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Preface
Right at the centre of today’s school curriculum is maths. Like it or loathe it, you can’t avoid it. As we enter the Artificial Intelligence or AI age, pressure for school maths success has never been greater, because it seems so infused in the progress of recent decades, and promises of those to come.
And yet, I think school maths is nearing a cliff-edge. Implausible though it may seem, I believe today’s mainstream subject, without reformation, will become a backwater for a few aficionados, and drop out of the mainstream—a bit like the demise of Latin in UK or European schools. (Latin or, more generally, classics was often considered the intellectual bedrock of learning until the 1970s.)
This book is about what the problem is, how it came about and how it can be solved. It takes a cold, hard look at what maths education is and lays out what it should be, not only to keep up with AI, but to empower humankind for this upcoming era. I am a supporter for what maths education can be, but not for much of what it is today. For those who love today’s maths, you may be disheartened by my criticisms. You shouldn’t be. Careful but fundamental change will work to keep a renewed maths or new computational subject centre stage. For those who hate what you’ve seen of maths at school, I sympathise, but more usefully I hope this book may help you to understand what all the fuss was about, and how you can better partake in maths or be empowered by it. Part of my aim is to demystify this most abstract of subjects by providing the missing context that left so many asking, “What the hell’s the point of learning this?” at school, and decades later.
In the end, whether mainstream maths education lives, metamorphosises or dies isn’t what should concern us. Student empowerment is. Whether we like maths the subject, what it stands for or how it operates, it’s a means to an end. Either maths education can truly serve the interests of most students or it has no place as a mainstream, enforced subject and, sooner or later, will not be.
How this plays out affects us, our children and society profoundly. Allow maths education to continue in its current mould, and we will increasingly remove most students’ opportunities for success in a wide range of fields: the AI age requires more, different, computer-augmented computational thinking for human empowerment, not more of the same maths. Fewer students will be equipped for the workplace or for life, a problem exacerbated by education authorities perplexed that more maths isn’t transformative for more students. Left on its current path, reformation of maths education will eventually occur but only in a disorderly and highly disruptive way, having disadvantaged most of a generation along the way, increasing economic disparity and strife. Instead, actively reassessing maths—a hard but crucial transformation to a computer-based computational subject—will put not only maths but education more generally on a far better trajectory for the AI age, or so-called 4th industrial revolution we’re entering.
There is good news for those who support maths and I hope will support the needed changes. The essence of the subject so revered by supporters is more important than ever. There is no reason why that should die. Indeed there’s every reason why it should be more central, more revered and more liked. But we’re not there now; there’s a lot of work required to effect this transformation. To secure its continued and renewed place as an anchor of intellectual as well as vocational education, maths education must take a fundamental look at what it is and how it operates, particularly now we have computers. Implying “maths is good for you” but “I’m not going to tell you why” (explicitly or through flawed reasoning) isn’t going to cut the mustard.
Today’s maths education has become an unhealthy fixation for assessment, an addictive fix for policymakers to push, and therefore hard to fundamentally fix. I intended all these meanings in entitling this book The Math(s) Fix with a crucial extra one added: spelling out the solution, the fix in detail. Rather than just complain about what’s wrong with maths or make today’s maths seem more fun, as many books have, this one charts the solution that I and my team have spent recent years working out. We have done so from first principles and our experience at the epicenter of the use of maths for 30 years at Wolfram Research. It’s for this reason you will see few citations in the book, but many acknowledgements to a very wide range of people for countless helpful conversations I have had on this subject.
I do not in any way underestimate the challenge in achieving this transformation. A worldwide shift is required. The educational ecosystem must be perturbed, new truisms established. The transformation I argue for involves the remodelling of a key facet of a core pillar of education, a fundamental shape change vitally needed because we are now in an era of machines that increasingly share intelligence with us. But rather than let this dawning reality (with damage that’s already evident) simply shake the kaleidoscope of education, with pieces slowly landing where they will, I proactively order them to set us on the path for the best results.
The first countries or jurisdictions that proactively rise to this challenge will see the biggest benefits, rather like early adopters of universal education in the 19th century. It will seem a risky change for those involved, though in fact the risks of not changing will end up much higher. The potential rewards of success are massive—no less than the key building blocks for transformation to a Computational Knowledge Economy, where the combination of artificial and human intelligence is optimised.
Today’s ecosystem of education doesn’t easily support such subject change. From assessments tied to today’s subjects, to too short a time horizon, to evidence-led innovation rather than innovation-led evidence, there’s everything to prevent core subject change and seemingly nothing to promote it. Except, eventually, after much disarray, cold, hard failure.
This book will address all of these issues: the why, what, when, how—from redefinition to roadmap. I attempt to run the full gamut of a fundamental change to our core computational school subject considering no less than the need for dramatic change, exactly what the change should be, what the new subject looks like, outcomes it’s tethered to (including the best way to represent “thinking”), how to implement it in today’s classrooms, test it, and form ideas on the politics of making the change. Along the way I have had to span topics as broad as the purpose of education, to topics that detail practical delivery of materials. Does it apply at all stages of schooling? My answer is yes, but because maths education estrangement from the real-world increases through the years of school, this book hones in on the secondary level.
My hope is to make this book readable for all who care—teachers, parents, students—and who need to care—employers, the educational community, policymakers. You certainly don’t need to be “good at maths” to read The Math(s) Fix . Indeed many sections of society need to be involved in the changes I describe, so it is vital everyone can understand what it is, including those without any traditional maths background or educationalist credentials. I have included anecdotes of my journey for light relief, but also had to push through quite a bit of detailed discussion which can be heavy-going. I’ve needed to include some technical details for the educational professional but they’re skippable for the more casual reader without losing the essence of my argument; this is particularly the case in Part II “The Fix”, especially chapter 7. Of course one book cannot go into all details, so I have had to be selective in what I’ve included. We certainly know more; but we look forward to much more—your ideas, comments, questions and expertise at themathsfix.org .
About Me
I had a fine, apparently traditional British schooling complementing what I learnt from my intellectually-oriented, immigrant parents. From age 7, I was at the Dragon School, founded in 1877 and established as the place for legitimate offspring of Oxford lecturers or dons like my mother (amazingly, Oxford dons were only allowed to marry around that time). Anti-Victorian, eclectic and free-thinking in its approach, children and teachers alike referred to teachers by their nicknames; indeed I am only discovering their real names now that announcements of their deaths are circulated.
Then it was on to boarding at Eton College, perhaps the world’s most famous secondary school. Less traditional than you might think, it supported being individualistic, argumentative and somewhat anti-establishment, even given its foundation in 1440 before America was “discovered” and the uniform of penguin-like tail-suits. (These were mourning clothes not for founder Henry VI as I’d thought, but the not-so-mad George III; whoever it was for, a period that should long since have expired.) My focus on maths and science certainly took root there alongside enjoying graphic design and technology, photography, some music and almost total avoidance of sport—not straightforward to negotiate. The place had a surprisingly broad outlook and this was aided by eccentric and unusual characters amongst the teachers or “beaks” as they were called, including for maths a friend of computer inventor and mathematician Alan Turing.
Natural Sciences followed at Pembroke College, Cambridge—I wanted to major in physics—but eventually switched to maths: for whatever reason I didn’t get on with the physics course which felt more about memorising the subject’s history than understanding or having fun with it. Of all my education, Cambridge felt rather fruitless and unfulfilling, in retrospect because the educational purpose seemed narrower; I gained few life enrichment skills even if I acquired more technical ones.
After Cambridge (really during it) I started the day job I am still in. My brother Stephen had founded Wolfram Research for a first product release on 23 June 1988 as I was taking my leaving exams at Eton. I became involved while studying and then founded the European Wolfram company and have been its CEO ever since. Our aim for those 30+ years has been to build the best computation technology, to push the envelope of computation everywhere, providing more automation so we can utilise computation ever more. Our software “Mathematica” came first (Steve Jobs, Apple’s founder, came up with the name), initially described as “A System for Doing Mathematics by Computer”. From this base, we pushed computation to new areas, notably computational knowledge with the release of Wolfram|Alpha in 2009. We invented the “notebook” as a way to communicate ideas and also made a complete language of computation, initially part of Mathematica but now its own entity: the Wolfram Language. Along the way, I invented the strapline, “Computation Meets Knowledge”.
I sometimes describe my job as “computation for everyone” through smart automation; between our efforts and others’, it’s worked remarkably well. The world is dramatically more computational than 30 years ago across an enormous range of fields—already quantitative fields, subjects new to computation and those you’d never have expected to relate at all. Except in education. Hence my evening job—and the subject of this book—which I sometimes describe as optimising “everyone for computation” through computational thinking.
You might think these contradictory. How can he by day be getting the computers to do more to make life easier for humans, and by night be saying human education needs to change to utilise this? Because expectations are so raised by our new computational power. There is no contradiction. Indeed because of my position, it has perhaps been clearer to me than almost anyone how much of a chasm has opened up between education and real-world computational empowerment. More than 15 years ago, I was conscious of this problem. After Wolfram|Alpha’s launch we kept seeing questions like, “Is it cheating to use Wolfram|Alpha for my math homework?”. My response was crystallised into my 2010 TED talk “Stop Teaching Calculating, Start Teaching Math” and then the launching of computerbasedmath.org . The rest, as they say, is history—or in my case, computational history...
PART I
THE PROBLEM
1 | Maths v. Maths
There’s a subject that’s one of the most revered human endeavours, the lynchpin of human progress in the last 50 years and now even a way to extreme fame and fortune. It underlies science, social media, and self-driving cars while inserting itself into decisions on our governance, indeed decisions on almost everything.
There’s also a subject that’s arcane, even hated, is torturous for many, irrelevant to most and yet required of all. It’s largely unused in other activities or decision-making except as a critical yardstick of achievement and ability.
The subjects are plainly different, but both share—or at least have shared—something in common: their name. It is bizarre that mathematics, or its various shortenings maths or math depending on your side of the Atlantic, can describe such extremes and such differences.
My first description is about maths in the real world, maths as one of humankind’s most effective systems of problem solving. Maths as an abstract thought system, but one that’s increasingly applicable to a huge swath of real, messy, human problems to produce better answers than before.
The latter is of maths education, a description that could be applied almost universally, whatever your country or creed, an unexpected commonality in an often disparate world.
As I shall argue, mainstream maths in education has become increasingly disconnected from the broad uses of maths in the real world, with escalating consequences for our societies, particularly in the future relationship of humans with AIs and our worth in the forthcoming AI age.
The Chasm’s Cause
You might think that unravelling the maths education problem is complex. After all, billions of dollars have been spent on review after review over many years around the world. And yet, though there are improvements in many areas on the ground in delivering school maths, and more people than ever are taking it, the real-world requirements always seem to get further and further out of reach. Employers complaining they need more maths, better numeracy, quantitative skills or data science; universities adding remedial maths courses because their otherwise-good students lack those skills; governments reacting by vying to offer more maths, maths for longer, more rigorous maths in the hope of satisfying the post-school need.
Clearly this isn’t an easy problem to solve and yet at its core the cause of the maths divide I describe can be traced back to one word: “computers”.
Around this one word—defining of our age in so many respects—can be built a single sentence that captures the essence of this maths divide. “In real-world maths, computers do almost all the calculating; by contrast, in educational maths, people do almost all the calculating.” Straightforward though this statement is, it represents the fundamental problem at the heart of today’s maths education crisis.
“ No mainstream school maths curriculum has yet been based on the (obvious) assumption that computers exist”
This simple statement may seem too blithe, benign or even obvious to represent so intractable a problem. But contained within it are hours of misdirected learning of most of our students, each week, for more than a formative decade of their lives. Contained within it lie 240 average lifetimes per day around the world. Contained within it are a failure of context of educational maths, increasing disconnection and huge anxiety. Contained within it is a stark truth: maths in education is already perhaps 80% divergent from the crucially needed real-world subject.
Beyond the most basic arithmetic or simple estimation, almost no calculation is done by hand—from checkouts to calorie counters; from insurance policies to energy consumption; from architecture to social media networks—modern maths isn’t about hand calculation but the broader computational process.
No mainstream school maths curriculum has yet been reimagined and implemented based on the (obvious) assumption that computers exist and are, in one form or another, becoming increasingly omnipresent—though with the right education, hopefully not omnipotent. Every maths school curriculum around the world starts from the assumption that the student needs to calculate themselves and only then in some cases—if they’re lucky—might they progress to using calculating machinery.
At first sight, assuming humans as primary calculators might not seem so harmful a misassumption, perhaps even a beneficial proxy or a requirement of brain development. But as I will describe, it’s increasingly disastrous for many individuals and collectively for their societies, not only economically—though this is highly significant—but also in well-being, and perhaps worst of all in governance. There are quite a few elements of the last decade’s malaise in Western democracies that can be traced back to failures in maths education.
Take aspects of the banking crisis, where risk was misanalysed. Here’s one edge of the problem, roughly put for the moment. Mathematical toolsets from school education were used by analysts; these toolsets were taught because they were amenable to hand-calculating; instead of a wider range of computer-based techniques with a different computer-based approach that would have done a better job; and so inappropriate techniques were turned to, but ironically using computers that had access to all the better toolsets available.
Aside from maths, are there other existing subjects in the regular school curriculum that come to the rescue? You might think newly minted coding or computer science could fit the bill, but while these are computer-based subjects (though incredibly not always), they are more narrowly and differently focused, though with some overlap.
To explain how I come to these conclusions and what we can do to change our current heading, I am going to go back to first principles about “why maths?”—indeed, “why education?”.
I’ll do this by defining the problem, abstracting it and trying to compute the best conceptual answer that we can slot back into the reality of today’s world, hopefully to make progress. Actually, this will loosely follow the very same 4-step problem-solving process that will become familiar as a central backbone of the maths I describe—Define, Abstract, Compute, Interpret—though I will take many detours from this process as we proceed through it.
Fundamental or Fad?
From very early on, almost all of us are programmed by school, parents, exams—society—with the importance of “maths” as a fundamental construct of humankind and a particular drumbeat of how maths education should proceed. Is it in fact the right drumbeat on the right drum?
It runs deep. Questioning those fundamentals means asking often-deep questions about purpose, what could be better and what could be worse. Questioning those fundamentals means potentially upending an edifice which has put us where we are—for better or worse—so is not easily or lightly done. Distinguishing today’s practical reality from a deep-seated facet of childhood, or today’s fashion from time-enduring bindings of society, is akin to questioning a social custom or the commandments in a religion as a fundamental basis of how our societies function.
Judging when fundamental change is really needed or when it’s simply a knee-jerk or ill-informed reaction or the latest fad can be rather hard, in a little bit the same way as the difficulty of determining whether two effects are causally linked or simply correlated. It’s easy to be misled in the moment to act when fundamental change isn’t needed or more commonly not to act when it is because one convinced oneself a problem would go away and the world would be back to the way it was, to the norms one is accustomed to.
Is there any way to determine which type of moment one’s in, particularly for our topic of maths education? I don’t see a single way, but I do believe important guidance in such situations is whether there’s a fundamental driver of change you can point to—often major new technology—which could reasonably require this scale of fundamentally new approach being advocated. Even if one cannot spot it immediately, it may be there; if it is visible, one should immediately take note.
“ Computers have not only transformed many aspects of human endeavour, they are specifically and intimately linked with the maths process”
In the case of maths education, this driver is extremely obvious. Strikingly so. In fact, it’s so obvious that it seems to have been easy to miss. Computers have not only transformed many aspects of human endeavour, they are specifically and intimately linked with the maths process. The technology’s name betrays its direct connection to step 3 of the maths process, namely computation; their very existence as universally programmable and useable machines is directly attributable to mathematical theory, developed by a mathematician—Alan Turing. (He is widely credited as the inventor of general-purpose computers after specifying “Colossus” for breaking enemy codes in the Second World War).
At the risk of stating the obvious, remember computers (in some form—desktops, laptops, tablets, smartphones and so on) are widespread, used by most of the world’s population during an increasing fraction of their days; and as humans, we are increasingly turning over tasks to them. Moreover, they have driven the world into a new quantitative, computational age where many have flipped their belief structures from assuming “fate” to assuming (rather more than they should be—I will come back to this) we can compute answers to any complex questions (for example, exactly predicting our future climate) in a way never contemplated only a few decades ago. With respect to today’s use of maths, computers are intrinsic. They are also key in all other walks of life such as researching history, but the point is that the field of history has not transmuted based on the technology.
It’s hard to imagine a case in which a more evident driver of a fundamentally new approach for maths education—indeed this strength of evidence for almost any proposed change—could be present. The evidence of a driver is there in spades. My guide question to disambiguate fad from fundamental scored bingo for the latter.
Now pair this observation with evident worldwide disquiet about maths education, and it would therefore be churlish in the extreme not to ask whether fundamental change is due: the driver is evident, the rumblings are there, and yet the investment in incremental change doesn’t seem to have fixed the problem.
It’s time to go back to first principles with our new conditions and attempt to lay out a reasoned, logical argument for fundamental transformation. That is what I intend to do here.
2 | Why Should Everyone Learn Maths?
The focus of this book is mainstream maths at school, deemed so important as to be compulsory across most of the world for years of most students’ lives. It is therefore important to ask basic questions about the concept of mainstream, compulsory subjects to try to see if there is rationalisation for any such subjects, let alone maths.
What’s the Point of Education?
What really ought to be the point of education, in particular for everyone? Clearly there are many levels of answer to that question, as well as many different answers. According to Plato, it was “to give to the body and to the soul all the beauty and all the perfection of which they are capable”. And to Martin Luther King Jr., it was “[to] enable one to sift and weigh evidence, to discern the true from the false, the real from the unreal, and the facts from the fiction”.
My simplest answer is “to enrich life”—not just in riches of getting good employment but in meaning, and not just individualistically but for society; which then, in fact, collectively can benefit the individual.
The point of starting the discussion this zoomed out is not because of some wish to enter a great philosophical debate (there are centuries of those on this topic) but for practical reasons of setting up tethering for the inevitable questions of type “what’s it all for?”.
Even based on my simple “to enrich life” answer, collimation is helped a little: you need to be able and willing to explain why a particular topic or subject is useful for enriching life. Even this extent of explicitness provides an early basis—specific grounds—to enable rational (and irrational!) argument about merits or demerits. By contrast, enshrining various individual topics as sacrosanct with vague platitudes that they’re “culturally important” or “foundational” when the outside world, technology, jobs, and lives are changing so fast leads to stunted reasoning, damaging delays of reform or stores up outright failure.
It’s important to be very clear that being explicit about the reasons for a given subject or topic does not mean being narrow in acceptance of a reason. For example, if an individual student finds excitement in ancient Greek poetry, calligraphy or the history of mathematical calculation, that in itself is very good reason to study the subject, whether or not an obvious job opportunity might be linked to it. Learning itself can be enriching; it doesn’t need some grander purpose. Paradoxically, not seeking that grander purpose can sometimes lead to unique and highly valued skills—not to mention that feeling fulfilled learning one topic may transfer to learning others. Steve Jobs often relayed his experience of taking calligraphy at college because he found it interesting and enjoyable, yet it was the key reason the Macintosh computer had a wide range of fonts—an early factor in its success.
Education today all too often adopts the inverse: being inexplicit about why you should learn something, e.g. “maths is important for you” but narrow on the range of acceptable reasons, e.g. “because the qualification is necessary to get into college”. This inversion is increasingly problematic in achieving true enrichment to life, though as I will discuss later at length, it is easy to see how this wrong track has come to be taken.
Enrichment... or Survival?
When does value-adding enrichment become a survival issue—indeed how do survival, enrichment and the middle ground of subsistence feed off each other? Is the relationship changing? Is maths required for survival or subsistence; or only enrichment for some? How is this affected as we enter the AI age?
I count ability to survive as one extreme end of the spectrum of enrichment. Whilst in many developed countries the curses of past centuries—starvation, now-preventable disease and violent death—have tended to recede, there are modern curses that have replaced them, such the allure of and addiction to highly hallucinogenic drugs or disinformation on vaccines. As we live more interconnected lives, so individual survival issues more often spill over into broader, detrimental societal ones. Sometimes the individual-to-societal connection is obvious, such as for drug-related crime; sometimes it needs quite a bit of understanding, for example in how herd immunity is lost from dropping vaccination rates.
“ Machinery has mostly replaced human brawn not human brain”
As societies become more developed, reasonable subsistence, if not pure survival, requires skills at an increasingly higher level. Where literacy was once a major differentiator in more developed countries, now those without it are badly left behind. But literacy is only one layer of subsistence in human education. Successive industrial revolutions have upped the subsistence requirement because the machinery has required humans to work on a different level. For example, instead of planting seeds on your acre of “smallholding” to feed your family, making enough money to buy food by managing a farm utilising modern machinery, literacy, maths and so on; or doing another job altogether unrelated to food production.
Up to our current revolution, machinery has mostly replaced human brawn not human brain. This time it’s different: the so-called 4th industrial revolution we are entering or AI age, as I prefer to term it, specifically targets mechanising brainpower. It does so using the power of the computational process—real-world maths is deeply embedded in these changes. Subsistence education needs stepping up in increasingly diverse, complex and changing forms. More general, value-adding enrichment has many new options from traditional crafts that continue to exist—which might have been subsistence in the past and are now value-added—to newly created AI-based imagined worlds. This is an iterative process. The higher the level of basic subsistence assumed, the more options for human activity enabled by that diversity of machinery, and the more diverse and/or complex the possible enrichment options are.
There are many mechanisms for enrichment, but I think it important to highlight a very general one that I will come back to: accelerating and broadening experience. Give students highlights (positive and negative) of world experience that can benefit their lives. Directly expose them to typical life issues, experiencing thought constructions upfront that help them navigate real life. Indirectly broaden their thinking or encourage new thoughts with the highlights of others’ ideas.
It is however easy for this good intention of education to descend into an opposite reality. Thinking only in the way that others have thought. Experiencing what was important in the past but no longer is. Gaining a relatively narrower experience of life as the range of world experience broadens.
Is There Any Subject Everyone Should Learn?
A great divisor in discussing subjects is whether students are forced to take them, i.e. whether they are compulsory to study. Intertwined with this question of compulsion of a subject is the important practical consideration of how hard you push a student to take a subject that isn’t deemed essential—individually or societally—to their well-being.
Take learning a musical instrument—not usually a compulsory subject, at least not for long in most jurisdictions or insisted on by most parents. A student may or may not be inclined to learn the violin, but by exposing them to it they may end up seeing the enrichment they can gain. A little exposure is likely to be off-putting: the violin is quite hard to play well and early attempts are usually frustrating. How many years do you persevere if the student just isn’t enjoying it?
Some believe that unless, to continue this example, the violin is sought out by the student on their own, you shouldn’t try. I do not see how a student can judge without some pushy exposure. How would they know to think of a violin except if they happen upon it or they see the option around them? At the other end of the spectrum, there are those who believe if you push long and hard enough, learning the violin will gain purpose for the individual. In a world often offering so much choice, it seems hard to support this extreme either.
Whatever your answer to how long you persevere, for most people, in the end, if the student just doesn’t enjoy the violin or isn’t so good as to make a career out of it, they should probably focus their energies elsewhere.
“ Why are assessments built around increasingly formulaic answers when life skills require open-ended questioning?”
But for your own language and maths and some others subjects—core, compulsory subjects—almost all countries, international organisations and other educational authorities deem them so critical that as a student you have to go on with their study, often until you’re 16 or even 18 years old. Much has been written about how much standardisation is needed and to what extent there should be common, compulsory subjects at all. I argue some of this compulsion has importance: I think there is at the very least a need for common understanding, common language and some common values, some constancy in lives which will see much change. Individuals who cannot share in those effectively—if the subject matter is reasonable—will be individually disadvantaged and collectively will cause a reduction in societal prosperity, cohesion and well-being. (This isn’t just hypothetical; I will mention again in Chapter 13 how troubling signs of educational disenfranchisement are contributing to the last decade of problems, whether in the banking crisis or data science around social media).
However, the bar must be set very high for justifying compulsion. We must surely have an extremely good answer as to why the topic or subject is needed and how it is truly optimised for the world students will inhabit, not only now but into the future.
Should maths be one of this elite band of compulsory core subjects? Is there any core computational subject that is so justified?
Should Compulsory School Maths Exist at All?
No such question can be out of bounds, including these existential ones: should we have the school subject “maths” at all, and even if not banished entirely, can it be justified as mainstream and compulsory in our curricula?
It’s rather shocking how rarely those questions are asked about maths, let alone convincingly answered. Do we perpetuate subjects just because previous generations learnt them too? Or accept that “they’re good for us”, like medicines prescribed by village elders? To further that analogy—even if the perceived wisdom, grown up over generations, is valuable to an isolated tribe where the life expectancy is 50, are the societal attitudes this wisdom imbues, the rate of progress and therefore the treatment in fact right for the modern world, particularly one that has such a high derivative of changing technology? And if suddenly faced with the modern world, will the tribe be prepared to jettison its own customs if, sceptically, they reason it will be to their well-being? It is a rare tribe indeed that manages such foresight, so fundamental a change of view, without it being forced on them, often by existential threats.
Sometimes the maths educationalists can look like elders, policymakers like disciples, and the population like the maths tribe. While we shouldn’t discount the value of the knowledge of maths elders—some are vociferously arguing for change against their peers, others have useful analyses on a range of pedagogical issues—nor should we treat them without scepticism because as the tribe we feel ill-equipped and unskilled in challenging the attitudes and assumptions. Challenges to the status quo that end up with answers like “because it’s good for you to learn maths” or “because maths has been core to our civilisation for generations” do not pass muster as justification for the future, however many layers of abstract reasoning they pass through or changes of tack they perpetrate—to arrive at what are effectively those statements.
And it’s often quite a few in conversations I have. They go something like this.
Conrad: Why have students still got to learn (formal) long division by hand when no one really uses it now?
Maths person: Because it teaches number-sense, an understanding of division...
Conrad: Really? I get the importance of having an understanding of basic division and in particular when you use it and set it up, a fundamental tool of the maths system, but not the hand application of the algorithm of long division. Indeed, I barely see the educational connection between, on the one hand, number-sense and the idea of division, and on the other, the process of long division.
Maths person: It’s because that algorithm is a precursor to polynomial division, which can be used to simplify finding certain integrals.
Conrad: But so what? Why do I need that when my computer can calculate the integral?
Maths person (changing tack...) : Are you questioning the value of knowing how to find an integral by hand?
Conrad: Yes; I’m not saying it has no value, particularly to someone interested in maths itself, but why cover this in mainstream maths connected to the idea of division and in place of hundreds of other directly useful (practical and intellectual) tools of maths, losing context and interest?
Maths person (changing tack...) : Anyway, you’re promoting computers, you like algorithms, so why are you against students being exposed to this one?
Conrad: Because no one uses it now! Not to program computers to do division, nor as a human! Why not have students program algorithms for something much more contextual, much richer, much more conceptually empowering...and while you’re about it, have something more attractive to promote about maths than ‘long division’...!
“Why” questions are important when challenging perceived wisdoms. This is just one snippet of one discussion on one topic. Perhaps you see better arguments than I have exposed here on either side, but whatever view you take on this specific topic, I hope it gives a flavour of how hard you have to go on asking “why” repeatedly to expose the core issues—issues that have been so long assumed, they can feel beyond questioning.
More than that, I want to assist every reader of this book—policymaker, teacher, parent and particularly student—to have the confidence to ask such repeated why questions without worrying they will be cast as dumb or be blackballed as a result.
That’s questioning the subject. But of course, in general, this why questioning needs to extend further into our whole educational system. For example, why is maths required for entry into so many courses for which it’s subsequently not used, at least not explicitly? Why are assessments—particularly maths assessments—built around increasingly formulaic answers when life skills require open-ended questioning, creativity and depth of understanding? Why is the Victorian-based structure of educational delivery—schools, classrooms and so on—largely intact?
Funnily enough, more has been written about some of those extended why questions than about the nature of the educational maths subject—the “what is the right subject question”—that is a key topic of this book.
The fundamental driver of educational change from our upcoming AI age is increasingly strong, so no time has yet been more legitimate to ask such questions of maths, and persevere in asking them until we get satisfactory change to answer them. As many as possible should participate; only with everyone open to thinking the unthinkable will we start to see the right action.
Let me therefore go back to the existential questions I asked at the beginning of this chapter. To address why we have an enforced, mainstream subject of maths, I feel the need to peel the why onion two levels deeper: firstly by asking why any subject in education should be mainstream or compulsory for all students, and then by laying down some markers on why we’re doing mainstream education at all.
Today’s Survival Skills and Value-Adds
An obvious argument for the compulsion of a subject is because of its importance in practical survival, either individually or collectively. We already discussed how a rationale in general for education is to “enrich life”, including survival. Now the question is how forcing learning of given subjects fits with this.
Where and how is mainstream education fulfilling this survival role? What are today’s survival skills, and is today’s schooling educating students effectively in them? They are not lighting a fire to keep wild animals at bay like they were millennia ago; or more recently, knowing how to build one’s own house; or doing long division by hand—at least not in most locales. So what are today’s survival skills?
By the same token, there’s the question of what today’s top value-adding skills might be. What abilities can we help our students develop so that they can most add value to themselves in future life and collectively to their societies? To what extent should compulsion of study be used for imbuing as many as possible with these skills? Is this warranted if so doing helps societal value-add and cohesion? Value-added skills for individuals may coalesce into subsistence or survival skills for your society, for example by generating sufficient taxes to pay for welfare. What are today’s mass value-adds if that is not a contradiction in terms?
In particular for our discussion, does maths or any computational subject figure in one or both of these rationales for being core?
I will strongly argue that the answer is yes, for both. But not with today’s maths curricula, and likely not branded as maths either. Much of the early discussion that follows is about the rationale for needing some sort of core computational or maths subject, working out what it is, then comparing and contrasting with what we have now.
For now it’s not helpful to get into what we should call this core subject, or whether it directly grows out of today’s maths somehow or is a newly conceptualised subject that runs in parallel for a time. Those considerations come later in our thinking and this book—Chapter 11. Let’s worry first about setting out why we need some core subject in this space and what it would be, then labelling it generically as our core computational subject so we are not prejudicing this later discussion.
Top 3 Reasons for a Compulsory Core Computational Subject
So far we’ve discussed our need for a core computational subject by thinking about survival and value-added ends of the spectrum. To put meat on these bones, I’m going to divide this up differently into 3 good reasons why everyone should learn the right core computational subject. They can be summarised as technical jobs, everyday living and logical mind training.
Key Reason 1: Technical Jobs
Since the late 20th century, jobs explicitly involving high-level understanding of computational ideas have been increasingly prominent, highly paid and important to society. Whereas many leaders of the world’s most successful organisations in the middle of the last century were trained in humanities such as classics, law, history, philosophy or business functions like accounting, by the end of the century the move was towards science with engineers, physicists, programmers and mathematicians highly in evidence. One factor has been the rising reliance on computation in all organisations, but particularly in the most highly successful organisations. Optimising what should be ordered and stocked in a supermarket with increasing precision. Adjusting pricing to fill your airline and fly as profitably as possible. Improving medical diagnostic pathways. Analysing your website for most effectiveness. Once these were largely qualitative decisions based on experience; now high-powered analytics are at the battlefront of competitive decision-taking but only if underpinned by appropriate human experience. They’ve needed management that is familiar not necessarily with the individual calculations but with what’s possible and how to leverage computation for progress and think computationally. In turn they have often sought computational solutions to problems and in so doing required more technical and computationally empowered staff to deliver their plans. Nowhere has this been more the case than with the new industry of social media companies, where conceptualising algorithmic approaches has been central to success.
“ ‘More maths’, they cry! ... But the solution is the right maths not more of the wrong maths”
From highly technical organisations this need has spread to almost every workplace, upping the requirements on numbers of technical staff everywhere and technical capabilities of other staff too. This iterative senior-junior ratcheting up of computationally empowered staff has then driven governments to be very concerned about the number and abilities of qualified students they are producing. They fix on maths as the solution. “More maths”, they cry! And I agree with them that technical jobs and the technicality of all jobs is one of the 3 reasons why compulsory core computational education is important. But the solution is the right maths not more of the wrong maths. Year after year, the compounding problem is the rapid divergence of today’s school maths from what’s required, because what’s required has changed so dramatically and will continue to do so, probably at an increasing rate, as we enter the AI age.
One peculiarity of management that’s not helping to achieve a fix is the discrepancy between the technical understanding of private enterprise leadership and that of governmental leadership. Private enterprise’s leadership is now more often computationally knowledgeable than in the past—though there’s a long way to go. But a parallel shift in countries’ leadership credentials, for example ministers who are technically educated, has been far less common. In itself this means less familiarity by policymakers with what’s needed and potentially with the severity of the “maths divergence problem”. I say “potentially” because many of the technically educated business leaders have not abstracted or articulated the failures of their workforce’s technical education, nor have they appreciated a root cause as the wrong maths. But it’s much easier and faster to help them out because of their technical experience.
Key Reason 2: Everyday Living
I named reason 2 as “everyday living”, by which I mean the ability to partake at a competent level in society and at least survive adequately. In recent decades, the computational requirements just to achieve this subsistence have continually increased in developed and developing countries. Where there was one mortgage option, now there are thousands; where there was one product purchasable in one way, now there are any number of competing options at different prices. Then there’s effective management of your own health—exercise, eating, or conditions like diabetes. Where there was a qualitative evaluation, now there are precise numbers—quantification—that can regulate behaviour. Crucially, it’s rarely the raw numbers that are the usable basis, but appropriate analysis, interpretation and understanding of them; and this only increases with the quantity of information to the point where almost all usable quantification is through a filter of computation.
Not only is quantification applied in ever increasing swaths of life, but so too is the assumed vocabulary by which life is transacted. Percentages, chances of a given risk, normal ranges of medical tests and so forth are required language for everyone just to survive and live a reasonably prosperous life. Therefore some sort of core computational subject is needed by all as a basic survival skill of the modern world. Data science is today at the centre. Many, but not all, of these everyday computational skills are connected to data and its interpretation, so that must feature highly in today’s rendition of this core educational subject.
It’s instructive to think of the relationship between what we might term this “computational literacy” and literacy. Where learning to read and write was the preserve of very few, a key value-added capability of the most empowered, and therefore a key discriminator of past centuries in most countries, now it’s a basic survival skill. Without literacy—the late 19th century term for reading and writing—you are highly unlikely to survive well, let alone prosper, and will almost certainly, in effect, be disenfranchised. Likewise, core computational understanding is now fast becoming a survival skill too, hence my elision of the terms “computational” and “literacy”.
Early maths education today covers some of what’s needed—part of what’s often termed numeracy does hit the mark—but at the same time is critically lacking in other aspects. For example there’s no coverage of cause versus correlation, usefulness and reliability of models and algorithms, or understanding bias—not so much performing the calculation as experience of the qualitative concepts. These key aspects of maths education cause a “computational divide” between those empowered for everyday living by computation and those who are not. This is different from the oft-cited “digital divide” between those who are empowered with computers and those who aren’t: having a computer and being able to work it doesn’t mean you can effectively apply computation or think computationally.
Avoiding computational illiteracy and therefore the computational divide is a key to why my Key Reason 2 of everyday living justifies compulsory core computational education. Without it, not only are individuals increasingly disenfranchised as quantification grows, but their computational disenfranchisement can affect society’s cohesion because politics are likewise driven increasingly by this same required expertise in quantification.
Key Reason 3: Logical Mind Training
I’ve separated logical mind training—you might say the ability to think or reason coherently—into its own (hopefully coherent!) reason for core computational education.
I’d argue that through much of human history, averaged over sufficiently long periods, there has been progress in more rational systems of reasoning. I am careful to say “averaged over sufficiently long periods” because clearly there have been multiple centuries, particularly in given regions, where mass logical thought appears to have retrenched. But even given that and other provisos, I think it’s fair to say that more education, more development of systems of logic and reasoning, has lead to better decisions and outcomes for humanity. It’s therefore surely of the utmost importance that core, compulsory education is enabling and promoting of the ability to reason logically, including understanding the inadequacies of whichever logical toolset they are using. And I’m not talking about directly applying the computational toolset here. With Key Reason 1 and particularly Key Reason 2, I’m already arguing that the mind training directly associated with the computational process is central. With this Key Reason 3, I’m arguing about systems of thought beyond that process, informed by studying it but not necessarily directly using it.
Philosophers in particular (including my late mother—a philosophy don in Oxford) have long come up with systems of logic and argued about its nature while trying to introduce protocols for its teaching (e.g. my mother’s book “Philosophical Logic: An Introduction”). Given my interest now in maths education, I wish I’d paid more attention in my childhood to what she said on the topic or instigated more discussions. I do remember one—about how propositional logic only has only two truth values, requiring one to assign “true” or “false” to statements that are really neither. For example, it is nonsensical to assign either value to “the King of France is wise” when there is no King of France (it’s currently a republic). We discussed how Mathematica, for example, often uses three truth values, True, False and Undefined, which has proved very useful.
That’s the only one I remember. At the time the practicality of subjects like physics and their evident results from the application of appropriate logic was a lot more engaging to me. And the point is, where in my schooling was the concept of logic thought to be covered and the necessary thought processes developed if I hadn’t happened to have a philosopher mother, or in general parents able to imbue detailed, logical thought? Of current mainstream subjects, maths is surely where you’d expect logical thinking development in its own right, explicitly, to take place. Clearly in each subject you’d hope logical thinking was developed for its own analysis, but you’d certainly think maths ought to be their bedrock. Moreover, it’s often claimed to be just that (only really ceding or sharing that honour in the past in much of the “old world” with classics).
I have severe doubts that today’s core maths education is achieving effective logical mind training and suspect the situation may even be deteriorating. Broad understandings—for example of the nature of proof and its relationship to truth—are not amenable to easily marked exams and so are not in mainstream maths curricula. Good luck in setting multiple-choice questions that delve deep into nuanced and complex logical questions when students are being gamed into a simplistic process to answer them! Yet deep understanding of those topics is sorely needed today in understanding societal issues like “post-truth”, knowing where a system of computational thought can and can’t help you.
Just because today’s maths isn’t achieving logical mind training, does that imply that any core computational subject isn’t up to the job? It would seem perverse if so. Computation is one of the most manifested, evident results of logical thinking, and therefore the right study of it should surely be a highly useful slice of the ability to think in a reasoned way for a wide range of people. And I think it can be.
More Reasons?
I think these top 3 reasons are compelling for justifying a core computational subject as compulsory in school education. Some traditional maths supporters would proffer more too.
Beauty
For example, supporters might say that maths has a beauty and elegance which, once understood, is unique and therefore key to everyone’s education. Not enlightening everyone with the magic of pure mathematics that mathematicians appreciate fails at the very heart of what education should be about: appreciation of great human achievement.
“ The logic of having a raison d’être of any compulsory subject as enforced beauty training seems highly questionable to me”
This reminds me of my father’s attempts to interest me in literature; I just didn’t care. I didn’t appreciate the beauty of the writing, nor did I see the point of describing ideas other than as plainly as possible. I couldn’t see the beauty. I may even have become more hostile to literature by these attempts, as the advertised motivating factor was lacking for me.
On the other hand, for certain genres of music, appreciating beauty came rather naturally. I felt the amazement of a Mozart piano sonata and then could hear the brilliance or otherwise of different players’ interpretations with my father; or when my piano teacher could point to structures as I attempted to learn them, my appreciation was enhanced. But that appreciation was somehow there already. Much later in life I have started to appreciate great writing more, the amusement of neat phraseology, though I’m afraid rather too late to have any chance of manifesting it myself!
I think there are 3 reasons this appreciation has come. Firstly, I read mostly factual books and for the literature I do read, my interest is more in character traits than storyline. So it’s possible that with a better learning approach when I was a child, connected to something I did find more interesting, such as assessing people’s personalities and how writers have used literature to portray these human conditions, I might have been somewhat engaged. Because the beauty wasn’t immediately apparent to me, I needed another attachment point that related to my interests or my life to be able potentially to appreciate the beauty.
Then there’s timing. My interests age 20 were not the same as at age 10. I remember the sanguine advice to us as parents from my then-6-year-old daughter’s headmistress that there’s a window of interest and if you don’t succeed with something you think will take, you should try again at another age. “It’s a journey, not a race”, she would say.
So the logic of having a raison d’être of any compulsory subject as enforced beauty training seems highly questionable to me. Who’s to deem what’s beautiful and what isn’t anyway, and fix this in education? A group of that subject’s enthusiasts who “see the light” and deem the topics worthy? We can certainly say that more people may appreciate Mozart in general than Salieri, and point to the greater sophistication of Mozart’s music. But does this deem it to be more worthy and a requirement for every student at a specific age, whether or not they are interested, not just to test their interest but grind through, even if their interest never picks up?
It’s worth adding that computers offer many new potential beauty attachment points for mathematics, for example seeing the symmetry of different algebras with 3D visualisations of mathematical functions, or better still interacting with them and printing them out. Even though I’ve had a range of 3D printouts in my office for years, I still enjoy feeling their forms as well as looking at them.
Shared Values
An argument connected with the teaching of beauty is the need to ingrain shared values and history. That a mechanism of social binding is to be able to discuss major human achievements; and to this end, knowing their existence and appreciating their beauty is important. I have more sympathy with this “shared values and history” argument—for example as a Brit, knowing something of Shakespeare, at the very least that he was a famous playwright—if it’s deconvolved from the “appreciating beauty” need.
Is maths needed for social-binding? Should it be? For better or worse, knowing the proofs or theories of great mathematicians seems far removed from this requirement. Even with my most intellectual and mathsy friends, I struggle to discuss these matters consistently in the way my wife might discuss a Shakespeare play with her friends, even though she’s not particularly a literature expert. Modern statements about data, risk analysis and what’s predictable I find much more amenable, but that’s a long way from today’s maths education content. So might be the history of computation—how and when different strands of logical thought emerged—but that too is not covered. If it were to be, it should be quite separated from today’s core computational requirement: arguably part of the history syllabus, not the core computational subject. If we routinely heard people discussing maths at parties, at least as much as you heard references to history, literature, art or music then one might claim that it indeed holds the place of a shared value, but in most circles it is far less prevalent.
Of course I do not wish in any way to deny that some students naturally appreciate the beauty of a mathematical proof or the neatness of a theory. They should be encouraged into ever deeper understanding. It is enriching to their lives if they appreciate this beauty and gain expertise. Others might have latent interest in a particular topic or the subject as a whole that should be prodded periodically to see if it will take. But are these the reasons for which we need a core computational subject to be compulsory? They seem weak, and if anything detract from the 3 strong reasons I first laid out.
Enfranchisement and Parallels with Universal Reading and Writing
Let’s turn from justifying a compulsory core computational subject to a shining success story of a universal subject, namely reading and writing or literacy as it is once again called today.
We have gone from populations where only the clergy or wealthy were literate to worldwide agreement of literacy’s need—and in developed countries to high success in achieving universal literacy.
This has been overwhelmingly positive: from enhanced survival skills to a stepping up of most people’s ability to add value to far wider enfranchisement and self-direction. Not only is literacy assumed, it’s required of the education system as a right.
My argument is that the right core computational school subject ought to achieve the same empowerment, but currently isn’t. Even at what we might describe as numeracy or basic maths level, people’s confidence and application is much less than for basic literacy. Most people would be more confident writing an email using their primary school language education than making a spreadsheet using their primary school maths education. That’s partly because even at a basic level the school subject has some divergence from real life. The ability to express ourselves and comprehend others utilises skills grown throughout our schooling; but it’s mostly maths skills from primary school—not beyond—that actually get used in adulthood, except for those who specialised in technical careers. Another sign of misalignment of the curriculum.
Teachers are an example of this dichotomy, even maths teachers: they use their school-learnt literacy to a much greater level than their school-learnt maths. Almost all teachers will read and write (meaning compose, not necessarily hand-write) all the time outside their teaching jobs using skills they learnt right up to their teenage years and beyond. Yet most teachers do not use numeracy or maths skills outside work except at the most basic of levels; today’s less basic levels were and increasingly are the wrong content for them and others to utilise.
Most pressing, numeracy and basic maths aren’t the only universal goals we should seek in the computational area. We need to set our sights much higher. Because of the rise and power of computation in real life based on our new-found calculating machinery of computers, life now requires much higher universal abilities in this area—even, I would argue, to achieve stable societies, because enfranchisement requires a good level of computational literacy.
Getting the Case Straight
There are good reasons for the right compulsory computational subject. That case and the reality of the right subject need to be aggressively made. Saying in effect that maths is so important we’re not going to justify it, or its history is so august that its presence needs no logical justification as a mainstay, will, I believe, lead to its removal faster than one might imagine.
As I’ve often quipped, it seems particularly important to get one’s logic for compulsory maths straight, given that its justification is dependent on ability to reason logically. Yet so often I do not hear mathematicians do this.
Today’s maths situation is not completely dissimilar to the beginning of the path trodden to the demise of mainstream classics (particularly Latin) in places like the UK. In the late fifties, it was untouchable, the mainstay of education that needed little justification. Twenty years later, it was dead in the mainstream: a side subject only compulsory at a few private schools, fighting against continual marginalisation. (And even at Eton College, held up as a top, traditional school, I remember my tutor saying to me, “There are good reasons for keeping compulsory Latin, but better reasons for getting rid of it”).
There are certainly differences between the cases of school Latin/classics and maths, but there are similarities too. In maths’ case, you can point to how important and mainstream real-world subject of the same name is—clearly there’s growing use for data science and other forms of computational endeavour—whereas people don’t use Latin directly in normal life (even in the UK!). On the other hand the split between the school and real-life subjects is large for maths, and reform of the subject is overseen from within education by those successful at the traditional subject and motivated by it, who therefore rarely choose to engage deeply enough in discussions about reconfiguring its form and questioning its worth or existence.
Compulsory maths ought not to be on parallel path to compulsory Latin. I’m arguing that it needs to make a clear change of direction on to a different path, so that it does not fall down a ravine. My conclusion as to whether everyone should learn a newly configured computational subject—“maths”—is definitely yes. And with growing justification—for individuals, for society; spanning survival, subsistence and enrichment.
3 | Maths and Computation in Today’s World
Comparing Maths and Computation
While most of society believes maths education is crucial, a similar fraction would have tremendous difficulty describing how topics beyond early primary school level get used in the real world—either by themselves or others. I may not be arguing for exactly today’s maths topics, but I am arguing for a renewed mainstream computational subject. I’m saying that you can justify this because it is used and indeed many more could benefit from using it. So before we go too far, let’s walk through a few of the ways “maths” affects today’s real world.
You’ll spot I’ve thrown “maths” into quotes. Few of the fields we’re just about to discuss would claim they’re using maths, even though they’d specify you’d need a school maths background to be involved. In pursuing them you are employing a process born out of mathematical research, using key constructs and many of the individual algorithms it has produced. Instead, they employ many terms that don’t use the m word from “data science” to “modelling” to “information theory”. While no one would claim any of these terms map exactly to the field of maths—for each there’s an approach, algorithms and theory which you probably wouldn’t consider to be maths—they clearly are highly connected and the term “maths” is conspicuous by its absence.
To sidestep this ambiguity of the maths definition, is there an enveloping terminology we can use to describe all these real-world approaches? We’ve taken to using “computational approach”, “computational process”, or “computational thinking process”—and when we discuss the 4-steps of the process in Chapter 4, use “computation” for step 3. (This real-world terminology fits with the provisional, generic label of “core computational” in Chapter 2 for the mainstream school subject we are seeking to define).
Some mathematicians argue I’m just describing a different subject. Perhaps so. However, if that’s how they choose to look at it, they must then also accept “maths” is not the mainstream subject, and not the core issue for our educational systems that this book addresses. Instead, it is often a proxy for that subject, one that can do real harm by putting students off.
Pervasiveness of the Computational Process
Uses of the computational process are now so pervasive in our society that it is very hard to enumerate all of them. It’s very important everyone appreciates this scope; how else could you assess the appropriate coverage of the core computational education subject? I set out to make this book accessible to those not highly schooled in maths or technical subjects as well as hopefully adding insight to those who are. That’s why on both counts I thought it helpful to give an idea of the current state of computational use across different fields.
