumption or interfering with their 
colleagues work, which is a huge boon for productivity. 

As a result, organizations can handle more projects, teams can experiment more effectively, 
and individual scientists can work on much larger-scale problems. Besides the quantitative 
change of more scale, the cloud enables a qualitative change as well: We can double-down 
on the idea of data scientist autonomy, as described in section 1.3. Instead of having to 
coordinate work with machine learning engineers, data engineers, DevOps engineers, an 
individual data scientist can drive the prototyping loop and interaction with production 
deployments all by themselves. 

MINIMIZE INTERFERENCE TO MAXIMIZE SCALABILITY 

Why has it been so critical to control and coordinate access to compute resources previously? 
One reason is scarcity: If there are more tasks, workflows, versions, projects than what the 
system has capacity to handle, some control is needed. Today, in most scenarios, the cloud 
provides enough capacity that this argument becomes moot. 

Another argument is fragility: If an inattentive user can break the system, having a layer of 
supervision seems like a good idea. Or maybe the system is designed in a way that 
workloads can easily interfere with each other. This is a valid argument for many systems 
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that are still actively used today. For instance, a single bad query can impact all users of a 
shared database. 

If we want to maximize scalability of organizations, we want to minimize the communication 
and coordination overhead between people. Optimally, we want to remove the need for 
coordination - in particular, if coordination is required to avoid breakage. As an infrastructure 
provider, our goal, at least aspirationally, is to make sure that no workload can break the 
system or cause adverse side-effects to its neighbors. 

Since data science workloads tend to be very experimental in nature, we can’t expect that 
the workloads themselves are particularly well-behaving. Instead, we must make sure that 
they are properly isolated, so even if they fail hard, they have a limited blast radius - that is, 
they cause a minimal amount of collateral damage by interfering with other workloads. 

SCALABILITY TIP Minimizing interference between workloads through isolation is an excellent way to 

reduce the need for coordination. The less coordination is needed, the more scalable the system becomes. 

Luckily, modern cloud infrastructure, container management systems in particular, help us 
achieve this relatively easily as we will learn in the next section. Other key elements of 
isolation are versioning, namespaces, and dependency management, which we will cover in 
more detail in chapter 6. 

4.2 The Compute Layer 
Instead of a giant laptop, it would be desirable to have a setup that allows Alex to throw any 
number of tasks, large and small, to a cloud-based compute environment that would 
automatically scale to handle the tasks. Alex wouldn’t have to change the code or care about 
any other details besides collecting the results. Optimally, the environment would be such 
that Bowie would have to spend only little time maintaining it.  
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Let’s start with the big picture: Figure 4.4 shows how the layers of the infrastructure stack 
participate in workflow execution. We use workflows as the user interface to define tasks that 
need to be executed but the compute layer doesn’t have to care about the workflow per se - 
it only cares about individual tasks. We will use a workflow orchestrator, the job scheduler 
layer in our stack, to determine how to schedule individual tasks and when the workflow 
should be executed - more about this in Chapter 6. 

Figure 4.4 The role of the computer layer: Where tasks are executed 

Also, the compute layer doesn’t need to care what is being computed and why - the data 
scientist answers these questions as they architect the application - this corresponds to the 
architecture layer in our infrastructure stack. The compute layer only needs to decide where 
to execute a task, in other words, finding a big enough computer that can execute a task. 

To do its job, the compute layers needs to provide a simple interface: It accepts a task 
together with resource requirements (how many CPUs, how much RAM etc. the task 
requires), executes it (maybe after a delay), and allows the requester to query the status of 
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the work performed. Although doing this may seem straightforward, building a robust 
compute layer is a highly non-trivial engineering challenge. 

Consider the following requirements: 

1. The system needs to handle a large number of concurrent tasks, potentially hundreds
of thousands or millions of them.

2. The system needs to manage a pool of physical computers that are used to execute
tasks. Preferably, physical computers can be added and removed from the pool on the
fly without causing any downtime.

3. Tasks have different resource requirements. The system needs to match each task to
a computer that has at least the required amount of resources available. Doing the
matching, or packing, efficiently at scale is a notoriously hard problem. If you are a
theory geek, check the Wikipedia articles for Bin Packing problem and Knapsack
problem to learn more about the computational complexity of task placement.

4. The system must anticipate that any computer can fail, data centers can catch fire,
any task may behave badly or even maliciously, and software has bugs. Regardless,
the system shouldn’t go down under any circumstances.

For many decades, building large-scale systems that fulfill these requirements was the realm 
of High-Performance Computing (HPC). The industry was dominated by specialized vendors 
delivering expensive systems to governments, research institutions, and largest companies. 
Smaller companies and institutions relied on various home-grown solutions that were often 
brittle and expensive to maintain, at least in terms of person-hours. 

The advent of public clouds like AWS has changed the landscape drastically. Today, with a 
few clicks, you can provision a compute layer that operates robustly at the scale of relatively 
recent supercomputers. Of course, most of us don’t need a supercomputer-scale compute 
layer: The cloud allows us to start small - starting from the capacity of a small laptop - and 
keep scaling resources elastically as the needs grow. The best part is that you only pay for 
what you use, which means that a small compute layer used occasionally can be more 
affordable than a physical laptop of the same size. 

The public cloud mostly frees us from having to deal with the above requirements by 
ourselves. However, the level of abstraction they provide, i.e. answering the question of 
where to execute tasks and executing them for us, is still pretty low-level. To make the 
compute layer usable and useful for data science workloads, there are a number of 
architectural choices that one needs to make on top of the interfaces provided by the cloud. 

Different systems make different engineering tradeoffs: Some optimize for latency, i.e. how 
fast tasks start, some for the types of computers available, some for the maximum scale, 
some for high availability, and some for cost. As a result, it is not feasible to think that there 
is or will be a single universal compute layer. 

Also different workflows and applications have different compute requirements, so it is 
beneficial for the data science infrastructure to support a selection of compute layers, 
ranging from local laptops and cloud workstations to special-purpose clusters of GPUs or 
other hardware accelerators for ML and AI. Fortunately we can abstract a good amount of 
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this inevitable diversity away: The different flavors of compute layers can adhere to a 
common interface and architecture, as discussed in the next section. 

4.2.1 Batch processing with containers 
A system that processes tasks that start, take input data, perform some processing, produce 
output, and terminate is said to perform batch processing. Fundamentally, the compute layer 
we describe here is a batch processing system. In our workflow paradigm, illustrated in 
Figure 4.5, a step in the workflow defines one or more tasks which are executed as batch 
jobs. 

Figure 4.5 A single batch job, a task in workflow 

Batch processing vs. Stream processing 
An alternative to batch processing, which deals with discrete units of computation, is stream processing which 

deals with a continuous stream of data. Historically, the vast majority of ML systems and applications requiring high-
performance computing have been based on batch processing: data goes in, some processing is done, and results 
come out. 

During the past decade, increased sophistication of applications has driven demand for stream processing, as it 
allows results to update with a much lower delay, say, in a matter of seconds or minutes, in contrast to batch jobs 
that are typically run at most once an hour. Today, popular frameworks for stream processing include Kafka, Flink, or 
Apache Beam. In addition, all major public cloud providers offer stream-processing-as-a-service, e.g. AWS Kinesis or 
Google Dataflow. 

Fortunately, the choice is not either-or. You can have an application use the two paradigms side-by-side: Many 
large-scale ML systems today, such as the recommendation system at Netflix, are mostly based on batch processing 
with some stream processing included for components that need to update frequently.  

A major benefit of batch jobs is that they are easier to develop, easier to reason about, and easier to scale than 
their streaming counterparts. Hence, unless your application really requires stream processing, it is reasonable to 
start with a workflow of batch jobs as discussed in this chapter. We will discuss more advanced use cases that require 
real-time predictions and/or stream processing later in this book. 
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Listing 4.1 An example batch job 

   @step 
   def train_svm(self): 

  from sklearn import svm    #A 
  self.model = svm.SVC(kernel='poly') 
  self.model.fit(self.train_data, self.train_labels) 
  self.next(self.choose_model) 

#A An external dependency 

A job scheduler takes this snippet, which we call user code, sends it to the compute layer for 
execution, and waits for the execution to complete before continuing to the next steps in the 
workflow. Easy enough! 

There is one more important detail: In this example, the user code refers to an external 
dependency, the sklearn library. If we tried to execute the user code in a pristine
environment that doesn’t have the library installed, the code would fail to execute. To 
execute successfully, the batch job needs to package both the user code as well as any 
dependencies that the code requires. 

Today, it is common to package user code and its dependencies as a container image. A 
container is a way to provide an isolated execution environment inside of a physical 
computer. Providing such “virtual computers” inside a physical computer is called 
virtualization. Virtualization is beneficial, since it allows us to pack multiple tasks inside a 
single physical computer while letting each task operate as if they occupied a whole 
computer by themselves. As discussed in section 4.1.1, providing strong isolation like this 
allows each user to focus on their work, boosting productivity, as they don’t have to worry 
about interfering with anyone else’s work. 

WHY DO CONTAINERS MATTER? 

Container allows us to package, ship, and isolate execution of batch jobs. To give a real-
world analogue, consider that a container is a physical container, like a cardboard box: First, 
you can visit an animal shelter (a container registry) and find a pre-packaged feral cat in a 
box (a container image). The container contains both a cat (user code) as well as its 
dependencies, e.g. milk (libraries). Next, you can deploy the container (or several) in your 
house (a physical computer). As each cat is containerized, they can’t cause damage to your 
house or to each other. Without containerization, the house would likely turn into a 
battleground, preventing cats from living their lives peacefully. 

In the point of view of a compute layer, the user code submitted to the system resembles 
feral cats. We shouldn’t assume that any code is well-behaving. While we don’t assume that 
data scientists are malevolent per se, it gives users great freedom to experiment and overall 
peace of mind if they know that in the worst case they can only break their own code. The 
system guarantees that no matter what, the user can never interfere with production 
systems or tasks of their colleagues’. Containers help to provide such a guarantee. 
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PRODUCTIVITY TIP Containers boost productivity by granting users the freedom to experiment without 

having to fear that they can break something by accident, or interfere with their colleagues' work. Without 

containers, a rogue process can hog an arbitrary amount of CPU, memory, or fill the disk, which can cause 

failures in neighboring but unrelated processes on the same instance. Compute- and data-intense machine 

learning processes are particularly prone to these issues. 

Figure 4.6 summarizes the discussion. 

Figure 4.6 Container on a compute instance 

The outer box represents a single computer. The computer provides certain fixed hardware, 
such as CPU cores, possibly GPUs, RAM (memory), and disk. The computer runs an operating 
system, such as Linux. The operating system provides mechanisms to execute one or more 
isolated containers. Inside the container, which provides all the necessary dependencies, the 
user code is executed. 

There are a number of different container formats but today Docker is the most popular one. 
Creating and executing Docker containers isn’t particularly hard1 but we shouldn’t assume 
that data scientists package their own code as containers manually. Packaging every 
iteration of the code as a separate container image would just slow down their prototyping 
loop and thus hurt their productivity. 

Instead, we can containerize their code and dependencies automatically, as exemplified by 
Metaflow in section 4.3. Under the hood, the data science infrastructure can leverage 
containers to their fullest potential without ever having to surface containers, a technical 
detail, directly to the user. The data scientist can merely declare the code they want to 
execute (steps in workflow) and dependencies they require - we will cover dependency 
management in detail in chapter 7. 

1 If you want to create and execute a Docker container for fun, see the “Get started” section at https://docs.docker.com. 
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FROM A CONTAINER TO A SCALABLE COMPUTE LAYER 

Now we have learned that we can define a batch job as a container that contains the user 
code and its dependencies. However, when it comes to scalability and performance, 
containerization doesn’t benefit anything by itself: Executing a piece of code inside a Docker 
container on your laptop isn’t any faster or more scalable than executing it as a normal 
process. 

Scalability is what makes a compute layer interesting. Remember the definition of 
scalability: A scalable system is able to handle a growing amount of work by adding 
resources to the system. Correspondingly, a compute layer is scalable if it can handle more 
tasks by adding more computers, or instances, to the system. This is the exact feature that 
makes cloud-based compute layers so appealing: They are able to increase or decrease the 
number of physical computers handling tasks automatically based on demand. 

Figure 4.7 illustrates how a scalable compute layer works in the context of workflow 
orchestration. 

Figure 4.7 Task scheduling cycle 

Let’s go through the figure step by step: 

1. A job scheduler, like Metaflow’s internal scheduler invoked with the run command,
begins executing a workflow. It walks through the steps of the workflow in order. Each
step yields one or more tasks, as we learned in Chapter 3.

2. The scheduler submits each task to the compute layer as an independent batch job. In
the case of a foreach branch, a large number of tasks may be submitted to the
compute layer simultaneously.
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3. The compute layer manages a pool of instances as well as a queue of tasks. It tries to
match tasks to computers that have suitable resources to execute the task.

4. If the compute layer notices that there are way more tasks than available resources, it
can decide to increase the number of instances in the instance pool. In other words, it
provisions more computers to handle the load.

5. Eventually, a suitable instance is found where a task can be executed. The task is
executed in a container. Once the task has finished, the scheduler is notified, so it can
proceed to the next step in the workflow graph and the cycle restarts.

Note that the compute layer can handle incoming tasks from any number of workflows 
concurrently. As illustrated here, the compute layer gets a constant stream of task 
submissions. It executes them without caring what the task does internally, why it needs to 
be executed, or when it was scheduled. Simply, it finds an instance where to execute the 
task. 

To make the steps 3-5 happen, the compute layer needs several components internally. 
Figure 4.8 shows the high-level architecture of a typical compute layer. 

Figure 4.8 Architecture of a typical compute layer 

• In the middle, we have a pool of instances. Each instance is a computer like the one
depicted in Figure 4.6 earlier: They are machines that execute one or more
concurrent containers, which in turn are used to execute the user code.
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• At the bottom, a component called Cluster Management System is depicted. This
system is responsible for managing the pool of instances. In this case, we have a pool
of three instances. The cluster management system adds and removes instances from
the pool as the demand - the number of pending tasks - increases or decreases, or as
instances are detected to be unhealthy. Note that the instances don’t need to have
uniform hardware: Some instances may have more CPUs, some more GPUs, and
some more RAM.

• At the top, we have a Container Orchestration System. It is responsible for
maintaining a queue of pending tasks, and placing and executing them in containers
on the underlying instances. It is the job of this system to match tasks, based on their
resource requirements, to the underlying instances. For instance, if a task requires a
GPU, the system needs to find an instance with a GPU in the underlying pool, wait
until the instance is not busy executing previous tasks before placing the task on the
instance.

Fortunately, we don’t need to implement Container Orchestration Systems or Cluster 
Management Systems from scratch - they are notoriously complex pieces of software. 
Instead, we can leverage existing battle-hardened compute layers provided either as open-
source or as managed services by the cloud providers - we list a selection of such systems in 
the next section. As you evaluate these systems by yourself, it is good to keep the above 
figures in mind, as they help you to understand how the systems work under the hood and 
motivate various tradeoffs that the systems have needed to make. 

4.2.2 Examples of compute layers 
Let’s go through some compute layers that you can start using today. Now that you have a 
basic understanding of how these systems work under the hood, you can appreciate the fact 
that each system optimizes for slightly different characteristics - no system is perfect at 
everything. Luckily, we are not limited to a single choice: Our infrastructure stack can 
provide different compute layers for different use cases. 

Figure 4.9 illustrates why supporting multiple compute layers can come in handy. Don’t 
worry if you don’t recognize the names of the compute layers in the figure - Spark, AWS 
Batch, Sagemaker, and AWS Lambda - we will cover them in more detail soon. 
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Figure 4.9 Examples of workflows that use multiple compute layers 

 The figure depicts three projects, each with a workflow of their own: 

1. Project 1 is a large, advanced project. It needs to process a large amount of data, say
a text corpus of 100GB, and train a massive deep neural network model based on it.
First, large-scale data processing is performed with Spark which is optimized for the
job. Additional data preparation is performed on a large instance managed by AWS
Batch. Training a large-scale neural network requires a compute layer optimized for
the job - we can use e.g. AWS Sagemaker to train the model on a cluster of GPU
instances. Finally, we can send a notification that the model is ready using a
lightweight task launched on AWS Lambda.

2. Project 2 trains a decision tree using a medium-scale, say, 50GB dataset. We can
process data of this scale, train a model, and publish results, on standard CPU
instances with, say, 128GB of RAM. A general-purpose compute layer like AWS Batch
can handle the job easily.

3. Project 3 represents an experiment conducted by a data scientist: Their project
involves training a small model for each country in the world. Instead of training 200
models sequentially on their laptop, they can parallelize model training using AWS
Lambda, speeding up their prototyping loop.

As Figure 4.9 illustrates, the choice of compute layers depends on the type of projects you 
will need to support. It is a good idea to start with a single, general-purpose system like 
AWS Batch and add more options as the variety of use cases increases. 

Crucially, while the infrastructure stack may support multiple compute layers, we can limit 
the amount of complexity exposed to the user. All they have to do is to write workflows in 
Python, maybe using specific libraries in the case of specialized compute layers. Also keep in 
mind ergonomics of the two loops, prototyping and production deployments, which we 
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discussed in section 2.1: Typically, prototyping requires quick iterations with smaller 
amounts of data whereas production deployments emphasize scalability. 

How should one evaluate strengths and weaknesses of different compute layers? There are a 
number of features you can pay attention to: 

• Workload support: Some systems are specialized for certain types of workloads,
e.g. big data processing or managing multiple GPUs, whereas others are general-
purpose, working with any types of tasks.

• Latency: Some systems try to guarantee that tasks start with a minimal delay. This
is convenient during prototyping, when it might be frustrating to wait for minutes for
a task to start. On the other hand, startup latency doesn’t make any difference to
scheduled nightly runs.

• Workload management: How does the system behave when it receives more tasks
than what it can deploy to the instance pool immediately? Some systems start
declining tasks, some add them to a queue, and some may start killing or pre-
empting already executing tasks so that higher priority tasks can execute in their
place.

• Cost-efficiency: As described earlier, a key lever to cost optimization is utilization.
Some systems are much more aggressive at driving up utilization whereas others take
a laxer approach. Also, the granularity of billing in cloud systems varies: Some bill by
hour, some by second, some even by millisecond.

• Operational complexity: Some systems are rather easy to deploy, debug, and
maintain while others may require constant monitoring and upkeep.

Below, we list a few popular choices for compute layers. The list is not exhaustive by any 
means but it gives you an idea how to compare relative benefits of various options. 

KUBERNETES 

Kubernetes (often abbreviated as K8S) is the most popular open-source container 
orchestration system today. It originates from Google which had been operating a similar 
compute layer internally for years. You can deploy K8S on premise, even on your laptop 
(search for Minikube for instructions), but it is commonly used as a managed cloud service, 
such as Elastic Kubernetes Service (EKS) by AWS. 

Kubernetes is an extremely flexible system. Consider it as a toolkit for building your own 
compute layer or a microservice platform. With flexibility comes a great deal of complexity. 
Kubernetes and services around it evolve quickly, so it takes expertise and effort to stay up 
to date with its ecosystem. However, if you need an infinitely extensible foundation for a 
custom compute layer, Kubernetes is a great starting point. 
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Workload Support General-purpose 

Latency K8S is primarily a container orchestration system. You can configure it to 
work with various cluster management systems which handle scalability. 
The choice has a major effect on startup latency of tasks.  

Workload Management While K8S provides only minimal workload management out of the box, 
you can make K8S work with any Work Queue.  

Cost Efficiency Configurable - depends mainly on the underlying cluster management 
system. 

Operational Complexity High - K8S has a steep learning curve. Managed cloud solutions like EKS 
make this a bit easier. 

AWS BATCH 

AWS provides a number of container orchestration systems: ECS (Elastic Container Service) 
which runs containers on top of EC2 instances that you can manage, Fargate which is a 
serverless orchestrator (i.e. no EC2 instances to be managed), and EKS which manages 
containers with Kubernetes. AWS Batch is a layer on top of these systems, providing batch 
compute capabilities for the underlying orchestrators, in particular, a task queue. 

AWS Batch is one the simplest solutions for operating a cloud-based compute layer: You 
define the types of instances you want to have in your instance pool, called Compute 
Environment, and one or more Job Queues, which store pending tasks. After this, you can 
start submitting tasks to the queue. AWS Batch takes care of provisioning instances, 
deploying containers, and waiting until they have executed successfully. A downside of 
simplicity is that AWS Batch provides only a limited amount of extensibility and 
configurability for more advanced use cases. 

You can read more about AWS Batch in section 4.3 below. 
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Workload Support General-purpose 

Latency Relatively high - as the name implies, AWS Batch is designed for batch 
processing with the assumption that startup latencies are not a major 
issue. A task may take anything between seconds to a few minutes to 
start. 

Workload Management Includes a built-in work queue. 

Cost Efficiency Configurable - you can use AWS Batch with any instance types without 
extra cost. It also supports Spot Instances which are considerably 
cheaper than normal, on-demand EC2 instances. Spot instances may get 
terminated abruptly but this is usually not an issue for batch jobs which 
can be retried automatically. 

Operational Complexity Low - relatively simple to setup and almost maintenance-free. 

AWS LAMBDA 

AWS Lambda is often characterized as a Function-as-a-Service: Instead of defining servers 
or even containers, you simply define a snippet of code, a task in our parlance, which AWS 
Lambda executes when a triggering event occurs without any user-visible instances. Since 
December 2020, AWS Lambda allows tasks to be defined as container images, which makes 
AWS Lambda a valid option for a compute layer. 

Compared to AWS Batch, the biggest difference is that Lambda doesn’t expose the instance 
pool (aka compute environment) at all. While tasks can request additional CPU cores and 
memory, options for resource requirements are much more limited. This makes AWS Lambda 
most suitable for lightweight tasks with modest requirements. For instance, you can use 
Lambda to process small to medium amounts of data rapidly during prototyping. 
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Workload Support Limited to lightweight tasks with a relatively short runtime. 

Latency Low. AWS Lambda is optimized for tasks that start in a second or less. 

Workload Management In the Asynchronous Invocation mode, Lambda includes a work queue. 
The queue is more opaque than the Job Queue of AWS Batch, for 
instance. 

Cost Efficiency Great. Tasks are billed by millisecond, so you truly pay only for what you 
use. 

Operational Complexity Very low - simple to set up and practically maintenance free. 

APACHE SPARK 

Apache Spark is a popular open-source engine for large-scale data processing. It differs from 
the previously listed services by relying on a specific programming paradigm and data 
structures to achieve scalability - it is not suitable for executing arbitrary containers. 
However, Spark allows code to be written in JVM-based languages, Python, or SQL, so it can 
be used to execute arbitrary code as long as the code adheres with the Spark paradigm. 

You can deploy a Spark cluster on your own instances or you can use it as a managed cloud 
service, e.g. through AWS Elastic Map Reduce (EMR). 

Workload Support Limited to code written with Spark constructs 

Latency Depends on the underlying cluster management policy.  

Workload Management Includes a built-in work queue. 

Cost Efficiency Configurable, depending on the cluster setup. 

Operational Complexity Relatively high - Spark is a sophisticated engine which requires 
specialized knowledge to operate and maintain. 

DISTRIBUTED TRAINING PLATFORMS 

While you can use a general-purpose compute layer like Kubernetes or AWS Batch to train 
very sizable models, especially when powered by GPU instances, a specialized compute layer 
is needed to train the largest deep neural network models, e.g. for massive-scale compute 
vision. It is possible to build such a system using open-source components, e.g. using a 
project called Horovod which originated from Uber or Tensorflow Distributed Training, but 
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many companies may find it easier to use a managed cloud service such as Distributed 
Training by AWS Sagemaker or Google’s Cloud TPU. 

These systems are optimized for very specific workloads. They employ large clusters of GPUs 
and sometimes custom hardware to speed up tensor or matrix computations required by 
modern neural networks. If your use cases require training of massive-scale neural networks, 
having such a system as a part of your infrastructure may be necessary. 

Workload Support Very limited - optimized for training massive-scale models 

Latency High - optimized for batch processing 

Workload Management Task-specific, opaque workload management 

Cost Efficiency Typically very expensive 

Operational Complexity Relatively high, although cloud services are considerably easier to 
operate and maintain compared to on-premise solutions 

LOCAL PROCESSES 

Historically, most data science workloads have been executed on personal computers, e.g. 
on laptops. A modern take of this is a cloud workstation as described in section 2.1.2. While 
a workstation is not a compute layer in the sense of Figure 4.8, it can be used to execute 
processes and containers, and for most companies, it is the first compute layer supported in 
the absence of other systems. 

When viewed from the point of view of compute, a personal workstation has one major 
upside and one major downside. The upside is that the workstation provides a very low 
latency and hence a quick prototyping loop. The downside is that it doesn’t scale. Hence 
workstations are best used for prototyping, while all heavy lifting is offloaded to other 
systems. 
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Workload Support General-purpose. 

Latency Very low - processes start instantly. 

Workload Management Configurable, nothing by default. 

Cost Efficiency Cheap but the amount of compute is limited. 

Operational Complexity Moderate. Workstations need maintenance and debugging. Providing 
and maintaining a uniforming environment for all users can be hard. 

COMPARISON 

As the variety of use cases supported by the infrastructure increases, so does the need to 
provide compute layers that are optimized for particular workloads. As the provider of data 
science infrastructure, you need to evaluate what systems should be included in your stack, 
when, how, and why. 

To help you with the task, Table 4.1 provides a rough summary of the main strengths and 
weaknesses of the systems we covered: One star indicates that the system doesn’t excel at a 
particular area, two stars indicates acceptable behavior, and three stars indicate that the 
system shines at the task.  

131

https://livebook.manning.com/book/effective-data-science-infrastructure/discussion


©Manning Publications Co.  To comment go to  liveBook 

Table 4.1 Comparison of a selection of common compute layers 

Don’t get too concerned about individual assessments - they can be challenged. The main 
take-home message is that there isn’t a single system that can handle all workloads 
optimally. Also, if you compare columns, you can see that some systems are seemingly quite 
overlapping in functionality (e.g. Kubernetes and Batch) versus others that are more 
complementary (e.g. Lambda and Spark). 

As an exercise, you can create your own version of Table 4.1. Include features that matter to 
you as rows and systems that you may consider using as columns. The outcome of the 
exercise should be a complementary set of systems that match the needs of data science 
projects you need to support. If you are unsure, here’s a good starting point: 

RULE OF THUMB Provide one general-purpose compute layer like Kubernetes or AWS Batch for heavy 

lifting and a low-latency system like local processes and/or AWS Lambda for prototyping. Use more 
specialized systems as required by your use cases. 

No matter what systems you end up choosing, make sure they can be integrated seamlessly 
into a cohesive user experience for the data scientist. In the user’s point of view, it is a 
nuisance that multiple systems need to exist in the first place. However, pretending that this 
is not the reality often leads to even more friction and frustration. 
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In section 4.3, we get to roll up our sleeves and start practicing compute layers and 
scalability for real using Metaflow. Also, the section will serve as an example how multiple 
compute layers can happily coexist behind a single cohesive user interface. 

Considering cost 
Many companies are concerned about the cost of using a cloud-based compute layer. When it comes to cost 

optimization, a key observation is that an idling instance costs the same amount of money as an instance that 
performs work. Hence, a key lever to minimize cost is to maximize utilization, that is, the share of time spent on 
useful work. 

We define utilization as the percentage of the total uptime that is used to execute tasks: 

Now, assuming that we can’t affect the time that it takes for tasks to execute, we achieve the minimal cost when 
time used to execute tasks equals total instance uptime, that is, we attain 100% utilization. In practice, utilization of a 
typical compute layer is far from 100%. In particular, old-school data centers might have utilization of 10% or less. 

There are two ways to drive up utilization: 

1. You can minimize the total instance uptime by shutting down instances as soon as tasks finish. 
2. you can maximize time used to execute tasks e.g. by sharing the instances with as many projects and workflows 

as possible so the instances don’t run out of work while they are up. 

You can use the compute layer described in this section to achieve both the goals: First, it is easy to shut down 
cloud-based instances when they run out of work automatically, so you only pay for the exact set of tasks that you 
need to execute. Second, thanks to strong isolation guarantees provided by virtualization and containerization, you 
can safely share the same instances with multiple teams. This increases the number of tasks submitted to the 
compute layer, which drives utilization up. 

It is good to keep in mind that in most cases, the hourly cost of a data scientist is much higher than that of an 
instance. Any opportunity to save data-scientist-hours by using more instance-hours is usually worth it. For instance, it 
might be more cost-effective to run experiments using naive, inefficient code, knowing that it requires more instance 
hours, rather than spend many days or weeks optimizing the code by hand.  

4.3 The compute layer in Metaflow 
Alex’s laptop sounds like a jet engine every time it executes a model training step. Instead of 
buying noise-cancelling headphones, it seems like a smart idea to leverage the cloud for 
demanding compute tasks. Bowie helps Alex to configure Metaflow to use AWS Batch as a 
compute layer, which enables Alex to prototype workflows locally and execute them in the 
cloud with a click of a button. For Alex, this feels like a silent superpower! 
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Metaflow supports pluggable compute layers. For instance, you can execute lightweight tasks 
locally but offload heavy data processing and model training to a cloud-based compute layer. 
Or, if your company has an existing container management system like Kubernetes, you can 
use it as a centralized compute layer instead of having to operate a separate system for data 
science. 

By default, Metaflow uses local processes running on your personal workstation as the 
compute layer. This is convenient for quick prototyping. To demonstrate how local processes 
work in practice, take a look at Listing 4.2. 

Listing 4.2 Local processes as a compute layer 

from metaflow import FlowSpec, step 
import os 

global_value = 5    #A 

class ProcessDemoFlow(FlowSpec): 

   @step 
   def start(self): 

  global global_value   #B 
  global_value = 9    #B 
  print('process ID is', os.getpid()) 
  print('global_value is', global_value) 
  self.next(self.end) 

   @step 
   def end(self): 

  print('process ID is', os.getpid()) 
  print('global_value is', global_value) 

if __name__ == '__main__': 
   ProcessDemoFlow() 

#A Initialize a global variable 
#B Modify the value of the global variable 
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Save the code to process_demo.py. Here, global_value is initialized as a module-level
global variable. Its value is changed from 5 to 9 in the start step. The value is printed again
in the end step. Can you guess whether the value printed at the end step will be 5 or 9?

Execute the code as follows to test it 

# python process_demo.py run 

The value is 9 at the start step as expected. The value at the end step is 5. If start and
end were ordinary Python functions executed sequentially, the value would stay as 9.
However, Metaflow executes each task as a separate local process, so the value of 
global_value gets reset back to 5 at the beginning of each task. If you want to persist the
change across tasks, you should store global_value as a data artifact in self, instead of
relying on a module-level variable. You can also see that the process ID is distinct for the 
two tasks, which wouldn’t be the case if the tasks were executed by the same Python 
process. 

Here’s why executing Metaflow tasks as independent units of computation matters for the 
compute layer: 

NOTE Metaflow tasks are isolated units of computation that can be executed on various compute layers. A 

single workflow can farm out tasks to many different compute layers, using the most suitable system for 
each task.  

Metaflow’s approach to computation is based on the following three assumptions on the 
nature of generalized infrastructure for data science: 

1. Infrastructure needs to support a wide variety of projects that have varying
needs for computation: Some need lots of memory on a single instance, some need
many small instances, and some require specialized hardware like GPUs. There isn’t a
one-size-fits-all approach for all compute needs.

2. A single project or a workflow has varying needs for computation: Data processing
steps may be IO-intensive, possibly requiring lots of memory. Model training may
require specialized hardware. Small coordination steps should execute quickly. While
technically one could run the whole workflow on the largest possible instances, in
many cases it would be cost-prohibitive. It is better to give the user an option to
adjust the resource requirements for each step individually.

3. Needs of a project vary over its lifetime. It is convenient to prototype the first
version quickly using local processes. After this, you should be able to test the
workflow at scale using more compute resources. Finally, the production version
should be both robust and scalable. You are ready to make different kinds of trade-
offs when it comes to latency, scalability, and reliability at different points in the
project’s lifecycle.

Next, we show how you can set up infrastructure that works this way using local processes 
and AWS Batch. 

135

https://livebook.manning.com/book/effective-data-science-infrastructure/discussion


©Manning Publications Co.  To comment go to  liveBook 

4.3.1 Configuring AWS Batch for Metaflow 
AWS Batch provides a convenient abstraction for use cases that need to execute units of 
computation, jobs, to completion without any user intervention. Under the hood, AWS Batch 
is a relatively simple job queue which offloads management of compute resources to other 
AWS services. 

You can find step-by-step installation instructions for AWS Batch in Metaflow’s online 
documentation (See Administrator’s Guide to Metaflow at admin-docs.metaflow.org). You can 
either use the provided CloudFormation template that sets up everything for you with a click 
of a button or you can follow the manual installation instructions if you want to set it up by 
yourself, possibly customizing the setup as you go. 

After you have configured AWS Batch for Metaflow, data scientists can use it in a 
straightforward manner as described in the next section without having to worry about 
implementation details. However, it is beneficial for the operators of the system to 
understand the high-level architecture which is depicted in Figure 4.10. 
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Figure 4.10 The architecture of AWS Batch 

Let’s start with the four concepts, boldfaced in Figure 4.10, which you see mentioned often in 
the documentation of AWS Batch: 

• Job definition Configures the execution environment for a job: CPU, memory,
environment variables etc. Metaflow takes care of creating a suitable job definition for
each step automatically, so you don’t have to worry about it.

• Job A single unit of computation. Each job is executed as an independent container.
Metaflow maps each Metaflow task to a single Batch Job automatically. Hence in the
context of AWS Batch, we can talk about tasks and jobs interchangeably.
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• Job Queue Jobs are sent to a job queue to wait for execution. A queue may have any
number of tasks pending. You can set up multiple queues, e.g., to distinguish
between low-priority and high-priority jobs. The figure illustrates two queues: One
with two jobs and another with one job.

• Compute Environment A pool of compute resources where jobs get executed. AWS
Batch can manage the compute environment for you, adding more compute resources
in the environment when the queue gets longer, or you can manage the compute
environment by yourself. Thanks to auto-scaling compute environments, AWS Batch
can be used as an elastically scaling compute layer. The figure illustrates two compute
environments: One using EC2 instances and another one using Fargate - see below
for a detailed discussion.

When you start a Metaflow run that uses AWS Batch, the execution proceeds as follows: 

1. Prior to starting any tasks, Metaflow makes sure that the correct Job Definitions are
created on Batch.

2. Metaflow creates a job package that includes all Python code corresponding to the
flow. The package is uploaded to the datastore in AWS S3 (more about job packages
in Chapter 7).

3. Metaflow walks through the DAG. When it encounters a task that should be executed
on Batch, it submits a job request to a job queue that has been configured in advance.

4. If there are not enough compute resources in the Compute Environment and it hasn’t
reached its maximum limit, Batch scales up the environment.

5. Once resources are available, Batch schedules a job for execution.
6. The Metaflow task encapsulated in a Batch job is executed in a container.
7. Metaflow polls the status of the task. Once Batch reports that the task has completed

successfully, Metaflow continues executing subsequent tasks, going back to step 3,
until the end step has completed.

CHOOSING THE COMPUTE ENVIRONMENT 

If you let AWS Batch manage the compute environment for you, it will use a container 
management service provided by AWS like Elastic Container Service (ECS) to execute 
containers. Behind the scenes, ECS launches EC2 compute instances using a managed Auto-
Scaling Group that is a set of instances that can grow and shrink automatically on demand 
basis. These instances will show up in the EC2 console like any other instances in your 
account. 

A benefit of using ECS is that you can use any EC2 instance types in your compute 
environment: You can choose a selection of instances with a high amount of memory, many 
CPU cores, or even GPUs. ECS schedules the job on the most suitable instance that can 
accommodate its resource requirements. 

Alternatively, you can choose to use AWS Fargate as a compute environment. Fargate 
doesn’t use EC2 instances directly, so you won’t see any instances on your EC2 dashboard. 
Also, you can’t choose the instance types directly - Fargate finds a suitable instance for each 
job automatically based on its resource requirements. However, the range of supported 
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resource requirements is more limited compared to ECS. The biggest benefit of Fargate over 
ECS is that jobs start quicker. 

As a yet another alternative, you can manage your own pool of EC2 instances behind ECS. 
While this is a more tedious route, it allows the maximum degree of customizability: You can 
set up the instances however you want. This approach may be useful e.g. if you have special 
security or compliance requirements. 

In the point of view of a Metaflow task, the compute environment doesn’t make any 
difference: Once a suitable instance is found for the task, it is executed in a container using 
the same container image regardless of the environment. As mentioned earlier in this 
chapter, the compute layer only determines where the task is executed. 

Finally, here is the good news for cost-conscious companies: You don’t pay any premium for 
using the instances with AWS Batch - you pay only the per-second price of the EC2 instances 
of your choosing, which makes AWS Batch one of the most cost-effective compute layers. 
You can reduce costs even further by using Spot Instances which are the same EC2 instances 
but come with a caveat that they may be interrupted at any point in time. This isn’t as bad 
as it sounds, as Metaflow can retry interrupted jobs automatically using the @retry decorator
(see section 4.4). The main cost is an extra delay in execution time when interruptions 
occur. 

CONFIGURING THE CONTAINER 

Whereas the Compute Environment determines how hardware like CPUs and memory are 
made available for jobs, the container settings determine the software environment for 
Metaflow tasks. Pay attention to the following two settings: 

First, you must configure the security profile, aka an IAM role, that determines what AWS 
resources Metaflow tasks are allowed to access. At the minimum, they need to be able to 
access an S3 bucket which is used as the Metaflow datastore. If you use AWS Step Functions 
for job scheduling as described in Chapter 6, you must allow access to a DynamoDB table as 
well. If you use the provided CloudFormation template, a suitable IAM role is created for you 
automatically. 

Second, optionally, you can configure the default container image that is used to execute 
tasks. The image determines what libraries are available for the task by default. For 
instance, if you have set up cloud-based workstations as described in Chapter 2, you can use 
the same image for workstations and task execution - more about dependency management 
in Chapter 7. If you don’t specify any image, a generic Python image is chosen by Metaflow. 

THE FIRST RUN WITH AWS BATCH 

To use AWS Batch with Metaflow you need to complete the following steps. The steps are 
executed automatically by the provided CloudFormation template but it is not hard to 
complete them manually. See Metaflow’s online documentation for detailed instructions: 

1. Initialize an S3 bucket for the Metaflow datastore.
2. Set up a VPC network for the Compute Environment.
3. Set up a Batch job queue.
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4. Set up a Batch compute environment.
5. Set up an IAM role for containers.
6. Run metaflow configure aws to configure the above services for Metaflow.

That’s it! After you have completed the steps, let’s test that the integration works. Execute 
the following command which runs process_demo.py from Listing 4.2 using AWS Batch:

# python process_demo.py run --with batch 

The command should produce output that looks like this: 

[5c8009d0-4b48-40b1-b4f6-79f6940a6b9c] Task is starting (status SUBMITTED)... 
[5c8009d0-4b48-40b1-b4f6-79f6940a6b9c] Task is starting (status RUNNABLE)... 
[5c8009d0-4b48-40b1-b4f6-79f6940a6b9c] Task is starting (status STARTING)... 
[5c8009d0-4b48-40b1-b4f6-79f6940a6b9c] Task is starting (status RUNNING)... 
[5c8009d0-4b48-40b1-b4f6-79f6940a6b9c] Setting up task environment. 

The example omits Metaflow’s standard prefix on each line to save space. The long ID in 
square brackets is the AWS Batch Job ID corresponding to the Metaflow task. You can use it 
to cross-reference Metaflow tasks and AWS Batch jobs visible in the AWS Console UI. 

The first four “Task is starting” lines indicates the state of the task in the Batch queue: 

• SUBMITTED: The task is entering the queue
• RUNNABLE: The task is pending in the queue, waiting for a suitable instance to

become available.
• STARTING: A suitable instance was found and the task is starting on it.
• RUNNING: The task is running on the instance.

It is typical for tasks to stay in the RUNNABLE state for up to a few minutes as AWS Batch 
scales up the Compute Environment. If the Compute Environment has reached its maximum 
size, the task needs to wait for previous tasks to finish which might take even longer. 

The run should complete successfully after a few minutes. Its output should be similar to that 
of the local run. While this first run doesn’t seem like much - the run using AWS Batch 
completes slower than the local run due to the overhead of launching tasks in the cloud, you 
now have a virtually unlimited amount of processing power at your disposal! We will put this 
capability into action in the next section and even more in the next chapter. 
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Troubleshooting RUNNABLE tasks 
A common symptom of AWS Batch not working correctly is a task that seems to be stuck in the RUNNABLE state 

forever. There are a number of reasons that may cause this, all related to the Compute Environment (CE). 

If you are using an EC2-backed compute environment (not Fargate), you can check what instances have been 
created in the CE by logging on to the EC2 console and searching for a tag aws:autoscaling:groupName: 
followed by the CE name. Based on the returned list of instances, you can troubleshoot the issue: 

• No instances: If no instances were returned, it is possible that your CE is unable to launch instances of the desired
type. For instance, your AWS account may have reached its limit of EC2 instances. You may be able to see why 
there are no instances by checking the status of the auto-scaling group named after the CTE. 

• Some instances but no other tasks running: It is possible that your task requests resources, e.g. memory or GPUs 
using the @resources decorator discussed below that can’t be fulfilled by the CE. In this case, the task will stay 
in the queue forever. You can kill the task (job) in the AWS Batch console. 

• Some instances and other running tasks: Your cluster may be busy processing the other tasks. Wait for the other
tasks to finish first. 

If the problem persists, you can contact the online support of Metaflow. 

4.3.2 @batch and @resources decorators 
Now that you have configured AWS Batch, you can choose to execute any run in the cloud 
just by doing run --with batch. All features of Metaflow, such as artifacts, experiment
tracking, parameters, and the Client API work exactly the same way as before when using 
AWS Batch as the compute layer. 

As discussed in the beginning of this chapter, the main motivation for having a cloud-based 
compute layer is scalability: You can handle more demanding compute, more data, than 
what you would be able to handle at a local workstation. Now that we have AWS Batch set 
up, we can see what this means in practice. 

Listing 4.3 presents a flow that tries to allocate eight gigabytes of memory by creating a 
string of eight billion characters. 
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Listing 4.3 A flow that uses a lot of memory 

from metaflow import FlowSpec, step 

LENGTH = 8_000_000_000  #A 

class LongStringFlow(FlowSpec): 

   @step 
   def start(self): 

  long_string = b'x' * LENGTH    #B 
  print("lots of memory consumed!") 
  self.next(self.end) 

   @step 
   def end(self): 

  print('done!') 

if __name__ == '__main__': 
   LongStringFlow()) 

#A Set length to eight billion characters. The underscores are added to aid readability. 
#B Try to allocate 8GB of memory 

Save the code in long_string.py. If you have at least 8GB of memory available on your
workstation, you can start by running the flow locally: 

# python long_string.py run 

The run may fail with a MemoryError if not enough memory is available. Next, let’s execute
the flow on Batch 

# python long_string.py run --with batch 

Metaflow executes the task on Batch with its default memory settings which provide less 
than 8GB of memory for the task. The task is likely to fail with a message like 

AWS Batch error: 
OutOfMemoryError: Container killed due to memory usage This could be a transient error. Use 

@retry to retry. 

While you can’t increase the amount of memory on your workstation like a laptop easily, we 
can request more memory from our compute layer. Rerun the flow as follows: 

# python long_string.py run --with batch:memory=10000 

The memory=10000 attribute instructs Metaflow to request 10GB of memory to every step of
the flow. The unit for memory is megabytes, so 10,000MB equals 10GB. Note that if your
Compute Environment doesn’t provide instances with at least 10GB of memory, the run will 
get stuck in the RUNNABLE state. Assuming suitable instances can be found, the run should 
complete successfully. 

This is vertical scaling in action! We are able to request instances with specific hardware 
requirements simply on the command line. Besides memory, you can request a minimum 
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number of CPU cores with the cpu attribute or even GPUs with the gpu attribute. For
instance, this command line provides every task with 8 CPU cores and 8GB of memory: 

# python long_string.py run --with batch:memory=8000,cpu=8 

Since data science workloads tend to be resource-hungry, it is very convenient to be able to 
test code and scale workloads this easily. You can request any amount of memory that is 
supported by EC2 instances in your Computer Environment. As of writing this book, the 
largest instance has 768GB of memory, so with a suitable Compute Environment, you can 
request up to --with batch:memory=760000, leaving 8GB for the operating system on the
instance. 

You can handle quite sizable datasets with this much memory. If you are worried about cost, 
consider that the function executes for less than a minute. Even if you executed the task on 
the largest and the most expensive instance, it would cost only about 10 cents thanks to per-
second billing. You could push the cost down even further by using spot instances in your 
Compute Environment as discussed earlier. 

SPECIFYING RESOURCE REQUIREMENTS IN THE CODE 

Let’s say you share long_string.py with a colleague. Following the above approach, they
would need to know the specific command line, run --with batch:memory=10000, to run
the flow successfully. Since we know that the amount of memory is a strict requirement - the 
flow won’t succeed without at least 8GB of memory, we can annotate the requirement 
directly in the code by adding 

@batch(memory=10000) 

above @step for the start step. Remember to add from metaflow import batch at the top
of the file too. 

Now, your colleagues can run the flow with the run command without any extra options. As
an additional benefit, only the start step annotated with the @batch decorator gets
executed on AWS Batch and the end step, which doesn’t have any resource requirements,
executes locally. This exemplifies how you can use multiple compute layers rather seamlessly 
in a single workflow. 

NOTE The --with option is shorthand for assigning a decorator, like batch, to every step on the fly. 

Hence run --with batch is equivalent to adding the @batch decorator manually to every step of the 
flow and executing run. Correspondingly, any attributes added after a colon, like batch:memory=10000, 
map directory to the arguments given to the decorator, like @batch(memory=10000). 

Now, imagine that you share a version of long_string.py that is annotated with @batch
publicly. A stranger wants to execute the code but their compute layer is Kubernetes, not 
AWS Batch. Technically, they should be able to execute the flow successfully on a 10GB 
instance provided by Kubernetes. For situations like this, Metaflow provides another 
decorator, @resources, which let’s you specify the resource requirements in a compute layer
-agnostic manner.
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You could replace the @batch decorator with

@resources(memory=1000) 

However, in contrast to @batch, the @resources decorator doesn’t determine which compute
layer is used. If you run the flow without options, it executes locally and @resources has no
effect. To run the flow with AWS Batch, you can do run --with batch without any
attributes. The @batch decorator knows to pick the resource requirements from @resources.
Correspondingly, the stranger could run the flow on their Kubernetes cluster using something 
akin to run --with kubernetes.

It is considered a best practice to annotate steps that have high resource requirements with 
@resources. If the step code can’t succeed without a certain amount of memory or, say, a
model training step won’t execute quickly enough without a certain number of CPU or GPU 
cores, you should make the requirement explicit in the code. In general, it is preferable to 
use @resources rather than @batch or other compute-layer specific decorators when
possible, so anyone running the flow can choose a suitable compute layer on the fly. 

We will go through many more examples of scalability using @resources and AWS Batch in
the next chapter. Before getting there though, we will cover one inevitable fact of life: 
Surprises happen and things don’t always work as expected. 

4.4 Handling failures 
One day the cloud-based compute environment at Caveman Cupcakes started behaving 
erratically. Alex’s tasks that had been running flawlessly for weeks started failing without a 
clear reason. Bowie noticed that the cloud provider’s status dashboard reported “increased 
error rates”. There was nothing that Alex and Bowie could do about the situation besides 
waiting for the cloud to fix itself and trying to limit the impact to their production workflows. 
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Alex’s and Bowie’s scenario is hardly hypothetical. While the cloud provides a rather practical 
illusion of infinite scalability, it doesn’t pretend to work flawlessly. Errors in the cloud tend to 
be stochastic in nature, so the higher the number of concurrent jobs, the more likely you will 
hit a random transient error. As these errors are an inevitable fact of life, we should be 
prepared to handle them proactively. 

It is useful to distinguish between two types of failures: 

1. Failures in the user code - the user-written code in steps may contain bugs or it
may call other services that behave erroneously.

2. Platform errors - the compute layer that executes the step code may fail for a
number of reasons, e.g. hardware failures, networking failures, inadvertent changes in
configuration etc.

Failures that happen in the user code, e.g. failed database connections, can be typically 
handled inside the user code itself, which distinguishes the first category from the second. 
There’s nothing you can do in your Python code to recover from, say, the underlying 
container management system failing. Consider the example in Listing 4.4: 
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Listing 4.4 Failing due to division by zero 

from metaflow import FlowSpec, step 

class DivideByZeroFlow(FlowSpec): 

   @step 
   def start(self): 

  self.divisors = [0, 1, 2] 
  self.next(self.divide, foreach='divisors') 

   @step 
   def divide(self): 

  self.res = 10 / self.input    #A 
  self.next(self.join) 

   @step 
   def join(self, inputs): 

  self.results = [inp.res for inp in inputs] 
  print('results', self.results) 
  self.next(self.end) 

   @step 
   def end(self): 

  print('done!') 

if __name__ == '__main__': 
   DivideByZeroFlow() 

#A This will fail with ZeroDivisionError 

Save the flow in zerodiv.py and run it

# python zerodiv.py run 

The run will fail and throw an exception, ZeroDivisionError: division by zero. This is
clearly a logical error in the user code - accidental division by zero errors are quite common 
in numerical algorithms. If we suspect that a block of code may fail, we can use Python’s 
standard exception handling mechanisms to handle it. Fix the divide step as follows:

   @step 
   def divide(self): 

  try: 
   self.res = 10 / self.input 

  except: 
   self.res = None 

  self.next(self.join) 

After the fix, the flow will run successfully. Following this pattern, it is advisable to try to 
handle as many exceptions in the step code as possible. There are two main reasons for this 
recommendation: 

1. If you consider possible error paths while writing the code, you can also implement
the paths for error recovery, e.g. what exactly should happen when
ZeroDivisionError is raised. You can implement “plan B”s as a part of your logic,
since only you know the right course of action in your particular application.
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2. It is faster to recover from errors in the user code. For instance, if you are calling an
external service, e.g. a database in your step, you can implement a retry logic (or rely
on the database client’s built-in logic) which retries a failed connection without having
to retry the whole Metaflow task which incurs a much higher overhead.

Even if you follow this advice, tasks may still fail. They may fail because you failed to 
consider some unforeseen error scenario or they may fail due to a platform error, say, a data 
center may catch fire. Metaflow provides an additional layer of error handling which can help 
in these scenarios. 

4.4.1 Recovering from transient errors with @retry 
The flow presented in Listing 4.4 fails predictably every time it is executed. Most platform 
errors and some errors in the user code behave more randomly: For instance, AWS Batch 
may schedule a task to be executed on an instance with failing hardware. The compute 
environment will eventually detect the hardware failure and decommission the instance but 
this may take a few minutes. The best course of action is to retry the task automatically: 
There’s a good chance that it won’t hit the same transient error again. 

Listing 4.5 simulates an unlucky transient error: It fails every other second. 

