

Head First Git

A Learner’s Guide to Understanding Git from the Inside-Out

Raju Gandhi

Head First Git

by Raju Gandhi

Copyright © 2021 Defmacro Software, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com .

		Editors: Melissa Duffield and Sarah Grey

		Production Editor: FILL IN PRODUCTION EDITOR

		Copyeditor: FILL IN COPYEDITOR

		Proofreader: FILL IN PROOFREADER

		Indexer: FILL IN INDEXER

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Kate Dullea

		June 2022: First Edition

Revision History for the First Edition

		2021-03-26: First Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492092513 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Head First Git, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author(s), and do not represent the publisher’s views. While the publisher and the author(s) have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-09251-3

[FILL IN]

Chapter 1. Beginning Git: Get Going with Git

[image: image]

You need version control. Every software project begins with an idea, implemented in source code. These files are the magic that power our applications, so we must be sure to treat them with care. We want to be sure that we keep them safe, retain history of changes, and attribute credit (or blame!) to the rightful authors. We also want to allow for seamless collaboration between multiple team members.

And we want all this in a tool that stays out of our way, springing into action only at the moment of our choosing.

Does such a magical tool even exist? If you’re reading this, you might have guessed the answer. Its name is Git! Developers and organizations around the word love Git. So what is it that makes Git so popular?

Why we need version control

You might have played video games that take more than one sitting to complete. As you progress through the game, you win and lose some battles, you might acquire some weaponry or an army. Every so often you might to try more than once to finish a particular challenge. Many games allow you to save your progress. So now, say you’ve just slayed the fire dragon and next on the agenda is saving the princess and collecting the massive treasure trove.

You decide, just to be safe, to save your progress, and then continue the adventure. This creates a “snapshot” of the game as it stands right now. The good news is that now, even if you meet an untimely demise when you run into the wretched acid-spitting lizards, you won’t have to go back to square one. Instead, you simply reload the snapshot you took earlier, and try again. Fiery dragons be gone!

Version control allows you to do the same with your work—it gives you a way to save your progress. You can do a little bit of work, save your progress, and continue working. Now, even if you make a mistake or perhaps, you are not happy with the way you solved a specific problem. You can save your work, and then try a different tack. If you like the new approach you just save your progress again, or you just go back to the old way.

[image: image]

And there’s more. Git allows you to confidently collaborate with your fellow developers over the same set of files, without stepping on each others toes. We will get into details about this in later chapters, but for now it should be enough to know this.

You can think of Git as your memory bank, safety net, and collaboration platform all built into one!

Understanding version control, and Git in particular—understanding what it is capable of, and the effect it has on how we develop software can help make us really, and we mean, really, productive.

[image: image]

Congratulations!

Your company has just been awarded the contract to build HawtDawg—the first-ever dating app for humans furriest best friend. However, it’s a dog-eat-dog world out there, and with the competition sniffing around, we don’t have much time to waste!

[image: image]

[image: image]

Cubicle Conversation

[image: image]

Marge: Yes. We should consider using a version control system.

Sangita: I have heard of version control systems, though I have never had a chance to use one. But we don’t exactly have a lot of time here.

Marge: Getting started with Git is super easy. You just create a Git repository and you are off to the races.

Sangita: I create a what now?

Marge: A Git repository is a folder that is managed by Git. Let me take a step back. You are going to need to house all the files for this project somewhere on your computer, right?

Sangita: I prefer to keep all relevant files pertaining to my project, including source, build and documentation, in one folder. That way, they are easy to find.

Marge: Great! Once you create that folder, you use Git to initialize a repository inside the folder. It’s that simple.

Sangita: And what does that do?.

Marge: Well, whenever you start a new project that you want to manage with Git, you run a Git command that readies the folder so that you can start to use other Git commands inside that folder. Think of it as turning the key in your car to start the engine. It’s the first step so you can now start to use your car.

Sangita: Ah! That makes sense.

Marge: Yep. It’s just one command, and now your folder is “Git enabled”. Just like kick-starting your engine—you can now put your project in gear.

Sangita: Got it.

Marge: Hit me up if you need something. I will be right here if you need me.

[image: image]

We’re not going to get much further if you haven’t installed Git yet. If you haven’t taken the time to install Git, now is the time. Head back to the section titled “You’re going to have to install Git” in the introduction to get started.

Even if you have Git installed, it will help to catch up with a new version of Git just to be sure that everything we discuss in this books works as expected.

Start your engines ...

Consider any project you have worked on; it typically involves one or more files—these may be source code files, documentation files, build scripts, what-have-you. If we want to manage these files with Git, then the first step is to create a Git repository.

So what exactly is a Git repository? Recall that one reason to use a version control system is so we can save the snapshots of our work periodically. Of course, Git needs a place to store these snapshots. That place would be in the Git repository.

[image: image]

The next question is—where does this repository live? Typically we tend to keep all the files for a project in one folder. If we are going to use Git as our version control system for that project, we first create a repository within that folder so that Git has a place to store our snapshots. Creating a Git repository involves running the git init command inside the top folder of your project.

We will go deeper into the details soon, but for now, all you need to know is, without creating a Git repository, you really can’t do much with Git.

No matter how big your project is (in other words, no matter how many files or sub-directories your project has), the top (or root) folder of that project needs to have git init run to get things started with Git.

[image: image]

	Create a project folder

	Initialize Git

[image: image]

	Initializing a Git repository inside a folder gives it superpowers. You will often here folks referring to this as the “working directory”.

A quick tour of the command line

One thing you are going to be using a lot while working the exercises in this book is the command line, so let’s spend a little time getting comfortable with it. Start by opening a terminal window like we did in the introduction, and navigate to a location on your hard-drive. As a reminder, on the Mac you’ll find the Terminal.app under Applications > Utilities folder. On Windows navigate using the Start button, and you should see Git BASH under the Git menu option. You will be greeted with a prompt, and that is your cue that the terminal is ready to accept commands.

[image: image]

[image: image]

Let’s start with something easy. Type pwd and hit return; pwd stands for “print working directory” and it displays the path of the directory the terminal is currently running in. In other words, if you were to create a new file or a new directory then they would show up in this directory.

[image: image]

[image: Images] Sharpen your pencil

Time to get busy! Fire up the terminal, and use the pwd command. Jot down the output you see here:

Note

You’ll find the answers to Sharpen Your Pencil exercises at the end of the chapter

Great! If this is your first time using the terminal, or you are not very familiar with it, then it can be a little daunting. But know this—we will guide you every step of the way, not just for this exercise but all exercises in this book.

More on the command line (mkdir)

Knowing the location of the current directory in the terminal, using pwd is super useful because almost everything you do is relative to the current directory, which includes creating new folders. Speaking of new folders, the command for creating new folders is mkdir which stands for “make directory”.

[image: image]

Unlike pwd which simply tells you the path of the current directory, mkdir takes an argument, which is the name of the directory you wish to create:

[image: image]

[image: Images] Watch it!

mkdir will error if you attempt to create a dirctory with a name that already exists.

If you attempt to create a new directory with the same name as one that already exists in the current directory, mkdir will simply report File exists and not do anything. Also, don’t let the “file” in “File exists” confuse you—in this case it simply means folder.

[image: Images] Sharpen your pencil

Your turn. In the terminal window you have open go ahead and use mkdir to create a new directory called my-first-commandline-directory.

Note

Make sure you check your answer at the end of the chapter

Note

Write the command and argument you used here.

Next, run the same command again, in the same directory. Write down the error you see here:

Note

Error goes here.

More on the command line (ls)

The output of mkdir isn’t very encouraging to say the least. But as long as you did not get any errors, it did its job. To confirm if something did happen, you can list all the files in the current directory. The listing command is named ls (short of list).