There’s a bit of an analogy with the use of IT. Early on, many organisations had a “computer room” where the small number of tasks assigned to the computer were assigned and processed, for example the company accounts. Now the use of IT is infused across everyone and almost every aspect of what an organisation does. The use of computation is similarly becoming infused (and largely because of ubiquitous IT) from a single “maths person” or modelling group to somehow touching almost every function and everyone in every organisation, and across many day-to-day aspects of life. In aggregate, this adoption of computationalisation is taking longer than pure computerisation. You could argue the adoption has been occurring for hundreds of years but really it’s only in the last decade or two that it has multiplied up to touch, then enfold, most areas of life. For example, in medicine computerisation of appointments and more recently patient records has been ahead of diagnoses using computation from imaging, genetics or other data about an individual and its comparison with the population at large.
Though there are quite a few fields on this list, do not treat it as encompassing, but instead as exemplifying typical uses, present and future.
Different fields have come to computation in different ways. For example, while archaeology wasn’t computational at all, physics almost always has been. Computer Science is born of the computational era, and while medicine has always had a computational element, it is being dramatically transformed to a very different field through step-changes in which computation can effect improvement. These backgrounds have affected representation in today’s maths curricula. Traditionally computational fields have some presence (e.g. mechanics is a part of upper school maths). Newly computational fields often do not (e.g. bioinformatics). Those created by the computational process are separated out to their own subjects (e.g. computer science). And those dramatically enhanced from traditional computational to a very different computational subject reflect only the original take (e.g. probability and statistics is part of maths curricula, but not modern data science).
Simple Computational Use Cases
Brief descriptions of a few scenarios where computation has been used in the real-world.
Searching for Planets outside Our Solar System
To build up a picture of planets orbiting neighbouring stars, an astrophysicist wanted to interpret the faint signals they emit. He built an algorithm using a sophisticated mix of mathematical techniques to achieve this from the enormous quantity of data collected. This involved having computers operating in parallel so multiple planets could be studied simultaneously.
Improving Product Assembly Efficiency
An automated assembly line typically involves several processing steps with hundreds of parameters—many of which could change with (frequent) product redesigns. Using machine learning, factors such as equipment availability, production efficiency and quality rate can be accounted for and continually optimised without the need for human intervention.
Managing a Pandemic
At the end of 2019, the deadly novel coronavirus COVID-19 began to spread around the globe. With little known about the virus, no vaccine and infected numbers rising catastrophically, mathematical modeling became the world’s primary basis for urgent life-or-death decisions by policymakers. A wide range of predictions were needed: from the spread of infections to the need for intensive care hospital beds to death rates to effects of mitigation measures such as social distancing and lock-downs. Reported data enabled improved predictions. The models also flagged up poorly specified parameters to better hone decisions such as broader testing of current and past infections, and using apps to establish who each infected person came into contact with. While today’s mathematics has helped, there is much improvement to take place for the future.
Optimising Flight Paths
As part of an ongoing effort to handle increasing air traffic, an aerospace manufacturer proposed building a pair of parallel runways. Using differential equations to model flight trajectories, and adding noise to mimic local weather patterns, an optimised solution was found by running thousands of computer simulations to maximise safety and estimate the risk of accidents.
Analysing the Motion of Running
At a government agency in Japan, biomechanics researchers used video processing to analyse the motion of runners. Movements of an athlete’s body were tracked and key features were mathematically compared to a 2D representation of the human body. This model-matching strategy allowed researchers to better understand how shock affects the body.
Value of Hurricane Insurance
In September 2008, hurricane Ike swept through central and North America, causing $38 billion in damage and triggering a surge of insurance claims. Noticing that the insurance market was functioning poorly along the Texas coast, a professor of law at the University of Houston created a set of tools to analyse loss allocation, enabling him to develop a post-event bonding model as an alternative to conventional methods of insurance finance and run it live at a government hearing.
Reinventing Polling
During the UK’s 2016 campaign to leave the European Union, the team that won the referendum employed a new polling method which proved critical to its success. Traditional polling uses a small sample of the population and a statistical (normal) distribution to predict the outcome, weighted by past experience. Instead, this team took a much larger population sample and used modern machine-learning techniques to predict voters’ actions more precisely. This allowed for more targeted marketing of specific groups and a more agile campaign.
A Cooking Misconception
To improve understanding of cooking and make it more precise, a chef studied heat transfer within food while grilling and during a subsequent ice bath. By modelling the process with the heat equation, he was able to find out that an ice bath does not, in fact, stop food from cooking immediately.
4 | The 4-Step Maths/Computational Thinking Process
So far I’ve been complaining about what’s wrong with the educational maths subject while extolling the computational process as ever-more-central to today’s world, evidenced by all the applications of its use in the last chapter. Next I want to transition to forming a solution—crucially what the subject needs to be—before in later chapters discussing how we get there.
It’s a Process
To make this transition, we firstly need to unpack what maths is—what it is we’re doing when we do maths or when we learn it and how that has changed because of computers.
Can we explain this grand subject—so lauded and rebuked, so exciting and so dreaded—in simple terms? In essence, yes. For all the mystique, complexity and weird symbolic squiggles, traditional maths or computational thinking could be characterised as this: a 4-step problem-solving process.
You may iterate the process several times, steps might take seconds or a lifetime to complete, and the process may not succeed at all, but this is the basis of technological empowerment of the last 50 years and the upcoming 4th industrial revolution.
Just because I characterise maths as a process does not mean I deem it uncreative, unintellectual or in any way disparage it (as some of my British country-folk might). Process is important to progress, but deployed to enable the handling of complexity, not to constrain it. (German process constraint—as against British free-thinking—is how I always took Churchill’s disparaging implication when hearing the word “method” in his 1940 speech, “invasion... prepared with all the usual German... method ”).
The insights, creativity and leaps of understanding required to apply the maths method or process are sometimes profound. But by using process to orientate them, breaking down the complexity and, crucially, applying ideas from apparently disparate disciplines, far more leverage can often be obtained from the intellect applied. Indeed, correctly used, this 4-step process is one of the highest-fidelity amplifiers of human intellect.
Actually, the idea of allying enough process to collimate the full range of human thought with enough freedom in its application for innovation has been a route to success that cuts across many fields of endeavour, from military campaigns, to the industrial revolutions, to musical composition, to flying an aircraft or running a business.
“ For all the mystique, complexity and weird symbolic squiggles, traditional maths or computational thinking could be characterised as this: a 4-step problem-solving process”
In each of these fields, pure open-ended thought rarely achieves the most; neither does unthinking process application. Instead there’s a sweet spot somewhere in between these extremes that usually optimises progress. Sometimes it proves best to have a rather rigid process application with relatively little room for creativity (often in the military, for example). Sometimes the application is highly time-sensitive (piloting a plane) while others may have relativity little time constraint (scientific research). Sometimes they don’t seem to have much evident or explicit process at all (musical composition). Periodically, improvements in the field can occur by altering the rigidity of application or occasionally resetting the process altogether. What’s almost always a mistake is shrouding the process in mystery as untouchable artistry.
So it is with maths and all forms of computational thinking. We need to be explicit about the process as users of it, educators in it, policymakers for it and centrally as students learning it. The fact that the detailed understanding of these 4 steps isn’t routine to our populations, in all these walks of life, that it isn’t a hardwired reference, has huge consequence. It limits what can be assumed as common knowledge a little like not being able to assume universal reading ability in developed countries’ populations in the past.
Let’s start to dig into the computational process, much as we ought to have done at school—though hopefully with more interest!
Walking through the 4 Steps
Step 1: Define
First, you DEFINE the question that you really want to address. What is it we really want to work out? Can we define the question or questions so they are likely to be amenable to the computational process? What do we need to assume, or what don’t we know that might be a factor?
When I’m giving talks an example I often start by using is “How long could we survive in this room if I talk for too long (which I’m hoping not to test out)?!”. Now there’s immediately a question of which factor will limit survival: is it food, water, air or an external event like the room being stormed by terrorists? Or can you literally die of boredom?! Perhaps you need to run the computational process on all in parallel to see which will be the limiting factor—or perhaps it’s rather obvious, so you can start with one as your running assumption. Maybe for most people running out of oxygen is the limiting factor, but for someone who’s diabetic, it’s food, so you may need different answers for different people. Another crucial aspect of the Define step is to lay out any important assumptions you are aware of. If we’re focusing on air being the factor, should we assume the room is airtight and that we’ve switched off all the air exchange for ventilation and heating or cooling (HVAC)?
This is a rather complicated example even though the original question is rather simple. That’s not uncommon. One of the roles of experience is to know how many and what factors to ignore at the outset. Too few stripped out, and you get stuck with too much complexity or too many options for the remaining steps of the computational process to get any answer. Too many removed, and you run the risk of excluding a factor that later proved more significant than you thought and in fact gives you a very different answer. Today’s maths education is set up wrongly to push heavily to the latter compromise because before computers you had to define much simpler problems to get any answer through the calculating step. Instead students need to be ready to define with more parameters left in because many of the applications of computation today are based around highly complex systems (biological, for example) where it’s much harder to predict what’s significant at the outset. Or even if one gets a “correct” answer, the model built fails to optimise the result, so for example an engineered device is less efficient than it could be.
Here’s another example we’ll walk through the 4-step process: determining how accurately we can detect leukemia from images of blood cells.
Step 2: Abstract
Next, step 2—ABSTRACT. The key idea is to translate to an abstract language not specifically associated with the context of your problem, but which represents the best tools with which to calculate an answer.
The task is to take the human-language definition of the question from step 1 and turn it into the computational form of the question best suited to applying the available toolsets to get the answer you’re looking for.
Putting it another way, there is a great toolset for being able to calculate or compute answers to problems, which is growing every year at an increasing rate of range and sophistication—even though it has already gestated over the last few thousand years. The useful toolset had been limited to tools that could be effectively used through hand calculating. Now the toolset has been massively expanded to include tools that can only practically be executed by computer because of the scale or complexity of the calculating required. Machine learning is a good example. It’s recently come to the fore because computers have only recently become powerful enough for the massive scale of calculating required to deliver results; for mass use, it needed 2010s not 1980s machinery.
“ A question you might ask is why this translation is to an abstract language, and why not to something more immediately human-like and/or contextual?”
Even when a given technique can be used by human as well as computer, it may be a less effective choice now that alternative computer-only techniques are available. Optimising wing design for airplanes is an example that comes to mind. World War II Spitfires’ wings were designed with a clever hand technique called conformal mapping that could be carried out symbolically and produced amazing results given how little calculating was required; but it did constrain wing design to shapes that could be conformally mapped by hand (Spitfires’ wings are elliptical). As soon as computers were powerful enough, numerical modelling was used instead, allowing any shape to be contemplated; computers could use symbolic conformal mapping techniques, but these are far less productive for this purpose now mass numerical computation is available. Indeed, relative to humans, computers’ ability to do symbolic calculating lagged behind their numerical ability. Often today hybrid approaches between techniques are producing the most cutting-edge results.
I’ve walked through these details so you can understand how critical knowing the range of practical toolsets (hand and computer) is to a productive step 2, even if you’re solving day-to-day problems. Yet today’s maths education is almost entirely focused on hand-based techniques, leading to skewed abstraction experience insofar as abstraction’s occurring at all.
A question you might ask is why this translation is to an abstract language, and why not to something more immediately human-like and/or contextual? Because stripping out context and better enforcing precision gives tremendous power to the process. The key point is to have a toolset that is reusable across different contexts or fields, not to have to use different tools for cases that are in essence similar from a problem-solving point of view. By so doing, a relatively small number of highly effective systems of solving the question have been developed; those systems can often be applied to completely new contexts as they come up; they can now also be very effectively automated with computers.
What does the abstraction in practice look like? Nowadays, usually computer programs i.e. code, or sometimes diagrams; in the past few centuries, usually mathematical formulae. There are many languages of computational abstraction, just like there are many human languages (themselves with many aspects of abstraction in them too). The relationship between the language you use, the toolset that it allows you to represent, the style of thinking it promotes, and the mechanisation of computation it then allows is highly complex. Overlaying these variables is the extent to which you are able to apply the toolset, how broadly or deeply you are familiar with it and how much experience and creativity you can bring to bear on its use. Your style of thinking is affected by the language you adopt too. With human languages there is much discussion of how speaking Mandarin may promote a different thinking style than French or English, and how this may be in a feedback loop which affects the cultures of the societies that use those languages. And so it is with abstraction to computer languages: the way thinking happens with different languages is affected by the language.
All of these factors and the huge number of options is a key reason that doing step 2 well can be a highly conceptual and intellectual process needing intuition and experience as well as one that needs a great deal of focus in core computational education. Today it gets very little attention, with an outmoded toolset based on a false premise of how the computational process is run in practice.
I will discuss later in detail what is really needed for a modern step 2, and how its requirements are severely misunderstood by almost all policymakers I have discussed it with largely because they have failed to appreciate the extent to which the useful toolset has changed since the rise of powerful computers. Or alternatively, they believe that empowering students with new toolsets always requires a basis of all the older toolsets as a foundation.
Step 3: Compute
Let’s now assume we have effectively abstracted our problem and are therefore into step 3—COMPUTE. It’s easy to state the aim: take the abstract question and turn it into the abstract answer. For example, if we’d abstracted our question to be the equation x+2=4, computation means working out that x=2.
Today most of maths education is focussed on this step. This is what’s gone so crazily wrong. Years and years of trying to master a rather small range of different calculations—just a tiny, mostly unused fraction by today’s real-world standards. This emphasis on the calculating step made sense in the past before computers. Without having been able to action step 3, maths and computation—the computational thinking process—was largely impotent; and the only way to action it was by hand. Therefore, being able to calculate was very often the limiting factor in being able to use maths (for the limited range of use to which it was put). If by hand you couldn’t calculate or “do your sums”, you couldn’t “do maths”.
How mechanisation has turned this on its head! What’s striking today is how extraordinarily successful the mechanisation of step 3 has been, arguably the most dramatic takeover by machines so far in any field (and there are more dramatic consequences to come with AI). Computers have already caused a transformation beyond anyone’s wildest dreams, including those involved in their invention. I find it entertaining to think about how a typical person or indeed a mathematician would respond if asked 100 years ago whether landing on the Moon or a single machine that can do many of the calculations of a great mathematician in under a second was more likely? I’m pretty sure it’d be the Moon. Yet today we assume every day on multiple devices, or in the cloud, that step 3 will occur seamlessly to power our lives.
Except in maths education at school.
The job in performing step 3 in the real world today is largely of managing the automation of computers, not doing the step oneself. And it’s a very different skill set. Managing automation requires different understanding, different experience than doing it yourself. It’s rather the same as managing people in an organisation to carry out a mission as against doing it solo. There’s a relationship between the two, but many people can do one but not the other. On balance, though, depending on the task, the skills in managing are more varied, and one of the hardest tasks in managing technical work is knowing when to operate at a strategic level and when to dive sceptically into details. So it is with managing computer-based step 3. At one level, you want to leave it to the computer—“hands off the wheel” in self-driving-car terminology. The problem is that every so often, dramatic failure will result.
One has to have enough presence of mind, enough understanding, to know when to intervene, but on the other hand one doesn’t want to cramp the style of the machine that’s so much better between catastrophic errors than you the human are. This conundrum is not easy to solve and we will return to it many times, but for the moment let’s just note that dramatically the wrong solution is prescribing the need to know how to do the calculation by hand whenever you want to use a computer. Firstly, you can’t do the calculation by hand unless you want to tether the computer to human-capability calculations only, which is a dwindling fraction. Secondly, the styles of failure are typically rather different to a human’s so knowing the human process isn’t necessarily what will catch the computer’s mistakes. We’ll talk in Chapter 6 about the set of human skills for this age of computational automation, but suffice it to say that the complete upending of step 3 by computers is the nub of today’s maths education to computation divide—in terms of skills required and real-world expectations.
Step 4: Interpret
By computer or human computation, you hope to end up with an abstract answer at the end of step 3, perhaps a number, a plot, a formula or even an interactive application. In step 4—INTEPRET—we need to take that abstract answer and interpret what it means for the original, defined question of step 1.
Can we understand it in that context? Does it seem like it could be a reasonable answer? Does it need further refinement? You could think of those 3 questions as (a) through (c) of step 4. Usually your answer won’t pass muster on first pass. In particular, you’ll almost always have follow-on questions or refinements. You’ll want to rerun the computational process once again.
In short, your mission in step 4 is to verify that you have a useful and reliable answer to your question—one that doesn’t mislead for your defined question of step 1—and then to establish whether it’s the best answer from which to make the decision for which you were going through the whole process to start with.
Like step 2, step 4 needs lots of experience: experience of what to expect, experience of the sorts of problems that arise, experience of where it’s worth trying to get a better answer and, if so, whether to stay with your approach or try something new. This experience is hard won for real, messy problems to which computation is applied today and little covered in today’s school maths, or at least is only covered in ways that hand-verify calculations you’ve done and typically misses all the other sorts of errors that can arise in steps 2, and particularly in assumptions made for step 1 (for example making an inaccurate assumption about a factor that is in fact significant). If you abstract the problem inappropriately or define the problem in a way that doesn’t represent the real question you want answered, your answer may lead you to a completely false decision.
Likewise, a common mistake is to believe that the only way to gain such experience or the ability to verify results is by knowing how to do calculating in step 3 by hand, or at least knowing how the machinery does it in every detail. Although sometimes this is a way to verify or improve results, it’s increasingly rare that that knowledge helps out or, more to the point, that the requirement to know those details doesn’t impede far better decisions because you could use a wider set of techniques. I will come back in much more detail to explaining why in Chapter 10.
Whole Process Visual
That’s a quick run-through. Of course there are many nuances and complexities one could add, but it’s very important to strip this back to fundamentals, get the overview and keep it in mind.
Is it news to you? It shouldn’t be if you’ve done any school maths. But in so many cases, for so many people, it is. After my 2010 TED talk on these topics a common reaction was along the lines of “This is the first person to explain to me what maths is and why I needed it”. They’d never thought of maths in this way. Instead they’ve ended up being lost in some part of the process—often step 3—some sanctuary of the subject, but not its overall process or purpose.
We were keen to find a representation of the computational process—the 4 steps and the iteration—so everyone could have an image in their mind as they were using it or be able to explain where they were in applying it to others. After some deliberation, we thought that abstraction to the segment of a helix worked best. You start at the bottom of the helix and you can then imagine driving up it through the groups of 4 steps (ramps in this representation) until you “declare victory” with a sufficiently good answer. The pitch of the spiral and length of the roadway—the iterations of the 4 steps—depend in detail on problem, machinery and experience.
As an aside, this all rather reminds me of an attraction at the St Giles Fair that takes place in Oxford, UK every September. I knew this funfair throughout my childhood, living as I did within a mile of St Giles. A joy of writing this book is finding out that it may date back to the 12th century rather than being Victorian, as I’d assumed. Wikipedia claims that Elizabeth I watched it from rooms in St John’s College which overlook St Giles. My favourite attraction at the fair (in fact pretty much the only one I liked) was the “helter skelter”. It’s a helix whose centre has some stairs to the top so you can slide down on floor mats to the bottom with increasing speed. Before the term was used for British fairground attractions it meant “disorderly haste or confusion”. With the computational thinking helix, you are hopefully ascending with orderly haste and careful avoidance of confusion. But sometimes it’s all very frustrating. You may think you can run the process, but as you do more and more, complexities dawn on you that make a definite answer, a decision-making helper, seem further away than ever. You slip down. It may be that the problem isn’t usefully amenable to computational thinking. Or more likely that you haven’t found the right shoes or technique to ascend the computational helter skelter.
[Courtesy of Oxford University at ox.ac.uk (1907). Courtesy of the Geograph Britan and Ireland project geograph.org.uk/photo/1489542 (2010).]
Real-Life Running of the Process
Experience of running the process, how to interpret results, and when it’s not going to work—what the signals tell you—are all crucial to getting meaningful answers. It must be experience of actual, real-life problems or a close proxy to them. Uncontextualised, simplistic problems without everyday difficulties, without “hair”, will fail to build this experience. You only get it by seeing the little details in complex cases, knowing how you strip the critical signal from the mass of surrounding noise. Running the whole process is critical to this experience; one part alone is of limited use, like learning to drive by spending all your time on braking. Neatly curated school maths problems, set up so you can run step 3—the computation step—without a computer completely miss the experience mark in all steps, but very noticeably for interpretation. After all, if your complete maths problem set was “solve the following quadratic equation”, what interpretation or contextualisation is there to do other than checking if you made a slip in your hand calculations?
Instead real problems like “which of these website designs produces the best results?” are rich in interpretative complexity (not to mention experience for all the steps in the process). If you calculated that twice as many people click on the main feature as the sum of the subsidiary ones as opposed to the alternative where those parameters are reversed, which is best? Depends what you want? And if the data turned up unique visitors or visits? Or perhaps you want to know how long they stayed afterwards to interpret the site’s success (which involves taking another turn around the solution helix again)? What you care about in running the computational thinking process depends upon what decision you’re trying to take and what outcome you value, none of which may be completely clear at the beginning until you’ve got into the problem.
“ Maths is more about life than about calculating”
In fact, one of the great achievements of the computational thinking process, aside from its ability to precisely calculate answers, is how it can force clearer thinking of the objective sought and complexities involved. Badly applied and understood, as so often happens today in public life, it can easily do the opposite: act as a megaphone for misinformation or misunderstanding. For example, the complexities of the risks around nuclear power. It is believed that fewer people have died directly or indirectly from nuclear power production compared to fossil fuel, but the risk of catastrophic disaster looms large. However, where there have been disasters, they have occurred with much older designs of power station and so on.
Those poorly educated in the rich computational thinking I talk about more easily succumb to that megaphone. They can be blinded by quantitative certainties or bamboozled by the aura of computational complexity. They can confuse abstract representation with the reality it was supposed to be representing, even when the two have diverged.
I am reminded of my teacher who every so often started his lessons by saying “you’ll find my lessons more about life than maths”. I might put it another way, that “maths is more about life than about calculating”.
Some would disagree. Some would say that the very essence of maths is the art of calculating, knowledge of step 3 with all its illustrious history. They see this being a human endeavour as the end in itself rather than a passing mechanism of the moment to achieve the problem-solving and decision-making aims I describe.
Cost–Benefit Analysis of the Four Steps
There’s another key difference too between a traditional maths way of thinking about a problem and a modern computational thinking approach, and it has to do with the cost–benefit analysis between the 4 types of step up the helix.
Before modern computers, step 3—computation—was very expensive because it had to be done by hand. Therefore in real life you’d try very hard to minimise the amount of computation at the expense of much more upfront deliberation in steps 1 (defining the question) and 2 (abstracting). It was a very deliberate process. Now, more often than not, you might have a much more scientific or experimental approach with a looser initial question for step 1 (like “can I find something interesting in this data?”), an abstraction in step 2 to a multiplicity of computations (like “let me try plotting correlations of all the pairs of data”) because computation of step 3 is so cheap and effective you can try it lots and not worry if there’s wastage at that step. Modern technology has dramatically shifted the effective process because you don’t get stuck on your helix roadway at step 3, so you may as well zoom up more turns of the track faster.
A useful analogy is the change that digital photography has brought. Taking photos on film was relatively costly, though cheap compared with the chemical-coated glass plates it replaced. You didn’t want to waste film, so you’d be more meticulous at setting the shot before you took it. Now you may as well take the photo; it’s cheap. That doesn’t mean you shouldn’t be careful to set it up (abstract it) to get good results, but it does mean the cost of misfires, wrong light exposure and so forth is less. It also opens up new fields of ad hoc photography to a far wider range of people. Both meticulous and ad hoc modes can be useful; the latter has added a whole new toolset, though not always replaced the original approach.
Alternative Process Conceptualisations
Although we represented our conceptualisation of the maths process, many others have done likewise. Long after we’d put ours down, we started looking at others’ work around the process and noticed that in many cases it’s rather similar—4 or 5 steps, a process that iterates and so forth—even though ours was put down independently of theirs. (Of course, I hope our work is not truly independent, because it’s all supposed to relate to the same maths!).
I believe ours is the cleanest and clearest of the ones I’ve seen (a few other examples below), but whichever you think best, what’s striking is how little reference there is in most maths education to any such rendition of process day to day.
5 | Hand Calculating: Not the Essence of Maths
Difficult Disambiguation
I once found myself at a CEOs’ conference with sessions where you were thrown into discussion groups on topics outside your proclaimed expertise. I was in “the future of TV” with some of the world’s top TV executives. About 20 minutes into the discussion there seemed to be a lot of cross-discussion which I distilled down into asking, “Here’s a clueless question from someone who knows nothing about the future of TV. Are you defining TV as the large communal screen on the wall of a living room, or TV as the content that you now consume through many different devices? Because I keep hearing both in the discussion and I’m confused what you’re talking about”. One executive said, “That’s the most important point we’ve had yet”. They then proceeded to argue about what was the essence of TV versus the delivery and which was the core issue for them in thinking about the future.
Can we separate the purpose and essence of mathematics from its machinery—the mechanisms or mechanics by which we achieve the purpose at a given moment in time? This disambiguation is critical because as new machinery, technologies and techniques come along, they need to be swapped in to further the purpose. But if the originals are the purpose, then swapping them out is somehow removing the very essence of the subject.
This difference between purpose and mechanics of the moment, or end point and journey to get there might seem easy to separate. But in periods when the machinery doesn’t change much, it’s hard not to confuse the two. The machinery controls what’s possible and how this is to be achieved and therefore the envelope of what can be achieved. What can be achieved over time can therefore be confused with what one wanted to achieve in the first place.
“ Can we separate the purpose and essence of mathematics from its machinery?”
So when major new machinery comes along—as computers have—it’s rather disorientating. Does the new machinery do what it’s claimed to; what are its demerits, indeed do they outweigh the advantages? What’s its reach or possibilities and effect on the field? What is central to the activity and what is an artefact of one’s current process? What that one had learnt (often with some difficulty) is now redundant, or can be repurposed and magnified? Indeed what is the human skill now needed given the new machinery? When’s the right time to jump onto its use?
These are key questions for mathematics. But it can be rather hard to see the wood for the trees staring straight at them. Let’s analyse another field first that has recently undergone major machinery change: once again I’m going to pick photography.
As a child, I used 35mm film in a single-lens reflex camera. There was a necessary ritual around loading in a new 36 exposure film, advancing the film by hand, storing, processing and printing it (all of which I’d put some effort into learning). As a keen photographer going on holiday, I knew there was skill in picking the right sensitivity of film, deciding if it should be print or slide, colour or black and white, deciding whether to argue about putting it through the airport x-ray in case it got fogged—an effect I never experienced. The envelope of what photos I took was controlled by the cost and difficulty of dealing with film, my experience tempered by not immediately seeing the results of taking a picture as I awaited its processing and then tried to construct what settings of exposure, aperture and focus had led to which results. Eventually I had some system of noting these values for post-development comparison, but it was cumbersome.
Digital photography has completely changed the mechanism of capturing images. Gone are those constraints. In are some new issues—including huge numbers of new options to optimise alongside new automation to help. A far larger number of people can capture images with less knowledge of the mechanics. Many new styles, uses and forms of photography are opened up, both in absolute terms and for a given user of photography. For example I can now take a huge number of photos at low cost and throw most of them out. With film, few people other than professionals, like press photographers, would do so.
With all these opportunities, what is the essence of photography today? And let’s not forget the merging of still photography and videography—so separated in my youth.
In the transition from film there were many arguments put forward that film would never be replaced by digital for serious photographers—that this replacement would cause photography’s essence to be lost. This seems eerily similar to some of the arguments used around maths education for not using computers. Of course, the early digital cameras weren’t anything like as good at capturing images as film, by then so carefully engineered over decades. But this wasn’t fundamental, just a reason not to adopt then. There will always be differences too, and some people may not like those. But the idea that never would digital capture meet or surpass film technically for almost all uses now correctly looks ludicrous.
As does the idea that digital loses photography’s essence... or that calculation by computer loses maths’ essence. The ritual of loading film into a camera or, indeed, before that of coating a glass plate in chemicals was not the essence of still photography... in much the same way as the finery of writing odd maths symbols doesn’t seem to me to be the essence of maths. Rather I might describe that photography essence as a way to capture and present a view of life, crystalise an observation... or of maths, deploying the most powerful of problem-solving systems. Of course the mechanics of digital rather than film change the mechanics of that crystallisation, but it also offers far more scope. It’s certainly the case that many more people can trivially produce very uninteresting photos now, but so is it the case that vastly more people produce interesting, well-crafted, technically good photos too. Crucially, almost everyone now has a rather good camera available to them almost all the time. New photography, instantly beamed around by anyone to anyone. Or you just take a photo as a record in case you need it: where you parked your car, what something looked like before you took it to pieces and so forth.
From a somewhat niche field, photography has become massively mainstream. The mechanics have changed everything, including broadening and changing the essence. Imagine what could occur now with mainstream computational thinking, if not held back by mismatched education.
“ The finery of writing odd maths symbols doesn’t seem to me to be the essence of maths”
I often joke that if photography were a mainstream school subject, the first lesson today would still be how you load a film into a camera. In the way that we have had generations of so-called “new maths”, perhaps this would be termed “new photography”, and “traditional photography” would be preparing a glass plate with light-sensitive coating! We can laugh at such an idea, but it’s not far removed from what we’re doing today with maths and computing. It’s just much harder to see with more complex processes and longer transitions.
A crucial point is that those film-loading mechanics of doing photography were crucial at that moment in history. Without knowing how to load a film you couldn’t take photos. No point in knowing about depth of field, or tricks of composition or creative ideas of photography if you couldn’t load a film. As with every subject, a crucial part of education in that subject is today’s but not yesterday’s mechanics of how you action it—what I call the “mechanics of the moment”—alongside core education in the essence of the subject. One of the few reasons to include any extra mechanics of the moment topics may be if learners are interested in knowing about the internals or history of how they came to be important, or they practically help for the level of application about which the students are learning.
Photography-wise, the details of CMOS sensor design or how films worked seem only to help at a very advanced level, and detract from the essence beforehand. Maths-wise, the details of how a calculation is done or how a computer works to do it also often help only at an advanced level, and instead detract from the essence beforehand. Usually such topics are an artefact of what was needed before, or present because those designing the curriculum were excited by the subject in its own right and not because they are truly the essence of today’s mainstream, tool-of-life subject.
The takeaway summary is this: education goes disastrously off track when the mechanics of the moment it teaches do not change alongside the change in real-life mechanics of that subject. The old mechanics must be replaced by new mechanics and hopefully by a rebalancing to more essence of the subject and less mechanics of the moment. After all, most successful technological progress enables more essence for a given amount of the mechanics. Indeed you could argue that that’s a key metric of automation: can the essence prevail more?
The Central Question, the Key Problem
Perhaps the most central question of this book is “What is the essence of our core computational subject?”. If we fail to answer this correctly, we cannot expect to set up education to optimise its learning. There are a host of immediate supporting questions too. What are today’s mechanics of the moment that go alongside actioning that essence? How do we educate our populations in that essence with today’s mechanics, knowing that at least the latter will evolve dramatically if not fundamentally change again during their lives?
Let me take the first question and remind ourselves of the answer to it. In essence, maths, or computational thinking is a problem-solving process manifested by iterating 4 or so steps. You feed it questions (which it may assist you in defining), and it helps you get high-precision answers. The essence or the point of maths-for-everyone is to solve problems so you can make better decisions. It shouldn’t be one of very few compulsory core subjects because it’s beautiful, uses cryptic symbols, or makes exams easier to set; it’s a way in which humans solve problems better—often much better—than they did without it. And perhaps the key driver for its ability to do this was the concept of abstraction to a system of logic. I say “was” only because now we have another related key driver too. Computers mechanised the hell out of the application of logic in this abstract world and so dramatically supercharged the process.
“ Computational thinking is a problem-solving process manifested by iterating 4 or so steps”
Learning the essence of maths as a core educational subject is learning to apply the 4-step process with the best tools available, to be able to apply it to ever harder, more important, more life-enriching problems, to arrive at better decisions. That’s the point. That’s what all of maths education or our core computational subject needs to achieve for our populations.
Calculating is the production line of maths or computational thinking. The essence is not hand calculating. That was largely the mechanics of a previous moment (yes, a moment of many centuries, but nevertheless one that has passed). That was necessary mechanics to achieve the essence of problem solving before we had machines to do it for us. Calculating or computing is one step in the maths or computational thinking process—one where the mechanics have dramatically changed.
Entrenched Confusion
This confusion between calculating as a means to a problem-solving end and as an end in itself is the central and fundamental misunderstanding at the heart of today’s maths education crisis. It’s the root of the wrong school subject. It’s the cause of mis-spending $billions, and worse, the misery of millions of children who are deemed to have failed because they are not competent human calculators.
I cannot over-emphasise the consequences of thinking hand calculating is an end in itself across our societies. Just to be clear, for an individual interested in what I pejoratively call “the history of hand calculating”, it may be an end in itself. That’s great if their interest is in calculation’s history—to some, including me, a fascinating subject. The point is that it’s not an end in itself for most of our populations, for all the people forced to learn maths today and being judged on their ability at it. It must not be considered an end in itself by policymakers, governments or examiners of our core computational subject.
It is very easy to see how this confusion is so entrenched. Up until the last few decades, hand calculating has been the most difficult, expensive and core skill required to run the maths process. If you couldn’t hand calculate, you couldn’t use maths. There was no way around it. So focussing much of maths education on calculating made some sense (though even then the approach was often unnecessarily pure and abstract for most). Computers have totally transformed this—I would argue the most dramatic mechanisation in any field so far. Not only can computers do as well as humans on calculating, they outstrip them beyond any previous imagination. What was the hardest, most human-centred step in the maths process is now the cheapest and the most mechanised: the perfect conditions for overwhelming essence and mechanics-of-the-moment confusion.
Over the last few years that I have been focussed on this topic, I have often gone to education conferences with policymakers, education ministers and other entourage. They have nice food and some interesting people, but usually seem bereft of action. They are deeply depressing affairs when discussing maths because once one has the insights outlined above, it’s clear how they miss its essence and persist in focussing on the wrong mechanics. It is all too typical in a two-day format to spend day one basically talking teacher improvement—“We need to recruit and train teachers better for maths”—with no discussion of what this subject is, why, how the real world changed, or what skill sets the teachers need for each role in that subject’s learning process. The first half of day 2 is often about considering which calculating is most important to learn and then finally, after lunch or tea when most participants are on the way out, future topics to be considered such as whether computers affect the subject. Peppered into this format are presentations of how some whizzy-looking piece of software helped a group of students “learn maths better” (really “calculate better”) and get better grades in their exams to prove it. Thoroughly exasperated, I often perk up and say things like, “Don’t we need the computers doing the calculating, not showing students how to do it by hand? Isn’t that all backwards?” or “Surely we need students to be first-rate problem-solvers, not third-rate human computers like you’re talking about?”. Or “Why is all the effort on getting students to compete with computers for 10+ years of their life—a competition they will lose?”. Worse, there can be whole conferences where two definitions of maths persist. “We need maths for the knowledge economy, to drive our economic progress” existing at the same time as focussing throughout on how student attainment at calculating, like long division and quadratic equation calculations, can be improved without any idea that these often concurrent conversions are perhaps 80% at odds with each other, joined just by the two maths’ common label.
It’s no good agreeing we need to recruit more maths teachers if we don’t understand what the subject we’re teaching is. Or driving students through rote calculations if we didn’t realise they aren’t used anymore and they don’t effectively inform on what is. While the emphasis of “maths is important, we must raise standards” may be well intentioned, the discussion has become derailed by confusing the standards of past mechanics of maths—executing hand calculating—with the standards in the essence of applying the computation process to making better decisions.
So I would be much happier to address questions at such conferences like: What are today’s mechanics of the moment if they are not calculating by hand? What do we humans need to learn about the process, about today’s machinery and its operation if not how to do the calculations? Does one in fact need to learn some hand calculating to enable intelligent use of the mechanised calculating? Is there an essence of big maths ideas that’s life enriching, intellect broadening and worth trying to excite students about in its own right too?
Once these pillars of our core computational education change, execution of the building of the whole edifice comes into question. Why do we order what’s learnt the way we do? Is a strict ordering necessary? Can we give ourselves a new ruleset for how to work it out?
Risks of Intransigence
This is a big range of questions—questions too scary for many jurisdictions or multinational bodies or conferences that represent them to ask. So they don’t. Safer not to upset anyone. Safer not to have the maths bodies, maths teachers, errant parents and, in the end, voters disagree. Safer to look back to history for inspiration. Safer to point to rising standards in assessments of hand calculating—today’s maths exams. Yet this is misunderstanding the true risks. If we don’t answer these questions, maths will fail: fail our students, our communities, our countries—fail as a mainstream subject too. Long term it’s riskier in this case not to make fundamental change than to make it, but that’s not how it may appear. Fewer and fewer will be happy if we don’t change; indeed, very few are as it stands.
There’s a story I love to recount about a 15-minute cab ride I took in London. It shows how our populations are often ahead of the politicians and indeed sometimes have a good grasp of the essence of maths principles. I’d just been at an education conference and jumped in a “real” black cab after the dinner to get back to my car. After “Where do you want to get to, mate?”, I had “What have you been up to then?”. I said, “Trying to fix maths education”. “That’s not what you’d call an easy problem”. I explained that computers now do almost all calculating in real life so there’s not a lot of point in focussing on learning that skill rather than how to solve problems using computers. “Makes sense to me. If you don’t use it, you lose it, so why bother? Don’t want my kids learning stuff they’re not going to use and I didn’t like either...”.
A bit further on we were just by Parliament, driving by Big Ben. “So what’s the role of algebra then, mate?”. I thought to myself, “Wow, that’s a good question”, sharper than I’d had all day at the conference! I explained that being able to take real problems and set them up into abstract maths was important in being able to solve them, algebra being one of the tools you might use. But once set-up you’d get a computer to calculate the answer. So you needed to know algebra existed and, until it’s automated better, be able to set up problems using it and know what
“ We need to run the logic of the maths process on reimagining maths education itself”
to do with the answers, but usually did not need to know how to calculate the result, not at the start anyway. “Makes sense, but that isn’t what my kids are doing... they’re solving quadratics for no reason.... Never used one myself... wouldn’t know when I would”. He exclaimed how obvious what I was saying was and how he thought normal Brits were practical and would go for it after some Daily Mail headlines, so we went on to why change wasn’t happening. He said, “Them politicians have gone to ‘posh schools’ which are a bit traditional; maybe that’s why”. I said maybe, though I’d gone to a “posh school” and while some of us were stuck in the mud, some were not; everyone’s gone through traditional maths, though. He jumped in and said, “I know what it’s about: risk. It’s too risky to make a change so they don’t bother. Takes too long to get the credit. Better to do things that won’t cause commotion. So nothing much changes until there’s an outcry from the public and they risk losing votes”. Then we arrived with a “Good conversation, mate”... which I certainly agreed with.
Back to the problem of the wrong maths subject and its ramifications. They’re massive. Indeed, on a quick back-of-the-envelope calculation (...actually a multiplication on my computer...), you can argue that around the world 240 1 average lifetimes are spent learning historic hand calculating per day. That’s a huge ongoing expenditure of human capital, requiring an extent of enforced activity that surely only the most watertight of rationales could justify.
Years of investment every day without watertight rationale, and we don’t want to risk fundamental change to something better justified?
There’s overwhelming justification to look at fundamental change. Indeed, to help us figure out what it might be, we should use the very process we espouse. We need to run the logic of the maths process on reimagining maths education itself. Step 1 is defining what we’re trying to do so we can abstract to the new subject in step 2, compute the results as to what we should do in step 3, and de-abstract to practical action in step 4, verifying and iterating the process as we go. We need to do this on what we want, and after establishing this, on how we get there.
Education policymakers and in particular the maths education community have not always done this—applying the cold, hard logic they profess is so central to the subject. They need to. Of course the eventual state we need to get to will require a transition, and like most major transitions, how it proceeds will affect the steady state we reach. But we need to be bold in making this difficult transition a secondary effect, not letting it overwhelm the primary requirement.
1 Approximately 240 lifetimes per day, assuming: ~590 million secondary school students doing 3 hours of maths per week for 38 weeks of the year, 80% of maths hours being spent on hand calculation, 70 years in an average lifetime.
PART II
THE FIX
6 | “Thinking” Outcomes
What’s wrong with maths education at its heart is the subject. Rather than just declare the maths problem identified and stop there, I’m now moving on to laying out what the core computational subject needs to be. This is the maths fix that my team and I have been working out from scratch for the past 15 years, and more intensively under the computerbasedmath.org or “CBM” umbrella since 2010.
We’ve found the changes need to be much deeper than we first perceived: not only peeling back the content of today’s maths curricula but reconfiguring the architecture of how they’re conceived and communicated too. The whole process of synthesizing the new core computational subject has required a rethink; it has not just been a matter of adding or substituting more modern content into curriculum documents, redoing textbooks and teaching materials or computerising them.
So what are the starting points? Firstly, actual problems solved by real people in the real world with today’s technology. As much as possible you want to simulate those situations and work out what learning is required to be able to attack them in the wild. In Chapter 9 we will come back to why and how it’s been crucial to use the building of as-real-as-possible problem-centric learning/teaching materials to derive the content of the curriculum and its specification rather than dream up the specification from which we then produce materials (as is the norm).
For now, I want to consider a different conceptualisation we need too. Not just knowledge of solving the problems themselves but crystallising out of that starting point the wherewithal to know how to solve new problems with available tools and technology—to think in new ways. A key structure in this endeavour is an outcomes layout—a way to abstract the results of what you hope the student will achieve from their study. Outcomes must reflect real-life requirements of education; but you also need them to be usable as a tool for working out what goes into your curriculum; and they are the basis for measuring the success of education too. You need to be clear what the point of the education is, or you are unlikely to hit that target.
Outcomes listings are commonplace in defining school curricula today but their traditional formulation for maths has not worked well for our new requirements, for many reasons I will detail in the next chapter.
But in this chapter I want to focus on one key reason: the central problem of how creative thinking is represented with respect to maths. Can we be explicit about what’s required to help to engender it? Can our “outcomes map” abstract the process of thinking into a teachable, communicable, and learnable form? Or will it end up locking it out, procedurising and specifying to the point of exclusion? At no time has this been more prevalent or pivotal a question than now with the rise of AI and concern over humans’ future “thinking” role alongside ever more “intelligent” machines.
Working Definition of “Computational Thinking”
What it means to think has been discussed by philosophers, scientists, and mathematicians—notably Alan Turing—alongside many others for centuries. It is usually considered to be connected with logic, with reasoning, but also with creatively making new connections between apparently disparate ideas. Rather than try to rehearse those debates—interesting though their history of now-evident truisms, errors and still-to-be-determined beliefs is—I will just make some observations which can help us in thinking(!) about core computational subject outcomes.
Firstly, there’s no question that modern computing has pushed back the boundaries of what most considered quintessentially human thinking skills. The oft-cited example is the ability to play chess, set out in the past to be a criterion of human thinking but now dominated by computers (major games started to be won by them in 1996). More recently, there have been IBM’s Watson playing a quiz game and our own Wolfram|Alpha. Almost whatever we consider thinking to be, computers have increasingly pushed its boundaries and are expected to do so further with AI. When discussing human education, I think it’s therefore helpful to decide henceforth to define “computational thinking” as whatever the human aspect needs to be, a changing definition over time as computers and AI advance. In so doing, one is sidestepping
“ There’s no question that modern computing has pushed back the boundaries of what most considered quintessentially human thinking skills”
the philosophical debate about whether “machines think” and simply wants to label the useful human quotient as “computational thinking” as a practical matter. The point is that we need some way to talk about what useful human “thinking” abilities are at a given point in time, given the available AI machinery. (Note that we are not defining computational thinking as thinking like a computer or substituting for it—a common confusion of that terminology.)
And that brings up my second observation: that as machines advance, we need constantly to see how humans can “add value” given how computers have mechanised prior human-only thinking skills. Most obviously that means adding value in work and therefore giving reasons to employ humans. But it also means life fulfillment. Can you have more fun in your interests or hobbies because you can better think about how to refine your abilities at them, whether art, construction or racing?
Thirdly, while processes can support computational thinking, and indeed I argue that in essence it is a 4-step process, every aspect eludes simply being prescribed upfront. If we oversimplify outcomes, or as more usually happens, write them out as a long list of “what to learn”, we tend to pulp creative thinking into mindless application of microprocesses which, far from adding value to computers, simply does a poor job in simulating their proficiencies.
Confusion over what is thinking, what is process, versus what’s highly valued today and what ought to be, dominates problems with maths education.
Misdiagnosing My Daughter’s Maths Difficulties
I saw this for myself with my then-13-year-old daughter. I really didn’t want to have to poke my nose in and do battle with her school’s maths department—of all departments—but there was little choice. She was put in a lowish set with many children who’d been pushed much harder on their maths. I’ve pushed Sophia a bit to keep up enough that she can pass the exams she needs to, so insufficient qualification at maths doesn’t hold her back, but I haven’t pushed anything like as hard as many professional parents. I suspected that most of the children who’d scored the same as her on the tests in fact found today’s maths concepts relatively harder than she did. But the maths department didn’t see this: I was another pushy parent with unrealistic expectations or hopes of my child’s abilities in maths (made worse by belief that I was projecting my maths ambitions on my daughter). They wanted her to stay in a lower set—where I could see she was bored, lost concentration and couldn’t learn endless microprocesses from copious notes that she didn’t fully understand (and nor could I!). In particular, they thought the tests—particularly “extension”—were a measure of intrinsic “thinking” or “problem-solving” ability and someone could not be helped much by teachers on this.
For anyone, this generality of diagnosis and lack of remedy seem unhelpful. Insofar as it was a diagnosis, it was also wrong in her case. In fact, Sophia lacked simple pieces of maths process that she’d neither explicitly been told nor had successfully distilled. For example, if you’re asked to show that , it’s usually easier to take the messier-looking side alone and try to make it look like the less messy side. It’s harder (and sometimes logically wrong) to take both sides and work on them at once. This is pure technique. It’s not about what one might infer or what insights one might have.
I expect many aspects of this episode will be familiar to many parents in many schools. What is striking is how many parents spanning so many backgrounds, personal experiences of maths and expectations for their children’s maths ability recount similar tales of woe—or occasionally misplaced joy—to me. There is apparent mismatch and confusion about the difficulties or abilities like for no other subject. And that’s the thing: the extent of these sorts of issues more often than not surrounds maths. Sophia’s school has been highly impressive (beyond just the curriculum too) and overridingly positive for her so far, even in subjects that aren’t her thing or with teachers who aren’t her favourite, except for this incident; but this incident was in maths; and that’s so often what I hear from others. My point is therefore not to castigate the school for what happened but to pin the blame overwhelmingly on the edifice of today’s maths curricula, assessments and expectations.
The advantage I had was being able to help to sort it out through detailed diagnosis and assistance. It probably only took 5–10 hours of work with her, almost all digging in and finding out what Sophia didn’t understand; correction was then usually rather quick. Subsequently, she’s moved up sets and sailed up the rankings with no further intervention from me, confident her maths or computational skills will not hold her back for what she wants to do (either in exams she needs to pass or actual application). But so many wouldn’t have that advantage and their child might be labelled as “not very good at maths”, implying “can’t computationally think”, simply through misunderstanding, misdiagnosis and a misconstruing of the essence of required thinking. This is obviously extremely detrimental to life chances, and can be a self-fulfilling prophesy. The more laden with microprocesses maths is to learn, the more pressure exerted on exams, the more the current maths is likely to enshrine misdiagnosis of students.
So is the idea that progress can’t be made in helping students to learn how to “computationally think”. Clearly some will be better at it than others. But there’s lots to learn about how to apply the main 4-step process. It’s very far from a birthright or done deal whether you can utilise it. Indeed, different students will be able to utilise it differently in different circumstances. Their ability isn’t binary, it’s multivalued and multidimensional.
I’ve seen the effects of approach and process for myself trying to do English comprehensions. I’m not naturally talented at them to say the least. Decades on from my last attempt to do one, I realise that my problem, if I understood the passage at all, was in oscillating between being too literal and thinking the literal was too obvious to state, so making points too eccentric for the mark schemes.
However, I was helped most by the teachers who abstracted out and communicated a good thinking process for each aspect. Some students would manage this themselves instinctively, but as I couldn’t, this assistance in how to think helped me significantly, not just in passing the exam but in being able to understand passages—presumably the point of the comprehension. That doesn’t mean I’ll ever be fantastic at comprehensions, or a producer of the sort of great writing utilised by some of the examined passages, but it’s definitely made writing more amenable to me.