Listing 4.5 Retry decorator 

from metaflow import FlowSpec, step, retry 

class RetryFlow(FlowSpec): 

   @retry 
   @step 
   def start(self): 

  import time 
  if int(time.time()) % 2 == 0:   #A 

   raise Exception("Bad luck!") 
  else: 

   print("Lucky you!") 
  self.next(self.end) 

   @step 
   def end(self): 

  print("Phew!") 

if __name__ == '__main__': 
   RetryFlow() 

#A The conditional is true depending on the second when the line is executed 

Save the flow in retryflow.py and run it

# python retryflow.py run 

You should see a bunch of exceptions printed out when the execution hits the “Bad luck” 
branch. Thanks to the @retry flag, any failure in the start step causes it to be retried
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automatically. It is likely that the execution will eventually succeed. You can rerun the flow a 
few times to see the effect. 

A key feature of @retry is that it also handles platform errors, not only errors in the user
code. For instance, if a container fails on AWS Batch for any reason, including the data 
center catching fire, the @retry decorator will cause the task to be retried. Thanks to the
sophistication of the cloud, there’s a good chance that a retried task will get rerouted to a 
non-burning data center and it will succeed eventually. 

Note that when you start a run on your workstation, the run will succeed only if the 
workstation stays alive for the whole duration of the execution. The retrying mechanism of 
the @retry decorator is implemented by the DAG scheduler, which in the case of local runs is
the built-in scheduler of Metaflow. If the scheduler itself dies, it will take all executions down 
with it, which is not desirable for business-critical production runs. Addressing this 
shortcoming is a key topic of Chapter 6 which focuses on production deployments: We will 
learn how we can make the scheduling itself tolerant against platform errors. 

Escaping a burning data center 
How can a task succeed even if a data center is on fire? AWS has the concept of Availability Zones (AZ) which are 

physically distanced data centers, limiting the impact radius of any real-world disaster. In the case of AWS Batch, a 
Compute Environment may launch instances on multiple AZs transparently, so when instances become unavailable in 
one AZ, instances in another AZ can take over. 

AVOIDING RETRIES SELECTIVELY 

You may wonder why the user has to worry about the @retry decorator - couldn’t Metaflow
retry all tasks automatically? A challenge is that steps may have side-effects: Imagine a step 
that increments a value in a database, for instance, the balance of a bank account. If the 
step crashes after the increment operation and it was retried automatically, the bank account 
would get credited twice. 

If you have a step like this that mustn’t be retried, you can annotate it with a decorator 
@retry(times=0). Now, anyone can run the flow simply by executing

# python retryflow.py run --with retry 

which will add a @retry decorator to every step but the step with @retry(times=0) will get
retried zero times. You can also use the times attribute to adjust the number of retries to be
higher than the default. In addition, you can specify another attribute, 
minutes_between_retries, which tells the scheduler to wait for the given number of
minutes between retries.

RECOMMENDATION Whenever you run a flow in the cloud, e.g. using AWS Batch, it is a good idea to run 

it --with retry which takes care of transient errors automatically. If your code mustn’t be retried, 

annotate it with @retry(times=0). 
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4.4.2 Killing zombies with @timeout 
Not all errors manifest themselves as exceptions or crashes. A particularly annoying class of 
errors causes tasks to get stuck, blocking the execution of a workflow. In machine learning, 
this can happen with numerical optimization algorithms that converge very slowly with a 
particular dataset. Or, you may call an external service which never returns a proper 
response, causing the function call to block forever. 

You can use the @timeout decorator to limit the total execution time of a task. Listing 4.6
simulates a task that takes too long to complete occasionally. When it happens, the task will 
get interrupted and retried. 

Listing 4.6 Timeout decorator 

from metaflow import FlowSpec, timeout, step, retry 
import time 

class TimeoutFlow(FlowSpec): 

   @retry 
   @timeout(seconds=5)    #A 
   @step 
   def start(self): 

  for i in range(int(time.time() % 10)):    #B 
   print(i)    #B 
   time.sleep(1)    #B 

  self.next(self.end) 

   @step 
   def end(self): 

  print('success!') 

if __name__ == '__main__': 
   TimeoutFlow() 

#A The task will timeout after 5 seconds. 
#B This block of code takes between 0-9s to execute. 

Save the flow in timeoutflow.py and run it

# python timeoutflow.py run 

If you get lucky, the run may succeed on the first try. You can try again to see @timeout and
@retry in action: The start task is interrupted after 5 seconds. When this happens, @retry
takes care of retrying the step. Without @retry, the run would crash when a timeout occurs.

Besides seconds, you can set the timeout value as minutes or hours or a combination of
thereof. 

4.4.3 The decorator of the last resort: @catch 
Machine learning workflows can power business-critical systems and products used by 
millions of people. In critical production settings like this, the infrastructure should ensure 
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that workflows degrade gracefully in the presence of errors. In other words, even when 
errors happen, they shouldn’t cause the whole workflow to fail. 

Let’s say you have a step in a workflow that connects to a database to retrieve fresh data 
that is used to update a model. One day, the database is down and the connection fails. 
Hopefully your step has the @retry decorator, so the task is retried a few times. What if the
database outage persists over all retries? When the maximum number of retries have been 
reached, the workflow crashes. Not great. 

Or consider another real-life scenario: A workflow trains a separate model for each country of 
the world using a 200-way foreach. The input dataset contains a daily batch of events by 
country. One day, the model training step fails for Andorra, since there were no new events 
produced for the small country. Naturally the data scientist should have included quality 
checks for data before it gets fed into the model but this issue never occurred during testing, 
so it is an understandable human error. Also in this case, the whole workflow failed, leading 
to a few hours of frantic troubleshooting. 

Metaflow provides a decorator of last resort, @catch, which gets executed after all retries
have been exhausted. The @catch decorator swallows all errors produced by the task,
allowing execution to continue even if the task failed to produce anything useful. Crucially, 
@catch allows creation of an indicator artifact, so subsequent steps can handle failed tasks 
gracefully. 

Let’s apply the @catch decorator to our previous example, DivideByZeroFlow from
Listing 4.4. Let’s call the new version, shown in Listing 4.7, CatchDivideByZeroFlow.
Structurally, this example is similar to the Andorra example: It has a foreach with a faulty 
task that shouldn’t cause the whole workflow to fail. 
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Listing 4.7 Demonstrating the @catch decorator 

from metaflow import FlowSpec, step, retry, catch 

class CatchDivideByZeroFlow(FlowSpec): 

   @step 
   def start(self): 

  self.divisors = [0, 1, 2] 
  self.next(self.divide, foreach='divisors') 

   @catch(var='divide_failed')    #A 
   @retry(times=2)    #B 
   @step 
   def divide(self): 

  self.res = 10 / self.input 
  self.next(self.join) 

   @step 
   def join(self, inputs): 

  self.results = [inp.res for inp in inputs if not inp.divide_failed] 
  print('results', self.results) 
  self.next(self.end) 

   @step 
   def end(self): 

  print('done!') 

if __name__ == '__main__': 
   CatchDivideByZeroFlow() 

#A Create an indicator artifact, divide_failed which is set to True if the task fails 
#B Retrying is futile in this case 

Save the flow in catchflow.py and run it

# python catchflow.py run 

Notice that one of the divide tasks fails, it is retried, and finally @catch takes over and
prints an error message about ZeroDivisionError. Crucially, @catch allows the execution to
continue. It creates an artifact, divide_failed=True, for the task that failed - you can name
the artifact freely. The subsequent join step uses this artifact to only include results from
tasks that succeeded. 

If you are curious, you can run the flow with AWS Batch: 

# python catchflow.py run --with batch 

You can see that the decorators will work the same way regardless of the compute layer. 

Use @catch to annotate complex steps, e.g. model training or database access, which may
fail in unforeseeable ways but whose failure shouldn’t crash the whole workflow. Just make 
sure that you handle missing results gracefully in the subsequent steps. 
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SUMMARY: HARDENING A WORKFLOW GRADUALLY 

This section introduced four mechanisms for dealing with failures proactively: Python’s 
standard try-except construct, @retry, @timeout, and @catch. These decorators are
optional, acknowledging the fact that handling failures isn’t the first priority when prototyping 
a new project. However, as the project matures you can use the decorators to harden your 
workflow and make it more production-ready. 

You can gradually harden your workflows in this order: 

1. Use try-except blocks in your code to handle obvious exceptions. For instance, you
can wrap any data processing in try-except since the data may evolve in surprising
ways. Also, it is a good idea to wrap any calls to external services like databases try-
except and possibly include use case specific retrying logic.

2. Use @retry to handle any transient platform errors, i.e. any random issues happening
in the cloud. In particular, using @retry is crucial with workflows that launch many
tasks e.g. using foreach. You can execute any flow robustly in the cloud simply by
using run --with batch --with retry. For extra safety, you can make @retry
more patiently: E.g. @retry(times=4, minutes_between_retries=20) gives the task
over one hour time to succeed.

3. Use @timeout to annotate steps that may get stuck or that may execute for an
arbitrarily long time.

4. Use @catch to prevent complex steps, e.g. model training or data processing, from
crashing the whole workflow. Remember to check the indicator artifact created by
@catch in subsequent steps to account for missing results.

4.5 Summary 
• Effective infrastructure helps data science scale at many levels: It allows you to

handle more people, more projects, more workflows, more compute, and more data.
• Versioning and isolation helps to scale people and the number of projects, as less

coordination is required. A cloud-based compute layer allows data scientists to scale
the compute resources, allowing them to handle more demanding models and more
data.

• Use a cloud-based compute layer to handle more tasks (horizontal scalability) and
larger tasks (vertical scalability) than what a single workstation can handle.

• Leverage existing container management systems to execute isolated units of batch
computation in the cloud.

• The infrastructure can support a selection of compute layers, each optimized for a
specific set of workloads.

• An easy way to get started with cloud-based compute is to use AWS Batch with
Metaflow.

• Use the @resources decorator to annotate the resource requirements for each step.
• Metaflow provides three decorators that allow you to gradually harden your workflows

against failures: @retry, @catch, and @timeout.
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Practicing Scalability and 
Performance 

This chapter covers 

• Developing a realistic, scalable data science project iteratively.
• Using the compute layer to power large-scale operations, such as parallelized model

training.
• Optimizing performance of numerical Python code.
• Various techniques that you can use to make your workflows more scalable and

performant.

In the previous chapter, we discussed how scalability is not only about being able to handle 
more demanding algorithms or handle more data. At the organizational level, the 
infrastructure should be able to scale to more projects, developed by a larger group of 
people as well. Moreover, we recognized that scalability and performance are separate 
concerns - you can have one without the other. Interestingly, the different dimensions of 
scalability and performance can be at odds with each other. 

Imagine having an experienced engineer implementing a highly optimized custom solution in 
C which exhibits very high performance and desirable scalability. While the solution scales at 
the technical level, it is not very scalable organizationally - no one else in the team knows 
the C language. Conversely, you can imagine a very high-level ML solution which builds 
models with a click of a button: Everyone knows how to click the button but the solution is 
too inflexible to scale to a wide variety of projects. Also it is unable to handle larger datasets. 

A pragmatic, two-pronged solution to the scalability dilemma includes the following: 
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1. Effective, generalized infrastructure needs to handle a wide variety of projects, so it is 
not reasonable to expect that there is a single universal paradigm or approach of 
scalability which works for every project. Instead, we can provide an easy-to-use 
toolbox of a few robust ways to achieve good enough scalability and performance. 

2. To address organizational scalability - we want to make projects understandable by 
the widest number of people - our main tool is simplicity. People have a limited 
cognitive bandwidth. We can spare it by using the simplest possible approach that 
works well enough for the problem at hand.  

We can summarize the two points in a simple mnemonic presented in Figure 5.1. 

 
Figure 5.1. Pragmatic approach to scalability 

Here, “Simple” refers to the quality that anyone new to the project can view the source code 
and quickly comprehend how the code works. “Complex” is the opposite: It takes a lot of 
effort to understand how the code works. “Slow” means that the solution may hit scalability 
limits and it makes people wait for results longer than what would be optimal - nonetheless it 
works. “Fast” means that the solution is perfectly adequate for the problem at hand: It scales 
well enough and it provides results quickly enough. 

Why should we prioritize simplicity (the first row) over raw scalability and performance (the 
right column)? Besides organizational aspects - simple code tends to be easier to learn - 
another key motivation is the correctness or validity of results. As Tony Hoare, a famous 
computer scientist, has said: “There are two ways to write code: write code so simple there 
are obviously no bugs in it, or write code so complex that there are no obvious bugs in it”. 

As data science applications tend to be statistical by nature, meaning that bugs and biases 
can lurk in the codebase without producing clear error messages, you should really prefer 
simple code over non-obvious bugs. Only when it is absolutely clear that the application 
requires higher scalability or performance, should you increase its complexity proportionally. 
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Along these lines, you may have heard of another old programming quip: “premature 
optimization is the root of all evil”. The quip is even more relevant to our discussion when 
seen in its original context in a paper called “Structured Programming with go to Statements” 
by another famous computer scientist, Donald Knuth, published in 1974: 

There is no doubt that the grail of efficiency leads to abuse. Programmers waste enormous 
amounts of time thinking about, or worrying about, the speed of noncritical parts of their 
programs, and these attempts at efficiency actually have a strong negative impact when 
debugging and maintenance are considered. We should forget about small efficiencies, say 
about 97% of the time: premature optimization is the root of all evil. Yet we should not pass 
up our opportunities in that critical 3%. A good programmer will not be lulled into 
complacency by such reasoning, he will be wise to look carefully at the critical code; but only 
after that code has been identified. It is often a mistake to make a priori judgments about 
what parts of a program are really critical, since the universal experience of programmers 
who have been using measurement tools has been that their intuitive guesses fail. 

When it comes to scalability, Knuth’s words are equally applicable to complex projects and 
even teams, as they are to programs. A good data scientist will be wise to look carefully at 
the holistic business context and all systems involved to identify which projects, workflows, 
or individual steps really warrant optimization. 

In this chapter, we will develop a realistic ML application that has non-trivial requirements for 
scalability and performance. We show how to develop a data science application 
incrementally, always striving for the simplest possible approach that is correct and delivers 
the desired results. In other words, we want to stay on the first row of Figure 5.1. We will 
demonstrate a number of different approaches that help in achieving good enough scalability 
and performance. In each section, we have a general discussion about each particular 
approach, so you learn when and how to apply them for your use cases. 

Our building blocks are the tools we introduced in the past chapters: Vertical and horizontal 
scalability using the compute layer. While it is possible to run the examples on a laptop, the 
examples are more fun and realistic if you have a cloud-based compute layer like AWS Batch 
set up as instructed in the previous chapter. As before, we will use Metaflow to demonstrate 
the concepts and get hands-on practice but you can adapt the examples to other frameworks 
as the general principles are framework-agnostic. 

5.1 Starting simple: Vertical scalability 
We will start building a realistic ML application that utilizes Natural Language Processing 
(NLP) to model and analyze Yelp reviews. We will follow the spiral approach, introduced in 
Chapter 3, to develop the application. The approach is depicted in Figure 5.2. 
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Figure 5.2. The spiral approach with optimizations as the last step 

While the topic of the chapter is Practicing Scalability, there are a number of steps that 
precede any scalability concerns, as depicted in Figure 5.2: 

1. Understand the business problem thoroughly: maybe the business context allows us 
to go with a simpler, less scalable, but more obviously correct solution. 

2. Get access to relevant input data and make sure that the data is correct and it will 
stay correct. Also, estimate the scale and the growth rate of the data. 

3. Make sure that the results of your application can be consumed properly and they 
produce the desired action. 

4. Develop a small-scale but functional prototype which allows you to test the application 
with real data, to ensure its correctness end-to-end. 

To implement steps 1-4 we can choose the simplest scalability approach that allows us to 
build a functional prototype. It is ok if the simple approach won’t be perfectly scalable - we 
can fix it later once we have confirmed that everything else works. To quote Kent Beck, an 
accomplished software architect, this should be our order of priorities: “Make it work, make it 
right, make it fast”.  

5.1.1 Example: Clustering Yelp Reviews 
Let’s start with a hypothetical business problem: You are working at a startup that is trying 
to build a better version of Yelp, the review site. To understand the strengths and 
weaknesses of Yelp’s product, the startup wants to analyze the different types of reviews 
that people have contributed to Yelp. 

We don’t have any existing taxonomy of reviews, so instead of classifying reviews to known 
buckets, we will rely on unsupervised learning which in this case groups Yelp reviews to sets 
of similar-looking reviews. You can read more about unsupervised learning and document 
clustering in the documentation of Scikit Learn1. 

 
1 https://scikit-learn.org/stable/unsupervised_learning.html 
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To accomplish the task, we can access a publicly available corpus of 650,000 Yelp reviews. 
The dataset is made publicly available by Fast.AI2 and it is conveniently hosted in AWS S3 by 
the Registry of Open Data on AWS. The dataset is about 500MB uncompressed, so it is large 
enough to practice scalability but small enough so it can be handled on any medium-size 
cloud instance or a workstation. 

A good starting point is to see what the data looks like. A Jupyter notebook works well for 
this purpose, as depicted in Figure 5.3. 

 
Figure 5.3. Inspecting the Yelp dataset in a notebook 

Listing 5.1 shows the code used in Figure 5.3. 

Listing 5.1 Inspecting Yelp review dataset 

import tarfile 
from metaflow import S3 
 
with S3() as s3:    #A 
    res = s3.get('s3://fast-ai-nlp/yelp_review_full_csv.tgz')    #A 
    with tarfile.open(res.path) as tar:    #B 
        datafile = tar.extractfile('yelp_review_full_csv/train.csv')    #B 
        reviews = [line.decode('utf-8') for line in datafile]    #C 
 
print('\n'.join(reviews[:2]))    #D 
 

#A Use Metaflow’s built-in S3 client to load the publicly available Yelp dataset 
#B Extract a data file from the tar package 
#C Load all reviews, one review per line, in a list 
#D Print the first two reviews as a sample 

 
2 The dataset is called “Yelp reviews - full”, described at https://course.fast.ai/datasets and hosted at https://registry.opendata.aws/fast-ai-nlp/ 
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Here, we use Metaflow’s built-in S3 client to load data from Amazon S3. The dataset is 
stored in a compressed Tar archive which we uncompress to extract reviews. There’s one 
review per line, prefixed by a star rating. Our application doesn’t need to care about the 
rating column. 

RECOMMENDATION The dataset used in this chapter, yelp_review_full_csv.tgz, is about 

200MB. Downloading it over a slow internet connection might take a few minutes. If the examples feel too 

slow on a laptop, consider using a cloud workstation, such as AWS Cloud9 IDE, to execute all examples in 

this chapter. 

You can see a few samples of the review data in Figure 5.3. As expected, reviews are 
arbitrary paragraphs of written English. Before we can perform any clustering on the data, 
we must convert the strings to a numerical representation. Such a vectorization step is a 
common preprocessing step in machine learning tasks that involves natural language. Don’t 
worry if you haven’t done any NLP before: we will cover everything you need to know in the 
subsection below. 

ONE MINUTE PRIMER TO NATURAL LANGUAGE PROCESSING 

A classic way to represent natural language in a numerical form is called the Bag of Words 
model. Using the bag of words model, we can represent a collection of documents as a 
matrix where each row is a document and columns correspond to all unique words across all 
documents. The order of the columns and rows is arbitrary. The values of the matrix indicate 
the number of times each word occurs in a document. Figure 5.4 illustrates the concept. 

 
Figure 5.4 Bag of words matrix 

Note how most values in the matrix in Figure 5.4 are zero. This is expected, since practically 
all documents contain only a small subset of all possible words. Hence, it is common to 
encode the matrix as a sparse matrix, meaning that we use a data structure that allows us to 
store only the non-zero elements of the matrix. In the examples below, we will use SciKit 
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Learn’s scipy.sparse module to store documents as bag-of-words sparse matrices. We will 
dive deeper into how these matrices are implemented internally in Section 5.3.1. 

You can get surprisingly good results in many NLP tasks like classification or clustering using 
a simple bag-of-words representation, despite the fact that it loses the order of words. In a 
few examples below we will perform document clustering: We want to group documents in K 
non-overlapping groups or clusters so that documents assigned to the same cluster are 
maximally similar to each other. Crucially, you have to choose the number of clusters K 
beforehand - there isn’t a universally agreed upon method within the data science 
community of choosing it automatically. 

In this example, document similarity refers to the number of common words between 
documents. For instance, the first two documents in Figure 5.4 have two words in common 
(“are”, “fun”) versus the third document that has at most one word common with them. 
Hence it makes sense to assign the first two documents in one cluster and the third 
document in a separate cluster. 

To perform clustering, we will use the most well known clustering technique, the K-Means 
clustering algorithm, as implemented in SciKit Learn. If you are curious, you can read more 
about K-means at https://scikit-learn.org/stable/modules/clustering.html#k-means. The 
details of the algorithm don’t matter here, besides the fact that it is a somewhat demanding 
algorithm computationally - the execution time grows quadratically in terms of the matrix 
size. This makes it a fun and realistic test case for scalability and performance. 

5.1.2 Practicing vertical scalability 
We encountered the idea of vertical scalability in the previous chapter when we introduced 
@batch and @resources decorators. This is by far the easiest form of scaling: Vertical 
scalability refers to the idea of handling more compute and larger datasets just by using 
larger instances. Naturally you can’t rely on vertical scaling on your laptop, since you can’t 
add more CPU cores of memory to it programmatically. In contrast, it is easy to achieve 
vertical scaling with a cloud-based compute layer like AWS Batch which you can simply ask 
to deliver instances with enough resources. 

Let’s start by loading the Yelp reviews dataset and constructing a corresponding bag of words 
representation of it. Since we will use the same dataset in many flows, we can avoid 
duplicate code by sharing the function that loads the data across flows. As usual in Python, 
we can share functionality by storing related functions in a module, which is just a separate 
file. 

Our module will contain two utility functions: load_yelp_reviews which downloads the 
dataset and extracts a list of documents from it and make_matrix that converts a list of 
documents to a bag of words matrix. The load_yelp_reviews function looks very similar to 
the code we used to inspect data in a notebook (Listing 5.1). In fact, a benefit of creating a 
separate module is that we can use the same module in our Metaflow flow and in a 
notebook! 
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RECOMMENDATION It is considered a good practice to place related functions in logically organized 

modules. You can share the modules across many flows and use them in notebooks as well. Furthermore, 

modules can be tested independently. 

Create a file scale_data.py and store the code from Listing 5.2 in it:  

Listing 5.2 Functions to process Yelp review dataset 

import tarfile 
from itertools import islice 
from metaflow import S3 
 
def load_yelp_reviews(num_docs):    #A 
    with S3() as s3:    #B 
        res = s3.get('s3://fast-ai-nlp/yelp_review_full_csv.tgz')    #B 
        with tarfile.open(res.path) as tar:    #C 
            datafile = tar.extractfile('yelp_review_full_csv/train.csv')    #C 
            return list(islice(datafile, num_docs))    #D 
 
def make_matrix(docs, binary=False):    #E 
    from sklearn.feature_extraction.text import CountVectorizer 
    vec = CountVectorizer(min_df=10, max_df=0.1, binary=binary)    #F 
    mtx = vec.fit_transform(docs)    #F 
    cols = [None] * len(vec.vocabulary_)    #G 
    for word, idx in vec.vocabulary_.items():    #G 
        cols[idx] = word    #G 
    return mtx, cols 
  

#A Function that loads the dataset and extracts a list of documents from it 
#B Use Metaflow’s built-in S3 client to load the publicly available Yelp dataset 
#C Extract a data file from the tar package 
#D Return the first num_docs lines from the file 
#E Function that converts a list of documents to a bag of words matrix 
#F CountVectorizer creates the matrix 
#G Create a list column labels 

As in our notebook example, the function loads the publicly available Yelp dataset from S3 
using Metaflow’s built-in S3 client which we will cover in more detail in Chapter 7. The 
load_yelp_reviews function takes a single argument, num_docs, which indicates how many 
documents (reviews, one per line) to read from the dataset. We will use num_docs to control 
the dataset size. 

The make_matrix function takes a list of documents in docs and uses SciKit’s 
CountVectorizer to create a matrix from documents. We give it the following parameters: 

• min_df specifies that all words that occur in fewer than 10 documents - this gets rid 
of many typos and other spurious words. 

• max_df specifies that all words that occur in more than 10% of all documents get 
excluded - they are typically common English words that are rather uninformative for 
our use case. 

• binary can be used to indicate that only the occurrence of a word in a document 
matters, the result is 0 or 1 regardless of how many times the word occurs in the 
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document. Finally, we create a list of column labels so we know which word 
corresponds to which column. 

There are many benefits to composing your workflows from modular components like 
scale_data.py: You can test them independently, use them in a notebook during 
prototyping, and you can package and share them across multiple projects. Metaflow 
packages all modules in the current working directory together with the flow, so they are 
available automatically inside containers executed by the compute layer. We will discuss this 
and other topics related to the software architecture in detail in Chapter 6. 

RECOMMENDATION Implement complex business logic like modeling code as separate modules that 

can be called by the workflow. This makes the logic easier to test in notebooks and by automated test suites. 

It also makes the modules shareable across multiple workflows. 

Next, let’s compose a simple flow that we can use to test the function. We follow the spiral 
approach: We start with a simple flow that does almost nothing and keep adding 
functionality to it iteratively. In the same directory where you stored scale_data.py, create 
a new file, kmeans_flow.py with the contents of Listing 5.3. 

Listing 5.3 The first iteration of KMeansFlow 

from metaflow import FlowSpec, step, Parameter 
 
class KmeansFlow(FlowSpec): 
    num_docs = Parameter('num-docs', help='Number of documents', default=1000) 
 
    @step 
    def start(self): 
        import scale_data    #A 
        scale_data.load_yelp_reviews(self.num_docs)    #A 
        self.next(self.end) 
     
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    KmeansFlow() 

#A Import the module we created earlier and use it to load the dataset 

The start step imports the module we created in Listing 5.2 and uses it to load the dataset. 
Use the parameter num_docs to control the dataset size. The default is to load only the first 
1000 documents. The uncompressed dataset is about 500MB so executing this example 
requires more than half a gigabyte of memory. 

The directory structure needs to look like this to ensure that Metaflow packages all modules 
properly. 

my_dir/ 
my_dir/scale_data.py 
my_dir/kmeans_flow.py 
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You can choose the name for the directory my_dir freely. Make sure your working directory 
is my_dir and execute the flow as usual: 

# python kmeans_flow.py run 

Especially on a local laptop, this might take a few minutes to execute. If all goes well, it 
should complete without any errors. This is a good sanity check before we start adding more 
functionality to the flow. 

DEFINING DEPENDENCIES WITH @CONDA 

We will now expand KmeansFlow to perform clustering using the K-Means algorithm. We can 
use an off-the-shelf implementation of K-Means provided by SciKit Learn. In Chapter 3 we 
installed SciKit Learn simply by running pip install on the local workstation. However, the 
locally installed library isn’t automatically available in all containers that are executed by the 
compute layer. 

We could choose a container image that has all the libraries we need pre-installed but 
managing multiple images that match the needs of every project can get cumbersome. As an 
alternative, Metaflow provides a more flexible approach, the @conda decorator, that doesn’t 
require you to create or find suitable images manually. 

In general, dependency management is a non-trivial topic that we will cover in detail in the 
next chapter. For the purposes of this section, you will just need to make sure that you have 
the Conda package manager installed - see Appendix X for instructions. After this, all you 
need to do is to include the @conda_base line in your code as shown in Listing 5.4: 

@conda_base(python='3.8.3', libraries={'scikit-learn': '0.24.1'}) 

This line instructs Metaflow to install the Python version 3.8.3 with the SciKit Learn version 
0.24.1 in all compute layers where the code is executed, including local runs. 

NOTE When you run a flow with @conda for the first time, Metaflow resolves all dependencies that are 

needed and uploads them to S3. This might take a few minutes, in particular if you are executing the code on 

your laptop. Be patient - this happens only during the first execution! 

Listing 5.4 expands the first version of KMeansFlow from Listing 5.3. It uses our scale_data 
module to create a bag of words matrix from the Yelp dataset. The matrix is clustered in a 
new step, train_kmeans. 
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Listing 5.4 The final version of KMeansFlow 

from metaflow import FlowSpec, step, Parameter, resources, conda_base, profile 
 
@conda_base(python='3.8.3', libraries={'scikit-learn': '0.24.1'})   #A 
class KmeansFlow(FlowSpec): 
 
    num_docs = Parameter('num-docs', help='Number of documents', default=1000000) 
     
    @resources(memory=4000)    #B 
    @step 
    def start(self): 
        import scale_data    #C 
        docs = scale_data.load_yelp_reviews(self.num_docs)    #C 
        self.mtx, self.cols = scale_data.make_matrix(docs)    #C 
        print("matrix size: %dx%d" % self.mtx.shape) 
        self.next(self.train_kmeans) 
 
    @resources(cpu=16, memory=4000)    #D 
    @step 
    def train_kmeans(self): 
        from sklearn.cluster import KMeans 
        with profile('k-means'):    #E 
            kmeans = KMeans(n_clusters=10, 
                            verbose=1, 
                            n_init=1)    #F 
            kmeans.fit(self.mtx)    #F 
        self.clusters = kmeans.labels_    #F 
        self.next(self.end) 
         
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    KmeansFlow() 

#A Declare the libraries we will need in tasks. 
#B Require 4GB of memory to preprocess data. 
#C Import the module we created earlier and use it to load the dataset. 
#D Require 4GB of memory and 16 CPU cores to run K-Means. 
#E Use profile to measure and print the time it takes to run  K-Means. 
#F Run K-Means and store results in clusters. 

You can see that we used the @resources decorator to declare that start and train_kmeans 
steps require 4GB of memory. The extra gigabytes are needed to keep the bag-of-words 
matrix in memory and account for all the related overhead. The train_kmeans step uses a 
small utility function provided by Metaflow, profile, which measures and prints the time 
needed to execute a block of code. Its single argument is a prefix included in the output, so 
you know which block of code the measurement relates to. 

TIP Use the profile context manager in Metaflow to quickly figure out how long certain operations inside 

a step take. 
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The KMeans object is used to run the algorithm. It takes the number of clusters (the K in K-
Means), here called n_clusters, as an argument, which we set to a somewhat arbitrary 
number, 10. In the next section 5.2, we will explore other values for K. The next argument, 
verbose, provides some information about the progress of the algorithm and n_init=1 
implies that we need to run the algorithm only once. A higher number might lead to better 
results. The result of the algorithm is an array, stored in self.clusters, which assigns each 
document to a cluster. We will take a deeper look at the results in the next section. 

Run the flow with AWS Batch as follows 

# python kmeans_flow.py --environment=conda run --with batch 

The --environment=conda flag is required to indicate that we want to handle dependencies 
using Conda. If you want to run the code locally or your compute environment doesn’t have 
instances with 4GB of memory and 16 CPU cores available, you can process fewer documents 
by specifying a smaller value for the num-docs Parameter, e.g. “run --num-docs 10000”. 
Hopefully the run completes successfully - that’s all we have to accomplish for now. We will 
dig deeper in the results in the next section. 

Here’s what’s interesting about this flow: The dataset contains 650,000 documents and the 
corresponding matrix contains about 48,000 unique words. Hence, the matrix size is 650,000 
* 48,000, which would take over 100GB of memory if it was stored as a dense matrix. Since 
it is stored as a sparse matrix, it will fit in less than 4GB. Running K-Means for a matrix of 
this size is computationally expensive. Luckily, the implementation in SciKit Learn can 
parallelize the algorithm automatically over multiple CPU cores that we requested with 
@resources(cpu=16). 

As a result, you can make K-Means complete faster just by increasing the number of CPU 
cores, as illustrated in Figure 5.5. 
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Figure 5.5: Execution time vs. the number of CPU cores used 

For this dataset, you can get up to 40% performance improvement by utilizing multiple CPU 
cores. As an exercise, you can try another, faster version of K-Means called 
MiniBatchKMeans. The sweet spot for @resources depends on the dataset size, the 
algorithm, and its implementation. In this case, there doesn’t seem to be much benefit to go 
beyond four cores. Beyond this number, the amount of work executed by an additional core 
isn’t enough to justify the communication and coordination overhead. In general, this 
behavior is typical for most modern ML algorithm implementations: The more CPU cores or 
GPUs you run them on, the faster they will run, up to a limit. 

NOTE In contrast to the memory limit, the CPU limit is a soft limit on AWS Batch. The task can use all 

available CPU cores on the instance if there are no other tasks executing on it simultaneously. The limit 

applies when multiple tasks need to share the instance. In most cases this behavior is desirable but it makes 

benchmarking tricky, since a task with e.g. cpu=4 may end up using more CPU cores opportunistically. 

The most appealing feature of vertical scaling is its effortlessness: The data scientist just 
needs to modify one line of code, @resources, to handle larger datasets faster, as shown 
above. While this approach doesn’t provide infinite scalability, oftentimes it is just enough for 
the task at hand as discussed in the next subsection. 

5.1.3 Why vertical scalability 
From the engineering point of view it is easy to have a knee-jerk reaction to vertical 
scalability: It is not “real” scalability since its limits are so obvious. As of writing of this book, 
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the largest commonly available EC2 instances on AWS provide 48 CPU cores and 768GB of 
memory. If you need more cores or more memory, vertical scalability won’t help you. 

Instead of relying on potentially misleading intuitions, it is a good idea to carefully evaluate 
whether vertical scalability could be sufficient and for how long. Thanks to the simplicity of 
vertical scalability, you can build the first versions of an application quickly and verify its 
correctness and value before complicating the implementation. Surprisingly often, vertical 
scalability is just good enough and no other approaches are needed, which should be 
considered a happy outcome. 

SIMPLICITY BOOSTS PERFORMANCE AND PRODUCTIVITY 

It is hard to beat vertical scalability when it comes to simplicity: You can write the most 
idiomatic, readable, and straightforward Python code and just adjust the numbers in 
@resources to match the requirements of the code. There are no new paradigms to learn. If 
and when things fail, there are no hidden layers of abstraction causing surprises or 
convoluting error messages. This is hugely important for the productivity and autonomy of 
data scientists - they can focus on modeling without having to worry about scalability or 
performance too much. 

When it comes to implementing machine learning and data science workloads in Python, the 
simplicity of the user-facing APIs is deceiving. Under the hood, the best libraries are highly 
optimized using low-level languages like C++ so they can leverage the available resources 
on a single instance very efficiently.  

Consider an example of modeling frameworks. In the early 2010s, much effort was put into 
providing scalable implementation of traditional ML algorithms on top of scalable frameworks 
like Hadoop and Spark. These frameworks are good examples of inherently scalable systems 
that have a limited single-computer performance. 

In the latter half 2010s, it started becoming obvious that single-computer, vertically scaling 
training algorithms, like the ones provided by XGBoost or Tensorflow, can easily outperform 
their nominally more scalable counterparts, in particular when accelerated with GPUs. Not 
only were these implementations much faster, but they were also considerably easier to 
operate and develop with, as they lacked the inherent complexity of scalable, distributed 
systems. 

This highlights the difference of scalability and performance: A system consisting of multiple 
low performance but parallel units can scale well but such a distributed system tends to incur 
inherent communication and coordination overhead which can make them slower than their 
non-distributed counterparts for small and medium-size workloads. Notably, sometimes 
unscalable approaches can outperform their scalable counterparts even with unexpectedly 
large workloads. 

SCALABILITY TIP Don’t overestimate the performance of nominally scalable systems and don’t 

underestimate the performance of a single instance solution. When in doubt, benchmark. Even if a 

distributed solution might scale better, consider carefully its operational cost and the cost to the data 

scientist productivity. 
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For concrete examples of this effect, see a paper titled “Scalability! But at what COST” 
published in 2015 by Frank McSherry and others. 

CONSIDER THE NATURE OF YOUR PROBLEM 

When thinking about the nature of your problem, consider the following two factors which 
are often underappreciated: First, all scalability needs have an upper bound. In the physical 
world nothing is truly infinite. In the examples presented in this chapter, we use a static 
dataset of 650,000 Yelp reviews. With a static dataset like this, it is easy to see that 
scalability isn’t likely to be a concern. 

Even if the dataset wasn’t static, its size may be naturally capped. For instance, your dataset 
might provide statistics by the US zip code. There are about 40,000 zip codes in the US and 
the number is pretty much guaranteed to stay stable. If you can get your workflow to handle 
about 40,000 zip codes without trouble, you shouldn’t have any scalability concerns. 

Second, a single modern computer can have a surprising amount of resources. Anything in 
the order of billions might feel like a lot to a human being but keep in mind that a single 
modern computer can do about two billion arithmetic operations per second and it can keep 
about 27 billion English words in memory at the same time. Computers just operate at a 
different order of magnitude than our limited cognition. 

The effect is even more pronounced with specialized hardware like GPUs that are widely used 
to train Deep Neural Networks and other modern model architectures. As of writing of this 
book, AWS provides instances with eight high-performance GPUs. You can use a machine like 
this to train huge models. Since the communication overhead between GPU and CPU cores is 
minimal within a machine, a single instance can outperform a cluster of instances that is 
supposed to have more computing power looking at the raw numbers. 

Lastly, computers haven't stopped growing. Although the single-core performance hasn’t 
grown much over the last ten years, the number of cores in a single instance has, as well as 
the amount of memory and the speed of local storage. As an example, consider storing data 
about every Netflix subscriber in an in-memory dataframe on a single instance. It might feel 
like a bad idea as the number of Netflix subscribers grows quickly every year! 

Instead of relying on a gut reaction, it is a good idea to check the math: In 2011 Netflix had 
26M subscribers and the largest AWS instance provided 60GB of memory, i.e. you could have 
stored about 2.3KB of data per subscriber. In 2021 Netflix has 207M subscribers and the 
largest AWS instance provides 768GB of memory, so, surprisingly, today you have more 
headroom for per-subscriber data, 3.7KB. In other words, if your use case fits within these 
bounds, you could have handled scalability simply by updating the number in @resources for 
over ten years and counting! 

SCALABILITY TIP Estimate the upper bound of your growth before worrying about scalability. If the upper 

bound is low enough compared to the available compute resources over time, you might not need to worry 

about scalability at all. 

167

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion


 

©Manning Publications Co.  To comment go to  liveBook 

5.2 Practicing Horizontal Scalability 
As suggested by the previous section, it is always advisable to start a project by thinking 
through the problem as well as the scale and the growth rate of the data and compute 
involved. If nothing suggests otherwise, vertical scalability is a good starting point. 

What would suggest otherwise? In other words, in what scenarios should you consider using 
multiple parallel instances instead of a single one? 

5.2.1 Why horizontal scalability 
As a rule of thumb, you should consider horizontal scalability, i.e. using multiple instances, if 
you answer “yes” to any of the following three questions: 

1. Are there significant chunks of compute in your workflow that are embarrassingly 
parallel, i.e. they can perform an operation without sharing any data besides inputs? 

2. Is the dataset size too large to be conveniently handled on the largest available 
instance type? 

3. Are there compute-intensive algorithms (e.g. model training) that are too demanding 
to be executed on a single instance? 

The items are listed in the order of descending frequency: The first two scenarios are way 
more typical than the last one. Let’s unpack the scenarios one by one. 

EMBARRASSINGLY PARALLEL TASKS 

In distributed computing, a problem is called embarrassingly parallel if “little or no effort is 
needed to separate the problem into a number of parallel tasks”. In the context of Metaflow-
style workflows, the definition coincides with dynamic foreach tasks that don’t need to share 
any data with each other, although they may share common input data. 

Cases like this are common in data science applications: Training a number of independent 
models, fetching multiple datasets, benchmarking a number of algorithms against a dataset, 
to name a few. You might be able to handle all these cases using vertical scalability, possibly 
utilizing multiple cores on a single instance, but typically there’s little gain in doing so. 

Remember that the key motivations for vertical scalability are simplicity and performance: 
The implementation of a typical embarrassingly parallel task looks practically the same 
regardless whether it is executed on a single instance or multiple - it is just a function or a 
Metaflow step. Since tasks are fully independent, there’s no performance penalty in 
executing them on separate instances. Hence, in cases like these you can unlock massive 
scalability by using e.g. foreach in Metaflow without sacrificing simplicity or performance. 

We will practice one common case of embarrassing parallelism in the next section - 
hyperparameter search which involves building many independent models. 

LARGE DATASETS 

As we discussed earlier, today the largest commonly available EC2 instance has 768GB of 
memory. Given that e.g. Pandas dataframes have quite a bit of overhead, the largest 
datasets that you can use with Pandas are in the order of 50-100GB when relying on vertical 
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scalability. It is not uncommon to want to process more than 100GB of data, in which case it 
is not feasible to solely rely on vertical scalability. 

In many cases, the easiest approach to handle large datasets is to use a compute layer that 
is specifically optimized for such use cases, e.g. Apache Spark. Another approach is to divide 
data to smaller individual chunks or shards so that each shard can be handled on a large 
instance. 

We will discuss these approaches in Chapter 7 when the data layer becomes the focus. 

DISTRIBUTED ALGORITHMS 

Besides input data, it is possible that the algorithm to be executed, e.g. model training, is 
too demanding for a single instance. For instance, this could be the case with a massive-
scale computer vision model. While it is common to have a dataset that is larger than a 
single instance, having a model of this scale is much less so. A single P4-type AWS instance 
with eight GPUs and over a terabyte of memory can fit a huge model. 

Operating distributed model training and other distributed algorithms is highly non-trivial: 
Networking must be optimized for low-latency communication, instances must be placed 
accordingly to minimize latency, and a pool of tightly-coupled instances must be carefully 
coordinated and synchronized, keeping in mind that instances may fail at any time. 

Fortunately, there are specialized compute layers, e.g. provided by AWS Sagemaker or by 
Google’s Cloud TPUs, which can manage the complexity for you. 

Many real-world data science applications employ a mixture of many of these approaches: 
Data is preprocessed using Spark, loaded as shards in parallel to produce a matrix that is 
trained on a single vertically scaled instance. The beauty of organizing applications as 
workflows is that it is natural to choose the most appropriate way to scale each step of the 
workflow, instead of trying to fit all tasks into a single paradigm. 

The next section demonstrates a straightforward but common case of embarrassing 
parallelism: Building multiple K-Means models in parallel to find the best performing model. 

5.2.2 Example: Hyperparameter search 
We expand our earlier K-means application by showing how we can address a common 
challenge in machine learning projects, hyperparameter search and optimization, using 
horizontal scalability. Remember how in the previous section we simply fixed the number of 
clusters, the K parameter in K-means, to ten clusters without any justification. The number 
of clusters is a hyperparameter for the K-Means algorithm. Hyperparameters are parameters 
of the algorithm that need to be defined before the algorithm runs. 

Commonly, there isn’t an unambiguously right choice for the hyperparameter values. Since 
we can’t define the right values in advance, it is typical to run the algorithm with a number 
of different hyperparameter values and choose the one that seems to perform the best. 
Sophisticated hyperparameter optimizers can generate new values on the fly and stop when 
results don’t seem to improve. A simpler approach is just to define a list of hyperparameters 
to try in advance and evaluate the results in the end. A benefit of this simple approach is 

169

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion


 

©Manning Publications Co.  To comment go to  liveBook 

that the algorithm can be evaluated for each parametrization independently - a perfect use 
case for horizontal scalability. 

How to define “the best result” for a clustering algorithm is an ambiguous and non-trivial 
question in itself: There are many equally good ways to group documents. In this example, 
the choice is yours. We can characterize each cluster by listing the most frequent words in 
the cluster. As we will show below, you can take a look at the clusters and decide which 
hyperparameter values produce the most entertaining results. 

Listing 5.5 shows a function, top_words, which computes the most frequent words for each 
cluster. Save it to a separate module, analyze_kmeans.py: 

Listing 5.5 Compute  the top words for each cluster 

from itertools import islice 
 
def top_words(num_clusters, clusters, mtx, columns): 
    import numpy as np 
    top = [] 
    for i in range(num_clusters):    #A 
        rows_in_cluster = np.where(clusters == i)[0]    #B 
        word_freqs = mtx[rows_in_cluster].sum(axis=0).A[0]    #C 
        ordered_freqs = np.argsort(word_freqs)    #D 
        top_words = [(columns[idx], int(word_freqs[idx])) 
                     for idx in islice(reversed(ordered_freqs), 20)]    #D 
        top.append(top_words) 
    return top 

#A Process each of the K clusters  
#B Choose rows from the bag of words matrix that correspond to the current cluster 
#C Compute column-wise sums, i.e. frequencies of each word for the cluster 
#D Sort the columns by their frequencies and produce a list of top-20 words 

This function uses a number of tricks from the NumPy package: It chooses a subset of rows 
from a matrix using where, it produces column-wise sums with sum(axis=0), and produces 
column indices in the sorted order using argsort. If you are curious, you can take a look at 
the NumPy documentation to learn more about these functions. Knowing NumPy is not 
critical for this example. 

We will use Metaflow’s foreach construct, introduced in section 3.2.3, to run a number of 
KMeans algorithms in parallel, leveraging AWS Batch as an auto-scaling compute layer. The 
corresponding flow is visualized in Figure 5.6. 

 
Figure 5.6. The DAG corresponding to ManyKmeansFlow 
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This demonstrates horizontal scalability in action: The flow trains a number of K-Means 
clusterings concurrently, for various values of the parameter K (the number of clusters), and 
produces a summary of the results for analysis. Listing 5.6 shows the code for the flow, 
ManyKmeansFlow, which is based on our earlier KMeansFlow. 

Listing 5.6 Search hyperparameters for K-Means 

from metaflow import FlowSpec, step, Parameter, resources, conda_base, profile 
 
@conda_base(python='3.8.3', libraries={'scikit-learn': '0.24.1'}) 
class ManyKmeansFlow(FlowSpec): 
 
    num_docs = Parameter('num-docs', help='Number of documents', default=1000000) 
     
    @resources(memory=4000) 
    @step 
    def start(self): 
        import scale_data 
        docs = scale_data.load_yelp_reviews(self.num_docs)    #A 
        self.mtx, self.cols = scale_data.make_matrix(docs)    #A 
        self.k_params = list(range(5, 55, 5))    #B 
        self.next(self.train_kmeans, foreach='k_params') 
 
    @resources(cpu=4, memory=4000) 
    @step 
    def train_kmeans(self):    #C 
        from sklearn.cluster import KMeans 
        self.k = self.input 
        with profile('k-means'): 
            kmeans = KMeans(n_clusters=self.k, verbose=1, n_init=1) 
            kmeans.fit(self.mtx) 
        self.clusters = kmeans.labels_ 
        self.next(self.analyze) 
         
    @step 
    def analyze(self): 
        from analyze_kmeans import top_words    #D 
        self.top = top_words(self.k, self.clusters, self.mtx, self.cols) 
        self.next(self.join) 
     
    @step 
    def join(self, inputs): 
        self.top = {inp.k: inp.top for inp in inputs}    #E 
        self.next(self.end) 
         
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    ManyKmeansFlow() 

#A Produce a bag of words matrix using the scale_data module 
#B Define a list of hyperparameters for foreach 
#C Train a K-Means clustering inside foreach 
#D Produce a list of top words for each cluster 
#E Group all top lists by the hyperparameter value 
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The highlight of this flow is the list of hyperparameters defined in k_params: We produce 10 
separate clusterings, that is, separate train_kmeans tasks, varying the number of clusters 
between five and fifty. Depending on the configuration of your compute environment, all the 
ten tasks may run in parallel. The system scales nearly perfectly: If producing one clustering 
takes about 2 minutes, you can produce ten clusterings in parallel in about 2 minutes as 
well!  

You can run the flow with 

# python many_kmeans_flow.py --environment=conda run --with batch --with retry 

By default, Metaflow will run at most 16 tasks in parallel and hence it will submit at most 16 
(in this case 10) tasks to AWS Batch simultaneously. Depending on your compute 
environment, AWS Batch may decide to run multiple containers concurrently on a single 
instance or it may decide to launch more instances to handle the queued tasks. You can 
control the level of parallelism with the --max-workers option as described in section 3.2.4. 

This example illustrates the benefits of a cloud-based compute layer, like AWS Batch: Not 
only can you launch larger instances, as we covered in the previous section, but you can 
launch any number of them in parallel. Without a scalable compute layer, you would have to 
execute the K-Means algorithms sequentially, which would take about 20 minutes, in 
contrast to getting results in 2 minutes thanks to horizontal scalability. As instructed in the 
previous chapter, we use --with retry to handle any transient failures which are bound to 
happen occasionally when running hundreds of Batch jobs in parallel. 

Currently, Metaflow can handle thousands of concurrent tasks without issues. Considering 
that each task can request high @resources, you can employ tens of thousands of CPU cores 
and nearly a petabyte of RAM in a single workflow! 

INSPECTING RESULTS 

When the run completes, you will have ten different clusterings available for inspection. You 
can inspect the results using the Metaflow Client API on e.g. interactive Python shell or using 
a notebook, as described in section 3.3.2. Here’s how to do it easily. 

First, access the results of the latest run: 

>>> from metaflow import Flow                       
>>> run = Flow('ManyKmeansFlow').latest_run   

Thanks to the fact that Metaflow persists results of all runs, you can inspect and compare 
results between runs too. 

We produced an artifact top in the join step which contains a conveniently aggregated set 
of top words for each cluster, keyed by the hyperparameter value, i.e. the number of 
clusters. Here, we take a peek at the results of the K-means with 40 clusters: 

>>> k40 = run.data.top[40] 

There are forty clusters available for inspection. Let’s spot-check a few of them, looking at 
the top-5 words and their frequencies in the cluster: 
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>>> k40[3][:5] 
[('pizza', 696), ('cheese', 134), ('crust', 102), ('sauce', 91), ('slice', 52)] 

This one seems to be about pizza reviews. 

>>> k40[4][:5] 
[('her', 227), ('room', 164), ('hotel', 56), ('told', 45), ('manager', 41) 

This one seems to be about hotels. 

>>> k40[30][:5] 
[('car', 20), ('hertz', 19), ('gold', 14), ('says', 8), ('explain', 7)] 

And this one about car rentals. By default, K-Means doesn’t guarantee that results will 
always be the same. Amongst other reasons, random initialization causes results to be 
slightly different at every run, so don’t expect to see exactly the same results as above. As 
an exercise, you can come up with a creative way to tabulate and visualize the clusterings in 
a notebook. 

5.3 Practicing performance optimization 
This far we have learned about the two main dimensions of scalability: Vertical scalability 
(using a bigger instance) and horizontal scalability (using more instances). Notably, both of 
these techniques allow us to handle larger datasets and more demanding algorithms without 
making any changes in the code. Scalability like this is appealing from a productivity point of 
view: The cloud allows us to solve problems by throwing more hardware at them so we can 
spare human resources to more interesting tasks. 

In what situations should we consider spending data scientist’s time on optimizing code by 
hand? Consider that you have a computationally expensive algorithm, say, model training, 
implemented as a Python function. Executing the function takes five hours. Depending how 
the algorithm is implemented, vertical scalability might not help much, if the algorithm can’t 
take advantage of multiple CPU cores, more memory, or GPUs efficiently. Horizontal 
scalability doesn’t help either: You could execute the function in a hundred parallel tasks but 
each one of them would still take five hours, so the total execution time is still five hours. 

Now, the critical question is whether it is a problem that the function executes for five hours. 
Maybe the workflow is scheduled to run nightly, so it doesn’t make a huge difference 
whether it runs for five or two hours: The results are ready by morning in any case. 
However, if the function needs to be run hourly, we have a problem: It is simply impossible 
to produce hourly results with a function that takes five hours to execute. 

