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Chapter 1. Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics
A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the 1st chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jeffreyscarpenter@cox.net (Jeff Carpenter) and pmcfadin@gmail.com (Patrick McFadin).
Do you work at solving data problems and find yourself faced with the need for modernization? Is your cloud native application limited to the use of microservices and service mesh? If you deploy applications on Kubernetes without including data, you haven’t fully embraced cloud native. Every element of your application should embody the cloud native principles of scale, elasticity, self-healing, and observability, including how you handle data. Engineers that work with data are primarily concerned with stateful services, and this will be our focus: increasing your skills to manage data in Kubernetes. By reading this book, our goal is to enrich your journey to cloud native data. If you are just starting with cloud native applications, then there is no better time to include every aspect of the stack. This convergence is the future of how we will consume cloud resources.
So what is this future we are creating together?
For too long, data has been something that has lived outside of Kubernetes, creating a lot of extra effort and complexity. We will get into valid reasons for this, but now is the time to combine the entire stack to build applications faster at the needed scale. Based on current technology, this is very much possible. We’ve moved away from the past of deploying individual servers and towards the future where we will be able to deploy entire virtual data centers. Development cycles that once took months and years can now be managed in days and weeks. Open source components can now be combined into a single deployment on Kubernetes that is portable from your laptop to the largest cloud provider.
The open source contribution isn’t a tiny part of this either. Kubernetes and the projects we talk about in this book are under the Apache License 2.0. unless otherwise noted. And for a good reason. If we build infrastructure that can run anywhere, we need a license model that gives us the freedom of choice. Open source is both free-as-in-beer and free-as-in-freedom, and both count when building cloud native applications on Kubernetes. Open source has been the fuel of many revolutions in infrastructure, and this is no exception.
That’s what we are building. This is the near future reality of fully realized Kubernetes applications. The final component is the most important, and that is you. As a reader of this book, you are one of the people that will create this future. Creating is what we do as engineers. We continuously re-invent the way we deploy complicated infrastructure to respond to the increased demand. When the first electronic database system was put online in 1960 for American Airlines, you know there was a small army of engineers who made sure it stayed online and worked around the clock. Progress took us from mainframes to minicomputers, to microcomputers, and eventually to the fleet management we find ourselves doing today. Now, that same progression is continuing into cloud native and Kubernetes.
This chapter will examine the components of cloud native applications, the challenges of running stateful workloads, and the essential areas covered in this book. To get started, let’s turn to the building blocks that make up data infrastructure.
Infrastructure Types
In the past twenty years, the approach to infrastructure has slowly forked into two areas that reflect how we deploy distributed applications, as shown in Figure 1-1.
Figure 1-1. Stateless vs. Stateful Services
Stateless services
These are services that maintain information only for the immediate life cycle of the active request—for example, a service for sending formatted shopping cart information to a mobile client. A typical example is an application server that performs the business logic for the shopping cart. However, the information about the shopping cart contents resides external to these services. They only need to be online for a short duration from request to response. The infrastructure used to provide the service can easily grow and shrink with little impact on the overall application. Scaling compute and network resources on-demand when needed. Since we are not storing critical data in the individual service, they can be created and destroyed quickly with little coordination. Stateless services are a crucial architecture element in distributed systems.
Stateful services
These services need to maintain information from one request to the next. Disks and memory store data for use across multiple requests. An example is a database or file system. Scaling stateful services is much more complex since the information typically requires replication for high availability, which creates the need for consistency and mechanisms to keep data in sync. These services usually have different scaling methods, both vertical and horizontal. As a result, they require different sets of operational tasks than stateless services.
In addition to how information is stored, we’ve also seen a shift towards developing systems that embrace automated infrastructure deployment. These recent advances include:
Physical servers gave way to virtual machines that could be deployed and maintained easily.
Virtual machines eventually became greatly simplified and focused on specific applications to what we now call containers.
Containers have allowed infrastructure engineers to package an application’s operating system requirements into a single executable.
The use of containers has undoubtedly increased the consistency of deployments, which has made it easier to deploy and run infrastructure in bulk. Few systems emerged to orchestrate the explosion of containers like Kubernetes which is evident in the incredible growth. This speaks to how well it solves the problem. According to the Kubernetes documentation:
Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and services that facilitates both declarative configuration and automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.
Kubernetes was originally designed for stateless workloads, and that is what it has traditionally done best. Kubernetes has developed a reputation as a “platform for building platforms” in a cloud-native way. However, there’s a reasonable argument that a complete cloud-native solution has to take data into account. That’s the goal of this book: exploring how we make it possible to build cloud-native data solutions on Kubernetes. But first, let’s unpack what that term means.
What is Cloud Native Data?
Let’s begin defining the aspects of cloud native data that can help us with a final definition. First, let’s start with the definition of cloud native from the Cloud Native Computing Foundation (CNCF):
Cloud native technologies empower organizations to build and run scalable applications in modern, dynamic environments such as public, private, and hybrid clouds. Containers, service meshes, microservices, immutable infrastructure, and declarative APIs exemplify this approach.
These techniques enable loosely coupled systems that are resilient, manageable, and observable. Combined with robust automation, they allow engineers to make high-impact changes frequently and predictably with minimal toil.
Note that this definition describes a goal state, desirable characteristics, and examples of technologies that embody both. Based on this formal definition, we can synthesize the qualities that make a cloud native application differentiated from other types of deployments in terms of how it handles data. Let’s take a closer look at these qualities.
Scalability
If a service can produce a unit of work for a unit of resources, then adding more resources should increase the amount of work a service can perform. Scalability is how we describe the service’s ability to apply additional resources to produce additional work. Ideally, services should scale infinitely given an infinite amount of resources of compute, network and storage. For data this means scale without the need for downtime. Legacy systems required a maintenance period while adding new resources which all services had to be shutdown. With the needs of cloud native applications, downtime is no longer acceptable.
Elasticity
Where scale is adding resources to meet demand, elastic infrastructure is the ability to free those resources when no longer needed. The difference between scalability and elasticity is highlighted in Figure 1-2. Elasticity can also be called on-demand infrastructure. In a constrained environment such as a private data center, this is critical for sharing limited resources. For cloud infrastructure that charges for every resource used, this is a way to prevent paying for running services you don’t need. When it comes to managing data, this means that we need capabilities to reclaim storage space and optimize our use, such as moving older data to less expensive storage tiers.
Self-healing
Bad things happen and when they do, how will your infrastructure respond? Self-healing infrastructure will re-route traffic, re-allocate resources, and maintain service levels. With larger and more complex distributed applications being deployed, this is an increasingly important attribute of a cloud-native application. This is what keeps you from getting that 3 AM wake-up call. For data, this means we need capabilities to detect issues with data such as missing data and data quality.
Observability
If something fails and you aren’t monitoring it, did it happen? Unfortunately, the answer is not only yes, but that can be an even worse scenario. Distributed applications are highly dynamic and visibility into every service is critical for maintaining service levels. Interdependencies can create complex failure scenarios which is why observability is a key part of building cloud native applications. In data systems the volumes that are commonplace need efficient ways of monitoring the flow and state of infrastructure. In most cases, early warning for issues can help operators avoid costly downtime.
Figure 1-2. Comparing Scalability and Elasticity
With all of the previous definitions in place, let’s try a definition that expresses these properties.
Cloud Native Data
Cloud Native Data approaches empower organizations that have adopted the cloud native application methodology to incorporate data holistically rather than employ the legacy of people, process, technology, so that data can scale up and down elastically, and promote observability and self-healing.
This is exemplified by containerized data, declarative data, data APIs, data-meshes, and cloud-native data infrastructure (that is, databases, streaming, and analytics technologies that are themselves architected as cloud-native applications).
In order for data infrastructure to keep parity with the rest of our application, we need to incorporate each piece. This includes automation of scale, elasticity and self-healing, APIs are needed to decouple services and increase developer velocity, and also the ability to observe the entire stack of your application to make critical decisions. Taken as a whole, your application and data infrastructure should appear as one unit.
More Infrastructure, More Problems
Whether your infrastructure is in a cloud, on-premises, or both (commonly referred to as hybrid), you could spend a lot of time doing manual configuration. Typing things into an editor and doing incredibly detailed configuration work requires deep knowledge of each technology. Over the past twenty years, there have been significant advances in the DevOps community to code and how we deploy our infrastructure. This is a critical step in the evolution of modern infrastructure. DevOps has kept us ahead of the scale required, but just barely. Arguably, the same amount of knowledge is needed to fully script a single database server deployment. It’s just that now we can do it a million times over if needed with templates and scripts. What has been lacking is a connectedness between the components and a holistic view of the entire application stack. Foreshadowing: this is a problem that needed to be solved.
Like any good engineering problem, let’s break it down into manageable parts. The first is resource management. Regardless of the many ways we have developed to work at scale, fundamentally, we are trying to manage three things as efficiently as possible: compute, network and storage, as shown in Figure 1-3. These are the critical resources that every application needs and the fuel that’s burned during growth. Not surprisingly, these are also the resources that carry the monetary component to a running application. We get rewarded when we use the resources wisely and pay a literal high price if we don’t. Anywhere you run your application, these are the most primitive units. When on-prem, everything is bought and owned. When using the cloud, we’re renting.
Figure 1-3. Fundamental resources of cloud applications: compute, network, and storage
The second part of this problem is the issue of an entire stack acting as a single entity. DevOps has already given us many tools to manage individual components, but the connective tissue between them provides the potential for incredible efficiency. Similar to how applications are packaged for the desktop but working at data center scales. That potential has launched an entire community around cloud native applications. These applications are very similar to what we have always deployed. The difference is that modern cloud applications aren’t a single process with business logic. They are a complex coordination of many containerized processes that need to communicate securely and reliably. Storage has to match the current needs of the application but remains aware of how it contributes to the stability of the application. When we think of deploying stateless applications without data managed in the same control plane, it sounds incomplete because it is. Breaking up your application components into different control planes creates more complexity and is counter to the ideals of cloud native.
Kubernetes Leading the Way
As mentioned before, DevOps automation has kept us on the leading edge of meeting scale needs. Containers created the need for much better orchestration, and the answer has been Kubernetes. For operators, describing a complete application stack in a deployment file makes a reproducible and portable infrastructure. This is because Kubernetes has gone far beyond simply the deployment management that has been popular in the DevOps tool bag. The Kubernetes control plane applies the deployment requirement across the underlying compute, network, and storage to manage the entire application infrastructure lifecycle. The desired state of your application is maintained even when the underlying hardware changes. Instead of deploying virtual machines, we are now deploying virtual datacenters as a complete definition as shown in Figure 1-4.
Figure 1-4. Moving from virtual servers to virtual data centers
The rise in popularity of Kubernetes has eclipsed all other container orchestration tools used in DevOps. It has overtaken every other way we deploy infrastructure, and it will be even more so in the future. There’s no sign of it slowing down. However, the bulk of early adoption was primarily in stateless services.
Managing data infrastructure at a large scale was a problem well before the move to containers and Kubernetes. Stateful services like databases took a different track parallel to the Kubernetes adoption curve. Many recommended that Kubernetes was the wrong way to run stateful services based on an architecture that favored ephemeral workloads. That worked until it didn’t and is now driving the needed changes in Kubernetes to converge the application stack.
So what are the challenges of stateful services? Why has it been hard to deploy data infrastructure with Kubernetes? Let’s consider each component of our infrastructure.
Managing Compute on Kubernetes
In data infrastructure, counting on Moore’s law has made upgrading a regular event. If you aren’t familiar, Moore’s law predicted that computing capacity doubles every 18 months. If your requirements double every 18 months, you can keep up by replacing hardware. Eventually, raw compute power started leveling out. Vendors started adding more processors and cores to keep up with Moore’s law, leading to single server resource sharing with virtual machines and containers. Enabling us to tap into the vast pools of computing power left stranded in islands of physical servers. Kubernetes expanded the scope of compute resource management by considering the total datacenter as one large resource pool across multiple physical devices.
Sharing compute resources with other services has been somewhat taboo in the data world. Data workloads are typically resource intensive, and the potential of one service impacting another (known as the noisy neighbor problem) has led to policies of keeping them isolated from other workloads. This one-size fits all approach eliminates the possibility for more significant benefits. First is the assumption that all data service resource requirements are the same. Apache Pulsar™ brokers can have far fewer requirements than an Apache Spark™ worker, and neither are similar to a sizeable MySQL instance used for OLAP reporting. Second, the ability to decouple your underlying hardware from running applications gives operators a lot of undervalued flexibility. Cloud native applications that need scale, elasticity, and self-healing need what Kubernetes can deliver. Data is no exception.
Managing Network on Kubernetes
Building a distributed application, by nature, requires a reliable and secure network. Cloud native applications increase the complexity of adding and subtracting services making dynamic network configuration a new requirement. Kubernetes manages all of this inside of your virtual data center automatically. When new services come online, it’s like a virtual network team springs to action. IP addresses are assigned, routes are created, DNS entries are added, then the virtual security team ensures firewall rules are in place, and when asked, TLS certificates provide end-to-end encryption.
Data infrastructure tends to be far less dynamic than something like microservices. A fixed IP with a hostname has been the norm for databases. Analytic systems like Apache Flink™ are dynamic in processing but have fixed hardware addressing assignments. Quality of service is typically at the top of the requirements list and, as a result, the desire for dedicated hardware and dedicated networks has turned administrators off of Kubernetes.
The advantage of data infrastructure running in Kubernetes is less about the past requirements and more about what’s needed for the future. Scaling resources dynamically can create a waterfall of dependencies. Automation is the only way to maintain clean and efficient networks, which are the lifeblood of distributed stateless systems. The future of cloud native applications will only include more components and new challenges such as where applications run. We can add regulatory compliance and data sovereignty to previous concerns about latency and throughput. The declarative nature of Kubernetes networks make it a perfect fit for data infrastructure.
Managing Storage on Kubernetes
Any service that provides persistence or analytics over large volumes of data will need the right kind of storage device. Early versions of Kubernetes considered storage a basic commodity part of the stack and assumed that most workloads were ephemeral. For data, this was a huge mismatch. If your Postgres data files get deleted every time a container is moved, that just doesn’t work. Additionally, implementing the underlying block storage can be a broad spectrum. From high performance NVMe disks to old 5400 RPM spinning disks. You may not know what you’ll get. Thankfully this was an essential focus of Kubernetes over the past few years and has been significantly improved.
With the addition of features like Storage Classes, it is possible to address specific requirements for performance or capacity or both. With automation, we can avoid the point when you don’t have enough of either. Avoiding surprises is the domain of capacity management—both initializing the needed capacity and growing when required. When you run out of capacity in your storage, everything grinds to a halt.
Coupling the distributed nature of Kubernetes with data storage opens up more possibilities for self healing. Automated backups and snapshots keep you ready for potential data loss scenarios. Placing compute and storage together to minimize hardware failure risks and automatic recovery to the desired state when the inevitable failure occurs. All of which makes the data storage aspects of Kubernetes much more attractive.