[image: image]

The thing is, ls by default only lists regular files and folders. Every so often (and we are going to need this soon enough) you want to see hidden files and folders as well. To do that, you can supply ls with a flag. Flags, unlike arguments are prefixed with a hyphen (to differentiate them from arguments). To see “all” files and folders (including hidden ones) we can use the “A” flag, like so:

[image: image]

[image: Images] Sharpen your pencil

Use the terminal to list all the files in the current directory. See if you can find your recently created my-first-commandline-directory.

Then use the -A flag and see if there are any hidden folders in the current directory.

More on the command line (cd)

Next, navigation! We created a new directory, but how do we navigate to it? For that, we have the cd command, which stands for “change directory”. And of course, once we change directories, we can use pwd to make sure that we indeed did move locations.

[image: image]

cd navigates to a subdirectory under the current directory. To hop back up to the parent directory, we can also use cd, like so:

[image: image]

Always keep track of your working directory (using pwd)—most operations on the command line are relative to this directory.

[image: Images] Exercise

Go ahead, give it a spin. Play around with cd to hop into your newly created my-first-commandline-directory folder, then use pwd to make sure you did change directories, and then use cd .. to go back to the parent folder. Use this space as a scratchpad to practice out the commands as you use them.

No argument there

Command-line functions like pwd and mkdir are the “commands” we are invoking. Some commands like mkdir and cd expect you to tell them what you want to create or where to go. The way we supply those is by using arguments.

[image: image]

You might be wondering why we chose to use hyphens instead of spaces.Turns out, using spaces in arguments can get rather tricky. You see, the command line uses this to seperate the command from it’s arguments. So, it can be super confusing to the command line if your arguments have spaces in them.

[image: image]

The command-line can be rather finicky, particularly when it comes to white-space. It turns out that for the command-line, white-space acts as a separator. In other words, this is how the command line separates the command from everything else. But if we put spaces in the arguments, it can’t figure out where the argument starts and end.

So, anytime you have white-space in an argument, and you wish to treat it as one argument, you need to use quotes.

[image: image]

As a habit, try to avoid white-space in file names and paths.

Note

For example, its better to have C:\my-projects\ than C:\my projects\

Great question. The command line does not really care if you use double quotes or single quotes. The thing to remember is that you need to be consistent. If you start the argument name with single quotes, then end it with a single quote. Likewise, for double quotes.

[image: image]

Typically, most folks using the command line tend to prefer double quotes and so do we; however, there is one situation where you will be forced to use double-quotes and that is if your argument has a single quote in it.

Notice that in this case we are using a single quote in the word sangita’s:

[image: image]

The opposite is true if you need to use a double quote in your argument, in which case you’ll need to surround your argument with single quotes.

However, we alluded to this, it’s best if we avoid whitespace in our arguments, particularly in the names of directories and files. Anytime you need a space, simply use a hyphen or an underscore. This helps you avoid using quotes (of any kind) when supplying arguments.

WHO DOES WHAT?

With the command line there’s a lot of commands and options flying around. In this game of who does what, match each command to its description.

	cd
	Displays the path of the current directory.

	pwd
	Creates a new directory.

	ls
	Navigates to the parent directory.

	mkdir
	Changes directories.

	ls -A
	Lists regular files in the current directory.

	cd ..
	Lists all files in the current directory.

Cleaning up

Now that you are done with this section, we suggest you clean up the folders you created like my-first-commandline-directory and any others. For this, just use the Explorer or the Finder window and delete them. While the command line offers you ways to do this, deleting files using the command line usually bypasses the trashcan. In other words, it’s hard to recover if you accidentally delete the wrong folder.

[image: image]

In the future, when you get more familiar with the command line, perhaps you might use the appropriate command to delete files, but for now, let’s play it safe.

Creating your first repository

Let’s get a little acquainted with Git before we dive into the deep end of the pool. You already have Git installed, so this will give us a chance to make sure everything is set up and get a sense of what it takes to create a Git repository. To do that, you will need a terminal window. That’s it!

Start by opening a terminal window like we did in the previous exercise. Just to keep things easier to manage, we suggest you create a headfirst-git-samples folder to house all the examples in this book. Within that, go ahead and create a new folder for our first exercise for Chapter 1, called ch01_01.

[image: image]

Now that we are in a brand new directory, let’s create our first Git repository. To do this, we simply run git init inside our newly created folder.

[image: image]

That was pretty painless, wasn’t it? And there you have it—your first Git repository.

Inside the init command

So what exactly did we just accomplish? The git init command might not look like much, but it sure packs a punch. Let’s peel back the covers to see what it really did.

[image: image]

To begin with, we started with a new, and empty directory.

[image: image]

Using the terminal we navigated to the folder location and invoked the magic words, git init, where init is short for initialize. Git realizes we are asking it to create a repository at this location, and it responds by creating a hidden folder called .git, and stuffs it with some configuration files, and a subfolder where it will store our snapshots when we ask it to.

[image: image]

One way to confirm this happened is by listing all the files using our terminal, like so.

[image: image]

This hidden folder represents the Git repository. It’s job is to store everything related to your project, including all commits, the project history, configuration files, what-have-you. It also stores any specific Git configuration and settings that might have enabled for this particular project.

there are no Dumb Questions

Q: I prefer to use my file-system explorer when navigating my computer? Can I use that to see the .git folder?

A: Of course! By default most operating systems do not reveal hidden files and folders in the explorer. Be sure to look at your preferences and ensure that you can see hidden files and folders.

Q: What happens if someone were to accidentally delete this directory?

A: First of all, let’s not do that. Second, this directory is the “vault” in which Git stores all its information—including your entire project history and a bunch of other files that Git needs for house-keeping, and some configuration files that we can use to customize our experience with Git. This means that if you were to delete this folder you will lose all project history. However, all the other files in your project folder will remain unaffected.

Q: What happens if I accidentally run git init more than once in the same folder?

A: Good question. This is completely safe. Git will simply tell you that it is reinitializing the Git repository, but you will not lose any data nor will you hurt anything. In fact, you should try it in ch01_01. We are early in our journey, and the best way to learn is to experiment. Whatcha got to lose?

Q: Other version control systems that I have used have a server component. Don’t we need that here?

A: Getting started with Git is really easy. git init creates a Git repository and you can get to work. Eventually you will need a mechanism to share your work with your teammates, and we promise we will get to that soon enough. But for now, you are all set.

Magnetic thoughts

[image: image]

We have all the steps listed to create a new folder, change to it, and initiatialize to create a new Git repository. Being diligent developers, we often check to make sure we are in the correct directory. To help our colleagues we had the code nicely laid out on our fridge using fridge magnets, but they fell on the floor. Your job is to put them back together. Note that some magnets may get used more than once.

[image: image]

Introduce yourself to Git

There is one more step before we get to work with Git and Git repositories. Git expects you to tell it a few things about yourself, so let’s knock that out. You only have to do this once, and this will apply to any and all projects that you work with on your machine.

We will start with our trusty old friend, the terminal and follow along. Be sure to use your name and email instead of ours! (We know you love us, but we wouldn’t want to take credit for your work!). Start by opening a new terminal window. Don’t worry about changing directories—for this part of our setup it does not matter where you run this.

[image: image]

How you will use Git

Let’s get a sense of how a typical interaction with Git looks like. Remember how we spoke about video games allowing you to save your progress? Well, asking Git to “save your progress” involves “committing” your work to Git. Essentially this means that Git stores a revision of your work. Once you do that, you can continue working away merrily till you feel it’s time to store another revision, and the cycle continues. Let’s see how this works.

[image: image]

Putting Git to Work

We are sure you raring to get started (we know we are!). So far, we have initialized a Git repository, told Git our name and email, and kinda-sorta have a sense of how we usually work with Git. So how about we actually put Git to work. We will start small and just put Git through its paces—we will see what it takes to “take a snapshot” in Git by creating a “commit”.