Handling Problem Complexity
If correctly approached, I believe the scope for upticking anyone’s intrinsic computational thinking through better explanation and exposure of the process is if anything greater than when studying, say, English literature because it is more explicitly and comprehensively defined and tested. Of course there are tried and tested techniques for literature analysis, but those for computational analysis are highly utilised across the world at every level of complexity, systematised and indeed codified precisely enough so machines can carry out central aspects.
That doesn’t mean anyone can make newly creative leaps forward to invent areas of computational thinking, but it does mean that many, with appropriate processes to assist thinking, can enrich their lives and their societies by being able to apply it at a reasonable level to make better decisions.
So it’s crucial that at a top level our outcomes map explicitly exposes “thinking assistance” approaches in their own right, not just as a side effect of learning one or other area of maths, like equation solving or calculus. This is rarely done even for hand-calculated maths, probably because it’s hard to distil; with computers it has more possible layers and approaches, making it both more needed and even harder to map out. Outcomes lists today tend either to suggest grand aspirations for thinking with little distillation of practical stepping stones, or such techniques as are exposed become scattered across a myriad of individual topics and not consecrated in their own right.
A centrepiece of my team’s approach has been the explicit abstracting out of thinking techniques, concepts and processes to be written down and applied to whichever applications or situations arise, rather than a hope that such thinking may be implicit or deduced from individual applications. A core computational subject must have at its centre directly and practically assisting and engendering thinking approaches—paradoxically enabling more creativity by having more confidence.
In the end, one can probably place most computational thinking assistance outcomes under a broad banner of handling complexity better. Can you “think through” a complex situation, concentrating on the important aspects, not getting lost or panicked or irrationally subverted, and arrive at a reasoned decision? Sometimes the decisions may seem simple, but actually to think effectively you need to work through the 4-step process while withstanding many distractions so as not to miss crucial complexity that hadn’t been apparent. Sometimes the complexity is there for everyone to see at the outset, and instead puts many off at the start.
In the next chapter, we will arrive at our proposed new outcomes map. For now I’m going to pick out and preview two key categories in the map that are central to assisting computational thinking complexity: experience in managing computations, and confidence to tackle new problems. These may seem purely aspirational, but as I will show later, they can be effectively tethered to specific learning.
Because most maths discussion today is about calculating, discussion around complexity is focussed on complexity of calculation. Can you handle problems with more and more symbols, larger algebraic expressions, ensure you don’t miss a minus sign while being accurate enough not to lose a term or make a misstep in your calculation? Being organised, following a systematic approach, and not making missteps is often important for real-word handling of complexity, but not just in calculating steps. Moreover, complexity can take a very different form, for example distilling the essence of a problem by stripping out the noise. Effective, modern outcomes must hold high all these aspects of thinking assistance.
Managing Yourself and the Machinery
I think of managing computations a little like I think of managing a company. You can read up a certain amount, you can learn some theories, but in the end you have to experience it—warts and all—to have any chance of becoming effective. Reading the management book doesn’t make you instantly able to manage a 1000-person company, and likewise ploughing through the maths textbook doesn’t get you computationally thinking a good decision out of a tough problem. In the management case, even though the practice is complex, the “book theory” may seem rather banal but this has been complemented for many years by case studies that attempt to be realistic; in the maths case, the “book theory” usually seems abstract and hard, there are no very realistic case studies, and the practice is very different.
In either case, you must experience as close to the real situation as possible (including the real machinery—when and how it’s used), not a sanitised version that loses a lot of the practical experience deriving from the lack of cleanliness of the situation. The computer doesn’t do what you expect, the data wasn’t as advertised, your collaborators (which might be machines or AIs, not people) misunderstood your plan, or your answer crashed out as infinity. Practical problems like these of applying computation are often killers for its use today because many of the applications are messy, not well defined or cleanly quantitative and need judgement of overcoming their messiness to proceed. The more you have got this sort of practical management under control, the more scope you have for applying thinking and manifesting the result of it. Hence why experience of managing the use of computation needs to be a top-level outcome and why so doing helps to engender thinking.
Confidence to Do What You Don’t Know How To
Alongside managing real computations, another killer for applying computation is confidence. Confidence to push through when things don’t work out the first time. Confidence to ask a question, to be sceptical. Confidence to tackle a new problem. After all, if you aren’t going to tackle at least somewhat-new problems, how do you expect to apply computational thinking to help you directly in your life? If you’re simply replicating exactly what you or others have done before, you may as well just use their answers too!
Confidence is sorely lacking across maths education. From lack of maths confidence in teachers and parents to students bouncing from pillar to post, all compounded by the pressure to perform which for so many students saps more confidence.
And yet, there are definite ways we can engender confidence, for example by falling back on process we’re experienced at running when we’re not sure what to do next. Or experience of how to look up on the web what others have done, understanding enough terminology to interpret what’s said or the ability to formulate your question to someone in person, and so forth. Sometimes low confidence of teachers causes spoon-feeding of students, an overcompensation that then perpetuates lack of confidence in the real world.
Whatever the specific techniques, in so many walks of life, from the military to medicine, knowing how to keep confidence in high-pressure situations is central to one’s training. But not in maths. Indeed I had never seen confidence to tackle new problems as a top-level maths outcome. At the most, it’s expressed for a given calculation type, but of course confidence is critical from the start of tackling a problem, for the whole problem as well as one of the 4 steps or individual elements within them.
Engendering Thinking Assistance before You Need It
Perhaps what I find most extraordinary about today’s approach to thinking in maths is how the assistance needed to promote it doesn’t come until you’re so stuck, you really need help. Instead, why not get familiar with the process that will support you on harder problems when the problems are easy enough to do without it? That way you can be familiar at running it when it’s not critical, so when it is you already have some training and experience in it. Today’s maths outcomes (of which I’m aware) do not promote this core process knowledge, at least not abstracted out from individual problem types, and certainly not very early on.
Have you ever been explicitly introduced to the 4-step process or similar in your entire maths education? Do you know it well enough to help your children? Almost certainly not. Instead, your maths schooling was often about being shown then helped with calculating exercises or given tricks for so doing, item by item, with the calculations getting harder and harder and maybe, later, a smattering of context injected. At some point you’ve usually got yourself unnecessarily confused by trying to solve a problem ad hoc when the process would have helped you; you’ve then taken a hit to your confidence.
“ Outside maths ... practising process before it’s used in a critical situation is commonplace ”
Think of your early maths in primary school. If you have 3 friends and 12 goodies, how do you share them out fairly? You might be told that this is where you use division: 12 goodies amongst 3 friend means calculating “12 divided by 3”, or “3 into 12”, or “12÷3”, or “12/3”, or perhaps “ ”—confusingly, all of these different terminologies are used, but they mean the same thing. Apparently just that calculation is the problem solved. In fact there is step 1, a definitional stage—does “fairly” means “equally”, i.e. the same number for each (I might debate that: are all your friends equally deserving?!), a step 2 of the abstract setup of the problem is to use the toolset of division and plan to calculate 12/3. Step 3 is the calculation step of getting the answer (here, 4)—we do this ad nauseam by hand—and step 4 is to consider whether “4 each” is a reasonable answer that seems to match the problem posed. Or if we’ve started with 11 goodies, would 3 and 2/3 of a goody make sense; can you divide up a goody?
You don’t need to break down this simple problem into 4 steps, but it much better informs future problem solving if you do. It sets up your abilities when you need to fall back on the process and forces you to get used to deconstructing. Later, when you are experienced and confident, you can re-smoosh the steps together; but not as a novice.
Again, outside maths, this approach of practising process before it’s used in a critical situation is commonplace. I remember taking an “advanced driving test” in the UK when I was 18 to lower insurance premiums on my VW Golf GTI. A recommended book was Roadcraft , the police drivers’ manual. Work had started in the 1930s to work out how to optimise safety with speed for police road driving on the UK’s twisty roads, and a key element was charting a “system of car control” or 6-step process to be intelligently applied rapidly at every hazard you observed (brow of a hill, car emerging at junction, road narrowing, etc.). The idea was that this would become second nature and would continue to be applied in police chases, achieving better results under pressure than simply free-form thinking.
Incidentally, a fun way to start computational thinking processes with children is to pick out an individual step and apply it to a situation. For example, when my daughter or her friends were very young and we had chocolate to share, I used the difficulty of defining fairness (step 1: Define) to try to get more:
Conrad: It’s fair that we should divide it in proportion to our body weights. (And I was careful to pick weights, not cross-sectional area, or worse, waist, as the proportional difference is roughly cubic, not squared or linear. )
Sophia: That’s unfair; we should divide it equally. That’s fair.
Conrad: No it’s not, I have more body to power, so I need a bigger bit of chocolate.
Rather quickly she came up with new arguments until it got rather sophisticated (and indeed qualitatively through more computational thinking steps).
Sophia: As I’m growing, I need to power my growth, so actually I need more chocolate, not less. If you have more you’ll just get fatter, grow in the wrong direction. Then you’ll be heavier and will want an even bigger bit. It will be even more unfair. So fair is that I get more than you!
... and so on as I rebutted, but got increasingly snookered. Good computational thinking can help in winning arguments!
7 | Defining the Core Computational Subject
One Subject or Many?
Before we press on with defining our core computational subject from an outcomes point of view, we need to be clear which of several possible subject types we might back. Can there in fact be one mainstream subject, or do we require many?
A Conceptual Subject for All ≠ Maths for Its Own Interest
First and foremost, our core computational subject must help most of our students solve life’s problems better than without it (at least those amenable to computational thinking). I hope I’ve already justified why that’s a reasonable premise.
One problem you might spot is the use of the words “most” and “better”. Is it the case that helping a small number of students to solve life’s problems really well with computation precludes helping everyone getting some help in solving a smaller set of life’s problems with computation? Or putting this another way, is there a fundamentally different subject for specialist computational thinkers as against the subject for the everyday computational citizen? I would strongly argue not for one simple reason: there’s an ever-decreasing divide between conceptual understanding and practical application. For many subjects, the vocational and intellectual real-life applications are converging. The vocational is increasingly the conceptual. Machines have or will take almost all the conceptually devoid vocational work.
Therefore there is no reason why one core subject cannot potentially help everyone. Of course it needs massive variability of level, delivery, topics, pace, and explorations, not to mention appropriate spark, but there seems no a priori justification for separating out mainstream conceptual computational thinking from vocational computational thinking.
Furthermore, it’s very important not to confuse a conceptually empowering, mainstream core computational subject with the subject of “maths for its own interest”. A small number of students are interested in maths for maths’ sake. The artistry or satisfaction of calculating, the history of the discoveries or inventions (depending on your view), fun of the proof. We need to offer this subject as much as possible, like all subjects a student might get interested in. We may even deviate sometimes from the core computational subject I describe to see if some students get excited by maths for its own interest, for example using these topics as “enrichment activities”. But maths for maths’ sake cannot be justified as the core compulsory subject.
Core v. Enrichment
Incidentally, it’s perverse today how topics for “enrichment” are often reversed with “core”. Today’s core of mainstream maths is focussed around the artistry of calculating (though mostly rote process in practice, not much art), uncontextual problems, algebra in the abstract and the like, while enrichment activities have more context and problem complexity, and are more likely to involve computers.
Maths is not the only mainstream subject which has prioritised study for its own sake, and it’s easy to see why this is a tendency across the board. As I will cover in more detail later in Chapter 10, “Who Can Lead Subject Change?”, those who set curricula tend to be people excited by the subject in its own right, so they want others to be too. The subject in its own right is what they naturally prioritise. But those subject specialists are rarely typical users of the subject, the applications of which—if it’s a mainstream subject—their students need to be prepped for. Maths is by far the most extreme example. There’s some danger with newly established coding too.
This is not only a problem in education but in technology industries too. Those interested in the technology itself don’t see past their fascination to wider utility of their technology. As Steve Jobs said in an interview about designing the first Mac, he and most of those he worked with were excited about what the computer could do for everyone, what it could open up, but he wasn’t interested in the computer itself per se. It was a means to an end, not the end in itself for him and his team. Others in the industry had a very different viewpoint, and that was fine.
“ [Maths is] losing many of our students before they ever get near high-concept computational thinking, which might be the spark for their interest in maths in its own right”
I remember this split too amongst my schoolmates. There were those into programming, assembly language or (as I was in the UK) the BBC microcomputer’s BASIC language rather than the Apple II’s. Knowing “peek” and “poke”—two special commands—and what they did, having this cryptic language that they could speak, was fun to them. I personally never happened to share in this, but certainly don’t knock their enjoyment for it. I did learn to program reasonably well, I enjoyed the problem-solving challenges sometimes, but the artistry didn’t particularly switch me on. Some of those for whom it did have made a career out of programming, just like some of those with excitement of maths in its own right turned into great mathematicians. But it won’t happen by mindless and endless coercion, and it won’t happen for most of the population.
Paradoxically, the core computational subject I propose for the mainstream has every chance of spiking interest in “maths for its own interest” at a higher rate than what we’re doing now. Almost everywhere, today’s mainstream subject has ended up being highly procedural and unconceptual while simultaneously being impractical for direct application. It’s losing many of our students before they ever get near high-concept computational thinking, which might be the spark for their interest in maths in its own right. Instead, only those who can survive the boredom or happen to be in a rarified school with some fellow maths-for-its-own-sake students or have a highly educated teacher who takes extra time to foster their interest make it through. The rest are left with little conceptual empowerment, few practical skills and little excitement.
As the focus of this book is about the mainstream core computational subject, I will now leave discussion of maths for its own interest. Before I do, I want to highlight that I will not be leaving “high-concept maths ideas”, which I see as an essential part of a mainstream core curriculum. For example, take the concept of statistics, calculus or randomness—not unnecessary details of how they’re calculated but the ideas this way of looking at life represents. For example, the idea with calculus that you can calculate any shape’s area, however complex, by taking smaller and smaller slices of the shape—so small that they can become near-as-damn-it simple shapes with known areas (such as rectangles) which you then add up. And that often as you push the slices smaller and smaller, it actually gets to home in on a definite result. Amazing. Amazing and practical. Amazing and empowering as a process of problem solving. Amazing in moving us to other concepts: imagining what happens as we go on pushing smaller and smaller to infinitesimal.
So often today we have removed these big and practically important ideas in the drive to get everyone through maths. Yet paradoxically, while often very abstract concepts, they can be amenable and exciting to many students. Instead we’re left with microconcepts around calculating, manifested to most as drilled process, all deemed practically important when in fact it’s process relating to work computers, not us humans, should be doing. We fall between two stools of neither conceptually empowered nor practically very relevant when we could be achieving both—a key requirement for our core computational subject.
Further Outcomes for Synthesizing a New Subject
After some guidance from provisos of “not for its own sake”, “high concept”, “high context and practical”, and of course not competing with what computers do well, how do we collimate further the synthesis of our new subject?
There is certainly no deficit of maths or computational stuff one could deem essential through one rationale or another; indeed, there is a growing amount each year, whether new algorithms or new applications. Our job is less to find topics, more to find pivotal topics, cut out the noise, imbue the essence of computational thinking alongside today’s mechanics of the moment and, crucially, enable students to learn how to learn computational skills.
It’s a broader problem even than that. In the last chapter we already discussed how “thinking assistance” outcomes were crucial. We need to continue to decide on outcomes that we really want to achieve so that we can achieve them with our new core computational curriculum. A map of the point of the learning, not just points that need to be learnt on a curriculum map. As we noted, it’s rather obvious and is common that outcomes should be sought for core education to be tethered to (at least at school level, though less for universities); but in the case of maths not usually broadly enough, too introspective of the subject itself or yesterday’s mechanics of the moment, rather than focussed on the core essence—problem solving.
There are many types of outcomes to be pieced together for a good computational education, from confidence to management of computation. Crucially, it isn’t just about the “maths” topics themselves (for example fractions, equations, data handling and so on), but I will start by talking briefly about them because this is where most curricula not only start, but largely end too.
Let’s begin with two (necessary but not sufficient) criteria for inclusion of a topic deemed essential: either (a) it’s typically used today in real life, done the same way, with the same machinery (e.g. in your head, on your computer); or (b) it conceptually underpins or empowers greater understanding of a real-life use directly. You will notice how constrained I’ve made (b) because of the huge danger of justifications based on familiarity by maths aficionados setting the curriculum, or historical precedent or confusion over real-life use or its machinery. Even if you are aware of this danger, as my team is, it’s actually very hard to work out whether you needed a topic to understand something else or not. The temptation is to think you do because that’s the way you learnt it—until you really question yourself hard.
Two basic primary school examples to bring up.
Times tables: should they be in, or out? First criterion (a): do you use them today? I think the answer to this is yes. I actually do use times tables in my head up to about 10×10 fairly often for estimating. If I didn’t know them quickly, could I avoid this? Absolutely, I could use my smartphone or computer so long as I knew I needed multiplication and could set up the problem right. In practice the immediate recall of quick multiplication allows me to get a feel of magnitudes in real time, so it’s still handy for students to learn. But, second criterion (b), this is not some great conceptual pillar of maths understanding. It’s not a great test of your acumen on leaving primary school, it’s just rote learning because it’s handy. If at some future time we have such an interface to computation so it’s as quick to use a machine as not, then I’d revise my view on this. Doing it by hand is the mechanics of today, not an essence of problem-solving maths.
Much more critical than knowing times tables is understanding the concept of multiplication, its relationship to addition, to division, to powers. When you’d use it. Whether you have a visual representation in your head that you can call on if you get confused. Few people see the conceptual linkage of how multiplication is a compounding of the addition process and powers are a compounding of the multiplication process. While that isn’t essential either, building those connections is very useful to high-level maths usage because it gives a framework of understanding to fall back on when setting up complex problems, a tool in the toolkit of verifying you have correctly understood how to abstract your problem for computation.
The focus of the maths fix has been for secondary not primary level maths education. That’s not because I believe there’s any less application of our approach to primary but because the bifurcation with reality is less. Very early maths, numeracy and topics do seem linked to reality (whether optimally taught or delivered with enough computing); it’s a little later, usually late primary in most jurisdictions, where the subject goes so off-base, such as long division.
“ You’d use a calculator or computer or your smartphone actually to divide the numbers ... does knowing long division empower you?”
A side note I can’t help but recount: hapless education ministers periodically cite times tables and long division as crucial markers of a child’s primary school success, apparently oblivious to the total incoherence of their pronouncements (for instance is it the reciting or the setting up of real problems they’re talking about?) or the terrible effect on maths marketing of elevating these topics to the pinnacle of primary school endeavour. In one such example, a rant about the need not only for up to 10 times tables but 11 and 12 times too caused my colleague Jon McLoone to computationally analyse their need—concluding it was largely historical, based on old units of money and weight, based on factorising 12 . The minister hadn’t used computational thinking to analyse the need to compute times tables!
The second primary school example I’ll pick up again from Chapter 2 is long division. I’m talking here of the formal manual process of dividing a number by a more-than-single-digit other number—2367 by 13, for example. I’m talking of the process which looks like this:
Criterion (a): is it typically useful today? Frankly, no—not the formal, manual process. You’d use a calculator or computer or your smartphone actually to divide the numbers—much quicker. Criterion (b): does knowing long division conceptually empower you? I have heard some justifications, in particular that it teaches you about rational numbers. In the small number of cases where a student might actually learn this from the algorithm (as opposed to just rote-learning the process), how much will it help them with modern problem-solving computational thinking? Then there’s the argument this gives them insight into algorithms. Long division is a (human-run) algorithm and so it demonstrates how an algorithm can be helpful. Why learn a (not very interesting) proxy? Why not have the student program something they care about, to learn about algorithms? If, say, they’re keen on biology, why not learn about a predator-prey algorithm ?
Do We Need New Maths Outcomes?
We’ve been laying out criteria and requirements for outcomes, but I wondered whether what we saw as important with our computer-based core computational subject worldview would need to be very different from outcomes listings for traditional maths. Initially I’d reasoned that even if I believed the traditional subject wasn’t servicing the real-world needs it espoused, its purpose as manifested through outcomes listings would be well established, if in need of modernisation. After all, billions of dollars are invested in maths education around the world, with increasing emphasis given to its improvement by governments and many citizens, in more or less every jurisdiction, country, assessment board or international educational organisation. You’d certainly hope that questions as to the purpose and therefore required outcomes of maths had been convincingly answered long before our work.
That’s particularly the case as it’s outcomes listings that usually determine assessments (across all subjects) and rightly or wrongly, today’s assessments determine largely what’s taught in school. If you’re working from the wrong set of outcomes, you’ll almost certainly get the wrong life result—whether for jobs, everyday living or logical thinking—for your students, school or country.
So we put some effort in hunting for outcomes listings to which we could tether a computer-based core computational curriculum, or at least act as starting point for so doing. Perhaps we didn’t look hard enough, but every outcome set we’ve found seemed unsuitable in representing the extent of the real-world requirements we’d discussed and in particular the change in outcomes for humans with highly automated computation. Reluctantly we’ve ended up compiling our own set to work from, rather than spend more time searching for others’. Later in this chapter I will present them, but first let me explain in more detail what was wrong because I think it may help to expose our line of thinking as well as the specific problems we uncovered.
Mistakes in Previous Outcomes Plans
Three issues in particular kept recurring through the outcomes listings we looked at: I’ll describe them as scope, assessment linkage and maths process fit to outcomes. Then there were a host of new, subsidiary, and organisational problems too.
Scope. Too often there were both limited areas of computation covered and yet too ethereal or untethered an aspiration; and crucially without nailing core thinking methodologies. To put this another way, required knowledge of limited areas of computation are spelt out in great detail, toolset by toolset, calculation type by calculation type, such as different outcomes for different coefficients within the same form of linear or quadratic equations that you may be asked to solve (e.g. x 2 +2x +1=0 versus 3x 2 +2x -1=0). By contrast, there are requirements like “critical thinking skills” which appear vapid and have few attached concrete capabilities or processes. To the former I feel like saying, “Maybe, but aren’t the how and why of using them the real outcome?”, i.e. is this really a critical outcome at the right level, for this listing? To the latter I feel “obviously, but what does this mean”, i.e. in practice how are you going to manifest this as a real thinking capability?
Granularity of outcomes are very hard to get right for a core computational subject. At the moment, as I describe, few outcomes listings capture the crucial level in between broad aspiration and detailed manual process; importantly, they are not at the granularity to which you can tether definitive creative thinking skills. Global procedures needed to apply good thinking skills are not abstracted out and are absent in their own right, but endless microprocedures are thoroughly documented to the extent that creative thinking is drowned out.
Assessment linkage. This is the problem of only including outcomes that can be assessed with today’s methodologies for maths assessment, and not also other key real-life outcomes that happen to be hard to test.
“Hard to test” comes in several varieties. Because of the scoping problems I describe, some of the aspirational outcomes do not end up specific enough to be quantifiable and therefore assessable even in principle; if truly contentful, they should be crystallised at the right scope level to be made definitive. But other “hard to tests” are already definitive outcomes that don’t happen to fit with today’s testing regimes.
One way or another, leaving out crucial, definitive outcomes because you don’t yet know how to test them well is disastrous for the content of resulting curricula and, in turn, future assessments because it often means leaving out open-ended or modern areas that need computers—including some of today’s most successful real-world approaches. For example, don’t leave out “choosing an appropriate technology” because it isn’t easy to give all the options in a sit-down, 2-hour exam in a schoolroom or “Understand how to iterate a problem in a group and give opinions when appropriate” because exams are usually individually assessed.
That a swath of crucial, real-world computational skills are not only failing to get assessed today and thereby failing to drive the right balance of education, but that this deficit of assessment should drive the production of lopsided outcomes plans perpetuates the disaster. Talk of “the cart leading the horse” couldn’t be more apt—not only a backward approach, but using outmoded equipment of the era of horses and carts!
To summarise, outcomes need to be lead by what’s needed in the real world; the assessments need to be led by the outcomes required, not the converse. Yet assessment’s grip on education is such that “how to assess” is a major consideration in “which outcomes are present”. I should add that in fact many of the outcomes we will propose are assessable with something close to today’s regime—particularly if you look outside maths assessments to humanities and art. But whether this is the case or not should not be the basis of deciding our outcomes list.
Maths process fit to outcomes . What I mean is confusion over how the process of doing maths (what I’d define as the 4 steps) connects to the list of required outcomes. Clearly the process by which you do maths is key to using maths, and therefore knowing and operating it is an important aspect of the outcomes. But can every outcome be mapped to each step of this process or how is it connected? This is much trickier than it seems at first glance because there should be outcomes relating to the whole process, to each step of it, superprocesses that involve hierarchies or iterations of the process to enable its effective application and so on.
So definitely wrong is to try to tether every outcome to each step; or to claim that the process is not connected to outcomes (if it’s the central how-to-maths process, it must be related to outcomes of learning maths); or to claim it’s simply one outcome of many. Yet we could not find one outcomes listing that appeared not to have oversimplified the connection.
New Outcomes Plan Problems
Those are some of the problems with outcomes listings even as a setup for today’s conceptualisation of maths education. There’s effectively a major new problem too: Context. Traditional maths in school has largely drowned out context of the application of the maths from being integral to what’s learnt—a core criticism I have levelled in this book. Take the common real-life case of applying your maths to work out the best mortgage, including knowing some finance lingo so you could talk to a financial advisor about “interest rate compounded monthly”. Or seeing flaws in the presented risks for taking out your mortgage—collectively caused such spectacular failure in the 2000s with subprime loans. Or knowing how to use maths to analyse effectiveness of a website, able to learn then apply terms associated with that area like click-through rates. Or discussing with your doctor the risk of an infection, given that you have a certain percentage chance of your operation won’t heal within 2 days.
Enter our newly conceptualised subject. Now your learning is led by real, actual contexts all the time, from the start—situations for which you might really use computational thinking day-to-day, not just situations manufactured for basic primary level learning. Some are on problem types that you might never need again, like optimising your cycling performance. Some are on topics that you probably will, like knowing when to use insurance. That means you’ve got to ask which of these real contexts should be burnt in as required outcomes, expected knowledge for assessments, and which are just contextual examples used in passing to aid achieving other outcomes.
My team have come to label absolute essentials as “Primary Contexts”. Our thinking is that if our students leave education only knowing how to apply computational thinking in these areas, that will be hugely beneficial to them individually and to their society. Of course ideally the real value-added possibilities accrue from being able to apply computation effectively in any applicable situation, but while for most those new contexts may be important from time to time, they are not the base-level, society-wide core, essential requirement.
Instead, during education many contexts will only be needed in passing in the sense that they hopefully engage with the student’s interest or are rich ways to expose techniques or a particular style of computational thinking. But they are not contexts in themselves that are societally crucial applications or key for most students, so we term them “Secondary Contexts”.
For example, we devised a module about how fast you can cycle around the An Post Rás, the Irish equivalent of the Tour de France race. It’s not critical to most students’ success or to society that they know specifically about cycling. Therefore we’d think of cycling as a Secondary Context, whereas various aspects of finance play a far greater role in later life, and as such would be a Primary Context.
Our thinking is that Primary Contexts should in themselves form part of the curriculum, but that Secondary Contexts should not, and that assessments should reflect those decisions. We should be asking students contextual questions about finance, health, the environment, etc. that may need knowledge specific to those fields. Why wouldn’t we if this is correctly assessed as a survival skill, a crucial application for everyone of their computational thinking? By contrast, Secondary Contexts are rolled in and out in assessment as they are during the rest of schooling. There’s no requirement for students to know about how cycling works per se, but it might be used as a context in a question to test computational thinking.
Maths v. Cross-Curricula Outcomes
The outcomes lists I’m critiquing are those claiming specifically to relate to maths. I’m not blithely dismissing highly researched and funded efforts in many countries or international organisations focussed on defining whole-education, cross-subject outcomes which move beyond narrow subject areas or test scores. The problem is that none (of which I am aware) either claim to, or actually do sufficiently address the deficiencies I cite for maths. Nor do they provide an appropriate structure for so doing, though in some cases they’re complementary outcomes lists and can usefully coexist with outcomes for core computation. The trouble is that without the right maths substructure, even good cross-curricula outcomes misfire into the wrong maths content. Specificity is important within the core computational subject or, in the vacuum that results, historical maths outcome assumptions predominate and we get old, unhelpful core maths in a new outer structure of the latest overall education outcomes.
There are a host of other new outcomes issues to address too relating to new and complex requirements of effective human-machine interactions, for example verification. Machines add many layers of what it is to know something and so make the outcomes required more multilayered—a topic I will come back to in Chapter 10, “Corroborating Not Mimicking”.
Draft Outcomes for the Core Computational Subject
So here goes. Our draft of outcomes—as they stand—for a computer-based core computational subject. I’ve put a summary here—and further details in Appendix 2 and at themathsfix.org/Outcomes , where you can also comment—because getting them right is so central to fixing the subject of maths and I consider what we lay out here a work in progress.
Some readers—particularly those familiar with traditional maths outcomes listings or requirements in other fields like medicine—will want to delve into the details. But it’s not necessary for reading on with the rest of the book or understanding the many other aspects of the maths fix . You may just want to get a general idea and skip ahead to the next section.
Our aim with this outcomes map has been to disconnect skills or knowledge of individual toolsets from the computational thinking skill set to be applied across whichever toolsets you need. For example, it’s not specifically “identifying the maximum number of roots to a polynomial” for the concept of solving equations, but the general “understanding the relative merits of different tools for use in the context”.
This abstraction out of skills from toolsets is so critical a change now because the available toolsets have proliferated: both because additional approaches are enabled by computers and because of the emphasis and money riding on optimising computation across so many fields. However, layers of automation means you don’t need to know everything about each for use. There are more gradations of “knowing”.
Key to Our Outcomes: Fit with Computational Thinking Process
I mentioned earlier how previous outcomes listings have too simplistic a fit with the main 4-step process. There are 3 main ways ours connect. There are 11 outcomes lists in total, 6 of which relate specifically to one of 4 steps (and are marked as such). The remaining 5 either relate to the whole process or have elements that cross multiple steps.
Take “Abstracting to Computable Form”. This outcome tree specifically relates to step 2 in the 4-step process: how do you take real problems you want to solve and move them to an abstract representation from which you can then compute answers? Recall that one of the key aims for us has been abstracting out the skills and process that a student should aim to master so they can do computational thinking. Extraordinarily detailed though some outcomes lists are, they often lack abstraction, instead choosing to list out what skills you need per specific maths operation rather than generalised across all such operations you might want to perform. This is crucial for teacher and student alike. For example, we list as an outcome in this dimension “Create diagrams to structure knowledge”, not “Draw nets made up of rectangles and triangles to represent three-dimensional figures”. Getting experience of drawing a simple diagram to see what’s going on is a very useful process to help pick the right abstraction of problems to maths in many areas. The point is the student needs to get the idea that this is a tool they can resort to, get experience of where this particular tool is useful, and try it in lots of cases to become more proficient. The main experience needed is when to use a diagram and, if so, which diagram really helps them.
They won’t learn this if they have 20 questions on triangles where they are told they must use a diagram to solve them, yet this is often the way in which maths curricula are organised and taught. One of the drivers for this is the aforementioned problem of traditional outcomes listings being per maths tool , where our outcomes map instead reflects a distillation of substructure en route to the ultimate outcome: of applying computational thinking to problems to get decisions. Another driver of this organisation of instruction is teacher confidence. If you yourself are unsure of the material, it’s less daunting to have your students do very prescriptive activities because you know you can handle any questions asked. If the activities are more open-ended, anything can come up, including problems you don’t know how to solve yourself. (In Chapter 9, we address how providing thorough teacher materials can boost teachers’ confidence and in turn their ability to transmit it to their students even on this new, open-ended subject).
Indeed, you’ll note that another of the major outcomes is “Confidence to tackle new problems”. Unlike “Abstracting to Mathematical Concepts”, this is not associated with a single step of the 4-step process but the whole process. Indeed, its first element is “recalling the 4-step process”. The idea that there is a main process you can fall back on, each element of which has tactics you can use, itself is key to building confidence. This is where in our outcomes we specifically support earlier discussions that formally or informally, consciously programmed or by reflex, learning and operating process is the key way that people handle problems in all walks of life that are too complex for us to get our arms around in one go.
Let’s return to car driving’s processes as an everyday example. Driving a car safely (my computational mind doesn’t like absolute labels like “safely” for optimisations!) on public roads is not at all trivial, as the complexity and extensive but slow development of self-driving cars demonstrates. Instruction usually builds up skills including processes for starting the engine, turning, stopping and starting. Over time this has been pretty well systematised. The mechanics of the moment make a difference to the weighting on learning subprocesses: if you’re driving a manual-geared car, starting off needs a lot more practice but doesn’t change how you need to look, signal and so on. But you don’t get confidence at driving until you’ve got that process under your belt. Then you
“ Falling back on processes pervades human endeavour ... from performance of music to managing companies to waging war”
can concentrate more on “reading the road”—higher-level tasks of judging what your fellow drivers are going to do next, whether you have space to overtake and so forth. Of course you can’t get confidence at those tasks without being exposed to them; nor are you likely to if it’s not more or less programmed into your subconscious which pedal to press to stop. You don’t first learn which pedal does braking as you’re trying to drive around the Arc de Triomphe in Paris at rush hour (which I count as one of the world’s more complex driving situations with cars coming at you from all angles and for which my algorithm is to look ahead only, ignoring all cars coming at you from less than 150 or more than 210 degrees to avoid heart attacks...).
You might say driving is less creative or less intellectual than maths. But falling back on processes pervades human endeavour, as I cited before, from performance of music to managing companies to waging war. The military is an example of where process is extremely in evidence to build confidence under the most terrifying of situations; yet it is the interplay between process, best technology and highly complex, innovative thinking that has won most wars.
Two Key Outcomes Listings: Concepts and Tools
There is one giant element of outcomes I’ve left until last to discuss. I’m talking which actual concepts and tools of mathematics or computation is the student to learn? Is it equations, fractions, algebra or machine learning, sketching graphs or Pythagoras or a myriad of other options for delineating the year-on-year growing list of possibilities? Many traditional curriculum designers would be perplexed that I am discussing this last. To them, this list, with appropriate annotation of the skill for each item, is the outcomes list. That’s its sum total. But for us, each entry in this list is marked by each element of either the Concepts or Tools of maths outcome dimensions (2 of the 11 laid out) and is the grist to the mill of the wider outcomes required, including the ability to learn new concepts and tools.
As I alluded to earlier, we have wished to abstract out the different levels of knowledge, understanding and application to apply to each item, not simply list all the items with a customised “what you need to know” for each. This is crucial because we are going to have a much larger, more multiconnected map than is traditional and that’s because the available toolset is now so much bigger and computers now operate most of the computation. We have labelled the different, abstracted levels of knowledge for each tool or each concept as well as applying across all. For example, there’s knowing of its existence (CM3), knowing how to operate it (Ti, Ta), knowing what goes wrong (Tb) and knowing how one would construct machinery (MC1, MC5) to run a given tool. These are all very different levels of connection with a tool or concept which need a different but standardised approach surrounding them.
Actually the question of what it means to know something is a critical issue in all of our mixed human-computer future life. Really it’s an issue whenever there is machinery or automation, but now that automation relates to “intelligence”, delineating how and what to know around it is particularly challenging. The wrong approach is to say, “You need to know how the machine works before you use it” because “How can you otherwise know it produces the right answer?”. Wrong because it misunderstands how verification works—in most cases you can’t manually check what the machine did, you need corroboration with different approaches. Wrong because machinery enables us to learn more and go further, but not if you have to learn everything that went before too. Wrong because successful automation enables the bifurcation of the making of a machine from the using of it: this specialisation has been a mark of human progress for millennia. (There is a longer discussion of this topic in Chapter 10).
By abstracting out levels of knowing, we can mark out a vastly wider range of concepts and toolsets to cover than ever before—marking each with a required level of understanding for a given educational stage or grade. For one concept or toolset this might mean knowing how to program it up from other tools and concepts, or even synthesise it from first principles. For another it might mean just knowing of its existence. Most people’s required knowledge of useful-to-them tools and concepts will lie between these extremes and will increase (in breadth and depth) through the years of their computational education. What’s important is having an idea of when and how to use the concept or tool and, crucially, knowing how to find out when they need to employ it, including about its failure modes. As I have described, this is very much the approach we’ve taken—in essence a gradated form of seeing inside the “black box”.
Now back to how to organise the concepts and tools. It’s not like this hasn’t been tried before by many groups! There is a huge amount of literature and many such attempts, particularly surrounding maths education, but not with the precepts that I’ve laid down, and not based on assuming computers for calculating. Unsurprisingly, therefore, none matched up.
After many attempts to build the right schema ourselves over a couple of years, we realised we had the ultimate pre-curated, real-world tested, computer-based organisation straight in front of our noses: our software Mathematica’s documentation.
As well as being software to “do math” and much else besides, one of Mathematica’s biggest intellectual contributions is in laying out a highly systematic and coherent architecture of mathematical and, more generally, algorithmic—computational—knowledge. It has codified many disparate areas of maths, cataloged them, flushed out ambiguities (maths notation is often ambiguous) and achieved a highly self-consistent result. More important still, Mathematica is the world’s largest compendium of mathematical knowledge, honed by widescale usage, and organised so automation can be deployed. And it’s been battle-tested by millions of users for over 3 decades. We had in front of us the ultimate exposé of the real-world tools of maths. We also had a schema for how we document those tools and how that documentation is organised.
“ The question of what it means to know something is a critical issue in all of our mixed human-computer future life”
Throughout this discussion you’ll notice I’ve been talking “concepts and tools”. That’s because early on in developing CBM, I believed that there was a difference between knowing about “solving equations” as a concept to achieve answers and knowing how to apply the tool of the quadratic formula for a given, specific type of equation. I didn’t think there was one type or one level of mathematical knowledge such as “solving the quadratic equation”. I felt this muddled up the practical action of applying the quadratic formula with the idea of why you’d do that or how you’d select it in the first place, and this worried me the more I looked at our early materials, looked at others’ work and just couldn’t see this difference reflected.
My daughter helpfully (if unintentionally) provided a great example of how smooshing together tools and concepts can drive apart their use in today’s curricula. In a maths test, she’d had a geometric problem of determining the relative sizes of elements of a vessel which she’d successfully abstracted into a quadratic equation—this was the hard bit in my view. Then she’d written “guessing the solution” and with educated trial and error, knowing that the answers would be whole numbers because this was a school maths question, got one solution. I asked her, “Why not ‘solve the quadratic’; the quadratic formula’s on the front of the paper?”. Slightly sheepishly she said she didn’t think of it; she hadn’t thought of this as a quadratic to apply the formula to. The point is that solving the quadratic was a tool in the abstract to her which she’d practiced using in isolation; the equation she produced was part of the abstraction process that she’d mastered; and neither she nor her teacher had ever put the two together. This is an example of what’s happening for many students up and down the curriculum. Discombobulated tools unhooked from concepts they serve.
So I was determined to see if we could improve on this situation; amongst other ways, separating concepts and tools in the outcomes mapping seemed important to this cause. The question we wrestled with was how many computational or mathematical object types (e.g. concept groups, concepts, tools, functions) there are for these purposes and what delineates them. Are there many layers, or just one of each type (are concept of concepts allowed etc.)? And whatever the theoretical associations, what was the best practical layout so it could best be used for pedagogy?
We tried many approaches. For example the idea of concept and concept representation, tool and tool representation. A concept was “trigonometry” and a concept representation was the image of a unit circle and its component dimensions. An example tool that manifests this concept was the formula for finding the angle given the dimensions and a tool representation might be arcsin(x ) (or sin-1 (x )).
The delineation between concepts and tools seemed blurred. When did a concept turn into a tool? Weren’t there more layers involved than 4, e.g. what about the higher concepts of dimensionality, area, regularity, etc.? Do we allow concepts of concepts etc.?
An evolved approach, which we ended up rejecting is to think of 3 categories...
One way of conceptualising this (no pun intended) was to have two shops—the “concept” shop and the “transformation” shop—and a final result: the application. You go into each shop and purchase whichever concepts and transformations you would like to use. Then you go home to your workshop and bash away with them to make something. Anything that’s in the concept shop is a concept. Anything that’s in the transformation shop is a transformation. Anything that happens once you’ve got your items home is an application. The only thing we added later was allowing subconcepts and subtransformations to as many levels as you like, but they don’t change their spots, i.e. a subconcept is a concept and a subtransformation is a transformation unless either of them is executable enough to be an application.
Here where this comes unstuck. Take Pythagoras’ theorem. What is it? You might say a concept: it spells out a relationship between sides of a right-angled triangle. But you could also say it is the transformation formula h 2 =a 2 +b 2 . Part of the reason for the discrepant interpretations is whether you are saying we’re “applying” Pythagoras’ theorem or just “stating” it. There is clarity with the final “application”. In the end, if you have specifics for a and b, you can write in a precise expression to the computer for it to calculate, or you as a human can come out with a precise answer.
After rejecting this approach, we went back to thinking there are really two fundamentally different types: the precise tool—the end node that we were calling the application—and organisations of tools into concepts. There can be any number of layers or different organisations of concepts. A given tool might appear in many concepts, and concepts may appear in other concepts alongside individual tools (at the same hierarchical level). Tools themselves are atomic, though there are potentially more automated, higher-level tools and more basic tools; some tools are built on other tools; but if you get to a tool, it’s defined by being something you can execute in a computer.
It’s interesting how thinking about the separation of computation that a computer forces from the setup of the problem really helps clarity over the structure. I realise now that a common problem I had during my maths education was not delineating when I had actually set up a problem from when I started to compute it. As a human doing both functions, it’s easy to blur one step into the other. The moment the problem gets more challenging, difficulties start to emerge, so it’s negative to elide the two steps. The idea of a tool (or earlier what we called an application) as we’ve defined—something specific enough that the computer can execute it—is very helpful to that end point of step 2 in our maths process, “Abstract to Computable Form”.
Mathematica’s documentation, and its history, is highly illustrative. In its current incarnation we have “function pages” as the leafs and multiple layers of “guide pages”. The guide pages are collections of functions and other guide pages; functions can appear in many different guide pages. Function pages are very detailed documentation, examples and related functions that tell you everything about that tool.
This was not the first layout of Mathematica documentation. Earlier on we had the “function browser”. This was a more explicit tree-like layout where we’d attempted to categorise all functions into a strict hierarchy, a tree structure, although in its later phases we found it necessary to have functions appear in more than one hierarchy: itself the start of an admission that the original layout wasn’t sufficient.
The strict hierarchy of the function browser is much more like traditional layouts of mathematics education. For a computer-based mathematics, this fails in the same way as we found the function browser did for Mathematica: many tools are associated with many different concepts. Conceptual groupings are not mutually exclusive nor forever fixed. Sometimes different patterns of thought support or encourage different groupings.
All of these complexities of the layout of Mathematica apply for our core computational education too. However, it’s important to attach understanding at the concept level as much as at the tool level. This is sometimes done in Mathematica documentation a bit—explaining, for example, what we cover when we list trigonometry—but scantily and for a different purpose. For education it seems much more important to weight this differently: really getting the right level of deep understanding of what a conceptual grouping represents and how it fits with other areas of maths. Indeed, by just knowing the utility of the tool, it is much easier to look up; the concept-level understanding is harder simply to reference if you do not have an underlying grounding in its worth, form and function.
One reason often produced for the need for a strict hierarchy for maths education is because mathematical understanding is layered, and you simply can’t deal with a later concept before an earlier one. Of course there is some ordering necessary, but we dispute the necessity of its strictness in particular because learning the mechanics of how to calculate seems to have a stricter hierarchy than learning how to run a more conceptual core computational thinking subject.
When we think about which actual concepts and tools we should focus on, we have two main starting points. Firstly, from actual problems we think students need to solve, working back to the concepts and tools they need to solve them across problem sets. This is completely backwards compared with what most curriculum designers do, a point I will return to later. Secondly, the Mathematica documentation is again a great starting point because it is inherently derived from the superset of problems people have solved with mathematics or computation over the last 30+ years. It’s abstracted to functions they use, and organised so they can find them—a more substantial effort to do this than any other, and vastly more resourced than any for-education-only layout that has been built by, for example, curriculum authorities. Its content isn’t the same as we need for education because it doesn’t have ordering of learning—so it’s all at once—and it isn’t skewed to areas that might most engage students, but it’s a good start from which to work.
I’ll be bolder. It is actually a vastly better starting point than any curriculum built up by wisdom of what’s included with today’s maths education because it’s shaped by actual usage of maths/computation, not theories of how it might be used, or by mathematicians who themselves only represent a small fraction of users of mathematics and who may never have used it outside education. To emphasise, I am talking here about the tools and concept content and its organisation, not the process by which we teach the subject. For the latter, there is much crucial experience to draw on from mathematician educators and education in general.
In this structure of layout, ordering and layering can be handled by thinking of different guide page or concept layouts at different levels of education. Although for Mathematica we haven’t made different centricities of guide page layout, you could: for example finance-centric instead of general R&D-centric. You would choose a different set of trees to have, highlighting different functions that reflected what seems important for finance. Likewise for education, you could make a later primary school layout or a secondary school engineering layout if you wish.
This is what we’ve drafted. I say it’s a draft not only because I don’t doubt that it may have some wrong emphasis or perhaps even has put something in or taken something out that really is important, but also because it will change. It must change as computational tools evolve. I am more concerned with the layout, process and conception and the type of entry than perfecting only the entries. After all, a key outcome we need to achieve for our students is “Confidence to Tackle New Problems”, including the learning of new concepts and tools, so if there is a concept or tool missing, learning about it is itself important education.
Categorisation of Core Computation Areas
A related issue to touch on is how one slices up the areas of maths/computation. Traditional subdivisions like algebra, calculus or trigonometry don’t seem like good axes for the modern world: they are categories of the mechanics inside the maths of a limited set of tools rather than categories of applications or approaches.
You might ask, why subdivide at all? In a sense, you shouldn’t. The expert applier of computational thinking utilises whichever computational areas helps them solve the problem at hand. Breadth and ingenuity of application is often key. But maths/computation represents a massive body of knowledge and expertise, and subdividing helps most to work through the choices better. This translates into curricula being able to focus their energies enough that there’s sufficient depth of experience gained by students at a given time to get a foothold.
At the largest scale, one dividing up we’ve found helpful is into 5 groups of broad approaches. These are by no means the only modern axes, but they seem easy to use and at least help to assimilate the enormity of options.
Summary Representation of the Core Computational Subject Framework
We decided to try to put everything together in one picture, with the metaphor of a computational thinking room: the 4-step process, outcomes (across the whole process and within the process), concept learning stages, toolsets, categorisation areas and contexts. Different rooms may be customised to represent different contexts and the appropriate thinking, computation and outcomes that best apply.
Who Can Lead Subject Change?
One of the reasons I realised my team had a different perspective on this problem was because—as I’ve described—in our work at Wolfram we’ve been involved with the build-out of a wide variety of toolsets in Mathematica, structuring their fit in Wolfram Language (its underlying programming and representation language), watching how they get used and filling in the gaps. That puts us in a surprisingly unusual position of seeing a larger gamut of the maths/computation toolset than almost any other group, and from so many perspectives: users, makers, employers, suppliers and innovators. Our experience of the needed real-life toolset is broader, deeper and more widespread than almost any other group, so this is one reason I was so keen to take as dispassionate a look as possible at the educational maths toolsets. Would our perspective be much different to the work of many maths curriculum bodies around the world, we wondered?
Unfortunately, yes. Big time—and more discrepant the harder you look. Today’s maths education toolsets are so limited, backward and historical. They’re not what you’d use today out in the real world. Not how you’d do it when you have a computer. Not the approach you’d take. Not what you’d need to know about the tool, even if it’s one you were using.
The mechanics of inverting matrices, but not the use of machine learning. Sketching graphs of functions, but not the ability to construct models from observations of the real world. Calculation of statistics by hand, but not the filtering of large datasets to extract relevant information to process.
One of the reasons it gets worse the deeper you dive is because we’ve all had traditional maths training and therefore conditioning. “Obviously I need to know about X”, you think, because it’s unimaginable not to. Sometimes it still really is necessary, sometimes perhaps it isn’t, or isn’t a priority. I have found it intellectually extremely challenging to disambiguate what now really is an essential toolset from what was when I—we all—learnt it.