Cloud native data components
Now that we have defined the resources consumed in cloud native applications let’s clarify the types of data infrastructure that powers them. Instead of a comprehensive list of every possible product, we’ll break them down into larger buckets with similar characteristics.
Persistence
This is probably assumed when we talk about data infrastructure. Systems that store data and provide access by some method of a query. Relational databases like MySQL and Postgres. NoSQL systems like Cassandra and MongoDB. In the world of Kubernetes these have been the strongest, last holdouts due to the strictest resource requirements. This has been for good reasons too. Databases are usually critical to a running application and central to every other part of the system.
Streaming
The most basic function of streaming is facilitating the high-speed movement of data from one point to another. Streaming systems provide a variety of delivery semantics based on a use case. In some cases, data can be delivered to many clients or when strict controls are needed, delivered only once. A further enhancement of streaming is the addition of processing. Altering or enhancing data while in mid-transport. The need for faster insights into data has propelled streaming analytics into mission critical status catching up with persistence systems for importance. Examples of steaming systems that move data are Apache Flink™ and Apache Kafka™, where processing system examples are Apache Flink™ and Apache Storm™.
Batch Analytics
One of the first big data problems. Analyzing large sets of data to gain insights or re-purpose into new data. Apache Hadoop™ was the first large scale system for batch analytics that set the expectations around using large volumes of compute and storage, coordinated in a way to produce a final result. Typically, these are issued as jobs distributed throughout the cluster which is something that is found in Apache Spark™. The concern with costs can be much more prevalent in these systems due to the sheer volume of resources needed. Orchestration systems help mitigate the costs by intelligent allocation.
Looking forward
There is a very compelling future with cloud native data, both with what we have available today and what we can have in the future. The path we take between those two points is up to us: the community of people responsible for data infrastructure. Just as we have always done, we see a new challenge and take it on. There is plenty for everyone to do here, but the result could be pretty amazing and raise the bar, yet again.
A CALL FOR DATABASES TO MODERNIZE ON KUBERNETES
With Rick Vasquez, Senior Director, Strategic Initiatives, Western Digital
Kubernetes is the catalyst for this current macro trend of change. Data infrastructure has to run the same as the rest of the application infrastructure. In a conference talk, Rick Vasquez, a leader in data infrastructure for years, wrote an open letter to the database community on the need for change. Here is a summary of that talk:
This is something for anyone working with databases in the 2020s. Kubernetes is leading the charge in building cloud native and distributed systems. Data systems aren’t leveraging the full capacity and feature set possible if they were better integrated with Kubernetes. I’m a convert from the “you should never run a database in a container” way of thinking. Now I think we should be pushing everybody to have the main deployment in Kubernetes. My background has always been on scale enterprise use cases. I don’t see this as a passing fad, I’m looking at the applicability to global scale for some of the largest companies in the world.
One line of thinking we need to overcome is treating Kubernetes like an operating system that enables other applications to run on it. That’s the wrong way to look at running data workloads. If your system runs in a container, then of course it will work on Kubernetes, right? No! It will react to how the control plane deploys and runs your application, and it may or may not be what you want. What if data systems were more tightly integrated with Kubernetes and could offload functions to be handled by the Kubernetes control plane? Service discovery, load balancing, storage orchestration, automated rollouts, and rollbacks, automated bin packing, self-healing, secret and config management are all powerful things that allow for you to have a consistent developer and SRE experience. The name of the game with Kubernetes is driving consistency. You can use Kubernetes to become globally consistent across all your deployments and do them the same way over and over. But that needs to include database systems. Imagine if you have Postgres, MongoDB, MySQL, or Cassandra and it was built natively on Kubernetes. What would you do?
Having the access to use different storage tiers, either local or remote disk. All of it declarative in some configuration objects. I want to configure that in and with the database. If I’m using MySQL, I want logs to be on the local disk, because I don’t want any bottlenecks. I want certain tables to be on a slower disk that may be over the network. And, I want the last seven days of data to be in hot, local NVMe disk. Using every single bit of capacity that you have with replicas actually doing things like offloading reads or multiple write nodes, and one big aggregate for analytics. All of those things should be possible with a Kubernetes based deployment with a cloud native database.
Databases don’t reason about or have an opinion about how big they are. If you make it bigger, it just needs more resources. You can set up auto-scaling to get you bigger or horizontal scaling. What happens whenever you want to use the true elasticity that’s given to you by Kubernetes? It’s not just the scale up and out. It’s the scale back and down! Why don’t databases just do that? That is so important to maximize the value that you’re getting out of a Kubernetes based deployment or more broadly, a cloud native based deployment. We have a lot of work to do but the future is worth it.
This talk was specifically about databases, but we can extrapolate his call to action for our data infrastructure running on Kubernetes. Unlike deploying a data application on physical servers, introducing the Kubernetes control plane requires a conversation with the services it runs.
Getting ready for the revolution
As engineers that create and run data infrastructure, we have to be ready for the changes coming. Both in how we operate and the mindset we have about the role of data infrastructure. The following sections are meant to describe what you can do to be ready for the future of cloud native data running in Kubernetes.
Adopt an SRE mindset
The role of Site Reliability Engineer (SRE) has grown with the adoption of cloud native methodologies. If we intend our infrastructure to converge, we as data infrastructure engineers must learn new skills and adopt new practices.
Site reliability engineering is a set of principles and practices that incorporates aspects of software engineering and applies them to infrastructure and operations problems. The main goals are to create scalable and highly reliable software systems. Site reliability engineering is closely related to DevOps, a set of practices that combine software development and IT operations, and SRE has also been described as a specific implementation of DevOps.
Deploying data infrastructure has been primarily concerned with the specific components deployed - the “what.” For example, you may find yourself focused on deploying MySQL at scale or using Apache Spark to analyze large volumes of data. Adopting an SRE mindset means going beyond what you are deploying and putting a greater focus on the how. How will all of the pieces work together to meet the goals of the application? A holistic view of a deployment considers how each piece will interact, the required access including security, and the observability of every aspect to ensure meeting service levels.
If your current primary or secondary role is Database Administrator, there is no better time to make the transition. The trend on LinkedIn shows a year-over-year decrease in the DBA role and a massive increase for SREs. Engineers that have learned the skills required to run critical database infrastructure have an essential baseline that translates into what’s needed to manage cloud native data. These include:
Availability
Latency
Change Management
Emergency response
Capacity Management
New skills need to be added to this list to become better adapted to the more significant responsibility of the entire application. These are skills you may already have, but they include:
CI/CD pipelines
Embrace the big picture of taking code from repository to production. There’s nothing that accelerates application development more in an organization. Continuous Integration (CI) builds new code into the application stack and automates all testing to ensure quality. Continuous Deployment (CD) takes the fully tested and certified builds and automatically deploys them into production. Used in combination (Pipeline), organizations can drastically increase developer velocity and productivity.
Observability
Monitoring is something anyone with experience in infrastructure is familiar with. In the “what” part of DevOps you know services are healthy and have the information needed to diagnose problems. Observability expands monitoring into the “how” of your application by considering everything as a whole. For example, tracing the source of latency in a highly distributed application by giving insight into every hop data takes.
Knowing the code
When things go bad in a large distributed application it’s not always a process failure. In many cases, it could be a bug in the code or subtle implementation detail. Being responsible for the entire health of the application, you will need to understand the code that is executing in the provided environment. Properly implemented observability will help you find problems and that includes the software instrumentation. SREs and development teams need to have clear and regular communication and code is common ground.
Embrace Distributed Computing
Deploying your applications in Kubernetes means embracing all of what distributed computing offers. When you are accustomed to single system thinking, it can be a hard transition. Mainly in the shift in thinking around expectations and understanding where problems crop up. For example, with every process contained in a single system, latency will be close to zero. It’s not what you have to manage. CPU and memory resources are the primary concern there. In the 1990s, Sun Microsystems was leading in the growing field of distributed computing and published this list of common fallacies:
The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
Topology doesn’t change
There is one administrator
Transport cost is zero
The network is homogeneous
These items most likely have an interesting story behind them where somebody assumed one of these fallacies and found themselves very disappointed. The result wasn’t what they expected and endless hours were lost trying to figure out the wrong problem.
Embracing distributed methodologies is worth the effort in the long run. It is how we build large scale applications and will be for a very long time. The challenge is worth the reward, and for those of us who do this daily, it can be a lot of fun too! Kubernetes applications will test each of these fallacies given its default distributed nature. When you plan your deployment, considering things such as the cost of transport from one place to another or latency implications. They will save you a lot of wasted time and re-design.
Principles of Cloud Native Data Infrastructure
As engineering professionals, we seek standards and best-practices to build upon. To make data the most “cloud native” it can be, we need to embrace everything Kubernetes offers. A truly cloud native approach means adopting key elements of the Kubernetes design paradigm and building from there. An entire cloud native application that includes data must be one that can run effectively on Kubernetes. Let’s explore a few Kubernetes design principles that point the way.
Principle 1: Leverage compute, network, and storage as commodity APIs
One of the keys to the success of cloud computing is the commoditization of computation, networking, and storage as resources we can provision via simple APIs. Consider this sampling of AWS services.
Compute
We allocate virtual machines through EC2 and Autoscaling Groups (ASGs).
Network
We manage traffic using Elastic Load Balancers (ELB), Route 53, and VPC peering.
Storage
We persist data using options such as the Simple Storage Service (S3) for long-term object storage, or Elastic Block Storage (EBS) volumes for our compute instances.
Kubernetes offers its own APIs to provide similar services for a world of containerized applications:
Compute
Pods, Deployments, and ReplicaSets manage the scheduling and life cycle of containers on computing hardware.
Network
Services and Ingress expose a container’s networked interfaces.
Storage:
PersistentVolumes and Statefulets enable flexible association of containers to storage.
Kubernetes resources promote the portability of applications across Kubernetes distributions and service providers. What does this mean for databases? They are simply applications that leverage computation, networking, and storage resources to provide the services of data persistence and retrieval:
Compute
A database needs sufficient processing power to process incoming data and queries. Each database node is deployed as a pod and grouped in StatefulSets, enabling Kubernetes to manage scaling out and scaling in.
Network
A database needs to expose interfaces for data and control. We can use Kubernetes Services and Ingress Controllers to expose these interfaces.
Storage
A database uses persistent volumes of a specified storage class to store and retrieve data.
Thinking of databases in terms of their compute, network, and storage needs removes much of the complexity involved in deployment on Kubernetes.
Principle 2: Separate the control and data planes
Kubernetes promotes the separation of control and data planes. The Kubernetes API server is the key data plane interface used to request computing resources, while the control plane manages the details of mapping those requests onto an underlying IaaS platform.
We can apply this same pattern to databases. For example, a database data plane consists of ports exposed for clients, and for distributed databases, ports used for communication between database nodes. The control plane includes interfaces provided by the database for administration and metrics collection and tooling that performs operational maintenance tasks. Much of this capability can and should be implemented via the Kubernetes operator pattern. Operators define custom resources (CRDs) and provide control loops that observe the state of those resources and take actions to move them toward the desired state, helping extend Kubernetes with domain-specific logic.
Principle 3: Make observability easy
The three pillars of observable systems are logging, metrics, and tracing. Kubernetes provides a great starting point by exposing the logs of each container to third-party log aggregation solutions. There are multiple solutions available for metrics, tracing, and visualization, and we’ll explore several of them in this book.
Principle 4: Make the default configuration secure
Kubernetes networking is secure by default: ports must be explicitly exposed in order to be accessed externally to a pod. This sets a valuable precedent for database deployment, forcing us to think carefully about how each control plane and data plane interface will be exposed and which interfaces should be exposed via a Kubernetes Service. Kubernetes also provides facilities for secret management which can be used for sharing encryption keys and configuring administrative accounts.
Principle 5: Prefer declarative configuration
In the Kubernetes declarative approach, you specify the desired state of resources, and controllers manipulate the underlying infrastructure in order to achieve that state. Operators for data infrastructure can manage the details of how to scale up intelligently, for example, deciding how to reallocate shards or partitions when scaling out additional nodes or selecting which nodes to remove to scale down elastically.
The next generation of operators should enable us to specify rules for stored data size, number of transactions per second, or both. Perhaps we’ll be able to specify maximum and minimum cluster sizes, and when to move less frequently used data to object storage. This will allow for more automation and efficiency in our data infrastructure.
Summary
At this point, we hope you are ready for the exciting journey in the pages ahead. The move to cloud native applications must include data, and to do this, we will leverage Kubernetes to include stateless and stateful services. This chapter covered cloud native data infrastructure that can scale elastically and resist any downtime due to system failures and how to build these systems. We as engineers must embrace the principles of cloud native infrastructure and in some cases, learn new skills. Congratulations, you have begun a fantastic journey into the future of building cloud native applications. Turn the page, and let’s go!
Chapter 2. Managing Data Storage on Kubernetes
A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jeffreyscarpenter@cox.net (Jeff Carpenter) and pmcfadin@gmail.com (Patrick McFadin).
“There is no such thing as a stateless architecture. All applications store state somewhere” - Alex Chircop, CEO, StorageOS
In the previous chapter, we painted a picture of a possible near future with powerful, stateful, data-intensive applications running on Kubernetes. To get there, we’re going to need data infrastructure for persistence, streaming, and analytics, and to build out this infrastructure, we’ll need to leverage the primitives that Kubernetes provides to help manage the three commodities of cloud computing: compute, network, and storage. In the next several chapters we begin to look at these primitives, starting with storage, in order to see how they can be combined to create the data infrastructure we need.
To echo the point raised by Alex Chircop in the quote above, all applications must store their state somewhere, which is why we’ll focus in this chapter on the basic abstractions Kubernetes provides for interacting with storage. We’ll also look at the emerging innovations being offered by storage vendors and open source projects that are creating storage infrastructure for Kubernetes that itself embodies cloud-native principles.
Let’s start our exploration with a look at managing persistence in containerized applications in general and use that as a jumping off point for our investigation into data storage on Kubernetes.
Docker, Containers, and State
The problem of managing state in distributed, cloud-native applications is not unique to Kubernetes. A quick search will show that stateful workloads have been an area of concern on other container orchestration platforms such as Mesos and Docker Swarm. Part of this has to do with the nature of container orchestration, and part is driven by the nature of containers themselves.
First, let’s consider containers. One of the key value propositions of containers is their ephemeral nature. Containers are designed to be disposable and replaceable, so they need to start quickly and use as few resources for overhead processing as possible. For this reason, most container images are built from base images containing streamlined, Linux-based, open-source operating systems such as Ubuntu, that boot quickly and incorporate only essential libraries for the contained application or microservice. As the name implies, containers are designed to be self-contained, incorporating all their dependencies in immutable images, while their configuration and data is externalized. These properties make containers portable so that we can run them anywhere a compatible container runtime is available.
As shown in Figure 2-1, containers require less overhead than traditional virtual machines, which run a guest operating system per virtual machine, with a hypervisor layer to implement system calls onto the underlying host operating system.
