

Vagrant CookBook
A practical guide to Vagrant

Erika Heidi

This book is for sale at http://leanpub.com/vagrantcookbook

This version was published on 2014-09-16

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

©2013 - 2014 Erika Heidi

http://leanpub.com/vagrantcookbook
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Erika Heidi by spreading the word about this book on Twitter!

The suggested hashtag for this book is #vagrantcookbook.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#vagrantcookbook

http://twitter.com
https://twitter.com/search?q=%23vagrantcookbook
https://twitter.com/search?q=%23vagrantcookbook

Contents

Foreword . i

Preface . iii

Acknowledgments . iv

Introduction . 1
What to expect from this book . 2
Assumptions . 2

Getting Started . 4
How Vagrant Works . 4
Terminology . 4
Requirements . 6
Installation . 6
Updating Vagrant . 7
Vagrant Commands . 7
Your first Vagrant Up . 10

The Vagrantfile . 13
Basic Example . 13
Defining the Box . 14
Defining a Provisioner . 15
Showing a post-up message (1.6+) . 16
Setting up the Network . 16
Setting up synchronized folders . 17
VBoxManage Customizations . 21
Quick Reference - Common Options . 22

CONTENTS

Provisioners . 24
Overview . 24
Getting Started with the Shell Provisioner 25
Automation Tools . 27
Practical Example . 28

Ansible . 30
Overview . 30
Quick Ansible Guide . 32
Provisioning a PHP Web Server . 38

Puppet . 43
Overview . 43
Quick Puppet Guide . 46
Provisioning a PHP Web Server . 52

Chef . 57
Overview . 57
Quick Chef Guide . 59
Provisioning a PHP Web Server . 65

Pro Tips . 69
Update First! . 69
NFS Performance Improvement . 69
Permission Problems . 71
Debugging . 73
Login, Fix, Automate . 74
VirtualBox Guest Additions . 74

Advanced Topics . 76
Running Multiple Virtual Machines . 76
Provisioning VPSs on cloud services . 78
Custom Boxes . 82

Vagrant Share . 86
Logging In . 86
Sharing your Environment . 86

CONTENTS

Vagrant Connect . 90
Securing your Shares . 92

Recipes . 95
System . 95
Packages . 97
Other . 101
Conditional Execution . 102

Appendix One: Vagrant Changelog . 104
Vagrant 1.6 . 104
Vagrant 1.5 . 104

Foreword
You’ve probably heard the old saying “Jack of All Trades, Master of None.”

According to Wikipedia, it’s a very old saying, with the “Jack of All Trades” part
dating back to the early 1600s. Originally, it was a compliment, praising someone
for their diversity and handiness. Some wiseguy later added “Master of None” and
changed it to the insult we know today.

Personally, that seems unfair. The world needs generalists: people who borrow
from other languages, cross-pollinate between communities, reuse old tools for new
purposes. True, they’re often not the deepest experts in these fields. Yet they canmake
valuable contributions because they have so many references to draw from. Perhaps
that’s why there’s a modern variation of the saying: “Jack of All Trades, Master of
None, but often better than a Master of Any.”

Likewise, this bookmight say “Vagrant Cookbook” on the cover but if you dig deeper,
you’ll find it’s about an entire ecosystem of tools. To get the most out of Vagrant, you
need to know about provisioners, plugins, virtualization platforms, shell commands
and more. Luckily, you don’t need to master any of them (though that’s always nice),
you just need to be effective: A Jack (or Jill) of All Trades.

If you’re new to Vagrant, this book is going to teach you how to start and help
you make decisions about what tools to use. If already have Vagrant experience,
the sections on alternative provisioners or multiple VMs are sure to have something
new for you.

Introducing Vagrant is often a first step towards DevOps. If that’s the case for you,
keep in mind the two virtues of “communication” and “automation”. Communicating
openly will expose you to new viewpoints, new concerns and new references.
Automation will let your team wield powerful tools while distributing the time
investment. Together, these two things will help you grow team members who are
“Jacks of All Trades, Master of Some.”

This book is full of great tips and tricks for using Vagrant but there’s one lesson
in particular I hope you take from it. In an industry known for high stress and

Foreword ii

crazy deadlines, Erika’s enthusiasm is inspiring. Whether she’s automating image
processing or drawing cartoon elephants, her approach can only be described as
joyful.

That she channeled this energy and talent into an (excellent) book about virtual
machine management should remind us how amazing computers really are. Her
example encourages us to always set the bar just a little bit higher: not just in the
work we do, but also in the fun we have.

Thanks for picking up the Vagrant Cookbook. You’re in the right place.

– Ross Tuck

Amsterdam, March 2014

Preface
I remember very clearly the first time I heard about Vagrant. It was early 2013, on
my second visit to the AmsterdamPHP meetups. The talk was from my dear friend
Michelle Sanver (a.k.a. Geekie), about Open Source. Shewas showing how easy it is to
get involved and contribute to OSS projects, by simple cloning the project repository
and running the mysterious command vagrant up.

I started using Vagrant the next day.

A few months later, and not before facing a considerable resistance from my
coworkers and the lead developer (they were using remote servers for testing - FTP
upload for every single change), I was able to introduce Vagrant in the company I
was working for. Although that project was quite complex and creating a Puppet
provision for it was slightly painful, it was a great opportunity to learn more about
Vagrant and get used to the tricks and the automate all the things mindset.

After leaving the company and coming back to my independent projects, I started to
submit some talks for PHP conferences, and naturally Vagrant was on top of my cool-
subjects list. By that time, I was presented to LeanPub and found out the amazing
platform they built for self-publishing - I must say that I personally love any service
that promotes independent work. It’s also no news that writing is a passion for me
since I was little. So, connecting the dots, it was an obvious decision: I should write
about my experiences with Vagrant.

This book is based on many experiments and lots of research, from a very curious
and enthusiastic Vagrant user. I tried to put together everything you need to have a
pleasant experience with Vagrant, in a truly practical way.

Acknowledgments
A special thanks to all the people who helped me directly or indirectly, including
Mitchell Hashimoto, Vagrant’s creator, not only for sharing such a great project with
the developers community, but also for personally helping me to spread the word
about my Vagrant usage research.

Thanks LeanPub for providing a complete self-publishing platform for independent
writers, with so many nice features.

A big thanks must go to my friend Ross Tuck for writing an inspired and truthful
foreword for this book.

I also would like to thank the PHP community, and specially the AmsterdamPHP
user group, for the warm welcome I received since I moved from my hometown
in Brazil to this amazing city, for the awesome friends I made and all support and
encouragement they gave me.

And finally, I want to thank my husband, Hugo, for being incredibly supportive with
my independent projects, for the faith he has in me and in mywork. This book would
hardly be possible without him.

Introduction
Howmany times did you hear the sentence “but it works on my machine” ? I bet you
already said that too, because, well, it happens. We can’t remember all the packages
we already installed and all the configurations we set in our work machine, so it
often takes some time to find out what went wrong when the project was shared to
another co-worker, or worst, when deploying.

Also, if we need to deal with multiple projects, how to manage the dependencies and
different software versions possibly needed?

If you are not familiar with Vagrant¹, this is the right moment to get acquainted
to it. Vagrant provides a portable and reproducible development environment using
virtual machines, all set up in the project repository - just clone, run vagrant up and
you’re done. You will never be hostage of the “works on my machine” statement
again; the environment is exactly the same for all developers, regardless of the
operating system running behind Vagrant.

Vagrant for proprietary projects

Vagrant can make your workflow way easier when you are working on a team;
having the exact same testing environment for all co-workers will avoid many
problems and add much more consistency to the overall project development.

Vagrant for open source projects

Vagrant enables more developers to contribute to your open source project - just
clone the repository and you are ready to go. It’s not only about setting up the
right environment, but also automating the process of installing a database, cloning
repositories, adding data fixtures and even running tests.

¹http://docs.vagrantup.com/v2/

http://docs.vagrantup.com/v2/
http://docs.vagrantup.com/v2/

Introduction 2

Vagrant for devops / system administrators

If you work with system administration or any kind of server management, Vagrant
is the right tool for your tests. It supports the most common IT automation tools, such
as Puppet, Ansible, Salt and Chef. Experiment with different setups, build yourmulti-
server infrastructure and make sure everything works before going to production.

What to expect from this book

As a very practical guide, this book will cover Vagrant from the requirements and
installation to slightly complex tasks, such as running multiple VMs and deploying
“real” servers. It will walk you through the most used Vagrant provisioners - Puppet,
Chef and Ansible - showing their main characteristics and a quick guide to get you
started.

This book will also cover some important pro tips to create your Vagrant projects;
and finally, a collection of recipes for common provisioner tasks, such as installing
packages, using templates, running commands etc.

Vagrant Cookbook is updated to cover themost important new features fromVagrant
1.5. It targets beginner to intermediate users, also serving as a quick reference for
provisioners (Ansible, Puppet and Chef) and how to improve your current Vagrant
setups.

Assumptions

This book assumes you are a developer experienced with command line, and
you know how to setup a Linux server - you need to understand the problem
before you can automate the solution, right? The tools we are going to use require
some programming knowledge, since they work with concepts such as variables,
conditionals and loops.

This is a book about Vagrant, for people who are comfortable with programming and
also system administration tasks like setting up a web server on Linux.

Introduction 3

The examples in this book will target mostly the provisioning of PHP web servers,
but just as a way to show practical real-life examples; you don’t need to be a PHP
developer (and you don’t need to like PHP) in order to make a good use of this book.

Getting Started
This chapter covers the basics - terminology, installation and general Vagrant usage
- including how to initialize your first Vagrant virtual machine.

How Vagrant Works

Vagrant manages the process of creating a virtual machine based on your definitions,
and uses automation tools such as Ansible and Puppet for provisioning the machine
customization - installing packages, gathering information, performing tasks, etc.

By running a simple vagrant up, a virtual machine will be prepared according to
what was setup on the project’s configuration, and in a few minutes the project
shall be up and running (let’s say, a web application), accessible through your local
network. You can ssh to this virtual machine and do whatever you want, its just like
a “real” one.

It is also possible to use Vagrant for deploying real VPSs on services like AWS and
Digital Ocean - we’ll talk about this in the “Advanced Topics” chapter.

Terminology

Before going any further, it’s important to understand some of the terms and concepts
used with Vagrant.

Boxes

A box is basically a bundle containing an installed operating system (and some basic
stuff), for a specific provider (e.g. VirtualBox). Vagrant will replicate this basic image
for your virtual machine. When you setup your project, you define which base box
you want to use. The box will be downloaded and imported to the system when you
use it for the first time.

Getting Started 5

Host and Guest

The Host machine / OS is the one who starts vagrant. The Guest machine, as you
can guess, is the virtual machine started by the Host.

Providers

A provider will handle the virtualization process. VirtualBox is the default Vagrant
provider, but you could also use VMWare, KVM and others. Installation of extra
plugins might be required for other providers to work. VMWare, for instance, also
requires registering a license key.

Plugins

A plugin can add extra functionality to Vagrant, like supporting a new Provider.

Provisioners

A provisioner will automate the setup of your server, installing packages and
performing tasks in general. Using a provisioner is not mandatory, but not using
it would make Vagrant worthless, since you would have to login and setup your
environment manually, just as you were used to do before (and you could just use
VirtualBox alone). We have many provisioners available, from the basic Shell to
complex automation systems like Chef. We’re going to talk about provisioners in
more detail soon.

Vagrantfile

The Vagrantfile will hold your machine definitions, and it’s usually placed on your
application root folder. This file is written in Ruby, but it’s basically a set of variable
definitions, very straightforward. We’ll have a chapter dedicated to the Vagrantfile
and its common configuration options.

Getting Started 6

Shared / Synced Folder

It’s useful to have a common space shared between the Host and the Guest machines.
With a shared folder, you can still edit your files with your favorite IDE installed on
the Host machine, using the Guest machine only as a test server. However, keeping
the files synced has a cost to the overall performance of your environment, we will
talk about this in more detail on a later chapter.

Requirements

For provisioning your machine, Vagrant will need a virtualization software, such as
VirtualBox or VmWare. The default one is VirtualBox, since it’s free and open source.
We will be working with VirtualBox in this book. You need to have both installed to
create and run Vagrant instances.

Both Vagrant and VirtualBox are available for the main Operating Systems (Linux,
OSX and Windows). Some functionalities, however, might not be present by default
on some systems and it might require installation of other requirements - such as the
NFS sharing functionality, that requires special packages to be installed on Ubuntu
but comes out of the box on OSX.

Installation

In order to get started, the first thing you need to do is install Vagrant and VirtualBox.
As said before, VirtualBox is the default Vagrant provider, the one we will be using
for this book.

The best way for doing so is getting the packages directly from their respective
websites, since package managers will most likely have outdated versions, leading
to many compatibility problems. Head to the Vagrant downloads page² and to
the VirtualBox downloads page³ and follow the installation instructions for your
Operating System, for both packages.

²http://www.vagrantup.com/downloads.html
³https://www.virtualbox.org/wiki/Downloads

http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads

Getting Started 7

Getting the right VirtualBox version
It’s recommended that you check the Vagrant documentation⁴ to verify
which version of VirtualBox is currently compatible with Vagrant.

Updating Vagrant

Vagrant always keeps backwards compatibility, so you normally won’t have any
problems when updating to newer versions. It’s recommendded that you keep
your Vagrant updated, since the updates usually bring important bugfixes and new
features.

Checking if up-to-date (1.6+)

Starting from version 1.6, Vagrant comes with a handy command to check if your
currently installed version is up-to-date. Run:

$ vagrant version

If you are up-to-date, you will see an output like this:

Installed Version: 1.6.1

Latest Version: 1.6.1

You're running an up-to-date version of Vagrant!

If you are not up-to-date, the command output will inform you about the newest
version available for download.

Vagrant Commands

This is a quick reference on the basic Vagrant commands:

⁴http://docs.vagrantup.com/v2/virtualbox/index.html

http://docs.vagrantup.com/v2/virtualbox/index.html
http://docs.vagrantup.com/v2/virtualbox/index.html

Getting Started 8

command description common usage

up Boots up the machine and fires
provision

When the VM is not running yet

reload Reboots the machine When you make changes to the
Vagrantfile

provision Runs only the provisioner(s) When you make changes in the
Provisioner scripts

init Initializes a new Vagrantfile based
on specified box url

When you want to generate a
Vagrantfile

halt Turns off the machine When you want to turn off the VM

destroy Destroys the virtual machine When you want to start from
scratch

suspend Suspends execution When you want to save the
machine state

resume Resumes execution When you want to recover a
previously suspended vm

ssh Logs in via ssh (no password is
required)

When you want to make manual
changes or debug

status Shows info about the current
Vagrant environment

When you want check if the VM is
already running

Global Status and Control (Vagrant 1.6+)

Starting from version 1.6, Vagrant has a global status and control feature. It allows
you to check which environments are currently running, and to execute Vagrant
commands in a specific environment, from anywhere in your machine.

