

Version Control with Git

THIRD EDITION

Powerful Tools and Techniques for Collaborative
Software Development

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Prem Kumar Ponuthorai and Jon Loeliger

Version Control with Git
by Prem Kumar Ponuthorai and Jon Loeliger

Copyright © 2021 Prem Kumar Ponuthorai. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield

Development Editor: Virginia Wilson

Production Editor: Beth Kelly

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

October 2022: Third Edition

Revision History for the Early Release

2021-06-22: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492091196 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Version
Control with Git, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492091196

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others,
it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-492-09112-7

[FILL IN]

Chapter 1. Preface

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the preface of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at vwilson@oreilly.com.

Git is a free, open source, distributed version control system created by Linus
Torvalds. Git requires low operational overhead, yet is flexible and powerful
enough to support the demands of complex, and large scale, distributed
software development projects.

Our goal in this book is to show you how to get the most out of Git and how
to manage a git repository with ease. By the end, you will have learned Git’s
philosophy, fundamental concepts, and intermediate to advanced skills for
tracking content, collaborating and managing your projects across teams.

mailto:vwilson@oreilly.com

Who This book is For
We wrote this book with software engineers (developers, infrastructure
engineers, DevOps, etc.) in mind as our primary audience. As such, most of
the concepts and examples we use relate to the daily routine and tasks of
folks in the software development industry. However, Git is robust enough to
track content in areas as varied as data science, graphic design and book
authoring, just to name a few. (Case in point: We used git as our underlying
versioning system to keep track of reviews and edits while writing this
book!). Regardless of your title or level of proficiency, if you are using git as
your version control system, you will find value in these pages.

Essential know how’s
Prior experience with any version control system, their aims and goals will be
a helpful foundation to understand how Git works and to build upon as you
read this book. You should have some familiarity using any command-line
tool, such as the Unix Shell, along with basic knowledge of shell commands,
because we use a lot of command-line instructions in the examples and
discussions in the book. General understanding of programming concepts is
also a plus.

We developed the examples on Mac OS X and Ubuntu Linux environments.
The examples should work under other platforms such as Debian, Solaris or
Windows Operating System (using git installed command-line tools, eg. Git
for Windows), but you can expect slight variations.

When following examples, some exercises may require system level
operations which need root access on machines. Naturally, in such situations,
you should have a clear understanding of the responsibilities of operations
that need root access.

New in this revision

In this third edition, we take an entirely new, modular approach to the topics
by breaking down the concepts of Git. We start by introducing you to the
basics and fundamental philosophy of Git, then gradually build upon
intermediate commands to help you efficiently supplement your daily
development workflow, and finally conclude with advanced git commands
and concepts to help you become proficient in understanding the inner
mechanics of how Git works under the hood.

Another change we made in this edition was adding more visual illustrations
to explain complex git concepts to give you a mental model for easier
comprehension. We also highlight features from the latest release of Git, and
provide you with examples and tips which can help improve your current
distributed development workflow.

Navigating the Book
We organized this edition into categories according to the reader’s familiarity
and experience using Git. While we categorize the sections to get
progressively more advanced to incrementally build your proficiency with
git, we designed the chapters within each section so that you can leverage the
content either as standalone topics or as a series of topics building on each
other sequentially.

We strove to apply a consistent structure and a consistent approach to
teaching concepts in every chapter. We encourage you to take a moment to
internalize this format. This will help you leverage and navigate the book as a
handy reference at any point in time in the future.

If you have picked up the book amidst juggling other responsibilities and are
wondering what would be the best order to hit the ground running, fret not.
The matrix below will help guide you towards the chapters we feel will help
you gain the most in the least amount of time.

Table 1-1. Categories Matrix

Introduction to
Git Thinking in Git

Fundamentals of
Git

Intermediate Git
Commands

Software
Engineering

x x x x

Data Scientist x x

Graphic Designers x x

Academia x x

Content Authors x x

NOTE
The categories matrix is provided as a rough guideline

Installing Git
To reinforce the learnings taught in the book, we highly encourage you to
practice the example code snippets on your development machine. In order to
follow along with the examples, you will need Git installed on your platform
of choice. Because the steps to install Git vary according to the version of
your operating systems, we’ve covered instructions on how to install Git in
Appendix A accordingly.

A Note on Inclusive Language
Another important point we would like to highlight about the examples is that
we feel strongly about diversity and inclusion in tech, and raising awareness
is a responsibility we take up highly upon ourselves. As a start, we will be
using ‘main’ to indicate the default branch name.

Omissions
Git has evolved over the years. Even as we write this edition, another new

version of Git was published for commercial use, version 2.31.1 to be
precise. Due to its active community base, Git is constantly evolving. It was
not our intention to leave information out of this book; it’s simply the
inevitable reality when writing about an ever-changing technology.

We deliberately chose not to cover all of Git’s own core commands and
options so we could instead focus on common and frequently used
commands. We also do not cover every Git-related tool available, simply
because there are too many to cover.

Despite these omissions, we feel confident that this book will equip you with
a strong foundation and prepare you to dive in deeper in the realms of Git if
the need arises.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords. `Constant width

bold`

Shows commands or other text that should be typed literally by the user.

<Constant width italic>

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP
This icon signifies a useful hint or a tip.

WARNING
This icon indicates a warning or caution.

NOTE
This icon indicates a general note.

Furthermore, you should be familiar with basic shell commands to
manipulate files and directories. Many examples will contain commands such
as these to add or remove directories, copy files, or create simple files:

Command to make a copy of a file
$ cp file.txt copy-of-file.txt

Command to create a new directory
$ mkdir newdirectory

Command to remove a file
$ rm file

Command to remove a directory
$ rmdir somedir

Command to write content into a file
$ echo "Test line" > file

Command to append content at the end of a file
$ echo "Another line" >> file

Commands root permissions, commands requiring that need to be executed
with root permissions appear as a sudo operation sudo operation:

Install the Git core package $ sudo apt-get install git-core

How you edit files or effect changes within your working directory is pretty
much up to you. You should be familiar with a text editor. In this book, I’ll
denote the process of editing a file by either a direct comment or a
pseudocommand:

edit file.c to have some new text $ edit index.html

Using Code Examples
This book is here to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Version Control with
Git by Jon Loeliger and Matthew McCullough. Copyright 2012 Jon Loeliger,
978-1-449-31638-9.”

If you feel your use of code examples falls outside fair use or the permission
given previously, feel free to contact us atpermissions@oreilly.com.

Safari® Books Online

NOTE
Safari Books Online (www.safaribooksonline.com) is an on-demand digital library that
delivers expertcontent in both book and video form from the world’s leading authors in

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

technology and business.

Technology professionals, software developers, web designers, and business
and creative professionals use Safari Books Online as their primary resource
for research, problem solving, learning, and certification training.

Safari Books Online offers a range ofproduct mixes and pricing programs
fororganizations,government agencies, andindividuals. Subscribers have
access to thousands of books, training videos, and prepublication manuscripts
in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozensmore. For more information about Safari Books
Online, please visit usonline.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at:

To comment or ask technical questions about this book, send email to:

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Authors, Editors, Tech Reviewers.

Attributions
Linux® is the registered trademark of Linus Torvalds in the United States
and other countries.

PowerPC® is a trademark of International Business Machines Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter 2. Chapter 1:
Introduction to Git

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at vwilson@oreilly.com.

Simply put, Git is a content tracker. Given that notion, Git shares common
principles of most version control systems. However the distinct feature that
makes Git unique among the variety of tools is that it is a distributed version
control system. This distinction means Git is fast and scalable, has a rich
collection of command sets that provides access to both high-level and low-
level operations, and is optimized for local operations.

In this chapter you will learn the fundamental principles of Git, it’s
characteristics, basic git commands and some quick guidance on creating and
adding changes to a repository.

We highly recommend you take time to grasp the important concepts
explained here. These topics are the building blocks of Git and will help you
more easily understand the intermediate and advanced techniques to manage
a git repository as part of your daily work routine. These foundational
concepts will also help you ramp up your learning when we dissect and break
down the inner workings of Git in chapters grouped in Part 2: Fundamentals

mailto:vwilson@oreilly.com

of Git, Part 3: Intermediate Skills and Part 4: Advanced Skills.

Git Components
Before we dive into the world of git commands, let’s take a step back and
visualize the overview of components that make up the Git ecosystem. Fig. 1-
1 below shows how each component works together.

Figure 2-1. Overview of Git Components

Git GUI tools act as a front end for the git command line and some tools
have extensions that integrate with popular Git Hosting Platforms.

When you are working with Git, a typical setup includes a Git Server and a
Git Client. You can possibly forgo a Server, but that would add complexity to
how you maintain and manage repositories when sharing revision changes in
a collaborative setup and would make consistency more difficult. We will
revisit this in Chapter: Remote Repositories.

Git Server

A Git Server enables you to collaborate more easily because it ensures the
availability of a central and reliable source of truth for the repositories
you will be working on. A Git Server is also where your remote Git
repositories are stored; as common practise goes, the repository has the
most up to date and stable source of your projects. You have the option to
install and configure your own Git Server, or forgo the overhead and opt
to host your git repositories on a reliable third party hosting site.