For the sake of this exercise let’s pretend to start working on a new project. If you are anything like us, we usually start with a checklist so we can keep track of everything we have to do. As we progress with the project, we keep checking things off (gotta keep that dopamine flowing!), and as we learn more about the project, we keep adding to it. Naturally, this file is version controlled with the rest of the files in the project, for which we will use Git.

Let’s break down what we are going to do, step by step.

[image: image]

Meanwhile, back at the HawtDog Dating Service ...

[image: image]

Your first step involves creating a new folder under the umbrella headfirst-git-samples folder. Be sure you are in the right directory using pwd. You may have to use cd .. (remember the two dots there) to go up one level if your terminal is still in the ch01_01 directory.

Next, we simply initialize a new repository inside HawtDawg using the altogether familiar git init.

[image: image]

Next, create a new document in your favorite text editor, and type in the following lines of text. If you followed the instructions in the introduction to install Visual Studio Code, then just like the terminal, you will find Visual Studio Code.app under the Applications folder. On Windows, just click on the Start menu and you should see Visual Studio Code listed under all the applications installed on your machine.

Note

To create a new file, simply click on File menu item at the top and pick “New File”.

[image: image]

Save the file as Checklist.md in the HawtDawg directory

Note

To save the file, select File from the top menu, select Save, and then navigate to where you created the HauwDawg directory.

Now we are ready to commit our work. This involves two Git commands, namely git add and git commit.

[image: image]

Speaking of ...

Congratulations on your first commit!

[image: image]

You have completed a whirlwind tour of Git. You installed Git, initialized a Git repository, and committed a file to Git’s memory. This gives us a great starting point and we should be ready to dive deeper into Git.

[image: image]

[image: Images] Watch it!

Did you get some other output than the one we showed you in the previous exercise?

The comand line can be rather unforgiving when it comes to typos, white-space and casing. If you did not get the same output as ours, then here are few things to try:

	If you see an error like fatal: not a git repository be sure that you are in the ch01_02 directory

	If you got an error like command not found then be sure to check to make sure you got the case and the spelling right. Usually the command-line tells you which command it did not recognize.

	If you see an error along the lines of fatal: pathspec checklist.md did not match any files when you tried a git add, know that the filename you supply needs to match the filename exactly, which in our case would be Checklist.md.

	If you get error: pathspec ’-’ did not match any file(s) known to git when trying to git commit, make sure that there is no space between the - and m.

	If the command-line reports an error like error: pathspec ‘first’ did not match any file(s) known to git make sure to wrap the commit message “My first commit” in double-quotes.

	If you get an error like nothing added to commit but untracked files present, then try running git add Checklist.md again, this time making sure you get the filename correct, including the casing.

What exactly does it mean to commit?

[image: image]

We saw that committing to Git is a two-step process. You first add the files and then commit.

The first thing to know is that only the files that you add are committed. Let’s say you had two files—Checklist.md and README.md, but you only added Checklist.md. When you create a commit, Git will only store the changes made to Checklist.md.

Now, when we commit, Git uses a specialized algorithm to safely tuck away everything that we added in it’s memory. When we say we “committed” our changes to Git, what that translates into is that Git creates a commit object that it stores inside the .git folder. This commit object is ‘stamped’ by a unique identifier. You might recall that we got 3dc1ea2 when we made our commit in our last exercise (you certainly saw something different)—this is actually a much longer string containing numbers and letters that looks something like this:

[image: image]

This identifier is computed on a bunch of metadata, including your fullname, the time as it were when you made the commit, the commit message you provided, and information derived from the changes you committed.

The last thing you need to know is ...

[image: Images] Serious Coding

Amazingly enough, the chances that two commits will EVER have the same ID (and yes, that is across all the Git repositories in the world, those that exist and even those that haven’t even been created yet) is less than 1 in 1048! Yes, that is 10 followed by 48 zeroes!

[image: image]

...The commit object does not actually store your changes—well not directly anyway. Instead, Git stores your changes in a different location in the Git repository, and simply records (in the commit) where your changes have been stored.

A pointer to the location inside the .git folder where Git has stored your changes, called a tree.

This is another set of alphanumeric characters, the details of which we will skip for now.

[image: image]

The “author” info—that is, your name and email address.

In an earlier exercise we provided Git with our fullname, and our email. This is also recorded in the Git so that you can claim full credit for the marvelous work you put in.

Note

This is why it’s important to introduce yourself to Git.

The time the commit was made, represented in seconds elapsed since Jan 01 1970.

Git also records the time when you made the commit, along with the timezone your machine is located in.

Note

Commit objects are stored by Git in binary format, making it very hard for humans to read, but super safe and efficient for Git.

The commit message you supplied when you invoked git commit -m.

Note

There is a little bit more than what we listed here, but we can leave that aside for now.

Look before you leap

Alright, we just made our first commit. Making a commit involves two separate commands—git add followed by git commit. You are probably wondering why it takes two commands to make a commit in Git—why does Git make us jump through all these hoops so we can store a revision of our work in Git?

[image: image]

The answer lies in the design of the Git repository. Remember that the Git repository is housed in the .git folder that gets created when you run git init.

The Git repository itself is divided into two parts—the first part is called the “index”, and the second part is what we will refer to as the “object database”.

When we run git add <filename> Git makes a copy of the file, and puts it in the index. We can think of the index as the “staging area”, wherein we can put things till we are sure we want to commit to them.

Now when we run git commit takes the contents of the staging area and stores those in the object database, a.k.a Git’s memory bank. To put it another way, the index is a place to temporarily house changes. Typically, you make some changes, add them to the index, and then decide if you are ready to commit—if yes, then you make a commit. Else, you can continue making changes, add more changes to the staging area, and then when you feel you are in a good place, commit.

[image: image]

The three stages of Git

	Let’s start at the top. We have a working directory with just one file.

[image: image]

	When we git add Checklist.md Git stores a copy of that file in the index.

Note

Hold on to this thought—we will come back to it in the following pages.

[image: image]

	Finally, when we commit, Git creates a commit object that records the state of the index in its memory.

[image: image]

Great question!

[image: image]

We mentioned earlier that the index can be thought of a staging area. It gives you a way to collect everything you need for the next commit.

Consider a scenario where you are working on a new feature or fixing a bug. As you navigate the project you notice a typo in a documentation file and being the good teammate that you are, you fix it. However, this fix is completely unrelated to your original task. So how do you separate the the documentation fix from your original task?

Simple.

You finish the task you were working on, and add all the files that were affected by that change to the index. And then you commit, giving it an appropriate message. Remember, Git only commits the files that were added to the index.

Next you git add the file in which you fixed the typo, and make another commit, this time providing a message that describes your fix.

An analogy that might help would be one of cooking. You are having friends over, and are feverishly preparing a bunch of delicious dishes. You may start by chopping up everything you know you will need. However, once you start putting things on the stove, you may choose to collect everything you need for that particular dish so they are right there when you need them. You leave everything else by the cutting board. Chefs refer to this as “mise en place”.

The index is your mise en place.

[image: image]

Git in the command-line

We covered some of the idiosyncrasies of the command line previously. This time around let’s make sure we understand how we use Git at the command line. As you have seen, Git uses the git command, usually followed by a “sub-command”, like add or commit, and finally followed by arguments to the sub-command.

[image: image]

[image: image]

Since we are using the command line, the same rules that we discussed previously apply. Anytime you have white-space in an argument, and you wish to treat it as one argument, you need to use quotes. Consider a very different scenario where we named our file “This is our Checklist.md”. In this case, we will have to use quotes when invoking git add, like so:

[image: image]

Finally, git commit takes both a flag, -m, and a message. -m is a flag, and here, we should not put a space between the hyphen and m.