Many governments have said to me it’s the teachers at the frontline, so they’re the people to innovate the subject. I fundamentally disagree; and so would many of the teachers themselves and their representatives such as unions. Top teachers are often leaders in innovating the pedagogical approach but (as teachers) not the subject—though perversely it’s often the pedagogy governments want to control centrally,
“ ‘Let the Nokia smartphone users lead building the iPhone’. Does anyone honestly believe that would have worked?”
causing much angst. Innovating the subject is not their line of work—to know how across the world, in all fields, with the latest technology, maths is being utilised. How could they know this? Instead the subject is an area where those like us who deal with maths/computation in general, in the real world, need to help.
When I’m told “let the teachers lead” the maths reform by government officials, or educational advisors I sometimes retort, “Let the Nokia smartphone users lead building the iPhone”. Does anyone honestly believe that would have worked? Nokia smartphones were technically sophisticated in many respects compared to early iPhones, but almost unusable by comparison, and didn’t break through to the mainstream as Apple’s/Steve Jobs’ fundamental rethink achieved. Even techy, design-orientated Nokia smartphone users, like I used to be, wouldn’t be much better placed. Synthesizing how to fundamentally innovate is not the same as being a user or teacher of a previous formulation, whether for technology or subject matter, however perceptively you are can see faults with the current setup. This is not a criticism of teachers, but instead of their masters who sometimes expect them to take on this inappropriate role. (I discuss the role of teachers further in Chapter 8).
More frustrating are the educationalists who insist they know what’s important about maths or its reform but without knowing the latest technology or how it gets used for the subject at large. It’s all very well knowing how best “to teach maths”—with many theories and much research of the best way to get across how to run the long division algorithm by hand and when to put it in the curriculum—but this does not tell us whether it should be taught, and particularly not when the mechanics of the moment have so profoundly changed. However well you research the pedagogy of the history of hand calculating, it doesn’t tell you what today’s core computational thinking curriculum needs to be, though it may help you once you’ve established it to improve its pedagogy.
Summarising: Subject Parameters for Today’s and Tomorrow’s World
As I’ve described, there are many aspects to fundamentally fixing maths the subject. Important though the details are, it’s crucial we keep our eye on some core tenets of what we’re trying to achieve.
Firstly, we must focus on the evolving picture of what humans are better at. Educate up to the next level, not down to replicating the machinery. Enormously successful machinery has hit maths, enabling its empowerment, its liberation from the drudgery of calculating. That hit needs to propel us to the next level, not subjugate us. As we receive the full force of the AI age, this bifurcation will increase. It must drive more intensive change of subject matter to empower our students to rule the AI world, not drive intransigence that subjugates them to be beholden to machines. This real-life aspiration of effective working alongside computers needs to be reflected by our educational reality: have the computers and get our students learning alongside.
Secondly, a major new aspect of the subject is how we manage the computer-human interaction. This isn’t a side issue, but core—right at the centre of outcomes we require. As computers become more intermingled in our human activities, so the crossover points become more complex and often more subtle. Quite a lot of our future effectiveness as individuals and societally will depend on our abilities to manage this interaction, just like in the past abilities at purely human systems of management have often been key to determining individuals’ or societies’ successes. Our new core computational subject needs to be right at the centre of this computer-human interaction; indeed, it’s hard to see where else these new abilities might be born from.
Thirdly, computational thinking needs to cut across all subject areas. Maths in schools has become highly siloed and above basic primary level, largely unused across other subjects. Whether we keep subjects separated as we typically have in school systems or manage to evolve into removing that slicing, computational thinking must be infused everywhere it can help, just like literacy has been. The anchor for that learning is the renewed core computational subject, but its application, as in life, needs to be widespread. Or it has no right to be a compulsory core subject.
8 | New Subject, New Pedagogy?
However well we teach the wrong subject, it won’t make it right. As all the preceding chapters discuss, the fix for maths is not simply in teaching “it” better without radically changing the “it”.
But here I want to ask the corollary, namely: if we do have the right subject defined, how do we teach it? Will the techniques of old still work? And what of the transition—how can those in the educational ecosystem move to a new computer-based steady state?
Computer-Assisted v. Computer-Based
First off, nowhere have I found computers incorporated as a basis—an integral, central part—of the school maths subject. Quite a few people claim they are already achieving this, but so far I have always found they are not. What they may be doing is using computers to assist or try to take over the pedagogy of traditional maths, rather than basing maths the subject on the computer doing the calculating—using the computer to change the real-world subject. I came to term the difference between these uses as “computer-assisted” versus “computer-based” maths.
Here’s an example of what I’ve encountered. A government official will enthusiastically promote to me an energetic startup providing software that guides students through, for example, practicing solving equations. I’m shown a demo of how it figures out what mistakes a student has made, and tries to give them new equations to attempt so they can solve them by hand . It tots up their score, helping student and teacher—increasingly successfully—work out how to improve their hand-solving skills. Indeed, our own Wolfram technology is often used for such systems.
Impressive stuff. But completely nuts. Totally backwards. A perturbation of the primary, core use of the computer for mathematics: namely computing answers. First and foremost, we need to use the computer to calculate, in this example, the solutions of equations that the student has set it, because they were needed to solve a real problem the student had, not tell the student how to do it by hand. The computer is central to doing the maths, but it shouldn’t be there to instruct the student how to do maths that assumes it’s not there! If you have a computer, use it for computing!
“ The toolset for real life can largely be replicated in the classroom, so there is little excuse for not bringing real context in too”
To be clear, I’m all for using modern technology—computers, mobiles, virtual learning environments, MOOCs—to reform our pedagogical processes, institutions, settings and, as is the common aim of computing in all walks of life and needs to be for education too, improve efficiency and effectiveness. But this is a distinct use of the computer and it is extremely important that computer-assisted pedagogy is not substituted for computer-based computation in maths. Of course, computer-assisted pedagogy can be applied to any subject, whether history, English or geography. Later we will also see how we might add new dimensions to those subjects as computational history, computational English and computational geography, but this is effectively applying our new core computational subject to those subjects, and again needs to be distinct in our understanding of the use of computing in education.
This confusion between computer assisted and computer based is almost universal amongst our policymakers, as well as more excusably amongst teachers, parents and even sometimes employers, and means that almost all reports and studies on the use and effectiveness of computers in schools have missed this central bifurcation. To make matters worse since I first used “computer-based” terminology, others have used it discrepantly, for example PISA’s use of computer-based assessment (CBAM) of traditional maths.
Having slated this confusion and exposed the bifurcation, let me suggest in outline the ways in which computers can be used for pedagogy. The reason I’m doing this is because effective delivery of a new computer-based curriculum needs new or evolved pedagogical processes—but I make only a brief summary for this purpose, each topic deserving more in its own right.
Potentially there are many effects—I list 6 categories—which I think of as being in 2 buckets of better fitting education, firstly to the individual student and, secondly to the real world; the intersection of which hopefully achieves a student who is best equipped for life.
For the first, the holy grail of computer-assisted learning is to replicate the ultimate personal tutor of bygone eras—a superset of the optimised, individually tailored learning approach and topic selection that aristocrats could hire for their children—but AI-powered and thus available to everyone at low cost per student. For the second, it’s giving or simulating as lifelike, complex experiences as possible.
Individual Interests v. Mainstream
At the very least, the computer and internet open up a treasure-trove of information. No longer are you limited to the school library or teacher’s knowledge. This is the most adopted form of computer-assisted learning so far, at least as a supplement to the mainstream curriculum material.
That all this information is easily available surfaces the question starkly as to what extent a student should follow the mainstream subject matter versus following their own interests. In the past, offbeat information was hard to come by; it wasn’t always easy to organise information or teaching on any chosen subject; now it is. Whereas a traditional teacher with a class cannot offer so much variability, modern computing and AI can. Any student can potentially learn and get help learning any subject, regardless of how esoteric or minority interest it is.
A student’s wellbeing and society’s justifies some subjects and topics for all, as we discussed in Chapter 2. Counterbalancing that impetus is the power of a student engaged in their own interest, increasingly enabled by technology, which should not be derailed if at all possible.
Adaptivity
Can the computer react and adapt to each student, hopefully to help them practice and experience what specifically they need, replacing an averaged approach across all students?
Clearly there’s promise in achieving truly individualised learning given the constraints on the number of teachers, and there’s some success already. But there’s a danger too: reduction of open-endedness while the technology evolves. It’s relatively easy to set up learning environments for yes-or-no or multiple-choice answers, or numbers to answer calculating questions. It’s much harder for descriptions or open-ended answers to be utilised because the computer has to understand the answer enough to adapt what comes next. Wolfram|Alpha is one of the few technologies today that can help with this, but it’s early days.
Adaptivity is a key prize of computer-assisted learning, but only if we can use it to drive open-endedness, richness of content and true variability to match student interests and abilities. Too often poor, easier-to-implement, claimed adaptivity is used simply to save cost on driving mindless repetition. Paradoxically, this works better for drilling traditional maths calculating than for the open-ended, computer-based, problem-solving maths or computational thinking I am espousing.
Assessment
Technology brings huge scope for changing assessment and taking it back to help build experience rather than just judge capability.
To start with, live computation enables new types of questions involving interactive quizzes, for example adjusting dynamic parameters of a required model—the sort of interactivity that we all have available in real life. Each student can have a custom dataset too. Another factor is how using the machinery to reduce human labour in assessing students can result in far richer assessments (though it can result in more mindlessness too, for the same reasons as I described in the previous section).
We will talk later about how assessments need to change to effect change in our maths subject, but suffice it to say now that collecting more data more of the time may in fact reduce the weight currently put on a few exam metrics. The worst of all worlds is quantifying students on a small number of metrics to represent their entire ability. You are better off either making largely qualitative assessments—a shift back from today’s quantification—or going the whole distance and having much richer data collection and analysis of the student’s entire career. Computers clearly offer a prospect of the latter, though the details of what you want, what you do, and how you use this potential power are very crucial to a beneficial outcome of driving real, open-ended, rich learning.
Experience, Context-Based Learning
One amazing aspect of our computer revolution is how the machinery of working life can be brought into the classroom. The computer on which I’m making this book isn’t very different in power or capability from the computers most children—at least in the developed world—have access to. The tools of life and classroom can largely match. The toolset for real life can largely be replicated in the classroom, so there is little excuse for not bringing real context in too, or working with the real, messy data, huge calculations and overload of information of today’s life. This is hugely important, as much of the learning we’re missing today is because the messiness of reality is removed, because maths or computational thinking can’t make much progress with that reality unless you have a computer. Without that messiness, the subject changes, experiences and details of applications of context are lost.
Collaboration (amongst Students and with Teachers)
Paradoxically, while the use of computers is often a concern for parents who worry about isolating students from others, they can also be a magnet for collaboration.
Instead of just working together in the classroom, they allow students to work across the world remotely, and instantly enable teachers to collate and collaborate information their students have produced. Here is a very simple example which I do every day: work on writing collaboratively using screensharing. Not for this book, which is just me, but for many meetings at Wolfram, we all look at the same words (or same code or design) at the same time. This is much harder to do without a computer as it’s hard to get the same view, take control back and forth, edit together and so forth. Most of life is not solo, so most of education shouldn’t be, either. Never before has the school or the classroom had these opportunities to promote such lifelike collaboration as now—matching how collaboration works outside at that point in time.
Virtualisation
Not everyone involved in education actually needs to be there anymore. As well as virtual classrooms where the students are remote or several classrooms are joined up in different places, we can also inject remote teachers. This is extremely important for some styles of delivering our new core computational curriculum.
For example, many teachers may not be able to lead a livecoding lesson. It’s hard and requires teachers who are experienced and confident in being able to help. Rather than have the local teacher need to be able to run all types of lesson, pools of teachers help with those specialisms—beamed in as part of the lesson. Or real people in their place of work may help out. Some teachers have been hostile to this, as it appears to take authority away. Where that’s happened, it’s a symptom of the need to shift our conception of what the teacher’s role is. Just like my position as a CEO of a company doesn’t mean I know everything or don’t need to bring in outside help, nor should a teacher’s.
I am often asked how we can find sufficient teachers for our core computational subject, given the shortages of maths teachers in most countries. I have several answers to help, and having remote teachers through screenshare is one of them. (I talk further about this in this chapter in the “Role of Teachers” section.)
Perhaps also under the virtualisation heading is the “flipped classroom”, the term that’s gained notoriety in recent years, making use of Khan Academy and the like. Rather than have students, in effect, listen to a lecture in class and work through problems on their own at home, flip it so their homework is instructional—often based around watching a video of what a traditional teacher in a class might demonstrate—and use class time is for more interactive experience. There is a very useful role for such an approach in the pedagogical toolbox of our core computational subject, particularly because of the greater emphasis placed on experience of real problems needing, if anything, more interaction time with teachers. But flipped classrooms in themselves do not achieve, and have not so far achieved, the needed new core computational subject.
Constructionism v. Instructional
Virtualisation represents a few ways in which modern technology can change the delivery of education. Another question (put roughly) is whether you tell the student what they need to know or let them discover it themselves. In practice, most education today is the former. Many enlightened thinkers argue primarily for the latter.
Particularly important was Seymour Papert, a mathematician and educator who launched Media Lab at MIT. (He died in 2016, and I wrote a brief obituary at the time.) He was a great visionary for the use of computers in education who developed two directions of major interest to me. For this immediate discussion, the most relevant is the movement he named “constructionism”: to define a form of student-led discovery and learning and engender it as the primary modus operandi in place of direct instruction, or what I’d call an “instructional” approach. Much of what he applied it to was what is now termed coding and part of what I’d call maths. Much of the aim was to achieve computational thinking—a term he invented. So this is of course also highly relevant to what I cover in this book, not to mention providing terminology. Seymour and his movement stand out as dramatically the most innovative thinkers and practitioners in these “computation” areas, whose work I am hoping mine builds on.
A constructionist approach is very important to delivering the new core computational curriculum I argue for. Self-discovery is powerful in driving new connections and motivation, and establishing new patterns of thinking. It is more of what we need the human to do to add value in an AI age.
“ It’s hard to discover ... a toolset to which you’ve never been exposed ”
But we need some care in its application too. One of the potential issues with pure constructionism is how you engender enough process, base toolsets and techniques to achieve it.
There’s therefore an important interplay required between effective instructional setting out of what’s been discovered, the processes that have successfully engendered thinking and discovery (as I discussed in Chapter 6), alongside the student’s own self-discovery.
Another argument raised against constructionism is how learning key processes is in itself important in later life, and that their learning needs to be directly instructed or else the student may miss out. Of course that only holds if those are actually the useful processes—not a vestige of the past—and there is experience of applying them to real-life situations. Both are big “ifs”, and both benefit from well-orchestrated constructionism alongside focussed, minimalist, instructional pedagogy.
In practice, a constructionist approach is often associated with schooling in which students are mostly involved in projects—often of their own choosing—and hopefully selected based on some interest they may have.
One question this brings up is to what extent we’re looking to achieve educational contexts matching up with typical uses of computational thinking in the real world (such as Chapter 3’s examples) for either constructionist or indeed instructional approaches. To prepare students, it’s clearly beneficial that they experience computational thinking in use in as many contexts as possible. But as much as possible the context should be the driver; it should spark the interest and lead the education.
Much as that is the preferred approach, it’s not always possible. Teachers, schools and systems may not be set up for such open-ended exploration, though hopefully that constraint will change. The range of options is overwhelming and in practice is extremely hard to collimate. As I shall address in the next chapter, coming up with scaffolded exemplars or even just possible project titles is key to delivering our new core computational subject in practice.
Project Based v. Procedures Based
Some educational constructionists argue that almost all education should be project-based, cross-traditional discipline—that these are as real situations as possible using as much know-how as can be sought by the student with help from teachers. I largely agree with this approach, but not all the time and not 100%; here’s why.
A key problem is that it’s hard to discover a good range of the toolset to which you’ve never been exposed. Curating projects that can expose this is therefore very important and not something that students can do by themselves. By the way, nor can teachers; and nor can most education departments in governments. The toolsets are rapidly evolving, their use and the hybrid use of tools even more so.
Maths is particularly difficult for this self-discovery when compared to, say, the subject of history. There’s huge amounts of intertwined theory, a complexity to its application, and crucially, it’s often hard to find the right question when you’re stuck. It’s even harder for teachers to have the breadth of understanding to answer those questions effectively, including the confidence to say when they can’t. Even if you think you know the scope of the subject—as my CBM group would hope to—it’s very hard to structure or cover that scope by projects alone. The difficulty we and other groups have had in structuring outcomes gives some foresight into how difficult it is to structure projects in a reasonable sequence to achieve them.
That said, this is indeed what we have tried to do.
I will later describe our current manifestation of CBM modules that attempts to achieve modern “directly learning”, but with a project style and some guided learning project topics. I should note that even with the attempt to direct what you need to know in a project style, this minimal instructional approach does require “primers” too that fill in definitions and theory needed as the project proceeds. In essence, we have a result heavily based on a project-style approach but with some procedures-based incursions where necessary. Specifically, we’re iterating between them to try to optimise how the instruction occurs.
To summarise my argument around project-based learning: it’s highly desirable because it usually is closer to real-life application, but it may not always be realisable as the complete educational route to achieve the best understanding. Optimising its use requires a very broad knowledge and understanding of the scope of today’s real-world maths/computation, which has typically not been manifested in curricula. This is a case when an educational proxy that’s rather different from real life needs to be employed some of the time, to some extent. But it should be noted that we’ve only come to this conclusion in this specific case by assuming the direct real-life style of work first. Far too much of education, including in this case, starts from the proxy and argues it’s the only effective way, usually based on “evidence” to demonstrate it’s best at producing results in today’s assessments but ignoring the alternative approach with different outcomes, which builds up a wider range of more relevant skills.
Problem-Centric v. Tool-Centric Topics
Another question that’s particularly stark for mathematics is whether you group topics by problem or by toolset they use. Today’s maths is almost universally grouped by toolset, for example “algebra”, “matrices”, “fractions”. A problem-centric approach leads with the problem, such as “What’s the best password?”, “Can I spot a cheat?”, “Will it rain tomorrow?”, etc. and covers the toolset as needed for solving them, thereby bucketing topics by approach to problem solving rather than an actual tool, for example “modelling” instead of “calculus”, “data science” not “regression analysis”.
Each grouping has its challenges. The problem-centric approach needs careful construction to cover needed tools but reinforces that they are the same tools when they are reused in a new context—a key facet of the computational thinking approach. The tool-centric approach is easier for curriculum makers to define but stratifies practice and experience of the toolset to problems that fit it—a key issue. For instance, at school you likely encountered lists of algebraic expressions to manipulate followed by questions clearly intended to utilise your algebraic manipulation skills, and not some other topic like probability theory. Yet a key experience you need is understanding when to use which toolset without explicit signposting.
Another problem with today’s approach is how similar concepts in different domains of maths get separated into different topics. Two I only recently put together for myself: how polynomial fitting of curves in algebra (things like “can you fit a cubic equation to this data?”) is separate from distribution fitting in statistics (“can you fit this data with a normal distribution?”). They’re both about the concept of fitting. However, instead of learning when you’d think that fitting a curve—any curve of any formulation—could help you solve your problem, most students just learn procedurally how to do each type of fitting when faced with a question that is signposted like it was intended to test their polynomial topics or, separately, one that tests their statistical distribution knowledge.
As we’ve discussed, one of the biggest challenges today in computational thinking is to work out which tools, toolsets or concepts best help you solve your problem. That is a hard intellectual problem that needs experience: there’s such a variety because of how mechanised computing massively opens up the options. Therefore you want as much schooling as possible to give students the experience of deciding which tools are best for the job, and that seems very hard to do if you organise maths by toolset.
Tool-Centric Effect on Data Science in the Workplace
This misorganisation is playing out negatively in the workplace. Much data science being done in organisations today is rather traditional statistics, often not producing particularly helpful answers to the problems. That means the promise of better decisions from data often isn’t being effectively fulfilled. Many of those involved are from a statistics background, meaning they learnt the statistical toolsets very thoroughly but not other toolsets or how to learn different approaches as they came onstream. In essence, they are approaching data science from a stratified tool-centric direction, just like they did in all their maths at school. Because this comes up with many organisations we at Wolfram work with, we have even coined a term to describe the needed alternative approach of deciding the methodology after you know the problem you’re trying to solve: multiparadigm data science . Computational thinking education needs to equip students to fit the available methods to the problem to get the best decisions, not shoehorn the problem into fitting the method they’ve pre-decided to apply, i.e. students need to learn to take a multiparadigm problem-solving approach.
“ In a new computer-based maths education world ... the curriculum can be reordered by conceptual complexity, not computational complexity ”
Even around machine learning—a very powerful modern toolset for solving many problems—there are similar issues. New and powerful though it is, it isn’t the only toolset game in town. Yet at the time of writing, organisations often recruit “machine learning specialists” because they pre-decided that the problem is to be solved that way. Often a multiparadigm approach is needed, and at the outset you’d do best with “computation specialists” who know a wide gamut of techniques and can combine them for the best decisions, including machine learning.
An analogy would be the multiparadigm transport options I’m faced with when crossing London. I could simply pre-decide that come what may I’ll drive from my door to whoever’s I’m visiting—I do not live just by a train station. This is rarely efficient in time or money (or pollution). Nor is only using public transport going to work. So it’s a mixed economy like drive to the local station, take a train, cycle to my destinations and so forth. Not always easy to optimise with all the options available. It is therefore no surprise that for CBM we have adopted a problem-centric approach: start with the problem and use the toolsets you need.
Why Categorise at All?
Is there a reason to group or categorise the problems? Or should we just have a completely open-field listing? I’ve explained the problems with tool-centric categorisation, but do we need to replace it, or just have individual problems group the learning?
In life as well as in education, categorisation can help one not to feel overwhelmed by the options. The danger is that categories are hooked onto as sacrosanct barriers between areas, only to be learnt separately. In the end, it doesn’t matter whether a problem is put in a “modelling” or “data science” category or both, but it may help in thinking through the toolset options. This is very different to deciding that you must now do algebra problems: a grouping by toolset, not application area (e.g. money) or approach (e.g. modelling), and put there to help broader thinking, not to stratify by prescribing method before problem type. It’s crucial that students are not railroaded into a toolset-first order of thinking. Both the actual categorisation and attitude to its use affect this. (We briefly proposed some modern groupings in the Chapter 7, “Categorisation of Core Computation Areas”).
Reorder by Complexity of Problems, Not Computational Complexity
One of the most exciting pedagogical changes a computer-based maths or new core computational thinking curriculum can achieve is reordering. At the moment, the curriculum’s order is largely determined by computational complexity—how hard it is to do the calculation. Things that are hard to calculate come later, like calculus, not because the concepts of what they represent are necessarily more complex but because actually doing the sums requires lots of calculating skills. In a new computer-based maths education world, computers are assumed to do the calculating, so the curriculum can be reordered by conceptual complexity, not computational complexity.
Indeed, let’s take the concept of integral calculus as we briefly did before in Chapter 7 “Core v. Enrichment”. The idea of having a “magic function” that can work out the area under a curve by chopping it up into really, really thin regularly shaped slices, finding their areas, and adding them up isn’t conceptually that hard—amenable to most 10-year-olds, in fact. Indeed the idea of pushing something to the limit, thinking of what happens when something gets smaller, smaller, smaller is usually at an earlier development stage than that.
“ You don’t even need a fancy computer. You can often call up an integral ... by simply talking to your phone ”
So why is integral calculus left so late? Integrals are nasty to calculate. It takes years to learn how to do them, you need lots of algebraic manipulation skills, lots of trickery, lots of different techniques, none of which you’d use today for mainstream applications of the computational process. Computers have now beaten humans hollow at calculating integrals; this was surpassed years ago. You don’t even need a fancy computer. You can often call up an integral through Wolfram|Alpha by simply talking to your phone.
Then there’s reordering within the topic. Triple integrals—which you might use to work out the volume of an object—don’t usually come up until you’re in a technical university degree or very late in advanced high-school maths. Worse to calculate, more to get confused about, but also immediately applicable for a real engineering problem. I often hear people say that calculus is a waste of time. I agree for the calculating drudgery applied to meaningless problems in much of US college calculus courses. But not as a tool in the toolkit for real, hard problems alongside other ways to conceptualise and work them out.
Integral calculus is but one of thousands of topics, subtopics and special topics subjugated in this way—taught after endless special cases of less useful toolsets whose calculating trickery makes them hard to grasp for many. A related problem is separating special cases of a toolset out to teach separately because they can more easily be derived and calculated than the general case, with two problematic consequences: what you’ve learnt isn’t that applicable and you’ve got to learn a whole extra set of stuff afterwards. For example, most people learn formulae for right-angled triangles at school before they learn formulae for non-right-angled triangles. Why? Why not use the general formulae? They’re not that much harder, and work on right-angled triangles too.
What about 2D versus 3D geometry in general, not just triangles? Today almost all geometry at school is about 2D, whether rotations, coordinates or angles. Until I thought about it, I just assumed 2D was conceptually simpler so it should be dealt with it earlier. Perhaps so. But here’s a counterargument. We are naturally more familiar with the 3D world than what’s usually our human-constructed projection of this onto 2D—in pictures, diagrams and so forth. 3D is in fact more natural, but more complex to compute directly and, depending on what you’re thinking about and your natural abilities in that area, may be easier or harder to think in. Pre-computer, the case for 2D being easier was slam-dunk. Post-computer, it’s not so obvious. For example, now you can pick whatever coordinate system you’d like to compute in, something that matches the geometry of what you’re trying to work out. Suppose you want to work something out about a glass of water where the glass gets wider as you go up. It’s got rotational symmetry—meaning you can rotate it and it looks the same—so you’d pick cylindrical coordinates to define it and, say, work out how much water it can hold when 80% full. Cylindrical coordinates are rather a nuisance to compute in by hand as against Cartesian x, y, z coordinates, but Cartesians are rather a pain to use for defining something circular like this. Pre-computer, it’d be a tossup which system to use based mainly on calculating complexity. Now it’s obvious for this example: using cylindricals. It’s easy to set up, and computing is no problem to do because you’re not doing it!
Apologies if I’ve lost you. Unless you have a technical degree, you may not understand what I’m talking about with cylindrical coordinates. Why would you? You never got to 3D geometry.
Today’s curriculum starts with 2D Cartesian coordinates, then might go to 2D polar (an angle and a length), and then only a few will ever get to 3D. And their thinking will usually be backwards. Not look at the problem and see which of many coordinate systems makes it easiest to define and work from, but let’s see if Cartesian works first because that’s what we learnt first and practiced on problems that we had to do after we learnt that method. Instead, a key learning objective needs to be picking the best coordinate system for your problem, knowing of lots of common coordinate system geometries you know exist, so you can pick the best one for abstracting to, which will almost certainly also be the easiest for others to understand if they’re reviewing your work.
“ Children don’t care which order the techniques or tools were invented in, simply what’s easy to understand and seems useful ”
So today’s ordering of the curriculum by computational complexity is required because our maths isn’t computer based, and has many very negative consequences. It arbitrarily cuts out many real-life problems, randomises ordering of conceptual complexity and muddles up broader maths concepts with calculating technique. It causes unnecessary confusion and boredom, and worst of all it often programs everyone with the wrong approach to problems, led by an easier-to-compute method first rather than a more balanced view of all available methods that might be applicable.
One more mistake that’s common: ordering by the order of invention or discovery. That because a technique came later in history, it should come later in the curriculum. Again a stark example du jour is machine learning that’s very recent in the history of computation—employs complex calculating that can only be manifested on a machine—but as a user is a conceptually very easy technique to apply. At its simplest, the computer is shown some data—say images—told which category each should be categorised into, and then asked to use that to categorise some new data of the same sort. Not a hard concept to get for most 5-year-olds. Indeed, it’s not too dissimilar to how they were taught about objects in the world. Machine learning is a powerful new toolset that needs to come early as a good way to solve some problems. Let’s not leave it beyond a young age in the curriculum.
There’s a story I love to recount around order of invention and its irrelevance to children. When my daughter was around 5, she used to enjoy making “paper laptops” in which she’d fold a sheet of A4 paper in half and draw a keyboard on the bottom and a screen on the top of the sheet. So once I asked her, “When I was your age, I didn’t make ‘paper laptops’. Why do you think that was?”. After very careful thought for 1–2 seconds, she replied, “No paper?”.
As well as finding this mistake highly amusing in its obliviousness to the timeline of laptops versus paper—by several hundred years—it reinforced to me that children don’t care which order the techniques or tools were invented in, simply what’s easy to understand and seems useful. We need to give them the best tools for the job at the outset; you can manage with worse tools when you’re experienced than while you’re learning.
How Strict Is the Dependency Tree?
We’ve talked about fundamental change to deciding the ordering of topics, but how specific does that ordering have to be? Is there one or only a small number of such orderings which could be comprehensible to students, with minimal degrees of freedom within each? Putting it another way, is all maths a layered sequence, or can you move out of step?
Almost all maths curricula today have rather tight sequencing. You might swap one topic with another, but there’s a pretty strict yearly order. You might cover angles a term either side of covering circles, but you need to cover them both before circle theorems. The perceived wisdom is not only that this ordering caters to the structure of maths but also to the cognitive changes of students as they develop.
Of course, what we’re talking about here is largely the sequencing of learning to calculate, of the various techniques you manually have to apply to try to transform an abstract question to an abstract answer. It is easy to see, for example, how you can’t learn solving quadratic equations by “completing the square” if you haven’t learnt how to manipulate algebraic expressions. Doing a harder piece of algebra is very dependent on doing an easier bit, so a rather strict sequence of know-how and practice is required to achieve more calculating skills.
But for computer-based maths, we’re not primarily talking hand-calculating skills but problem solving using different mathematical techniques, abstraction and interpretation. Moreover, many topics might be looked at many times over at different levels: as a pure user of something set up by others, as the setter-upper for others and/or as someone who’s a programmer of the underlying techniques. We have reflected this sequence—and indeed a wider set of such different levels—in the Concepts and Tools dimensions of the Outcomes map in Chapter 7. This splitting of what it means to “know” a topic and the emphasis of the different elements of the 4-step maths process means that we believe there is much more flexibility in sequences of topics. It isn’t that you “learn the quadratic” once and for all, but you learn how you might use an equation, how to abstract different complexities of problems, including where equations might be useful; you learn to handle the results after the computer has churned out its answer. Some of those equations might be quadratic—meaning with an x 2 in them—though you’ll probably have gained experience of all sorts of other equations too because most problems don’t happen to be well represented by quadratics.
If it can be the case that sequencing has to be less strict, we can hope for many positive consequences. As my teacher used to say, “Maths is notoriously a subject in which once you’ve become lost, you stay lost...”. Strict sequencing is a key reason for this. You lost a link out of the chain and it’s broken. You fell off the escalator. If maths is more like a road network (and less like a railway system), you can usually go various ways at various times to reach your destination. There may be better and worse routes or just alternatives, but they’re not just all or nothing. And different routes mean more ways to hook the interest of different students.
Zoom-Up, Zoom-Down Approach
What makes the sequencing discussion more complex is the different levels of thinking that computation operates on. There’s a big picture and details that relate to it. Great mathematicians and scientists are often distinguished by their ability to zoom up to the big picture but zoom down to details which critically affect it, while simultaneously managing not to focus on those that don’t.
Actually this zoom-up, zoom-down ability is one of the most revered skills in modern life that has also marked out some of our most celebrated entrepreneurs. Steve Jobs in particular could appreciate the overall possibilities of a nice citizen computer and later a smartphone, but would also obsess about ensuring every detail of its usability could idealise that overall picture. He’d bounce from the detail of changing the curvature of its case to the big strategic picture of touch-screen versus fixed keyboard, to understanding details of the characteristics of gorilla glass that was a crucial element in being able to manifest his touch-screen approach. Bill Gates (the founder of Microsoft) is credited with seeing big business pictures but also gets into many details of processes or code that may affect it.
Zoom-up, zoom-down has probably always been an important characteristic of great leaders, inventors and academics, but machinery, automation and in particular computational automation means the range of layers you can zoom through has dramatically increased. The imagination to see to the broadest layer yet comprehend the range of details you really need (and not what you don’t) to make the best progress is surely more needed than ever before.
Our core computational education ought to be not only a case in point of big picture, small picture but a key training ground for this revered ability to jump between them. And yet today’s mass maths curricula couldn’t fail on this more absolutely. Tests have driven many to operate on one microprocess level of abstraction.
When teaching to tests was less central, big concepts might have been explored more by aspiring classes in some schools—Euler, the nature of proof—which whilst they might or might not have been directly applicable, sat alongside the hand-calculating processes. Now big-picture intellectualism—however abstract and unavailable it was to most—has been replaced for almost all by more grinding through now-historical calculating.
A cause and effect of this has been traditional curriculum and outcomes layouts as lists of topics. That our replacement multidimensional outcome map, discussed in Chapter 7, has to be so different is a symptom of the problem of not zooming up and down—and also an element of the solution.
We need space to discuss varied topics (like the nature of risk, randomness, what’s predictable and what isn’t, where maths is useful and where it isn’t, ways you can verify things, advantages of different technologies or methods) alongside solving detailed problems. Big-picture issues like these are often stimulating to students in their own right, and yet they’re also directly relevant to their lives. Sometimes the most abstract of discussions can bring topics to life, sometimes the big-picture idea can be translated—with the aid of computers—to a directly visible outcome. Instability and irreducibility of the many of predictions demonstrate how zoom-down can be very important to the zoomed-up picture.
Role of Teachers
What is the role of teachers in this new world—indeed, do we need them?
The more open-ended the problems are, the less procedural the instruction can be, and the more sophistication becomes necessary in interfacing with a student to help them build the high-concept yet high-detail, zoomed-up, zoomed-down computational thinking that is so valued. Maybe one day we will have so sophisticated an AI that its abilities will outstrip the best of us humans in teaching the next generation. Maybe not. Certainly we’re nowhere near that now. So, for the foreseeable future, good teachers are essential to delivering computational thinking.
However, their role may be different from many maths teachers’ roles today. Not the fountain of all knowledge but instead the CEO of the classroom. It’s not that they know necessarily how to do everything, but that they have experience of how you get it done (including getting help from others and know-how of problem-solving methodologies) and confidence that it can be done or understanding of when it’s not going to work. It’s that experience and confidence that need to be imparted to students alongside details of actual techniques.
Diagnostic capability is also key. When a student gets stuck or lacks insight, it can be hard to work out what they didn’t see. And that’s particularly hard if you the teacher were naturally good at that subject and so mostly did “get it”. As in medicine, diagnosis is a complex set of skills involving history taking, empathy with the student’s viewpoint, pattern recognition from experience, knowing when not to jump to a conclusion when you do have enough data to, and so on.
“ Open-ended questions, not just questions that are explicitly right and wrong, underpin our new core computational subject just like they do in life”
My daughter provides yet another example. I cite her so often because I have observed her so closely and hear so many others say the experiences I recount chime with theirs. In this case she was labelled by a particular teacher as not very good at “word problems” and in particular not being able to understand the context they described. She got increasingly upset about her failure to do these problems—which others who she normally bettered seemed to find easy—so when she drafted me in for help it was with some angst. Sophia is praised by her teachers for her lateral thinking, perception and ability at contextualisation almost universally, from science to history to religious studies. So I thought at the outset this was odd. I dug into a particular problem with her. It was about crab shells. Sophia explained in detail that she didn’t think the problem described reflected the biology, and therefore she couldn’t see what to do. I explained that the words in the question were to try to add context to a calculation they wanted her to do, but that sadly, they didn’t want her to think about what was really going on biologically. She was over-contextualising in the eyes of the maths curriculum, not failing to understand the context. With a little help on how the setup should then proceed, she’s done fine at these problems ever since. Her teacher’s misdiagnosis could have really derailed her future maths confidence.
This is not so different from the modern role of a CEO. It’s not my job to know how to do the jobs of everyone who works for me, but it is my job to guide how it gets done, to problem solve and to set the direction—including sometimes with minute details—of what needs to happen. Sometimes that actually involves doing the job at hand alongside the person; sometimes the opposite of forcing yourself to step back even when you know how to solve it.
Many of our best teachers do operate in that mode, but many do not, and particularly in maths. Confidence is a key problem. The moment a teacher feels concerned that they might be caught out, made to look dumb or like they don’t know what they’re doing, they tend to lock up into following procedures they know. That’s common in every walk of life; it’s just potentially more embarrassing in a classroom situation. The higher concepts, open-ended tasks, and projects go out of the window. The contrast between conceptual and procedural in maths (particularly today’s hand-calculation-centric maths) is stark because it’s very obvious when you can’t get the answer out and simply get stuck. Instead of covering this up, we need to help teachers with techniques that expose it but in a confident, positive way. We need to let them show students that they too get stuck, are in a quandary and can’t see how to move forward sometimes. This is crucial learning for their students—particularly if they do then manage to push through the problem and solve it!
One way to help confidence is by having expert resources to call on through video and screenshare, like Zoom. Just like I often call in experts as a CEO, so teachers sometimes need to, for example to run livecoding explorations which they may not themselves be able to do. In many classrooms, this is taboo, for fear of teachers losing control or looking inferior. Paradoxically, it’s the most confident teachers who are most at ease with remote experts, yet it’s the least confident teachers, who might need the most assistance, who are often the most resistant.
Ability to recruit good maths teachers has become rather a vicious circle with the education of computational thinkers. The current mechanistic state of the school subject, the huge potential for computational thinkers in the real world and the limited numbers coming through our current maths education conspire to make applicant numbers low or attract those more interested in drilling procedure than helping conceptual understanding. A key way to change this is a more creative curriculum that more students like—liking it because they see its connection to their lives, because of big ideas or because it connects to other subjects better.
Form of Exams
Central to today’s pedagogy are exams, tests and other forms of assessment. Rather like the dichotomy with the maths subject versus its pedagogy, changing assessment can involve staying within the current structural paradigm but changing the content to match what’s new, or changing the whole way in which we do assessment (though potentially with the original content). It may be that the latter is necessary to achieve the former. What is clear is the need for computers in assessments (phones, tablets or laptops) and a change from primarily testing hand calculating: in the end, both are required for a mainstream, renewed core computational curriculum.
And that’s because we vitally need questions and question types that better test the whole computational thinking process executed with today’s technology, better testing acumen at real-life computational thinking application.
We need examination not just of the hand calculating of step 3, but of definition, abstraction and interpretation and the whole process, often without explicit calculation—as good a coverage of the core computational outcomes of Chapter 7 as possible. Interpretation of others’ models, assertions and conclusions will often be at a greater level than building up and synthesis of the student’s own—which is, after all, the typical life requirement.
Likewise, open-ended questions, not just questions that are explicitly right and wrong, underpin our new core computational subject just like they do in life. More effort may be required in marking tests to include these, but this marking of more open-ended questions occurs in other subjects already and could be transplanted to maths.
I am purposefully not addressing much broader issues around how assessments for all subjects might ideally change or even, as some hope, be abandoned. Instead I’m addressing what it’s absolutely necessary to alter from today’s setup so that we can have pedagogy supporting our new computational subject with as minimal a change as required to the process.
Example Questions/Issues
Example Discussion Points
Example Enhancement if Computer Available for Examining
The range and richness of question styles can usefully increase if the exams are run on the computer. With this, I’m not talking about the examination process per se (though this can be helpful for other reasons), but using the computer as you would in real life, exploring interactive models and using a broader toolset creatively to solve the problems being posed. For example, a complex interactive model can be presented in which the student is asked to set parameters for different results they might want to achieve—such as the best power to maintain whilst cycling.
If You’re Judging by Numbers, Use More
Explicit ranking of students during their term’s work, in day-to-day tests or even where setting takes place, has been reduced in various countries. You don’t usually get told where you’re placed in daily activities (homework or tests) or cumulatively for a whole term’s work.
By contrast, public exams are ever more quantified and ranked, and those measures are deemed more critical than ever to a student’s success. So on the one hand students don’t get helped by explicit ranking day to day lest lower-performing students get demoralised by their performance. And on the other hand, every so often for major exams, we put students under extreme pressure of an explicit ranking—demoralising and shocking for those who don’t do well.
At least when I was at school we had rankings in every set, every term or half-term on more or less everything. At my primary school—the Dragon School—they even got published in the school magazine (set, place in set, exam result, age in decimals for some reason—for each subject), which I am not advocating! At my secondary school of Eton College, every few weeks we had “order cards” in each subject with set, place in set so far and a brief comment. Because of this, I got to know that I did better at the term’s work than in exams—very useful to know. Nowadays, in most UK schools for example, I would only know my exam ranking and would therefore not know of my other, better performance. Moreover, if I’d done very badly during the term in, say, French—a common occurrence for me—it was no great surprise if I found myself moved down a set for the next term. Or the reverse if I’d come top.
I am not saying these blunt rankings of yesteryear are right for today. But if we are to quantify students’ results in any way, more numbers, more often, representing more facets of performance against the plethora of outcomes we desire seem better than fewer unless we have none at all: it gives students a more rounded overall measure of themselves. Also, with modern computing, it’s possible to have detailed assessments and rankings all the time, providing targeted help and enabling each number to have lower significance but adding up to a compendium that contrasts with exams results.
Of course student empowerment, not ranking, needs to be our pedagogical aim—though we must recognise that, in life, competition with others is an important driver, and therefore so should helping our students navigate how best to handle it.
You may argue for a more purely qualitative era. I think this is hard to achieve, as numbers have a huge power which once tasted can be addictive; indeed this book is in part a consequence of that. What we can achieve is so much quantification that it helps each capability and also gives a good qualitative view of each student’s computational thinking capabilities.
Best Test of Learning Maths: Program It
I want to finish zipping through pedagogical approaches by pointing out that the best way to test and develop one’s understanding of a subject is to try to describe it to others as precisely as possible. Giving a talk, teaching others or writing a book are such approaches.
For computational thinking, programming is even better because execution can determine whether it worked immediately and precisely. The point is that having to synthesise rather than just follow a line of reasoning forces depth of understanding. Another factor in play: the less knowledgeable the recipient of the communication on the subject or context in question, the more clarity is forced on your description of it because you can’t assume as much context, pre-thought and pre-understanding as with a more knowledgeable recipient. Likewise, the more precision the knowledge recipient is looking to achieve in their understanding or the more perceptive they are, the more clarity is forced by their requirements of the discourse.
What if the recipient is a computer? For interpreting a program, great clarity of dissemination is required on both counts I describe: in most cases the computer knows no context and requires almost complete precision. These requirements force particular tests of understanding of computational thinking. Therefore, writing programs is a highly useful tool in forcing precision of computational thinking, not to mention its other practical roles of representing abstract computational ideas and as the specific technical expertise required of many.
Although my observation has led me to these conclusions, I’m aware many others have made similar observations before. In particular I note Bloom’s taxonomy, which broadly cuts at the same cloth, though with more details and more generality.
My case for using programming as a powerful way to test and develop understanding fits well with the next topic: our approach for what we need to deliver a core computational curriculum. Rather than just describe what one could do, we’ve effected this by building usable materials. Like we’re advocating for our students, best to write, program—build—the actual deliverables.
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Our Journey on Deliverables
We have the theories. We have the technologies. We have a country in which to start to test it out (Estonia). But what exactly are the CBM deliverables? Bear in mind we’re trying to deliver a school subject they have never seen before, using technology in a different way with new, necessary forms of pedagogy—and this is just the first run!
I’m asking “what exactly are we delivering?” and “can you walk me through exactly the workflows that we hope actual users (students and teachers) will follow?”, the same sorts of questions I ask in running a company or building technology. (There’s an additional question I also often ask in projects too: “Who cares?”, i.e. why are we doing it, but this has never been needed for CBM; people clearly care about maths education). In general, I find drilling early into what are apparently just delivery details is very helpful in ensuring large projects are focussed and high quality because those practical specifics often perturb upstream decisions on concept, design, generality, unification and implementation—even the nature of the project.
They certainly have here, in two major, interlinked ways. Firstly in causing a reengineering of steps for curriculum building compared to the norm around the world. We have ended up compiling a unique process for construction, style of materials and delivery system to manifest CBM. We didn’t set out to add this process reengineering complexity to the project, but we found it necessary. It was necessary because secondly—and the chief insight we drew—making the materials was the key way to pin down and abstract out the subject matter of a curriculum that optimally matches the real world. We saw two main ways to derive the curriculum content: one deduced from outcomes, which we discussed earlier, and the other built up from as-real-as-possible, problem-centric learning/teaching materials, which we discuss now with quite a few process details because of how they affect the result.
Traditional Manifestation of Subjects
Conventional wisdom would be to build a curriculum specification first, mapping out paragraph by paragraph what it is the student should know. As I’ve already described, this linearity of knowledge won’t work for the multi-layered needs of our core computational subject in a hybrid human-AI world, but that’s not what I want to highlight here. Allied to this, and typically made by the same group, would be sample assessments that in practice tell the teacher a lot of what to teach because it’s hard to deduce that from the specification alone. Then either the same organisation or a third party working closely with it produces textbooks with exercises based on the curriculum, and assessments that the students and teachers actually work towards; along the way, teachers usually get teaching notes separately to help them too. Most schools would produce a scheme of works with/for their teachers to cover week by week. Sometimes complete lesson plans are produced for teachers externally and bought in. At different stages, various arms of government are typically involved to approve what’s done.
A major issue that’s waxed and waned over the years is how prescriptive of exact content and pedagogical approach the curriculum specification should be. Roughly, the argument goes that if it’s more prescribed, it’s clearer what is being approved, so the variability is less and best practice can be ingrained. The counterarguments are that teachers need to be given freedom so innovation can occur (including use of technology) and boundaries can better be pushed if they are less prescriptive. Moreover, different students, backgrounds and teaching styles need different approaches.
Unfortunately, in maths, the assessments end up making either approach prescriptive and it’s rare to find much innovation in them through the term of a curriculum which can often be a decade or more. Worse, because of so much confusion in the purpose and function of today’s maths as is the subject of this book, any freedom tends to result in more proceduralism, not more conceptualism. When people don’t know what to do and are under pressure, they usually revert to what they know best and seems easiest, in this case microprocess calculation instruction as maths was for them. Even if this reverting-to-what-you-know didn’t happen, curriculum more or less lays down the subject to be studied and, with today’s maths subject perhaps 80% discrepant from the required core computational subject, even non-prescriptive specifications don’t have anything like enough inbuilt freedom to enable metamorphosis. To move to a new core computational subject, we need a new curriculum.
“ Most people who use maths or computation in the real world are not mathematicians, or at least they do not classify themselves that way ”
And to get that new curriculum, we must also change the rather antiquated process of formation of maths curricula, or we will not be able to deliver and maintain a truly real-world subject. I suspect we could have picked up more testbed countries quicker if we’d followed today’s process, but it just wouldn’t deliver what we thought we needed, at least not until we had much more experience of this new subject.
Right Experts and Expertise for Formulation
There is one glaring issue. How do you work out which concepts and tools of maths are most important and in what priority? The current route is for esteemed experts, usually heavily weighted to academic mathematicians, to work together and figure it out—or, more accurately, to adjust and evolve it from what’s come before—by now for well over a hundred years. I imagine in years gone by this would have occurred through committees sitting in smoke-filled rooms, prescribing what’s good educational nourishment for humankind. That’s not to say that many enlightened experts haven’t contributed very positively to improvements. But the whole basis and process is anathema to keeping up our school core computational subject with a rapidly changing real world of computation.
Most people who use maths or computation in the real world are not mathematicians, or at least they do not classify themselves that way; they say they are engineers, computer or natural scientists, and increasingly lawyers, managers and CEOs. That’s why it’s so important as a core subject: because it’s not just the experts in the subject who need it. Academic mathematicians are a tiny fraction of users of mathematics. You can get some gauge of this by seeing what fraction of registered Mathematica users classify themselves as mathematicians: less than 1%. So it’s important not to over-represent mathematicians in the setting of topics in the maths curriculum but instead to represent these mainstay usage areas proportionally.
Even if you do choose your balance of disciplines appropriately, there’s another problem. Most groups haven’t analysed a priori what maths they’re typically employing. It’s surprising to what extent they can mislead themselves as to what’s used without really walking through actual use cases. Including us. As I described in Chapter 7, we have probably the broadest view of use of maths on the planet and, I’d argue, have built out the most complete software for delivering it. And yet, upfront, we don’t know which bits you need most.
So if we attempted to follow the traditional process and write down the curriculum specification directly from what we assume, it won’t match up.