Git Clients

Git clients are of two types: the git command-line and the git GUI tools.
When you install and configure a git client, you will be able to access the
remote repositories, work on a local copy of it, and push changes back to
the git server. If you are new to Git, we recommend starting out using the
git command-line; familiarize yourself with the common sub-set of git
commands required for your day to day operations and then progress to a
Git GUI tool of your choice.

The reason for this approach is that, to some extent, Git GUI tools tend to
provide terminologies that represent a desired outcome which may not be part
of Git’s standard commands. An example would be a tool with an option
called “sync”, which masks underlying chaining of two or more git
commands to achieve a desired outcome. If for some reason you were to type
in the “sync” subcommand in the command-line, you might get this

confusing output.

$ git sync

git: 'sync' is not a git command. See 'git --help'.

The most similar command is
 svn

NOTE
“git sync” is not a valid git subcommand. To ensure your local working copy of the
repository is in sync with changes from the remote git repository, you will need to run a
combination of these commands, “git fetch”, “git merge”, “git pull” or “git push”.

There is a plethora of tooling available at your disposal. Some Git GUI tools
are fancy and extensible via a plugin model, that provides you the option to
connect and leverage features made available on popular third party git
hosting sites. As convenient as it may be to learn git via a GUI tool, we will
be focusing on the git command-line tool for examples and code discussions,
since it builds a good foundational knowledge towards git dexterity.

Git Characteristics
Now that we have covered an overview of the Git Components, let’s learn
about the characteristics of Git. When you understand these distinct traits of
Git, it enables you to effortlessly switch from a centralized version control
mindset to a distributed version control mentality. We like to refer to this as
“Thinking in Git”.

Stores revision changes as Snapshots

The very first concept to unlearn is the way git stores multiple revisions
on a file that you are working on. Unlike other version control systems,
Git does not track revision changes as a series of modifications,
commonly known as Delta’s; Instead it takes a snapshot of changes to the

state of your repository at a specific point in time. In Git terminology this
is known as “commits”. Think of this as capturing a moment in time as a
photograph.

Enhanced for Local Development

In Git you work on a copy of the repository on your local development
machine. This is known as a local repository, a clone of the remote
repository on a git server. Your local repository will have the resources
and the snapshots of the revision changes made on those resources all in
one location. Git terms these collections of linked snapshots “repository
commit history” or “repo history” for short. This allows you to work in a
disconnected environment since git does not need a constant connection
to the git server to version control your changes. As a natural
consequence, you are able to work on large complex projects across
distributed teams without compromising efficiency and performance for
version control operations.

Git is Definitive

Definitive means the git commands are explicit. It waits for you to carry
out instructions on what to implement and when to execute it. For
example, Git does not automatically sync changes from your local
repository to the remote repository nor does it automatically save a
snapshot of revision to your local repo history. Every action requires your
explicit command or instruction to tell git what is required, ranging from
adding new commits, fixing existing commits, pushing changes from
your local repository to the remote repository and even retrieving new
changes from the remote repository. In short, you need to be intentional
with your actions, this also includes letting git know which files you
intend to track since git does not auto-add new files to be version
controlled.

Designed to bolster non linear Development

Git allows you to ideate and experiment with variant implementation of

features for viable solutions to your project by enabling you to diverge
and work in parallel along the main stable code base of your project. This
methodology, called “Branching”, is a very common practice and ensures
the integrity of the main development line from any accidental changes
that may break it.

In Git, the concept of branching is considered lightweight and inexpensive
because a branch in git is just a pointer to the latest commit in a series of
linked commits. For every branch you create, git keeps track of the series of
commits for that branch. You can switch between branches with ease locally.
Git then restores the state of the project to the most recent moment when the
snapshot of the specified branch was created. When you decide to merge the
changes from any branch into the main development line, git is able to
combine those series of commits by applying techniques which we will
discuss later in Chapter: Merges.

TIP
Since Git offers many novelties, keep in mind that the concept and practices of other
version control systems may work differently or may not be applicable at all in Git.

The Git Command Line
Git command line is simple to use. Just type git version or git --
version, to know if your machine has already been preloaded with git. You
should see an output similar to the following:

$ git --version
git version 2.31.1

If you do not have git installed on your machine, please refer to Appendix:
Installing Git to learn how you can install git according to your Operating
System Platform before continuing with the next section.

Upon installation, type git without any arguments. Git will then list its
options and the most common subcommands.

 $ git

 git [--version] [--exec-path[=GIT_EXEC_PATH]]
 [-p|--paginate|--no-pager] [--bare] [--git-dir=GIT_DIR]
 [--work-tree=GIT_WORK_TREE] [--help] COMMAND [ARGS]

 The most commonly used git commands are:
 add Add file contents to the index
 bisect Find the change that introduced a bug by binary search
 branch List, create, or delete branches
 checkout Checkout and switch to a branch
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, the commit and working trees, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create an empty git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and merge with another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head
 reset Reset current HEAD to the specified state
 rm Remove files from the working tree and from the index
 show Show various types of objects
 status Show the working tree status
 tag Create, list, delete, or verify a tag object signed with GPG

TIP
For a complete list of git subcommands, type git help --all.

As you can see from the usage hint, a small handful of options apply to git.
Most options, shown as [ARGS] in the hint, apply to specific subcommands.

For example, the option --version affects the git command and produces a
version number.

 $ git --version
 git version 2.31.1

In contrast, --amend is an example of an option specific to the git
subcommand commit.

 $ git commit --amend

Some invocations require both forms of options. (Here, the extra spaces in
the command line merely serve to visually separate the subcommand from
the base command and are not required.)

 $ git --git-dir=project.git repack -d

For convenience, documentation for each git subcommand is available using
git help subcommand, git --help subcommand, git subcommand --
help or man git-<subcommand>.

NOTE
You can visit http://www.kernel.org/pub/software/scm/git/docs/ to read the complete Git
documentation online.

Example 2-1.

Historically, Git was provided as a suite of many simple, distinct, standalone
commands developed according to the “Unix toolkit” philosophy: build
small, interoperable tools. Each command sported a hyphenated name, such
as git-commit and git-log. However, modern Git installations no longer
support the hyphenated command forms and instead use a single git
executable with a subcommand.

Git commands understand both “short” and “long” options. For example, the
git commit command treats the following examples as equivalents.

 $ git commit -m "Fixed a typo."

http://www.kernel.org/pub/software/scm/git/docs/

 $ git commit --message="Fixed a typo."

The short form, -m, uses a single hyphen, whereas the long form, --message,
uses two. (This is consistent with the GNU long options extension.) Some
options exist only in one form.

TIP
You can create a commit summary and detailed message for the summary by using the -m
option consecutively:

$ git commit -m "Summary" -m "Detail of Summary"

Finally, you can separate options from a list of arguments via the “bare
double dash” convention. For instance, use the double dash to contrast the
control portion of the command line from a list of operands, such as
filenames.

 $ git diff -w main origin -- tools/Makefile

You may need to use the double dash to separate and explicitly identify file
names if they might otherwise be mistaken for another part of the command.
For example, if you happened to have both a file and a tag named main.c,
then you will get different behavior:

 # Checkout the tag named "main.c"
 $ git checkout main.c

 # Checkout the file named "main.c"
 $ git checkout -- main.c

Quick Introduction to Using Git
To see git in action, you can create a new repository, add some content and
track a few revisions. You can create a repository in two ways: either create a

repository from scratch and populate it with some content, or work with an
existing repository by cloning it from a remote git server.

Preparing to work with Git
Whether you are creating a new repository or working with an existing
repository, there are basic prerequisite configurations that you need to
complete after installing Git on your local development machine. It is much
like you setting up the correct date, timezone and language on a new camera
before taking your first snapshot.

Configuring the Commit Author
At a bare minimum , Git requires your name and email address before you
make a first commit in your repository. The identity you supply then shows
as the commit author, baked in together with other snapshot metadata. You
can save your identity in a configuration file using the git config
command.

 $ git config user.name "Jon Loeliger"
 $ git config user.email "jdl@example.com"

If you decide not to include your identity in a configuration file, you will
have to specify your identity for every git commit subcommand by
appending the following argument --author at the end of the command:

 $ git commit -m "log message" --author="Jon Loeliger <jdl@example.com>"

Keep in mind this is the hard way, and it can quickly become tedious.

You can also specify your identity by supplying your name and email address
to the GIT_AUTHOR_NAME and GIT_AUTHOR_EMAIL environment
variables respectively. If set, these variables will override all configuration
settings. However for specifications set on the command-line, Git will
override the values supplied in the configuration file and environment
variable.

Working with a local Repository
Now that you have configured your identity, you are ready to start working
with a repository. Start by creating a new empty repository on your local
development machines. We will start simple and work our way towards
techniques for working with a shared repository on a git server.

Creating an Initial Repository
We will model a typical situation by creating a repository for your personal
website. Let’s assume you’re starting from scratch and you are going to add
content for your project in the local directory ~/my_website which you place
in a git repository.

