
ing

©Manning Publications Co. To comment go to liveBook

MEAP Edition
Manning Early Access Program

Data-Oriented Programming
Unlearning objects

Version 2

Copyright 2021 Manning Publications

For more information on this and other Manning titles go to
manning.com

https://livebook.manning.com/#!/book/data-oriented-programming/discussion
https://www.manning.com/

welcome
Thank you for purchasing the MEAP for Data-Oriented Programming.

The book is written for developers having experience in a high level programming language. It could be a classic
Object Oriented language like Java or C# or a dynamically typed language like JavaScript, Ruby or Python. We
assume that you have already built (alone or in a team) a couple of web systems, either backend or frontend.

Data Oriented (DO) Programming is a programming paradigm that makes the systems we build less complex.
The cool thing is that DO is language agnostic: it is applicable to any programming language.

I discovered Data Oriented programming ten years ago when I started to code in Clojure. Since then, the quality of
my design and my code has increased significantly, and the systems I build in Clojure and in other programming
languages are much simpler and much more flexible.

DO is based on three fundamental principles that we expose briefly in Chapter 0. The principles might seem
basic at first sight, but when you apply them in the context of a production-ready information system, they become
very powerful.

Chapter 1 exposes some common pains that Object Oriented developers experience when they develop a
system. Please don't read it as a critic of Object Oriented Programming. The main purpose of Chapter 1 is to motivate
you to learn a different programming paradigm.

Starting from Chapter 2, we expose -- one by one -- the three principles of DO and their benefits in the context of
a production-ready information system.

In order to make the teachings very concrete, we demonstrate how the principles of DO are translated in code. We
have chosen JavaScript as the main language for the code snippets of the book, but the ideas are applicable to
any programming language. We have chosen JavaScript because it supports both Object Oriented and Functional
programming styles and its syntax is easy to read even for folks not familiar with JavaScript.

The book is full of diagrams and mind maps that illustrate the ideas.

The teachings of the book are conveyed through a story of an Object Oriented programmer who meets a Data
Oriented expert and learns from him how DO makes a system less complex and more flexible.

I hope that you find the conversation between the developer and the expert fun to read and that it clarifies the
teaching in the sense that the questions the developers ask the expert resonate well with the questions you ask
yourself during reading.

Each chapter closes with a famous song with modified lyrics related to the teachings of the chapter. To best enjoy
the modified lyrics, I encourage you to listen to the song on Youtube or Spotify while reading.

I truly believe that Data Oriented Programming will make you a better developer, as has been the case for me
since I discovered it ten years ago. I look forward to reading any questions or comments you may have along the
way on Manning’s liveBook Discussion Forum. Your feedback is an invaluable part of making this book the best that
it can be.

One last thing, the name of the main character of the book is: You!

-- Yehonathan Sharvit

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/data-oriented-programming/discussion
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

©Manning Publications Co. To comment go to liveBook

brief contents
INTRODUCTION

 0 Principles of Data-Oriented programming

PART 1: FOUNDATIONS

 1 The tendency of Object-Oriented Programming towards increased system complexity

 2 Reduce system complexity by separating Code from Data

 3 Manipulate the whole system data with generic functions

 4 State management with immutable data

 5 Highly scalable concurrency control

PART 2: IMPLEMENTATION

 6 Data inspection without reflection

 7 Polymorphism without Objects

 8 Persistent data structures kills bugs in the egg

 9 Lock free atomic data comparison

10 Write unit tests without mocking

11 Debug your programs without a debugger

PART 3: EVOLUTION

12 Write your own data manipulation tool set

13 Extend the primitive data types

14 Specify the shape of your data

15 Write unit tests that cover every possible data combination with property based testing

APPENDIX

A Immutable functions (lodash, ramda)

B Conflicting keys algorithm

https://livebook.manning.com/#!/book/data-oriented-programming/discussion

0

1.
2.
3.

Data-Oriented programming is a programming paradigm aimed to the and simplify design
 of software systems where is at the center. Instead of designingimplementation information

information systems around entities that combine data and code together (e.g. objects instantiated
from classes), DO encourages us to . Moreover, DO providesseparate code from data
guidelines about how to and data.represent manipulate

The essence of DO is that it treats . As a consequence, in Data Orienteddata a first class citizen
programs, we data with the same as we manipulate numbers or strings inmanipulate simplicity
any other programs.

TIP In Data Oriented programming, is a .data first class citizen

Treating data as a first class citizen is made possible by adhering to three . Thiscore principles
chapter presents at a high level the core principles of Data Oriented (DO) Programming.

The principles of Data Oriented (DO) Programming are:

Separate from code data
Represent data entities with data structuresgeneric
Data is immutable

When those 3 principles are combined together, they form a cohesive whole as shown in Figure
, that allows us to treat data as a first class citizen. As a consequence, we 0.1 improve our

 and makes the systems we build .developing experience easier to understand

Principles of Data-Oriented Programming

0.1 Introduction

1

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 0.1 The principles of Data Oriented programming

TIP In a Data oriented system, is separated from and the data iscode data
represented with data structures that are .generic immutable

It is important to understand that DO principles are : One could tolanguage agnostic adhere
them or them in:break

Object Oriented (OO) languages: Java, C#, C++…
Functional Programming (FP) languages: Clojure, Ocaml, Haskell…
Languages that support : JavaScript, Python, Ruby…both OO and FP

TIP DO Principles are language agnostic.

WARNING For , the transition to DO might require more of a OO developers mind shift
than for FP developers, as DO guides us from the beginning to get rid of the
habit of in .encapsulating data stateful classes

In this chapter, we are going to illustrate in a succinct way how those principles could be applied
or in . We chose JavaScript for two reasons:broken JavaScript

JavaScript supports both FP and OOP
The syntax of JavaScript is in the sense that even if you are not familiareasy to read
with JavaScript, it is possible to read a piece of JavaScript code at a high level as if it
were pseudo-code

We will also mention briefly what are the that our programs gain when we adhere tobenefits
each principle and the we have to pay in order to enjoy those benefits.price

In this chapter, we illustrate the principles of DO in the context of .simplistic code snippets

2

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

Throughout the book, we will explore in depth how to apply DO principles in the context of
.production information systems

Principle #1 is a principle that recommends a clear separation between code and data.design

NOTE Principle #1: Separate from in a way that the resides incode data code
functions whose behavior does not depend on that is somehowdata
encapsulated in the function’s context.

This principle might seem like a Functional Programming principle, but in fact Principle #1 is
:language agnostic

We can this principle in , by hiding state in the lexical scope of a functionbreak FP
We can to this principle in by aggregating the code as methods of a staticadhere OO
class

Also, Principle #1 doesn’t relate to the way data is represented. This is the theme of Principle #2.

Let me illustrate how we can follow this principle or break it on a simplistic program that deals
with:

An author entity with a , a and a number of he/she wrotefirstName lastName books

A piece of code that calculates the full name of the author
A piece of code that determines if an author is prolific, based on the number of books
he/she wrote

As we wrote earlier, Principle #1 is language agnostic: one could adhere to it or break it in FP or
OOP languages.

Let’s start our exploration of Principle #1 by illustrating first how we could break this principle
in OOP.

We break Principle #1 in OOP, when we write code that combines data and code together in
, like in .an object Listing 0.1

0.2 DO Principle #1: Separate code from data

0.2.1 The principle in a nutshell

0.2.2 Illustration of Principle #1

BREAKING PRINCIPLE #1 IN OOP

3

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 0.1 Breaking Principle #1 in OOP

We could also break this principle , in an FP style, by writing code that without classes hides the
 of a function, like in .data in the lexical scope Listing 0.2

Listing 0.2 Breaking Principle #1 in FP

After having seen how this principle could be broken in OOP and FP, let’s see how we could be
compliant with this principle.

We are compliant with this principle in a FP style, when we write code that separates the code
, like in from the data Listing 0.3

class Author {
 constructor(firstName, lastName, books) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.books = books;
 }
 fullName() {
 return this.firstName + " " + this.lastName;
 }
 isProlific() {
 return this.books > 100;
 }
}

var obj = new Author("Isaac", "Asimov", 500); // Isaac Asimov wrote 500 books!
obj.fullName();

BREAKING PRINCIPLE #1 IN FP

function createAuthorObject(firstName, lastName, books) {
 return {
 fullName: function() {
 return firstName + " " + lastName;
 },
 isProlific: function () {
 return books > 100;
 }
 };
}

var obj = createAuthorObject("Isaac", "Asimov", 500); // Isaac Asimov wrote 500 books!
obj.fullName();

ADHERING TO PRINCIPLE #1 IN FP

4

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.

2.

Listing 0.3 Following Principle #1 in FP

We could be compliant with this principle by writing code where the codeeven with classes
lives in and the data is stored in , like in .static classes classes with no functions Listing 0.4

Listing 0.4 Following Principle #1 in OOP

Now that we have illustrated how one could follow or break Principle #1, both in OOP and FP,
let’s explore what benefits Principle #1 brings to our programs.

When we are careful to separate code from data, our programs benefit from:

Code can be in different contextsreused

function createAuthorData(firstName, lastName, books) {
 return {
 firstName: firstName,
 lastName: lastName,
 books: books
 };
}

function fullName(data) {
 return data.firstName + " " + data.lastName;
}

function isProlific (data) {
 return data.books > 100;
}

var data = createAuthorData("Isaac", "Asimov", 500); // Isaac Asimov wrote 500 books!
fullName(data);

ADHERING TO PRINCIPLE #1 IN OOP

class AuthorData {
 constructor(firstName, lastName, books) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.books = books;
 }
}

class NameCalculation {
 static fullName(data) {
 return data.firstName + " " + data.lastName;
 }
}

class AuthorRating {
 static isProlific (data) {
 return data.books > 100;
 }
}

var data = new AuthorData("Isaac", "Asimov", 500); // Isaac Asimov wrote 500 books!
NameCalculation.fullName(data);

0.2.3 Benefits of Principle #1

5

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

2.
3.