Note

Like many flags, -m is short for --message. You can use either, but we are lazy so we prefer the shorter version.

[image: image]

A peek behind the curtain

We are going to let you in on Git’s little secret. When you add (one or more files) to Git’s index, Git doesn’t touch any of the files in your working directory. Instead, it copies the contents of those files to the index. This is an important point because it is crucial to how Git is tracks the content of our files.

Note

We alluded to this in the previous pages.

[image: image]

So what happens when we commit? Well, as we know, Git takes the contents of the index, tucks those safely into it’s memory bank, and represents that version with a commit object. This means that now, Git has a third copy of your files contents in its object database!

[image: image]

There can be upto three copies of any file in your working directory.

The multiple states of files in a Git repository

Here is what a typical interaction with Git looks like—you make some edits to one or more files, then add them to the index, and when you are ready, you commit them. Now, as you are going through this workflow, Git is attempting to track the state of your files so it know which files are part of your working directory, which files have been added to the index, and which files have already been committed to its object store.

Throughout, keep in mind that Git is moving copies of your file from the working directory, to the index, to it’s object datastore.

[image: image]

But there’s more. A file may move through all the various stages, but could be in more than one state simultaneously!

A typical day in the life of a new file

When we add a new file to a Git repository, Git sees the file, but also chooses not to do anything till we explicitly tell it to. A file that Git has never seen before (that is, a file that has never been added to the index) is marked as “Untracked”. Adding the file to the index is our way of telling Git “Hey! We really like you to keep an eye on this file for us”. Any file that Git is watching for us is referred to as a “tracked” file.

[image: image]

The object database is the “source of truth”.

This time, consider adding a file to the index, and then immediately making a commit. Git stores the contents of the index in it’s object database, and then marks the file as “Unmodified”.

Why unmodified, you ask? Well, Git compares the copy it has in its object database with the one in the index, and sees they are the same. It also compares the copy in the index with the one in the working directory, and sees that they are the same. So the file has not been modified (or is Unmodified) since the last commit.

[image: image]

Of course it follows that if we were to make a change to a file that we had previously commited, Git sees a difference between the file in the working directory and the index, but no difference between the index and the object database. So Git marks the file as “Modified” but it also marks it as “not staged” because we haven’t added it to the index yet.

[image: image]

Next, if we were to add the modified file again to the index. Git sees that the index and the working directory are the same, so the file is marked “staged”, or in other words, it is both modified and staged.

And we complete the circle—if we commit, the contents of the index will be committed, and the file will be marked as “Unmodified”.

[image: image]

[image: Images] BE Git

Recall that any file in your working directory is either untracked or tracked. Also, a tracked file can be either staged, unmodified, or modified.

In this exercise assume you just created a new repository. Can you identify the state of the files for each of the following steps?

You create a new file in the repository called Hello.txt.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	
	
	
	

You add Hello.txt to the index.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	
	
	
	

You commit all the changes that you staged.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	
	
	
	

You edit Hello.txt with some new content.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	
	
	
	

The index is a “scratchpad”

Let’s revisit the role of the index. We know that as we edit files in our working directory, we can add them to the index, which marks the file as “staged”.

[image: image]

[image: image]

Of course we can continue editing the file even after adding it to the index. Now, we have two versions of the file—one in the working directory and one in the index.

[image: image]

Now if you add the file again, Git overwrites the index with the latest changes reflected in that file. In other words, the index is a temporary scratchpad—one you can use to stuff edits into till you are sure you want to commit.

Note

This is a super important point. Take a moment for it to sink in before moving on.

To give you a sense of how we tend to work, we usually add files the files we wish to commit to the index when we feel we are ready. We then make sure that everything looks good, and if so, make a commit. On the other hand if we spot something (like a typo, or if we missed a minor detail), we make our edits, add those files again to the index, and then commit the files. Wash, rinse, repeat.

[image: Images] Sharpen your pencil

Time to experiment. Navigate to headfirst-git-samples directory, and create a new directory called play-with-index, and then cd into this directory Go ahead and initialize a new repository using git init. Using your text editor create a new file in the play-with-index called multiple-add.txt. After each step, draw what the working directory and the index look like:

[image: image]

Computer, status report!

As you continue to work with Git, it’s often useful to check the status of the files in your working directory. One of the most useful, and, most used commands in your Git arsenal is the git status command. This command is particularly useful as your project grows in size, with multiple files.

Note

Remember that the working directory is the directory containing the hidden .git folder.

So let’s explore how to use the status command: you’ll create Yet Another Git Repository™ except this time you will create multiple files in your repository. This will give you a change to see what git status reports, and get an intuitive sense of how Git works.

As you have done before, you will create a brand new folder inside the umbrella headfirst-git-samples folder called ch01_03, and initialize a Git repository inside that folder.

[image: image]

Despite not having done anything, you can still check the status of our repository. The command, like others that we have used, is a Git subcommand, called status. Let’s use that.

[image: image]

Your first ever usage of git status may seem like a little bit of a letdown, but it does give you a chance to get used to reading it’s output. Git nicely tells you that you have made no commits yet, and gives us a useful hint on what you should do next.

You should get used to reading the output that Git commands produce.

Next, you will create the first of two files. Open a new document in your text editor, and type in the following lines of text.

[image: image]

Be sure to save the file as README.md in the ch01_03 directory.

Do the same thing to create another file called Checklist.md with the following text.

[image: image]

Whoa, easy tiger!

[image: image]

We have done quite a bit very quickly. Let’s recap what you have done so far. You created a new folder, and initialized a brand new Git repository inside that folder. You then created two new files.

Now we will walk Git through its paces, and at every step, ask Git what it thinks what the status of the files are. Ready?

You have set up everything to get started. Let’s see what git status has to report.

[image: image]

What we have:

[image: image]

Recall that when you ask Git for the status of the repository, it compares what it knows about our files with what it sees in the working directory. In this case, Git sees two new files that it has never seen before. So it marks them as “Untracked”—in other words, Git has not been introduced to these files, so it is not watching these files just yet. The index is empty since we haven’t added either of the files to the index, and the object database has no commits—well, since we haven’t commited yet. Let’s change that!

We’ll start by introducing Git to one of our files. Go ahead and add README.md to Git, and then check the status again.

Note

Let Checklist.md be for now. We will come to it in a few.

[image: image]

What just happened? Adding the README.md file to Git’s index means now Git knows about this file. Two things changed—the README.md file is now being tracked by Git, and it is in the index, which means it’s also staged.

What we have:

[image: image]

Git tells us that if were to make a commit at this point, only the README.md will be committed. Which makes sense because only the changes that are staged get to participate in the next commit.

So let’s commit!

[image: Images] BRAIN POWER

Before you proceed, can you visualize what would change if we were to make a commit right now? Remember, there are two files, and only one is in the index.

Git commits require that we pass in a message. Let’s keep it simple and use “my first commit”. Back to the terminal you!

[image: image]

What we have:

[image: image]

Test Drive

[image: image]

The ch01_03 repository still has one untracked file, namely Checklist.md. Edit it to look like this.

[image: image]

Perform each of the steps below, each time noting the output of git status.

	Add Checklist.md to the index.

	Make a commit with the commit message “my second commit”.

You’ve made history!

In our last exercise we made two seperate commits as we took both the README.md and Checklist.md files from being untracked, to being staged, and then finally committed to Git’s object database. At the end of it all, our repository now has two commits.

We know that Git commits are essentially metadata that record what was committed, along with information about the author as well as the commit message. There is one final detail about commits that you ought to know about. For every commit that you make (other than the very first one in a repository) the commit also records the commit ID of the commit that came just before it.

