O'REILLY®

Python for Geospatial Data Analysis

Theory, Tools, and Practice for Location Intelligence

Bonny P. McClain

Python for Geospatial Data Analysis

Theory, Tools, and Practice for Location Intelligence

With Early Release ebooks, you get books in their earliest form—the author's raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

Bonny P. McClain

Python for Geospatial Data Analysis

by Bonny P. McClain

Copyright © 2022 Grapheme Consulting, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editors: Michelle Smith and Sarah Grey

Production Editor: Kate Galloway

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

May 2022: First Edition

Revision History for the Early Release

• 2021-08-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098104795 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. *Python for Geospatial Data Analysis*, the cover image, and related trade dress are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent

the publisher's views. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-10472-6

Chapter 1. Introduction to Geospatial Analytics

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author's raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at bonny@dataanddonuts.org.

Are you a geographer, geologist, or computer scientist? Impressive if you answered yes, but I am a spatial data analyst. In a nutshell, I am interested in exploring data and integrating location. Now that access to location data and geospatial datasets is fairly ubiquitous, most of us are becoming data curious regardless of professional title or area of study. Appreciating the *where* in our analyses introduces a new dimension of comprehending the impact of a wider variety of features on a particular observation or outcome. I spend a lot of professional time examining public health data and large open source datasets in healthcare. Once you become familiar with geocoding and spatial files, not only can you curate insights across multiple domains but you will also be able to target areas where profound gaps exist.

This is also the age of citizen scientists. The accessibility of open source tools and massive open online courses (MOOCs) empowers a broader range of not only professionals but also the data curious. Perhaps you have a hobby or interest in a certain species of bird and would like to access spatial data to learn about their habitats. Where are they nesting? Where are they traveling from and to? Which habitats support the most species and how is this changing over time? You might be able to create maps of your sightings or other variables of interest. We'll explore this idea a little later when we generate a data question to explore.

Meanwhile, if you are interested in a citizen scientist project look no further than the New York Public Library (NYPL) Map Warper project. As you might imagine, NYPL has a vast amount of historical maps. The challenge is to correct the errors in outdated survey technology by searching for modern matching *ground control points* (GCPs) and warp the image accordingly. This is known as *map rectification*.

The NYPL Map Warper (shown in Figure 1-1) is a tool for *rectifying* (digitally aligning) historical maps from the NYPL's collections to match today's precise maps. Visitors can browse already rectified maps or assist the NYPL by aligning a map. Everyone is welcome to participate!

Figure 1-1. Map of Manhattan from 1870

I have used rectified maps to explore development over time in different cities or to accurately reimagine a historical location. How do investments in infrastructure and industrial development impact neighborhoods over time, for example? Figure 1-2 shows a rectified map.

Figure 1-2. Rectified contemporary Manhattan map

There are many opportunities for professionals across multiple industries to include location intelligence in their analytics. Location intelligence describes actionable information derived from exploring geospatial relationships when formulating data questions and evaluating hypotheses. Open source tools are welcoming new end-users, and what we need is a lexicon applicable to a myriad of diverse interests, resources, and learning pedigrees. Yes, enterprise solutions are powerful, but many have limited access to subscription-based applications and tools. There are a variety of options in geographic information systems (GIS) software with pros and cons associated with all of them. I will mention a few when they come up, but although I have access to both ArcGIS also known as Aeronautical Reconnaissance Coverage Geographic Information System and QGIS, Quantum GIS I like to give QGIS the main stage. It is truly open source, meaning that you don't need different levels of licensing for access to all of the available tools. Since this book is intended for a wide level of interests, I want you to be able to explore all of the tools. In my professional work, yes I will move between both ArcGIS and QGIS -- mainly for access to the abundant catalog of GIS datasets in ArcGIS online. I did have to learn the hard way when geocoding in ArcGIS. ArcGIS uses a credit system, and it was easy for me to unknowingly get on the wrong end of it. I didn't realize that the paid service kicked in fairly automatically when I uploaded a CSV file with location data. QGIS, on the other hand, offers two options we will explore later -- both free.

The polygons on the map in Figure 1-3 are different colors corresponding to racial categories. What might we determine about these clusters if we also examine other attributes? Let's sit with these questions for a while. I will give you a hint: the devil is in the details, or should I say, is in the *layers*. The polygons are shaded based on areas where a certain race is the majority population. This is a good place to introduce the expression *defaults should not be the endpoints*. A deeper understanding of GIS will allow you to move away from default settings and create unique and deeper insights.

Figure 1-3. Race and diversity (ArcGIS)

Spatial Data Analysis 101 tells us that any analysis requires a defined question. Once you formulate the question you can discover whether there is data that will help you answer or address the hypothesis. I don't mean cherrypicked data, but all of the data imperative to shape a hypothesis or generate an insight. Should race be treated like a poor biologic proxy for something else or as a social or political construct? We need to understand the variables we have gathered to be able to curate empathy, reveal policy gaps, or address unmet health needs. We may need to reformulate our question if faced with missing data or resources we are unable to access.

When you become familiar with Census data you begin to understand the heavy lifting race has been asked to accomplish. The ability to now examine data on place (housing, employment, transportation, and education to name a few) illuminates the role of spatial data and launched my integration of geospatial applications like ArcGIS and QGIS into my talks about poverty, racial inequity, structural determinants of health, and a wide variety of new questions continuing to emerge. When you rely on spreadsheets or tables of data, I would argue in the absence of spatial considerations you might be missing out on critical insights. Static metrics like where a road might be located, or the coordinates of a specific event, or dynamic measures like the spread of an infectious disease become more powerful when integrated with location intelligence.

A problem uniquely solved by spatial analysis examines the relationships between features identified within a geographic boundary. For example, nongeographic data describes how values are distributed--and we can rely on descriptive statistics. But what if we are curious about the impact spatial relationships might have on these values?

At first glance we can appreciate county level race variables from the American Community Survey. We can see clusters of categorical variables, but do we know anything else? These are predominant categories in each region, but what else might we want to know? This is where geospatial data becomes so valuable.

