Unlearning objects

Yehonathan Sharvit

/l/l MANNING



MEAP Edition
Manning Early Access Program

Data-Oriented Programming
Unlearning objects
Version 2

Copyright 2021 Manning Publications

For more information on this and other Manning titles go to

manning.com

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/data-oriented-programming/discussion
https://www.manning.com/

welcome

Thank you for purchasing the MEAP for Data-Oriented Programming.

The book is written for developers having experience in a high level programming language. It could be a classic
Object Oriented language like Java or C# or a dynamically typed language like JavaScript, Ruby or Python. We
assume that you have already built (alone or in a team) a couple of web systems, either backend or frontend.

Data Oriented (DO) Programming is a programming paradigm that makes the systems we build less complex.
The cool thing is that DO is language agnostic: it is applicable to any programming language.

I discovered Data Oriented programming ten years ago when I started to code in Clojure. Since then, the quality of
my design and my code has increased significantly, and the systems I build in Clojure and in other programming
languages are much simpler and much more flexible.

DO is based on three fundamental principles that we expose briefly in Chapter 0. The principles might seem
basic at first sight, but when you apply them in the context of a production-ready information system, they become
very powerful.

Chapter 1 exposes some common pains that Object Oriented developers experience when they develop a
system. Please don't read it as a critic of Object Oriented Programming. The main purpose of Chapter 1 is to motivate
you to learn a different programming paradigm.

Starting from Chapter 2, we expose -- one by one -- the three principles of DO and their benefits in the context of
a production-ready information system.

In order to make the teachings very concrete, we demonstrate how the principles of DO are translated in code. We
have chosen JavaScript as the main language for the code snippets of the book, but the ideas are applicable to
any programming language. We have chosen JavaScript because it supports both Object Oriented and Functional
programming styles and its syntax is easy to read even for folks not familiar with JavaScript.

The book is full of diagrams and mind maps that illustrate the ideas.

The teachings of the book are conveyed through a story of an Object Oriented programmer who meets a Data
Oriented expert and learns from him how DO makes a system less complex and more flexible.

I hope that you find the conversation between the developer and the expert fun to read and that it clarifies the
teaching in the sense that the questions the developers ask the expert resonate well with the questions you ask
yourself during reading.

Each chapter closes with a famous song with modified lyrics related to the teachings of the chapter. To best enjoy
the modified lyrics, I encourage you to listen to the song on Youtube or Spotify while reading.

I truly believe that Data Oriented Programming will make you a better developer, as has been the case for me
since I discovered it ten years ago. I look forward to reading any questions or comments you may have along the
way on Manning’s liveBook Discussion Forum. Your feedback is an invaluable part of making this book the best that
it can be.

One last thing, the name of the main character of the book is: You!

-- Yehonathan Sharvit

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/data-oriented-programming/discussion
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

brief contents

INTRODUCTION

0 Principles of Data-Oriented programming

PART 1: FOUNDATIONS

1 The tendency of Object-Oriented Programming towards increased system complexity
2 Reduce system complexity by separating Code from Data

3 Manipulate the whole system data with generic functions

4 State management with immutable data

5 Highly scalable concurrency control

PART 2: IMPLEMENTATION

6 Data inspection without reflection
7 Polymorphism without Objects
8 Persistent data structures kills bugs in the egg
9 Lock free atomic data comparison
10 Write unit tests without mocking
11 Debug your programs without a debugger
PART 3: EVOLUTION
12 Write your own data manipulation tool set
13 Extend the primitive data types
14 Specify the shape of your data
15 Write unit tests that cover every possible data combination with property based testing
APPENDIX
A Immutable functions (lodash, ramda)

B Conflicting keys algorithm

©Manning Publications Co. To comment go to liveBook


https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Principles of Data-Oriented Programming

0.1 Introduction

Data-Oriented programming is a programming paradigm aimed to simplify the design and
implementation of software systems where information is at the center. Instead of designing
information systems around entities that combine data and code together (e.g. objects instantiated
from classes), DO encourages us to separate code from data. Moreover, DO provides
guidelines about how to represent and manipulate data.

The essence of DO is that it treats data a first class citizen. As a consequence, in Data Oriented
programs, we manipulate data with the same simplicity as we manipulate numbers or strings in
any other programs.

TIP In Data Oriented programming, data is a first class citizen.

Treating data as a first class citizen is made possible by adhering to three core principles. This
chapter presents at a high level the core principles of Data Oriented (DO) Programming.

The principles of Data Oriented (DO) Programming are:

1. Separate code from data
2. Represent data entities with generic data structures
3. Dataisimmutable

When those 3 principles are combined together, they form a cohesive whole as shown in Figure
0.1, that allows us to treat data as a first class citizen. As a consequence, we improve our
developing experience and makes the systems we build easier to understand.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



FP ik

OOP 1k |
p
.

SYSTEM =
MUTABLE "‘j
-
GENERIC 1
\
IMMUTABLE .i)
Figure 0.1 The principles of Data Oriented programming
TIP In a Data oriented system, code is separated from data and the data is

represented with generic data structures that are immutable.

It is important to understand that DO principles are language agnostic: One could adhere to
them or break them in:

® Object Oriented (OO) languages. Java, C#, C++...
® Functional Programming (FP) languages. Clojure, Ocaml, Haskell ...
¢ [anguages that support both OO and FP: JavaScript, Python, Ruby...

TIP DO Principles are language agnostic.

WARNING For OO developers, the transition to DO might require more of a mind shift
than for FP developers, as DO guides us from the beginning to get rid of the
habit of encapsulating data in stateful classes.

In this chapter, we are going to illustrate in a succinct way how those principles could be applied
or broken in JavaScript. We chose JavaScript for two reasons:

® JavaScript supports both FP and OOP

® The syntax of JavaScript is easy to read in the sense that even if you are not familiar
with JavaScript, it is possible to read a piece of JavaScript code at ahigh level asif it
were pseudo-code

We will also mention briefly what are the benefits that our programs gain when we adhere to
each principle and the price we have to pay in order to enjoy those benefits.

In this chapter, we illustrate the principles of DO in the context of simplistic code snippets.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



Throughout the book, we will explore in depth how to apply DO principles in the context of
production information systems.

0.2 DO Principle #1: Separate code from data

0.2.1 The principle in a nutshell

Principle #1 is a design principle that recommends a clear separation between code and data.

NOTE Principle #1: Separate code from data in a way that the code resides in
functions whose behavior does not depend on data that is somehow
encapsulated in the function’s context.

This principle might seem like a Functional Programming principle, but in fact Principle #1 is
language agnostic:

® We can break thisprinciplein FP, by hiding state in the lexical scope of afunction

® We can adhereto this principle in OO by aggregating the code as methods of a static
class

Also, Principle #1 doesn’t relate to the way data is represented. This is the theme of Principle #2.

0.2.2 lllustration of Principle #1

Let me illustrate how we can follow this principle or break it on a simplistic program that deals
with:

1. Anauthor entity with afi r st Nane, al ast Name and a number of books he/she wrote
2. A piece of code that calculates the full name of the author

3. A piece of code that determinesif an author is prolific, based on the number of books
he/she wrote

As we wrote earlier, Principle #1 is language agnostic: one could adhere to it or break it in FP or
OOP languages.

Let’s start our exploration of Principle #1 by illustrating first how we could break this principle
in OOP.

BREAKING PRINCIPLE #1 IN OOP

We break Principle #1 in OOP, when we write code that combines data and code together in
an object, like in Listing 0.1.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



Listing 0.1 Breaking Principle #1 in OOP

cl ass Author {
constructor (firstNane, |astNanme, books) {
this.firstName = firstName;
this. |l ast Nanme = | ast Naneg;
t hi s. books = books;

}
full Name() {

return this.firstName + " " + this.|astNaneg;
}

isProlific() {
return this.books > 100;

}
}

var obj = new Author("Isaac", "Asinov", 500); // |Isaac Asinov wote 500 books!
obj . ful I Nane();

BREAKING PRINCIPLE #1 IN FP

We could also break this principle without classes, in an FP style, by writing code that hides the
data in the lexical scope of a function, like in Listing 0.2.

Listing 0.2 Breaking Principle #1 in FP

function createAut hor Object (firstNanme, |astNanme, books) {

return {
full Name: function() {
return firstName + " " + | ast Nane;
o

isProlific: function () {
return books > 100;

}
}

var obj = createAuthor Object("lsaac", "Asinmv", 500); // |Isaac Asinmov wote 500 books!
obj . ful | Nanme();

ADHERING TO PRINCIPLE #1 IN FP

After having seen how this principle could be broken in OOP and FP, let’s see how we could be
compliant with this principle.

We are compliant with this principle in a FP style, when we write code that separates the code
from the data, like in Listing 0.3

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



Listing 0.3 Following Principle #1 in FP

function createAuthorData(firstNanme, |astNanme, books) {
return {
firstName: firstNane,
| ast Nanme: | ast Nane,
books: books
B
}

function full Name(data) {
return data.firstName + " " + data.l ast Naneg;

}

function isProlific (data) {
return data. books > 100;

}

var data = createAuthorData("lsaac", "Asinmov"', 500); // lsaac Asinov wote 500 books!
ful | Nane(data) ;

ADHERING TO PRINCIPLE #1 IN OOP

We could be compliant with this principle even with classes by writing code where the code
lives in static classes and the data is stored in classes with no functions, like in Listing 0.4.

Listing 0.4 Following Principle #1 in OOP

cl ass Aut horData {
constructor (firstNane, |astNanme, books) {
this.firstName = firstName;
this. | ast Name = | ast Naneg;
t hi s. books = books;

}

cl ass NameCal cul ation {
static full Name(data) {
return data.firstName + " " + data.l ast Naneg;
}
}

class AuthorRating {

static isProlific (data) {
return data. books > 100;

}
}

var data = new Aut horData("lsaac", "Asinobv", 500); // |Isaac Asinmov wote 500 books!
NarmeCal cul ati on. ful | Nane(dat a) ;

Now that we have illustrated how one could follow or break Principle #1, both in OOP and FP,
let’s explore what benefits Principle #1 brings to our programs.

0.2.3 Benefits of Principle #1

When we are careful to separate code from data, our programs benefit from:

1. Code can bereused in different contexts

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



2. Code can betested inisolation
3. Systemstend to be less complex

BENEFIT #1: CODE CAN BE REUSED IN DIFFERENT CONTEXTS

Imagine that we have in our program, beside the author entity, a user entity that has nothing to do
with authors but in regard to first name and last name, it has the same data fields as the author
entity: fi r st Nane and | ast Nane fields.

The logic of the calculation of the full name is the same for authors and users. However, in the
version with cr eat eAut hor Obj ect, we cannot reuse the code of ful | Nane on a user in a
straightforward way.

One way to achieve code reusability when code and data are mixed is to use OO mechanisms,
like inheritance or composition, to let the user and the aut hor object use the same f ul | Nane
method. In a simplistic use case it could be fine but on real world systems, the abundance of
classes (either base classes or composite classes) tends to increase the complexity of our
systems.

Another way is shown in Listing 0.5: We duplicate the code of ful | Name inside a
cr eat eUser Obj ect function.

Listing 0.5 Duplicating code in OO to avoid inheritance

function createAut hor Object (firstNane, |astName, books) {
var data = {firstNane: firstNane, |astName: |astName, books: books};

return {
full Name: function full Name() {
return data.firstName + " " + data.l ast Naneg;

}
}

function createUserbject (firstNane, |astNanme, email) {
var data = {firstNane: firstNanme, |astNanme: |astNane, usernanme: usernane};

return {
full Name: function full Name() {
return data.firstName + " " + data.lastNang;
}
Bs
}
var obj = createUserObject("John", "Doe", "john@loe.conl);

obj . ful | Name();

In the DO version, where cr eat eAut hor Dat a and f ul | Name are separate, no modifications to
the existing code (the code that deals with author) are necessary in order to make it available to
the user entity. We simply leverage the fact that the data that is relevant to the full name
calculation for a user and an author follows the same shape and we call f ul | Name on a user data.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



With no modifications, the f ul | Nanme function works properly both on author data and on user
data, as shown in Listing 0.6.

Listing 0.6 Using the same code on data entities of different types (FP style)

function createAuthorData(firstNanme, |astNanme, books) {
return {firstName: firstNane, |astName: |astNanme, books: books};

}
function full Name(data) {
return data.firstName + " " + data.l ast Nane;
}
function createUserData(firstName, |astNane, email) {
return {firstNanme: firstNane, |astNane: |astNanme, enuail: email};
}
var aut horData = createAut horData("lsaac", "Asinmov", 500);

ful | Nane(aut hor Dat a) ;

var userData = createUserData("John", "Doe", "john@loe.conl);
ful | Nane(userDat a) ;

When Principle #1 is applied in OO, we can reuse code in a straightforward way, even when we
use classes. In statically typed OO languages (like Java or C#), we would have to create a
common interface for Aut hor Dat a and User Dat a, but in a dynamically typed language like
JavaScript, it is not required.

The code of NanmeCal cul ati on. ful | Name() works both with author data and user data, as

shown in Listing 0.7.

Listing 0.7 Using the same code on data entities of different types (OOP style)

cl ass AuthorData {
constructor (firstNanme, |astNanme, books) {
this.firstName = firstName;
this. |l ast Name = | ast Naneg;
t hi s. books = books;

}

cl ass NaneCal cul ation {
static full Name() {
return data.firstName + " " + data.l ast Nane;
}
}

cl ass UserData {
constructor (firstNane, |astName, email) {
this.firstName = firstNane;

this.lastName = | ast Nane;
this.email = email;
}
}
var userData = new User Data("John", "Doe", "john@loe.conl');

NareCal cul ati on. ful | Nane(user Dat a) ;

var aut horData = new Aut horData("lsaac", "Asinmov", 500);
NameCal cul ati on. ful | Name( aut hor Dat a) ;

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



TIP When we separate code from data, it is straightforward to reuse code in
different contexts. This benefit is achievable both in FP and in OOP.

BENEFIT #2: CODE CAN BE TESTED IN ISOLATION

Another benefit of separating code from data, which is similar to the previous one, is that we are
free to test code in an isolated context.

When we don’t separate code from data, we are forced to instantiate an object in order to test
each of its methods. For instance, in order to test the ful | Nane code that lives inside the

cr eat eAut hor Obj ect function, we are required to instantiate an author object, as shown in

Listing 0.8.

Listing 0.8 Testing code when code and data are mixed requires to instantiate the full

object
var author = createAut hor ject("lsaac", "Asinov"', 500);
aut hor. ful | Nanme() === "l saac Asinmov"

In this simplistic scenario, it is not a big pain (only loading unnecessarily the code for
isProlific), but in a real world situation, instantiating an object might involve lots of

unnecessary steps.

In the DO version, where cr eat eAut hor Dat a and f ul | Name are separate, we are free to create
the data to be passed to ful | Nane as we want and test f ul | Nanme in isolation. An example is

shown in Listing 0.9

Listing 0.9 Separating code from data allows us to test code in an isolated context (FP

style)
full Nane({firstNane: "lsaac", |astName: "Asinmov'}) === "l|saac Asinmov"
If we choose to use classes, we only need to instantiate a data object. The code for i sProlific

that lives in a separate class than f ul | Nanme doesn’t have to be loaded in order to test f ul | Nare,
as shown in Listing 0.10.

Listing 0.10 Separating code from data allows us to test code in an isolated context (OOP

style)
var data = new Aut horData("lsaac", "Asinov");

NameCal cul ation. ful | Nanme(data) === "|saac Asi nov"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



TIP It’s easier to write tests when we separate code from data

BENEFIT #3: SYSTEMS TEND TO BE LESS COMPLEX
The third and last benefit of applying Principle #1 is that systems tend to be less complex.

This benefit is the deepest one but also the one that is most subtle to explain.

The type of complexity I refer to is the one which makes systems hard to understand as it is
defined in the beautiful paper Out of the Tar Pit. It has nothing to do with the complexity of the
resources consumed by a program.

Similarly, when we refer to simplicity, we mean "not complex", in other words: easy to
understand.

Keep in mind that complexity and simplicity (like hard and easy) are not absolute but relative
concepts. We can compare the complexity of two systems and argue that system A is more
complex (or simpler) than system B.

NOTE Complex in the context of this book means: hard to understand

When code and data reside in separate entities, the system tends to be easier to understand for

two reasons:

1. The scope of adata entity or a code entity is smaller than the scope of an entity that
combines code and data. Therefore, each entity is easier to understand.

2. Entities of the system are split into digoint groups: code and data. Therefore entities
have |ess relations with other entities.

Let me illustrate this insight on a class diagram of a Library management system, as in Figure 0.2
, where code and data are mixed.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion


https://github.com/papers-we-love/papers-we-love/blob/master/design/out-of-the-tar-pit.pdf

10

C ILibrary

(€ catalog | \
: \

-
[

C | Author

i C Bookltem [
B | JIII,-'

e
|

C BooklLending

Figure 0.2 A class diagram overview for a Library management system

You don’t need to know the details of the classes of this system to get that this diagram
represents a complex system in the sense that it is hard to understand. The system is hard to
understand because there are many dependencies between the entities that compose the system.

The most complex entity of the system is the Li brari an entity which is connected via 7
relations to other entities. Some relations are data relations (association and composition) and
some relations are code relations (inheritance and dependency). But the in this design, the
Li brari an entity mixes code and data, therefore it has to be involved in both data and code

relations.

Now, if we split each entity of the system in a code entity and a data entity without making any
further modification to the system, we get the diagram shown in Figure 0.3, that is made of two

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



11
disconnected parts:

® Theleft part is made only of data entities and data r elations: association and

composition
® Theright part is made only of code entities and code relations: dependency and
inheritance
C Libr'zn".rDataI * |(C | LibrarianData C CatalogCode
VAN l
VA AN ¥
C 'MemberData C CatalogData C LibrarianCode
\ ,/ P" \\'ﬂ RSN
I'. C 'BookData / C ' MemberCode C 'BookLendingCode C BookltemCode
| A —
t\ / ,I
”_ he VE
C  BookltemData C AuthorData C UserCode C 'Bookltem
I
\ /

C Bookllhen:dingData
Figure 0.3 A class diagram where every class is split into code and data entities

The new system where code and data are separate is easier to understand than the original
system where code and data are mixed: we are free to understand the data part of the system on
its own and the code part of the system on its own.

TIP A system made of disconnected parts is less complex than a system made of
a single part.

One could argue that the complexity of the original system where code and data are mixed is due
to a bad design and that an experienced OO developer would have designed a simpler system,
leveraging smart design patterns. That’s true, but in a sense it’s irrelevant. The point of
Principle #1 is that a system made of entities that do not combine code and data tends to be
simpler that a system made of entities that combine code and data.

It has been said many times that simplicity is hard. According to the first principle of DO,
simplicity is easier to achieve when we separate code and data.

TIP Simplicity is easier to achieve when we separate code and data.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



12

0.2.4 Price for Principle #1

There is no such thing as a free lunch. Applying Principle #1 comes at a price.
The price we have to pay in order to benefit from the separation between code and data is that:

1. Thereisno control on what code access what data
2. No packaging
3. Our systems are made from mor e entities

PRICE #1: THERE IS NO CONTROL ON WHAT CODE ACCESS WHAT DATA

When code and data are mixed, one can easily understand what are the pieces of code that access
a kind of data.

For example in OO, the data is encapsulated in an object. It gives us the guarantee the data is
accessible only by the object’s methods.

In DO, data stands on its own. It is transparent if you want. As a consequence, it can be
accessed by any piece of code.

When we want to refactor the shape of our data, we need to be very careful and make sure that
we know all the places in our code that access the data.

Without the application of Principle #3 that enforces data immutability, the fact that the data is
accessible by any piece of code would be really unsafe as it would be very hard to guarantee the
validity of our data.