Code can be in isolationtested
Systems tend to be less complex

Imagine that we have in our program, beside the author entity, a user entity that has nothing to do
with authors but in regard to first name and last name, it has the same data fields as the author
entity: and fields.firstName lastName

The logic of the calculation of the full name is the same for authors and users. However, in the
version with , we cannot reuse the code of on a user in a createAuthorObject fullName

 way.straightforward

One way to achieve code reusability when code and data are mixed is to use OO mechanisms,
like or , to let the and the object use the same inheritance composition user author fullName

method. In a simplistic use case it could be fine but on real world systems, the abundance of
 (either base classes or composite classes) tends to of ourclasses increase the complexity

systems.

Another way is shown in : We duplicate the code of inside a Listing 0.5 fullName

 function.createUserObject

Listing 0.5 Duplicating code in OO to avoid inheritance

In the DO version, where and are separate, createAuthorData fullName no modifications to
 (the code that deals with author) are necessary in order to make it available tothe existing code

the user entity. We simply leverage the fact that the data that is relevant to the full name
calculation for a user and an author follows the same shape and we call on a user data.fullName

BENEFIT #1: CODE CAN BE REUSED IN DIFFERENT CONTEXTS

function createAuthorObject(firstName, lastName, books) {
 var data = {firstName: firstName, lastName: lastName, books: books};

 return {
 fullName: function fullName() {
 return data.firstName + " " + data.lastName;
 }
 };
}

function createUserObject(firstName, lastName, email) {
 var data = {firstName: firstName, lastName: lastName, username: username};

 return {
 fullName: function fullName() {
 return data.firstName + " " + data.lastName;
 }
 };
}

var obj = createUserObject("John", "Doe", "john@doe.com");
obj.fullName();

6

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

With no modifications, the function works properly both on author data and on userfullName

data, as shown in .Listing 0.6

Listing 0.6 Using the same code on data entities of different types (FP style)

When Principle #1 is applied in OO, we can reuse code in a straightforward way, even when we
. In statically typed OO languages (like Java or C#), we would have to create ause classes

common interface for and , but in a dynamically typed language likeAuthorData UserData

JavaScript, it is not required.

The code of works both with author data and user data, asNameCalculation.fullName()

shown in .Listing 0.7

Listing 0.7 Using the same code on data entities of different types (OOP style)

function createAuthorData(firstName, lastName, books) {
 return {firstName: firstName, lastName: lastName, books: books};
}

function fullName(data) {
 return data.firstName + " " + data.lastName;
}

function createUserData(firstName, lastName, email) {
 return {firstName: firstName, lastName: lastName, email: email};
}

var authorData = createAuthorData("Isaac", "Asimov", 500);
fullName(authorData);

var userData = createUserData("John", "Doe", "john@doe.com");
fullName(userData);

class AuthorData {
 constructor(firstName, lastName, books) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.books = books;
 }
}

class NameCalculation {
 static fullName() {
 return data.firstName + " " + data.lastName;
 }
}

class UserData {
 constructor(firstName, lastName, email) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.email = email;
 }
}

var userData = new UserData("John", "Doe", "john@doe.com");
NameCalculation.fullName(userData);

var authorData = new AuthorData("Isaac", "Asimov", 500);
NameCalculation.fullName(authorData);

7

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

TIP When we separate code from data, it is straightforward to reuse code in
. This benefit is achievable both in FP and in OOP.different contexts

Another benefit of separating code from data, which is similar to the previous one, is that we are
free to in an .test code isolated context

When we don’t separate code from data, we are forced to instantiate an object in order to test
each of its methods. For instance, in order to test the code that lives inside the fullName

 function, we are required to instantiate an author object, as shown in createAuthorObject

.Listing 0.8

Listing 0.8 Testing code when code and data are mixed requires to instantiate the full
object

In this simplistic scenario, it is not a big pain (only loading unnecessarily the code for
), but in a real world situation, instantiating an object might involve lots ofisProlific

unnecessary steps.

In the DO version, where and are separate, we are free to createcreateAuthorData fullName

the data to be passed to as we want and test in isolation. An example isfullName fullName

shown in Listing 0.9

Listing 0.9 Separating code from data allows us to test code in an isolated context (FP
style)

If we choose to use classes, we only need to instantiate a data object. The code for isProlific
that lives in a separate class than doesn’t have to be loaded in order to test ,fullName fullName

as shown in .Listing 0.10

Listing 0.10 Separating code from data allows us to test code in an isolated context (OOP
style)

BENEFIT #2: CODE CAN BE TESTED IN ISOLATION

var author = createAuthorObject("Isaac", "Asimov", 500);

author.fullName() === "Isaac Asimov"

fullName({firstName: "Isaac", lastName: "Asimov"}) === "Isaac Asimov"

var data = new AuthorData("Isaac", "Asimov");

NameCalculation.fullName(data) === "Isaac Asimov"

8

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.

2.

TIP It’s easier to when we separate code from datawrite tests

The third and last benefit of applying Principle #1 is that systems tend to be less complex.

This benefit is the one but also the one that is most to explain.deepest subtle

The type of I refer to is the one which makes systems as it iscomplexity hard to understand
defined in the beautiful paper . It has nothing to do with the complexity of theOut of the Tar Pit
resources consumed by a program.

Similarly, when we refer to , we mean "not complex", in other words: easy tosimplicity
understand.

Keep in mind that complexity and simplicity (like hard and easy) are not absolute but relative
. We can compare the complexity of two systems and argue that system A is moreconcepts

complex (or simpler) than system B.

NOTE Complex in the context of this book means: hard to understand

When code and data reside in separate entities, the system tends to be foreasier to understand
two reasons:

The of a data entity or a code entity is than the scope of an entity thatscope smaller
combines code and data. Therefore, each entity is easier to understand.
Entities of the system are : code and data. Therefore entitiessplit into disjoint groups
have less relations with other entities.

Let me illustrate this insight on a class diagram of a Library management system, as in Figure 0.2
, where code and data are mixed.

BENEFIT #3: SYSTEMS TEND TO BE LESS COMPLEX

9

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

https://github.com/papers-we-love/papers-we-love/blob/master/design/out-of-the-tar-pit.pdf

Figure 0.2 A class diagram overview for a Library management system

You don’t need to know the details of the classes of this system to get that this diagram
represents a in the sense that it is . The system is hard tocomplex system hard to understand
understand because there are many between the entities that compose the system.dependencies

The of the system is the entity which is connected via 7most complex entity Librarian

relations to other entities. Some relations are (association and composition) anddata relations
some relations are (inheritance and dependency). But the in this design, the code relations

 entity mixes code and data, therefore it has to be involved in both data and codeLibrarian

relations.

Now, if we split each entity of the system in a code entity and a data entity without making any
, we get the diagram shown in , that is made of two further modification to the system Figure 0.3

10

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

 parts:disconnected

The left part is made only of and : association anddata entities data relations
composition
The right part is made only of and : dependency andcode entities code relations
inheritance

Figure 0.3 A class diagram where every class is split into code and data entities

The new system where code and data are separate is than the originaleasier to understand
system where code and data are mixed: we are free to understand the data part of the system on
its own and the code part of the system on its own.

TIP A system made of disconnected parts is less complex than a system made of
a single part.

One could argue that the of the original system where code and data are mixed is duecomplexity
to a and that an experienced OO developer would have designed a simpler system,bad design
leveraging smart . That’s true, but in a sense it’s . The point ofdesign patterns irrelevant
Principle #1 is that a system made of entities that do not combine code and data to betends
simpler that a system made of entities that combine code and data.

It has been said many times that . According to the first principle of DO,simplicity is hard
simplicity is easier to achieve when we separate code and data.

TIP Simplicity is easier to achieve when we separate code and data.

11

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

There is no such thing as a free lunch. Applying Principle #1 comes at a price.

The price we have to pay in order to benefit from the separation between code and data is that:

There is no on what code access what datacontrol
No packaging
Our systems are made from more entities

When code and data are mixed, one can easily understand what are the pieces of code that access
a kind of data.

For example in OO, the data is in an object. It gives us the guarantee the data isencapsulated
accessible only by the object’s methods.

In DO, data stands on its own. It is if you want. As a consequence, it can betransparent
accessed by any piece of code.

When we want to refactor the shape of our data, we need to be very careful and make sure that
we know all the places in our code that access the data.

Without the application of Principle #3 that enforces , the fact that the data isdata immutability
accessible by any piece of code would be really as it would be very hard to guarantee the unsafe

 of our data.validity

TIP Data is ensured by another principle (Principle #3) that enforces safety data
.immutability

One of the benefits of mixing code and data is that when you have an object in hand, it’s a
 that contains both the code (via methods) and the data (via members).package

As a consequence, as a developer it’s really easy to discover what are the various ways to
manipulate the data: you look at the methods of the class.

In DO, the code that manipulates the data could be everywhere. For example,
 could be in a file and in another file. It makes it difficult forcreateAuthorData fullName

developers to discover that the function is available. In some situations, it could leadfullName

to and unnecessary .waste of time code duplication

0.2.4 Price for Principle #1

PRICE #1: THERE IS NO CONTROL ON WHAT CODE ACCESS WHAT DATA

PRICE #2: NO PACKAGING

12

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

We will explore throughout the book, various ways to mitigate this drawback.

Let’s do simple arithmetic. Imagine a system made of classes that combine code and data.N

When you split the system into code entities and data entities, you get a system made of 2N
entities.

This calculation is not accurate, because usually when you separate code and data, the class
hierarchy tends to get simpler, as we need less class inheritance and composition. Therefore the
number of classes in the resulting system will probably be somewhere between and .N 2N

On one hand, when we adhere to Principle #1, the entities of our system are .simpler

On the other hand, we have entities.more

This price is mitigated by Principle #2 that guides us to represent our data with generic data
structures.

TIP When adhering to Principle #1, our system is made of simpler entities but we
have more of them.

DO guides us to separate from .code data

In OO languages, we aggregate code in and data in .static classes classes with no methods

In FP languages, we avoid hiding data in the of functions.lexical scope

Separating code from data comes at a price: it reduces the we have on what pieces ofcontrol
code access our data and could cause our systems to be made of more entities.