Figure 2-1. Comparing containerization to virtualization
Although containers have made applications more portable, it’s proven a bigger challenge to make their data portable. We’ll examine the idea of portable data sets in Chapter 12. Since a container itself is ephemeral, any data that is to survive beyond the life of the container must by definition reside externally. The key feature for a container technology is to provide mechanisms to link to persistent storage, and the key feature for a container orchestration technology is the ability to schedule containers in such a way that they can access persistent storage efficiently.
Managing State in Docker
Let’s take a look at the most popular container technology, Docker, to see how containers can store data. The key storage concept in Docker is the volume. From the perspective of a Docker container, a volume is a directory that can support read-only or read-write access. Docker supports the mounting of multiple different data stores as volumes. We’ll introduce several options so we can later note their equivalents in Kubernetes.
Bind mounts
The simplest approach for creating a volume is to bind a directory in the container to a directory on the host system. This is called a bind mount, as shown in Figure 2-2.
Figure 2-2. Using Docker Bind Mounts to access the host filesystem
When starting a container within Docker, you specify a bind mount with the --volume or -v option and the local filesystem path and container path to use. For example, you could start an instance of the Nginx web server, and map a local project folder from your development machine into the container. This is a command you can test out in your own environment if you have Docker installed:
docker run -it --rm -d --name web -v ~/site-content:/usr/share/nginx/html nginx
If the local path directory does not already exist, the Docker runtime will create it. Docker allows you to create bind mounts with read-only or read-write permissions. Because the volume is represented as a directory, the application running in the container can put anything that can be represented as a file into the volume - even a database.
Bind mounts are quite useful for development work. However, using bind mounts is not suitable for a production environment since this leads to a container being dependent on a file being present in a specific host. This might be fine for a single machine deployment, but production deployments tend to be spread across multiple hosts. Another concern is the potential security hole that is presented by opening up access from the container to the host filesystem. For these reasons, we need another approach for production deployments.
Volumes
The preferred option within Docker is to use volumes. Docker volumes are created and managed by Docker under a specific directory on the host filesystem. The Docker volume create command is used to create a volume. For example, you might create a volume called site-content to store files for a website:
docker volume create site-content
If no name is specified, Docker assigns a random name. After creation, the resulting volume is available to mount in a container using the form -v VOLUME-NAME:CONTAINER-PATH. For example, you might use a volume like the one just created to allow an Nginx container to read the content, while allowing another container to edit the content, using the to option:
docker run -it --rm -d --name web -v site-content:/usr/share/nginx/html:ro nginx
NOTE
Note: Docker Volume mount syntax
Docker also supports a --mount syntax which allows you to specify the source and target folders more explicitly. This notation is considered more modern, but it is also more verbose. The syntax shown above is still valid and is the more commonly used syntax.
As implied above, a Docker volume can be mounted in more than one container at once, as shown in Figure 2-3.
Figure 2-3. Creating Docker Volumes to share data between containers on the host
The advantage of using Docker volumes is that Docker manages the filesystem access for containers, which makes it much simpler to enforce capacity and security restrictions on containers.
Tmpfs Mounts
Docker supports two types of mounts that are specific to the operating system used by the host system: tmpfs (or “temporary filesystem”) and named pipes. Named pipes are available on Docker for Windows, but since they are typically not used in K8s, we won’t give much consideration to them here.
Tmpfs mounts are available when running Docker on Linux. A tmpfs mount exists only in memory for the lifespan of the container, so the contents are never present on disk, as shown in Figure 2-4. Tmpfs mounts are useful for applications that are written to persist a relatively small amount of data, especially sensitive data that you don’t want written to the host filesystem. Because the data is stored in memory, there is a side benefit of faster access.
Figure 2-4. Creating a temporary volume using Docker tmpfs
To create a tmpfs mount, you use the docker run --tmpfs option. For example, you could use a command like this to specify a tmpfs volume to store Nginx logs for a webserver processing sensitive data:
docker run -it --rm -d --name web -tmpfs /var/log/nginx nginx
The --mount option may also be used for more control over configurable options.
Volume Drivers
The Docker Engine has an extensible architecture which allows you to add customized behavior via plugins for capabilities including networking, storage, and authorization. Third-party storage plugins are available for multiple open-source and commercial providers, including the public clouds and various networked file systems. Taking advantage of these involves installing the plugin with Docker engine and then specifying the associated volume driver when starting Docker containers using that storage, as shown in Figure 2-5.
Figure 2-5. Using Docker Volume Drivers to access networked storage
For more information on working with the various types of volumes supported in Docker, see the Docker Storage documentation, as well as the documentation for the docker run command.
Sidebar: File, Block, and Object Storage
In our modern era of cloud architectures, the three main formats in which storage is traditionally provided to applications are files, blocks, and objects. Each of these store and provide access to data in different ways.
File storage represents data as a hierarchy of folders, each of which can contain files. The file is the basic unit of access for both storage and retrieval. The root directory that is to be accessed by a container is mounted into the container filesystem such that it looks like any other directory. Each of the public clouds provides their own file storage, for example Google Cloud Filestore, or Amazon Elastic Filestore. Gluster is an open-source distributed file system. Many of these systems are compatible with the Network File System (NFS), a distributed file system protocol invented at Sun Microsystems dating back to 1984 that is still in common use.
Block storage organizes data in chunks and allocates those chunks across a set of managed volumes. When you provide data to a block storage system, it divides it up into chunks of varying sizes and distributes those chunks in order to use the underlying volumes the most efficiently. When you query a block storage system, it retrieves the chunks from their various locations and provides the data back to you. This flexibility makes block storage a great solution when you have a heterogeneous set of storage devices available. Block storage doesn’t provide a lot of metadata handling, which can place more burden on the application.
Object storage organizes data in units known as objects. Each object is referenced by a unique identifier or “key”, and can support rich metadata tagging that enables searching. Objects are organized in buckets. This flat, non-hierarchical organization makes object storage easy to scale. Amazon’s Simple Storage Service (S3) is the canonical example of object storage and most object storage products will claim compatibility with the S3 API.
If you’re tasked with building or selecting data infrastructure, you’ll want to understand the strengths and weaknesses of each of these patterns.
Kubernetes Resources for Data Storage
Now that you understand basic concepts of container and cloud storage, let’s see what Kubernetes brings to the table. In this section, we’ll introduce some of the key Kubernetes concepts or “resources” in the API for attaching storage to containerized applications. Even if you are already somewhat familiar with these resources, you’ll want to stay tuned, as we’ll take a special focus on how each one relates to stateful data.
Pods and Volumes
One of the first Kubernetes resources new users encounter is the pod. The pod is the basic unit of deployment of a Kubernetes workload. A pod provides an environment for running containers, and the Kubernetes control plane is responsible for deploying pods to Kubernetes worker nodes. The Kubelet is a component of the Kubernetes control plane that runs on each worker node. It is responsible for running pods on a node, as well as monitoring the health of these pods and the containers inside them. These elements are summarized in Figure 2-6.
While a pod can contain multiple containers, the best practice is for a pod to contain a single application container, along with optional additional helper containers, as shown in the figure. These helper containers might include init containers that run prior to the main application container in order to perform configuration tasks, or sidecar containers that run alongside the main application container to provide helper services such as observability or management. In future chapters we’ll demonstrate how data infrastructure deployments can take advantage of these architectural patterns.
Figure 2-6. Using Volumes in Kubernetes Pods
Now let’s consider how persistence is supported within this pod architecture. As with Docker, the “on disk” data in a container is lost when a container crashes. The kubelet is responsible for restarting the container, but this new container is really a replacement for the original container - it will have a distinct identity, and start with a completely new state.
In Kubernetes, the term volume is used to represent access to storage within a pod. By using a volume, the container has the ability to persist data that will outlive the container (and potentially the pod as well, as we’ll see shortly). A volume may be accessed by multiple containers in a pod. Each container has its own volumeMount within the pod that specifies the directory to which it should be mounted, allowing the mount point to differ between containers.
There are multiple cases where you might want to share data between multiple containers in a pod:
An init container creates a custom configuration file for the particular environment that the application container mounts in order to obtain configuration values.
The application pod writes logs, and a sidecar pod reads those logs to identify alert conditions that are reported to an external monitoring tool.
However, you’ll likely want to avoid situations in which multiple containers are writing to the same volume, because you’ll have to ensure the multiple writers don’t conflict - Kubernetes does not do that for you.
NOTE
Note: Preparing to run sample code
The examples in this chapter (and the rest of the book) assume you have access to a running Kubernetes cluster. For the examples in this chapter, a development cluster on your local machine such as Kind, K3s, or Docker Desktop should be sufficient. The source code used in this section is located at Kubernetes Storage Examples.
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: my-app
image: nginx
volumeMounts:
- name: web-data
mountPath: /app/config
volumes:
- name: web-data
Notice the two parts of the configuration: the volume is defined under spec.volumes, and the usage of the volumes is defined under spec.containers.volumeMounts. First, the name of the volume is referenced under the volumeMounts, and the directory where it is to be mounted is specified by the mountPath. When declaring a pod specification, volumes and volume mounts go together. For your configuration to be valid, a volume must be declared before being referenced, and a volume must be used by at least one container in the pod.
You may have also noticed that the volume only has a name. You haven’t specified any additional information. What do you think this will do? You could try this out for yourself by using the example source code file nginx-pod.yaml or cutting and pasting the configuration above to a file with that name, and executing the kubectl command against a configured Kubernetes cluster:
kubectl apply -f nginx-pod.yaml
You can get more information about the pod that was created using the kubectl get pod command, for example:
kubectl get pod my-pod -o yaml | grep -A 5 " volumes:”
And the results might look something like this:
volumes:
- emptyDir: {}
name: web-data
- name: default-token-2fp89
secret:
defaultMode: 420
As you can see, Kubernetes supplied some additional information when creating the requested volume, defaulting it to a type of emptyDir. Other default attributes may differ depending on what Kubernetes engine you are using and we won’t discuss them further here.
There are several different types of volumes that can be mounted in a container, let’s have a look.
Ephemeral volumes
You’ll remember tmpfs volumes from our discussion of Docker volumes above, which provide temporary storage for the lifespan of a single container. Kubernetes provides the concept of an ephemeral volumes, which is similar, but at the scope of a pod. The emptyDir introduced in the example above is a type of ephemeral volume.
Ephemeral volumes can be useful for data infrastructure or other applications that want to create a cache for fast access. Although they do not persist beyond the lifespan of a pod, they can still exhibit some of the typical properties of other volumes for longer-term persistence, such as the ability to snapshot. Ephemeral volumes are slightly easier to set up than PersistentVolumes because they are declared entirely inline in the pod definition without reference to other Kubernetes resources. As you will see below, creating and using PersistentVolumes is a bit more involved.
NOTE
Note: Other ephemeral storage providers
Some of the in-tree and CSI storage drivers we’ll discuss below that provide PersistentVolumes also provide an ephemeral volume option. You’ll want to check the documentation of the specific provider in order to see what options are available.
Configuration volumes
Kubernetes provides several constructs for injecting configuration data into a pod as a volume. These volume types are also considered ephemeral in the sense that they do not provide a mechanism for allowing applications to persist their own data.
These volume types are relevant to our exploration in this book since they provide a useful means of configuring applications and data infrastructure running on Kubernetes. We’ll describe each of them briefly:
ConfigMap Volumes
A ConfigMap is a Kubernetes resource that is used to store configuration values external to an application as a set of name-value pairs. For example, an application might require connection details for an underlying database such as an IP address and port number. Defining these in a ConfigMap is a good way to externalize this information from the application. The resulting configuration data can be mounted into the application as a volume, where it will appear as a directory. Each configuration value is represented as a file, where the filename is the key, and the contents of the file contain the value. See the Kubernetes documentation for more information on mounting ConfigMaps as volumes.
Secret Volumes
A Secret is similar to a ConfigMap, only it is intended for securing access to sensitive data that requires protection. For example, you might want to create a secret containing database access credentials such as a username and password. Configuring and accessing Secrets is similar to using ConfigMap, with the additional benefit that Kubernetes helps decrypt the secret upon access within the pod. See the Kubernetes documentation for more information on mounting Secrets as volumes.
Downward API Volumes
The Kubernetes Downward API exposes metadata about pods and containers, either as environment variables or as volumes. This is the same metadata that is used by kubectl and other clients.
The available pod metadata includes the pod’s name, ID, namespace, labels, and annotations. The containerized application might wish to use the pod information for logging and metrics reporting, or to determine database or table names.
The available container metadata includes the requested and maximum amounts of resources such as CPU, memory, and ephemeral storage. The containerized application might wish to use this information in order to throttle its own resource usage. See the Kubernetes documentation for an example of injecting pod information as a volume.
Hostpath volumes
A hostPath volume mounts a file or directory into a pod from the Kubernetes worker node where it is running. This is analogous to the bind mount concept in Docker discussed above. Using a hostPath volume has one advantage over an emptyDir volume: the data will survive the restart of a pod.
However, there are some disadvantages to using hostPath volumes. First, in order for a replacement pod to access the data of the original pod, it will need to be restarted on the same worker node. While Kubernetes does give you the ability to control which node a pod is placed on using affinity, this tends to constrain the Kubernetes scheduler from optimal placement of pods, and if the node goes down for some reason, the data in the hostPath volume is lost. Second, similar to Docker bind mounts, there is a security concern with hostPath volumes in terms of allowing access to the local filesystem. For these reasons, hostPath volumes are only recommended for development deployments.
Cloud Volumes
It is possible to create Kubernetes volumes that reference storage locations beyond just the worker node where a pod is running, as shown in Figure 2-7. These can be grouped into volume types that are provided by named cloud providers, and those that attempt to provide a more generic interface.
Figure 2-7. Kubernetes pods directly mounting cloud provider storage
These include the following:
The awsElasticBlockStore volume type is used to mount volumes on Amazon Web Services (AWS) Elastic Block Store (EBS). Many databases use block storage as their underlying storage layer.
The gcePersistentDisk volume type is used to mount Google Compute Engine (GCE) persistent disks (PD), another example of block storage.
Two types of volumes are supported for Microsoft Azure: azureDisk for Azure Disk Volumes, and azureFile for Azure File Volumes
For OpenStack deployments, the cinder volume type can be used to access OpenStack Cinder volumes
Usage of these types typically requires configuration on the cloud provider, and access from Kubernetes clusters is typically confined to storage in the same cloud region and account. Check your cloud provider’s documentation for additional details.
Additional Volume Providers
There are a number of additional volume providers that vary in the types of storage provided. Here are a few examples:
The fibreChannel volume type can be used for SAN solutions implementing the FibreChannel protocol.
The gluster volume type is used to access file storage using the Gluster distributed file system referenced above
An iscsi volume mounts an existing iSCSI (SCSI over IP) volume into your Pod.
An nfs volume allows an existing NFS (Network File System) share to be mounted into a Pod
We’ll examine more volume providers below that implement the Container Attached Storage pattern.
Table 2-1 provides a comparison of Docker and Kubernetes storage concepts we’ve covered so far.