Getting Started 9

Before 1.6, it was easy to lost track of the VMs running, and we would have to
access the directory from where we run Vagrant, in order to control that specific
environment. Now we can do it from anywhere.

To list all Vagrant environments currently running, use:

$ vagrant global-status

If you have one or more Vagrant environments currently running, you’ll see an
output similar to this:

id name provider state directory

037588f default virtualbox running /projects/project1

f47c729 default virtualbox poweroff /projects/project2

Now, for instance, if you want to suspend one of the environments, you just need to
append the id to the suspend command. Like this:

$ vagrant suspend f47c729

The same is valid for the other Vagrant commands - just append themachine id you
got from the global-status command.

Note: a suspended VM will be listed as “running”. You can use the halt
command, providing the machine ID, to turn it off and discard the saved
session.

The global status and control will only work with environments created
with version 1.6. If you have an existent environment (suspended or
halted) that was created with previous versions, you’ll need to destroy
it and recreate, in order to use the global status and control features.

Getting Started 10

Your first Vagrant Up

Let’s “up” our first Vagrant box. The first thing we need is a Vagrantfile. You
can manually create your Vagrantfile, or you can ask Vagrant to generate a basic
Vagrantfile for you, based on the box you want to use. To get started, we are going
to use the auto-generated Vagrantfile. Don’t worry too much about it now, as the
next chapter will be dedicated to the Vagrantfile and its most common configuration
options.

First, create a folder for your Vagrant tests. Access this folder from the command line
and use vagrant init to generate a new Vagrantfile for your project:

Vagrant 1.5+

$ vagrant init hashicorp/precise64

This command will create a default Vagrantfile, defining just one option:

config.vm.box = "hashicorp/precise64"

The config.vm.boxwill define which box your virtual machine will use. For Vagrant
1.5+, this is usually an identifier for a box hosted in theVagrant Cloud⁵. The Vagrant
Cloud is a new feature released with Vagrant 1.5 - it provides version control and an
easy way for discovering and sharing Vagrant boxes.

Vagrant < 1.5

For previous versions of Vagrant, with no support to the Vagrant Cloud, we normally
have to provide also the box URL - so Vagrant knows where to download the box
from. In order to init a basic Vagrantfile with the same box (Ubuntu 12.04 64bits) you
will run:

⁵https://vagrantcloud.com

https://vagrantcloud.com
https://vagrantcloud.com

Getting Started 11

$ vagrant init precise64 http://files.vagrantup.com/precise64.box

And it will set the following parameters:

config.vm.box = "precise64"

config.vm.box_url = "http://files.vagrantup.com/precise64.box"

Running the VM

With the Vagrantfile ready to go, it’s time to boot your virtual machine. From the
same directory, run:

$ vagrant up

The process of importing a box is done automatically when you initialize the virtual
machine. The first time you run Vagrant with a new box, it will download and import
the box to your system - it might take several minutes, depending on your Internet
connection. You will see an output similar to this:

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'hashicorp/precise64'...

==> default: Matching MAC address for NAT networking...

==> default: Checking if box 'hashicorp/precise64' is up to date...

==> default: Setting the name of the VM: testvagrant_default_1410896\

489249_78706

==> default: Clearing any previously set network interfaces...

==> default: Preparing network interfaces based on configuration...

default: Adapter 1: nat

==> default: Forwarding ports...

default: 22 => 2222 (adapter 1)

==> default: Booting VM...

==> default: Waiting for machine to boot. This may take a few minute\

s...

default: SSH address: 127.0.0.1:2222

Getting Started 12

default: SSH username: vagrant

default: SSH auth method: private key

==> default: Machine booted and ready!

==> default: Checking for guest additions in VM...

default: The guest additions on this VM do not match the install\

ed version of

default: VirtualBox! In most cases this is fine, but in rare cas\

es it can

default: prevent things such as shared folders from working prop\

erly. If you see

default: shared folder errors, please make sure the guest additi\

ons within the

default: virtual machine match the version of VirtualBox you hav\

e installed on

default: your host and reload your VM.

default:

default: Guest Additions Version: 4.2.0

default: VirtualBox Version: 4.3

==> default: Mounting shared folders...

default: /vagrant => /media/export/Projects/vagrantcookbook/test\

vagrant

Ta-Da! Your first Vagrant machine is up and running. Now, log in by running:

$ vagrant ssh

You will see that it’s just like a normal Ubuntu machine, connected to the Internet (as
long as your Host machine is connected too), everything functional. If you run a ls
/vagrant, you will notice that, by default, the current project folder (the root folder
which contains the Vagrantfile) is shared between Host and Guest machines, so any
file or directory you place inside your testing folder will be available at /vagrant
inside the Guest.

In the next chapter, we’ll see how to customize the Vagrantfile options and how to
start defining automated tasks that will run right after the machine is booted through
Vagrant.

The Vagrantfile
As we saw in the previous chapter, the Vagrantfile is where you define your machine
settings and how the provisioning will happen. It’s usually placed on the root folder
of your project, under the obvious name “Vagrantfile”.

The language used is Ruby, but previous knowledge on this language is not necessary,
since the file is a very simple and straightforward collection of variable definitions.

Basic Example

Below, an example of a basic Vagrantfile:

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "hashicorp/precise64"

4

5 config.vm.synced_folder "./", "/vagrant"

6 config.vm.provision "shell", inline: "echo hello"

7

8 end

The above Vagrantfile will create a virtual machine based on Ubuntu 12.04 64 bits,
where the location “/vagrant” will be syncedwith the current application folder (“./”).
After booting the machine with these settings, a shell provisioner will run the inline
script “echo hello” .

All this process will be managed by Vagrant when you issue a vagrant up.

The Vagrantfile 14

Vagrant configuration versions
In order to keep backwards compatibility, Vagrant works with differ-
ent configuration versions⁶, and we must declare which version we
are going to use (in the above example, the number 2 inside the
Vagrant.configure() portion means we are going to use configuration
version 2).

We will be using the version 2 for all examples in this book, because
it’s the most recent one (since Vagrant 1.1). Each version has specific
configuration options, so be aware that you might run into errors if you
use version 2 options inside a version 1 block and vice-versa.

Now let’s have a deeper look into the options we can use to set up our virtual machine
in the Vagrantfile.

Defining the Box

The box is the only mandatory option in a Vagrantfile - you must define from which
base box your virtual machine will replicate. Vagrant 1.5 comes with a new way
for sharing and discovering boxes - the Vagrant Cloud⁷. Now you can easily find
boxes shared by the community, and you can also create and share your own custom
boxes. These new boxes have version control, and they are identified by a string like
organization/boxname.

Vagrant Cloud
The Vagrant Cloud is only available for Vagrant 1.5+, and its usage is
completely optional; you can keep using the “old way” (as for 1.4 and
previous versions) for defining your boxes, providing a direct URL for the
box file.

The option config.vm.name is used to define the box, like below:

⁶http://docs.vagrantup.com/v2/vagrantfile/version.html
⁷https://vagrantcloud.com

http://docs.vagrantup.com/v2/vagrantfile/version.html
https://vagrantcloud.com
http://docs.vagrantup.com/v2/vagrantfile/version.html
https://vagrantcloud.com

The Vagrantfile 15

config.vm.box = "hashicorp/precise64"

If your Vagrant version is 1.4 or lower, the config.vm.box option will only define a
local identifier for the box - you will also need to provide a URL or local path to the
box file, so Vagrant can find and download the box to your system. This is how the
same box definition looks like on Vagrant < 1.5 :

config.vm.box = "precise64"

config.vm.box_url = "http://files.vagrantup.com/precise64.box"

As Vagrant always keeps backwards compatibility, and the Vagrant Cloud usage is
totally optional, you can keep using this method for defining your boxes on 1.5+
versions. The good thing about using this method is that you keep compatibility in
your Vagrant project for colleagues who didn’t update yet to the newest version. The
downside is that you won’t be able to benefit from the versioning control and unified
box identifier provided by the Vagrant Cloud. It’s up to you.

Finding Boxes

For Vagrant 1.5+, you can find many boxes shared by the community, and also
“official” ones (fromHashicorp - the company responsible for Vagrant) in the Vagrant
Cloud⁸. If you use Vagrant 1.4 or lower, you can check the website vagrantbox.es⁹.

Defining a Provisioner

The option config.vm.provision is used to define one or more provisioners in the
Vagrantfile. Below is an example that defines a basic shell provisioner usage:

config.vm.provision "shell", inline: "echo hello"

The next chapter will be dedicated to the provisioners.

⁸https://vagrantcloud.com/discover/featured
⁹http://www.vagrantbox.es/

https://vagrantcloud.com/discover/featured
https://vagrantcloud.com/discover/featured
http://www.vagrantbox.es/
https://vagrantcloud.com/discover/featured
http://www.vagrantbox.es/

The Vagrantfile 16

Showing a post-up message (1.6+)

Version 1.6 came with a simple but yet very useful new feature. Now you can set a
post-up message that will be printed every time you do a vagrant up. This is perfect
for giving the final user some instructions about how to run or access the application
/ environment you just provisioned. For instance, giving the IP address where the
application can be reached through the browser - like in the following example:

config.vm.post_up_message = "The App is up and running at http://192\

.168.33.101."

When you run vagrant up and the whole process is finished, you’ll see now this
message:

==> default: Machine 'default' has a post `vagrant up` message.

==> default: This is a message from the creator of the Vagrantfile,

==> default: and not from Vagrant itself:

==> default:

==> default: The App is up and running at http://192.168.33.101.

Setting up the Network

By default, Vagrant creates a NAT¹⁰ masqueraded network between the Host and
the Guest machines. Although you have access to the Internet from inside the VM,
this network isn’t reachable from outside, which means that you won’t be able to
access the application running on the Guest machine from your browser (in the Host
machine).

In most cases, the private network is the way to go, because then you will be able to
test the application also with other devices in the same private network, without
exposing your VM to the Internet. Also, this option is required if you’re using
VirtualBox and want to use NFS (see the section “Setting up synchronized folders”).
In order to setup a private network with a static IP address, you should add a line
like this to your Vagrantfile:

¹⁰http://en.wikipedia.org/wiki/Network_address_translation

http://en.wikipedia.org/wiki/Network_address_translation
http://en.wikipedia.org/wiki/Network_address_translation

The Vagrantfile 17

config.vm.network :private_network, ip: "192.168.33.101"

This will create a new interface on the Virtual Machine using the specified IP address.
If you want to make the virtual machine accessible from other devices in your
network, you need to use your current private network range.

You can also forward ports in order to expose the VMnetwork. The following linewill
redirect all requests from the host on port 8080 to the port 80 in the Guest machine:

config.vm.network "forwarded_port", guest: 80, host: 8080

In this way you can point your browser to localhost:8080 and all requests will be
forwarded to port 80 (normally the web server) in the Guest. However, if you run
multiple VMs with the same settings, you will easily get into port collisions and this
will make Vagrant throw an error.

Other options are available, but they usually are tied to a specific provider, while
the above options are part of the high-level network implementation of Vagrant. To
know more about networks on Vagrant, check the official documentation¹¹.

Setting up synchronized folders

The shared folders are essential for a good development process, since you can still
edit the application files in your Host machine, using your favorite IDE, while using
the VM only for running the application.

The config.vm.synced_folder is used to define a synchronized folder:

config.vm.synced_folder "./", "/vagrant"

The first parameter specifies which folder in the Host machine will be synced, and
the second parameter says where this folder will be available on theGuestmachine.
By default, Vagrant already shares the current folder in the location /vagrant on the
Guest.

¹¹http://docs.vagrantup.com/v2/networking/index.html

http://docs.vagrantup.com/v2/networking/index.html
http://docs.vagrantup.com/v2/networking/index.html

The Vagrantfile 18

If you don’t specify a type, Vagrant will use the default synchronization functionality
from the provider in use - in our case VirtualBox, and the VirtualBox shared folders.
But we can improve the performance of our synced folders by using NFS, RSync or
SMB.

NFS

Using NFS¹² can help increasing the synced folders performance. Vagrant (all recent
versions) comes with a built-in feature that orchestrates the NFS configuration
between Host and Guest.

Limitations

NFS does not work on Windows hosts - Vagrant will just ignore the request for
enabling it.

Usage

In order to enable NFS, you’ll add a type definition to your config.vm.synced_-
folder:

config.vm.synced_folder ".", "/vagrant", type: "nfs"

Requirements

NFSD: NFS requires nfsd to be installed in the host. This is available by default on
OSX, but on Ubuntu, for instance, you will need to install the packages nfs-kernel
and nfs-common.

Private Network: If you use VirtualBox (which is the most common case) you need
to use the private network with a static IP address in order to use NFS - it’s a
limitation from the built-in network on VirtualBox.

¹²http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29

http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29
http://en.wikipedia.org/wiki/Network_File_System_%28protocol%29

The Vagrantfile 19

Root Privilege: Vagrant needs to modify some system files on the host, in order to
configure NFS. That’s why at some point of vagrant up you may be prompted to
provide administrative credentials (usually via sudo).

RSync (Vagrant 1.5+)

Vagrant 1.5 comes with a new option for the shared folders - rsync¹³. RSync is
specially useful in situations where you can’t use NFS (e.g. not supported by your
Host, or not present on the Guest machine), or if you’re having problems with the
NFS performance.

Limitations

Unlike the default shared folders and the NFS shared folders, which keep track of all
directory changes in real time, the rsync option is a one-time, one-way sharing, from
the Host to the Guest machine.

If you want to work in a similar fashion as the other shared folder types, with
automatic synchronization, you can use the command:

$ vagrant rsync-auto

This command will keep running until an exit signal is received (best to run it on
a separated terminal). It will automatically initiate an rsync transfer when changes
are detected in the tracked directories.