Type in the following commands to create the directory and place some basic
content in a file called index.html:

 $ mkdir ~/my_website
 $ cd ~/my_website
 $ echo 'My awesome website!' > index.html

To convert ~/my_website into a git repository, run git init:

 $ git init -b main

 Initialized empty Git repository in .git/

If you prefer to initialize an empty git repository first and then add files to it,
you can do so by running the following commands:

 $ git init -b main ~/my_website

 Initialized empty Git repository in .git/

 $ cd ~/my_website
 $ echo 'My awesome website!' > index.html

TIP
You can initialize a completely empty directory or an existing directory full of files. In

either case, the process of converting the directory into a Git repository is the same.

The git init command creates a hidden directory called .git at the root
level of your project. All revision information is stored in this hidden single
top level .git folder.

Git considers the ~/my_website as the working directory. This directory
contains the current version of files for your website. When you make
changes to existing files or add new files to your project, Git records those
changes in the hidden .git folder.

For the purpose of learning, we will reference two virtual directories named
as Index and Local History to illustrate the concept of initializing a new
Git repository. We will discuss the index and Local History in Chapters
File Management and the Index and Commits respectively.

Figure 1-2 will help you visualize what we have just explained:

.
└── my_website
 ├── .git/
 │ └── Hidden git objects
 └── index.html

Figure 2-2. Initial Repository Visual

The dotted lines for the Index and Local History represent the hidden
directories within the .git folder.

Adding a File to Your Repository
Up to this point, you have only created a new git repository. In other words,
this git repository is empty. Although the file index.html exists in the
directory ~/my_website, to git this is the working directory, a representation
of a scratch pad or directory where you frequently alter your files.

When you have finalized changes to the files and want to deposit those
changes to the git repository, you need to explicitly do so by using the git
add _file_ command:

 $ git add index.html

WARNING
Although you can let Git add all the files in the directory and all subdirectories using the
git add . command, this can be a dangerous habit since it could lead to sensitive
information or unwanted files being included when commits are made. To avoid including
such information, you can use the .gitignore file which is covered in section The
.gitignore File in Chapter: File Management and the Index.

The argument ., the single period or ‘dot' in Unix parlance, is shorthand for the current
directory.

With the git add command, git understands that you intend to include the
final iteration of the modification on the index.html as a revision in the
repository. However, so far, git has merely staged the file, an interim step
before taking a snapshot via a commit.

Git separates the add and commit steps to avoid volatility. Imagine how
disruptive, confusing, and time-consuming it would be to update the
repository each time you add, remove, or change a file. Instead, multiple
provisional and related steps, such as an add, can be ‘batched', keeping the

repository in a stable, consistent state. This method also allows for us to craft
a narrative of why we are changing the code. In Chapter: Commits we will
dive deeper on this concept.

We recommend that you strive to group logical changes as a ‘batch' before
making a commit. This is called an atomic commit and this will help you
along the way in situations where you need to do some advanced git
operations discussed in later chapters.

Running the git status command reveals this in-between state of
index.html:

 $ git status

 # On branch main
 #
 # Initial commit
 #
 # Changes to be committed:
 # (use "git rm --cached <file>..." to unstage)
 #
 # new file: index.html

The command reports that the new file index.html will be added to the
repository during the next commit.

After staging the file, the next logical step is to commit the file to the
repository. Once you commit the file, it becomes part of the repository
commit history; For brevity we will refer to this as the repo history.
Everytime you make a commit, git records several other metadata along with
it, most notably the commit log message and the author of the change.

A fully qualified git commit command should supply a terse and
meaningful log message using active language to denote the change that is
being introduced by the commit. This is very helpful when you need to
traverse through the repo history to track down a specific change or quickly
identify changes of a commit without having to dig deeper into the change
details. We dive in deeper on this topic in Chapter: Commits and Chapter:
Altering Commits Rewriting History.

Let’s commit the staged index.html file for your website:

 $ git commit -m "Initial contents of my_website"

 Created initial commit 9da581d: Initial contents of my_website
 1 files changed, 1 insertions(+), 0 deletions(-)
 create mode 100644 index.html

NOTE
The details of the author who is making the commit are retrieved from the git
configuration we set up earlier

In the code example, we supplied the '-m' argument to be able to provide the
log message directly on the command line. If you prefer to provide a detailed
log message via an interactive editor session, you can do so as well. You will
need to configure git to launch your favourite editor during a git
commit(leave out the '-m' argument); Set the GIT_EDITOR environment
variable as follows:

 # In tcsh
 $ setenv GIT_EDITOR emacs

 # In bash or zsh
 $ export GIT_EDITOR=vim

NOTE
As a default, Git will honour the default text editor configured in the shell environment
variables VISUAL or EDITOR. If neither are configured, it falls back to use the vi editor

After you commit the index.html into the repository, run git status to get
an update on the current state of your repository. In our example, running git
status should indicate that there are no outstanding changes to be
committed.

 $ git status

 # On branch main
 nothing to commit (working directory clean)

Git also tells you that your working directory is clean, which means the
working directory has no new or modified files that differ from what is in the
repository.

Figure 1-3 will help you visualize all the steps you just learned:

Figure 2-3. Staging and adding a file to a repository

The Difference between the git add and git commit is much like you
organizing a group of school children in a prefered order to get the perfect
classroom photograph. git add does the organizing, whereas `git
commit`takes the snapshot.

Making Another Commit
Next, let’s make a few modifications to the index.html and create a repo
history within the repository. Convert the index.html in to a proper HTML
and commit the alteration to it:

 $ cd ~/my_website

 # edit the index.html file.

 $ cat index.html
 <html>
 <body>
 My web site is awesome!
 </body>
 </html>

 $ git commit index.html -m 'Convert to HTML'

If you are already familiar with Git, you may be tempted to wonder why we
skipped the git add index.html step before we committed the file. It is
because the content to be committed may be specified in more than one way
in git.

Type git commit --help to learn more about these options.

 $ git commit --help

 git commit [-a | --interactive | --patch] [-s] [-v] [-u<mode>] [--amend]
 [--dry-run] [(-c | -C | --fixup | --squash) <commit>]
 [-F <file> | -m <msg>] [--reset-author] [--allow-empty]
 [--allow-empty-message] [--no-verify] [-e] [--author=<author>]
 [--date=<date>] [--cleanup=<mode>] [--[no-]status]
 [-i | -o] [--pathspec-from-file=<file> [--pathspec-file-nul]]
 [-S[<keyid>]] [--] [<pathspec>...]

 ...

TIP
Detailed explanation of the various commit methods are also explained in git commit --
help manual pages

In our example, we decided to commit the index.html with an additional
argument, the -m switch which supplied a message explaining the changes in
the commit; eg. Convert to HTML. Figure 1-4 explains this method we just
discussed:

Figure 2-4. Staging and adding a file to a repository

Note that our usage of git commit index.html -m ‘Convert to HTML’
does not skip the staging of the file, it’s just that Git handles it automatically
as part of the commit action.

Viewing Your Commits
Now that you have more commits in the repo history, you can inspect them in
a variety of ways. Some git commands show the sequence of individual
commits, others show the summary of an individual commit, and still others
show the full details of any commit you specify in the repository.

The git log command yields a sequential history of the individual commits
within the repository:

 $ git log

 commit ec232cddfb94e0dfd5b5855af8ded7f5eb5c90d6
 Author: Jon Loeliger <jdl@example.com>
 Date: Wed Apr 2 16:47:42 2021 -0500

 Convert to HTML

 commit 9da581d910c9c4ac93557ca4859e767f5caf5169
 Author: Jon Loeliger <jdl@example.com>
 Date: Thu Mar 13 22:38:13 2021 -0500

 Initial contents of my_website

In the above output, the git log prints out detailed log information for every
commit in the repository. At this point you only have two commits in your
repo history which makes it easier to read the output easily. For repositories
with many commit histories, this standard view may not help you to traverse
a long list of detailed commit information with ease; In such situations you
can provide the --oneline switch to list a summarized commit ID number
along with the commit message.

 $ git log --oneline

 ec232cd (HEAD -> main) Convert to HTML

 9da581d Initial contents of my_website

The commit log entries are listed, in order, from most recent to oldest (the
original file); each entry shows the commit author’s name and email address,
the date of the commit, the log message for the change, and the internal
identification number of the commit. The commit ID number is explained in
section Content Addressable Names of the Basic Concepts chapter, and we
will discuss more about commits in the Commits chapter.

If you want to see more detail about a particular commit, use the git show
command with a commit ID number:

 $ git show 9da581d910c9c4ac93557ca4859e767f5caf5169

 commit 9da581d910c9c4ac93557ca4859e767f5caf5169
 Author: Jon Loeliger <jdl@example.com>
 Date: Thu Mar 13 22:38:13 2021 -0500

 Initial contents of public_html

 diff --git a/index.html b/index.html
 new file mode 100644
 index 0000000..34217e9
 --- /dev/null
 +++ b/index.html
 @@ -0,0 +1 @@
 +My web site is awesome!