Type of Storage | Docker | Kubernetes |
Access to persistent storage from various providers | Volume (accessed via Volume drivers) | Volume (accessed via in-tree or CSI drivers) |
Access to host filesystem (not recommended for production) | Bind mount | Hostpath volume |
Temporary storage available while container (or pod) is running | tmpfs | emptyDir and other ephemeral volumes |
Configuration and environment data (read-only) | (no direct equivalent) | ConfigMap, Secret, Downward API |
Sidebar: How do you choose a Kubernetes storage solution?
Given the number of storage options available, it can certainly be an intimidating task to try to determine what kind of storage you should use for your application. Along with determining whether you need file, block, or object storage, you’ll want to consider your latency and throughput requirements, as well as your expected storage volume. For example, If your read latency requirements are aggressive, you’ll most likely need a storage solution that keeps data in the same data center where it is accessed.
Next, you’ll want to consider any existing commitments or resources you have. Perhaps your organization has a mandate or bias toward using services from a preferred cloud provider. The cloud providers will frequently provide cost incentives for using their services, but you’ll want to trade this against the risk of lock-in to a specific service. Alternatively, you might have an investment in a storage solution in an on-premises data center that you need to leverage.
Overall, cost tends to be the overriding factor in choosing storage solutions, especially over the long term. Make sure your modeling includes not only the cost of the physical storage and any managed services, but also the operational cost involved in managing your chosen solution.
In this section, we’ve discussed how to use volumes to provide storage that can be shared by multiple containers within the same pod. While this is sufficient for some use cases, there are some needs this doesn’t address. A volume does not provide the ability to share storage resources between pods. The definition of a particular storage location is tied to the definition of the pod. Managing storage for individual pods doesn’t scale well as the number of pods deployed in your Kubernetes cluster increases.
Thankfully, Kubernetes provides additional primitives that help simplify the process of provisioning and mounting storage volumes for both individual pods and groups of related pods. We’ll investigate these concepts in the next several sections.
PersistentVolumes
The key innovation the Kubernetes developers have introduced for managing storage is the persistent volume subsystem. This subsystem consists of three additional Kubernetes resources that work together: PersistentVolumes, PersistentVolumeClaims, and StorageClasses. This allows you to separate the definition and lifecycle of storage from how it is used by pods, as shown in Figure 2-8:
Cluster administrators define PersistentVolumes, either explicitly or by creating a StorageClass that can dynamically provision new PersistentVolumes.
Application developers create PersistentVolumeClaims that describe the storage resource needs of their applications, and these PersistentVolumeClaims can be referenced as part of volume definitions in pods.
The Kubernetes control plane manages the binding of PersistentVolumeClaims to PersistentVolumes.
Figure 2-8. PersistentVolumes, PersistentVolumeClaims, and StorageClasses
Let’s look first at the PersistentVolume resource (often abbreviated PV), which defines access to storage at a specific location. PersistentVolumes are typically defined by cluster administrators for use by application developers. Each PV can represent storage of the same types discussed in the previous section, such as storage offered by cloud providers, networked storage, or storage directly on the worker node, as shown in Figure 2-9. Since they are tied to specific storage locations, PersistentVolumes are not portable between Kubernetes clusters.
Figure 2-9. Types of Kubernetes PersistentVolumes
Local PersistentVolumes
The figure also introduces a PersistentVolume type called local, which represents storage mounted directly on a Kubernetes worker node such as a disk or partition. Like hostPath volumes, a local volume may also represent a directory. A key difference between local and hostPath volumes is that when a pod using a local volume is restarted, the Kubernetes scheduler ensures the pod is rescheduled on the same node so that it can be attached to the same persistent state. For this reason, local volumes are frequently used as the backing store for data infrastructure that manages its own replication, as we’ll see in Chapter 4.
The syntax for defining a PersistentVolume will look familiar, as it is similar to defining a volume within a pod. For example, here is a YAML configuration file that defines a local PersistentVolume (source code):
apiVersion: v1
kind: PersistentVolume
metadata:
name: my-volume
spec:
capacity:
storage: 3Gi
accessModes:
- ReadWriteOnce
local:
path: /app/data
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- node1
As you can see, this code defines a local volume named my-volume on the worker node node1, 3 GB in size, with an access mode of ReadWriteOnce. The following access modes are supported for PersistentVolumes:
ReadWriteOnce access allows the volume to be mounted for both reading and writing by a single pod at a time, and may not be mounted by other pods
ReadOnlyMany access means the volume can be mounted by multiple pods simultaneously for reading only
ReadWriteMany access allows the volume to be mounted for both reading and writing by many nodes at the same time
NOTE
Note: Choosing a volume access mode
The right access mode for a given volume will be driven by the type of workload. For example, many distributed databases will be configured with dedicated storage per pod, making ReadWriteOnce a good choice.
Besides capacity and access mode, other attributes for PersistentVolumes include:
The volumeMode, which defaults to Filesystem but may be overridden to Block.
The reclaimPolicy defines what happens when a pod releases its claim on this PersistentVolume. The legal values are Retain, Recycle, and Delete.
A PersistentVolume can have a nodeAffinity which designates which worker node or nodes can access this volume. This is optional for most types, but required for the local volume type.
The class attribute binds this PV to a particular StorageClass, which is a concept we’ll introduce below.
Some PersistentVolume types expose mountOptions that are specific to that type.
WARNING
Warning: Differences in volume options
Options differ between different volume types. For example, not every access mode or reclaim policy is accessible for every PersistentVolume type, so consult the documentation on your chosen type for more details.
You use the kubectl describe persistentvolume command (or kubectl describe pv for short) to see the status of the PersistentVolume:
$ kubectl describe pv my-volume
Name: my-volume
Labels: <none>
Annotations: <none>
Finalizers: [kubernetes.io/pv-protection]
StorageClass:
Status: Available
Claim:
Reclaim Policy: Retain
Access Modes: RWO
VolumeMode: Filesystem
Capacity: 3Gi
Node Affinity:
Required Terms:
Term 0: kubernetes.io/hostname in [node1]
Message:
Source:
Type: LocalVolume (a persistent volume backed by local storage on a node)
Path: /app/data
Events: <none>
The PersistentVolume has a status of Available when first created. A PersistentVolume can have multiple different status values:
Available means the PersistentVolume is free, and not yet bound to a claim.
Bound means the PersistentVolume is bound to a PersistentVolumeClaim, which is listed elsewhere in the describe output
Released means that an existing claim on the PersistentVolume has been deleted, but the resource has not yet been reclaimed, so the resource is not yet Available
Failed means the volume has failed its automatic reclamation
Now that you’ve learned how storage resources are defined in Kubernetes, the next step is to learn how to use that storage in your applications.
PersistentVolumeClaims
As discussed above, Kubernetes separates the definition of storage from its usage. Often these tasks are performed by different roles: cluster administrators define storage, while application developers use the storage. PersistentVolumes are typically defined by the administrators and reference storage locations which are specific to that cluster. Developers can then specify the storage needs of their applications using PersistentVolumeClaims (PVCs) that Kubernetes uses to associate pods with a PersistentVolume that meets the specified criteria. As shown in Figure 2-10, a PersistentVolumeClaim is used to reference the various volume types we’ve introduced previously, including local PersistentVolumes, or external storage provided by cloud or networked storage vendors.
Figure 2-10. Accessing PersistentVolumes using PersistentVolumeClaims
Here’s what the process looks like from an application developer perspective. First, you’ll create a PVC representing your desired storage criteria. For example, here’s a claim that requests 1GB of storage with exclusive read/write access (source code):
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: my-claim
spec:
storageClassName: ""
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
One interesting thing you may have noticed about this claim is that the storageClassName is set to an empty string. We’ll explain the significance of this when we discuss StorageClasses below. You can reference the claim in the definition of a pod like this (source code):
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- mountPath: "/app/data"
name: my-volume
volumes:
- name: my-volume
persistentVolumeClaim:
claimName: my-claim
As you can see, the PersistentVolume is represented within the pod as a volume. The volume is given a name and a reference to the claim. This is considered to be a volume of the persistentVolumeClaim type. As with other volumes, the volume is mounted into a container at a specific mount point, in this case into the main application Nginx container at the path /app/data.
A PVC also has a state, which you can see if you retrieve the status:
Name: my-claim
Namespace: default
StorageClass:
Status: Bound
Volume: my-volume
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed: yes
pv.kubernetes.io/bound-by-controller: yes
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 3Gi
Access Modes: RWO
VolumeMode: Filesystem
Mounted By: <none>
Events: <none>
A PVC has one of two Status values: Bound, meaning it is bound to a volume (as is the case above), or Pending, meaning that it has not yet been bound to a volume. Typically a status of Pending means that no PV matching the claim exists.
Here’s what’s happening behind the scenes. Kubernetes uses the PVCs referenced as volumes in a pod and takes those into account when scheduling the pod. Kubernetes identifies PersistentVolumes that match properties associated with the claim and binds the smallest available module to the claim. The properties might include a label, or node affinity, as we saw above for local volumes.
When starting up a pod, the Kubernetes control plane makes sure the PersistentVolumes are mounted to the worker node. Then each requested storage volume is mounted into the pod at the specified mount point.
StorageClasses
The example shown above demonstrates how Kubernetes can bind PVCs to PersistentVolumes that already exist. This model in which PersistentVolumes are explicitly created in the Kubernetes cluster is known as static provisioning. The Kubernetes Persistent Volume Subsystem also supports dynamic provisioning of volumes using StorageClasses (often abbreviated SC). The StorageClass is responsible for provisioning (and deprovisioning) PersistentVolumes according to the needs of applications running in the cluster, as shown in Figure 2-11.
Figure 2-11. StorageClasses support dynamic provisioning of volumes
Depending on the Kubernetes cluster you are using, it is likely that there is already at least one StorageClass available. You can verify this using the command kubectl get sc. If you’re running a simple Kubernetes distribution on your local machine and don’t see any StorageClasses, you can install an open source local storage provider from Rancher with the following command:
kubectl apply -f https://raw.githubusercontent.com/rancher/local-path-provisioner/master/deploy/local-path-storage.yaml
This storage provider comes pre-installed in K3s, a desktop distribution also provided by Rancher. If you take a look at the YAML configuration referenced in that statement, you’ll see the following definition of a StorageClass (source code):
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-path
provisioner: rancher.io/local-path
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete
As you can see from the definition, a StorageClass is defined by a few key attributes:
The provisioner interfaces with an underlying storage provider such as a public cloud or storage system in order to allocate the actual storage. The provisioner can either be one of the Kubernetes built-in provisioners (referred to as “in-tree” because they are part of the Kubernetes source code), or a provisioner that conforms to the Container Storage Interface (CSI), which we’ll examine below.
The parameters are specific configuration options for the storage provider that are passed to the provisioner. Common options include filesystem type, encryption settings, and throughput in terms of IOPS. Check the documentation for the storage provider for more details.
The reclaimPolicy describes whether storage is reclaimed when the PersistentVolume is deleted. The default is Delete, but can be overridden to Retain, in which case the storage administrator would be responsible for managing the future state of that storage with the storage provider.
Although it is not shown in the example above, there is also an optional allowVolumeExpansion flag. This indicates whether the StorageClass supports the ability for volumes to be expanded. If true, the volume can be expanded by increasing the size of the storage.request field of the PersistentVolumeClaim. This value defaults to false.
The volumeBindingMode controls when the storage is provisioned and bound. If the value is Immediate, a PersistentVolume is immediately provisioned as soon as a PersistentVolumeClaim referencing the StorageClass as created, and the claim is bound to the PersistentVolume, regardless of whether the claim is referenced in a pod. Many storage plugins also support a second mode known as WaitForFirstConsumer, in which case no PersistentVolume is not provisioned until a pod is created that references the claim. This behavior is considered preferable since it gives the Kubernetes scheduler more flexibility.
NOTE
Note: Limits on dynamic provisioning
Local cannot be dynamically provisioned by a StorageClass, so you must create them manually yourself.
Application developers can reference a specific StorageClass when creating a PVC by adding a storageClass property to the definition. For example, here is a YAML configuration for a PVC referencing the local-path StorageClass (source code):
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: my-local-path-claim
spec:
storageClassName: local-path
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
If no storageClass is specified in the claim, then the default StorageClass is used. The default StorageClass can be set by the cluster administrator. As we showed above in the Persistent Volumes section, you can opt out of using StorageClasses by using the empty string, which indicates that you are using statically provisioned storage.
StorageClasses provide a useful abstraction that cluster administrators and application developers can use as a contract: administrators define the StorageClasses, and developers reference the StorageClasses by name. The details of the underlying StorageClass implementation can differ across Kubernetes platform providers, promoting portability of applications.
This flexibility allows administrators to create StorageClasses representing a variety of different storage options, for example, to distinguish between different quality of service guarantees in terms of throughput or latency. This concept is known as “profiles” in other storage systems. See How Developers are Driving the Future of Kubernetes Storage (sidebar) for more ideas on how StorageClasses can be leveraged in innovative ways.
Kubernetes Storage Architecture
In the preceding sections we’ve discussed the various storage resources that Kubernetes supports via its API. In the remainder of the chapter, we’ll take a look at how these solutions are constructed, as they can give us some valuable insights on how to construct cloud-native data solutions.
NOTE
Note: Defining Cloud-native storage
Most of the storage technologies we discuss in this chapter are captured as part of the “cloud-native storage” solutions listed in Cloud Native Computing Foundation (CNCF) landscape. The CNCF Storage Whitepaper is a helpful resource which defines key terms and concepts for cloud native storage. Both of these resources are updated regularly.
Flexvolume
Originally, the Kubernetes codebase contained multiple “in-tree” storage plugins, that is, included in the same GitHub repo as the rest of the Kubernetes code. The advantage of this was that it helped standardize the code for connecting to different storage platforms, but there were a couple of disadvantages as well. First, many Kubernetes developers had limited expertise across the broad set of included storage providers. More significantly, the ability to upgrade storage plugins was tied to the Kubernetes release cycle, meaning that if you needed a fix or enhancement for a storage plugin, you’d have to wait until it was accepted into a Kubernetes release. This slowed the maturation of storage technology for K8s, and as a result, adoption slowed as well.
The Kubernetes community created the Flexvolume specification to allow development of plugins that could be developed independently, that is, out of the Kubernetes source code tree, without being tied to the Kubernetes release cycle. Around the same time, storage plugin standards were emerging for other container orchestration systems, and developers from these communities began to question the wisdom of developing multiple standards to solve the same basic problem.
NOTE
Note: Future Flexvolume support
While new feature development has paused on Flexvolume, many deployments still rely on these plugins, and there are no active plans to deprecate the feature as of the Kubernetes 1.21 release.
Container Storage Interface (CSI)
The Container Storage Interface (CSI) initiative was established as an industry standard for storage for containerized applications. CSI is an open standard used to define plugins that will work across container orchestration systems including Kubernetes, Mesos, and Cloud Foundry. As Saad Ali, Google engineer and chair of the Kubernetes Storage Special Interest Group (SIG), noted in The New Stack article The State of State in Kubernetes: “The Container Storage Interface allows Kubernetes to interact directly with an arbitrary storage system.”