In a situation like this, a data scientist needs to spend time rethinking the algorithm to make 
it more performant. A key lesson of this section is that even performance optimization is a 
spectrum: The data scientist doesn’t have to throw away the Python implementation and 
rewrite the algorithm, say, in C++. There are a number of tools and techniques that can be 
used to gradually optimize the algorithm to the point that it is good enough. 

The next section will walk through a realistic example that shows how a numerically intensive 
algorithm that is initially implemented in straightforward Python can be gradually optimized 
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to the point where its performance becomes comparable to a sophisticated multi-core C++ 
implementation. As you will see, a simple optimization that is easy to implement yields 80% 
of benefits. Squeezing out the last 20% of performance takes 80% of time. 

PERFORMANCE TIP Like Donald Knuth said, premature optimization is the root of all evil. Don’t worry 

about performance until you have exhausted all other easier options. If you must optimize performance, 

know when to stop. Over-optimization must be the pinnacle of all evil. 

5.3.1 Example: Computing a co-occurrence matrix 
The previous sections used a bag-of-words matrix that records the relationship between 
documents and words. From this matrix, we can derive another interesting matrix: a word-
word co-occurrence matrix. The co-occurrence matrix records how frequently a word occurs 
in the same document with any other word. It can be useful for understanding semantic 
similarity between words - having the matrix makes it possible to compute various word-
level metrics quickly. 

Figure 5.7 expands our earlier bag of words example to show the corresponding co-
occurrence matrix. 

 
Figure 5.7. From original documents to a word-word co-occurrence matrix 

If the dimensions of a bag of word matrix are N*M where N is the number of documents and 
M is the number of unique words, the corresponding co-occurrence matrix has the 
dimensions of M*M. Crucially, the bag-of-words-matrix contains all the information we need 
to construct the corresponding co-occurrence matrix. A simple way to construct a co-
occurrence matrix is to iterate through all rows of the bag-of-matrix matrix and for each row 
produce all pairs of words and increase their count in the co-occurrence matrix. 

We can take advantage of the fact that the bag of words matrix is sparse matrix, i.e. it 
doesn’t store any zero entries which wouldn’t affect the co-occurrence matrix anyways. In 
order to be able to design an efficient algorithm to process the data, let’s take a peek under 
the hood of scipy.sparse.csr_matrix which implements the sparse matrix. The 
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Compressed Sparse Row (CSR) matrix in SciPy is composed of three dense arrays, illustrated 
in Figure 5.8: 

 
Figure 5.8. The internal data structures of scipy.sparse.csr_matrix 

1. indptr indicates where each row begins and ends in the indices array. This array is 
needed, since each document can contain a different number of unique words. The 
indptr array contains an extra element in the end, to indicate the length of the last 
document. 

2. indices indicates which columns (words) have non-zero values on this row. 
3. data contains the frequency of each word in each document. It is aligned with the 

indices array. 

To construct the co-occurrence matrix, we don’t care how many times a word occurs in a 
document. Hence, our bag of words matrix can be a binary matrix and correspondingly, the 
data array is redundant as it is all ones. 

Equipped with this problem definition and knowledge of the data structure behind the sparse 
matrix, we can implement the first variant of an algorithm that computes a co-occurrence 
matrix for the Yelp dataset. 

VARIANT 1: A PLAIN PYTHON IMPLEMENTATION 

Imagine that a data scientist needs to compute a co-occurrence matrix as a preprocessing 
step for another algorithm. Maybe the simplest approach would be to compute co-
occurrences directly on the text data, iterating documents string by string, but this would be 
a very slow approach. Let’s assume that the data scientist has already produced a bag of 
words matrix using our scale_data module. The data scientist writes an algorithm that 
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iterates through the sparse matrix to construct a co-occurrence matrix. Their solution could 
look like the one in Listing 5.7. 

Listing 5.7 First variant: Co-occurrences in pure Python 

def simple_cooc(indptr, indices, cooc): 
    for row_idx in range(len(indptr) - 1):    #A 
        row = indices[indptr[row_idx]:indptr[row_idx+1]]    #A 
        row_len = len(row) 
        for i in range(row_len):    #B 
            x = row[i] 
            cooc[x][x] += 1    #C 
            for j in range(i + 1, row_len): 
                y = row[j] 
                cooc[x][y] += 1    #D 
                cooc[y][x] += 1    #D 
 
def new_cooc(mtx):    #E 
    import numpy as np 
    num_words = mtx.shape[1] 
    return np.zeros((num_words, num_words), dtype=np.int32) 
 
def compute_cooc(mtx, num_cpu):    #F 
    cooc = new_cooc(mtx) 
    simple_cooc(mtx.indptr, mtx.indices, cooc) 
    return cooc        

#A Iterate over all rows of the bag of word matrix 
#B Iterate over all non-zero columns (words) in a row 
#C Increment the diagonal of the matrix which indicates the word frequency 
#D Increment the word-word pair count - the matrix is symmetric 
#E A utility function to create a new co-occurrence matrix 
#F An interface function that creates and populates a new co-occurrence matrix 

Save the code in Listing 5.7 in a separate module named cooc_plain.py. This time the 
exact file name matters as we will see soon. The implementation is straightforward: we 
iterate over all pairs of words over all rows and increment word-word counts in the target 
matrix as we go. Besides the core algorithm, simple_cooc, we include a helper function to 
allocate a new co-occurrence matrix of the right shape, new_cooc, and a function to create 
and populate the matrix, compute_cooc, which we will use as an entrypoint to the module. 
These functions will come in handy soon. 

Let’s create a flow to test the algorithm. Listing 5.8 shows a flow that supports pluggable 
algorithms: We can use it to test other variants besides cooc_plain.py later too. Save the 
flow to cooc_flow.py. 
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Listing 5.8 A flow that produces a co-occurrence matrix 

 
from metaflow import FlowSpec, conda_base, step, profile, resources, Parameter 
from importlib import import_module 
 
@conda_base(python='3.8.3', 
            libraries={'scikit-learn': '0.24.1', 
                       'numba': '0.53.1'})    #A 
class CoocFlow(FlowSpec): 
 
    algo = Parameter('algo', help='Co-oc Algorithm', default='plain')    #B 
    num_cpu = Parameter('num-cpu', help='Number of CPU cores', default=32) 
    num_docs = Parameter('num-docs', help='Number of documents', default=1000) 
 
    @resources(memory=4000) 
    @step 
    def start(self):    #C 
        import scale_data 
        docs = scale_data.load_yelp_reviews(self.num_docs) 
        self.mtx, self.cols = scale_data.make_matrix(docs, binary=True)    #D 
        print("matrix size: %dx%d" % self.mtx.shape) 
        self.next(self.compute_cooc) 
     
    @resources(cpu=32, memory=64000)    #E 
    @step 
    def compute_cooc(self): 
        module = import_module('cooc_%s' % self.algo)    #F 
        with profile('Computing co-occurrences with the %s algorithm' % self.algo): 
            self.cooc = module.compute_cooc(self.mtx, self.num_cpu)    #G 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    CoocFlow() 

#A We will need Numba later, so we will include it as a dependency. 
#B Specifies which algorithm variant to use. 
#C The start step uses scale_data similar to our previous examples. 
#D Note binary=True which indicates that we only need a binary matrix. 
#E Producing the result can take quite a bit of memory. 
#F Load a pluggable variant defined by the algo parameter. 
#G Compute the co-occurrence matrix 

Here, the start step is familiar from our previous examples. The only difference is that we 
specify binary=True since for co-occurrences, we don’t care about the frequency of words in 
a document. The compute_cooc supports pluggable algorithms: Instead of hardcoding an 
import statement, we choose which variant to import based on a parameter, algo. We use 
Python’s built-in importlib.import_module to import a module from a file prefixed with the 
string “cooc_”. 
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TIP Dynamic loading of modules using importlib.import_module is a great way to implement plug-ins 

for flows. Often, the overall structure of DAG doesn’t change between plug-ins, so you can keep the DAG 

static but choose the desired functionality on the fly. 

Let’s start by testing the flow locally with a small subset of data, 1000 documents: 

# python cooc_flow.py --environment=conda run --num-docs 1000 

This will use the cooc_plain module that we defined previously. It seems executing the 
algorithm with 1000 rows (documents) and 1148 columns (words) takes about five seconds, 
which at the first sight doesn’t seem too bad. 

Try increasing --num-docs to 10000. Now, the algorithm takes 74 seconds! If you dare, you 
can try executing it with even the full dataset. It takes ages to finish. You can try executing it 
--with batch varying @resources but the timings won’t nudge: this algorithm is not 
performant and not scalable - pretty much the scenario 2 in section 4.1.3. If our task is to 
produce a co-occurrence matrix for the full dataset of 650,000 documents, clearly this 
algorithm is not going to work. 

VARIANT 2: LEVERAGING A HIGH-PERFORMANCE LIBRARY 

Whenever a basic Python implementation turns out to be too slow, it is advisable to try to 
find an off-the-shelf library that contains an optimized implementation of the same algorithm 
- given the vastness of the Python data science ecosystem, surprisingly often you learn that 
someone has implemented and package a suitable solution already. Or, even if a perfectly 
matching solution doesn’t exist, someone might have implemented an efficient building block 
that we can use to optimize our solution. 

Unfortunately, in the case of our example it seems that SciKit Learn doesn’t provide a 
function for computing a co-occurrence matrix. For the purposes of our example we ignore 
the fact that a suitable implementation might exist elsewhere. 

The data scientist turns to a colleague who has experience in high-performance numerical 
computing. The colleague points out that the algorithm implemented by cooc_plain is 
effectively an algorithm for matrix multiplication. 

It turns out that computing a co-occurrence matrix C based on a binary bag of words matrix 
B corresponds exactly to the following matrix equation: 

C = BTB 

where BT denotes the transpose (rotation) of the matrix of B. If you multiply an M*N matrix 
with an N*M matrix, the result is an M*M matrix which in this case is exactly our co-
occurrence matrix. Implementing this variant of the algorithm is embarrassingly simple, as 
shown in Listing 5.9. 
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Listing 5.9 Second variant: Leveraging linear algebra 

 
def compute_cooc(mtx, num_cpu): 
    return (mtx.T * mtx).todense() 

Save the code in Listing 5.9 in cooc_linalg.py, for a variant based on linear algebra. 
Thanks to pluggable algorithm support in CoocFlow, we can test this variant simply by 
running: 

# python cooc_flow.py --environment=conda run --num-docs 10000 --algo linalg 

This variant finishes in 1.5s instead of 74s - a 50x speedup! This is a perfect example of 
Scenario 3: a high-performance but unscalable algorithm from an off-the-shelf, well 
optimized library. The code is simpler and faster than the original Python version. 

Since the code performs so well, you can go ahead and try it with the full dataset by 
specifying --num-docs 1000000. Alas, the run will likely fail due to an out of memory 
exception. You can resort to vertical scaling and try it --with batch but even with 64GB the 
run keeps failing. 

A problem with this variant is that taking the transpose of the original matrix, mtx.T, makes 
a copy of the full dataset, doubling the memory requirement in addition to having to store 
the co-occurrence matrix in memory. While the cooc_plain variant doesn’t perform well, at 
least it was more space-efficient, avoiding unnecessary copies. 

In this case, you can keep increasing memory requirements until the algorithm completes 
successfully. Given the elegant simplicity of this algorithm, relying on vertical scalability 
would be an appealing solution. However, for the sake of discussion, let’s say the data 
scientist can’t rely on the highest-memory instances but they must keep seeking a more 
optimal variant. 

VARIANT 3: COMPILING PYTHON WITH NUMBA 

Colleagues of our data scientist point out that the main problem with Variant 1 is that it is 
written in Python. Had it been written in C++, it would likely perform much better while not 
wasting space unnecessarily like Variant 2. This is a valid argument in the technical point of 
view but including a piece of custom C++ in a Python project feels like a hassle, not to 
mention the fact that our data scientist isn’t familiar with C++. 

Fortunately, there are a few libraries that can help make numerical Python code faster by 
compiling it to machine code, similar to what a C++ compiler would do. The most well known 
compilers for Python are Cython (cython.org) and Numba (numba.pydata.org). 

These compilers can’t magically make any piece of Python as fast as C++ but they are 
targeted at functions that perform numerical computation, typically using Numpy arrays. In 
other words, a function like simple_cooc that performs loops over a few Numpy arrays 
should be squarely in the domain of these compilers. 
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Listing 5.10 shows how to compile the simple_cooc function on the fly using Numba. Save 
this variant to cooc_numba.py. 

Listing 5.10 Third variant: Co-occurrences with Numba 

 
def compute_cooc(mtx, num_cpu): 
    from cooc_plain import simple_cooc, new_cooc 
    cooc = new_cooc(mtx) 
    from numba import jit    #A 
    fast_cooc = jit(nopython=True)(simple_cooc)    #A 
    fast_cooc(mtx.indptr, mtx.indices, cooc) 
    return cooc 

#A Compile the simple_cooc function on the fly using Numba 

The hard thing about using Numba is writing a function that avoids using any idiomatic 
Python constructs like objects and dictionaries and which avoids allocating memory. You 
must focus on simple arithmetic on arrays, like simple_cooc does. Once you have managed 
to do this, using Numba is trivial: Like Listing 5.10 shows, all you have to do is call the jit 
function and pass the function to be called as an argument. 

The result is a version of the given function, here fast_cooc, that is typically significantly 
faster than the original version. This magic is made possible by the fact that Numba compiles 
the function to machine code which is virtually indistinguishable from a version written in 
C++. The nopython=True flag indicates that the function doesn’t use any Python constructs 
so a slow compatibility layer with Python can be avoided. 

Test this variant as follows: 

# python cooc_flow.py --environment=conda run --num-docs 10000 --algo numba 

This version of the algorithm takes 2.7s, so it is slightly slower than cooc_linalg which ran 
for 1.5s. The difference is understandable since the Numba timing includes compilation time 
as well. Notably, this version doesn’t take any extra space. This variant is able to handle the 
full dataset in 50 seconds - not too shabby! 

VARIANT 4: PARALLELIZING THE ALGORITHM OVER MULTIPLE CPU CORES 

While Variant 3 is able to handle the full dataset quite quickly, it is a fundamentally 
unscalable algorithm: Adding more memory or CPU resources doesn't make it any faster or 
capable of having larger matrices. Presumably, one could get results even faster if the 
algorithm was able to leverage multiple CPU cores that we can easily request with 
@resources. 

Note that this optimization comes with a cost: The implementation is more complex than 
Variants 2 and 3. One needs to be much more careful in confirming that it works correctly. 
As it often happens with performance optimizations, the first 20% of effort can bring 80% of 
benefits. Spending time to squeeze the last bits of performance is not worth it for most use 
cases. Consider this variant through this cautionary lens. 

180

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion


 

©Manning Publications Co.  To comment go to  liveBook 

Looking at the algorithm in simple_cooc, we can see that the outer loop iterates over the 
rows of the input matrix. Could we split the input matrix so that each CPU core handles only 
a subset, a shard, of the rows? A challenge is a row may update any location of the result 
matrix that would need to be shared across all CPU cores. Sharing writable data across 
multiple worker processes or threads is a hard problem which we would rather avoid. 

A simple insight comes to the rescue: We can let each thread write to a private copy of the 
co-occurrence matrix, which we can simply sum together in the end. A downside is that the 
memory consumption increases again but in contrast to Variant 2, we need copies of co-
occurrence matrices which are smaller than the full dataset. 

Save the variant in Listing 5.11 in cooc_multicore.py: 

Listing 5.11 Fourth variant:  Use Numba with multiple CPU cores 

 
from concurrent import futures 
import math 
 
def compute_cooc_multicore(row_indices, columns, cooc, num_cpu, fast_cooc): 
    num_rows = len(row_indices) - 1    #A 
    batch_size = math.ceil(num_rows / num_cpu)    #A 
    batches = [(cooc.copy(), 
                row_indices[i * batch_size:(i+1) * batch_size + 1])    #A 
               for i in range(num_cpu)] 
 
    with futures.ThreadPoolExecutor(max_workers=num_cpu) as exe:    #B 
        threads = [exe.submit(fast_cooc, row_batch, columns, tmp_cooc) 
                   for tmp_cooc, row_batch in batches] 
        futures.wait(threads)    #C 
 
    for tmp_cooc, row_batch in batches:    #D 
        cooc += tmp_cooc 
         
def compute_cooc(mtx, num_cpu): 
    from numba import jit 
    from cooc_plain import simple_cooc, new_cooc 
    cooc = new_cooc(mtx) 
    fast_cooc = jit(nopython=True, nogil=True)(simple_cooc)    #E 
    fast_cooc(mtx.indptr, mtx.indices, cooc) 
    multicore_cooc(mtx.indptr, mtx.indices, cooc, num_cpu, fast_cooc) 
    return cooc 
 

#A Shard the input matrix to num_cpu equal-size shards or batches, each with a private output matrix 
#B Use a thread pool to process the batches over  num_cpu threads on multiple CPU cores in parallel 
#C Wait for the threads to complete 
#D Aggregate the private output matrices to a single output matrix 
#E Note the nogil=True flag which allow Python to execute the threads truly parallel 

The algorithm works by splitting the rows of the input matrix into num_cpu equal-size shards 
or batches. Each batch gets its own private output matrix, created with cooc.copy(), so the 
threads don’t need locking or another way to coordinate updates. The batches are submitted 
to a thread pool that has num_cpu worker threads. After the threads have completed 
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populating their private subsets of the co-occurrence matrix, the results are merged in the 
final output matrix. 

You can benchmark this version against earlier variants with 

# python cooc_flow.py --environment=conda run --num-docs 10000 --algo multicore 

If you have come across multi-threading in Python before, you may have heard of the Global 
Interpreter Lock (GIL) in Python (if you are curious, you can learn more about GIL at 
https://wiki.python.org/moin/GlobalInterpreterLock). In short, the GIL prevents multiple 
threads executing Python code from running in parallel effectively. However, the GIL 
limitation doesn’t apply to this algorithm, since we use Numba to compile the Python code to 
machine code, similar to Variant 3, so in the Python interpreter’s point of view, we are not 
executing Python but rather native code which is free from the limitations of GIL. We just 
need to remember to add nogil=True to the jit call, to remind Numba about this detail. 

This variant is a great example of how going multi-core is not a panacea. While reading the 
rows of the matrix is an embarrassingly parallel problem, requiring no coordination between 
threads, writing the output isn’t. In this case, the cost we pay is duplication of the output 
matrix. Another approach would be to apply locking to the output matrix. In any case, each 
new thread increases the cost a bit. As a result, adding cores helps but only to a limit, similar 
to what we experienced with the parallelization of K-Means in section 4.3.1. Figure 5.9 
illustrates the effect. 

 
Figure 5.9. Execution time vs. the number CPU cores in the multi-threaded case 
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Figure 5.9 shows that running the algorithm with num_cpu=1 takes about 100 seconds for a 
version of the full matrix. For this dataset, the sweet spot seems to be at num_cpu=4, which 
improves performance by about 40%. Beyond this, the overhead of creating and aggregating 
per-thread output matrices overtakes the benefits of handling increasingly small input shards 
in each thread. 

SUMMARIZING THE VARIANTS 

This section illustrated a realistic journey of optimizing performance of a numerically 
intensive algorithm: 

1. First, we started with a simple version of the algorithm. 
2. As it turned out that the algorithm really isn’t performant enough given the 

requirements of the use case, we evaluated whether there’s an easy way out by 
resorting to vertical or horizontal scalability. It turned out that neither of these 
approaches speeded up execution adequately with the simple algorithm. 

3. We evaluated whether there’s an optimization implementation available off-the-shelf. 
We figured out an elegant and performant solution based on simple linear algebra. 
However, the solution had a side-effect of increased memory consumption, which we 
could solve by vertical scalability. Had this been a real use case, Variant 2 with vertical 
scalability (high-memory instances) seems like a good choice based on effort, 
performance, and maintainability. 

4. To illustrate a more advanced optimization, we introduced Numba, which worked well 
for this use case. However, the default implementation doesn’t take advantage of 
multiple CPU cores. 

5. Finally, we implemented a compiled, multi-core variant, performance of which should 
compare favorably against a well-optimized, parallelized C++ algorithm. Yet, we 
managed to do it all in less than 100 lines of Python. 

Figure 5.10 shows a performance benchmark of the four variants. 
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Figure 5.10. Performance of the four variants vs. the number of documents 

When the dataset is small enough, e.g. 100 documents here, the implementation doesn’t 
make any difference. With 1000 documents, the plain Python implementation starts being 
clearly slower, although in absolute terms the execution time may be tolerable. At 10,000 
documents and beyond, the plain version becomes practically unusable so it is excluded from 
the large-scale benchmarks. The three performant variants are nearly equally performant, 
except the Linalg variant runs out of memory with 64GB at the highest scale. The complexity 
of the multicore variant starts paying off only with the full dataset. 

Figure 5.10 condenses the key learnings of this section: 

• The original plain implementation was impractically inefficient. Something needed to 
be done. 

• A simple observation of how to leverage an existing high-performance library to 
implement the linalg solution produced massive speedups with minimal effort. 

• It was possible to implement a custom solution, multicore, that performed even 
better than linalg but the implementation is significantly more complex. 

• We were able to implement all solutions in Python without having to switch to a high-
performance but low-level language like C++. 
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These learnings are readily applicable to many other numerically intensive Python tasks. The 
modern Python data science ecosystem provides a hugely powerful and versatile toolkit for 
implementing high-performance algorithms. 

5.3.2 Recipe for fast enough workflows 
Now that we have practiced scalability and performance in a number of scenarios, we can 
summarize the learnings of this chapter in a simple recipe that you can apply to your own 
use cases: 

1. Start with the simplest possible approach. A simple, obviously correct solution 
provides a robust foundation for gradual optimization. 

2. If you are concerned that the approach is not scalable, think through when and how 
you will hit the limits in practice. It is possible that the answer is never, or at least not 
any time soon, in which case you can increase complexity only when it becomes 
necessary. 

3. Utilize vertical scalability to make the simple version work with realistic input data. 
4. If the initial implementation can’t take the advantage of hardware resources provided 

by vertical scalability, consider using an off-the-shelf optimized library that can. 
5. If the workflow contains embarrassingly parallel parts and/or data can be easily 

sharded, leverage horizontal scalability for parallelism. 
6. If the workflow is still too slow, carefully analyze where the bottlenecks lie. Consider if 

there are simple performance optimizations that could remove the bottleneck, maybe 
using one of the tools from the Python data science toolkit. 

7. If the workflow is still too slow, which is rare, consider using specialized compute 
layers that can leverage distributed algorithms and specialized hardware. 

5.4 Summary 
• It is advisable to start with a simple approach, initially optimizing for correctness 

rather than performance or scalability. 
• Vertical scalability contributes to the productivity of data scientists: They can make 

workflows handle more data and more demanding computation using simple and 
understandable Python code, just by requesting more hardware resources from the 
cloud. 

• Horizontal scalability is useful in three scenarios: To handle embarrassingly parallel 
tasks, large datasets, and distributed algorithms. 

• It is advisable to postpone performance optimizations until they become absolutely 
necessary. When optimizing performance, look for simple optimizations that can yield 
big benefits by analyzing bottlenecks carefully. 

• The Python data science ecosystem contains a huge number of tools that can help 
optimizing performance gradually. In particular, many problems can be solved by 
using foundational packages like SciKit, NumPy, and Numba. 

• You can easily combine horizontal and vertical scalability and high-performance code 
in a single workflow to address the scalability needs of your task at hand. 
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 6
Going to Production 

This chapter covers: 

• Deploying workflows to a highly scalable and highly available production scheduler.
• Setting up a centralized metadata service to track experiments company-wide.
• Defining stable execution environments with various software dependencies.
• Leveraging versioning to allow multiple people to develop multiple versions of a project

safely.

This far we have been executing all workflows on a personal workstation, typically a laptop. 
It is a reasonable intuition that business-critical data science applications shouldn’t run on 
personal workstations. The reasons are many: Laptops get lost, people go for vacation, and 
new experiments may consume all resources of a workstation. Instead, we should deploy 
applications to production. 

What does “deploying something to production” mean exactly? The word production is 
used frequently but it is seldom defined precisely. While particular use cases may have their 
own definitions, we recognize two characteristics that are common in most production 
deployments: 

1. Automation: Production workflows should run without any human involvement.
2. High availability: Production workflows should not fail.

The main characteristic of production workflows is that they should run without a human 
operator: They should start, execute, and output results automatically. Note that automation 
doesn’t imply that they work in isolation. They can start as a result of some external event, 
e.g. new data becoming available.

They should not fail, at least not frequently, since failures make it harder for other
systems to depend on the application and fixing failures requires slow and tedious human 
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intervention. In technical terms, not failing and being dependable means that the application 
is highly available. 

Automation and high availability are almost always necessary requirements for 
production deployments but they are not always sufficient. Your particular use cases may 
have additional requirements, for instance, around low latency predictions, ability to handle 
massive datasets, or integration with specific production systems. It is often possible to 
satisfy bespoke requirements on top of a common solid foundation which we discuss in this 
chapter.  

As we discussed in Chapter 2, prototyping and production deployments are separate but 
intertwined activities, like yin and yang: The act of prototyping can’t be automated, 
prototypes are certainly not highly available, and their defining characteristic is human 
involvement. Production deployments are the opposite. 

We should make it easy to move between the two modalities, as data science projects 
aren’t waterfalls that lead from a prototype to a final deployment as a linear process. 
Instead, data science applications should be iterated constantly. Deploying to production 
should be a simple, frequent, unremarkable event - a concept that software engineers call 
Continuous Deployment. Making all projects continuously deployable is a worthy goal, which 
we start exploring in this chapter and continue in Chapter 8. 

To counter common misconceptions, it is useful to recognize what “production” does not 
imply: 

• Not all production applications handle large amounts of compute or data. You can
certainly have small-scale but business-critical applications that must not fail. Also,
not all production applications need to exhibit high performance.

• There isn’t necessarily only one production deployment of an application. Especially in
the context of data science, it is common to have multiple production deployments
side by side, e.g. for the purposes of A/B testing.

• Production doesn’t imply any particular technical approach: Production applications
can be workflows running nightly, microservices serving real-time requests, or
workflows updating Excel sheets, or any other approach required by the use case.

• Going to production doesn’t have to be a tedious and anxiety-inducing process. In
fact, effective data science infrastructure should make it easy to deploy early versions
to production so their behavior can be observed in a realistic setting.

However, production should always imply a level of stability. In this chapter, we introduce a 
number of time-tested defensive techniques to protect production deployments. These 
techniques build upon the ones introduced in earlier chapters: A robust, scalable compute 
layer is a critical element of production-readiness. 

Starting with the fundamentals, Section 6.1 is about executing workflows in a stable 
manner outside of a personal workstation, without any human intervention. This is the main 
concern of the Job Scheduler layer in our infrastructure stack, depicted in Figure 6.1. 
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Figure 6.1 The stack of effective data science infrastructure 

After this, we focus on keeping the workflow’s execution environment as stable as possible, 
which is the role of the Versioning layer in the stack. Many production failures happen not 
because the application itself fails but because something in its environment changes. 
Whereas techniques like @retry introduced in Chapter 4 handle failures originating from the 
user code, Section 6.2 shows how to guard against failures caused by changes in the 
software environment surrounding the user code, such as new releases of rapidly evolving 
libraries like TensorFlow or Pandas. 

Section 6.3 focuses on preventing human errors and accidents. We need to execute 
production workflows in isolated and versioned bubbles so that data scientists can keep 
experimenting with new versions, without having to fear that they will interfere with 
production deployments. In an optimal scenario, you can ask a newly-joined intern to create 
a version of a production application and deploy it in parallel to the main version, knowing 
that they can’t do anything to break the existing version, not even by accident. 

You don’t need to apply all techniques presented in this chapter in every project. 
Defensive features that make an application more robust can slow down prototyping and 
they can make it harder to deploy and test new production versions, hurting overall 
productivity. Fortunately, production-readiness is a spectrum, not a binary label. You can 
prototype a project quickly on a local workstation, deploy an early version to production as 
described in Section 6.1, and apply techniques for Sections 6.2 and 6.3 later as the stakes 
become higher. In other words, you can harden projects gradually against failures as the 
project matures.  

Our infrastructure should make the tradeoff between the needs of prototyping and 
production as minimal as possible but realistically extreme robustness always comes with a 
price. Figure 6.2 illustrates typical tradeoffs on the project’s maturation path: As the project 
becomes more critical, at each stage a set of deficiencies need to be addressed. As the 
project becomes more robust, some flexibility is lost inevitably, although effective 
infrastructure can minimize the effect. New versions of the project can start the cycle from 
the beginning, incrementally improving the production version.  
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Figure 6.2 Maturation path of a typical data science project 

The earlier chapters of this book have led you to the “Basic workflow” stage. This chapter 
teaches you the next level of production-readiness which has been proven sufficient to power 
some of the most business-critical ML applications at Netflix and other large companies. 

6.1 Stable workflow scheduling 
Harper takes Alex to tour the company’s new cupcake production facility. Encouraged by 
Alex’s promising prototypes, Harper wants to start using machine learning to optimize 
operations at the facility. Harper reminds Alex that any unplanned interruptions in the 
cupcake pipeline affect the company’s revenue directly, so hopefully Alex’s models will work 
flawlessly. Hearing this, Bowie suggests that they should start scheduling training and 
optimization workflows in a much more robust environment than Alex’s laptop. 
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This section answers a simple question: How can I execute my workflows reliably without 
human intervention? This far, we have been executing workflows on the command line by 
executing a command like 

# python kmeans_flow.py run 

Typing the command requires human intervention, so this is not a good approach for 
production deployments that should run automatically. Moreover, if you close your terminal 
while the command is executing, the workflow crashes - the workflow is not highly available. 
Note that for prototyping use cases the run command is perfect, as it affords very quick 
iterations. 

Figure 6.3 reminds the role of the job scheduling layer: The job scheduler only needs to 
walk through the steps of the workflow, that is, decide how to orchestrate the DAG, and 
send each task to the compute layer that decides where to execute them. Crucially, neither 
the job scheduler nor the compute layer need to care what gets executed exactly - more 
about that later. 

Figure 6.3 The role of the scheduling layer: How to orchestrate the DAG 
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Although walking through a DAG doesn’t sound hard, remember that we are talking about 
production use cases: The orchestrator may need handle large workflows with tens of 
thousands of tasks, there may be thousands of suchs workflows executing concurrently, and 
the orchestrator should be able to handle a plethora of failure scenarios gracefully, including 
the data center where the orchestrator itself executes catching a fire. Moreover, the 
orchestrator must be able to trigger workflow executions on various conditions, e.g. when 
new data arrives, and it should provide ergonomic UIs for monitoring and alerting. All in all, 
building such a system is a highly non-trivial engineering challenge so it is wise to rely on the 
best available off-the-shelf systems and services for the job. We listed a few suitable 
candidates in Chapter 2. 

This is the approach taken by Metaflow as well: Metaflow includes a local scheduler that is 
good enough for prototyping - the one that powers the run command. For production use
cases you can deploy your Metaflow workflow to a few different production schedulers 
without changing anything in the code. We will use one such scheduler, AWS Step Functions, 
to demonstrate the idea in this section. Note that in general the discussion of this section is 
not specific to AWS Step Functions. You can apply the pattern to other job schedulers as 
well. 

However, before we get to production scheduling, we must take care of one other detail: 
We need a centralized service to track execution metadata across all runs, as we can’t rely 
on locally stored metadata when orchestrating workflows in the cloud. 

6.1.1 Centralized metadata 

In Chapter 3 we talked about experiment tracking - the concept of keeping track of 
executions and their results. The term is a bit misleading: We are not only interested in 
keeping track of experiments but also production executions. Hence we prefer to use a 
generic term metadata to refer to all bookkeeping activities. 

Figure 6.4 shows the role of metadata tracking in the context of task execution. 
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Figure 6.4 The role of the Metaflow metadata service 

At the top, we have a job scheduler that walks through the DAG. The figure shows Metaflow’s 
local scheduler as an example but the job scheduler could be a production scheduler as well, 
such as AWS Step Functions. The scheduler sends tasks to the compute layer which executes 
the user code. The user code produces results, or artifacts, such as self.model in the figure 
which are stored in a datastore as discussed in Chapter 3. 

On the side, the metadata service keeps track of all runs and tasks that are started. Also 
when an artifact is written to the datastore, the metadata service records the location of the 
artifact in the datastore. Crucially, metadata doesn’t record the data itself as it is already in 
the datastore. This allows us to keep the metadata service relatively lightweight, as it is only 
responsible for bookkeeping, not large-scale data or compute. 

After data and metadata have been stored, they can be queried from outside systems. 
For instance, as we have seen in previous chapters, we can use the Metaflow Client API to 
query runs and their results in a notebook. The Client API talks to the metadata service to 
figure out what runs are available and to the datastore to access their results. 

Most modern frameworks for data science and ML infrastructure provide a service for 
centralized metadata tracking: For instance MLFlow (https://mlflow.org) provides a Tracking 
Server and Kubeflow (https://kubeflow.org) comes with a built-in centralized dashboard that 
stores and shows all executions that have been executed. 
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By default, Metaflow tracks metadata in local files. This is sufficient for small-scale, 
personal prototyping but for more serious use cases, you should set up a cloud-based 
centralized metadata service. Centralized metadata tracking provides a number of benefits: 

• You need a metadata service to be able to use a production scheduler as a cloud-
based scheduler doesn’t have a concept of “local files”. 

• You can execute runs anywhere, both in prototyping and production, and rest assured 
that metadata is always tracked consistently in a single place. 

• Centralized metadata enables collaboration as all users can discover and access 
results of past runs, regardless who initiated them. More about this in Section 6.3 
below. 

• A cloud-based service is more stable: All metadata can be stored in a database that 
can be replicated and regularly backed up. 

SETTING UP A CENTRALIZED METADATA SERVICE FOR METAFLOW 

As of writing of this book, the metadata service provided by Metaflow is a typical 
containerized microservice that uses Amazon Relational Database Service (RDS) to store the 
metadata. It is possible to deploy the service e.g. on AWS Elastic Container Service (ECS) or 
on Elastic Kubernetes Service (EKS). 

The easiest way to deploy the service is to use the CloudFormation template provided by 
Metaflow, as instructed by Metaflow’s installation instructions (https://admin-
docs.metaflow.org). Another benefit of using the CloudFormation template is that it can also 
set up AWS Step Functions for you which we will use in the next section. 

After you have set up and configured the Metaflow metadata service, you can use the 
Client API to access results as before - nothing changes in the user-facing API. You can 
ensure that Metaflow is using a metadata service instead of local files by running 

# metaflow status 

If the service is properly configured, you should see an output like 

# Using Metadata provider at: https://x3kbc0qyc2.execute-api.us-east-1.amazonaws.com/api/ 

You can test that the service works correctly by executing any flow with the run command. 
You should notice that the run and task IDs are much shorter (e.g. HelloFlow/2 vs. 
HelloFlow/1624840556112887) when using the service. The local mode uses timestamps as 
IDs whereas the service produces globally unique short IDs. 

If you are unsure what metadata service the Client API uses, you can find it out using the 
get_metadata function. You can execute a cell like this in a notebook: 

from metaflow import get_metadata 
print(get_metadata()) 

If a service is used correctly, you should see an output like 

service@https://x3kbc0qyc2.execute-api.us-east-1.amazonaws.com/api/ 

Metaflow stores its configuration at ~/.metaflowconfig/ in the user’s home directory. If you 
have many data scientists in your organization, it is beneficial to share the same set of 
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configuration files with all of them, so they can benefit from a consistent infrastructure and 
collaborate through a shared metadata service and datastore. On the other hand, if you need 
to maintain boundaries between organizations e.g. for data governance reasons, you can set 
up multiple independent metadata services. You can also define hard security boundaries 
between different datastores by using separate S3 buckets.  

After you have configured Metaflow to use an S3-based datastore and centralized 
metadata, there may be times when you want to test something with a local datastore and 
metadata, for instance for troubleshooting purposes. You can do this as follows: 

# python myflow.py --datastore=local --metadata=local run 

These options instruct Metaflow to fall back to a local datastore and metadata regardless of 
the default configuration. 

6.1.2 Using AWS Step Functions with Metaflow 

AWS Step Functions (SFN) is a highly-available and scalable workflow orchestrator provided 
as a cloud service by AWS. While there are many other workflow orchestrators available off-
the-shelf, SFN has a number of appealing features compared to alternatives: 

• Similar to AWS Batch, it is a fully managed service. In the operator’s point of view,
the service is practically maintenance-free.

• AWS has an excellent track record of making services highly available and scalable.
While many alternatives claim to have these characteristics, not all of them work as
advertised.

• The total cost of operation can be very competitive compared to the full cost of
operating a similar service in-house, in particular considering that keeping the system
running requires no staff.

• SFN integrates with other AWS services seamlessly.

When it comes to downsides of SFN, as of writing this book, it is hard to define workflows for 
SFN manually using their native JSON-based syntax (which doesn’t apply to Metaflow users), 
and the GUI is a bit clunky. Also, SFN has some limits that constrain the maximum size of a 
workflow, which may affect workflows with very wide foreaches. 

Let’s see how it works in practice. First, make sure you have deployed the Step Functions 
integration to Metaflow as instructed in the Metaflow’s documentation - the easiest way is to 
use the provided CloudFormation template which sets it up for you, together with a metadata 
service. 

Next, let’s define a simple flow, see Listing 6.1, that we use to test SFN. 
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Listing 6.1 A simple flow to test Step Functions 

from metaflow import FlowSpec, Parameter, step 

class SFNTestFlow(FlowSpec): 

    num = Parameter('num', 
 help="Give a number", 
 default=1) 

    @step 
    def start(self): 

   print("The number defined as a parameter is", self.num) 
   self.next(self.end) 

    @step 
    def end(self): 

   print('done!') 

if __name__ == '__main__': 
    SFNTestFlow() 

Save the code to sfntest.py and make sure it works locally:

# python sfntest.py run 

Next, let’s deploy the workflow to production! All you have to do is to execute a 
command: 

# python sfntest.py step-functions create 

If all goes well, you should see an output like this: 

Deploying SFNTestFlow to AWS Step Functions… 
It seems this is the first time you are deploying SFNTestFlow to AWS Step Functions. 

A new production token generated. 
The namespace of this production flow is 
    production:sfntestflow-0-xjke 

To analyze results of this production flow add this line in your notebooks: 
    namespace("production:sfntestflow-0-xjke") 

If you want to authorize other people to deploy new versions of this flow to AWS Step 
Functions, they need to call 

    step-functions create --authorize sfntestflow-0-xjke 
when deploying this flow to AWS Step Functions for the first time. 
See "Organizing Results" at https://docs.metaflow.org/ for more information about 

production tokens. 

Workflow SFNTestFlow pushed to AWS Step Functions successfully. 
What will trigger execution of the workflow: 
    No triggers defined. You need to launch this workflow manually. 

We don’t have to worry about most of this output for now. We will dive deeper into 
production tokens in Section 6.3 below. It is worth paying attention to the last line though: 
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As the line says, in its current form the workflow doesn’t start automatically - we will need to 
start or trigger it manually. 

What exactly happened when you ran step-function create? Metaflow did a bunch of 
work behind the scenes, which is illustrated in Figure 6.5. 

Figure 6.5. How Metaflow deploys to AWS Step Functions 

The following sequence of operations was executed: 

1. Metaflow packaged all Python code in the current working directory and uploaded to
the datastore (S3) so it can be executed remotely. More about this in the next section.

2. Metaflow parsed the workflow DAG and translated it to a syntax that SFN understands.
In other words, it converted your local Metaflow workflow to a bona fide SFN
workflow.

3. Metaflow made a number of calls to AWS APIs to deploy the translated workflow to the
cloud.

Notably, the user didn’t have to change anything in their code to make it deployable to the 
cloud. This is an important feature of Metaflow: You can test the code locally and with a 
compute layer of your choice, like AWS Batch, before deploying it to production. Since it is 
exactly the same code running in production, you can be confident that if the code worked 
during local testing, it will also work in production. Even more importantly, if the workflow 
fails in production, you can reproduce and fix the issue locally and deploy a fixed version to 
production just by running “step-functions create” again - more about this in section 6.3.

PRODUCTIVITY TIP: When it comes to “interaction with production deployments”, which we discussed in 

Chapter 2, it is crucial that the workflows you prototype locally can work in production with minimal changes 

and vice versa. This makes it easy to test the code locally before deploying it production and when tasks fail 

in production, reproduce those issues locally.  
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Before we run the workflow, let’s log in to the AWS console to see how the workflow looks on 
the SFN side. Navigate to the Step Functions UI on the AWS Console. You should see a list of 
workflows like what is shown in Figure 6.6. 

Figure 6.6. List of workflows (state machines) on the AWS Step Functions console 

The view shown in Figure 6.6 gives you a quick overview of currently executing, succeeded, 
and failed runs. When you click the name of the run, you will get to a view shown in 
Figure 6.7. 

Figure 6.7. A workflow on the AWS Step Functions console 

There is not much to see here yet, as there are no executions. While the “Start execution” 
button sounds enticing, there is actually a better way to start a run. If you click the button, it 
will ask you to specify a JSON that should include parameters for the flow, which is a bit 
tedious to do manually. Instead, we can trigger an execution on the command line: 

python sfntest.py step-functions trigger 

You should see an output like 
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Workflow SFNTestFlow triggered on AWS Step Functions (run-id sfn-344c543e-e4d2-4d06-9d93-
c673d6d9e167 

The trigger command is similar to the run command in the sense that they both
execute a workflow. However, instead of executing it locally, trigger makes the workflow 
execute on SFN. Crucially, you could shut down your laptop and the run would keep running 
on SFN, in contrast to local runs. In fact, SFN supports workflows that execute for a year! It 
would be quite inconvenient to keep your laptop running without interruptions for that long. 

Now if you refresh the workflow listing, you should see a new execution. If you click it, 
you get to a run view shown in Figure 6.8. 

Figure 6.8. A run on the AWS Step Functions console 

Note how the ID in the upper left corner matches to the ID that was output by trigger. 
Conveniently, the run view visualizes the DAG of our workflow. It updates in real-time 
showing what steps are being executed. If you click a step in the DAG, on the right panel you 
see a “Resource” link that takes you to the AWS Batch console that shows an AWS Batch job 
that corresponds to the executing task. On the AWS Batch console, you can click the “Log 
stream” link to see the task’s output in real-time. 

You can see logs even more easily by using the familiar logs command (replace the ID 
your ID output by trigger):

python sfntest.py logs sfn-344c543e-e4d2-4d06-9d93-c673d6d9e167/start 
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All Metaflow commands and the Client API work equally with local runs and runs execution 
on SFN - only the format of their IDs differ. 

We can trigger another execution with a custom parameter value: 

python sfntest.py step-functions trigger --num 2021 

which produces a new run ID like 

Workflow SFNTestFlow triggered on AWS Step Functions (run-id sfn-838650b2-4182-4802-9b1e-
420bb726f7bd) 

You can confirm that the parameter change took effect by inspecting artifacts of the 
triggered run: 

python sfntest.py dump sfn-838650b2-4182-4802-9b1e-420bb726f7bd/start 

Or by checking the logs of the start step. Note that you can list SFN runs on the command
line by executing 

python sfntest.py step-functions list-runs 

Hence it is possible to trigger and discover runs as well as examine logs and artifacts without 
logging in to the SFN console. 

Let’s take a deep breath and summarize what we just learned: 

1. We defined a normal Metaflow workflow that we were able to test locally as before.
2. We used a command, step-functions create, to deploy the workflow to a highly-

available, scalable production scheduler in the cloud, AWS Step Functions.
3. We triggered a production run with step-functions trigger, optionally using custom

parameters. The workflow would keep running even if you shut down your laptop.
4. We monitored workflow executions in real-time on a GUI provided by SFN.
5. We inspected the logs and results of a production run using familiar CLI commands.

The simplicity of the whole process may make it seem deceptively trivial. However, being 
able to deploy workflows to a production scheduler this easily is truly a superpower for data 
scientists! 

Using this approach results in highly available workflows, thanks to SFN. However, we 
launched the workflow manually with trigger, so the setup is not yet fully automated. In 
the next section, we will address this shortcoming. 

6.1.3 Scheduling runs with @schedule 

Production flows should execute without any human intervention. A simple way to automate 
triggering of workflows is to make them run a predetermined schedule. Another way, which 
we will cover in Chapter 8, is to trigger execution based on an external event. 

Metaflow provides flow-level decorator, @schedule, which allows you to define an 
execution schedule for the workflow. See an example in Listing 6.2. 
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Listing 6.2 A flow with @schedule 

from metaflow import FlowSpec, Parameter, step, schedule 

@schedule(daily=True)  #A 
class DailySFNTestFlow(FlowSpec): 

    num = Parameter('num', 
 help="Give a number", 
 default=1) 

 @step 
    def start(self): 

   print("The number defined as a parameter is", self.num) 
   self.next(self.end) 

    @step 
    def end(self): 

   print('done!') 

if __name__ == '__main__': 
    DailySFNTestFlow() 

#A Make the workflow trigger every midnight automatically 

Save the code in dailysfntest.py. Here, we define a simple daily schedule by annotating
the flow with @schedule(daily=True). This will make the flow start every midnight in the
UTC timezone. The @schedule doesn’t have any effect when running the flow locally. It will
take effect when you execute 

python dailysfntest.py step-functions create 

That’s it! The workflow will now run automatically once a day. You can observe run IDs of 
past executions on the SFN UI or with step-functions list-runs as described above.

Note that you can’t change parameter values for scheduled runs - all parameters get 
assigned their default values. If you need to parametrize the workflow dynamically, you can
do so using arbitrary Python code e.g. in the start step. Also you can change the default
value programmatically when deploying a workflow using a construct called deploy-time 
functions which will be covered in Chapter 8. 

Besides running the workflow daily, the following shorthands are available: 

• @schedule(weekly=True) - runs the workflow on Sundays at midnight.
• @schedule(hourly=True) - runs the workflows hourly.

Alternatively, you can define a custom schedule with the cron attribute. For instance, this
expression runs a workflow daily at 10am: @schedule(cron='0 10 * * ? *'). You can find
more examples of Cron-schedules and a description of the syntax at 
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-create-rule-schedule.html. 

Now we have learned how to schedule flows for execution without human supervision, 
which covers the automation requirement of production deployments. Next, we will shift 
our attention to high availability, that is, how to keep the deployments stable in the midst 
of a constantly changing environment. 
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6.2 Stable execution environments 
Alex is proud of the modern infrastructure stack that they set up with Bowie: It allows all 
data scientists at the company to develop workflows locally and deploy them to a robust 
production scheduler in the cloud easily. Alex heads to a well-deserved vacation. During the 
vacation Alex receives a notification alerting that one of the production workflows that had 
been running flawlessly for weeks had mysteriously crashed last night. As Alex investigates 
the matter, it turns out that the workflow always installs the latest version of Tensorflow. 
Just yesterday, Tensorflow released a new version that is incompatible with the production 
workflow. Why do these things always seem to happen during one’s vacation? 

 
Practically all data science and machine learning workflows use 3rd party libraries. In fact, it 
is almost certain that the vast majority of all lines of code in your workflows reside in these 
libraries. During development, you can test the behavior of the library with different datasets 
and parametrizations to gain confidence that a particular version of the library works 
correctly but what happens when a new version is released? Most modern machine learning 
and data science libraries evolve rapidly. 

This problem is not specific to data science. Software engineers have been grappling with 
dependency management for decades. There are many established best practices for 
developing and releasing software libraries in general: For instance, most well-behaving 
libraries are careful in changing their public APIs which would break applications that use the 
library. 

The API often provides a clear enough contract: Imagine you have a library that provides 
a function, requests.get(url), which fetches the given URL over HTTP and returns the 
content as a byte string. Just reading a short description of the function makes it clear how 
the function is supposed to behave. Contrast this with a machine learning library that 
provides an API for K-means clustering: KMeans(k).fit(data). The contract is much looser: 
the library may change how the clusters are initialized, which optimization algorithm is used, 
how the data is handled, and how the implementation is distributed over multiple CPU or 
GPU cores without changing the API. All these changes may subtly change the behavior of 
the library and cause unintentional side-effects. 
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Loose API contracts and the statistical nature of data science in general make 
dependency management for data science workflows a trickier problem than what software 
engineers have faced. For instance, imagine that a machine learning library includes a 
method called train(). The method may be using a technique like Stochastic Gradient
Descent internally, which can be implemented in many different ways, each of which with its 
own pros and cons. 

If the implementation changes across library versions, it may have major effects on the 
resulting model, while technically the train() API stays intact. Whereas failures in software 
engineering are often pretty clear, maybe the return type has changed or the function raises 
a new exception causing the program to crash with a verbose error message, in data science 
you may simply get a slightly skewed distribution of results without any failures, making it 
hard to even notice that something has changed. 

When you are prototyping a new application, it is certainly convenient to have the 
flexibility to use the latest versions of any libraries. During prototyping, no one relies on the 
outputs of your workflow so rapid changes are acceptable and expected. However, when you 
deploy the workflow in production, being more careful with dependencies starts to matter. 
You don’t want to get notified during vacation about unexpected failures in a production 
pipeline (like poor Alex above), nor face hard-to-debug questions about why the results 
seem subtly different than before. To avoid any surprises, you want production deployments 
to execute in an environment that is as stable as possible, so that nothing changes without 
your explicit action and approval. 

EXECUTION ENVIRONMENT 

What do we mean by the execution environment? Consider Metaflow workflows that we have 
executed earlier, such as KMeansFlow we developed in the previous chapter. When you run a 
workflow by executing, say, “python kmeans_flow.py run”, the entry point to execution is
kmeans_flow.py but a number of other modules and libraries need to be present for the flow 
to execute successfully which together make the execution environment for 
kmeans_flow.py. Figure 6.9 illustrates the idea.
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Figure 6.9. Layers of the execution environment of a flow 

At the center we have the flow itself, e.g. kmeans_flow.py. The flow may use user-defined
supporting modules, like scale_data.py which contain functions for loading data. To execute 
the flow, you need Metaflow, which is a library in itself. On top of this, you have all other 3rd 
party libraries like SciKit Learn that we used in the K-Means example. Finally, the whole 
package executes on top of an operating system. 

To provide a stable execution environment for production deployments, it is beneficial to 
freeze an immutable snapshot of all layers shown in Figure 6.9. Note that this includes all 
transitive dependencies, i.e. all libraries that libraries themselves use. By doing this, you 
ensure that new library releases can’t have unplanned effects on the deployment. You are in 
control of how and when you want to upgrade libraries.  

RECOMMENDATION: To minimize surprises, it is beneficial to freeze all code in the production 

deployments, including the workflow itself and all its dependencies. 

Technically, there are many ways to implement snapshotting like this. A common way is to 
package all layers shown in Figure 6.9 in a container (e.g. Docker) image. We discuss this 
approach in section 6.2.3. Alternatively, Metaflow provides built-in functionality that takes 
care of snapshotting the layers, which we discuss in the next sections. To make the 
discussions more fun and concrete, we frame them in the context of a realistic-data science 
application, time-series forecasting. 