NOTE

The annual American Community Survey (ACS) replaced the long form of the decennial census appearing in 2005 and contains a wide variety of questions to identify shifting demographics for gathering information about local communities.

What if we think a little more outside the box? This map you see in Figure 1-4 was created as an exploration of populations where an unexpected emergency would exceed the financial wherewithal of a family. The red squares now tell us that these are the families at the most risk, and bigger squares reflect a larger number of households. To demonstrate the value of geospatial analysis, the green squares are the sites for the summer meal sites in 2020 during the global pandemic. The summer meal sites are part of the Summer Food Service Program (SFSP) serving free meals to low-income children when school is not in session at approved locations.

Open source resources like the Census API yield demographic data accessible for retrieval with a few lines of code in Python. If you aren't familiar with API, it stands for *application programming interface*, a computer interface enabling data transmission between software products. The beauty is in the interface part. The Census API is a wrapper for the United States Census. You can now pull specific data from the annual ACS and the census without downloading entire humongous files of data. Geographies are also captured in census data either at the census website or downloadable from IPUMS, formally known as Integrated Public Use Microdata Series. The beauty of IPUMS includes person-level data, the harmonization of variables across surveys and the ability to easily download raw data files.

NOTE

From the IPUMS website:

IPUMS provides census and survey data from around the world integrated across time and space. IPUMS integration and documentation makes it easy to study change, conduct comparative research, merge information across data types, and analyze individuals within family and community context. Data and services are available free of charge.

In my evolution as a data analyst, I began to realize I had bigger and more complex questions to consider, and I needed more resources. With an eye towards working with Census data, I enrolled in an online executive education course in applied analytics sponsored by Columbia School of Engineering. I had worked in the R programming language, so was a bit nervous when I realized the entire course would be taught in Python. I made it through but remember feeling a little whiplashed. After months of completing assignments and a capstone project, I wasn't sure how to apply these facts to emerging tasks at hand. I learned a lot in the following months that I wish I had been taught in parallel to learning how to code. What are some real-world examples of recursive iteration? Which functions will simplify my work as I wrestle with large datasets? I work independently and was hoping for a solid workflow to guide me through my tasks. My data analytics company is small -- an *n* of 1 to be accurate. The buck starts and stops on my desk.

What I hope to share here is not the complete coding paradigm of Python. But by learning how to write actionable code either within a notebook or a console within QGIS, we can learn by doing. The book contains simple examples, and we will be exploring these concepts in more detail as we move through the chapters. Graphics in earlier chapters are included to familiarize you with how these maps or relationships may be rendered. Later chapters explore the code and platforms empowering Python as a resource for answering geospatial questions.

When formulating a data question, I like to refer to Tobler's First Law of Geography. For example, examining access to public transportation at the community level, understanding how transportation and commute times impact neighborhood home values outside of New York City are important considerations.

Everything is related to everything else, but near things are more related than distant things.

—Waldo Tobler's First Law of Geography

The homes within a certain buffer region of Manhattan are likely to share a wider variety of attributes when compared to outer more distant regions. The ability to map the areas and focus on home values within a certain radius might be confirmatory.

Geospatial data is being collected everywhere. Dynamic sensors with temporal metrics are generating massive amounts of data often being made available to the public. Using open source solutions optimized for geospatial projects is my primary goal. Python is the missing piece for flexibility in manipulating data in both open source and proprietary systems. It is fairly easy to learn, and has a variety of libraries to pivot and reshape tables, merge data, and generate plots either inside or outside of a desktop environment.

Integrating Python into spatial analysis, whether running code in Jupyter

notebooks or relying on open source tools like QGIS with the hosted python plug-in, is the focus of this book.

As data visualization continues to become more relevant, think about the most familiar graphics: Maps. Our level of comfort in viewing maps belies the complexity of layers of information, interactivity of multiple datasets, and even how we communicate findings. Accessibility to open source data and platforms extends spatial data science to not only professionals but to hobbyists and individual analysts. But we also need to exercise caution. Familiarity isn't the same as accuracy or competency.

Open source platforms like OpenStreetMap allow us to zoom into a level of detail, revealing structures in the landscape, and add attributes to our analysis. There are Python packages like OSMnx that allow OpenStreetMap downloads into a Jupyter Notebook independent of a specific application or tool (see nearby Note for more).

OSMnx is a Python package that lets you download spatial data from OpenStreetMap and model, project, visualize, and analyze real-world street networks. You can download and model walkable, drivable, or bikeable urban networks with a single line of Python code, and then easily analyze and visualize them. You can just as easily download and work with other infrastructure types, amenities/points of interest, building footprints, elevation data, street bearings/orientations, and speed/travel time.

Conceptual Framework for Spatial Data Science

Planet earth is not perfectly spherical. That makes sense when you think of the chemical nature of the planet, and how the centrifugal force caused by spinning in space would tend to push out the middle, resulting in an oblate spheroid shape. Technically the shape of the earth is an ellipsoid, the circumference around the poles is shorter than the circumference around the equator, almost like the planet has been squished from top to bottom. When we attempt to map the surface, we take a geographic coordinate system and translate it into a projected coordinate system -- for a flat map. The establishment of a *graticule*, the latitude and longitude lines framework of a map, is expedited by QGIS and other GIS applications. Coordinate systems attempt to render the location data in meaningful ways that are close to a single source of truth. These different projections are called *conic, azimuthal,* and *cylindrical*. Each one leaves a distortion that must be dealt with. Depending on the chosen coordinate system, we might have distortions in area, distance, direction, and size. You will be glad to know that we don't need to wrestle with these compromises alone -- software manages much of the complicated math. Figure 1-5 shows a geographic coordinate system.

© Encyclopædia Britannica, Inc.

Figure 1-5. Geographic coordinate system.

If you use OpenStreetMap or Google Maps you will be familiar with the Web Mercator coordinate system. Familiarity with variations of these maps will allow you to select the optimal projection as compromises will need to be made. For example, in my work in population health, it is critical that area is maintained on projections. If I'm mapping percentages or raw numbers on a map, and I want to be as impartial as possible, making a small place look too large compared to other places, there's an inherent bias there that affects my interpretation of that map. I'm going to do my best to look at the projection's weaknesses and its strengths and say, "I'm going to choose one that maintains area."