The CSI specification is available on GitHub. Support for the CSI in Kubernetes began with the 1.x release and it went GA in the 1.13 release. Kubernetes continues to track updates to the CSI specification.
Once a CSI implementation is deployed on a Kubernetes cluster, its capabilities are accessed through the standard Kubernetes storage resources such as PVCs, PVs, and SCs. On the backend, each CSI implementation must provide two plugins: a node plugin and a controller plugin. The CSI specification defines required interfaces for these plugins using gRPC but does not specify exactly how the plugins are to be deployed.
Let’s briefly look at the role of each of these services, also depicted in Figure 2-12:
The controller plugin supports operations on volumes such as create, delete, listing, publishing/unpublishing, tracking and expanding volume capacity. It also tracks volume status including what nodes each volume is attached to. The controller plugin is also responsible for taking and managing snapshots, and using snapshots to clone a volume. The controller plugin can run on any node - it is a standard Kubernetes controller.
The node plugin runs on each Kubernetes worker node where provisioned volumes will be attached. The node plugin is responsible for local storage, as well as mounting and unmounting volumes onto the node. The Kubernetes control plane directs the plugin to mount a volume prior to any pods being scheduled on the node that require the volume.
Figure 2-12. Container Storage Interface mapped to Kubernetes
NOTE
Note: Additional CSI resources:
The CSI documentation site provides guidance for developers and storage providers who are interested in developing CSI-compliant drivers. The site also provides a very useful list of CSI-compliant drivers. This list is generally more up to date than one provided on the Kubernetes documentation site.
Sidebar: CSI Migration
The Kubernetes community has been very conscious of preserving forward and backward compatibility between versions, and the transition from in-tree storage plugins to the CSI is no exception. Features in Kubernetes are typically introduced as Alpha features, and progress to Beta, before being released as General Availability (GA). The introduction of a new API such as the CSI presents a more complex challenge because it involves the introduction of a new API as well as the deprecation of older APIs.
The CSI migration approach was introduced in order to promote a coherent experience for users of storage plugins. The implementation of each corresponding in-tree plugin is changed to a facade when an equivalent CSI-compliant driver becomes available. Calls on the in-tree plugin are delegated to the underlying CSI-compliant driver. The migration capability is itself a feature that can be enabled on a Kubernetes cluster.
This allows a staged adoption process that can be used as existing clusters are updated to newer Kubernetes versions. Each application can be updated independently to use CSI-compliant drivers instead of in-tree drivers. This approach to maturing and replacing APIs is a helpful pattern for promoting stability of the overall platform and providing administrators control over their migration to the new API.
Container Attached Storage
While the CSI is an important step forward in standardizing storage management across container orchestrators, it does not provide implementation guidance on how or where the storage software runs. Some CSI implementations are basically thin wrappers around legacy storage management software running outside of the Kubernetes cluster. While there are certainly benefits to this reuse of existing storage assets, many developers have expressed a desire for storage management solutions that run entirely in Kubernetes alongside their applications.
Container Attached Storage is a design pattern which provides a more cloud-native approach to managing storage. The business logic to manage storage operations such as attaching volumes to applications is itself composed of microservices running in containers. This allows the storage layer to have the same properties as other applications deployed on Kubernetes and reduces the number of different management interfaces administrators have to keep track of. The storage layer becomes just another Kubernetes application.
As Evan Powell noted in his article on the CNCF Blog, Container Attached Storage: A primer, “Container Attached Storage reflects a broader trend of solutions that reinvent particular categories or create new ones – by being built on Kubernetes and microservices and that deliver capabilities to Kubernetes based microservice environments. For example, new projects for security, DNS, networking, network policy management, messaging, tracing, logging and more have emerged in the cloud-native ecosystem.”
There are several examples of projects and products that embody the CAS approach to storage. Let’s examine a few of the open-source options.
OpenEBS
OpenEBS is a project created by MayaData and donated to the CNCF, where it became a sandbox project in 2019. The name is a play on Amazon’s Elastic Block Store, and OpenEBS is an attempt to provide an open source equivalent to this popular managed service. OpenEBS provides storage engines for managing both local and NVMe PersistentVolumes.
OpenEBS provides a great example of a CSI-compliant implementation deployed onto Kubernetes, as shown in Figure 2-13. The control plane includes the OpenEBS provisioner, which implements the CSI controller interface, and the OpenEBS API server, which provides a configuration interface for clients and interacts with the rest of the Kubernetes control plane.
The Open EBS data plane consists of the Node Disk Manager (NDM) as well as dedicated pods for each PersistentVolume. The NDM runs on each Kubernetes worker where storage will be accessed. It implements the CSI node interface and provides the helpful functionality of automatically detecting block storage devices attached to a worker node.
Figure 2-13. OpenEBS Architecture
OpenEBS creates multiple pods for each volume. A controller pod is created as the primary replica, and additional replica pods are created on other Kubernetes worker nodes for high availability. Each pod includes sidecars that expose interfaces for metrics collection and management, which allows the control plane to monitor and manage the data plane.
Longhorn
Longhorn is an open-source, distributed block storage system for Kubernetes. It was originally developed by Rancher, and became a CNCF sandbox project in 2019. Longhorn focuses on providing an alternative to cloud-vendor storage and expensive external storage arrays. Longhorn supports providing incremental backups to NFS or AWS S3 compatible storage, and live replication to a separate Kubernetes cluster for disaster recovery.
Longhorn uses a similar architecture to that shown for OpenEBS; according to the documentation, “Longhorn creates a dedicated storage controller for each block device volume and synchronously replicates the volume across multiple replicas stored on multiple nodes. The storage controller and replicas are themselves orchestrated using Kubernetes.” Longhorn also provides an integrated user interface to simplify operations.
Rook and Ceph
According to its website, “Rook is an open source cloud-native storage orchestrator, providing the platform, framework, and support for a diverse set of storage solutions to natively integrate with cloud-native environments.” Rook was originally created as a containerized version of Ceph that could be deployed in Kubernetes. Ceph is an open-source distributed storage framework that provides block, file, and object storage. Rook was the first storage project accepted by the CNCF and is now considered a CNCF Graduated project.
Rook is a truly Kubernetes-native implementation in the sense that it makes use of Kubernetes custom resources (CRDs) and custom controllers called operators. Rook provides operators for Ceph, Apache Cassandra, and Network File System (NFS). We’ll learn more about custom resources and operators in Chapter 4.
There are also commercial solutions for Kubernetes that embody the CAS pattern. These include MayaData (creators of OpenEBS), Portworx by PureStorage, Robin.io, and StorageOS. These companies provide both raw storage in block and file formats, as well as integrations for simplified deployments of additional data infrastructure such as databases and streaming solutions.
Container Object Storage Interface (COSI)
The CSI provides support for file and block storage, but object storage APIs require different semantics and don’t quite fit the CSI paradigm of mounting volumes. In Fall 2020, a group of companies led by MinIO began work on a new API for object storage in container orchestration platforms: the Container Object Storage Interface (COSI). COSI provides a Kubernetes API more suited to provisioning and accessing object storage, defining a bucket custom resource and including operations to create buckets and manage access to buckets. The design of the COSI control plane and data plane is modeled after the CSI. COSI is an emerging standard with a great start and potential for wide adoption in the Kubernetes community and potentially beyond.
SIDEBAR: HOW DEVELOPERS ARE DRIVING THE FUTURE OF KUBERNETES STORAGE
With Kiran Mova, co-founder and CTO of MayaData, member of Kubernetes Storage Special Interest Group (SIG)
Many organizations are just starting their containerization journey. Kubernetes is the shiny object, and everybody wants to run everything in Kubernetes. But not all teams are ready for Kubernetes, much less managing stateful workloads on Kubernetes.
Application developers are the ones driving the push for stateful workloads on Kubernetes. These developers get started with cloud resources that are available to them, even a single node Kubernetes cluster, and assume they’re ready to run that in production. Developers are “Kuberneticizing” their in-house applications, and the demands on storage are quite different from what the platform teams that support them are used to.
Microservices and Kubernetes have changed the way storage volumes are provisioned. Platform teams are used to thinking about data in terms of provisioning volumes with the required throughput or capacity. In the old way, the platform team would meet with the application team, estimate the size of the data, do a month of planning, provision a 2-3 TB volume, and mount it into the VMs or bare metal servers and that would provide enough storage capacity for the next year.
With Kubernetes, provisioning has become much easier and ad-hoc. You can run things in a very cost effective and agile way by adopting Kubernetes. But many platform teams are still working to catch up. Some teams are simply focused on provisioning storage correctly, while others are beginning to focus on “day 2” operations, such as automated provisioning, expanding volumes, or disconnecting and destroying volumes.
Platform teams don’t yet have a foolproof way to run stateful workloads in Kubernetes, so they often offload persistence to public cloud providers. The public clouds make a strong case for their managed services, claiming they have everything that you’ll need to run a storage system, but once you start using managed services for state, you can become dependent on those cloud providers and get stuck.
Meanwhile, there are innovations in storage technology happening in parallel:
The landscape is shifting back and forth between hyperconverged and disaggregated. This re-architecture is happening at all the layers of the stack, and it’s not just the software, it includes processes and the people who consume the data.
Hardware trends are driving toward low-latency solutions including NVMe and DPDK/SPDK, and changes to the Linux kernel like io_uring to take advantage of faster hardware.
Container attached storage will help us manage storage more effectively. For example, being able to reclaim storage space when workloads shrink. This can be a difficult problem with data distributed across multiple nodes. We’ll need better logic for relocating data onto existing nodes.
Technologies that bring more automation for compliance and operations are coming into the picture as well.
With all these innovations, it can be a bit overwhelming to understand the big picture and determine how to leverage this technology for maximum benefit. Platform SREs need to learn about Kubernetes, declarative deployments, GitOps principles, new volume types, and even database concepts like eventual consistency.
We envision a future in which application developers will specify their Kubernetes storage needs in terms of the required quality of service, such as I/O operations per second (IOPS) and throughput. Developers should be able to specify different storage needs for their workloads in more human-relatable terms. For example, platform teams could define StorageClasses for “fast storage” vs “slow storage”, or perhaps “metadata storage” vs “data storage”. These StorageClasses will make different cost/performance tradeoffs and provide specific service level agreements (SLAs). We may even see some standard definitions start to emerge for these new StorageClasses.
Ideally, application teams should not be picking into what storage solutions are chosen. The only thing an application developer should be concerned with is specifying PersistentVolumeClaims for their application, with the StorageClasses they need. The other details of managing storage should be hidden, although of course the storage subsystem will report errors including status and logs via the standard Kubernetes mechanisms. This capability will make things a lot simpler for application developers, whether they’re deploying a database, or some other stateful workload.
These innovations will guide us to a more optimal place with storage on Kubernetes. Today we’re in a place where deploying infrastructure is easy. Let’s work together to get to a place where deploying the right infrastructure is easy.
As you can see, storage on Kubernetes is an area in which there is a lot of innovation, including multiple open source projects and commercial vendors competing to provide the most usable, cost effective, and performant solutions. The Cloud-Native Storage section of the CNCF Landscape provides a helpful listing of storage providers and related tools, including the technologies referenced in this chapter and many more.
Summary
In this chapter, we’ve explored how persistence is managed in container systems like Docker, and container orchestration systems like Kubernetes. You’ve learned about the various Kubernetes resources that can be used to manage stateful workloads, including Volumes, PersistentVolumes, PersistentVolumeClaims, StorageClasses. We’ve seen how the Container Storage Interface and Container Attached Storage pattern point the way toward more cloud-native approaches to managing storage. Now you’re ready to learn how to use these building blocks and design principles to manage stateful workloads including databases, streaming data, and more.
Chapter 3. Databases on Kubernetes the Hard Way
A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.
This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made active later on.
If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the authors at jeffreyscarpenter@cox.net (Jeff Carpenter) and pmcfadin@gmail.com (Patrick McFadin).
As we discussed in Chapter 1, Kubernetes was designed for stateless workloads. A corollary to this is that stateless workloads are what Kubernetes does best. Because of this, some have argued that you shouldn’t try to run stateful workloads on Kubernetes, and you may hear various recommendations about what you should do instead: “use a managed service”, or “leave data in legacy databases in your on-premises data center”, or perhaps even “run your databases in the cloud, but in traditional VMs instead of containers.”
While these recommendations are still viable options, one of our main goals in this book is to demonstrate that running data infrastructure in Kubernetes has become not only a viable option, but a preferred option. In his article, A Case for Databases on Kubernetes from a Former Skeptic, Chris Bradford describes his journey from being skeptical of running any stateful workload in Kubernetes, to grudging acceptance of running data infrastructure on Kubernetes for development and test workloads, to enthusiastic evangelism around deploying databases on K8s in production. This journey is typical of many in the Data on Kubernetes community. By the middle of 2020, Boris Kurktchiev was able to cite a growing consensus that managing stateful workloads on Kubernetes had reached a point of viability, and even maturity, in his article 3 Reasons to Bring Stateful Applications to Kubernetes.
How did this change come about? Over the past several years, the Kubernetes community has shifted focus toward adding features that support the ability to manage state in a cloud-native way on Kubernetes. The storage elements represent a big part of this shift we introduced in the previous chapter, including the Kubernetes PersistentVolume subsystem and the adoption of the Container Storage Interface. In this chapter, we’ll complete this part of the story by looking at Kubernetes resources for building stateful applications on top of this storage foundation. We’ll focus in particular on a specific type of stateful application: data infrastructure.
The Hard Way
The phrase “doing it the hard way” has come to be associated with avoiding the easy option in favor of putting in the detailed work required to accomplish a result that will have lasting significance. Throughout history, pioneers of all persuasions are well known for taking pride in having made the sacrifice of blood, sweat, and tears that make life just that little bit more bearable for the generations that follow. These elders are often heard to lament when their proteges fail to comprehend the depth of what they had to go through.
In the tech world it’s no different. While new innovations such as APIs and “no code” environments have massive potential to grow a new crop of developers worldwide, it is still the case that a deeper understanding of the underlying technology is required in order to manage highly available and secure systems at worldwide scale. It’s when things go wrong that this detailed knowledge proves its worth. This is why many of us who are software developers and never touch a physical server in our day jobs gain so much from building our own PC by wiring chips and boards by hand. It’s also one of the hidden benefits of serving as informal IT consultants for our friends and family.
For the Kubernetes community, of course, “the hard way” has an even more specific connotation. Google engineer Kelsey Hightower’s Kubernetes the Hard Way has become a sort of rite of passage for those who want a deeper understanding of the elements that make up a Kubernetes cluster. This popular tutorial walks you through downloading, installing, and configuring each of the components that make up the Kubernetes control plane. The result is a working Kubernetes cluster, which, although not suitable for deploying a production workload, is certainly functional enough for development and learning. The appeal of the approach is that all of the instructions are typed by hand instead of downloading a bunch of scripts that do everything for you, so that you understand what is happening at each step.