But it worth paying the price because when we adhere to this principle, our code can be reused in
different contexts in a way and tested in . Moreover, a system made ofstraightforward isolation
separate entitites for code and data tends to be to understand.easier

After the data has been separated from the code, comes the question of how to represent the
. That’s the theme of Principle #2.data

PRICE #3: OUR SYSTEMS ARE MADE FROM MORE ENTITIES

0.2.5 Wrapping up

13

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

1.
2.
3.

SIDEBAR DO Principle #1: Separate code from data

The Principle

Separate from in a way that the resides in functionscode data code
whose behavior does not depend on that is somehow encapsulated indata
the function’s context.

Benefits

Code can be in different contextsreused
Code can be in isolationtested
Systems tend to be less complex

Price

No on what code what datacontrol access
No packaging
Our systems are made from more entities

When we adhere to Principle #1, code is separated from data. DO is not opiniated about the
programming constructs to use for organizing the code but it has a lot to say about how the data
should be . That’s the theme of Principle #2.represented

NOTE Principle #2: Represent the of your application with datadata generic
structures.

The most common data structures are (a.k.a dictionaries) and . But it isgeneric maps arrays

0.3 DO Principle #2: Represent data entities with generic data
structures

0.3.1 The principle in a nutshell

14

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

perfectly fine to use other generic data structures (e.g. sets, lists, queues…​).

Principle #2 doesn’t deal with the mutability or the of the data. This is the themeimmutability
of Principle #3: Data is immutable.

In DO, we represent our data with (like maps and arrays) instead ofgeneric data structures
instantiating data via specific classes.

In fact, most of the data entities that appear in a typical application could be represented with
 and . But there exist other generic data structures (e.g. sets, lists, queues…​) thatmaps arrays

might be required in some use cases.

Let’s look at the same simplistic example as the one used to illustrate Principle #1: the data that
represents an author.

An author is a data entity with a , a and a number of he/she wrote.firstName lastName books

We break Principle #2 when we use a to represent an author, like in .specific class Listing 0.11

Listing 0.11 Breaking Principle #2 in OOP

We are with Principle #2 when we use a map—which is a data structure—tocompliant generic
represent an author, like in .Listing 0.12

Listing 0.12 Following Principle #2 in OOP

In a language like JavaScript, a map could be instantiated also via a >>, which is a bitdata literal
more convenient. An example is shown in .Listing 0.13

0.3.2 Illustration of Principle #2

class AuthorData {
 constructor(firstName, lastName, books) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.books = books;
 }
}

function createAuthorData(firstName, lastName, books) {
 var data = new Map;
 data.firstName = firstName;
 data.lastName = lastName;
 data.books = books;
 return data;
}

15

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 0.13 Following Principle #2 with map literals

When we use to represent our data, our programs benefit from:generic data structures

Leverage functions that are not limited to our specific use casegeneric
Flexible data model

There is a famous quote by Alan Perlis that summarizes this benefit very well:

It is better to have 100 functions operate on one data structure than 10 functions on 10 data
structures.

– Alan Perlis

When we use data structures to represent entities, we have the privilege to manipulategeneric
the entities with the available on those data structures natively in ourrich set of functions
programming language in addition to the ones provided by third party libraries.

For instance, JavaScript natively provides some basic functions on maps and arrays and third
party libraries like extend the functionality with even more functions.lodash

As an example, when an author is represented as a map, we can it into JSON for free,serialize
using which is part of JavaScript, as shown in .JSON.stringify() Listing 0.14

Listing 0.14 Data serialization comes for free when we adhere to Principle #2

And if we want to serialize the author data without the number of books, we can use lodash’s
 function to create an object with a subset of keys. An example is shown in _.pick() Listing

.0.15

Listing 0.15 Manipulating data with generic functions

function createAuthorData(firstName, lastName, books) {
 return {
 firstName: firstName,
 lastName: lastName,
 books: books
 };
}

0.3.3 Benefits of Principle #2

LEVERAGE FUNCTIONS THAT ARE NOT LIMITED TO OUR SPECIFIC USE CASE

var data = createAuthorData("Isaac", "Asimov", 500);
JSON.stringify(data);

var data = createAuthorData("Isaac", "Asimov", 500);
var dataWithoutBooks = _.pick(data, ["firstName", "lastName"]);
JSON.stringify(dataWithoutBooks);

16

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

https://lodash.com/

TIP When you adhere to Principle #2, a is available torich set of functionalities
manipulate your .data entities

When we use data structures, our data model is in the sense that our data is notgeneric flexible
forced to adhere to a specific shape. As a consequence, we are to create data with free no

. And we are free to the shape of our data.predefined shape modify

In classical OO— —each piece of data is instantiated via awhen we don’t adhere to Principle #2
class and must follow a rigid data shape. As a consequence, even when a slightly different data
shape is needed, we have to define a new class.

Take for example a class that represents an author entity that made of 3 fields: AuthorData

, and . Suppose that you want to add a field with the fullfirstName lastName books fullName

name of the author.

When you don’t adhere to Principle #2, you have to define a new class
.AuthorDataWithFullName

However when you use generic data structures, you are free to add (or remove) fields to a map
, like in .on the fly Listing 0.16

Listing 0.16 Adding a field on the fly

TIP Working with a is particularly useful in applications whereflexible data model
the shape of the data tends to be very (e.g. web apps and webdynamic
services).

In Chapter 3, we will explore in detail the benefits of a flexible data model in the context of a
real world application.

There is no such thing as a free lunch. Applying Principle #2 comes at a price.

The price we have to pay when we represent data entities with generic data structures is:

Slight hitPerformance
Data shape needs to be documented manually

FLEXIBLE DATA MODEL

var data = createAuthorData("Isaac", "Asimov", 500);
data.fullName = "Isaac Asimov";

0.3.4 Price for Principle #2

17

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

No time check that the data is validcompile

When we use classes to instantiate data, retrieving the value of a class member is superspecific
fast. The reason is that the compiler knows upfront how the data is going to look like and it can
do all kinds of optimizations.

With data structures, it is harder to optimize. As a consequence, retrieving the valuegeneric
associated to a key in a map is a bit slower that retrieving the value of a member. Similarlyclass
setting the value of an arbitrary key in a map is a bit slower that setting the value of a class
member.

TIP Retrieving and storing the value associated to an from a map is arbitrary key
 than with a .a bit slower class member

In most programming languages, this performance hit is not significant, but it is something to
keep in mind.

When an object is instantiated from a class, the information of the is in the classdata shape
definition. It is helpful for developers and for IDEs (think about auto-completion features).

TIP When we use data structures to store data, the shape of the datageneric
needs to be .documented manually

Even when we are disciplined enough and we document our code, it may occur that we modify
slightly the shape of an entity and we forget to update the documentation.

In that case, we have to explore the code in order to figure out what is the real shape of our data.

In Part 3 of the book, we will explore how DO addresses this issue.

Take a look again at the function that we created during our exploration of PrinciplefullName

#1:

Listing 0.17 A function that receives the data it manipulates as an argument

PRICE #1: PERFORMANCE HIT

PRICE #2: DATA SHAPE NEEDS TO BE DOCUMENTED MANUALLY

PRICE #3: NO COMPILE TIME CHECK THAT THE DATA IS VALID

function fullName(data) {
 return data.firstName + " " + data.lastName;
}

18

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

When we pass to a piece of to the shape fullName data that doesn’t conform fullName

expects, an error occurs at .runtime

For example, we could the field that stores the first name (instead of mistype fistName

), and instead of a compile time error or an exception, we get a weird result where thefirstName

 is omitted from the result:firstName

Listing 0.18 Weird behavior when data doesn’t conform to the expected shape

When data is instantiated only via classes with rigid data shape, this type of error is caught at
compile time.

TIP When data is represented with data structures, aregeneric data shape errors
caught only at .runtime

DO guides us to use data structures to represent our data.generic

This might cause a (small) hit and forces us to document the shape ofperformance manually
our data as we cannot rely on the compiler to statically validate it.

But it worth it because when we adhere to this principle, we can the data entitiesmanipulate
with a set of generic functions (provided by the language and by third party libraries) andrich
our data model is .flexible

At this point the data could be either or . The next principle will guide usmutable immutable
towards immutability.

fullName({fistName: "Issac", lastName: "Asimov"}); // it returns "undefined Asimov"

0.3.5 Wrapping up

19

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

SIDEBAR DO Principle #2: Represent data entities with generic data structures

The Principle

Represent the of your application using data structuresdata generic
(mostly maps and arrays).

Benefits

Leverage functions that are not limited to our specific use casegeneric
Flexible data model

Price

Performance hit
Data shape needs to be documented manually
No time check that the data is validcompile

We are now at a point where our is separated from our and our data is representeddata code
with data structures. Now comes the question of in our data.generic managing changes

DO is very strict about that and doesn’t allow any mutations to the data.

NOTE Principle #3: Data is immutable.

In DO, we manage changes in our data by creating of the data.new versions

Also, we are allowed to of a variable, so that it refers to a new version ofchange the reference
the data. What must never change is the value of the data itself.

0.4 DO Principle #3: Data is immutable

0.4.1 The principle in a nutshell

20

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Think about the number . What happens to when you add to it? Does it become ?42 42 1 43

No! stays forever!!!42 42

Now put inside an object . What happens to the object when you add to ?42 {num: 42} 1 42

Does it become ?43

It depends on the programming language:

In Clojure, a programming language that embraces , stays data immutability 42 42

forever, no matter what.
In many programming languages, becomes .42 43

For instance, in JavaScript, mutating the field of a map referred by two variables has an impact
on both variables, as shown in .Listing 0.19

Listing 0.19 Mutating data referred by two variables impact both variables

Now, equals !myData.num 43

According to DO, data should never change. Instead of mutating data, we create a new version
of it.

A (and inefficient) way to create a new version of a data is to it before modifying it.naive clone

For instance, in there is a function that changes the value of a field inside an object,Listing 0.20
by cloning the object via provided natively by JavaScript. Now, when we call Object.assign

 on , is not affected: remains . That’s the essence ofchangeValue myData myData myData.num 42

data immutability.