Maps that maintain area are called *equal area projections*. Later chapters discuss this in more detail. I will review QGIS and ArcMap and show how they convert projections for the best cartographic results. Because the earth is not a perfect sphere, we do have to make compromises and accept a little bit of distortion. But if we ensure that the measures most relevant to our visualization are captured in the coordinate system we select, we are most of the way there. Naturally we would like our values to closely match the actual values in the real world. The reality of a "where" question in an interesting dataset is often the impetus for visual communication. For example, spatial phenomena are often iterative instead of linear. Perhaps you are intrigued by an extent or scale of a systematic geography. Where do you begin? The whole world won't fit on a piece of paper or a computer screen--at least not in a visibly available manner for interpretation.

The error or deviation from the accuracy of a globe (remember we are trying to represent the ellipsoid geometry on a flat surface) is typically measured by the Goldberg-Gott error score. The most recent attempt at minimizing the error was researched by J. RIchard Gott and colleagues. For reference the popular Mercator projection (Figure 1-7) has an error score of 8.296 while the Winkel Tripel comes in at 4.563. The lower score reflects fewer errors or compromises in the rendering of the flat map. The new J.Richard Gott map (0.881) has the lowest error score to date when compared to a globe (0.0).

Winkel-triple-projection

Goode-homolosine projection

Sinusoidal projection-projection

Mollweide projection

Lambert azimuthal equalarea projection

Hammer_projection

Figure 1-6 shows a few projections, and you can see the impact on our visualization. If you view Greenland in all of these equal-area projections, you can see that it remains the appropriate scale.

Mercator projection maps, on the other hand, like the one shown in Figure 1-7, distort in the area near the poles. We can demonstrate the differences in the maps we create based on which projection we select. This will be evident when we make our selection of coordinate systems in later chapters.

Figure 1-7. Mercator projection

Now that you have been introduced to broad objectives of spatial data analysis, consider challenges facing local communities all the way up to the societal and global level. Think environment, healthcare, biology, geography, economics, history, engineering, local government, urban planning, and supply chain management, for example. Even issues such as access to healthcare, environmental regulation, community planning, and transportation that seem local or regional cross physical and political boundaries, ecological regions, municipalities, and watersheds and possess a spatial component. Since maps are one of the first appreciations we have of data visualization, it makes sense that after interrogating our data we might become curious about location.

Geographic Information Systems (GIS) continuously analyze data and provide real-time insights across a wide variety of industries. Although there may be similarities between spatial and non-spatial analyses, spatial statistics are developed specifically for use with geographic data. Both are associated with geographic features but spatial statistics look specifically at geocoded geographical spatial data. For example, when imagining airport data there are non-spatial statistics for variables such as region or use (military, civilian/public) or on-time arrivals and departures as well as spatial components for analysis (elevation and geographical coordinates). Unlike traditional non-spatial statistical methods, they incorporate space (proximity, area, connectivity, and/or other spatial relationships) directly into their mathematics. Additionally, for those tools written with Python, the source code is available to encourage you to learn from, modify, extend, and/or share these and other analysis tools with others. These complex problems are spatial. Where are these problems occurring and how can we plan for better outcomes in the future?

NOTE

As already mentioned, I prefer describing what I do as *location intelligence*. It makes sense and is much clearer than saying you work in GIS. Why identify an analysis by the tools? Much better to focus on the outcomes.

The idea of *spatial thinking*, in terms of proximity, overlap containment, adjacency, and the ways of measuring geographic space and the relationship of features and phenomena to one another. This is what we can learn with an introduction to spatial literacy. *Spatial literacy* begins with content knowledge and an understanding of systems and how they interact with the

sphere of human influence. The Aspen Global Change Institute (AGCI) identifies six systems of the earth:

- 1. Atmosphere
- 2. Cryosphere
- 3. Hydrosphere
- 4. Biosphere
- 5. Geosphere
- 6. Anthroposphere

The anthroposphere refers to human presence on earth. Geospatial data allows us to comprehend the interconnectivity of all of these systems, and we have *big data* -- lots of data -- accessible for well-formulated data questions.

You don't have to become an expert to retain important skills for bigger questions. If you understand at a fundamental level how things work in geospatial data and technology, you are already on your way to more complex ideas. You will learn to formulate a data question and be ready to determine actionable steps to move toward developing your novel application or solution.

Geospatial problems are complex and change over space and over time and increasingly affect our everyday lives. Look no further than current headlines to find examples of challenges we face in the years to come: racial inequity, climate change, structural determinants of health, criminal justice, safe drinking water, sustainable agriculture practices, ocean acidification, poverty, species endangerment and extinction, and economic strife -- to name a few. How does an individual's location influence their health, well being, or economic opportunity? Questions like these can be examined utilizing GIS by showing patterns between diffusion rates of disease, distance to nearest hospital, roadways, waterways, tree cover and city walkability.

Places as Objects (Points, Lines, and

Polygons)

We will dig deeper into how to explore vector data in Python, but first I need to introduce a few concepts that will be useful as we move through the book. *Vector* data is explained by points, lines, and polygons. We will use Python scripts and QGIS integrations to load datasets into a map and examine the structure of vector data. Later chapters will also teach how to customize maps with colors and symbols to improve clarity and accuracy.

In the ArcGIS rendering of Central Park and surrounding buildings we can see the geometry represented as polygons. Additional information about the features might reveal the type of structure, year built, architectural dimensions, and other attributes accessible in an attribute table. The geometry of a feature determines how it is rendered -- either as a point, line, or polygon.