TIP Data safety is ensured by another principle (Principle #3) that enforces data
immutability.

PRICE #2: NO PACKAGING

One of the benefits of mixing code and data is that when you have an object in hand, it’s a
package that contains both the code (via methods) and the data (via members).

As a consequence, as a developer it’s really easy to discover what are the various ways to
manipulate the data: you look at the methods of the class.

In DO, the code that manipulates the data could be everywhere. For example,
cr eat eAut hor Dat a could be in a file and f ul | Nane in another file. It makes it difficult for
developers to discover that the f ul | Nanme function is available. In some situations, it could lead

to waste of time and unnecessary code duplication.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



13

We will explore throughout the book, various ways to mitigate this drawback.

PRICE #3: OUR SYSTEMS ARE MADE FROM MORE ENTITIES

Let’s do simple arithmetic. Imagine a system made of N classes that combine code and data.
When you split the system into code entities and data entities, you get a system made of 2N

entities.

This calculation is not accurate, because usually when you separate code and data, the class
hierarchy tends to get simpler, as we need less class inheritance and composition. Therefore the
number of classes in the resulting system will probably be somewhere between N and 2N.

On one hand, when we adhere to Principle #1, the entities of our system are simpler.
On the other hand, we have more entities.

This price is mitigated by Principle #2 that guides us to represent our data with generic data
structures.

TIP When adhering to Principle #1, our system is made of simpler entities but we
have more of them.

0.2.5 Wrapping up

DO guides us to separate code from data.
In OO languages, we aggregate code in static classes and data in classes with no methods.
In FP languages, we avoid hiding data in the lexical scope of functions.

Separating code from data comes at a price: it reduces the control we have on what pieces of
code access our data and could cause our systems to be made of more entities.

But it worth paying the price because when we adhere to this principle, our code can be reused in
different contexts in a straightforward way and tested in isolation. Moreover, a system made of
separate entitites for code and data tends to be easier to understand.

After the data has been separated from the code, comes the question of how to represent the
data. That’s the theme of Principle #2.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



14

SIDEBAR DO Principle #1: Separate code from data
The Principle

Separate code from data in a way that the code resides in functions
whose behavior does not depend on data that is somehow encapsulated in
the function’s context.

SYSTEM

Benefits

1. Code can be reused in different contexts
2. Code can be tested in isolation
3. Systems tend to be less complex

Price

1. No control on what code access what data
2. No packaging
3. Our systems are made from more entities

0.3 DO Principle #2: Represent data entities with generic data
structures

0.3.1 The principle in a nutshell

When we adhere to Principle #1, code is separated from data. DO is not opiniated about the
programming constructs to use for organizing the code but it has a lot to say about how the data
should be represented. That’s the theme of Principle #2.

NOTE Principle #2: Represent the data of your application with generic data
structures.

The most common generic data structures are maps (a.k.a dictionaries) and arrays. But it is

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



15

perfectly fine to use other generic data structures (e.g. sets, lists, queues...).

Principle #2 doesn’t deal with the mutability or the immutability of the data. This is the theme
of Principle #3: Data is immutable.

0.3.2 lllustration of Principle #2

In DO, we represent our data with generic data structures (like maps and arrays) instead of
instantiating data via specific classes.

In fact, most of the data entities that appear in a typical application could be represented with
maps and arrays. But there exist other generic data structures (e.g. sets, lists, queues...) that
might be required in some use cases.

Let’s look at the same simplistic example as the one used to illustrate Principle #1: the data that
represents an author.

An author is a data entity with a fi r st Nanme, a | ast Nane and a number of books he/she wrote.

We break Principle #2 when we use a specific class to represent an author, like in Listing 0.11.

Listing 0.11 Breaking Principle #2 in OOP

cl ass Aut horData {
constructor (firstNane, |astName, books) {
this.firstName = firstNane;
this.lastName = | ast Nane;
t hi s. books = books;

We are compliant with Principle #2 when we use a map—which is a generic data structure—to
represent an author, like in Listing 0.12.

Listing 0.12 Following Principle #2 in OOP

function createAuthorData(firstNane, |astName, books) {
var data = new Map;
data.firstName = firstNane;
dat a. | ast Name = | ast Nan®;
dat a. books = books;
return data;

In a language like JavaScript, a map could be instantiated also via a data literal>>, which is a bit
more convenient. An example is shown in Listing 0.13.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



16

Listing 0.13 Following Principle #2 with map literals

function createAuthorData(firstNanme, |astNanme, books) {
return {
firstName: firstNane,
| ast Nanme: | ast Nane,
books: books

0.3.3 Benefits of Principle #2
When we use generic data structures to represent our data, our programs benefit from:

® |everage generic functions that are not limited to our specific use case
® Flexible data model

LEVERAGE FUNCTIONS THAT ARE NOT LIMITED TO OUR SPECIFIC USE CASE

There is a famous quote by Alan Perlis that summarizes this benefit very well:

It is better to have 100 functions operate on one data structure than 10 functions on 10 data
Structures.
—Alan Perlis

When we use generic data structures to represent entities, we have the privilege to manipulate
the entities with the rich set of functions available on those data structures natively in our
programming language in addition to the ones provided by third party libraries.

For instance, JavaScript natively provides some basic functions on maps and arrays and third
party libraries like lodash extend the functionality with even more functions.

As an example, when an author is represented as a map, we can serialize it into JSON for free,
using JSON. st ri ngi fy() which is part of JavaScript, as shown in Listing 0.14.

Listing 0.14 Data serialization comes for free when we adhere to Principle #2

var data = createAuthorData("lsaac", "Asinmov", 500);
JSON. stringify(data);

And if we want to serialize the author data without the number of books, we can use lodash’s
_. pick() function to create an object with a subset of keys. An example is shown in Listing
0.15.

Listing 0.15 Manipulating data with generic functions

var data = createAuthorData("lsaac", "Asinmov", 500);
var dat aWthout Books = _.pick(data, ["firstName", "l|astNane"]);
JSON. stringi fy(dataW t hout Books) ;

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion


https://lodash.com/

17

TIP When you adhere to Principle #2, a rich set of functionalities is available to
manipulate your data entities.

FLEXIBLE DATA MODEL

When we use generic data structures, our data model is flexible in the sense that our data is not
forced to adhere to a specific shape. As a consequence, we are free to create data with no
predefined shape. And we are free to modify the shape of our data.

In classical OO—when we don’t adhere to Principle #2—each piece of data is instantiated via a
class and must follow a rigid data shape. As a consequence, even when a slightly different data
shape is needed, we have to define a new class.

Take for example a class Aut hor Dat a that represents an author entity that made of 3 fields:
firstNane, | ast Name and books. Suppose that you want to add a field f ul | Nanme with the full
name of the author.

When you don’t adhere to Principle #2, you have to define a new class
Aut hor Dat aW t hFul | Nane.

However when you use generic data structures, you are free to add (or remove) fields to a map

on the fly, like in Listing 0.16.

Listing 0.16 Adding a field on the fly

var data = createAut horData("lsaac", "Asinmov", 500);

data.full Nane = "lsaac Asinov";

TIP Working with a flexible data model is particularly useful in applications where
the shape of the data tends to be very dynamic (e.g. web apps and web
services).

In Chapter 3, we will explore in detail the benefits of a flexible data model in the context of a
real world application.

0.3.4 Price for Principle #2

There is no such thing as a free lunch. Applying Principle #2 comes at a price.
The price we have to pay when we represent data entities with generic data structures is:

® Slight Performance hit
¢ Data shape needs to be documented manually

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



18

® No compiletime check that the dataisvalid

PRICE #1: PERFORMANCE HIT

When we use specific classes to instantiate data, retrieving the value of a class member is super
fast. The reason is that the compiler knows upfront how the data is going to look like and it can
do all kinds of optimizations.

With generic data structures, it is harder to optimize. As a consequence, retrieving the value
associated to a key in a map is a bit slower that retrieving the value of a class member. Similarly
setting the value of an arbitrary key in a map is a bit slower that setting the value of a class
member.

TIP Retrieving and storing the value associated to an arbitrary key from a map is
a bit slower than with a class member.

In most programming languages, this performance hit is not significant, but it is something to
keep in mind.

PRICE #2: DATA SHAPE NEEDS TO BE DOCUMENTED MANUALLY

When an object is instantiated from a class, the information of the data shape is in the class
definition. It is helpful for developers and for IDEs (think about auto-completion features).

TIP When we use generic data structures to store data, the shape of the data
needs to be documented manually.

Even when we are disciplined enough and we document our code, it may occur that we modify
slightly the shape of an entity and we forget to update the documentation.

In that case, we have to explore the code in order to figure out what is the real shape of our data.
In Part 3 of the book, we will explore how DO addresses this issue.

PRICE #3: NO COMPILE TIME CHECK THAT THE DATA IS VALID

Take a look again at the f ul | Name function that we created during our exploration of Principle
#1:

Listing 0.17 A function that receives the data it manipulates as an argument

function full Nane(data) {
return data.firstName + " " + data.l ast Naneg;

}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



19

When we pass to ful | Name a piece of data that doesn’t conform to the shape f ul | Nane
expects, an error occurs at runtime.

For example, we could mistype the field that stores the first name (fi st Name instead of
first Nane), and instead of a compile time error or an exception, we get a weird result where the

firstName is omitted from the result:

Listing 0.18 Weird behavior when data doesn’t conform to the expected shape

ful | Nane({fistName: "Issac", |astName: "Asimov"}); // it returns "undefined Asinov"

When data is instantiated only via classes with rigid data shape, this type of error is caught at
compile time.

TIP When data is represented with generic data structures, data shape errors are
caught only at runtime.

0.3.5 Wrapping up

DO guides us to use generic data structures to represent our data.

This might cause a (small) performance hit and forces us to document manually the shape of
our data as we cannot rely on the compiler to statically validate it.

But it worth it because when we adhere to this principle, we can manipulate the data entities
with a rich set of generic functions (provided by the language and by third party libraries) and
our data model is flexible.

At this point the data could be either mutable or immutable. The next principle will guide us
towards immutability.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



20

SIDEBAR DO Principle #2: Represent data entities with generic data structures
The Principle

Represent the data of your application using generic data structures
(mostly maps and arrays).

~

SPECIFIC'®
>

DATA

GENERICm:

Benefits

® |everage generic functions that are not limited to our specific use case
® Flexible data model

Price

® Performance hit
® Data shape needs to be documented manually
® No compile time check that the data is valid

0.4 DO Principle #3: Data is immutable

0.4.1 The principle in a nutshell

We are now at a point where our data is separated from our code and our data is represented

with generic data structures. Now comes the question of managing changes in our data.

DO is very strict about that and doesn’t allow any mutations to the data.

NOTE Principle #3: Data is immutable.

In DO, we manage changes in our data by creating new versions of the data.

Also, we are allowed to change the reference of a variable, so that it refers to a new version of

the data. What must never change is the value of the data itself.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



21

0.4.2 lllustration of Principle #3
Think about the number 42. What happens to 42 when you add 1 to it? Does it become 43?

No! 42 stays 42 forever!!!

Now put 42 inside an object { num 42}. What happens to the object when you add 1 to 42?
Does it become 43?

It depends on the programming language:

® In Clojure, aprogramming language that embraces data immutability, 42 stays 42
forever, no matter what.

® |n many programming languages, 42 becomes 43.

For instance, in JavaScript, mutating the field of a map referred by two variables has an impact
on both variables, as shown in Listing 0.19.

Listing 0.19 Mutating data referred by two variables impact both variables

var nyData = {num 42};
var yourData = nyDat a;

your Dat a. num = your Dat a. num + 1;
Now, myDat a. numequals 43!

According to DO, data should never change. Instead of mutating data, we create a new version
of it.

A naive (and inefficient) way to create a new version of a data is to clone it before modifying it.

For instance, in Listing 0.20 there is a function that changes the value of a field inside an object,
by cloning the object via Obj ect . assi gn provided natively by JavaScript. Now, when we call

changeVal ue on nyDat a, nyDat a is not affected: myDat a. numremains 42. That’s the essence of
data immutability.

Listing 0.20 Data immutability via cloning

function changeVal ue(obj, k, v) {
var res = bject.assign({}, obj);
res[k] = v;
return res;

}

var nyData = {num 42};
var yourData = changeVal ue(nyData, "nuni, nmyData.num + 1);

Embracing immutability in an efficient way requires a third party library like Immutable.js that
provides an efficient implementation of persistent data structures.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion


https://immutable-js.github.io/immutable-js

22

In most programming languages, there exist libraries that provide an efficient implementation of
persistent data structures.

With | mmut abl e. j s, we don’t use JavaScript native maps and arrays but immutable maps and
arrays instantiated via | mrut abl e. Map and | nmut abl e. Li st . In order to access the element of a
map, we use the get method and we create a new version of the map where one field is
modified, with the set method:

Listing 0.21 Creating and manipulating immutable data efficiently with a third-party library

var nyData = | mutabl e. Map({num 42})
var yourData = nyData.set("nunl', 43);

your Dat a. get (" nunt') is 43 but nyDat a. get (" nunit) remains 42.

TIP When data is immutable, instead of mutating data, we create a new version
of it.

0.4.3 Benefits of Principle #3

When we constrain our programs to never mutate data, our programs benefit from:

® Dataaccessto al with serenity
® Code behavior is predictable
® Equality check isfast

® Concurrency safety for free

BENEFIT #1: DATA ACCESS TO ALL WITH SERENITY

According to Principle #1: Separate code from data, data access is transparent: Any function is
allowed to access any piece of data. Without data immutability, we would need to be very
careful each time we pass data as an argument to a function. We would need to either make sure
the function doesn’t mutate the data or clone the data before we pass it to the function.

When we adhere to data immutability, none of this is required.

TIP When data is immutable, we can pass data to any function with serenity,
because data never changes.

BENEFIT #2: CODE BEHAVIOR IS PREDICTABLE

Let me illustrate what I mean by predictable by giving first an example of an unpredictable
piece of code that doesn’t adhere to data immutability.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



23

Please take a look at the following piece of asynchronous code in JavaScript.

Listing 0.22 When data is mutable the behavior of asynchronous code is not predictable

var nyData = {num 42};
set Ti meout (functi on(dat a) {

consol e. | og(dat a. num ;
}, 1000, nyData)

The value of dat a. numinside the timeout callback is not predictable. It depends whether or not
the data is modified by another piece of code, during the 1000ms of the timeout.

However, if you constrain yourself to data immutability, you are guaranteed that data never
changes and you can predict that dat a. numis 42 inside the callback!

TIP When data is immutable, the behavior of code that manipulates data is
predictable

BENEFIT #3: EQUALITY CHECK IS FAST

In a UI framework like React . j s, we frequently check what portion of the "UI data" has been

modified since the previous rendering cycle. Portions that didn’t change are not rendered again.

In fact, in a typical frontend application, most of the Ul data is left unchanged between
subsequent rendering cycles. In a React application that doesn’t adhere to data immutability, we
have no other choice that checking every (nested) part of the UI data.

However in a React application that follows data immutability, we can optimize the comparison
of the data for the case where data is not modified. Indeed, when the object address is the same,
then we know for sure that the data did not change. Comparing object addresses is much faster
than comparing all the fields.

TIP When data is immutable, we benefit from fast equality check by comparing
data by reference.

We will see in Chapter 5 how we leverage fast equality check in order to reconcile between
concurrent mutations in a highly scalable production system.

BENEFIT #4: CONCURRENCY SAFETY FOR FREE

In a multi threaded environment, we usually use concurrency safety mechanisms (e.g.
mutexes) to make sure the data is not modified by thread A while we access it in thread B.

In addition to the slight performance hit they cause, concurrency safety mechanisms is a
burden for our minds as it makes code writing and reading much more difficult.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



24

TIP When we adhere to data immutability, nho concurrency mechanism is
required: the data you have in hand never changes!

0.4.4 Price for Principle #3

There is no such thing as a free lunch. Applying Principle #3 comes at a price:

® Performance hit
®* Needalibrary for persistent data structures

PRICE #1: PERFORMANCE HIT

As we mentioned earlier, there exist implementations of persistent data structures in most
programming languages. But even the most efficient implementation is be a bit slower than the
in-place mutation of the data.

In most applications, the performance hit involved in usage of immutable data structures, is not
significant. But it is something to keep in mind.

PRICE #2: NEED A LIBRARY FOR PERSISTENT DATA STRUCTURES

In a language like Clojure, the native data structures of the language are immutable. However, in
most programming languages, adhering to data immutability requires the inclusion a third party
library that provides an implementation of persistent data structures.

The fact that the data structures are not native to the language means that it is difficult (if not
impossible) to enforce the usage of immutable data across the board.

Also, when you integrate with other third party libraries (e.g. a chart library), you need first to
convert your persistent data structure into a equivalent native data structure.

0.4.5 Wrapping up
DO considers data as a value that never changes. When you adhere to this principle, your code is

predictable even in a multi threaded environment and equality check is fast.

However, it requires a non negligible mind shift and in most programming languages, you need a
third party library that provides an efficient implementation of persistent data structures.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



25

SIDEBAR DO Principle #3: Data is immutable
The Principle
Data is immutable.

DATA

Benefits

MUTABLE |

IMMUTABLE.&]

Data access to all with serenity
Code behavior is predictable
Equality check is fast
Concurrency safety for free

Price

® Performance hit
® Need a library for persistent data structures

0.5 Conclusion

Data Oriented programming simplifies the design and implementation of information systems by
treating data as a first class citizen. This is made possible by adhering to 3 language agnostic
core principles:

1. Separate code from data
2. Represent entities with generic data structures
3. Dataisimmutable

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



26

FP ik

OOP 1k |
p
kSPEGH;IG

SYSTEM

L

MUTABLE '* |

p
k‘G ENERIC &

IMMUTABLE lﬁJ

Figure 0.4 The principles of Data Oriented programming

In this chapter we have illustrated how each principle can be applied both in FP and OO
languages. We have mentioned at a high level what are the benefits of each principle and the
price it costs to adhere to it.

Throughout the book, we will explore those principles in detail and illustrate how we apply them
as a whole in information systems.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



27

The tendency of Object Oriented
Programming towards increased system
complexity

1.1 Introduction

In this chapter, we explore the tendency of OO systems to be complex.

This complexity is not related to the syntax or the semantics of a specific OO language. It is
something that is inherent to OO’s fundamental insight that programs should be composed from
objects that consist of some state together with methods for accessing and manipulating that
state.

In this chapter, we illustrate how some fundamental aspects of OO tend to increase the
complexity of a system.

Over the years, OO ecosystems have alleviated this complexity increase by adding new features
to the language (e.g. anonymous classes and anonymous functions) and by developing
frameworks that hide part of this complexity by providing a simpler interface to the developers
(e.g. Spring and Jackson in Java). Internally, they rely on advanced features of the language (like
reflection and custom annotations).

This chapter is not meant to be read as a critics of OO programming. Its purpose is to raise

awareness of the tendency towards increased complexity of OO as a programming paradigm
and to motivate you to discover a different programming paradigm where the system
complexity tends to be reduced present, namely Data Oriented programming.

As we mentioned in Chapter 0, DO principles are language agnostic: if one choose to build a OO
system that adheres to DO principles, the system will be less complex.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



28

1.2 00 design: classic or classical?

1.2.1 Meeting with a customer

It’s Monday morning 9:00 AM, you seat at a coffee shop with Nancy, a potential customer, that
needs you to build a new library management system.

YOU: What’s a library management system in your mind?

NANCY: It’s a system that handles housekeeping functions of a library, mainly around the
book collection and the library members.

YOU: Could you be a little bit more precise?
NANCY: Sure

Nancy grabs the napkin under her coffee mug and she writes down a couple of bullet points on
the napkin:

SIDEBAR The requirements for the library management system

Two kinds of users: library members and librarians

Users log in to the system via email and password.