CBM’s Curriculum Definition Process
To rectify this, we started on a new process. We’d come up with some life-like, real problems—not pre-abstracted calculation problem segments—that students might actually want to answer because they hopefully connected to their interests or lives. Then we’d see how to solve them ourselves and which pieces of maths or computation we’d employ. Some problems proved too hard to make definitive progress on, some too easy; but (mixing my metaphors) we did find a sweet spot for some with plenty of meat where you could get real results out. Sounds simple, but it took us a long time to get our bearings.
Next we took the union over all the problem sets of the computation we’d employed, codifying the result to check there weren’t large unrepresented areas which today are truly being used. If there were, we tried to work out new problem sets (or other ways) to fill those out. In fact, we weren’t just looking for unrepresented computation , but also unrepresented outcomes in general from our outcomes map using a system of tagging we will come back to later in this chapter. From this analysis, we were then able to make the specification of curriculum as needed. In comparison with perceived wisdom, we’d work backwards in defining the curriculum. “Problem sets” first, spec second.
“ We’d come up with some life-like, real problems ... that students might actually want to answer because they ... connected to their interests”
Given that’s what we’re doing, should the deliverable to the teachers in fact be a specification document? I mean, we couldn’t work out what to do from a spec as easily as from actual problems and paths, so why strip out this rich content to deliver a spec from which the teachers are supposed to deduce that very content? Or leave a third party to produce materials, deduced from what we’d stripped back, when we’d got the basis for them? Why not hand the teachers the actual textbook and exercises as a chief manifestation of the curriculum instead?
This was more reinforcement for making modules—as we came to call them—as a defining deliverable itself. Remember too that we needed to introduce new pedagogical approaches that could only be delivered through live computation. Someone would have to build these materials. But who? The teachers themselves? An almost impossible ask for almost all teachers. Few of them have the time, inclination or skills to write textbooks; even fewer are equipped for interactive courseware production including coding fully live examples. What about a traditional publisher? Unlikely, as they don’t have the capabilities; indeed, we at Wolfram have often provided technology and services to help them deliver on live books they have produced. An edtech company? They could, but they’d have to get the whole methodology laid out and be prepared to invest for years without good returns because of the time it would take to get mass adoption of a new curriculum. Edtech companies’ focus is typically in helping learning around existing curricula or out-of-curriculum fun and gamified learning; ours was neither.
So that left us—at least at the start. We have the technology, ability to build these materials, and the concept of computer-based maths. Then we had to address exactly what it was we wanted the materials to do, and how prescriptive they needed to be to achieve those goals.
Provide Every Word of Every Lesson
We really hoped we could set some problems, provide some guidance and let teachers and students get on with it. But as we started to build this out, we kept feeling we needed to add in more and more direction. The problem was we were trying to help teachers deliver a new subject with new methodology—not the subject they’d been trained to teach, had been schooled in and had experience delivering. Teaching materials and curriculum notes for traditional maths, or indeed any subject, assume this subject context (and also a certain curriculum-speak that, for example, I find hard to interpret even as a non-teacher mathematician). Without being very familiar with today’s school maths subject and expected delivery style, I would certainly have trouble teaching it from the materials; if I hadn’t been a student of today’s maths but related subject X, the lack of having studied X would make this much harder without very supportive materials, assistance—a new framework.
The issue of assumed context reminds me of an entertaining clip of physicist Richard Feynman being asked by his interviewer why magnets repel. After objecting to the specificity of the question and seeking more definition, Feynman says, “How does a person answer why something happens? For example, ‘Aunt Mini is in hospital. Why?’ ‘Because she slipped on the ice and broke her hip.’ That satisfies people, but it wouldn’t satisfy someone who came from another planet”, explaining that we understand because we know all sorts of context about hospitals (where you go when you’re hurt), ice being slippery (later he comes back to the interesting physics of that). Even magnetic repulsion does figure later(!), described on different levels depending on different assumed contexts of knowledge.
“ In the end we came to what was, to my way of thinking, a horrific conclusion. We needed to write out every minute of every lesson”
For a new CBM curriculum, there is relatively little background context of the subject we can assume teachers have. In fact, some of the assumed context and intuition from today’s maths education is downright unhelpful and contradictory to CBM, such as the need to be able to manipulate algebra on many levels before attempting any work on calculus. For an example regarding integral calculus, see Chapter 8 “Reorder by Complexity”.
In the end we came to what was, to my way of thinking, a horrific conclusion. We needed to write out every minute of every lesson. How long it should take, who should lead, what might be said, answers to common questions for the teachers; text, problems, interactive exercises, programs and so forth for the student.
It seemed horrific because I thought this felt like prescribing the instructional process to the nth degree. In my mind, I equated prescribing a lesson plan to forcing the learning of microprocesses rather than allowing freedom to understand, investigate and conceptualise.
But I came to realise that the two aren’t the same. The more confident the teacher, the more likely they are to be able to foster conceptual, open-ended learning. The better thought through the lesson plan on this new subject, the more likely a teacher can work with it. The more precise the mapping of directions in this new landscape, the more likely a student can get a clear view of complex concepts and their application. All of these pointed to extreme detail built into the materials.
So far, the reaction to this approach has been very positive. Those teachers who were apprehensive of trying a new subject appreciate being able to follow through with backup. Those who are confident in the CBM way of thinking and concepts within appreciate the specificity and ideas, even if they choose to go off script with their own materials. And where self-study is required, conversion to a MOOC is relatively straightforward.
One problem which has emerged with this delivery approach is the perception new people have of CBM. They see our modules and think we’ve made whizzy courseware with an interface that isn’t as slick as some they’ve seen, with less gamification than is fashionable. They don’t realise that—nice though we hope the modules’ look and feel is—they are but a first go at representing a new educational subject, a directly usable manifestation of a new curriculum. In a world in which the drumbeat of finding ever-fancier ways of indoctrinating microprocesses is allied to most educational discussion about pedagogy and maths subject change is so off-radar, it’s hard to get an appraisal of the content not its presentation.
Terminology: Modules, Ontology and Primers
Because of the complexity of the elements we’re putting together, we’ve ended up inventing a lexicon for describing them. I’ve already used the term modules. These group together into the curriculum and are built around a hierarchical structure of subelements.
Modality describes how a learning instance will be shaped
I’m in no way claiming uniqueness in this structure either compared to other materials or as the only way to deliver our new core computational subject. This is simply the working model we’ve provisionally arrived at after various alternatives were tried.
Process of Building Modules
The actual process of constructing the curriculum and materials is fairly complex. All curriculum construction and implementation processes are, but of course we were building processes as we went and making the materials interactive across many devices as well as between teachers and students.
I will not go into every detail here, suffice it to say that we settled on 5 major stages: Brainstorm, Narrative Creation, Writing (Technical and Text), Review and Testing.
I have a few comments around these stages. For the Brainstorm stage, we decided that making a long list of titles of modules that seemed like interesting problem sets would help. After all, we wanted a truly problem-led approach. We broke them into categories not because we wanted boundaries to exist in the application of computational thinking but simply because it helped us come up with more ideas. If you have too broad a field of thought, it can often reduce your ability to generate ideas—at least it does for me. On the other hand, narrow a path loses generalisations and cross-disciplinary ideas.
In middle stages of Narrative Creation and Writing, there was lots of work on finding the right modality to engage the student with the subject matter and then thinking of a clean way to manifest it—modalities like “abstract a diagram” or “sorting/classifying/ordering”. Sometimes we overcomplicated this; but sometimes there just are nice new pedagogical approaches to employ which really do a much better job than you can in a textbook or with a teacher talking at the front of the classroom. Indeed, the problem of selecting modalities now that a large number are available is akin to selecting the best toolset in the 4-step problem-solving process amongst so many options.
The later stages of Review and Testing have a surprisingly long tail. There are endless ways stuff can fail, and as this curriculum is deliverable primarily as interactive software, it is far more multidimensional in failure modes than a printed textbook, itself not easy to debug. Of course, with our connection to Wolfram, we have quality assurance processes and tools which would not be available to a traditional publishing company or a curriculum authority, and this has helped.
There were several key approaches to enable and work through these stages that it may be helpful to recount.
Criteria for Problem Sets, Storylines and Their Titles
When we were trying to think up module problem sets, we found that question-based titles helped us most. Crucially, there were two variables to get right at this stage: (a) was the problem too hard to be able to work anything out from, or too trivial in the sense you could work whatever you could work out easily but nothing much more; and (b) could the title be engaging to the student (not just something useful in later life, but something of interest at their current stage of life). Picking problem sets that interest the student trumps picking problem sets that exactly match what they’ll use in later life. This is a case where diverging from later real life can make sense.
“ We needed to work out first how we’d solve the problem, not how we’d teach it ”
It was also important to try our best to have problem sets from many different subject areas and interests. After all, we want to see computational thinking applied as widely in life as possible to help whatever you’re doing, so applying to your current interests should often be possible.
Using the starting point of our titles, we then set about trying to work out what we’d teach a student to do. This proved to be the wrong idea. We kept disagreeing about what we’d do next, how we’d describe it. Instead, we needed to work out first how we’d solve the problem, not how we’d teach it. What would we do with it? If we were computational consultants (as we are), where would we take it? Once we thought along those lines, we got much better at determining where the module “storyline” might go so the student can hopefully be guided enough (with help from the also-guided teacher) to gain their computational problem-solving skills.
Though “storyline” is the term we’ve adopted for the direction through a module, I do decry how it suggests lack of factualism. That’s ever since the BBC evening TV news in the 1990s started with “Here are the stories from the BBC” announced pompously, followed my father ridiculing the suggestion they were “stories” in the fictitious sense (long before today’s “fake news” issues). Rather than fictionalise, CBM storylines are needed to scaffold a direction and inject often-fuzzy external information required for simulating a situation.
Modalities and Activities
Having laid out the storylines, chapters and core ways to attempt the problem, we then tried to decide on “activities” for each stage: “What information do you need?”, “What tools can you apply to the data?”, “How can you validate your results?”, etc. Each activity is then broken into “modalities”. Should the student assess a model they’ve built or build their own? Should they pick between approaches or distil information out of a commentary? We had 32 modalities to choose between at the time of writing, and are always inventing more.
One of the modalities is student’s researching in a “Primer”. In our view, one of the mistakes of traditional maths education materials is how they mix exposition, exercises and what we might describe as “documentation for maths”. If you are to use maths in real life, you need to be able to learn new techniques, algorithms and vocabulary. You need confidence in being able to look at stuff you might not be able to understand on the first pass.
One of the crucial learning activities when solving a problem is to do just this, so mid-storyline we often suggest a technique to be researched, e.g. longitude and latitude. Sometimes we just leave students to do this in Wikipedia, our own MathWorld or wherever they can find information. Sometimes we think that the easily findable descriptions don’t do justice to the topic or won’t be sufficiently accessible at that student’s stage, so we have supplied our own Primers. We view these as documentation like you’d see for a function in Mathematica, but instead for a maths concept. We are not in the Primer trying to describe how that concept relates to the problem in the Module at hand. Indeed, many Primers are signposted from multiple Modules and simply give the student an idea of what it is like to learn new maths concepts for themselves, though we have done some curation to help on this path.
“ The most crucial element ... was live computation in the midst of the narrative so the students could compute, experiment and code ”
There’s lots to do after picking activities and associated modalities too, including writing descriptions for students and help for teachers, or building any necessary apps for modalities that need this.
Infrastructure Construction
At the start of CBM, there was another mammoth task: building the framework for delivering the content. You’d think we could buy in a platform or at least borrow a standard format of electronic textbook as our basis. But for the structuring of storylines, tagging with outcomes and the plurality of modalities we wanted to support, including teachers’ gathering of data live from students’ experiments for instant discussion, there was nothing directly available in any technology, including ours at Wolfram (though the building blocks, particularly our notebook technology, were much higher level than any other system we could find, I’m pleased to say!). The most crucial element, which Wolfram does have directly, was live computation in the midst of the narrative so the students could compute, experiment and code—have high-powered, real-world tools at their disposal—as they were learning computational thinking.
Perhaps most surprisingly in other materials and systems we looked at was the finding of no settled plan for how to associate student and teacher materials in a modern electronic format. A tight binding of teacher notes to student activities was particularly helpful in our case because of the many live elements which notebooks enabled us to exploit for CBM. Notes in situ meant in context, in sequence and without yet more complexity for teachers trying to teach something new. So we’ve designed a way for live teacher notes to be embedded in a twinned teacher edition , which includes everything in the student edition in the same sequence. All of this needed testing and deploying on many levels—some like testing software and not at all like the process for proofing books or trialling curricula.
(It is notable that the framework we have derived for CBM has in itself garnered interest for deploying science and more conventional maths, quite independently of its primary purpose as a vehicle for delivery of our new core curriculum).
Rapid Iteration Feedback Loop Linking Outcomes to Modules
Another aspect we had to alter from the traditional style of curriculum construction was how fast change could be implemented. We needed a process that enabled rapid iteration among materials, outcomes covered and curriculum specs.
As I’ve described, experts usually build a curriculum spec, which then goes through multiple layers of approval (e.g. that the quadratic formula and its application for real numbers is approved), and is both hard and very slow to change after that approval process starts. We were building backwards relative to this process: materials first, spec of coverage generated from this, then holes in coverage spotted and filled in for another iteration—an agile process. We did this because even though we are probably the world experts in knowing what maths is deployed, it’s very hard for us to predetermine what you really need for actual problems.
The iteration I describe needs to be rapid; our approach would simply fail if we had to wait months for a change to be effected through the approach commonplace at publishers and curriculum designers and born before computers enabled rapid reporting. And so we developed a system of tagging outcomes and producing reports automatically from the materials we made. As soon as we changed the materials, we could see what we had covered in a proto-spec report.
Of course, those reports aren’t the whole spec story, but it’s enough to allow rapid iteration of coverage and important for enabling agile specification of curricula. That specification has been so unwieldy is a barrier to the evolution of curricula as new toolsets become available. Because topic evolution cannot easily occur and wholesale reform is extremely hard to achieve, this process problem cumulatively feeds into the sort of fundamental subject misalignment we have today.
3 Levels of Learning Support
That was a walk through the process of module construction, detailed through this chapter because module construction serves as one way to specify curriculum content, not just manifest an existing specification. Highly defined modules are also a key initial deliverable in part to represent our curriculum and in part to be highly usable to students and teachers for very “directed learning”. But this extent of support-structure or scaffolding is not what we want students to continue to need for learning and use afterwards. In the end in real life, they have to be able to take a problem, the available toolsets and their skills to get to the best answer without extensive scaffolding. That’s the ultimate prize, the holy grail: apply computational thinking explicitly or implicitly with the best use of tools available to get good decisions.
Some forms of constructionism and project-based learning would go straight to this unscaffolded “independent problem solving”. But as I argued earlier, and indeed as our experience so far with CBM demonstrates, maths and computational thinking need quite extensive scaffolding to learn—both for the students and their teachers. Perhaps when our new core computational subject is as established as maths is now, through generations of learners, the context will be so natural that some of the teaching scaffolding can fall away.
Is there a middle ground of “guided learning” between “directed” and pure “constructionist”? One practical way we’ve manifested an answer is by taking the highly directed computational thinking for a given module and finding a new context which can be attempted with similar styles of thinking and toolset.
Not “How fast can I cycle the race stage?” but “If I skydive in different positions, what are my maximum and minimum velocities?”. Unlike the fully scaffolded main module content, we don’t prescribe each direction but give hints for questions to be asked in structuring. We reinforce the 4-step process by grouping these hints into it.
This middle level is much more akin to structured project-based learning and connects well with constructionism. For some groups or in some circumstances, there is perhaps a way to jump directly to this semi-scaffolded level or do so through a different manifestation than fully scaffolded modules, but it’s important not to assume too much experience at so doing upfront; otherwise, key thinking assistance competence may not be available when really needed on more complicated problems.
As we leave this discussion of what we’ve so far built, I want to emphasise how it’s a working hypothesis on the best way to specify and deliver our new core computational curriculum. For much of this book, I try to argue immutable processes for defining education, particularly maths, some of which have been missed with our rapidly changing technology. For deliverables, I see little immutability. New possibilities of delivery will open up with new technology and experience of the new subject.
Reminder: Don’t Let Delivery Overwhelm the Subject
Before I leave discussing deliverables and some of the innovations we have felt it necessary to make, I want to issue a warning.
Don’t let these innovations cloud the central one of a fundamental change to the subject. Their purpose is to serve change of the subject matter of education, not to perpetuate off-base content. Good or bad though execution today’s education plan may be, it’s all too easy to get lost in delivery tactics while the objective of matching real life drifts off. Indeed, that’s even periodically afflicted the CBM team: excited by some of the tech we’ve made and approaches to delivery we’ve developed, we’ve temporarily gotten lost in its intricacies.
And we’re not alone. Almost all discourse on innovation in education addresses delivery or pedagogy, not subject matter.
How Far Have We Gotten...?
You may be curious what the current state of our deliverables and indeed the whole CBM project is.
It’s hard to estimate how close we are to covering the totality of our new core computational curriculum because it’s hard to estimate how what’s needed relates to the time set aside for the maths curriculum currently. At the time of writing, we have built approximately 120 hours of learning materials which might represent anything from a tenth to a quarter of what is required. Some are orientated for adult learning and university use. We are trialling some online as MOOCs too, but because of their open-ended nature, this can actually be more of a transition from classroom versions of the material than it would be for, say, traditional maths lessons for which many (prescriptive) MOOCs are available. Check the latest developments at themathsfix.org/InsideModule . Our aim is to have a suite of learning materials defining and representing all these levels and sectors—indeed to build many different modules, kicked off by different questions, interests or contexts for each area of computational thinking. We are early in this journey but ready to scale up. What’s needed now is to unlock the barriers for change, the subject of Part III.
PART III
ACHIEVING
CHANGE
10 | Objections to Computer-Based Core Computational Education
As you can imagine, I have faced many objections to what I propose. Any change faces opposition—usually to both its principle and practice.
When I started this journey, I thought there would be a huge amount of straight hostility. So far, I’ve found confusion predominates instead. On reflection, this is hardly surprising. Most have never thought along the lines I’m proposing (including those in technical professions) and, depending on their psychology of liking or being sceptical of change, may be more or less initially positive. But scratch the surface and usually they’ll admit it’s at the very least interesting to conceive of this different notion of maths education and it’s important that we look at it now.
This book promotes rational scepticism. I appreciate being cross-examined on my proposals, and in this chapter provide my arguments against objections I most commonly face. Earlier questions are around principles; the latter ones more around implementation. Of course, I don’t have all the answers, particularly for those around implementation in different cases. Some questions provoke deep, complex responses which I have not held back in providing in the hope it will elicit further understanding or questioning. Indeed, I will be interested if this book catalyses new answers and questions (which may be posted on the CBM forum here: themathsfix.org/CBMCommunity ).
Before we delve into the details, I do want to explain that I’m not going to try to speak to a small group of detractors who simply can’t countenance any change away from manually calculated mainstream maths education under any circumstance, whatever the case made. They believe any such change at any time is heresy: it attacks beliefs they hold as fundamental—that the process of calculating ever more complex expressions without a machine is core to being human, or at least an educated human. This is a form of fundamentalism, meaning that rational argument doesn’t work in countering it. Each time you successfully argue a point, the argument shifts topic without acknowledgement. In all walks of life, views that are simultaneously unreasoned, uncompromising and unchangeable rarely prove enduring. In this case there’s also built-in hypocrisy: mathematics professes to encompass a system of logic, so a first cause for a “believer” should be application of that logic to the need for the subject’s study.
Occasionally, members of this group are highly educated in mathematics, though if they are, the fundamentalism may be hard to spot at the outset, camouflaged by layers of apparently rational arguments. More often they are less educated but performed better at school maths than in other subjects, so are highly protective of this achievement—to the point where their psychology turns this into a fixation of protecting traditional maths. Very rarely I have even found those who flunked maths can be (usually highly ill-informed) group members too.
Whilst those I describe can be noisy detractors, the group itself is small in number and will no doubt burn itself out eventually, with periodic resurgences along the way, like flat-Earth believers of the 1850s and today. But I highlight them because with so many parents, politicians and other members of the public overawed by mathematics, there is a lack of confidence and coherence to challenge these apparently simple “truths” which I want to help with. In so doing I do not want to confuse this “hand-calculate at all costs” group I have identified with those who have strong beliefs with which one can argue—or the still-larger group who sensibly question all aspects of what I propose and to whom I address this chapter.
“Get the Basics First”
A very common question asked in some form is “Don’t students need to get the basics first?”, the long form of which is usually “Don’t students need to get the basics first, before using a computer?”. I understand many people’s impetus behind asking this—that it’s often good to feel that one’s got to grips (physically or mentally) with doing something before getting help from a machine. There’s also the implication that without so doing, one will never be able to operate the machinery well. Or, to put it another way, that the sum total of you and the machine will never match what it would have done if you’d laboured machineless first.
Key to understanding this issue is better defining what we’re talking about: I often ask back, “Basics of what, exactly?”. Are the basics of learning to drive a car learning to make an engine or even service one? Should I be allowed to learn to drive a car only if I’ve learned to drive a horse and carriage first? Likewise, should I only be given a pen to write with after I’ve sharpened a quill and written with it? More contemporaneously, should I only be allowed to type after I’ve learnt to write?
Driving or Automotive Engineering?
Digging deeper on the car driving analogy is helpful. The basics of driving a car in recent decades has become very different from the basics of making one or even most maintenance. That’s because as the complexity, automation, sophistication and therefore plurality of the use of cars has increased, so has the separation between these specialities. Without doubt, driving is the mass specialty—if that is not a contradiction in terms—and the one closest to the objective of transporting oneself. (Of over a billion drivers in the world, only a tiny fraction are automotive engineers.) The machinery is largely hidden from its users, details of its operation increasingly disconnected from the job of driving. Indeed the machinery is now increasingly assisting directly in the process of driving to the point where even that skill may become unnecessary with self-driving cars. Driving will then no longer be needed as a human skill for self-transportation.
The idea that needed “basics” should mean learning the operation of historical machinery is easy to dispense with. Cars have superseded horses and carriages for the mainstream, massively increasing transportation options for most people in the process. It is plainly absurd to have today’s drivers needing to learn the previous machinery of carriages before they drive a car. Driving that machinery has very little to do with driving a car, and any insistence on learning about it first would prevent the vast majority of people from driving.
The Right Basics
I have described two interpretations of learning “basics” that are not helpful as prerequisites of the subject at hand. But surely there must be foundations of maths or core computation that would correctly be described as “basics”? There are: really getting to grips with applying the 4-step problem-solving process to real problems. Just like learning to drive involves really getting to grips with steering, accelerating and braking, as well as the separate dimension of “road sense”.
“ Most people need to become drivers of maths or computation, not the automotive engineers to make new maths or build new ways to implement it”
A key way to do this is to get experience in as close to the real situation you will face as possible, perhaps first in a situation where you’re more isolated from difficulties or dangers. You might get to grips with basic car controls off-road and ideally road sense on a simulator; however, rather quickly you’re actually driving on the road. And so it ought to be when learning computation. You need to be applying the 4-step problem-solving process with the machinery you’ll actually use in real life (a computer) on as close as possible to real problems you’ll face.
Extending the analogy into further detail, there are principles about how to operate cars (the steering, accelerating, braking) and about how you interact with other road users, each dimension of which has basics but also many subtleties—judging the psychology of other road users, working out when you can reasonably overtake on a single-carriageway road, controlling a car on ice and so forth. Police pursuit drivers and racing drivers take many of these skills and others to a fine art. Driving well isn’t that simple a business, nor is it that “unconceptual”. It can be done more mindlessly than automotive engineering, but it can also be highly skilled. Paradoxically, as an advanced driver you will no doubt learn more about the mechanics of the car, and perhaps its engineering too, because details of the machinery become more important when you’re pushing the limits. But you wouldn’t learn those first, they are clearly not the “basics”; you learn to drive first, and most drivers—whilst they might eventually benefit their driving a bit—do not need to learn them at all to be decent drivers. The point is, driving’s not grander or less grand than other stuff around cars; it’s different, and it’s for most the necessary skill.
Likewise, most people need to become drivers of maths or computation, not the automotive engineers to make new maths or build new ways to implement it. They do not need the basics of how the machinery works inside except where it directly impacts how effectively they can drive. Nor do they need to learn how to operate previous ways to compute results—driving the computational horse and carriage—to be highly skilled at today’s driving of computation. Even if they do want to become mathematicians or those building systems like Mathematica, they will almost always use a different toolset of algorithms to how they’d do it by hand. Knowing how to hand-machine a piston probably doesn’t help you too much in designing more efficient car engines today, particularly electric motors.
And yet when most people discuss the basics of maths they think of hand calculating, learning techniques for it, even using arcane tricks on paper for being able to carry those calculations out. Instead, I am arguing that we indeed need our students to get the basics—the right basics—to enable utilisation of maths or computation far more than they have.
At the early primary school stage there isn’t as much of an issue in most jurisdictions. The subject-matter of maths is useful outside (e.g. number sense). It’s at late primary or into secondary that “the basics” covered are so at odds with what’s needed. The maths fix (and utility of computers) applies at all levels; but its applications makes an increasing difference as you progress through the stages of schooling.
“Computers Dumb Maths Down”
A narrative has gathered pace in some quarters that a computer-based maths subject is dumbed down when compared with a hand-calculated maths subject, because computers are taking over the intellectually challenging work (and a big fraction of the work too), leaving students to be “mindless button-pushers”.
This is perhaps the most frustrating of objections I face because it’s largely an inversion of the outside-world reality, and therefore also represents the opposite of what should have been the case for schools too.
Firstly, let’s look at the outside world. Has the use of computers for science, technology, engineering and maths made those subjects less conceptual, intellectual or challenging in the last few decades? Every evidence is absolutely not. Quite the contrary, in fact. The pace has increased. New areas have opened up. The options as to how to proceed with our newfound computational technology often makes it harder, not easier, to conceptualise which of the many paradigms is the best way forward. Just the vision of what could be possible has massively gained in complexity, conceptualism and scope.
Of course, some jobs or job functions have become less skilled because a computer can now take over the work of the human. Like calculating. But in the round, the scope of what’s wanted has more than increased to compensate. Intellect is now often required in different circumstances and sometimes with a different style of conceptual thinking. But this is not less conceptualism—it’s a shift, and often deeper, often more.
And so it ought to be in maths education with computers. Harder problems requiring more conceptualism because the scope of what’s doable increases as computational thinking is liberated from the constraints of hand calculating. Not dumbed down, but “undumbed”.
Like all useful technology, computers can be misused, and are. Like churning out more mindless problems for students to apply their hand-calculating skills to. Or simplistically trying to replace the teacher for training students with ever-more-procedural activities that should instead be shifted wholesale to the computer. But used correctly, to replace drudgery and therefore push the student to new heights of computational thinking, computers definitely do not dumb maths down.
The 2009 launch of our Wolfram|Alpha rather pulled this debate to the surface. Many maths students use it “to help” with homework, but is this cheating? My TEDx talk of that year, entitled “I Calculate, Therefore I Am”, focussed precisely on this topic. Teachers were split. Most encouraged students to use Wolfram|Alpha, some forbade it; the majority who knew of it had an opinion. Of course, the answer depends on what you think the purpose of the homework is, and the subject (maths) it represents. Why wouldn’t you use it (or any other useful tool) if available? Only if the problems are too dumb! Or you’re targeting the wrong skills. I concluded my TEDx talk by saying, “It’s cheating NOT doing computer-based math” because students are being cheated out of the skills they need (alongside other benefits). With the right homework, it’s legit to use the right tools.
Something to own up to on this score with Wolfram|Alpha Pro. At the time of writing, one of the features you get from upgrading is providing workings for calculus problems, not just the answer—workings that you can replicate, hand in, get credit for and use in the exam. You might think this is just exposing the inner working of Wolfram|Alpha to benefit understanding of the students. It isn’t. It’s technology built on top to simulate a good set of human steps for solving the problem. The computer doesn’t do it that way, but exposing its steps to the student wouldn’t help them get credit. Only the human process—now largely redundant—is of interest. And of significant interest it is, judging by our uptick in subscriptions at key times in the academic year. I’m glad we can help students if only by upping their confidence, but really, is this “cheating”, or should we be setting our students better tasks?
“Hand-Calculating Procedures Teach Understanding”
The argument goes that by doggedly going through different hand-calculating procedures, understanding of the concepts infuses into you. Another less common claim is that even if the actual procedures you’re learning aren’t ones you need, learning how to apply procedures you don’t understand at the outset, and having the discipline to do so, is a useful life skill and a confidence builder.
I have much more sympathy with the latter argument than the former.
Process for Process’ Sake?
There are certainly cases where learning a skill mechanically, gaining experience with it, making it almost automatic to apply, can later free up the bandwidth to think about what one’s doing, delve deeper into its rationale and then even how one might improve the procedure. But it seems hard ever to argue that this is an optimal route when the procedure in its own right isn’t useful. For example, many practical trades, like plumbing, might learn process first before understanding why, but then as a plumber you’re actually using that process later. Or driving a car. In the UK you’re taught “mirror, signal, manoeuvre” before any “hazard” as they term it like stopping or pulling out at a junction.
You might learn that before nuances of driving, but you are directly using it too; the why is to some extent immediately apparent too. Furthermore, it’s hard to argue that drumming a process itself results in conceptualism. As I allude to, it might give the space for this conceptualism, if you’re sufficiently engaged or driven—usually only if you’re a very regular user of the process. None of these conditions appear satisfied for most of the hand-calculating maths taught. Learning to apply the process of formal, written-out long division doesn’t mean you delve into the concept of division; nor is it much used; nor do most applying the procedure really understand how it works.
There’s a huge negative in forcing the learning of these procedures: disengagement. Being disconnected from utility or conceptualism leaves most students cold. They become further alienated from maths, reinforcing it as uncreative.
Procedurising Importance and Programming
Whilst I don’t believe drilling maths procedures is the route to driving understanding of maths concepts, by contrast I do believe that the concept and application of procedurising has been crucial to human development. After all, almost all scaling up of activities requires the idea of procedurising—being able to abstract out the process and describe it so someone else, or something else, can follow it. Procedurising drove the agricultural and industrial revolutions; it’s a key driver of our 4th industrial revolution, or AI age, too.
Today we have the ultimate abstraction of procedurising. It’s called programming. It drives practical results across every human endeavour and enables many of today’s new conceptual ideas to be represented. Unlike previous forms of procedurising, a single machine can be built (a computer) that can be repurposed for any (computable) process—a consequence of Alan Turing’s 1936 proof that a universal computing machine can be constructed.
If you are therefore going to learn procedurising, why wouldn’t you learn programming? Why on earth teach hand-calculating maths with none of the practical or conceptual accoutrements of programming instead? Programming needs a good deal of discipline, you learn how to learn new operations and see how to apply rules—as well as getting immediate feedback on whether you succeeded, so you can learn straightaway what worked and what didn’t. What’s more, as already discussed, code is the obvious way to write down the abstraction of maths or computational thinking in step 2 of the 4-step process.
“ It is simply insane to ignore the programming elephant in the room when discussing the learning of procedures through the learning of maths”
Better still, modern computer languages have many paradigms for expressing your ideas that extend way beyond what might traditionally be called procedural: to functional programming, pattern matching and other forms. You can see all these formulations of process in some form before the inception of “programming”, but they have been extended, formalised, and applied to far greater effect now. For example, pattern matching in programming closely relates to diagnostics in medicine. Whether you are subsequently using your procedurising skills directly for programming or for other aspects of life, the breadth of thinking you can learn from modern programming in a multiparadigm language is very helpful for giving you the widest procedurising toolset.
I therefore argue that from every angle, programming is the right way to learn procedurising—and one of the reasons it’s important our core computational subject needs to envelop what are currently the separate subjects of coding and maths. It is simply insane to ignore the programming elephant in the room when discussing the learning of procedures through the learning of maths.
“You’re Right, Real-World Computation Is on Computers, But Today’s Maths Is the Way to Get There”
Most detractors of the fundamental change to computer-based core maths education do seem to agree that outside education, almost all calculating is done by computers. It’s rather hard to dispute this, and particularly with me, as—arrogant though this may sound—Wolfram Research almost always represents a far broader view of the use of maths than they do. They might point to estimating still done by hand, or places with no electricity and no computers, or very specific jobs like being a bookie or blackjack player, which are based on hand calculating. But for anything more complex, more conceptual or more mainstream, computer-based computation prevails.
Their argument usually turns out not to be about what real-world subject is needed (insofar as they’ve thought about that) but about which subject you learn to get there. I call this the proxy argument: that by learning a proxy to the real subject, you can somehow better learn that real subject. Sometimes I’ve even coined “history of hand calculating” as a new, representative name for today’s educational maths proxy so it’s clearly distinguished from the real-world (computer-based) maths subject.
Latin: A Past Mainstream Proxy in Education
Until a few decades ago, Latin, or more generally classics, was highly prevalent as an intellectual core of the curriculum in the UK’s, and more generally Europe’s, academic schools. (Now it’s dead, a side subject in very few, mostly private, schools).
Clearly, learning Latin was a proxy for something else: after all, even in the UK 50 years ago, people didn’t write legal contracts in Latin or go around speaking it to each other! So what was it for? I’m not exactly sure if I know, or know how well rehearsed the theory was, but I can suggest one rationale. At school I still had compulsory Latin and I learnt any English grammar I know through Latin; I was never taught English grammar explicitly, despite my impeccably credentialled British schooling. However, because I’m a native English speaker, you could argue this Latin proxy might have been more effective: better to abstract the grammar learning through another, well-systematised and new-to-me language than mix up instinct for the grammar I already had in English with the rule-base of its application. The unfamiliarity of Latin, unfettered by my inherent English knowledge, might aid the clarity of my grammatical understanding—an understanding which I could then back-port to English.
If I were a classicist trying to retain mainstream Latin , this would be an element of the argument I would make (says he using the past subjunctive). And perhaps they did; but many more simply decried Latin’s demise, largely citing its long-standing root as the intellectual basis of education, a rationale (if it can be so called) that failed to win out.
Turning back to mainstream maths education, it’s hard to argue there’s any equivalent proxy argument that really holds water. In direct comparison with my grammar rationale for Latin being an abstract proxy, there is no natural maths that children grow up knowing automatically from their parents as an essential of early life. Whichever maths they learn is almost entirely conscious, and fresh to them. There is no instinct for hand calculating versus computational thinking to be countered, no colloquialism to be overturned. Also, different from Latin, there is a real-world subject that’s growing in use and shares the same central process and foundation—and is therefore mistakenly assumed to be the same.
Correlation Doesn’t Imply Cause
Then there’s the extraordinary assertion used to support more of today’s history of hand-calculating maths curriculum: that it is evidenced as the best way to learn because those who do well at school maths are indeed represented well amongst real-world computational thinkers. They say something like, “Look, those who get good school maths results usually end up doing most of the technical jobs”, or point to the surveys showing that doing well at school and college maths is the biggest signpost of success in later life 1 .
This is shockingly screwy logic—as I often say, a reason why those espousing it should take our CBM modules on causation! Firstly, much of what’s said often isn’t defined sufficiently precisely. “Success” in later life measured how? By income? Or number of Twitter followers? How long after leaving school? Worse, the logic is showered with confusion between cause and correlation. Was someone put off doing technical work later or indeed excluded because their school maths results weren’t up to the mark? Where’s the control group who were put through an alternative? Was the reason that someone did a technically oriented job because of their history of training in hand calculating or because people interested in technical ideas are almost universally pushed to do maths at school, and will probably do better than those unmotivated by it?
Devastatingly, the whole edifice of evidence cited by those who promote more of today’s maths (rather than fundamental change of subject) is based on research which failed to spot the chasm between the educational maths proxy and real-world maths. Therefore none of it answers whether a different maths, that is directly the real-world subject, would “do better”.
Shouldn’t you start from a premise that students need to directly learn real-world skills and subjects? Reasonable evidence is needed to argue for a move to the proxy subject, not to justify teaching the real-world subject. The real-world subject should be the default assumption, absent countervailing evidence.
It’s hardly like the rationale for keeping today’s proxy maths can claim to be joy for that subject, beyond a small, very enthusiastic group. Although there is much angst about education in general particularly surrounding assessments, maths tops the bill: arguably causing more upset than any other, and more seen to be in crisis.
So in absolute terms, it’s hard to see that proxy maths achieves the causative success as is often proclaimed for it. In relative terms as against previous times, success and failure are often claimed in equal measure by proponents or detractors of the latest adjustment. But almost all measurement is based on exam performance that itself represents a proxy to the real-world subject required, and so tells one little of the absolute or relative success that it’s caused.
Not New, But Worse
I suspect there’s nothing new about school maths not matching up to most people’s real-life needs. As Churchill put it in his My Early Life autobiography referring to around 1890: “There was a question in my third and last Examination about these Cosines and Tangents in a highly square-rooted condition which must have been decisive upon the whole of my after life… I have never met any of these creatures since”. A not-dissimilar report could be heard from most adults today.
What is new is the rapid, fundamental change in the content and importance of the real-world subject that has blindsided education. If educational maths was ever the real-world subject, even for the much smaller number it might have related to in 1890, it certainly isn’t now.
It is for all these reasons I totally reject that today’s maths is the best way to get to real-life computational thinking, and believe it’s for those who claim it is to prove otherwise. I will return to the wish for evidence to support change as a key blocker in the objection “You need evidence before you make this change”.
“Today’s Maths Trains Your Mind”
Of course today’s maths trains your mind. The question is in what way? How deeply? Whether commensurate with the time, effort and expenditure lavished on it?
Usually “trains your mind” is taken as training logical or conceptual thinking, whether explicitly for maths or not. As I have repeatedly discussed, this training is very important to us individually and to our societal cohesion. Is today’s maths really optimising the provision of logical thinking, or indeed succeeding at all? In principle, potentially; in practice, not today, for almost any student.
Here are two examples in which traditional maths curricula might have claimed to develop mind training: learning the basis and logic of different types of proof, and working through the abstraction or derivation of a great mathematical construct (such as Pythagoras’s theorem or Euler’s identity). Only a few advanced curricula contain these requirements, so few students study them at all—we’re talking a few thousand students out of 600,000 taking maths in the UK, for example—and when they do, the examples are largely procedurised into microprocesses or rote regurgitation so that they can be quantitatively assessed.
“ Of course today’s maths trains your mind The question is in what way? How deeply? Whether commensurate with the time, effort and expenditure lavished on it? ”
The maniacal focus on test results is so great that virtually nothing that doesn’t immediately support them is given space. This compounds the problem further: learning time that in the past might have been given over to out-of-curriculum mind-training topics is now used for the curriculum. The net effect of this is that even if in principle today some maths curricula map out some mind training beyond maths, their delivery in practice increasingly fails to achieve it.
In any case, I would argue that if you’re selecting mind-training topics for everyone to cover together, there are better ones than proofs and great theorems (unless an individual self-motivates on them), like when to use an algorithmic versus a machine learning approach and what constitutes effective verification in the modern world.
Better because real-life computational thinking demands high-concept understanding—real life today requires conceptual understanding. The topics are of practical importance, and more students will tend to be engaged if they aren’t so abstract at the outset.
Let’s not forget programming in this context too. It forces a particular form of conceptual thinking from an algorithmic point of view. A particular style of logic. And potentially there are bigger questions that develop broader conceptual thinking: how the different nature of different languages express different ideas best, the form of programs, even what constitutes a program. Programming gives immediate feedback too, helping to correct some misconceptions far more quickly.
Whichever topics to imbue logical thought you think are best, the stark fact is very few people are getting this out of maths education. What they’ve learnt doesn’t allow them to apply new logic to new situations or conceptually empower them to handle big questions about the nature of truth. Today’s curriculum isn’t succeeding well here for almost anyone. But can the revised core computational subject I propose do better?
I have good reasons to say “yes”. Firstly because its focus is training your mind in broader, real-world, complex issues with big questions we face—the sort of questions we’re indeed concerned that students have sufficient logical wherewith all to handle. Big topics like “cause or correlation” or “can I convince you” which train your mind to reason through problems. That makes it harder to turn instruction into rote-learnt microprocesses, and by the same token easier to set assessments that can’t be devoid of wider reasoning. Secondly, we’ve explicitly burnt in “thinking” methodologies and systems of thought into the outcomes (as I describe in Chapter 6), not just tied to one or other concept or toolset but as a defined set of abilities in their own right. In turn this makes the need for coverage more directly tethered to the curriculum, so driving those involved—teachers, assessment setters and students—to spend effort on them rather than hoping they are a side effect of efforts on a list of individual skills, and ending up squeezed out under time pressure.
“Children Have Too Much Screen Time...”
A major concern of many parents today is the strong attachment children have to their computing devices, particularly the form-factor of smartphones or tablets, and therefore also the time they spend fixated by them. The addiction to this extraordinary new technology by many of us has some detrimental effects, and whilst these are not limited to children, it is particularly concerning given they will have known nothing different.
CBM would add “screen time” as against today’s maths, raising a concern for the approach this book proposes.
Differentiating Screen-Time Issues
It’s important to break down the underlying issues of “screen time”. I’d broadly put these in 5 categories: (1) any physical harm from device (eyesight, radio waves, etc.), (2) poor or less social behaviour because of having reduced real-person contact, (3) social media pressure from a human group much larger than the physical contact friend group and AI pushing of content skewing views of normality, (4) poor extended attention and/or reduced self-drive/increased passivity, (5) unchecked compulsive behaviour which social media platforms are often optimised to promote.
Those are the negatives—major issues particularly for a few children—but let’s remind ourselves of the positives in a similar number of categories: unprecedented ability to access information whether researching interests or reading books, experience-broadening of situations through games and simulations, easy-to-access and wide-ranging ways to express yourself creatively and instantly available high computational power, with machinery that they will also use as adults.
As with all major new technology, it takes time to learn what the tradeoffs are and how to best employ it. You can track some key concerns by watching what features different smartphones have added: so far at the time of writing, a good deal to do with security, then colour temperature of the screen for evening use and finally telling you how long you’ve been on your phone, so you can cut down. Many more will come.
Driving v. Being Driven
Let’s ask a simple question. Is our main concern really about use of the device or about some behaviour traits it encourages? In particular is the problem passively being driven by events versus actively driving events?
One of my stock lines of questioning when I interview people for jobs is whether they are better at reacting to events or driving themselves with little external stimulus. Different jobs require different quotients of these attributes. For example, being an emergency room doctor involves very much being driven by events. Being a researcher, usually the opposite. Senior management jobs usually require both, though details of the industry and specific roles affect the balance significantly. It is not uncommon for incumbents of these roles not to have a good intrinsic match for the requirement or enough insight to supplement themselves with sufficient counterbalance to achieve overall required coverage.
Screen time might always seem to imply that the device is driving events, that it’s only helping students develop reaction to events (which it can do very well, for example flight simulation). But this is highly simplistic. A blank screen awaiting a program being written is not driving events but instead requires the student’s active driving of “the screen”. Indeed, early Mathematica usage has often faced this criticism of its open-endedness: it’s been hard to get many potential users started because they are used to being driven to do tasks rather than presented with a blank screen.
Instead of just thinking about screen time in isolation, it seems useful to compare its utility to other media with which children interact. In particular, where is book reading on this spectrum? Almost universally, it is thought to be positive to education. There are different opinions on how much to prescribe the reading material—in some cases to aid indoctrination of a viewpoint—but few parents would say the act of reading isn’t positive; most are highly encouraging. Book reading is a funny mixture of active and passive. You are usually linearly to go through as the author has prescribed (though increasingly people don’t), but because it is a less immersive experience (than e.g. a modern video game), you are thought to have to develop your understanding and imagination as well as work through life experiences without them being handed to you entirely on a plate. Ideas are presented but on different levels, giving scope for different human attributes to be developed. You can isolate yourself with reading, or it can bind you socially as you discuss what you have read with others, even organise get-togethers like book clubs.
Does it matter whether this book reading is from paper, a screen or a papyrus scroll? If you believe that one or other medium causes physical harm, you might argue it does but, particularly in the case of an e-ink reader like a Kindle, this concern seems hard to justify. To the contrary, you could form an argument that the higher contrast of a lit screen with variable font size is better for you than a poorly lit paper book. Then there’s the smaller size, the huge storage, instant access to new material, and the ability to switch pages with one hand.
I suspect the concerns are not about reading books on a different medium, but about the ability to use that medium for something else instead—not for reading at all.
Our current manifestation of CBM aims to use screen time for presenting information in a better way than a book could ever do—particularly because the student can actively drive changes in the content. It’s also to encourage collaboration more than in traditional maths with the teacher and other students. But chiefly it wants to remove scaffolding as soon as practical, so the student can completely and actively use the computer as an open-ended tool to solve problems. Start with a blank screen, then actively use their experience, drive and intellect to decide where to go next with the unprecedented powerful options now available.
In the same way as most parents would like to see their children read more—regardless of the medium—so screen time that pushes computational thinking seems a huge win. A key difference with reading is that much of this can only happen with screen time. It’s hard to think of a more justifiable screen-time use.
“Don’t You Need to Know How the Computer Works before You Can Trust It?”
This is the objection I face with the widest chasm between its apparent reasonableness and its actual illogicality. No, in general you don’t need to know how the computer works before you can trust it, but it’s rather involved to describe why not.
Of course there is little use to computational thinking if it produces false results; indeed it can and does generate major problems rather than solve them. As I have argued, our current stance on maths education is producing failures that are at the very least exacerbating many problems of trust. People are not generally, broadly or deeply enough educated in the art, mechanism and machinery of computational thinking, and so it’s easy to mislead them. One way in which they can be misled is indeed by believing results from a computer because it’s produced results at all. There are a host of other ways too, many of which have already been discussed, but I want to concentrate here on the relationship between knowing how not to be fooled by the computer and knowing how the computer works.
Layers of “How It Works”
Firstly, what does one mean by “how it works”? At a transistor, chip, board, input-output, operating system or application software level—to pick a few? Or the many interactions between them? Literally no one can follow through for a given calculation what happens at all levels. Our modern technology and in particular the whole technology stack is just too complex.
Let’s focus on the application software—in this case computation software, for example Mathematica. Before you use a function, for example Integrate , which does the mathematical function of integration, don’t you need to know what it’s doing and how before you can trust the result? The problem is in practice you can’t (unless you are the expert). Knowing how you’d do the same integral by hand—if possible or practical at all—won’t really help you much with how Integrate is working. Almost certainly it will be doing it differently. Even if it’s using the algorithm you yourself use, how will you check it’s doing it right, that there isn’t a simple bug in the implementation? Of course you might say you should check it by doing the same integral by hand, but then that’s nullifying the point of having a machine do it instead.
“ In general you don’t need to know how the computer works before you can trust it, but it’s rather involved to describe why not”
And for almost all problems, you cannot possibly do them by hand. Too large, too complex and outside your specialist skill. As I’ve discussed, a huge cause of computational thinking errors is using the wrong tool for the job because you’re trying to work with too limited or antiquated a pre-computer toolset.
This reminds me of how the emphasis on “correct” spelling at schools reduced my vocabulary. Adhering to the relatively modern idea of standardised spellings was never my thing, not something my phenotype or genotype was adapted for. Or to put it bluntly, my spelling has always been pretty awful. When writing at school, I often had to choose whether to use a word I thought apposite or to use a simpler word I knew how to spell. I typically picked the latter because I’d be marked down less. Using a smaller vocabulary was negative in almost all ways: I was thought less expressive than I really was, I lost interest in any writing, and many teachers believed I simply didn’t have the observation, understanding or expression within me. This all improved rather fast when I started doing any writing I had to on a computer and spellcheckers became decent. Paradoxically, my unassisted spelling has improved a good deal too because the correct spelling is reinforced by the computer’s corrections.
Corroborating, Not Mimicking
Learning to mimic by hand what the computer is doing in the hope of spotting its errors is dramatically the wrong idea about how to avoid being misled. It prevents progress and introduces much bigger problems.
Instead, not being misled by the computer involves learning how to verify results, but verification rarely means recreating every step of what you thought the computer was doing, or doing the same calculation by hand. Instead you need to learn a multitude of alternative approaches which you can then try on the same problem to see whether you get a related result. Corroboration like this—checking that you get to the same answer by different routes—is as key a technique as it is for verification in many other walks of life, like history or science. Corroboration is the cornerstone of the scientific method; results must be checked, verified, scrutinised. Using different techniques to arrive at the same result reduces the chance that the same mistakes were made along the way.