Coverage, shapefiles, and geodatabases are an evolution of ESRI products denoting different generations of their file formats. I won't spend a lot of time discussing the different formats but you may see data files designated as shapefiles (.*shp*) or geodatabase (.*qdb*), so it is good to know their advantages and disadvantages. Compare the file formats of word-processing programs like Microsoft Word to a simple text file. The content (the words on the page) may be the same but the complexity and sophistication is certainly less in the text file. Same thing with the different GIS file formats. Although the content is the same, the elements of functionality are different. If you wanted to share a piece of writing, why would you choose a text file? What if you wanted the document to be read by everyone regardless of software, or what if you wanted ease of portability or a smaller storage format? GIS format files vary in functionality -- shape files do not have a topological or spatial layer, whereas with a geodatabase such a layer is optional. They also vary in simplicity, redundancy, error detection, and storage size. You may not have a choice when working with a dataset that has location data, so it is important to know what is available and what you can say geographically.

Figure 1-8 shows types of buildings in New York City. If you have worked with Census geographic data you are likely familiar with TIGER/Line

extracts, or shapefiles. They are grouped as a set with digital files (vector coordinates with a *.shp* extension), an index (*.shx* extension), and dBASE attribute data (*.dbf* extension). There is always talk of their slow disappearance, but because they are prevalent in open source and proprietary systems, they aren't going away any time soon.

Figure 1-8. Building types in NYC

Geographical systems can work with many types of data. Vector data is what we are referring to when we think of points, lines, or polygons (like a shapefile, for example) and LIDAR (light detection and ranging) surveys. When examining a GIS environment like a landscape, for example, everything within the range of your vision is a feature when rendered in an application like QGIS. Details about the features are captured as attributes.

When location data appears in a spreadsheet, the columns for latitude and longitude create a point. The air quality spreadsheet shown in Figure 1-9 has geographic (*latitude* and *longitude*) and non-geographic data (air quality measurement in the *value* column), allowing a GIS application to add information associated with a particular geographic location. A point feature has an X, Y, and (optionally) Z value. The most familiar coordinate projection system is longitude and latitude. You can be dropped anywhere in the world, and if you provide your longitude (X) and latitude (Y), your location is known -- that's precisely what we mean by a *point* attribute. This coordinate accurately describes where a particular place is on the earth's surface. Point attributes can be quantitative or qualitative descriptions.

	A	В	с	D	E	F	G	н	I I _	J	к
1	locationId	location	city	country	utc	local	parameter	value	unit	latitude	longitude
2	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	27.7	µg/m³	34.1324	-118.1834
3	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	25.6	µg/m³	34.1324	-118.1834
4	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	26	µg/m³	34.1324	-118.1834
5	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	25.4	µg/m³	34.1324	-118.1834
6	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	22.8	µg/m³	34.1324	-118.1834
7	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	22.6	µg/m³	34.1324	-118.1834
8	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	22.2	µg/m³	34.1324	-118.1834
9	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	21.5	µg/m³	34.1324	-118.1834
0	62724	Far West Pas	sadena	US	2021-02-02T	2021-02-01T	pm25	21.5	µg/m³	34.1324	-118.1834
1	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	25.4	-µg/m-≥	34.1324	-118.1834
2	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	23.1	-µg/m-≥	34.1324	-118.1834
3	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	22.5	-µg/m-≥	34.1324	-118.1834
14	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	21.2	-µg/m-≥	34.1324	-118.1834
15	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	21.8	-µg/m-≥	34.1324	-118.1834
16	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	26.6	-µg/m-≥	34.1324	-118.1834
17	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	24.4	-µg/m-≥	34.1324	-118.1834
8	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	25.2	-µg/m-≥	34.1324	-118.1834
9	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	26.1	-µg/m-≥	34.1324	-118.1834
20	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	25	-µg/m-≥	34.1324	-118.1834
1	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25		-µg/m-≥	34.1324	-118.183
22	62724	Far West Pa	sadena	US	2021-02-02T	2021-02-01T	pm25	1	-µg/m-≥	34.1324	-118.1834

Figure 1-9.

Raster data, such as that shown in Figure 1-10, is digital data displayed as a pixelated image, with each pixel corresponding to a specific geographical location. In vector data, instead of a matrix of pixelated data we have points and lines. Both of these types of data will be easier to visualize once we being working with actual data.

Evaluating and Selecting Data

There are many datasets to explore for use in tutorials for learning a new skill, following along in a new application, or even for launching your own independent geospatial project. Most of the datasets you will see in this book have been vetted and found workable on a wide variety of applications and workflows.

Before selecting your dataset, you need to evaluate the data. The information about your dataset is called *metadata*. You can learn a lot by looking through the metadata, but the most important information about your data includes geographic area, attributes, map projection, scale, and whether there is a fee to use it. You can think of metadata as the label on a can of soup. You want to know what the ingredients might be, and more importantly, whether the soup is good for you. Figure 1-11 shows an example of metadata.

Often there is also a supplemental data file that describes attributes like field headings. This is typically called a *data dictionary*.

•	0 😑		Project Properties — Variables	
Q		Expression Varia	bles	
12				
X	General	Variable	Value	
	Mata data	Global		
2	Metadata	V Project		
4	CRS	layer_ids	['ne_10m_admin_0_boundary_lines_disputed_areas20170916212]	
		layers	[<map layer="">, <map layer="">, <map layer="">, <map layer="">, <map]<="" td=""><td></td></map></map></map></map></map>	
	Transformations	project_ab	. "	
		project_ar	'square meters'	
X	Default Styles	project_au	. "	
-		project_ba	. 'Natural_Earth_quick_start_for_QGIS_v3'	
	Data Sources	project_cr	<datetime:></datetime:>	
=	Relations	project_crs	'EPSG:3857'	
"≣		project_cr	'merc'	
2	Variables	project_cr	'+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +'	
0		project_cr	'WGS 84 / Pseudo-Mercator'	
٥	Macros	project_cr		
0		project_cr	'+proj=merc +a=6378137 +b=6378137 +lat_ts=0 +lon_0=0 +x_0=0 +'	
	QGIS Server	project_cr	'PROJCRS["WGS 84 / Pseudo-Mercator",BASEGEOGCRS["WGS 84",DATU'	
		project_di		
	Temporal	project_elli	'WGS84'	
		project_fil	'Natural_Earth_quick_start_for_QGIS_v3.qgs'	
		project_fol	. '/Users/bonnymcclain/Downloads/packages-2/Natural_Earth_quick'	
		project_ho	. '/Users/bonnymcclain/Downloads/packages-2/Natural_Earth_quick'	
		project_id		
		project_ke	· 0	
		project_la		
		project_pa	'/Users/bonnymcclain/Downloads/packages-2/Natural_Earth_quick'	
		project_title		
		project_un	. 'meters'	
		project_ab	. ' if(length(eval(@project_label_function)) < 8, eval(@p'	
		project_la	'coalesce(eval(@project_language), eval(@project_languag'	
		proiect la	'name el'	