EXAMPLE: TIME-SERIES FORECASTING 

There are countless applications for time-series forecasting, i.e. predicting future data points 
given historical data. There are many techniques for forecasting and many off-the-shelf 
packages that include efficient implementations of these techniques. Packages like these are 
a typical example of software libraries we want to include in a data science workflow, so we 
use a forecasting application to demonstrate concepts related to dependency management 
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and stable execution environments. In the examples below, we will use a library called 
SKTime (sktime.org). 

Since we just learned how to schedule workflow to run automatically, it is fun to pick an 
application that requires frequent updates: Weather forecasting. We don’t dare to dive deep 
into meteorology - instead, we simply provide an hourly temperature forecast for the next 
few days given a series of past temperatures at a given location. Naturally, this is a silly way 
of forecasting weather but temperature data is readily available and we can implement the 
application easily. 

We will use a service called OpenWeatherMap (openweathermap.org) to obtain weather 
data. To use the service, you need to sign up for a free account at the site. After you have 
signed up, you will receive a private Application ID token which you can input in the 
examples below. The required token is a string that looks like this: 
6e5db45abe65e3110be635abfb9bdac5.

6.2.1 How Metaflow packages flows 

In chapter 4 we learned how to execute workflows in the cloud simply by executing “run --
with batch”. Somehow, Metaflow managed to take the code that you wrote on a local 
workstation, maybe a laptop, and execute it hundreds or thousands of miles away in a cloud 
datacenter. Remarkably, you didn’t have to do anything to save or package the code in any 
particular way to make it happen. This is thanks to the fact that Metaflow packages the user 
code and its supporting modules automatically in a code package. 

By default, the code package includes the flow module, any other Python (.py) files in the 
current working directory and its subdirectories and the Metaflow library itself. This 
corresponds to the highlighted layers in Figure 6.10. 

Figure 6.10. What is included in the Metaflow code package 
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To see how this works in practice, let’s start by creating a supporting module for our weather 
forecast application. The module, shown in Listing 6.3, fetches a time-series of temperatures 
in a given location for the past five days from OpenWeatherMap. 

Listing 6.3 A utility module to get temperature time-series 

from datetime import datetime, timedelta 

HISTORY_API = 'https://api.openweathermap.org/data/2.5/onecall/timemachine'  #A 

def get_historical_weather_data(appid, lat, lon):  #B 
    import pandas as pd  #C 
    import requests  #C 

    now = datetime.utcnow() 
    data = [] 
    index = [] 
    for ago in range(5, 0, -1):  #D 

   tstamp = int((now - timedelta(days=ago)).timestamp())  #E 
   params = {'lat': lat, 'lon': lon, 'dt': tstamp,  #E 

    'appid': appid, 'units': 'metric'} 
   reply = requests.get(HISTORY_API, params=params).json()  #E 
   for hour in reply['hourly']: 

   data.append(hour['temp'])  #F 
   index.append(datetime.utcfromtimestamp(hour['dt']))  #F 

    return pd.Series(data=data,  #F 
  index=pd.DatetimeIndex(index, freq='infer')) 

def series_to_list(series):  #G 
    index = map(lambda x: x.isoformat(), series.index) 
    return list(zip(index, series)) 

#A an API endpoint that returns historical weather data 
#B this function returns a time-series of temperatures over the past 5 days 
#C do imports inside the function to avoid module-level dependencies 
#D request data for the past 5 days in chronological order 
#E prepare and send a request to OpenWeatherMap 
#F construct a time-series of hourly temperatures 
#G a utility function to convert a Pandas time-series to a list of tuples 

Save the code to openweatherdata.py. The module contains two functions:
get_historical_weather_data, which returns a time-series of temperatures over the past 5
days, and a utility function, series_to_list, which converts a Pandas time series to a list of
tuples. 

The get_historical_weather_data function takes three arguments: Your private appid
which you can obtain by signing up at OpenWeatherMap, and latitude (lat) and longitude
(lon) of the location for which we want the weather data.

The function showcases an important convention: In contrast to the typical Python 
convention of doing all import statements at the top of the module, we import all 3rd party 
modules, i.e. modules not in the Python standard library like pandas and requests, inside
the function body. This makes it possible for anyone to import the module even if they don’t 
have these two libraries installed. They can use some functions of the module without having 
to install every single dependency. 
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CONVENTION: If you think a supporting module may be used in many different contexts, it is a good idea 

to Import any 3rd party libraries inside the function body that uses the libraries instead of importing them at 

the top of the file. This way, the module itself can be imported without having to install the union of all 

dependencies required by all functions of the module. 

The OpenWeatherMap API returns hourly data for a single day in a request, so we need a 
loop to retrieve data for the past five days. For each day, the service returns a JSON object 
which contains an array of hourly temperatures in Celsius. If you prefer Fahrenheit, change 
units from metric to imperial. We convert the daily arrays to a single Pandas time-series,
which is keyed by a datetime object for each hour. This format makes it easy to plot and use
the data for forecasting. 

The series_to_list function simply takes a Pandas time-series like what is produced by
get_historical_weather_data and converts it to a Python list of tuples. We will get back to
the motivation of this function later. 

A benefit of having a separate module is that you can test it easily independent from any 
flows. Open a notebook or a Python shell and try the following lines: 

from openweatherdata import get_historical_weather_data 
APPID = ‘my-private-token’ 
LAT = 37.7749 
LON = 122.4194 
get_historical_weather_data(APPID, LAT, LON) 

You can replace LAT and LON with a location other than San Francisco. Replace APPID with
your private token. If all goes well, you should see a list of temperatures. Note that you need 
to have Pandas installed to be able to do this. If you don’t have it installed, don’t worry, you 
will be able to see results soon nonetheless! 

Next, we can start developing the actual flow for forecasting. Following our spiral 
approach to flow development, we don’t worry about the forecasting model yet. We just plug 
in the inputs, which are provided by openweatherdata.py, and some outputs. We will use
@conda to include external libraries as we did in the two previous chapters. We will cover it in
more detail in the next section. 

Listing 6.4 contains the first iteration of ForecastFlow.
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Listing 6.4 The first version of ForecastFlow 

from metaflow import FlowSpec, step, Parameter, conda 

class ForecastFlow(FlowSpec): 

   appid = Parameter('appid', required=True) 
    location = Parameter('location', default='36.1699,115.1398') 

    @conda(python='3.8.10', libraries={'sktime': '0.6.1'}) 
    @step 
    def start(self):  #A 

   from openweatherdata import get_historical_weather_data, series_to_list 
   lat, lon = map(float, self.location.split(',')) 
   self.pd_past5days = get_historical_weather_data(self.appid, lat, lon)  #B 
   self.past5days = series_to_list(self.pd_past5days)  #C 

 self.next(self.plot) 

    @conda(python='3.8.10', libraries={'sktime': '0.6.1', 
  'seaborn': '0.11.1'}) 

    @step 
    def plot(self):  #D 

   from sktime.utils.plotting import plot_series 
   from io import BytesIO 
   buf = BytesIO() 
   fig, _ = plot_series(self.pd_past5days, labels=['past5days'])  #E 
   fig.savefig(buf)  #E 
   self.plot = buf.getvalue()  #F 
   self.next(self.end) 

    @conda(python='3.8.10') 
    @step 
    def end(self): 

   pass 

if __name__ == '__main__': 
    ForecastFlow() 

#A Load the input data in the start step using our openweatherdata module
#B Save the Pandas data series in one artifact 
#C Save a Python version of the data series in another artifact 
#D This is our output step. It plots the time-series. 
#E Plot and save the time-series in an in-memory buffer 
#F Store the plot in an artifact 

Save the listing to forecast1.py. To run the listing you need Conda installed as instructed in 
Appendix X. 

The start step is responsible for getting the input data, which it delegates to the
supporting module, openweatherdata.py, which we created in Listing 6.3. Notably, the
start step creates two artifacts: pd_past5days which contains a Pandas time-series of
temperature for the past 5 days and past5days which contains the same data converted to a 
Python list. 

You may wonder what’s the point of storing the same data twice, just in two different 
formats. The motivation is again dependencies: To read pd_past5days using the Client API
e.g. in a notebook, you need Pandas - a particular version of Pandas - to be installed. In
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contrast, you can read past5days without any dependencies besides Python. We could store
only past5days but other steps of the flow need a Pandas version and they are guaranteed
to have the correct version of Pandas available, thanks to the @conda decorator.

RECOMMENDATION: Prefer storing artifacts as built-in Python types instead of objects that rely on 3rd 

party libraries, as native Python types are universally readable in different contexts without external 

dependencies. If you need to use a complex object within a flow, consider storing both a shareable Python 

version as well as an object version as separate artifacts. 

Try executing the flow: 

python forecast1.py  --environment=conda run --appid my-private-token 

After the run has completed, you can open a notebook and instantiate a Run object that
corresponds to the run that just finished. You can see a temperature plot by executing the 
following cell: 

from IPython.display import Image 
Image(data=run.data.plot) 

Figure 6.11 shows what the result looks like. It shows a plot of hourly temperatures in Las 
Vegas, unless you change the --location, over five days. In this case, you can see a clear 
pattern of temperature variation between day and night. Your time-series will look different 
as the weather is not constant. 

Figure 6.11. A time series of hourly temperatures in Las Vegas 

The fact that you can show the plot with a single statement highlights another important 
detail about dependency management: Sometimes it is beneficial to produce images inside 
Metaflow instead of a notebook. While you could call plot_series with pd_past5days in a 
notebook as well, it would require that you have the Pandas, SkTime, and Seaborn packages 
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installed and available in your notebook kernel. Even if you have them installed, your 
colleague might not. 

How to produce and store images inside Metaflow is demonstrated by the plot step: 
Many visualization libraries like Matplotlib allow a plot to be rendered and saved in an in-
memory buffer (buf). You can then save bytes from the buffer, i.e. an image file, in a 
Metaflow artifact (here, self.plot), so it can be easily retrieved with the Client API. 

RECOMMENDATION: If your flow benefits from plots that should be easily accessible by multiple 

stakeholders, consider producing and saving them inside Metaflow steps instead of a notebook. This way 

stakeholders don’t need to install any additional dependencies to be able to see the images. 

This pattern of producing plots inside Metaflow is particularly useful for production 
deployments, after you have determined what plots are useful for monitoring the flow and it 
is beneficial to be able to share them widely. In contrast, during prototyping it is probably 
easier to design and iterate on visualizations rapidly in a notebook. 

METAFLOW CODE PACKAGE 

Now that we have a working flow, we can get back to the original question of this section: 
What is included in a Metaflow code package and how is it constructed? 

You can see the contents of the code package by executing package list like here: 

python forecast1.py --environment=conda package list 

Note that you need to specify --environment=conda for all commands, including package 
list, that apply to a flow using the @conda decorator. You can also set an environment 
variable METAFLOW_ENVIRONMENT=conda to avoid having to set the option explicitly.  

You should see a long list of files. Notice two things about the list: 

1. By default, Metaflow includes all files ending with the .py suffix, i.e. Python source 
files, in the current working directory and its subdirectories in the job package. This 
allows you to use custom modules and Python packages in your projects easily - just 
include them in the same working directory. 

2. Metaflow includes Metaflow itself in the job package! This allows you to use generic 
container images in the clouds, since they don’t need to have Metaflow pre-installed. 
Also, it guarantees that the results you see locally match with the results you get in 
the cloud. 

Sometimes you may want to include other files than Python in the code package. For 
instance, your data processing step may execute SQL statements stored in separate .sql 
files or your code may call a custom binary. 

You can include any files in the job package by using the —package-suffixes option. 
Consider a hypothetical project with the following directory structure 
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mylibrary/__init__.py 
mylibrary/database.py 
mylibrary/prepcoess.py 
sql/input_data.sql 
myflow.py 

Here, mylibrary is a Python package (if you are not familiar with Python packages, see
https://docs.python.org/3/tutorial/modules.html#packages) that contains two modules, 
database and preprocess. Packages allow you to group multiple interrelated modules as a
library. You can use the custom package in your step code simply by writing: 

from mylibrary import prepcoess 

This will work even when you do  

python myflow.py run —-batch 

or deploy it to step functions, since Metaflow packages all Python files recursively in the job 
package.  However, in order to include input_data.sql in the code package you need to 
execute 

python myflow.py —-package-suffixes .sql run —-batch 

which instructs Metaflow to include all .sql files in addition to .py files in the code package.
To access the SQL file in your code, you can open the file as usual 

open(‘sql/input_data.sql’) 

Note that you should always use relative paths instead of absolute paths (any path starting 
with a slash) like /Users/ville/arc/sql/input_data.sql in your Metaflow code since 
absolute paths won’t work outside your personal workstation. 

Technically, you could include arbitrary data files in the code package as well. However, 
as the name implies, code packages should be used only for executable code. It is better to 
handle data as data artifacts which benefit from deduplication and lazy loading. You can use 
the IncludeFile construct covered in Chapter 3 to bundle arbitrary data files in your runs, 
which is a good solution for small datasets. Chapter 7 provides more ideas for managing 
large datasets. 

6.2.2 Why dependency managements matters 

In the previous section we learned how Metaflow packages local Python files automatically in 
a code package that can be shipped to different compute layers, like AWS Batch, for 
execution. In terms of stable execution environments, we covered the three innermost layers 
of the onion, as depicted in Figure 6.12, but code packages don’t address the question of 3rd 
party libraries.  
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Figure 6.12. Focusing on the libraries layer of the execution environment 

Why can’t we include libraries in the code package too? Most importantly, modern ML 
libraries tend to be complex beasts, implemented in large parts in compiled languages like 
C++. They have much more involved requirements than simple Python packages. In 
particular, practically all libraries depend on many other libraries so the “libraries” layer 
includes not only the libraries you import directly, e.g. Tensorflow, but also all libraries - tens 
of them - that Tensorflow uses internally. 

We call these libraries-used-by-libraries transitive dependencies. In order to determine 
the full set of libraries that need to be included in the execution environment of a task, we 
must identify all libraries and their transitive dependencies. Determining this graph of 
dependencies - the operation is commonly called dependency resolution - is a surprisingly 
non-trivial problem. 

You might wonder - isn’t this a solved problem already? After all, you can “pip install 
tensorflow” and often it just works. Consider the following two problems which you may 
have faced too: 

1. Conflicts - the more libraries you install, the more likely it is that the dependency
graph of a library you want to install conflicts with an existing library and installation
fails. For instance, many ML libraries such as Scikit Learn and Tensorflow require
specific versions of the Numpy library, so it is common to have conflicts related to a
wrong version of Numpy.

Issues like this can be hard to debug and solve. A common solution is that someone at
the company carefully maintains a mutually compatible set of packages, which is a
tedious job. Worse, it limits the speed of iteration as different projects can’t make
choices independently as everybody must work with a common blessed set of
libraries.
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Another common solution to limit the size of the dependency graph and hence 
minimize the likelihood of conflicts is to use virtual environments (see 
https://docs.python.org/3/tutorial/venv.html). With virtual environments, you can 
create and manage isolated sets of libraries. This is a great concept but managing 
many virtual environments manually can be tedious as well. 

2. Reproducibility - pip install (or conda install) performs dependency resolution from 
scratch by default. This means that you may get a different set of libraries every time 
you run e.g. “pip install tensorflow”. Even if you require a specific version of 
Tensorflow, it is possible that its transitive dependencies have evolved over time. If 
you want to reproduce results of a past execution, say, a run that happened a month 
ago, it might be practically impossible to determine the exact set of libraries that were 
used to produce the results. 

Note that virtual environments don’t help with this reproducibility problem by default, 
as “pip install tensorflow” is equally unpredictable inside a virtual environment. 
To get a stable execution environment, you need to freeze the whole virtual 
environment in itself. 

The first problem hurts prototyping in particular, as you can’t experiment with the latest 
libraries easily. The second problem hurts production in particular, because production 
deployments may fail due to surprising changes in their libraries. These problems are 
universal to every infrastructure - they are not specific to Metaflow or any other technical 
approach. 

CONTAINERS FOR DEPENDENCY MANAGEMENT 

Today, the most common solution for dependency management is to use a container image. 
As we briefly discussed in Chapter 4, container images can encapsulate all layers of 
Figure 6.12, including the operating system, albeit often the operating system kernel - the 
core of the operating system that interacts with hardware - is shared amongst many 
containers. 

In the dependency management point of view, container images work like virtual 
environments with similar pros and cons: They can help partition dependency graphs to 
avoid conflicts. A downside is that you need a system, such as a continuous integration and 
deployment (CI/CD) setup with a container registry, to create and manage a zoo of images. 
Most companies manage only a handful of production-ready images to reduce the amount of 
complexity.  

Furthermore, while executing the same code on the same image guarantees a high level 
of reproducibility, producing reproducible images requires some effort: If you simply “pip 
install tensorflow” in your image specification (e.g. Dockerfile), you have simply pushed 
the reproducibility problem one layer deeper. 

Metaflow works well container-based dependency management: Assuming you have a 
mechanism to create images, you can create an image that contains all libraries you need 
and let Metaflow’s code package overlay the user code on top of the base image on the fly. 
This is a solid solution especially for production deployments. 
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For prototyping, a challenge is that creating and using containers locally is not 
straightforward. To address this shortcoming, Metaflow comes with built-in support for Conda 
package manager, which combines an easy prototyping experience with stable production 
environments. 

A PRAGMATIC RECIPE FOR DEPENDENCY MANAGEMENT 

You can adopt a layered approach to dependency management, to balance the needs of 
rapid prototyping and stable production. Here’s a pragmatic recipe: 

• Define the DAG and simple steps inside the flow module. For simple flows and 
prototyping, this may be all you need. You can rely on whatever libraries you have 
installed locally. 

• Create separate supporting modules for logically related sets of functions. A 
separate module can be shared across flows and it can be used outside Metaflow e.g. 
in a notebook. Separate modules are also amenable to testing e.g. using standard 
unit testing frameworks like PyTest (pytest.org). 

• Use Python packages to create custom libraries that consist of multiple modules. 
As long as the package is in the same directory hierarchy as the main flow module, it 
will get included in the code package automatically. 

• Manage 3rd party libraries using @conda. 
• If you have complex dependency management needs that @conda can’t handle and/or 

your company has a well-working setup for creating container images, use them as 
an alternative or complement to @conda. 

All the layers work well together: A complex project can consist of many flows. The flows 
may share many modules and packages. They can run on a company-specific base image 
with project-specific dependencies overplayed on top of them using @conda. 

6.2.3 Using the @conda decorator 

Conda (https://conda.io) is an open-source package manager originally created by a 
company called Anaconda. It is widely used in the Python data science and machine learning 
ecosystem, although technically Conda is not specific to data science and not even to Python. 
While Conda doesn’t solve all dependency management problems by itself, it is a solid tool 
that can be used to solve the above problems. Metaflow provides a built-in integration with 
Conda for the following reasons: 

• The Conda ecosystem contains a huge number of ML and data science libraries. 
• Conda helps solve the conflict problem by providing built-in virtual environments and 

a robust dependency resolver. It allows us to solve the reproducibility problem by 
freezing environments, as we will see soon. 

• Conda handles not only Python dependencies but also system libraries. This is an 
important feature for data science libraries in particular, as they contain many 
compiled components and non-Python transitive dependencies. As a bonus, Conda 
handles the Python interpreter itself as a dependency, so different versions of Python 
can be used. 
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To see how Metaflow uses Conda to solve the dependency management problems in practice, 
let’s continue our forecasting example. Listing 6.4 contained a skeleton flow that fetched 
input data, temperature over the past five days, and plotted it. We will expand the flow in 
Listing 6.5 by adding a step, forecast, that performs the actual forecasting.

Listing 6.5 ForecastFlow with a forecast step 

from metaflow import FlowSpec, step, Parameter, conda, schedule 

@schedule(daily=True)  #A 
class ForecastFlow(FlowSpec): 

 appid = Parameter('appid', default='your-private-token')  #B 
    location = Parameter('location', default='36.1699,115.1398') 

    @conda(python='3.8.10', libraries={'sktime': '0.6.1'}) 
    @step 
    def start(self):  #C 

   from openweatherdata import get_historical_weather_data, series_to_list 
   lat, lon = map(float, self.location.split(',')) 
   self.pd_past5days = get_historical_weather_data(self.appid, lat, lon) 
   self.past5days = series_to_list(self.pd_past5days) 
   self.next(self.forecast) 

    @conda(python='3.8.10', libraries={'sktime': '0.6.1'}) 
    @step 
    def forecast(self): 

   from openweatherdata import series_to_list 
   from sktime.forecasting.theta import ThetaForecaster 
   import numpy 
   forecaster = ThetaForecaster(sp=48)  #D 
   forecaster.fit(self.pd_past5days)  #D 
   self.pd_predictions = forecaster.predict(numpy.arange(1, 48))  #D 
   self.predictions = series_to_list(self.pd_predictions)  #E 
   self.next(self.plot) 

    @conda(python='3.8.10', libraries={'sktime': '0.6.1', 
  'seaborn': '0.11.1'}) 

    @step 
    def plot(self): 

   from sktime.utils.plotting import plot_series 
   from io import BytesIO 
   buf = BytesIO() 
   fig, _ = plot_series(self.pd_past5days,  #F 

 self.pd_predictions, 
 labels=['past5days', 'predictions']) 

   fig.savefig(buf) 
   self.plot = buf.getvalue() 
   self.next(self.end) 

    @step 
    def end(self): 

   pass 

if __name__ == '__main__': 
    ForecastFlow() 
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#A Schedule forecast to run daily 
#B Replace the default with your actual OpenWeatherData API token 
#C Start step is exactly the same as before 
#D Create a predictor looking at the past 48 hours to predict the next 48 hours 
#E Save the predictions in a plain Python list for easy access 

Save the code to forecast2.py. Note that we added the @schedule decorator so the flow 
can be run on a production scheduler, Step Functions, automatically. This requires that you 
include your personal OpenWeatherMap API token as the default value in the appid
Parameter, as no custom parameter values can be specified for scheduled runs. If you feel 
that hard-coding a secret in the flow code is not a good idea, you are right, don’t do it for 
anything sensitive. Keep that thought, as we will learn about a better mechanism, deploy-
time functions, in Chapter 8. 

The forecast step is the new and exciting part in this flow. It uses a particular method
for time-series prediction called the Theta method, implemented in sktime by the class
ThetaForecaster. You can learn the method in detail at https://sktime.org. The method is 
useful for our temperature forecasting application as it accounts for seasonality. Looking at 
Figure 6.13, it is clear that temperatures follow a diurnal cyclical pattern, at least in the 
desert city of Las Vegas. We use the past 48 hours to forecast the next 48 hours. Note that 
we store the predictions in an easily accessible pure-Python artifact, predictions, in
addition to a Pandas time-series pd_predictions, as discussed earlier in this chapter. We
plot the predictions together with historical data in the plot step.

Now you can run 

python forecast2.py  --environment=conda run 

Using a notebook like what we used before, we can plot the results: 

Figure 6.13. Forecasted hourly temperatures for Las Vegas 

Just by looking at Figure 6.13, the forecast seems believable for this particular time-series. 
As an exercise, you can test different methods and parameterizations for different locations. 
To make the exercise even more realistic, you can use OpenWeatherMap APIs to obtain real 
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forecasts that are based on real meteorology and compare your forecasts to theirs 
programmatically. Also, you can backtest forecasts by seeing how well you could have 
forecasted historical data based on older historical data. 

Discovering Conda packages 
In all examples so far, we have simply provided a predefined list of libraries for every @conda decorator. How do 
you find library versions that are available in the first place? 

 
Conda has the concept of Channels which correspond to different providers of packages. The original company 

behind Conda, Anaconda, maintains default channels for Conda. Another common channel is Conda Forge, which is a 
community-maintained repository of Conda Packages. You can set up a custom, private Conda channel too. 

 
To find packages and available versions, you can either use the “conda search” command on the command line or 
you can search packages at https://anaconda.org (note that .org is the community site whereas .com refers to the 
company).   

As this book is not about time-series forecasting but rather about infrastructure, we will 
focus on unpacking how the @conda decorator works. After you start a run but before any 
tasks execute, @conda performs the following sequence of actions: 

1. It walks through every step of the flow and determines which virtual environments 
need to be created. Every unique combination of python version and libraries 
requires an isolated environment. 

2. If an existing environment is found locally that has the right Python version and 
libraries, it can be used without changes. This is why subsequent executions are faster 
than the first one. 

3. If an existing environment is not found, Conda is used to perform dependency 
resolution to resolve the full list of libraries, including transitive dependencies, which 
need to be installed. 

4. Installed libraries are uploaded in the datastore, e.g. in S3, to make sure they can be 
accessed quickly and reliably by all tasks. A fast internet connection or using a cloud-
based workstation helps make this step fast. 

This sequence ensures that there’s a stable execution environment for each step which 
includes all libraries requested. Reflecting on the problems of dependency management, note 
what we did here: 
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• We minimize the likelihood of dependency conflicts by having minimally small
environments - a separate virtual environment for each step. Maintaining
environments this granular would be quite infeasible to do manually but Metaflow
handles it for us automatically.

• Dependency resolution is only performed only once, to reduce the likelihood of
surprises during development.

• The list of dependencies is declared in the code itself, so the version information gets
stored in a version control system both by Metaflow and also by Git, if you use Git to
store your workflows. This ensures a decent level of reproducibility, as you and your
colleagues have an explicit declaration of the dependencies needed to reproduce
results.

UNSAFE STEPS 

Note that when you use —environment=conda, all steps are executed in an isolated Conda 
environment, even if they don’t specify an explicit @conda decorator. For instance, the end 
step in Listing 6.5 is executed in a bare-bones environment with no extra libraries, as it 
didn’t specify any library requirements. You can’t import any libraries (outside Metaflow 
itself) that are not explicitly listed in @conda. This is a feature, not a bug, as it ensures that 
steps don’t accidentally rely on libraries that are not declared in the code. This is a critical 
feature to ensure reproducibility. 

However, in some special cases you may need to mix isolated steps with “unsafe” steps. 
For instance, your workstation or the underlying container image may contain libraries that 
you can’t install with Conda. You can declare a step unsafe by adding a decorator 
@conda(disabled=True), which makes the step execute as if no Conda was used. Note that 
doing this negates many benefits of Conda, especially when it comes to production 
deployments discussed below. 

THE @CONDA DECORATOR IN THE CLOUD 

Remarkably, you can run exactly the same code in the cloud: 

python forecast2.py  --environment=conda run —-with batch 

When running with a cloud-based compute layer like AWS Batch, the execution begins with 
the same sequence of operations as listed above. However, Metaflow needs to perform extra 
work to recreate the virtual environments in containers on the fly. Here’s what happens in 
the cloud before a task executes: 

1. The compute layer launches a pre-configured container image. Notably, the container
image doesn’t need to include Metaflow, not the user code, nor its dependencies.
Metaflow overlays the execution environment on top of the image.

2. The code package includes the exact list of libraries that need to be installed. Notably,
dependency resolution is not run again, so all tasks are guaranteed to have precisely
the same environments. Note that this wouldn’t be the case if you ran “pip install
some_package”  inside your step code. It is possible that tasks would end up with
slightly different execution environments, leading to hard-to-debug failures.
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3. Metaflow pulls the required libraries from its own datastore where they have been
cached. This is critical for two reasons: First, imagine running a wide foreach, e.g.
hundreds of instances in parallel. If all of them hit an upstream package repository in
parallel, it would amount to a distributed denial of service attack - the package
repository can refuse to serve the files to so many parallel clients. Second,
occasionally the package repositories delete or change files, which could lead to a task
failing - again in a hard-to-debug fashion.

The above steps guarantee that you can prototype quickly locally with your favorite 
libraries that can be specific to each project and you can execute the same code at scale in 
the cloud without having to worry about the execution environment. 

We can piggyback on the same mechanism to achieve robust production 
deployments. Let’s test the idea by deploying the forecasting flow to production! 

python forecast2.py  --environment=conda step-functions create 

Similar to the run command , “step-functions create” performs the four steps of
dependency resolutions prior to the production deployment. Consequently, the production 
deployment is guaranteed to be isolated from any changes in the flow code (thanks to the 
code package), as well as changes in its dependencies (thanks to @conda), and transient
errors in package repositories (thanks to package caching in the datastore). All in all, you are 
guaranteed to have stable execution environments. 

Congratulations - you just deployed a real data science application to production! You can 
use the Step Functions UI to observe daily runs. As an exercise, you can create a notebook 
that plots daily forecasts in a single view. 

FLOW-LEVEL DEPENDENCIES WITH @CONDA_BASE 

Notice how Listing 6.5 contains the same set of dependencies for the start and forecast 
steps: 

@conda(python='3.8.10', libraries={'sktime': '0.6.1'}) 

The plot step has only one additional library. As the number of steps increases, it may start 
feeling redundant to add the same dependencies to every step. As a solution, Metaflow 
provides a flow-level @conda_base decorator that specifies attributes shared by all steps. Any
step-specific additions can be specified with a step-level @conda. Listing 6.6 shows an
alternative version of ForecastFlow that takes this approach. The function bodies are equal 
to Listing 6.5 so they are omitted for brevity. 
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Listing 6.6 Demonstrating @conda_base 

@schedule(daily=True) 
@conda_base(python='3.8.10', libraries={'sktime': '0.6.1'})  #A 
class ForecastFlow(FlowSpec): 

    @step 
    def start(self): 

  ... 

    @step 
    def forecast(self): 

  ... 

    @conda(libraries={'seaborn': '0.11.1'})  #B 
    @step 
    def plot(self): 

  ... 

    @step 
    def end(self): 

  ... 

#A Use @conda_base to define a common Python version and libraries 
#B Use a step-level @conda to add step-level additions to the common base 

This concludes our exploration into dependency management. Next, we will address another 
important element of production deployments which is a common source of sporadic failures: 
human beings. 

6.3 Stable operations 
An intern, Finley, joins the company for the summer. Finley has a strong theoretical 
background in Bayesian statistics. Alex suggests that they could organize a fun internal 
competition to compare the performance of a Bayesian model by Finley to a neural network 
model that Alex has wanted to build. Initially, Alex is overjoyed to see that the neural 
network model seems to be working better in the benchmark. However, as they validate the 
final results, they notice that Alex’s prediction workflow had accidentally used Finley’s model, 
so in fact Finley is the winner. If only Alex had been more careful in organizing the 
experiment, they could have spent more time in perfecting the model instead of being misled 
by incorrect results. 
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Imagine you have deployed a workflow to a production scheduler for the first time, as 
discussed in the previous sections. For most projects, this is merely the beginning, not the 
end. Increasingly often, the data scientists who develop workflows are also responsible for 
operating them in production. Hence,the data scientist has two responsibilities: First, keeping 
the production workflows running without interruptions and second, continuing development 
of the workflow to improve results. 

A challenge is that the two responsibilities have diagonally opposite goals: The production 
workflows need to be as stable as possible whereas prototyping may require even drastic 
changes in the project. The key to solving this dilemma is to keep production workflows 
clearly isolated from prototyping, so that no matter what happens in the prototyping 
environment, it can’t affect production and vice versa. 

In a larger project, there may not be only a single prototyping version and a production 
version. Instead, a team of data scientists can work on various prototypes concurrently. To 
test the experimental versions, they may be deployed to run side by side with a production 
version in a production-like environment. All in all, you can have any number of versions of 
the project running concurrently at different levels of maturity. All the versions of the project 
must stay neatly isolated from each other, to make sure that the results are clean from any 
interference. 

To make this idea more concrete, imagine a data science application, say, a 
recommendation system, which is under continuous development by a team of data 
scientists. The team’s mandate is to improve the system by pushing experiments through an 
experimentation funnel, depicted in Figure 6.14. 
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Figure 6.14. The experimentation funnel 

At the top of the funnel, the team has tens or hundreds of ideas how the system could be 
improved. Members of the team can prototype and test a subset of prioritized ideas on their 
local workstations. Initial results from prototypes can help to determine which ideas warrant 
further development - it is expected that not all ideas will survive. Additional rounds of local 
development may follow. 

Once you have a fully functional experimental workflow (or a set of workflows), often you 
will want to run an A/B experiment that compares the new version to the current production 
version in a live production environment. This requires that you have two or more test 
deployments running side by side. After some time, you can analyze the results to determine 
if the new version should be promoted to be the new production version. 

THE VERSIONING LAYER 

The versioning layer helps to organize, isolate, and track all versions so it becomes feasible 
to manage even hundreds of concurrent versions and projects which are present at different 
levels of the experimentation funnel. In terms of our infrastructure stack, the 
versioning layer helps to determine what versions of the code gets executed, as depicted in 
Figure 6.15. 

Figure 6.15. The role of the versioning layer: What code gets executed 
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Naturally the data scientist needs to write the code, i.e. the actual business logic of the 
workflow in the first place. This is a concern of the (software) architecture layer, which we 
will discuss in Chapter 8. It is hard to abstract away or generalize the business logic, which 
tends to be very specific to each project and use case, so we expect the data scientist to 
exercise a good deal of freedom and responsibility when it comes to developing it. Hence it 
makes sense to place the architecture layer towards the top of the infrastructure stack where 
the infrastructure should be less constraining. 

In contrast, the infrastructure can be more opinionated about versioning - keeping things 
neatly organized and versions clearly separated isn’t a matter of personal preference but 
rather an organizational requirement. It is highly beneficial for everyone to use the same 
approach to versioning to facilitate collaboration and to avoid conflicts (like Alex’s and 
Finley’s scenario above), which is another motivation for the infrastructure to provide a built-
in versioning layer. 

We can summarize the roles of the highlighted layers in Figure 6.15, from the top down, 
as follows: 

1. The data scientist designs and develops the business logic, i.e. the architecture of the
workflow (the architecture layer).

2. The infrastructure helps to manage multiple concurrently prototyped and deployed
versions of the business logic (the versioning layer), to facilitate an experimentation
funnel. Together, the architecture and the versioning layer determine what code gets
executed.

3. A robust production scheduler (the job scheduler layer), such as AWS Step Functions,
determines how and when a particular workflow DAG is executed.

4. Finally, the compute layer is responsible for finding a server instance where each task
of the workflow can be executed.

As discussed earlier, a major benefit of separating the “what, how, and where” is that we can 
design each subsystem independently. This section shows a reference implementation of the 
versioning layer, as provided by Metaflow, but you could use another framework or approach 
to achieve the same goal: Building and operating an experimentation funnel that allow a 
team of data scientists to iterate and test various versions of applications frictionlessly. 

There isn’t a single right way of building the funnel. We give you a set of tools and 
knowledge that help you design and customize an approach to versioning and deployments 
that work for your specific needs. For instance, many companies have developed their own 
custom wrapper scripts or CI/CD (Continuous Integration / Continuous Deployment) 
pipelines that leverage the mechanisms presented below. 

We begin the section by looking at versioning during prototyping and after that, how to 
achieve safely isolated production deployments.  

6.3.1 Namespaces during prototyping 

Consider the scenario that Alex and Finley went through in the beginning of this section: 
Both of them were prototyping alternative workflows for the same project. Accidentally, Alex 
analyzed Finley’s results instead of their own. This highlights the need of staying organized 
already during prototyping: each prototype should stay clearly isolated from others. 
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Metaflow has the concept of namespaces that help keeping runs and artifacts organized. 
Let’s demonstrate it with a simple workflow in Listing 6.7: 

Listing 6.7 A flow showing namespaces in action 

from metaflow import FlowSpec, step, get_namespace 

class NamespaceFlow(FlowSpec): 

    @step 
    def start(self): 

   print('my namespace is', get_namespace())  #A 
   self.next(self.end) 

    @step 
    def end(self): 

   pass 

if __name__ == '__main__': 
    NamespaceFlow() 

#A Print the current namespace 

Save the code in namespaceflow.py and execute it as usual:

python namespaceflow.py run 

You should see an output that mentions your username, for instance: 

[1625945750782199/start/1 (pid 68133)] my namespace is user:ville 

Now, open a Python interpreter or a notebook and execute the following lines: 

from metaflow import Flow 
Flow(‘NamespaceFlow’).latest_run 

This will print out the run ID of the latest run in the user’s namespace. In the case of the 
above example, it will show 

Run('NamespaceFlow/1625945750782199') 

Note how the run ID 1625945750782199 matches with the latest executed run. You can also
execute get_namespace() to confirm that the namespace is indeed the same which was used
by the flow. 

To show that the latest_run works as expected, let’s run the flow again: 

python namespaceflow.py run 

Now the Run ID is 1625946102336634. If you test latest_run again, you should see this
ID. 

Next, let’s test how namespaces work when multiple users are working together. Execute 
the following command, which simulates another user, otheruser, running the flow
concurrently: 

USER=otheruser python namespaceflow.py run 
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Note that you are not supposed to set USER explicitly in real life. The variable is set 
automatically by your workstation. We set it here explicitly only to demonstrate how 
Metaflow behaves in the presence of multiple users. 

For this run, the ID is 1625947446325543 and the namespace is user:otheruser. 
Figure 6.16 summarizes the executions in each namespace. 

Figure 6.16. Namespaces of two users, each with their own latest_run 

Now if you examine latest_run again, you will see that it still returns 1625946102336634,
i.e. Ville’s latest run,  and not the absolute newest Run ID that was executed by otheruser. 
The reason is that the Client API respects the current namespace by default: It doesn’t
return the latest_run across all users but it returns your latest run.

Built-in namespaces avoid situations like what Alex and Finley faced: It would be 
confusing if, say, your notebook that uses latest_run started showing different results
because a colleague of yours executed the flow. By keeping metadata and artifacts 
namespaced, we can avoid such surprises. 

Besides latest_run, you can refer to any specific run by their ID, like here:

from metaflow import Run 
Run('NamespaceFlow/1625945750782199') 

This will work since the specific run is in the current namespace. In contrast, try this: 

from metaflow import Run 
Run('NamespaceFlow/1625947446325543’) 

This will produce an exception: 

metaflow.exception.MetaflowNamespaceMismatch: Object not in namespace 'user:ville' 

since the requested flow doesn’t exist in the current namespace - it belongs to otheruser.
This behavior ensures that you don’t accidentally refer to someone else’s results, e.g. if you 
mistype a run ID. 

NOTE: By default, the Client API allows you to only inspect runs and artifacts that you have produced. 

Actions taken by other users won’t affect results returned by your Client API, unless you switch namespaces 
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explicitly. In particular, a relative reference like latest_run is safe to use since it refers to the latest run in 

the current namespace and hence its return value can’t change unexpectedly. 

SWITCHING NAMESPACES  

Namespaces are not a security feature: they are not meant to hide information, just help in 
keeping things organized. You can inspect results by any other user simply by switching the 
namespace. For instance, try the following: 

from metaflow import Run, namespace 
namespace(‘user:otheruser’) 
Run('NamespaceFlow/1625947446325543’) 

Use the namespace function to switch to another namespace. After a namespace call, the
Client API accesses objects under the new namespace. Hence it is possible to access a run by 
otheruser, 1625947446325543. Correspondingly,

from metaflow import Flow 
namespace(‘user:otheruser’) 
Flow(‘NamespaceFlow’).latest_run 

returns 1625947446325543. As you can expect, in this namespace you would get an error
when accessing Ville’s runs. 

The namespace call is a convenient way to switch namespaces e.g. in a notebook. 
However, the Client API is also used inside flows to access data from other flows. For 
instance, remember ClassifierPredictFlow in Chapter 3 that used the following lines to
access the latest trained model: 

    @step 
    def start(self): 

   run = Flow('ClassifierTrainFlow').latest_run 

The Client API respects namespace also inside flows: The above latest_run would only
return models trained by your ClassifierTrainFlow. Now, imagine that you wanted to use
a model trained by your colleague, Alice. You could add a line, namespace(‘user:alice’), in
the flow code to switch the namespace. However, what if the next day you want to try a 
model by another colleague, Bob? You could keep changing the code back and forth but 
there’s a better approach. Without changing anything in the code, you can switch 
namespaces on the command line with the --namespace option:

python classifier_predict.py run --namespace user:bob 

This makes it easy to switch between different inputs without having to hardcode anything in 
the code itself. Figure 6.16 illustrates the idea. 
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Figure 6.17. Switching between two namespaces 

Switching namespaces only changes how the Client API reads data, it doesn’t change how 
the results are stored - they are always attached to your username. Reading from any 
namespace is a safe operation in a sense that you can’t accidentally overwrite or corrupt 
existing data. By limiting writes to your own namespace by default, you can be sure that 
your actions won’t have unintended side-effects to other users. 

NOTE:  Switching namespace with the namespace function or the --namespace option only changes the 

way how the Client API reads results. It doesn’t change the way how results are written. They still belong to 

the current user’s namespace by default. 

GLOBAL NAMESPACE 

What if you see a run ID like NamespaceFlow/1625947446325543 in a log file but you have 
no idea who started the run. You wouldn’t know which namespace to use. In situations like 
this, you can disable the namespace safeguards by calling 

namespace(None) 

After this, you can access any object (runs, artifacts, etc) without limitation. The latest_run 
will refer to the latest run executed by anyone, so its value may change at any time. 

RECOMMENDATION: Don’t use namespace(None) inside flows, as it exposes the flow to unintended 

side-effects caused by other people (or even yourself, inadvertently) running flows. It can be a handy tool for 

exploring data e.g. in a notebook.  

6.3.2 Production namespaces 

The previous section discussed namespaces during prototyping. In this context, it is natural 
to namespace runs by user, since, factually, there’s always a single unambiguous user who 
executes the command run. But what about production deployments? There’s no one 
executing a run, so whose namespace should we use? 
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Metaflow creates a new production namespace for each production deployment. The 
production namespace is not attached to any user. Let’s see what this means in practice by 
deploying the namespaceflow.py from Listing 6.7 to AWS Step functions:

python namespaceflow.py step-functions create 

You should see an output like this: 

Deploying NamespaceFlow to AWS Step Functions... 
It seems this is the first time you are deploying NamespaceFlow to AWS Step Functions. 
A new production token generated. 
The namespace of this production flow is 
    production:namespaceflow-0-fyaw 
To analyze results of this production flow add this line in your notebooks: 
    namespace("production:namespaceflow-0-fyaw") 
If you want to authorize other people to deploy new versions of this flow to AWS Step 

Functions, they need to call 
    step-functions create --authorize namespaceflow-0-fyaw 

As the output indicates, a new unique namespace, production:namespaceflow-0-fyaw, was
created for the deployment. As you can see, the namespace is not tied to a user, like 
user:ville, which we used during prototyping.

If you run “step-functions create” again, you will notice that the production
namespace doesn’t change. The deployment’s namespace is tied to the flow name. It doesn’t 
change unless you explicitly request a new namespace by executing 

python namespaceflow.py step-functions create --generate-new-token 

To see the namespace in action, let’s trigger an execution on Step Functions: 

python namespaceflow.py step-functions trigger 

Wait for a minute or two for the execution to start. After this, open a notebook or a Python 
interpreter and execute the following lines. Replace the namespace with the actual unique 
namespace that was output by “step-functions create”:

from metaflow import namespace, Flow 
namespace(‘production:namespaceflow-0-fyaw’) 
Flow(‘NamespaceFlow’).latest_run 

You should see a Run object with a long ID prefixed with sfn-, like

Run('NamespaceFlow/sfn-72384eb6-2a1b-4c57-8905-df1aa544565c') 

A key benefit of production namespaces is that your workflows can safely use the Client API, 
relative references like .latest_run in particular, knowing the production deployments stay
isolated from any prototyping that any users perform locally in their own namespace. 

AUTHORIZING DEPLOYMENTS 

Production namespaces include an important safeguard mechanism: Imagine a new 
employee, Charles, is getting used to Metaflow and he explores various commands. As we 
discussed, local prototyping is always safe, as results are tied to Charles’ personal 
namespace. Charles might test production deployments too and execute 
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python namespaceflow.py step-functions create 

Charles’ local version of namespaceflow.py might not be production-ready, so by doing this,
he might end up accidentally breaking the production deployment. Since we want to 
encourage experimentation, we should make sure that new employees (or anyone else) 
doesn’t have to be afraid of accidentally breaking anything. 

To prevent accidents from happening, Metaflow prevents Charles from running “step-
functions create” by default. Charles needs to know a unique production token which
defines the production namespace to be able to run the command. In this case, if Charles 
really needs to deploy the flow to production, he would reach out to people who have 
deployed the flow previously, obtain the token, and execute: 

python namespaceflow.py step-functions create --authorize namespaceflow-0-fyaw 

The --authorize flag is only needed for the first deployment. After this, Charles can keep
deploying the flow as anyone else. 

Note that --authorize is not a security feature. Charles can discover the token by
himself too, as we will see soon. It is only meant to act as an explicit confirmation for the 
action, which makes it a bit harder to cause damage inadvertently. 

6.3.3 Parallel deployments with @project 

When you run “step-functions create”, a flow is deployed to the production scheduler.
The deployment is named automatically after the name of the FlowSpec class. In other
words, by default there's exactly one production version attached to a flow name. You or 
your colleagues (after authorization) can update the deployment by running “step-
functions create” again but the newer version will overwrite the previous one.

As we discussed in the beginning of this section, larger projects may need multiple 
parallel but isolated production deployments, e.g. to facilitate A/B testing of new 
experimental versions of the flow. Furthermore, a complex application may consist of 
multiple flows (like ClassifierTrainFlow and ClassifierPredictFlow in Chapter 3) which
should exist in the same namespace, so they can share artifacts amongst them safely. By 
default, when you deploy two flows with distinct names, a unique namespace will be 
generated for each one of them. 

To address these needs, we can use a flow-level decorator called @project. The
@project decorator doesn’t do anything by itself but it enables a flow, or multiple flows, to
be deployed in production in a special way. The @project decorator is an optional feature
that can help organize larger projects. You can start without it, have a single production 
version, and add it later as needs grow. 

Let’s use a simple example in Listing 6.8 to demonstrate the concept. 
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Listing 6.8  A flow with the @project decorator 

from metaflow import FlowSpec, step, project 

@project(name='demo_project')  #A 
class FirstFlow(FlowSpec): 

    @step 
    def start(self): 

   self.model = 'this is a demo model' 
   self.next(self.end) 

    @step 
    def end(self): 

   pass 

if __name__ == '__main__': 
    FirstFlow() 

#A Annotate the flow with a project decorator with a unique name 

Save the code to firstflow.py. We annotated the flow with @project that needs to be
given a unique name. All flows with the same project name will use a single shared 
namespace. 

Let’s see what happens when you deploy it to Step Functions 

python firstflow.py step-functions create 

Thanks to the @project decorator, the flow isn’t deployed with the name FirstFlow as
usual. Instead, it is named demo_project.user.ville.FirstFlow. The @project is used to
create parallel, uniquely named deployments. By default, the deployment is prefixed by the 
project name (demo_project) and the user who deployed the flow (user.ville). If another
team member ran “step-functions create” with this flow, they would get a personal,
unique deployment. This allows anyone to test their prototypes easily in a production 
environment, without interfering with the main production version. 

Sometimes experiments are not clearly tied to a single user. Maybe multiple data 
scientists collaborate on a joint experiment. In this case, it is natural to deploy the flow as a 
branch. Try this: 

python firstflow.py --branch testbranch step-functions create 

It will produce a deployment named demo_project.test.testbranch.FirstFlow - note that
no username is present in the name. You can create any number of independent branches. 
Note that triggering respects --branch too. Try: 

python firstflow.py --branch testbranch step-functions trigger 

It will trigger an execution of demo_project.test.testbranch.FirstFlow. 
By convention, if your project has a single blessed production version, you can deploy it 

with 

python firstflow.py --production step-functions create 
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which will produce a deployment named demo_project.prod.FirstFlow. The --production 
option deploys a branched deployment like any other - there’s no special semantics in --
production. However, it can help to clearly distinguish the main production version from 
other experimental branches. 

Besides allowing multiple parallel, isolated production deployments, the @project 

decorator is useful as it creates a single unified namespace across multiple flows. To test the 
idea, let’s create another flow for the same @project, shown in Listing 6.9.

Listing 6.9 Another flow in the same @project 

from metaflow import FlowSpec, Flow, step, project 

@project(name='demo_project') 
class SecondFlow(FlowSpec): 

    @step 
    def start(self): 

   self.model = Flow('FirstFlow').latest_run.data.model  #A 
   print('model:', self.model) 

 self.next(self.end) 

    @step 
    def end(self): 

   pass 

if __name__ == '__main__': 
    SecondFlow() 

#A Access an artifact in the same namespace 

Save the code in secondflow.py. You can test the flows locally by running

python firstflow.py run 
python secondflow.py run 

Locally, the latest_run in SecondFlow refers to the latest run of FirstFlow in your personal
namespace, in my case, user:ville. Let’s deploy SecondFlow to our test branch:

python secondflow.py --branch testbranch step-functions create 

which will deploy a flow named demo_project.test.testbranch.SecondFlow. Remarkably,
both FirstFlow and SecondFlow share the same namespace, which in my case is named 
mfprj-pbnipyjz2ydyqlmi-0-zphk. The project namespaces are generated based on a hash
of the branch name, the project name, and a unique token, so they will look a bit cryptic. 

Now, trigger an execution on Step Functions: 

python secondflow.py --branch testbranch step-functions trigger 

After a while, you can examine the results in a notebook or a Python interpreter: 

from metaflow import namespace, Flow 
namespace(None) 
print(Flow('SecondFlow').latest_run['start'].task.stdout) 
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As we use the global namespace, we don’t need to know the exact namespace used by our 
testbranch. However, this is a bit dangerous if other people were running SecondFlows
simultaneously. Note that the flow name, SecondFlow, is still the same: The @project prefix
is only used to name the flow for the production scheduler. 

To see the power of @project, you can now make edits in FirstFlow, for instance
change the model string to something else. You can test changes locally as before which 
won’t impact the production deployment. After you are happy with the changes, you can 
deploy the improved FirstFlow as well as SecondFlow to a new branch, say, newbranch. 
The setup is visualized in Figure 6.18. 

Figure 6.18. Three @project branches 

When you execute them, only the pair of workflows deployed to newbranch is affected by the
changes. The old version at testbranch is unimpacted. As depicted in Figure 6.18, in this 
scenario we have three independent namespaces: The default user namespace used during 
prototyping, and the two branches in production. 

Let’s summarize what we learned in this section in the context of an actual data science 
project. The project is developed continuously by multiple data scientists. They can generate 
hundreds of ideas on how to improve the project. However, we don't know which ideas work 
well without testing them in a realistic production environment. We visualized the process as 
an experiment funnel, depicted again in Figure 6.19. 
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Figure 6.19. Facilitating the experimentation funnel using @project 

Thanks to user namespaces, data scientists are able to prototype new versions and run them 
locally without having to fear of interfering with each other. Namespaces are enabled 
automatically to all Metaflow runs. Once they have identified the most promising ideas, they 
can deploy them to production as a custom --branch using @project. These custom 
branches can e.g. feed predictions to A/B experiments. Finally, as an experiment has proven 
its value, it can be promoted to become the new main production version, deployed with --
production. 

6.4 Summary 
• Using a centralized metadata server helps to track all executions and artifacts across 

all projects, users, and production deployments. 
• Leverage a highly available, scalable production scheduler like AWS Step Functions to 

execute workflows on a schedule without human supervision. 
• Use the @schedule decorator to make workflows run automatically on a predefined 

schedule. 
• Metaflow’s code packages encapsulate the user-defined code and supporting modules 

for cloud-based execution. 
• Use containers and the @conda decorator to manage 3rd party dependencies in 

production deployments. 
• User namespaces help isolate prototypes that users run on their local workstations, 

making sure that prototypes don’t interfere with each other. 
• Production deployments get a namespace of their own, isolated from prototypes. New 

users must obtain a production token to be able to deploy new versions to production 
which prevents accidental overwrites. 