Listing 0.20 Data immutability via cloning

Embracing immutability in an way requires a third party library like thatefficient Immutable.js
provides an efficient implementation of .persistent data structures

0.4.2 Illustration of Principle #3

var myData = {num: 42};
var yourData = myData;

yourData.num = yourData.num + 1;

function changeValue(obj, k, v) {
 var res = Object.assign({}, obj);
 res[k] = v;
 return res;
}

var myData = {num: 42};
var yourData = changeValue(myData, "num", myData.num + 1);

21

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

https://immutable-js.github.io/immutable-js

In most programming languages, there exist libraries that provide an efficient implementation of
persistent data structures.

With , we don’t use JavaScript native maps and arrays but immutable maps andImmutable.js

arrays instantiated via and . In order to access the element of aImmutable.Map Immutable.List

map, we use the method and we create a new version of the map where one field isget

modified, with the method:set

Listing 0.21 Creating and manipulating immutable data efficiently with a third-party library

yourData.get("num") is but remains .43 myData.get("num") 42

TIP When data is , instead of mutating data, we create a immutable new version
of it.

When we constrain our programs to , our programs benefit from:never mutate data

Data to all with access serenity
Code behavior is predictable
Equality check is fast
Concurrency safety for free

According to Principle #1: Separate code from data, data access is : Any function istransparent
allowed to access any piece of data. Without data , we would need to be very immutability

 each time we pass data as an argument to a function. We would need to either make surecareful
the function doesn’t mutate the data or clone the data before we pass it to the function.

When we adhere to data immutability, none of this is required.

TIP When data is , we can pass data to any function with ,immutable serenity
because data never changes.

Let me illustrate what I mean by by giving first an example of an unpredictablepredictable
piece of code that doesn’t adhere to data immutability.

var myData = Immutable.Map({num: 42})
var yourData = myData.set("num", 43);

0.4.3 Benefits of Principle #3

BENEFIT #1: DATA ACCESS TO ALL WITH SERENITY

BENEFIT #2: CODE BEHAVIOR IS PREDICTABLE

22

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Please take a look at the following piece of code in JavaScript.asynchronous

Listing 0.22 When data is mutable the behavior of asynchronous code is not predictable

The value of inside the timeout callback is not predictable. It depends whether or notdata.num

the data is modified by another piece of code, during the 1000ms of the timeout.

However, if you constrain yourself to , you are guaranteed that data neverdata immutability
changes and you can predict that is inside the callback!data.num 42

TIP When data is , the behavior of code that manipulates data is immutable
predictable

In a UI framework like , we frequently check what portion of the "UI data" has beenReact.js

modified since the previous rendering cycle. Portions that didn’t change are not rendered again.

In fact, in a typical , most of the UI data is left betweenfrontend application unchanged
subsequent rendering cycles. In a React application that doesn’t adhere to data immutability, we
have no other choice that checking every (nested) part of the UI data.

However in a React application that follows data immutability, we can optimize the comparison
of the data for the case where data is not modified. Indeed, when the object address is the same,
then we know for sure that the data did not change. Comparing object addresses is much faster
than comparing all the fields.

TIP When data is immutable, we benefit from by comparingfast equality check
data by reference.

We will see in Chapter 5 how we leverage fast equality check in order to reconcile between
 in a production system.concurrent mutations highly scalable

In a environment, we usually use (e.g.multi threaded concurrency safety mechanisms
mutexes) to make sure the data is not modified by thread while we access it in thread .A B

In addition to the slight they cause, concurrency safety mechanisms is a performance hit
 as it makes code writing and reading much more difficult.burden for our minds

var myData = {num: 42};
setTimeout(function(data){
 console.log(data.num);
}, 1000, myData)

BENEFIT #3: EQUALITY CHECK IS FAST

BENEFIT #4: CONCURRENCY SAFETY FOR FREE

23

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

TIP When we adhere to data , no mechanism isimmutability concurrency
required: the data you have in hand never changes!

There is no such thing as a free lunch. Applying Principle #3 comes at a price:

Performance hit
Need a for persistent data structureslibrary

As we mentioned earlier, there exist implementations of persistent data structures in most
programming languages. But even the most efficient implementation is be a bit slower than the
in-place mutation of the data.

In most applications, the involved in usage of immutable data structures, is notperformance hit
significant. But it is something to keep in mind.

In a language like Clojure, the data structures of the language are immutable. However, innative
most programming languages, adhering to data immutability requires the inclusion a third party

 that provides an implementation of persistent data structures.library

The fact that the data structures are not native to the language means that it is difficult (if not
impossible) to the usage of immutable data across the board.enforce

Also, when you integrate with other (e.g. a chart library), you need first to third party libraries
 your persistent data structure into a equivalent native data structure.convert

DO considers data as a value that never changes. When you adhere to this principle, your code is
 even in a multi threaded environment and equality check is .predictable fast

However, it requires a non negligible mind shift and in most programming languages, you need a
 that provides an efficient implementation of .third party library persistent data structures

0.4.4 Price for Principle #3

PRICE #1: PERFORMANCE HIT

PRICE #2: NEED A LIBRARY FOR PERSISTENT DATA STRUCTURES

0.4.5 Wrapping up

24

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

SIDEBAR DO Principle #3: Data is immutable

The Principle

Data is immutable.

Benefits

Data to all with access serenity
Code behavior is predictable
Equality check is fast
Concurrency safety for free

Price

Performance hit
Need a for persistent data structureslibrary

Data Oriented programming the design and implementation of information systems bysimplifies
treating as a . This is made possible by adhering to 3 language agnosticdata first class citizen
core principles:

Separate from code data
Represent entities with data structuresgeneric
Data is immutable

0.5 Conclusion

25

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 0.4 The principles of Data Oriented programming

In this chapter we have how each principle can be applied both in and illustrated FP OO
languages. We have mentioned at a high level what are the of each principle and the benefits

 it costs to adhere to it.price

Throughout the book, we will explore those principles in detail and illustrate how we apply them
as a whole in .information systems

26

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1
In this chapter, we explore the of OO systems to be .tendency complex

This complexity is not related to the syntax or the semantics of a specific OO language. It is
something that is inherent to OO’s fundamental insight that programs should be composed from

 that consist of some together with for accessing and manipulating thatobjects state methods
state.

In this chapter, we illustrate how some fundamental of OO tend to increase the aspects
 of a system.complexity

Over the years, OO ecosystems have this complexity increase by adding alleviated new features
to the language (e.g. anonymous classes and anonymous functions) and by developing

 that hide part of this complexity by providing a simpler interface to the developersframeworks
(e.g. Spring and Jackson in Java). Internally, they rely on advanced features of the language (like
reflection and custom annotations).

This chapter is not meant to be read as a of OO programming. Its purpose is to raise critics
 of the of OO as a programming paradigmawareness tendency towards increased complexity

and to motivate you to discover a where the systemdifferent programming paradigm
complexity tends to be reduced present, namely .Data Oriented programming

As we mentioned in Chapter 0, DO principles are language agnostic: if one choose to build a OO
system that adheres to DO principles, the system will be less .complex

The tendency of Object Oriented
Programming towards increased system
complexity

1.1 Introduction

27

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

It’s Monday morning 9:00 AM, you seat at a coffee shop with Nancy, a potential customer, that
needs you to build a new .library management system

YOU: What’s a library management system in your mind?

NANCY: It’s a system that handles , mainly around thehousekeeping functions of a library
book collection and the library members.

YOU: Could you be a little bit more precise?

NANCY: Sure

Nancy grabs the napkin under her coffee mug and she writes down a couple of bullet points on
the napkin:

SIDEBAR The requirements for the library management system

Two kinds of : library members and librariansusers
Users to the system via email and password.log in
Members can booksborrow
Members and librarians can books by title or by authorsearch
Librarians can and members (e.g. when they are late inblock unblock
returning a book)
Librarians can currently lent by a memberlist the books
There could be of a bookseveral copies

YOU: "Well, that’s pretty clear."

NANCY: When will you be able to deliver it?

YOU: If you give me a down payment today, I should be able to deliver it by next Wednesday.

NANCY: Fantastic! I’ll make you a bitcoin transfer later today.

You get back to your office with Nancy’s napkin in your pocket.

Before rushing to your laptop to code the system, you grab a sheet of paper—much bigger than
the napkin—and you prepare yourself to draw the of the system.UML class diagram

1.2 OO design: classic or classical?

1.2.1 Meeting with a customer

1.2.2 The design phase

28

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

You are an OO programmer. For you there is no question: Everything is an object and every
object is made from a class.

Here are the main classes that you identify for the library management system:

SIDEBAR The main classes of the library management system

Library: The central part for which the system is designed
Book: A book
BookItem: A book can have multiple copies, each copy is considered as a
book item
BookLending: When a book is lent, a book lending object is created
Member: A member of the library
Librarian: A librarian
User: A base class for and Librarian Member

Catalog: Contains list of books
Author: A book author

That was the easy part. Now comes the difficult part: the .relationships between the classes

After two hours or so, you come up with a first draft of a for the library managementdesign
system. It looks like the diagram shown on .Figure 1.1

29

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 1.1 A class diagram for a Library management system

This design is meant to be very naive and by no means it pretends to cover all the features of the
system.

WARNING The design presented here doesn’t pretend to be the smartest OO design:
experienced OO developers would probably leverage a couple of design

 and suggest a much better design.patterns

30

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

This design serves two purposes:

For you - - it is rich enough to start codingthe developer
For me - - it is rich enough to illustrate the complexity of a typicalthe author of the book
OO system

Anyway, you feel proud of yourself and of the design you produced. You definitely deserve a
cup of coffee. Near the coffee machine, you meet Dave, a that youjunior software developer
appreciate.

YOU: Hey Dave! How are you doing?

DAVE: Trying to fix a bug in my code: I cannot understand why the state of my objects always
change! You?

YOU: I have just finished the design of a system for a new customer.

DAVE: Cool! Can you show me your design?

YOU: Sure.

Dave follows you to your desk and you show him your piece of art: the UML diagram for the
library management system in .Figure 1.1

Dave seems really excited.

DAVE: Wow! Such a detailed class diagram.

YOU: Yeah. It’s pretty neat.

DAVE: The thing is that I can never remember the .meaning of each arrow

YOU: There are 4 types of arrows in my class diagram: , , composition association inheritance
and .usage

DAVE: Whats the difference between composition and association?