Figure 1-11. Example of metadata

Although it can be tempting to explore your own interests and data, I suggest first attempting to follow along with the following suggested data resources. Once you feel confident, then explore and see what you can discover:

• National Geospatial Program

- Geographic Resources Analysis Support System (GRASS)
- OpenGeoportal
- ServirGlobal
- DIVA-GIS
- Natural Earth
- OpenStreetMap
- The National Geospatial DIgital Archive
- National Historical Geographic Information System (NHGIS)
- Geography and American Community Survey (US Census)
- Center of Excellence for Geospatial Information Science (CEGIS)

Chapter 2. Essential Facilities for Spatial Analysis

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the author's raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the author at bonny@dataanddonuts.org.

Chapter 1 covered the complexity of mapping a three-dimensional (3D) globe to a two-dimensional (2D) coordinate system. This often requires an understanding of how to select an appropriate map projection depending on the area you are interested in viewing or analyzing. In detail, you studied how 3D coordinates on the surface of the Earth can be converted to 2D coordinates. For that, the concepts of *geoid* and *ellipsoid* were introduced.

What happens to topographical features that are below or above the earth's surface? Geospatial tools are able to analyze these features spatially as well, in addition to time-series data, often described as a fourth dimension. You also saw a variety of map projections in Chapter 1, and I discussed how to choose an appropriate one for a given area -- for example, selecting a projection that minimizes distortion over the area you are viewing.

You might notice the term *GIS* doing a lot of the heavy lifting when learning about spatial literacy, but in reality there are multiple integrated concepts contributing at the systems level. I have discussed the *spatial data*

framework, where spatial locations are identified on the earth's surface. This is fundamental for building a comprehensive (and reliable) reference system for geocoding and mapping data.

Understanding Spatial Relationships

Spatial referenced data is defined as either *discrete objects* or continuous (*scalar fields*). An *objective view* focuses on what is visible in a particular location. There are specific boundaries or areas on a map where data or objects are either present or absent. You wouldn't expect a building or even a polygonal object representing a city to exist in every location within a specific boundary.

A *field view* represents continuous data lacking specific boundaries but present across the entire map view. Perhaps slightly more intuitive, consider surface elevation, precipitation, or surface temperature. You can record these measures at each location included within your study location regardless of your study view.

So far, I am simply describing the distribution of points, polygons, or lines within our research location. Rasters, as you may recall, represent imagery, surface temperatures, and digital elevations as an array of values divided into a grid of cells. *Cells* or *pixels* describe spatial resolution. The two terms are often referred to interchangeably and describe the dimension of the cell or pixel representing the area being covered. *Spatial data models* take these abstract representations of real-world objective and/or field views and explore mathematical relationships to model or predict relationships.

The big differentiator between photos and raster images arises from the expanded bands of wavelengths in the latter. This enhanced data beyond simply red, green, and blue wavelengths allows machine learning models to distinguish between a wide variety of objects. The ability to reflect infrared light is object specific and yields additional information in a multi-spectral image. There are hundreds of earth observation satellites in space continuously capturing images of the earth. Many space agencies around the world make this data available freely. These datasets are immensely valuable

to scientists, researchers, governments, and businesses.

A hillshade raster as seen in Figure 2-1 uses light and shadow to create the 3D effect of the area in view.

It is necessary to consider multiple concepts simultaneously when reviewing a systems level approach to GIS. The smaller components working within a larger system reinforce better engagement revealing patterns in the system through dynamic interactions. Geometric visualization is one example and includes calculating distances between features, calculating buffer regions (how far away one feature is from another, for example), and identifying areas or perimeters. It will simplify our discussion if we think of these topics as parts to a whole. I will be digging a little deeper into these topics as we continue our journey.

Understanding these introductory concepts will simplify your learning in the following chapters. It is important to begin with a baseline of spatial literacy.

Without explicit attention to [spatial literacy], we cannot meet our responsibility for equipping the next generation of students for life and work in the 21st century.

—Learning to Think Spatially, the National Research Council

Spatial Literacy

Spatial literacy requires an interplay of the concepts necessary for understanding spatial relationships. You will build on this knowledge of how geographic space is represented in order to reason and make key decisions about spatial concepts. The popular Python programming language is a powerful tool in achieving more advanced analytic tools beyond simple map projections, geoprocessing, and geo-visualization. QGIS has a powerful programming interface that allows you to extend the core functionality of the software as well as write scripts to automate your tasks, and QGIS supports the Python scripting language. Even if you are new to programming and or QGIS, learning a little bit of Python and navigating the QGIS programming interface will allow you to be much more productive in your work.

TIP

Chapter 6 provides details on working with QGIS, but you may want to download it and start exploring on your own. I suggest reviewing the steps there or visiting the QGIS website and downloading the long term release (LTR) for your operating system.

Spatial or relational database management systems are designed to store and query spatial data. This has always been confusing to me--PostGIS and PostgreSQL, what in the world is the difference? Here is how it makes sense to me. If you are working with large datasets it makes sense to store the data in a database. Relational databases have schemas where data is stored in columns and rows. When you want to access the data, you query the relational database. Structured Query Language (SQL) executes queries allowing seamless integration as the native language of relational databases.

PostgreSQL Database Management System (DBMS) is a database, and PostGIS is packaged with it as an extender that adds spatial functions to PostgreSQL. For example, a spatial database will often have a column to identify coordinate systems defined by a spatial reference identifier (SRID). SQL Server Spatial and ESRI ArcSDE are other examples of spatial databases.