However, keep in mind that the changes inside the VM won’t be reflected at all in
the Host machine - on the contrary - they may be lost in the next synchronization
process. Commands that generate new files in the application folder (like composer
install) should be executed from the Host machine, in this way the changes will be
reflected inside the VM when syncing.

¹³http://en.wikipedia.org/wiki/Rsync

http://en.wikipedia.org/wiki/Rsync
http://en.wikipedia.org/wiki/Rsync

The Vagrantfile 20

Handling machine state
The rsync-auto command must be started only after the virtual machine
is booted. It is also recommended that you stop it before turning the
machine off, and when making changes to the Vagrantfile - otherwise you
might experience some strange behavior. For more information about the
rsync-auto command, check the official documentation¹⁴.

You can also run the synchronization manually, with:

$ vagrant rsync

And the shared folders will be synchronized.

Usage

In the Vagrantfile, you will also add a type option to the synced_folder settings,
specifying the rsync usage:

config.vm.synced_folder "./app",

"/vagrant", type: "rsync", rsync__exclude: ".git/"

The rsync synced folder type allows us to exclude some directories from the folder
sharing. It’s recommended to exclude revision control directories such as “.git”. By
default, Vagrant excludes the “.vagrant” directory.

Requirements

In order to use RSync, the Host machine must have rsync installed (on Windows,
you can use the rsync installed with Cygwin or MinGW).

SMB (Vagrant 1.5+)

The SMB¹⁵ shared folders are a good alternative for Windows users, and also a new
feature from Vagrant 1.5. SMB is built-in on Windows systems and can provide a
better performance than the default VirtualBox shared folders.

¹⁴http://docs.vagrantup.com/v2/cli/rsync-auto.html
¹⁵http://en.wikipedia.org/wiki/Server_Message_Block

http://docs.vagrantup.com/v2/cli/rsync-auto.html
http://en.wikipedia.org/wiki/Server_Message_Block
http://docs.vagrantup.com/v2/cli/rsync-auto.html
http://en.wikipedia.org/wiki/Server_Message_Block

The Vagrantfile 21

Limitations

The SMB shared folders are currently only available for Windows Hosts. Also, for
now you’ll have to clean up unused SMB folders manually, because this feature still
need some fine-tuning and at this moment Vagrant doesn’t remove the folders once
created.

In order to delete unused SMB folders, first list them with: net share and then
remove the ones you don’t want anymore, using net share NAME /delete (command
prompt).

Usage

In order to enable SMB, you can simply add the type option to your config.vm.synced_-
folder directive:

config.vm.synced_folder ".", "/vagrant", type: "smb"

Requirements

The command prompt executing Vagrant must have administrative privileges.

VBoxManage Customizations

VirtualBox has a command-line utility for making customizations to the virtual
machine, like changing how much RAM memory will be allocated for it. This tool is
called VBoxManage¹⁶, and we can use it by adding some settings to our Vagrantfile.

The example below shows how to set the machine memory to 1GB:

config.vm.provider :virtualbox do |v|

v.customize ["modifyvm", :id, "--memory", 1024]

end

¹⁶http://www.virtualbox.org/manual/ch08.html

http://www.virtualbox.org/manual/ch08.html
http://www.virtualbox.org/manual/ch08.html

The Vagrantfile 22

The v.customize parameter receives an array with 4 items:

• “modifyvm” - (string) the VBoxManage command
• :id - this will be replaced by the VirtualBox machine ID, automatically set by
Vagrant

• ”–memory” - (string) the argument for the VBoxManage command
• 1024 - (string) a value for the previous argument

Any of the VBoxManage commands can be used in a similar fashion; you can group
multiple v.customize directives and they will be executed in the order you define
them, right before the machine is booted.

Quick Reference - Common Options

option usage examples

config.vm.box config.vm.box = "hashicorp/precise64"

config.vm.box = "precise64"

config.vm.box_url config.vm.box_url =

"http://files.vagrantup.com/precise64.box"

config.vm.provision config.vm.provision "shell", inline: "echo hello"

config.vm.network config.vm.network :private_network, ip:

"192.168.33.101"

config.vm.network "forwarded_port", guest: 80,

host: 8080

config.vm.synced_folder config.vm.synced_folder ".", "/vagrant"

config.vm.synced_folder ".", "/vagrant", type:

"nfs"

The Vagrantfile 23

option usage examples

config.vm.synced_folder "./application",

"/vagrant",
type: "rsync",rsync__exclude: ".git/"

config.vm.synced_folder ".", "/vagrant", type:

"smb"

Provisioners
This chapter will cover the main aspects behind provisioners, how they work and
how to get started by using the basic Shell provisioner.

Overview

Provisioners represent the core of any Vagrant project, because without them you
would merely have a fresh system to be manually setup. Vagrant supports powerful
automation tools, like Puppet, Ansible, Salt and Chef. For simple tasks, you might
as well use the basic Shell provisioner. The provisioners can also be used together -
its quite common to have the shell provisioner along with an automation tool, for
instance, for setting some environment variables or performing simple tasks before
a more complex provision starts.

Shell x Automation Tools

In fact, all provisioners will execute shell commands to setup your machine, but the
automation tools - Ansible, Puppet and such - offer much more power. It’s like using
a framework instead of writing your own thing. If you go for the latter, you will
have to write much more code, and it can get to a level of complexity that is very
hard to maintain and escalate. Using a framework, on the other hand, will require
some learning time, but you will be more productive and your code will be more
maintainable.

I personally consider the following features specially significant, when comparing
the automation tools with the Shell provisioner:

State Handling

The automation tools have a really nice state handling schema, a smart way of
visualizing the system through resources with a state. They will only execute tasks

Provisioners 25

that weren’t executed before, and they will always give you the same result (the same
system state) in the end - an idempotent behavior - according to what you setup in
your provisioning scripts.

Templates

Templates are very useful for setting up configuration files, for instance. Just as
what you would expect from a template, they can have placeholders (variables) for
dynamic content, making your provision more powerful and flexible. They usually
also accept conditionals and other advanced programming features.

Open Source Modules

All the modern automation tools have an architecture that enables reuse through
separated portions of code, which we’ll call “Modules” for simple generalization.
Tools like Ansible, Puppet and Chef providemany ready-to-usemodules, either built-
in or through the community of users. This can really speed up the process of creating
a new Vagrant project.

Getting Started with the Shell Provisioner

The Shell provisioner is very simple, a good way to get started and understand how
provisioners work, before trying one of the automation tools that we are going to
discuss soon.

We can use the Shell provisioner in two different ways: inline, where you place the
script content inside the Vagrantfile, and as a separated script file. The inline option
is good for simple commands and tiny portions of shell script. If your script is more
complex and bigger, it’s better to use a separated script file.

The Vagrantfile

The first thing we need to do when setting up any provisioner is to define the provi-
sioner options inside our Vagrantfile. This is done by using the config.vm.provision
method call.

Below is an example of a simple Vagrantfile using the Shell provisioner:

Provisioners 26

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "hashicorp/precise64"

4

5 config.vm.network :private_network, ip: "192.168.33.101"

6

7 config.vm.provision "shell", inline: "ls -la /vagrant"

8

9 end

The above example uses the inline option; it will run ls -la on /vagrant (inside
the Guest machine) and you should see the command output from your terminal
running Vagrant.

In order to use a shell script file, we would just change the config.vm.provision

line to:

1 config.vm.provision "shell", path: "script.sh"

Where script.sh can be a relative or absolute path, or even a URL pointing to a
remote script.

Running the Provisioner

By default, a Provisioner only runs once - right when you create your environment
(first vagrant up since the last destroy). This saves a lot of time in a daily basis,
when you normally will be reusing a VM previously provisioned. But you can also
force the execution of the Provisioner, even when the machine is already turned on.

If the environment is not yet created, you just need to run vagrant up. If the
environment was already provisioned before, and the machine is turned down, you
need to use vagrant up --provision in order to force the provisioner execution.
And, finally, if the machine is already turned on, you will use either vagrant

provision (run only the provisioners) or vagrant reload --provision. The latter
will reboot the machine before running the provisioners.

Provisioners 27

Always run the provisioner (1.6+)

Starting with version 1.6, you can configure a provisioner to run every time you
execute vagrant up or vagrant reload. You just need to add the option run:

"always" , like in the example below:

1 Vagrant.configure("2") do |config|

2 config.vm.provision "shell", run: "always" do |s|

3 s.inline = "echo hello"

4 end

5 end

Automation Tools

Automation tools are, in a nutshell, powerful frameworks for servermanagement and
deploy. Since Vagrant environments are meant for development and are normally
very specialized, commonly with a single node, the general usage of this tools as
Vagrant provisioners is way simpler than what you would expect by reading their
documentations.

In the next chapters, we are going to have a deeper look at three different automation
tools supported by Vagrant:Ansible, Puppet andChef. They are the three most used
Vagrant provisioners, according to a usage research¹⁷ performed in January 2014.

We will examine each tool by discussing its main characteristics, so you have a
good base for comparison between them; a quick guide will introduce you to the
provisioner language and conventions, and finishing each chapter you will have a
practical example of a web server provision with that tool. All examples will target
the exact same result - a web server running Ubuntu with Nginx and PHP.

It’s important to understand that these automation tools have a level of complexity
that we cannot totally cover in this book; we focused on showing their practical usage
as Vagrant provisioners. The quick guide will drive you through the basics so you
can understand the practical examples and experiment with different provisions.

¹⁷http://www.erikaheidi.com/2014/01/24/vagrant-usage-research/

http://www.erikaheidi.com/2014/01/24/vagrant-usage-research/
http://www.erikaheidi.com/2014/01/24/vagrant-usage-research/

Provisioners 28

Practical Example

As mentioned before, each provisioner chapter will have a practical example that
creates exactly the same environment. We are not going to use any third party
module. This will give you a better comparison between the provisioners.

The Goal

• Ubuntu 12.04, base box provided by Vagrant
• Nginx+PHP5-FPM (PHP5.5+) properly set up, accessible through the VM IP
address

• No third party modules

The Tasks

Let’s break our requirements into tasks, or steps, as if we were going to execute
everything by hand.

It’s not just about installing some packages; to get the newer PHP version we’ll need
to add a PPA (private package archiver) repository first - it’s the easiest way. And
we’ll also need to change Nginx’s default virtualhost to use PHP5-FPM.

Following, the tasks we would perform manually to get such environment:

• Run apt-get update
• Add a PPA repository to install newest version of PHP

– Install the package python-software-properties, in order to use add-apt-
repository

– Add the PHP5.5 PPA repository
– Run apt-get update

• Install Nginx
• Install PHP5-FPM
• Install extra packages (vim, curl, git etc)
• Install PHP packages (php5-curl, php5-cli etc)

Provisioners 29

• Setup the default Nginxwebsite, by replacing the configuration file on /etc/nginx/sites-
available/default .

• Restart Nginx

Follow up the examples
All the examples used in the next chapters are available on GitHub, in the
repository erikaheidi/vagrantcookbook¹⁸.

¹⁸https://github.com/erikaheidi/vagrantcookbook

https://github.com/erikaheidi/vagrantcookbook
https://github.com/erikaheidi/vagrantcookbook

Ansible
Overview

Ansible¹⁹ is an IT automation tool that, as many others, is capable of orchestrating
tasks such as installing packages and configuring systems in multiple machines,
but with one big differential: it was built with simplicity in mind. It uses YAML
for its configuration files, making it totally human-readable so anyone can easily
understand what’s going on and learn how to create a complex provision really fast.

Ansible is probably the most straightforward provisioner available nowadays for
Vagrant. Its simplicity doesn’t make it less powerful; with a large collection of built-
in modules, Ansible provides many advanced features with a minimalistic language.

Characteristics

Language Complexity

Ansible uses YAML and the Jinja2 templating system for its provision scripts, very
simple and straightforward. The general learning curve for Ansible is low.

Execution Order

The tasks are executed in the exact order you define them.

Resources / Community

Ansible is getting more popular because of its simplicity. According to my usage
research, Ansible is the third most used Vagrant provisioner.

¹⁹http://www.ansibleworks.com/

http://www.ansibleworks.com/
http://www.ansibleworks.com/

Ansible 31

Organization / Modularity

Ansible has plenty of built-in modules, and you can write your own modules too.
Tasks can be grouped into separated files and included in the playbook, so you can
easily reuse them. The recommended way to organize a collection of related tasks
and files is through the use of Roles.

Requirements

In order to use Ansible as provisioner, you’ll need to install it in the Host machine.

As with many other packages including Vagrant and VirtualBox, package managers
like apt will most probably have outdated versions, which can lead you to all sorts of
compatibility problems. The best thing to do is consult the installation instructions²⁰
on the official Ansible documentation - it will guide you on how to install the most
recent version of Ansible in your operating system.

Windows Hosts
Windows is not officially supported by Ansible to be used as control
machine (Host), but there are some workarounds. You can use Cygwin²¹
to install all dependencies and Ansible, or you can use a Shell Provisioner²²
to run Ansible in the Guest machine, using a local SSH connection to run
the tasks.

Terminology

The Ansible scripts are called playbooks.

The Vagrantfile

Weneed to define theAnsible provisioner in our Vagrantfile, with the config.vm.provision
method call. This is a basic example, where we just set the location of the playbook
file :

²⁰http://www.ansibleworks.com/docs/intro_installation.html
²¹https://servercheck.in/blog/running-ansible-within-windows
²²https://github.com/geerlingguy/JJG-Ansible-Windows

http://www.ansibleworks.com/docs/intro_installation.html
https://servercheck.in/blog/running-ansible-within-windows
https://github.com/geerlingguy/JJG-Ansible-Windows
http://www.ansibleworks.com/docs/intro_installation.html
https://servercheck.in/blog/running-ansible-within-windows
https://github.com/geerlingguy/JJG-Ansible-Windows

Ansible 32

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "hashicorp/precise64"

4

5 config.vm.network :private_network, ip: "192.168.33.101"

6

7 config.vm.provision "ansible" do |ansible|

8 ansible.playbook = "playbook.yml"

9 end

10

11 config.vm.synced_folder "../../testapp", "/vagrant", :nfs => true

12

13 end

Usually you won’t need more than this, but there are other options you can use to
customize your Ansible provisioning, such as:

Option Description Example Value

ansible.inventory_path Sets inventory path “my_inventory”

ansible.verbose Changes output verbosity “vvv”

ansible.sudo Makes Ansible run tasks true
with sudo by default

For a complete list of the Ansible provisioner options, check the Vagrant documen-
tation²³.