You google "composition vs association" and you read loudly to Dave:

YOU: Its all about whether the objects can live one without each other: with , whencomposition
one object dies, the other one dies also, while in an relation, each object has anassociation
independent life.

1.2.3 UML 101

31

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.

2.

TIP In a relation, when one object dies, the other one dies also, whilecomposition
in an relation, each object has an independent life cycle.association

In the class diagram, there are two kinds of relation, symbolized by an arrow with acomposition
 at one edge, and an optional at the other edge:plain diamond star

A owns a : That’s a relation: if a Library Catalog one-to-one composition Library

object dies, then its object dies with it.Catalog

A owns many s: That’s a relation: if a Library Member one-to-many composition
 object dies, then all its objects die with it.Library Member

Figure 1.2 Two kinds of composition: one-to-one and one-to-many. In both cases,
when an object dies, the composed object dies with it.

TIP A relation is represented by a at one edge and ancomposition plain diamond
optional star at the other edge.

DAVE: Do you have association relations in your diagram?

YOU: Take a look at the arrow between and . It has an and a Book Author empty diamond star
at both edges: it’s a relation.many to many association

A book can be written by authors and an author can write books. Moreover, multiple multiple
 and objects can live independently: the relation between books and authors is a Book Author

 relation.many-to-many association

TIP A relation is represented by an andmany-to-many association empty diamond
a at both edges.star

32

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 1.3 Many to many
association relation:
each object lives
independently

DAVE: I see also many in your diagram.dashed arrows

YOU: Dashed arrows are for relations: when a class uses a method of another class.usage
Consider for example, at the method. It calls .Librarian::blockMember() Member::block()

Figure 1.4 Usage relation: a class uses a method of another class

TIP Dashed arrows are for relations: for instance, when a class uses ausage
method of another class.

DAVE: I see. And I guess that —like the one between plain arrows with empty triangle
 and —represent .Member User inheritance

33

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: Absolutely.

TIP Plain arrows with represents class .empty triangle inheritance

Figure 1.5 Inheritance relation: a class derives
from another class

DAVE: Thank you for this short UML course. Now I understand the of each kind of meaning
 in your diagram.arrow

YOU: My pleasure.

DAVE: What class should I look at first?

YOU: I think you should start from .Library

The is the root class of the system.Library

Figure 1.6 The Library class

1.2.4 Explaining each piece of the class diagram

THE LIBRARY CLASS

34

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

1.

2.

1.
2.
3.

A.
B.
C.
D.
E.

4.
5.

In terms of , a object does nothing on its own, it delegates everything to objects itcode Library

owns.

In terms of , a object owns:data Library

Multiple objectsMember

Multiple objectsLibrarian

A single objectCatalog

Librarian and who both derive from .Member User

Figure 1.7 Librarian and Member derive from User

The class represents a user of the library.User

In terms of , it sticks to the bare minimum: it has a , and data members id email

 (no with security and encryption for now).password

In terms of , it can login via code login()

The class represents a member of the library.Member

It from inherits User

In terms of data members, it has nothing more than User
In terms of code, it can:

Checkout a book via checkout()
Return a book via returnBook()
Block itself via block()
Unblock itself via unblock()
Answer if it is blocked via isBlocked()

It owns multiple objectsBookLending

It uses in order to implement BookItem checkout()

LIBRARIAN, MEMBER AND USER CLASSES

35

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

A.
B.
C.

4.

5.
6.

1.
2.

A.

1.

The class represents a librarian.Librarian

It derives from User
In terms of data members, it has nothing more than User
In terms of code, it can:

Block and unblock a Member
List the book lendings of a member via getBookLendings()
Add book items to the library via addBookItem()

It uses in order to implement , and Member blockMember() unblockMember()

getBookLendings()

It uses in order to implement BookItem checkout()

It uses in order to implement BookLending getBookLendings()

The class is responsible for the management of the books.Catalog

Figure 1.8 The Catalog class

In terms of , a object can:code Catalog

Search books via search()
Add book items to the library via addBookItem()

It uses in order to implement Librarian addBookItem

In terms of , a owns:data Catalog

Multiple objectsBook

THE CATALOG CLASS

36

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

1.

2.

1.

Figure 1.9 The Book class

In terms of a object:data Book

In terms data members, we stick to the bare minimum: it has a , and a id title

It is associated with multiple objects (A book might have multiple authors)Author

It owns multiple objects, one for each copy of the bookBookItem

The class represents a book copy. A book could have many copies.BookItem

In terms of a object:data BookItem

In terms data members, we stick to the bare minimum: it has a , and a (for itsid rackId

physical location in the library)
It owns multiple objects, one for each time the book is lentBookLending

In terms of :code

It can be checked out via checkout()

THE BOOK CLASS

THE BOOKITEM CLASS

37

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

After this detailed investigation of your diagram, Dave compliments you.

DAVE: Wow! That’s amazing.

YOU: Thank you.

DAVE: I didn’t know people were really spending time to write down their design in such
details, before coding.

YOU: I always do that. It saves me lot of time during the coding phase.

DAVE: When will you start coding?

YOU: When I finish my coffee.

You look at your coffee mug and it is full (and cold). You were so excited to show your class
diagram to Dave that you forgot to drink your coffee.

Before you start coding, and while you prepare yourself another cup of coffee, I would like to
 your design. It might look beautiful and clear on the paper but I am going to claim thatchallenge

this design is .too complex

It’s not that you picked the wrong classes or that you misunderstood the relationships between
the classes. It’s much . It’s about the programming paradigm you chose to implement thedeeper
system. It’s about the Object Oriented paradigm. It’s about the of OO to increase the tendency

 of a system.complexity

TIP OO has a to create systems.tendency complex

Like we mentioned in Chapter 0, the type of I refer to is the one which makescomplexity
systems as it is defined in the beautiful paper . It hashard to understand Out of the Tar Pit
nothing to do with the complexity of the resources consumed by a program.

Similarly, when I refer to , I mean , in other words: .simplicity not complex easy to understand

Keep in mind that complexity and simplicity (like hard and easy) are not absolute but relative
. We can compare the complexity of two systems and argue that system A is moreconcepts

complex (or simpler) than system B.

1.3 Sources of complexity

1.2.5 The implementation phase

38

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

https://github.com/papers-we-love/papers-we-love/blob/master/design/out-of-the-tar-pit.pdf

1.
2.
3.
4.

NOTE Complex in the context of this book means: hard to understand

As we mentioned in the introduction of this chapter, there are many ways in OO to alleviate the
complexity. The purpose of this book is not be a critics of OO. The purpose is to present a

 called Data Oriented Programming (DO), that to build systemsprogramming paradigm tends
that are less . In fact, the DO paradigm is with OO and if one choose tocomplex compatible
build a OO system that adheres to DO principles, the system will be less .complex

TIP DO is with OO.compatible

According to DO, the main of your system—and of many OOsources of complexity
systems—are:

Code and data are mixed
Objects are mutable
Data is in objects as memberslocked
Code is into classes as methodslocked

One way to assess the of a class diagram is to look only at the entities and their complexity
 (ignoring members and methods) as in .relationships Figure 0.2

1.4 When code and data are mixed, classes tend to be involved in
many relations

In the remaining sections of this chapter, we are going to illustrate each of the above
aspects—summarized in Table 1.1—in the context of the library management system and explain
in what sense it is a source of complexity.

Table 1.1mAspects of Object Oriented programming and their impact on increased system
complexity

Aspect Impact on increased complexity

Code and data are mixed Classes tend to be involved in many relations

Objects are mutable Extra thinking when reading code

Objects are mutable Explicit synchronization on multi-threaded environments

Data is in objectslocked Data is not trivialserialization

Code is in classeslocked Class hierarchies are complex

39

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 1.10 A class diagram overview for a Library management system

When we a system, we have to define the between different pieces of design relationships code
and : that’s unavoidable.data

TIP In OO, code and data are together in classes, data as andmixed members
code as .methods

From a perspective, the fact that code and data are mixed together makes thesystem analysis
system complex in the sense that entities tend to be in many .involved relationships

In , we take a closer look at the class. is involved 5 relations: 2 Figure 1.11 Member Member data
relations and 3 relations.code

40

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

1.
2.
3.

Data relations:

Library many shas Member

Member many shas BookLending

Code relations:

Member extends User
Librarian uses Member
Member uses BookItem

Figure 1.11 The Member is involved in 5 relations

Imagine for a moment that we were able somehow to the class into two split Member separate
entitites:

MemberCode for the code
MemberData for the data

Instead of a class with 5 relations, we would have the diagram shown , with:Member Figure 1.12

A entity with 3 relationsMemberCode

A entity with 2 relationsMemberData

41

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

Figure 1.12 A class diagram where Member is split into code
and data entities

The class diagram where is split into and is made of twoMember MemberCode MemberData

disconnected parts, where each part is easier to understand than the original diagram.

Now, let’s Thesplit every class of our original class diagram into code and data entities.
resulting diagram is shown in : Now, the system is made of two parts:Figure 0.3 disconnected

A part that involves entitiesonly code
A part that involves entitiesonly data

Figure 1.13 A class diagram where every class is split into code and data entities

42

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

TIP A system where every class is split into code and data is made of two
 parts where each part is than a system where code anddisconnected simpler

data are mixed.

The resulting system—made of two sub-systems—is thandisconnected easier to understand
the original system. The fact that the two sub-systems are means that eachdisconnected
sub-system can be . We can first understand the part of the systemunderstood separately data
and then the part of the system (or the opposite).code

The resulting system not simpler by , it is a of separating fromaccident logical consequence code
.data

TIP A system made of simple parts is than a systemdisconnected less complex
made of a .single complex part

Listing 1.1 Really simple code

"Of course, it displayed again", you tell me.true

1.5 When objects are mutable, understanding code requires extra
thinking
You might be a bit tired after the system-level analysis that we presented in the previous section.

Let’s get refreshed and look at some code.

Please take a look at the code shown in Listing 1.1: we get the blocked status of a member and
we display it twice.

If I tell you that when I called displayBlockedStatusTwice, the program displayed true on
the first console.log() call, can you tell me what the program displayed on the second
console.log() call?

class Member {
 isBlocked = false;

 displayBlockedStatusTwice() {
var isBlocked = this.isBlocked;
console.log(isBlocked);
console.log(isBlocked);

 }
}

var member = new Member();
member.displayBlockedStatusTwice();

43

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

And you are right.