TIP
If you run git show without an explicit commit number, it simply shows the details of the
HEAD commit, in our case the most recent one.

The git log shows the commit logs for how changes for each commit are
included in the repo history. If you want to see concise one-line summaries
for the current development branch without supplying additional filter
options to the git log --oneline command, an alternative approach is to
use the git show-branch command.

1

 $ git show-branch --more=10

 [main] Convert to HTML
 [main^] Initial contents of my_website

The phrase --more=10 reveals up to an additional 10 more versions, but only
two exist so far and so both are shown. (The default in this case would list
only the most recent commit.) The name main is the default branch name.

We will discuss “Branches” and revisit the git show-branch command in
more detail in Chapter: Branches.

Viewing Commit Differences
With the repo history in place from the addition of commits, you now have
the ability to see the differences between the two revisions of index.html. You
will need to recall both the commit ID numbers and run the git diff
command.

 $ git diff 9da581d910c9c4ac93557ca4859e767f5caf5169 \
 ec232cddfb94e0dfd5b5855af8ded7f5eb5c90d6

 diff --git a/index.html b/index.html
 index 34217e9..8638631 100644
 --- a/index.html
 +++ b/index.html
 @@ -1 +1,5 @@
 -My awesome website!
 +<html>
 +<body>
 My web site is awesome!
 +</body>
 +</html>

The output resembles what the git diff command produces. As per
convention , the first revision commit
9da581d910c9c4ac93557ca4859e767f5caf5169, is the earlier version of the
content for index.html and the second revision commit
ec232cddfb94e0dfd5b5855af8ded7f5eb5c90d6 is the latest content of the
index.html. Thus, a plus sign (+) precedes each line of new content after the
minus sign (-) which indicates removed content.

TIP
Do not be intimidated by the long hex numbers. Git provides many shorter, easier
alternative ways to run similar commands so you can avoid large complicated commit IDs.
Usually the first seven characters of the hex numbers as shown in the git log --oneline
example earlier is sufficient. We elaborate more on this in section Content Addressable
Database of Chatper: Basic Git Concepts.

Removing and Renaming Files in Your Repository
Now that you have learned how to add files to a git repository, let’s look at
how to remove a file from one. Removing a file from a git repository is
analogous to adding a file but uses the git rm command. Suppose you have
the file adverts.html in your website content and plan to remove it. You can
do so as follows:

 $ cd ~/my_website
 $ ls
 index.html adverts.html

 $ git rm adverts.html
 rm 'adverts.html'

 $ git commit -m "Remove adverts html"
 Created commit 364a708: Remove adverts html
 0 files changed, 0 insertions(+), 0 deletions(-)
 delete mode 100644 adverts.html

Similar to an addition, a deletion also requires two steps: Express your intent
to remove the file using the git rm which also stages the file. Realize the
change in the repository with a git commit.

You can rename a file indirectly by using a combination of git rm and git
add command, or you can rename it more quickly and directly with the
command git mv. Here’s an example of the former:

 $ mv foo.html bar.html
 $ git rm foo.html
 rm 'foo.html'

 $ git add bar.html

In this sequence, you must execute mv foo.html bar.html at the onset lest
git rm permanently delete the foo.html file from the filesystem.

Here’s the same operation performed with git mv.

 $ git mv foo.html bar.html

In either case, the staged changes must be committed subsequently:

 $ git commit -m "Moved foo to bar"
 Created commit 8805821: Moved foo to bar
 1 files changed, 0 insertions(+), 0 deletions(-)
 rename foo.html => bar.html (100%)

Git handles file move operations differently than most akin systems,
employing a mechanism based on the similarity of the content between two
file versions. The specifics are described in the Manipulating Files chapter.

Working with a shared Repository
By now you have initialized a new repository and have been making changes
to it. All the changes are only exclusively available to your local development
machine. It is a good example of how you can manage a project that is only
available to you. But how can you work collaboratively on a repository that is
hosted on a git server? Let’s discuss how you can achieve this.

Making a local Copy of the Repository
You can create a complete copy, or a clone of a repository using the git
clone command. This is how you collaborate with other people, making
changes on the same files and keeping in sync with changes from other
versions of the same repository.

For the purpose of this tutorial, let’s start simple by creating a copy of your
existing repository, then we can contrast the same example as if it was on a
remote git server.

 $ cd ~
 $ git clone my_website new_website

Although these two Git repositories now contain exactly the same objects,
files, and directories, there are some subtle differences. You may want to
explore those differences with commands such as:

 $ ls -lsa my_website new_website
 $ diff -r my_website new_website

On a local filesystem like this, using git clone to make a copy of a
repository is quite similar to cp -a or rsync. In contrast, if you are to clone
the same repository from a git server, the syntax will be as follows:

 $ cd ~

 $ git clone https://git-hosted-server.com/some-dir/my_website.git new_website
 Cloning into 'new_website'...
 remote: Enumerating objects: 2, done.
 remote: Counting objects: 100% (2/2), done.
 remote: Compressing objects: 100% (103/103), done.
 remote: Total 125 (delta 45), reused 65 (delta 18), pack-reused 0
 Receiving objects: 100% (125/125), 1.67 MiB | 4.03 MiB/s, done.
 Resolving deltas: 100% (45/45), done.

Once you clone a repository, you can modify the cloned version, make new
commits, inspect its logs and history, and so on. It is a complete repository
with full history. Remember that the changes you make to the cloned
repository will not be automatically pushed to the original copy on the
repository.

Figure 1-5 visualizes this concept:

Figure 2-5. Cloning a shared repository

Try not to be distracted with some of the terms you see on the output. Git
supports a richer set of repository sources, including network names, for
naming the repository to be cloned. We will explain these forms and usage in
Chapter: Remote Repositories.

Configuration Files
Git configuration files are all simple text files in the style of .ini files. The
configuration files are used to store preference and settings used by multiple
git commands. Some of the settings represent personal preferences (eg.
should a color.pager be used?); others are important to a repository
functioning correctly (eg. core repositoryformatversion); and still others
tweak git command behavior a bit (eg. gc.auto). Like other tools, git
supports a hierarchy of configuration files.

Hierarchy of Configuration files
Here are the settings, Figure 1-6 represents the git configuration files
hierarchy in decreasing precedence:

Figure 2-6. Git Configuration files hierarchy

.git/config

Repository-specific configuration settings manipulated with the --file
option or by default. You can also write to this file with the --local
option. These settings have the highest precedence.

~/.gitconfig

User-specific configuration settings manipulated with the --global
option.

/etc/gitconfig

System-wide configuration settings manipulated with the --system
option if you have proper Unix file write permissions on it. These settings
have the lowest precedence. Depending on your actual installation, the
system settings file might be somewhere else (perhaps in
/usr/local/etc gitconfig), or may be entirely absent.

For example, to store an author name and email address that will be used on
all the commits you make for all of your repositories, configure values for
user name and user.email in your $HOME/.gitconfig file using git
config --global:

 $ git config --global user.name "Jon Loeliger"
 $ git config --global user.email "jdl@example.com"

If you need to set a repository-specific name and email address that would
override a --global setting, simply omit the --global flag or use the --
local flag to be explicit:

 $ git config user.name "Jon Loeliger"
 $ git config user.email "jdl@special-project.example.org"

You may use the git config -l (or the long form --list) to list the

settings of all the variables collectively found in the complete set of
configuration files:

 # Make a brand new empty repository
 $ mkdir /tmp/new
 $ cd /tmp/new
 $ git init

 # Set some config values
 $ git config --global user.name "Jon Loeliger"
 $ git config --global user.email "jdl@example.com"
 $ git config user.email "jdl@special-project.example.org"

 $ git config -l
 user.name=Jon Loeliger
 user.email=jdl@example.com
 core.repositoryformatversion=0
 core.filemode=true
 core.bare=false
 core.logallrefupdates=true
 user.email=jdl@special-project.example.org

Because the configuration files are simple text files, you can view their
contents with cat and edit them with your favorite text editor, too.

 # Look at just the repository specific settings

 $ cat .git/config
 [core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 [user]
 email = jdl@special-project.example.org

NOTE
The content of the configuration text file may be presented with some slight differences
according to your Operating System Type. Many of these differences allow for different
file system characteristics.

In case you need to remove a setting from the configuration files, use the --
unset option together with the correct configuration files flag:

 $ git config --unset --global user.email

Git provides you with many configuration options and environment variables
that frequently exist for the same purpose. For example, you may set a value
for the editor to be used when composing a commit log message. Based on
configuration, invocation follows these steps, in order:

GIT_EDITOR environment variable

core.editor configuration option

VISUAL environment variable

EDITOR environment variable

the vi command

There are more than a few hundred configuration parameters. We will not
bore you with them, but will point out important ones as we go along. A more
extensive (yet still incomplete) list can be found on the git config manual
page.

TIP
The following website: https://git-scm.com/docs also contains reference to a complete list
of all git commands on the internet as an alternative source of reference manual.