Quick Ansible Guide

Tasks

Tasks are defined using YAML syntax, as shown below:

²³http://docs.vagrantup.com/v2/provisioning/ansible.html

http://docs.vagrantup.com/v2/provisioning/ansible.html
http://docs.vagrantup.com/v2/provisioning/ansible.html
http://docs.vagrantup.com/v2/provisioning/ansible.html

Ansible 33

- name: Install Nginx

sudo: yes

apt: pkg=nginx

The above example tells Ansible to install the package nginx, using sudo. The “name”
property is just an identifier, for easier debug (it shows up on the output). The “apt”
item is actually a built-in Ansible module²⁴.

Playbook

The playbook is where we’re going to define our tasks. A playbook containing the
“Install Nginx” task that we just saw, plus php5-fpm installation, would look like this:

1 ---

2 - hosts: all

3 tasks:

4 - name: Install Nginx

5 sudo: yes

6 apt: pkg=nginx

7 - name: Install php5-fpm

8 sudo: yes

9 apt: pkg=php5-fpm

This Playbook tells Ansible to run the defined tasks in all inventory hosts. The inven-
tory is a file that defines the machines Ansible will control; with Vagrant, usually you
will be working with a single machine, and the inventory file is automatically gener-
ated byVagrant, under the path /.vagrant/provisioners/ansible/inventory/vagrant_-
ansible_inventory (in previous Vagrant versions, this file would be created in the
same level as the Vagrantfile, with the name vagrant_ansible_inventory_default).

Variables

Using variables is a good practice to make your scripts more versatile. Variables are
usually defined in a special “vars” section inside the playbook:

²⁴http://www.ansibleworks.com/docs/modules.html#apt

http://www.ansibleworks.com/docs/modules.html#apt
http://www.ansibleworks.com/docs/modules.html#apt

Ansible 34

1 ---

2 - hosts: all

3 vars:

4 web_server: nginx

5 tasks:

6 - name: Install {{ web_server }}

7 sudo: yes

8 apt: pkg={{ web_server }}

We can also use arrays - they are specially useful to loop through the same task using
different values, such as for installing multiple packages. In order to do so, we use
the with_items option as following:

1 ---

2 - hosts: all

3 vars:

4 sys_packages: ['git', 'curl', 'vim']

5 tasks:

6 - name: Install Packages

7 sudo: yes

8 apt: pkg={{ item }}

9 with_items: sys_packages

The with_items option will run the task as a loop, where each item will be used as
value for the pkg property.

You can also define the items as a static array:

Ansible 35

1 ---

2 - hosts: all

3 tasks:

4 - name: Install Packages

5 sudo: yes

6 apt: pkg={{ item }}

7 with_items:

8 - git

9 - curl

10 - vim

Working with templates

In Ansible, templates are processed using the Jinja2 templating language, through
the built-in module template²⁵ .

Below is an example of a template file:

1 <VirtualHost *:80>

2 ServerAdmin webmaster@localhost

3 DocumentRoot {{ doc_root }}

4

5 <Directory {{ doc_root }}>

6 AllowOverride All

7 Require all granted

8 </Directory>

9

10 </VirtualHost>

This is an Apache vhost template. We used a variable to define the DocumentRoot, so
we can have more flexibility. The variable should be set in the playbook, on the vars
section.

In order to apply this template, you would create a task like this:

²⁵http://www.ansibleworks.com/docs/modules.html#id242

http://www.ansibleworks.com/docs/modules.html#id242
http://www.ansibleworks.com/docs/modules.html#id242

Ansible 36

- name: Change default apache vhost

sudo: yes

template: src=files/apache/default.tpl dest=/etc/apache2/sites-ava\

ilable/000-default.conf

Organization

You can place all your tasks inside the playbook, but as best practice, you should
group them into separate files. The easiest way to organize your Ansible provisioning
is by including the individual task files from your main playbook:

tasks:

- include: tasks/init.yml

- include: tasks/nginxphp.yml

This works great for a small set of tasks, but it’s not recommended as best practice
for provisionings that are a bit more complex. The officially recommended way to
organize related tasks and other files is through the use of Roles. In Ansible, roles
are the equivalent tomodules in Puppet and cookbooks in Chef. It basically defines a
default structure for your files, in order to easily reference them from inside the task
files / playbooks.

Taking the previous example, we could turn the “nginxphp” and “init” task files into
roles, following this structure:

roles

├── init

│ └── tasks

│ └── main.yml

└── nginxphp

├── tasks

│ └── main.yml

└── templates

└── default.tpl

Ansible 37

We simply moved both task files into a separate directory, placing them in a “tasks”
folder under the name “main.yml”. Templates should be placed in a “templates”
directory. In this way, they can be referenced directly by the name. To include the
roles, we need to add them to a special section “roles” in our playbook, removing the
old “tasks” part. The playbook now will look like this:

1 ---

2 - hosts: all

3 sudo: true

4 vars:

5 sys_packages: ['curl', 'vim', 'git']

6 roles:

7 - init

8 - nginxphp

Defining Services

Sometimes we need to restart a service in order to apply some changes, specially
after modifying configuration files. Instead of executing the command manually, the
automation tools usually have an easy way for notifying a service and scheduling its
restart.

With Ansible, we define handlers to manage a service:

1 ---

2 - hosts: all

3 vars:

4 - doc_root: /vagrant

5 tasks:

6 - include: tasks/apache.yml

7 handlers:

8 - name: restart apache

9 service: name=apache2 state=restarted

And through the apache.yml task file we can notify the Apache handler for a restart:

Ansible 38

- name: Change default apache vhost

sudo: yes

template: src=files/apache/default.tpl dest=/etc/apache2/sites-ava\

ilable/000-default.conf

notify: restart apache

When using Roles, we can place a role-specific handler inside the role folder, this will
make the handler automatically available when the role is included in a playbook.
Just place the handler in a file named “main.yml” inside a “handlers” folder, in the
role:

└── apachephp

├── handlers

│ └── main.yml

├── tasks

│ └── main.yml

└── templates

└── default.tpl

Provisioning a PHP Web Server

Now let’s get everything together to create our provision. For Ansible and also for
the other provisioner examples, we are going to put both Nginx and PHP5-FPM in
the same role, in order to keep things simple. Another one will be responsible for
more generic tasks, such as installing Vim and running apt-get update.

Directory Structure

We will be using roles to follow the best Ansible practices. This is how our directory
strucutre looks like:

Ansible 39

.

├── playbook.yml

├── roles

│ ├── init

│ │ └── tasks

│ │ └── main.yml

│ └── nginxphp

│ ├── handlers

│ │ └── main.yml

│ ├── tasks

│ │ └── main.yml

│ └── templates

│ └── default.tpl

└── Vagrantfile

Provision Files

We have 5 files - a playbook, two task files, a handler file and a template file
(default.tpl).

playbook.yml
1 ---

2 - hosts: all

3 sudo: true

4 vars:

5 doc_root: /vagrant/web

6 server_name: "{{ ansible_eth1.ipv4.address }}"

7 sys_packages: ['curl', 'vim', 'git']

8 php_packages: ['php5-curl', 'php5-cli']

9 roles:

10 - init

11 - nginxphp

Note the sudo option on line 3. We are telling Ansible to run all the tasks with sudo
- this will save us some time when defining the tasks, since we won’t need to specify
the sudo option for each one.

Ansible 40

The server_name variable is a pre-defined Ansible variable, a fact. Facts are
information derived from other systems, in our case they represent information about
the Guest Machine. These variables are global, you can access them through your
playbooks and through your templates.

YAML and variables
If you start a value with a variable, like we did for the server_name on line
6, you must quote it. This is due to the YAML syntax (the curly bracket is
also used for defining dictionaries in YAML).

The {{ ansible_eth1.ipv4.address }} fact contains the IP address for the eth1
interface. You can find a list with all Ansible facts in their official documentation²⁶.

Why eth1 instead of eth0?
Remember when we talked about networking on Vagrant? Since a private
network with static ip address is required in order to use NFS, this is the
most common network setup. It creates a second interface on the virtual
machine that connects to our private network. Usually, this will be eth1.

roles/init/tasks/main.yml

1 ---

2 - name: Update apt

3 apt: update_cache=yes

4

5 - name: Install Sys Packages

6 apt: pkg={{ item }} state=latest

7 with_items: sys_packages

8

9 - name: Make sure python-software-properties is installed

10 apt: pkg=python-software-properties state=latest

11

12 - name: Add ppa Repository

²⁶http://www.ansibleworks.com/docs/playbooks_variables.html#id17

http://www.ansibleworks.com/docs/playbooks_variables.html#id17
http://www.ansibleworks.com/docs/playbooks_variables.html#id17

Ansible 41

13 apt_repository: repo='ppa:ondrej/php5'

14

15 - name: Update apt

16 apt: update_cache=yes

roles/nginxphp/tasks/main.yml

1 ---

2 - name: Install Nginx

3 apt: pkg=nginx state=latest

4

5 - name: Install php5-fpm

6 apt: pkg=php5-fpm state=latest

7

8 - name: Change default nginx site

9 template: src=files/nginx/default.tpl dest=/etc/nginx/sites-availa\

10 ble/default

11 notify: restart nginx

12

13 - name: Install PHP Packages

14 apt: pkg={{ item }} state=latest

15 with_items: php_packages

roles/nginxphp/handlers/main.yml

1 ---

2 - name: restart nginx

3 service: name=nginx state=restarted

4

5 - name: restart php5-fpm

6 service: name=php5-fpm state=restarted

Ansible 42

roles/nginxphp/templates/default.tpl

1 server {

2 listen 80;

3

4 root {{ doc_root }};

5 index index.html index.php;

6

7 server_name {{ server_name }};

8

9 location / {

10 try_files $uri $uri/ /index.php;

11 }

12

13 error_page 404 /404.html;

14

15 error_page 500 502 503 504 /50x.html;

16 location = /50x.html {

17 root /usr/share/nginx/www;

18 }

19

20 location ~ \.php$ {

21 fastcgi_split_path_info ^(.+\.php)(/.+)$;

22 fastcgi_pass unix:/var/run/php5-fpm.sock;

23 fastcgi_index index.php;

24 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_\

25 name;

26 include fastcgi_params;

27 }

28 }

Puppet
Overview

Puppet is a robust and well-stablished IT automation tool, very popular with devOps
and system administrators. Vagrant supports two different provisioners for Puppet:
Puppet Apply²⁷, which works independently without a master server, and Puppet
Agent²⁸, which requires a Puppet Master. We will be working exclusively with the
Puppet Apply version, because it doesn’t require a server. The directive scripts work
in the same way for both versions.

Puppet was one of the first tools in this fashion, so it clearly inspired newer
automation tools like Chef and Ansible. This also explains why Puppet is nowadays
the most used²⁹ provisioner for Vagrant - with a big and strong community, it’s really
easy to find resources such as tutorials and open source modules on the Internet.

Characteristics

Language Complexity

Puppet uses a custom language for its scripts, based on Ruby. The good point about
it is that you have something very specific and focused in “one job”.

Execution Order

Puppet does not execute the tasks in the same order you define them. You must
explicitly declare dependencies between tasks.

²⁷http://docs.puppetlabs.com/references/3.3.1/man/apply.html
²⁸http://docs.puppetlabs.com/references/3.3.1/man/agent.html
²⁹http://www.erikaheidi.com/2014/01/24/vagrant-usage-research/

http://docs.puppetlabs.com/references/3.3.1/man/apply.html
http://docs.puppetlabs.com/references/3.3.1/man/agent.html
http://docs.puppetlabs.com/references/3.3.1/man/agent.html
http://www.erikaheidi.com/2014/01/24/vagrant-usage-research/
http://docs.puppetlabs.com/references/3.3.1/man/apply.html
http://docs.puppetlabs.com/references/3.3.1/man/agent.html
http://www.erikaheidi.com/2014/01/24/vagrant-usage-research/

Puppet 44

Resources / Community

Puppet (andmore specifically, puppet-apply) is the most popular Vagrant provisioner
nowadays. It was one of the first tools of its kind, so it has a history, and a big
stablished community.

Organization / Modularity

Puppet supports modules and its quite easy to find open source modules for pretty
much anything you want to install, making it easy for you to build complex
provisionings.

Requirements

You don’t need to install any extra package in order to use the puppet-apply

provisioner with Vagrant.

Terminology

The Puppet scripts are calledmanifests. They can be grouped into modules.

The Vagrantfile

We need to define the Puppet provisioner in our Vagrantfile. This is the basic setup,
assuming some default options and setting the modules path:

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "hashicorp/precise64"

4

5 config.vm.network :private_network, ip: "192.168.33.101"

6

7 config.vm.provision :puppet do |puppet|

8 puppet.module_path = "modules"

9 end

Puppet 45

10

11 config.vm.synced_folder "../../testapp", "/vagrant", :nfs => true

12

13 end

This will assume a minimal directory structure with a manifests folder in the same
level as your Vagrantfile, containing a default.pp manifest (the entry point of your
provisioning), as shown below:

.

├── manifests

│ └── default.pp

├── modules

│ └── nginxphp

└── Vagrantfile

Any module shall be placed inside the modules folder.

Other common configuration options for the puppet-apply provisioner are:

Option Description Example Value

puppet.manifests_path Sets manifests path “my_manifests”

puppet.manifest_file Changes main manifest file name “main.pp”

puppet.options Adds command-line flags ”–verbose –debug”
to Puppet

To see more advanced configuration options, check the Vagrant documentation³⁰.

³⁰http://docs.vagrantup.com/v2/provisioning/puppet_apply.html

http://docs.vagrantup.com/v2/provisioning/puppet_apply.html
http://docs.vagrantup.com/v2/provisioning/puppet_apply.html

Puppet 46

Quick Puppet Guide

Resources

Puppet visualizes a system through resources. A resource can be a file (or a directory,
which is treated as a file), a software package, or even a user, for instance. Below is
an example of a package resource. We define resources like this:

package { 'nginx':

ensure => 'installed'

}

Resources usually have a state, in this case represented by “installed”.We are defining
that the package nginx must have the state “installed”, which will cause Puppet to
download and install the mentioned package.

Another example, this time a file resource:

file { "/root/puppet.txt":

ensure => 'present',

content => "vagrant cookbook"

}

This example would create a file named puppet.txt in the /root directory, containing
the string “vagrant cookbook”.