Now, please take a look at a slightly different pseudocode as shown in Listing 1.2: here we
display twice the blocked status of a member without assigning a variable.

Same question as before: If I tell you that when I called displayBlockedStatusTwice, the
program displayed true on the first consol.log() call, can you tell me what the program
displayed on the second consol.log() call?

Listing 1.2 Apparently simple code

The correct answer is: in a environment, it displays while on a single threaded true multi
 environment it’s .threaded unpredictable

Indeed, in a multi threaded environment, between the two calls, there could be aconsole.log()

 and the of the object could be changed (e.g. a librarian unblocked thecontext switch state
member).

Actually, as we showed in Chapter 0, with a slight modification, the same kind of code
unpredictability could occur even in a environment like JavaScript, when a datasingle threaded
is modified via asynchronous code.

The difference between the two code snippets is that:

In the first snippet, we access twice a boolean value which is a valueprimitive
In the second snippet, we access twice a of an objectmember

TIP When data is mutable, code is unpredictable.

This behavior of the second snippet is one of the annoying consequences of theunpredictable
fact that in OO, unlike primitive types who are usually , object members are immutable mutable
.

One way to solve this problem in OO is to protect sensitive code with concurrency safety
mechanism like , but it introduces issues on its own like a performance hit and a risk ofmutexes
deadlocks.

class Member {
 isBlocked = false;

 displayBlockedStatusTwice() {
console.log(this.isBlocked);
console.log(this.isBlocked);

 }
}

var member = new Member();
member.displayBlockedStatusTwice();

44

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

We will see later in the book that DO treats every piece of data in the same way: both primitive
types and collection types are values. This "value treatment for all citizens" brings toimmutable
DO developers' minds a lot of . As a consequence, more cells of DO developers' mindsserenity
are available to handle the interesting pieces of the applications they build.

TIP Data immutability brings to DO developers' minds a lot of .serenity

Listing 1.3 A JSON input of the endpoint/search

An output example of the /search endpoint is shown in Listing 1.4.

Listing 1.4 A JSON output of the endpoint/search

1.6 When data is locked in objects as members, data serialization is
not trivial
Now, you are really tired and you fall asleep at your desk…​

You have a dream about Nancy, your customer.

In this dream, Nancy asks you to make the library management system accessible via a REST
API using JSON as a transport layer.

You need to implement a /search endpoint that receives a query in JSON format and return
results in JSON format.

An input example of the /search endpoint is shown in Listing 1.3.

{
 "searchCriteria": "author",
 "query": "albert"
}

[
 {

"title": "The world as I see it",
"authors": [

{
"fullName": "Albert Einstein"

}
]

 },
 {

"title": "The Stranger",
"authors": [

{
"fullName": "Albert Camus"

}
]

 }
]

45

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

1.
2.
3.

4.
5.

1.
2.
3.

You would probably implement the endpoint by creating three classes similarly to what/search

is shown in (Not surprising: everything in OO has to be wrapped in a class. Right?):Figure 1.14

SearchController that is responsible for the queryhandling
SearchQuery that the JSON query string into converts data
SearchResult that the search result into a JSON stringconverts data

The would have a single method with the following flow:SearchController handle

Create a object from the JSON query stringSearchQuery

Retrieve and from the objectsearchCriteria queryStr SearchQuery

Call the method of the with and search catalog:Catalog searchCriteria queryStr

and receives books:List<Book>
Create a object with SearchResult books

Convert the object to a stringSearchResult JSON

Figure 1.14 A class diagram where every class is split into code and data entities

What about other endpoints, for instance allowing librarians to add book items through
?/add-book-item

Well, you would have to and create 3 classes:repeat the exact same process

AddBookItemController that is responsible for the queryhandling
BookItemQuery that the JSON query string into converts data
BookItemResult that the search result into a JSON stringconverts data

The code that deals with JSON that you wrote previously in deserialization SearchQuery

would have to be in . Same thing for the code that deals with JSON rewritten BookItemQuery

 that you wrote previously in : it would have to be in serialization SearchResult rewritten
.BookItemResult

The bad news is that you would have to repeat the same process for every endpoint of the

46

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

system. Each time you encounter a new kind of JSON input or input, you have to create a new
class and write code.

Suddenly, you wake up and realize that Nancy never asked for JSON. All of the above was a
dream, a really bad dream…​

TIP In OO, data serialization is a nightmare

It’s quite that handling JSON and in OO requires tofrustrating serialization deserialization
add so many classes and to write so much code again and again!

The frustration gets bigger when you consider that serializing a search query, a book item query
or any query is quite . It comes down to:similar

Go over data fields
Concatenate the name of the data fields and the value of the data field (separated by a
comma)

Why such a simple thing is so hard to achieve in OO?

The thing is that in OO, data has to follow a rigid shape (defined in classes), which means that
data is locked in members. There is no way to access data generically.

TIP In OO, data is locked in classes as members

We will later what we mean by a access to the data and we will see how DOrefine generic
provides a generic way to handle JSON and . Until then, you willserialization deserialization
have to continue suffering. But at least you are of this suffering and you know that thisaware
suffering is .avoidable

WARNING Most OO programming languages alleviate a bit the difficulty involved the
conversion from and to JSON. It either involves (which is definitely areflection
complex thing) or code .verbosity

One way to avoid writing the same code twice in OO involves class . Indeed, wheninheritance
every requirement of the system is , you design your class hierarchy is such aknown up front
way that classes with common behavior derive from a base class.

An example of this pattern is shown in , that focuses in the part of our class diagramFigure 1.15
that deals with members and librarians. Both s and s need the ability to loginLibrarian Member

1.7 When code is locked into classes, class hierarchies are complex

47

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

and they this ability form the class.inherit User

So far so good.

Figure 1.15 The part of the class diagram that deals with members and
librarians

But when requirements to the system are added that’s aafter the system is implemented
completely different story.

It’s Monday 11:00 AM, are left before the (which is on Wednesdaytwo days deadline
midnight) and Nancy put your on an urgent phone call.

You are not sure if it’s dream or reality. You pinch yourself and you feel the jolt. It’s definitely
!reality

NANCY: How is the project doing?

YOU: Fine, Nancy. We are for the deadline. Running our last round of on schedule regression
.tests

NANCY: Fantastic! It means we have time for adding a feature to the system. Right?tiny

YOU: Depends what you mean by .tiny

48

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

1.
2.

NANCY: We need to add to the system.VIP members

YOU: What do you mean by VIP members?

NANCY: VIP members are members that are allowed to book items to theadd by themselves
library.

YOU: Hmm…​

NANCY: What?

YOU: That’s not a tiny change!

NANCY: Why?

I am asking you the same question Nancy asked: Why adding to your system isVIP members
not a task?tiny

After all, you have written the code that allows librarians to add book items to thealready
library: it’s in .Librarian::addBookItem()

What prevents you from reusing this code for VIP members?

The reason is that in OO, the code is locked into classes as methods.

TIP In OO, code is into classes.locked

Let’s see how you would probably handle this last minute request from your customer.

VIP members are members that are allowed to add by themselves book items to the library.

Let’s decompose the customer requirements into two pieces:

VIP members are members
VIP members are allowed to add by themselves book items to the library

For sure, you need a new class .VIPMember

For requirement #1, it sounds reasonable to make derive from .VIPMember Member

However, handling requirement #2 is more complex. We cannot make derive from VIPMember

 because the relationship between and is not linear:Librarian VIPMember Librarian

On one hand, VIP members are as they are to add book itemslike librarians allowed
On the other hand, VIP members are as they are to blocknot like librarians not allowed
members or to list the book lendings of a member

49

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

The problem is that the code that adds book items is locked in the class. There is noLibrarian

way for class to use this code.VIPMember

One possible solution that makes the code of available to both Librarian::addBookItem()

 and , is shown in . Here are the changes to the previous classLibrarian VIPMember Figure 1.16
diagram:

A base class that extends UserWithBookItemRight User

Move from to addBookItem() Librarian UserWithBookItemRight

Both and extend VIPMember Librarian UserWithBookItemRight

Figure 1.16 A class diagram for a system with VIP members

That was but you were able to handle it (thanks to a white night in front of yourtough on time
laptop). You were even able to include new tests to the system and running again the regression
tests.

You were so excited that you didn’t pay attention to the introduced in yourdiamond VIPMember

class diagram, (extends both and who bothVIPMember Member UserWithBookItemRight

extend)User

We are Wednesday morning 10:00 AM, 14 hours before the deadline and you call Nancy to tell
her the good news:

YOU: We were able to add VIP members to the system on time, Nancy.

50

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Fantastic! I told you it was a feature.tiny

YOU: Hmm…​

NANCY: Look, I was to call you anyway. I just finished a meeting with my business partner
and we realized that we need another feature before the launch. Will you be able to handle ittiny
before the deadline?

YOU: Again, it depends what you mean by .tiny

NANCY: We need to add to the system.Super members

YOU: What do you mean by Super members?

NANCY: Super members are members that are allowed to and membersblock unblock

YOU: Hmm…​

NANCY: What?

YOU: That’s not a tiny change!

NANCY: Why?

Like with VIP members, adding Super members to the system requires changes to your class
. A possible solution is shown in .hierarchy Figure 1.17

Figure 1.17 A class diagram for a system with Super members and VIP members

The addition of Super members made the system too complex. You suddenly noticed that you
had 3 diamonds in your class diagram: not gemstones but 3 !Deadly Diamonds of Death

You tried to avoid the diamonds by transforming the class into an interface and using User

51

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

 Design Pattern.Composition over Inheritance

But with the stress of the deadline coming, you were not able to use all the cells of your brain.

In fact, this complexity prevented you from delivering the system before the deadline. You tell
yourself that you should have used composition instead of class inheritance. But it’s too late
now.

TIP In OO, prefer composition over class inheritance.

You call Nancy in order to explain her the situation at 10:00 PM, two hours before the deadline:

YOU: Look Nancy, we really did our best, but we will not be able to add to theSuper members
system before the deadline

NANCY: No worries, my business partner and I decided to the launch.postpone

YOU: Phew!