Members can borrow books

Members and librarians can search books by title or by author

Librarians can block and unblock members (e.g. when they are late in
returning a book)

Librarians can list the books currently lent by a member
® There could be several copies of a book

YOU: "Well, that’s pretty clear."
NANCY: When will you be able to deliver it?
YOU: If you give me a down payment today, I should be able to deliver it by next Wednesday.

NANCY: Fantastic! I’ll make you a bitcoin transfer later today.

1.2.2 The design phase

You get back to your office with Nancy’s napkin in your pocket.

Before rushing to your laptop to code the system, you grab a sheet of paper—much bigger than
the napkin—and you prepare yourself to draw the UML class diagram of the system.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



29

You are an OO programmer. For you there is no question: Everything is an object and every
object is made from a class.

Here are the main classes that you identify for the library management system:

SIDEBAR The main classes of the library management system

® |ibrary: The central part for which the system is desighed

® Book: A book

® Bookl t ent A book can have multiple copies, each copy is considered as a
book item

® BookLendi ng: When a book is lent, a book lending object is created

® \Menber : A member of the library

® Librarian: A librarian

® User: A base class for Li br ari an and Menber
® Cat al og: Contains list of books

® Aut hor: A book author

That was the easy part. Now comes the difficult part: the relationships between the classes.

After two hours or so, you come up with a first draft of a design for the library management
system. It looks like the diagram shown on Figure 1.1.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



30

O name : 5tring
O address : String

@ Catalog

@ searchisearchCriteria, query5tr) : List<Book:>
@ addBookitem(librarian: Librarian, bookitem: Bookitem) : Bookltem

Y
.
.
b *

b1y
@ Librarian

@. Book
O id : String @ blockMemberimember: Member) : Bool
O title : String @ unblockMember{member: Member) : Bool
@ addBookltem({bookltem: Booklitem) : Bookltem
@ getBooklLendingsOfMember(member: Member) : List<BookLending=

Y

*

@ Author

@ Member

@ isBlocked() : Bool
@ block() : Bool

O id : String / |
O fullName: String / | @ unblock() : Bool
! @ returnBook(bookLending: BookLending) : Bool
/ ! @ checkout{bookltem: Bookltem) : BookLending
s I -
; | ~
/ | _ - - f
| 4 47
ﬁ / - - [
| i~
| O u
|© Bookltem [ c_/ Ser
| R R
P O id : String
O id : String | ; :
e O email : String
O rackld: String : O password : String
@ checkout{member: Member) : BookLending | @ login() : Bool

I@ BookLending

O id : String
O lendingDate : date
O dueDate : date

@ islLate() : Bool
@ returnBook() : Bool
—_——

Figure 1.1 A class diagram for a Library management system

This design is meant to be very naive and by no means it pretends to cover all the features of the

system.

The design presented here doesn’t pretend to be the smartest 00 design:
experienced 00 developers would probably leverage a couple of design
patterns and suggest a much better design.

WARNING

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



31

This design serves two purposes:
1. For you - the developer - it isrich enough to start coding
2. For me - the author of the book - it is rich enough to illustrate the complexity of atypical
OO0 system

Anyway, you feel proud of yourself and of the design you produced. You definitely deserve a
cup of coffee. Near the coffee machine, you meet Dave, a junior software developer that you
appreciate.

YOU: Hey Dave! How are you doing?

DAVE: Trying to fix a bug in my code: I cannot understand why the state of my objects always
change! You?

YOU: I have just finished the design of a system for a new customer.
DAVE: Cool! Can you show me your design?

YOU: Sure.

1.2.3 UML 101

Dave follows you to your desk and you show him your piece of art: the UML diagram for the
library management system in Figure 1.1.

Dave seems really excited.

DAVE: Wow! Such a detailed class diagram.

YOU: Yeah. It’s pretty neat.

DAVE: The thing is that I can never remember the meaning of each arrow.

YOU: There are 4 types of arrows in my class diagram: composition, association, inheritance
and usage.

DAVE: Whats the difference between composition and association?
You google "composition vs association" and you read loudly to Dave:

YOU: Its all about whether the objects can live one without each other: with composition, when
one object dies, the other one dies also, while in an association relation, each object has an
independent life.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



32

TIP In a composition relation, when one object dies, the other one dies also, while
in an association relation, each object has an independent life cycle.

In the class diagram, there are two kinds of compeosition relation, symbolized by an arrow with a
plain diamond at one edge, and an optional star at the other edge:

1. ALibrary ownsacat al og: That's aone-to-one composition relation: if aLi brary
object dies, then its Cat al og object dieswithiit.

2. A Li brary owns many Menber S: That’s a one-to-many composition relation: if a
Li br ary object dies, then al its Menber objects die withiit.

C Library
* |(€ 'Member
O name : String  [®

O address : String

C Catalog

List<Book> search(searchCriteria, queryStr)
Bookltem addBookltem(librarian: Librarian, bookltem: Bookltem)

Figure 1.2 Two kinds of composition: one-to-one and one-to-many. In both cases,
when an object dies, the composed object dies with it.

TIP A composition relation is represented by a plain diamond at one edge and an
optional star at the other edge.

DAVE: Do you have association relations in your diagram?

YOU: Take a look at the arrow between Book and Aut hor . It has an empty diamond and a star
at both edges: it’s a many to many association relation.

A book can be written by multiple authors and an author can write multiple books. Moreover,
Book and Aut hor objects can live independently: the relation between books and authors is a
many-to-many association relation.

TIP A many-to-many association relation is represented by an empty diamond and
a star at both edges.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



33

-c-Bnnk

O id : String
O title : String

C  Author

O id : String
O fullName: String

Figure 1.3 Many to many
association relation:
each object lives
independently

DAVE: I see also many dashed arrows in your diagram.

YOU: Dashed arrows are for usage relations: when a class uses a method of another class.
Consider for example, at the Li brari an: : bl ockMenber () method. It calls Menber : : bl ock() .

[ C | Librarian

* Bool blockMember{member: Member)

* Bool unblockMemberimember: Member)

* Bookltem addBookitem(bookltem: Bookltem)

* List<Booklending> getBooklendingsOfMember(member: Member)

|

|

|

: Y
€' Member

* Bool isBlocked()

* Bool block()

* Bool unblock()

* Bool returnBook(booklLending: BookLending)
* BookLending checkout(bookltem: Bookltem)

Figure 1.4 Usage relation: a class uses a method of another class

TIP Dashed arrows are for usage relations: for instance, when a class uses a
method of another class.

DAVE: I see. And I guess that plain arrows with empty triangle—like the one between
Menber and User —represent inheritance.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



34

YOU: Absolutely.
TIP Plain arrows with empty triangle represents class inheritance.
| C I Member

@ isBlocked() : Bool

@ block() : Bool

@ unblock() : Bool

@ returnBookibooklending: BookLending) : Bool
@ checkout(bookltem: Bookltem) : BookLending

W

C ' User

O id : String
O email : String
O passward : String

@ login() : Bool

Figure 1.5 Inheritance relation: a class derives
from another class

1.2.4 Explaining each piece of the class diagram
DAVE: Thank you for this short UML course. Now I understand the meaning of each kind of

arrow in your diagram.

YOU: My pleasure.

DAVE: What class should I look at first?
YOU: I think you should start from Li brary.

THE LIBRARY CLASS

The Li br ary is the root class of the system.

C ) Library

O name : String

O address : Strin
//Av 9
/
//
// =
C) Librarian C) Member
€ Catalog -

* Bool blockMember(member: Member) . :gg: 'bsllzsﬂ;gdo
= List<Book> search(searchCriteria, queryStr) * Bool unblockMember(member: Member) * Bool unblock()
* Bookltem addBookltem(librarian: Librarian, bookitem: Bookltem) * Bookltem addBookltem(bookltem: Bookltem) - A

ol n i P | * Bool returnBook(bookLending: BookLending)

List<Booklending:> getBaakl : Member) = BookLending checkout(bookltem: Bookltem)

Figure 1.6 The Library class

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



35

In terms of code, a Li br ary object does nothing on its own, it delegates everything to objects it
OWns.

In terms of data, a Li br ary object owns:

1. Multiple Menber objects
2. MultipleLi br ari an objects
3. A single Cat al og object

LIBRARIAN, MEMBER AND USER CLASSES

Li brari an and Menber who both derive from User .

C ' Member C

Librarian
g ibslﬁlokc[I;ng[) :IEDDI @ blockMember(member: Member) : Bool
. ur?l‘:uclnclét)?gnol @ unblockMember(member: Member) : Bool
@ returnBook(bookLending: BookLending) : Bool @ addBookkIterstonk:;cem: I;onl-‘.ltemij: B.nokltetrl'n s kLendi
© checkout(bookitem: Bookltem) : BookLending @ getBookLendingsOfMember{member: Member) : List<BooklLending>

< yZ
-,
\\ //
.,
N S/
2\ /5
C  User
O id : String

O email : String
O password : String

@ login() : Bool

Figure 1.7 Librarian and Member derive from User

The User class represents a user of the library.

1. Interms of data members, it sticks to the bare minimum: it hasai d, emai | and
passwor d (no with security and encryption for now).

2. Intermsof code, it can login vial ogi n()

The Menber class represents a member of the library.

1. Itinheritsfrom User
. Interms of data members, it has nothing more than User
. Interms of code, it can:
A. Checkout abook viacheckout ()
B. Return abook viar et ur nBook()
C. Block itself viabl ock()
D. Unblock itself viaunbl ock()
E. Answer if itisblocked viai sBl ocked()
. It owns multiple BookLendi ng objects
. It uses Book! t emin order to implement checkout ()

w N

[SaIF N

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



36

The Li br ari an class represents a librarian.

1. It derivesfrom User

In terms of data members, it has nothing more than User

3. Interms of code, it can:
A. Block and unblock a Mermber
B. List the book lendings of a member via get BookLendi ngs()
C. Add book itemsto the library via addBook| t ent()

4. |t uses Menber in order to implement bl ockMenber (), unbl ockMenber () and
get BookLendi ngs()

5. It uses Book! t emin order to implement checkout ()
6. It uses BookLendi ng in order to implement get BookLendi ngs()

N

THE CATALOG CLASS

The Cat al og class is responsible for the management of the books.

C | Catalog

* List<Book> search(searchCriteria, queryStr)
* Bookltem addBookltem(librarian: Librarian, bookltem: Bookltem)

ra
&
&
&
&

- L{ *
C ' Librarian -
: - C ' Book
* Bool blockMember(member: Member) O id - Strin
* Bool unblockMember(member: Member) O t'tld -t g
* Bookltem addBookltem(bookltem: Bookltem) ISEELEIING
* List<Booklending> getBooklLendingsOfMember{member: Member)

Figure 1.8 The Catalog class

In terms of code, a Cat al og object can:

1. Search booksviasearch()
2. Add book itemsto the library via addBookl t ent()
A. ItusesLi brarian in order to implement addBook! t em

In terms of data, a Cat al og owns:

1. Multiple Book objects

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



37

THE BOOK CLASS

C Book

O id : String
O title : String

*

*

C | Bookltem

C Author

Oid : String
O fullName: String

0 id : String
O rackld: String

* Booklending checkout(member: Member)

- C BooklLending

0 id : String
0 lendingDate : date
O dueDate : date

* Bool isLate()
* Bool returnBook()

Figure 1.9 The Book class

In terms of data a Book object:

1. Interms data members, we stick to the bare minimum: it hasai d,andatitle
2. Itisassociated with multiple Aut hor objects (A book might have multiple authors)
3. It owns multiple Book! t emobjects, one for each copy of the book

THE BOOKITEM CLASS
The Bookl t emclass represents a book copy. A book could have many copies.
In terms of data a Book! t emobject:
1. Interms data members, we stick to the bare minimum: it hasai d, and ar ackl d (for its
physical location in the library)

2. It owns multiple BookLendi ng objects, one for each time the book is lent

In terms of code:

1. It can be checked out viacheckout ()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



38

1.2.5 The implementation phase

After this detailed investigation of your diagram, Dave compliments you.
DAVE: Wow! That’s amazing.
YOU: Thank you.

DAVE: I didn’t know people were really spending time to write down their design in such
details, before coding.

YOU: I always do that. It saves me lot of time during the coding phase.
DAVE: When will you start coding?
YOU: When I finish my coffee.

You look at your coffee mug and it is full (and cold). You were so excited to show your class
diagram to Dave that you forgot to drink your coffee.

1.3 Sources of complexity

Before you start coding, and while you prepare yourself another cup of coffee, I would like to
challenge your design. It might look beautiful and clear on the paper but I am going to claim that
this design is too complex.

It’s not that you picked the wrong classes or that you misunderstood the relationships between
the classes. It’s much deeper. It’s about the programming paradigm you chose to implement the
system. It’s about the Object Oriented paradigm. It’s about the tendency of OO to increase the
complexity of a system.

TIP 00 has a tendency to create complex systems.

Like we mentioned in Chapter 0, the type of complexity I refer to is the one which makes
systems hard to understand as it is defined in the beautiful paper Out of the Tar Pit. It has
nothing to do with the complexity of the resources consumed by a program.

Similarly, when I refer to simplicity, I mean not complex, in other words: easy to understand.

Keep in mind that complexity and simplicity (like hard and easy) are not absolute but relative
concepts. We can compare the complexity of two systems and argue that system A is more
complex (or simpler) than system B.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion


https://github.com/papers-we-love/papers-we-love/blob/master/design/out-of-the-tar-pit.pdf

39

NOTE Complex in the context of this book means: hard to understand

As we mentioned in the introduction of this chapter, there are many ways in OO to alleviate the
complexity. The purpose of this book is not be a critics of OO. The purpose is to present a

programming paradigm called Data Oriented Programming (DO), that tends to build systems
that are less complex. In fact, the DO paradigm is compatible with OO and if one choose to
build a OO system that adheres to DO principles, the system will be less complex.

TIP DO is compatible with 00.

According to DO, the main sources of complexity of your system—and of many OO
systems—are:

1. Code and data are mixed

2. Objects are mutable

3. Dataislocked in objects as members
4, Codeislocked into classes as methods

In the remaining sections of this chapter, we are going to illustrate each of the above
aspects—summarized in Table 1.1—in the context of the library management system and explain
in what sense it is a source of complexity.

Table 1.1 Aspects of Object Oriented programming and their impact on increased system
complexity

Aspect Impact on increased complexity

Code and data are mixed Classes tend to be involved in many relations

Objects are mutable Extra thinking when reading code

Objects are mutable Explicit synchronization on multi-threaded environments
Data is locked in objects Data serialization is not trivial

Code is locked in classes Class hierarchies are complex

1.4 When code and data are mixed, classes tend to be involved in
many relations

One way to assess the complexity of a class diagram is to look only at the entities and their
relationships (ignoring members and methods) as in Figure 0.2.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



40

{E'-Librar\r

(€ catalog | \
N | 4

#

4

C BooklLending

Figure 1.10 A class diagram overview for a Library management system

When we design a system, we have to define the relationships between different pieces of code
and data: that’s unavoidable.

TIP In 00, code and data are mixed together in classes, data as members and
code as methods.

From a system analysis perspective, the fact that code and data are mixed together makes the
system complex in the sense that entities tend to be involved in many relationships.

In Figure 1.11, we take a closer look at the Menber class. Menber is involved 5 relations: 2 data
relations and 3 code relations.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



41

Data relations:

1. Li brary has many Menber s
2. Menber has many BookLendi ngs

Code relations:

1. Menber extends User
2. Li brari an uses Menber
3. Menber usesBookl tem

| C | Librarian

C ILibrary . * c IMember

L A
(C User (€ | BookLending (I | Bookltern

Figure 1.11 The Member is involved in 5 relations

Imagine for a moment that we were able somehow to split the Menber class into two separate

entitites:

®* Menber Code for the code
® Menber Dat a for the data

Instead of a Menber class with 5 relations, we would have the diagram shown Figure 1.12, with:

® A Menber Code entity with 3 relations
® A Menber Dat a entity with 2 relations

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



42

I(E\I "

RS

@l Librarian

|
|
|
Y
@ MemberCode

@. MemberData

=

Figure 1.12 A class diagram where Member is split into code
and data entities

The class diagram where Menber is split into Menber Code and Menber Dat a is made of two
disconnected parts, where each part is easier to understand than the original diagram.

Now, let’s split every class of our original class diagram into code and data entities. The
resulting diagram is shown in Figure 0.3: Now, the system is made of two disconnected parts:

1. A part that involves only code entities
2. A part that involves only data entities

@ILihraeratal * @Lihrariannata @ICatalogCode

7 i

@. MemberData @ CatalogData @. LibrarianCode

@I BookLendingCode @I BookitemCode

\ @. BookData

VTN fy/

@ BookltemData @IAuthorData I’{H\l UserCode C‘,I Bookltem

=

@ BookLendingData

Figure 1.13 A class diagram where every class is split into code and data entities

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



43

TIP A system where every class is split into code and data is made of two
disconnected parts where each part is simpler than a system where code and
data are mixed.

The resulting system—made of two disconnected sub-systems—is easier to understand than
the original system. The fact that the two sub-systems are disconnected means that each
sub-system can be understood separately. We can first understand the data part of the system
and then the code part of the system (or the opposite).

The resulting system not simpler by accident, it is a logical consequence of separating code from
data.

TIP A system made of disconnected simple parts is less complex than a system
made of a single complex part.

1.5 When objects are mutable, understanding code requires extra
thinking

You might be a bit tired after the system-level analysis that we presented in the previous section.

Let’s get refreshed and look at some code.

Please take a look at the code shown in Listing 1.1: we get the blocked status of a member and
we display it twice.

If I tell you that when I called di spl ayBl ockedSt at usTwi ce, the program displayed t r ue on
the first consol e. 1 og() call, can you tell me what the program displayed on the second

consol e. | og() call?

Listing 1.1 Really simple code

cl ass Menber {
i sBl ocked = fal se;

di spl ayBl ockedSt at usTwi ce() {
var isBlocked = this.isBlocked;
consol e. | og(i sBl ocked);
consol e. | og(i sBl ocked);

}

var nenber = new Menber ();
nenber . di spl ayBl ockedSt at usTwi ce() ;

"Of course, it displayed t r ue again", you tell me.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



44

And you are right.

Now, please take a look at a slightly different pseudocode as shown in Listing 1.2: here we
display twice the blocked status of a member without assigning a variable.

Same question as before: If I tell you that when I called di spl ayBl ockedSt at usTwi ce, the
program displayed t rue on the first consol .1 0g() call, can you tell me what the program
displayed on the second consol . | og() call?

Listing 1.2 Apparently simple code

cl ass Menber {
i sBl ocked = fal se;

di spl ayBl ockedSt at usTwi ce() {
consol e. |l og(this.isBlocked);
consol e.l og(this.isBl ocked);

}

var nenber = new Menber ();
menber . di spl ayBl ockedSt at usTwi ce() ;

The correct answer is: in a single threaded environment, it displays true while on a multi

threaded environment it’s unpredictable.

Indeed, in a multi threaded environment, between the two consol e. | og() calls, there could be a
context switch and the state of the object could be changed (e.g. a librarian unblocked the
member).

Actually, as we showed in Chapter 0, with a slight modification, the same kind of code
unpredictability could occur even in a single threaded environment like JavaScript, when a data
1s modified via asynchronous code.

The difference between the two code snippets is that:

® Inthefirst snippet, we access twice a boolean value which isa primitive value
® |nthe second snippet, we access twice amember of an object

TIP When data is mutable, code is unpredictable.

This unpredictable behavior of the second snippet is one of the annoying consequences of the
fact that in OO, unlike primitive types who are usually immutable, object members are mutable

One way to solve this problem in OO is to protect sensitive code with concurrency safety
mechanism like mutexes, but it introduces issues on its own like a performance hit and a risk of
deadlocks.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



45

We will see later in the book that DO treats every piece of data in the same way: both primitive
types and collection types are immutable values. This "value treatment for all citizens" brings to
DO developers' minds a lot of serenity. As a consequence, more cells of DO developers' minds
are available to handle the interesting pieces of the applications they build.