For the complete list of Puppet resource types, consult the official documentation³¹.

Manifests

A Manifest has a collection of resources defining your tasks.

³¹http://docs.puppetlabs.com/references/latest/type.html

http://docs.puppetlabs.com/references/latest/type.html
http://docs.puppetlabs.com/references/latest/type.html

Puppet 47

package { 'nginx':

ensure => 'installed'

}

package { 'php5-fpm':

ensure => 'installed'

}

Variables

We can define and use variables in our manifests, and we also have access to pre-
defined variables containing information about the system - facts - that can be
acessed through manifests and templates. Variables are usually strings or arrays of
strings.

$sys_packages = ['curl', 'vim', 'git']

package { $sys_packages:

ensure => "installed"

}

In the above example, you notice that we can use an array of packages instead of
declaring each package resource separately.

Facts
Facts are pre-defined, global variables containing information about the
system, such as: IP address (from each interface), memory, timezone,
operating system, amongst others. For a complete list of Puppet facts,
check their official documentation³².

³²http://docs.puppetlabs.com/facter/1.6/core_facts.html

http://docs.puppetlabs.com/facter/1.6/core_facts.html
http://docs.puppetlabs.com/facter/1.6/core_facts.html

Puppet 48

Task Ordering

Puppet does not execute tasks in the same order you define them. In the manifest
tasks example, for instance, there’s no guarantee the nginx package will be installed
before the php5-fpm one. If wewant to establish a specific ordering (which is essential
for some tasks) we need to explicitly declare dependencies.

If we want to make sure the nginx package is installed before php5-fpm, we can use
a require on the php5-fpm resource definition:

package { 'nginx':

ensure => 'installed'

}

package { 'php5-fpm':

ensure => 'installed',

require => Package['nginx']

}

There are other ways for dealing with the task ordering in Puppet. We could rewrite
the above snippet for this:

package { 'nginx':

ensure => 'installed',

before => Package['php5-fpm']

}

package { 'php5-fpm':

ensure => 'installed'

}

The task ordering in Puppet is quite complex, but after some practice you start to
understand how it works and how to chain the tasks efficiently. Although these two
methods (require and before) are the most common options for manipulating the
task ordering (and enough for our manifests), there are other methods too. Check
the Puppet official documentation³³ for a more in-depth view of its task ordering.

³³http://docs.puppetlabs.com/learning/ordering.html

http://docs.puppetlabs.com/learning/ordering.html
http://docs.puppetlabs.com/learning/ordering.html

Puppet 49

Modules and Classes

Just as with any object-oriented programming language, classes are used in Puppet to
better organize your code, grouping directives together. A Puppet module is basically
a way to organize classes and files that are related to each other, so we can refer to
them in our main manifest.

A class example:

1 class nginxphp(

2 $php_packages = ['php5-curl','php-cli']

3) {

4 package { ['nginx', 'php5-fpm']:

5 ensure => 'installed'

6 }

7

8 package { $php_packages:

9 ensure => 'installed'

10 }

11 }

We could use this class in our main manifest in the following way:

class { 'nginxphp':

php_packages => ['php-pear','php5-intl']

}

Where the array is an optional argument, and in this case it overwrites the default
values provided in the class.

Modules are a great way for organizing your manifests and make them reusable. If
you prefer, you can also use open source Puppet modules from the Puppet Forge³⁴ or
from Github³⁵ repositories. This can speed up your project setup, but keep in mind

³⁴https://forge.puppetlabs.com/modules
³⁵https://github.com/example42/puppet-modules

https://forge.puppetlabs.com/modules
https://github.com/example42/puppet-modules
https://forge.puppetlabs.com/modules
https://github.com/example42/puppet-modules

Puppet 50

that sometimes you will need to write your own modules, for more customization /
more control over your provisioning.

We are going to write our own (simple) modules, in this way you’ll have a better
comparison between the provisioners. The minimal structure for our nginxphp

module would be:

modules/nginxphp

└── manifests

└── init.pp

The init.pp file must have a class declaration with the same name of the module
(nginxphp).

The module might contains other folders for holding templates and static files.

Working with Templates

Puppet Templates³⁶ support variables and conditionals, and this is very useful to have
more flexible manifests. They are writen using the ERB³⁷ template syntax, which is
part of the Ruby standard library.

Below, a template example:

1 <VirtualHost *:80>

2 ServerAdmin webmaster@localhost

3 DocumentRoot <%= @doc_root %>

4

5 <Directory <%= @doc_root %>>

6 AllowOverride All

7 Require all granted

8 </Directory>

9

10 </VirtualHost>

³⁶http://docs.puppetlabs.com/learning/templates.html
³⁷http://docs.puppetlabs.com/guides/templating.html#erb-template-syntax

http://docs.puppetlabs.com/learning/templates.html
http://docs.puppetlabs.com/guides/templating.html#erb-template-syntax
http://docs.puppetlabs.com/learning/templates.html
http://docs.puppetlabs.com/guides/templating.html#erb-template-syntax

Puppet 51

This is an Apache vhost template. We used a variable to define the DocumentRoot, so
we can have more flexibility. The variable should be defined in the main manifest,
before including the template.

In order to apply this template, you would create a file resource as follows:

file { "/etc/apache2/sites-available/000-default.conf":

ensure => 'present',

content => template("apache/vhost.conf.erb"),

require => Package['apache2'],

}

Templates are placed in a templates directory inside the module, in the same level
of the manifests folder. For an apache module using this template, we would have
a directory structure like this:

modules/apache

├── manifests

│ └── init.pp

└── templates

└── vhost.conf.erb

The Modules Folder
Remember we set a puppet.module_path variable in our Vagrantfile? This
is the folder which will hold all your puppet modules. It can be placed
anywhere in your project tree, you just need to set the correct value in the
Vagrantfile.

Defining Services

By defining services, we have an easyway for schedulling a service restart - necessary
when we make changes to configuration files, for instance.

In Puppet, we define a service like this:

Puppet 52

service { 'apache2':

ensure => running,

enable => true,

}

To notify a service and schedule a restart, we just need to add the “notify” option,
providing the service we defined before as parameter. Taking the Apache template
example:

file { "/etc/apache2/sites-available/000-default.conf":

ensure => 'present',

content => template("apache/vhost.conf.erb"),

require => Package['apache2'],

notify => Service['apache2'],

}

Provisioning a PHP Web Server

Let’s put it all together and get our provisioning for a PHP Web Server using Nginx
+ php5-fpm . In order to have our code organized but not too verbose, we are going
to create one simple module called nginxphp, which will be responsible for setting
up the web server with nginx and php5-fpm.

Directory Structure

The whole provisioning uses only 3 files (one template and two manifests), but they
need to be placed into a specific directory structure.

Puppet 53

.

├── manifests

│ └── default.pp

├── modules

│ └── nginxphp

│ ├── manifests

│ │ └── init.pp

│ └── templates

│ └── vhost.erb

└── Vagrantfile

Provision Files

Following, the two manifests we are going to use, and the template for setting up
Nginx default website. The main.pp is the entry point of the provisioning, and the
nginxphp class manifest is named init.pp.

puppet/manifests/default.pp

1 Exec { path => ["/bin/", "/sbin/" , "/usr/bin/", "/usr/sbin/"] }

2

3 $system_packages = ['vim', 'curl', 'git']

4 $php_packages = ['php5-cli', 'php5-curl']

5

6 # first thing must be apt-get update

7 exec { 'apt-get update':

8 command => 'apt-get update'

9 }

10

11 package { 'python-software-properties':

12 ensure => "installed",

13 require => Exec['apt-get update']

14 }

15

16 exec { 'add-repository':

17 command => "add-apt-repository ppa:ondrej/php5 -y",

Puppet 54

18 require => Package['python-software-properties'],

19 }

20

21 package { $system_packages:

22 ensure => "installed",

23 require => Exec['apt-get update'],

24 }

25

26 exec { 'apt-update-refresh':

27 command => 'apt-get update',

28 require => Exec['add-repository'],

29 before => Class['nginxphp']

30 }

31

32 class { 'nginxphp':

33 server_name => $ipaddress_eth1,

34 doc_root => '/vagrant/web',

35 php_packages => $php_packages,

36 }

The first Exec is capitalized because it’s in fact a reference to an existent, internal
exec resource. This line customizes the bin paths so we don’t need to provide full
command paths in our exec resources (as in the apt-get update command).

$ipaddress_eth1
You are probably wondering where this variable came from. This is a pre-
defined variable, a fact, containing the IP address for the eth1 network
interface (as we did with Ansible).

Puppet 55

puppet/modules/nginxphp/manifests/init.pp

1 class nginxphp(

2 $server_name = 'localhost',

3 $doc_root = '/vagrant',

4 $php_packages = ['php5-curl', 'php5-cli']

5) {

6

7 package { ['nginx', 'php5-fpm']:

8 ensure => 'installed'

9 }

10

11 service { 'nginx':

12 ensure => running,

13 enable => true,

14 }

15

16 service { 'php5-fpm':

17 ensure => running,

18 enable => true,

19 }

20

21 file { "/etc/nginx/sites-available/default":

22 ensure => 'present',

23 content => template("nginxphp/vhost.erb"),

24 require => Package['nginx'],

25 notify => Service['nginx'],

26 }

27

28 package { $php_packages:

29 ensure => "installed"

30 }

31

32 }

Puppet 56

puppet/modules/nginxphp/templates/nginx/vhost.erb

1 server {

2 listen 80;

3

4 root <%= @doc_root %>;

5 index index.html index.php;

6

7 server_name <%= @server_name %>;

8

9 location / {

10 try_files $uri $uri/ /index.php;

11 }

12

13 error_page 404 /404.html;

14

15 error_page 500 502 503 504 /50x.html;

16 location = /50x.html {

17 root /usr/share/nginx/www;

18 }

19

20 location ~ \.php$ {

21 fastcgi_split_path_info ^(.+\.php)(/.+)$;

22 fastcgi_pass unix:/var/run/php5-fpm.sock;

23 fastcgi_index index.php;

24 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi\

25 _script_name;

26 include fastcgi_params;

27 }

28 }

Chef
Overview

Chef is an IT Automation tool that was strongly influenced by Puppet, but with
some important differences. The task execution order, for instance, is sequential, not
requiring explicit dependency declaration as in Puppet. This was enough reason for
many people to migrate from Puppet to Chef in the last years.

Vagrant supports two different Chef provisioners:Chef Solo, the open source version
of Chef that does not require a server, andChef Client, which will connect as a node
in a Chef Server. We will be working with the Chef Solo provisioner, since it’s open
source and does not require a server. The provisioning scripts work in the same way
for both versions.

Chef is a very powerful and quite complex automation tool - using (real) Ruby as
main script language; it’s the second most used Vagrant provisioner nowadays, and
the first most used by Ruby developers.

Characteristics

Language Complexity

Chef uses Ruby for its scripts, with an extended DSL for specific resources. This gives
a lot of power to Chef, but to take advantage of that you will need to get familiar
with Ruby. Certainly increases the learning curve if you are new to the language.

Execution Order

Chef execute the tasks in the same order you define them. This a major difference
between Chef and Puppet.

Chef 58

Resources / Community

Chef has a big community. It’s the second most popular Vagrant provisioner, and the
first for Ruby developers.

Organization / Modularity

In Chef, we organize our directive scripts into Cookbooks. Chef provides a large
collection of cookbooks in their official website.

Requirements

You don’t need to install any extra package in order to use Chef Solo with Vagrant.

Terminology

Tasks are called Recipes, and a collection of tasks (the equivalent of a Puppet module)
is called a Cookbook.

The Vagrantfile

By default, Vagrant will look for cookbooks in a directory “cookbooks” at the same
level as the Vagrantfile. In this scenario, we just need to add the cookbooks we want
to run:

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "hashicorp/precise64"

4

5 config.vm.network :private_network, ip: "192.168.33.101"

6

7 config.vm.provision "chef_solo" do |chef|

8 chef.add_recipe "main"

9 end

10

Chef 59

11 config.vm.synced_folder "../../testapp", "/vagrant", :nfs => true

12

13 end

This will run a cookbook called “main”, and our directory structure should look like
this:

.

├── cookbooks

│ └── main

│ ├── recipes

│ │ └── default.rb

└── Vagrantfile

However, if you want to use a different name for your cookbooks directory, you can
specify it in your Vagrantfile by adding this line inside the Chef definition block:

specifying cookbooks path

1 chef.cookbooks_path = "my_cookbooks"

Quick Chef Guide

You can use pretty much anything from Ruby inside recipes, from variables to loops
and conditionals. We will not focus on the Ruby language here, since it’s not our
objective; let’s check the important conventions and common practices for Chef
cookbooks, for those who aren’t Ruby developers and want a quick start for using
Chef with Vagrant.

Resources

Aswell as in Puppet, in Chef we build our provision by declaring resources. Resources
are defined in Recipes, and grouped into Cookbooks.

Example of a package resource definition:

Chef 60

apt_package "nginx" do

action :install

end

Chef has an extensive list of resource types. The apt_package, as the name suggests,
is used to manage packages in Debian and Ubuntu platforms.

Another example, now a file resource definition:

file "/root/chef.txt" do

content "vagrant cookbook"

action :create

end

This example would create a file named chef.txt in the /root directory, containing
the string “vagrant cookbook”.

For the complete list of Chef resource types, consult the official documentation³⁸.

Cookbooks

Cookbooks are like Puppet modules: basically a collection of files with a common
scope - recipes and templates to install and configure nginx, for instance. The
minimal structure will have a “recipes” directory with a default.rb recipe inside it
(like the init.pp file in Puppet modules) - as following:

cookbooks/nginxphp

├── recipes

│ └── default.rb

Including Cookbooks

We can include cookbooks from inside recipes - this is great to create a central
entry point (a cookbook named “main” for instance, setting up variables and default
definitions) and just include what we need, from more generic cookbooks (nginx,
php, etc) that can be easily reused.

This is how you include a cookbook from a recipe:

³⁸http://docs.opscode.com/resource.html

http://docs.opscode.com/resource.html
http://docs.opscode.com/resource.html

Chef 61

include_recipe 'nginxphp'

Variables

We can define and use variables in our cookbooks, in order to make our recipes more
versatile. They are usually strings or arrays of strings, as in the example below:

packages = ['curl','git','vim']

packages.each do |p|

apt_package p do

action :install

end

end

We used a Ruby each loop to define each package resource, by looping through the
array packages.