For this book I am mainly using data resources I first used in my training or projects, updated to the latest reported data. I want to be certain that independent of your operating system you can access the different data sets. QGIS has a wide variety of tools that will make this straightforward. I also use ArcGIS professionally, but since ArcGIS Pro only works on Microsoft Windows, it would be too limited. If you are an advanced user and would like to replace the data with local data or data that is more reflective of your personal or professional interest, here are a few suggestions:

- 1. You will want a healthy mix of urban and rural locations with different types of roads, boundaries, water features, and topographies.
- 2. When given a choice, I prefer recent data but for instructional

purposes, but I will defer to sources with the widest variety of attributes.

- 3. Don't forget to save your data in the GeoPackage file format so you will be able to continue exploring.
- 4. If you are creating a raster file of your region, locate the extent coordinates of your largest layer.

You can see how geography is represented in QGIS in Figure 2-2. Natural Earth is a public domain dataset available through collaboration and support from volunteers and the North American Cartographic Information Society (NACIS).

In the left panel you see the browser window. Once you download the dataset it can be uploaded from the browser window and brought directly onto the canvas (in the right panel). Dragging the shape file (*.shp*) into view, the dots represent the populated places in the world.

Figure 2-2. Population data (QGIS)

If you click around the map after selecting the Identify features icon (the small "i" inside a blue circle) and select a point on the map a list of features is displayed (Figure 2-3). In the right panel in Figure 2-3 you are viewing attributes.

You will explore many of these geospatial and non-geospatial features a little later on when we begin working in the Python console.

	Α.	'yiasa – QOS		populati	t plann – Tea	luren Total: 7343	Filtered: 7343, Se	lected: 0	
0 / X / P / A / K / K / W 0	Q I 🔍 🗌 🗄 🕸	<u>1</u> ≡ • 🖗 🔍 • 🗐 •	/ = = =		111	4478	\$ \$ 111		A .
●公司-被告入自己在日间 ●		(45)Å(4)11		unaci Dovedia	adribane Karika	udrója) NAM	io,at NA	969,768 26013 (* alhanes Ongweelve,0
					Natibia		N		ladmanihoo
				Wilde	Natibia		N		Witehöhe, M.
	Identifi.	C. Features	1	Caurel	Weico		W		laaunei/Caa
	Identify	C. Features	7		Waartania		w		lahri-Louin,S
fe	atures			Verdena	Weeko		MX.		Kendava,Na
				Onelepe:	Water		w		Drivelappice, (D.
				Vira	Ngela		NÔ		licablina
				Zaria	Ngela		NŪ		taria, Zaria
 Construction (1977) 		also also de	6 a	164	Wurdenia		M		leikea,Tidi.
Part Augert	S. W	1.62 3.6	8	bit.	Ngela		NÜ		kriv, forin
ALL REALING	4		ev?						
Sec. 1	0.0.1.1	86.3							
	B. Select	a point		<u> </u>	10				
	<u>a 1</u>	W. 78. 1	Attributes				10.00	1	
	1	and the	Attributes	/	1 (1	edated places			
	. 🏴		1/			rana Duta + (Da.	•		
403	1	100	1	18		1 (Ac 10 738			
A.A. Mark	1	SEC 2	el	A	11	rare Data	•		
	r	ALL N.	÷.	15	· .	H. HUL H. Duto			
8			¥1	W.	5	H. UNK	Butes of America		
				•	/	10,- U			
<u>к</u> ,	1						n,Duten		
1 A 1	•		1.1				riturg		
	1.0		1.1			rene Golds rene Roda	kere Mourt		
						rame Peter rame Green	burg		
						rame \$1.0h			
						rane Darvi			
					Mode				
					Ver	5ar - 1			W

Figure 2-3. Population Data by Population Expression window (QGIS)

Describing different types of attributes might be helpful as you explore the attribute table. We will do this in detail when we build maps together in Chapter 5. Does the measure we hope to map depend on the size of the unit? For reference, I selected pop_max as an attribute, which is an example of a *spatially extensive attribute*. Population counts are associated with an area, but if we divide the population into smaller areas, the counts would not necessarily be proportional, since population is rarely uniformly distributed. Because we are summarizing a specific area, population counts, for example, are only accurate if they represent the area as a whole. These attributes apply to length, area, or volume, for example. If you change the length, or increase or decrease the area or the volume, you are changing the size of the unit, so the measures will change.

A *spatially intensive attribute* like population density is not dependent on the size of the area. If the unit is assumed to be homogenous, then these values can describe any part of it, whereas spatially *extensive* variables, such as population count, are spatially dependent.

Figure 2-4 displays the expression window where you are able to select populations that are larger than 1,000,000. Selecting pop_max and writing a simple SQL expression including the "adm0cap" field from the attribute table selects cities larger than 1,000,000 that are also capital cities. If you are interested in examining specific parts of the population you can filter the values to represent specific attributes.

Figure 2-4. Select by Expression Window (QGIS)

In Figure 2-5 you see the yellow subset of values that meet the criteria displayed in Figure 2-4, populations over 1 million and also a capital city (yellow).