You also need to gain experience of what goes wrong, getting better and better at spotting the telltale signs and working out how to correct the problem. It’s easy to be misled, for example thinking you’ve stripped out algorithms in common between your primary solution and your verification solution when you haven’t, or not questioning assumptions you needed to that affect both verification and primary solution alike. It is hard to learn this, and intellectually challenging, and is what we should be spending significant effort on in our core computational education.
But, to emphasise, this is not the same as knowing how the machinery does its job. Sometimes it involves finding out something specific about its internals, but not in general. Attempts to make everyone learn how the machinery works will remove time and energy from these much broader verification techniques and will fail on all the other counts I’ve laid out too. Yet that’s exactly what we’re currently doing: sowing confusion between how to trust and verify results and knowing details of the machinery used to generate them.
More, Good Automation Should Build More Trust
It is worth pointing out that in a way there’s nothing specific to computational machinery and computational thinking in what I’m saying. All machinery involves some experience and eventually trust built up more or less successfully on its ability to deliver. Nor can you get away with knowing nothing of how to work the machinery, which sometimes involves some of how it works. The more complex the machinery, the broader its function, the more consumerised its use, the further apart how to work it and how it works becomes. Computation is at an extreme end of complexity, breadth and, newly, consumerisation. That’s what makes the how-to-work versus how-it-works so stark a difference, and also makes trusting and verifying particularly hard.
“ You point and shoot. But the camera has a huge amount of automation at every level to do a good job ”
Another crucial question is how the machinery can optimise trust in itself. Can it reduce the likelihood that it misleads you? The answer is most definitely yes, and the primary mechanism is more and better automation. That’s right, in the end the way to more trust is more automation , not less.
Here’s one of my photography analogies. When I was first taking pictures some 40 years ago, you could use so-called “instamatic cameras” where you just pointed and pressed the button to shoot. They had no sophistication in exposure or focus. They just hoped for the best with some averaged settings. The result was that almost all photos were bad: wrongly exposed, nothing much in focus, not what you wanted to capture. Nowadays with a compact camera or a smartphone, your human actions are pretty similar to what you did back then. You point and shoot. But the camera has a huge amount of automation at every level to do a good job: scene (and specifically face) recognition, focus and exposure based on these, post processing and so forth. The difference in results is stark. It’s amazing how technically good a photo you can now produce from the same human action as so often failed before these layers of automation. This benefits both the inexperienced and experienced. Of course, yesteryear professionals would only use manually set cameras; now they occasionally do that, but more often use the automation because it’s so good.
At Wolfram we have worked very hard at computational automation at every level. This might be what we call “superfunctions” that intelligently pick between many algorithms, automating their application for a given outcome. Outcomes like solving equations, parallelising computations to speed them up, or laying out interactive interfaces so you can get a feel for your problem. Yet it’s quaint to look back at the criticisms we’d faced for this automation early on, for example (and this is rather techy) complaints that those wanting to solve differential equations should be educated themselves to know which Runge–Kutta algorithm type to select based on the equation (was that rk4, rk2... you better know your equations well!) rather than let our NDSolve superfunction figure it out with the much more accurate results, better optimisation, and more built-in knowledge than almost any user. Nowadays, few question this sort of automation as a necessity. Trust in it can be enhanced when it’s possible to easily control the parameters of how the automation is applied, or override it even if most will leave the machinery to do its thing.
Automation in particular areas is trustworthy at different levels. The first attempt to automate a process is usually less good than the best humans. If successfully developed, it then eventually overtakes people to become assumed and indispensable. Knowing which automation is successful so far, which you can trust more or less, is a crucial part of knowing your toolset well.
Needing Calibrated Trust in Something or Someone
Before leaving this topic, I need to say something about the old-fashioned notion of “trust” and how it remains important to the logical world of computational problem solving I espouse. In fact, I’m going to argue that it’s more important than ever as the interfaces between humans and AIs become more intertwined. The problem is you do need calibrated trust of some things and therefore some organisations or individuals to make progress. If there’s no trust, you have to check everything at every level yourself. Which in practice, you can’t. When you’re using complex machinery, it’s very hard to know how to select it, what it’s reasonable to trust and what it isn’t. Experience of how to calibrate that trust in managing the machinery rather than knowing how the machinery works will be critical to AI-age success. This is not dissimilar to knowing how to manage people versus knowing how people do their jobs: there is a relationship, which sometimes has to be gone into more, but the understandings are different.
There are in fact several different sorts of ways things go wrong. Sometimes, it’s obvious your machinery just isn’t that good in general, like my instamatic camera example. No professional is going to trust an instamatic camera because it’s obvious all results are questionable. More often with computation, the problem is edge cases: it works well much of the time, but then screws up when the going gets tough. This is much more troublesome to deal with because a quick test of the machinery doesn’t easily tell you whether it will work in the hard cases. It’s been quite a problem for us marketing Mathematica. We’ve spent a lot of R&D money trying to handle the hard cases and even if we can’t, making that clear: much better to give no answer than the wrong one. Here is a very simple example, known in the trade as a collapse of significance problem. Repeatedly apply the formula 11x –2 starting with x =0.2. The answer should always be 0.2, right? Err, well you won’t get that in normal calculation software (for example Excel) and, after say 24 steps, instead you get something like 160 million.
Try it in Mathematica with precision control set and you get an error message: “No significant digits are available to display”.
Mathematica’s doing lots of stuff to get you justifiable digits and when it can’t, warn you. In this case, it’s easy to spot that the less automated system has got it wrong. But buried deep in a complex computation with less dramatic failure, it would be much less obvious.
Selecting Trustworthy Machinery
Marketeers have used trust in results to push brand loyalty. You can’t investigate everything about the machinery you are to use, so you stick with organisations that check stuff out for you so you don’t have to. For a consumer, this works well while the organisation is on form, trying to invest appropriately in improvements. But however good they are, they’ll screw up every so often. From an organisational point of view, if their reputation is pinned on trustworthiness, they try hard to fulfill, but it’s very hard to keep this working year after year. The business model of an organisation is rather critical to this. At the time of writing, traditionally set up commercial business had mostly got a bad rap, sometimes legitimately, sometimes not—bucketed together by the “commercial” tag. Instead, open-source business models (and there are several) are the new kids on the block. In the end, the business model has to match the requirements of the technology. For computational technology, you need lots of upfront design, longevity of build out and coherence of implementation, or as the system grows it gets more and more untrustworthy. Those requirements don’t in my view match well with more open-source models over time.
One crucial aspect of trust is knowing the quid pro quo. Building stuff costs time and effort—and therefore money. Someone is paying, and in some way so will you be. At least if it’s clear what you’re paying to whom, you can make a better valued judgment as to whether to trust them or what their motivation will push them to focus on. The payment might not be cash but, for example, use of your data—like many social media sites. But you need some clarity as to how those who put effort in have the commitment and incentive to get you trustworthy results. If instead you think you’re getting a service for free, you are usually misled at some point.
Knowing how to assess trustworthiness of machinery is a crucial part of modern education, and no subject is better placed to help students gain that experience than our future core computational subject. That’s why we’ve included it as an important part of the outcomes we think are important. And why I have gone into a great deal of detail in answering and expanding this question around how you can trust your computer—in many respects the defining question of the AI age.
“We’re Already Doing It...(Maths with Computers)!”
I used to be pleased when this claim was made. Particularly at a talk, it sounded like positive reinforcement of the change needed, suggesting others were behind the curve if they had not also moved to what I was proposing.
But unfortunately so disarming a statement sometimes belies deep intransigence. So I’ve learnt to be sceptical in my response until I really understand if the subject matter rather than just its delivery has changed: “That’s wonderful if it’s the case. What’s the new topic you’re now teaching; what’s an example of something you’ve dropped?” Not only have I yet to get an answer to those questions, but neither has it subsequently turned out to be in any mass-deployed case that I have seen anything more than a minor evolutionary change of subject. Instead I see examples of computer-assisted maths: using the computer to encourage today’s calculating. That’s not to say some are not nicely done, or better than the traditional pedagogy for that area of calculating—just teaching the wrong subject, to put it directly.
This muddling up of computer use does rather remind me of “politicians’ logic” as defined in the 1980s BBC political sitcom Yes, Prime Minister (even today, amazing in its astute commentary on events, from the financial crash to Brexit to reforming education). In one scene, two senior civil servants together exemplify this logic as “My dog has four legs. My cat has four legs. Therefore, my dog is a cat...”. The equivalent education minister’s logic I’m faced with is, “Our maths has computers. Computer-based maths has computers. Therefore, our maths is computer-based maths”.
If you really are already doing computer-based maths as a core curriculum subject in your jurisdiction, I will be delighted to hear from you! Or if you’d like to but are not yet, we’d also be delighted to hear from you too!
“We’re Already Doing It... (New Coding/Computer Science Subject)!”
What about the school subject of coding or computer science, nowadays commonly on offer as a curriculum (or at least an after-school) option in many countries and newly introduced as compulsory in some? Is this the core computational subject I describe in this book (and particularly as some even call it “computational thinking”)?
The answer is, it’s related, a positive step, but very significantly different in outlook and scope. And as if to emphasis this, I know of nowhere where coding and maths have been put together or even contemplated as one mainstream subject—a separation incongruous with the core computational subject of the maths fix .
In understanding the differences, it’s firstly important to detail how coding, programming or computer science—any of these slightly different terms for broadly similar subjects—definitely do relate to the complete computational or maths process. The crucial common anchor point is step 2 of our 4-step process: abstraction. As a reminder, this is the step where we take our defined questions from step 1 and try to represent them precisely in an abstract way to enable their working out to abstract answers during step 3, with the power of computation.
Code to Communicate
A key question is how you write that abstraction representation down. The answer today is almost always using a programming language—code. Your code is the best representation of your abstraction for step 2.
Here’s the longer story, quite a bit longer actually. Traditionally, you’d have used mathematical notation to express your starting point (for example an equation), describing in English the sort of process you intended to use to get the answer (for example “solving”). Next, in moving through step 3 of doing the computation, you’d write down logical implications, substeps (connectors like ∴ (“therefore”) or ⇒ (“implies”) which you may recognise from school) to get to your abstract answer (say x =4 or -3). Those with some proficiency often relish use of the weird symbols and conventions as their own special code; those already befuddled by maths find the notation yet another hurdle.
And sometimes with good reason. Special or not, traditional mathematical notation is not as specific or in many cases as unambiguous as you might have thought—characteristics that make it unsuitable for instructing your computer effectively. Indeed, these were major issues in constructing Mathematica and what’s now its Wolfram Language. A whole new unambiguous representation had to be invented (termed StandardForm ) so all maths could be represented (and through a standard QWERTY keyboard). We also provide something that looks as close to the hieroglyphics of traditional maths notation as possible (TraditionalForm ) with its innate ambiguities and a bundle of heuristics to guess the unambiguous textual StandardForm meaning intended. This is probably the world’s most sophisticated such linkage, in a sense a computational Rosetta Stone. While this may be helpful for those already used to maths notation, it is not what newly educated computational thinkers should first be thinking in or using; instead they should directly write unambiguous code (in Wolfram Language’s case, StandardForm ) to abstract their ideas.
Aside from traditional maths notation’s ambiguity is another, even more critical, problem: its weakness in representing process in the specification of algorithms. You could say it handles expressions more than operations. This is not too surprising, as the range of usable algorithms was relatively limited before mechanised computation opened up the field. Good luck using traditional mathematical notation—or even English—to explain to a person or computer (and I don’t expect you to follow) how to apply a function of all terms in an expression that are 3 levels down in a hierarchy or look at 1000 images, compare with what you’ve learnt from others and say what you spot. Yet it’s a definite function in code that can cleanly communicate what to do to those familiar with coding (a little like our medical imaging example in chapter 4).
So for both these reasons, writing code is nowadays central to conceptualising and communicating computational ideas and processes precisely—for transmitting your ideas to other people, not only for instructing computers to execute step 3 (compute) and hopefully getting an answer.
The Core Element, but Not the Core Computational Subject
That’s why I argue that some level of programming is an integral, core part of our new core computational subject. I say “some level” because you don’t need to be an expert computer scientist to achieve this utility from programming.
Sometimes I draw the analogy of being able to write—knowing handwriting enough to get you by (in years gone by)—versus being an expert calligrapher. You can think of computer science as the calligraphy end of the spectrum—the subject in which you study programming in its own right, its nuances and detailed optimisation if you want to become a professional programmer. By contrast, in the way that handwriting had been the basic tool to let everyone communicate, so code writing is the basic tool of computational communication. Whether in geography, economics or science, technical problem solving needs computation, and the way you write down and do anything but trivial arithmetic is with code.
After this lengthy discussion, we’re now ready to return to why today’s newfound coding classes aren’t delivering the maths fix .
Firstly, the subject’s proved unsure about whether it’s teaching how to abstract and then being able to write that down, or just teaching how to write down someone else’s abstraction for a computer to execute. I fear it is often the latter, even though a vital element of real-world step 2 is learning to abstract from a situation defined in step 1. These very different takes, and educational gaps are likely with coding as its own distinct subject. The required generality and experience of step 2 may have fallen between today’s coding and today’s maths education, or in many cases is not sufficiently contemplated in either, yet that’s where real-world users of computational thinking currently have the biggest deficit in its application.
Secondly, the school subject of coding isn’t claiming to cover the whole 4-step computational process, nor many of the outcomes we outlined in Chapter 7. At most, it’s engaged in step 2 and computer-only execution of step 3. Not step 1—define—or step 4—interpret. Not topics like causation versus correlation or risk and so forth.
We also need to be careful with coding, that it doesn’t only cater to those already excited by it in its own right. Rather like some of traditional maths can seem exciting to the few who enjoy its intricacies in the abstract, so today’s coding curricula are in danger of appealing to their equivalent group. The reasons could be similar too: that those setting the curricula are computer scientists—excited by the subject in its own right. Rather like my argument for maths needing to start from problems the student might care about, so coding needs to be sure to do that too. That means using the highest-level languages first with the highest-level algorithms built in where it’s easiest to get real-world results in complex situations.
So often I hear employers, governments and educational thinkers not only being incredulous at coding’s needed connection to maths but believing it’s all about building apps or writing software systems. Yes, for some, that will be their job; these are important vocational skills in the workplace. But that misses the much more universal need for coding or programming as a central part, but not the whole, of our new all-in-one core computational subject: one foundation, but far from the entire edifice of mainstream computational thinking.
To be clear, I am very positive that coding has recently come to the fore, thanks to the efforts of many people around the world to make it mainstream rather than just to attract a few geeky guys. Much can be learnt from what’s been achieved and what can be incorporated, and I will briefly discuss whether indeed this approach could be a leaping-off point for fixing maths in Chapter 11 when we look at the “Roadmap for Change”.
“It’s Too Risky to Make This Change...So It Can’t Happen”
My response is stark. It’s too risky not to make this change, so it must happen. Too risky for our students’ future lives, the economies and even governance of our countries.
History tells us that in the end, dislocations between demonstrable reality and a distortion of it do correct themselves, at least for a time. It may take longer than is ideal, the path may be highly circuitous, and the outcome not in the form expected, but somehow the correction will occur. This is particularly apparent with investment bubbles, for example the dot-com boom of the late 1990s.
My observation is that the longer a required change is held off, the more precipitous it will be when it finally occurs. Indeed, if held off for long enough, it will probably happen in an extremely risky way, through desperation, with a lower chance of short-term success.
I measure “risky way” with respect to student outcomes. The problem is it’s the real and perceived balance of risk to reward for our educational leaders that controls when this happens, if they keep control of it and there isn’t a revolt. With respect to a a core computational curriculum change (and most other major changes in education), it’s very different to the risk-reward profile for a given student, and herein lies the root cause of our stuck ecosystem of education I discuss in Chapter 11. Even if it’s often portrayed that concern is for the risk of a student not having the same wonderful maths they could enjoy with today’s curriculum, in the end leaders will react to the risk and reward they feel, and these are just not well aligned.
Policymakers’ tenures aren’t usually very long, the obstacles to change are high and the chance of being ousted if something doesn’t pan out well is much higher than being voted out of office because you didn’t make any potentially contentious changes. On top of that the reward of better-educated students 10+ years later is unlikely to be visibly their achievement. Why take the risk, bother with all the fighting, have a high chance that your hard-fought-for changes will be overturned by your successor, never to be seen as the great reformer even if they aren’t? Some do because of the feeling they have achieved something whether visibly or not, but it’s rare. The system is stacked against them, a topic I will cover in more detail later by thinking more about perception of risk, who has which risk and how those risks can be mitigated and aligned.
The point is that whatever the risks, the rewards for society in the end will trump them by a long way, the issue of “maths” has plenty of political pressure (it’s seen as important), pressure is growing, and so the change of subject will happen. If not proactively carried out, it will be forced to happen one day, for some spurious reason; whichever minister is holding the “maths parcel” at the time will not be able to pass it to their successor and will have to act. But how and when for a given jurisdiction is completely unpredictable. So instead of “it’s too risky to make this change... so it can’t happen”, I argue “it’s too risky not to make this change... so it must happen (urgently)”. A key aim with building out CBM materials is to provide a framework and initial materials to keep focussed on the extent of change required, but also to lower the risk for policymakers and speed up implementation as against starting with a blank redraw.
“You Need Evidence before You Make This Change”
Evidence is certainly important, but when used to drive the right innovations, not stifle them from being tried.
It was at a dinner in 2015 with maths, science and computer science people that I realised there are often two very different “importance of evidence” conversations to be had—one with which I completely concur, and one with which I vehemently disagree; one which is usually applied in the commercial world, one of which is typical in education.
I have taken to calling the 2 evidence processes “innovation-led evidence” and “evidence-led innovation”.
The difference is whether you build your “product” first (e.g. phone, drug, curriculum—note not the student as product, as some have misrepresented my argument to be ), then test it using those tests for iterative refinement or rejection; or whether formal evidence that exists from previous products becomes the arbiter of any new products you build.
The former—“innovation-led evidence”—is highly productive in achieving outcomes, though of course care must be taken that those outcomes represent your objectives effectively. The latter—“evidence-led innovation”—almost by definition excludes fundamental innovation because it means only building stuff that past evidence said would work. But you can’t get the evidence until you’ve made the innovation because there’s nothing to try!
When you build something significantly new, it isn’t just a matter of formally assembling evidence from the past in a predictable way. A leap is needed, or several. Different insights. A new viewpoint. Often in practice these will occur from a mixture of observation, experience and what still appears to be very human-style intelligence. But wherever it comes from, it isn’t straightforwardly “evidence-led”.
Again I reference the late physicist Richard Feynman, who explained in one of his famous 1960s Caltech lectures how the scientific process works, in summary: guess, make a theory, test it and compare with theory. His students laugh when he says you start with a guess because it seems so unscientific. But he’s right—highly educated though the guess may be, based on good reason though it should be, in the end you never know it’s going to work.
In the case of technology, “theory” is the product, in pharmaceuticals it’s the drug and in education (for the most part) it’s the curriculum.
“Evidence-led innovation” stifles major innovation—it locks out the guess—yet I firmly believe that that’s what most of evidenced education is talking about with painfully little “innovation-led evidence” applied.
“ I’m often asked, ‘Do you have evidence CBM works?’. I sometimes answer, ‘Where’s your evidence that today’s traditional maths education works best?’”
One problem with the “evidence-led innovation” curriculum crowd is that they often have no idea how hard it is to build something completely new. They think you can do micro-innovations, then test, then micro-innovate, then test. This isn’t usually the process. It’s much more nonlinear than that. One crazy idea, then a test to see if it can fit or be manifested. Trying stuff out. Seeing the problem holistically. Zooming in and out: details and bird’s-eye views. Evidence-led drives a bulldozer through that with a predictable result: no big steps forward, and often retrenchment as the complexity of the data masks the reality of the complexity of the educational outcomes really desired.
In the end, what I believe this exposes is a failure of many in charge of education to understand how major the innovation required is and how it usually happens—whether innovation in science, technology, business or education—and how “evidence” can drive effective innovation rather than stifle it. I enjoy quoting with wry amusement the maths review leader who told me, “I’ve been sent by the UK government to get evidence of how maths is done around the world so Britain can lead”....
In an age of massive real-world change, correct and rapid reflection of that change in education is crucial to future curricula, their effective deployment, and achieving optimisation for the right educational outcomes.
I’m often asked, “Do you have evidence CBM works?”. I sometimes answer, “Where’s your evidence that today’s traditional maths education works best? Have you done randomised control trials?”.
We are starting to gather evidence where we can, but it’s slow because it needs funded, critical-mass projects in different jurisdictions. Something that slows this down is the need to have student assessments that accurately reflect required outcomes: it’s not just a matter of comparing exam results before and after—open-ended computer-based maths assessments are needed too. In today’s environment, often evidence = exam results. Maths exams are high-stakes and major change can’t be tried on a small scale lest it disadvantage the small group.
Even if this can be factored out, it’s easy to be misled too. Everyone about which evidence is being collected has so far only done traditional maths. Injecting CBM mid-school isn’t the same as CBM immersion from the start, but our scant information so far is positive in particular teachers knowing why what they’re teaching might align with students’ lives trumping new complexities and fear of the new, students understanding why they’re doing the subject, how it affects their lives and therefore being much more engaged. But it’s very early days, and I hope we will soon have the opportunity for much more innovation-led evidence.
Given that CBM can’t be traditionally what educationalists would classify as evidence-led, you might ask whether now is the time for a new maths curriculum. Can we really take the risk? As guesses go, the idea that core maths education should be the same subject as computational thinking in the real world (based on using mechanised computation) and not the current hand-calculating proxy is an extremely sure-footed one. The risk of not leaping with the real world poses a very significant danger. We need to have the courage to develop and test CBM around the world, indeed more thoroughly than any maths curriculum has been tested before. I hope this book can add to the confidence to do so and in the next chapter discuss some of the practicalities involved, including whether a competing or replacement subject is the optimal route.
11 | Roadmap for Change
Suppose you are convinced by the case for a fundamentally new core computational curriculum, perhaps even our initial CBM implementation. You’re fired up. What can we collectively do to make this change—not just for individuals—but systemwide over the coming years.
Needless to say, this is a monumental task. A long project. Major change is hard in any sphere, but anyone involved in any way with education knows that it has become particularly intransigent. When I say my evening job is trying to “fix maths education by rebuilding the curriculum assuming computers exist”, people either start by being incredulous of how I dare to question such a cornerstone of civilisation or smiling appreciatively and saying “good luck with that...”.
Most “in the know” would acknowledge that the ecosystem of education is stuck for most changes, whether they perceive of the need for urgent change or not. Worse, fundamental subject change in a core subject is extremely rare; most change is of teaching or assessment practices, management of educational resources, or relatively incremental curriculum adjustment.
Clearly there are many interlinked elements of the practicality of such a change and of the current educational ecosystem. Here I try to walk through them. What are they? How do they connect? How do they sequence? Can we perturb this system, and if so, where’s the best place to start so the smallest perturbation achieves the greatest possibility of success? We’re not in a static real world either. How is the landscape shifting and can we leverage the shift?
I certainly do not have all the answers, let alone power or reach to execute on many of them. Probably no one person or body does. But I will attempt some structuring of the problem and observations on how to make fundamental change so far as it intersects with our objective of core computational subject change. I hope that by bringing them up, and in general by writing this book, I can help to focus action to generate and then execute a complete roadmap.
It’s worth noting that my perspective is largely threefold: as a CEO of a high-tech company used to fundamental change, as an observer of the politics of education and as the builder of CBM. I do not believe that corporate knowledge trumps governmental know-how, that the same ideas all apply, or that—as some CEOs believe—the private sector necessarily knows better. But my 30-year, high-tech, yet entrepreneurial background certainly brings some different perspectives and I can see aspects of the educational ecosystem that have got off track in a way in which insiders perhaps cannot.
“Chess Pieces” of Education
The lynchpin of our educational edifice today is assessment. Tests—usually timed, solo examinations—set at key stages of a student’s development are the measure by which educational success is overwhelmingly determined. Students and teachers alike, schools, and even whole countries are judged by assessments.
Politically, maths tests are right up there, seen as the most pivotal and the most objective because of their quantitative nature—critical to success at every granularity from student to country. It’s no surprise that they are therefore the most keenly fought over.
International Bodies
Let’s look at the picture zoomed out first. There are international or intergovernmental bodies that aim to compare different countries’ or regions’ educational performance, notably PISA , TIMMS and PIRLS . Studies usually use standardised tests in core subjects, which in PISA’s case are set every 3 years and updated every 9 years. Many countries are members and fund the analyses. Achieving success at international measures is often important to the standing of a country’s policymakers (though notably not in the US where these bodies are much less known amongst educators than in most smaller countries). Hard to say your education is better—against your own history or in comparison to rival countries’—when the results get worse on these apparently highly objective and quantifiable measures.
Likewise, within each country, assessments rule what’s taught too. Whatever the curriculum says, however open-ended and progressive it is or a school intends to be, in the end, teachers mostly teach to achieve the best exam results. Even if in some places these assessments have innovative forms, by and large the trend has been for traditional, timed exams to rule what’s done in core educational subjects more and more. The pressure on “good results” has pushed questioning to become less open-ended so that results are more reproducibly quantifiable: questions with nuanced answers are out, lest different markers were to ascribe different marks to the same script. That in turn has tended to push away subject matter that is harder to quantify, but by the same token sits well with today’s type of maths.
If you want to change your pedagogical approach to improve your test scores on today’s tests, the system supports that well. Indeed, the international assessments have been trying to achieve this: force a comparison of best practice between countries so it could be shared out. Likewise, by having national comparisons, you can try to do the same across schools and within schools between students. Arguably—and I will not go into the arguments here because subject matter is my focus—there have been a range of successes in pedagogical approach improvements.
Unfortunately, there’s a huge “but”. If you need to change not the pedagogical approach for today’s subject, but the subject itself, this worldwide edifice of assessment promotes intransigence. Notably, the rise of international assessments has locked together the subjects between countries. Before international assessments existed, each made curriculum decisions largely unmeasured against each other. Of course that didn’t necessarily make for better decisions, but it did make them more independent of each other. More freedom to innovate as well as fossilise.
“ The failure of technology to improve PISA scores should not be understood as a failure of technology”
Now, say, PISA decides what it is that’s tested worldwide. They do diligent research to make these decisions and try to innovate in each 9-year period, but in the end, their assessments reflect the worldwide perceived wisdom of what the subjects are, with lead advisors appointed because of their experience designing the traditional subject curriculum or their study of pedagogy. This system of innovation might be fine for a 5 or 10% subject problem, but not for the 80% problem that we have with maths. So while PISA (et al .) has driven pedagogical change by competition between countries, they have by the same token added to locking down all but extremely incremental subject improvements. Maths is in the very worst position with respect to this effect: changed rapidly in the real world by mechanisation (so needing big educational subject change), thought critically important with a spotlight on it (so very high stakes), easy to measure in its current incarnation (so highly numerically comparable offering little room for manoeuvre in adjusting marking), and both mainstream and worldwide (so immediately comparable everywhere).
I can’t help but notice the parallels between all of this and how financial institutions thought they were mitigating all risk types by insuring with each other—while in fact exacerbating the march to cataclysmic meltdowns. Take the Lloyd’s of London insurance crisis of the early 1990s or the 2008 banking crisis. One assumption of both was that one’s own entity’s individual risk could be reduced by insuring with other similar entities: as a “Name” or syndicate at Lloyd’s you’d insure with other syndicates that were unlimited liability backers for claims, or as a bank in 2008 you’d insure your loan book with other banks. Most of the risk models largely assumed the risks were independent of each other. So, for example, the chance of one syndicate of Names facing a massive claim or set of claims was assumed independent of many others’, though often they were in fact highly correlated. Reinsuring linked those risks much more tightly than they had been. If the assumption about unlinked risks had ever been a reasonable approximation in these cases, it certainly wasn’t now. The very act of insuring together had increased the chance of cataclysmic meltdown even if in many other cases it reduces individual risks. To be clear, in both examples cited, there was no doubt malfeasance not just incompetence, but this pattern of misunderstanding of individual versus global risks has a long history—and incidentally one that is crucial for our core computational subject to address educationally.
I am not in any way suggesting incompetence or malfeasance of the financial crises I cite applies for the international assessment bodies. The parallel I do see is of locking subjects together as never before with the international assessors acting as the risk mitigation market. By insuring all countries with, say, the PISA maths subject, you are apparently reducing the risk for a given country. Yet that assumes no global, systemic misunderstanding—for example that today’s global maths subject is “right” in the sense that it’s the least risky to promulgate. If that assumption is wrong—as I argue it largely is—the risk of failure by locking everyone together has increased dramatically for most countries, not decreased.
I have pointed out this lockdown argument (though not the financial analogy) to the senior team at PISA. They are thoughtful about the needed direction of travel, but will find it hard to action anything close to a move that can prevent worldwide maths meltdown. It’s easy to see why. In the end, as part of the the OECD, PISA is set up, funded and controlled by the countries they represent and so cannot innovate too much, even if they were so inclined, because not enough of their members would go along with it at once. For example, they have set up a 2030 vision committee, indeed we at CBM have even contributed along with others and member countries. To date, it has mainly considered how to evolve from innovative practice already implemented around the world on the traditional curriculum, not that the whole world might be executing the wrong practice, in need of rethinking from scratch. PISA’s thoughtful head, Andreas Schleicher, has himself explained the need for country-level innovation to increase, stating that the failure of technology to improve PISA scores should not be understood as a failure of technology, but of the way its use is conceived. Indeed, he kindly wrote to me, “I greatly admire your work, because it is so far ahead of the digital learning experiences that most countries offer their students”. The ecosystem mitigates against major change even if well intentioned people involved might like otherwise. But if enough countries understand the need for dramatic change, international bodies could be great agents of it.
There are other genres of international bodies and initiatives outside rankings, which include an educational remit, mostly for helping developing countries. For example, the World Bank or UN-based agencies like UNESCO and UNICEF. Their approach is often to fund projects with missions that spread empowering approaches or best practice and then to support these with on-the-ground supervision and help. They are an interesting avenue for fundamental change because they are prepared to take some risk and they are typically doing so in countries where the status quo is far from satisfactory, so the risk of change compares well with the risk of no change—e.g. because their PISA scores are already low, so changes are unlikely to be seen as detrimental, lowering the risk for the country’s incumbent officials. Moreover, international bodies are typically charged with responsibility to direct initiatives that have the most impact on economics, future prosperity, empowerment and social cohesion. As I have described, the right core computational subject ticks all those boxes. The difficulty with projects in these jurisdictions is the lack of ready-to-go basic infrastructure of computing, even electricity, as well as trained-up human resources that make the apparent nuances of the maths fix I describe seem rather remote. Actually they are not; they are just as central—indeed could potentially enable leapfrogging of skills beyond slower-to-change developed countries.
(It is interesting to note that in 2013 UNICEF hosted a conference with CBM in New York where we considered some of these topics).
Curriculum Authorities
Let’s move from the chess piece of international assessment to a given country’s or state’s assessment or curriculum authority. Here can we see a way to perturb the subject ecosystem? In a few cases, yes.
One question I have asked in many a jurisdiction is how you introduce a new, assessed subject. What’s the process?
In many cases, particularly smaller countries, “the government decides”. It might be directly the Ministry of Education, or the roles may be divided between policy at the Ministry and curriculum in another government department. “Decides” can mean anything from laying out broad guidelines for publishers and assessment makers to follow to the more usual case of highly prescriptive curriculum, mandated books and authorised assessment examples. Sometimes this changes for different grades: usually earlier grades are more prescribed by government, later ones less, though in practice college entrance requirements may also be the main determinant.
In some countries, a more separated curriculum authority—often still directly funded by government, though sometimes by assessment fees—can propose to offer something new through (usually very) protracted governmental approval of curriculum, plan, assessments and so forth. Occasionally schools and school networks can propose to try a new subject, with their own assessments and only a mild sanity check from government. Even in these cases, it’s sufficiently rare that a serious new subject is suggested for the instigation system to be well-oiled, and for most people to know its ropes. One suspects sometimes this is because governments want to appear flexible but in fact maintain control; in others it is just what it seems—a rusty system. Either way, the very fact that such a process exists is positive, a potential part of the route to subject change and indeed of ecosystem change that I will discuss later.
A route that’s gaining pace is government or curriculum authority approved “extras” that gain a student points (e.g. for college) but are not core curriculum. Individual music exams are a traditional example. Other examples are of projects linked with a particular school stage or exam series. It’s possible that if CBM can get established and become successful through this side-but-official route, this will be a good lever for a new core curriculum subject.
“ Almost everywhere, the more central the subject, the more pressure not to rock the boat. ... Maths is so important, it’s hard to touch! ”
It’s interesting to note that, in cases when my group has engaged with curriculum authorities, we’ve found a wide range of innovative curriculum leaders excited by the need for maths change but equally frustrated by the system or the politics within which they are operating. If, as subject or curriculum specialists, they see the need for subject change, every possible obstacle is put in their way on what would be challenging to achieve anyway. With the right system and incentive adjustment from government, this latent appetite for change could be celebrated and actioned not made more or less impossible and unrewarded.
You will note I have focussed on a new subject, not transforming an existing subject. There are of course processes for change—major and minor curriculum reviews—in every country. They offer potential, too, but there’s a big proviso. Maths is a central subject. Almost everywhere, the more central the subject, the more pressure not to rock the boat. As we continue through our study of the ecosystem of education, it will become clear how centrality of subject heavily militates against change. Maths is so important, it’s hard to touch! That’s not to say that as the pressure for change mounts and outlier countries emerge, it cannot be transformed, just that it’s an even less defined path than is introducing a new subject.
Schools
Let’s say you’ve managed to achieve a gleaming new subject with its assessments. Have you finally succeeded in introducing subject transformation? Err, not close. School districts, schools, teachers and students have got to be persuaded to take it. “Persuaded” means different things in different places, from ordered to coerced to left to their own discretion.
Take the last case. Surely if the subject looks more sensible and it’s explained why it could serve a student better in life, then school district, school, parent and student will take it. In principle, yes, but the ecosystem imposes so many constraints and disincentives. It amplifies the risk of change and mitigates the risk of being in denial.
There’s college entrance. Colleges may require “maths” to have been taken at school. Until a new core computational curriculum, say CBM, is established and colleges have experience with it, they are unlikely to accept it as valid or sufficiently good for entrance into their esteemed courses or institutions. In some cases today’s maths is specifically built in to a standardised system (for example the US’s SAT scoring). But how are colleges to get experience of CBM if no one, correctly, believes they can take it for college admission? Rather a vicious circle. Few students will take a fundamentally new maths until college admission en masse is convinced of its enhanced worth and so accepts it. Yet colleges are unlikely to push or even accept the new subject for entrance into their courses without quantifiable admissions experience to back that up—even if, in practice, the subject would better prepare students for modern computational college courses (though not traditional hand calculating maths or calculus classes!)— or a large number of schools simultaneously push for that new subject, which is unlikely without either top-down government or college admissions collectively enshrining it.
Of course you could say we’ll take normal maths and the new core computational subject, too, as an extra at school either the full subject or a key area, particularly data science. The pressure on time at school is such that in most countries this consigns it at best to be an add-on, at least for a long time, which in turn means experience of its benefits are unlikely to be exposed. Moreover, it tends to limit the new core computational subject to students already good at traditional maths—both inclined to do it to the pre-college level and good enough to take on additional subjects, too.
Parents usually want their children to do well at exams and have been programmed to believe that today’s maths is critical. They therefore want them to do well at today’s maths exams, for example so they can get into a good college. It takes a confident parent to back a new mainstream subject unless it’s being pushed hard by school, university or society, even if they themselves like the idea of the subject and can see the failings of the old one. Finding a clump of such parents in one school is extremely unusual.
You might think top private schools might be such a place because of their extra resources, their selective entrance and the aspiration of parents prepared to pay for a “better education”. In the end, that aspiration in most cases ends up being focussed or at least measured by exam results and college admission, usually with greater push than in state-funded schools. Collectively, the pushier parents push out innovation in favour of enhanced success at today’s metrics, at least in a highly quantifiable subject like today’s maths.
Of course there are individual schools or home-schooling groups that think differently and try to buck the system or go around it. They may succeed for themselves in some level of isolation from the rest of the ecosystem, though in the end, most are forced to embrace elements of it. Whether they do or don’t, at the moment, they are too small in number and dissociated to enable or cause wider school system change.
It is therefore extremely hard to see how schools or indeed teachers can lead subject change. Everything is stacked against them. It’s important to emphasise that this is very different to pedagogical change on today’s subjects. Teachers and schools are often best positioned to make observations and direct small-scale tests as these either improve today’s measures of success or at least don’t negatively affect them. For subject change, with different desired outcomes and therefore assessments, this small-scale experimentation is largely driven out.
One final point about which I get asked often. Even if the conditions and incentives for change come from outside teaching, can teachers adapt to a CBM approach? Will there be enough of them, considering it is hard to recruit maths teachers in many areas as it stands? The answer to both questions is, I believe, a qualified yes. Most maths teachers will be able to adapt, some very well, some not at all. But they will be supplemented by teachers who take CBM problems from their other (non-maths) subjects and learn how to use a computational approach. Computational thinking or CBM teaching is not the preserve of maths teachers just like learning skills of literacy is not the preserve of language teachers (English in my case). Instead, because literacy is widely utilised across other subjects, teachers of history, geography and so on also teach it. Our new core computational subject must be relevant across disciplines to more students; by the same token, the teaching will cast a wider net of teachers able to deliver it, so long as the right support is provided—which has influenced the design CBM materials as we saw in Chapter 9.
Parents, “The Public” and Politics
Can parents be the change agents? Potentially, yes, but only if organised en masse by driving public opinion. And it’s hard to see how that can occur, even in a given jurisdiction. However, change does happen, catalysed and driven in different ways in different countries.
Most parents want the best for their children. Many realise the future isn’t looking the same as the past and computers are here to stay. The problem is they’re not connecting computers with maths, nor seeing the direct utility of maths except as a qualification-getter. Told how important those qualification are for their children, they’re understandably pushing their children to do well at them. The natural inclination is therefore to decry any change that might disrupt this plan. Push a little harder in a more prolonged conversation and most parents will admit that they didn’t like maths and/or don’t see its relevance to their life. Ask them why they want this for their children and they start to think. The problem is that without being prompted to this depth of thought, parents can be swayed by headlines about reforming politicians who “don’t want children to learn to add up” into defending the status quo or even into enhanced traditionalism.
“ Maths is surprisingly newsworthy. You’d think it was not mainstream media fodder, but discussion of it heats people up”
The antidote to this is increased airing of the problem, lively debate and aggressively making the case in a strident way. Maths is surprisingly newsworthy. You’d think it was not mainstream media fodder, but discussion of it heats people up. This can slowly be used to change the political discourse and decision making. I have already noticed a bit of a shift since CBM started. In the mainstream media, there are now questions about whether algebra is really needed, discussions about coding and the needs of numeracy—not only in interviews I’ve done but also asked by others starting to push some of my points. I get enormous support from “the public” around the world, perplexed at the current state of maths affairs and urging me to connect with their politicians to campaign for a fix.
There’s another route too: top down. Education minister or even prime minister or president—the politician who understands the significance of the maths fix , wants to make change and has the political power and on-the-ground management to effect it. This is a rare breed, though there are several factors that can help to identify possible candidates. In some countries, through smaller size or less democracy, direct political power is greater. If the individuals involved are technically educated or have been technical subject researchers, they can often instinctively understand the case more readily. (An added help for me in contacting them is their likely recognition of “Wolfram” because of having used Mathematica or Wolfram|Alpha.) But the overriding factor is ambition for change and aversion to risks of political attack on them for seismic change. As I will discuss in the next sections, I have observations about how change happens and how we can improve the likelihood that important change will happen in education.
Post-School: Employers and Higher Ed
A key driver of what’s learnt at school is admission to the next steps: college and jobs. Therefore, those responsible at these institutions can absolutely push for change and are perhaps the strongest potential point of perturbation in the educational ecosystem.
Universities, trainers (e.g. the military) and employers complain all the time about low standards of their candidates’ maths and, generally, STEM skills. What’s disappointing is how disparate their complaints can be. Even amongst technical course admissions and tech employers, the call is largely for more maths not different maths. Part of the problem is that most people deciding policy in those situations succeeded at traditional maths to some extent, and so may not want to jettison the need for that skill, as I discussed earlier in Chapter 9 “Right Experts and Expertise for Formulation”. But a far bigger issue is confusion about what the problem is and how to characterise it. They know their candidates don’t seem to be able to do data science or know how to get their computers to crunch numbers usefully, but they often haven’t worked back through what the problem is. Their lobbying of government for “better STEM” is disjoint and the response is usually more maths, tougher maths exams or more teacher training—none of which will begin to solve the problem of the wrong subject.
Universities have seismic change of their own on the horizon, not only in oft-cited online delivery but subject-wise too. More and more aspiring students see data science as the career to back, or at least computational versions of other subjects such as computational biology or computational linguistics. Yet relatively few universities are appropriately set up for these—courses that splatter data science in their naming but are really statistics or adjustments of computer science courses. At the time of writing, major universities in developed countries are seeing a flood of computer science applications, many from students who are not really wanting to know the inner workings of a compiler, but much more wanting the sort of computational subject that I describe as CBM, which isn’t on offer. A computational grouping of otherwise disparate subjects is not traditional in universities; it’s hard to grow them out of today’s departments, or to form the best policies for admissions or, as yet, to push schools and government for the right core computational subject to feed them. Universities are at odds internally about the best way to service these new directions, so it’s hardly surprising if they don’t have a well directed voice externally.
Likewise for employers, even the most technical senior management. When faced with my arguments for a computer-based core computational subject at school, they are very often highly in agreement. But grouping enough together so that policymakers can both hear the call for change and understand with clarity what’s required hasn’t started.
Indeed one purpose of this book is to rally together those who agree to speak with a more consistent voice across colleges and employers. At Wolfram, we are increasingly helping universities and companies individually to solve these orientation problems, given their students’ or employees’ existing skills. It’s time to fix the problem upstream—at schools—for the next generation. Collectively employers, colleges and the public can force a change and perturb the ecosystem, but only with consistency of message. In my final chapter I explain the campaign we’re launching to align support but I’m previewing the idea here to encourage as much participation as possible in case you don’t make it to the end! The more support we get, the more it will help us to make this case.
Adult and Intensive Courses
Rather than rallying everyone to change today’s educational ecosystem, why not just rival today’s ecosystem elements? Expose the fallacy of the system’s computational components by demonstrating a better alternative. At school level, it’s difficult to go around the system by doing this because of its compulsion. At the college or post-college level, intensive courses, taken as alternatives or supplements to college are promising. Particularly in the US, this is the most likely way of perturbing today’s setup. If they were successfully helping their students prosper more than through the traditional college maths-based topics, they would gain status, push colleges to rival them and, over time, a more aligned core computational school subject could gain status as the best feeder. There are lots of ifs and buts in this pathway, so don’t expect high school systems to react to this impetus anytime soon, however successful, but it is a route in some countries and, of course, for individuals.
Coding courses have led the way and indeed possibly been oversold. They promise becoming a coder with lucrative job prospects in a few months. Along with lucrative job prospects come sizeable course fees. For some, this has no doubt worked well. But coding is a far narrower and more vocational part of the core computational skills needed than CBM: while central to some jobs, a side-skill to many others. The drivers for taking core computational studies are deeper and broader in their application but, by the same token, less immediate in their visible vocational benefit. In fact, core computational skills are critical to most jobs, particularly senior ones. Saying that you should take a 3 month course, at some expense, to up them with no immediate “I’m a coder” badge for being hired into a lucrative job is a deeper sell.
Except there’s data science. It’s today’s poster child for the power of computation with a growing number of jobs requiring skills in it. It’s the part of computation that’s most visible. It’s even garnering calls to become a school subject. Data science, while in my view only part of the computational landscape needed by students, is important, modern, mostly computer-based and increasingly a visible vocational driver.
Errant Observations
That was the quick lay of the educational landscape. In my journey so far, I have also made ad hoc observations along the way which I thought it worth airing to help us to effect our maths education subject transformation. Though I’ve interacted with many different stakeholders in many countries, these are of course only a thin slice of experience; I’ll be very interested to hear others.
Don’t Treat an 80% Fundamental Change as if it’s a 5–10% Incremental One
Several times I’ve explained that with maths we have an 80% problem, and it’s no good applying techniques as if it were a 5–10% problem. We have seen this sort of mistake of the scale of change many times since the rise of the internet. People adjusting the rules of today’s game when there’s a new game on a new playing field that everyone will end up playing. Retailers “adding a web store” rather than rethinking their business model. Brand new players, who start afresh, trouncing long-established success stories—Amazon being the obvious example in retail.
Many business books have been written about factors that achieve fundamental shifts, but I make just two observations: later about the regulatory conditions and here about the role of experience.
Incremental changes are often well guided by those with experience in that subject area—whether retail or education—because the experience can prevent obvious mistakes. You still need impetus and incentive to make the changes, not to mention the idea, but you can successfully rule out many of the possibilities upfront and prevent a lot of missteps, getting further faster. Instead, fundamental changes usually need one to jettison much experience or know-how of the field gained to avoid it constraining judgement of what’s really needed and what’s really possible. It’s extremely difficult to think outside workflows, concepts and doctrine one’s been applying for years in areas of direct experience. You need to be familiar enough with the problems, or be able to be a good examiner of them, but not be so steeped in them that you can’t see outside.
A major part of the battle is to recognise that there is a fundamental transformation requirement, then also to entertain “mavericks’” solutions, with the right conditions (e.g. of trialling and incentives) to give them oxygen to test. Enabling disruptive change both has to do with individuals involved and the environment in which they operate being conducive, encouraging action by tipping the risk profile to foster innovation. None of this is occurring with core subject transformation in education and certainly not in maths education.
A common misconception in educational policymaking (as distinct from most tech industry) is that lots of small changes will necessarily result in fundamental large change. For the maths versus maths case, there is a chasm to be crossed, a leap needed; it’s no good just falling down into it, which has been the fate of many an attempted maths reform in an effort to get adopted and not be too scary to implement.
Risk, Regulation and Innovation
To understand how regulations interact with innovation, it’s worth thinking about other walks of life which have ended up embroiled in government. For example, in the 1960s it was much harder to start a company than it is now in most countries. The whole ecosystem was against you: from administration on starting a company, to how to get finance, to presumptions about how successful you would be. Led by the US, in a mixture of regulatory changes and new financing (such as the birth of venture capital firms), there was a change in attitude towards start-ups and less stigma against failure. Now countries vie for being the best location for you to start your business, even many countries with socialist credentials who might have been considered anti-business in the past.
A similar transformation has to occur for innovation on the subject matter of education. At the moment, there is some attempt—whether successful or not—to open up its administration and delivery, for example with charter schools. Opening up the subject matter to innovation at the very least requires much easier establishment of recognised assessments, colleges changing their admissions attitudes for early subject adopters and schools and teachers lauded for teaching new subjects, not just optimising attainment on today’s assessments. Crucially, the attitude to immediate versus long-term risk has to change for everyone involved.
“ I challenge every Minister of Education to have a ‘core subject start up and change plan’ policy that taps into all the opportunities to drive subject innovation”
Setting up the risk profile and its perception correctly is subtle. It might have appeared safer for much employment to be in collectivist, governmental-owned, large organisations in the 1970s; but it’s hard to argue it was the less risky option country-wide for economic and even societal success mid-long term, including for many of the individuals. On the surface, smaller, more vibrant companies with more failures are riskier, yet a well-set-up version of that ecosystem, with all its faults, has generated huge advancement as well as some new failure modes. Few politicians today in the developed or aspiring world, whatever their political colour, want to knock start-up vibrancy for that reason and because it’s politically unacceptable to seem anti-innovation in business. Indeed many large conglomerates that in previous eras would have basked in their conglomerateness are now desperate to show their start-up credentials because being seen as the new kid on the block is so valued. People like me, with smaller companies, and individual innovators are often invited to conferences with the biggest players because they want at least to appear to be shaken up! That’s the attitude we need to foster with all the tools at our disposal for core education. Every government has a big role to play in that change, given how involved and controlling they are in the subject matter of school education today.
I challenge every Minister of Education to have a “core subject start up and change plan” policy that taps into all the opportunities to drive subject innovation.