Configuring an Alias
Git aliases allow you to substitute common but complex git commands that
you type frequently with simple and easy to remember aliases. This also
saves you the hassle of remembering or typing out those long commands and
saves you from the frustration of running into typos.

 $ git config --global alias.show-graph \

https://git-scm.com/docs

 'log --graph --abbrev-commit --pretty=oneline'

In this example, we’ve made up the show-graph alias and made it available
for use in any repository we create. When we use the command git show-
graph, it is going to give an output, just like when we had typed that long
git log command with all those options.

Summary
You will surely have a lot of unanswered questions about how Git works,
even after everything you’ve learned so far. For instance, how does Git store
each version of a file? What really makes up a commit? Where did those
funny commit numbers come from? Why the name ``main``? And is a
“branch” what I think it is? These are good questions. What we covered,
gives you a glimpse on the operations you will be commonly using on your
projects. The answer to your questions will be discussed in detail in chapters
under Part 2: Fundamentals of Git.

The next chapter defines some terminology, introduces some Git concepts,
and establishes a foundation for the lessons found in the rest of the book.

1 Strictly speaking, they are not in chronological order but rather are a topological sort of the
commits.

Chapter 3. Foundational
Concepts

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at vwilson@oreilly.com.

In the previous chapter you learned the foundations of Git, its characteristics
and typical application of version controlling your projects. It probably
sparked your curiosity and left you with a good number of questions. For
instance, how does git keep track revisions of the same file at every commit
on your local development machine? What are the contents of the hidden .git
directory and its significance? How is a commit ID generated and why does it
look gibberish and should you take note of it?

If you have used another Version Control System, such as SVN or CVS, you
may notice that some of the commands described in the last chapter likely
seemed familiar. Although Git serves the same function and provides all the
operations you expect from a modern Version Control System, an exception
to this notion will be that the inner workings and principles of Git differ in
some fundamental and surprising ways.

In this chapter, we explore why and how Git differs by examining the key
components of its architecture and some important concepts. We will focus

mailto:vwilson@oreilly.com

on the basics, common terminologies, the relation between git objects and
how they are utilized, all through the lens of a single repository. The
fundamentals you learn in this chapter apply just the same, when you will
work with multiple interconnected repositories.

Repositories
A Git repository is simply a key-value pair database containing all the
information needed to retain and manage the revisions and history of files in
a project. A Git repository retains a complete copy of the entire project
throughout its lifetime. However, unlike most other Version Control Systems,
the Git repository not only provides a complete working copy of all the files
stored in the project, but also a copy of the repository (key-value pair
database) itself with which to work.

Figure 2-1 helps illustrate the explanation:

.
├── my_website
│ └── .git
│ └── Hidden git objects
└── index.html

NOTE
We use the term repository to describe the entire project and its key-value pair database as
a single unit

Besides file data and repository metadata, git also maintains a set of
configuration values within each repository. We have already worked with
some of these in the previous chapter, in specific the repository user’s name
and email address. These configuration settings are not propagated from one
repository to another during a clone, or duplicating operation. Instead, Git
manages and inspects configuration and setup information on a per-
environment, per-user, and per-repository basis.

Within a repository, Git maintains two primary data structures, the object
store and the index. All of this repository data is stored at the root of your
working directory in the hidden subdirectory named .git

The object store is designed to be efficiently copied during a clone operation
as part of the mechanism that supports a fully distributed Version Control
System. The index is transitory information, is private to a repository, and
can be created or modified on demand as needed.

The next two sections describe the object store and index in more detail.

Git Object Store
At the heart of Git’s repository implementation is the object store. It contains
your original data files and all the log messages, author information, dates,
and other information required to rebuild or restore any version or branch of
the project to a specific state in time.

Git places only four types of objects in the object store: the blobs, trees,
commits, and tags. These four atomic objects form the foundation of Git’s
higher level data structures.

Blobs

Each version of a file is represented as a blob. Blob, a contraction of
“binary large object,” is a term that’s commonly used in computing to
refer to some variable or file that can contain any data and whose internal
structure is ignored by the program. A blob is treated as being opaque. A
blob holds a file’s data but does not contain any metadata about the file or
even its name.

Trees

A tree object represents one level of directory information. It records blob
identifiers, path names, and a bit of metadata for all the files in one
directory. It can also recursively reference other (sub)tree objects and thus
build a complete hierarchy of files and subdirectories.

Commits

A commit object holds metadata for each change introduced into the
repository, including the author, committer, commit date, and log
message. Each commit points to a tree object that captures, in one
complete snapshot, the state of the repository at the time the commit was
performed. The initial commit, or root commit, has no parent. Most
commits have one commit parent, although later in the book we explain
how a commit can reference more than one parent.

Tags

A tag object assigns an arbitrary yet presumably human readable name to
a specific object, usually a commit. Although
9da581d910c9c4ac93557ca4859e767f5caf5169 refers to an exact and
well-defined commit, a more familiar tag name like Ver-1.0-Alpha
might make more sense!

NOTE
These four objects are immutable. Note that only an annotated tag is immutable, a
lightweight tag is not

Over time, all the information in the object store changes and grows, tracking
and modeling your project edits, additions, and deletions. To use disk space
and network bandwidth efficiently, Git compresses and stores the objects in
packfiles, which are also placed in the object store.

Index
The index stores binary data and is private to your repository. The content of
the index is temporary and describes the structure of the entire repository at a
specific moment in time. More specifically, it provides a cached
representation of all the blob objects which reflects the current state of the
project you are working on.

The information in the index is transitory, meaning it’s a dynamic stage
between your project’s working directory (file system) and the repository’s
object store (repository commit history). As such the index is also labeled as
the “Staging Directory” interchangeably.

Figure 2-2 provides a visual representation of this concept:

.
└── repository
 ├── .git/
 └── Index

The index is one of the key distinguishing features of Git. This is because you
are able to alter the content of the index methodically, allowing you to have
finer control over what content will be stored in the next commit. In short, the
index allows a separation between incremental development steps and the
committal of those changes.

Here’s how it works. As a software engineer you usually add, delete or edit a
file or a set of files. These are changes that affect the current state of the
repository. Next you will need to execute the git add command to stage
these changes in the index. Then the index keeps records of those changes
and keeps them safe until you are ready to commit them. Git also allows you
to remove changes recorded in the index. Thus the index allows a gradual
transition of the repository (curated by you) from an older version to a newer
updated version.

As you’ll see in Chapter: Merges, the index also plays an important role in a
merge operation, allowing multiple versions of the same file to be managed,
inspected, and manipulated simultaneously.

Content-Addressable Database
Git is also described as a content addressable storage system. This is because
the object store is organized and implemented to store key value pairs of each
object it generates under the hood when you are version controlling your
project. Each object in the object store is associated with a unique name
produced by applying SHA1 to the content of the object, yielding a SHA1
hash value.

Git uses the complete content of an object to generate the SHA1 hash value.
This hash value is believed to be effectively unique to that particular content
at a specific state in time, thus the SHA1 hash is used as a sufficient index or
name for that object in git’s object store. Any tiny change to a file causes the
SHA1 hash to change, causing the new version of the file to be indexed
separately.

SHA1 values are 160-bit values that are usually represented as a 40-digit

hexadecimal number, such as
9da581d910c9c4ac93557ca4859e767f5caf5169. Sometimes, during
display, SHA1 values are abbreviated to a smaller, easier to reference prefix.
Git users speak of the term SHA1, hash code, and sometimes object ID
interchangeably.

GLOBALLY UNIQUE IDENTIFIERS
An important characteristic of the SHA1 hash computation is that it
always computes the same ID for identical content, regardless of where
that content is. In other words, the same file content in different
directories and even on different machines yields the exact same SHA1
hash ID. Thus, the SHA1 hash ID of a file is an effective globally unique
identifier.

A powerful corollary is that files or blobs of arbitrary size can be
compared for equality across the Internet by merely comparing their
SHA1 identifiers.

Git Tracks Content
Git is much more than a Version Control System, based on what we learnt in
the earlier section, it will help to understand the inner mechanics of Git when
you think of Git as a content tracking system.

This distinction, however subtle, guides much of the design principle of Git
and is perhaps the key reason it can perform internal data manipulations with
relative ease without compromising performance when done right. Yet, this is
also perhaps one of the most difficult concepts for new users of Git to grasp,
so some exposition is worthwhile.

Git’s content tracking is manifested in two critical ways that differ
fundamentally from almost all other version control systems.

First, Git’s object store is based on the hashed computation of the
contents of its objects, not on the file or directory names from the

1

user’s original file layout.

Second, Git’s internal database efficiently stores every version of
every file—not their differences—as files go from one revision to
the next.

Let’s explore this a little more. When Git places a file into the object store, it
does so based on the hash of the data (file content) and not on the name of the
file (file metadata). In fact, Git does not track file or directory names, which
are associated with files in secondary ways. The data is stored as a blob
object in the object store. Again, Git tracks content instead of files.