• The @project decorator allows multiple parallel, isolated workflows to be deployed to 
production concurrently. 

• Use @project to create a unified namespace across multiple workflows. 
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Processing Data 

This chapter covers: 

• Accessing large-amounts of cloud-based data quickly. 
• Using Apache Arrow for efficient, in-memory data processing. 
• Leveraging SQL-based query engines to preprocess data for workflows.
• Encoding features for models at scale.

The past five chapters taught how to take data science projects from prototype to 
production: We have learned how to build workflows, how to use them to run 
computationally demanding tasks in the cloud, and how to deploy the workflows to 
production schedulers. Now that we have a crisp idea of the prototyping loop and interaction 
with production deployments, we can return to a fundamental question: How should the 
workflows consume and produce data? 

Interfacing with data is a key concern of all data science applications. Every application 
needs to find and read input data that is stored somewhere. Often, the application is 
required to write its outputs, e.g., fresh predictions, to the same system. Although there is a 
huge amount of variation between systems for managing data, in this context we use a 
common moniker, data warehouse, to refer to all of them. Given the foundational nature of 
data inputs and outputs, it feels appropriate to place the concern at the very bottom of the 
stack, as depicted in Figure 7.1. 

At the other end of the stack we have another key question of how the data scientist should 
explore, manipulate, and prepare data to be fed into models. This process is commonly 
called feature engineering. This chapter focuses on data both at the bottom as well as the 
top of the stack, although we are biased towards the lower-level concerns which are more 
clearly in the realm of generalized infrastructure. 
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Figure 7.1. The stack of effective data science infrastructure 

Notably, this chapter is not about building or setting up data warehouses, which is a hugely 
complex topic of its own covered by many other books. We assume that you have some kind 
of a data warehouse, that is, some way to store data, already in place. Depending on the 
size of your company, the nature of the data warehouse can vary widely as depicted in 
Figure 7.2. 

 
Figure 7.2. Various data infrastructures across companies from tiny to large 
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If you are just prototyping, you can get going by using local files, e.g. CSVs loaded using 
IncludeFile that was featured in Chapter 3. Any serious company regardless of its size 
probably wants to set up a proper database such as Postgres. A medium-size company might 
use multiple databases for different purposes, possibly accompanied by a federated query 
engine like Trino (aka Presto) which provides a unified way to query all data. 

A large company might have a cloud-based data lake with multiple query engines like Apache 
Flink for real-time data, Apache Iceberg for metadata management, and Apache Spark for 
general data processing. Don’t worry if these systems are not familiar to you - we will give a 
high-level overview of the modern data architectures in section 7.2.1. In all these cases, 
data scientists face the same key question: how to access data in their workflows. 

Besides having to integrate with different technical solutions, often the data science 
infrastructure needs to support different data modalities as well. The examples of this 
chapter mainly focus on structured data, i.e. relational or tabular data sources, which are still 
the most common data modality for business applications. In addition, the infrastructure 
may need to support applications dealing with unstructured data like text and images. In 
practice these days many real-world datasets are something in between, i.e. they are semi-
structured. They contain some structure, i.e. columns strictly adhering to a schema, and 
some unstructured fields, e.g. JSON or free-form text. 

This chapter focuses on data-related concerns that are common across data warehouses and 
data modalities, namely 

1. Performance: Given that data science applications tend to be data-intensive, i.e. they 
may need to ingest large amounts of data, loading data can easily become a 
bottleneck in workflows. Having to wait for potentially tens of minutes or longer for 
data can make the prototyping loop quite painful, which we want to avoid. 

We will focus on this question in section 7.1. 

2. Data selection: How to find and select subsets of data that are relevant for the task. 
SQL is the lingua franca of selecting and filtering data, so we need to find ways to 
interface with query engines like Spark that can execute SQL. These solutions can be 
often applied to semi-structured data too or for metadata referring to unstructured 
data. 

These topics are the theme of section 7.2. 

3. How to transform raw data to a format suitable for modeling, aka feature engineering 
and feature transformations. Once we have ingested a chunk of raw data, many 
concerns need to be addressed before the data can be input to models effectively. 

We will scratch the surface of this deep topic in section 7.3. 

These foundational concerns apply to all environments. This chapter gives you concrete 
building blocks that you can use to design data access patterns and maybe helper libraries of 
your own which apply to your particular environment. Alternatively, you may end up using 
some higher-level libraries and products, such as feature stores for feature engineering, that 
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abstract away many of these concerns. After learning the fundamentals, you will be able to 
evaluate and use such abstractions more effectively, as we will cover in section 7.3. 

Another orthogonal dimension of data access is how frequently the application needs to react 
to changes in data. Similar to earlier chapters, we focus on batch processing, i.e. applications 
that need to run, say, at most once in every fifteen minutes. The topic of streaming data is 
certainly relevant for many data science applications that need more frequent updates but 
the infrastructure required to do this is more complex and hence mostly out of scope for this 
book. As we will discuss in section 7.2, surprisingly many data science applications that 
involve real-time data can be still modelled as batch workflows. 

On top of all these dimensions we have organizational concerns: Who should be responsible 
for data used by data science applications and how are responsibilities divided between 
different roles, data engineers and data scientists in particular. While the exact answers are 
highly company-specific, we share some high-level ideas in section 7.2. 

We will start the chapter with a fundamental technical question: How to load data efficiently 
in workflows. The tools introduced in the next section give a solid foundation for the rest of 
the chapter. 

7.1 Foundations of Fast Data 
Alex developed a workflow that estimates the delivery time of cupcake orders. To train the 
estimator, Alex needs to ingest all historical cupcake orders from the company’s main data 
warehouse. Surprisingly, loading the data from the database takes longer than building the 
model itself! After looking into the problem, Bowie realized that machine learning workflows 
need a faster way to access data than the previous path that is used mainly by dashboards. 
The new fast data path boosted Alex’s productivity massively: It is now possible to train and 
test at least ten versions of the model daily instead of just two. 

 
When the author of this book did an informal survey amongst data scientists at Netflix, 
asking what’s the biggest pain point they face on a day-to-day basis, a majority responded: 
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Finding suitable data and accessing it in their data science applications. We will come back to 
the question of finding data in the next section. This section focuses on the seemingly simple 
question: How should you load a dataset from a data warehouse to your workflow? 

The question may seem quite tactical but it has far-reaching, strategic implications. For the 
sake of discussion, consider that you couldn’t load a dataset easily and quickly (or not at all) 
from a data warehouse to a separate workflow. By necessity, you would have to build models 
and other application logic inside the data warehouse system. 

In fact, this has been the traditional way of thinking about data warehouses: Bulk data is not 
supposed to be moved out. Instead, applications express their data processing needs e.g. in 
SQL, which the data warehouse executes, returning a tiny subset of data as results. While 
this approach makes sense for traditional business intelligence, obviously it is not a feasible 
idea to e.g. build machine learning models in SQL. Even if your data warehouse supports 
querying data with e.g. Python, the fundamental issue is that the approach tightly couples 
the compute layer, which we discussed in Chapter 4, with the data layer. This is problematic 
when workloads are very compute-intensive: No mainstream database has been designed to 
run, say, on an auto-scaling cluster of GPU-instances. 

In contrast, if it is feasible to extract bulk data from the warehouse efficiently, it becomes 
possible to decouple data and compute. This is great for data science applications which 
tend to be both data- and compute-hungry: As advocated in Chapter 4, you can choose the 
best compute layer for each job, and, most importantly, you can let data scientists to iterate 
and experiment freely without having to fear of crashing a shared database. A downside is 
that it becomes harder to control how data is used - we will return to this question in the 
next section. 

When considering pros and cons of the coupled vs. decoupled approach, it is good to 
remember that data science applications, machine learning in particular, behave differently 
than traditional analytics and business intelligence use cases. The difference is illustrated in 
Figure 7.3. 

 
Figure 7.3. Contrasting data flows between an analytics and ML applications 
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Traditional business analytics, say, a Tableau dashboard, typically generates a very complex 
SQL query which the data warehouse executes to return a small, carefully filtered result to 
the dashboard. In contrast, an ML application shows the opposite behavior: It presents a 
simple query to ingest e.g. a full table of data, “select * from table”, which it feeds into 
an ML model. 

Consequently, ML applications may hit two issues: First, the data warehouse may be 
surprisingly inefficient in executing simple queries that extract a lot of data, since they have 
been optimized for the opposite query pattern. Second, for the same reason, client libraries 
that are used to interface with the data warehouse are often rather inefficient at loading bulk 
data. 

While many real-world applications exhibit query patterns that lie somewhere in between the 
two extremes, in many applications loading data is the main performance bottleneck. The 
data scientist may need to wait for tens of minutes for the data load, which seriously hurts 
their productivity. Removing productivity bottlenecks like this is a key goal of effective data 
science infrastructure, so in the subsequent sections we will explore an alternative, 
extremely efficient way of accessing data. The approach works with many modern data 
warehouses and it allows you to decouple data from compute, as well as define a clear 
division of work between data scientists and data engineers. 

7.1.1 Loading data from S3 
If you ask a data scientist how they would prefer accessing a dataset, assuming their 
personal productivity is the only consideration, a typical answer is “a local file”. There are a 
number of reasons why local files excel at boosting productivity: 

1. They can be loaded very quickly. Loading data from a local file is faster than executing 
a SQL query. 

2. The dataset doesn’t change abruptly. This is a key to effective prototyping: It is 
impossible to conduct systematic experimentation and iterations if the data 
underneath changes unannounced. 

3. Ease of use: Loading data doesn’t require special clients, it doesn’t fail randomly or 
become slow unpredictably when your colleagues are performing their experiments, 
and local files can be used by practically all off-the-shelf libraries. 

Unfortunately, downsides of local files are many: They don’t work with production 
deployments, nor scaled-out experiments running in the cloud, and they need to be updated 
manually. Moreover, they make data warehouse administrators cringe as they fall outside 
the control of data security and governance policies. 

Using a cloud-based object store like AWS S3 can provide the best of the both worlds: 
Keeping data in the cloud makes it compatible with cloud-based compute, deployment, and 
data governance policies. With some effort, as demonstrated below, the user experience can 
be made nearly as seamless as accessing local files. In particular, many people are surprised 
about this result: 
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FACT: Loading data from a cloud-based object store like S3 can be faster than loading it from local files. 

To showcase S3-based data in action and to see if the above statement is really true, let’s 
create a simple flow, shown in Listing 7.1, to benchmark S3. The listing demonstrates a 
fundamental operation: Loading data from files to memory of a Python process, comparing 
the performance of loading data from local files vs. files in S3. 

For testing, we use a sample of data from Common Crawl (commoncrawl.org) which is a 
public dataset consisting of random web pages. Details of the dataset don’t matter. Notably, 
you can apply the lessons of this section equally well to unstructured data like images or 
videos or structured, tabular data. If you want, you can replace the dataset URL in 
Listing 7.1 with any other dataset that you can access in S3. 

Listing 7.1 S3 benchmark 

import os 
from metaflow import FlowSpec, step, Parameter, S3, profile, parallel_map 
 
URL = 's3://commoncrawl/crawl-data/CC-MAIN-2021-25/segments/1623488519735.70/wet/'    #A 
 
def load_s3(s3, num):    #B 
    files = list(s3.list_recursive([URL]))[:num]    #C 
    total_size = sum(f.size for f in files) / 1024**3 
    stats = {} 
    with profile('downloading', stats_dict=stats):    #D 
        loaded = s3.get_many([f.url for f in files])    #E 
 
    s3_gbps = (total_size * 8) / (stats['downloading'] / 1000.) 
    print("S3->EC2 throughput: %2.1f Gb/s" % s3_gbps) 
    return [obj.path for obj in loaded]    #F 
 
class S3BenchmarkFlow(FlowSpec): 
    local_dir = Parameter('local_dir', 
                          help='Read local files from this directory') 
 
    num = Parameter('num_files', 
                    help='maximum number of files to read', 
                    default=50) 
 
    @step 
    def start(self): 
        with S3() as s3:    #G 
            with profile('Loading and processing'): 
                if self.local_dir: 
                    files = [os.path.join(self.local_dir, f) 
                             for f in os.listdir(self.local_dir)][:self.num]    #H 
                else: 
                    files = load_s3(s3, self.num)    #H 
 
                print("Reading %d objects" % len(files)) 
                stats = {} 
                with profile('reading', stats_dict=stats): 
                    size = sum(parallel_map(lambda x: len(open(x, 'rb').read()), 
                                            files)) / 1024**3    #I 
 
                read_gbps = (size * 8) / (stats['reading'] / 1000.) 
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                print("Read %2.fGB. Throughput: %2.1f Gb/s" % (size, read_gbps)) 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    S3BenchmarkFlow() 

#A A public Common Crawl dataset available in S3 
#B A helper function that loads data from S3 
#C Pick the first num files in the given S3 directory 
#D Collect timing info about the loading operation in stats 
#E Load files from S3 to temporary local files 
#F Return paths to temporary files 
#G The S3-scope manages the lifetime of temporary files 
#H If a Parameter local_dir is specified, load files from a local directory, otherwise from S3 
#I Read local files in parallel 

Save the code to a file called s3benchmark.py. If you are running it on your laptop, you can 
start by downloading a small amount of data: 

# python s3benchmark.py run --num 10 

which downloads about 1GB of data and prints statistics about the S3 throughput achieved. 

The flow operates in two parts: First, if --local_dir is not specified, it calls the load_s3 
helper function to list available files at the given URL and choose the first num of them. After 
creating a list of files, it proceeds to download them in parallel using the get_many function 
of the Metaflow’s built-in S3 client, metaflow.S3, which we cover in more detail in section 
7.1.3. The function returns a list of paths to local temporary files that contain the 
downloaded data. The “with S3” context manager takes care of clearing the temporary files 
after the context exits. 

Second, the flow reads the contents of local files in memory. If --local_dir is specified, 
files are read from the given local directory that should contain a local copy of the files in S3. 
Otherwise the downloaded data is read. In either case, files are processed in parallel using 
parallel_map which is a convenience function provided by Metaflow to parallelize a function 
over multiple CPU cores. In this case, we simply count the number of bytes read and discard 
the file after reading. This benchmark only measures the time spent on loading data - we 
don’t need to process the data in any way. 

If you are curious to benchmark local disk performance using the --local_dir option, you 
can download files from S3 to a local directory as follows: 

# aws s3 cp --recursive s3://commoncrawl/crawl-data/CC-MAIN-2021-
25/segments/1623488519735.70/wet/ local_data 

Note that this is going to require 70GB of disk space. Once the files have been downloaded, 
you can run the flow as follows: 

# python s3benchmark.py run --num 10 --local_dir local_data 
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If you test the S3 downloading speed on your laptop, you end up mainly benchmarking the 
performance of your local network connection. A better option, as discussed in Chapter 2, is 
to use a cloud-based workstation which speeds up all cloud operations regardless of your 
local bandwidth. 

To get a better idea of realistic S3 performance, run the flow either on a cloud workstation or 
using a cloud-based compute layer like we discussed in Chapter 4. You can run it, for 
instance, using AWS Batch as follows: 

# python s3benchmark.py run --with batch:memory=16000 

When running on a large EC2 instance, you should see results like this: 

PROFILE: Loading and processing starting 
S3->EC2 throughput: 21.3 Gb/s 
Reading 100 objects 
Read 11GB. Throughput: 228.2 Gb/s 
PROFILE: Loading and processing completed in 5020ms 

NOTE: S3 buckets and data therein are physically located in a certain region. It is advisable to run compute 

in the same region where the bucket is located for maximum performance and to avoid having to pay for the 

data transfer. For instance, the commoncrawl bucket used in this example is located in the AWS region us-

east-1. 

Figure 7.4 shows the performance as a function of the --num option. 

 
Figure 7.4. Loading time from local files vs S3 as a function of the dataset size 

The black line shows the total execution time when loading data from S3 and the gray line 
when loading data from local files. When the dataset is small enough, here, less than 12GB 
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or so, it is slightly faster to use local files. For larger datasets, loading data from S3 is indeed 
faster! 

This result comes with an important caveat: The S3 performance is highly dependent on the 
size and type of the instance that executes the task. Figure 7.5 illustrates the effect. 

 
Figure 7.5. Loading data from S3 and from memory as a function of the instance size 

A very large instance like m5n.24xlarge that comes with 384GB of RAM and 48 CPU cores 
boasts massive throughput when loading data from S3: 20-30 gigabits per second, as shown 
by the gray bars. This is more than the local disk bandwidth on a recent Macbook laptop that 
can read up to 20Gb/s. Medium-size instances like c4.4xlarge show a fraction of the 
bandwidth, 1.5Gbps, although still much more than what is achievable over a typical office 
WiFi. A small instance like m4.large exhibits performance that’s much slower than a laptop. 

RECOMMENDATION: When dealing with data of non-trivial scale, it pays off to use a large instance type. 

To control costs, you can use a medium-size instance as a cloud workstation and run data-intensive steps on 

a compute layer like AWS Batch. 

FILE SIZE MATTERS 

If you try to reproduce S3 throughput figures with your own datasets but fail to see anything 
close to the above numbers, the issue may be file sizes. Looking up an object in S3 is a 
relatively slow operation which takes somewhere between 50ms-100ms. If you have many 
small files, a lot of time is spent on looking up files which reduces throughput significantly. 
An optimal file size for S3 is at least tens of megabytes or more, depending on the amount of 
data. 
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KEEPING DATA IN MEMORY WITH THE DISK CACHE 

To explain the black line in Figure 7.5, let’s dive deeper in the example. You may wonder if 
this benchmark makes any sense: The load_s3 function downloads data to local temporary 
files, which we then read in the start step. Hence, we seem to be comparing loading data 
from temporary local files vs. local files in a directory, which should be equally fast. 

The trick is that when loading data from S3, the data should stay in memory, transparently 
stored in an in-memory disk cache by the operating system, without ever hitting the local 
disk as long as the dataset is small enough to fit in memory. Figure 7.6 illustrates the logic. 

 
Figure 7.6. Loading data through the disk cache is fast compared to disk IO 

When the dataset size fits in memory, loading from S3 happens through the fast path 
depicted by the left arrow. When the dataset is larger than the available memory, some data 
spills on local disk, which makes loading data much slower. This is the reason why S3 can be 
faster than local disk: When you run the flow, e.g., with --with batch:memory=16000, the 
full 16GB of memory on the instance is dedicated for the task. In contrast, many processes 
are fighting over the memory on your laptop and as a result, it is often not feasible to keep 
all data in memory, at least when the dataset size grows as depicted by Figure 7.4. 

The black line in Figure 7.5 shows how quickly data is read from either disk cache or local 
disk to the process’ memory. The largest instance, m5n.24xlarge, keeps all data in the disk 
cache, so reading data is very fast, 228Gbit/s - the data is just copied between memory 
locations in parallel. In contrast, the small instance, m4.large, is too small to keep the data 
in memory, so data spills on disk and reading becomes relatively sluggish, just 0.4Gbit/s. 

RECOMMENDATION: Whenever feasible, choose @resources that allow you to keep all data in 

memory.  It makes all operations massively faster. 

Let’s summarize what we learned in this section: 

• It is beneficial to use S3 instead of local files: Data is easier to manage, it is readily 
available for tasks running in the cloud, and there can be only a minimal performance 
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penalty, or even a performance improvement. 
• We can load data very fast from S3 to the process’ memory, as long as we use a large 

enough instance. 
• Metaflow comes with a high-performance S3 client, metaflow.S3, which allows data to 

be loaded directly to memory without hitting the local disk. 

These points form a foundation that we will build upon in the coming sections. In the next 
section, we will take these learnings closer to the everyday life of a data scientist and explore 
how to load large dataframes and other tabular data in tasks efficiently. 

7.1.2 Working with tabular data 
In the previous section we were merely interested in moving raw bytes - the discussion 
applies to any data modalities from videos to natural language. In this section, we focus on a 
particular kind of data, namely structured or semi-structured data, which is often 
manipulated as dataframes. Data of this kind is extremely common in business data science, 
for instance, all relational databases hold data of this nature. 

Figure 7.7 shows an example of a tabular dataset containing employee information. The 
dataset has three columns, name, age, and role, and three rows, a row for each employee. 

 
Figure 7.7. Storing tabular data as CSV vs. Parquet format 

As depicted by Figure 7.7, we can store the dataset in different formats. Already in Chapter 3 
we talked about the CSV, Comma Separated Values, format, which is a simple text file 
containing a row of data in each line, columns separated commas. Alternatively, we can store 
the same data in the popular Parquet format which is a column-oriented storage format. 

In Parquet and other columnar formats, each column of data is stored independently. This 
approach has a few benefits: First, with structured data, each column has a specific type. In 
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this example, Name and Role are strings and Age is an integer. Each data type needs to be 
encoded and compressed in a specific way, so grouping data by column, i.e. by type, is 
beneficial. Parquet files store an explicit schema and other metadata in the data file itself. In 
contrast, CSV files work around the issue by ignoring the schema altogether - everything 
becomes a string, which is a major downside of CSV. 

Second, since each column is stored separately, it is possible to load only a subset of 
columns efficiently - imagine a query like “SELECT name, role FROM table”. Similarly, any 
operations that need to process a column, e.g. “SELECT AVG(age) FROM table”, can be 
processed very quickly as all relevant data is laid out contiguously in memory. Third, Parquet 
files are stored in a compressed binary format, so they take less space to store and they are 
faster to transfer than plain CSV files. 

READING PARQUET DATA IN MEMORY WITH APACHE ARROW 

A major benefit of CSV files is that Python comes with a built-in module, aptly named csv, to 
read them. To read Parquet files, we will need to use a separate open-source library called 
Apache Arrow. Besides being a Parquet file decoder, Arrow provides an efficient in-memory 
representation of data which allows us to process data efficiently as well - more examples of 
this later. 

Let’s compare CSV and Parquet in practice. For testing, we use public trip data from New 
York City’s Taxi Commission (www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page) which 
is already available as public Parquet files in S3. For our benchmark we use one month of 
data, which contains about 13 million rows, each representing a taxi trip. The dataset has 18 
columns providing information about the trip. 

The benchmark, shown in Listing 7.2, compares the time spent on loading data between CSV 
and two ways of loading Parquet using Arrow or Pandas. The code works as follows: 

• The start step loads a Parquet file containing taxi trips from a public S3 bucket and 
makes it available as a local file, taxi.parquet. It uses Pandas to convert the Parquet 
file to a CSV file, saving it to taxi.csv. We will use these two files to benchmark data 
loading in the subsequent steps. 

• After the start step, we split into three separate data loading steps, each of which 
benchmarks a different way to load the dataset. Each step saves the time spent to 
load data in the stats artifact. 

o The load_csv step uses Python’s built-in csv module to loop through all rows, 
reading from the CSV file. 

o The load_parquet step loads the dataset in memory using PyArrow. 
o The load_pandas step loads the dataset in memory using Pandas. 

• Finally, the join step prints out the timings measured by the previous steps. 
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Listing 7.2 Comparing data formats    

import os 
from metaflow import FlowSpec, step, conda_base, resources, S3, profile 
 
URL = 's3://ursa-labs-taxi-data/2014/12/data.parquet'    #A 
 
@conda_base(python='3.8.10', 
        libraries={'pyarrow': '5.0.0', 'pandas': '1.3.2'}) 
class ParquetBenchmarkFlow(FlowSpec): 
 
    @step 
    def start(self): 
        import pyarrow.parquet as pq 
        with S3() as s3: 
            res = s3.get(URL)    #B 
            table = pq.read_table(res.path)    #C 
            os.rename(res.path, 'taxi.parquet')    #D 
        table.to_pandas().to_csv('taxi.csv')    #E 
        self.stats = {}    #F 
        self.next(self.load_csv, self.load_parquet, self.load_pandas) 
 
    @step 
    def load_csv(self): 
        with profile('load_csv', stats_dict=self.stats):    #G 
            import csv 
            with open('taxi.csv') as csvfile: 
                for row in csv.reader(csvfile):    #H 
                    pass 
        self.next(self.join) 
 
    @step 
    def load_parquet(self): 
        with profile('load_parquet', stats_dict=self.stats): 
            import pyarrow.parquet as pq 
            table = pq.read_table('taxi.parquet')    #I 
        self.next(self.join) 
 
    @step 
    def load_pandas(self): 
        with profile('load_pandas', stats_dict=self.stats): 
            import pandas as pd 
            df = pd.read_parquet('taxi.parquet')    #J 
        self.next(self.join) 
 
    @step 
    def join(self, inputs): 
        for inp in inputs: 
            print(list(inp.stats.items())[0])    #K 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    ParquetBenchmarkFlow() 

#A One month of Taxi data, stored as a Parquet file 
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#B Download the Parquet file from S3 
#C Load the Parquet file in memory using Arrow 
#D Move the Parquet file to a persistent location, so we can load it later 
#E Write the dataset in a CSV file, so we can load it later 
#F Store profiling statistics in this dictionary 
#G Store timing info in the dictionary 
#H Read the CSV file using the built-in csv module 
#I Load the Parquet file using Arrow. This time we time the operation 
#J Load the Parquet file using Pandas 
#K Print timing statistics from each branch  

Save the code in parquet_benchmark.py. For benchmarking purposes this flow stores a 
Parquet file and a CSV file as local files, so this flow must be run on a laptop or a cloud 
workstation so all steps can access the files. Run the flow as follows: 

# python parquet_benchmark.py --environment=conda run --max-workers 1 

We use --max-workers 1 to force sequential instead of parallel execution of branches, which 
ensures more unbiased timings. Executing the start step takes a while, as it downloads a 
319MB compressed Parquet file from S3 and writes it to a local CSV file which expands to 
1.6GB. 

TIP: When iterating on a flow like ParquetBenchmarkFlow that has an expensive step in the beginning, 

such as start in this case, remember the resume command: Instead of using “run” which takes a while, 

you can e.g.  “resume load_csv” and keep iterating on later steps while skipping the slow beginning. 

You should see an output like this which shows the timings as milliseconds: 

(‘load_csv’, 19560) 
(‘load_pandas’, 1853) 
(‘load_parquet’, 973) 

The results are also visualized in Figure 7.8. 

 
Figure 7.8. Comparing data loading times between Arrow, Pandas, and CSV 
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The load_parquet step is by far the fastest, taking less than a second to load 13 millions 
rows of data! The load_pandas step takes twice as much time to read the Parquet file into a 
Pandas dataframe. We cheated a bit with the load_csv step, which takes almost 20 seconds, 
as it doesn’t keep the data in memory like the other steps do - it simply iterates over the 
rows once. If we keep the data in memory - you can try it with list(csv.reader(csvfile)) 
- the step takes 70 seconds and consumes nearly 20GB of memory. 

RECOMMENDATION: Whenever feasible, use the Parquet format to store and transfer tabular data 

instead of CSV files. 

Hopefully these results convince you that using Parquet instead of CSV is almost always a 
win - the main exception being sharing small amounts of data with other systems and people 
who may not be able to handle Parquet. Also Parquet files aren’t as easy to inspect using 
standard command line tools as simple textual CSV files, although tools exist that allow you 
to dump the contents of a Parquet file to a text file. 

Now that we know how to load tabular data stored as Parquet files, the next step is to 
consider the components on top of it. 

7.1.3 The in-memory data stack 
Using Parquet instead of CSV is a no-brainer but how should one choose between Arrow and 
Pandas? Luckily, you don’t have to choose: the tools are often quite complementary. 
Figure 7.9 clarifies how the libraries forming the in-memory data stack fit together. 

 
Figure 7.9. A modern stack for handling data in-memory 

Parquet is a data storage format: It is a way to store and transfer data more efficiently than 
using CSV files. For instance, you can load Parquet files from S3 to your workflows very 
quickly using the metafow.S3 library, as we have seen earlier. To be able to use the data, it 
needs to be loaded and decoded from the Parquet files, which is the job of the Arrow library. 
Arrow supports multiple languages - its Python binding is called pyarrow. Arrow decodes 
data from Parquet files into an efficient in-memory representation of data, which can be used 
either directly or it can be used through another library, like Pandas. 
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This is a superpower of Arrow: Its in-memory representation has been designed in such a 
way that it can be leveraged by other data processing libraries like Pandas or NumPy so that 
they don’t have to make another copy of the data, which is a huge win when dealing with 
large datasets. This means that your user code, e.g. a model training step using an ML 
library, can read data managed by Arrow, possibly through Pandas in a very space and time-
efficient manner. Notably, all data management is performed by efficient low-level code, not 
by Python directly, which makes it possible to develop extremely high-performance code in 
Python. 

Using Arrow to load Parquet files always makes sense. Whether to use Pandas or NumPy or 
use the PyArrow library directly depends on the exact use case. A major benefit of Pandas is 
that it provides many easy-to-use primitives for data manipulation, so if your task needs 
such functionality, converting from Arrow to Pandas or using pd.read_parquet is a good 
option. 

A major downside of Pandas is that it can be quite memory-hungry, as we will see below, 
and it is not as performant as pure-Arrow operations. Hence if you use an ML library that can 
accept Arrow data or Numpy arrays directly, avoiding conversion to Pandas can save a lot of 
time and memory. We will see a practical example of this in section 7.3. 

WHY METAFLOW.S3 

If you have used Arrow or Pandas previously, you may know that they support loading data 
from s3:// URLs directly. Why does Figure 7.9 mention metaflow.S3 then? Currently, 
loading datasets consisting of multiple files can be much faster with metaflow.S3 than using 
the S3 interface built in Arrow and Pandas. The reason for this is simple: metaflow.S3 
aggressively parallelizes downloading over multiple network connections, which is required 
for maximum throughput. 

It is likely that the libraries will implement a similar approach in the future. Once this 
happens, you can replace the metaflow.S3 part in the diagram and code examples with a 
library-native approach. Everything else in the picture remains the same. 

PROFILING MEMORY CONSUMPTION 

When dealing with large amounts of in-memory data, often memory consumption is a bigger 
concern than execution time. In the previous examples, we have used the “with profile“ 
context manager to time various operations, but what if we wanted to measure memory 
consumption similarly? 

Measuring how memory consumption evolves over time is not as straightforward as looking 
at a timer. However, by leveraging an off-the-shelf library called memory_profiler, we can 
create a utility function, in fact, a custom decorator that you can use to measure peak 
memory consumption of any Metaflow step, as shown in Listing 7.3. 
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Listing 7.3 Memory profiling decorator  

from functools import wraps 
 
def profile_memory(mf_step):    #A 
    @wraps(mf_step)    #B 
    def func(self): 
        from memory_profiler import memory_usage    #C 
        self.mem_usage = memory_usage((mf_step, (self,), {}), 
                                      max_iterations=1, 
                                      max_usage=True, 
                                      interval=0.2)    #D 
    return func 

#A Define a Python decorator - a function that returns a function 
#B The @wraps decorator helps to make a well-behaving decorator 
#C Use the memory_profile library to measure memory consumption 
#D Store the peak memory usage in an artifact, mem_usage 

If you haven’t created decorators in Python before, this example may look a bit strange: It 
defines a function, profile_memory, which takes an argument mf_step that is the Metaflow 
step being decorated. It wraps the step in a new function, func, which calls the library 
memory_profiler to execute the step and measure it’s memory_usage in the background. 
The profiler returns the peak memory usage, which is assigned to an artifact, 
self.mem_usage. 

Save the code to a file, metaflow_memory.py. Now, in any flow you can import the new 
decorator by writing “from metaflow_memory import profile_memory” at the top of the 
file. You must also make sure that the memory_profiler library is available, which you can 
do by adding 'memory_profiler': '0.58.0' to the libraries dictionary in @conda_base. 

Now, you can decorate any step to be profiled with @profile_memory. For instance, you can 
enhance Listing 7.3 by writing 

  
    @profile_memory 
    @step 
    def load_csv(self): 
       ... 
                    

Add the decorator to every branch. To print out the memory consumption, you can use the 
following join step: 

   @step 
    def join(self, inputs): 
        for inp in inputs: 
            print(list(inp.stats.items())[0], inp.mem_usage) 
        self.next(self.end) 

To get a realistic read of the memory consumption of CSV in the load_csv step, you should 
keep all rows in memory by using list(csv.reader(csvfile)) instead of the for-loop that 
discards rows. Note that this will require a workstation with more than 16GB of RAM. 
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You can run parquet_benchmark.py as usual. In addition to timings, you will see peak 
memory consumption printed out, which is illustrated in Figure 7.10. 

 
Figure 7.10. Comparing memory overhead between Arrow, Pandas, and CSV 

As expected, keeping all CSV data in memory as memory-inefficient Python objects is very 
costly - the load_csv step consumes nearly 17GB of RAM which is over 10x more than 
Arrow’s efficient memory representation of the same data. Pandas consumes a gigabyte 
more than Arrow, as it needs to maintain a Python-friendly representation of some objects, 
strings in particular. 

RECOMMENDATION: If memory consumption is a concern, avoid storing individual rows  as Python 

objects. Converting to Pandas can be costly as well. The most efficient option is to use Arrow and Numpy, if 

possible. 

This far, we have developed building blocks that go from S3 to an efficient in-memory 
representation of data. Combined with high-memory instances (think 
@resources(memory=256000)), you can handle massive datasets efficiently in a single task. 
However, what if your dataset is larger than what can be handled on any reasonable 
instance? Or, what if a suitable dataset doesn’t exist but it must be created by filtering and 
joining multiple tables together? In cases like this, it is best to rely on the rest of data 
infrastructure, battle-hardened query engines in particular, to create suitable datasets for 
data science workflows from arbitrary amounts of raw data. 

7.2 Interfacing with Data Infrastructure 
Alex’s delivery-time estimator turns out to be a success. As a result, the product team 
requests Alex to build more fine-grained models for specific product categories. This requires 
more data preprocessing: Alex needs to extract right subsets of data for each category as 
well as experiment with various combinations of columns that produce the best estimates for 
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each category. Bowie suggests that Alex can do all the data preprocessing in SQL since 
databases should be good at crunching data. Alex counters the idea by pointing out that it is 
much faster to iterate on models and their input data using Python. Finally, they reach a 
happy compromise: Alex will use SQL to extract a suitable dataset and Python to define 
inputs for the model. 

 
Data science workflows don’t exist in a vacuum. Most companies have existing data 
infrastructure that has been set up to support various use cases from analytics to product 
features. It is beneficial that all applications rely on a consistent set of data, managed by 
centralized data infrastructure. Data science and machine learning are not an exception. 

While data science workflows rely on the same input data, the same facts as discussed in 
section 7.3, the way how workflows access and use data is often different from other 
applications: First, they tend to access much larger extracts of data - tens or hundreds of 
gigabytes - to, say, train a model, whereas a dashboard might show only a few kilobytes of 
carefully selected data at a time. Second, data science workflows tend to be much more 
compute-intensive than other applications, necessitating a separate compute layer as 
discussed in Chapter 4. 

This section shows how you can integrate data science workflows to existing data 
infrastructure by leveraging techniques we learned in the previous section. Besides the 
technical concern of moving data around, we touch on an organizational question of how 
work can be divided between data engineers, who mainly work on the data infrastructure, 
and ML engineers and data scientists, who work on the data science infrastructure.  

7.2.1 Modern data infrastructure 
This book is about data science infrastructure, namely infrastructure required to prototype 
and deploy data-intensive applications that leverage optimization, or training, techniques of 
various kinds to build models to serve a diverse set of use cases. At many companies, the 
data science infrastructure has a sibling stack: the data infrastructure stack. 
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Since both the stacks deal with data, and often both use DAGs to express workflows that 
transform input data to output data, one might wonder if there’s actually any difference 
between the two stacks: Couldn’t we just use the data infrastructure for data science too? As 
this book argues, the fact that data scientists need to build models, in contrast to 
transforming data from one representation to another, makes a qualitative difference that 
justifies a parallel stack. Model-building requires special libraries, typically more code, and 
definitely more computation than data engineering. However, it is beneficial to keep the two 
stacks closely aligned to avoid redundant solutions and unnecessary operational overhead. 

To better understand how to integrate the stacks, let’s start by considering components of 
modern data infrastructure as illustrated in Figure 7.11. The figure is structured so that the 
most foundational components are at the center and more advanced, optional, components 
at the outer layers: 

 
Figure 7.11. Components of the modern data infrastructure 

1. Data - At the very core, you have the data asset itself. This diagram doesn’t illustrate 
how the data is acquired, which is a complex topic of its own, but we assume that you 
have some data that is stored, say, as CSV files, Parquet files, or as tables in a 
database. 

2. Durable storage - While at the minimum you can store data anywhere, say, on a 
USB thumb drive, you want to use a more durable data storage system like AWS S3 or 
a replicated database for data that shouldn’t disappear abruptly. The pattern of 
centrally storing data (e.g. as Parquet files) on a generic storage system (e.g. S3) 
where they can be accessed by different higher-level systems is called a data lake. 
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Besides storing data as a random collection of files, it is common to add a layer of 
metadata, such as Apache Hive or Iceberg, to facilitate access to data through query 
engines. 

3. Query engine - Durable storage is useful for data archival but for live applications it 
is useful to have a system that allows subsets of data to be selected, filtered, and 
joined together. A query engine is a system that takes a query, such as a SQL 
statement, and returns a corresponding snapshot of data. 

Traditional databases, such as Postgres, and data warehouses, like Teradata, couple 
the first three layers tightly together, whereas newer systems like Trino (formerly 
Presto) or Apache Spark are query engines that are more loosely coupled with the 
underlying storage system. For streaming data, systems like Apache Druid or Pinot 
can be used. 

4. Data loading & transformations - Extracting, Transforming, and Loading (ETL) data 
is a core activity of data engineering, that is, cleansing and processing data to ensure 
correctness and adherence to a predefined schema. Traditionally, data was 
transformed before it was loaded to a data warehouse but newer systems, like 
Snowflake or Spark, support the Extract-Load-Transform (ELT) paradigm where raw 
data is loaded to the system first, and then transformed and refined as blessed 
datasets. 

Nowadays, tools like DBT (getdbt.com) are available to make it easier to express and 
manage data transformations. Data quality can be ensured using tools such as Great 
Expectations (greatexpectations.io). 

5. Workflow orchestrator - ETL pipelines are often expressed as DAGs, similar to data 
science workflows we have discussed earlier in this book. Correspondingly, these 
DAGs need to be executed by a workflow orchestrator like AWS Step Functions or 
Apache Airflow, or Apache Flink for streaming data. 

From a workflow orchestrator’s point of view, there is no difference between a data 
science workflow and a data workflow. In fact, it is often beneficial to use one 
centralized orchestrator to orchestrate all workflows. 

6. Data management - As the volume, variety, and demands for validity of data 
increases, a yet another layer of data management components is often required. 
Data catalogues, such as Amundsen by AirBnb, can make it easier to discover and 
organize datasets. Data governance systems can be used to enforce security, data 
lifetime, audits and lineage, and data access policies. Data monitoring systems help to 
observe the overall state of all data systems, data quality, and ETL pipelines. 

It makes sense to start building the data infrastructure from the core outwards. For instance, 
a grad student might only care about a dataset, stored in a CSV file on their laptop. A startup 
benefits from durable storage and a basic query engine, like AWS Athena that’s featured in 
the next section. An established company with dedicated data engineers needs a solid setup 
for ETL pipelines as well. As the company grows to become a large multinational enterprise, 
they will add a robust set of data management tools. 
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Correspondingly, integrations between data- and data science infrastructure grow over time. 
Figure 7.12 highlights the relationships. The layers that operate independently from data 
infrastructure are depicted with dotted lines. The dotted-line layers highlight what makes 
data science special: Compute-intensive models that necessitate a compute layer of their 
own, architected with code and libraries that are specific to data science.  

 

Figure 7.12. Interfacing the data science stack with data infrastructure 

In contrast, the other layers often benefit from interfacing with data infrastructure: 

1. Data warehouse - In the previous section, we learned effective patterns for 
interacting with raw data, stored as Parquet files, and a durable storage system, S3. 
In the next subsection, we will learn how to interface with a query engine. 

2. Job scheduler - The workflow orchestration systems we covered in Chapter 2 work 
equally well for data pipeline DAGs as well as data science DAGs. Since these DAGs 
are often connected - for instance, you may want to start a model training workflow 
whenever an upstream data updates - it is beneficial to execute them on the same 
system. For instance, you can use AWS Step Functions to schedule both data science 
as well as data workflows. 

3. Versioning - Assuming your data catalogue supports versioning of datasets, it can be 
beneficial to maintain data lineage all the way from upstream datasets to models built 
using the data. For instance, you can achieve this by storing a data version identifier, 
pointing to the data catalogue, as a Metaflow artifact. 
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4. Model operations - Changes in data are a common cause for failures in data science 
workflows. Besides monitoring models and workflows, it can be beneficial to be able to 
monitor source data as well. 

5. Feature engineering - As we will discuss in section 7.3, when designing new 
features for a model, it is convenient to know what data is available, which is where a 
data catalogue can come in handy. Some data catalogues can double as feature stores 
as well. 

Concretely, the integrations can take the form of Python libraries which encode the 
normative access patterns to data. Many modern data tools and services come with Python 
client libraries, such as AWS Data Wrangler featured in the next section, which can be used 
for this purpose. Similarly to data infrastructure in general, there is no need to implement all 
components and integrations on the day one. You can add integrations over time as your 
needs grow. 

DIVIDING WORK BETWEEN DATA SCIENTISTS AND DATA ENGINEERS 

The larger the company, the longer is the path that a data point takes from acquisition to a 
model. As the volume, variety, and demands of validity for data grow, it is not reasonable to 
ask one person to take care of all of it. Many companies address the issue by hiring 
dedicated data engineers, who focus on all-things-data, and data scientists who focus on 
modeling. 

However, the boundary between data engineers and data scientists is not totally clear. For 
instance, if there are three tables that contain information that a model needs, who is 
responsible for creating a joined table or a view that can be fed into a data science workflow? 
From the technical point of view, the data engineer is an expert in developing even complex 
SQL statements and optimizing joins, so maybe they should do it. On the other hand, the 
data scientist knows the model and its needs most accurately. Also, if the data scientist 
wants to iterate on the model and feature engineering, they shouldn’t have to bug the data 
engineer every time they need to make even a small change in the dataset. 

The right answer depends on the exact needs of the organization, resourcing, and the skill 
set of data engineers and data scientists involved. Figure 7.13 suggests one proven way of 
dividing work, which demarcates responsibilities quite clearly between the two roles. 

 
Figure 7.13. Defining an interface between the data engineer and the data scientist 
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The Data Engineer is responsible for data acquisition, i.e. gathering raw data, data quality, 
and any data transformations that are needed to make the data available as widely 
consumable, authoritative, carefully curated datasets. In the case of structured data, the 
datasets are often tables with a fixed, stable schema. Notably, these upstream datasets 
should focus on facts, i.e. data that corresponds as closely as possible to directly observable 
raw data, leaving interpretations of data to downstream projects. 

The organization shouldn’t underestimate the demands of this role nor undervalue it: This 
role is directly exposed to the chaos of the real-world through raw data, so they play a 
critical role in insulating the rest of the organization from it. Correspondingly, the validity of 
all downstream projects depends on the quality of upstream data. 

The Data Scientist focuses on building, deploying, and operating data science applications. 
They are intimately familiar with the specific needs of each project. They are responsible for 
creating project-specific tables based on the upstream tables. Since they are responsible for 
creating these tables, they can iterate on them as often as needed independently. 

The requirements for validity and stability can be looser for project-specific tables, depending 
on the needs of each project, as these tables are tightly coupled with a specific workflow that 
is also managed by the same data scientist or a small team of scientists. When dealing with 
large datasets, it is also beneficial that the data scientist can affect the layout and 
partitioning of the table, which can have massive performance implications when it comes to 
ingesting the table to the workflow, as discussed in the previous section. 

Crucially, this arrangement works only if the data infrastructure, query engine in particular, 
is robust enough so it can manage suboptimal queries. We can’t assume that every data 
scientist is also a world-class data engineer but it is still convenient to allow them to execute 
and schedule queries independently. Historically, many data warehouses broke too easily 
under suboptimal queries, so it wouldn’t have been feasible to let non-experts to run 
arbitrary queries. The modern data infrastructure should be able to isolate queries so that 
this isn’t a problem anymore. 

Details of data engineering are out of scope of this book. However, questions pertaining to 
the work of a data scientist are in scope, so in the next section we will investigate how one 
can author project-specific ETL, interfacing with a query engine, as a part of data science 
workflow. 

7.2.2 Preparing datasets in SQL 
In this section we will learn how to use a query engine such as Trino, Apache Spark, or a 
data warehouse like Redshift or Snowflake to prepare datasets that can be efficiently loaded 
in a data science workflow using patterns we learned in the previous section. We will 
demonstrate the concept, illustrated in Figure 7.14, using a managed cloud-based query 
engine, AWS Athena, but you can use the same approach with other systems too. 
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Figure 7.14. Using a query engine with an S3-based data lake 

First, we will need to load data files to S3 and register them as a table with a suitable 
schema, stored in table metadata. Athena uses the popular Apache Hive format for its 
metadata. 

After this, we can start querying the table. We will create a workflow that sends a SQL query 
to Athena, selecting a subset of the original fact table and writing the results as a new table. 
This type of query is called Create Table as Select (CTAS). CTAS queries work well for our 
needs, as they make it possible to download results from S3 using the fast data patterns we 
learned in the previous section. 

We will use an open-source library called AWS Data Wrangler 
(https://github.com/awslabs/aws-data-wrangler) to interface with Athena. AWS Data 
Wrangler makes it easy to read and write data from various databases and data warehouses 
that AWS provides. However, it is not hard to adapt the examples to use other client libraries 
which provide similar functionality. 

If you don’t want to test a query engine at this moment, you can skip this subsection and 
move on to the next one. In the next subsection we will see how we can post-process data in 
a workflow. 

SETTING UP A TABLE ON AWS ATHENA 

AWS Athena is a serverless query engine, based on Trino, requiring no upfront setup. Just 
make sure that your IAM user or Batch role (METAFLOW_ECS_S3_ACCESS_IAM_ROLE in the 
Metaflow config) has a policy called  AmazonAthenaFullAccess attached to it which allows 
Athena queries to be executed. Also, make sure the AWS region is set in your configuration, 
e.g. by setting an environment variable AWS_DEFAULT_REGION=us-east-1. 

As a test dataset, we will use a subset of NYC Taxi Trip data, which we first used in 
Listing 7.2. We will initialize a table with a year worth of data, some 160M rows, partitioning 
the table by month. In this case, partitioning simply organizes files as directories, allowing 
queries that read only a subset of months finish much faster, as the query engine can skip 
whole directories of files. Partitioning requires a certain naming scheme, directories prefixed 
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with month=, which is why we copy files from their original location to a new S3 location that 
follows the desired naming scheme. 

The desired path structure looks like this: 

s3://my-metaflow-bucket/metaflow/data/TaxiDataLoader/12/nyc_taxi/month=11/file.parquet 

The prefix until /nyc_taxi/ will look different in your case as it depends on your Metaflow 
config. The key part is the suffix after nyc_taxi, in particular month=11, which is used for 
partitioning. 

To create a table, it needs a predefined schema. We will create a schema specification by 
introspecting schema in the Parquet files. The table is registered with a data catalogue 
service called AWS Glue which is tightly integrated with Athena. Listing 7.4 packs all these 
actions, downloading and uploading data in a desired hierarchy, schema definition, and table 
creation in a single Metaflow workflow. 

Here’s how the code works: 

• The start step takes care of two things: 

o It copies Parquet files to a partitioned directory hierarchy in S3. This requires 
creation of new path names, which is accomplished with the utility function 
make_key. Note that by initializing the S3 client with S3(run=self), Metaflow 
chooses a suitable S3 root for the files which is versioned with the run ID, allowing 
us to test different versions of the code safely without having to fear overwriting 
past results. The root path of the resulting hierarchy is stored in an artifact called 
s3_prefix.  

o It inspects the schema of the Parquet files. Since we assume that all files have the 
same schema, it suffices to look at the schema of the first file. The schema of the 
Parquet files uses slightly different names than the Hive format, which AWS 
Athena uses, so we rename the fields based on the TYPES mapping using the 
hive_field utility function. The resulting schema is stored in an artifact, schema. 

• Equipped with suitably laid out Parquet files and a schema, we can set up a table in 
the end step. As an initialization step, we create a database in AWS Glue, called 
dsinfra_test by default. The call will raise an exception if the database already exists, 
which we can safely ignore. After this, we can create a bucket for Athena to store its 
results and register a new table. The repair_table call makes sure that the newly 
created partitions are included in the table. 

After these steps, the table is ready for querying! 
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Listing 7.4 Loading Taxi data in AWS Athena  

from metaflow import FlowSpec, Parameter, step, conda, profile, S3 
 
GLUE_DB = 'dsinfra_test'    #A 
URL = 's3://ursa-labs-taxi-data/2014/'    #B 
 
TYPES = {'timestamp[us]': 'bigint', 'int8': 'tinyint'}    #C 
 
class TaxiDataLoader(FlowSpec): 
 
    table = Parameter('table',    #D 
                      help='Table name', 
                      default='nyc_taxi') 
 
    @conda(python='3.8.10', libraries={'pyarrow': '5.0.0'}) 
    @step 
    def start(self): 
        import pyarrow.parquet as pq 
         
        def make_key(obj):    #E 
            key = '%s/month=%s/%s' % tuple([self.table] + obj.key.split('/')) 
            return key, obj.path 
 
        def hive_field(f):    #F 
            return f.name, TYPES.get(str(f.type), str(f.type))  
 
        with S3() as s3down: 
            with profile('Dowloading data'): 
                loaded = list(map(make_key, s3down.get_recursive([URL])))    #G 
            table = pq.read_table(loaded[0][1])    #H 
            self.schema = dict(map(hive_field, table.schema))    #H 
            with S3(run=self) as s3up:    #I 
                with profile('Uploading data'): 
                    uploaded = s3up.put_files(loaded)    #I 
                key, url = uploaded[0] 
                self.s3_prefix = url[:-(len(key) - len(self.table))]    #J 
        self.next(self.end) 
 
    @conda(python='3.8.10', libraries={'awswrangler': '1.10.1'}) 
    @step 
    def end(self): 
        import awswrangler as wr 
        try: 
            wr.catalog.create_database(name=GLUE_DB)    #K 
        except: 
            pass 
        wr.athena.create_athena_bucket()    #L 
        with profile('Creating table'): 
            wr.catalog.create_parquet_table(database=GLUE_DB, 
                                            table=self.table, 
                                            path=self.s3_prefix, 
                                            columns_types=self.schema, 
                                            partitions_types={'month': 'int'}, 
                                            mode='overwrite')    #M 
            wr.athena.repair_table(self.table, database=GLUE_DB)    #N 
 
if __name__ == '__main__': 
    TaxiDataLoader() 
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#A Database name - you can choose any name 
#B NYC Taxi Data at a public bucket 
#C Map some types in Parquet schema to Hive format used by Glue 
#D Define the table name optionally 
#E S3 object key (path) that conforms with our partitioning schema 
#F Map Parquet types to Hive types, used by Glue 
#G Download data and generate new keys 
#H Introspect schema from the first Parquet file and map to Hive 
#I Upload data to a Metaflow run-specific location 
#J Save the new S3 location in an artifact 
#K Create a new database in Glue. Ignore failures caused by database already existing 
#L Initialize a bucket for CTAS results 
#M Register a new table with the new location and schema 
#N Request Athena to discover newly added partitions 

Save the code in taxi_loader.py. Running the flow will upload and download about 4.2GB 
of data, so it is advisable to run it on Batch or on a cloud workstation. You can run the flow 
as usual: 

# python taxi_loader.py --environment=conda run 

On a large cloud workstation, the flow should take less than 30 seconds to execute. 