[image: image]

That is to say, the commits form a chain, much like the branch of a tree, or a string of christmas lights. Given a commit, Git can trace it’s lineage by simply following the “parent” pointer. This is referred to as the commit history, and is an integral piece to how Git works.

Note

In case you are wondering if this is a segue of what is to come, well, good job young jedi!

[image: image]

Just know that child commits refer back to their parents, but parents do not refer to their children. In other words, the pointers are unidirectional.

[image: Images] Serious Coding

The Git commit history is often referred to as a directed acyclic graph, or DAG for short, wherein the commits form the “nodes” and the pointers to the parent form the “edges”. They are directed because children point to parent, and acyclic because parents do not point back to their children.

[image: Images] BULLET POINTS

	A version control system like Git allows you to store snapshots of your work.

	Git is much more than a tool that allows you to record snapshots. Git allows us to confidently collaborate with other team members.

	Using Git effectively requires you to be comfortable with the command line.

	The command line offers a slew of other capabilities including creating and navigating directories and listing files.

	Git is available as an executable, which you install, and it makes Git available to use in the command line with the name git.

	Once you install Git, you need to tell Git your full name, and your email address. Git will use this whenever you use Git to take a snapshot of your work.

	If you wish you to Git to manage the files for any project we have to initialize a Git repository at the root level of the project.

	To initialize Git you use the init command, like so: git init

	The result of initializing a new Git repository is that Git will create a hidden folder called .git in the directory where you ran the git init command. This hidden folder is used by Git to store your snapshots, as well as some configuration for Git itself.

	Any directory that is managed by Git is referred to as the working directory.

	Git, by design, has an index, which acts as a “staging area”. To add files to the index, you use the git add <filename> command.

	Committing in Git translates to taking a snapshop of the changes that were stored in the index. The command to create a commit is git commit, which requires that you supply it with a commit message to describe the changes you are commiting, using the -m (or --message) flag: git commit -m "some message"

	Every file in the working directory is assigned one or more states.

	A brand new file added to the working directory is marked as “Untracked” which suggests that Git does not know about this file.

	Adding a new file to Git’s index does two things—it marks the file as being “tracked”, and creates a copy of that file into the index.

	When you make a commit, Git creates a copy of the files in the index and stores them in the object datastore. It also creates a commit object that records metadata about the commit, including a pointer to the files that were just stored, the author name and email, the time the commit was made, as well as the commit message.

	Every commit in Git is identified by a unique identifier, refererred to as the commit ID.

	At any time you can ask Git for the status of the files in the working directory and the Git repository, using the git status command.

	Every commit except the initial commit in Git stores the commit ID of the commit that appeared just before it, thus creating a string of commits, like leaves on a branch.

	This string of commits is referred to as the commit history.

[image: Images] Sharpen your pencil Solution

Time to get busy! Fire up the terminal, and use the pwd command. Jot down the output you see here:

[image: image]

[image: Images] Sharpen your pencil Solution

Your turn. In the terminal window you have open go ahead and use mkdir to create a new directory called my-first-commandline-directory.

[image: image]

Next, run the same command again, in the same directory. Write down the error you see here:

[image: image]

[image: Images] Sharpen your pencil Solution

Use the terminal to list all the files in the current directory. See if you can find your recently created my-first-commandline-directory.

[image: image]

Then use the -A flag and see if there are any hidden folders in the current directory.

[image: image]

[image: Images] Exercise Solution

Go ahead, give it a spin. Play around with cd to hop into your newly created my-first-commandline-directory folder, then use pwd to make sure you did change directories, and then use cd .. to go back to the parent folder. Use this space as a scratchpad to practice out the commands as you use them.

[image: image]

WHO DOES WHAT? SOLUION

With the command line there’s a lot of commands and options flying around. In this game of who does what, match each command to its description.

[image: image]

Magnetic thoughts

[image: image]

We have all the steps listed to create a new folder, change to it, and initiatialize to create a new Git repository. Being diligent developers, we often check to make sure we are in the correct directory. To help our colleagues we had the code nicely laid out on our fridge using fridge magnets, but they fell on the floor. Your job is to put them back together. Note that some magnets may get used more than once.

[image: image]

[image: Images] BE Git

Recall that any file in your working directory is either untracked or tracked. Also, a tracked file can be either staged, unmodified, or modified.

In this exercise assume you just created a new repository. Can you identify the state of the files for each of the following steps?

You create a new file in the repository called Hello.txt.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	[image: Images]
	
	
	
	

You add Hello.txt to the index.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	[image: Images]
	[image: Images]
	
	

You commit all the changes that you staged.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	[image: Images]
	
	[image: Images]
	

You edit Hello.txt with some new content.

	Untracked
	Tracked
	Staged
	Unmodified
	Modified

	
	[image: Images]
	
	
	[image: Images]

[image: Images] Sharpen your pencil Solution

Time to experiment. Navigate to headfirst-git-samples directory, and create a new directory called play-with-index, and then cd into this directory Go ahead and initialize a new repository using git init. Using your text editor create a new file in the play-with-index called multiple-add.txt. After each step, draw what the working directory and the index look like:

	The initial contents of multiple-add.txt should be “This is my first edit”. Be sure to save the file!

[image: image]

	Switch back to the terminal, and use git add multiple-add.txt to the index.

[image: image]

	Back in the editor, change the text in the file to “This is my second edit”. Again, be sure to save.

[image: image]

	Back at the terminal, add the file to the index again.

[image: image]

Test Drive Solution

[image: image]

The ch01_03 repository still has one untracked file, namely Checklist.md. Edit it to look like this.

[image: image]

Perform each of the steps below, each time noting the output of git status.

	Add Checklist.md to the index.

[image: image]

	Make a commit with the commit message “my second commit”.

[image: image]

	1. Beginning Git: Get Going with Git

	Why we need version control

	Cubicle Conversation

	Start your engines ...

	A quick tour of the command line

	More on the command line (mkdir)

	More on the command line (ls)

	More on the command line (cd)

	No argument there

	Cleaning up

	Creating your first repository

	Inside the init command

	Magnetic thoughts

	Introduce yourself to Git

	How you will use Git

	Putting Git to Work

	Meanwhile, back at the HawtDog Dating Service ...

	Speaking of ...

	Congratulations on your first commit!

	What exactly does it mean to commit?

	Look before you leap

	The three stages of Git

	Great question!

	Git in the command-line

	A peek behind the curtain

	The multiple states of files in a Git repository

	A typical day in the life of a new file

	The object database is the “source of truth”.

	The index is a “scratchpad”

	Computer, status report!

	Whoa, easy tiger!

	Test Drive

	You’ve made history!

	Magnetic thoughts

	Test Drive Solution

OEBPS/Images/f0037-01.png
File Edit_Window Help

ch01 03 $ git status
on branch master

No surprise heve

No commits yet —— sinte we haven't
commited yet.
Untracked files:
(use "git add <file>..
Checklist.md
README .md

" to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

hese lines tell us

how Git views our

newly added files.

OEBPS/Images/f0037-02.png
Bokh files ave
Vnkratked since ¥€
Jus‘{: ereated them

Working
directory

V)

README .md

Checklist md

Object

index
database

index and objett
database ave
emp{\l

OEBPS/Images/f0008-01.png
This is 3 Finder or
Explover equivalent of

mkdiv. \)/

Get Info

Import from iPhone o ipad >
| View »

Use Groups

Sort By »

Show View Options

OEBPS/Images/f0014-01.png
Fie Edi_ Window Fieh

headfirst-git-s ;
> it-samples $ mkdir chO.
Eosariee thgTibe s Teol SFeaYerod 0101 & Start by naking awr

chOl 01 § eh0l_0l diveetory

And ‘ed stands for Retall that mkdic
< “ehange divettory’ stands for “make
diveetory”

Then change
toit.