If two separate files have exactly the same content, whether in the same or
different directories, Git only stores a single copy of that content as a blob
within the object store. Git computes the hash code of each file according
solely to its content, determines that the files have the same SHA1 values and
thus the same content, and places the blob object in the object store indexed
by that SHA1 value. Both files in the project, regardless of where they are
located in the user’s directory structure, use that same object for content.

Because Git uses the hash of a file’s complete content as the name for that
file, it must operate on each complete copy of the file. It cannot base its work
or its object store entries on only part of the file’s content nor on the
differences between two revisions of that file. Using the earlier example of
two separate files having exactly the same content, if one of those files
changes, Git computes a new SHA1 for it, determines that it is now a
different blob object, and adds the new blob to the object store. The original
blob remains in the object store for the unchanged file to use.

For this reason, your typical view of a file—that it has revisions and appears
to progress from one revision to another revision—is simply an artifact. Git
computes this history as a set of changes between different blobs with
varying hashes, rather than storing a file name and set of differences directly.
It may seem odd, but this feature allows Git to perform certain tasks with
ease.

Figure 2-3 provides a visual representation of this concept:

Figure 3-1. Blob Object

Pathname Versus Content
As with many other Version Control Systems, Git needs to maintain an

explicit list of files that form the content of the repository. However, this
need not require that Git’s manifest be based on file names. Indeed, Git treats
the name of a file as a piece of data that is distinct from the contents of that
file. In this way, it separates index from data in the traditional database sense.
It may help to look at Table 1.Table 3-1, which roughly compares Git to
other familiar systems.

Table 3-1. Database comparison

System Index mechanism Data store

Relational database Indexed Sequential Access Method (ISAM) Data records

Unix file system Directories (/path/to/file) Blocks of data

Git .git/objects/`hash`, tree object contents Blob objects, tree objects

The names of files and directories come from the underlying filesystem, but
Git does not really care about the names. Git merely records each pathname
and makes sure it can accurately reproduce the files and directories from its
content, which is indexed by a hash value. This set of information is stored in
the Git object store as the tree object.

Git’s physical data layout isn’t modeled after the user’s file directory
structure. Instead, it has a completely different structure that can, nonetheless,
reproduce the user’s original file and directory layout in a project. Git’s
internal structure is a more efficient data structure for its own internal
operations and storage considerations.

When Git needs to create a working directory, it says to the filesystem: “Hey!
I have this big blob of data that is supposed to be placed at pathname
path/to/directory/file. Does that make sense to you?” The filesystem is
responsible for saying “Ah, yes, I recognize that string as a set of
subdirectory names, and I know where to place your blob of data! Thanks!”

Figure 2-4 provides a visual representation of this concept:

Figure 3-2. Tree Object

Packfiles
Next, let’s look at how Git stores the blob and tree objects in it’s object store.
Also if you’re following closely, you might think that Git is implementing an
inefficient method to store the complete content of every version of every file
directly in it’s object store. Even if Git compresses the files, it is still
inefficient to have the complete content of different versions of the same file,
for instance what if we only add, say, one line to a file, Git will still store the
complete content of both versions.

Luckily, that’s not how Git internally stores the objects in it’s database.
Instead, Git uses a more efficient storage mechanism called packfiles. Git
uses zlib a free software which implements the DEFLATE algorithm to
compress each object prior to storing it in it’s object store. We will be diving
deeper into packfiles in Chapter: Remote Repositories.

TIP
For efficiency, Git’s algorithm by design generates deltas against larger object to be
mindful of the space it takes up to save a compressed file. This size optimization is also
true for many other delta algorithms because removing data is considered cheaper than
adding data in a delta object.

Take note that packfiles are stored in the object store alongside the other
objects. They are also used for efficient data transfer of repositories across a
network.

Visualizing Git Object Store
Now that we know how Git efficiently stores it’s objects, let’s visualize how
Git objects fit and work together to form a complete system.

The blob object is at the “bottom” of the data structure; it references
no other git objects and is referenced only by tree objects. It can be
considered as a leaf-node in relation to the tree object. In the figures

2 3

that follow, each blob is represented by a rectangle.

Tree objects point to blobs and possibly to other trees as well. Any
given tree object might be pointed at by many different commit
objects. Each tree is represented by a triangle.

A circle represents a commit. A commit points to one particular tree
that is introduced into the repository by the commit.

Each tag is represented by a parallelogram. Each tag can point to, at
most, one commit.

The branch is not a fundamental Git object, yet it plays a crucial role in
naming commits. Each branch is pictured as a rounded rectangle.

Figure 3-3. Git objects

.
└── ~/project
 ├── .git
 │ └── .git/objects/*
 ├── file dead23
 └── file feeb1e

Figure 2-5 captures how all the pieces fit together. This diagram shows the
state of a repository after a single, initial commit added two files. Both files
are in the top-level directory. Both the master branch and a tag named V1.0
point to the commit with ID 1492.

Now, let’s make things a bit more complicated. Let’s leave the original two
files as is, adding a new subdirectory with one file in it. The resulting object
store looks like Figure 2-6 below.

.
└── ~/project
 ├── .git
 │ └── .git/objects/*
 ├── file dead23
 ├── file feeb1e
 └── newsubdir
 └── file 1010b

As in the previous picture, the new commit has added one associated tree
object to represent the total state of directory and file structure. Because the
top-level directory is changed by the addition of the new subdirectory, the
content of the top-level tree object has changed as well, so Git introduces a
new tree, cafed00d.

However, the blobs dead23 and feeb1e didn’t change from the first commit
to the second. Git realizes that the IDs haven’t changed and thus can be
directly referenced and shared by the new cafed00d tree.

Pay attention to the direction of the arrows between commits. The parent
commit or commits come earlier in time. Think of it as a DAG Diagram: A
directed acyclic graph where each node is directed from an earlier node in a
single direction to form its topological ordering of the graph.

Therefore, in Git’s implementation, each commit points back to its parent or
parents. Many people get confused because the state of a repository is
conventionally portrayed in the opposite direction: as a dataflow from the
parent commit to child commits. In other words, ordered from left to right,
the right most commit in DAG diagram represent the latest state of a
repository.

In Chapter: Commits, we extend these pictures to show how the history of a
repository is built up and manipulated by various commands.

Git Internals: Concepts at Work
With some tenets out of the way, let’s peek under the hood and see how all
these concepts fit together in a git repository. We will start by creating a new
repository and inspect the internal files and object store in much greater
detail. We do this by starting at the bottom of Git’s data structure and work
our way up in the object store.

Before we go any further, it is important to know that Git has a few
categories of commands to implement it’s inner mechanics. To get a detailed
categorized list of all the commands, type in git help -a in your terminal.

Git commands are categorized as follows :

Main Porcelain Commands (High level commands for routine Git
operations)

Ancillary Commands (Commands that help query Git’s internal data
store)

Low-level Commands (Plumbing Commands for internal Git
Operations)

External Commands (Commands that extent the standard Git
Operations)

Commands to act as a bridge with selected version control tool
(Interacting with Others Commands)

Command Aliases (Custom aliases created by users to mask
complex Git commands)

Typically, for our daily use and interaction with Git, we will mostly use a
subset of the main porcelain commands. In this section, we will be using
some low-level or plumbing commands to better understand Git Internals.

Inside the .git Directory
To begin, initialize an empty repository using git init and then run the
tree .git command to reveal what’s created.

 $ mkdir /tmp/hello

 $ cd /tmp/hello

 $ git init

 Initialized empty Git repository in /tmp/hello/.git/

 # List all the files in the current directory
 $ tree .git

 .git
 ├── HEAD
 ├── config
 ├── description
 ├── hooks

 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ ├── push-to-checkout.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

As you can see, .git contains a lot of stuff. The files are displayed based on a
template directory that you can adjust if desired by passing in the --
template=<template_directory> option. For example, if you prefer to
create a new repository which implements custom git-hooks, you may point
to a template which is already preconfigured with custom directory structure
and git-hook files to begin with. We will discuss more on git-hooks in
Chapter: Hooks.

NOTE
Depending on the version of Git you are using, your actual manifest may look a little
different. For example, older versions of Git do not use a .sample suffix on the .git/hooks
files. You can learn more about the command by running man git-init in the command-
line.

In general, you don’t have to view or manipulate the files in .git directory.
These “hidden” files are considered part of Git’s plumbing or configuration

commands.

Initially, the .git/objects directory (the directory for all of Git’s objects) is
empty, except for a few placeholders.

 $ find .git/objects

 .git/objects
 .git/objects/pack
 .git/objects/info

Let’s now carefully create a simple object:

 $ echo "hello world" > hello.txt

 $ git add hello.txt

If you typed “hello world” exactly as it appears here (with no changes to
spacing or capitalization), then your objects directory should now look like
this:

 $ find .git/objects

 .git/objects
 .git/objects/3b
 .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
 .git/objects/pack
 .git/objects/info

Note that there is only one object at this point in time, the blob object with a
SHA1 ID generated based on content of the file hello.txt. All this looks pretty
mysterious. But it’s not, as the following sections explain.