VERSIONED DATA WITH METAFLOW.S3 

Listing 7.4 uploads data to S3 without specifying a bucket or an explicit S3 URL. This is 
possible, since the S3 client was initialized as S3(run=self) which tells Metaflow to refer to 
a run-specific location by default. Metaflow creates an S3 URL based on its datastore 
location, prefixing keys with a run ID. 

This mode is useful when storing data in S3 that needs to be accessible by other systems 
(data that is internal to workflows can be stored as artifacts). As data is stored relative to the 
run ID, any data you upload is automatically versioned, making sure that each run writes an 
independent version or copy of data without accidentally overwriting unrelated results. 
Afterwards, if you need to track what data was produced by a run, you can find the data 
based on the run ID, allowing data lineage to be maintained. 

After the run has completed successfully, you can open the Athena console and confirm that 
a new table, nyc_taxi, is discoverable under the database dsinfra_test. The console 
includes a convenient query editor that allows you to query any table in SQL. For instance, 
you can see a small preview of data by executing “SELECT * FROM nyc_taxi LIMIT 10”. 
Figure 7.15 shows what the console should look like. 
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Figure 7.15. Querying Taxi data on the AWS Athena console 

If you can see the table and its columns in the console, and the test query returns rows with 
values, the table is ready for use! Next, we will create a flow that executes CTAS queries 
against the table which allows us to create arbitrary subsets of data to be consumed by 
workflows. 

RUNNING CTAS QUERIES 

How should a data scientist execute project-specific SQL queries? One option is to use tools 
provided by data infrastructure, following best practices used by data engineers. A downside 
of this approach is that the query is decoupled from the workflow that relies on it. A better 
approach might be to execute the query as a part of the workflow, as demonstrated below. 

You could embed SQL statements as strings in your Python code but to benefit from proper 
syntax highlighting and checking in IDEs, and to make the code more readable overall, we 
can store them as separate files. To test the idea, let’s create a query that selects a subset of 
the newly created nyc_taxi table. 

Listing 7.5 shows a SQL statement that selects taxi rides that start during business hours 
between 9am and 5pm. 

Listing 7.5 SQL query to extract data for business hours   

SELECT * FROM nyc_taxi 
WHERE hour(from_unixtime(pickup_at / 1000)) BETWEEN 9 AND 17 

Save this SQL statement in a new subdirectory, sql, in a file sql/taxi_etl.sql. If you 
wonder about the time logic, “pickup_at / 1000” is required since timestamps in the 
dataset are expressed as milliseconds but from_unixtime expects seconds. 

Now we can write a flow that executes the query, shown in Listing 7.6. 
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Listing 7.6 A flow with parameters  

from metaflow import FlowSpec, project, profile, S3, step, current, conda 
 
GLUE_DB = 'dsinfra_test' 
 
@project(name='nyc_taxi')    #A 
class TaxiETLFlow(FlowSpec): 
 
    def athena_ctas(self, sql): 
        import awswrangler as wr 
        table = 'mf_ctas_%s' % current.pathspec.replace('/', '_')    #B 
        self.ctas = "CREATE TABLE %s AS %s" % (table, sql)    #C 
        with profile('Running query'): 
            query = wr.athena.start_query_execution(self.ctas, 
                                                    database=GLUE_DB)    #D 
            output = wr.athena.wait_query(query)    #E 
            loc = output['ResultConfiguration']['OutputLocation'] 
            with S3() as s3: 
                return [obj.url for obj in s3.list_recursive([loc + '/'])]    #F 
 
    @conda(python='3.8.10', libraries={'awswrangler': '1.10.1'}) 
    @step 
    def start(self): 
        with open('sql/taxi_etl.sql') as f: 
            self.paths = self.athena_ctas(f.read())    #G 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    TaxiETLFlow() 

#A Attach the flow to a project. This will come in handy in the next section. 
#B Create a result table name based on the ID of the current task 
#C Format a CTAS SQL query and store it as an artifact 
#D Submit the query to Athena 
#E Wait for the query to complete 
#F List all Parquet files in the result set 
#G Format and submit a query, store URLs of resulting Parquet files 

TaxiETLFlow is a general-purpose flow that implements the pattern depicted in the 
beginning of this section in Figure 7.14. It reads an arbitrary SELECT statement from a file, 
sql/taxi_etl.sql, converts it into a CTAS query by prefixing it with “CREATE TABLE”, 
submits the query, waits for it to finish, and stores paths to resulting Parquet files as an 
artifact, so they can be easily consumed by other downstream flows, an example of which we 
will see in the next section. 

TIP: You can use the current object to introspect the currently executing run, as shown in Listing 7.6. It 

can come in handy, if you want to know the current run ID, task ID, or the user who is executing the run. 
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Save the code to taxi_etl.py. As the flow needs an extra SQL file, we use the --package-
suffixes option, discussed in the previous chapter, to include all .sql files in the code 
package. Run the flow as follows: 

# python taxi_etl.py --environment=conda --package-suffixes .sql run 

After the run has completed, you can log in to the Athena console and click the History tab to 
confirm the status of the query, as shown in Figure 7.16. 

 
Figure 7.16. Query status on the AWS Athena console 

As the run and task IDs are embedded in the table name, e.g. 
mf_ctas_TaxiETLFlow_1631494834745839_start_1 in Figure 7.16, it is easy to draw the 
connection between queries and runs. Vice versa, by storing the query to be executed as an 
artifact, self.ctas, and its results in another artifact, self.paths, we can form a full data 
lineage from source data, queries that process it, to the final output, e.g. models, produced 
by workflows. Having this lineage can become extremely useful when debugging any issues 
related to the quality of predictions or input data. 

RECOMMENDATION: Maintain data lineage between data infrastructure and data science workflows by 

including run IDs in the queries executed and by logging queries as artifacts. 

As an exercise, you can adapt the example to work with another modern query engine. The 
same CTAS pattern works e.g. with Spark, Redshift, or Snowflake. You can also schedule the 
ETL workflow to run periodically on a production-grade scheduler, possibly the same one that 
is used by the data engineering team, by using techniques we learned in the previous 
chapter. 

Regardless of what query engine you use, the general capability is what matters: Using this 
approach, a data scientist can include a project-specific data preprocessing step in their 
workflow and offload large-scale data crunching to a scalable query engine. In the next 
section, we will see how to access the results of even a large CTAS query by leveraging 
horizontal scalability and the fast data approach we learned earlier. 

CLEANING OLD RESULTS 

By default, the result tables produced by CTAS queries are persisted forever. This is 
beneficial for reproducibility and auditability, as you can examine any old results. However, it 
is a reasonable practice to delete old results after some period of time. 
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You can delete old data in S3 by using S3 lifecycle policies. As results are just locations in 
S3, you can set a policy that deletes all objects at the location where CTAS results are 
written after a predetermined period, e.g. after 30 days. In addition, you want to delete table 
metadata from AWS Glue. 

You can delete Glue tables by executing “DROP TABLE” SQL statements, with AWS Data 
Wrangler, or using the following AWS CLI command: 

aws glue batch-delete-table 

with a list of tables to be deleted as arguments. 

7.2.3 Distributed data processing 
In section 7.1 we learned how to load Parquet files quickly from S3 to a single instance. This 
is a simple and robust pattern for datasets that can fit in memory on an instance. When 
combined with large instances with hundreds of gigabytes of RAM and efficient in-memory 
representations provided by Apache Arrow and Numpy, you can handle massive datasets, in 
some cases billions of data points, without having to resort to distributed computing and 
overhead that comes with it (remember Chapter 4!). 

Naturally this approach has its limits. While the dataset might fit in memory, processing 
hundreds of gigabytes of data on a single instance might be simply too slow. In cases like 
this, it is a good idea to fan out computation to multiple instances. In this section, we learn 
how to load and process data, such as tables produced by CTAS queries, in a distributed 
manner. As before, we will use Metaflow’s foreach construct for distribution but you can 
apply the same pattern with other frameworks too that support distributed computation. 

The lessons learned in this chapter come in handy in two scenarios that are common in data 
science workflows: First, you may want to train multiple models in parallel, like we did with 
the parallel K-means models in Chapter 5. However, in contrast to the K-Means example 
which used the same dataset loaded as an artifact to train all models, you might want to load 
different subsets of a dataset, for instance, a separate segment for each country, to train a 
model. 

Second, you may want to do additional preprocessing of large-scale data, e.g. feature 
transformations, in parallel to produce an input matrix or a tensor for a model training step. 
The common characteristic in both of these cases is that we want to process sharded or 
chunked data, instead of all data at once. Figure 7.17 illustrates the high-level pattern. 
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Figure 7.17. Processing sharded data in a workflow 

A CTAS query produces a set of Parquet files which can be either partitioned by a column 
(e.g. by country) or we can divide them to roughly equisized shards. A workflow fans out a 
foreach over the shards, distributing data processing over multiple parallel steps. The results 
can be combined in the join step. To highlight the similarity of this pattern to the MapReduce 
paradigm of distributed computing, Figure 7.17 calls the foreach steps Mappers and the join 
step Reduce. 

To see how this pattern works in practice, let’s work through a fun example: Visualization of 
the Taxi dataset. 

EXAMPLE: VISUALIZING A LARGE DATASET 

The following example works in two modes: It can either ingest an arbitrary subset of the 
Taxi dataset produced by TaxiETLFlow (Listing 7.6) or it can load raw data as is. You can 
use the raw data mode if you didn’t set up Athena in the previous section. In both cases, we 
will extract the latitude and longitude of the pickup location of each taxi trip and plot it on an 
image. 

The task is made non-trivial by the fact that there are many trips in the dataset: In the raw 
mode, we process all trips in the year 2014 which amounts to 48 million data points. To 

266

https://livebook.manning.com/#!/book/effective-data-science-infrastructure/discussion


©Manning Publications Co.  To comment go to  liveBook 

demonstrate how large datasets like this can be processed efficiently, we perform 
preprocessing in parallel, as depicted in Figure 7.17. 

Let’s start by writing a helper function that plots points on an image. Due to the scale of 
data, we use a specialized open-source library, Datashader (datashader.org), that is tuned to 
handle millions of points efficiently. The helper function is listed in Listing 7.7. 

Listing 7.7 Plotting taxi trip coordinates 

from io import BytesIO 
 
CANVAS = {'plot_width': 1000, 
          'plot_height': 1000, 
          'x_range': (-74.03, -73.92),    #A 
          'y_range': (40.70, 40.78)}    #A 
 
def visualize(lat, lon):    #B 
    from pandas import DataFrame 
    import datashader as ds 
    from datashader import transfer_functions as tf 
    from datashader.colors import Greys9 
    canvas = ds.Canvas(**CANVAS) 
    agg = canvas.points(DataFrame({'x': lon, 'y': lat}), 'x', 'y')    #C 
    img = tf.shade(agg, cmap=Greys9, how='log')    #C 
    img = tf.set_background(img, 'white') 
    buf = BytesIO()    #D 
    img.to_pil().save(buf, format='png')    #D 
    return buf.getvalue()    #D 

#A Define a bounding box for lower Manhattan 
#B Accept points as two arrays: latitude and longitude 
#C Plot points, shading each pixel logarithmically 
#D Save the visualization as an artifact 

Save the code to taxiviz.py which we will import in the flow below. Note that the number 
of data points (up to 48M) is much higher than the number of pixels (1M) in the image. 
Hence we will shade each pixel according to how many points hit it. We use a logarithmic 
color range to make sure that the faintest pixels don’t wash away. Similar to the forecast 
plots in the previous chapter, we store the resulting image as an artifact, so it gets versioned 
and stored in a run where it can be retrieved using the Client API and shown e.g. in a 
notebook. 

Next, let’s implement the flow itself - see Listing 7.8. The flow implements the pattern 
depicted in Figure 7.17: In the start step, we choose what input data to use: Either the 
results of a CTAS query from a previously executed TaxiETLFlow, or raw data. We divide 
data into shards, each of which is processed by an independent preprocess_data task. The 
join step merges together data, arrays of coordinates, produced by each shard and plots the 
coordinates on an image. 
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Listing 7.8 A flow with parameters 

from metaflow import FlowSpec, step, conda, Parameter,\ 
                     S3, resources, project, Flow 
import taxiviz    #A 
URL = 's3://ursa-labs-taxi-data/2014/'    #B 
NUM_SHARDS = 4 
 
def process_data(table):    #C 
    return table.filter(table['passenger_count'].to_numpy() > 1)    #D 
 
@project(name='taxi_nyc')    #E 
class TaxiPlotterFlow(FlowSpec): 
 
    use_ctas = Parameter('use_ctas_data', help='Use CTAS data', default=False)    #F 
 
    @step 
    def start(self): 
        if self.use_ctas: 
            self.paths = Flow('TaxiETLFlow').latest_run.data.paths    #G 
        else: 
            with S3() as s3: 
                objs = s3.list_recursive([URL])    #H 
                self.paths = [obj.url for obj in objs] 
        print("Processing %d Parquet files" % len(self.paths)) 
        n = round(len(self.paths) / NUM_SHARDS)    #I 
        self.shards = [self.paths[i*n:(i+1)*n] for i in range(NUM_SHARDS - 1)]    #I 
        self.shards.append(self.paths[(NUM_SHARDS - 1) * n:])    #I 
        self.next(self.preprocess_data, foreach='shards') 
 
    @resources(memory=16000) 
    @conda(python='3.8.10', libraries={'pyarrow': '5.0.0'}) 
    @step 
    def preprocess_data(self):    #J 
        with S3() as s3: 
            from pyarrow.parquet import ParquetDataset 
            if self.input: 
                objs = s3.get_many(self.input)    #K 
                orig_table = ParquetDataset([obj.path for obj in objs]).read()    #K 
                self.num_rows_before = orig_table.num_rows 
                table = process_data(orig_table)    #L 
                self.num_rows_after = table.num_rows 
                print('selected %d/%d rows'\ 
                      % (self.num_rows_after, self.num_rows_before)) 
                self.lat = table['pickup_latitude'].to_numpy()    #M 
                self.lon = table['pickup_longitude'].to_numpy()    #M 
        self.next(self.join) 
 
    @resources(memory=16000) 
    @conda(python='3.8.10', libraries={'pyarrow': '5.0.0', 'datashader': '0.13.0'}) 
    @step 
    def join(self, inputs): 
        import numpy 
        lat = numpy.concatenate([inp.lat for inp in inputs])    #N 
        lon = numpy.concatenate([inp.lon for inp in inputs])    #N 
        print("Plotting %d locations" % len(lat)) 
        self.image = taxiviz.visualize(lat, lon)    #O 
        self.next(self.end) 
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    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    TaxiPlotterFlow() 

#A Import the helper function that we created earlier 
#B In the raw data mode, use data from 2014 
#C A mapper function that preprocesses data for each shard 
#D As an example, we include only trips with more than one passenger 
#E Use the same project as TaxiETLFlow 
#F Choose between the two modes: CTAS or raw data 
#G In the CTAS mode, retrieve paths to CTAS results 
#H In the raw data mode, list paths to raw data 
#I Group all paths into four roughly equisized shards 
#J Mapper step, processing each shard 
#K Download data for this shard and decode it as a table 
#L Process the table 
#M Store coordinates from the processed table 
#N Concatenate coordinates from all shards 
#O Visualize and store results as an artifact 

Save the code to taxi_plotter.py. If you ran TaxiETLFlow previously, you can run the flow 
like this: 

# python taxi_plotter.py --environment=conda run --use_ctas_data=True 

Otherwise leave the option out to use the raw data directly. The flow runs for about a minute 
on a large instance. After the run has completed, you can open a notebook and type the 
following lines in a cell to see the results: 

from metaflow import Flow 
from IPython.display import Image 
run = Flow('TaxiPlotterFlow').latest_run 
Image(run.data.image) 

The result should look something akin to one of the visualizations in Figure 7.18. On the left, 
Figure 7.18 shows the image of a full dataset: You can see the Midtown area being very 
popular (light shade). The image on the right was produced by a CTAS query that shows 
trips only during one hour between midnight and 1am: Many areas outside Midtown area 
much sparsely trafficked. 
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Figure 7.18. Visualizing pickup locations in two different subsets of the taxi dataset 

The code in Listing 7.8 demonstrates three important concepts: 

1. Thanks to @project, we can safely separate an upstream data processing flow, e.g. 
TaxiETLFlow, from other downstream business logic like TaxiPlotterFlow. Crucially, 
Flow('TaxiETLFlow').latest_run doesn’t point at any random latest run of TaxiETLFlow 
but the latest run that exists in the flow’s own namespace, as discussed in Chapter 6. 
This allows multiple data scientists to work on their own versions of the 
TaxiETLFlow→TaxiPlotterFlow sequence without interfering with each other’s work. 

2. The process_data function demonstrates the mapper concept: After a raw dataset has 
been extracted with SQL in a CTAS query, the data scientist can further process data 
in Python, instead of having to pack all project-specific logic in the SQL query. Also, 
we avoid potentially memory-inefficient conversion to Pandas. 

Think process_data as an infinitely versatile User Defined Function (UDF) that many query 
engines provide as an escape hatch to work around limitations of SQL. Depending on the 
computational cost of process_data, the number of shards can be increased to speed up 
processing. 

3. We avoid storing the full dataset as an artifact which is often inconveniently slow. 
Instead, we extract only the data we need, in this case, latitudes and longitudes, as 
space-efficient Numpy arrays, and store them. Merging and manipulating Numpy 
arrays is fast. 

This flow demonstrates that it is possible to handle even large datasets in Python using off-
the-shelf libraries by using fast data techniques introduced earlier in this chapter and a 
scalable compute layer. A major benefit of this approach is operational simplicity: You can 
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leverage existing data infrastructure for the initial heavy lifting and SQL queries, and the rest 
can be handled by the data scientist autonomously in Python. 

In the next section, we add the last step in the data path: Feeding data into models. We will 
leverage the pattern discussed in this section to perform feature transformations efficiently. 

AN ALTERNATIVE APPROACH: DASK OR PYSPARK 

As an alternative approach for distributed data processing, you could use a specialized 
compute layer like Dask (dask.org) that provides a higher-level interface for performing 
similar operations in Python. A benefit of Dask (or e.g. PySpark) is that the data scientist can 
operate on dataframe-like objects which are automatically sharded and parallelized under the 
hood. 

A downside is the introduction of another, operationally non-trivial compute layer in your 
infrastructure stack. When a system like Dask or Spark works, they can boost productivity 
massively. When they don’t work, either because of engineering issues or due to 
incompatibility with libraries that a data scientist wants to use, they can become a hard-to-
debug headache. 

If you have e.g. a Dask cluster already available, you can easily offload data processing on it 
simply by calling it from your Metaflow steps. Equipped with this information of various 
approaches, you can make the right choice for your organization. 

7.3 From Data to Features 
Now that Alex has an easy way to load data from the data warehouse to workflows, they can 
start getting more organized about how raw data gets converted into matrices and tensors 
consumed by models. Optimally, Alex could ingest any raw data from the warehouse, quickly 
iterating on new columns of data, and then define a set of custom Python functions - feature 
encoders - that convert the raw data to model inputs. The exact shape and size of the input 
matrices depends on the use case, so it would be beneficial to keep the system flexible 
enough so it can accommodate different ideas and projects frictionlessly. 
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This far, we have discussed the low levels of data processing: How to access and process raw 
data efficiently. The discussion hasn’t had anything to do with data science or machine 
learning specifically. Arguably, data science is often much about generic data processing, so 
this focus is justified. This is also why we place data as the most foundational layer in our 
infrastructure stack. 

In this section, we scratch the surface of the multi-faceted question of how to think about 
the interface between data and models. This is a much higher-level concern with fewer 
generally applicable answers: The best approach heavily depends on the use case - for 
instance, what works for tabular data doesn’t necessarily work for audio or time series. 

A major part of the data scientist’s domain expertise relates to feature engineering, so it is 
beneficial to let them experiment and adopt approaches that work for their specific use 
cases. In this sense, feature engineering is a different kind of a concern than, say, the 
foundational topics of data discussed earlier in this chapter, or the compute layer covered in 
Chapter 4. The distinction is illustrated in Figure 7.19 which was first presented in Chapter 1. 

 
Figure 7.19. How much the data scientist cares about various layers of the stack 
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Instead of prescribing a one-size-fits-all solution to feature engineering, each domain can 
benefit from domain-specific libraries and services. For instance, a pipeline to extract and 
label images is likely to look very different from a feature library containing financial data. 

RECOMMENDATION: It is often a good idea to build, adopt, or buy domain-specific solutions for the 

feature layer, which can be tailored for the use case at hand. These solutions can sit on top of the 

foundational infrastructure, so they are complementary, not competing, with the rest of the stack. 

We begin by defining the amorphous concept of a feature. Then, we will give a basic example 
that takes raw data, converts it into features, and feeds it into a model. Later in Chapter 9 
we will expand the example to make it ever more featureful. This should give you a solid 
starting point in case you want to dig deeper, for instance by reading a more modeling-
oriented book that covers feature engineering in detail, and apply the lessons to your 
infrastructure stack. 

DISTINGUISHING FACTS AND FEATURES 

It is useful to distinguish between facts and features. Besides conceptual clarity, this helps in 
dividing work between data engineers and data scientists. Let’s use Figure 7.20 to structure 
the discussion. 

The figure is framed on a philosophical assumption that everything exists in an objective 
physical reality which we can partially observe to collect facts. Due to their observational 
nature, we can expect facts to be biased, inaccurate or even incorrect occasionally. However, 
crucially, facts are as close to the objective reality as we can get. 

 
Figure 7.20. The nature of facts and features 
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In the engineering point of view, facts can be events collected from the product or data 
acquired from a 3rd party. There shouldn't be much interpretation or ambiguity in them: For 
instance, someone clicking “play” to watch The Lion King is a direct observation, a fact. 
Later, we may decide to interpret the play event as a signal that the user prefers to watch 
this type of content, which might be a useful label - a feature - for a recommendation model. 
There are countless other alternative interpretations for the play event (maybe they fat-
fingered a large banner on their mobile device), hence many opportunities for feature 
engineering, although the underlying fact is unambiguous. 

The distinction between facts and features has important practical implications, some of 
which are outlined in Table 7.1. 

 

 Features Facts Reality 

Role Data scientist Data engineer  

Key activity Define new features 
and challenge existing 
ones 

Collect and persist 
reliable observations 

 

Speed of iteration Fast - coming up with 
new interpretations is 
easy 

Slow - starting to 
collect new data takes 
a lot of effort 

 

Can we control it? Fully - we know and 
control all the inputs 
and outputs 

Partially - we don’t 
control the input, the 
reality which behaves 
in unpredictable ways 

No, but we can make 
small interventions 
e.g. A/B experiments 

Trustworthiness Varies, low by default Aims to be high The objective truth 

Table 7.1. Comparing and contrasting facts vs. features 

As highlighted by the table, it is useful to have a role, often a data engineer, who is 
responsible for collecting and storing facts reliably. This is a complex undertaking by itself, as 
they need to interface directly with the constantly changing outside reality. After a reliable 
set of facts is available, another person, a data scientist, can take the facts, interpret and 
transform them into features, test them in a model, and iterate again with a new set of 
features to improve the model. 

The key activities between the two roles are distinct: Optimally, the data scientist can iterate 
quickly since there are an infinite number of possible features to test. The more accurate and 
comprehensive the facts are, the better the models, which motivates data engineers to 
collect a wide variety of high-quality data. 
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We can project these activities to the patterns covered in this chapter: 

• Data engineers maintain reliable fact tables which are available for all projects. 
• Data scientists can query the fact tables and extract interesting project-specific views 

of facts for their workflows e.g. using the CTAS pattern. 
• Data scientists can quickly iterate on features inside their workflow, in Python, using 

the MapReduce-style pattern we covered in the previous section. 

In some cases, it can be useful to leverage off-the-shelf libraries and services like feature 
stores or data labeling services to aid with the last two steps - or, you can create a custom 
library that answers to the specific needs of your company. In any case, it is prudent to start 
by considering a simple baseline solution which doesn’t involve specialized tooling. 

You can either use the baseline approach presented in the next section as-is or you can use 
it as a foundation for your own domain-specific libraries. No matter what approach you take, 
it should be possible for data scientists to access facts easily and iterate on features quickly. 

7.3.1 Encoding features 
The process that converts facts to features is called feature encoding or featurization. A 
model takes a set of features, produced by sometimes tens or even hundreds of individual 
feature encoding functions or feature encoders. Especially in larger projects, it is very useful 
to have a consistent way of defining new features encoders and executing them. 

Besides helping to make the overall architecture manageable, it is crucial that the same 
feature encoders are used both during training and inference to guarantee correctness of 
results. This requirement is often called offline-online consistency, where offline refers to 
periodic training of models as a batch process and online refers to on-demand predictions. 

Another central requirement to feature pipelines is the management of accurate train and 
test splits. In many cases, like in our weather forecasting example in the previous chapter, 
historical data is used to predict the future. Models like this can be backtested by taking a 
past point in time as a reference and treating data prior to it as history, which can be used 
for training, and data after it as a pretend future which can be used for testing. To guarantee 
the validity of results, the training data must not contain any information past the reference 
point, often called leakage, which would count as obtaining information from the future. 

A well-designed feature encoding pipeline can treat time as the primary dimension, which 
makes it easy to conduct backtesting while making sure that the time horizons are respected 
by feature encoders, preventing any kind of leakage. A feature encoding pipeline can also 
help to monitor concept drift, that is, the statistics of the target variable of the model 
changing over time. Some feature stores, which help with all these concerns, also present a 
UI that allows facts and features to be shared and discovered easily. 

There isn’t a single right or universal way to implement these concerns. Time is handled 
differently in different datasets and maintaining online-offline consistency can be done in 
many different ways depending on the use case - not all applications need “online” 
predictions. A tightly coupled data science team working on a project together can quickly 
communicate and iterate on feature encoders without a heavyweight technical solution. 
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A key contention is about flexibility and speed of iteration versus guaranteed correctness: 
You can devise (or acquire) a featurization solution that solves all the above concerns, 
guaranteeing correctness, but makes it hard to define new features. For a sensitive, mature 
project this might be the right tradeoff to make. On the other hand, imposing an overly rigid 
solution on a new project might make it hard to develop it rapidly, limiting its usefulness 
overall - the project may be 100% correct but also quite useless. A good compromise might 
be to start with a flexible approach and make it more rigid as the project matures. 

Below, we will present an extremely simple feature encoding workflow, based on the 
TaxiPlotter workflow from the previous section. The example is on the flexible extreme of 
the spectrum: It doesn’t address any of the above concerns but it lays the foundation which 
we will build on in Chapter 9 that presents a more full-fledged featurization pipeline. 

EXAMPLE: PREDICTING THE COST OF A TAXI TRIP 

To demonstrate feature encoding - not our modeling skills - we build a simple predictor to 
estimate the cost of a taxi trip. We know that the price is directly correlated with the length 
of the trip, both in terms of time and space. To keep things simple, this example only focuses 
on the distance. We use simple linear regression to predict the amount paid given the 
distance travelled. We will make the example more interesting in Chapter 9. 

If this was a real task given to a data scientist, they would surely start by exploring the data, 
probably in a notebook. You can do it too as an exercise. You will find out that as with any 
real-life dataset containing empirical observations, there is noise in data: A good number of 
trips have a $0 cost or no distance traveled. Also a small number of outliers have a very high 
cost or distance travelled. 

We start by making an interpretation, starting to turn facts into features, by assuming that 
these outlier trips don’t matter. We use the function filter_outliers in Listing 7.9 to get 
rid of trips that have values in the top or bottom 2% of the value distribution. The utility 
module contains also a function sample that we can use to uniformly sample rows from the 
dataset. 

Listing 7.9 Removing outlier rows from an Arrow table 

def filter_outliers(table, clean_fields):    #A 
    import numpy 
    valid = numpy.ones(table.num_rows, dtype='bool')    #B 
    for field in clean_fields:    #C 
        column = table[field].to_numpy() 
        minval = numpy.percentile(column, 2)    #D 
        maxval = numpy.percentile(column, 98)    #D 
        valid &= (column > minval) & (column < maxval)    #E 
    return table.filter(valid)    #F 
         
def sample(table, p):    #G 
    import numpy 
    return table.filter(numpy.random.random(table.num_rows) < p)    #H 

#A Accept an pyarrow.Table and a list of columns to be cleaned 
#B Start with a filter that accepts all rows 
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#C Process all columns one by one 
#D Find the top and bottom 2% of the value distribution 
#E Only include rows that fall between the 2-98% of the value distribution 
#F Return a subset of the rows that match the filter 
#G Sample a random p% of rows of the given table 
#H Flip a biased coin on each row, return the matching rows 

Save the code in table_utils.py. It is worth noting that both the functions in Listing 7.9, 
filter_outlier and sample, could be implemented in SQL as well. You could bake these 
operations in the SQL behind the CTAS query. Consider the following benefits of performing 
these operations in Python instead: First, expressing filter_outliers in SQL is somewhat 
non-trivial, especially when it is done over multiple columns. The resulting SQL would likely 
take more (convoluted) lines of code than the Python implementation. 

Second, we are making major assumptions here: Is 2% the right number? Should it be the 
same for all columns? A data scientist may want to iterate on these choices. We can iterate 
and test the code in Python much faster than what it takes to execute a complex SQL query. 

Also note that both the functions are implemented without a conversion to Pandas, which 
guarantees that the operations are both time- and space-efficient as they rely only on 
Apache Arrow and Numpy, both of which are backed by high-performance C and C++ code. 
It is quite likely that these operations are more performant in “Python” than they would be 
on any query engine. 

Next, Listing 7.10 defines functions that build a linear regression model and visualize it. 

Listing 7.10 Training and visualizing a regression model 

def fit(features):    #A 
    from sklearn.linear_model import LinearRegression                                    
    d = features['trip_distance'].reshape(-1, 1)    #B 
    model = LinearRegression().fit(d, features['total_amount'])    #B 
    return model  
         
def visualize(model, features):    #C 
    import matplotlib.pyplot as plt                                                       
    from io import BytesIO 
    import numpy 
    maxval = max(features['trip_distance'])    #D 
    line = numpy.arange(0, maxval, maxval / 1000)    #D 
    pred = model.predict(line.reshape(-1, 1))    #D 
    plt.rcParams.update({'font.size': 22}) 
    plt.scatter(data=features, 
                x='trip_distance', 
                y='total_amount', 
                alpha=0.01, 
                linewidth=0.5) 
    plt.plot(line, pred, linewidth=2, color='black') 
    plt.xlabel('Distance') 
    plt.ylabel('Amount') 
    fig = plt.gcf() 
    fig.set_size_inches(18, 10) 
    buf = BytesIO()    #E 
    fig.savefig(buf)    #E 
    return buf.getvalue()    #E 
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#A Accept features as a dictionary of NumPy arrays 
#B Build a linear regression model using SciKit Learn 
#C Visualize the model 
#D Plot a regression line 
#E Save the image as an artifact 

Save the code to taxi_model.py. The fit function builds a simple linear regression model 
using SciKit Learn. For details, you can see the documentation of SciKit Learn (scikit-
learn.org/stable/modules/linear_model.html). The visualize function plots the features on a 
scatter plot and overlays the regression line on top of it. 

Listing 7.11 shows the actual workflow, TaxiRegressionFlow, which is closely based on 
TaxiPlotterFlow from the previous section. It has the same two modes: You can either use 
preprocessed data from a CTAS query produced by TaxiETLFlow, or you can use the raw 
mode that accesses two months of unfiltered data. 

Listing 7.11 From facts to features to a model 

from metaflow import FlowSpec, step, conda, Parameter,\ 
                     S3, resources, project, Flow 
     
URLS = ['s3://ursa-labs-taxi-data/2014/10/',    #A 
        's3://ursa-labs-taxi-data/2014/11/'] 
NUM_SHARDS = 4 
FIELDS = ['trip_distance', 'total_amount'] 
 
@project(name='taxi_nyc') 
class TaxiRegressionFlow(FlowSpec): 
    sample = Parameter('sample', default=0.1)    #B 
    use_ctas = Parameter('use_ctas_data', help='Use CTAS data', default=False)    #C 
     
    @step 
    def start(self): 
        if self.use_ctas: 
            self.paths = Flow('TaxiETLFlow').latest_run.data.paths 
        else:    
            with S3() as s3: 
                objs = s3.list_recursive(URLS) 
                self.paths = [obj.url for obj in objs] 
        print("Processing %d Parquet files" % len(self.paths)) 
        n = max(round(len(self.paths) / NUM_SHARDS), 1) 
        self.shards = [self.paths[i*n:(i+1)*n] for i in range(NUM_SHARDS - 1)] 
        self.shards.append(self.paths[(NUM_SHARDS - 1) * n:]) 
        self.next(self.preprocess_data, foreach='shards') 
     
    @resources(memory=16000) 
    @conda(python='3.8.10', libraries={'pyarrow': '5.0.0'}) 
    @step 
    def preprocess_data(self): 
        from table_utils import filter_outliers, sample  
        self.shard = None 
        with S3() as s3: 
            from pyarrow.parquet import ParquetDataset 
            if self.input: 
                objs = s3.get_many(self.input) 
                table = ParquetDataset([obj.path for obj in objs]).read() 
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                table = sample(filter_outliers(table, FIELDS), self.sample)    #D 
                self.shard = {field: table[field].to_numpy()    #E 
                              for field in FIELDS} 
        self.next(self.join) 
 
    @resources(memory=8000) 
    @conda(python='3.8.10', libraries={'numpy': '1.21.1'}) 
    @step 
    def join(self, inputs): 
        from numpy import concatenate 
        self.features = {} 
        for f in FIELDS: 
            shards = [inp.shard[f] for inp in inputs if inp.shard] 
            self.features[f] = concatenate(shards)    #F 
        self.next(self.regress) 
 
    @resources(memory=8000) 
    @conda(python='3.8.10', libraries={'numpy': '1.21.1', 
                                       'scikit-learn': '0.24.1', 
                                       'matplotlib': '3.4.3'}) 
    @step 
    def regress(self): 
        from taxi_model import fit, visualize 
        self.model = fit(self.features)    #G 
        self.viz = visualize(self.model, self.features)    #H 
        self.next(self.end) 
 
    @step 
    def end(self): 
        Pass 
 
if __name__ == '__main__': 
    TaxiRegressionFlow() 

#A Use two months of data in the raw mode 
#B Sample the given percentage of data, 0.0-1.0. 
#C Choose between raw or CTAS mode, similar to TaxiPlotterFlow 
#D Clean and sample each shard independently 
#E Extract clean columns as features 
#F Merge feature-shards by concatenating the arrays 
#G Fit a model 
#H Visualize the model and store the image as an artifact 

Save the code in taxi_regression.py. If you ran TaxiETLFlow previously, you can run the 
flow like this: 

# python taxi_regression.py --environment=conda run --use_ctas_data=True 

Otherwise leave the option out to use the raw data directly. It takes less than a minute to 
process a 10% sample of data on a large instance and about two minutes to process the full 
dataset without sampling. Figure 7.21 visualizes the regression line produced by the model 
as well as a scatter plot of raw data, as shown in a Jupyer notebook. 
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Figure 7.21. Regression between distance and the cost of a taxi trip, overlaid on data 

This example expands the previous TaxiPlotterFlow example by demonstrating how: 

• The data scientist can use the MapReduce-style pattern to encode features. 
• We can combine the best of the both worlds by using SQL for data extraction and 

Python for feature engineering. 
• It is possible to perform feature engineering in a performance-conscious manner in 

Python, thanks to libraries like Apache Arrow and NumPy, backed by C and C++ 
implementations. 

In Chapter 9, we will expand the example to include proper testing of the model, more 
sophisticated regression models using deep learning, and an extensible feature encoding 
pipeline. 

This chapter covered a lot of ground, all the way from foundational data access patterns to 
feature engineering pipelines and model training, as summarized in Figure 7.22. 
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Figure 7.22. Summarizing the concepts covered in this chapter 

We started with the fundamentals of moving data quickly from S3 to instances. We discussed 
efficient in-memory representation of data with Apache Arrow. After this, we showed how 
these techniques can be used to interface with query engines like Spark, Snowflake, Trino, or 
AWS Athena, which are a core part of the modern data infrastructure. 

We created a workflow that uses a query engine to process a dataset by executing a Create-
Table-As-Select SQL query, results of which can be downloaded quickly to a downstream 
workflow. Finally, we used this functionality to create a feature encoding pipeline that trains 
a model. 

Combined with the lessons from the previous chapter, these tools allow you to build 
production-grade data science applications that ingest large amounts of data from a data 
warehouse, encode features in parallel, and train models at scale. For more computationally 
demanding feature encoders, you can leverage lessons from Chapter 5 to optimize them if 
necessary. 

7.4 Summary 
• Optimize downloading speed between S3 and EC2 instances by ensuring that data fits 

in memory, files are large enough, and by using a large instance type. 
• Use Parquet as an efficient format for storing tabular data and Apache Arrow to read 

and process it in memory. 
• If memory consumption is a concern, avoid converting data to Pandas. Instead, 

operate with Arrow and Numpy data structures. 
• Leverage existing data infrastructure to extract and preprocess data for data science 
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workflows and to connect them to ETL workflows. 
• Use modern query engines like Spark, Trino, Snowflake, or Athena to execute SQL 

queries to produce arbitrary data extracts, stored in Parquet, for data science 
workflows. 

• Organizationally, data engineers can focus on producing high-quality, reliable facts, 
while data scientists can iterate on project-specific datasets autonomously. 

• Use the map-reduce-pattern to process large datasets in Python in parallel. Libraries 
like Arrow and NumPy are backed by high-performance C/C++ code, making it 
possible to process data quickly. 

• Leverage the foundational tools and patterns to build a solution that works for your 
particular use cases - feature engineering and feature pipelines tend to be quite 
domain-specific.  

• When designing a feature pipeline, consider using time as the primary dimension to 
make it easy to backtest with historical data and to prevent leakage. 

• In feature engineering pipelines, ensure that data scientists can access facts easily 
and iterate on features quickly. 
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8 
Using and Operating Models 

This chapter covers: 

• Using machine-learning models to produce predictions that benefit real-world applications.

• Producing predictions as a batch workflow.

• Producing predictions as a real-time application.

Why do businesses invest in data science applications? “To produce models” isn’t an 

adequate answer, as models are just bundles of data and code with no intrinsic value. To 

produce tangible value, applications must have a positive impact on the surrounding world, 

e.g. on other business systems. For instance, a recommendation model is useless by itself

but when connected to a user interface, it can lower customer churn and increase long-term 

revenue. Or, a model predicting credit risk becomes valuable when connected to a decision-

support dashboard used by human decision makers. 

In this chapter, we bridge the gap between data science and business applications. While 

this is the second to last chapter of the book, in real-life projects you should start thinking 

about the connection early on. Figure 8.1 illustrates the idea using the spiral diagram 

introduced in Chapter 3. 
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Figure 8.1. Connecting outputs to surrounding systems 

In general, it is a good idea to begin by thoroughly learning about the business problem 

that needs to be solved. After this, you can identify and evaluate data assets that can be 

used to solve the problem. Before writing a line of modeling code, you can choose an 

architectural pattern that allows the results to be connected to a value-generating business 

application, which is the main topic of this chapter. 

Frequently, thinking about inputs and outputs reveals issues, such as lack of suitable data 

or technical or organizational difficulties in using the results, which can be addressed before 

any models have been built. Once it is clear how the application can be deployed in its 

environment, the actual modeling work can begin. If the project is successful, such as 

personalized video recommendations at Netflix, the modeling work never ends: you can keep 

iterating on the model to produce ever more value. 

There are countless ways how models can be used in production. As argued in the 

beginning of this book, companies are curious to apply data science to an increasingly 

diverse set of use cases. While theoretically there’s a well-defined way to produce predictions 

given a model, technically, say, populating a handful of predictions for an internal dashboard 

is quite different from, for instance, a system that produces real-time predictions in a high-

speed trading system. 

Note that we use the term prediction to refer to any output of a data science workflow. 

Strictly speaking, not all data science applications produce predictions - they can produce 

classifications, categorizations, inferences, and other insights as well. For brevity, we use 

predictions as an umbrella term to refer to any such outputs. Another commonly used term 

for activities like this is model serving - we want to make the model available, i.e. serve the 

model, to other systems. 

We begin the chapter by describing a number of common architectural patterns for using 

models to produce predictions. You can then choose and apply the most appropriate patterns 

to your use cases. We focus on two common patterns: Precomputing results in advance, aka 

batch predictions, and doing the same in real-time through a web service, aka real-time 

predictions. These techniques are complementary to all the lessons we have learned in 

previous chapters. 
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The latter part of the chapter focuses on model operations, namely how to ensure that 

the model keeps producing correct results over time. We learn about patterns for re-training 

and testing models continuously, as well as monitoring the performance of models. Similar to 

inference, there isn’t a single right approach, or a single right tool for implementing model 

operations, but learning about general patterns helps you to choose the right tool for each 

use case. 

Figure 8.2 summarizes these topics on our infrastructure stack. 

 

Figure 8.2 The infrastructure stack 

By placing the model operations and architecture high on the stack, we signal that these 

concerns can’t be abstracted away from the data scientists - much less so than, for instance, 

the compute layer we covered in Chapter 4. The architecture of the overall data science 

application, and how it is operated in production, should follow the business problem being 

solved. Understanding how the application works end-to-end, from raw data to business 

results, allows the scientist to use their domain knowledge and modeling expertise to the 

fullest. Naturally effective data science infrastructure should make it easy enough to apply 

various patterns without having to become a DevOps specialist. 

8.1 Producing Predictions 

Theoretically speaking, producing predictions should be quite straightforward. For instance, 

predicting with a logistic regression model is just a matter of computing a dot product and 

passing the result through a sigmoid function. Besides the formula being simple 

mathematically, the operations are not particularly costly computationally. 

Challenges related to using models in real-life are practical, not theoretical. You need to 

consider how to manage 
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1. Scale - while it might not take a long time to produce a single prediction, producing 

millions in a short enough time requires more thinking. 

2. Change - data changes over time and models need to be retrained and redeployed. 

Moreover, the application code will likely evolve over time too. 

3. Integrations - to make a real-world impact, predictions need to be used by another 

system which is subject to challenges of scale and change on its own. 

4. Failures - the above three issues are a rich source of failures: Systems fail under 

load, change causes predictions to become incorrect over time, and integrations are 

hard to keep stable. Whenever something fails, you need to understand what failed, 

why, and how to fix it quickly. 

Addressing any of these four points in isolation is a non-trivial engineering challenge by 

itself. Addressing all of them simultaneously requires significant engineering effort. Luckily, 

only a few data science projects require a perfect solution for all these concerns. Consider 

the following prototypical examples: 

• A model to balance marketing budgets may require special integrations to marketing 

platforms but the scale of data and the speed of change may be modest. Also failures 

can be handled manually without causing a major disruption. 

• A recommendations model may need to handle millions of items for millions of users 

but if the system fails sporadically, users don’t even notice slightly stale 

recommendations. 

• A high-frequency trading system must produce a prediction in less than a millisecond, 

handling hundreds of thousands of predictions every second. Since the model is 

directly responsible for tens of millions of dollars of profit, it is cost-effective to 

massively overprovision infrastructure that hosts the models. 

• A credit score model used by human decision makers to underwrite loans has a 

modest scale and it isn’t subject to rapid change, but it is required to be highly 

transparent so humans can guard against any bias or other subtle failures. 

• A language model trained to recognize place names isn’t subject to rapid change. The 

model can be shared as a static file that is updated only sporadically. 

There isn’t a single cookie-cutter approach that would solve all these use cases. Effective 

data science infrastructure can provide a few different patterns, and tools to gradually 

harden deployments as discussed in Chapter 6, making sure that each use case can be 

solved in the simplest possible manner. Due to the inherent complexity of using models to 

power real-life applications, it is critical to avoid introducing additional accidental complexity 

in the system. For instance, it isn’t necessary nor beneficial to deploy a scalable, low-latency 

model serving system just to produce a modest number of predictions daily. 

Your toolbox can also include off-the-shelf tools and products, many of which have 

emerged to address the above challenges over the past few years. Confusingly, no 

established nomenclature and categorization exist for these new tools, making it occasionally 

hard to understand how they should be used most effectively. Categories of tools, which are 

often grouped under the term MLOps (Machine Learning Operations), include: 
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• Model monitoring tools that help address change, e.g. by monitoring how the 

distribution of input data and predictions change over time, and failures by alerting if 

predictions drift outside an expected range. 

• Model hosting and serving tools that help address scale and integrations by 

deploying models as a fleet of microservices that can be queried by outside systems, 

providing a solution for real-time predictions. 

• Feature stores address change by providing a consistent way of dealing with input 

data, making sure that data is used consistently both during training-time as well as 

for predictions. 

Besides tools that are specific to machine learning and data science, it is often possible to 

leverage general-purpose infrastructure, e.g. a microservice platform to host models or a 

dashboarding tool to monitor models. This is a useful approach especially when such tools 

are already installed in your environment. 

In the following, we will introduce a mental framework that helps you to choose the best 

pattern for your use case. After this, we will walk through a hands-on example that shows 

the patterns in action. 

BATCH, STREAMING, AND REAL-TIME PREDICTIONS 

When considering how to use a model effectively, you can start by asking the following 

central question: How quickly do we need a prediction after we know the input data? Note 

that the question is not how quickly the model can produce a prediction but rather what’s the 

maximum amount of time we can wait until the prediction is used for something. Figure 8.3 

illustrates this question of input-response gap. 

 

Figure 8.3. Input-response gap 

We can decide to produce predictions, depicted by the big arrow in Figure 8.3, anytime 

after the input data is known (obviously not before), and before the predictions are needed 

by outside systems. The longer the input-response gap, the more leeway we have to choose 

when and how to produce the predictions. 

Why is this question important? Intuitively, it is clear that producing answers quickly is 

harder than producing them slowly. The narrower the gap, the harder the challenges of 

scale, change, integrations, and failures become. While technically a system that can support 
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a low latency can handle high latency as well, and hence it might be tempting to use a single 

low-latency system to handle all use cases, avoiding overengineering can make life much 

easier. 

Depending on the answer, we can choose an appropriate infrastructure and software 

architecture for the use case. Figure 8.4 presents three common classes of model serving 

systems based on the size of the gap: Batch, where the gap is typically measured in tens of 

minutes and up, Streaming, which can support gaps in the minute-scale, and Real-time when 

responses are needed in seconds or milliseconds. 

 

Figure 8.4. Classes of model serving systems 

The batch prediction approach is the easiest to implement - all systems have plenty of 

headroom to operate -  but this approach is suitable only if you can afford waiting 15 

minutes or more before using the predictions. In this case, you can aggregate all new input 

data in a big batch and schedule a workflow to run, say hourly or daily, to produce 

predictions for the batch. The results can be persisted in a database or a cache where they 

can be accessed quickly by outside systems, providing a very low latency for accessing 

precomputed predictions. 

It is not very practical to use a workflow scheduler to produce predictions much more 

frequently - a typical workflow scheduler is not optimized for minimal latency. If you need 

results faster, between 30s and 15 minutes after receiving an input data point, you can use a 

streaming platform such as Apache Kafka, maybe with a streaming application platform like 

Apache Flink. These systems can receive data at scale and funnel it to data consumers in a 

few seconds. 

An example of a streaming model might be a “watch next” recommendation in a video 

service: Let’s say we want to show a personalized recommendation of a new video 

immediately when the previous one finishes. We can compute the recommendation while the 

previous show is playing, so we can tolerate latency of a few minutes. This allows us to show 

a recommendation even if the user stops the show prematurely. 

Finally, if you need results in less than a few seconds, you need a solution for real-time 

model serving. This is similar to any web service that needs to produce a response 

immediately, in tens of milliseconds, after the user clicks a button. For instance, companies 
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powering Internet advertising use systems like this to predict the most effective personalized 

banner ad to the user on the fly. 

Another important consideration is how the predictions are going to be consumed by 

outside systems: Is the workflow going to push results to a datastore or are they going to be 

pulled from a service by a consumer? Figure 8.5 outlines these patterns - pay attention to 

the direction of the arrows. 

 

Figure 8.5. Patterns for sharing outputs 

A workflow producing batch predictions can send the predictions to an external API or a 

database. It is then easy for other business applications, including dashboards, to access the 

predictions from the database. The same pattern applies to streaming predictions with the 

crucial difference that predictions are refreshed more frequently. Note the direction of the 

arrows: Batch and streaming push predictions to outside systems. Outside systems can’t call 

them directly. 

In contrast, a real-time model serving system reverses the pattern: External systems pull 

predictions from the model. This approach is required when the input data becomes available 

just before the prediction is needed. For instance, consider a model generating targeted 

advertisements based on a list of websites the user has just visited. In this scenario, it is not 

feasible to precompute all possible combinations of websites in advance. The prediction must 

be computed in real-time. 

The choice of the pattern has far-reaching implications: 
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• It is easy to develop and test batch predictions locally. You can use the same workflow 

system for batch predictions that is used to train the model, so no additional systems 

are needed. In contrast, developing and testing streaming and real-time predictions 

requires additional infrastructure. 

• Data processing for batch predictions, and sometimes in streaming, can follow 

patterns outlined in Chapter 7. It is relatively easy to make sure that features stay 

consistent across training and predictions as the same data processing code can be 

used on both sides. In contrast, real-time predictions need a datastore that supports 

low-latency queries as well as low-latency feature encoders. 

• Scaling batch predictions is as easy as scaling training, using the compute layer 

outlined in Chapter 4. Auto-scaling streaming and real-time systems requires more 

sophisticated infrastructure. 

• Monitoring models accurately, logging, and managing failures is easier in batch 

systems. In general, it incurs less operational overhead to make sure that a batch 

system stays highly available in contrast to a streaming or real-time system. 

All in all, it is beneficial to start by considering if the application, or parts of it, can be 

powered by batch predictions. 

NOTE:  Batch processing doesn’t mean that predictions couldn’t be accessed quickly when needed. In fact, 

precomputing predictions as a batch process and pushing the results to a high-performance data store, like 

an in-memory cache, provides the fastest possible access to predictions. However, batch processing requires 

that inputs are known well in advance. 

In the next sections, we will demonstrate the three patterns through a practical use case: 

a movie recommendation system. We will begin with a short introduction to recommendation 

systems. We will then show how to use the recommendation model for batch predictions, 

and after this, how to use it to power real-time predictions. Finally, we outline a high-level 

architecture for streaming predictions. 

8.1.1 Example: Recommendation system 

Let’s build a simple movie recommendation system to see how the patterns work in practice. 