TIP Data immutability brings to DO developers' minds a lot of serenity.

1.6 When data is locked in objects as members, data serialization is
hot trivial

Now, you are really tired and you fall asleep at your desk...
You have a dream about Nancy, your customer.

In this dream, Nancy asks you to make the library management system accessible via a REST
API using JSON as a transport layer.

You need to implement a / sear ch endpoint that receives a query in JSON format and return
results in JSON format.

An input example of the / sear ch endpoint is shown in Listing 1.3.

Listing 1.3 A JSON input of the / sear ch endpoint

{

"searchCriteria": "author",
"query": "al bert"

An output example of the / sear ch endpoint is shown in Listing 1.4.

Listing 1.4 A JSON output of the / sear ch endpoint

"title": "The world as | see it",
"aut hors": [

{
}

"full Nane": "Al bert Einstein"

“title": "The Stranger"”,
"aut hors": [

"full Nanme": "Al bert Canus"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



46

You would probably implement the / sear ch endpoint by creating three classes similarly to what
is shown in Figure 1.14 (Not surprising: everything in OO has to be wrapped in a class. Right?):

1. SearchControl | er that isresponsible for handling the query
2. Sear chQuery that convertsthe JSON query string into data
3. SearchResul t that convertsthe search result data into a JSSON string

The Sear chCont r ol | er would have a single handl e method with the following flow:

1. Create aSear chQuery object from the JSON query string
2. RetrievesearchCriteriaandqueryStr fromthe Sear chQuery object

3. Call thesear ch method of the cat al og: Cat al og withsearchCriteriaandqueryStr
and receives books: Li st <Book>

4. Create aSear chResul t object with books
5. Convert the Sear chResul t object to a JSON string

€ SearchController

String handle(searchQuery: String)

- W =N
L
C ' SearchResult C SearchQuery
C  Catalog — -
- searchCrlgerla: String
List<Book> search(searchCriteria, queryStr) g:ﬁ;‘h&i;gﬁgaakg List<Book>) query: String
/g’ SearchQuery(jsonString: String)

C Book
O id : String
O title : String

Figure 1.14 A class diagram where every class is split into code and data entities

What about other endpoints, for instance allowing librarians to add book items through
/ add- book-i t en?

Well, you would have to repeat the exact same process and create 3 classes:

1. AddBookl t emCont rol | er that isresponsible for handling the query
2. Bookl t enQuery that convertsthe JSON query string into data
3. Bookl t enResul t that converts the search result data into a JSSON string

The code that deals with JSON deserialization that you wrote previously in SearchQuery
would have to be rewritten in Bookl t enQuery. Same thing for the code that deals with JSON
serialization that you wrote previously in Sear chResul t : it would have to be rewritten in
Bookl t enResul t.

The bad news is that you would have to repeat the same process for every endpoint of the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



47

system. Each time you encounter a new kind of JSON input or input, you have to create a new
class and write code.

Suddenly, you wake up and realize that Nancy never asked for JSON. All of the above was a
dream, a really bad dream...

TIP In 00, data serialization is a nightmare

It’s quite frustrating that handling JSON serialization and deserialization in OO requires to
add so many classes and to write so much code again and again!

The frustration gets bigger when you consider that serializing a search query, a book item query
or any query is quite similar. It comes down to:

1. Goover datafields

2. Concatenate the name of the data fields and the value of the datafield (separated by a
comma)

Why such a simple thing is so hard to achieve in OO?

The thing is that in OO, data has to follow a rigid shape (defined in classes), which means that
data is locked in members. There is no way to access data generically.

TIP In 00, data is locked in classes as members

We will refine later what we mean by a generic access to the data and we will see how DO
provides a generic way to handle JSON serialization and deserialization. Until then, you will
have to continue suffering. But at least you are aware of this suffering and you know that this
suffering is avoidable.

WARNING Most 00 programming languages alleviate a bit the difficulty involved the
conversion from and to JSON. It either involves reflection (which is definitely a
complex thing) or code verbosity.

1.7 When code is locked into classes, class hierarchies are complex

One way to avoid writing the same code twice in OO involves class inheritance. Indeed, when
every requirement of the system is known up front, you design your class hierarchy is such a
way that classes with common behavior derive from a base class.

An example of this pattern is shown in Figure 1.15, that focuses in the part of our class diagram
that deals with members and librarians. Both Li br ari ans and Menber s need the ability to login

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



48
and they inherit this ability form the User class.

So far so good.

| C | Librarian

@ blockMemberimember: Member) : Bool

@ unblockMember{member: Member) : Bool

@ addBookltem({bookltem: Bookltem) : Bookltem

@ getBooklLendingsOfMember{member: Member) : List<BooklLending>
# N

’ ‘-._"

r |

s

'l

~ P III
(IC ) Member |

@ isBlocked() : Bool
@ returnBookibooklending: BookLending) : Bool f
@ checkoutibookltem: Bookltem) : BooklLending f

\( /
\ u'
(C ) User

O id : String

O email : String
O password : String

@ logini{) : Bool

Figure 1.15 The part of the class diagram that deals with members and
librarians

But when requirements to the system are added after the system is implemented that’s a
completely different story.

It’s Monday 11:00 AM, two days are left before the deadline (which is on Wednesday
midnight) and Nancy put your on an urgent phone call.

You are not sure if it’s dream or reality. You pinch yourself and you feel the jolt. It’s definitely
reality!

NANCY: How is the project doing?

YOU: Fine, Nancy. We are on schedule for the deadline. Running our last round of regression
tests.

NANCY: Fantastic! It means we have time for adding a tiny feature to the system. Right?

YOU: Depends what you mean by tiny.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



49

NANCY: We need to add VIP members to the system.
YOU: What do you mean by VIP members?

NANCY: VIP members are members that are allowed to add by themselves book items to the
library.

YOU: Hnm...

NANCY: What?

YOU: That’s not a tiny change!
NANCY: Why?

I am asking you the same question Nancy asked: Why adding VIP members to your system is
not a tiny task?

After all, you already have written the code that allows librarians to add book items to the
library: it’s in Li br ari an: : addBookl t en() .

What prevents you from reusing this code for VIP members?

The reason is that in OO, the code is locked into classes as methods.

TIP In 00, code is locked into classes.

Let’s see how you would probably handle this last minute request from your customer.
VIP members are members that are allowed to add by themselves book items to the library.
Let’s decompose the customer requirements into two pieces:

1. VIP members are members
2. VIP members are alowed to add by themselves book items to the library

For sure, you need a new class VI PMenber .
For requirement #1, it sounds reasonable to make VI PMenber derive from Menber .

However, handling requirement #2 is more complex. We cannot make VI PMenber derive from

Li brari an because the relationship between VI PMenber and Li br ari an is not linear:

1. Ononehand, VIP members are like librarians as they are allowed to add book items

2. On the other hand, VIP members are not like librarians as they are not allowed to block
members or to list the book lendings of a member

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



50

The problem is that the code that adds book items is locked in the Li br ari an class. There is no

way for VI PMenber class to use this code.

One possible solution that makes the code of Li brari an: : addBookl t en() available to both
Li brari an and VI PMerber , is shown in Figure 1.16. Here are the changes to the previous class

diagram:

1. A baseclassUser Wt hBookl t enRi ght that extends User
2. Move addBook! t en() from Li brari an to User W t hBookl t enRi ght
3. Both Vi PMenber and Li br ari an extend User W t hBookl t enRi ght

(€ ' Librarian :
(IC \VIPMember
@ blockMemberimember: Member) : Bool :
@ unblockMember{member: Member) : Bool - I
@ getBookLendingsOfMember{member: Member) : List<BookLending> /,f’ |
i
-
. > |
] (__.-"' -
14 s H‘H;\ v
'C) Member — .

(€ UserwithBookitemRight

@ isBlocked() : Bool
@ returnBook(bookLending: BookLending) : Bool © addBookltem({bookltem: Bookltem) : Bookltem
@ checkout{bookltem: Bookitem) : BookLending

~\ L

'€ User

O id : 5tring
O email : String
O password : String

@ login() : Bool

Figure 1.16 A class diagram for a system with VIP members

That was tough but you were able to handle it on time (thanks to a white night in front of your
laptop). You were even able to include new tests to the system and running again the regression

tests.

You were so excited that you didn’t pay attention to the diamond VI PMenber introduced in your
class diagram, (VI PMenber extends both Menmber and User Wt hBookl t enRi ght who both
extend User)

We are Wednesday morning 10:00 AM, 14 hours before the deadline and you call Nancy to tell

her the good news:

YOU: We were able to add VIP members to the system on time, Nancy.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



51

Fantastic! I told you it was a tiny feature.
YOU: Hmm...

NANCY: Look, I was to call you anyway. I just finished a meeting with my business partner
and we realized that we need another tiny feature before the launch. Will you be able to handle it
before the deadline?

YOU: Again, it depends what you mean by tiny.

NANCY: We need to add Super members to the system.

YOU: What do you mean by Super members?

NANCY: Super members are members that are allowed to block and unblock members
YOU: Hmm...

NANCY: What?

YOU: That’s not a tiny change!

NANCY: Why?

Like with VIP members, adding Super members to the system requires changes to your class
hierarchy. A possible solution is shown in Figure 1.17.

(€ 'VIPMember c ' Librarian (€ ' SuperMember
I ) @ getBookLendingsOfMember{member: Member) : List<BookLending > |
“-x_x = I L
I' '“"--g__ﬁ__ - - | - ~— /_./"
| 'x._,‘__,f’ | e
A T T | -_/"’I}&'H"‘“-a. J‘
.III / _’_,’ = - Y . 1 \L‘/\ \ /
(€) Member (€ ) UserwithBlockMemberRight

[ C | UserWithBooklemRight

@ isBlocked() : Bool

© addBookltem{bookitem: Bookltem) : Bookltem

@ returnBookibookLending: BookLending) : Bool
@ checkout(bookltem: Bookltem) : BookLending

@ blockMember(member: Member) : Bool
@ unblockMember(member: Member) : Bool

!

\/

A () user

O id : String
O email : 5tring
O password : String

@ login() : Bool

Figure 1.17 A class diagram for a system with Super members and VIP members

The addition of Super members made the system too complex. You suddenly noticed that you
had 3 diamonds in your class diagram: not gemstones but 3 Deadly Diamonds of Death!

You tried to avoid the diamonds by transforming the User class into an interface and using

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



52

Composition over Inheritance Design Pattern.
But with the stress of the deadline coming, you were not able to use all the cells of your brain.

In fact, this complexity prevented you from delivering the system before the deadline. You tell
yourself that you should have used composition instead of class inheritance. But it’s too late
now.

TIP In 00, prefer composition over class inheritance.

You call Nancy in order to explain her the situation at 10:00 PM, two hours before the deadline:

YOU: Look Nancy, we really did our best, but we will not be able to add Super members to the
system before the deadline

NANCY: No worries, my business partner and I decided to postpone the launch.
YOU: Phew!

NANCY: Do you think that if we add other tiny features later, you’d be able to handle them on
time?

YOU: Yes

NANCY: How could it be?

YOU: We are going to refactor the system from Object Oriented to Data Oriented.
NANCY: What is Data Oriented?

YOU: It is a magic sauce that allows developers to write code for changing requirements faster
!

TIP DO is a magic sauce that allows developers to write code for changing
requirements faster!

After reading this book, you will belong to the community of happy developers who know the
recipe of DO magic sauce.

1.8 Wrapping up

In this chapter, we have explored the tendency of OO to increase system complexity, in the
sense that OO systems tend to be hard to understand. The root cause of the complexity increase
is related to the mixing of code and data together into objects.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



53

We illustrated how some fundamental aspects of OO tend to increase the complexity of OO

systems.

Aspects of Object Oriented programming and their impact on increased system complexity

Aspect Impact on increased complexity

Code and data are mixed Classes tend to be involved in many relations

Objects are mutable Extra thinking when reading code

Objects are mutable Explicit synchronization on multi-threaded environments
Data is locked in objects Data serialization is not trivial

Code is locked in classes Class hierarchies are complex

It is possible to deal with this complexity with smart design patterns and advanced features of
the language. This book proposes to deal with this complexity by adhering to Data Oriented
programming, a paradigm that could be implemented both in OO and FP.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



54

Reduce system complexity by separating
Code from Data

2.1 Introduction

As we mentioned in Chapter 0, the big insight of Data Oriented Programming (DO) is that we
can decrease the complexity of our systems by separating code from data. Indeed, when code
is separated from data, our systems are made of two main pieces that can be thought separately:
Data entities and Code modules.

This chapter is a deep dive in the first principle of Data Oriented Programming;:

NOTE Principle #1: Separate code from data in a way that the code resides in
functions whose behavior does not depend on data that is somehow
encapsulated in the function’s context.

We illustrate the separation between code and data in the context of the Library Management
system that we introduced in Chapter 1 and we unveil the benefits that this separation brings to

the system:

1. Thesystemissimple: it iseasy to understand

2. The system isflexible: quite often, it requires no design changes to adapt to changing
reguirements

We show how to:

1. Design a system where code and data are separate
2. Write code that respects the separation between code and data.

This chapter focuses on the design of the code part of a system where code and data are
separate. In Chapter 3, we will focus on the design of the data part of the system. As we
progress in the book, we will discover other benefits of separating code from data.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



55

2.2 The two parts of a DO system

A quick research among your friends regarding a DO expert to teach you DO lead to Joe, a
40-year old developer that used to be a Java developer for many years and moved to Clojure 7
years ago.

You decide to hire Joe for a 1 one 1 workshop in your office.

When you tell Joe about the Library management system you built (Chapter 1) and the details of
the struggle you had to adapt to changing requirements, he is not surprised.

Joe tells you that the systems he and his team have build in Clojure over the last 7 years are less
complex and more flexible than the systems he used to build in Java. The main cause of this
benefits is that the systems he built were following principles of Data Oriented Programming.

YOU: What makes DO systems less complex and more flexible?

JOE: The first insight of DO is about the relationships between code and data.
YOU: You mean the encapsulation of data in objects?

JOE: Actually, DO is against encapsulation.

YOU: Why is that? I thought encapsulation was a positive programming paradigm.

JOE: Data encapsulation has its merits and drawbacks: Think about the way you designed the
Library Management System (in Chapter 1). According to DO, the main cause of the complexity
of systems and their lack of flexibility is because code and data are mixed together (in objects).

TIP DO is against data encapsulation.

YOU: Does it mean that in order to adhere to DO, I need to get rid of OO and learn a Functional
programming language?

JOE: No. DO principles are language agnostic: they can be applied both in OO and FP
languages.

YOU: Cool! I was afraid that you were going to teach me about monads, algebraic data types
and high order functions.

JOE: None of this is required in DO.

TIP DO Principles are language agnostic.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



56

YOU: How does the separation between code and data look like in DO?

JOE: Data is represented by data entities that hold members only. Code is aggregated into
modules where all the functions are stateless.

YOU: What do you mean by stateless functions?

JOE: Instead of having the state encapsulated in the object, the data entity is passed as an
argument.

YOU: I don’t get that.

JOE: Let me make it visual.

Code modu IESHStateless Fu nctinns)

Only members)

[Separate Code from Data

Data entities

Figure 2.1 The separation between code and data

YOU: It’s still not clear

JOE: It will become clearer when I show you how it looks like in the context of your library
management system.

YOU: OK. Shall we start we code or with data?

JOE: Well, it’s Data oriented programming. Let’s start with Data!

2.3 Data entities

In DO, we start the design process by discovering the data entities of our system.
JOE: What are the data entities of your system?
YOU: What do you mean by data entities?

JOE: I mean the parts of your system that hold information.

NOTE Data entities are the parts of your system that hold information

YOU: Well, it’s a library management system, so for sure we have books and members.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



57

JOE: Of course. But there are more: One way to discover the data entities of a system is to look
for nouns and noun phrases in the requirements of the system.

You look at Nancy’s requirement napkin and you highlight the nouns and noun phrases that
seem to represent data entities of the system:

SIDEBAR Highlighting terms in the requirements that correspond to data entities

Two kinds of users: library members and librarians

Users log in to the system via email and password.

Members can borrow books

Members and librarians can search books by title or by author

Librarians can block and unblock members (e.g. when they are late in
returning a book)

Librarians can list the books currently lent by a member
® There could be several copies of a book

JOE: Excellent. Can you see a natural way to group the entities?

YOU: Not sure, but it seems to me that users, members and librarians form a group while books,
authors and book copies form another group.

JOE: Sounds good to me. How would you call each group?

YOU: User management for the first group and Catalog for the second group.

SIDEBAR The data entities of the system organized in a nested list

® The catalog data
Data about books
Data about authors
Data about book items
Data about book lendings
® The user management data

® Data about users

® Data about members
B Data about librarians

YOU: I am not sure about the relationships between books and authors: should it be association

or composition?

JOE: Don’t worry too much about the details for the moment. We will refine our data entities

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



58

design later (Chapter 3). For now, let’s visualize the two groups in a mind map.

Catalog

Book Items)

[Library data Book Lendings]

User management Members)

Librarian sj

Figure 2.2 The data entities of the system organized in a mind map

The most precise way to visualize the data entities of a DO system is to draw a data entity
diagram with different arrows for association and composition. We will come back to data entity
diagram in Chapter 3.

TIP Discover the data entities of your system and group them into high level
groups, either as a nested list or as a mind map.

We will get deeper into the design and the representation of data entities in Chapter 3. For now,
let’s simplify and say that the data of our library system is made of two high level groups: User
Management and Catalog.

2.4 Code modules

The second step of the design process in DO, is to define the code modules of the system.

JOE: Now that you have identified the data entities of your system and group them into high
level groups, it’s time to think about the code part of your system.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



59

YOU: What do you mean by code part?

JOE: One way to think about it is to identity the functionalities of your system.

You look again at Nancy’s requirement napkin and this time you highlight the verb phrases that

represent functionalities of the system:

SIDEBAR Highlighting terms in the requirements that correspond to functionalities

Two kinds of users: library members and librarians

Users log into the system via email and password.

Members can borrow books

Members and librarians can search books by title or by author
Librarians can block and unblock members (e.g. when they are late in
returning a book)

Librarians can list the books currently lent by a member
There could be several copies of a book

In addition to that, it is obvious that members can also return a book. Moreover, there should be

a way to detect whether a user is a librarian or not.

Your write down a list of the functionalities of the system.

SIDEBAR The functionalities of the system

© 0N O RG®DNPE

Search a book

Add a book item

Block a member

Unblock a member

Login a user into the system

List the books currently lent by a member
Borrow a book

Return a book

Check whether a user is a librarian

JOE: Excellent! Now, tell me what functionalities need to be exposed to the outside world?

YOU: What do you mean by exposed to the outside world?

JOE: Imagine that the library management system were exposing an API over HTTP: what
would be the endpoints of the API?

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/data-oriented-programming/discussion



60

YOU: I see. All the functionalities them beside checking if a user is a librarian should need to be
exposed.

JOE: Perfect, now give to each exposed functionality a short name and gather them together in a
module box called Li brary

It takes you less than a minute: Figure 2.3 shows the module box that contains the exposed
functions of the Library.

C ' Library

searchBook()
addBookltem()
blockMember()
unblockMember()
getBooklLendingsl()
checkoutBook()
returnBook()

Figure 2.3 The Library
module contains the
exposed functions of the
Library management
system

TIP The first step in desighing the code part of a DO system is to aggregate the
exposed functions in a single module.

JOE: Beautiful. You just created your first code module.
YOU: To me it looks like a class: What’s the difference between a module and a class?