In this chapter, we’ll emulate this approach and walk you through deploying some example data infrastructure the hard way ourselves. Along the way, we’ll get more hands-on experience with the storage resources you learned about in Chapter 2, and we’ll introduce additional Kubernetes resource types for managing compute and network to complete the “Compute, Network, Storage” triad we introduced in Chapter 1. Are you ready to get your hands dirty? Let’s go!
WARNING
Warning: Examples are Not Production-Grade
The examples we present in this chapter are primarily for introducing new elements of the Kubernetes API and are not intended to represent deployments we’d recommend running in production. We’ll make sure to highlight where there are gaps so that we can demonstrate how to fill them in upcoming chapters.
Prerequisites for running data infrastructure on Kubernetes
To follow along with the examples in this chapter, you’ll want to have a Kubernetes cluster to work on. If you’ve never tried it before, perhaps you’ll want to build a cluster using the Kubernetes the Hard Way instructions, and then use that same cluster to add data infrastructure the hard way as well. You could also use a simple desktop K8s as well, since we won’t be using a large amount of resources. If you’re using a shared cluster, you might want to install these examples in their own namespace to isolate them from the work of others.
kubectl config set-context --current --namespace=<insert-namespace-name-here>
You’ll also need to make sure you have a StorageClass in your cluster. If you’re starting from a cluster built the hard way, you won’t have one. You may want to follow the instructions in the section StorageClasses for installing a simple StorageClass and provisioner that expose local storage (source code).
You’ll want to use a StorageClass that supports a volumeBindingMode of WaitForFirstConsumer. This gives Kubernetes the flexibility to defer provisioning storage until we need it. This behavior is generally preferred for production deployments, so you might as well start getting in the habit.
Running MySQL on Kubernetes
First, let’s start with a super simple example. MySQL is one of the most widely used relational databases due to its reliability and usability. For this example we’ll build on the MySQL tutorial in the official Kubernetes documentation, with a couple of twists. You can find the source code used in this section at Deploying MySQL Example - Data on Kubernetes the Hard Way. The tutorial includes two Kubernetes deployments: one to run MySQL pod, and another to run a sample client, in this case Wordpress. This configuration is shown in Figure 3-1.
Figure 3-1. Sample Kubernetes Deployment of MySQL
In this example, we see that there is a PersistentVolumeClaim for each pod. For the purposes of this example, we’ll assume these claims are satisfied by a single volume provided by the default StorageClass. You’ll also notice that each pod is shown as part of a ReplicaSet and that there is a service exposed for the MySQL database. Let’s take a pause and introduce these concepts.
ReplicaSets
Production application deployments on Kubernetes do not typically deploy individual pods, because an individual pod could easily be lost when the node disappears. Instead, pods are typically deployed in the context of a Kubernetes resource that manages their lifecycle. ReplicaSet is one of these resources, and the other is StatefulSet, which we’ll look at later in the chapter.
The purpose of a ReplicaSet (RS) is to ensure that a specified number of replicas of a given pod are kept running at any given time. As pods are destroyed, others are created to replace them in order to satisfy the desired number of replicas. A ReplicaSet is defined by a pod template, a number of replicas, and a selector. The pod template defines a specification for pods that will be managed by the ReplicaSet, similar to what we saw for individual pods created in the examples in Chapter 2. The number of replicas can be 0 or more. The selector identifies pods that are part of the ReplicaSet.
Let’s look at a portion of an example definition of a ReplicaSet for the Wordpress application shown in Figure 3-1:
apiVersion: apps/v1
kind: ReplicaSet
metadata:
name: wordpress-mysql
labels:
app: wordpress
spec:
replicas: 1
selector:
matchLabels:
app: wordpress
tier: mysql
template:
metadata:
labels:
app: wordpress
tier: mysql
spec:
containers:
- image: mysql:5.6
name: mysql
...
A ReplicaSet is responsible for creating or deleting pods in order to meet the specified number of replicas. You can scale the size of a RS up or down by changing this value. The pod template is used when creating new pods. Pods that are managed by a ReplicaSet contain a reference to the RS in their metadata.ownerReferences field. A ReplicaSet can actually take responsibility for managing a pod that it did not create if the selector matches and the pod does not reference another owner. This behavior of a ReplicaSet is known as acquiring a pod.
You might be wondering why we didn’t provide a full definition of a ReplicaSet above. As it turns out, most application developers do not end up using ReplicaSets directly, because Kubernetes provides another resource type that manages ReplicaSets declaratively: Deployments.
WARNING
Warning: Define ReplicaSet selectors carefully
If you do create ReplicaSets directly, make sure that the selector you use is unique and does not match any bare pods that you do not intend to be acquired. It is possible that pods that do not match the pod template can be acquired if the selectors match.
For more information about managing the lifecycle of ReplicaSets and the pods they manage, see the Kubernetes documentation.
Deployments
A Kubernetes Deployment is a resource which builds on top of ReplicaSets with additional features for lifecycle management, including the ability to rollout new versions and rollback to previous versions. As shown in Figure 3-2, creating a Deployment results in the creation of a ReplicaSet as well.
Figure 3-2. Deployments and ReplicaSets
This figure highlights that ReplicaSets (and therefore the Deployments that manage them) operate on cloned replicas of pods, meaning that the definitions of the pods are the same, even down to the level of PersistentVolumeClaims. The definition of a ReplicaSet references a single PVC that is provided to it, and there is no mechanism provided to clone the PVC definition for additional pods. For this reason, Deployments and ReplicaSets are not a good choice if your intent is that each pod have access to its own dedicated storage.
Deployments are a good choice if your application pods do not need access to storage, or if your intent is that they access the same piece of storage. However, the cases where this would be desirable are pretty rare, since you likely don’t want a situation in which you could have multiple simultaneous writers to the same storage.
Let’s create an example Deployment. First, create a secret that will represent the database password (substitute in whatever string you want for the password):
kubectl create secret generic mysql-root-password --from-literal=password=<your password>
Next, create a PVC that represents the storage that the database can use (source code). A single PVC is sufficient in this case since you are creating a single node. This should work as long as you have an appropriate storage class as referenced earlier.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mysql-pv-claim
labels:
app: wordpress
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
Next, create a Deployment with a pod spec that runs MySQL (source code). Note that it includes a reference to the PVC you just created as well as the Secret containing the root password for the database.
apiVersion: apps/v1
kind: Deployment
metadata:
name: wordpress-mysql
labels:
app: wordpress
spec:
selector:
matchLabels:
app: wordpress
tier: mysql
strategy:
type: Recreate
template:
metadata:
labels:
app: wordpress
tier: mysql
spec:
containers:
- image: mysql:5.7
name: mysql
env:
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-root-password
key: password
ports:
- containerPort: 3306
name: mysql
volumeMounts:
- name: mysql-persistent-storage
mountPath: /var/lib/mysql
volumes:
- name: mysql-persistent-storage
persistentVolumeClaim:
claimName: mysql-pv-claim
There are a couple of interesting things to note about this Deployment’s specification.
First, note that the Deployment has a Recreate strategy. This refers to how the Deployment handles the replacement of pods when the pod template is updated, and we’ll discuss this shortly.
Next, note under the pod template that the password is passed to the pod as an environment variable extracted from via the secret you created above. Overriding the default password is an important aspect of securing any database deployment.
Note also that a single port is exposed on the MySQL image for database access, since this is a relatively simple example. In other samples in this book we’ll see cases of pods that expose additional ports for administrative operations, metrics collection, and more. The fact that access is disabled by default is a great feature of Kubernetes.
The MySQL image mounts a volume for its persistent storage using the PVC defined above.
Finally, note that the number of replicas was not provided in the specification. This means that the default value of 1 will be used.
After applying the configuration above, try using a command like kubectl get deployments,rs,pods to check and see the items that Kubernetes created for you. You’ll notice a single ReplicaSet named after the deployment that includes a random string, for example: wordpress-mysql-655c8d9c54. The pod’s name references the name of the ReplicaSet, adding some additional random characters, for example: wordpress-mysql-655c8d9c54-tgswd. These names provide a quick way to identify the relationships between these resources.
Here are a few of the actions that a Deployment takes to manage the lifecycle of ReplicaSets. In keeping with Kubernetes’ emphasis on declarative operations, most of these are triggered by updating the specification of the Deployment:
Initial rollout
When you create a Deployment, Kubernetes uses the specification you provide to create a ReplicaSet. The process of creating this ReplicaSet and its pods is known as a rollout. A rollout is also performed as part of a rolling update, as described below.
Scaling up or down
When you update a Deployment to change the number of replicas, the underlying ReplicaSet is scaled up or down accordingly.
Rolling update
When you update the Deployment’s pod template, for example by specifying a different container image for the pod, Kubernetes creates a new ReplicaSet based on the new pod template. The way that Kubernetes manages the transition between the old and new ReplicaSets is described by the Deployment’s spec.strategy property, which defaults to a value called RollingUpdate. In a rolling update, the new ReplicaSet is slowly scaled up by creating pods conforming to the new template, as the number of pods in the existing ReplicaSet is scaled down. During this transition, the Deployment enforces a maximum and minimum number of pods, expressed as percentages, as set by the spec.strategy.rollingupdate.maxSurge and maxUnavailable properties. Each of these values default to 25%.
Recreate update
The other strategy option for use when you update the pod template is Recreate. This is the option that was set in the Deployment above. With this option, the existing ReplicaSet is terminated immediately before the new ReplicaSet is created. This strategy is useful for development environments since it completes the update more quickly, whereas RollingUpdate is more suitable for production environments since it emphasises high availability.
Rollback update
It is possible that in creating or updating a Deployment you could introduce an error, for example by updating a container image in a pod with a version that contains a bug. In this case the pods managed by the Deployment might not even initialize fully. You can detect these types of errors using commands such as kubectl rollout status. Kubernetes provides a series of operations for managing the history of rollouts of a Deployment. You can access these via kubectl commands such as kubectl rollout history, which provides a numbered history of rollouts for a deployment, and kubectl rollout undo, which reverts a Deployment to the previous rollout. You can also undo to a specific rollout version with the --to-version option. Because kubectl supports rollouts for other resource types we’ll cover below (StatefulSets and DaemonSets), you’ll need to include the resource type and name when using these commands, for example:
kubectl rollout history deployment/wordpress-mysql
Which produces output such as:
deployment.apps/wordpress-mysql
REVISION CHANGE-CAUSE
1 <none>
As you can see, Kubernetes Deployments provide some sophisticated behaviors for managing the lifecycle of a set of cloned pods. You can test out these lifecycle operations (other than rollback) by changing the Deployment’s YAML specification and re-applying it. Try scaling the number of replicas to 2 and back again, or using a different MySQL image. After updating the Deployment, you can use a command like kubectl describe deployment wordpress-mysql to observe the events that Kubernetes initiates to bring your Deployment to your desired state.
There are other options available for Deployments which we don’t have space to go into here, for example, how to specify what Kubernetes does if you attempt an update that fails. For a more in-depth explanation of the behavior of Deployments, see the Kubernetes documentation.
Services
In the steps above, you’ve created a PVC to specify the storage needs of the database, a Secret to provide administrator credentials, and a Deployment to manage the lifecycle of a single MySQL pod. Now that you have a running database, you’ll want to make it accessible to applications. In our scheme of compute, network, and storage that we introduced in Chapter 1, this is the networking part.
Kubernetes Services are the primitive that we need to use to expose access to our database as a network service. A Service provides an abstraction for a group of pods running behind it. In the case of a single MySQL node as in this example, you might wonder why we’d bother creating this abstraction. One key feature that a Service supports is to provide a consistently named endpoint that doesn’t change. You don’t want to be in a situation of having to update your clients whenever the database pod is restarted and gets a new IP address. You can create a Service for accessing MySQL using a YAML configuration like this (source code):
apiVersion: v1
kind: Service
metadata:
name: wordpress-mysql
labels:
app: wordpress
spec:
ports:
- port: 3306
selector:
app: wordpress
tier: mysql
clusterIP: None
Here are a couple of things to note about this configuration:
First, this configuration specifies a port that is exposed on the Service: 3306. In defining a service there are actually two ports involved: the port exposed to clients of the Service, and the targetPort exposed by the underlying pods that the Service is fronting. Since you haven’t specified a targetPort, it defaults to the port value.
Second, the selector defines what pods the Service will direct traffic to. In this configuration, there will only be a single MySQL pod managed by the Deployment, and that’s just fine.
Finally, if you have worked with Kubernetes Services before, you may note that there is no serviceType defined for this service, which means that it is of the default type, known as ClusterIP. Furthermore, since the clusterIP property is set to None, this is what is known as a headless service, that is, a service where the service’s DNS name is mapped directly to the IP addresses of the selected pods.
Kubernetes supports several types of services to address different use cases, which are shown in Figure 3-3. We’ll introduce them briefly here in order to highlight their applicability to data infrastructure:
ClusterIP Service
This type of Service is exposed on an IP address that is only accessible from within the Kubernetes cluster. This is the type of service that you’ll see used most often for data infrastructure such as databases in Kubernetes, especially headless services, since this infrastructure is typically deployed in Kubernetes alongside the application which uses it.
NodePort Service
A NodePort Service is exposed externally to the cluster on the IP address of each worker node. A ClusterIP service is also created internally, to which the NodePort routes traffic. You can allow Kubernetes to select what external port is used, or specify the one you desire using the NodePort property. NodePort services are most suitable for development environments, when you need to debug what is happening on a specific instance of a data infrastructure application.
LoadBalancer
LoadBalancer services represent a request from the Kubernetes runtime to set up a load balancer provided by the underlying cloud provider. For example, on Amazon’s Elastic Kubernetes Service (EKS), requesting a LoadBalancer service causes an instance of an Elastic Load Balancer (ELB) to be created. Usage of LoadBalancers in front of multi-node data infrastructure deployments is typically not required, as these data technologies often have their own approaches for distributing load. For example, Apache Cassandra drivers are aware of the topology of a Cassandra cluster and provide load balancing features to client applications, eliminating the need for a load balancer.
ExternalName Service
An ExternalName Service is typically used to represent access to a service that is outside your cluster, for example a database that is running externally to Kubernetes. An ExternalName service does not have a selector as it is not mapping to any pods. Instead, it maps the Service name to a CNAME record. For example, if you create a my-external-database service with an externalName of database.mydomain.com, references in your application pods to my-external-database will be mapped to database.mydomain.com.
Figure 3-3. Kubernetes Service Types
Note also the inclusion of Ingress in the figure. While Kubernetes Ingress is not a type of Service, it is related. An Ingress is used to provide access to Kubernetes services from outside the cluster, typically via HTTP. Multiple Ingress implementations are available, including Nginx, Traefik, Ambassador (based on Envoy) and others. Ingress implementations typically provide features including SSL termination and load balancing, even across multiple different Kubernetes Services. As with LoadBalancer Services, Ingresses are more typically used at the application tier.