Imagine that you work at a startup that allows its users to stream videos online. The startup 

has no existing machine learning systems in production. You were hired as a data scientist to 

build a recommendations model for the company. However, you don’t want to stop at the 

model: To make the model (and yourself) valuable, you would like to integrate the 

recommendations model you created to the company’s live product, so it would power a new 

“recommended for you” feature in the UI. 

Building such a system from scratch takes some effort. We lay out a project plan, shown 

in Figure 8.6, which outlines the topics we will focus on in this section. We follow the spiral 

approach, so the first step would be to understand the business context of the feature in 

detail - for this exercise, we can skip the step (in real life you shouldn’t!). We start by getting 

familiar with the data available and outlining a rudimentary modeling approach, which we 

can improve later if the project shows promise. 
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Figure 8.6. Recommendation system project: Focusing on inputs 

We will develop the first version of the model using a well-known technique called 

collaborative filtering. The idea is straightforward: We know what movies existing users have 

watched in the past. Knowing a few movies that a new user has watched, we can find 

existing users similar to the new one and recommend movies that they had enjoyed. The key 

question for a model like this is to define what “similar” means exactly and how to calculate 

similarities between users quickly. 

To train the model, we will use the publicly available MovieLens dataset 

(https://grouplens.org/datasets/movielens/). Download the full dataset with 27 million 

ratings from https://files.grouplens.org/datasets/movielens/ml-latest.zip and unpack the 

archive. 

Conveniently, the dataset includes a rich characterization of each movie, called Tag 

Genome. Figure 8.7 illustrates the idea. In the figure, each movie is characterized by two 

dimensions: Drama vs. Action and Serious vs. Funny. 

 

Figure 8.7. Movie tag genome 

Our model represents movies in a similar vector space but instead of two dimensions, the 

actual Tag Genome includes 1128 dimensions, described in genome-tags.csv. The 
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coordinates of each movie in this 1128-dimensional space are listed in genome-scores.csv. 

To figure out the mapping between movie IDs and movie names, see movies.csv. 

We know what movies each user has watched and the star rating they assigned for the 

movies. This information is contained in ratings.csv. Since we want to recommend only 

movies that users enjoyed, we include only movies that the user has rated four or five stars. 

Now, we characterize each user based on the kinds of movies they like, in other words, a 

user (vector) is a sum of movie vectors they liked. Figure 8.8 illustrates the idea: 

 

Figure 8.8. The three key matrices 

In order to represent each user as a vector in the Tag Genome space, we take the users 

matrix that tells us which movies the users liked and use it to sum vectors from the movies 

matrix that represents each movie. We can use the same method to represent any new user 

as a vector, if we know a few movies they have enjoyed. We normalize each user vector to 

unit length, as we don’t want the number of movies watched to make any difference, only 

the nature of the movies should count. 

The operations depicted in Figure 8.8 are implemented in Listing 8.1 that we use as a 

utility module. Most of the code in the listing is used for loading and transforming data from 

CSV files. The movies matrix is loaded in load_model_movies_mtx from a CSV that contains 

a genome_dim (1128) number of rows for each movie. We chunk the file in fixed-sized 

vectors, stored in a dictionary keyed by movie ID. 

The users matrix is a bit trickier to load since each user has watched a variable number 

of movies. Based on our learnings from Chapter 5, which highlighted the performance of 

NumPy arrays, and Chapter 7 that showed the power of Apache Arrow, we will use these two 

projects to handle the large dataset efficiently. We use Arrow’s filter method to only 

include rows with a high rating. We use NumPy’s unique method to count the number of 

movies watched by a user, chunk the rows accordingly, and store the resulting list of movie 

IDs watched by a user in a dictionary keyed by user ID. 
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Listing 8.1 Loading movie data                                                                               

from pyarrow.csv import read_csv 
import numpy as np 
 
def load_model_movies_mtx():    #A 
    genome_dim = read_csv('genome-tags.csv').num_rows    #B 
    genome_table = read_csv('genome-scores.csv')    #C 
    movie_ids = genome_table['movieId'].to_numpy()    #D 
    scores = genome_table['relevance'].to_numpy()    #D 
    model_movies_mtx = {}    #E 
    for i in range(0, len(scores), genome_dim):    #E 
        model_movies_mtx[movie_ids[i]] = scores[i:i+genome_dim]    #E 
    return model_movies_mtx, genome_dim 
 
def load_model_users_mtx():    #F 
    ratings = read_csv('ratings.csv') 
    good = ratings.filter(ratings['rating'].to_numpy() > 3.5)    #G 
    ids, counts = np.unique(good['userId'].to_numpy(), 
                            return_counts=True)    #H 
    movies = good['movieId'].to_numpy() 
    model_users_mtx = {}    #I 
    idx = 0 
    for i, user_id in enumerate(ids): 
        model_users_mtx[user_id] = tuple(movies[idx:idx + counts[i]])    #I 
        idx += counts[i] 
    return model_users_mtx 
 
def load_movie_names():    #J 
    import csv 
    names = {} 
    with open('movies.csv', newline='') as f: 
        reader = iter(csv.reader(f)) 
        next(reader) 
        for movie_id, name, _ in reader: 
            names[int(movie_id)] = name 
    return names 

#A Load the movies matrix 

#B Parse the dimensionality of the Tag Genome 

#C Parse the movie genome file 

#D Extract the two columns we need as NumPy arrays 

#E Extract individual movie vectors from the long array 

#F Load the users matrix 

#G Include only watched movies that received 4 or 5 stars 

#H Determine how many movies each user watched 

#I Extract individual user vectors from the long array 

#J Load movie ID - movie name mapping 

Save the code to a utility module movie_data.py. 

Finally, we create the user vectors in Listing 8.2. The make_user_vectors function works 

by combining information from the user matrix and movie matrix. As a small optimization, 

we avoid creating a separate vector for each user, as we don’t need to store the user vectors 

explicitly - more about that later - but instead we reuse the same vector for each user 

sequentially. 
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Listing 8.2 Making user vectors                                                                               

import numpy as np 
 
def make_user_vectors(movie_sets, model_movies_mtx): 
    user_vector = next(iter(model_movies_mtx.values())).copy()    #A 
    for user_id, movie_set in movie_sets: 
        user_vector.fill(0)    #B 
        for movie_id in movie_set:    #C 
            if movie_id in model_movies_mtx: 
                user_vector += model_movies_mtx[movie_id]    #D 
        yield user_id,\ 
              movie_set,\ 
              user_vector / np.linalg.norm(user_vector)    #E 

#A Extract the first movie vector as a template 

#B Clear the user vector 

#C Iterate through movies watched by the user 

#D Create the user vector by summing movie vectors 

#E Normalize the user vector to unit length 

Save the code to a utility module movie_uservec.py. We will use this soon in a training 

workflow. 

TRAINING A RUDIMENTARY RECOMMENDATIONS MODEL 

Figure 8.9 shows how our project is progressing: We are done with the input data part. Next, 

we sketch a rudimentary recommendation model as a placeholder for future work.  

 

Figure 8.9. Recommendation system project: First iteration of the training flow 

To produce recommendations for a new user, we will find similar users by measuring the 

vector distance between the new user and all existing users and by picking the nearest 

neighbors. This would require hundreds of thousands of distance measurements just for a 

single set of recommendations, which is computationally very expensive. 

Fortunately, highly optimized libraries exist to speed up the nearest neighbor search. We 

will use one such library, Annoy, that Spotify created for the purposes of their music 

recommendation systems. Annoy will create an index, a model, of all user vectors which we 

can save and use later to produce recommendations. 

Listing 8.3 shows a workflow that trains a recommendation model. It uses the functions 

from movie_data to load the data, store them as artifacts, and produce user vectors which it 

feeds to Annoy. Annoy will then produce an efficient representation of the user vector space. 
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Listing 8.3 Recommendation model training flow                                                                              

from metaflow import FlowSpec, step, conda_base, profile, resources 
from tempfile import NamedTemporaryFile 
 
ANN_ACCURACY = 100    #A 
 
@conda_base(python='3.8.10', libraries={'pyarrow': '5.0.0', 
                                        'python-annoy': '1.17.0'}) 
class MovieTrainFlow(FlowSpec): 
 
    @resources(memory=10000) 
    @step 
    def start(self):    #B 
        import movie_data 
        self.model_movies_mtx, self.model_dim =\ 
            movie_data.load_model_movies_mtx() 
        self.model_users_mtx = movie_data.load_model_users_mtx() 
        self.movie_names = movie_data.load_movie_names() 
        self.next(self.build_annoy_index) 
 
    @resources(memory=10000) 
    @step 
    def build_annoy_index(self): 
        from annoy import AnnoyIndex 
        import movie_uservec 
        vectors = movie_data.make_user_vectors(\ 
                    self.model_users_mtx.items(), 
                    self.model_movies_mtx)    #C 
        with NamedTemporaryFile() as tmp: 
            ann = AnnoyIndex(self.model_dim, 'angular')   #D 
            ann.on_disk_build(tmp.name)    #D 
            with profile('Add vectors'): 
                for user_id, _, user_vector in vectors:    #E 
                    ann.add_item(user_id, user_vector)    #E 
            with profile('Build index'): 
                ann.build(ANN_ACCURACY)    #F 
            self.model_ann = tmp.read()    #G 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    MovieTrainFlow() 

#A Increase this parameter to improve accuracy of the Annoy index 

#B The start step stores movie data as artifacts 

#C Iterator that produces user vectors for all existing users 

#D Initialize an Annoy index 

#E Feed user vectors to the index 

#F Finalize the index 

#G Store the index as an artifact 

Save the code to a file movie_train_flow.py. To run the flow, make sure you have the 

MovieLens CSVs in the current working directory. Run the flow as follows: 
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# python movie_train_flow.py --environment=conda run 

Building an index takes about 10-15 minutes. You can speed up the process at the cost of 

lower accuracy by lowering the ANN_ACCURACY constant. If you are curious to know how the 

constant affects the Annoy index, see the documentation of the build method at 

https://github.com/spotify/annoy.  

After the index has been built, it is stored as an artifact. We will use this artifact in the 

next sections to produce recommendations, first as a batch workflow, then in real-time. 

8.1.2 Batch predictions 

Now that we have a model, we can focus on the core of this chapter: Using a model to 

produce predictions. How should we do it in practice? Let’s consider how the discussion could 

play out in a business setting. 

It is likely that the startup’s systems are already organized as microservices, individual 

containers that expose well-defined APIs. Following the same pattern, it would feel natural to 

bake the recommendation systems as another microservice (which we will do in the next 

section). However, during discussions with the engineering team, following potential issues 

are identified with the microservice approach: 

• The model takes much more memory and CPU power than existing lightweight web 

services. Company’s container orchestration system would need to be changed to 

accommodate the new service. 

• How should we scale the service? What if we get a surge of new users? The amount of 

compute power to produce thousands of recommendations per second is non-trivial. 

• Isn’t it wasteful to keep requesting recommendations every time the user refreshes 

the page? The recommendations don’t change until the user has completed watching a 

movie. Maybe we should cache the recommendations somehow? 

• Are you, the data scientist, going to be responsible for operating the new 

microservice? Engineers are responsible for their microservices but operating them 

requires a sophisticated toolchain which the data science team hasn’t used before. 

Also, you recognize the cold start problem: When a new user signs up, there’s no data to 

produce recommendations for them. A product manager suggests that we could ask the user 

for a few movies they like as a part of the sign up process to address the issue. 

All the above points are valid concerns. After pondering the situation for a while, you 

come up with a radically different approach: What if instead of a microservice, you produce 

recommendations for all the existing users as a big batch operation, structured as a 

workflow. For existing users, we can produce a long list of recommendations so even after 

they have watched a movie, the list won’t change drastically. You can refresh the list, say, 

nightly. 

To solve the cold start problem when a new user signs up, we can ask them to choose 

two movies they have enjoyed in the past, amongst, say, the top 1000 most popular movies. 

Based on their initial choice, we can recommend other movies they might enjoy. A key 

observation is that we can precompute recommendations for all possible pairs of movies. 

Figure 8.10 visualizes the situation: Conceptually, the user chooses a row corresponding 

to a movie and then a column corresponding to another movie. We exclude the diagonal - we 
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don’t allow the user to choose the same movie twice. Since the choice of (movie A, movie B) 

is equal to (movie B, movie A) - the order doesn’t matter - we can also exclude one half of 

the matrix. Hence, we need to precompute recommendations only for the upper triangle, the 

dark gray area in the matrix. You may remember the formula for determining the number of 

dark cells in matrix, i.e. the number of 2-combinations 10002, which equals 499,500. 

 

Figure 8.10. Producing recommendations for all pairs of movies (the dark triangle) 

In other words, we can handle any choice made by the user by precomputing about half a 

million recommendations, which is quite doable! We gain many benefits by doing this: We 

can write the recommendations to a database that the engineering team manages. There are 

no performance concerns, no scalability concerns, no need to cache anything, and no new 

operational overhead. Batch predictions seem like a great approach for the use case. 

PRODUCING RECOMMENDATIONS 

Per the spiral approach, we should consider how the results will be consumed by outside 

systems before we spend too much time in producing them. We will start by thinking through 

how we can use the model to produce recommendations, to better understand the shape of 

the results. We will then focus on sharing the results, and then come back to finalize the 

batch prediction flow. Figure 8.11 shows our progress. 

 

Figure 8.11. Recommendation system project: Focusing on predictions 
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The Annoy index produced by MovieTrainFlow allows us to find nearest neighbors for a 

new user vector quickly. How should we go from similar users to actual movie 

recommendations? A simple policy is to consider what other movies the neighbors have 

enjoyed and recommend them. 

Figure 8.12 illustrates the idea. Imagine we have a vector for a new user, depicted by the 

large gray circle. Using the Annoy index we can find its neighbors, bounded by the oval. 

Based on the users matrix, we know what movies the neighbors have enjoyed, so we can 

simply count the frequencies of movies in the neighborhood, exclude the ones that the user 

has watched already, and return the remaining highest frequency movies as 

recommendations. In the figure, all the neighbors have watched the movie Alien, so it has 

the highest frequency and hence becomes our recommendation. If the user had already 

watched all the movies in the neighborhood, we can increase the size of the neighborhood 

until we find valid recommendations. 

 

Figure 8.12. Neighborhood of similar users (the dashed circle) 

Listing 8.4 shows a utility module that implements the logic. The load_model function is 

used to load the Annoy index from an artifact. Annoy wants to read the model from a file, so 

we have to write the model first to a temporary file. The recommend function produces 

recommendations for a set of users, represented by sets of movie IDs they have watched 

(movie_sets). It increases the size of the neighborhood until new movies are found. The 

find_common_movies returns the top_n most commonly watched movies in the 

neighborhood, excluding movies that the user has already seen. 
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Listing 8.4 Producing recommendations                                                                         

from collections import Counter 
from tempfile import NamedTemporaryFile 
from movie_uservec import make_user_vectors    #A 
 
RECS_ACCURACY = 100    #B 
 
def load_model(run):    #C 
    from annoy import AnnoyIndex 
    model_ann = AnnoyIndex(run.data.model_dim) 
    with NamedTemporaryFile() as tmp:    #D 
        tmp.write(run.data.model_ann)    #D 
        model_ann.load(tmp.name)    #D 
    return model_ann,\ 
           run.data.model_users_mtx,\ 
           run.data.model_movies_mtx 
 
def recommend(movie_sets, 
              model_movies_mtx, 
              model_users_mtx, 
              model_ann, 
              num_recs):    #E 
    for _, movie_set, vec in make_user_vectors(movie_sets, 
                                               model_movies_mtx):    #F 
        for k in range(10, 100, 10):    #G 
            similar_users =\ 
                model_ann.get_nns_by_vector(vec, 
                                            k, 
                                            search_k=RECS_ACCURACY)    #H 
            recs = find_common_movies(similar_users, 
                                      model_users_mtx, 
                                      num_recs, 
                                      exclude=movie_set)    #I 
            if recs: 
                break 
        yield movie_set, recs 
 
def find_common_movies(users, model_users_mtx, top_n, exclude=None):    #I 
    stats = Counter() 
    for user_id in users: 
        stats.update(model_users_mtx[user_id])    #J 
    if exclude: 
        for movie_id in exclude:    #K 
            stats.pop(movie_id, None)    #K 
    return [int(movie_id) 
            for movie_id, _ in stats.most_common(top_n)]    #L 

#A Use the same function to create vectors as training 

#B Lower this value for faster, less accurate results 

#C Load an Annoy index from an artifact 

#D Allow Annoy to read the index from a file 

#E Return recommendations for the given users 

#F Produce user vectors 

#G Increase the neighborhood size until recommendations are found 

#H Find the nearest neighbors using the Annoy index 

#I Find the most frequently liked movies in the neighborhood 

#J Use the users matrix to collect statistics about movies watched 
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#K Exclude movies that the new user has already seen 

#L Return the top-N most frequently liked movies 

Save the code to a file movie_model.py. We will use the module soon. 

Note that we use the same make_user_vectors function both to train the model (build an 

index) as well as produce predictions. This is very important as models must use the same 

feature space for training and predictions. Remember how in Chapter 7 we discussed how 

feature encoders turn facts into features. While we can’t guarantee that facts stay stable 

over time - facts changing is called data drift - at least we can guarantee that the feature 

encoders, here make_user_vectors, are used consistently. 

IMPORTANT: Place data processing and feature encoding code in a separate module that you can share 

between training and prediction flows, ensuring that features are produced consistently. 

Now that we have a good idea of how to produce recommendations, let’s consider how 

we can share them with outside systems effectively. 

SHARING RESULTS ROBUSTLY 

Let’s build an integration with a database that is used by a web application showing 

recommendations. Figure 8.13 shows our progress. In a real-life project, you would most 

likely use a library specific to your data warehouse or database to store the results. Here, to 

demonstrate the idea, we write the results to a SQLite database which is conveniently built 

into Python.  

 

Figure 8.13. Recommendation system project: Focusing on outputs 

Listing 8.5 shows a function, save, which creates a database (stored in a file) with two 

tables: movies, which stores information about movies (movie ID, name, and whether they 

should be shown during the signup process), and recs which stores a list of recommended 

movies for each pair of movies chosen during signup.  
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Listing 8.5 Storing recommendations                                                                          

import sqlite3 
 
def recs_key(movie_set):    #A 
    return '%s,%s' % (min(movie_set), max(movie_set)) 
 
def dbname(run_id):    #B 
    return 'movie_recs_%s.db' % run_id 
 
def save(run_id, recs, names): 
    NAMES_TABLE = "CREATE TABLE movies_%s("\ 
                  "   movie_id INTEGER PRIMARY KEY,"\ 
                  "   is_top INTEGER, name TEXT)" % run_id    #C 
    NAMES_INSERT = "INSERT INTO movies_%s "\ 
                   "VALUES (?, ?, ?)" % run_id    #D 
    RECS_TABLE = "CREATE TABLE recs_%s(recs_key TEXT, "\ 
                 "    movie_id INTEGER)" % run_id    #E 
    RECS_INSERT = "INSERT INTO recs_%s VALUES (?, ?)" % run_id    #F 
    RECS_INDEX = "CREATE INDEX index_recs ON recs_%s(recs_key)" % run_id    #G 
 
    def db_recs(recs):    #H 
        for movie_set, user_recs in recs: 
            key = recs_key(movie_set) 
            for rec in user_recs: 
                yield key, int(rec) 
 
    name = dbname(run_id) 
    with sqlite3.connect(name) as con:    #I 
        cur = con.cursor()    #I 
        cur.execute(NAMES_TABLE)    #I 
        cur.execute(RECS_TABLE)    #I 
        cur.executemany(NAMES_INSERT, names)    #I 
        cur.executemany(RECS_INSERT, db_recs(recs))    #I 
        cur.execute(RECS_INDEX)    #I 
    return name    #J 

#A Make a canonical key out of two movie IDs. The order doesn’t matter. 

#B Return a versioned database name.  

#C SQL to create a movies table. 

#D SQL to insert movies in the table. 

#E SQL to create a recommendations table. 

#F SQL to insert recommendations in the table. 

#G SQL to create an index to speed up querying. 

#H Make recommendations compatible with our SQL statement. 

#I Create and populate a database with recommendations. 

#J Return the versioned database name 

Save the code to a file movie_db.py. We will use the module soon. 

Note an important detail about the save function: It versions the database and the tables 

with a Metaflow run ID. Versioning the outputs is crucial, as it allows you to: 
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• Operate multiple parallel versions safely: You can have multiple versions of 

recommendations in production, e.g. using the @project decorator we discussed in 

Chapter 6. For instance, this is required if you want to A/B test recommendation 

variants with live traffic. Thanks to versioning, the variants can never interfere with 

each other. 

• Separate publishing of results, validation, and promotion to production. Using 

this pattern, you can safely run a batch prediction workflow but its results don’t take 

effect until you point the consumers at the new table, making it possible to validate 

the results first. 

• Write all results as an atomic operation. Imagine the workflow fails while writing 

results. It would be very confusing if half of the results were new, half old. Many 

databases support transactions but not all, especially if results span multiple tables or 

even multiple databases. The versioning approach works with all systems. 

• Experiment safely: Even if someone runs the workflow on their laptop during 

prototyping, there won’t be an adverse effect on production systems automatically.   

• Aid debugging and auditing: Imagine a user reports unexpected or incorrect 

predictions. How do you know what they were seeing exactly? Versioning makes sure 

that you can backtrack a full lineage of predictions from the UI back to model training. 

• Clean up old results efficiently. In particular if you version the whole tables of 

results, you can quickly clean old results with a single “DROP TABLE” statement. 

We will discuss these topics in more detail in Section 8.2 about Model Operations. 

RECOMMENDATION: Always include a version identifier in all results you write to external systems. 

Now we have the two key ingredients, a module to produce recommendations and a 

module to share them, we can develop a flow that precomputes all recommendations needed 

during the signup. 

PRODUCING A BATCH OF RECOMMENDATIONS 

Next, we will implement the last missing piece: Producing hypothetical user profiles and 

generating recommendations for them. We will do this in a flow that will use the latest model 

produced by MovieTrainFlow. Figure 8.14 shows our progress. 

 

Figure 8.14. Recommendation system project: Finalizing predictions 
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Having a separate model to train a model and batch-produce predictions is useful as it 

allows you to schedule the two flows independently. For instance, you could retrain the 

model nightly and refresh recommendations hourly. 

A key challenge with batch predictions is scale and performance: Producing hundreds of 

thousands of recommendations takes many compute cycles but it shouldn’t take hours or 

days to complete a run. Luckily, as shown in the listings below, we can use familiar tools and 

techniques to address the challenge: Horizontally scaling workflows from Chapter 3, scalable 

compute layers from Chapter 4, performance tips from Chapter 5, and patterns for large-

scale data processing from Chapter 7. Once finished, we can deploy the workflow to 

production using the lessons from Chapter 6. 

Figure 8.15 shows a general architecture of batch prediction workflows: We start by 

fetching data that we want to predict with. We split the data to multiple batches that can be 

processed in parallel. Finally, we send the results to an outside system.  

 

Figure 8.15. Typical structure of a batch prediction workflow 

In this example, we produce recommendations only for hypothetical new users who pick 

two of their favorite movies during the signup process. In a real product, we would update 

recommendations for existing users as well, fetching their user profiles every time the flow 

runs. 

As discussed in the beginning of this section, we limit the number of movies new users 

can choose to limit the number of combinations we have to precompute. To increase the 

likelihood that a new user is able to find their favorites, we pick the top N most popular 

movies. Listing 8.6 shows a function top_movies that finds the subset of popular movies. 

We will produce all combinations of popular movies, resulting in about 500,000 pairs for 

top-1000 movies. We can produce recommendations for these 500,000 hypothetical user 

profiles in parallel. We split the list of pairs to chunks of 100,000 profiles using a utility 

function make_batches. 

  

303

https://livebook.manning.com/#!/book/effective-data-science-infrustructure/discussion


©Manning Publications Co. To comment go to liveBook 

Listing 8.6 Utilities for batch recommendations                                                                           

from collections import Counter 
from itertools import chain, groupby 
 
def make_batches(lst, batch_size=100000):    #A 
    batches = [] 
    it = enumerate(lst) 
    for _, batch in groupby(it, lambda x: x[0] // batch_size): 
        batches.append(list(batch)) 
    return batches 
 
def top_movies(user_movies, top_k):    #B 
    stats = Counter(chain.from_iterable(user_movies.values())) 
    return [int(k) for k, _ in stats.most_common(top_k)] 

#A Split a list to fixed-size chunks and return a list of chunks 

#B Count all movie IDs in the user matrix and return the top K most popular ones 

Save the code to a file movie_recs_util.py. It will be used in the flow below. 

Listing 8.7 puts all the pieces together: It generates all movie pairs in the start step, 

produces recommendations for batches of user profiles in parallel in the batch_recommend 

step, and aggregates and stores the results in the join step, following the pattern depicted 

in Figure 8.15 above. 

Listing 8.7 Batch recommendations flow                                                                          

from metaflow import FlowSpec, step, conda_base, Parameter,\ 
                     current, resources, Flow, Run 
from itertools import chain, combinations 
 
@conda_base(python='3.8.10', libraries={'pyarrow': '5.0.0', 
                                        'python-annoy': '1.17.0'}) 
class MovieRecsFlow(FlowSpec): 
 
    num_recs = Parameter('num_recs', 
                         help="Number of recommendations per user", 
                         default=3) 
    num_top_movies = Parameter('num_top', 
                               help="Produce recs for num_top movies", 
                               default=100) 
 
    @resources(memory=10000) 
    @step 
    def start(self): 
        from movie_recs_util import make_batches, top_movies 
        run = Flow('MovieTrainFlow').latest_successful_run    #A 
        self.movie_names = run['start'].task['movie_names'].data 
        self.model_run = run.pathspec 
        print('Using model from', self.model_run) 
        model_users_mtx = run['start'].task['model_users_mtx'].data 
        self.top_movies = top_movies(model_users_mtx, 
                                     self.num_top_movies)    #B 
        self.pairs = make_batches(combinations(self.top_movies, 2))    #C 
        self.next(self.batch_recommend, foreach='pairs') 
 
    @resources(memory=10000) 
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    @step 
    def batch_recommend(self):    #D 
        from movie_model import load_model, recommend 
        run = Run(self.model_run) 
        model_ann, model_users_mtx, model_movies_mtx = load_model(run)    #E 
        self.recs = list(recommend(self.input, 
                                   model_movies_mtx, 
                                   model_users_mtx, 
                                   model_ann, 
                                   self.num_recs))    #F 
        self.next(self.join) 
 
    @step 
    def join(self, inputs): 
        import movie_db 
        self.model_run = inputs[0].model_run 
        names = inputs[0].movie_names 
        top = inputs[0].top_movies 
        recs = chain.from_iterable(inp.recs for inp in inputs)    #G 
        name_data = [(movie_id, int(movie_id in top), name) 
                     for movie_id, name in names.items()] 
        self.db_version = movie_db.save(current.run_id, recs, name_data)    #H 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    MovieRecsFlow() 

#A Fetch the latest model 

#B Produce a list of the most popular movies 

#C Produce hypothetical user profiles: pairs of popular movies 

#D These steps are run in parallel 

#E Load the Annoy index 

#F Produce recommendations for this batch 

#G Aggregate recommendations across all batches 

#H Save recommendations to the database 

Save the code to a file movie_recs_flow.py. Run the flow as follows: 

# python movie_recs_flow.py --environment=conda run 

By default, only top-100 movies are considered. You can add an option --num_top=1000 

(or higher) to precompute recommendations for more movies. After the run has finished, you 

should find a SQLite database file, prefixed with movie_recs_, in the current working 

directory. The database containing recommendations for 500,000 users (hypothetical user 

profiles) is about 56MB - there is clearly room for growth! If execution time is a concern, you 

can make things faster by running the code e.g. “run --with batch” in the cloud. 

Note how we use the expression Flow('MovieTrainFlow').latest_successful_run to 

access the model produced by MovieTrainFlow. Importantly, this call operates in the same 

namespace as MovieRecsFlow meaning that each user can experiment with flows freely 

without interfering with each other’s work. As discussed in Chapter 6, namespacing works 
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with the @project decorator too, so you can safely deploy various variants of the flows in 

production concurrently. 

You can use the sqlite3 command line tool to open the database and query it. However, 

this chapter is all about producing actual business value using models, so we can take a step 

further and view the results on a web UI! 

USING RECOMMENDATIONS IN A WEB APP 

In a real-life business setting, your responsibility as a data scientist would probably end at 

writing the results to a database. Another engineering team can easily read the 

recommendations from the database and build an application around them. Figure 8.16 

shows the final missing step.  

 

Figure 8.16. Recommendation system project: Focusing on the web UI 

Although usually you can rely on other engineering teams when it comes to web 

application development, it is occasionally useful to be able to build a quick application 

prototype to see the results in action. Fortunately, powerful open-source frameworks exist 

that make it easy to build simple dashboards in Python. Below, we will use one such 

framework, Plotly Dash (https://plotly.com/dash/), to build a simple UI to simulate the 

signup flow with recommendations. 

First, let’s create a simple client library to fetch recommendations from the SQLite 

database. We need only two functions: get_recs that returns precomputed 

recommendations given two movies and get_top_movies that returns a list of top movies 

that we have recommendations for. Listing 8.8 shows the client. 
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Listing 8.8 Accessing recommendations                                                                          

import sqlite3 
from movie_db import dbname, recs_key 
 
class MovieRecsDB(): 
    def __init__(self, run_id):    #A 
        self.run_id = run_id 
        self.name = dbname(run_id) 
        self.con = sqlite3.connect(self.name) 
 
    def get_recs(self, movie_id1, movie_id2):    #B 
        SQL = "SELECT name FROM movies_{run_id} AS movies "\ 
              "JOIN recs_{run_id} AS recs "\ 
              "ON recs.movie_id = movies.movie_id "\ 
              "WHERE recs.recs_key = ?".format(run_id=self.run_id) 
        cur = self.con.cursor() 
        cur.execute(SQL, [recs_key((movie_id1, movie_id2))]) 
        return [k[0] for k in cur] 
 
    def get_top_movies(self):    #C 
        SQL = "SELECT movie_id, name FROM movies_%s "\ 
              "WHERE is_top=1" % self.run_id 
        cur = self.con.cursor() 
        cur.execute(SQL) 
        return list(cur) 

#A Open a versioned database given a run ID 

#B Fetch recommendations for a hypothetical user profile consisting two movies 

#C Return a list of top movies 

Save the code to a file movie_db_client.py. Next, install Plotly Dash by running 

# pip install dash 

Plotly Dash allows you to build a whole web application, both the user interface running in 

the browser, as well as the web server backend in a single Python module. You can refer to 

their documentation and tutorials to learn the tool in detail. Below, we use it to put together 

a small, self-explanatory prototype UI, shown in Figure 8.17. 

 

Figure 8.17. Web UI for our example recommendation system 
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Listing 8.9 shows the Dash app that produces the web UI of Figure 8.17. The app has two 

main parts: The layout of the app is defined in app.layout, including a list of movies in 

dropdowns which we fetch from the database. A function update_output is called by Dash 

whenever the user clicks the button. If the user has chosen two movies, we can fetch the 

corresponding recommendations from the database. 

Listing 8.9 Recommendations Web App                                                                 

import sys 
from dash import Dash, html, dcc 
from dash.dependencies import Input, Output, State 
from movie_db_client import MovieRecsDB 
 
RUN_ID = sys.argv[1]    #A 
movies = [{'label': name, 'value': movie_id} 
          for movie_id, name in MovieRecsDB(RUN_ID).get_top_movies()]    #B 
 
app = Dash(__name__) 
app.layout = html.Div([    #C 
    html.H1(children="Choose two movies you like"), 
    html.Div(children='1st movie'), 
    dcc.Dropdown(id='movie1', options=movies), 
    html.Div(children='2nd movie'), 
    dcc.Dropdown(id='movie2', options=movies), 
    html.P([html.Button(id='submit-button', children='Recommend!')]), 
    html.Div(id='recs') 
]) 
 
@app.callback(Output('recs', 'children'), 
              Input('submit-button', 'n_clicks'), 
              State('movie1', 'value'), 
              State('movie2', 'value')) 
def update_output(_, movie1, movie2):    #D 
    if movie1 and movie2:         
        db = MovieRecsDB(RUN_ID) 
        ret = [html.H2("Recommendations")] 
        return ret + [html.P(rec) for rec in db.get_recs(movie1, movie2)]    #E 
    else: 
        return [html.P("Choose movies to see recommendations")] 
 
if __name__ == '__main__': 
    app.run_server(debug=True)    #F 

#A Specify the version of the database as a command line argument 

#B Fetch a list of top movies from the database 

#C Define the UI components 

#D Function that is called when the button is clicked 

#E Fetch recommendations from the database 

#F Start the web server 

Save the code to a file movie_dash.py. To start the server, you need a database produced 

by MovieRecsFlow in the current working directory. Once you have a database, you can 

point the server at it by specifying a run ID: 

# python movie_dash.py 1636864889753383 
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The server should output a line like 

Dash is running on http://127.0.0.1:8050/ 

You can copy-paste the URL to your browser which should then open the web app. Now 

you can choose any pair of movies and get recommendations personalized to your taste! 

Figure 8.18 shows two example results. 

 

Figure 8.18. Examples of recommendations 

Notice how the UI is perfectly snappy. There is no noticeable delay in producing the 

recommendations, resulting in a pleasant user experience. This is a major benefit of batch 

predictions: There isn’t a faster way of producing predictions than not computing anything at 

all on the fly. 

Congratulations for developing a fully functional recommendations system, from raw data 

all the way to a functional web UI! In the next section we will see how the same model could 

be used to produce recommendations on the fly, which is useful for situations where we don’t 

know the input data in advance. 
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8.1.3 Real-time predictions 

Remember Figure 8.19 from the beginning of the chapter: If you have at least 15 minutes 

from the moment you know the input data to the time when predictions are actually needed, 

you can consider batch predictions. The previous section demonstrated an extreme case of 

this: We could pre-generate all input data, pairs of top movies, long before predictions were 

needed. 

 

Figure 8.19. Focusing on streaming and real-time predictions 

Clearly, we don’t always have the luxury of time. For instance, we may want to 

recommend movies or other products a few minutes or seconds after the user has viewed 

them. Although ideally it would be convenient to have a system that can work the same way 

regardless of the timescale, in practice there are tradeoffs that one needs to make to 

produce predictions quickly. For instance, if you need answers in seconds, there’s not enough 

time to spin instances up and down on the compute layer on the fly. Or, there’s not enough 

time to download a large dataset from S3 as a whole. 

Hence, systems that need to produce answers quickly need to be built differently. In the 

context of machine learning, such systems are often called model serving or model hosting 

systems. Their operating principle at the high-level is simple: First, you need a model (file) 

which is typically produced by a batch workflow, e.g. by Metaflow. Often, the model is 

accompanied by functions for preprocessing incoming data, e.g. to convert incoming facts to 

features, and functions for post-processing results in the desired format. The bundle of a 

model and supporting code can be packaged as a container, which is deployed on a 

microservice platform which takes care of running the containers and routing requests to 

them. 
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Figure 8.20. Architecture of a typical model hosting service 

Figure 8.20 illustrates the high-level architecture of a model hosting service: 

1. A real-time prediction is produced by sending a request, e.g. over HTTP, to a hosting 

endpoint, which is hosted at an address like http://hosting-service/predict. 

2. The endpoint decodes and validates the request and forwards it to a preprocessing 

function. 

3. A preprocessing function is responsible for converting facts included in the request to 

features used by the deployed model. Often, the request itself doesn’t contain all the 

required data but additional data is looked up from a database. For instance, the 

request may contain just a user ID and the latest data related to the user is fetched 

from the DB. 

4. A feature vector / tensor is fed to the model which produces a prediction. Sometimes, 

a model may be an ensemble of multiple models, or even a complex graph of models. 

5. The prediction is processed by a post-processing function to convert it to a suitable 

response format. 

6. A response is returned. 

Note that the architecture of a model hosting service is not that different from a typical 

microservice that is not related to machine learning: You just need a container with a service 

that can receive requests, process some code on the fly, and return a response. For some 

data science use cases, it is quite feasible to use an existing microservice platform, such as 

Fargate on AWS or even Google AppEngine for model serving. 

However, there are a few additional concerns that may make it necessary to use a 

specialized model serving platform, or layer additional services on top of a general-purpose 

platform: 
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• The models may be computationally demanding and require a lot of memory and 

specialized hardware like GPUs. Traditional microservice platforms may have a hard 

time accommodating such heavy-weight services.  

• Models and their inputs and outputs need to be monitored in real-time. Many model 

monitoring solutions exist to help with this use case. 

• You want to use a feature store to take care of converting facts to features in a 

consistent manner. In Figure 8.20, the feature store would replace or integrate to the 

pre-processing function and the DB. 

If you need a specialized platform, all major cloud providers provide model serving 

solutions like AWS Sagemaker Hosting or Google AI Platform. Or, you can leverage open-

source libraries like Seldon (seldon.io). 

EXAMPLE: REAL-TIME MOVIE RECOMMENDATIONS 

Let’s practice real-time predictions using a minimal model hosting service. This example 

expands our previous movie recommendation system by allowing recommendations to be 

produced based on a list of movies which can be updated in real-time. For instance, you 

could use this system to produce real-time recommendations based on all movies that the 

user has been browsing recently. 

The example is not meant to be production ready as such. Instead, it will demonstrate 

the key concepts of a model serving system, as outlined in Figure 8.20: 

• A service endpoint that is accessible over HTTP. 

• A preprocessing function that uses the same featurization module as the training code. 

• Loading and using a model trained with a batch workflow. 

• Postprocessing the predictions in a decided output format. 

We will use a popular Python web framework, Flask (flask.palletsprojects.com) to wrap 

the logic as a web service. The example can be easily adapted to any other web framework 

as well. Listing 8.10 lists a fully functional model hosting service. 
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Listing 8.10 Model hosting service                                                                     

from io import StringIO 
from metaflow import Flow 
from flask import Flask, request 
from movie_model import load_model, recommend    #A 
from movie_data import load_movie_names    #A 
 
class RecsModel():    #B 
    def __init__(self): 
        self.run = Flow('MovieTrainFlow').latest_successful_run    #C 
        self.model_ann,\ 
        self.model_users_mtx,\ 
        self.model_movies_mtx = load_model(self.run)    #D 
        self.names = load_movie_names()    #D 
 
    def get_recs(self, movie_ids, num_recs):    #E 
        [(_, recs)] = list(recommend([(None, set(movie_ids))], 
                                     self.model_movies_mtx, 
                                     self.model_users_mtx, 
                                     self.model_ann, 
                                     num_recs))    #F 
        return recs 
 
    def get_names(self, ids):    #G 
        return '\n'.join(self.names[movie_id] for movie_id in ids) 
 
    def version(self):    #H 
        return self.run.pathspec 
 
print("Loading model") 
model = RecsModel()    #I 
print("Model loaded") 
app = Flask(__name__) 
 
def preprocess(ids_str, model, response):    #J 
    ids = list(map(int, ids_str.split(',')))    #K 
    response.write("# Model version:\n%s\n" % model.version())    #L 
    response.write("# Input movies\n%s\n" % model.get_names(ids)) 
    return ids 
 
def postprocess(recs, model, response):    #M 
    response.write("# Recommendations\n%s\n" % model.get_names(recs)) 
 
@app.route("/recommend")    #N 
def recommend_endpoint(): 
    response = StringIO() 
    ids = preprocess(request.args.get('ids'), model, response)    #O 
    num_recs = int(request.args.get('num', 3)) 
    recs = model.get_recs(ids, num_recs)    #P 
    postprocess(recs, model, response)    #Q 
    return response.getvalue()    #R 

#A Use helper modules from the previous section 

#B Model helper class 

#C Fetch the latest model ID 

#D Load the model 

#E Generate recommendations 

#F Produce recommendations for one set of movies 
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#G A helper function to map IDs to movie names 

#H Return model version 

#I Load model (this may take a few minutes) 

#J Preprocess function to parse information from the request 

#K Parse integer IDs from a comma-separated string 

#L Output a version identifier of the model 

#L Postprocess function to output response 

#M Flask endpoint specification 

#N Process input from the request 

#O Produce recommendations 

#P Finalize and output response 

Save the code to movie_recs_server.py. To run the server, you need an execution 

environment that includes the libraries needed by the model. Since this is not a Metaflow 

workflow but a Flask app, we can’t use @conda as in earlier examples. Instead, you can 

create a suitable Conda environment manually by executing: 

# conda create -n movie_recs python-annoy==1.17.0 pyarrow=5.0.0 flask metaflow 
# conda activate movie_recs 

Once the environment has been activated, you can execute the service locally as follows: 

# FLASK_APP=movie_recs_server flask run 

It will take a minute or more to load the model and start the server.  Once the server is 

up and running, you will see output 

Model loaded 
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit) 

After this, you can start querying the server. To send an HTTP request to the server, 

open another terminal window where we can send requests to the server using the 

command-line client curl. You can browse movies.csv for interesting movie IDs and then 

query recommendations as follows:  

# curl 'localhost:5000/recommend?ids=4993,41566' 

It takes about 50-100ms to produce a response that looks like this: 

MovieTrainFlow/1636835055130894 
# Input movies 
Lord of the Rings: The Fellowship of the Ring, The (2001) 
Chronicles of Narnia: The Lion, the Witch and the Wardrobe, The (2005) 
# Recommendations 
Lord of the Rings: The Two Towers, The (2002) 
Lord of the Rings: The Return of the King, The (2003) 
Harry Potter and the Sorcerer's Stone (2001) 

You can use the num parameter to produce more recommendations: 
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# curl 'localhost:5000/recommend?ids=16,858,4262&num=10' 
# Model version: 
MovieTrainFlow/1636835055130894 
# Input movies 
Casino (1995) 
Godfather, The (1972) 
Scarface (1983) 
# Recommendations 
Goodfellas (1990) 
Godfather: Part II, The (1974) 
Donnie Brasco (1997) 
Léon: The Professional (1994) 
Bronx Tale, A (1993) 
Taxi Driver (1976) 
Raging Bull (1980) 
Departed, The (2006) 
No Country for Old Men (2007) 
American Gangster (2007) 

Congratulations! You have created a web service that produces recommendations in real-

time. While the service works, there are a number of improvements that one should make to 

make the service fully production ready. First, on the infrastructure side consider: 

• The service should be packaged in a Docker container so it can be deployed to a 

microservice platform.  

• This service is able to handle only a single request at a time. You should consult the 

Flask documentation to learn how to deploy the app so that multiple requests can be 

handled in parallel. 

• If even more scale is needed, you can run multiple containers in parallel. This requires 

a load balancer to route traffic to individual containers. 

• It is a good idea to capture logs and basic metrics about requests volumes, for which 

many off-the-shelf tools are available. 

Second, on the modeling side, consider adding: 

• A model monitoring solution to track model metrics in real-time. 

• A solution to track data quality in requests to detect changes in the input data 

distribution. 

• A service to manage A/B experiments. 

Most ML-specific tooling required by model deployments relate to debuggability and the 

quality of results. Imagine if one or many predictions returned by the service look odd. The 

first question is what model produced the predictions? To answer the question, we included 

the model version in each prediction response - without a model version identifier, it would 

be impossible to know where the prediction originated from, especially in a complex 

environment that may have multiple model versions deployed concurrently. 

Figure 8.21 illustrates the idea of model lineage. 
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Figure 8.21. Backtracking model lineage from predictions to raw data 

• Each prediction response should contain an ID denoting what deployment produced

the response.

• Each deployment, e.g. a container running a certain version of the model, should get a

unique ID.

• The container should know the ID of the model and the run that produced the model.

• Knowing the run ID, we can trace back to the data that was used to train the model.

As highlighted earlier in this book, there isn’t one right way of deploying models to 

production. The simplest use cases may require something as simple as the Flask app 

demonstrated above. In general, it is a good idea to consider off-the-shelf tooling for model 

deployments, which take care of many of the above concerns out of the box. 

8.2 Summary 

• To produce value, machine learning models must be connected to other surrounding

systems.

• There isn’t a single way to deploy a data science application and produce predictions:

The right approach depends on the use case.

• Choose the right infrastructure for predictions depending on the time window between

when the input data becomes known and when predictions are needed.

• Another key consideration is whether surrounding systems need to request predictions

from the model, or whether the model can push predictions to the surrounding

systems. In the latter case, batch or streaming predictions are a good approach.

• If the input data is known at least 15-30 minutes before predictions are needed, it is

often possible to produce predictions as a batch workflow, which is the most

straightforward approach technically.

• It is important to attach a version identifier in all model outputs, both in batch and

real-time use cases.

• Real-time predictions can be produced either using a general-purpose microservice

framework or a solution that is tailored to data science applications. The latter may be

the best approach if your models are computationally demanding.

• Make sure your deployments are debuggable by investing in monitoring tools and

lineage: It should be possible to track every prediction all the way to the model and a

workflow that produced it.
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9  
Machine Learning With the Full 

Stack 

This chapter covers: 

• Developing a custom framework that makes it easier to develop models and features for a 

particular use case. 

• Training a deep learning model in a workflow. 

• Summarizing the lessons learned in this book. 

We have now covered all layers of the infrastructure stack, shown again in Figure 9.1, except 

the topmost one: Model Development. Also we only scratched the surface of the Feature 

Engineering layer in Chapter 7. Isn’t it paradoxical that a book about machine learning and 

data science infrastructure spends so little time talking about the core concerns of machine 

learning: models and features? 
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Figure 9.1. Infrastructure stack with the data scientist’s areas of interest 

The focus is deliberate. First, many excellent books already exist about these topics. Also 

mature modeling libraries like TensorFlow and PyTorch come with a plethora of in-depth 

documentation and examples. Second, as depicted in Figure 9.1, these topics tend to be the 

core areas of expertise of professional data scientists and machine learning engineers 

whereas the lower layers are not. To boost the day-to-day productivity of data scientists 

effectively, it makes sense to help them where help is needed the most: the lower layers of 

the stack. 

Also, the topmost layers tend to be very application-specific in contrast to the lower 

layers. For instance, the models and features required by a computer vision application are 

very different from those used by an application that balances marketing budgets. However, 

they both can use the same approach to accessing data from the cloud, running and 

orchestrating containers, and versioning and tracking projects. 

Out of the four Vs discussed in Chapter 1, Volume, Velocity, Validity, and Variety, it is the 

last one that’s hardest to address with a standardized solution. If the infrastructure 

addresses the first three Vs well, it becomes feasible to develop and deploy a wide variety of 

use cases even when each project comes with its own data pipelines, bespoke models, and 

custom business logic. 

Going back to another theme discussed in Chapter 1, we can minimize accidental 

complexity caused by boilerplate code that deals with data, compute, and orchestration by 

providing a common, low-overhead solution to the lower layers of the stack. At the same 

time, we can accept the fact that real-world use cases come with some amount of inherent 

complexity which the top layers need to manage. Not everything can be abstracted away. 

Building on what you have learned in this book, you can design your own libraries that 

support modeling and feature engineering for your specific use cases, which further helps to 

keep complexity in check. In the same way as traditional software leverages features and 

services provided by an operating system like OS X or Linux, your libraries can treat the 

lower layers of the stack as an operating system for any data-intensive applications. 

However, you don’t need to rush into doing this. It is a good idea to build a few applications 
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without any special abstractions to better understand if and where common patterns exist 

which would benefit from extra support and standardization. 

To show how all these concepts work together, including a custom library to support 

model development, the next section walks through a realistic project that touches all layers 

of the stack. After the comprehensive example, we conclude the book by summarizing the 

lessons learned throughout the book. 

9.1 Pluggable Feature Encoders and Models 

This section will expand the taxi-trip cost prediction example we started in Chapter 7. Our 

original version was very naive. We used linear regression to predict the price based on one 

variable: the distance travelled. You can probably spot at least one glaring issue in this 

model: the duration of the trip matters in addition to the distance. 

Let’s imagine predicting trip prices accurately was a real business challenge. What would 

a realistic solution look like? For starters, it is unlikely that you would know the optimal 

solution to a real-life business problem from the get go. To find a working solution, you have 

to experiment with a number of models and features, testing their performance through 

multiple iterations. You would certainly use more than one variable for prediction, so you 

would likely spend a good amount of time designing and implementing suitable features. 

Likely, you would test the features with different model architectures too. 

Also, real-life data is often lacking. As shown by the example in Chapter 7, you can get 

reasonably good results with a very simple model when high-quality features, like the actual 

distance of the trip, are available. What if our application doesn’t have access to the 

taximeter or the car’s odometer but only to the rider’s smartphone? Maybe we only know the 

location of pick up and drop off and we have to predict the price without knowing the exact 

distance traveled, which we will practice below. 

In this section, we will develop a more advanced model in a more realistic setting. Since 

we know we will need to iterate on multiple models and features - maybe we have a team of 

data scientists working on the problem - we standardize the model development setup by 

implementing a simple framework that allows us to plug in custom feature encoders and test 

various models flexibly. 

Using the framework, we develop features that use geographic locations to predict the 

price. To make this possible, we upgrade our model from the 1950s-style linear regression to 

a 2020s-style deep learning model built with Keras and Tensorflow. To validate our model, 

we put together a benchmark that compares performance of various modeling approaches. 

As before, we access the raw data directly from a public S3 bucket. 

9.1.1 Pluggable models and feature encoders 

We have a few different ideas for the kinds of models and features that might perform well 

for the price prediction task. We want to quickly prototype and evaluate them to determine 

the most promising approach. Technically, we could implement each idea as a separate 

workflow from scratch, but we would likely notice that many approaches for the task follow a 

similar pattern: They all load raw data, split it to a train and test sets, run feature encoders, 
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train a model, and evaluate it using the test data. The implementation of the model and the 

feature encoders varies but not the overall structure of the workflow. 

To make the model development process more efficient, we implement the common 

pattern as a shared workflow which allows different feature encoders and models to be 

plugged in easily. The approach is similar to how we compared various algorithms for 

computing a co-occurrence matrix in Chapter 5. Figure 9.2 illustrates the approach. 

 

Figure 9.2. Pluggable models and feature encoders (light gray) inside a shared workflow 
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To implement a new modeling approach, the scientist needs to develop three 

components, shown as light gray boxes in Figure 9.2: First, feature encoders that turn raw 

input data, facts, to features. To make featurization efficient, we can parallelize it over 

multiple shards of data. Second, after all shards have been processed, we can merge the 

feature shards into an input dataset for the model. You may recognize this approach as the 

map-reduce pattern we introduced in Chapter 7. Third, we need a set of functions to train a 

model. 

These three components can be implemented as pluggable modules. We develop two 

separate workflows to execute the plugins: One to process the features and another to train 

a model. By keeping the data and training separate, we make it possible to schedule them 

independently. For instance, you can use the shared featurization workflow to produce data 

for a batch prediction workflow, if you want to follow the batch prediction pattern introduced 

in Chapter 8. Following this pattern, you could, say, retrain a model daily and price new data 

hourly. 