JOE: A module is an aggregation of functions. In OO, a module is represented by a class but in
other programming languages, it might be a package or a namespace.

YOU: I see.

JOE: The important thing about DO code modules is that they contain only stateless functions.
YOU: You mean like static methods in Java?

JOE: Exactly!

YOU: So how the functions know on what piece of information they operate?

JOE: We pass it as the first argument to the function.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



61

YOU: I don’t understand. Could you give me an example?

Joe takes a look at the list of functions of the Li br ary module in Figure 2.3.

JOE: Let’s take for example get BookLendi ngs() : in classic OO, what would be its arguments?
YOU: A librarian id and a member id.

JOE: In classic OO, get BookLendi ngs would be a method of a Li br ary class that receives two
arguments: | i brari anl d and menber | d

YOU: Yeap.

JOE: Now comes the subtle part: in DO, get BookLendi ngs is part of the library module and it
receives the Li br ar yDat a as the first argument, in addition to the other arguments.

YOU: Could you show me what you mean?
JOE: Sure.
Joe gets closer to your keyboard and start typing.

That’s how a class method looks like in OO:

class Library {
libraryData // state of the object

get BookLendi ngs(userld, nenberld) {
/'l accesses library data via this.libraryData

}

The method accesses the state of the object—in our case the library data— via
this.libraryData. The object’s state is an implicit argument to the object’s methods.

TIP In classic 00, the state of the object is an implicit argument to the methods of
the object.

In DO, the signature of get BookLendi ngs would look like this:

class Library {
static get BookLendi ngs(libraryData, userld, nmenberld) {

}
The state of the library is stored in | i br ar yDat a that is managed outside the Li br ary class and

Li br ar yDat a is passed to the get BookLendi ngs static method as an explicit argument.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



62

TIP In DO, functions of a code module are stateless: they receive the data they
manipulate as an explicit argument, usually the first argument.

The same rule applies to the other functions of the library module. All of them are stateless: they
receive the library data as first argument.

IMPORTANT A module is an aggregation of functions. In DO, the module functions are
stateless.

You apply this rule and you refine the design of the library module by including the details about
functions' arguments.

€ ' Library

searchBook(libraryData, searchQuery)
addBookltem(libraryData, booklteminfo)
blockMember(libraryData, memberld)
unblockMember(libraryData, memberld)
login(libraryData, logininfo)
getBooklLendings(libraryData, userld)
checkoutBook(libraryData, userld, bookltemld)
returnBook(libraryData, userld, bookltemld)

Figure 2.4 The Library module with the function arguments

JOE: Perfect. Now, we are ready to design at a high level our system.
YOU: What’s a high level design in DO?

JOE: The definition of modules and the interaction between them.
YOU: I see. Is there any guideline to help me define the modules?

JOE: Definitely. The high level modules of the system correspond to the high level data
entities.

YOU: You mean the data entities that appear in the data mind map?
JOE: Exactly!

You look again at the data mind map in Figure 2.5 and you focus on the high level data entities:
Library, Catalog and User management.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



Catalog

Library data

User management)

Figure 2.5 A mindmap of high level data entities of

the Library management system

It means that in the system, beside the Li br ar y module, we have two high level modules:

1. Cat al og module that deals with catalog data
2. User Management module that deals with user management data

Then you draw the high level design of library management system, by adding Cat al og and

User Management modules:

® Functions of Cat al og receive cat al ogDat a as first argument
® Functions of User Management receive user Managenent Dat a as first argument

Here is the diagram:

| Library

@ searchBookilibraryData, searchQuery)

@ addBookltem(libraryData, booklteminfao)

@ blockMember(libraryData, memberid)

@ unblockMember{libraryData, memberid)

@ loginflibraryData, logininfo)

@ getBooklendings(libraryData, userld)

@ checkoutBook(libraryData, userld, bookltemld)
@ returnBook(libraryData, userld, bookltemlid)

L

I".
1

(€ UserManagement

C | Catalog

@ blockMember{userManagementData, memberld)

@ loginfuserManagementData, logininfao)
@ isLibrarian{userManagementData, userld)

@ unblockMember{userManagementData, memberld)

© searchBookicatalogData, searchQuery)

© addBookltem(catalogData, booklteminfo)

@ checkoutBookicatalogData, bookltemid)

@ returnBook(catalogData, bookltemld)

@ getBooklLendings{userManagementData, userld)

Figure 2.6 The modules of the Library management system with the function arguments

It might not yet be clear for you how the data entities get passed between modules. For the

moment, you can think of | i br ar yDat a as a class with two members:

® cat al og that holds the catalog data

® user Managenent that holds the user management data

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion




64

The functions of Li br ar y share a common pattern:

1. They receivel i br ar yDat a as an argument
2. They pass|i br ar yDat a. cat al og to functions of Cat al og
3. They pass| i br ar yDat a. user Managenent to functions of User Managenent

Later on, in this chapter, we will see the code for some functions of the Li br ary module.

TIP The high level modules of a DO system correspond to the high level data
entities.

2.5 DO systems are easy to understand

You take a look at the two diagrams that represent the high level design of your system:

1. The data entities in the data mind map from Figure 2.7
2. The code modules in the module diagram from Figure 2.8

A bit perplexed, you ask Joe:

YOU: I am not sure that this system is better than a classic OO system, where objects
encapsulate data.

JOE: The main benefit of a DO system over a classic OO systems is that it is easier to
understand.

YOU: What makes it easier to understand?
JOE: The fact that the system is split clearly in code modules and data entities.
YOU: [ don’t get you.

JOE: When you try to understand the data entities of the system, you don’t have to think about
the details of the code that manipulates the data entities.

YOU: You mean that when I look at the data mind map of my library management system, I am
able to understand it on its own?

JOE: Exactly. And similarly, when you try to understand the code modules of the system, you
don’t have to think about the details of the data entities manipulated by the code. There is a clear
separation of concerns between the code and the data.

You look again at the data mind map in Figure 2.7, and you get kind of a Aha moment:

Data lives on its own!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



65

Authors

Catalog

Book Itemsj

[Library data Book Lendings]

User management Members)

Librarian sj

Figure 2.7 A data mindmap of the Library management system

IMPORTANT A DO system is easier to understand because the system is split in two parts:
data entities and code modules.

Now you look at the module diagram in Figure 2.8 and you feel a bit confused:

® On one hand, the module diagram looks similar to the class diagrams from classic OO:
boxes for classes and arrows for relations between classes.

® On the other hand, the code module diagram looks much simpler than the class diagrams
from classic OO, but you cannot explain why.

You ask Joe for a clarification.

YOU: The module diagram seems much simpler that the class diagrams I am used to in OO. I
feel it but I cannot put words on it.

JOE: The reason is that module diagrams have constraints.
YOU: What kind of constraints?

JOE: Constraints on the functions as we saw before: All the functions are static (stateless). But

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



66

also constraints on the relations between the modules.

TIP All the functions in a DO module are stateless.

YOU: Could you explain that?

JOE: There is a single kind of relation between DO modules: the usage relation. A module uses
code from another module. No association, no composition and no inheritance between
modules. That’s what make a DO module diagram easy to understand.

YOU: I understand why there is no association and no composition between DO modules: after
all, association and composition are data relations. But why no inheritance relation? Does it
mean that in DO is against polymorphism?

JOE: That’s a great question. The quick answer is that in DO, we achieve polymorphism with a
different mechanism than class inheritance. We will talk about it later (in Chapter 5).

YOU: Now, you triggered my curiosity: I was quite sure that inheritance was the only way to
achieve polymorphism.

TIP The only kind of relation between DO modules is: usage relation.

You look again at the module diagram in Figure 2.8 and now you not only feel that this diagram
is simpler than classic OO class diagrams, you understand why it is simpler: All the functions are
static and all the relation between modules are of type usage.

€ Library

@ searchBook(libraryData, searchQuery)

@ addBookltemilibraryData, booklteminfo)

@ blockMember(libraryData, memberld)

@ unblockMember(libraryData, memberld)

@ login{libraryData, logininfa)

@ getBooklLendings(libraryData, userld)

@ checkoutBook(libraryData, userld, bookltemld)
@ returnBookilibraryData, userld, bookltemld)

)
n b
i

C ' UserManagement C  Catalog

@ searchBook(catalogData, searchQuery)

@ addBookltem{catalogData, booklteminfo)

@ checkoutBook(catalogData, bookltemld)

@ returnBookicatalogData, bookltemlid)

@ getBooklendings(userManagementData, userld)

@ blockMember{userManagementData, member|d)

@ unblockMember{userManagementData, memberld)
@ loginfuserManagementData, loginlnfo)

@ isLibrarian{userManagementData, userld)

Figure 2.8 The modules of the Library management system with the function arguments

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



67

Table 2.1 What makes each part of a DO system easy to understand

System part Constraint on entities Constraints on relations
Data entities Members only (no code) Association and Composition
Code modules Stateless functions (no members) Usage (nho inheritance)

TIP Each part of a DO system is easy to understand, because it has constraints.

2.6 DO systems are flexible

YOU: I get that the sharp separation between code and data makes DO systems easier to
understand than classic OO systems. But what about adapting to changes in requirements?

JOE: Another benefit of DO systems is that it is easy to adapt them to changing requirements.

YOU: I remember that when Nancy asked me to add Super Members and VIP Members to the
system, it was hard to adapt my OO system: I had to introduce a few base classes and the class
hierarchy became really complex.

JOE: I know exactly what you are talking about. I experienced the same kind of struggle when I
was a OO developer. Tell me what were the changes in the requirements for Super Members and
VIP Members and 1 am quite sure that you will see by yourself that it is easy to adapt your DO
system.

SIDEBAR The requirements for Super Members and VIP Members

1. Super Members are members that are allowed to list the book lendings
of other members

2. VIP Members are members that are allowed to add book items to the
library

You open your IDE and you start to code the get BookLendi ngs function of the Library module,
first without addressing the requirements for Super Members. You remember what Joe told you
about module functions in DO:

1. Functions are stateless
2. Functions receive the data they manipulate as fir st argument

In terms of functionalities, get BookLendi ngs have two parts:

1. Check that the user isalibrarian
2. Retrieve the book lendings from the catalog

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



68

Basically, the code of get BookLendi ngs have two parts:

1. CdlisLibrarian() function from the User Management module and passit the
User Managenent Dat a

2. Call get BookLendi ngs() function from the Cat al og module and passit the
Cat al ogDat a

Here is the code for Li brary. get BookLendi ngs() :

Listing 2.1 Getting the book lendings of a member

class Library {
static get BookLendi ngs(libraryData, userld, nmenberld) {
i f (User Managenent . i sLi brari an(li braryDat a. user Managenent, userld)) {
return Catal og. get BookLendi ngs(|i braryDat a. catal og, nmenberld);
} else {
throw "Not allowed to get book | endings"; (1]

}
}

cl ass User Managenent {
static isLibrarian(user Managenent Data, userld) ({
/1 will be inplenmented | ater
}
}

class Catal og {
static get BookLendi ngs(cat al ogData, nenberld) {
/1 will be inplenented |ater

}

9 There are other ways to manage errors
In Chapter 3, we will see how to manage permissions with generic data collections

©  |n Chapter 3, we will see how to query data with generic data collections

It’s your first piece of DO code: passing around all those data objects |i braryDat a,
l'i braryDat a. user Managenent and |i braryDat a. catal og feels a bit awkward. But you
made it.

Joe looks at your code and seems satisfied.
JOE: How would you adapt your code to adapt to Super Members?

YOU: I would add a function i sSuper Menber to the User Managenent module and call it from
Li brary. get BookLendi ngs

JOE: Exactly! It’s as simple as that.

You type this piece of code on your laptop:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



69

Listing 2.2 Allowing Super Members to get the book lendings of a member

class Library {
static get BookLendi ngs(libraryData, userld, nmenberld) {
i f (User managenent . i sLi brarian(li braryDat a. user Managenent, userld) ||
User managenent . i sSuper Menber (1i braryDat a. user Managenent, userld)) {
return Catal og. get BookLendi ngs(|li braryDat a. catal og, menberld);
} else {
throw "Not allowed to get book | endings"; (1]

}
}

cl ass User Managenent {
static isLibrarian(user Managenent Data, userld) {
/1 will be inplenmented | ater

}
static isSuperMenber (user Managenent Dat a, userld) {
/1 will be inplenented |ater

}
}

class Catal og {
static get BookLendi ngs(catal ogData, nenberld) {
/1 will be inplemented | ater

}

9 There are other ways to manage errors
® |n Chapter 3, we will see how to manage permissions with generic data collections

©  |n Chapter 3, we will see how to query data with generic data collections

Now, the awkward feeling caused by passing around all those data objects is dominated by a
feeling of relief: Adapting to this change in requirement takes only a few lines of code and
require no changes in the system design.

Once again, Joe seems satisfied.

TIP DO systems are flexible. Quite often, they adapt to changing requirements
without changing the system design.

You prepare yourself a cup of coffee, and you start coding the addBookl t en() code.

You look at the signature of Li brary. addBook! t en() in Listing 2.3 and it is not clear to you
what is the meaning of the third argument book! t enl nf 0. You ask Joe for a clarification.

Listing 2.3 The sighature of Li br ary. addBookl t em

class Library {
static addBooklten(libraryData, userld, bookltem nfo) {

}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



70
YOU: What is bool t em nf 0?

JOE: Let’s call it the book item information and imagine we have a way to represent this
information in a data entity named bookl t eml nf o.

YOU: You mean an object?

JOE: For now, it’s ok to think about bookl t em nf o as an object. Later on (in Chapter 3), I will
show you how to we represent data in DO.

Beside this subtlety about how the book item info is represented by bookl t em nf o, the code for
Li brary. addBookl tem() in Listing 2.4 is quite similar to the code you wrote for
Li brary. get BookLendi ngs() in Listing 2.2. Once again, you are amazed by the fact that
adding support for VIP Members requires no design change.

Listing 2.4 Allowing VIP Members to add a book item to the library

class Library {
static addBooklten(libraryData, userld, bookltenData) {

i f (User Managenent . i sLi brarian(libraryData. user Managenent, userld) ||

User Managenent . i sVI PMenber (| i br aryDat a. user Managenent, userld)) {
return Catal og. addBooklten{li braryData. catal og, bookltenData);

} else {
throw "Not allowed to add a book itent; (1]

}

}

cl ass User Managenent {
static isLibrarian(user Managenent Data, userld) {
/1 will be inplemented |ater
}
static isVI PMenber (user Managenent Dat a, userld) {
/! will be inplenented later @
}
}

class Catal og {
static addBooklten(catal ogData, menberld) {
// will be inplenented later ©
}

9 There are other ways to manage errors

®  |n Chapter 3, we will see how to manage permissions with generic data collections

©  |n Chapter 4, we will see how to manage state of the system with immutable data
YOU: It required a big mindset shift for me to learn how to separate code from data.
JOE: What was the most challenging part for your mind?

YOU: The fact that data is not encapsulated in objects.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



71

JOE: It was the same for me when I switched from OO to DO.
YOU: Will there be other mindset shifts in my journey into DO?

JOE: There will be two more mindset shifts but I think that they will be less challenging than
separating code from data.

YOU: What will it be about?

JOE: Representing data entities with generic data structures (Chapter 3) and constraining
ourselves to immutable data objects (Chapter 4).

But before that you and Joe go to a lunch at Simple, a nice small restaurant near your office.

2.7 Wrapping up

In this chapter, we have illustrated DO Principle #1 about the separation between code from data:

NOTE Principle #1: Separate code from data in a way that the code resides in
functions whose behavior does not depend on data that is somehow
encapsulated in the function’s context.

It required quite a big mindset shift to learn that in DO:

® Codeis separated from data

® Codeisaggregated in modules

® Dataisaggregated in data entities

® Codeismade of statelessfunctions

® Functionsreceive data asfirst argument

We illustrated how to apply this principle in a OO language.
A consequence of this separation is that:

* \We havethe freedom to design code and data in isolation
®* Module diagrams are simple: it's only about usage (no inheritance)
® Dataentities diagram are smple: it’s only about association and composition

The details of Principle #1 are summarized in this mindmap:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



72

Stateless (static)

Data as first argument)

Code modules

Only members

Figure 2.9 The summary of Principle #1: Separate code from data

[Separate Code from Data

Data entities

Overall, the DO systems are simpler (easier to understand) than classic OO systems and more
flexible (easier to adapt to changing requirements).

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



73

Manipulate the whole system data with
generic functions

3.1 Introduction
Now that we have separated code from data, let’s talk about data on its own.
Given a system data model designed as a rigid class hierarchy in OO, DO prescribes that we

represent our data model as a flexible combination of maps and collections where we can access
each piece of information via an information path.

This chapter is a deep dive in DO Principle #2:

NOTE Represent data entities with generic data structures

We increase system flexibility when we represent records as string maps and not as objects
instantiated from classes. This liberates data from the rigidity of a class-based system. Data
becomes first class citizens powered by generic functions to add, remove or rename fields.

The dependency between the code that manipulates data, and the data, is a weak dependency.
The only thing that matters are the names of the fields we want to manipulate.

In this chapter, we’ll deal only with data query. We’ll discuss managing changes in system state
in Chapter 4.

3.2 Design a data model

During lunch at Simple, you and Joe don’t talk about programming. Instead, you try to get to
know Joe on a personal level and talk about family, hobbies and health. You find out that Joe is
married with two kids, and that he meditates daily.

The food is good! And somehow, it helps you digest the DO material you ingested in the
morning!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



74

As soon as you’re back at the office, you ask Joe about the next step in your journey into DO,
which is about the data model and data representation...

JOE: When we get to the design of the data part of our system, we can design it in isolation.
YOU: What do you mean by isolation?

JOE: | mean that you don’t have to bother with code. Only data.

YOU: Yes, I remember you telling me it’s a key aspect that makes a DO system simpler than
0O0. After all, separation of concerns is a design principle I am used to in OO.

JOE: Indeed.

YOU: And when we think about data, the only relations we have to think about are association
and composition.

JOE: Correct.

YOU: Will the data model design be significantly different than the data model I’'m used to
designing as an OO developer?

JOE: Not so much.
YOU: OK. Let me draw a data entity diagram.

You take a look at the data mind map that you drew in Chapter 2:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



75

Catalog

Book Items)

[Library data Book Lendings]

User management Members)

Librarian s)

Figure 3.1 A data mindmap of the Library management system

You refine the details of the fields of each data entity and the kind of relationships between
entities, and the result is this data entity diagram:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



76

I@ Library

o name: String
O address: String

@ UserManagement

©) Book

o title : String
2 publicationYear: Number
O |SBM: 5tring

2 publisher: String

@ Librarian

O email: String
O password: 5tring

@ Member

o email: String
O password: 5tring

I@ BooklLending

o lendingDate: String

O mame: 5tring

@ Bookltem

2 rackld: String
O purchaseDate: 5tring

Figure 3.2 A data model of the Library management system

JOE: The next step is to be more explicit about the relations between entities.
YOU: What do you mean?

JOE: For example, in your entity diagram, Book and Aut hor are connected by a many-to-many
association relation. How is this relation going to be represented in your program?

YOU: In the Book entity, there will be a collection of author IDs, and in the Aut hor entity, there
will be a collection of book IDs.

JOE: Sounds good. And what will be the book ID?

YOU: The book ISBN.!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



77

JOE: And where will you hold the index that will enable you to retrieve a Book from its ISBN?
YOU: In the Cat al og. The catalog holds a bookBy| SBN index.
JOE: What about author ID?

YOU: Author ID is the author name, in lower case, and with dashes instead of white spaces
(assuming that we don’t have two authors with the same name).

JOE: And I guess that you also hold the author index in the Cat al og?
YOU: Exactly!

JOE: Excellent. You’ve been 100% explicit about the relation between Book and Aut hor . I’1l
ask you to do the same with the other relations of the system.