Note that the packages variable is just a Ruby variable, with a local scope. If you
want to share this data with other cookbooks or with templates, (making it global)
you have to create an attribute.

Attributes

Attributes store data from the node (in our case, the node is the VM itself). Chef
generates some automatic attributes with information about the system - IP address,
hostname - like the facts in Puppet and Ansible; you can also define your own
attributes in your cookbooks, and this is very useful to share data between your
recipes.

Attributes are stored in a node object (just think about it as a multi-dimensional
array) that is globally available. Taking the previous example (using the packages
variable), we could make the list of packages global by setting an attribute with that
value:

Chef 62

node.default['system']['packages'] = ['curl','git','vim']

In order to use this attribute from a recipe, you would have something like this:

node['system']['packages'].each do |p|

apt_package p do

action :install

end

end

You are probably wonderingwhywe skipped the “.default” part when referencing the
attribute. Chef has different types of attributes, and the type is basically a precedence
definition. For instance, the normal type has a higher precedence than a default type.

When defining an attribute, youmust choose a type. Then Chef will figure out which
value it should return when you request the attribute directly - you might want to
have different values with different precedences.

The default type has a lower precedence, and it’s the recommended type to be used
in a cookbook. If you want to learn more about the different attribute types and
which automatic attributes are available, consult the official documentation³⁹.

Working with Templates

This is an Apache vhost template for Chef:

³⁹http://docs.opscode.com/chef_overview_attributes.html

http://docs.opscode.com/chef_overview_attributes.html
http://docs.opscode.com/chef_overview_attributes.html

Chef 63

1 <VirtualHost *:80>

2 ServerAdmin webmaster@localhost

3 DocumentRoot <%= @doc_root %>

4

5 <Directory <%= @doc_root %>>

6 AllowOverride All

7 Require all granted

8 </Directory>

9

10 </VirtualHost>

As you can notice, Chef templates are exactly the same as Puppet templates (ERB,
from standard Ruby). The only thing that will change is the way you make variables
and attributes available inside the template.While in Puppet you have direct access to
facts and variables defined in the manifest, in Chef you need to provide the variables
by adding them in the template resource definition.

To apply the template, we would have a resource like this:

template "/etc/apache2/sites-available/000-default.conf" do

source "vhost.conf.erb"

variables({

:doc_root => node['apache']['doc_root']

})

action :create

end

Note that we need to provide the variables that are going to be used inside the
template. In this example, we are using a custom attribute that should be previously
defined.

The template file (vhost.erb) must be placed in a specific directory structure inside
your cookbook:

Chef 64

cookbooks/apache

├── recipes

│ └── default.rb

└── templates

└── default

└── vhost.conf.erb

Why a “default” folder?

It’s similar to what happens with the attributes: if your cookbook is supposed to work
with different operating systems, you might overwrite the defaults by having some
OS-specific or host-specific templates. However, as we are working with Linux and
more specifically Ubuntu, we don’t need to worry about this - just stick with the
default.

Defining Services

Just like with Puppet, in Chef we define a Service resource to manage services.

service "apache2" do

action [:enable, :start]

end

To restart the Apache service, taking as example the previous task of applying the
Apache vhost template, we would have the following resource definition:

Chef 65

template "/etc/apache2/sites-available/000-default.conf" do

source "vhost.conf.erb"

variables({

:doc_root => node['apache']['doc_root']

})

action :create

notifies :restart, resources(:service => "apache2")

end

Provisioning a PHP Web Server

Now let’s create our provision. As with the other provisioners, we’ll have anginxphp
cookbook to install our web server, and an entry point to define common settings.

Directory Structure

.

├── cookbooks

│ ├── main

│ │ └── recipes

│ │ └── default.rb

│ └── nginxphp

│ ├── recipes

│ │ └── default.rb

│ └── templates

│ └── default

│ └── vhost.erb

└── Vagrantfile

Scripts

Chef 66

cookbooks/main/recipes/default.rb

1 node.default['system']['packages'] = ['curl','git','vim']

2

3 node.default['nginx']['server_name'] = "192.168.33.101"

4 node.default['nginx']['doc_root'] = "/vagrant/web"

5

6 node.default['php']['packages'] = ['php5-curl','php5-cli']

7

8 execute "apt-get update" do

9 command "apt-get update"

10 end

11

12 apt_package "python-software-properties" do

13 action :install

14 end

15

16 execute "add-apt-repository" do

17 command "add-apt-repository ppa:ondrej/php5"

18 end

19

20 execute "apt-get update" do

21 command "apt-get update"

22 end

23

24 node['system']['packages'].each do |p|

25 apt_package p do

26 action :install

27 end

28 end

29

30 include_recipe 'nginxphp'

Chef 67

Missing Facts
You might be wondering why we didn’t use a Fact (or automatic attribute,
as they call in Chef) for the server_name, as we did before with Ansible
and Puppet. Turns out Chef doesn’t have an automatic attribute for the
eth1 IP address, so the easiest way for setting up the template is by using
a static value with the same IP address we used on the Vagrantfile.

cookbooks/nginxphp/recipes/default.rb

1 ["nginx", "php5-fpm"].each do |p|

2 apt_package p do

3 action :install

4 end

5 end

6

7 service "nginx" do

8 action [:enable, :start]

9 end

10

11 service "php5-fpm" do

12 action [:enable, :start]

13 end

14

15 template "/etc/nginx/sites-available/default" do

16 source "vhost.erb"

17 variables({

18 :doc_root => node['nginx']['doc_root'],

19 :server_name => node['nginx']['server_name']

20 })

21 action :create

22 notifies :restart, resources(:service => "nginx")

23 end

24

25 node['php']['packages'].each do |p|

26 apt_package p do

27 action :install

Chef 68

28 end

29 end

cookbooks/nginxphp/templates/default/vhost.erb

1 server {

2 listen 80;

3

4 root <%= @doc_root %>;

5 index index.html index.php;

6

7 server_name <%= @server_name %>;

8

9 location / {

10 try_files $uri $uri/ /index.php;

11 }

12

13 error_page 404 /404.html;

14

15 error_page 500 502 503 504 /50x.html;

16 location = /50x.html {

17 root /usr/share/nginx/www;

18 }

19

20 location ~ \.php$ {

21 fastcgi_split_path_info ^(.+\.php)(/.+)$;

22 fastcgi_pass unix:/var/run/php5-fpm.sock;

23 fastcgi_index index.php;

24 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi\

25 _script_name;

26 include fastcgi_params;

27 }

28 }

Pro Tips
This chapter covers some simple Pro Tips that will help you build better Vagrant
projects.

Update First!

It’s very important to run an apt-get update before starting any package installa-
tion. This must be the first thing in your provisioning scripts! It’s common to face
some really annoying problems when you install packages from outdated reposito-
ries. You must remember this specially when using Puppet, because sometimes you
might not even know that the packages are being installed before the apt-get update

- since the task ordering is tricky with this automation tool.

NFS Performance Improvement

Using NFS will improve overall performance on synchronized folders, but it’s a well-
known fact that things can get really slow if you have a lot of writing operations
on disk - like when using cache and / or saving logs for each request made to the
application running on the VM. This is a common problem for Symfony applications,
for instance - the app can be somewhere between 2 to 5 times slower when running
on Vagrant, against a local server environment.

The best thing to do in such situations is to move this kind of content outside the
synchronized folders, and, when possible, use sharedmemory - faster because it’s not
on disk. For Symfony applications, you can simply edit the AppKernel and overwrite
two methods - getCacheDir() and getLogDir() :

Pro Tips 70

app/AppKernel.php

1 public function getCacheDir()

2 {

3 if (in_array($this->environment, array('dev', 'test'))) {

4 return '/dev/shm/cache/' . $this->environment;

5 }

6

7 return parent::getCacheDir();

8 }

9

10 public function getLogDir()

11 {

12 if (in_array($this->environment, array('dev', 'test'))) {

13 return '/dev/logs';

14 }

15

16 return parent::getLogDir();

17 }

This will overwrite the default cache and logs directory definitions, only when the
environment is either dev or test. It will use /dev/shm , a shared memory filesystem
(very similar to /tmp).

This “trick” makes the application run even a little bit faster on the VM than in
your default local environment. The solution was originally published by Benjamin
Eberlei in his blog⁴⁰.

You’ll need to create the sub-directories inside /dev/shm and set the right
permissions, through your provisioning scripts.

⁴⁰http://www.whitewashing.de/2013/08/19/speedup_symfony2_on_vagrant_boxes.html

http://www.whitewashing.de/2013/08/19/speedup_symfony2_on_vagrant_boxes.html
http://www.whitewashing.de/2013/08/19/speedup_symfony2_on_vagrant_boxes.html

Pro Tips 71

Permission Problems

Sometimes you can face permission problems in the synced folders, when working
from the Host machine and performing commands inside the Guest machine. A
simple way for fixing this is changing the web server user and group to vagrant,
on the Guest machine.

On Ubuntu boxes, this can be easily done with a grep/sed command, for both Apache
and Nginx web servers. Below you can find examples on how to do this for PHP web
servers on the three provisioners we covered in this book.

Apache2+PHP

You’ll need to change the Apache user and group.

Ansible

1 - name: Check default apache user

2 shell: grep -c 'www-data' /etc/apache2/envvars

3 register: apacheuser_check

4 ignore_errors: yes

5

6 - name: Change default apache user

7 shell: sed -i 's/www-data/vagrant/' /etc/apache2/envvars

8 when: apacheuser_check > 0

9 notify: restart apache2

Ansible needs a helper task in order to perform the conditional task. We
register a variable with the command output, and tell Ansible to ignore if
the result is 0 (in such case, it will not execute the second task).

Pro Tips 72

Puppet

1 exec { 'ApacheUserGroup':

2 command => "sed -i 's/www-data/vagrant/' /etc/apache2/envvars",

3 onlyif => "grep -c 'www-data' /etc/apache2/envvars",

4 notify => Service['apache2']

5 }

Chef

1 execute 'ApacheUserGroup' do

2 command "sed -i 's/www-data/vagrant/' /etc/apache2/envvars"

3 only_if "grep -c 'www-data' /etc/apache2/envvars",

4 notifies :restart, resources(:service => "apache2")

5 end

Nginx+PHP5-FPM

Usually, you’ll need to change only the php5-fpm user and group.

Ansible

1 - name: Check default php5-fpm user

2 shell: grep -c 'www-data' /etc/php5/fpm/pool.d/www.conf

3 register: phpuser_check

4 ignore_errors: yes

5

6 - name: Change default php5-fpm user

7 shell: sed -i 's/www-data/vagrant/' /etc/php5/fpm/pool.d/www.conf

8 when: phpuser_check > 0

9 notify: restart php5-fpm

Pro Tips 73

Puppet

1 exec { 'PHPUserGroup':

2 command => "sed -i 's/www-data/vagrant/' /etc/php5/fpm/pool.d/ww\

3 w.conf",

4 onlyif => "grep -c 'www-data' /etc/php5/fpm/pool.d/www.conf",

5 notify => Service['php5-fpm']

6 }

Chef

1 execute 'PHPUserGroup' do

2 command "sed -i 's/www-data/vagrant/' /etc/php5/fpm/pool.d/www.c\

3 onf"

4 only_if "grep -c 'www-data' /etc/php5/fpm/pool.d/www.conf"

5 notifies :restart, resources(:service => "php5-fpm")

6 end

Debugging

If you get errors during the provision process, it might be a good idea to increase the
verbosity of the provisioner. We can do this by editing our Vagrantfile and adding
an extra option to the provision block:

Increasing verbosity: Ansible

1 config.vm.provision "ansible" do |ansible|

2 ansible.playbook = "playbook.yml"

3 ansible.verbose = 'vvv' #accepted values: from 'v' to 'vvvv'

4 end

Pro Tips 74

Increasing verbosity: Puppet

1 config.vm.provision :puppet do |puppet|

2 puppet.module_path = "modules"

3 puppet.options = "--verbose --debug"

4 end

Increasing verbosity: Chef

1 config.vm.provision "chef_solo" do |chef|

2 chef.add_recipe "main"

3 chef.log_level = :debug

4 end

Login, Fix, Automate

If the provision runs but the result is not working as expected, or when you need to
setup something very specific that you are not familiar with, its a good idea to log
in, explore and fix things before automating.

Build your provision step by step. Use vagrant provision after changing the
provision scripts, this will apply only what you changed. When you feel confident
that everything is working, use vagrant destroy to start from scratch. It will clear all
the previous changes to the box, and when you run vagrant up again the provision
will be executed from the start.

VirtualBox Guest Additions

In some cases, it might be necessary to install / update theVirtualBox Guest Additions
- a package that enables additional features on the Guest machine. Usually, it’s
already present on base boxes, but as an outdated version. If you are having trouble
with shared folders and NFS, it might be a good idea to do it. There’s a built-in
Vagrant plugin for automatically install the Guest Additions, you just need to run:

Pro Tips 75

1 vagrant plugin install vagrant-vbguest

However, by default this plugin will try to auto update the Guest Additions each time
you reboot the machine, which can be annoying. You can disable the auto-update,
but in this case you’ll need to run the update manually. For more information about
this plugin usage and settings, see the vbguest plugin documentation⁴¹.

⁴¹https://github.com/dotless-de/vagrant-vbguest

https://github.com/dotless-de/vagrant-vbguest
https://github.com/dotless-de/vagrant-vbguest

Advanced Topics
This chapter covers some advanced topics for more specific Vagrant usages.

Running Multiple Virtual Machines

With Vagrant, you can easily run multiple Virtual Machines using a single Vagrant-
file. There are many use cases for this, but usually this environment is created to
represent a real-life application that uses multiple servers - like separated database
and web servers, for instance.

You can also use this functionality to easily benchmark different environments or to
test different provisioners.

The Vagrantfile

Below is an example of a Vagrantfile setting up multiple virtual machines. This will
configure a web server and a database server:

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "hashicorp/precise64"

4

5 config.vm.synced_folder "./", "/vagrant"

6

7 config.vm.define "web" do |web|

8

9 web.vm.network :private_network, ip: "192.168.33.101"

10

11 web.vm.provision "ansible" do |ansible|

12 ansible.playbook = "ansible/playbook_webserver.yml"

Advanced Topics 77

13 end

14

15 web.vm.synced_folder "./myapp/", "/vagrant", :nfs => true

16 end

17

18 config.vm.define "db" do |db|

19

20 db.vm.network :private_network, ip: "192.168.33.102"

21

22 db.vm.provision "ansible" do |ansible|

23 ansible.playbook = "ansible/playbook_dbserver.yml"

24 end

25 end

26

27 end

In order to define multiple VMs in the Vagrantfile, we use the config.vm.define

method call. This blockworks exactly in the sameway as themain Vagrant.configure
block, while the server identifiers - web and db - are the equivalent of the config
object in the main block. You can use the same methods (vm.network, vm.provision,
vm.box etc) to define machine-specific settings.