● ● ● Unitied Project — QGIS) () në	10m_populated_p	xlaces_simple —	Features Total: 7	343, Filtered: 7343, Sele
🖿 🖿 🐘 🐘 👔 🖗 🖉 🖉 🧶 🔍 🧶 🔍 🖳 🗶 🧶 🖉 🍕 🐛 🖬 🌑 🎧 🔍 🗮 🔜 🖓 🗵 🛶 🌄 🔍 🖅 💷	1		0 11 1 1	111	N 🖥 🕇 🖬	₩ 1 8 8 8
!!!! \$ `` / = M A ! / = ` x · 2 = ` 1 = 6 ∂ ! = {		ote	pop_max ▼ 35676000	pop_min 8336599	pop_other 12945252	rank_max rank 14
에서 2018년 1월 1969년에는 1973년 - 1973년 - 1973년 - 1973년 - 1973년 - 1973년 1973년 - 1973년 - 1973년 - 1973년 - 1973년 - 1973년 1973년 - 1973년 월 1969년에는 1973년 -	- -			8008278	9292603	
🔣 = 🖥 = 🧞 = 🖣 🔟 👔 MapTiler Geocodi 🎢 🛄	2		19040000			14
000 Layers ✔ 與 ῷ ▼ (₁ + 1): 담 Щ	3		19028000	10811002	10018444	14
In the populated places simple	4		18978000	12691836	12426085	14
	5		18845000	10021295	11522944	14
	6	d feat	15926000	7633213	6747384	14
	1		14987000	14608512	16803572	14
	8	hange	14787000	4631392	7783716	14
Internet is a march of the second	9	d scal	12797394	7000940	14995538	14
	10		12795000	10929146	10271457	14
	11		12500000	3694820	142265	14
	12	d scal	12130000	11624219	11570278	14
	13		11893000	7734614	13720557	14
🕐 🖿 nc. spn. 08. grass7	14		11748000	2010175	1821489	14
In NELHRLC In re10m airports	15	d feat	11294000	2592413	9630783	14
) 📄 ne 10m populated places	16		11106000	7480601	9033231	14
🛛 ne : 10m, populated, places, simple: README	17		11100000	3077575	2381280	14
Image 10m populated places simple ship in 10m populated places simple/ERSION	18		10452000	10452000	10585385	14
M ne 10m_populated_places_simple.VERSICN Im_packages-2	19		10061000	9945610	9651488	14
) 📔 Population, Report, 2018, June, 2020	20		9904000	11177	7142744	13
→ III pygist files → III pygist na day	21		9796000	9796000	12018058	13
+ 🔰 python foundation	n	ı adju	9466000	1536	6567892	13
In QGIS-Training-Data-release 316 In qt-creator-opensource-src-4.14.1	23		9125000	8540121	9129613	13
 In spatial data viz In Tableau Virtual Backgrounds 	24		8990000	2841952	3635101	13
) 👔 TableauAutoUpdate	25	d feat	8829000	3152825	11946371	13
▶ In timenanager ▶ In ti. 2018,06, tract	26		8567000	7421209	326670	13
♦ 16/6835607633.jpeg ♦ 165/287698 (02/18772105310711 8033568895)	ŋ	d scal	8012000	6758234	6068380	13
163892991_10216769677810025_406695797	28	d scal	7873000	7153309	8209012	13
)	29	d scal	7843000	5565703	4738154	13
) 🛢 3-52.0-89780323462945000182-main.pdf	30		7772000	6333661	5754084	13
300px-Goode_homolosine_projection_SW/pg Whoy_Lambard_cullediand_acual_acual_acual_acual_	31	d feat	7581000	1002592	10908994	13
Q select features 📲 Coordinate: 300.9(267 🖏 Scale 169430984 🖌	N.					

Figure 2-6 is an example of spatial big data. A visual approach to spatial analysis integrated with urban motility data from Uber demonstrates efficiencies and gaps in existing infrastructure allowing targeted investment at the city level. Uber Movement dataset captures zone to zone travel times across a city. Depending on the city you select (I explored NYC, San Francisco, and Paris), there might be additional measures such as mobility density or how many vehicles are within a certain area (heatmap) or how fast vehicles are traveling (speed). The legend indicates purple areas on the map as having the most traffic density.

On Uber Data website, you can view several options for looking at data within the website interface, such as adding bike lanes to the visualization, examining traffic density by viewing the mobility heatmap, and if you click the Product Type dropdown menu you can choose to view travel times or speeds.

All of this is available within the interface. You are also able to download the data and import into QGIS and begin to explore on your own. I will introduce you to QGIS and provide guidance for interactive in later chapters but if you are anything like me--you might want to practice downloading data and accessing within QGIS. Be certain to download all the files including the GEO Boundaries, Figure 2-7 red outline.

This is the interface you will see when you opt to download data for a more detailed analysis of the Uber data.

By way of an example, let's observe distances within 30 minutes of the Civic Center in San Francisco in Figure 2-8. These types of maps are known as *isochrone maps*. Isochrone maps depict areas accessible within a specific time threshold and are an example of a resource for making key decisions about spatial concepts.

Simply by writing Python code it is possible to visualize the geographic areas within a 30-minute travel distance of a location in San Francisco. Downloading data on the Uber Movement website it is possible to ask bigger questions within the QGIS platform.

We will delve more into the "how to" of creating visualizations and maps after a brief introduction to Python. You don't need prior knowledge to be able to follow along, and my goal is to give you a nice starting point to begin coding beyond the Python console in QGIS. So far, there has been no need to write any Python code, and the maps presented are easily generated without integrating any additional frameworks.

Mapping Inequalities

Before we launch into integrating Python with QGIS and other platforms, I wanted to end this chapter with a powerful visualization that demonstrates the value of place and location when considering a data question.

Mapping Inequality Redlining in New Deal America presents data from the Home Owners' Loan Corporation (HOLC). Here's how the site introduces the project:

Among the thousands of area descriptions created by agents of the federal government's Home Owners' Loan Corporation between 1935 and 1940, the one that was written for what is now called the Carver Heights neighborhood in Savannah, Georgia, stands out. HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should receive loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous."

The interactive website allows selection of specific cities of interest. I selected NYC to see historical areas where I spend a lot of time. I have walked the neighborhoods of NYC for many years, watching economic investments into neighborhoods once too dangerous to roam. The 1930s

redlining highlighted park hugging neighborhoods as "still desirable" and "best" as long as distance was kept from Harlem and primarily black neighborhoods.

The power of "place" extends to the modern era whereby mortgage security redlining is no longer a "formal" practice, but many of these areas have locked- in land-use systems.

Redlining locks in place land-use systems so that certain areas outside of the best classifications (green or blue) will likely have more flooding (more asphalt), fewer parks, limited treeline, closer proximity to waste disposal, and closer proximity to interstate freeways (pollution), and likely have experience higher surface temperatures adding the additional risk of adverse climate effects.

Urban heat islands are man-made or natural locations with higher temperatures. Neighborhoods with more greenery, less impervious surfaces or less industrial or buildings are yellow with the warmer areas indicated by orange to red hues. The incredible evolution of NYC since redlining of neighborhoods perceived as dangerous to its current overall low urban heat seem the exception to these land-use trends. If you explore the cluster of urban heat islands (marked by arrows) and revisit Figure 2-9 these might be areas for deeper investigation.