It’s quite easy for you. You did that so many times as an OO developer. Here’s the detailed
entity diagram of your system:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



78

C | Library

< pame: 5tring

O address: String

© catalog: Catalog

O userManagement: Catalog

V4 <

/ N

/ AN
(€ Catalog (€ ' UserManagement
© booksBylsbn: {Book} o librariansByEmail: {Librarian}
O authorsByld: {Author} © membersByEmail: {Member}
Y .
c ' Book 2 l l C Member
- - (€ Author C | Librarian -
O title :_Str_mg * % — - © email: String
g ﬂtéil@ﬁlic:‘n\’ear. Number £ g L\dﬁrfﬂir'lggrin © email: String o encryptedPassword: String
’ _g ) ‘ .g ) O encryptedPassword: String O isBlocked: Boolean

© authorlds: [String] © booklsbns: [String] © bookLendings: [BookLending]
© bookltems: [Bookltem] :

€ | BookLending

© lendingDate: String

2 bookltemld: String

O booklsbn: String

’

Fd
P
-
& e 4
(IC ' Bookltem
o id: 5tring

© rackld: String
© purchaseDate: String
O isLent: Booklean

Figure 3.3 Library management relations model. Dashed lines (e.g., between Book and Author)
denotes indirect relations. [String] denotes a collection of strings. {Book} denotes an index of Books.

The Cat al og entity contains two indexes:

1. booksByl sbn: The keys are book | SBNs and the values are Book entities. Itstypeis

noted as { Book}
2. aut hor sByl d: The keys are author 1Ds and the values are Aut hor entities. Itstypeis

noted as { Aut hor}

Inside a Book entity, we have aut hor s, which is a collection of author IDs of type [ Stri ng] .
Inside an Aut hor entity, we have books, which is a collection of book IDs of type [ St ri ng] .

NOTE Notation for collection and index types: A collection of Stri ngs is noted as
[String]. An index of Books is noted as {Book}. In the context of a data

model, the index keys are always strings.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



79

There is a dashed line between Book and Aut hor , which means that the relation between Book
and Aut hor is indirect. To access the collection of Aut hor entities from a Book entity, we’ll use
the aut hor Byl d index defined in the Cat al og entity.

JOE: I like your data entity diagram.
YOU: Thank you.

JOE: Can you tell me what the three kinds of data aggregations are in your diagram (and in fact
in any data entity diagram)?

YOU: Let me see... We have collections, like aut hors in Book. We have indexes, like
booksByl sbn in Cat al og. I can’t find the third one.

JOE: The third kind of data aggregation is what we’ve called until now an "entity" (like
Li brary, Cat al og, Book, etc...). The common term for "entity" in computer science is record.

NOTE Record: A record is a data structure that groups together related data items.
It’s a collection of fields, possibly of different data types.

YOU: Is it correct to say that a data entity diagram consists only of records, collections and
indexes?
JOE: That’s correct. Can you make a similar statement about the relations between entities?

YOU: The relations in a data entity diagram are either composition (solid line with full
diamond) or association (dashed line with empty diamond). Both types of relations can be either

I-to-1, 1-to-many or many-to-many.

JOE: Excellent!

TIP A data entity diagram consists of records whose values are either primitives,
collections or indexes. The relation between records is either composition or
association.

3.3 Represent records as maps

So far, we’ve illustrated the benefits we gain from the separation between Code and Data at a
high system level. There’s a separation of concerns between code and data, and each part has
clear constraints:

1. Code consists of static functions that receive data as an explicit argument
2. Data entities are modeled as r ecor ds, and the relations between records are represented

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



80
by collections and indexes
Now comes the question of the representation of the data.

While DO has nothing special to say about collections and indexes, it’s strongly opinionated
about the representation of records. It applies to every programming language, dynamically- or
statically-typed, Object-Oriented or Functional, it doesn’t matter. In DO, records should be
represented by generic data structures such as maps. Let’s see how and why...

YOU: I'm really curious to know how we represent collections, indexes and records in DO.

JOE: Let’s start with collections. DO is not opiniated about the representation of collections.
They can be linked lists, arrays, vectors, sets or other collections best suited for the use case.

YOU: It’s like in OO.

JOE: Right. For now, to keep things simple, we’ll use arrays to represent collections.
YOU: What about indexes?

JOE: Indexes are represented as homogeneous maps with string keys.

YOU: What do you mean by an homogeneous map?

JOE: I mean that all the values of the map are of the same kind. For example, in a Book index,

all the values are Book, in an author index, all the values are Aut hor, etc...

YOU: Again, it’s like in OO.

NOTE A homogeneous map is a map where all the values are of the same type. A
heterogeneous map is a map where the values are of different types.

JOE: Now, here’s the big surprise. In DO, records are represented as maps; more precisely,
heterogeneous maps with string keys.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



81

Heterogeneous Map)

:Linked List]

Array |

Set

Vector |

Homogeneous Map]

[Data Representation Collection

Figure 3.4 The building blocks of data representation

You stay silent for a while. You’re shocked to hear that one can represent the data entities of a
system as a generic data structure, where the field names and value types are not specified in a
class.

Then you ask Joe:

YOU: What are the benefits of this folly?!
JOE: Flexibility and genericity.

YOU: Could you explain, please?

JOE: I'll explain in a moment, but before that, I’d like to show you how an instance of a record
in a DO system looks like.

YOU: OK.

JOE: Let’s take as an example, "Watchmen" by Alan Moore and Dave Gibbons, which is my
favorite graphic novel. This masterpiece was published in 1987. I’'m going to assume that there
are two copies of this book in the library, both located on a rack whose ID is r ack- 17, and that
one of the two copies is currently out. Here’s how 1’d represent the Book record for "Watchmen"
in DO.

Joe comes closer to your laptop, opens a text editor (not an IDE!) and starts typing...

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



82

Listing 3.1 An instance of a Book record represented as a map

{
"isbn": "978-1779501127",
"title": "Watchnen",
"publicationYear": 1987,
"authors": ["al an-noore", "dave-gibbons"],
"bookl tens": [
{
"id": "book-item1",
"rackld": "rack-17",
"isLent": true
iz
{
"id": "book-item 2",
"rackld": "rack-17",
"isLent": false
}
]
}

You look at the laptop screen and ask Joe:
YOU: How am I supposed to instantiate the Book record for "Watchmen" programmatically?

JOE: It depends on the facilities that your programming language offers to instantiate maps.
With dynamic languages like JavaScript, Ruby or Python, it’s straightforward because we can
leverage literals for maps and arrays.

Listing 3.2 Creating an instance of a Book record represented as a map in JavaScript

var wat chmenBook = {
"isbn": "978-1779501127",
"title": "Watchmen",
“publicationYear": 1987,
"authors": ["al an-noore", "dave-gibbons"],
"bookl tenms": [
{
"id": "book-item1",
"rackld": "rack-17",
"isLent": true

b,

{
"id": "book-item?2",
"rackld": "rack-17",
"isLent": false

}

YOU: And if I’'m in Java?

JOE: It’s a bit more tedious, but still doable with the immutable Map and Li st static factory
methods.?:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



83

Listing 3.3 Creating an instance of a Book record represented as a map in Java

Map wat chmen = Map. of (

"isbn", "978-1779501127",

“title", "Watchmen",

"publicationYear", 1987,

"aut hors", List.of("al an-noore", "dave-gibbons"),

"bookl tens", List.of(

Map. of (

"id", "book-item1",
"rackld", "rack-17",
"isLent", true

),

Map. of (
"id", "book-item 2",
"rackld", "rack-17",
"isLent", false
)

)

)
TIP In DO, we represent a record as a heterogeneous map with string keys.

YOU: I’d definitely prefer to instantiate a Book record out of a Book and a Book! t emclass.

You open your JavaScript IDE and you start typing...

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



84

Listing 3.4 Creating an instance of a Book record represented as an instance of a Book

class in JavaScript

cl ass Book {
i sbn;
title;
publ i cati onYear;

aut hors;

bookl t ers;

constructor (isbn, title, publicationYear, authors, bookltens) {
this.isbn = isbn;

this.title =title;
this.publicationYear = publicationYear;
this.authors = authors;

thi s. bookltens = bookltens;

}
cl ass Bookltem {
id;
rackl d;
i sLent;
constructor(id, rackld, isLent) {
this.id = id;
this.rackld = rackld;
this.isLent = isLent;
}
}
var wat chmenBook = new Book("978-1779501127",
"\Wat chnen",
1987,
["al an- moore", "dave-gi bbons"],
[ new Booklten{"book-item 1", "rack-17", true),

new Bookl t en( " book-item 2", “"rack-17", false)]);
JOE: Why do you prefer classes over maps for representing records?

YOU: It makes the data shape of the record part of my program. As a result, the IDE can
auto-complete field names, and errors are caught at compile time.

JOE: Fair enough. Would you let me show you some drawbacks of this approach?

YOU: Sure.

JOE: Imagine that you want to display the information about a book in the context of search
results. In that case, instead of author IDs, you want to display author names and you don’t need
the book item information. How would you handle that?

YOU: I’d create a class Bookl nSear chResul t s without a bookl t ens member, and with an
aut hor Nanmes member instead of the aut hor | ds member of the Book class. Also, I would need

to write a copy constructor that receives a Book object.

JOE:The fact that in classic OO, data is instantiated only via classes brings safety. But this
safety comes at the cost of flexibility.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



85

YOU: How can it be different?

TIP There’s a trade-off between flexibility and safety in a data model.

JOE: In the DO approach, where records are represented as maps, we don’t need to create a
class for each variation of the data. We’re free to add, remove and rename record fields
dynamically. Our data model is flexible.

YOU: Interesting!

TIP In DO, the data model is flexible. We're free to add, remove and rename
record fields dynamically, at runtime.

JOE: Now, let me talk about genericity: How would you serialize to JSON the content of a
Book object?

TIP In DO, records are manipulated with generic functions.

YOU: Oh no! I had a nightmare about JSON serialization when I was developing the first
version of the Library Management system (see Chapter 1).

JOE: Well, in DO, serializing a record to JSON is super easy.
YOU: Does it involve reflection to go over the fields of the record?

JOE: Not at all! Remember that in DO, a record is nothing more than data. We can write a
generic JSON serialization function that works with any record. It can be a Book, an Aut hor, a
Book! t em or anything else.

YOU: Amazing!

TIP In DO, you get JSON serialization for free.

JOE: Actually, as I’ll show you in a moment, lots of data manipulation stuff can be done using
generic functions.

YOU: Are the generic functions part of the language?

JOE: It depends on the functions and on the language. For example, JavaScript provides a JSON
serialization function called JSON. stri ngi fy() out of the box, but none for omitting multiple
keys or for renaming keys.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



86
YOU: That’s annoying.

JOE: Not so much. There are third-party libraries that provide data-manipulation facilities. A

popular data-manipulation library in the JavaScript ecosystem is Lodash.’

YOU: And in Java?

JOE: There exist ports of Lodash to J ava,4 to C#,5 to Python,6 and to Ruby.7
YOU: Cool!

JOE: Actually, Lodash and its rich set of data manipulation functions can be ported to any
language! That’s why it’s so beneficial to represent records as maps!

TIP DO compromises on data safety to gain flexibility and genericity.

Table 3.1 Tradeoff between safety, flexibility and genericity

00 DO
Safety high low
Flexibility low high
Genericity low high

3.4 Manipulate data with generic functions

JOE: Now, let me show you how we manipulate data in DO with generic functions.

YOU: Yes, I'm quite curious to see how you’ll implement the search functionality of the Library
Management system.

JOE: OK. First, let’s instantiate, according to your data model from Figure 3.3, a Cat al og
record for the catalog data of a library, where we have a single book, "Watchmen":

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



87

Listing 3.5 A Cat al og record

var catal ogbData = {
"booksByl sbn": {
"978-1779501127": {
"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,

"aut horlds": ["al an-noore", "dave-gi bbons"],
"bookl tens": [
{

"id": "book-item1",
"rackld": "rack-17",
"isLent": true

Ve

{
"id": "book-item 2",
"rackld": "rack-17",
"isLent": false

}

}
3
"aut horsByl d": {
"al an-noore": {
“nane": "Al an More",
"bookl sbns": ["978-1779501127"]
}

ave- gi bbons": {
"name": "Dave G bbons",
"bookl sbns": ["978-1779501127"]

YOU: I see the two indexes we talked about, booksByl sbn and aut hor sByl d. How do you
differentiate a record from an index in DO?

JOE: In an entity diagram, there’s a clear distinction between records and indexes. But in our
code, both are plain data.

YOU: I guess that’s why this approach is called Data-Oriented Programming.

JOE: Notice how straightforward it is to visualize any part of the system data inside a program.
The reason is that data is represented as data!

YOU: It sounds like a lapalissade.8

TIP In DO, data is represented as data.

JOE: Indeed, it’s obvious, but usually in OO, data is represented by objects, which makes it
more challenging to visualize data inside a program.

TIP In DO, we can visualize any part of the system data.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



88

YOU: How would you retrieve the title of a specific book from the catalog data?

JOE: That’s a great question. In fact, in a DO system, every piece of information has a path
from which we can retrieve the information.

YOU: I don’t get that.

JOE: For example, the path to the title of the "Watchmen" book in the catalog is:
[ "booksByl sbn", "978-1779501127", "title"].

YOU: So what?

JOE: Once we have the path of a piece of information, we can retrieve the information with
Lodash’s _. get () function:

Listing 3.6 Retrieving the title of a book from its path

_.get(catal ogbhata, ["booksBylsbn", "978-1779501127", "title"])

YOU: Does it work smoothly in a statically-typed language like Java?

JOE: It depends whether you need only to pass the value around or to concretely access the
value.

YOU: I don’t follow.

JOE: Imagine that once you get the title of a book, you want to convert the string into an
upper-case string. Then you need to do a static cast to St ri ng.

Listing 3.7 Casting a field value to a string, in order to manipulate it as a string

((String)watchmen.get("title")).toUpperCase()

YOU: It makes sense. The values of the map are of different types. Thus, the compiler declares it
as a Map<St ri ng, Obj ect >. The information of the type of the field is lost.

JOE: It’s a bit annoying, but quite often, the code just passes the data around. So we don’t have
to deal too much with static casting.

TIP In statically-typed languages, we sometimes need to statically cast the field
values.

YOU: What about performance?

JOE: In most programming languages, maps are quite effective. Accessing a field in a map is

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



89

slightly slower than accessing a class member. Usually, this is not significant.

TIP No significant performance hit by accessing a field in a map instead of a class
member.

YOU: Let’s get back to this idea of information path. In OO also, I’d be able to access the title of
the "Watchmen" book with cat al ogDat a. booksByl sbn["978-1779501127"] . title. Class
members for record fields and strings for index keys.

JOE: There’s a fundamental difference. When records are represented as maps, the information
can be retrieved via its path using a generic function like _. get (). But when records are
represented as objects, you need to write specific code for each type of information path.

YOU: What do you mean by specific code? What’s specific in
cat al ogDat a. booksByl sbn["978- 1779501127"] . title?

JOE: In a statically-typed language like Java, to write this piece of code, you need to import the
class definitions for Cat al og and Book.

YOU: And in a dynamically-typed language like JavaScript?

JOE: Even in JavaScript, when you represent records with objects instantiated from classes, you
cannot easily write a function that receives a path as an argument and display the information
that corresponds to this path. You would have to write specific code for each kind of path. You’d
access class members with dot notation and map fields with bracket notation.

YOU: Would you say that in DO, the information path is a first-class citizen?

JOE: Absolutely! The information path is a first-class citizen. It can be stored in a variable and
passed as an argument to a function.

TIP In DO, you can retrieve every piece of information via a path and a generic
function.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



90

catalog
]
| |
booksBylsbn authorsByld
|— 978-1779501127 H alan-moore
title isbn name
LWatchmen L9?8—1??95l]1].2? I—A\an Moore
authorlds publicationYear booklsbns
LIQB?
bookltems
dave-gibbons dlan-moore 78-1779501127
B—L@ H dave-gibbons
- id - id name
ook-item-2 ook-item-1 LDave Gibbons
- rackld - rackld booklsbns
Lack—l? LVBCk-U’
- isLent - isLent
78-1779501127
Lfalse L(r'ue

Figure 3.5 The catalog data as a tree. Each piece of information is accessible via a path made of
strings and integers. For example, the path of Alan Moore’s first book of is ["catalog", "authorsByld",
"alan-moore", "booklsbns", 0].

3.5 Calculate search results
YOU: I am starting to feel the power of expression of DO.

JOE: Wait. It’s just the beginning. Let me show you how simple it is to write code that retrieves
the book information and displays it in search results. Can you tell me exactly what information
has to appear in search results?

YOU: In the context of search results, the book information should contain i sbn, titl e and

aut hor Nanes.
JOE: Can you try to write down how a Bookl nf o record would look like for "Watchmen"?

YOU: Sure, here you go...

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



91

Listing 3.8 A Bookl nf o record for Watchmen in the context of search result

{
"title": "Watchnen",
"isbn": "978-1779501127",
"aut hor Nanes": [
"Al an Moore",
"Dave G bbons",
]
}

JOE: Now, I’'m going to show you, step by step, how to write a function that returns search
results matching a title in JSON format, using generic data manipulation functions from
Lodash.

YOU: Cool!

JOE: Let’s start with an aut hor Nanes() function that calculates the author names of a Book
record by looking at the aut hor sByl d index. The information path for the name of an author is
["aut horsByld", authorld, "nane"].

Listing 3.9 Calculating the author names of a book

function aut hor Names(cat al ogDat a, book) {
var authorlds = _.get(book, "authorlds");
var names = _.map(authorlds, function(authorid) { @
return _.get(catal ogbata, ["authorsByld", authorld, "name"]);

56

return nanes;

©  can bedonewith . f or Each() instead of . map()

YOU: What’s this _. map() function? It smells like Functional Programming stuff! You
promised me I don’t have to learn FP to implement DO!

JOE: You can use Lodash’s _. f or Each() if you like.
YOU: Yes, I like that. What’s next?

JOE: Now, we need a bookl nf o function that converts a Book record into a Bookl nf o record.

Listing 3.10 Converting a Book record into a Book| nf o record

function bookl nfo(catal oghata, book) {

var booklnfo = {
"title": _.get(book, "title"),
"isbn": _.get(book, "isbn"),

"aut hor Nanes": aut hor Nanes(cat al ogDat a, book)
B

return bookinfo; @

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



92

© No needto create aclass for bookl nf o

YOU: Looking at the code, I see that a Bookl nf o record has three fields: title, i sbn and
aut hor Nanes. Is there a way to get this information without looking at the code?

JOE: You can either add it to the data entity diagram or write it in the documentation of the
book! nf o function, or both.

YOU: I have to get used to the idea that in DO, the record field information is not part of the
program.

JOE: Indeed, it’s not part of the program, but it gives us a lot of flexibility.
YOU: Is there any way for me to have my cake and eat it, too?!

JOE: Yes. In Part 3, I’'ll show you how to make record field information as part of a DO
program.

YOU: Sounds intriguing!

JOE: Now, we have all the pieces in place to write our sear chBooksByTi t| e function that
returns book information about the books that match the query. First, we find the Book records
that match the query (with _.filter()), and then we transform each Book record into a

Book! nf o record (with _. map() and bookl nf o() ). Here’s the code:

Listing 3.11 Searching books that match a query

function searchBooksByTitle(catal ogData, query) {
var all Books = _.get(catal ogData, "booksBylsbn");
var mat chi ngBooks = _.filter(allBooks, function(book) { © o
return _.get(book, "title").includes(query);

53

var booklnfos = _.map(matchi ngBooks, function(book) { @
return bookl nfo(catal ogbData, book);

5)s

return bookl nf os;

}

sear chBooksByTi t| e(cat al ogDat a, "Watchnen");

© whenyoupassamapto .filter(),itgoesover the valuesof the map

®  canbedonewith _. for Each()

YOU: It’s a bit weird to me that to access a the title of a book record, you write _. get (book,
"title"). I'd expect it to be book.title in dot notation, or book["title"] in bracket
notation!