The values inside the config.vm.define block will overwrite the default values that
you setup with the config object - look at the synced_folder definition: there’s a
default value in the top of the Vagrantfile, but for the web server we overwrite it in
order to serve the application files.

We used the same box for both servers, by defining it only once in the main section.
If we wanted to use a different box for the database server, for instance, we would
only need to overwrite the box values (vm.box, vm.box_url) inside the db block.

Controlling Multiple VMs

When you have a Vagrantfile with multiple Virtual Machines defined, the default
behavior of Vagrant is to apply the commands to all the machines. So when you run
vagrant up, all machines defined in the Vagrantfile will be initialized, one at a time,
in the order you defined them.

Advanced Topics 78

To control the machines individually, you just need to add the machine identifier to
the command. For instance, considering the above Vagrantfile, if we wanted to boot
only the web server, we would run:

$ vagrant up web

You can even use a regular expression to turn on a group of machines. Imagine you
have a group of 10 database servers, with similar names like: data1, data2, data3 (…)
data10.

To turn on the machines from 1 to 5, you could simply run:

$ vagrant up /data[1-5]/

Provisioning VPSs on cloud services

Vagrant has some special providers that can create “real” servers on Digital Ocean,
Amazon AWS and other cloud services. The process involves installing a plugin and
adding some required options to the provider block on the Vagrantfile, usually setting
SSH keys and service credentials. Let’s see howwe can create a Digital Ocean droplet
with the Ansible provision we created before.

Using the Digital Ocean Provider

First we need to install the Digital Ocean provider:

$ vagrant plugin install vagrant-digitalocean

If you don’t have generated SSH keys yet, do it now - use the defaults and leave the
passphrase blank.

Advanced Topics 79

$ cd ~/.ssh

$ ssh-keygen -t rsa

For more detailed instructions, check this link⁴² (steps 1 and 2).

Now, log in to your Digital Ocean account to generate your API key. Go to theAPI⁴³
tab and click on the “Create” link. We’re going to use both the Client ID and this API
key inside our Vagrantfile.

Following, an example of a Vagrantfile using the Digital Ocean provider, and the
Ansible provision we used before (Nginx+PHP5-FPM).

The box used is provided by the plugin creators, and it’s special for the Digital Ocean
provider. It doesn’t have an operating system, aswith other boxeswe are used towork
with. In order to choose which operating system will be used in this box, you’ll have
to specify an option inside the provider block, in the Vagrantfile.

You need to fill in your Digital Ocean Client ID and API Key. You can also choose
which image and region youwant to use when creating your droplet. In this example,
we are going to use a Ubuntu 14.04 x64 droplet in the New York 2 region.

To see the complete list of configuration options and features of the Digital Ocean
provider, have a look at their Github repository⁴⁴.

Vagrantfile

1 Vagrant.configure("2") do |config|

2

3 config.vm.box = "digital_ocean"

4 config.vm.box_url = "https://github.com/smdahlen/vagrant-digital\

5 ocean/raw/master/box/digital_ocean.box"

6

7 config.ssh.private_key_path = "~/.ssh/id_rsa"

8

9 config.vm.provider :digital_ocean do |provider|

10 provider.token = 'YOUR TOKEN'

⁴²https://www.digitalocean.com/community/articles/how-to-set-up-ssh-keys--2
⁴³https://cloud.digitalocean.com/api_access
⁴⁴https://github.com/smdahlen/vagrant-digitalocean

https://www.digitalocean.com/community/articles/how-to-set-up-ssh-keys--2
https://cloud.digitalocean.com/api_access
https://github.com/smdahlen/vagrant-digitalocean
https://www.digitalocean.com/community/articles/how-to-set-up-ssh-keys--2
https://cloud.digitalocean.com/api_access
https://github.com/smdahlen/vagrant-digitalocean

Advanced Topics 80

11 provider.image = 'Ubuntu 14.04 x64'

12 provider.region = 'nyc2'

13 provider.size = '512mb'

14 end

15

16 config.vm.provision "ansible" do |ansible|

17 ansible.playbook = "ansible/playbook.yml"

18 end

19

20 config.vm.synced_folder "../testapp", "/vagrant"

21

22 end

When using a provider other than VirtualBox, you must specify it when running
vagrant up. For the Digital Ocean provider, you’ll use:

$ vagrant up --provider=digital_ocean

And the output produced by Vagrant will be similar to this:

Bringing machine 'default' up with 'digital_ocean' provider...

[default] Using existing SSH key: Vagrant

[default] Creating a new droplet...

[default] Assigned IP address: 188.226.159.108

[default] Rsyncing folder: /media/export/Projects/vagrantcookbook/te\

stapp/ => /vagrant...

[default] Running provisioner: ansible...

PLAY [all] **

GATHERING FACTS ***

ok: [default]

TASK: [init | Update apt] ***

Advanced Topics 81

ok: [default]

TASK: [init | Install Sys Packages] *******************************

changed: [default] => (item=curl,vim,git)

TASK: [init | make sure python-software-properties is installed] **

changed: [default]

TASK: [init | Add ppa Repository] *********************************

changed: [default]

TASK: [init | Update apt] ***

ok: [default]

TASK: [nginxphp | Install Nginx] **********************************

changed: [default]

TASK: [nginxphp | Install php5-fpm] *******************************

changed: [default]

TASK: [nginxphp | Change default nginx site] **********************

changed: [default]

TASK: [nginxphp | Install PHP Packages] ***************************

changed: [default] => (item=php5-curl,php5-cli)

NOTIFIED: [restart nginx] ***

changed: [default]

PLAY RECAP **

default : ok=11 changed=8 unreachable=0 failed=0 \

Advanced Topics 82

Try this example
This functional example is available on Github⁴⁵, you just need to edit the
Vagrantfile and add your Digital Ocean credentials.

Note that we don’t define a network - the provider will take care of this step and
output the assigned IP address you got. The synced folder will be rsynced to the
droplet. After the droplet is successfully created, the provision will run.

If you make any changes to the provision scripts or the synced files, you can just
run vagrant provision and, as expected for a local VM, the droplet state will be
updated.

ProTip
If you notice that the droplet is being created but the provision is not
working, increase the verbosity of the provisioner to check what is going
on.

Ansible SSH errors
If you destroy and create the droplet multiple times, you will probably get
the same IP address each time you run Vagrant. The Host verification key
will change for that IP, this will make SSH throw an error and the Ansible
provision won’t run). In such case, you’ll have to remove the stored key
from your known_hosts.

Custom Boxes

In some cases, when you need to provision complex environments, or when you can’t
“afford” spending time and / or bandwidth downloading a lot of packages, building
a custom box can be a good solution. You just need to keep in mind that the packages

⁴⁵https://github.com/erikaheidi/vagrantcookbook/tree/master/provider_digitalocean

https://github.com/erikaheidi/vagrantcookbook/tree/master/provider_digitalocean
https://github.com/erikaheidi/vagrantcookbook/tree/master/provider_digitalocean

Advanced Topics 83

can get outdated easily, so you’ll eventually need to update the system and rebuild
the box.

The easiest way for doing so is by reusing an existent base box - you can simply
customize it to your needs and repackage the box using Vagrant. Creating a box
from the ground is also possible, but it’s a slightly complex process since you have
to meet some very specific requirements. Below you will find instructions on how to
repackage a VirtualBox box.

Repackaging a box

Creating a box from an existent VM is quite easy. Let’s first create a directory to
build and save our custom box.

$ mkdir custombox

$ cd custombox

Now we need to import the base box we want to use, if it’s not already present on
the system. For a list of current imported boxes, run:

$ vagrant box list

If the box you want to use as base is not already imported, you’ll need to import it
now. For Vagrant >= 1.5, you can use any box from the Vagrant Cloud. In order to
add a box from the Vagrant Cloud, run:

$ vagrant box add hashicorp/precise64

If you are using a version prior to 1.5, you’ll need to provide also the box URL:

$ vagrant box add precise64 http://files.vagrantup.com/precise64.box

Now let’s initialize a basic Vagrantfile for this box. This is just to make it easier for us
to find out the VMname - normally Vagrant uses an auto-generated one, based on the
folder name and the current timestamp. We’ll need this identifier when repacking.

Advanced Topics 84

$ vagrant init precise64

Edit the generated Vagrantfile and add this customization:

config.vm.provider "virtualbox" do |v|

v.name = "my_custom_vm"

end

This will setup the box name, so we can easily identify it.

Currently active VMs
To see which VMs are currently active on VirtualBox and in which state
(running, powered off, suspended), you can just open the GUI and check
the list on the left. The name showed there is the name you’ll need for the
repack.

You can now run vagrant up to turn on the machine, then login with vagrant ssh

and proceed with your customizations. When you are done with the box, you just
need to run:

$ vagrant package --base my_custom_vm

This command will generate a new box file named package.box in the current
directory. To test the new box, repeat the previous process of adding a new box:

$ vagrant box add custombox package.box

Now you can use the box custombox in any Vagrantfile - it will only be available in
your system, naturally. If other people are supposed to use this box, you’ll need to
make it accessible in some way that Vagrant can download it.

Advanced Topics 85

Sharing boxes in the Vagrant Cloud

Public boxes can be shared for free in the Vagrant Cloud, however the free account
doesn’t allow the upload of boxes. In this case, you should host your .box file in some
other web-accessible location, and provide the link to this file, when including the
box in the Vagrant Cloud. The Vagrant Cloud⁴⁶ has some special plans that enable
the upload for boxes, including private ones.

⁴⁶https://vagrantcloud.com/pricing

https://vagrantcloud.com/pricing
https://vagrantcloud.com/pricing

Vagrant Share
Vagrant 1.5 came with a very useful new feature, Vagrant Share. It provides an easy
way for sharing your Vagrant environment with people around the world. For the
HTTP Share, they don’t even need to have Vagrant installed in order to access your
environment. This is extremely helpful for testing applications before they go live,
and also for experimenting with APIs and web hooks.

In order to use the Vagrant Share functionality, you need to have an account in the
Vagrant Cloud. You will be asked to log in via command line, before sharing your
environment.

Logging In

The first thing you need to do in order to use Vagrant Share is to create an account
at the Vagrant Cloud⁴⁷. Once you did that, go to your Vagrant project directory and
log in, by running:

$ vagrant login

Log in by providing your username or email and password. When you see the
message “You're now logged in!” you are good to go ahead.

Sharing your Environment

The command vagrant share will connect you to the Vagrant Cloud and generate
a random, temporary domain name where your virtual machine can be reached
through the Internet. Direct connections are only allowed for port 80, however, as
we are going to see in a few moments, you can connect with other ports in a remote
virtual machine by using vagrant connect.

⁴⁷https://vagrantcloud.com/

https://vagrantcloud.com/
https://vagrantcloud.com/

Vagrant Share 87

HTTP Share

By default, when running vagrant share, Vagrant will provide you with a URL
that can be shared with anyone over the Internet. They don’t need to have Vagrant
installed in order to access the web server running in your Vagrant environment.

To run the HTTP Share, you just need to execute:

$ vagrant share

And you will see an output similar to this:

==> default: Detecting network information for machine...

default: Local machine address: 192.168.33.101

default: Local HTTP port: 80

default: Local HTTPS port: disabled

==> default: Checking authentication and authorization...

==> default: Creating Vagrant Share session...

default: Share will be at: sizzling-warthog-9529

==> default: Your Vagrant Share is running! Name: sizzling-warthog-9\

529

==> default: URL: http://sizzling-warthog-9529.vagrantshare.com

This command will keep running until you give it an exit sign. As you can see,
Vagrant generates a random name for your environment. With the Vagrant Cloud in
the middle, any request to port 80 of this domain will be forwarded to your virtual
machine (port 80, web server).

If you access your account at the Vagrant Cloud, and go to the Shares⁴⁸ menu, you’ll
notice that all your shares are listed there, including the ones that already expired.
By default, Vagrant sets an expire limit of 1 hour for each share.

Publicly accessible
The URL provided by the HTTP share can be accessed by anyone who
knows it. Be careful if your application shows up sensitive information.

⁴⁸https://vagrantcloud.com/shares

https://vagrantcloud.com/shares
https://vagrantcloud.com/shares

Vagrant Share 88

Disabling the HTTP Share

If you want to disable this functionality of Vagrant Share, you need to provide an
extra flag to the share command:

$ vagrant share --disable-http

By disabling the HTTP Share, your environment will only be accessible via vagrant
connect.

SSH Share

The vagrant share command will make only port 80 publicly available for the
outside; for instance, you won’t be able to SSH directly to that temporary domain
name Vagrant gave you. But if you use Vagrant and the Vagrant Cloud as a
middleware, you can connect to any port on the remote virtual environment, by
using vagrant connect. We are going to talk more about vagrant connect in a few
moments.

The SSH Share is a more secure way for enabling SSH access via vagrant connect.
When you run vagrant share with the SSH option, a new SSH keypair will be
generated, valid only for that share (it’s discarded afterwards). You can even set a
limit for one unique access using that key.

In order to enable the SSH Share, you just need to provide a --ssh flag when running
vagrant share:

$ vagrant share --ssh

And the output will be similar to this:

Vagrant Share 89

==> default: Detecting network information for machine...

default: Local machine address: 192.168.33.101

default: Local HTTP port: 80

default: Local HTTPS port: disabled

default: SSH Port: 22

==> default: Generating new SSH key...

default: Please enter a password to encrypt the key:

default: Repeat the password to confirm:

default: Inserting generated SSH key into machine...

==> default: Checking authentication and authorization...

==> default: Creating Vagrant Share session...

default: Share will be at: easy-monster-9467

==> default: Your Vagrant Share is running! Name: easy-monster-9467

==> default: URL: http://easy-monster-9467.vagrantshare.com

==> default:

==> default: You're sharing with SSH access. This means that another\

user

==> default: simply has to run `vagrant connect --ssh easy-monster-9\

467`

==> default: to SSH to your Vagrant machine.