Accessing MySQL
Now that you have deployed the database, you’re ready to deploy an application that uses it - the Wordpress server.
First, the server will need its own PVC. This helps illustrate that there are cases of applications which leverage storage directly, perhaps for storing files, and applications that use data infrastructure, and applications that do both. You can make a small request since this is just for demonstration purposes (source code):
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: wp-pv-claim
labels:
app: wordpress
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
Next, create a Deployment for a single Wordpress node (source code):
apiVersion: apps/v1
kind: Deployment
metadata:
name: wordpress
labels:
app: wordpress
spec:
selector:
matchLabels:
app: wordpress
tier: frontend
strategy:
type: Recreate
template:
metadata:
labels:
app: wordpress
tier: frontend
spec:
containers:
- image: wordpress:4.8-apache
name: wordpress
env:
- name: WORDPRESS_DB_HOST
value: wordpress-mysql
- name: WORDPRESS_DB_PASSWORD
valueFrom:
secretKeyRef:
name: mysql-root-password
key: password
ports:
- containerPort: 80
name: wordpress
volumeMounts:
- name: wordpress-persistent-storage
mountPath: /var/www/html
volumes:
- name: wordpress-persistent-storage
persistentVolumeClaim:
claimName: wp-pv-claim
Notice that the database host and password for accessing MySQL are passed to Wordpress as environment variables. The value of the host is the name of the service you created for MySQL above. This is all that is needed for the database connection to be routed to your MySQL instance. The value for the password is extracted from the secret, similar to the configuration of the MySQL deployment above.
You’ll also notice that Wordpress exposes an HTTP interface at port 80, so let’s create a service to expose the Wordpress server (source code):
apiVersion: v1
kind: Service
metadata:
name: wordpress
labels:
app: wordpress
spec:
ports:
- port: 80
selector:
app: wordpress
tier: frontend
type: LoadBalancer
Note that the service is of type LoadBalancer, which should make it fairly simple to access from your local machine. Execute the command kubectl get services to get the load balancer’s IP address, then you can open the Wordpress instance in your browser with the URL http://<ip>. Try logging in and creating some pages.
NOTE
Note: Accessing Services from Kubernetes distributions
The exact details of accessing services will depending on the Kubernetes distribution you are using and whether you’re deploying apps in production, or just testing something quickly like we’re doing here. If you’re using a desktop Kubernetes distributions, you may wish to use a NodePort service instead of LoadBalancer for simplicity. You can also consult the documentation for specific instructions on accessing services, such as those provided for Minikube or K3d.
When you’re done experimenting with your Wordpress instance, you can clean up the resources specified in the configuration files you’ve used in the local directory using the command, including the data stored in your PersistentVolumeClaim:
kubectl delete -k ./
At this point, you might be feeling like this was relatively easy, despite our claims of doing things “the hard way”. And in a sense, you’d be right. So far, we’ve deployed a single node of a simple database with sane defaults that we didn’t have to spend much time configuring. Creating a single node is of course fine if your application is only going to store a small amount of data. Is that all there is to deploying databases on Kubernetes? Of course not! Now that we’ve introduced a few of the basic Kubernetes resources via this simple database deployment, it’s time to step up the complexity a bit. Let’s get down to business!
Running Apache Cassandra on Kubernetes
In this section we’ll look at running a multi-node database on Kubernetes using Apache Cassandra. Cassandra is a NoSQL database first developed at Facebook that became a top-level project of the Apache Software Foundation in 2010. Cassandra is an operational database that provides a tabular data model, and its Cassandra Query Language (CQL) is similar to SQL.
Cassandra is a database designed for the cloud, as it scales horizontally by adding nodes, where each node is a peer. This decentralized design has been proven to have near-linear scalability. Cassandra supports high availability by storing multiple copies of data or replicas, including logic to distribute those replicas across multiple datacenters and cloud regions. Cassandra is built on similar principles to Kubernetes in that it is designed to detect failures and continue operating while the system can recover to its intended state in the background. All of these features make Cassandra an excellent fit for deploying on Kubernetes.
In order to discuss how this deployment works, it’s helpful to understand Cassandra’s approach to distributing data from two different perspectives: physical and logical. Borrowing some of the visuals from Cassandra: The Definitive Guide, you can see these perspectives in Figure 3-4. From a physical perspective, Cassandra nodes (not to be confused with Kubernetes worker nodes) are organized using concepts called racks and datacenters. While the terms betray Cassandra’s origins when on-premise data centers were the dominant way software was deployed in the mid 2000s, they can be flexibly applied. In cloud deployments, racks often represent an availability zone, while datacenters represent a cloud region. However these are represented, the important part is that they represent physically separate failure domains. Cassandra uses awareness of this topology to make sure that it stores replicas in multiple physical locations to maximize availability of your data in the event of failures, whether those failures are a single machine, a rack of servers, an availability zone, or an entire region.
Figure 3-4. Physical and Logical Views of Cassandra’s Distributed Architecture
The logical view helps us understand how Cassandra determines what data will be placed on each node. Each row of data in Cassandra is identified by a primary key, which consists of one or more partition key columns which are used to allocate data across nodes, as well as optional clustering columns, which can be used to organize multiple rows of data within a partition for efficient access. Each write in Cassandra (and most reads) reference a specific partition by providing the partition key values, which Cassandra hashes together to produce a value known as a token, which is a value between −263 and 263−1. Cassandra assigns each of its nodes responsibility for one or more token ranges (shown as a single range per node in Figure 3-4 for simplicity). The physical topology is taken into account in the assignment of token ranges in order to ensure copies of your data are distributed across racks and datacenters.
Now we’re ready to consider how Cassandra maps onto Kubernetes. It’s important to consider two implications of Cassandra’s architecture:
Statefulness
Each Cassandra node has state that it is responsible for maintaining. Cassandra has mechanisms for replacing a node by streaming data from other replicas to a new node, which means that a configuration in which nodes use local ephemeral storage is possible, at the cost of longer startup time. However, it’s more common to configure each Cassandra node to use persistent storage. In either case, each Cassandra node needs to have its own unique PersistentVolumeClaim.
Identity
Although each Cassandra node is the same in terms of its code, configuration, and functionality in a fully peer-to-peer architecture, the nodes are different in terms of their actual role. Each node has an identity in terms of where it fits in the topology of datacenters and racks, and its assigned token ranges.
These requirements for identity and an association with a specific PersistentVolumeClaim present some challenges for Deployments and ReplicaSets that they weren’t designed to handle. Starting early in Kubernetes’ existence, there was an awareness that another mechanism was needed to manage stateful workloads like Cassandra.
StatefulSets
Kubernetes began providing a resource to manage stateful workloads with the alpha release of PetSets in the 1.3 release. This capability has matured over time and is now known as StatefulSets (see: Sidebar: Are Your Stateful Workloads Pets or Cattle? below). A StatefulSet has some similarities to a ReplicaSet in that it is responsible for managing the lifecycle of a set of pods, but the way in which it goes about this management has some significant differences. In order to address the needs of stateful applications, like those of Cassandra like those listed above, StatefulSets demonstrate the following key properties:
Stable identity for pods
First, StatefulSets provide a stable name and network identity for pods. Each pod is assigned a name based on the name of the StatefulSet, plus an ordinal number. For example, a StatefulSet called cassandra would have pods named cassandra-1, cassandra-2, cassandra-3, and so on, as shown in Figure 3-5. These are stable names, so if a pod is lost for some reason and needs replacing, the replacement will have the same name, even if it is started on a different worker node. Each pod’s name is set as it’s hostname, so if you create a headless service, you can actually address individual pods as needed, for example: cassandra-1.cqlservice.default.svc.cluster.local. We’ll discuss more about running Kubernetes Services for Cassandra later in this chapter in Accessing Cassandra.
Figure 3-5. Sample Deployment of Cassandra on Kubernetes with StatefulSets
Ordered lifecycle management
StatefulSets provide predictable behaviors for managing the lifecycle of pods. When scaling up the number of pods in a StatefulSet, new pods are added according to the next available number. For example, expanding the StatefulSet in Figure 3-5 would cause the creation of pods such as cassandra-4 and cassandra-5. Scaling down has the reverse behavior, as the pods with the highest ordinal numbers are deleted first. This predictability simplifies management, for example by making it obvious which nodes should be backed up before reducing cluster size.
Persistent disks
Unlike ReplicaSets, which create a single PersistentVolumeClaim shared across all of their pods, StatefulSets create a PVC associated with each pod. If a pod in a StatefulSet is replaced, the replacement pod is bound to the PVC which has the state it is replacing. Replacement could occur because of a pod failing or the scheduler choosing to run a pod on another node in order to balance the load. For a database like Cassandra, this enables quick recovery when a Cassandra node is lost, as the replacement node can recover its state immediately from the associated PersistentVolume rather than needing to have data streamed from other replicas.
WARNING
Warning: Managing data replication
When planning your application deployment, make sure you consider whether data is being replicated at the data tier or the storage tier. A distributed database like Cassandra manages replication itself, storing copies of your data on multiple nodes according to the replication factor you request, typically 3 per Cassandra datacenter. The storage provider you select may also offer replication. If the Kubernetes volume for each Cassandra pod has 3 replicas, you could end up storing 9 copies of your data. While this certainly promotes high data survivability, this might cost more than you intend.
SIDEBAR: ARE YOUR STATEFUL WORKLOADS PETS OR CATTLE?
PetSet might seem like an odd name for a Kubernetes resource, and has since been replaced, but it provides some interesting insights into the thought process of the Kubernetes community in supporting stateful workloads. The name PetSets is a reference to a discussion that has been active in the DevOps world since at least 2012. The original concept has been attributed to Bill Baker, formerly of Microsoft.
The basic idea is that there are two ways of handling servers: to treat them as pets that require care, feeding, and nurture, or to treat them as cattle, to which you don’t develop an attachment or provide a lot of individual attention. If you’re logging into a server regularly to perform maintenance activities, you’re treating it as a pet.
The implication is that the life of the operations engineer can be greatly improved by being able to treat more and more elements as cattle than as pets. With the move to modern cloud-native architectures, this concept has extended from servers, to virtual machines and containers, and even to individual microservices. It’s also helped promote the use of architectural approaches for high availability and surviving the loss of individual components that have made technologies like Kubernetes and Cassandra successful.
As you can see, the naming of a Kubernetes resource “PetSets” carried a lot of freight and perhaps even a bit of skepticism to running stateful workloads on Kubernetes at all. In the end, however, PetSets helped take the care and feeding out of managing state on Kubernetes, and the name change to StatefulSets was very appropriate. Taken together, capabilities like StatefulSets, the PersistentVolume subsystem introduced in Chapter 2, and operators (coming in Chapter 4) are bringing a level of automation that promises a day in the near future when we will manage data on Kubernetes like cattle.
Defining StatefulSets
Now that you’ve learned a bit about StatefulSets, let’s examine how they can be used to run Cassandra. You’ll configure a simple 3-node cluster the “hard way” using a Kubernetes StatefulSet to represent a single Cassandra datacenter containing a single rack. While this example was inspired by the Cassandra tutorial in the Kubernetes documentation, it does differ from the tutorial in a few respects. The source code used in this section is located at Deploying Cassandra Example - Data on Kubernetes the Hard Way. This approximates the configuration shown in Figure 3-5.
To set up a Cassandra cluster in Kubernetes, you’ll first need a headless service. This service represents the “CQL Service” shown in Figure 3-5, providing an endpoint that clients can use to obtain addresses of all the Cassandra nodes in the StatefulSet (source code):
apiVersion: v1
kind: Service
metadata:
labels:
app: cassandra
name: cassandra
spec:
clusterIP: None
ports:
- port: 9042
selector:
app: cassandra
You’ll reference this service in the definition of a StatefulSet which will manage your Cassandra nodes (source code). Rather than applying this configuration immediately, you may want to wait until after we do some quick explanations below. The configuration looks like this:
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: cassandra
labels:
app: cassandra
spec:
serviceName: cassandra
replicas: 3
podManagementPolicy: OrderedReady
updateStrategy: RollingUpdate
selector:
matchLabels:
app: cassandra
template:
metadata:
labels:
app: cassandra
spec:
containers:
- name: cassandra
image: cassandra
ports:
- containerPort: 7000
name: intra-node
- containerPort: 7001
name: tls-intra-node
- containerPort: 7199
name: jmx
- containerPort: 9042
name: cql
lifecycle:
preStop:
exec:
command:
- /bin/sh
- -c
- nodetool drain
env:
- name: CASSANDRA_CLUSTER_NAME
value: "cluster1"
- name: CASSANDRA_DC
value: "dc1"
- name: CASSANDRA_RACK
value: "rack1"
- name: CASSANDRA_SEEDS
value: "cassandra-0.cassandra.default.svc.cluster.local"
volumeMounts:
- name: cassandra-data
mountPath: /var/lib/cassandra
volumeClaimTemplates:
- metadata:
name: cassandra-data
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: standard-rwo
resources:
requests:
storage: 1Gi
This is the most complex configuration we’ve looked at together so far, so let’s simplify it by looking at one portion at a time.
StatefulSet metadata
We’ve named and labeled this StatefulSet cassandra, and that same string will be used as the selector for pods belonging to the StatefulSet.
Exposing StatefulSet pods via a Service
The spec of the StatefulSet starts with a reference to the headless service you created above. While serviceName is not a required field according to the Kubernetes specification, some Kubernetes distributions and tools such as Helm expect it to be populated and will generate warnings or errors if you fail to provide a value.
Number of replicas
The replicas field identifies the number of pods that should be available in this StatefulSet. The value provided of 3 reflects the smallest Cassandra cluster that one might see in an actual production deployment, and most deployments are significantly larger, which is when Cassandra’s ability to deliver high performance and availability at scale really begin to shine through.
Lifecycle management options
The podManagementPolicy and updateStrategy describe how Kubernetes should manage the rollout of pods when the cluster is scaling up or down, and how updates to the pods in the StatefulSet should be managed, respectively. We’ll examine the significance of these values in Managing the lifecycle of a StatefulSet.
Pod specification
The next section of the StatefulSet specification is the template used to create each pod that is managed by the StatefulSet. The template has several subsections. First, under metadata, each pod includes a label cassandra that identifies it as being part of the set.
This template includes a single item in the containers field, a specification for a Cassandra container. The image field selects the latest version of the official Cassandra Docker image, which at the time of writing is Cassandra 4.0. This is where we diverge with the Kubernetes StatefulSet tutorial referenced above, which uses a custom Cassandra 3.11 image created specifically for that tutorial. Because the image we’ve chosen to use here is an official Docker image, you do not need to include registry or account information to reference it, and the name cassandra by itself is sufficient to identify the image that will be used.
Each pod will expose ports for various interfaces: a cql port for client use, intra-node and tls-intra-node ports for communication between nodes in the Cassandra cluster, and a jmx port for management via the Java Management Extensions (JMX).
The pod specification also includes instructions that help Kubernetes manage pod lifecycles, including a readinessProbe, a livenessProbe, and a preStop command. We’ll learn how each of these are used below.