NANCY: Do you think that if we add other tiny features later, you’d be able to handle them on
time?

YOU: Yes

NANCY: How could it be?

YOU: We are going to the system from Object Oriented to .refactor Data Oriented

NANCY: What is Data Oriented?

YOU: It is a that allows developers to write code for requirements magic sauce changing faster
!

TIP DO is a that allows developers to write code for magic sauce changing
requirements !faster

After reading this book, you will belong to the community of happy developers who know the
recipe of DO magic sauce.

In this chapter, we have explored the of OO to increase system complexity, in thetendency
sense that OO systems tend to be . The root cause of the complexity increasehard to understand
is related to the mixing of into objects.code and data together

1.8 Wrapping up

52

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

We illustrated how some fundamental of OO tend to increase the of OOaspects complexity
systems.

Aspects of Object Oriented programming and their impact on increased system complexity

It is possible to deal with this complexity with and ofsmart design patterns advanced features
the language. This book proposes to deal with this complexity by adhering to Data Oriented

, a paradigm that could be implemented both in OO and FP.programming

Aspect Impact on increased complexity

Code and data are mixed Classes tend to be involved in many relations

Objects are mutable Extra thinking when reading code

Objects are mutable Explicit synchronization on multi-threaded environments

Data is in objectslocked Data is not trivialserialization

Code is in classeslocked Class hierarchies are complex

53

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

2

1.
2.

1.
2.

As we mentioned in Chapter 0, the big insight of Data Oriented Programming (DO) is that we
can of our systems by . Indeed, when codedecrease the complexity separating code from data
is separated from data, our systems are made of two main pieces that can be :thought separately
Data entities and Code modules.

This chapter is a deep dive in the first principle of Data Oriented Programming:

NOTE Principle #1: Separate from in a way that the resides incode data code
functions whose behavior does not depend on that is somehowdata
encapsulated in the function’s context.

We the separation between code and data in the context of the Library Managementillustrate
system that we introduced in Chapter 1 and we unveil the that this separation brings tobenefits
the system:

The system is : it is easy to understandsimple
The system is : quite often, it requires no design changes to adapt to changingflexible
requirements

We show how to:

Design a system where code and data are separate
Write code that respects the separation between code and data.

This chapter focuses on the of a system where code and data aredesign of the code part
separate. In Chapter 3, we will focus on the of the system. As wedesign of the data part
progress in the book, we will discover other benefits of separating code from data.

Reduce system complexity by separating
Code from Data

2.1 Introduction

54

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

A quick research among your friends regarding a DO expert to teach you DO lead to Joe, a
40-year old developer that used to be a Java developer for many years and moved to Clojure 7
years ago.

You decide to hire Joe for a 1 one 1 workshop in your office.

When you tell Joe about the Library management system you built (Chapter 1) and the details of
the struggle you had to adapt to changing requirements, he is not surprised.

Joe tells you that the systems he and his team have build in Clojure over the last 7 years are less
 and than the systems he used to build in Java. The main cause of thiscomplex more flexible

benefits is that the systems he built were following principles of Data Oriented Programming.

YOU: What makes DO systems and ?less complex more flexible

JOE: The first of DO is about the relationships between and .insight code data

YOU: You mean the of data in objects?encapsulation

JOE: Actually, DO is against encapsulation.

YOU: Why is that? I thought encapsulation was a positive programming paradigm.

JOE: Data encapsulation has its merits and drawbacks: Think about the way you designed the
Library Management System (in Chapter 1). According to DO, the main cause of the complexity
of systems and their is because code and data are mixed together (in objects).lack of flexibility

TIP DO is against data encapsulation.

YOU: Does it mean that in order to adhere to DO, I need to get rid of OO and learn a Functional
programming language?

JOE: No. DO principles are : they can be applied both in OO and FPlanguage agnostic
languages.

YOU: Cool! I was afraid that you were going to teach me about monads, algebraic data types
and high order functions.

JOE: None of this is required in DO.

TIP DO Principles are language agnostic.

2.2 The two parts of a DO system

55

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: How does the separation between code and data look like in DO?

JOE: Data is represented by that hold members only. Code is aggregated into data entities
 where all the functions are .modules stateless

YOU: What do you mean by stateless functions?

JOE: Instead of having the state encapsulated in the object, the data entity is passed as an
argument.

YOU: I don’t get that.

JOE: Let me make it visual.

Figure 2.1 The separation between code and data

YOU: It’s still not clear

JOE: It will become clearer when I show you how it looks like in the context of your library
management system.

YOU: OK. Shall we start we code or with data?

JOE: Well, it’s oriented programming. Let’s start with Data!Data

In DO, we start the design process by discovering the data entities of our system.

JOE: What are the of your system?data entities

YOU: What do you mean by ?data entities

JOE: I mean the parts of your system that hold .information

NOTE Data entities are the parts of your system that hold information

YOU: Well, it’s a library management system, so for sure we have and .books members

2.3 Data entities

56

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: Of course. But there are more: One way to discover the data entities of a system is to look
for and in the requirements of the system.nouns noun phrases

You look at Nancy’s requirement napkin and you highlight the and thatnouns noun phrases
seem to represent data entities of the system:

SIDEBAR Highlighting terms in the requirements that correspond to data entities

Two kinds of : library and users members librarians
Users log in to the system via email and password.
Members can borrow books
Members and can search by title or by librarians books author
Librarians can block and unblock (e.g. when they are late inmembers
returning a book)
Librarians can list the by a memberbooks currently lent
There could be several copies of a book

JOE: Excellent. Can you see a natural way to group the entities?

YOU: Not sure, but it seems to me that , and form a group while ,users members librarians books
 and form another group.authors book copies

JOE: Sounds good to me. How would you call each group?

YOU: for the first group and for the second group.User management Catalog

SIDEBAR The data entities of the system organized in a nested list

The catalog data
Data about books
Data about authors
Data about book items
Data about book lendings

The user management data
Data about users
Data about members
Data about librarians

YOU: I am not sure about the relationships between books and authors: should it be association
or composition?

JOE: Don’t worry too much about the details for the moment. We will refine our data entities

57

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

design later (Chapter 3). For now, let’s visualize the two groups in a mind map.

Figure 2.2 The data entities of the system organized in a mind map

The most precise way to visualize the data entities of a DO system is to draw a data entity
diagram with different arrows for association and composition. We will come back to data entity
diagram in Chapter 3.

TIP Discover the of your system and group them into data entities high level
, either as a or as a .groups nested list mind map

We will get deeper into the design and the representation of data entities in Chapter 3. For now,
let’s simplify and say that the data of our library system is made of two high level groups: User

 and .Management Catalog

The second step of the design process in DO, is to define the of the system.code modules

JOE: Now that you have identified the data entities of your system and group them into high
level groups, it’s time to think about the of your system.code part

2.4 Code modules

58

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.
4.
5.
6.
7.
8.
9.

YOU: What do you mean by ?code part

JOE: One way to think about it is to identity the .functionalities of your system

You look again at Nancy’s requirement napkin and this time you highlight the thatverb phrases
represent functionalities of the system:

SIDEBAR Highlighting terms in the requirements that correspond to functionalities

Two kinds of users: library members and librarians
Users via email and password.log into the system
Members can borrow books
Members and librarians can by title or by authorsearch books
Librarians can and (e.g. when they are late inblock unblock members
returning a book)
Librarians can list the books currently lent by a member
There could be several copies of a book

In addition to that, it is obvious that members can also return a book. Moreover, there should be
a way to detect whether a user is a librarian or not.

Your write down a list of the functionalities of the system.

SIDEBAR The functionalities of the system

Search a book
Add a book item
Block a member
Unblock a member
Login a user into the system
List the books currently lent by a member
Borrow a book
Return a book
Check whether a user is a librarian

JOE: Excellent! Now, tell me what functionalities need to be ?exposed to the outside world

YOU: What do you mean by ?exposed to the outside world

JOE: Imagine that the library management system were exposing an API over HTTP: what
would be the endpoints of the API?

59

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: I see. All the functionalities them beside checking if a user is a librarian should need to be
exposed.

JOE: Perfect, now give to each exposed functionality a short name and gather them together in a
module box called Library

It takes you less than a minute: shows the module box that contains the exposedFigure 2.3
functions of the Library.

Figure 2.3 The Library
module contains the
exposed functions of the
Library management
system

TIP The first step in designing the code part of a DO system is to aggregate the
exposed functions in a single module.

JOE: Beautiful. You just created your first .code module

YOU: To me it looks like a class: What’s the difference between a and a ?module class

JOE: A is an aggregation of functions. In OO, a module is represented by a class but inmodule
other programming languages, it might be a or a .package namespace

YOU: I see.

JOE: The important thing about DO code modules is that they contain only .stateless functions

YOU: You mean like in Java?static methods

JOE: Exactly!

YOU: So how the functions know on what piece of information they operate?

JOE: We pass it as the first argument to the function.

60

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: I don’t understand. Could you give me an example?

Joe takes a look at the list of functions of the module in .Library Figure 2.3

JOE: Let’s take for example : in classic OO, what would be its arguments?getBookLendings()

YOU: A librarian id and a member id.

JOE: In classic OO, would be a method of a class that receives twogetBookLendings Library

arguments: and librarianId memberId

YOU: Yeap.

JOE: Now comes the subtle part: in DO, is part of the library module and itgetBookLendings

receives the as the first argument, in addition to the other arguments.LibraryData

YOU: Could you show me what you mean?

JOE: Sure.

Joe gets closer to your keyboard and start typing.

That’s how a class method looks like in OO:

The method accesses the of the object—in our case the library data— via state
. The object’s state is an to the object’s methods.this.libraryData implicit argument

TIP In classic OO, the state of the object is an to the methods ofimplicit argument
the object.

In DO, the signature of would look like this:getBookLendings

The of the library is stored in that is managed outside the class and state libraryData Library

 is passed to the method as an .LibraryData getBookLendings static explicit argument

class Library {
 libraryData // state of the object

 getBookLendings(userId, memberId) {
 // accesses library data via this.libraryData
 }
}

class Library {
 static getBookLendings(libraryData, userId, memberId) {
 }
}

61

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

TIP In DO, functions of a code module are : they receive the stateless data they
 as an , usually the first argument.manipulate explicit argument

The same rule applies to the other functions of the library module. All of them are stateless: they
receive the library data as first argument.