1€ you aven't o
Lamiliar with the
tommand line, You ¢an
use the Finder (Mat)
or Explorer (Windows)
1o ereate a new
£older. However, we are
q0ing to be using the
zommand line a lot, so
You should get familiar
with the command line

OEBPS/Images/f0008-02.png
Don't do this just yet. We
vill have exercises \Zor You

to practice in a moment.

File Edi Widow Fep.

~ $ mkdir created-using-the-command-line

~ 8

QTlus is the argument, that is, the

I£ all goes well, you simply name of the new divectory.
veturn o the prompt

eurvent (pwd)

i diveetory.
W

mkdir treates a

new divettory under
the turvent Z‘)wd)
divectory.

OEBPS/Images/f0014-02.png
Be sure to mateh

Invoke £he init the case. Al git
Command Commands are always
lowerease.

Fie Eat Vindow T
_ git init
Initialized empty Git repository in ~/headfirst-git-samples/ch0l 01/.git/

ch01_01 §

Git tells us that all

went well

OEBPS/Images/f0043-02.png
We invoke the mkdir ¢ommand,

supplying it the name of the new _mkdir my-first-commandline-directory
divettory as an avqument. ~A

OEBPS/Images/f0043-03.png
mkdir evcors out it

the dwed:wy alveady
gi/ Cil

mkdir: my-first-commandline-directory: File exist

OEBPS/Images/f0043-01.png
$ pwd
/Users/raju

This is what we got. You
might aet something diffevent,
but as lony as you don't see
an ervor, You did welll

OEBPS/Images/exer.png

OEBPS/Images/cap.png

OEBPS/Images/f0028-03.png
The quotes make the
whole filename one
argument.

Wap the filename in

 ouotes.

git add "This is our Checklist.md"

You tan use single or
double quotes, but we
like double quotes.

OEBPS/Images/f0028-04.png
git commit -m "My first commit"

No white—space The message flag, S
bebueen the hyphen pally our commit messages
and the letter m. end to comprised of

several words. So we almost
alvays use double—quotes.

OEBPS/Images/f0020-02.png
Make our HawtDawg
divettory

File Edit_Window Felp. \/CS we vealize &
headfirst-git-samples $ mkdir HawtDawg ! at

headfirst-git-samples § cd HawtDawg \5’"‘ is vepetitive.
HawtDawg $ owever, this gives
us an opportunity

Don't foraet use them again to
switeh to ?é! o further uaaen{
our knowledae. This
is “Head Fivst Git”
after all.

Initialize the Git

vepasitory
Fie Eat Virdow T

HawtDawg $ git init

Initialized empty Git repository in ~/headfirst-git-samples/HawtDawg/.git/

HawtDawg $

Git kindly tells us it Note: We do not have to supply
did what we asked our name and email to Git again,
That is a one—time setting.

it

OEBPS/Images/f0020-01.png
Hey, glad you all
are here. We really
need to get working on HawtDawg. Lots
of pups looking for real love out there. T
suggest we start with creating a checklist
of all the things we know we need to do so
we don't miss any thing.

HawtDawg
project manager

OEBPS/Images/test.png

OEBPS/Images/f0017-01.png
€ We will start with telling Git our full name

File Eai Window Felp

$ git config --global user.name "Raju Gandhi"

You an vun this in Invoke the tonfig
any direttory Sied

Note: You tan always
change these later

© Next,we tell Git our email address. You can use by vunning the same
your personal here for now, and always change it command again with
later. difffevent values.

So if you hoose to
use Your work email
address onte are
5 done with {h‘.zwbook,
$ git config --global user.email "me@i-love-git.com" feel free to do just
that. You might
wanna bodkmark this
page just in case

Supply your email
here

OEBPS/Images/f0034-01.png
1. Theinitial contents of multiple-add.txt should be“This is my first edit” Be sureto save the file!
We did the first Working directory index

one for you D

Untracked File in 7 mtie-add
working directory.

index is initially
&~ empty.

2. Switch back to the terminal, and use git add multiple-add.txt totheindex.

“

Use this space for
Your dvawings

g

3. Backin the editor, change the text in the file to“This is my second edit". Again, be sure to save.

4. Back at the terminal, add the file to the index again.

OEBPS/Images/pencil.png

OEBPS/Images/f0040-01.png
o) mavks todos | # Checklist
a5 “done’ ¥ - [x] Create two files, README.md and Checklist.md

- [x] Add README.md and make a commit
- [] Update Checklist.md, then add it and make a commit

Checklist.md

OEBPS/Images/f0005-01.png

OEBPS/Images/f0048-02.png
ch01 03 $ git add Checklist.md
ch01 03 § git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)
new file: Checklist.md

OEBPS/Images/f0023-01.png
Hold on! You
are telling me I made a
commit, but what does
that mean exactly?

OEBPS/Images/f0048-01.png
Checklist

- [x] Create two files, README.md and Checklist.md
- [x] Add README.md and make a commit
- [] Update Checklist.md, then add it and make a commit

Checklist md

OEBPS/Images/f0048-03.png
ch01_03 $ git commit -m "my second commit"
[master 77bcd74] my second commit

1 file changed, 6 insertions (+)

create mode 100644 Checklist.md

ch01 03 $ git status
On branch master
nothing to commit, working tree clean

OEBPS/Images/f0002-01.png
Before we started
using Git, we couldn't
find anything. But look
at us now!

OEBPS/Images/f0002-02.png

OEBPS/Images/f0023-02.png
Usually when Git
ceports ommit [Ds
it tends to display
only the fivst E
thavacters.

3dclea25f4f128al6cb07223fb705aef6fcc5038

OEBPS/Images/f0023-03.png
That's IO When we say unique,

followed by 48 we mean it/

bt R
100

OEBPS/Images/f0006-02.png
Project Folder

This is just a faney
way of saying that
this folder contains
3 Git vepository

\> —
Working Directory

OEBPS/Images/f0006-01.png
They said it couldn't be done.
But using Git repositories has
really upped my game!

OEBPS/Images/f0045-03.png
make sure we are always in
the vight place. Get in the
habit of wing it often. \ﬁ =)

OEBPS/Images/f0045-01.png
ed Displays the path of the current directory.

pwd Creates a new directory.

Is Navigates to the parent directory:

mkdir Changes directories.

Is -A Lists regular files in the current directory.

od Lists all files in the current directory.

OEBPS/Images/f0003-02.png
Pug Doctor, Inc.
100 Dover Street,
Kennel Hill, OH 45021

Statement of Work

(,onq: atulations on being selected to build a one-of-a-kind
cation, codenamed HawtDawg.

This app will allow your furriest best friend find friends,
expand their social network, even a companion for life!
Leveraging the very latest in machine learning, and an intuitive
interface specifically designed with your dogs paws in mind, we
aim to be the industry leader in a short time.

We believe we have timed this just right, but we are also
keenly aware of the competition. Furthermore, this is the first
time something like this has been attempted. This requires

us to move quickly, but also be be prepared to test out ideas.
We anticipate we will be working closely with you and your
developers as we iterate towards our first release.

We look forward to secing your initial design and alpha
application very soon.

Sincerely,

Fnaze ot

Johnny Grunt, CEO

OEBPS/Images/f0022-01.png

OEBPS/Images/f0003-01.png
It's hard to swipe
right. I wish there
was an app that would
accommodate my paws.
Sigh ...

OEBPS/Images/f0022-02.png
We are getting close to kick-
starting my dating life. T
smell success ... T know I do.

&0

OEBPS/Images/f0019-01.png
Step One:

Create a new project folder.
These two steps

Step Two: ‘/—- should be pretty

Somilr o you

Initialize a Git repository within that folder.

Step Three:

Create our checklist with a few items to get us started.

Step Four:

Store a snapshot of our checklist in Git by committing the file.