The historic map shown in Figure 2-11 was generated in QGIS using downloadable data from the Mapping Inequality website. We could rectify the map with modern maps and add population demographic data and climate information to tell a complete story, a story impossible to tell without thinking spatially.

Figure 2-11. HOLC grades in NYC Redlining Map of the 1930s QGIS

I was curious to see how cleanly the historic map might be recreated within QGIS. I manually updated the legend but otherwise, the spatial elements were pulled into the map fairly seamlessly.

Figure 2-12 includes the attributes "state", "city", "holc_grade", neighborhood and area descriptions available as additional information to create a narrative. Attribute tables are resources for geographic and non-geographic data.

•	•			holc_a	id_data — Fe	atures To	otal: 8878	, Filte	red:	8878, Selected: 0
1	z # 3 #		🖻 🗏 🛛 🖣	, 7	🗉 🕸 🏓		1			e,
	state	city	arr holc_id		holc_grade		neighborh	0		area_descr
797	TN	Knoxville	B10	В				2	2054	{ "2f" : "70% 70%", "2h" : "0 4500-7000 4500-7000 0", "2k" : "Weak V
798	TN	Knoxville	B1	B					2031	{ "71" : "9", "2a" : "1 story singles 5/6 rms ", "2e" : "100% ", "1b" : "Whit
799	TN	Knoxville	C12	C				2	2055	{ "2g" : "1500-2500 2000-4500", "5a" : "19", "2c" : "25 years 25 years
800	TN	Knoxville	C11	C				2	2053	{ "2b" : "Frame Frame & brick", "1b" : "White-collar workers - some fac
801	TN	Knoxville	C10	C				2	2050	{ "2i" : "Sept/39 2000-4000 0 4000-9500 0", "2d" : "Fair to good Fair
802	TN	Knoxville	C1	C				2	2028	{ "1b" : "Wage earners in lower income bracket", "1e" : "None", "1d" : "(
803	TN	Knoxville	B9	B				2	2063	{ "3" : "\$4000-6000 Readily 10", "2n" : "Sept. '39 0 35-50", "2d" : " (
804	TN	Knoxville	B8	B				2	059	{ "2m" : " 0 30-40", "2a" : " 1 story singles 5/7 rms", "1b" : "Jr. Executi
805	TN	Knoxville	B7	B				2	2061	{ "4b" : "-", "2f" : " 70%", "2e" : "95% ", "2" : "100 ", "72" : "15.30 outsid
806	TN	Knoxville	B6	B				2	066	{ "2d" : "Good Good", "2f" : "70% 70%", "2i" : "0 0 3500-4500 Sept. '3
807	TN	Knoxville	C5	C				2	049	{ "6" : "Limited", "2h" : "1200-3000 0", "1d" : "0", "2k" : " Firm", "4b" :
808	TN	Knoxville	C4	C				2	2038	{ "2i" : "3500-5500 2000-3500 0 Sept/39 0", "1c" : "0 -", "2j" : "Poor f
809	TN	Knoxville	C3	C				2	2036	{ "2!" : "35-75 15-25", "4a" : "6", "2h" : "(-)18 (-)11 1,500-4,500 4000-
810	TN	Knoxville	C2	C				2	2027	{ "10" : "", "1e" : "None", "71" : "9", "2p" : " Firm", "2o" : "Good ", "2" : "1
811	TN	Knoxville	C16	С				2	048	{ "10" : "", "2" : "100 ", "2I" : " 15-25", "8" : "A small rolling to hilly area, \cdot
812	TN	Knoxville	C15	C				2	046	{ "2j" : "Fair to good Fair", "2f" : "50% 50%", "2h" : "0 0 3000-4000 20
1										
▼ SI	how All Features									

Figure 2-12. Attribute table--HOLC grades in NYC Redlining Map of the 1930s

In Chapter 3 you will begin to interact with actual data and expand your

ability to integrate geospatial thinking and location intelligence into your data workflows.

Data Resources

Here are the relevant links to resources discussed in this chapter:

- Natural Earth: Populated Places
- Uber Movement
- HOLC "Redlining" Maps: The Persistent Structure Of Segregation And Economic Inequality

About the Author

Dr. Bonny P. McClain is a member of the National Press Club, 500 Women Scientists, and Investigational Reporters and Editors allowing access to a wide variety of health policy and health economic discussions.

Bonny applies advanced data analytics including data engineering and geoenrichment to discussions of poverty, race, and gender. Her research targets judgementsabout social determinants, racial equity, and elements of intersectionality to illuminate the confluence of metrics contributing to poverty. Moving beyond zipcodes to explore apportioned socioeconomic data based on underlying population data leads to discovering novel variables based on location to build more context to complex data questions.

In order to influence change or pathways to mitigate factors contributing to "poverty" we need to evaluate the measures that influence the social context. Core themes of racism, class exploitation, sexism and nationalism and heterosexism all contribute to social inequality. Professionally and personally she redefines how we measure these attributes and how we can more accurately identify factors amenable to intervention. Spatial data hosts a variety of physical and cultural features to reveal distribution patterns helping analysts and data professionals understand underlying causes of these patterns. The ability to query these relationships can inform policy and identify solutions.

Bonny is a Tableau User Group Leader, Tableau Speaker's Bureau member and Data Analytics Professional. Her professional goals include working to improve data literacy through education, Tableau skill integration, as well as R, Python, and Tableau Prep tools, exploring large datasets and curating empathetic answers to larger questions--making a big world seem smaller.

- 1. 1. Introduction to Geospatial Analytics
 - a. Conceptual Framework for Spatial Data Science
 - b. Places as Objects (Points, Lines, and Polygons)
 - c. Evaluating and Selecting Data
- 2. 2. Essential Facilities for Spatial Analysis
 - a. Understanding Spatial Relationships
 - b. Spatial Literacy
 - c. Mapping Inequalities
 - d. Data Resources