Blob Objects and Hashes
When we created the file hello.txt and staged it in the index directory using
git add, git internally created a blob object. At this point, Git doesn’t care
that the filename is hello.txt. Git cares only about what’s inside the file: the
sequence of 12 bytes that represent “hello world” and the terminating newline
(the same blob created earlier). Git performs a few operations on this blob,

calculates its SHA1 hash, and enters it into the object store as a file named
after the hexadecimal representation of the hash.

The hash in this case is 3b18e512dba79e4c8300dd08aeb37f8e728b8dad.
The 160 bits of an SHA1 hash correspond to 20 bytes, which takes 40 bytes
of hexadecimal to display, so the content is stored as
.git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad.

Git inserts a / after the first two digits to improve filesystem efficiency.
(Some filesystems slow down if you put too many files in the same directory;
making the first byte of the SHA1 into a directory is an easy way to create a
fixed, 256-way partitioning of the namespace for all possible objects with an
even distribution.)

You can verify that the content in the file is not changed by Git (it’s still the
same comforting “hello world”) by using the generated hash value to extract
out the content from the object store, utilizing a low-level plumbing
command.

 # Using the git cat-file command
 $ git cat-file -p 3b18e512dba79e4c8300dd08aeb37f8e728b8dad
 hello world

Or

 # Using the git hash-object command
 $ echo "hello world" | git hash-object --stdin
 3b18e512dba79e4c8300dd08aeb37f8e728b8dad

TIP
Git also knows that 40 characters is a bit chancy to type by hand, so it provides a
command to look up objects by a unique prefix of the object hash:

 $ git rev-parse 3b18e512d
 3b18e512dba79e4c8300dd08aeb37f8e728b8dad

HOW DO WE KNOW A SHA1 HASH IS UNIQUE?
There is an extremely slim chance that two different blobs yield the same
SHA1 hash. When this happens, it is called a collision. However, a SHA1
collision is so unlikely that you can safely bank on it never interfering
with our use of Git. But could a collision happen at random? Let’s see.

With 160 bits, you have 2 or about 10 (1 with 48 zeros after it)
possible SHA1 hashes. That number is just incomprehensibly huge. Even
if you hired a trillion people to produce a trillion new unique blobs per
second for a trillion years, you would still only have about 10 blobs.

If you hashed 2 random blobs, you might find a collision. Don’t trust
us, go read Bruce Schneier .

SHA1 is known as a “cryptographically secure hash.” That is until
recently, whereby security researchers were able to point out flaws in the
integrity of the SHA1 hash function. They published their findings as
SHAttered attack .

Git, starting from version 2.13.0 moved to implement a hardened SHA1
for it’s computation of hash functions. The probability of such an attack
vector being repeated is not something that can be guaranteed in the
future, for this reason Git introduced a new repository format extension
which enables the use of SHA256 instead of SHA1. It is described in
detailed in the technical documentation of Git .

Next we move up the data structure to understand how path and filenames are
stored by Git.

Tree Object and Files
Now that the “hello world” blob is safely ensconced in the object store, let’s
take a look at how it is associated with a filename. Git wouldn’t be very
useful if it couldn’t find files by name.

As mentioned before, Git tracks the pathnames of files through another kind
of object called a tree. When you use git add, Git creates an object for the

160 48

43

80

4

5

6

contents of each file you add, but it doesn’t create an object for your tree
right away. Instead, it updates the index. The index is found in .git/index and
keeps track of file pathnames and corresponding blobs. Each time you run
commands such as git add, git rm, or git mv, Git updates the index with
the new pathname and blob information.

Whenever you want, you can create a tree object from your current index by
capturing a snapshot of its current information with the low-level git
write-tree command. An action which you will rarely execute in your
typical daily git rendezvous.

At the moment, the index contains exactly one file, hello.txt.

 $ git ls-files -s

 100644 3b18e512dba79e4c8300dd08aeb37f8e728b8dad 0 hello.txt

Here you can see the association of the file, hello.txt, and the 3b18e5… blob.

Next, let’s capture the index state and save it to a tree object:

 $ git write-tree

 68aba62e560c0ebc3396e8ae9335232cd93a3f60

 $ find .git/objects

 .git/objects
 .git/objects/68
 .git/objects/68/aba62e560c0ebc3396e8ae9335232cd93a3f60
 .git/objects/pack
 .git/objects/3b
 .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
 .git/objects/info

Now there are two objects: the “hello world” blob object at 3b18e5 and a
new one, the tree object, at 68aba6. As you can see, the SHA1 object name
corresponds exactly to the subdirectory and filename in .git/objects.

But what does a tree look like? Because it’s an object, just like the blob, you
can use the same low-level plumbing command to view it.

 $ git cat-file -p 68aba6

 100644 blob 3b18e512dba79e4c8300dd08aeb37f8e728b8dad hello.txt

The contents of the object should be easy to interpret. The first number,
100644, represents the file attributes of the object in octal, which should be
familiar to anyone who has used the Unix chmod command. Here, 3b18e5 is
the object name of the hello world blob, and hello.txt is the name associated
with that blob.

It is now easy to see that the tree object has captured the information that was
in the index when you ran git ls-files -s.

A Note on Git’s Use of SHA1
Before inspecting the contents of the tree object in more detail, let’s re-
emphasize an important feature of SHA1 hashes:

 $ git write-tree

 68aba62e560c0ebc3396e8ae9335232cd93a3f60

 $ git write-tree

 68aba62e560c0ebc3396e8ae9335232cd93a3f60

 $ git write-tree

 68aba62e560c0ebc3396e8ae9335232cd93a3f60

From the example above, every time you compute another tree object for the
same index (no adding or removing of files), the SHA1 hash remains exactly
the same. Git doesn’t need to recreate a new tree object. If you’re following
these steps at the computer, you should be seeing exactly the same SHA1
hashes as the ones published in this book.

In this sense, the hash function is a true function in the mathematical sense:
For a given input, it always produces the same output. Such a hash function is
sometimes called a digest to emphasize that it serves as a sort of summary of
the hashed object. This is also true for any hash function, even the lowly
parity bit, has this property.

For example, if you create the exact same content as another developer,
regardless of where or when or how both of you work, an identical hash is

proof enough that the full content is identical, too. In fact, Git treats them as
identical and this notion is extremely important.

But hold on a second—aren’t SHA1 hashes unique? What happened to the
trillions of people with trillions of blobs per second who never produce a
single collision? This is a common source of confusion among new Git users.
So read on carefully, because if you can understand this distinction, then
everything else in this chapter is easy.

Identical SHA1 hashes in this case do not count as a collision. It would be a
collision only if two different objects produced the same hash. Here, you
created two separate instances of the very same content, and the same content
always has the same hash.

Git depends on another consequence of the SHA1 hash function: it doesn’t
matter how you got a tree called
68aba62e560c0ebc3396e8ae9335232cd93a3f60. If you have it, you can be
extremely confident it is the same tree object that, say, another reader of this
book has. Consider the following:

Scenario 1 - Bob might have created the tree by combining commits
A and B from Jennie and commit C from Sergey on a shared
repository

Scenario 2 - You on the other hand, working in that same shared
repository, might have created the same tree but via a different path,
you might have got commit A from Sue and an update from
Lakshmi that combines commits B and C.

The results are the same for the generated tree object in both scenarios, this
facilitates distributed development with Git.

If you are asked to look for object
68aba62e560c0ebc3396e8ae9335232cd93a3f60 and can find such an
object, then, because SHA1 is a cryptographic hash, you can be confident that
you are looking at precisely the same data from which the hash was created.

The converse is also true: If you don’t find an object with a specific hash in

your object store, then you can be confident that you do not hold a copy of
that exact object. In sum, you can determine whether your object store does
or does not have a particular object even though you know nothing about its
(potentially very large) contents. The hash thus serves as a reliable label or
name for the object.

Tree Hierarchies
In our examples from the previous section, we only have information
regarding a single file, but in actuality projects contain complex, deeply
nested directories that are refactored and moved around over time. In this
section we will be creating a new subdirectory that contains an identical copy
of the hello.txt file in order to see how Git handles this scenario:

 $ pwd

 /tmp/hello
 $ mkdir subdir

 $ cp hello.txt subdir/

 $ git add subdir/hello.txt

 $ git write-tree

 492413269336d21fac079d4a4672e55d5d2147ac

 $ git cat-file -p 4924132693

 100644 blob 3b18e512dba79e4c8300dd08aeb37f8e728b8dad hello.txt
 040000 tree 68aba62e560c0ebc3396e8ae9335232cd93a3f60 subdir

The new top-level tree contains two items: the original hello.txt file as well as
the new subdir directory, which is of type tree instead of blob.

Look closer at the object name of subdir, do you notice anything unusual?
Indeed It’s none other than our old friend, the SHA1
68aba62e560c0ebc3396e8ae9335232cd93a3f60!

How can this be you ask? Well, the new tree for subdir contains only one file,
hello.txt, and that file contains the same old “hello world” content. So the
`subdir` tree is exactly the same as the older, top-level tree! And yes, you are
correct to point out that it is for this reason alone, it has the same SHA1
object name as before: traits of a true function in the mathematical sense.