According to it’s documentation, the image we’re using has been constructed to provide two different ways to customize Cassandra’s configuration, which is stored in the cassandra.yaml file within the image. One way is to override the entire contents of the cassandra.yaml with a file that you provide. The second is to make use of environment variables that the image exposes to override a subset of Cassandra configuration options that are used most frequently. Setting these values in the env field causes the corresponding settings in the cassandra.yaml file to be updated:
CASSANDRA_CLUSTER_NAME is used to distinguish which nodes belong to a cluster. Should a Cassandra node come into contact with nodes that don’t match its cluster name, it will ignore them.
CASSANDRA_DC and CASSANDRA_RACK identify the datacenter and rack that each node will be a part of. This serves to highlight one interesting wrinkle of the way that StatefulSets expose a pod specification. Since the template is applied to each pod and container, there is no way to vary the configured datacenter and rack names between Cassandra pods. For this reason, it is typical to deploy Cassandra in Kubernetes using a StatefulSet per rack.
CASSANDRA_SEEDS define well known locations of nodes in a Cassandra cluster that new nodes can use to bootstrap themselves into the cluster. The best practice is to specify multiple seeds in case one of them happens to be down or offline when a new node is joining. However, for this initial example, it’s enough to specify the initial Cassandra replica as a seed via the DNS name cassandra-0.cassandra.default.svc.cluster.local. We’ll look at a more robust way of specifying seeds in Chapter 4 using a service, as implied by the “Seed Service” shown in Figure 3-5.
The last item in the container specification is a volumeMount which requests that a PersistentVolume be mounted at the /var/lib/cassandra directory, which is where the Cassandra image is configured to store its data files. Since each pod will need it’s own PersistentVolumeClaim, the name cassandra-data is a reference to a PersistentVolumeClaim template which is defined below.
Volume claim templates
The final piece of the StatefulSet specification is the volumeClaimTemplates. The specification must include a template definition for each name referenced in one of the container specifications above. In this case, the cassandra-data template references the standard storage class we’ve been using in these examples. Kubernetes will use this template to create a PersistentVolumeClaim of the requested size of 1GB whenever it spins up a new pod within this StatefulSet.
StatefulSet lifecycle management
Now that we’ve had a chance to discuss the components of a StatefulSet specification, you can go ahead and apply the source:
kubectl apply -f cassandra-statefulset.yaml
As this gets applied, you can execute the following to watch as the StatefulSet spins up Cassandra pods:
kubectl get pods -w
Let’s describe some of the behavior you can observe from the output of this command. First, you’ll see a single pod cassandra-0. Once that pod has progressed to Ready status, then you’ll see the cassandra-1 pod, followed by cassandra-2 after cassandra-1 is ready. This behavior is specified by the selection of podManagementPolicy for the StatefulSet. Let’s explore the available options and some of the other settings that help define how pods in a StatefulSet are managed.
The podManagementPolicy determines the timing of addition or removal of pods from a StatefulSet. The OrderedReady policy applied in our Cassandra example is the default. When this policy is in place and pods are added, whether on initial creation or scaling up, Kubernetes expands the StatefulSet one pod at a time. As each pod is added, Kubernetes waits until the pod reports a status of Ready before adding subsequent pods. If the pod specification contains a readinessProbe as we have done in this example, Kubernetes executes the provided command iteratively to determine when the pod is ready to receive traffic. When the probe completes successfully (i.e. with a zero return code), it moves on to creating the next pod. For Cassandra, readiness is typically measured by the availability of the CQL port (9042), which means the node is able to respond to CQL queries.
Similarly, when a StatefulSet is removed or scaled down, pods are removed one at a time. As a pod is being removed, any provided preStop commands for its containers are executed to give them a chance to shutdown gracefully. In our current example, the nodetool drain command is executed to help the Cassandra node exit the cluster cleanly, assigning responsibilities for its token range(s) to other nodes. as Kubernetes waits until a pod has been completely terminated before removing the next pod. The command specified in the livenessProbe is used to determine when the pod is alive, and when it no longer completes without error, Kubernetes can proceed to removing the next pod. See the Kubernetes documentation for more information on configuring readiness and liveness probes.
The other pod management policy is Parallel. When this policy is in effect, Kubernetes launches or terminates multiple pods at the same time in order to scale up or down. This has the effect of bringing your StatefulSet to the desired number of replicas more quickly, but it may also result in some stateful workloads taking longer to stabilize. For example, a database like Cassandra shuffles data between nodes when the cluster size changes in order to balance the load, and will tend to stabilize more quickly when nodes are added or removed one at a time.
With either policy, Kubernetes manages pods according to the ordinal numbers, always adding pods with the next unused ordinal numbers when scaling up, and deleting the pods with the highest ordinal numbers when scaling down.
Pod Management Policies
Update Strategies
The updateStrategy describes how pods in the StatefulSet will be updated if a change is made in the pod template specification, such as changing a container image. The default strategy is RollingUpdate, as selected in this example. With the other option, OnDelete, you must manually delete pods in order for the new pod template to be applied.
In a rolling update, Kubernetes will delete and recreate each pod in the StatefulSet, starting with the pod with the largest ordinal number and working toward the smallest. Pods are updated one at a time, and you can specify a number of pods called a partition in order to perform a phased rollout or canary. Note that if you discover a bad pod configuration during a rollout, you’ll need to update the pod template specification to a known good state and then manually delete any pods that were created using the bad specification. Since these pods will not ever reach a Ready state, Kubernetes will not decide they are ready to replace with the good configuration.
Note that Kubernetes offers similar lifecycle management options for Deployments, ReplicaSets and DaemonSets including revision history.
NOTE
Note: More sophisticated lifecycle management for StatefulSets
One interesting set of opinions on additional lifecycle options for StatefulSets comes from OpenKruise, a CNCF Sandbox project, which provides an Advanced StatefulSet. The Advanced StatefulSet adds capabilities including:
Parallel updates with a maximum number of unavailable pods
Rolling updates with an alternate order for replacement, based on a provided prioritization policy
Updating pods “in-place” by restarting their containers according to an updated pod template specification
This Kubernetes resource is also named StatefulSet to facilitate its use with minimal impact to your existing configurations. You just need to change the apiVersion: from apps/v1 to apps.kruise.io/v1beta1.
We recommend getting more hands-on experience with managing StatefulSets in order to reinforce your knowledge. For example, you can monitor the creation of PersistentVolumeClaims as a StatefulSet scales up. Another thing to try: delete a StatefulSet and recreate it, verifying that the new pods recover previously stored data from the original StatefulSet. For more ideas, you may find these guided tutorials helpful: StatefulSet Basics from the Kubernetes documentation, and StatefulSet: Run and Scale Stateful Applications Easily in Kubernetes from the Kubernetes blog.
StatefulSets are extremely useful for managing stateful workloads on Kubernetes, and that’s not even counting some capabilities we didn’t address, such as pod affinity, anti-node affinity, managing resource requests for memory and CPU, and availability constraints such as PodDisruptionBudgets. On the other hand, there are capabilities you might desire that StatefulSets don’t provide, such as backup/restore of persistent volumes, or secure provisioning of access credentials. We’ll discuss how to leverage or build these capabilities on top of Kubernetes in Chapter 4 and beyond.
SIDEBAR: STATEFULSETS: PAST, PRESENT, AND FUTURE
With Maciej Szulik, RedHat engineer and Kubernetes SIG Apps member
The Kubernetes Special Interest Group for Applications (SIG Apps) is responsible for development of the controllers that help manage application workloads on Kubernetes. This includes the batch workloads like Jobs and CronJobs, other stateless workloads like Deployments and Replica Sets, and of course StatefulSets for stateful workloads.
The StatefulSet controller has a slightly different way of working from these other controllers. When you’re thinking about Deployments, or Jobs, the controller just has to manage Pods. You don’t have to worry about the underlying data, because that’s either handled by persistent volumes, or are ok with just throwing each pod’s data away when you destroy and recreate it. However, that behavior is not acceptable when you’re trying to run a database, or any kind of workload that requires the state to be persisted between the runs. This results in significant additional complexity in the StatefulSet controller. The main challenge in writing and maturing Kubernetes controllers has been handling edge cases. StatefulSets are similar in this regard, but it’s even more urgent for StatefulSets to handle the failure cases correctly, so that we don’t lose data.
We’ve encountered some interesting use cases for StatefulSets and cases where users would like to change boundaries that have been set in the core implementation. For example, we’ve had pull requests submitted to change the way StatefulSets handle pods during an update. In the original implementation, the StatefulSet controllers update pods one at a time, and if something breaks during the rollout, the entire rollout is paused, and the StatefulSet requires manual intervention to make sure that data is not corrupted or lost. Some users would like the StatefulSet controller to ignore issues where a pod is stuck in a pending state, or cannot run, and just restart these pods. However, the thing to remember with StatefulSets is that protecting the underlying data is the most important priority. We could end up making the suggested change in order to allow faster updates in parallel for development environments where data protection is less of a concern, but require opting in with a feature flag.
Another frequently requested feature is the ability to auto-delete the PersistentVolumeClaims of a StatefulSets when the StatefulSet is deleted. The original behavior is to preserve the PVCs, again as a data protection mechanism, but there is a Kubernetes Enhancement Proposal (KEP) for auto-deletion that is under consideration for the Kubernetes 1.23 release.
Even though there are some significant differences in the way StatefulSets manage pods versus other controllers, we are working to make the behaviors more similar across the different controllers as much as possible. One example is the addition of a minReadySeconds setting in the pod template, which allows you to say, I’d like this application to be unavailable for a little bit of extra time before sending traffic to it. This is helpful for some stateful workloads that need a bit more time to initialize themselves, for example to warm up caches, and brings StatefulSets in line with other controllers.
Another example is the work that is in progress to unify status reporting across all of the application controllers. Currently, if you’re building any kind of higher level orchestration or management tools, you need to have different behavior to handle the status of StatefulSets, Deployments, DaemonSets, and so on, because each of them was written by a different author. Each author had a different requirement for what should be in the status, how the resource should express information about whether it’s available, or whether it’s in a rolling update, or it’s unavailable, or whatever is happening with it. DaemonSets are especially different in how they report status.
There is also a feature in progress that allows you to set a maxUnavailable number of pods for a StatefulSet. This number would be applied during the initial rollout of a StatefulSet and allow the number of replicas to be scaled up more quickly. This is another feature that brings StatefulSets into greater alignment with how the other controllers work. If you want to understand the work that is in progress from the SIG Apps team, the best way is to look at Kubernetes open issues that are labeled sig/apps.
It can be difficult to build StatefulSets as a capability that will meet the needs of all stateful workloads; we’ve tried to build them in such a way as to handle the most common requirements in a consistent way. We could obviously add support for more and more edge cases, but this tends to make the functionality significantly more complicated for users to grasp. There will always be users who are dissatisfied because their use case is not covered, and there’s always a balance of how much we can put in without affecting both functionality and performance.
In most cases where users need more specific behaviors, for example to handle edge cases, it’s because they’re trying to manage a complex application like Postgres or Cassandra. That’s where there’s a great argument for creating your own controllers and even operators to deal with those specific cases. Even though it might sound super scary, it’s really not that difficult to write your own controller. You can start reasonably quickly and get a basic controller up and running in a couple of days using some simple examples including the sample controller, which is part of the Kubernetes code base and maintained by the project. The O’Reilly book Programming Kubernetes also has a chapter on writing controllers. Don’t just assume you’re stuck with the behavior that comes out of the box. Kubernetes is meant to be open and extensible, whether it’s networking, controllers, CSI, plugins, and more. If you need to customize Kubernetes, you should go for it!
Accessing Cassandra
Once you have applied the configurations listed above, you can use Cassandra’s CQL shell cqlsh to execute CQL commands. If you happen to be a Cassandra user and have a copy of cqlsh installed on your local machine, you could access Cassandra as a client application would, using the CQL Service associated with the StatefulSet. However, since each Cassandra node contains cqlsh as well, this gives us a chance to demonstrate a different way to interact with infrastructure in Kubernetes, by connecting directly to an individual pod in a StatefulSet:
kubectl exec -it cassandra-0 -- cqlsh
This should bring up the cqlsh prompt and you can then explore the contents of Cassandra’s built in tables using DESCRIBE KEYSPACES and then USE to select a particular keyspace and run DESCRIBE TABLES. There are many Cassandra tutorials available online that can guide you through more examples of creating your own tables, inserting and querying data, and more. When you’re done experimenting with cqlsh, you can type exit to exit the shell.
Removing a StatefulSet is the same as any other Kubernetes resource - you can delete it by name, for example:
kubectl delete sts cassandra
You could also delete the StatefulSet referencing the file used to create it:
kubectl delete sts cassandra
When you delete a StatefulSet with a policy of Retain as in this example, the PersistentVolumeClaims it creates are not deleted. If you recreate the StatefulSet, it will bind to the same PVCs and reuse the existing data. When you no longer need the claims, you’ll need to delete them manually. The final cleanup from this exercise you’ll want to perform is to delete the CQL Service: kubectl delete service cassandra.
Sidebar: What about DaemonSets ?
If you’re familiar with the resources Kubernetes offers for managing workloads, you may have noticed that we haven’t yet mentioned DaemonSets. DaemonSets allow you to request that a pod be run on each worker node in a Kubernetes cluster, as shown in Figure 3-6. Instead of specifying a number of replicas, a DaemonSet scales up or down as worker nodes are added or removed from the cluster. By default, a DaemonSet will run your pod on each worker node, but you can use taints and tolerations to override this behavior, for example, limiting some worker nodes, or selecting to run pods on Kubernetes master nodes as well. DaemonSets support rolling updates in a similar way to StatefulSets.
Figure 3-6. Daemon Sets run a single pod on selected worker nodes
On the surface, DaemonSets might sound useful for running databases or other data infrastructure, but this does not seem to be a widespread practice. Instead, DaemonSets are most frequently used for functionality related to worker nodes and their relationship to the underlying Kubernetes provider. For example, many of the Container Storage Interface (CSI) implementations that we saw in Chapter 2 use DaemonSets to run a storage driver on each worker node. Another common usage is to run pods that perform monitoring tasks on worker nodes, such as log and metrics collectors.
Summary
In this chapter we’ve learned how to deploy both single node and multi-node distributed databases on Kubernetes with hands-on examples. Along the way you’ve gained familiarity with Kubernetes resources such as Deployments, ReplicaSets, StatefulSets, and DaemonSets, and learned about the best use cases for each:
Use Deployments/ReplicaSets to manage stateless workloads or simple stateful workloads like single-node databases or caches that can rely on ephemeral storage
Use StatefulSets to manage stateful workloads that involve multiple nodes and require association with specific storage locations
Use DaemonSets to manage workloads that leverage specific worker node functionality
You’ve also learned the limits of what each of these resources can provide. Now that you’ve gained experience in deploying stateful workloads on Kubernetes, the next step is to learn how to automate the so-called “day 2” operations involved in keeping this data infrastructure running.
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