In Python, it is typical to define various implementations of the same interface as 

separate classes. Let’s start by defining the interfaces of the three components: encoder, 

merge, and model training. A feature encoder needs to implement two methods: encode that 

converts a shard of input data, i.e. a fact shard, represented as a PyArrow table, to a feature 

shard. The shards are then provided to another method, merge, that merges the shards into 

a dataset that can be processed by a model. Figure 9.3 illustrates the role of the two 

functions. 
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Figure 9.3. Encoding sharded input data first to features and then to a merged dataset 

An encode function can output multiple named features, A-D in Figure 9.3, which are 

output as a dictionary where the key is a feature name and the value is a data structure, 

chosen by the encoder, which stores the features. Our current code expects that all shards 

produce the same set of features but as an exercise, you can change the code to relax the 

requirement. The merge function gets all feature shards as its inputs and it gets to choose 

how to combine them to produce a final dataset. 

DEFINING A FEATURE ENCODER 

Many models can read data efficiently as NumPy arrays, so we start by defining a template 

for encoders that output NumPy arrays. Listing 9.1 shows a general-purpose super class - a 

class specific encoders can derive from - that expects that the encode function outputs a 

NumPy array. It takes care of merging NumPy arrays produced in shards without being 

opinionated about what the arrays contain exactly. 
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Listing 9.1 Feature encoder superclass that handles NumPy arrays                                                                              

class NumpyArrayFeatureEncoder(): 
    @classmethod    #A 
    def encode(cls, table):    #B 
        return {}    #C 
         
    @classmethod  
    def merge(cls, shards):    #D 
        from numpy import concatenate 
        return {key: concatenate([shard[key] for shard in shards])    #E 
                for key in shards[0]}    #F 

#A Define the methods as class-methods, so they can be used without instantiating the class 

#B Accept a shard of facts as a PyArrow table 

#C Encoders will override this method to produce NumPy arrays with features 

#D Accept a list of feature-shards 

#E Concatenate feature-shards into one large array 

#F Loop through all features 

We will be creating a number of small modules, so let’s create a dedicated directory for 

them, taxi_modules. Save the code in save_modules/numpy_encoder.py. 

Next, let’s define a feature encoder that uses the NumpyArrayFeatureEncoder we created 

above. The encoder shown in Listing 9.2 will work as a baseline: It grabs the trip_distance 

column and the actual trip price, total_amount, from the dataset as is, allowing us to 

compare the quality of our predictions that don’t use the distance feature directly. 
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Listing 9.2 Baseline feature encoder                                                                                

from taxi_modules.numpy_encoder import NumpyArrayFeatureEncoder 
 
class FeatureEncoder(NumpyArrayFeatureEncoder):    #A 
    NAME = 'baseline'    #B 
    FEATURE_LIBRARIES = {}    #C 
    CLEAN_FIELDS = ['trip_distance', 'total_amount']    #D 
     
    @classmethod 
    def encode(cls, table): 
        return {    #E 
            'actual_distance': table['trip_distance'].to_numpy(), 
            'amount': table['total_amount'].to_numpy() 
        } 

#A Reuse the merge method from NumpyArrayFeatureEncoder 

#B Set encoder name 

#C Define extra software dependencies for this encoder 

#D Define what columns in the fact table that should be cleaned 

#E Return two features as NumPy arrays 

Save the code in taxi_modules/feat_baseline.py. We will prefix all feature encoder 

modules with a “feat_” prefix, so we can discover them automatically. Note how the encoder 

defines a few top-level constants: 

• NAME identifies this feature encoder. 

• FEATURE_LIBRARIES define what extra software dependencies this encoder needs. 

• CLEAN_FIELDS is used to determine what columns of the facts table need to be 

cleaned. 

The role of these constants will become more clear below as we start using them. Next, 

let’s create a utility module that loads the plugins like the one defined above. 

LOADING AND EXECUTING PLUGINS 

It should be possible to create a new feature or a model simply by adding a file in the 

taxi_modules directory. Based on the file name, we can determine whether the module is a 

feature encoder or a model. Listing 9.3 walks through all files in the taxi_modules directory, 

imports modules with an expected prefix, and makes them available through shared 

dictionaries. 
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Listing 9.3 A flow with parameters                                                                                  

import os        
from importlib import import_module 
         
MODELS = {}    #A 
FEATURES = {}    #B 
FEATURE_LIBRARIES = {}    #C 
MODEL_LIBRARIES = {}    #D 
     
def init(): 
    for fname in os.listdir(os.path.dirname(__file__)):    #E 
        is_feature = fname.startswith('feat_')    #F 
        is_model = fname.startswith('model_')    #F 
        if is_feature or is_model: 
            mod = import_module('taxi_modules.%s' % fname.split('.')[0])    #G 
            if is_feature:     #H 
                cls = mod.FeatureEncoder 
                FEATURES[cls.NAME] = cls 
                FEATURE_LIBRARIES.update(cls.FEATURE_LIBRARIES.items()) 
            else: 
                cls = mod.Model 
                MODELS[cls.NAME] = cls 
                MODEL_LIBRARIES.update(cls.MODEL_LIBRARIES.items()) 

#A Map model names to model classes 

#B Map feature encoder names to feature encoder classes 

#C Record libraries needed by encoders 

#D Record libraries needed by models 

#E Walk through all files in the taxi_modules directory 

#F Check the file prefix 

#G Import the module 

#H Populate dictionaries containing encoders and models 

Save the code in taxi_modules/__init__.py. Note that the module needs to reside in the 

same directory with feature encoders and models for the file discovery to work correctly. 

To preprocess facts, we use the utility functions from table_utils.py we introduced in 

Chapter 7. Listing 9.4 shows the module again. 
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Listing 9.4 Removing outlier rows from an Arrow table                                                                             

def filter_outliers(table, clean_fields):    #A 
    import numpy 
    valid = numpy.ones(table.num_rows, dtype='bool')    #B 
    for field in clean_fields:    #C 
        column = table[field].to_numpy() 
        minval = numpy.percentile(column, 2)    #D 
        maxval = numpy.percentile(column, 98)    #D 
        valid &= (column > minval) & (column < maxval)    #E 
    return table.filter(valid)    #F 
         
def sample(table, p):    #G 
    import numpy 
    return table.filter(numpy.random.random(table.num_rows) < p)    #H 

#A Accept an pyarrow.Table and a list of columns to be cleaned 

#B Start with a filter that accepts all rows 

#C Process all columns one by one 

#D Find the top and bottom 2% of the value distribution 

#E Only include rows that fall between the 2-98% of the value distribution 

#F Return a subset of the rows that match the filter 

#G Sample a random p% of rows of the given table 

#H Flip a biased coin on each row, return the matching rows 

Save the code in taxi_modules/table_utils.py. For more details about how these 

functions work, refer to Chapter 7. Next, we can now define another helper module that 

executes the feature encoders. Listing 9.5 shows a utility module with two functions: 

execute preprocesses the facts table by cleaning all fields listed in CLEAN_FIELDS. It also 

takes a sample of input rows, if sample_rate is smaller than 1.0. After this, it executes all 

the discovered feature encoders, supplying them with the fact table. The merge function 

takes two lists of shards, features for training and testing separately, and merges each 

feature using the merge function specified by its encoder. 
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Listing 9.5 Executing feature encoders                                                                            

from itertools import chain 
from taxi_modules.table_utils import filter_outliers, sample 
from taxi_modules import FEATURES    #A 
 
def execute(table, sample_rate):    #B 
    clean_fields = set(chain(*[feat.CLEAN_FIELDS 
                               for feat in FEATURES.values()]))    #C 
    clean_table = sample(filter_outliers(table, clean_fields), sample_rate)    #D 
    print("%d/%d rows included" % (clean_table.num_rows, table.num_rows)) 
    shards = {} 
    for name, encoder in FEATURES.items():    #E 
        print("Processing features: %s" % feat) 
        shards[name] = encoder.encode(clean_table)    #F 
    return shards 
 
def merge(train_inputs, test_inputs):    #G 
    train_data = {} 
    test_data = {} 
    for name, encoder in FEATURES.items():    #H 
        train_shards = [inp.shards[name] for inp in train_inputs] 
        test_shards = [inp.shards[name] for inp in test_inputs] 
        train_data[name] = encoder.merge(train_shards)    #I 
        test_data[name] = encoder.merge(test_shards)     #I 
    return train_data, test_data 

#A Import discovered features 

#B Apply feature encoders to the fact table 

#C Produce a set of fields that need to be cleaned 

#D Clean and sample facts 

#E Iterate over all encoders 

#F Execute an encoder 

#G Merge training and test data separately 

#H Iterate over all features 

#I Merge feature shard for a feature 

Save the code in taxi_modules/encoders.py. Now we have the machinery ready for 

pluggable feature encoders! 

We can put together a workflow, shown in Listing 9.6, that discovers data, produces 

features for shards of data in parallel, and finally merges together a final dataset. The 

structure of the workflow is similar to TaxiRegressionFlow from Chapter 7, except that this 

time we don’t hardcode features in the workflow itself but let them be specified by plugins. 

This way, data scientists can reuse the same workflow - making sure all results are 

comparable - and focus on developing new feature encoders and models. 

In this example, we will use two months of Taxi trip data that was introduced in Chapter 

7, September and October 2014. To test model performance we use data from November. 

We will handle each month of data as a separate shard using foreach. 
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Listing 9.6 Workflow that executes pluggable feature encoders                                                                              

from metaflow import FlowSpec, step, conda, S3, conda_base,\ 
                     resources, Flow, project, Parameter 
from taxi_modules import init, encoders, FEATURES, FEATURE_LIBRARIES 
from taxi_modules.table_utils import filter_outliers, sample 
init() 
TRAIN = ['s3://ursa-labs-taxi-data/2014/09/',    #A 
         's3://ursa-labs-taxi-data/2014/10/'] 
TEST = ['s3://ursa-labs-taxi-data/2014/11/']    #B 
 
@project(name='taxi_regression') 
@conda_base(python='3.8.10', libraries={'pyarrow': '3.0.0'}) 
class TaxiRegressionDataFlow(FlowSpec): 
    sample = Parameter('sample', default=0.1) 
 
    @step 
    def start(self): 
        self.features = list(FEATURES)    #C 
        print("Encoding features: %s" % ', '.join(FEATURES)) 
        with S3() as s3: 
            self.shards = [] 
            for prefix in TEST + TRAIN: 
                objs = s3.list_recursive([prefix])    #D 
                self.shards.append([obj.url for obj in objs])    #D 
        self.next(self.process_features, foreach='shards') 
 
    @resources(memory=16000) 
    @conda(libraries=FEATURE_LIBRARIES)    #E 
    @step 
    def process_features(self): 
        from pyarrow.parquet import ParquetDataset 
        with S3() as s3: 
            objs = s3.get_many(self.input)    #F 
            table = ParquetDataset([obj.path for obj in objs]).read()    #F 
        self.shards = encoders.execute(table, self.sample)    #G 
        self.next(self.join_data) 
 
    @resources(memory=16000) 
    @conda(libraries=FEATURE_LIBRARIES) 
    @step 
    def join_data(self, inputs): 
        self.features = inputs[0].features    #H 
        self.train_data,\ 
        self.test_data = encoders.merge(inputs[1:], [inputs[0]])    #I 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    TaxiRegressionDataFlow() 

#A Use two months of data for training 

#B Test with one month of data 

#C Persist the set of features as an artifacts for later analysis 

#D Discover data shards 

#E Ensure that libraries needed by encoders are available 
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#F Download and decode a shard 

#G Execute encoders for a shard 

#H Ensure the features artifact is available after the join step 

#I Merge shards separately for train and test data 

Save the code in taxi_regression_data.py next to the taxi_modules directory. The 

directory structure should look like this: 

taxi_regression_data.py 
taxi_modules/ 

You can now test the workflow: 

# python taxi_regression_data.py --environment=conda run 

It should print out “Processing features: baseline” three times once for each shard. 

If you are curious, you can open a notebook to inspect the train_data and test_data 

artifacts which we will put in use soon. 

If you have a compute layer like AWS Batch or Kubernetes set up as discussed in Chapter 

4, you can execute the workflow in the cloud. For instance, you can try: 

# python taxi_regression_data.py --environment=conda run --with batch 

As discussed earlier, this way you can scale the workflow to handle much larger datasets, 

and produce the features faster, if needed. 

Pluggable encoders are the main exciting thing about this workflow. Let’s test how they 

work by creating another encoder. This time we create a feature that doesn’t depend on the 

trip_distance field in the input data - let’s assume our application doesn’t have it available 

or we don’t trust the taximeter reading. Instead, we determine the distance traveled based 

on the coordinates of the pickup and dropoff locations that are available in the fact table. 

Our new feature called euclidean, defined in Listing 9.7, measures the distance as a 

Euclidean distance between the locations. This is obviously inaccurate: Taxi trips in a city are 

longer than a straight line distance and worse, the earth is round so we can’t use the simple 

Euclidean formula over long distances. However, taking a simple approach with known 

deficiencies is a good way to get started quickly. 
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Listing 9.7 Encoding Euclidean trip distance as a feature                                                                                

from taxi_modules.numpy_encoder import NumpyArrayFeatureEncoder 
 
class FeatureEncoder(NumpyArrayFeatureEncoder): 
    NAME = 'euclidean' 
    FEATURE_LIBRARIES = {} 
    CLEAN_FIELDS = ['pickup_latitude', 'pickup_longitude',    #A 
                    'dropoff_latitude', 'dropoff_longitude'] 
          
    @classmethod 
    def encode(cls, table): 
        import numpy 
        plon = table['pickup_longitude'].to_numpy()    #B 
        plat = table['pickup_latitude'].to_numpy()    #B 
        dlon = table['dropoff_longitude'].to_numpy()    #B 
        dlat = table['dropoff_latitude'].to_numpy()    #B 
        euc = numpy.sqrt((plon - dlon)**2 + (plat - dlat)**2)    #C 
        return {'euclidean_distance': euc} 

#A Extract coordinates from the fact table 

#B Convert coordinates to NumPy arrays 

#C Compute the Euclidean distance between the coordinates 

Save the code in taxi_modules/feat_euclidean.py. Note that the encoder performs all 

math using NumPy arrays, avoiding conversion to individual Python objects, which makes the 

encoder very performant - following the advice from Chapter 5.  

After this, run the workflow again: 

# python taxi_regression_data.py --environment=conda run 

This time, you should see both “Processing features: baseline” and “Processing 

features: euclidean”. Adding a new feature was just a matter of writing the definition of 

the feature in Listing 9.7 - no changes in the workflow was needed. You can imagine multiple 

scientists collaborating and creating new features and models over time, which get evaluated 

and benchmarked using a shared workflow, ensuring the validity of results. 

The modules in the taxi_modules directory demonstrated a useful pattern: We use the 

underlying general-purpose infrastructure and abstractions around it, like Metaflow, as the 

foundation. On top of it, we created a custom, domain-specific library which makes it easier 

to iterate on a specific application - in this case, the trip price prediction. Figure 9.4 

illustrates the pattern. 
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Figure 9.4. Domain-specific library on top of the foundational infrastructure stack 

This pattern allows you to handle a diverse set of use cases effectively. The general-

purpose infrastructure can focus on foundational concerns, data, compute, orchestration, and 

versioning, while higher-level, domain-specific libraries can codify policies on how individual 

applications should be developed. It is also feasible to evolve the domain-specific libraries 

quickly as needs of applications change while keeping the foundations stable. 

RECOMMENDATION: Use domain-specific libraries to codify application-specific policies and general-

purpose infrastructure to handle low-level concerns. This way, you don’t need to optimize the whole stack for 

the needs of a specific use case. 

Now that we have a train and test datasets available, we can start benchmarking models. 

Similar to feature encoders, we want to be able to define new models easily as pluggable 

modules. 

9.1.2 Benchmarking models 

For this project, we define a model as a combination of model architecture and training code, 

as well as a set of features. This allows us to test different model variants that use different 

feature sets easily. Similar to feature encoders, we define a common interface that all 

models must implement. The interface defines the following methods: 

• fit(train_data) trains the model given the training data. 

• mse(model, test_data) evaluates the model with test_data and returns the Mean 

Squared Error measuring prediction accuracy. 

• save_model(model) serializes the model to bytes. 

• load_model(blob) deserializes the model from bytes. 
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The last two methods are required to persist the model. By default, as described in 

Chapter 3, Metaflow uses Python’s built-in serializer, pickle, to serialize objects to bytes. 

Many machine learning models include their own serialization methods which work more 

reliably than pickle, so we allow model classes to use a custom serializer. Notably, the 

resulting bytes are still stored as a Metaflow artifact, so models are stored and accessed as 

any other workflow result. 

We start by defining a naive linear regression model that predicts the price using the 

actual distance, like the one we used in Chapter 7. We can compare other models that don’t 

rely on the actual_distance feature against this baseline. We will define code for a 

general-purpose regressor soon but we start with a model specification, shown in Listing 9.8. 

Listing 9.8 Baseline linear regression model                                                                              

from taxi_modules.regression import RegressionModel    #A 
 
class Model(RegressionModel): 
    NAME = 'distance_regression'    #B 
    MODEL_LIBRARIES = {'scikit-learn': '0.24.1'}    #C 
    FEATURES = ['baseline']    #D 
    regressor = 'actual_distance'    #E 

#A Leverage a general-purpose regression model 

#B Model name 

#C Use SciKit Learn as the modeling library 

#D Require baseline feature encoder 

#E Use the actual_distance variable to predict the price 

Save the code in taxi_modules/model_baseline.py. Remember that Listing 9.8 above 

loads models from files that have the “model_” prefix. The role of the FEATURES and 

regressor attributes becomes clearer in the context of the RegressionModel base class, 

which is defined in Listing 9.9 below. 
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Listing 9.9 Superclass for linear regression models                                                                           

class RegressionModel(): 
 
    @classmethod 
    def fit(cls, train_data): 
        from sklearn.linear_model import LinearRegression 
        d = train_data[cls.FEATURES[0]][cls.regressor].reshape(-1, 1)    #A 
        model = LinearRegression().fit(d, train_data['baseline']['amount'])    #A 
        return model 
 
    @classmethod 
    def mse(cls, model, test_data): 
        from sklearn.metrics import mean_squared_error 
        d = test_data[cls.FEATURES[0]][cls.regressor].reshape(-1, 1)    #B 
        pred = model.predict(d)    #B 
        return mean_squared_error(test_data['baseline']['amount'], pred)    #B 
 
    @classmethod 
    def save_model(cls, model):    #C 
        return model 
 
    @classmethod 
    def load_model(cls, model):    #C 
        return model 

#A Fit a single-variable linear regression model using SciKit Learn 

#B Test a single-variable linear regression model using SciKit Learn 

#C Use standard Python pickle to serialize the model, nothing custom needed 

Save the code in taxi_modules/regression.py. The module defines a simple linear 

regression model using SciKit Learn which uses a single variable, defined in the regressor 

attribute, to predict the trip price, stored in the amount variable. We use SciKit Learn’s 

mean_squared_error function to measure the model accuracy in the mse method. Nothing 

special is needed to serialize and deserialize the model in save_model and load_model, as 

SciKit Learn models work well with Pickle. 

MODEL WORKFLOW 

Let’s define a workflow to run the models. We allow each model to define the features they 

expect to be available. Only models that have all their features available are enabled. This 

way, models don’t fail randomly when you remove and add feature encoders during 

prototyping. The list of eligible models is determined in the start step. 

Figure 9.5 shows the structure of the workflow. 
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Figure 9.5. The relationship between the two taxi workflows: Data and models 

Each model, depicted by hypothetical models A, B, and C, are handled by a separate 

foreach branch. First, in the train step we train a model using the train_data dataset 

produced by TaxiRegressionDataFlow. Then, in the eval step, we evaluate the model 

performance using test_data. In the join step, a summary of model evaluations is printed 

out. Listing 9.10 shows the code. 
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Listing 9.10 Workflow that executes pluggable models                                                                                   

from metaflow import FlowSpec, step, conda, S3, conda_base,\ 
                     resources, Flow, project, profile 
from taxi_modules import init, MODELS, MODEL_LIBRARIES 
init() 
@project(name='taxi_regression') 
@conda_base(python='3.8.10', libraries={'pyarrow': '3.0.0'}) 
class TaxiRegressionModelFlow(FlowSpec): 
 
    @step 
    def start(self): 
        run = Flow('TaxiRegressionDataFlow').latest_run    #A 
        self.data_run_id = run.id    #A 
        self.features = run.data.features    #B 
        self.models = [name for name, model in MODELS.items()    #C 
                       if all(feat in self.features\ 
                              for feat in model.FEATURES)] 
        print("Building models: %s" % ', '.join(self.models)) 
        self.next(self.train, foreach='models') 
 
    @resources(memory=16000) 
    @conda(libraries=MODEL_LIBRARIES) 
    @step 
    def train(self): 
        self.model_name = self.input 
        with profile('Training model: %s' % self.model_name): 
            mod = MODELS[self.model_name] 
            data_run = Flow('TaxiRegressionDataFlow')[self.data_run_id]    #D 
            model = mod.fit(data_run.data.train_data)    #E 
            self.model = mod.save_model(model)    #F 
        self.next(self.predict) 
 
    @resources(memory=16000) 
    @conda(libraries=MODEL_LIBRARIES) 
    @step 
    def predict(self): 
        with profile("Predicting using %s" % self.model_name): 
            mod = MODELS[self.model_name] 
            data_run = Flow('TaxiRegressionDataFlow')[self.data_run_id] 
            model = mod.load_model(self.model)    #G 
            self.mse = mod.mse(model, data_run.data.test_data)    #H 
        self.next(self.join) 
 
    @step 
    def join(self, inputs): 
        for inp in inputs:    #I 
            print("MODEL %s MSE %f" % (inp.model_name, inp.mse)) 
        self.next(self.end) 
 
    @step 
    def end(self): 
        pass 
 
if __name__ == '__main__': 
    TaxiRegressionModelFlow() 

#A Access input data from the latest run of TaxiRegressionDataFlow 

#B Record features used by this run 
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#C Determine which models can be executed based on their input features 

#D Access training data 

#E Train the model 

#F Save the model in an artifact using a model-specific serializer 

#G Load the model and deserialize it 

#H Evaluate the model performance 

#I Print out a summary of model scores 

Save the code in taxi_regression_model.py. Since this flow accesses results produced by 

TaxiRegressionDataFlow, make sure you have run that flow first. You can run the flow as 

usual: 

# python taxi_regression_model.py --environment=conda run 

You should see the following lines in the output: “Training model: distance_regression” 

and “Evaluating distance_regression”. The final evaluation should look roughly as follows: 

MODEL distance_regression MSE 9.451360 

To make things more interesting, let’s define another regression model that uses the 

Euclidean distance feature we defined earlier. See Listing 9.11. 

Listing 9.11 Regression model that uses the Euclidean distance feature       

from taxi_modules.regression import RegressionModel 
 
class Model(RegressionModel): 
    NAME = 'euclidean_regression' 
    MODEL_LIBRARIES = {'scikit-learn': '0.24.1'} 
    FEATURES = ['euclidean'] 
    regressor = 'euclidean_distance' 

Save the code in taxi_modules/model_euclidean.py and run the workflow again: 

# python taxi_regression_model.py --environment=conda run 
This time, you should see two models being trained and evaluated in parallel: 

distance_regression and euclidean_regression. The output will look like 
MODEL euclidean_regression MSE 15.199947 
MODEL distance_regression MSE 9.451360 

Not surprisingly, the mean squared error is higher for the model that uses Euclidean 

distance between the pickup and dropoff locations to predict price, compared to the baseline 

model that uses the actual distance traveled. With these two models, we have established a 

solid baseline for future models: A more sophisticated model should be able to easily beat 

the performance of euclidean_regression. It would be great to get close to the 

performance of distance_regression just by relying on the location features. In the 

following section we build a much more sophisticated model to answer the challenge. 

9.2 Deep Regression Model 

If you have ever ridden a taxi in a big city, you know that the Euclidean distance between 

two locations and even the actual route length can be bad predictors of the actual time it 

takes to complete the trip. Some locations are prone to traffic jams or otherwise slow to 
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travel through. A smart model would learn to recognize such slow spots based on historical 

data and estimate the price of the trip accordingly. 

Let’s start by thinking how we can construct features that capture the notion of travel 

time and distance as a function of two locations. The first realization is that we don’t need an 

arbitrarily accurate location. The distance difference of a few city blocks typically doesn’t 

cause a systematic difference in price. Hence, instead of using exact coordinates, we can use 

a map grid, visualized in Figure 9.6, to encode start and finish locations. 

 

Figure 9.6. Hypothetical map grid over Manhattan 

For instance, using the grid in Figure 9.6, you can encode a trip between two locations as 

pairs of grid coordinates, such as A4-F2 and G7-B6. Naturally a real-world application would 

use a more fine-grained grid than the one illustrated in the figure. 

How would you encode location pairs like this as features? We can treat grid locations like 

A4 and F2 as tokens or words, like we did with Yelp review clustering in Chapter 5. We could 

have a high-dimensional vector that represents each grid location as a separate dimension. 

We could then apply multi-hot encoding to mark the pick-up and drop-off locations as 1s, 

and the other dimensions as 0s, to produce a sparse trip-vector. Figure 9.7 illustrates the 

idea. 
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Figure 9.7. Tax trips encoded as multi-hot binary vectors 

An inconvenient detail about this approach is that we have to fix the dimensions, i.e. the 

map grid, in advance. If we make the grid too small, we can’t handle trips outside the area. 

If we make it too big, the data becomes very sparse and possibly slow to process. Also, we 

must maintain a mapping between grid locations and the dimensions. 

The same problem exists with any high-cardinality categorical variables. A well-known 

solution to the problem is feature hashing: Instead of having a named dimension for each 

possible value, we produce a random hash for each value and place them to a random bin 

accordingly. Importantly, as long as the hash function stays consistent, the same value 

always ends up in the same bin, producing a multi-hot encoded matrix with a fixed, lower 

dimensionality compared to the first approach. Figure 9.8 illustrates the idea. 

 

Figure 9.8. Applying feature hashing to trip vectors 

In Figure 9.8, we assume that hash(A4) = bin 2, hash(F2) = bin 4 and so forth. Notice 

that we could enlarge the grid and add, say, a coordinate A99 without affecting existing data, 

which is a benefit of the hashing approach. Also, we don’t have to explicitly store the 

mapping between coordinate labels and dimensions, making the implementation a bit 

simpler. 
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As usual with hashing, there is no guarantee that two distinct values would always end up 

in distinct bins. It is possible that two distinct values end up in the same bin, causing random 

noise in the data. Despite this deficiency, feature hashing tends to work well in practice. 

Let’s assume that we want to test the idea of using a matrix of hashed grid-coordinate 

features as depicted in Figure 9.8. How should we encode and store the matrix in practice? 

While we could build a feature encoder producing a suitable matrix without considering what 

model is going to consume it, it doesn’t hurt to think through the problem end-to-end. 

Let’s look at the modeling problem at hand. Our model is going to be: 

• High-dimensional: To keep the model reasonably accurate, grid cells should be in the 

range of hundreds of meters or less. Hence, an area of 100 square kilometers 

requires 10,000 grid cells, i.e. 10,000 input dimensions. 

• Large-scale: We have tens of millions of trips in our input data which we can use to 

train the model. 

• Non-linear: The relationship between the pick up and drop off locations and price is a 

complex function of various variables which we want to model. 

• Sparse: Trips are not spread uniformly over the map. We have limited data for some 

areas and plenty for others. 

• Categorical regression model: We use categorical variables, discrete locations on the 

map grid, to predict a continuous variable, the trip price. 

Given the above characteristics, it seems clear that we need something more powerful 

than a linear regression model. The scale and non-linearity of the problem suggests that a 

deep learning model might be a suitable tool for the job. We choose to use Keras, an easy to 

use, popular package for deep learning, which is included in the Tensorflow package. 

Following the widely used nomenclature in the world of deep learning, we call the input 

matrices tensors. In this example, tensors behave pretty much like any other arrays, like 

NumPy arrays we have used earlier, so don’t let the fancy-sounding word scare you. In 

general, tensors can be thought of as multi-dimensional arrays that can be manipulated 

through well-defined mathematical operations. If you are curious, you can read more about 

them at https://www.tensorflow.org/guide/tensor. 

Developing a high-quality deep neural network model involves art and science, as well as 

many rounds of trial and error. We trust that these topics are familiar to professional data 

scientists already, or if not, a plethora of high-quality online materials and books are already 

available. Hence, details of deep learning are out of scope of this book. The goal of this book 

is to support data scientists who develop these models with effective infrastructure, like the 

scaffolding we have developed so far. 

9.2.1 Encoding input tensors 

Let’s create a feature encoder that implements the above idea. Our encoder should 

1. Convert coordinates to grid locations. We can use an off-the-shelf geohashing library, 

e.g. python-geohash, to accomplish this. Given a latitude and longitude pair, it 

produces a short string geo-token denoting the corresponding grid location. For more 

details about geohashes, see the Wikipedia article about the topic 

(https://en.wikipedia.org/wiki/Geohash). 
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2. Hash the geo-tokens to a fixed number of bins. 

3. Multi-hot-encode the bins to produce a sparse tensor. 

4. Merge and store feature shards, encoded as tensors, for subsequent use. 

There are two parameters in the encoder which can be tuned to adjust the resource 

consumption-accuracy tradeoff: 

• NUM_HASH_BINS determines the number of bins for feature hashing. The smaller the 

number the more hash collisions and hence noise there will be in the data. On the 

other hand, a higher number will require a larger model which is slower and more 

resource-consuming to train. You can experiment with a number that produces the 

best results - there isn’t a single right answer. 

• PRECISION determines the grain of the geohashes, i.e. the grid size. The higher the 

number the more accurate the locations are, but a higher number will require a higher 

NUM_HASH_BINS too, to avoid collisions. Also the higher the number, the more sparse 

the data will be, potentially hurting accuracy. The default PRECISION=6 corresponds to 

about 0.3x0.3 mile grid. 

The encoder is implemented in Listing 9.12.  
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Listing 9.12 Encoding hashed trip vectors as features         

from metaflow import profile 
NUM_HASH_BINS = 10000    #A 
PRECISION = 6    #B 
 
class FeatureEncoder(): 
    NAME = 'grid' 
    FEATURE_LIBRARIES = {'python-geohash': '0.8.5', 
                         'tensorflow-base': '2.6.0'} 
    CLEAN_FIELDS = ['pickup_latitude', 'pickup_longitude', 
                    'dropoff_latitude', 'dropoff_longitude'] 
 
    @classmethod 
    def _coords_to_grid(cls, table):    #C 
        import geohash    #D 
        plon = table['pickup_longitude'].to_numpy() 
        plat = table['pickup_latitude'].to_numpy() 
        dlon = table['dropoff_longitude'].to_numpy() 
        dlat = table['dropoff_latitude'].to_numpy() 
        trips = [] 
        for i in range(len(plat)):    #E 
            pcode = geohash.encode(plat[i], plon[i], precision=PRECISION)    #F 
            dcode = geohash.encode(dlat[i], dlon[i], precision=PRECISION)    #F 
            trips.append((pcode, dcode))    #G 
        return trips 
 
    @classmethod 
    def encode(cls, table): 
        from tensorflow.keras.layers import Hashing, IntegerLookup 
        with profile('coordinates to grid'): 
            grid = cls._coords_to_grid(table) 
        hashing_trick = Hashing(NUM_HASH_BINS)    #H 
        multi_hot = IntegerLookup(vocabulary=list(range(NUM_HASH_BINS)),    #I 
                                  output_mode='multi_hot', 
                                  sparse=True) 
        with profile('creating tensor'): 
            tensor = multi_hot(hashing_trick(grid))    #J 
        return {'tensor': tensor} 
     
    @classmethod 
    def merge(cls, shards): 
        return {key: [s[key] for s in shards] for key in shards[0]}    #K 

#A Hash geo-locations to 10000 bins 

#B Grid granularity 

#C Convert coordinates to grid locations 

#D Use the geohash library to produce grid locations 

#E Loop through all trips in the input table 

#F Produce a pair of geo-hashes for each trip 

#G Store the pairs in a list 

#H Use Keras’ hashing layer to perform feature hashing 

#I Use Keras’ IntegerLookup layer to perform multi-hot encoding 

#J Produce a tensor 

#K Merge tensors from feature-shards into a large tensor 

Save the code in taxi_modules/feat_gridtensor.py. For details about the Keras layers, 

Hashing and IntegerLookup, refer to Keras’ documentation at keras.io. In essence, they 
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implement the hashing and multi-hot encoding ideas that we discussed above. In the case of 

tensors, the merge method can simply collate the shards in a dictionary. There’s no need to 

merge them in a large tensor, as we will feed the tensor to the model through a custom data 

loader, shown below. 

DATA LOADER 

How to feed data into deep learning models efficiently is a deep topic of its own. A key 

challenge is that we may want to use GPUs to train the model but a typical GPU doesn’t have 

enough memory to hold the whole dataset in GPU-memory at once. To work around the 

limitation, we must feed data to the GPU in small batches. 

Listing 9.13 shows a simple data loader that accepts features shards as tensor_shards, 

produced by the merge method defined above. For training, we can specify a target 

variable, in our case a NumPy array containing the trip price, which is sliced and returned 

alongside the training data to the model. 
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Listing 9.13 Data loader for a Keras model                                                                              

BATCH_SIZE = 128    #A 
def data_loader(tensor_shards, target=None):    #B 
    import tensorflow as tf 
    _, dim = tensor_shards[0].shape    #C 
    def make_batches():    #D 
        if target is not None: 
            out_tensor = tf.reshape(tf.convert_to_tensor(target), 
                                    (len(target), 1))    #E 
        while True:    #F 
            row = 0    #G 
            for shard in tensor_shards:    #H 
                idx = 0    #I 
                while True:    #J 
                    x = tf.sparse.slice(shard, [idx, 0], [BATCH_SIZE, dim])    #K 
                    n, _ = x.shape    #L 
                    if n > 0:    #M 
                        if target is not None: 
                            yield x, tf.slice(out_tensor, [row, 0], [n, 1])    #N 
                        else: 
                            yield x    #O 
                        row += n    #P 
                        idx += n    #P 
                    else: 
                        break 
    input_sig = tf.SparseTensorSpec(shape=(None, dim))    #Q 
    if target is None: 
        signature = input_sig    #R 
    else: 
        signature = (input_sig, tf.TensorSpec(shape=(None, 1)))    #S 
    dataset = tf.data.Dataset.from_generator(make_batches,\ 
                output_signature=signature)    #T 
    data.prefetch(tf.data.AUTOTUNE)    #U 
    return input_sig, dataset 

#A Increase this value to speed up training 

#B Define the target variable for training, no target for testing 

#C Number of hash bins in input tensors 

#D Generate input batches with optional target vectors 

#E Convert NumPy array to a tensor 

#F Loop forever. Training code will stop when needed 

#G Reset target index after each epoch 

#H Loop over all feature shards 

#I Reseat shard index 

#J Extract batches from the shard until no more rows are left 

#K Slice a batch from the shard 

#L Get the number of rows in the batch 

#M If the batch is non-empty, yield it, otherwise move to the next shard 

#N Slice a vector from the target array 

#O If no target is specified, just return input data 

#P Increment row-indices to the next batch 

#Q Specify the type of the input tensor 

#R For testing, the dataset contains only input tensors 

#S For training, the dataset contains also target vectors 

#T Produce a dataset object wrapping the generator 

#U Optimize data access 
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Save the code in taxi_modules/dnn_data.py. A slight complication is caused by the fact 

that the target is one large NumPy array while training data is stored in multiple sparse 

tensor shards. We must make sure that features from both the sources stay aligned. Figure 

9.9 illustrates the situation. 

 

Figure 9.9. Aligned batches between sharded tensors and a single NumPy target array 

Figure 9.9 illustrates three feature shards on the left, the target array on the right. Note 

how the last batch at the end of each shard, batches 5, 8, and 10, are smaller than others. 

The sizes of feature shards are arbitrary and hence not always divisible by BATCH_SIZE. 

Listing 9.13 maintains two index variables: row to keep track of the row in the current shard 

and idx to keep track of the index in the target array. The row index resets at each shard 

whereas idx increments across shards. 

Batches are returned by a generator function, data_loader, which loops over data 

forever. In the context of machine learning, one iteration over the whole dataset is 

commonly called an epoch. The training procedure runs over multiple epochs, optimizing 

parameters of the model. Eventually, the training procedure hits a stopping condition, e.g. 

reaching a predefined number of epochs, and stops consuming data from the data loader. 
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The generator function is wrapped in a Tensorflow Dataset object that our Keras model is 

able to consume. We must manually specify the data types contained in the dataset: For 

training, the dataset contains tuples of a sparse sensor and a target variable. For testing, the 

dataset contains only sparse tensors. 

Note the BATCH_SIZE parameter at the top of the file. Adjusting the batch size is one of 

the key knobs you can turn to fine-tune training performance: Higher values will result in 

faster training, especially on GPUs, but the accuracy of the model may hurt. In general, 

lower values lead to better accuracy at the cost of slower training time. Another small detail 

worth highlighting is the dataset.prefetch call at the end: This call instructs Tensorflow, 

which Keras uses under the hood, to load a next batch to GPU memory while a previous 

batch is being computed, giving a small boost to training performance. 

Now we have machinery for producing input tensors which can be consumed by a custom 

data loader. The next step is to develop the model itself. 

9.2.2 Defining a deep regression model 

To give you an idea what a realistic model for our price prediction task looks like, we define 

and train a deep neural network model in Keras. We show how to feed it with data, run it on 

GPUs, monitor its training, and evaluate its performance against other models. The example 

resembles the process that any data scientist developing a similar model would go through. 

For starters, we take care of some mundane bookkeeping matters. We start by defining 

two utility functions, load_model and save_model, which can be used to persist any Keras 

model. The KerasModel helper class we define in Listing 9.14 allows you to store models as 

artifacts, working around the fact that Keras models can’t be pickled by default. 

The class leverages Keras’ built-in functions to save and load a model to and from a file. 

We can’t use the Keras functions as is, as local files won’t work across compute layers, e.g. 

when you “run –with batch”. Also, we want to leverage Metaflow’s built-in versioning and 

data store to keep track of models, which is easier than keeping local files organized 

manually. 

Listing 9.14 Superclass for Keras models                                                                           

import tempfile 
 
class KerasModel(): 
    @classmethod 
    def save_model(cls, model): 
        import tensorflow as tf 
        with tempfile.NamedTemporaryFile() as f: 
            tf.keras.models.save_model(model, f.name, save_format='h5')    #A 
            return f.read()    #B 
 
    @classmethod 
    def load_model(cls, blob): 
        import tensorflow as tf 
        with tempfile.NamedTemporaryFile() as f: 
            f.write(blob)    #C 
            f.flush() 
            return tf.keras.models.load_model(f.name)    #D 
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#A Save model to a temporary file 

#B Read bytes representing the model from the temporary file 

#C Write bytes to a temporary file 

#D Ask Keras to read the model from the temporary file 

Save the code in taxi_modules/keras_model.py. We can use these methods to handle any 

Keras model which subclasses KerasModel, like the one we define below. 

Next, we will define a model architecture for our non-linear regression task in Listing 

9.15. While the listing presents a reasonable architecture, there are likely many others that 

perform even better for this task. The process of finding an architecture that yields robust 

results involves a good amount of trial and error, speeding up of which is a key motivation 

for data science infrastructure. As an exercise, you can try to find a better performing 

architecture, both when it comes to training speed as well as accuracy. 

Listing 9.15 A flow with parameters                                                                                  

def deep_regression_model(input_sig):    #A 
    import tensorflow as tf 
    model = tf.keras.Sequential([ 
        tf.keras.Input(type_spec=input_sig),    #B 
        tf.keras.layers.Dense(2048, activation='relu'),    #C 
        tf.keras.layers.Dense(128, activation='relu'),    #C 
        tf.keras.layers.Dense(64, activation='relu'),    #C 
        tf.keras.layers.Dense(1)    #D 
    ]) 
    model.compile(loss='mean_squared_error',    #E 
                  steps_per_execution=10000,    #F 
                  optimizer=tf.keras.optimizers.Adam(0.001)) 
    return model 

#A Accept input tensor type signature as an argument 

#B The input layer is shaped based on the input data signature 

#C Define hidden layers 

#D Target variable (trip price) 

#E Minimize Mean Squared Error 

#F Accelerate processing on GPUs 

Save the code in taxi_modules/dnn_model.py. The model in Listing 9.15 consists of a 

sparse input layer, matching our input features, three hidden layers, and a dense output 

variable, representing the trip price we want to predict. Note that we compile the model with 

Mean Squared Error as our loss function, which is the metric we care about. The 

steps_per_exeuction parameter speeds up processing on GPUs by loading multiple batches 

for processing at once. 

Next, we will specify a model plugin by putting together all the pieces we have developed 

this far: 

• The model subclasses KerasModel for persistence. 

• Use data_loader from the dnn_data module to load data. 

• Load the model itself from the dnn_module module. 

Listing 9.16 shows the model module. 
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Listing 9.16 Model definition for the Keras model     

from .dnn_data import data_loader, BATCH_SIZE 
from .keras_model import KerasModel 
from .dnn_model import deep_regression_model 
EPOCHS = 4    #A 
 
class Model(KerasModel): 
    NAME = 'grid_dnn' 
    MODEL_LIBRARIES = {'tensorflow-base': '2.6.0'}    #B 
    FEATURES = ['grid'] 
 
    @classmethod 
    def fit(cls, train_data): 
        import tensorflow as tf 
        input_sig, data = data_loader(train_data['grid']['tensor'], 
                                      train_data['baseline']['amount'])    #C 
        model = deep_regression_model(input_sig)    #D 
        monitor = tf.keras.callbacks.TensorBoard(update_freq=100)    #E 
        num_steps = len(train_data['baseline']['amount']) // BATCH_SIZE    #F 
        model.fit(data,    #G 
                  epochs=EPOCHS, 
                  verbose=2, 
                  steps_per_epoch=num_steps, 
                  callbacks=[monitor]) 
        return model 
 
    @classmethod 
    def mse(cls, model, test_data): 
        import numpy 
        _, data = data_loader(test_data['grid']['tensor'])    #H 
        pred = model.predict(data) 
        arr = numpy.array([x[0] for x in pred])    #I 
        return ((arr - test_data['baseline']['amount'])**2).mean()    #J 

#A Number of training epochs. Increase for more accurate results 

#B Change this if you want to leverage GPUs 

#C Initialize a data loader 

#D Create a model 

#E Monitor progress with TensorBoard 

#F Number of batches 

#G Train the model 

#H Initialize a data loader in testing more, no target variable 

#I Convert result tensor to a NumPy array 

#J Compute the Mean Squared Error between predictions and correct prices 

Save the code in taxi_modules/model_grid.py. We are now ready to start training the 

model! 

9.2.3 Training a deep regression model 

Let’s begin with a word of warning: Training a deep neural network model is a very compute-

intensive procedure. Whereas the linear regression models we defined earlier in this chapter 

train in seconds, the deep regression model we defined above can take hours or even days to 

train, depending on your hardware. 
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In general, it is a good idea to start with a quick round of smoke testing - does the 

workflow even complete successfully - before spending hours to train an untested model. We 

start by testing the end-to-end workflow quickly, making sure that everything is working 

correctly. You should be able to complete the smoke test on any hardware, including your 

laptop, in a few minutes. 

SMALL-SCALE TRAINING 

The easiest way to make training fast is to reduce the amount of data. Hence, we start the 

smoke test by creating a tiny 1% sample of our full dataset. Run the data workflow to create 

a sample: 

# python taxi_regression_data.py --environment=conda run –sample 0.01 

Now, we can run the model workflow: 

# python taxi_regression_model.py --environment=conda run 

Assuming all the three model plugins exist in the taxi_modules directory, the start step 

should print the following line: 

Building models: euclidean_regression, grid_dnn, distance_regression 

With a 1% sample, the workflow should execute for about 5-10 minutes, depending on 

your hardware. The result of the model benchmark is output in the join step. It is expected 

to look something like this: 

MODEL euclidean_regression MSE 15.498595 
MODEL grid_dnn MSE 24.180864 
MODEL distance_regression MSE 9.561464 

As expected, the distance_regression model that uses the actual distance performs the 

best. Sadly but expectedly, our deep regression model, grid_dnn, performs worse than the 

model using the euclidean trip distance when trained with a small amount of data. It is 

widely known that traditional machine learning methods often beat deep learning when the 

amount of data is limited. However, if you saw results like above, you should celebrate: The 

whole setup works end-to-end! 

LARGE-SCALE TRAINING 

For a more realistic, large-scale training, you can adopt a few best practices: 

1. Use a GPU to speed up training. There are a few different ways to do this: 

a) You can leverage GPUs on your laptop or desktop, if you have such hardware 

available. 

b) You can launch a GPU instance as a cloud workstation and execute the examples 

on the instance. Make sure you use an instance image (AMI) that includes CUDA 

kernel libraries, e.g. AWS Deep Learning AMI (https://aws.amazon.com/machine-

learning/amis/). 

c) You can set up a remote compute layer, e.g. Batch compute environment, with 

GPU instances. 
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2. Make sure that your workstation doesn’t terminate during training (e.g. laptop runs 

out of battery or the SSH connection to the workstation dies). If you use a cloud 

workstation, it is advisable to use a terminal multiplexer like screen or tmux to make 

sure the process stays running even if the network connection dies. See e.g. 

https://www.redhat.com/sysadmin/tips-using-screen for instructions. Alternatively, if 

you use a GPU-powered compute layer, you can deploy the workflow to a production 

scheduler like AWS Step Functions as discussed in Chapter 6, which takes care of 

running the workflow reliably. 

3. Use a monitoring tool like Tensorboard, which is an open-source package and service 

provided by Google for free, to monitor progress. While this is not required, it gives 

peace of mind to see that the training task is making progress. 

If you want to leverage a GPU for training, replace this line 

MODEL_LIBRARIES = {'tensorflow-base': '2.6.0'} 
in model_grid.py with  
MODEL_LIBRARIES = {'tensorflow-gpu': '2.6.2'} 

to use a GPU-optimized version of Tensorflow. 

After your workstation is ready to go, create a larger dataset by executing, for example: 

# python taxi_regression_data.py --environment=conda run –sample 0.2 

You can test training with up to a 100% sample, depending on your hardware and 

patience. If you are executing the command on a cloud workstation, make sure to run these 

commands inside screen or tmux, so you can reattach to the process if your SSH session 

dies. You can start a training run as follows: 

# python taxi_regression_model.py --environment=conda run –max-workers 1 

Note that we specify “–max-workers 1” which limits the foreach to run only one process 

at a time. This ensures that the heavyweight GPU-task doesn’t need to compete with other 

processes running on the workstation simultaneously. 

Since we enabled logging to Tensorboard in model_grid.py already, we can simply run 

Tensorboard in another terminal window to monitor progress. Open another terminal session 

and navigate to the directory where you started the run. Then, install Tensorboard by 

running 

# pip install tensorboard 

If you are running training on a local machine, you can open Tensorboard locally by 

executing  

# tensorboard --logdir logs 

It should print out an URL like “http://localhost:6006/” which you can copy-paste to a 

browser window. If you are running a cloud workstation, it might be easier to rely on a 

publicly hosted Tensorboard at https://tensorboard.dev for monitoring. To use the service, 

simply execute 
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# tensorboard dev upload --logdir logs 

When you run the command for the first time, it asks you to authenticate and save a 

token locally. After doing this, it should print out an URL looking like 

https://tensorboard.dev/experiment/UeHdJZ7JRbGpN341gyOwrnQ/ which you can open with 

a browser. 

Both the local as well as the hosted Tensorboard should look like the screenshot in Figure 

9.10. You can reload the page periodically to see the training making progress. If all goes 

well, the loss curve should trend downwards as shown in the figure. 

 

Figure 9.10. Screenshot of tensorboard.dev showing model convergence 

Another handy command which may be available on a GPU-powered system is nvidia-

smi which shows statistics about the GPU utilization. It should show all GPUs available in 

your system and a utilization figure that’s above 0%, if a GPU is being used by the training 

process. 

On a powerful GPU instance (p3.8xlarge) training the model with a full dataset (100% 

sample) over four epochs takes about eight hours. If you want to attempt speeding up the 

training, you can experiment with different variants of the model: 
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• You can decrease the value of NUM_HASH_BINS and precision in feat_gridtensor.py 

to make the input tensors small. Or experiment changing with only one of those 

parameters to change the hashing behavior. 

• You can change the model architecture in dnn_model.py. For instance, you can 

remove hidden layers or make them smaller. 

• You can increase BATCH_SIZE up to a very high number, say, 10000, to make the 

model train much faster. You can use Tensorboard to monitor the effect of the batch 

size to model loss. 

You can make EPOCHS smaller to reduce the number of training iterations. Or, you can 

change other parameters but increase EPOCHS. 

A rewarding element of model development is that the results are perfectly quantifiable. 

You can experiment with the above parameters and see the effect on model performance as 

soon as the training finishes. As a baseline for your experiments, training the models with a 

full dataset produces the following results: 

MODEL euclidean_regression MSE 15.214128 
MODEL grid_dnn MSE 12.765191 
MODEL distance_regression MSE 9.461593 

Our efforts are not in vain! When trained with a full dataset, the deep regression model 

handily beats the naive Euclidean model, approaching the performance of the actual distance 

measurement. In other words, it is possible to build a model that predicts the trip price 

relatively accurately only by considering the pick-up and drop-off locations, and such a model 

performs better than a model that only considers a straight-line distance between the 

locations. 

As an exercise, you can try to improve the model: You can include, for example, time-of-

day as a feature, which surely affects traffic patterns. You can also test different variations of 

the model architecture, or try to improve the performance of the data loader. After a few 

rounds of improvement, you should be able to beat the performance of the baseline model. 

However, this chapter is not about optimal models for price predictions. More 

importantly, we learned how to design and develop a simple domain-specific framework that 

allows a data scientist to define new features and models to solve this particular business 

problem effectively, and test the performance of the new variants consistently. While this 

example was rather a simple one, you can use it as an inspiration for your own, more 

sophisticated frameworks which stand on the shoulders of the full infrastructure stack. 

9.3 Summarizing Lessons Learned 

We began the book with a picture, shown again in Figure 9.11, illustrating the full lifecycle of 

a data science project. We promised to cover all parts of the lifecycle, so your organization 

can increase the number of projects that are executed simultaneously (volume), speed up 

the time-to-market (velocity), ensure that the results are robust (validity), and make it 

possible to support a wider variety of projects. To summarize the book, let’s see how the 

chapters we covered map to the figure. 
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Figure 9.11. Full lifecycle of a data science project 

1. Models shouldn’t be built in isolation. We emphasized the importance of focusing on 

the business problem on a number of occasions. We introduced the idea of a spiral 

approach in Chapter 3 and applied it to example projects throughout the book. 

2. What tooling, where, and how should data scientists use to develop projects 

effectively? The entirety of Chapter 2 was dedicated on the topic of notebooks, IDEs, 

cloud workstations, and workflows. We introduced a particular framework, Metaflow, 

in Chapter 3, which addresses many of these concerns in a user-friendly manner. Also 

in this chapter, we demonstrated how custom libraries built on top of the stack can 

boost productivity in particular problem domains. 

3. How to benefit from off-the-shelf libraries without exposing projects to random 

breakage and performance degradation? We discussed performance implications of 

libraries in Chapter 5 and dug deeper into the question of dependency management in 

Chapter 6. We used a variety of open-source ML libraries in examples, culminating in a 

deep neural network model showcased in this chapter. 

4. How should we discover, access, and manage data? All of Chapter 7 was dedicated to 

this broad and deep topic.  
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