Let’s look at the .git/objects directory and see what this most recent change
affected:

 $ find .git/objects

 .git/objects
 .git/objects/49
 .git/objects/49/2413269336d21fac079d4a4672e55d5d2147ac
 .git/objects/68
 .git/objects/68/aba62e560c0ebc3396e8ae9335232cd93a3f60
 .git/objects/pack
 .git/objects/3b
 .git/objects/3b/18e512dba79e4c8300dd08aeb37f8e728b8dad
 .git/objects/info

There are still only three unique objects: a blob containing “hello world”; a
tree containing hello.txt, which contains the text “hello world” plus a new
line; and a second tree that contains another reference to hello.txt along with
the first tree.

Figure 2-7 illustrates this concept:

Figure 3-4. Tree Hierarchies

Commit Objects
The next object to discuss is the commit. Now that hello.txt_ has been added
with the git add command and the tree object has been produced with git
write-tree, we can create a commit object using low-level plumbing
commands like this:

 $ echo -n "Commit a file that says hello\n" | git commit-tree

492413269336d21fac079d4a4672e55d5d2147ac

 3ede4622cc241bcb09683af36360e7413b9ddf6c

The result will look something like this:

 $ git cat-file -p 3ede462

 tree 492413269336d21fac079d4a4672e55d5d2147ac
 author Jon Loeliger <jdl@example.com> 1220233277 -0500
 committer Jon Loeliger <jdl@example.com> 1220233277 -0500

 Commit a file that says hello

Figure 2-8 illustrates this concept:

Figure 3-5. Commit Object

If you’re following along on your computer, you probably find that the
commit object you generated does not have the same identical value as the
one in this example. If you’ve understood everything so far, the reason for
that should be obvious: Our commit object, it’s not the same as your commit
object.

Your commit object contains your name and the time you made the commit,
whereas our commit object contains a different timestamp and author name,
so of course it is different.

On the other hand, your commit does have the same tree. This is why commit
objects are separate from their tree objects: different commits often refer to
exactly the same tree. When that happens, Git is smart enough to transfer
around only the new commit object, which is tiny, instead of the entire tree
and blob objects, which are probably much larger.

In real life, you can (and should!) pass over the low-level plumbing
commands git write-tree and git commit-tree used in the examples.
You can just use the porcelain git commit command. You don’t need to
remember all those plumbing commands to be a perfectly happy Git user.

In essence, a basic commit object is fairly simple, and it’s the last ingredient
required for a real Version Control System. The commit object just shown, is
the simplest possible one, containing:

The name of a tree object that actually identifies the associated files

The name of the person who composed the new version (the author)
and the time when it was composed

The name of the person who placed the new version into the
repository (the committer) and the time when it was committed

A description of the reason for this revision (the commit message)

By default, the author and committer are the same; there are a few situations
where they’re different.

TIP
You can use the command git show --pretty=fuller to see additional details about a
given commit.

A more closer to home use case is when a project contains multiple commits.
In such a situation, when you make a new commit in the project, you can give
it one or more parent commits. Given this context, consider the most recent
commit (or its associated tree object) in the project. Because it contains, as
part of its content, the hash of its parent commits and of its tree and that in
turn contains the hash of all of its subtrees and blobs recursively through the
whole data structure, it follows by induction that the hash of the original
commit uniquely identifies the state of the whole data structure rooted at that
commit.

By following back through the chain of parents, you can discover the history
of your project, thus the term commit history. Commit objects are also stored
in a graph structure, although it’s completely different from the structures
used by tree objects. More details about commits and the commit graph are
given in the Commits chapter.

Tag Objects
Finally, the last object Git manages is the tag. Although Git implements only
one kind of tag object in it’s object store, Git supports two basic tag types,
usually called a lightweight and an annotated tag.

Lightweight tags are simply references to a commit object and are usually
considered private to a repository. Lightweight tags are not stored as
permanent objects in the object store.

An annotated tag is more substantial and creates an object. It contains a
message, supplied by you, and can be digitally signed using a GnuPG key
according to RFC4880.

Git treats both lightweight and annotated tag names equivalently for the

purposes of associating a commit with meaningful human readable name.
However, by default, many Git commands work only on annotated tags,
because they are considered “permanent immutable” objects.

TIP
Typical use case for an annotated tag is when you are creating a specific release version
for your projects. Whereas lightweight tags are in the light of a bookmark as a temporary
label attached to a commit object.

You create an annotated, unsigned tag with a message on a commit using the
git tag command:

 $ git tag -a V1.0 3ede462

Git will launch your configured default editor after the command is issued
and you may provide a tag message to complete the operation.

To view the newly created tag object, you may do so via the git cat-file
-p command, but what is the SHA1 of the tag object? To find it, use the Tip
from “Blob Objects and Hashes”:

 $ git rev-parse V1.0

 6b608c1093943939ae78348117dd18b1ba151c6a

 $ git cat-file -p 6b608c

 object 3ede4622cc241bcb09683af36360e7413b9ddf6c
 type commit
 tag V1.0
 tagger Jon Loeliger <jdl@example.com> Sun Oct 26 17:07:15 2008 -0500

 Tag version 1.0

In addition to the log message and author information, the tag refers to the
commit object 3ede462.

Git usually tags a commit object, which points to a tree object, which
encompasses the total state of the entire hierarchy of files and directories

within your repository.

Recall from Figure 3-3 that the V1.0 tag points to the commit named 1492,
which in turn points to a tree (8675309) that spans multiple files. Thus, the
tag simultaneously applies to all files of that tree.

This is unlike CVS, for example, which will apply a tag to each individual
file and then rely on the collection of all those tagged files to reconstitute a
whole tagged revision. And whereas CVS lets you move the tag on an
individual file, Git requires a new commit, encompassing the file state
change, onto which the tag will be moved.

Summary
We have discussed the inner workings of Git to an elaborate extent, let’s now
recap the key takeaways from this chapter. We started at the high level of a
repository where we learnt about the various working directory Git replies
upon, mainly the Index, Working directory and the local history. We
continued to dive into the Git Object Store, where we analyzed each of the
Immutable Git Objects: During which we also learnt how to interact with
those internal objects directly using low-level git commands that you would
rarely use on a daily basis. Grasping this concept should highlight the fact
that Git as a concept is merely a simple content addressable database whereby
its innermechnics are somewhat direct yet may at times be complex to
comprehend. We’ve also described visually the relationship between the
objects in Git’s Object Store to help establish a good foundation for the next
Chapters in Part 2: Fundamentals of Git.

1 Monotone, Mercurial, OpenCMS, and Venti are notable exceptions here.

2 https://zlib.net

3 https://tools.ietf.org/html/rfc1951

4 https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html

5 https://shattered.io

6 https://github.com/git/git/blob/master/Documentation/technical/hash-function-transition.txt or

https://zlib.net
https://tools.ietf.org/html/rfc1951
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
https://shattered.io
https://github.com/git/git/blob/master/Documentation/technical/hash-function-transition.txt

https://git-scm.com/docs/hash-function-transition

https://git-scm.com/docs/hash-function-transition

1. 1. Preface

a. Who This book is For

b. Essential know how’s

c. New in this revision

d. Navigating the Book

e. Installing Git

f. A Note on Inclusive Language

g. Omissions

h. Conventions Used in This Book

i. Using Code Examples

j. Safari® Books Online

k. How to Contact Us

l. Acknowledgments

m. Attributions

2. 2. Chapter 1: Introduction to Git

a. Git Components

b. Git Characteristics

c. The Git Command Line

d. Quick Introduction to Using Git

i. Preparing to work with Git

ii. Working with a local Repository

iii. Working with a shared Repository

iv. Configuration Files

e. Summary

3. 3. Foundational Concepts

a. Repositories

b. Git Object Store

c. Index

d. Content-Addressable Database

e. Git Tracks Content

f. Pathname Versus Content

g. Packfiles

h. Visualizing Git Object Store

i. Git Internals: Concepts at Work

i. Inside the .git Directory

ii. Blob Objects and Hashes

iii. Tree Object and Files

iv. A Note on Git’s Use of SHA1

v. Tree Hierarchies

vi. Commit Objects

vii. Tag Objects

j. Summary

	1. Preface
	Who This book is For
	Essential know how’s
	New in this revision
	Navigating the Book
	Installing Git
	A Note on Inclusive Language
	Omissions
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Attributions

	2. Chapter 1: Introduction to Git
	Git Components
	Git Characteristics
	The Git Command Line
	Quick Introduction to Using Git
	Preparing to work with Git
	Working with a local Repository
	Working with a shared Repository
	Configuration Files

	Summary

	3. Foundational Concepts
	Repositories
	Git Object Store
	Index
	Content-Addressable Database
	Git Tracks Content
	Pathname Versus Content
	Packfiles
	Visualizing Git Object Store
	Git Internals: Concepts at Work
	Inside the .git Directory
	Blob Objects and Hashes
	Tree Object and Files
	A Note on Git’s Use of SHA1
	Tree Hierarchies
	Commit Objects
	Tag Objects

	Summary