Of course ministers and other senior policymakers have to be set with the right expectations, incentives and time horizons—a point illustrated in a speech by the then UK Universities Minister at a conference I was at. He had computed the average tenure of those other education ministers present and expressed how his already significantly exceeded this at 3 years and 7 months, so his time would surely soon be up! He was correctly underlining how education is complex, slow to change and that having its leaders change too regularly affords little ability to achieve anything meaningful. Instead it pushes most either not to take the risk of a contentious change or to focus on headline-grabbing changes that are either populist or anti-populist, but either way are rarely deep.
Fixing ecosystems is hard and takes time. It is not a deterministic process, nor easy to foster—needing continual execution for a long period both practically and to change attitudes. Worldwide, the educational ecosystem needs this long-term attention from governments for subject innovation.
Technology Risks
Speaking of risks, a mistake often made by governments or purchasing authorities is in selecting the correct educational technology. In fact that wording demonstrates the mistake: the practice of selecting technology built specifically for education , not the best real-world technology that students, like the adults they will become, can use.
Why wouldn’t we get our students the industrial-strength machinery to use if we can, the sort of underlying hardware and software they’ll use in the real world? (I’m talking first here about the underlying technology, not any pedagogical layer for learning about it).
Four reasons you might imagine against so doing are cost, complexity of operation, inability to have in a classroom setting or being too dangerous for that age group. All are good reasons for, say, not having a complete chemical engineering plant at school. But computers and modern computational software? They might trip the first two reasons (though I will argue not), or the third if there’s no electricity at the school (which while undesirable may replicate that environment’s real world). On the fourth, the main danger cited for computers is in not forcing the student to hand-calculate... not that solving a partial differential equation or finding the value of a hypergeometric function is especially dangerous!
If you want to closely align classroom activities with the outside world, it is perverse to think that core hardware and software made just for that highly price-sensitive, more limited market will be better. Almost all the expense of making software and often much of the cost of hardware is allocated to capital for development, rather than incremental costs with each unit. Therefore, high volumes are important to good value for money. Additionally, many industrial computing makers (including Wolfram) offer very low cost purchases for schools and students which they can afford to if it’s not their main revenue-generating market—either full-power versions or sometimes somewhat simplified or with features removed.
Likewise for usability of today’s industrial computing tools. In many areas of technology, even rather high-powered, specialised areas, usability is critical to success because often it’s not the underlying power but a human’s access to it, the human-computer interface, that now limits what’s doable. Huge effort has therefore been put into optimising ease-of-use. It comes in many forms, from automation of underlying processes, to error correction, to clarity of interface. Potentially, the optimisation requirement is slightly different when you’re learning to do something than when you’re using it. But in practice this is a marginal effect relative to optimisation for either group, assuming that in education you are indeed trying to simulate real-life scenarios and not a very different subject.
That better usability of the industrial product is particularly critical when you’re a student learning a new subject. You need the best, most automated, most usable technology to help you at the start—the best tools for the job. Later, when you understand what you’re doing better, you can operate harder-to-work or more manual machinery or work with second-rate tools if necessary.
Calculators are a typical example of technology mistakes in today’s education system. They’re still burnt into many maths curricula with books that detail which keys you press in which order to do stuff—itself a bad sign for usability, purpose or real-world use. In fact, in some jurisdictions, you have to buy the right “education-only” calculators just for the grade or exam. Calculators were modern technology decades ago when only a single-purpose device could be that portable or robust, but they’re not now. Compared to today’s computational technology—smart phones with a range of apps, tablets, laptops, etc. with modern software—calculators are harder to use, do far less and are far more confusing in helping you understand the underlying maths. People don’t use them much beyond basic arithmetic in the outside world, either, and even then use calculator apps on their phones, or custom apps or, as the problems get harder, something like our Wolfram|Alpha or Mathematica on laptops or desktops. It’s education where the calculator is still predominately used.
Nor are curriculum-grade calculators inexpensive. While sometimes a little cheaper than a basic smartphone, they have to be bought specially and are much more than the incremental cost of the right app or software. Many students in the developed world have smartphones for other purposes already and, if the school or education authority has to supply a device, these can then be utilised across the whole curriculum (e.g. for reading), not just for maths. The costs compare favourably with a suite of shared textbooks but offer far more value. There is no good reason why cost should ever be the issue here.
Incidentally, I’m not against calculators per se, just their use now. I was in the forefront of acquiring calculator technology at school in the 1980s—the first with a programmable calculator (Casio 602P) and later an early graphics calculator adopter (Casio 7000G). Rather than banning its use, my enlightened maths teacher thought of interesting ways to help it support what we were learning, for example having it sketch more complex graphs than in the curriculum. Amusingly, a few years later, I was banned from using that very same 7000G—by then commonplace technology—in my maths finals at Cambridge University in case it unfairly helped me, so I had to buy a basic scientific calculator just for that assessment. Even then the assessment rules demonstrated unreal technology constraint. Now the lack of computers in exams for maths (as opposed to calculators or nothing) exemplifies the subject’s tethering in a bygone era.
As we’ve already discussed in Chapter 5, a crucial part of education is to learn today’s up-to-date, real-life machinery—itself an educational goal and therefore an additional key factor for requiring industrial technology alongside it being a better value, more usable and tuned to the real world. Getting education-only core computing tech is rarely the right decision.
What about tech to help the pedagogy or process of learning of the (right) subject rather than carry out the subject (i.e. tech for how to learn “maths” versus tech for computing maths results)? This will be necessarily education-only. Where it is truly needed, it should be layered on the fully-featured, core system, not separated and disconnected. For example, learning narrative and problems should be layered in the software used for computing answers, not in a separate system that just helps to calculate those topics it’s aiming to teach at that moment. You want students to get used to handling the core system with help, not an education-only environment that does nothing to move them to use of the raw technology. Investing in the necessary pedagogical layer may be worthwhile, but raw modern industrial toolsets can be worked with more quickly than is often imagined. Education authorities adopting technology need to clearly separate what underlying toolset they’re getting and how quickly and effectively it can be used raw, from its value with the pedagogical layering and content that may initially be necessary; and appropriate value ascribed to each. Usually better underlying technology trumps fancier pedagogical layering on lower-grade, older or less industrial base equipment.
As has often been said, teachers may be more scared of the complexity than students, so it’s important to put aside resources for pedagogy of teachers, not only students. For our CBM materials, we’ve linked a teacher and student guide together very specifically to offer not only pedagogical advice, but tech support for the particular task at hand, too. This is layered on raw Wolfram industrial technology.
Another point about using the raw technology as soon as possible: it’s a powerful use of teachers when they and students can get over operational difficulties together. The teacher has to have sufficient confidence and operational problem-solving knowledge for this to be possible, which we have tried to bolster in our materials, but it’s a powerful teaching method when live, real, with-student problem solving can occur. Without gaining this operational problem-solving knowledge of today’s machinery, students cannot in practice use computation to solve life’s problems. That’s the key reason I argued so vociferously with my group that we had to have a central outcome of “Managing Computation” that specifically targets these skills, as I laid out in Chapter 6.
Sector Discrimination is Rife
Just as it has sometimes been de rigueur to choose education-only technology, so a concept has grown up in some government quarters that all educational subject expertise (e.g. for defining curricula) must come from academia. Universities, those employed directly by government and some not-for-profits are unique in being able to propose curricula and know what it’s important for all our students to learn. The implication is that for-profit companies are just trying to sell their wares while academia offers the objective viewpoint.
This is awfully naive. Firstly, in many countries, the university sector is now rampantly commercial in its outlook. While paradoxically, some companies have a longer time horizon in their commercialism and can often take more risks or may be driven by the interest of their leaders in a given topic, even if there’s no financial payback in prospect. Decades ago, universities often lead in technological and other innovation; now it’s usually companies, and often in basic research, not just development.
There are commercially and intellectually motivated players in all sectors. What’s important is picking who can move the bar, whose interests are aligned with the progress that’s required and who has the ability to be innovative and deliver—not type-casting their worth by which sector they belong to. Or, worse, deciding that those in academia have only worthy motives, while those employed by companies never do.
I’ve experienced this directly. Some governmental and intergovernmental organisations have told me our paper can’t be included in a dissertation or our talk can’t be heard because we’re from a company. I’ve been amused as I’ve heard one after another self-serving and often unremarkable contribution instead.
Likewise, I’ve sometimes been asked—though less often than I’d expect—if I’m just doing CBM to generate money either directly or in selling more Mathematicas, if my motives are just commercial. This is a fair question and the answer’s no. I’d like CBM to be commercially successful enough that it can drive as much of the change of maths as possible. Given the scale of money invested around the world in maths education, it should be able to be at least self-supporting, but its purpose has not been to make money. Frankly, there are many other sectors that are a far better business prospect for us than schools. Instead I’ve found it frustrating and upsetting to see so many students shackled by today’s maths, thought I was in the right place to make a difference and so have set about doing so. My chief motivation has been the hope of correcting what I see as an increasing wrong.
Just like it’s important to question me about why I’m doing what I am, so is it to question everyone else who might be involved in maths curricula. Everyone has their incentives and potential conflicts of interest. The esteemed maths professor may want to preserve what she has built her success on. The curriculum advisory authority may want to continue to wield power and know they can only do that without major innovation, and so on. Everyone who knows enough to say anything about maths curricula can be ascribed an incentive to push a particular stance that is self-serving. Rather than rule their views in or out because of their background or employ, it’s critical to follow the argument and their rationale as to why they might have an appropriate contribution. This is especially critical when fundamental change is afoot or we risk leaving only those with no axe to grind, who also have no axe of incisiveness to cut through dead wood.
Similarly, all execution costs money. The question ought to be whether the money spent offers good value, not whether it sits directly with government employment or not. Sometimes established processes with the control, but often disincentive of direct government involvement works best; sometimes this delivery is hopelessly inefficient and backwards, predicated on the the wrong incentives.
Workflows for Curriculum Delivery are Slow to Change
I’ve already explained our journey so far to building CBM modules and why the key initial deliverables were materials to manifest our curriculum rather than a traditional specification document.
However, one factor I should have understood at the outset but hadn’t was how entrenched the workflows and assumptions are around building today’s curricula. When we have approached governments, our presentation must have been a scary prospect, even if they had interest in the reforms proposed. Not only were we saying that their core maths subject needed replacing with computer-based maths, but instead of building a specification first, so assessments and publications could be produced subsequently, we were proposing to deliver all-in-one materials ready to run for teachers and students first—materials that backtrack to the specification. We’d like to upend the normal division of labour between curriculum authority, publisher and assessment board; change how the teachers learn what to teach and deliver the material.
Crucially, this affects who pays what out of which budget, though in most jurisdictions, the bill for the whole process comes back to one arm or other of government (e.g. school district, local authority, state or county), in the end funded by taxpayers. Details vary by country. Sometimes government directly pays for the curriculum specifications; sometimes curricula are produced by assessment authorities, charging per-exam, per-student fees, paid by schools on behalf of students. These schools are usually public sector in some way, directly or indirectly funded ... by government. Likewise, books or software in schools are, for the most part, by some route paid for by government. If we go to one part of government, say a country’s education ministry, and propose we could put all this together into one set of deliverables that covers teaching materials, courseware, software, curriculum making, specification and so on, they can’t easily agree. It doesn’t match the division of labour or funding split between entities or configuration that’s set up.
Yet the expenditure for this curriculum manifestation workflow, once established, can be far less in aggregate for getting to actual learning delivery. Cheaper because you’re lowering switching costs between formation and delivery of the curriculum, using electronic not paper delivery, offering the ability to build what’s needed with more agility and so on. But it can seem more expensive because costs normally distributed through the system, albeit in total lower ones, are aggregated.
“ Future systems of oversight must disincentivise the risk of intransigence, so enabling the ecosystem of education to be unlocked”
It’s not uncommon for established splitting of responsibilities and systems of approval to hold back instigation of major new workflows in other walks of life. A friend of mine was a senior engineer on major commercial buildings in London. Remembering the building of our simple Wolfram Research Europe offices with their architectural, structural, electrical and plumbing plans all separate, I asked whether on major projects they worked with a single, comprehensive, representation of a building (that’s nowadays technically possible) where every element was directly computable, like we do for data in Wolfram|Alpha. He said no, that this was an interesting prospect but pointed out that each speciality signs off on its slice of the plan, so for example, the structural engineering plan is signed off as an entity by the structural engineer. Linking this to other elements means a major change in workflow. He agreed it would be much more efficient, but, as in the educational case, it’s hard to organise the change. (I am not up-to-date on architecture; perhaps this has now happened, or perhaps not.)
One of the compounding problems in the production of curricula is the entrenched process for each element of the workflow, based on antiquated technology. For example we did some work for an assessment authority and wanted to tag each element of the modules with outcomes so we could automatically build a specification and be nimble at iterating between new learning material ideas and covering a better range of outcomes. But the prescribed process was for a locked down specification that then had to be approved by a committee before any materials were made to represent it. There was good practical production rationale for this in the past. Changes to the materials—then, books—were expensive to produce. You better be damn sure you’d got everything right and locked down before you moved to writing, laying out and printing the book. Or it would have to await another edition years later.
Not only does modern technology allow much faster, tighter iteration between specification and materials, but good quality results need it. Producing interactive software is a very different process to publishing a book, requiring different workflows and skills. Some of these are harder, such as debugging the far richer materials. Copyediting notoriously misses mistakes, but at least it’s clear at one level how the user will interact with the materials: by reading. The multifaceted interaction with software means there are many more degrees of freedom and many more dimensions of bugs to check for. Many aspects are connected to each other so fixing one bug or type of bug may expose or create others in a way that most copyediting does not. Therefore, rapid iteration is essential—you need to look to software quality assurance processes. Today’s traditional curriculum workflows don’t support that and won’t work well.
I’ve glossed over the management controls needed on what’s in the curriculum. The curriculum producing process must have reasonable oversight of content built into it, not just concern itself with optimal production of materials. Of course, oversight can rather quickly become blockage if poorly thought-through setup makes intransigence easier to agree on than innovation. A typical example we have encountered are committees of representatives (e.g. teachers, educationalists, ministry officials) in which doubts of any one member can scupper or delay decisions (sometimes for years) on any definitive course of action, even if almost all the other members are in favour and the whole committee agrees on the urgency of change. Future systems of oversight must disincentivise the risk of intransigence, so enabling the ecosystem of education to be unlocked, while also producing a tight binding of curriculum, materials and specification. The place to look to fix this process is modern product management in tech companies, not long-established schemes of work that traditional publishers follow. In the way that releasing new products is key to tech companies’ competitiveness and action to achieve this objective is promoted up-and-down successful organisations, so modern curricula are key to a country’s competitiveness—especially for computational thinking—and this needs building into urgency of releasing new curricula.
Assessment Fairness through Legitimacy
Whether or not you like the idea of assessments, they are central to today’s educational ecosystem and aren’t disappearing anytime soon, so I wanted to turn to the key question of how to make them fairer and, in particular, more legitimate.
How should one define fairness or legitimacy of testing? There are countless ways to make tests unfair, but achieving legitimacy, in my view, critically needs to involve aligning what’s being tested with the purpose of the education. And isn’t the main purpose of mainstream education to give you skills (in the broadest sense) for life?
Yet in the modern concept of exam legitimacy, questions set up for easy reproducibility of quantitative scoring trump questions that more accurately simulate real life, but are harder to mark. For example, multiple choice tests can be easily marked with complete reproducibility, but when in real life did you last pick from 4 or 5 answers, one of which you knew “has to be” right? Rather, questions which need explanation and judgement calls can be much more representative and therefore legitimate and fairer tests of the student’s ability at the real-life subject, even if working out who did better and worse needs more complexity to achieve acceptable reproducibility.
These legitimacy failures were highlighted to me a few years ago when I was presented with a book designed to help maths testers set tests, by explaining with examples what were “good” and “bad” questions. Within the narrow confines of how US testing works (the market it was produced for), it was no doubt very helpful, but thinking bigger picture, it was deeply frustrating.
For example, it castigated a question that had “irrelevant information”, i.e. more than the minimum needed to calculate the answer, because it wasn’t solely testing one core ability at a time (doing a manual subtraction calculation). Since when does real life only have exactly the amount of information you need—no more, no less? And isn’t sifting information and using what’s relevant a crucial, core ability—particularly since the internet? Just like real life, questions need to have too much information—some of which might be wrong, irrelevant, confusing, vague or missing—and grading must reflect how well students got to an answer, or indeed no answer if that was appropriate. Testing one core ability at a time in isolation may make grading cleaner or procedural teaching of students for the exam easier, but it’s testing a very different skill set that isn’t legitimate for a world in which effectively handling a multifaceted overload of information is a key requirement for success.
Even worse, I am concerned how many students are driven to be marked wrong because their thinking was too broad or too “real life”, gamed by the system to learn the wrong lesson. In much the same way as I did, my daughter has had perennial problems with multiple-choice questions in subjects such as English. For example, aged 5, she was presented with a passage about Jack Frost and given four statements to read, only one of which correctly described part of the passage. However, she eliminated all four statements, explaining why each one couldn’t be true with reasonable logic (e.g. “Jack Frost causes it to be cold” was ruled out because it can also be cold at other times of the year, not just winter). Not understanding that the answer was to come out of the passage or that she was not supposed to think about the meteorology of the situation, she couldn’t write down any of the choices.
A smart teacher with enough time would have got to the bottom of this, but Sophia’s just thought she couldn’t read well and was perhaps a bit dim about this compared to classmates who saw the answer was obviously C. In the end, I managed to explain to her that you need to understand the psychology of the test-setter so you can try to understand what answer they want you to write down even if it isn’t really accurate! This worked a bit better as a process for her: overlay the complexity she naturally injected with a psychological profile to determine the right answer! Because I spotted what was going on here, perhaps this may, in the end, have been a positive educational experience. But I really doubt that this fidelity of diagnostics and remedy is usually played out, and it’s so negative if not, as is so often the case for maths with teachers less instinctively attuned to the real-world subject.
An unfortunate consequence of the growing importance of exam results, along with more rights to challenge the scoring of assessments with the authorities, has been to put increasing emphasis on reproducibility of marking, a feedback loop which has turned into assessment questions with definitively right or wrong answers. This is muddled up with wished-for cost-savings, too. Computers can easily mark multiple choice questions or numerical answers, but not answers to open-ended questions. So if you want computerised assessing (that “can’t make a mistake” and is cheaper), you’re out of luck with most real-world questions at the moment. (We’re close with Wolfram|Alpha technology, and perhaps the closest in understanding some short answers, but certainly not an arbitrary essay.) Paradoxically, while I argue strongly for computer-based maths or core computational subject, this does not imply computer-marked assessments. Indeed, insofar as the latter is a driver for closed-ended questioning that’s not a good simulation of the real world, I’m against it.
In fact, with a little ingenuity, human markers can largely agree on how to assess open-ended answers to questions, for example, with schemas for ranking groups of scripts rather than trying to ascribe numerical marks to each of them, then statistically comparing marking groups to get an ordering and ascribe marks.
Without some of today’s constraints of justification or requests for openness, 19th century assessment organisations have long had ways to mark essay questions and art, but even these techniques are not usually applied to maths. Whatever solutions are employed, a drive for money-saving at the expensive of legitimacy of what’s tested is hugely detrimental because of the pivotal role assessment plays in determining what students must learn.
The good news is that, by the same token, this is a key area where the ecosystem of education could be perturbed, even more or less within the confines of today’s examination systems. However, a key part of adjusting the questions to match real-world situations to make them legitimate is adding a key tool: computers. I’m not talking about how the assessment is presented (on paper or online) or marked, but of the student having open-ended computational machinery available to use in answering the set questions in the exam. Not education-only machinery, like a calculator, but computers (including in phone or tablet form) like almost everyone in the developed world has available almost all the time. Without computers for computation, many maths questions and the skill set required for their answering won’t be legitimate or therefore fair because they can’t effectively simulate real-life situations of maths usage. “Cheating” may be a concern, to which I would respond by pointing those concerned in two directions: setting questions where looking things up is built-in (either needed or not helpful) and/or technical solutions to control and track exactly what is done during examinations. My message here is that, with a little ingenuity and much better alignment of the subject to real life—where most of what is today considered cheating in exams is just good, commonsense—this concern can be positively addressed.
Quantification beyond Its Ability to Judge Fairly or Effectively
I want to finish this discussion of fairness with a more general, if somewhat off-topic observation. I’ve argued about various walks of modern life that “today’s quantification has assumed an importance beyond its ability to judge”. I mean that numerical metrics have a power to persuade, a marketing panache for driving decisions, even when they lack alignment with or are too simplistic a representation for the harder-to-quantify outcomes you really want to achieve. Instead, harder-to-quantify measures, which have not been numericalised may instead better represent your objectives, but when faced with a competing number or metric, lack the pull to get decisions taken on their terms.
Take optimising cancer treatment waiting times versus best treatment outcomes. A number (i.e. a time) can easily be ascribed to the former but the latter (what you really want) is much more complex to numericalise and so cannot be simply quoted. A better screening programme might pick up tumours earlier, leading to longer waiting times from that point, but earlier treatment of the cancer, and a better survival rate. Making a decision based on optimising the waiting times metric could lead to a worse outcome.
I’d suggest a country’s GDP growth versus its people’s living standard improvement and reducing speeding versus safer driving are also examples of misaligned and over-simplistic metrics used beyond their ability to judge with some negative consequences for the intended outcomes.
In education, this problem is now increasingly crippling at every level as pressure has mounted. Right at the centre is the hugely complex outcome of student education measured by the simplest of quantifications—grades—which in turn drive critical decisions for the student, their teacher, school, district and so on. There are many other such mismatches one could point to, such as a student’s success at a multiple choice test versus their understanding of the subject or a teacher’s classes’ scores versus how well they’ve taught their students. Each example offers up an easy-to-eyeball number that is somewhat connected to the outcome desired, but is too simplistic: the power of the number to summarise the achievement goes beyond its ability to represent the totality of the required outcome, yet is used nevertheless as the arbiter of success.
“ Governments ... remember that better scores ≠ better intended outcomes, legitimacy ≠ reproducibility of marking and while you’re about it, maths ≠ calculating!”
The result is that those responsible for achieving the metric usually try to improve the number, but not necessarily the desired outcome. The quantification may initially be correlated with the outcome, but when it subsequently causes behavioural change, it may have lost that correlation and indeed be causing other unquantified effects that are detrimental.
The discussion of educational assessment is therefore part of that bigger societal quantification problem, namely how do we mesh the power of numbers with the complexity of outcomes to drive actually better decisions? In my view, the answer lies in more data—not less, agile metrics, new interfaces to data and specifically letting the data user be the data metric specifier. For example, if you kept a far more complete dataset of a student throughout their schooling—how they did every day at everything—and made any query of this data easy to ask, each interested party (parent, school, potential college) could ask their unique query, agilely generating their own metrics, say, using a modern linguistics interface. This could take the pressure off the very few simplistic metrics used today, but still enable some quantification. There are many risks in this approach, too. I only give a very quick taste of the concept here, but refer to it further in some recent talks, as well. Perhaps it needs to be subject of another book on the quandary of quantification!
In summary, governments and others setting test guidelines, please remember that better scores ≠ better intended outcomes, legitimacy ≠ reproducibility of marking and while you’re about it, maths ≠ calculating!
Pivotal Change Word in Your Country?
Talking of fairness brings up an observation about how to argue for change through the political system of your country, potentially including a change to maths education. This was sparked by my mother who observed (in her studies of English kinship) that, during recent centuries, if you wanted to get legislation through the British Parliament it would fare best with one of two pivotal rationales on your side: either the new statute makes life “fairer” or it brings England in line with Scotland (usually a follow-on to some risky legislation that had been tried first in Scotland, isolating attention if it all went wrong). Of course, the notion of fairness can be ascribed to many a cause that others might see differently, particularly high tax rates, but the point is that there’s particular political power in England at being able to argue fairness is on your side. I’ve already described how I think CBM is fairer in aligning with real-life requirements, not scaring students with abstract calculation at the outset, which in turn helps some from less intellectual backgrounds get more encouraged, improving equity. For England, I therefore believe we can argue effectively to have the pivotal change word of “fairness” on our side.
That’s England, but what about other countries? Does your country have equivalent pivotal rationales which it’s important to align any major political, including educational, change with? I’ve asked around a bit when I’ve had the chance. Some Australians told me they thought “it works” was the equivalent, the Israelis said “survival” and I’d argue for the US it’s “freedom”. I proposed to the Estonians their pivotal argument is of being “smarter” than others, which they didn’t disagree with!
The other question to assess is how change tends to happen in different locales. As a long-term UK observer, I often note how there’s growing on-the-ground murmurings on a given major topic and much complaint about the government well before government seems even to notice. Then, when you think it’s all hopeless and nothing will ever change, there’s suddenly surprising speed: a new discourse, a head of steam built up in a short time, resulting in a knee-jerk of resulting action. In education this is particularly damaging because of the length of time needed to make change and the number of people involved. In other countries there’s a very different profile of change—a different graph. Again, understanding your country’s style of change, whether revolution or evolution, whether sudden pronouncement for change or quiet backroom work, is important to helping to effect it in a positive way—the reason I have brought it up here.
What Not to Do Marketing Maths
Speaking of words you might associate with change, it can be pretty disappointing to see the damage often done in the name of maths or to its name by careless public pronouncements.
One problem is confused terminology. When commentators or governments talk maths, they seem intent on convolving hand calculating with rigour, rigour with understanding, calculating with numeracy, maths with calculating and rote-procedure learning with the conceptual and intellectual requirements of real-world maths. Not confusing these different aspects is an important start to better representing maths.
Next, we have headline-grabbing announcements. While most governments are conscious of the need for maths to seem attractive, they often also need definitive statements to the press to cut through the noise of political discourse, and so can end up singling out easy-to-discuss calculating skills that a student must have, for example rigorously learning times tables or long division or calculus, to prove their wish to drive student standards up. Careless marketing can build an image of the likes of long division being a badge of honour of “rigour” when in fact it’s a prime example of mindless manual processing.
Granted these are often allied to statements about the importance of maths to jobs, but together they simply reinforce many a student’s belief that maths is abstract, boring, its application a mystery (as, other than to get good grades, the connection between good jobs and hand calculating is indeed tenuous). Every time tedious calculating skills feature in discourse as a way of getting student standards up or are portrayed as a key achievement, there’s cumulative damage sustained because this implies that’s what maths is primarily about. Are these the valued exemplars of maths we wish to market rather than holding up something creative, fun, representative of the real-life purpose and competitive with other subjects? “Wow, I can recite my 12 times table”—that sounds fun! It hardly competes well with “here’s how a magnet works”, “look at the drawing I did in art”, “I built a rocket” or “I got to football trials”.
Maths education marketing today often trades on its compulsion or frightening necessity rather than its intrinsic worth—required self-flagellation, not positive enrichment. Perhaps such tactics are a good short term vote-winner for some, like brands that consistently do special offers improving sales short-term, but it’s not a good long-term strategy for building a quality or aspirational image of maths in our society. If the marketing is playing on maths’ compulsion or something for which a computer could be used, it’s bad news. Better news is to trade on modern uses of computer-powered maths, its achievements, fun and hard projects students have done.
This wrong-news approach uncovers and feeds a far more general problem: lowly government or policymaker maths aspiration. If you strip away the statements of intent, rigour and standards, many in government have the same highly mixed feelings about maths as the rest of the population. That’s rarely what’s intended to be portrayed; usually it’s quite the opposite, but the lack of aspiration for our students seeps out in this messaging.
Over time these reasons and others—including the actuality of the school subject—have made the very utterance of the word “maths” problematic, so much so that I question if it’s now the right brand at all to represent the forward-looking core computational subject we need.
Has the Maths Brand Become Toxic?
Here’s the question I’m asking. Everything else being equal, if our core subject wasn’t termed “maths” but “nicebrand” would things go better inside education and outside?
Sadly, I’ve started to conclude the answer is yes. I now suspect that using the brand of maths has become intermeshed with damaging today’s subject as well as unhelpful in the reform I envisage—so visible a political and management signal as subject naming is, for example affected by but also affecting whether we are conceptually trying fundamental reform on the existing maths subject or introduction of a new one.
Given the years of my life I’ve spent somehow connected with the word “maths”, capped with the use of the word in naming this book, downing the maths brand is not the conclusion I particularly want. But much as I might not like my conclusion, I am more concerned that the essence of subject maths succeeds than that the name survives as the mainstream label. I don’t want the name to kill the reconceptualised subject—a much worse outcome.
To explain the problem, let’s start outside education. As we touched on in Chapter 3—except for academic mathematicians—almost no one thinks what they’re doing is “maths”. Engineers, scientists, business analysts, accountants and computer scientists all have their own computational terms, but none of them are maths. Instead they’re just the subject, e.g. “doing engineering” or something directly associated like “modelling”, “programming”, “analysis” or “calculating the figures”. More recently “data science” has been added to this list with gusto. I’m not saying these terms have the same meaning as the term maths, but that “maths”, the term, is conspicuous by its absence.
To the extent most people are using the computational processes directly, terms like “sums”, “calculating”, or more generically “problem-solving” come up most in everyday life.
What I’ve observed increasingly over the last 30 years is that any mention of the m word solicits a disconnected, blank or scared expression from most people.
I have very direct experience of this. The name “Mathematica” is infected by this problem, too. It was Steve Jobs’ idea to call it that—the word flows nicely off the tongue with Latin-sounding solidity and was a great initial brand for the education market. But as we wanted to expand beyond calculus courses at college we ran into trouble with the name. Engineers said “I’m not doing maths, I’m doing engineering”, and the like. We toyed with having a run of customised products also tailored in name, like “Engineerica”, but decided against it.
The name Mathematica has always sounded much more narrow and academic than the breadth of the product, diversity of applications or the range of computation we at Wolfram think we’re engaged in. Or the range of applications that maths or maths education ought to be associated with.
For people in technical jobs outside education, this name rejection seems a bit strange. While they may now think maths doesn’t represent what they do, there’s a fair chance they were positive about it at school (even though most of their classmates were not). After all, they will typically have done well at school maths to be in a technical job. They should be at least latent “maths supporters”, but even if they are, is this helpful to the brand?
Yes and no. It’s not ideal to proclaim school maths’ importance, but then be the very same people who don’t profess its use now. Some don’t perceive that difficulty. As we’ve discussed, others use the proxy argument of Chapter 10 that today’s maths is the only way to achieve what they have and so support it. Others may like the status that achieving at this “hard” subject gets them, independent of direct subject justification.
The problem is that any of those attributes tend to associate a view of school mathematics dissociated with real life. But it’s the third attribute of maths as a status symbol of “hard” that seems the most damaging. Why? Because it’s not pushing that school maths try to match a new real-world reality (hard though that is), but instead that it be an abstract badge of honour, a necessary requirement, or even a necessary evil for achieving technical mastery (but not using those actual skill sets or toolsets). The argument goes that because all technical people today had traditional maths as core in their technical education, it is the cause of their success, when in fact it might just be correlated with it.
Important not to confuse cause and correlation! Who knows how many more technical people we’d have and how much further they’d have got if we had a different, computer-based maths education from the start?
Many parents’ natural inclination is to think their children should follow the course that made them successful. If you have a technical job, you are likely to think that the maths you did will be good for your children, too. Paradoxically, this is particularly the case if you don’t see maths as directly, vocationally connected with your work now: if you did, you’d likely want it to change to match. But if you see it as only the abstract basis (if practically disconnected), you may well assume it shouldn’t reform as nothing else might match up.
This is, again, rather like what happened with classics in the past in places like the UK. It was seen as the intellectual basis of all other subjects, the centrepiece often supported by those who subsequently didn’t connect their lives with it. A 1987 episode of the British sitcom Yes, Prime Minister , called “The National Education Service”, once again provides an amusing illustration of both classics and maths in this regard. In a discussion about fixing education, the Prime Minister is arguing that traditional academic education is important, in response to which the chief civil servant (who has had such an education in the famous British school Winchester) spouts some Latin. As the Prime Minister doesn’t understand it, the civil servant translates and also exclaims “what’s the point of it” when he can’t even use his Latin in a conversation with the Prime Minister! Likewise about arithmetic, he asks the Prime Minister to calculate 3947 divided by 73, which he fails to do even when offered paper, the civil servant pointing out that he’d now use a pocket calculator.
What about most of the population? How does the maths brand play with those who didn’t turn out technical? We’ve got to admit that the majority disliked school maths just like most of our children do now. Not only boring, hard and abstract, but told how crucial it is to excel at when, beyond basic primary level, apparently (at least from their point of view) irrelevant to anything else in their lives. In some cases, it really frightened them and that may have caused them constant angst since. Both at school and since, they have faced constant rhetoric about how maths is increasingly important. But they didn’t get the badge of honour; they’re not in the club.
This might seem largely to reiterate sentiments about the subject matter I wrote earlier. The point here is to think about it purely with respect to the brand connotations. Whatever the actual subject and its value, it’s hard not to conclude that the maths brand is badly damaged, with rather unpleasant associations amongst many in the population. To diffuse their concern, people often joke about how they’re no good at maths in a way they don’t about less polarising subject brands like history.
You may say “who cares” for those who are out of school now, but can it affect children not in the system yet? The trouble is, yes, I believe it can, as these maths brand attributes are often passed on to children, rather unhelpfully, while the pressures for good results mount beyond those on previous generations. Changing the subject brand breaks this association somewhat, at least until the reality of the newly-branded subject is ingrained. I noticed this around “Divinity” which I had to study and never enjoyed. Lots of learning passages out of the Bible and so forth. I also didn’t like French—at which I was useless. I passed on my negative French vibes to my daughter, but didn’t really do the same around Divinity because the subject had changed to Religious Studies, in name and in fact in content, too. That allowed her to say “it’s different, so you don’t know what you’re talking about” in a way that didn’t immediately happen with French, even if in fact the subject matter and its pedagogical approach were now quite different, too.
Negative associations with maths, as branded today, ricochet between parents, students and government officials, often creating a rather destructive feedback loop.
Around the world, government ministers and other education officials typically reflect trends in their general population—some will have excelled at maths but many are likely to be less technical. Either way, almost all of them believe in the importance of today’s maths as key to empowerment of individuals and society through technical prowess. Often that’s because they simply think the school subject is what’s directly used. If not, they automatically assume that abstract school maths is the only conceivable route to later technical prowess, however disconnected its contents—the sorts of attitudes we’ve discussed for parents.
The professional education bureaucracy has worked hard to try to broaden the appeal of maths in most countries to be more inclusive, but paradoxically, in so doing have confused the brand further, moving it away from hifalutin status symbol and pushing it to represent broad, direct utility and relevance. But this brand association isn’t plausible to many, as the subject hasn’t fundamentally reformed to be practical as the maths fix lays out (which, if it had been real, itself might have re-engendered prowess, added creativity and reassociated both attributes with the brand). So there’s an increasing mismatch and confusion over what the brand really stands for; it has fallen between two stools of real status symbol and actually practical subject.
To be brutal, the maths brand is simultaneously seen as important in education, largely irrelevant outside, abstract, too hard, too easy to mark you out, frightening, boring, a crucial badge of honour that’s unattainable by most, deadly serious for your prosperity but the butt of many a joke. It’s very hard to see how these brand associations can be helpful to optimising most students’ learning.
“ The m word will hijack all rational discussion”
You could argue that this negativity is off base for some, particularly Far Eastern countries (for example South Korea, Singapore and China) where maths, the school subject, is apparently widely idolised by the population, perhaps because explicit competition in education is considered more positively than in Western countries, and maths is seen as the quantitative arbiter. Even if that’s the case, I would still argue today’s maths branding is negative for those populations because it’s making the school subject very hard to reform to something that matches the real world. And good as these countries might be at today’s maths assessments (for example ranking highly in PISA), the mainstream subject needs the same radical reform for the AI age as elsewhere.
The problem is that a badge-of-honour maths brand means rational argument about the need for reform is often argued away. If it was a side subject, this wouldn’t be so important. But the combination of being both central and branded as a measure of prowess means there’s a fundamental brand split that impedes what’s in any case a difficult reform of the subject matter that’s needed, and meanwhile puts many off the current subject.
When we embarked on trying to redefine what the core technical school subject should be, we called it Computer-Based Maths. Increasingly, however, I find myself trying to steer away from the “maths” part of the term, instead describing this as computer-based thinking or computational thinking so nervous am I that the m word will hijack all rational discussion or possibilities of change. Throughout this book, by the same token, you’ll notice I keep referring to a “core computational subject”. I do this to avoid the use of the “maths” name derailing the discussion at hand with the strong preconceived notions it embodies. I haven’t used “data science”, because, even though this connects with real-world applications and is a critical part of our core computational subject, it isn’t the whole thing.
It’s interesting to note how I’m not alone in potentially effecting a rebrand. At the university level, “computational X” is coming to the fore as names of subjects or majors, where X is a subject like linguistics (rather then “mathematical X” common in the past for subjects like physics). The connection with the “maths” term is increasingly absent in the vocabulary, and “maths” classes increasingly absent from their delivery. There is yet to be any widely adopted new core subject or subject naming to service these computational variations of other subjects. At the moment it’s haphazardly computer science or data science, but ideally it should be “computational thinking”, as a continuation from our school core computational subject. At university as at school, there needs to be a core, anchoring computational subject set up to enable computational approaches in all the other subjects that can then build on this core for their speciality. Educational maths is disconnected by name, by actuality—by computers.
This is an area where my thinking has shifted a good deal over the last few years. If I’d been asked to bet 5 years ago on whether the fundamental core technical subject redefinition would end up as a “reform of maths” or a newly named subject, I’d have guessed the former. Now I’d guess the latter.
Takeover or Run Out of Business?
I want to end this chapter on a big picture, roadmap question for the maths fix . Ideally the current maths education community can embrace the shift to computer-based maths as the mainstream subject. But over the last decades, many would claim that far more evolutionary reforms have stalled. The community overall (though there are many individual exceptions) has not proved adept at major, rapid change and the maths fix is by far the largest being asked of them; indeed, it’s so large partly because more change has not occurred along the way. I am therefore pessimistic that a friendly, agreed-upon, computer-based takeover can proceed.
This leaves more or less two options: hostile takeover or rivalry with a competing subject that over time runs traditional maths out of (mainstream) business, sidelined to a specialist subject (as has happened to classics education today, incidentally a subject now often much enjoyed by the small number who do take it voluntarily).
Here’s the practical trade-off. Maths today has huge funding, resources, timetable time and importance attached to it, and therefore, it’s tempting to hope all of this can be diverted to a computer-based version, powering the needed fundamental subject change. On the other hand, maths’ self-importance, centrality in the curriculum and aggressive assessment makes it a very hard ship to turn. Indeed it’s harder to turn because of its scale and importance. A new subject has to find interest, teachers, classroom time and assessments or other value propositions to get a foothold—to establish itself as a valuable currency. But it has no past baggage and often enthusiastic early-adopters at all levels (students, parents, teachers, schools and even whole jurisdictions).
Coding has made a start down this route in several countries. In the UK, for example, there is a requirement to teach it in primary school. However, the time given for it is very limited, and as yet it is disjoint from the rest of the curriculum, including maths (as discussed in detail in the last chapter). Nevertheless, it’s early days, its establishment is a positive move both in its own right and as a mark of the possibility of starting a new subject. The holy grail of the maths fix would be integrating coding, maths and other distinct aspects of computational thinking into one, core computational subject.
The naming dilemma relates to the new versus change dichotomy. Takeovers may want to keep “maths” in the brand, albeit with major effort to improve its image, for example “computer-based maths”; while a competing subject will want to be named differently, for example “computational thinking” or a less encompassing but more of-the-moment term like “data science”. Which of these routes ends up taking hold is hard to predict and, I envisage, will depend a good deal on detailed politics in the jurisdictions where it takes hold first. I have held talks from both angles. Once a few early-adopter places have it up and running, I expect others will tend to follow the template they lay down.
Always Keep the Vision Alive
Whichever route is taken at whatever pace, and however hard the journey is, it’s crucial to keep the vision clear. One criticism you could level at aforementioned maths reforms is being too incremental, too tactical to keep their purpose front and centre, that is if they had sufficient vision at the start. Often they have been so concerned with next term’s tactical implementation and the compromises involved that the big picture objective is lost; immediate tactics overwhelm the strategy, and their thinking is next term, but not next decade. This is completely understandable given all the impediments I describe to reform, but has rather alienated everyone: those keen on major reform see insufficient progress to keep the flag waving and lose faith, while those who didn’t want reform anyway are annoyed by the extra work generated by the apparently pointless changes.
I am very conscious of avoiding this error. Therefore, part of my mission is to keep the vision of our core computational subject clear, even pure—as I hope this book does—whatever the needed compromises en route from time-to-time have to be. They must always be tested against and leading to the end objective of achieving a mainstream core computational subject that matches the modern, real-world use of computation with modern machinery.
12 | Is Computation for Everything?
Throughout this book, I have been banging the drum for the power of computation. We’ve looked at its real uses today in Chapter 3, its crucial role for delivering our AI age, and the consequences of all of this on fundamentally changing human education.
This chapter zooms out to ask some broader questions. Does the computational process work everywhere? If not, where not, and with what consequences? Conversely, does its scope extend beyond explicit uses—engendering effective but implicit thinking or relationships with other human constructs?
Is this a necessary part of understanding the core educational subject need? Perhaps not, but I decided this broader understanding, the connections I draw with key aspects of medicine, the law, and management and particularly where not to use computation is a helpful adjunct to our understanding of the core computational subject needed in education. It also makes clear how I do not always believe computation is the answer.
Three Unexpected Relationships to Computational Thinking
I wanted to start with relating computational thinking to some walks of life with which it is not normally directly associated, as well as unexpected (at least to me) connections with other subjects. When we earlier laid out good reasons for having a mainstream core computational subject, the third one was “logical thinking”, for want of a better description. That even without explicit computation, even when apparently outside the realm of maths or computation, we have still built up problem-solving or thinking methodologies for life. If we have identified our core computational subject well, aspects of it should show up where we’re not immediately expecting it to.
The Maths of Management
One such place is the management of organisations. Of course there are a lot of explicit computations which have to do with accounting, assets, profit and loss, share prices, projection of financial success—values of all sorts. I felt like I benefitted as a 21-year-old CEO with no formal training in these matters by having a computational background (even if not CBM!), able to learn quickly not only what the different reports might mean but which questions might be pertinent; my experience without explicit knowledge was significantly accelerated. As a counterbalance to my experience, I note that many who have been apparently unsuccessful at school maths are equally as good at such value-based management, probably more a sign of issues with maths education than their innate computational skills.
“ When discussing corporate structure with my technical colleagues I can throw up ‘Does it span the space?’ or ‘Are these groups really orthogonal?’, and they know what I mean ”
While those value-based management precursors should be an expected consequence of maths education, I’ve found many other connections too. Take the example of “basis sets” as against how you think about structuring an organisation. In geometry, you often need to come up with axes in space so that you can specify points, lines and other forms with reference to those axes. You want to be able to say things like “My point is at (3,4,5) which means you go along one axis 3 units, the next ones 4 and 5 each, all from the origin where the axes meet.” That you have 3 numbers suggests you are operating in 3 dimensions. But deciding which is the best orientation of axes, indeed how many you need, and whether they are all lengths or some are lengths and some are angles—collectively the basis set—can make a lot of difference in real life as to how hard problems are to understand and ultimately to solve.
Similar thinking is required for orientating a company. For example, do you set up UK, French and German divisions, each with a sales or marketing operation, or do you set up sales and marketing divisions, each of which has UK, French and German sections? Or some completely different organisation? Do you have a European subspace which contains those countries, with separate Americas and Asia subspaces? Or are the UK, France, Germany, the US and China all separate axes in one higher-dimensional space? Is it important for divisions to be orthogonal (in geometry, that moving along one axis is independent of moving along any of the others), and, if so, how can this be achieved? Indeed, how many dimensions of organisation are there (country, speciality and so on) and what’s the minimum number that “spans the space” (that is, which covers all possible functions)? Here’s even a place where the maths terminology was directly deployed in the corporate lexicon: should “matrix management” be adopted where—to use my earlier example—an individual might report both to the French division and to the sales division, in the way that a matrix is a structure containing numbers where the row and column position of each specifies a meaning?
Even just knowing the terminology and what it conjures up is helpful. When discussing corporate structure with my technical colleagues I can throw up “Does it span the space?” or “Are these groups really orthogonal?”, and I know they know what I mean without further description. The communication is faster and more precise. But it’s much deeper than this. The geometrical knowledge is pressing me to ask questions that might not so easily occur otherwise. It’s giving me an existing structure to compare with, logicked through for hundreds of years, with all the issues gone into precisely. Computationally thinking about management adds another approach to your toolset, an approach that particularly helps when the complexity mounts.
Maths and Law: Proof and Truth
Another comparison I’ve often found myself thinking about is between pure mathematics and law. I’m not talking here about the emerging field of computational law, where we’re explicitly using the computational process to change the workflows of law (briefly discussed in Chapter 3), but rather implicit parallels I see between thinking in maths and today’s law.
As I’ve wryly noted from time to time, they have in common that proof is considered more important than truth. Pure mathematics does not concern itself with representing the real world per se, but instead with setting up axioms and working out consequences through systems of logic that can directly “prove” these results. Whether or not the axioms or their consequences apply practically is not usually the concern or rationale behind the work; indeed, that the rationale is not orchestrated for practical application distinguishes the discipline as “pure” maths. Historically, quite a bit of what’s ended up being worked out does end up being applied to the real world, though perhaps as pure maths becomes ever more esoteric this will wane. Then again, perhaps not, as real life becomes ever more computational.
“ Not understanding the eliding of truth values is a major cause of misunderstanding in maths, law and society in general ”
Criminal law (for simplicity I’m not addressing civil law) ostensibly has a very different key purpose: of determining guilt or innocence. Little could be more viscerally about truth. And yet, under the hood, most of the core mechanism really surrounds proof. The lawyer or barrister pleading in court is using logic and axioms (from statute or by precedent) to attempt to prove that only a particular truth or range of truths can be deduced and that that truth is contrary to the law. The other side is trying to pick holes in the argument or the facts on which it is based so that it can’t be proven. They are not trying to establish the truth of what did happen per se, just sufficiently persuasive unseating of the logic, axiom seating or facts on which it is based. A judge or jury do then have to decide whether the proof holds or not—the attempted reconnection with truth.
It’s interesting to think about how many truth values are possible in judgements. For criminal law in most jurisdictions it’s classically taken as two—guilty or not guilty—though this might be arrived at after retrials, special verdicts or, in practice, financial holding over (bail) or punishment (e.g. costs of continuing). What you might think of as different end-truth values often get elided together, so, for example, it’s typical for not guilty in fact to represent not proven as well as demonstrated not to be guilty. Some jurisdictions explicitly have more resultant truth values, for example Scotland with “not proven” as a final verdict. In maths, Boolean logic is based on two truth values of true and false, which may in fact not represent well the gamut of possibilities. For example, is a =b ? If you know a =1 and b =2, then the answer is false; if you don’t know a , then it’s undefined, but if you’re using a 2-truth value system, it needs to be ascribed to one or other value, and typically it will be chosen as false. In Mathematica we have both options: a ==b (2 equals signs) ascribes 3 truth values of true, false and undefined; a ===b (3 equals signs) ascribes false unless it’s demonstrably true. Not understanding the eliding of truth values is a major cause of misunderstanding in maths, law and society in general.
Incidentally, in case you’re wondering, a=b in Mathematica (single equals) means assign b to be the same value as a . The fact that in traditional mathematical notation “= ” has all these meanings of assignment or testing equality with differing numbers of truth values can cause deep confusion. It did for me one evening when I was 15. I was in “D block” of Eton College doing my maths homework, and for hours I struggled believing there wasn’t enough information to work out a rather hard problem I’d been set. Just as I was going to bed, I reread it and realised that deep within the problem when it said “h =3”, it meant “Let h =3” not “Is h =3?”. This sort of confusion arises with hand-calculated traditional maths where you can proceed with poor specification. Instead, the specificity required to tell a computer what you want it to compute is highly beneficial to clarity of thinking. Using Mathematica forced me not to confuse different notations, better delineate the steps of the 4-step process, and in general have a much clearer picture of some architectural issues in maths—benefits of a computer-based core computational education subject which are often overlooked.