JOE: Remember that book is a record that’s not represented as an object. It’s a map. Indeed, in

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



93

JavaScript, you can write _. get (book, "title"), book.title or book["title"]. But I
prefer to use Lodash’s _. get () . In some languages, the dot and the bracket notations might not

work on maps.
YOU: Are we done with the search implementation?

JOE: Almost. The sear chBooksByTi t | e function we wrote is part of the Cat al og module, and
it returns a collection of records. We have to write a function that’s part of the Li br ary module
and that returns a JSON string.

YOU: You told me earlier that JSON serialization was straightforward in DO.

JOE: Right. Here’s the code for sear chBooksByTi t | eJSON() . It retrieves the Cat al og record,
passes it to sear chBooksByTi t | e(), and converts the results to JSON with JSON. stri ngi fy()
(that’s part of JavaScript).

Listing 3.12 Searching books in a library as JSON

function searchBooksByTitl eJSON(|ibraryData, query) {
var results = searchBooksByTitle(_.get(libraryData, "catal og"), query);
var resul tsJSON = JSON.stringify(results);
return resul t sJSON;

YOU: How are we going to combine the four functions that we have written so far?

JOE: The functions aut hor Nanes, bookl nf o and sear chBooksByTi t| e go into the Cat al og
module, and sear chBooksByTi t | eJSON goes into the Li br ar y module.

You look at the resulting code of the two modules, quite amazed by the conciseness of the code.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



94

Listing 3.13 Calculating search results. The code is split in two modules: Li brary and

Cat al og.

cl ass Catal og {
stati c aut hor Nanes(cat al ogbat a, book) {

var authorlds = _.get(book, "authorlds");
var names = _.nmap(authorlds, function(authorid) { @
return _.get(catal ogbata, ["authorsByld", authorld, "name"]);
b
return nanes;
}
static bookl nfo(catal ogData, book) {
var booklnfo = {
"title": _.get(book, "title"),
"isbn": _.get(book, "isbn"),
"aut hor Nanmes": Cat al og. aut hor Nanes( cat al ogDat a, book)
}; O
return bookl nfo;
}
static searchBooksByTitl e(catal ogData, query) {
var al |l Books = _.get(catal ogData, "booksBylsbn");
var matchingBooks = _.filter(allBooks, function(book) { @ ©
return _.get(book, "title").includes(query);
1)
var booklnfos = _.map(matchi ngBooks, function(book) { @
return Catal og. bookl nfo(catal ogDat a, book);
b

return bookl nf os;

}

class Library {
static searchBooksByTitl eJSON(|i braryData, query) {
var catalogbData = _.get(libraryData, "catal og");
var results = Catal og. searchBooksByTitl e(catal ogbata, query);
var resul tsJSON = JSON. stringify(results);
return resul t sJSON;

}
}
©  canbedonewith _. for Each()
® 1o need to create a class for bookl nf o
© when _.filter() ispassed amap, it goesover the values of the map
o

converts data to JSON (part of JavaScript)

YOU: Let’s check whether the code works as expected.

JOE: Sure. For that, we need to create a Li br ar y record that contains our Cat al og record.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



95

Listing 3.14 The library data (without user management data)

var |ibraryData = {

"nanme": "The smallest library on earth",

"address": "Here and now',

"catal og": {

"booksByl sbn": {
"978-1779501127": {
"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,
"aut horlds": ["al an- noore",
"dave- gi bbons"],

"bookl tens": [

{
"id": "book-item1",
"rackld": "rack-17",
"isLent": true

B

{
"id": "book-item 2",
"rackld": "rack-17",
"isLent": false

}

}
ba
"aut horsByl d": {

"al an-nmoore": {

"name": "Al an More",
"bookl sbns": ["978-1779501127"]

},
"dave- gi bbons": {

"name": "Dave G bbons",

"bookl sbns": ["978-1779501127"]
}

}
3
"user Managenent ": {
/] omtted for now

}

YOU: Let’s search for books with titles that match " Wat chren” .

Listing 3.15 Search results in JSON

Li brary. sear chBooksByTi t1 eJSON(I i braryData, "Watchnmen");
/1 returns "[{\"title\":\"Watchnen\",\"isbn\":\"978-1779501127\",\ "aut hor Names\": [\ " Al an Mdore\",
/1 \"Dave G bbons\"]}]"

You look again at the source code from Listing 3.12... After a few seconds, you feel like you’re
in an Aha! moment.

YOU: The important thing is not that the code is concise, but that the code contains no
abstractions. It’s just data manipulation!

Joe responds with a smile that says, "You got it, my friend!"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



96

JOE: It reminds me what my first meditation teacher told me 10 years ago: Meditation guides
the mind to grasp the reality as it is, without the abstractions created by our thoughts.

TIP In DO, many parts of our code base tend to be just about data manipulation
with no abstractions.

3.6 Handle records of different types

We’ve seen how DO enables us to treat records as first class citizens that can be manipulated in
a flexible way using generic functions. But if a record is nothing more than an aggregation of
fields, how do we know what the type of the record is?

DO has a surprising answer to this question.

YOU: I have a question. If a record is nothing more than a map, how do you know the type of
the record?

JOE: That’s a great question with a surprising answer.

YOU: I’'m curious.

JOE: Most of the time, there’s no need to know the type of the record.
YOU: What do you mean?

JOE: I mean that what matter most are the values of the fields. For example, take a look at the
Cat al og. aut hor Names() source code in Listing 3.15. It operates on a Book record, but the only
thing that matters is the value of the aut hor | ds field.

Doubtful, you look at the source code of Cat al og. aut hor Nanes.

Listing 3.16 Calculating the author names of a book

function aut hor Names(cat al ogDat a, book) {

var authorlds = _.get(book, "authorlds");
var names = _.map(authorlds, function(authorid) { @
return _.get(catal ogbData, ["authorsByld", authorld, "name"]);

5)s

return nanes;

©  canbedonewith . f or Each() instead of . map()

YOU: What about differentiating between various user types like Menber vs Li brarian? I
mean, they both have emai | and encr ypt edPasswor d. How do you know if a record represents
a Menber oralibrarian?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



97

JOE: You check if the record is found in the |ibrariansByEmail index or in the
menber sByEmai | index of the Cat al og.

YOU: Could you be more specific?

JOE: Sure. Let me write down how the user management data of our tiny library might look
like, assuming that we have one librarian and one member. To keep things simple, I am
encrypting passwords through naive base-64 encoding.

Listing 3.17 A UserManagement record

var user ManagenentData = {
"librarians": {
"franck@mail . comt' : {

"email": "franck@mail . cont,
"encrypt edPassword”: "bXl wYXNzd29yZA==" @
}
i
"menbers": {
"samant ha@mai | . com': {
"emai | ": "samant ha@nmuail . cont,
"encrypt edPassword": "c2Vjcnmv0", (2]
"isBl ocked": false,
"bookLendi ngs": [
{
"bookltem d": "book-item 1",
"bookl sbn": "978-1779501127",
"l endi ngDat e": "2020-04-23"
}
1
}
}

©  pase-64 encoding of "mypassword"

®  base-64 encoding of "secret"

TIP Most of the time, there’s no need to know what the type of a record is.

YOU: I remember that in Chapter 2, you told me you’ll show me the code for
User Managenent . i sLi brari an() function in Chapter 3.

JOE: So here we are in Chapter 3, and I’m going to fulfill my promise:

Listing 3.18 Checking if a user is a librarian

function isLibrarian(user Managenent, enmail) {
return _.has(_.get(userManagenent, "librariansByEmail"), email);

}
YOU: OK. You simply check if the | i br ari ansByEmai | map contains the emai | field.

JOE: Yep.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



YOU: Would you use the same pattern to check if a member is a Super member or a VIP
member?

JOE: We can, indeed, have Super Menber sByEmai | and VI PMenber sByEmai | indexes. But
there’s a better way.

YOU: How?

JOE: When a member is a VIP member, we add a field, i sVI P with the value t r ue, to its record.
To check if a member is a VIP member, check whether the i sVI P field is set to true in the
member record:

Listing 3.19 Checking if a member is a VIP member

function isVI PMenber (user Managenent, enmmil) {
return _.get(userManagenent, ["menbersByEnmil", email, "isVIP']) == true;

}

YOU: I see that you access the i sVI P field via its information path: [ " menber sByEmai | ",

email, "isVIP'].
JOE: Yes. I think it makes the code crystal clear.

YOU: Agree. And I guess that we can do the same and have an i sSuper field set to t r ue when

a member is a Super member?

JOE: Yes. Just like this:

Listing 3.20 The code of User Managenent module

cl ass User Managenent {
i sVI PMenber (user Managenent, email) {
return _.get(userManagenment, ["nenbersByEnmmil", email, "isVIP']) == true;

}

i sSuper Menber (user Managenent, email) {
return _.get(userManagenment, ["menbersByEnmil", email, "isSuper"]) == true;

}
You look at the User Managenent module code for a couple of seconds, and suddenly an idea
comes to you...
YOU: Why not have a t ype field in member record, whose value would be either VI P or Super ?

JOE: I assume that, according to the product requirements, a member can be both a VIP and a
Super member.

YOU: Hmm... We can have a t ypes field that will be a collection of either VI P or Super .

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



99

JOE: In some situations, having a t ypes field is helpful, but I find it simpler to have a boolean
field for each feature that the record supports.

YOU: Is there a name for fields like i sVI P and i sSuper ?

JOE: I call them feature fields.

TIP Instead of maintaining type information about a record, use a feature field
(e.g.,isVIP).

YOU: Can we use feature fields to differentiate between librarians and members?
JOE: You mean having ani sLi brari an and an i sMenber field?
YOU: Yes, and having a common User record type for both librarians and members.

JOE: We can, but I think it’s simpler to have different record types for librarians and members:
Li brari an for librarians, and Menber for members.

YOU: Why?

JOE: Because there’s a clear distinction between librarians and members in terms of data. For
example, members have book lendings but librarians don’t.

YOU: I agree. Now, we need to mention the two Menber feature fields in our entity diagram:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



100

(C ) Library

< pame: 5tring

O address: String

© catalog: Catalog

O userManagement: Catalog

7\

C Catalog C UserManagement
© booksBylsbn: {Book} o librariansByEmail: {Librarian}
O authorsByld: {Author} © membersByEmail: {Member}

! Y
: | | :

€ Book | | C | Member
o title : String '-.(_:.-' Author (€ Librarian © email: String
: - _—
[s] thJJincationYear: Number £o— o id: 5tring © email: String 8 f:;g‘éﬂi?g?;::;d' String
< isbn: String < mame: String : - ;. . .
© authorlds: [String] o booklsbns: [String] O encryptedPassword: String 8 E%T;Léggllenagns' [BookLending)
© bookltems: [Bookitem] p isSu;ﬁer' Boolean
*

{IC) BookLending

o lendingDate: 5tring

© bookltemld: String

O booklsbn: String

)=
’
-
5 &
s
P
(i€ Bookltem
© id: String

O rackld: String
O purchaseDate: String
© isLent: Booklean

Figure 3.6 Library management data model, with Member feature fields isVIP and isSuper.

JOE: Do you like the data model that we have designed together?
YOU: I find it quite simple and clear.
JOE: That’s the main goal of DO.

YOU: Also, I'm pleasantly surprised how easy it is to adapt to changing requirements both in
terms of code and data model.

JOE: I suppose you’re also happy to get rid of complex class hierarchy diagrams.
YOU: Absolutely! Feature fields feel much simpler to deal with than class inheritance.

JOE: Avoiding inheritance in records keeps our data model simple.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



101
YOU: Are there more benefits of representing records with maps?

JOE: Yes. We can quite easily deal with advanced data inspection stuff. I’1l tell you more about
that in Chapter 5.

YOU: Why not in the next Chapter?
JOE: Because I have something more fundamental to tell you about.
YOU: What’s that?

JOE: How to manage state in DO without mutating the data.

3.7 Wrapping up

In this chapter, we explored the benefits of representing records with string maps.

The data part of our system is flexible, and each piece of information is accessible via its
information path. We manipulate data with generic functions, which are provided either by the

language itself or by third-party libraries like Lodash. As an example, you get JSON
serialization for free.

On one hand, we’ve lost the safety of accessing record fields via members defined at compile
time. On the other hand, we’ve liberated data from the limitation of classes and objects. Data is
represented as data!

When data is not represented by objects, we’re free to visualize every part of the system.
Instead of maintaining type information about a record, we use a feature field.

In a DO system, the dependency between code and data is weak. It’s all about record field
names. Weak dependency makes it is easier to adapt to changing requirements.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



102

Sate management with immutable data

4.1 Introduction

So far we have seen how DO deals with requests that query information about the system, via
generic functions that access the system data, represented as a hash map.

In this chapter and the following one, we illustrate how DO deals with mutations, i.e. requests
that change the system state. Instead of updating the state in place, we maintain multiple
versions of the system data. At a specific point in time, the system state refers to a specific
version of the system data.

The maintenance of multiple versions of the system data requires the data to be immutable. This
is made efficient both in terms of computation and memory via a technique called Structural
Sharing, where parts of the data that are common between two versions are shared instead of
being copied.

In DO, a mutation is split into two distinct phases:

1. Inthe Calculation phase, we compute the next version of the system data.

2. Inthe Commit phase, we move forward the system state so that it refer s to the version
of the system data computed by the Calculation phase.

This distinction between Calculation and Commit phases allows us to reduce the part of our
system that is stateful to its bare minimum. Only the code of the Commit phase is stateful, while
the code in the Calculation phase of a mutation is stateless and made of generic functions
similar to the code of a query.

The implementation of the Commit phase is common to all the mutations. As a consequence,
inside the Commit phase, we have the ability to ensure that the state always refers to a valid
version of the system data.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



103

Another benefit of this state management approach is that we can keep track of the history of
previous versions of the system data. If needed, restoring the system to a previous state is
straightforward.

Table 4.1 The two phases of a mutation

Phase Responsibility State Implementation

Calculation Compute next version of Stateless Specific
system data

Commit Move forward the system Stateful Common
state

In the present chapter, we assume that no mutations occur concurrently in our system. In the next
chapter, we will deal with concurrency control.

4.2 Multiple versions of the system data

During the coffee break, you and Joe go for a walk around the block and this time the discussion
turns around version control systems. You discuss about how git keeps track of the whole
commit history and how easy and fast it is to restore the code to a previous commit. You discuss
also about commit hooks that allows to validate the code before it is committed.

JOE: So far we have seen how in DO, we manage queries that retrieve information from the
system. Now [ am going to show you how we manage mutations. By a mutation, | mean an
operation that changes the state of the system.

NOTE A mutation is an operation that changes the state of the system.

YOU: Is there a fundamental difference between queries and mutations in DO? After all, the
whole state of the system is represented as a hash map. I could easily write code that modifies
part of the hash map. It would be similar to the code that retrieves information from the hash
map.

JOE: You could mutate the data in place, but then it would be challenging to make sure that the
code of a mutation doesn’t put the system into an invalid date. Also you would lose track of
previous versions of the system state.

YOU: I see. So how do you handle mutations in DO?

JOE: We adopt a multi-version state approach, similar to what a version control like git does.
We manage different versions of the system data. At a specific point in time, the state of the
system refers to a version of the system data. After a mutation is executed, we move forward the
reference.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



104

YOU: I am confused: is the system state mutable or immutable?

JOE: The data is immutable but the state reference is mutable.

TIP The data is immutable but the state reference is mutable.
After mutation B After mutation C

Data V10 Data V10
mutation A mutation A

Data V11 Data V11
mutation B mutation B

System State Data V12 Data V12

mutation C
System State Data V13

Figure 4.1 After mutation B is executed, the system state refers to Data V12. After mutation C is
executed, the system state refers to Data V13.

YOU: Does it mean that before the code of a mutation runs, we make a copy of the system data?
JOE: No. That would be very inefficient, as we would have to do a deep copy of the data.
YOU: So how does it work?

JOE: It works by using a technique called structural sharing, where most of the data between
subsequent versions of the state is shared instead of being copied. This technique allows to
efficiently create new versions of the system data, both in terms of memory and computation.

YOU: I am intrigued.

TIP With structural sharing, it is efficient (in terms of memory and computation)
to create new versions of data.

JOE: I’ll explain you in details how structural sharing works in a moment.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



105

You take another look at the diagram in Figure 4.1 that illustrates how the system state refers to a
version of the system data and suddenly a question emerges in your mind.

YOU: Are the previous versions of the system data kept?

JOE: In a simple application, previous versions are automatically removed by the garbage
collector. But in some cases, we maintain historical references to previous versions of the data.

YOU: What kind of cases?

JOE: For example, we can allow time travel in our system. Like in git, we can move back the
system to a previous version of the state very easily.

YOU: Now, I understand what you meant by: The data is immutable but the state reference is

mutable.

4.3 Structural sharing

As we mentioned in the previous section, structural sharing allows to efficiently create new
versions of immutable data. In DO, we leverage structural sharing in the Calculation phase of
a mutation to compute the next state of the system based of the current state of the system.
Inside the calculation phase, we don’t have to deal with state management: this is delayed to the
Commit phase. As a consequence, the code involved in the calculation phase of a mutation is
stateless and is as simple as the code of a query.

YOU: I am really intrigued by this efficient way to create new version of data. How does it
work?

JOE: Let’s take a simple example from our library system. Imagine that you want to modify the
value of a field in a book in the catalog, for instance the publication year of Watchmen. Can you
tell me what is the information path for Watchmen publication year?

After a a quick look at the catalog data in Figure 4.2, you answer:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



106

booksBylsbn authorsByld

978-1779501127 alan-moore

‘1986:
' 978-1779501127
1 0
E book-item-2 E E book-item-1 | Dave Gibbons E

.......................................

booklsbns
rack-17 | rack-17 |

1 978—1779501127E

\
true i true |

Figure 4.2 An updated version of the library

YOU: The information path for Watchmen publication year is: [ " cat al og", "booksByl sbn",
"978-1779501127", "publicationYear"].

JOE: Now, let me show how to use the immutable function _. set () provided by Lodash.

YOU: What do you mean by an immutable function? When I look at Lodash documentation for

_.set() ,9 it says that it mutates the object.

JOE: You are right. By default Lodash functions are not immutable. In order to use a immutable
version of the functions, we need to use Lodash FP module (Functional Programming), as it is

explained in the Lodash FP guide.10
YOU: Do the immutable functions have the same signature as the mutable functions?

JOE: By default, the order of the arguments in immutable functions is shuffled. In the Lodash
FP guide, they explain how to resolve it: with this piece of code in Listing 4.1 the signature of
the immutable functions is exactly the same as the mutable functions.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



107

Listing 4.1 Configuring Lodash so that the immutable functions have the same sighature

as the mutable functions

_ = fp.convert({
"cap": false,
"curry": fal se,
"fixed": fal se,
"immut abl e": true,
"rearg": false

1)

TIP In order to use Lodash immutable functions, we use Lodash FP module and
we configure it so that the sighature of the immutable functions is the same
as in the Lodash documentation web site.

YOU: So basically, I can still rely on Lodash documentation when using immutable versions of
the functions.

JOE: Except for the piece in the documentation that says the function mutates the object.

YOU: Of course!

JOE: Now, let me show you how to write code that creates a version of the library data with the

immutable function _. set () provided by Lodash.

Listing 4.2 Creating a version of the library where Watchmen publication year is 1986

var nextLibrary = _.set(library, ["catal og", "booksBylsbn",
"978-1779501127", "publicationYear"],
1986) ;
NOTE A function is said to be immutable when instead of mutating the data, it

creates a new version of the data without changing the data it receives.