Now that's what we
have been waiting
Lorl

OEBPS/Images/f0036-02.png
Checklist

- [1 Create two files, README.md and Checklist.md

- [1 Add README.md and make a commit

- [1 update Checklist.md, then add it and make a commit

Checklist.md

OEBPS/Images/f0036-03.png

OEBPS/Images/f0036-01.png
README
This repository will allow us to play with the git status command.

OEBPS/Images/f0011-03.png
mkdir “this Is how it is done

Now it is ¢lear that
£his is the argument.

OEBPS/Images/f0011-02.png
Our argument has
whitespates in it.

r_>) mkdir not\la good idea

We know th t!s +this another command
ommand, or is it part of the name

a tommand.
argqument?

OEBPS/Images/f0011-01.png
We vefer to the values we
provide to a command as

This is the - f—iﬁ argquments

Command. 8
ommand mkdir created-using-the-command-line

The space is a
Sdelimiter”.

OEBPS/Images/f0028-01.png
The Git command. The §it sub—tommand.

N,

[N
git add Checklist.md Finally the argument
40 the sub—tommand.

OEBPS/Images/f0028-02.png
el

Git commands and sub—tommands are
always lowerease.

1€ you want to treat something that
has white—space as a “singlular” thing,
You need to quote it.

1€ you need to use quotes, prefer
using double—quotes (though single—
quotes are allowed).

OEBPS/Images/cover.png
OREILLY"

Head First

Git

A Learner's Guide
to Understanding Git
from the Inside Out Ea rIy

Release

Raju Gandhi S

UNEDITED

A Brain-Friendly Guide

OEBPS/Images/common.png

OEBPS/Images/f0025-02.png
This is a glimpse
of what it looks
like inside the it
divectory

This is the “object
database”.

Checklist.md -

This is the “index”-

OEBPS/Images/f0025-01.png
Remember, the secret to
a great history is to first
add, then commit. And don't
forget to throw in a commit
mesage to sign your work
with a message

OEBPS/Images/f0031-03.png
Working . Object
N index
directory database

BB B
We edit These two domot N These 4o
this file. look the same look the same.

The working divettor
and the index ave ml
the same so Git knows it
¢thanaed but not staged.

OEBPS/Images/f0031-02.png
Working

Object
directory

database

index

add =
=

comnity, | =]

[y

"~ £ these three look -J

[t does not matber identical, then the fie is

£ this is a new or marked as Unmodified.
previously committed
Lile.

OEBPS/Images/f0031-01.png
UNTRACKED TRACKED

=0 add

)

Recall that Git makes a
¢opy of your file

OEBPS/Images/f0039-02.png
Commit obj et

identifi b
Working index Object Mentiited by €086T1e

directory database L
e README .md .
7 N D) Note that the commit
i 8 object is also stored in
Nothing has Now these three Gt Lakes the contents ject
thanged here a:-:w'. dentical of the index and " the object database.

ereates a commit cbject.

Checklist md

OEBPS/Images/f0039-01.png
chO1 03 § git commit -m "my first commit" <&— Make our first commit in
[master (root-commit) e08677c] my rst commit this
1 file changed, 1 insertion (+) tm;i"”mza;/; supplying it a

create mode 100644 README.md
Git veports a In our ease the commit [D

ch01 03 § git status suetesshl commit- i¢ (0BT, Yours will be
On branch master different.

Untracked files:
(use "git add <file>..." to include in what will be committed)

Checklist.md
" to track)

nothing added to commit but untracked files present (use "git a

OEBPS/Images/common-1.png

OEBPS/Images/f0033-01.png
Working ndex
directory

This could be a new = add
Ble or previowsly =] _l ——
N &

tommitted file

The index is a topy of the
working divettory.

OEBPS/Images/f0033-02.png

OEBPS/Images/f0010-02.png
Theve is a space
between ed and .

cd &

Fio EGt Window Fioy
~/using-the-command-line § cd ..

Two dots represent thy
P n e Th

“parent divettory”.

OEBPS/Images/f0010-01.png
o
rm (\Sfaré here.

change 1o here
We must make sure we - e
get the name exactly .

5\ vight.
Fie Ear_Window Felp
~ $ cd created-using-the-command-line
~/using-the-command-line $ pwd
~/using-the-command-line $ /Users/raju/created-using-the-command-line

’K’ Most. command-line prompts display
the current divectory. But we can

use pwd to confirm things as well

OEBPS/Images/f0033-03.png
Working

directory Index

|
[0y

S a
it this Sl Now these do do not
look like eath other.

OEBPS/Images/f0027-01.png
You are telling me that we have to
git addand thengit commit because
of the way Git is designed. I get that. But
why was Git designed like that to begin
with?

OEBPS/Images/f0024-01.png
tree: 63fa3g,5
author: Raju Gandhi
email: net-lwe_a,gm

timestanp: uom;«m

OEBPS/Images/f0047-01.png
Working directory

multiple-add. txt

index

OEBPS/Images/f0047-02.png
Working directory

index
2 . it stores a copy
o = e e o
These two ave index.

identical.

OEBPS/Images/f0047-03.png
Working directory index

¥.<—\ (?—g

These two no
This is moa.!.ed loner lock Ehe
now.

same.

OEBPS/Images/f0047-04.png
Working directory

&—When you add the same

— file back to the index, Git
ites the previous

chst {:wo are OVEYW!

identical 3a3n. ¢opy with the new eopy.

OEBPS/Images/f0001-01.png
Now that you've
already “added” me to
you life, darling, are you
ready fo "commit” to me?

OEBPS/Images/f0030-01.png
These ave all the files
& that it caves about.

UNTRACKED TRACKED

STAGED UNMODIFIED
= add

2 1B —— B

)) Afile was added to the As soon as you commit, Git takes
Git sees a new file in the index:If thiswas the all the files you added to the index,
working directory. This first time you added and commits them to its memory.
s a file that has never this specific file to Tt this marks all those files as

been added to the index the index, Git starts “Unmodified”. This is the state you

or previously committed.

) 5 tracking this file. should all lust after. This tells you
Git marks this file as

that the file’s contents are safely

“Untracked”, and this is Regardless, adding a gy
- " . tucked away in Git’s memory.

Git’s way of telling us file to the index marks
that you should probably it as “staged”. N
add it to the index (and %z MODIFIED S
eventually commit it).

Note that vegardless =

of whether its a =

new file or previously

ommited file, adding If you were to edit a file

it moves it to the after it was committed,

staged status the file moves into the

modified state, as a
reminder that you should
eventually commit it.

OEBPS/Images/f0038-03.png
Working Object

directory index database
:3 EE We haven't
— = tommitted yet so
README .md README .md the obi'ect database
AL These two ave T is empLy.
identical

Cheeklistmd 1 = o Gt makes a eopy of
<l untracked ~ = the README md

= file into the index

Checklist md

OEBPS/Images/f0009-01.png
Running Is here means
You tan use the Finder (Mae) or

list all the files and
Erelove (Hindows) 4o v b Lolders in the eurrent
et event diveckory and (pwd) divectory.
see it that way as well \I
T o Widow Ty

~$1s

Applications
Desktop

. we truncated the
hr::‘;liis —output heve for
Pictures brevity.

bin

created-using-the-command-line

Documents
Downloads
Library

OEBPS/Images/f0038-02.png
File Edit_Window Help

ch01 03 $ git add README.md Add README.md
ch01703 § git status S — & the index
on branch master -

B pemei s gt README.md is now
Changes to be committed: & staged.
(use "git m --cached <file>..

." to unstage)
new file: README.md

Untracked files:

(use "git add <file>..." to include in what will be committed)
Checklist.md

f\/ CheeKlistmd is still
untracked.