Another comparison between law and computation: there are also differing processes with some parallelism between the fields. In the Germanic law tradition, the statute defines the test of whether a case is proven. In the English or so-called common law tradition, it’s explicit statute or “common law” (effectively unwritten statute from custom) modified by the judgements or “case law” made on its basis. The law is in effect adjusted by case law as it runs. The parallelism is that you could say Germanic law follows a straighter algorithmic process, whereas English law follows more of a machine learning approach between algorithmic interventions.
As a general point across all subjects, I said I “wryly” note the preponderance of proof in these subjects, because in both cases practitioners might claim the point of proof is to guarantee truth. If you’ve proved something, it must be true. Except you might have an axiom that doesn’t fit the real situation, or you may have a bug in your proof, for example by making assumptions which in practice didn’t hold up. This is a very common problem in law—because of the complexity of real-life situations—and is also a problem with very specialised maths because there are very few people who can check the logic.
In practice there are therefore other ways you might do a good job at ascertaining the truth of a situation without being able to prove it. For example, you can sometimes run an experiment so many times in so many different cases that you can be pretty sure of the truth of the situation without what would traditionally be called a proof. This and other ways of ascertaining truth are crucial, as most practical situations are not amenable to formal proof. Even if they are, it may be extremely expensive or impractical to try to achieve it.
The confusion between proof and truth has become heavily detrimental to political discourse and progress in quite a few democracies, even outside law; improved education on these must be part of our core computational subject. A typical example is when a politician is asked whether they can “prove” nuclear power or GM crops or some other issue of the day is “safe”. Or a new maths subject will be better! I can answer easily on their behalf: no. But if I were a politician and gave such an answer, there would be immediate calls to ban the item in question. “Unless you can prove it’s safe, you must not [allow the issue]”. Problem is, you can’t prove something’s safe with the literal sense of the words, and if you rely on such proof, you will not innovate. In fact, you may end up with less safety because you couldn’t prove an innovation was safe (and even this is complex because it could be low risk of catastrophe versus higher risk of a milder problem). What you can do is to try to ascertain truth, for example by testing as many of the possible risks as you can think of and seeing if they produce bad consequences.
Public misunderstanding of these sort of issues—sections of the public, politicians and news—is in my view a crippling consequence of our maths education inadequacies. They need fixing in our new core computational subject. Strangely enough, I suspect many students would be much more interested in these big ideas of proof versus truth, law versus maths in the classroom—esoteric though such a discussion might seem—than in the calculation details of quadratics. Their engagement in these issues is critical to our societies, so it’s harder for misintentioned computational elite to mislead the next generation.
Relationship to Medicine
The process of diagnostics in all walks of life has become more challenging and often more critical to progress than in the past. There are many new options for how to proceed, some purely human, some automated. Expectations of reliability and precision have rightly increased too.
Here’s an illustration of diagnostic complexity bugging me right now. My laptop crashes every few hours and it’s been really hard to diagnose why, with its many devices, software layers, uses and changes of situations. There are certain techniques and huge complexity with a mixture of logic, observation, history taking and experience just for a situation like this. (And nowadays this reliability is totally intolerable, so reliant am I on it functioning every minute of every day).
That’s just with a laptop. With people, the diagnostic requirements are far more complex. They’ve always been complex, but today expectations are higher, and two key practicalities are changing fast: the range of possible treatments (including preventative actions) and the help which modern computing can give in a variety of ways for diagnostics. But doctors have to make major changes in their practices to be able to realise such benefits fully for their patients. We have to reengineer their training so they can incorporate modern diagnostic help in their treatment process. Like computational thinking itself, this is a case of optimising mixed human-machine competence for getting results when the machinery is radically changing.
Learning maths today has little to do with most doctors’ work beyond basic calculations needed for treatments. By contrast, learning the computational thinking process well would be helpful in familiarity with a process that—as I will describe—is deeply parallel to today’s diagnostic process. But looking into the future, both the tools and process of computational thinking will become much more central. Knowing how to run the computational process with modern computers will be core to how medicine proceeds. Indeed, you could even argue we’re entering an era of computational medicine.
Take the steps of today’s typical diagnostic process. The doctor tries to find out and define the problem they’re attempting to solve, just like computational step 1. This is often fairly tricky. Patients don’t necessarily give a clear history. Or the symptoms can be very general: “I’m feeling very tired all the time”. Next, the doctor may have some initial hypotheses as to what’s wrong which they may try to verify with more information. This could be more discussion and checks or quantitative tests. At one end of the spectrum, they may really not have much idea what’s going on, so they’ll just order a battery of tests. Or they may be pretty sure and specifically want to verify. Or they may jump to treatment to try if they’re pretty sure and the treatment isn’t too difficult. You could say that today’s diagnostic hypotheses are a bit like variants of step 2 of the computational process, where you come up with abstractions to compute that you hope can produce the answer through the other steps.
“ Human-factor mistakes are different to computer-factor mistakes and need different training and experience in their resolution”
It’s interesting to note the cost–benefit analysis across the steps in computation/medicine—spend more in step 2: abstraction/diagnosis, or more in step 3: computation/testing? (I made a cost–benefit analysis for computational thinking in Chapter 4 “Cost-Benefit Analysis of the 4 Steps”). This changed dramatically for computation and will in medicine because of automation. Increasingly, for the former, you may as well compute lots of results and see which wash because computation is cheap. Similarly, for the latter, we’re moving to an era where you may as well do lots of tests rather than spend a long time with a doctor upfront because automation means many tests have or will become far cheaper and easier to perform and analyse. But like computation, not really having a hypothesis and hoping that with endless tests (for medicine) or a pure splatter-gun of abstractions (for computation) you’ll see something doesn’t usually get you good results.
In the next generation of medicine, there’s much more potential for computation of treatment from a range of patient-specific data sources (like characteristics of their DNA or their physiological parameters) alongside a much more precise codification of symptoms. You can potentially take these and custom compute treatments, potentially even without bucketing the symptoms into a named condition or disease.
What is the role of the human doctor in all this? Much more computational or data science professional than today; able to work with and manage people and computers to get the best outcomes. They will often have to assist with extracting patient history—at least for the foreseeable future—though with much more data-based analysis. Of course there will be increasingly significant cases where patients can directly interact with an AI (at least first) and where this may work better than doing so through a doctor (for example because it’s less personal or more time can be spent). What is clear is whether patient or doctor, people must be far more sophisticated than today at knowing how to understand or request computed information alongside know-how to work with it to optimise treatment. Today most doctors rely on hypothesising from their memory of possible conditions; a lot of their training goes into this. In the future, they need to be able to work with an AI doing hypothesising but then be able to sanity check the options. This is a very different process, but many of the skills needed are the very same skills as are needed for effective computational thinking: assessment of risk, understanding of results of computation, being less deliberate in step 2 of the process of hypotheses or abstraction but having new verification possibilities in step 4—both because the range of scenarios and form of results are different, but also because styles of failure or mistakes will be different and it will take time to gain experience in them.
To put this in context, here’s an example field that’s ahead on automation, training and new failure modes: the flying of commercial or military planes. Compared to mechanical controls, the things that go wrong are different. The envelope of success is much better with computer-based control (dramatically fewer accidents per mile flown—in general a huge success story), but things go wrong, the operator can’t reason through a mechanical problem because they know how it’s constructed. Take the horrific failures in 2018 of Boeing 737 MAX planes, in which knowing details of the internals of the software code would not have helped to reason through errors in real time as against knowing which system was activated and what it was connected to. Human-factor mistakes are different to computer-factor mistakes and need different training and experience in their resolution. A renewed judgement of “trust”—including how regulation works—in a hybrid human-AI world is also important infrastructure (as discussed for trust in computers in Chapter 10).
My argument is that doctors increasingly need to be trained in computational thinking both because they will directly apply computation and because the style of thinking it engenders sets them up well for the future practice of medicine. Early on I said that I liked the “computational thinking” term for our core computation subject because it implied not only operating computation but also because of the idea that this is a way of thinking about life. Medicine and, more generally, the ability to diagnose situations are today often much improved by that computational style of thinking, whether or not computing a result explicitly is employed. In tomorrow’s AI age, that style of thinking along with explicit computing of results will be essential.
Medical training, like computational thinking training, is painfully slow to transform. Many are aware of today’s training inadequacies, far more of this automation could be deployed already, but most doctors on the ground are a long way away from implementation. The parallel, connection and intertwining with the maths fix is very real.
Knowing Where Computational Thinking Just Doesn’t Work Well
Modern computer-based maths or computational thinking have wide applicability, as I hope I have effectively promoted. But a computational approach doesn’t add value everywhere. As with any toolset, it’s important to know where it doesn’t work, not only where it does. Otherwise, you end up wasting time; or worse, being misled; or worse still, societally gnawing away at the application of reason.
Ask most of the population where the maths they studied for years works and where it doesn’t, and they’ll never have thought about it, let alone have an answer (other than “I never use it”!). Now it’s certainly the case that the traditional maths they are studying has much narrower applicability than the computer-based maths I espouse. But that’s no excuse for not addressing mistakes in applicability of the approaches learnt (e.g. where not to use the normal distribution), not just calculation errors (spotting where the wrong parameters of normal distribution were specified). Or where mathematics in general—techniques learnt or not by those students—might fail.
Can you think of any instruction you had on this at school? If not, rather shocking consequences accrue in real-life. The lesser problem is losing time and confidence: trying to apply maths erroneously, wasting time, and then being put off trying again. Much more seriously and more commonly, you may be misled by experts who claim they have computed a result when in fact maths or computation can’t in practice help and the answer or its specificity are misleading. Bogus or partial computational approaches or arguments have been an extremely dangerous trend societally, and one against which today’s mass maths education offers no inoculation or antidote. This is so serious because maths or computation have become so successful in solving so many problems that we almost take for granted that they can give us answers in every situation. Particularly troublesome are quantitative arguments where a computational approach seems like it ought to work, but in practice won’t or won’t give a balanced picture.
One such case is taking one effect in isolation of others and focussing only on that parameter when in fact it alone wasn’t at all what you intended. This often happens to avoid complexity or occasionally because of an assumption that effects are independent when they are not. For example, take the policy push some years ago in Europe (but not the US) for diesel cars to replace petrol/gasoline for better fuel economy, lower CO2 emissions and reduced global warming. This goal was good, but the policy didn’t appreciate the higher comparative NOx that diesels caused in cities, immediately affecting the health of 10,000s day to day, and apparently causing many deaths. If the computational models of actual CO2 emissions had accurately portrayed the situation (which they didn’t through wrong assumptions), you could argue they’re doing their job here: producing a result with some predictive power. I would argue that you’ve failed on step 1 of the computational process—define—because you didn’t match the problem in either relevant assumptions or effects included that you really needed to model—the best optimisation for humankind now as well as in the future—with the computation you set up, and so the whole process has failed. Many people have been hurt today by a selectivity of effect that garnered attention because of societal inability to grasp the complexity of the situation and difficulty in working out consequences. Now it’s reversed: a call to ban diesel cars when improved technology has largely levelled their pollution position with petrols.
“ With no effective, general education in computational thinking, most people can easily be misled, and they are ”
Another style of computational mistake requiring care again relates to highly complex systems with lots of effects. The more effects, the more complexity in their interaction, and in turn, the greater the likelihood of errors multiplying up or sources of errors or whole effects not being understood, or that the uncertainty of any of the effects overwhelms the central computed result to the point where you can’t really say anything. This happens over and over again in political discussions, but also can happen in predictions about the environment.
Debates pre-2016 Brexit vote are a recent UK example. There were familiar cries from the British public to politicians of “We need more information, a more informed debate”, implying “Tell us more accurately how our vote will play out—you must know!”, but then when trends or figures were presented, “You can’t believe any expert”. Unpacking these sentiments is enlightening. Effectively, the clamour was for a detailed model and computation of what leaving the EU versus staying in might mean, particularly in practical financial ways like affordability of housing. The fact is, no one knew, even approximately. In practice you can’t predict it, not with today’s methodologies. The ecosystem is too complex, with huge numbers of feedback loops and linked components, many of which, even individually, are almost unknowable. Sometimes the error bars swamp the value. In the end there’s too much variability to say anything really quantitative. You can surmise things like “There’ll be a shock if we exit”, but not its detailed consequence or even whether saying this is perturbing the consequence, e.g. is self-fulfilling.
What’s rather concerning is the gap between most people’s newfound belief in the power of computation allied with their ineptitude at being able to assess its applicability. If you go back 100 years, there wouldn’t have been any concept that such predictions could be computable. But in recent times, real-world maths and computation have in many ways been so successful for so many predictions that societally there’s an assumption we can “compute anything” or always quantitatively predict with some accuracy how decisions will play out in whatever field.
With no effective, general education in computational thinking, most people can easily be misled, and they are—a problem our new core computational subject can help to fix. I believe this educational failure is a major part of what’s caused “post-truth”. Years of apparently precise, prominent predictions with at best overstated accuracy or worse, that are just wrong. “Experts” push numbers to assume an importance beyond their ability to inform to the point where a sizeable fraction of our population, given no computational education to fall back on, no longer believes any logic, any number, any expert as presented because they’ve seen precise mispredictions come and go so often.
I remember a blind “belief in computation” starting to take hold in the 1980s, crystallised in particular for me through a conversation with a friend at school. Some early global climate predictions were starting and I was sceptical that their accuracy was justified, whether over- or underestimating the climate effects. He argued that if the predictions “made a good point” and garnered attention, it was important that scientists en masse were simplistically presenting them whether or not they really could justify their veracity. I argued that in the end this would backfire: if any of the widely accepted expert predictions failed, science, computation and logic would suffer huge rejection. Perhaps to needle my (Catholic) friend, I pointed to that church’s insistence of “knowing” the Sun orbited the Earth in a perfect circle—and the damage this had done both in actions taken (e.g. against scientists) and to its own credibility.
I believe my 1980s concerns about backfiring against “experts” have been borne out: cases abound where now even reasonable, reasoned models, predictions and experts (including for our climate) are blindly dismissed in place of unfounded expertise being blindly accepted in the 1980s.
The promulgators of predictions—politicians, campaigners and experts—certainly bear responsibility for this sort of quantitative misapplication. They get more publicity for being definitive on a “big issue” with “evidence” even if they’re massively overstating the claim or its precision and damaging the long-term credibility of their professions. Instead, they need to be prepared to give real answers like “We don’t know” or “The only prediction we know how to make assumes X, which is probably wrong”.
But a major responsibility also lies with mainstream maths education. Everyone needs experience and developed instinct in questioning models, science and computation. They need the measured scepticism which comes of experience with real, messy situations. They need today’s computational tools, manifested by ready-to-use questioning to help them pick apart expert statements—things like “What are your assumptions?”, “Why do you believe this is the basis?”, “Have you forgotten any effects?”, “What happens if there’s a small error in your opening assumption?” and so forth. They need to be versed in dangerous scenarios to look out for and take special care over. For example, often I am more likely to believe localised, short-term predictions than global long-term ones because the likelihood of massive errors in the model tend to grow very sharply with time and complexity; there’s often no control scenario either, and it takes too long to see the effects of the prediction. That’s a small example of the experience I’ve developed.
These vital topics need to be central in maths education but aren’t. They aren’t because they can’t be with the subject’s overwhelming focus on hand calculating. It’s crucial that computation does not assume an importance beyond its ability to judge through a failure of education—an ability which is, of course, growing.
How Much Further Has Computation Got to Go?
Computation has clearly delivered huge results out in the real world—despite its increasing divergence from school maths education—but how much further has it got to go? How much further can it take us? Is there ample new road for the kinds of problems it can tackle, will we see more or less today’s techniques applied in more places or, with the right education, can we see more people make better use of today’s computational provision to achieve more?
The answer to all of these is yes. Far though computation has come in the last few decades, I think it’s still fairly near the start of its road. If we were comparing where we are today in the computational revolution to the timeline of the first industrial revolution, perhaps we’d be in 1876, wondering if the telephone would be the final word in communications, or in 1863 if the inception of the London Underground would mark the start or the end of modern transportation.
This means that huge change in techniques, computational possibilities and applications are still to come. However well we reform our core computational school subject for today, we must be ready to make major changes in curriculum and technology tomorrow to continue to reflect large-scale changes in the real world (a recent example being the flourishing of machine learning). But it must also keep clear on the essence of the subject: an empowering way of thinking, a key system of problem solving using the best machinery available.
Can we get a drone shot of where we are on the computational road and see where we’re headed? Traditionally computational domains like physics and many branches of engineering have very-well-developed computational strategies that have shown great success. That’s not to say there isn’t a sea change to come, but that there’s no question computation has done a good job. These domains have often depended on scaling up pencil and paper techniques, then on structured numerical models—again a well-trodden, productive path. Both in well-structured models and simple-to-specify data analysis, computation rules today’s answer-getting process.
Where a patchier picture starts to emerge today is in fuzzy questioning of data—both because the query might be less defined or because the data has been hard to collimate into something usable in a computational process. Then there’s how you interface with the data? And crucially, do you have experience of what toolsets can be trusted to produce useful answers to which sorts of questions in what circumstance? At the time of writing, good progress is being made on the former, but—a subject of this book—almost none on the latter.
How computers interface with humans has gone through many iterations—from punched cards, to paper tape, to syntactic keyboard entry, to point-and-click, to plain language for search and our own Wolfram|Alpha computational query, to voice and so on. It’s often forgotten that (back to syntactic keyboard entry) most of these interfaces continue to be used when new ones come along; the innovation in interfaces tends to be cumulative because the new idea doesn’t work universally better after initial development.
Another issue is how you communicate computational ideas to fellow humans. Again this has gone from dense papers to light PowerPoint presentations with graphs, while at a technical level it’s gone from mathematical notation to programs. Bringing these all together is necessary when we have a far more multifaceted communication with computers. That’s been one aim of our Wolfram Language—to be what I have named internally “the trio of computational power”: programming language, a specification language across all areas of computation and a human communication language all wrapped into one. There are various facets the Wolfram Language needs to achieve this: to function in running programs; to be general enough to represent anything you want, be it a notebook document, a graphic, a differential equation or a link to another system; data, preferably in a ready-to-compute state; and to be high-enough level, plain English enough that as a person you can expect to be able to interpret what it means as a direct communication to you. We already use Wolfram Language this way to great effect, but this is not a done deal out in the world, either with our technology or with others’, and very much a current problem in enabling computation to be effective and reliable in getting answers in fuzzier-to-specify cases. These powers of computation will step-up, but the results can only be utilised positively if most people step-up in computational thinking at the same time.
13 | What’s Surprised Me on This Journey so Far
Surprisingly Radical
When I started the journey I describe in this book, I didn’t know how radical CBM’s philosophy was, how much of a change it amounted to.
I thought the observation about the need to use a computer to compute in education, as it was being used outside, was pretty obvious—something that must be obvious to all educational thinkers. Surely, it was a direction that must have been planned for, if not manifested in a large number of curricula. Perhaps I could add an extra insight here and there, and suggest a more inclusive approach to using modern computational tools that I knew better than most.
“ Shockingly, to date, I have found no other group in the world building a maths mainstream curriculum that assumes computers exist ”
But boy have I been surprised on this count. Far from being too similar to notice the difference, CBM has been too radical to contemplate. Far from finding a few outmoded topics, virtually every one—if relevant at all—is outdated or approached from the wrong viewpoint. The deeper I’ve gone into the subject, the more change seems essential. I am surprised just how deep the maths versus maths chasm is.
It’s not only change of overall content, but of its ordering too. I hadn’t realised how computational , not conceptual , complexity so determined the sequence of teaching maths topics. Nothing can be attempted until you can hand compute it even if, absent the need for that hand calculating, it’s conceptually quite simple. I’ve found asking, “Why not have integral calculus for 10-year-olds or machine learning in primary school?” helps to express this point because these both represent fairly easy-to-understand uses and applications, just with difficult or impossible hand calculating.
Shockingly, to date, I have found no other group in the world building a maths mainstream curriculum that assumes computers exist. I have searched fairly hard. Whilst many have started to claim they’re doing so, when they realise I’m talking wholesale subject reform, they agree that’s not what they’re doing and admit that they don’t know anyone else who is.
Not Just a Maths Problem
Another surprise is how often people have said to me, “...it’s not just maths. Much of what you’re saying is a problem throughout the educational system, and in most subjects”. Assessments that don’t match real-world needs (and have become the engrossing purpose), irrelevant curricula topics even for today let alone tomorrow, not keeping up with methodologies commonplace outside education, mechanical process drowning out creativity, just as jobs are more demanding of creative problem-solving and computers help more with process. They complain that education remains, unnecessarily, a proxy, not explicitly tethered to today’s uses or thinking. Funny ordering. (For example, my mother used to criticise history for not being taught more-or-less backwards because a greater fraction of more recent history is relevant to today’s world, though clearly there are key points further back that are pivotal and interesting in their similarity to today.) I can’t evaluate these criticisms well about other subjects, except from very limited personal experience. My daughter’s generation in the UK do seem to have had a broader range of topics in English, history and so on that certainly I would have found more appealing—topics like writing complaint letters, The Great Depression from an economic point of view and making and arguing a pitch rather than just doing comprehensions and learning about the Middle Ages. The sciences seem similarly done to how they were in my time. On the other hand, scoring in exams seems to have become more specific to learning by rote which words to use to describe an effect in physics, and how many adjectives to use in English—in place of the marker’s judgement.
I have responded to these questions by saying that whatever the faults of the rest of education, maths is a far bigger problem because the change of subject has been so dramatic in the outside world, because computers have brought fundamental changes to how it is carried out in a way that they haven’t for, say, history or English studies.
Cogito, Ergo Sum
Also surprising is the extent to which obsessing about the delivery mechanism and pedagogy predominates subject change, and never is this more true than when computers are introduced. Using the computer for how to learn the subject but not for doing the subject itself even though the subject is done with a computer in real-life. Our very own CBM conferences, with like-minded participants focussed on subject change and my kicking off the conference reminding them of exactly that, has discussion tending to drift every few hours to how the computer could deliver better assessments or lessons rather than how what was being learnt could fundamentally change. They fall into discussing computer-assisted maths, not computer-based maths. I am still not sure why this is. My best guess is that questioning such an embedded subject as traditional maths, whose presence and need we are all indoctrinated with from a young age, needs highly conscious effort, where instead assuming those norms is more instinctive. The instinct keeps coming back, despite one’s efforts to maintain concentration to buck it—like being asked to throw off your cultural roots when, in the end, you keep assessing all your actions with reference to that same cultural basis.
“ I had assumed those involved in technical subjects—and complaining about maths education—would be much clearer about what was wrong with it. But strikingly few are ”
This reminds me of the title I gave to one of my first airings of the computer-based maths education issue (the TEDx talk at the EU parliament in Brussels I mentioned in Chapter 10) before we’d even entitled it CBM. “I Calculate, Therefore I Am” was a take off of 17th century French philosopher Descartes’ proposition “I think, therefore I am” (neatest in Latin: “Cogito, ergo sum”). Descartes argued that doubting one’s own existence demonstrated thinking, which in turn was proof of thinking, and of your own mind. By parodying Descartes, I was suggesting we’d wrongly elevated calculating to represent thinking and used it as a rationale of being, or, at any rate, of maths. I wanted to make clear that calculating does not have equivalence to thinking, but is a way to produce answers—not a fundamental of being. It is interesting, looking back on this, how it belies a concern of calculating as the raison d’être being culturally indoctrinated.
Confusion Predominates
In general, I had assumed those involved in technical subjects—and complaining about maths education—would be much clearer about what was wrong with it. But strikingly few are, and therein lies some of the failure of reform. In many cases, it seems to be because they’ve never questioned the subject, or not since computers! They think that standards of maths understanding have decreased, so more, similar, rigorous maths is better. I count amongst this group university admissions to technical faculties, heads of large companies with technical degrees, and those in education research departments, not to mention government ministries, teachers and parents. It’s not that most are hostile, just that confusion over what’s wrong predominates. This ought not to have surprised me much. While the nub of the maths fix seems obvious to me now, it took me and my team many years to formulate it with clarity. And I was just in the right spot to do this: working every day with maths and computational technology, thinking about how to drive the former with the latter, while seeing the chasm open up between industrial use and educational reality.
The acceptance profile of CBM is slightly unexpected too. When I explain the fundamentals to someone new, it’s rare they get it first time around, however positive or well versed they are in this domain. Surprisingly often, after a period of reflection, I’ve found they seek me out and say they “think I’m right”. That they kept turning it over assuming I’m a crackpot but then come to the conclusion that I’m not! How often this delayed acceptance occurs is not only gratifying, but important to factor in to selling the idea of CBM to a wider public. One headline or newsbite isn’t going to do it, but doggedly arguing the perspective repeatedly will, I think, see many on board—many more than politicians might at first think. This can be a vote-winner for a bold government, keen to demonstrate its credentials for AI-age empowerment. But until the urgency of fundamental reform is manifest, few will take this political risk despite quite a few accepting (often excitedly) the the maths fix concept or CBM specifically. This gap might seem surprising. But I think it may also be surprising how suddenly and for what unpredictable reason the risk profile will change in favour of action and political will to make a start—with those ahead of the curve gaining particular political capital.
Speaking of confusion, perhaps my biggest personal surprise so far on this journey is how I’ve finally understood why I was so confused in my own maths education with a few key concepts: because their formulation was confused. To be clear, muddled concepts were in no way my only points of confusion—most muddle I efficiently self-generated—but they are ones where the “aha” moment has been delayed by decades. For example, I could never grasp conditional versus unconditional probabilities. The idea presented was that sometimes the chance of something happening (for example, picking a red card from a deck of playing cards) is conditional on something else (for example, whether a previously picked card was replaced or not), and in the latter case the calculation is different. My problem was not understanding when a probability was deemed conditional and when it wasn’t because I could always think of a way it is conditional on something . I could always invent a “if X doesn’t happen” before any “unconditional” probability. I hadn’t happened to think about this from college until CBM’s formulation. Now I realise all probabilities are conditional, but whether you term one as such just depends on whether you deem the conditionality significant enough to be worth having explicitly in your defining assumptions, or whether it’s such a vanishingly small chance that you can ignore it. The lack of clarity over stating assumptions in my classical probability curriculum led to my confusion, in turn not being explicit about the 4-step computational process, not “defining” sufficiently in step 1.
Blueprint for the AI Age
It’s hardly surprising that I think reformed maths is an important aspect of the educational edifice. But through this journey it has become evident how uniquely placed its reform is to underpin the wide range of reforms needed across education for the emerging 4th industrial revolution. Stepping beyond thinking, creativity, individualism of our new machines; getting the human complementing and adding value to today’s and tomorrow’s machines, not yesterday’s—a hybrid human-computer future that keeps humans in control.
Rather than just one major subject that has become disjointed from the real world, surprisingly, maths is the subject to define processes of educational reform for the AI age. If we can leap the chasm of fixing it, the process by which it’s formed, assessed, taught and integrated cross curriculum—then subjects less pivotally defining of our forthcoming age may follow suit. Fundamentally fixed maths can be the blueprint for fundamentally fixed education.
14 | Call to Action
A worldwide, fundamental change in core computational school-age education is inevitable. It is simply unsustainable to have an ever-widening chasm between the content of the core educational subject and the needs outside. This change is brought about by the extraordinary revolution in computing machinery and the resultant AI, transformations at least as fundamental as the wheel, the deployment of electricity and mechanisation of the first industrial revolution that preceded them.
What is much harder to predict than whether this change will occur is when, how and where first. Like crystal formation in a supersaturated solution, growth can start from an abrasion or impurity or, more reliably, if you introduce a small seed crystal somewhere.
My aim in this book has been to chart a path for this fundamental change—not only clarity about what’s wrong but theoretically and practically how to put it right. By so doing, I hope that the eventual and inevitable can be moved forward more quickly and in a more orderly way—that the maths fix can place the seed CBM crystal in solution—potentially affecting a generation of students.
One of the problems in garnering change has been little coherence about what’s needed. There’s been relative uniformity amongst those who want to keep things as they are, but splintering of reformers. Worse, most have not seen how fundamental a change is needed, and so have argued for milder fixes around the edges (e.g. more calculator use on today’s topics; problem led but by hand; more weight on statistics but not modern data science), which cannot cross this magnitude of chasm with all the challenging ravines of the educational ecosystem to be navigated en route.
To help to solve this, I want to collect together as wide as group as possible who agree with the key directions I have proposed in this book. If we achieve a large and diverse group from all sectors and geographies who are united on a few fundamentals of the change needed, this will be extremely powerful in lobbying to perturb the educational ecosystem for this change. We can show the magnitude of support to all levels of government, to industry, to funders. To put it another way, it will lower the risk profile for educational decision-makers to come on board because they will be able to point to this group with a clear direction, proposal and even a detailed book on the subject!
Now of course, asking you to “agree with the entirety of this book” would be ridiculous. Even the most ardent of CBM or maths fix supporters may take issue with different bits. Instead I’ve tried to write down a manifesto which captures the essence of the change needed. The idea is that it’s simple, yet sufficiently tight, so as to be meaningful in defining the change, while not being unnecessarily prescriptive. If you feel able to agree with this Campaign for Core Computational Curriculum Change, please express this at themathsfix.org/Campaign where you will find what’s below.
The Maths Fix Campaign for Core Computational Curriculum Change (MFC5 )
A Computational Utopia
If all goes to plan, where would we ideally like to be in a few decades’ time? What’s the utopian vision?
Centrally, that everyone is computationally literate (or to put it another way, functionally computational), meaning they can and choose to deploy computational thinking learnt through their school years every day—much as we do for (reading and writing) literacy. Maths has never achieved this beyond some basic arithmetic.
In a computationally utopian world, literacy and computational literacy, thinking and computational thinking, meld together. Instead of us being increasingly beholden to our computing devices (much as they have improved our quality of life), everyone can regain control by instructing them not only through swipes and clicks but through the power of universal language. Most of our populations today communicate in computational grunts, not a universal computational language—rather like animal grunts of expression without the linguistic universality of human communication. Changing this is a fundamental step forward to a future hybrid human-AI world in which the majority of our populations, not just a small elite, can prosper.
“ Most of our populations today communicate in computational grunts, not a universal computational language”
The computationally utopian core curriculum supporting this world, indeed engendering it, has human and computer (including AIs) put together symbiotically. The student should never have reason to ask “Why am I rather than my computer/AI learning to do this”? As advances come to real life, there’s only a short lag for widely used new concepts, toolsets, techniques and technology to reach education, say a maximum of 10 years. Advances in education and real life iterate to maximise human potential.
To deliver this, reconceived maths, coding and many new aspects comprise one core subject where your base learning of computational literacy and, later, higher-level computational thinking is learnt. (A renewed, optional, specialist maths subject, taken by a few, will be highly conceptual—studying great theories, proofs, the history of calculating). But every other subject has a computational element too. Styles of discourse cross-pollinate. The computational report or essay becomes a standard paradigm of the narrative, as common in history or biology as in core computational studies—even though today computational thinking has been rare in history, maths isn’t much evident in school biology and essays are rare in maths. At every learning level, computational literacy and higher-level computational thinking is applied in every subject, commensurate with the level reached in core computational studies—just like for literacy where your writing technique is assumed to progress in history as you learn more about it in English.
The modi operandi of daily life—open-ended projects, reports, presentations, real-time meetings, decision-taking (both fast and with time for more consideration) etc.—are all represented in education and all provide data for assessment. Rather than being judged, after years of study, by one grade or mark based on a few hours of exams, you carry with you a complete computational portfolio (like you might have an art portfolio) of your work, alongside a computable dataset representing all your educational achievements. Everyone’s will have warts in it, but everyone’s will give a much wider and more diverse view of their abilities. Different colleges or employers will look at different facets of those abilities, holistically and by detail—what I’d call agile metrics of success, not perfection on one lopsided, predefined set of metrics.
As we move to a hybrid human-AI world, top economic success will be marked out by a country’s move to “computational knowledge economy” rather than simply “knowledge economy”: the value will be in having a good fraction of the population operating computational thinking and knowledge, not just thinking and knowledge and not just manual labour, as the knowledge economy sought to label the previous differentiation. These are some markers around education and computational thinking in a utopian AI age.
Selected Milestones
Back down to ground, to travel our long education road towards utopia. Where are the milestones? How should we measure the success of the maths fix ? Here’s by no means an inclusive set, but I’m cherry-picking a few qualitative indicators.
One of my first is what I term the “CBM obvious” test. That people start to express, “It’s so obvious, the only question is why no one’s assumed it before”. As I’ve explained, I’ve queried this for myself; many others, after coming around to the CBM way of thinking, tell me they have too. Even if “CBM obvious” can be infused across many in the population, it doesn’t mean immediate change will occur. But it does set up the psychology of inevitability about the change. It means that proposed changes will be measured against it, that it will be harder to make contradictory changes and easier to make aligned ones.
Next up is confidence for serious effort to implement on the ground with sufficient “brownie points” for the students, staff and schools involved: a fundamentally reformed subject but not so much perceived risk that serious and prolonged effort can’t be put in. Assessments representing the new outcomes (not today’s maths’ outcomes) evaluate students’ progression. After this innovation-led, on-the-ground evidence milestone—which may need several rounds to be realised—there’s the possibility of pushing for more systemic changes. Part of a national curriculum for all students, or a serious option that’s at least available to most in a given jurisdiction.
“ A relatively small computational elite is increasingly powerful in controlling our destiny—some very positively, some not—just as the literate elite were a few centuries ago ”
A subsequent milestone is internationalising the new core computational subject. Move from one jurisdiction to rollouts in many, at least in one specific segment of the curriculum. In parallel, there’s the need to broaden from one specific segment to an inclusive through school age rollout and, crucially, with a multitude of contexts at all levels. Not one problem set fits all, but each individual engaged in their chosen contexts. That means materials ready to roll to cover the same computational areas but with very different subjects and the framework for enabling this to be taught en masse.
A transposition of this milestone, and a milestone in its own right, is when our new core computational subject becomes infused in all other school subjects, powering a computational approach just like reading and writing infuses and is assumed with increasing sophistication through years of schooling for all subjects. Or we may see a breakdown of siloed subjects, into cross-curricula projects with a computational thinking approach utilised across projects.
A pivotal milestone is when the new subject becomes the norm—enshrined as a right of education, like literacy, that is part of what the world strives to achieve for every human, a human welfare right.
If you are a policymaker or politician, this might sound impossible, too high a risk, not worth your effort. But before you dismiss it or your potential role in it, realise that it is one of the most remarkable changes you can be part of—something you can look back on and say you achieved in a sea of adjustments to the status quo. Something that really moved the bar for humankind. Something akin to the march to universal education in the 19th century, which likewise seemed a crazy aspiration at the time but in the early 21st century is sacrosanct, and closer than ever to being realised.
Urgency: The Need for a New Enlightenment?
There’s real urgency to starting today.
It’s not just about who can get the best jobs, but societal cohesion effects we’re seeing now—hollowing out of the middle class, extremism, reasoned approach—elements of which can be traced back to the problems I describe in this book.
We have already ended up with a computationally driven banking crisis and data science–driven incredulity in recent politics. Now there’s little belief in any expert because there’s no basis from education for most to distinguish good computational arguments from bad. Predictions passed off as having the power of computation and quantification without any of the logic or reality. A relatively small computational elite is increasingly powerful in controlling our destiny—some very positively, some not—just as the literate elite were a few centuries ago.
The urgency is to expand the size of this group, or we are in danger of entering a new pre-Enlightenment era where hocus-pocus trumps logical thought because there’s asymmetry of key knowledge for decision-making and relevant thinking—this time computational thinking. A huge amount of data is available, sophisticated models and computing power, to everyone, but only a few know how to get power from its use.
I trust I have made it clear throughout this book the sort of intervention that should occur. The stark summary would be the imposition of universal computational thinking education. Education that amongst other toolsets covers modern computation, including data science—not just its calculation but cause and correlation, risk and future expectations, how to be sceptical of data, models, simulations, how to reason computationally—centrally integrating up-to-date technology.
I have long argued for such a change in core subject, and now argued it at length and in some detail in this book. What I hadn’t appreciated until recently is the urgency. Not just an urgency for better jobs and more life enrichment, but of enfranchisement. Of social cohesion. Of security.
Bring on The New Enlightenment.
Appendix 1
What Can I Do Now?
Given the position the world is in today, what’s actionable for you now given your role? Get the outline below or visit themathsfix.org/WhatCanIDoNow for links, materials and up-to-date details.
Students (Including Adults)
Teachers
Parents
Additional to student and teacher actions:
College/University
Policymakers
Employers
Everyone
Appendix 2
Required Outcomes from Core Computational Thinking
Our draft list of outcomes arranged in 11 dimensions to act as the tethering of learning for core computational thinking:
Whole Process Outcomes:
CP Confidence to Tackle New Problems
Students show confidence to attempt solutions to new problems by application of the four-step process. They use the problem-solving process as a mechanism to overcome hard-to-handle or unknown scenarios and can adapt previously learned methods, concepts and tools to new contexts. They are able to overcome sticking points in the process and teach themselves new tools as the need arises.
CPr Recalling the four-step process
Knowing the names and sequence of the four steps.
CPa Applying the four-step process
Showing knowledge of the purpose of each step and being able to manage the process through to a solution or conclusion.
CPm Managing the process of breaking large problems into small problems
Having the confidence to manage a problem larger than the student thinks they can do or has experience of solving. Being able to recombine all of the smaller problems to form a solution to the large problem.
CPt Applying existing tools in new contexts
Being able to use a tool you have learnt in a context different from where it has been learnt. Having the confidence to adapt the tool to a new purpose.
CPk Knowing how to teach yourself new tools
Knowing where to find guidance on the use of a new tool. Being able to follow instructions or an algorithm.
CPi Interpreting others’ work
Reading reports from other sources. Understanding problem solutions that others have proposed. Having confidence to question source
IF Instinctive Feel for Computational Thinking
Students are able to use their experience to know when something just “smells” wrong. They are aware of common errors made and have a working mental knowledge of the use of concepts and tools.
IFu Identify the usefulness of computational thinking for a given real-world problem
When presented with a fuzzy situation, students can identify whether computational thinking effectively applies or not.
IFp Assessing the plausibility of computational thinking or mathematical concepts being useful
When presented with a fuzzy situation, students can propose ideas of areas of maths that might apply or be clear that maths cannot effectively help.
IFf Identifying fallacies and misuse of mathematical concepts
Identifying flaws in logic or improper application of concepts.
IFr Having a feel for how reliable a model will be
Having a gut feel for the model and whether it takes into account all the effects that are fundamental to a useful prediction.
Understanding that a given problem’s time frame, the number of variables involved and the breadth of concepts applicable all affect the complexity and difficulty in building an accurate model.
Appreciating how uncertainties propagate.
IFe Estimating a solution of the defined problem
Estimating solutions before beginning the problem-solving process. Anticipating the structure of the solution to expect. Structures include: number of dimensions, periodicity, distribution, topology, piecewise nature, constant/variable, domain and time sensitivity.
CV C ritiquing and Verifying
Critiquing is a consideration of what could possibly be wrong with your process or solution. Asking the questions: Where? When? Why? What? Who? It is a constant process of scepticism towards results, from unexpected results to expected results. Verifying is comparing against a hypothesis to confirm an answer and being able to justify the result.
CVa Quantifying the validity and impact of the assumptions made
For the assumptions stated in DQ, comparing the relative probability of each being invalid and the impact that this would have on the method or solution.
CVl Quantifying the validity and impact of tools and concepts chosen
For the tools and concepts chosen, comparing the relative probability of each being invalid and the impact that this would have on the method or solution.
CVc Identify the usefulness of computational thinking for a given real-world problem
Division by zero. Implications of sign changes. Accuracy limitations.
CVm Listing possible sources of error from concepts’ limitations
For the concepts used, list the circumstances in which they would not apply or the extent to which they begin to fail at extremes.
CVe Identifying systematic and random error
Spotting that the actual methods used for a solution are wrong. Identifying reasons for an unexpected output dependent upon certain conditions.
CVt Being able to corroborate your results
Appeal to different methods. Verify that the final model produces the same output as the combined individual components. Test on an independent dataset.
CVr Qualifying reliability of sources
Determine the source of data collection, the source of a model to use, the research behind a particular method. Understand the criteria for assessing whether a source is reliable.
CVd Deciding if the results are sufficient to move to the next step, including whether to abandon
All through the problem-solving cycle, deciding whether the current progress is sufficient to move forwards, repeat the cycle or abandon the process.
GM Generalising a Model/Theory/Approach
Once a model has been built for a specific purpose, looking further afield for instances where the model may apply or providing sufficient documentation for others to adapt the model for their purpose.
GMi Identify similarities and differences between different situations for the purposes of abstraction
Identify similar structures, dimensions, flow or patterns between two problems or contexts.
GMv Taking constants from initial model and making them variable parameters
Broadening the application of the model/solution by releasing constraints or varying assumptions made.
GMw Being able to draw wider conclusions about the behaviours of a type of problem
Using experience of a concept or tool to extrapolate or extend its use. Testing what happens at extremes or at key points for the dependent variables.
GMg Implementing a generalised model as a robust program
Providing details and limits of the assumptions made and the variables involved. Providing documentation for reference and thorough testing of the model.
CC Communicating and Collaborating
Communicating and collaborating is a continual process that happens throughout all stages. Students use media fit for the purpose and combine multiple representations effectively for the intended audience to be able to follow the ideas presented. C
CCv Distilling or explaining ideas visually
Constructing or using visual explanations of ideas during the problem-solving cycle. Small scale, informal sketches or diagrams that allow progress to be made. These may be in the form of the structure of the problem, connections or relationships between variables, trends (the shape of data), positional references, dimensionality, showing how the problem changes from one state to the next.
CCp Distilling or explaining ideas verbally
Briefly explaining reasons, describing an approach to a solution or interpreting an output they are given. The ability to form a verbal description of the point they are trying to make.
CCd Distilling or explaining ideas through written description
Similar to CCp but communicating through written text. Small, individual pieces, a few lines to explain an idea.
CCc Using vocabulary, symbols, diagrams, code accurately and appropriately for your audience
At the correct level for technical understanding, to communicate an idea, to advance understanding, to communicate your findings.
CCb Choosing the best form of communication for a given purpose
Combining multiple forms of media as necessary to convey the ideas and solutions.
CCr Structuring and producing a presentation or report
Organising a clear account of the problem, how it was solved and its solution. Written at a level suitable for the audience intended.
CCg Being able to work effectively in a group to solve a problem
Understand how to iterate a problem in a group and give opinions when appropriate.
CCf Deciding which facts support or hinder an argument
Being able to identify those facts that support your case and those that do not. Defending opinions and inferences made in real time; debating.
CCi Understanding and critiquing ideas presented to you
Being able to identify flaws or gaps in an explanation. Being able to ask effective questions to improve your understanding.
CCq Using techniques for questioning, interrogation, cross examining
Being able to draw out the information that you want.
Individual Step Outcomes:
DQ Defining the Question
Students begin the problem-solving process by organising the information needed to solve the problem and identifying suitable smaller tasks that can be solved. They understand assumptions and use them effectively to aid progress on the solution.
Define questions: Step 1 of the Computational thinking process
DQf Filtering the relevant information from available information
Identifying dependencies related to the problem.
DQm Identifying missing information to be found or calculated
Identifying dependencies related to the problem about which there is no information.
DQq Stating precise questions to tackle
Efficiently presenting the problem to be solved, with an accurate definition of the scope and nature of the problem and variables involved.
DQa Identifying, stating and explaining assumptions being made
Clearly states assumptions that have been made and the reasons why. Assumptions are made to avoid complexity in the problem setup or to avoid irrelevant solutions. Care should be taken that assumptions are not made to avoid computational complexity as is often done without a computer. Consideration of the likelihood of an assumption is sometimes necessary as the list of all possible assumptions could be very long.
AC Abstracting to Computable Form
Students begin the abstraction phase by taking their precise questions and working out strategies or concepts to explore. They organise their information and identify the relevant concepts and their suitability for the purpose.
Abstract to computable form: step 2 of the Computational thinking process
ACp Identifying the purpose of the abstraction
Reduce the amount of information, create linkages, state the reason for it
ACd Creating diagrams to structure knowledge
Organising the information related to a given problem to make applicable concepts easier to identify. Making connections between concepts or data, organising the flow or dependencies of variables involved in the problem. Links to CCv.
ACc Identifying relevant concepts and their relationship
Listing concepts and filtering down to those which may apply. Making connections amongst the concepts.
ACr Understanding the relative merits of the concepts available
Comparing the choice of concepts for this abstraction.
ACa Being able to present alternative abstractions
Diagrams, symbolic representations (programs, expressions), structure information (tables, lists, matrices).
C Concepts
Concepts are what you want to get done (hang a picture, solve an equation, describe an event’s probability…). Tools are what you want to use to do it (glue, nail, screw, graph, formula, normal distribution…). Most concepts begin life with one tool; you invent the concept for a given problem and a tool to fix that. Though retrospectively, people might collect a number of tools and create an umbrella concept to cover them.
Abstract to computable form: step 2 of the computational thinking process
C1 Being able to describe the concept
Describing the structure of the concept and giving examples of its application, purpose and limitations.
C2 Recognising whether the concept applies
For the chosen concept in the context of the problem.
C3 Knowing which tools are relevant to the concept
For the chosen concept in the context of the problem, including where there are no tools available for particular cases: the solution of a quintic equation, for example.
C4 Having intuition for the relative merits of the concept
For the chosen concept in the context of the problem compared to other possible concepts that may be of use in this context.
T Tools
Tools take the form of functions, methods or processes that enable a conversion from the abstracted form of the defined question into a form that is useful in answering the question. The tool may not necessarily be computer based. The most efficient manifestation of the tool for the purpose should be chosen.
Abstract to computable form: step 2 of the computational thinking process
Tb Having intuition about the tool’s behaviour
Knowing how the tool behaves in a wide variety of contexts. Understanding its strengths, weaknesses and competitive advantage under certain circumstances.
Ti Composing appropriate and accurate input for the tool
Organising data into the correct format, changing units, limiting domains, setting accuracies, ordering, filtering, setting the options required.
Ta Applying the tool or demonstrating experience of its application
Knowing how to run or evaluate the tool to produce a result.
Tc Being aware of comparable tools
Related tools to this tool only. Tools that achieve similar aims without being a direct replacement.
Tr Understanding the relative merits of different tools for use in the context
Related tools to this tool only. There is a possible feedback loop: if your tools are not good enough for the job, you may need to jump concept
MC Managing Computations
The computation phase begins with students choosing the manifestation of the tool(s) to produce a result. This may be a trivial step for one tool with a simple input but could also be organisationally complex for combinations of a number of tools. Once the computation reaches a certain size, the process of performing the computation becomes a significant consideration.
Compute answers: step 3 of the computational thinking process
MC1 Choosing an appropriate technology
Choosing between various forms of technology (hardware/software), physical machine or brain power.
MC2 Choosing between various forms of technology (hardware/ software), physical machine or brain power
Accessing documentation and using it to inform the use of the tool in the context that is required.
For code, documentation is the formal information supplied for the use of a defined function. For other types of tools, this also includes video descriptions, informal notes, help systems or websites.
MC3 Assessing the feasibility of getting a useful answer
A preflight checklist before take off. A “yes, ok” or “no go” check on the computation.
Questioning if the errors involved are going to overwhelm the result and a useful solution will not be achieved.
Questioning whether it is feasible to find the solution within a reasonable time.
MC4 Having intuition about whether the output is appropriate for the context
Not interpreting, just an instinctive feel if the output is off.
Checking variable types, dimensions and magnitudes instinctively.
MC5 Combining tools to produce results required
Constructing a computation using a combination of tools or processes to produce a solution. Linking tools together, ensuring that an output of one tool is suitable as the input of another.
MC6 Isolating the cause(s) of operational problems
Knowing systematic methods for identifying the issue. Knowing how to remove parts of the process to isolate suspect parts. Checking units, checking logic, checking structure, checking size, etc.
MC7 Resolving operational problems
Knowing what to do if the computer takes too long to calculate or cannot handle the size or accuracy needed for the computation.
MC8 Optimising both speed of obtaining results and reusability of computation
Deciding between a back-of-the-envelope quick calculation versus full reporting and delivering communicable methods. Weighing up the usefulness of spending time on documentation versus time on progression to a solution.
IN Interpreting
Students take the output of the computation stage and translate this back to the original real-world problem by relating the output to their precise question. They consider further areas of investigation as a result.
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