YOU: You told me earlier that structural sharing allowed immutable functions to be efficient in
terms of memory and computation. Could you tell me what make them efficient?

JOE: With pleasure. But before that you’d have to answer a series of questions. Are you ready?
YOU: Yes.

JOE: What part of the library data is impacted by updating Watchmen publication year: the
User Managenent or the Cat al og?

YOU: Only the Cat al og.

JOE: What part of the Cat al og?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



108

YOU: Only the booksByl sbn index.

JOE: What part of the booksBy! sbn index?

YOU: Only the Book record that holds the information about Watchmen.
JOE: What part of the Book record?

YOU: Only the publ i cati onYear field.

JOE: When you use an immutable function to create a new version of the Li brary where the
publication year of Watchmen is set to 1986 (instead of 1987), it creates a fresh Li br ary hash
map that recursively uses the parts of the current Li br ary that are common between the two
versions instead of deeply copying them. This technique is called: structural sharing.

YOU: Could you describe me how structural sharing works step by step?

Joe grabs a piece of paper and draws the diagram in Figure 4.3 that illustrates structural sharing.
«Nexts
@ Library

Catalog

«Nexts
Catalog

- Next
booksBylsbn ° authorsByld bn:k:ls;:tl:bn

«Next»
° watchmen

\4

«Next»
publicationYear:1987 tlt|E Watchmen publicationYear:1986

Figure 4.3 Structural sharing provides an efficient way to create a new version of the data: Next
Library is recursively made of nodes that uses the parts of Library that are common between the
two.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



109

JOE: The next version of the Li brary, uses the same User Management hash map as the old
one. The Cat al og inside the next Li br ary uses the same aut hor sByl d as the current Cat al og.
The Watchmen Book record inside the next Cat al og uses all the fields of the current Book
except for the publ i cati onYear field.

TIP Structural sharing provides an efficient way (both memory and computation)
to create a new version of the data by recursively sharing the parts that don’t
need to change.

YOU: That’s very cool!

JOE: Indeed. Now let me show you how to write a mutation for adding a member using
immutable functions. Figure 4.4 shows a diagram that illustrates how structural sharing looks
like when we add a member.

«Nexts»
userManagement

UserManagement Catalog

«Nexts

librarians members

.
S R

member( memberl

Figure 4.4 Adding a member with structural sharing: most of the data is shared between
the two versions

YOU: It’s so cool that the Cat al og and the | i br ari ans hash maps don’t have to be copied!

JOE: In terms of code, we have to write a Li brary. addMenber () function that delegates to
User Managenent . addMenber () .

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



110

YOU: I guess it is going to be similar to the code we wrote in Chapter 2 to implement the search
books query, where Library.searchBooksByTitleJSON() delegates to
Cat al 0og. sear chBooksByTitl e().

JOE: Similar in the sense that all the functions are static and they receive the data they
manipulate as an argument. But there are two difference: First, A mutation could fail, for
instance if the member to be added already exists. Secondly, the code for
Li brary. addMember () is a bit more elaborate than the code for

Li brary. sear chBooksByTi t | eJSON() as we have to create a new version of the Li br ary that
refers to the new version of the User Managenent . Listing 4.3 shows the code for the mutation
that adds a member.

Listing 4.3 The code for the mutation that adds a member

User Managenent . addMenber = functi on(user Managenent, menber) {
var email = _.get(nenber, "email");
var infoPath = ["menbersByEmail", email];
i f(_. has(user Managenent, infoPath)) { @
throw "Menber al ready exists.";
}
var next User Managenment = _.set (user Managenent, (2]
i nf oPat h,
nenber) ;
return nextUser Managenent ;

}

Li brary. addMenber = function(library, menber) {

var currentUser Managenent = _.get(library, "userManagenment");
var next User Managenent = User Managenent . addMenber (current User Managenent, nenber);
var nextLibrary = .set(library, "userManagenent", nextUser Managenent);

return nextLibrary;

Check if amember aready exists with the same email address
Create anew version of user Managenent that includes the member

Create anew version of | i br ary that contains the new version of
user Managenent

YOU: It’s a bit weird to me that immutable functions return an updated version of the data
instead of changing it in place.

JOE: It was also weird for me when I first encountered immutable data in Clojure 10 years ago.
YOU: How long did it take you to get used to it?

JOE: A couple of weeks.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



111

4.4 Data safety

YOU: Something is not clear to me regarding this structural sharing stuff. What happens if we
write code that modifies the data part that is shared between the two versions of the data? Does
the change affect both versions?

JOE: Could you please write a code snippet that illustrates your question?

You start typing on your laptop, and you come up with the code snippet in Listing 4.4 that
illustrates your point.

Listing 4.4 A piece of code that modifies a piece of data that is shared between two

versions

var nenber = {
"emai | ": "joe@re.cont,
"password": "secret",
"isBl ocked": true

}

var updat edMenber = _.set(nmenber, "password", "hidden");

nmenber["i sBl ocked"] = fal se;

YOU: My question is: what is the value of i sBl ocked in updat edMenber ?

JOE: The answer is that mutating data via the native hash map setter is forbidden. All the data
manipulation must be via immutable functions.

WARNING All data manipulation must be done via immutable functions: It is forbidden
to use the native hash map setter.

YOU: When you say forbidden you mean that it’s up to the developer to make sure it doesn’t
happen. Right?

JOE: Exactly.
YOU: Is there a way to protect our system from a developer’s mistake?

JOE: Yes, there is a way to ensure the immutability of the data at the level of the data structure.
It’s called persistent data structures.

YOU: Are persistent data stuctures also efficient in terms of memory and computation?

JOE: Actually, the way data is organized inside persistent data structures make them even more
efficient than immutable functions.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



112

TIP Persistent data structures are immutable at the level of the data: There is no
way to mutate them (even by mistake).

YOU: Are there library providing persistent data structures?
JOE: Definitely. For example, we have Immutable.js in JavaScript,11 Paguro in Java,12

Immutable Collections in C#, Pyrsistent in Py‘[hon,14 and Hamster in Ruby. 15
YOU: So why not using persistent data structures instead of immutable functions?

JOE: The drawback of persistent data structures is that they are not native which means that
working with them require conversion from native to persistent and from persistent to native.

YOU: What approach would you recommend then?

JOE: If you want to play around a bit, then start with immutable functions. But for a production
application I’d recommend using persistent data structures.

YOU: So bad native data structures are not persistent!

JOE: That’s one of the reasons why I love Clojure: the native data structures of the language are
immutable!

4.5 The Commit phase of a mutation

So far we have seen how to implement the Calculation phase of a mutation. The Calculation
phase is stateless, in the sense that it doesn’t make any change to the system. Now, we are going
to see how we update the state of the system inside the Commit phase.

You take another look at the code for Li brary. addMenber () in Listing 4.5 and something
bothers you: this function returns a new state of the library that contains an additional member
but it doesn’t affect the current state of the library!

Listing 4.5 The Calculation phase of a mutation doesn’t make any change to the system

Li brary. addMenber = function(library, menber) {

var currentUser Managenent = _.get(library, "userManagenent");
var next User Managenent = User Managenent . addMenber (current User Managenent, nenber);
var nextLibrary = .set(library, "userManagenent", nextUser Managenent);

return nextLibrary;

YOU: I see that Li brary. addMenber () doesn’t change the state of the library. How the library
state gets updated then?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



113

JOE: That’s an excellent question. Li br ary. addMenber () deals only with data calculation and
is stateless. The state is updated in the Commit phase by moving forward the version of the state
that the system state refers to.

YOU: What do you mean?

JOE: Here is what happens when we add a member to the system. The Calculation phase
creates a version of the state that has two members. Before the Commit phase, the system state
refers to the version of the state with one member. The responsibility of the Commit phase is to
move the system state forward so that it refers to the version of the state with two members.

TIP The responsibility of the Commit phase is to move forward the system state to
the version of the state returned by the Calculation phase.

Before Commit After Commit
System State State with one member State with one member
addMember addMember
State with two members System State State with two members

Figure 4.5 The Commit phase moves forward the system state

YOU: How does it look like in terms of code?

JOE: The code is made of 2 classes: Syst em a singleton stateful class that implements the
mutations. Syst enft at e a singleton stateful class that manages the system state.

YOU: It sounds to me like classic OO.

JOE: Right. This part of the system being stateful is very OO-like.

YOU: I am happy to see that you still find some utility in OO.

JOE: Meditation taught me that Every piece of our universe has a role to play.
YOU: Nice! Could you show me some code?

JOE: Sure. Let’s start with the Syst emclass: Listing 4.6 shows the implementation of the
addMenber mutation.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



114

Listing 4.6 The Syst emclass

class System {
addMenber (nenber) {
var previous = SystenState.get();
var next = Library.addMenber (previ ous, nenber);
Syst entt at e. conmi t (previ ous, next);

YOU: How does a Syst entt at e look like?

JOE: Listing 4.7 shows the code for the Syst entt at e class: It is a stateful class!

Listing 4.7 The Syst enft at e class

class Systenftate {
syst enfst at e;

get () {
return this.systenttate;
}

commi t (previous, next) {
this.systenttate = next;

}
YOU: I don’t get the point of the Syst entSt at e. It’s a simple class with a getter and a commit
function!

JOE: In a moment, we are going to enrich the code of the Syst entt at e. conmi t () method so
that it provides data validation and history tracking. For now, the important thing to notice is that
the code of the Calculation phase is stateless and it is decoupled from the code of the Commit
phase which is stateful.

TIP The Calculation phase is stateless. The Commit phase is stateful.

4.6 Ensure system state integrity

YOU: Something still bothers me with the way functions manipulate immutable data in the
Calculation phase: How do we preserve the data integrity?

JOE: What do you mean?

YOU: In OO, the data is manipulated only by methods that belong to the same class as the data.
It prevents from other classes to corrupt the inner state of the class.

JOE: Could you give me an example of an invalid state of the library?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



115

YOU: For example imagine that the code of a mutation adds a book item to the book lendings of
a member without marking the book item as lent in the catalog. Then the system data would be
corrupted.

JOE: In DO, we have the privilege to ensure data integrity at the level of the whole system
instead of scattering the validation among many classes.

YOU: I don’t get that.

JOE: The fact the code for the Commit phase is common to all the mutations allows us to
validate the system data in a central place: At the beginning of the Commit phase, there is a step
that checks (see Listing 4.8) whether the version of the system state to be committed is valid. If
the data is invalid, the commit is rejected.

Listing 4.8 Data validation inside the commit phase

SystentState.conmit = function(previous, next) {
if(!Systenvalidity.validate(previous, next) {
throw "The systemdata to be commtted is not valid!'";

b
this.systenData = next;

YOU: It sounds similar to a commit hook in git.
JOE: I like your analogy!

YOU: Why are you passing to Syst enval i di ty. val i dat e() the previ ous in addition to the
next ?

JOE: Because it allows the code of Syst enval i dity. val i dat e() to optimize the validation in
terms of computation. For example, we could validate only the part of the data that has changed.

TIP In DO, we validate the system data as a whole. Data validation is decoupled
from data manipulation.

YOU: How does the code of Systenval i dity. val i dat e() look like?

JOE: I will you show you in Part 2 how we could for instance make sure that every author id
mentioned in a book record is valid. It involves more advanced data manipulation logic.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



116

4.7 Time travel

Another advantage of the multi-version state approach with immutable data that is manipulated
via structural sharing is that we can keep track of the history of all the versions of the data
without exploding the memory of our program. It allows us for instance to restore the system
back to an earlier state very easily.

YOU: You told me earlier that it was easy to restore the system to a previous state. Could you
show me how?

JOE: With pleasure. But before I’d like to make sure you understand why keeping track of all
the versions of the data is efficient in terms of memory.

YOU: I think it’s related to the fact that immutable functions use structural sharing. And most
of the data between subsequent versions of the state is shared.

TIP Structural sharing allows us to keep many versions of the system state
without exploding the memory.

JOE: Perfect. Now, I am going to show you how simple it is to undo a mutation. In order to
implement undo, our Syst ent at e class needs to have two references to the system data:
syst enDat a references to the current state of the system and pr evi ousSyst enDat a references
to the previous state of the system.

YOU: That makes sense.
JOE: In the Commit phase, we update both pr evi ousSyst enDat a and syst enDat a.
YOU: And what does it take to implement undo?

JOE: Undo is achieved by having syst enDat a referencing the same version of the system data
as previ ousSyst enDat a.

YOU: Could you give me an example?

JOE: To make things simple, I am going to give a number to each version of the system state. It
starts at VO and each time a mutation is committed the version is incremented: V1, V2, V3 etc...

YOU: OK.

JOE: Let’s say that currently our system state is at V12 (see Figure 4.6). In the Systenttat e
object, syst enDat a refers to V12 and pr evi ousSyst enDat a refers to V11.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



17

ﬁprevinu sSystemData

I i . . I
Data V].D_\—_\-\H\ mutation A }_M mutation B }-f’fﬁata V12

- systemData -

Figure 4.6 When the system state is at V12, systemData refers to V12 and previousSystemData
refers to V11

YOU: So far so good.

JOE: Now when a mutation is committed (for instance adding a member), both references move
forward: syst enDat a refers to V13 and pr evi ousSyst enDat a refers to V12

'fr;_rpeviou sSystemData

I ) I . . . I
Data V10 mutation A ~"pata V11 mutation B > Data V12 mutationC _  ~"pata V13

- systemData -

Figure 4.7 When a mutation is committed, systemData refers to V13 and previousSystemData
refers to V12

YOU: And I suppose that when we undo the mutation, both references move backward.

JOE: In theory, yes. But in practice, it would require to maintain a stack of all the state
references. For now, to simplify things we maintain only a reference to the previous version. As
a consequence, when we undo the mutation, both references refer to V12 as shown in Figure 4.8.

'f;;rpeviou sSystemData

I i - . . . I
Data V10 mutation A ¢ Data V11 mutation B "‘\\'ft_a*\il_z/ mutation C > Data V13

Figure 4.8 When a mutation is undone, both systemData and previousSystemData refer to V12

YOU: Could you show me how to implement this undo mechanism?

JOE: Actually, it takes only a couple of changes to the Syst enft at e class. The result is in

Listing 4.9.Pay attention to the changes in the commit() function: We keep inside
syst enDat aBef or eUpdat e a reference to the current state of the system. If the validation and

the conflict resolution succeed, we update both pr evi ousSyst enDat a and syst enDat a.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



118

Listing 4.9 The Syst enfst at e class with undo capability

class SystenData {
syst enDat a;
previ ousSyst enDat a;

get() {
return this.systenData;
}

conmmi t (previous, next) {
var systenDat aBef oreUpdate = this. systenData;
i f(!Consistency. validate(previous, next) {
throw "The systemdata to be conmitted is not valid!'";

1)
this.systenData = next;
this. previ ousSystenDat a = syst enDat aBef or eUpdat e;

}

undoLast Mut ation() {
this.systenData = this. previ ousSyst enDat a;

}

YOU: And I see that implementing Syst em undoLast Mut ati on() is simply a matter of having
syst enDat a refers the same value as pr evi ousSyst enDat a.

JOE: As I told you, if we need to allow multiple undos, the code would be a bit more
complicated. But you get the idea.

4.8 Wrapping up

In this chapter, we have explored how DO manages state via a multi-version approach, where
the mutation is split into Calculation and Commit phases.

During the Calculation phase, the data is manipulated with immutable functions that leverage
structural sharing to efficiently (memory and computation) create a new version of the data
where the data that is common between the two versions is shared instead of being copied.

Moving forward the state reference occurs in the Commit phase which is the only part of our
system that is stateful. The fact that the code for the Commit phase is common to all the
mutations, allows us to validate the system state in a central place before we update the state.

Moreover, it is easy and efficient to keep the history of the versions of the system data and
restoring the system to a previous state is straightforward. As an example, we have seen how to
implement undo in a DO system.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion



119

Notes

The International Standard Book Number (ISBN) is a numeric commercial book identifier which isintended
1. tobeunique

2. docs.oracle.com/javase/9/core/creating-immutabl e-li sts-sets-and-maps.htm

3. lodash.com/

4. javalibs.com/artifact/com.github.javadev/underscore-lodash

5. www.nuget.org/packages/lodash/

6. github.com/dgilland/pydash

7. rudash-website.now.sh/

8. A lapalissadeisan obvious truth — i.e. atruism or tautology — which produces a comical effect

9. lodash.com/

10. github.com/lodash/lodash/wiki/FP-Guide

11. immutable-js.github.io/immutable-js/

12. github.com/GlenK Peterson/Paguro

13. docs.microsoft.com/en-us/archive/msdn-magazine/2017/march/net-framework-immutable-collections

14. github.com/tobgu/pyrsistent

15. github.com/hamstergem/hamster

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion


https://docs.oracle.com/javase/9/core/creating-immutable-lists-sets-and-maps.htm
https://lodash.com/
https://javalibs.com/artifact/com.github.javadev/underscore-lodash
https://www.nuget.org/packages/lodash/
https://github.com/dgilland/pydash
https://rudash-website.now.sh/
https://lodash.com/
https://github.com/lodash/lodash/wiki/FP-Guide
https://immutable-js.github.io/immutable-js/
https://github.com/GlenKPeterson/Paguro
https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/march/net-framework-immutable-collections
https://github.com/tobgu/pyrsistent
https://github.com/hamstergem/hamster

	Data-Oriented Programming MEAP V02
	Copyright
	Welcome
	Brief contents
	Chapter 0: Principles of Data-Oriented Programming
	0.1 Introduction
	0.2 DO Principle #1: Separate code from data
	0.2.1 The principle in a nutshell
	0.2.2 Illustration of Principle #1
	0.2.3 Benefits of Principle #1
	0.2.4 Price for Principle #1
	0.2.5 Wrapping up

	0.3 DO Principle #2: Represent data entities with generic data structures
	0.3.1 The principle in a nutshell
	0.3.2 Illustration of Principle #2
	0.3.3 Benefits of Principle #2
	0.3.4 Price for Principle #2
	0.3.5 Wrapping up

	0.4 DO Principle #3: Data is immutable
	0.4.1 The principle in a nutshell
	0.4.2 Illustration of Principle #3
	0.4.3 Benefits of Principle #3
	0.4.4 Price for Principle #3
	0.4.5 Wrapping up

	0.5 Conclusion

	Chapter 1: The tendency of Object Oriented Programming towards increased system complexity
	1.1 Introduction
	1.2 OO design: classic or classical?
	1.2.1 Meeting with a customer
	1.2.2 The design phase
	1.2.3 UML 101
	1.2.4 Explaining each piece of the class diagram
	1.2.5 The implementation phase

	1.3 Sources of complexity
	1.4 When code and data are mixed, classes tend to be involved in many relations
	1.5 When objects are mutable, understanding code requires extra thinking
	1.6 When data is locked in objects as members, data serialization is not trivial
	1.7 When code is locked into classes, class hierarchies are complex
	1.8 Wrapping up

	Chapter 2: Reduce system complexity by separating Code from Data
	2.1 Introduction
	2.2 The two parts of a DO system
	2.3 Data entities
	2.4 Code modules
	2.5 DO systems are easy to understand
	2.6 DO systems are flexible
	2.7 Wrapping up

	Chapter 3: Manipulate the whole system data with generic functions
	3.1 Introduction
	3.2 Design a data model
	3.3 Represent records as maps
	3.4 Manipulate data with generic functions
	3.5 Calculate search results
	3.6 Handle records of different types
	3.7 Wrapping up

	Chapter 4: State management with immutable data
	4.1 Introduction
	4.2 Multiple versions of the system data
	4.3 Structural sharing
	4.4 Data safety
	4.5 The Commit phase of a mutation
	4.6 Ensure system state integrity
	4.7 Time travel
	4.8 Wrapping up

	Notes