OEBPS/Images/f0009-02.png
Fi Edit Window Help
~$1ls -A
The “all” flag. .bash_history A e
The Is command. Notice the hyphen. .bash_profile olders prefixe:
\

These files and

.bashrc Ik e

Applications hidden.

Is -A ﬂ Desktop 0 e
Heve is the output Documents Inte a9ain, we
Yours vill probably look [ENSERTEEH truntated the

output heve for

iffevent. Library
very diffeven },nv;{y

OEBPS/Images/f0013-01.png

OEBPS/Images/f0044-03.png
Show turvent divectory, _, JEJRNEY
/Users/raju
[EFRIR NI $ cd my-first-commandline-directory
~/my-first-commandline-directory
Wheee am 2 — [EESEY
/Users/raju/my-first-commandline-directory
Navigate up to parent. — JERCCUIN
$ pwd
Display path again. J /Users/raju

OEBPS/Images/f0044-02.png
[Fie Edit Window Helb]
$ 1s -A

.DS_Store

.Trash These are some hidden
paanhistory S fles that we see. Notice
5 i w e
Abash:gessions < the V prefix
Applications

Desktop

Documents Aoain, your |is£ih?
Downloads will be diffevent!
Dropbox

Library

hack

headfirst-git-samples

OEBPS/Images/f0044-01.png
File Edit_Window_Help

Your listing will most $ 1s

cevtainly be diffevent! > g};};itcations hack
Note that we Docungr_s ﬂ;ﬁ‘}ﬁ:if’gh's“""‘.’les .
Lrimmed our m&‘mé Downloads commandline-directory
for brevity. N/ Ll ey

There it is/

OEBPS/Images/f0027-02.png
Colleet only velated

Slice, dice, thops . A i to

f ake & tomm

blend—make all your changes in the index. M I amaes One yomm

changes as and when Lommi
eoming up!

you see it

@

A

mise en place

OEBPS/Images/f0006-03.png
git init

We will cover this in
$he next section

OEBPS/Images/f0016-01.png
Rearrange the magnets here.

OEBPS/Images/f0012-02.png
mkdlr "sanglita’s home foldgaer"

\ To use a single quote heve you
need to survound the argument

with double—quotes.

OEBPS/Images/f0035-02.png
Be sure to be in the
vight divectory.

x\ File Edit_Window Help
ch01 03 $ git status
On branch masterg _[gnore the branth
details for now.

No commits yet
nothing to commit (create/copy files and use “git add” to track)

This should be no
surprise given this is

a new vepository.

OEBPS/Images/f0035-01.png
Be sure You ave back in the

This part should be
J headfivst—git-samples folder! pretty familiar.

Fiie £t Window e

headfirst-git-samples $ mkdir chOl_03
headfirst-git-samples § cd ch0l_03
ch01 03 § git init

Initialized empty Git repository in ~/headfirst-git-samples/ch0l 03/.git/

OEBPS/Images/f0041-02.png
Every tommit akter
the first one points
4o the one that came

just before it
The first commit in

the vepsitory. H has 0‘104—0
no pavent. l‘\/ 1£ we ever made

a third tommit,
it would point to
+he setond one.

OEBPS/Images/f0012-01.png
Does it need to be double-
quotes? Can T use single-
quotes? Can I mix-and-match?

OEBPS/Images/f0029-01.png
Well hello there, twin| Right back atcha.

Looking good, if I do
say so myselfl

O, = “ And Lhis is the
S 2 ‘object database”,
7
Checklist.md

This is the index.

OEBPS/Images/f0041-01.png

OEBPS/Images/f0029-02.png
Sorry Iam allittle late
to the party.

Wiait a second! A
triplet?

Checklist.md

OEBPS/Images/f0026-01.png
Given that we haven't
committed Yet, the
object database is empty

as well.

[nitially the index is
empty

Checklist.md

OEBPS/Images/bullet.png

OEBPS/Images/f0026-02.png
This is a eopy of
Cheeklistmd

a2dding 3 fle
o Git

OEBPS/Images/f0026-03.png
FYI, this is the thivd

copy of the file Thisis the Commit
object. Note that
it only vecords the
changes you added.

When we commit, Git
topies our thanges to
its database

Along ith everything

else the tommit object
has a veference 4o the
changes you tommit ted.

Checklist.md

OEBPS/Images/f0015-02.png
So that's it? You
Just pop it in?

No silly! You have
to first turn it on.

OEBPS/Images/f0015-01.png
Our yro)ed:
folder. >~ .[e

OEBPS/Images/f0007-01.png
See this path at the top of the
window? This is equivalent to pwd in

your Finder or Explorer window.

P T Do
] Moy 6 2019t 1305 Document
Fob 82010 183, Foter
15, 2000 010845 Fotder
My 12, 2018 3010194 - Folr
5015 2021 1 075 Foer
Todoy 3t 05:37 Fotder
813202000152, ki)
Totay st 0217 Foter
04,2021 020,49 Fotder
Fotder

An8 2018 4 1505

OEBPS/Images/f0032-01.png
Working

index Object
directory

database

add
=] '7)7 =
(;/D' these two
These two now o
look the same. on't mateh.

Still m
QHehce staged. till modified.

OEBPS/Images/f0015-04.png
Be sure to be in the X
e sure o Ed Widow Fob
vight divectory! k; 1_01 $ 1s -A

.git
Theve it isl 77 ghol_ol $

Feel £ree to poke around in theve if
you like. Just. vemember—this is for

Git to use so don’t thange anything/

OEBPS/Images/f0032-02.png

OEBPS/Images/f0007-02.png
This might be
diferent for you
depending on how : y ")

oue terminal vas R_ Typically you vill see a blinking eursor; this
i P is the shell prompt waiting for you to type

File £d1 Window Fielp

something,

OEBPS/Images/f0007-03.png
pwd means
I am here”. [FEET T TeD

W
/Users/raju

how Your terminal was set up.

':@ ~ 8 C_Again, your output may differ depending on

OEBPS/Images/f0015-03.png
Now our project

folder contains —

the gt folder.
g = And we have

superpowers!

OEBPS/Images/f0046-01.png

OEBPS/Images/f0046-02.png

OEBPS/Images/f0046-03.png

OEBPS/Images/f0021-01.png
Getting ready to commit
- [1 Gather initial set of requirements

-) . The md extension stands for
[1 Adopt) litter c-:f puppies for "user testing Mavkdown. You tan Find more
[1 Demo first version information about it here—

V)

htps:/ /v markdounguide.ore/

Checklist.md d

OEBPS/Images/f0046-04.png

OEBPS/Images/f0046-05.png

OEBPS/Images/f0004-01.png
This kind of app has never been
developed before. I't's going to require
a lot of experimentation, a lot of code,
and a bunch of developers. How should
I be doing this?

OEBPS/Images/f0021-02.png
Again, pay cavetul

at{en{:tn o every
detail of spelling, ,
First we add the capitalization and spating
file to Git. as the tevminal does not

Tie Ea Widow Tk tolevate mistakes very
\\ HawtDawg $ git add Checklist.md well

HawtDawg $ git commit -m "My first commit"
[master (root-commit) 3dclea2] My first commit

1 file changed, 5 insertions (+)
create mode 100644 Checklist.md

See that funny sequence

Then we Commit of thavacters and mumbers
whith vequires we (3deleal)? You will get)
give it a message to something diffevent. That's

explain what we just Lind! As long as the vest of
attomplished. ‘the output is the same you
¢tan g0 1o the next page

OEBPS/Images/f0046-06.png

OEBPS/Images/f0046-07.png

OEBPS/Images/watchit.png

OEBPS/Images/f0046-08.png

OEBPS/Images/f0018-01.png
This is going really
well. I have made so
much progress!

Continue working

Uh oh! T had this
working, and now
it's broken.

Res, fo

\»f%

Store revision
in Git

T should probably
save my progress

09