==> default:

==> default: Because you encrypted your SSH private key with a passw\

ord,

==> default: the other user will be prompted for this password when \

they

==> default: run `vagrant connect --ssh`. Please share this password\

with them

==> default: in some secure way.

Now, for connecting to this virtual machine, the other part will run vagrant connect

with the SSH option:

$ vagrant connect --ssh easy-monster-9467

The connecting user will then be asked to provide the password you defined for the
key.

Vagrant Share 90

If youwant to allow only one unique access, you just need to use the flag --ssh-once:

$ vagrant share --ssh --ssh-once

This will make Vagrant destroy the generated keypair right after the first connection,
so no one else will be able to log in using that key.

Vagrant Connect

The vagrant connect command (without the --ssh option) will create a tiny virtual
machine to handle the routing between you and a remote Vagrant environment, with
the Vagrant Cloud in the middle. The remote virtual machine will then be accessible
from a local network.

You could use this method for connecting via SSH into any virtual machine shared
with vagrant share, even if it wasn’t shared using the --ssh option. You’ll need
only the name of the share and valid credentials.

Let’s consider someone shared a Vagrant environment with you using the default
vagrant share command, with no further options. Now we are going to establish a
connection to this virtual machine by using vagrant connect:

$ vagrant connect immense-armadillo-9764

The output of this command will be similar to this (the middle part was suppressed
because it was not relevant):

Vagrant Share 91

==> connect: Loading share 'immense-armadillo-9764'...

==> connect: Connecting to: immense-armadillo-9764

==> connect: Starting a VM for a static connect IP. This will take a\

few moments.

connect: Box 'hashicorp/connect-vm' could not be found. Attempti\

ng to find and install...

connect: Box Provider: virtualbox

connect: Box Version: >= 0

connect: Loading metadata for box 'hashicorp/connect-vm'

connect: URL: https://vagrantcloud.com/hashicorp/connect-vm

connect: Adding box 'hashicorp/connect-vm' (v0.1.0) for provider\

: virtualbox

connect: Downloading: https://vagrantcloud.com/hashicorp/connect\

-vm/version/1/provider/virtualbox.box

connect: Successfully added box 'hashicorp/connect-vm' (v0.1.0) \

for 'virtualbox'!

[output suppressed - box being initialized]

==> connect: Connect is running!

==> connect: SOCKS address: 127.0.0.1:33595

==> connect: Machine IP: 172.16.0.2

==> connect:

==> connect: Vagrant has successfully connected to the remote shared\

machine!

==> connect: You can either use the machine IP above to talk to it l\

ike any other

==> connect: computer, or you can configure your software to use a s\

tandard

==> connect: SOCKS5 proxy at the address above. With either method, \

you'll be able

==> connect: to communicate with the shared machine.

==> connect:

==> connect: If you're having trouble communicating, verify that the\

shared machine

Vagrant Share 92

==> connect: has given you access to the specified ports.

==> connect:

==> connect: Press Ctrl-C to stop connection.

As you can see from the output, Vagrant will initialize a VM using the box
hashicorp/connect-vm. This virtual machine is very small, used only to create a
routing between your local environment and a remote Vagrant environment. When
the process is done, Vagrant will give you an IP address (private network) that you
can use to connect directly to the remote virtual machine.

Now you can SSH directly to the provided IP address (172.16.0.2), as long as you
have credentials - which leads to the next section - you really have to pay attention
to some security concerns when using any share method described here.

Securing your Shares

Anytime you run vagrant share, you will expose your virtual environment to be
accessed via vagrant connect - including SSH access, because all available ports
will be forwarded. With the default settings present on most public boxes, it’s really
easy to gain access to any share, just by knowing the share name.

For now, there isn’t a way for blocking vagrant connect, since it is the underlying
mechanism that makes the HTTP and SSH shares possible. Below you will find 2
basic procedures that will make your shares more secure, avoiding unauthorized
connections to your VM:

1. Change the SSH settings to disable password
authentication

With the default options present on the majority of boxes, anyone who knows the
name of your share will be able to connect via SSH, by using vagrant connect and
then logging in with the username vagrant and password vagrant, which is default.
To avoid this, it’s strongly recommended that you disable Password Authentication
in your SSH settings. On Ubuntu servers, for instance, you just need to edit the file
/etc/ssh/ssh_config and add this option:

Vagrant Share 93

PasswordAuthentication no

Then restart sshd with sudo service ssh restart, for the changes to take effect.
After that, the VM will only allow logins using key-based authentication. And if you
want to enable SSH access to someone, use the SSH Share method, as previously
described.

2. Change the default SSH keypair used by Vagrant

Public boxes usually come with an insecure SSH keypair⁴⁹ that is provided by
Vagrant. Since these keys are publicly available, it’s really easy to use the private
key for logging in, if you don’t change the keys used by your box.

In order to change the default keypair, you’ll need to add a new public key to the
authorized_keys inside the VM, and remove the existent one. You’ll also need to
add an option to your Vagrantfile, telling Vagrant where to find your private key -
inside your Host machine.

A quick guide to perform these tasks follows:

2.1. Create a new SSH keypair

To generate a new SSH keypair, in your Host machine, run:

$ ssh-keygen -t rsa -C "your_email@example.com"

It’s recommended that you leave the passphrase blank, otherwise when you run
vagrant up you will be asked to provide the password multiple times.

2.2. Change the authorized_keys in the Guest

Now, log in with vagrant ssh and edit the file∼/.ssh/authorized_keys. You need
to remove the current insecure public key and add your own public key there. Copy
the contents of the file id_rsa.pub - from your Host machine - to this file inside the
Guest.

⁴⁹https://github.com/mitchellh/vagrant/tree/master/keys

https://github.com/mitchellh/vagrant/tree/master/keys
https://github.com/mitchellh/vagrant/tree/master/keys

Vagrant Share 94

2.3. Add the private key path to your Vagrantfile

Once you added your own key and removed the insecure one, you just need to add
an option to your Vagrantfile, telling Vagrant where to find your private key (in the
Host machine):

config.ssh.private_key_path = "~/.ssh/id_rsa"

Making the changes permanent
It’s important to remember that each time you destroy the environment
(e.g. with vagrant destroy) and recreate it from scratch, you will lose
all changes, which means that both the Password Authentication and the
insecure keypair will be there again. If youwant amore definitive solution,
you should repack the box after making these changes.

Recipes
This chapter has a collection of useful snippets of code to perform common tasks
when setting up a provision, like installing packages, applying templates and running
commands, on the three provisioners we saw before (Ansible, Puppet and Chef). Just
a (really) quick reference guide.

System

Running a Command

Ansible

1 - name: Run Composer

2 shell: composer install chdir=/vagrant creates=/vagrant/vendor/aut\

3 oload.php

Puppet

1 exec { "composer-install":

2 cwd => "/vagrant",

3 command => "composer install",

4 creates => "/vagrant/vendor/autoload.php",

5 }

Recipes 96

Chef

1 execute "composer-install" do

2 cwd '/vagrant'

3 command "composer install"

4 creates '/vagrant/vendor/autoload.php'

5 end

Creates
The creates option tells the provisioner to only run the command when
that file doesn’t exist yet.

Changing directory permissions

Ansible

1 - name: Change cache dir permission

2 file: path=/vagrant/app/cache mode=0777 owner=vagrant group=vagrant

Puppet

1 file { '/vagrant/app/cache':

2 ensure => 'directory',

3 owner => "vagrant",

4 group => "vagrant",

5 mode => 777,

6 }

Recipes 97

Chef

1 directory "/vagrant/app/cache" do

2 owner "vagrant"

3 group "vagrant"

4 mode 0777

5 action :create

6 end

Creating a symlink

Ansible

1 - name: creating a symlink

2 file: path=/vagrant/mylink state=link src=/root/original_file

Puppet

1 file { "/vagrant/mylink":

2 ensure => 'link',

3 target => "/root/original_file",

4 }

Chef

1 link "/vagrant/mylink" do

2 to "/root/original_file"

3 end

Packages

Running apt-get update

Recipes 98

Ansible

1 - name: Update apt

2 apt: update_cache=yes

Puppet

1 exec { 'apt-get update':

2 command => 'apt-get update',

3 }

Chef

1 execute "apt-get update" do

2 command "apt-get update"

3 end

Installing one package

Ansible

1 - name: Install Curl

2 sudo: yes

3 apt: pkg=curl state=latest

Puppet

1 package { 'curl':

2 ensure => "installed",

3 }

Recipes 99

Chef

1 apt_package "curl" do

2 action :install

3 end

Installing multiple packages

Ansible

1 - name: Install PHP Modules

2 apt: pkg={{ item }} state=latest

3 with_items:

4 - php5-curl

5 - php5-cli

6 - php5-mysql

Puppet

1 $php_packages = ['php5-cli', 'php5-curl', 'php-pear']

2

3 package { $php_packages:

4 ensure => "installed",

5 }

Recipes 100

Chef

1 php_packages = ['php5-cli','php5-curl','php5-mysql']

2

3 php_packages.each do |p|

4 apt_package p do

5 action :install

6 end

7 end

Adding a PPA repository

Ansible

1 - name: make sure python-software-properties is installed

2 apt: pkg=python-software-properties state=latest

3

4 - name: Add ppa Repository

5 apt_repository: repo='ppa:ondrej/php5'

Puppet

1 package { 'python-software-properties':

2 ensure => "installed",

3 }

4

5 exec { 'add-repository':

6 command => "add-apt-repository ppa:ondrej/php5 -y",

7 require => Package['python-software-properties'],

8 }

Recipes 101

Chef

1 apt_package "python-software-properties" do

2 action :install

3 end

4

5 execute "add-apt-repository" do

6 command "add-apt-repository ppa:ondrej/php5 -y"

7 end

Other

Applying a Template

Ansible

1 - name: Change default nginx site

2 template: src=files/nginx/default.tpl dest=/etc/nginx/sites-availa\

3 ble/default

4 notify: restart nginx

Puppet

1 file { "/etc/nginx/sites-available/default":

2 ensure => 'present',

3 content => template("nginxphp/nginx/vhost.erb"),

4 notify => Service['nginx'],

5 }

Recipes 102

Chef

1 template "/etc/nginx/sites-available/default" do

2 source "vhost.erb"

3 variables({

4 :doc_root => '/vagrant',

5 :server_name => 'vagrant.test'

6 })

7 action :create

8 notifies :restart, resources(:service => "nginx")

9 end

Conditional Execution

Ansible

1 - name: Check default apache user

2 shell: grep -c 'www-data' /etc/apache2/envvars

3 register: apacheuser_check

4 ignore_errors: yes

5

6 - name: Change default apache user

7 shell: sed -i 's/www-data/vagrant/' /etc/apache2/envvars

8 when: apacheuser_check > 0

9 notify: restart apache2

Recipes 103

Puppet

1 exec { 'ApacheUserGroup':

2 command => "sed -i 's/www-data/vagrant/' /etc/apache2/envvars",

3 onlyif => "grep -c 'www-data' /etc/apache2/envvars",

4 notify => Service['apache2']

5 }

Chef

1 execute 'ApacheUserGroup' do

2 command "sed -i 's/www-data/vagrant/' /etc/apache2/envvars"

3 only_if "grep -c 'www-data' /etc/apache2/envvars",

4 notifies :restart, resources(:service => "apache2")

5 end

Ansible Sudo
We stripped the “sudo” from the snippets since usually it is defined in the
playbook as default for all tasks.

Puppet Task Ordering
We avoided declaring dependencies since these are just quick reference
guides, and the dependency requirement will depend on your own tasks
flow.

Appendix One: Vagrant
Changelog
This Appendix will list the new features coming with newer versions of Vagrant
(starting with 1.5), so you can have a quick overview of what’s new and where to
find more information about it. Not all new features will be covered in this book, but
the current content will be as up-to-date as possible.

Vagrant 1.6

Released May 06, 2014⁵⁰

New Features:

• Global Status and Control
• New command: version
• Post-up Message
• Provisioner execution: once or always
• Windows Guests
• Built-in Docker Provider
• LZMA compression for boxes

Vagrant 1.5

Released March 10, 2014⁵¹

New Features:

⁵⁰http://www.vagrantup.com/blog/vagrant-1-6.html
⁵¹http://www.vagrantup.com/blog/vagrant-1-5-and-vagrant-cloud.html

http://www.vagrantup.com/blog/vagrant-1-6.html
http://www.vagrantup.com/blog/vagrant-1-5-and-vagrant-cloud.html
http://www.vagrantup.com/blog/vagrant-1-6.html
http://www.vagrantup.com/blog/vagrant-1-5-and-vagrant-cloud.html

Appendix One: Vagrant Changelog 105

• Vagrant Cloud and Boxes 2.0
• Vagrant Share
• RSync Synced Folders
• SMB Synced Folders
• Hyper-V
• Improved plugin management
• Guest support for Funtoo, NetBSD and TinyCore Linux
• Password-based SSH authentication

	Table of Contents
	Foreword
	Preface
	Acknowledgments
	Introduction
	What to expect from this book
	Assumptions

	Getting Started
	How Vagrant Works
	Terminology
	Requirements
	Installation
	Updating Vagrant
	Vagrant Commands
	Your first Vagrant Up

	The Vagrantfile
	Basic Example
	Defining the Box
	Defining a Provisioner
	Showing a post-up message (1.6+)
	Setting up the Network
	Setting up synchronized folders
	VBoxManage Customizations
	Quick Reference - Common Options

	Provisioners
	Overview
	Getting Started with the Shell Provisioner
	Automation Tools
	Practical Example

	Ansible
	Overview
	Quick Ansible Guide
	Provisioning a PHP Web Server

	Puppet
	Overview
	Quick Puppet Guide
	Provisioning a PHP Web Server

	Chef
	Overview
	Quick Chef Guide
	Provisioning a PHP Web Server

	Pro Tips
	Update First!
	NFS Performance Improvement
	Permission Problems
	Debugging
	Login, Fix, Automate
	VirtualBox Guest Additions

	Advanced Topics
	Running Multiple Virtual Machines
	Provisioning VPSs on cloud services
	Custom Boxes

	Vagrant Share
	Logging In
	Sharing your Environment
	Vagrant Connect
	Securing your Shares

	Recipes
	System
	Packages
	Other
	Conditional Execution

	Appendix One: Vagrant Changelog
	Vagrant 1.6
	Vagrant 1.5