IMPORTANT A is an aggregation of functions. In DO, the module functions are module
.stateless

You apply this rule and you refine the design of the library module by including the details about
functions' arguments.

Figure 2.4 The Library module with the function arguments

JOE: Perfect. Now, we are ready to design at a high level our system.

YOU: What’s a ?high level design in DO

JOE: The of modules and the between them.definition interaction

YOU: I see. Is there any guideline to help me define the modules?

JOE: Definitely. The of the system correspond to the high level modules high level data
.entities

YOU: You mean the data entities that appear in the data mind map?

JOE: Exactly!

You look again at the data mind map in and you focus on the high level data entities: Figure 2.5
, and .Library Catalog User management

62

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

Figure 2.5 A mindmap of high level data entities of
the Library management system

It means that in the system, beside the module, we have two high level modules:Library

Catalog module that deals with catalog data
UserManagement module that deals with user management data

Then you draw the high level design of library management system, by adding and Catalog

 modules:UserManagement

Functions of receive as first argumentCatalog catalogData

Functions of receive as first argumentUserManagement userManagementData

Here is the diagram:

Figure 2.6 The modules of the Library management system with the function arguments

It might not yet be clear for you how the data entities get passed between modules. For the
moment, you can think of as a class with two members:libraryData

catalog that holds the catalog data
userManagement that holds the user management data

63

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.
3.

1.
2.

The functions of share a common pattern:Library

They receive as an argumentlibraryData

They pass to functions of libraryData.catalog Catalog

They pass to functions of libraryData.userManagement UserManagement

Later on, in this chapter, we will see the code for some functions of the module.Library

TIP The high level of a DO system correspond to the high level modules data
.entities

You take a look at the two diagrams that represent the high level design of your system:

The data entities in the data mind map from Figure 2.7
The code modules in the module diagram from Figure 2.8

A bit perplexed, you ask Joe:

YOU: I am not sure that this system is better than a classic OO system, where objects
.encapsulate data

JOE: The main benefit of a DO system over a classic OO systems is that it is easier to
.understand

YOU: What makes it easier to understand?

JOE: The fact that the system is split clearly in code modules and data entities.

YOU: I don’t get you.

JOE: When you try to understand the data entities of the system, you don’t have to think about
the details of the code that manipulates the data entities.

YOU: You mean that when I look at the data mind map of my library management system, I am
able to understand it on its own?

JOE: Exactly. And similarly, when you try to understand the code modules of the system, you
don’t have to think about the details of the data entities manipulated by the code. There is a clear

 between the code and the data.separation of concerns

You look again at the data mind map in , and you get kind of a Aha moment:Figure 2.7

Data lives on its own!

2.5 DO systems are easy to understand

64

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 2.7 A data mindmap of the Library management system

IMPORTANT A DO system is easier to understand because the system is split in two parts:
data entities and code modules.

Now you look at the module diagram in and you feel a bit confused:Figure 2.8

On one hand, the module diagram looks to the class diagrams from :similar classic OO
boxes for classes and arrows for relations between classes.
On the other hand, the code module diagram looks much than the class diagramssimpler
from , but you cannot explain why.classic OO

You ask Joe for a clarification.

YOU: The module diagram seems much simpler that the class diagrams I am used to in OO. I
feel it but I cannot put words on it.

JOE: The reason is that module diagrams have .constraints

YOU: What kind of constraints?

JOE: as we saw before: All the functions are static (stateless). ButConstraints on the functions

65

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

also .constraints on the relations between the modules

TIP All the functions in a DO module are .stateless

YOU: Could you explain that?

JOE: There is a single kind of relation between DO modules: the . A module usesusage relation
code from another module. No , no and no betweenassociation composition inheritance
modules. That’s what make a DO module diagram easy to understand.

YOU: I understand why there is no association and no composition between DO modules: after
all, association and composition are . But why no relation? Does itdata relations inheritance
mean that in DO is against ?polymorphism

JOE: That’s a great question. The quick answer is that in DO, we achieve polymorphism with a
different mechanism than class inheritance. We will talk about it later (in Chapter 5).

YOU: Now, you triggered my curiosity: I was quite sure that inheritance was the only way to
achieve polymorphism.

TIP The only kind of relation between DO modules is: usage relation.

You look again at the module diagram in and now you not only feel that this diagramFigure 2.8
is simpler than classic OO class diagrams, you understand why it is simpler: All the functions are
static and all the relation between modules are of type usage.

Figure 2.8 The modules of the Library management system with the function arguments

66

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.

2.

1.
2.

1.
2.

TIP Each part of a DO system is easy to understand, because it has constraints.

YOU: I get that the sharp separation between code and data makes DO systems easier to
understand than classic OO systems. But what about adapting to changes in requirements?

JOE: Another benefit of DO systems is that it is them to changing requirements.easy to adapt

YOU: I remember that when Nancy asked me to add and to theSuper Members VIP Members
system, it was hard to adapt my OO system: I had to introduce a few base classes and the class

.hierarchy became really complex

JOE: I know exactly what you are talking about. I experienced the same kind of struggle when I
was a OO developer. Tell me what were the changes in the requirements for and Super Members

 and I am quite sure that you will see by yourself that it is easy to adapt your DOVIP Members
system.

SIDEBAR The requirements for Super Members and VIP Members

Super Members are members that are allowed to list the book lendings
of other members
VIP Members are members that are allowed to to theadd book items
library

You open your IDE and you start to code the function of the Library module,getBookLendings

first without addressing the requirements for Super Members. You remember what Joe told you
about module functions in DO:

Functions are stateless
Functions receive the they manipulate as data first argument

In terms of functionalities, have two parts:getBookLendings

Check that the user is a librarian
Retrieve the book lendings from the catalog

2.6 DO systems are flexible

Table 2.1 What makes each part of a DO system easy to understandm
System part Constraint on entities Constraints on relations

Data entities Members only (no code) Association and Composition

Code modules Stateless functions (no members) Usage (no inheritance)

67

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.

2.

Basically, the code of have two parts:getBookLendings

Call function from the module and pass it the isLibrarian() UserManagement

UserManagementData

Call function from the module and pass it the getBookLendings() Catalog

CatalogData

Here is the code for :Library.getBookLendings()

Listing 2.1 Getting the book lendings of a member

There are other ways to manage errors

In Chapter 3, we will see how to manage permissions with generic data collections

In Chapter 3, we will see how to query data with generic data collections

It’s your first piece of DO code: passing around all those data objects , libraryData

 and feels a bit awkward. But youlibraryData.userManagement libraryData.catalog

made it.

Joe looks at your code and seems satisfied.

JOE: How would you adapt your code to adapt to Super Members?

YOU: I would add a function to the module and call it from isSuperMember UserManagement

Library.getBookLendings

JOE: Exactly! It’s as simple as that.

You type this piece of code on your laptop:

class Library {
 static getBookLendings(libraryData, userId, memberId) {
 if(UserManagement.isLibrarian(libraryData.userManagement, userId)) {
 return Catalog.getBookLendings(libraryData.catalog, memberId);
 } else {
 throw "Not allowed to get book lendings";
 }
 }
}

class UserManagement {
 static isLibrarian(userManagementData, userId) {
 // will be implemented later
 }
}

class Catalog {
 static getBookLendings(catalogData, memberId) {
 // will be implemented later
 }
}

68

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 2.2 Allowing Super Members to get the book lendings of a member

There are other ways to manage errors

In Chapter 3, we will see how to manage permissions with generic data collections

In Chapter 3, we will see how to query data with generic data collections

Now, the awkward feeling caused by passing around all those data objects is dominated by a
feeling of relief: Adapting to this change in requirement takes only a few lines of code and
require .no changes in the system design

Once again, Joe seems satisfied.

TIP DO systems are . Quite often, they adapt to changing requirements flexible
.without changing the system design

You prepare yourself a cup of coffee, and you start coding the code.addBookItem()

You look at the signature of in and it is not clear to youLibrary.addBookItem() Listing 2.3
what is the meaning of the third argument . You ask Joe for a clarification.bookItemInfo

Listing 2.3 The signature of Library.addBookItem

class Library {
 static getBookLendings(libraryData, userId, memberId) {
 if(Usermanagement.isLibrarian(libraryData.userManagement, userId) ||
 Usermanagement.isSuperMember(libraryData.userManagement, userId)) {
 return Catalog.getBookLendings(libraryData.catalog, memberId);
 } else {
 throw "Not allowed to get book lendings";
 }
 }
}

class UserManagement {
 static isLibrarian(userManagementData, userId) {
 // will be implemented later
 }
 static isSuperMember(userManagementData, userId) {
 // will be implemented later
 }
}

class Catalog {
 static getBookLendings(catalogData, memberId) {
 // will be implemented later
 }
}

class Library {
 static addBookItem(libraryData, userId, bookItemInfo) {
 }
}

69

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: What is ?booItemInfo

JOE: Let’s call it the book item information and imagine we have a way to represent this
 in a named .information data entity bookItemInfo

YOU: You mean an object?

JOE: For now, it’s ok to think about as an object. Later on (in Chapter 3), I willbookItemInfo

show you how to in DO.we represent data

Beside this subtlety about how the book item info is represented by , the code for bookItemInfo

 in is quite similar to the code you wrote for Library.addBookItem() Listing 2.4
 in . Once again, you are amazed by the fact thatLibrary.getBookLendings() Listing 2.2

adding support for VIP Members requires .no design change

Listing 2.4 Allowing VIP Members to add a book item to the library

There are other ways to manage errors

In Chapter 3, we will see how to manage permissions with generic data collections

In Chapter 4, we will see how to manage state of the system with immutable data

YOU: It required a big for me to learn how to separate code from data.mindset shift

JOE: What was the most challenging part for your mind?

YOU: The fact that data is not encapsulated in objects.

class Library {
 static addBookItem(libraryData, userId, bookItemData) {
 if(UserManagement.isLibrarian(libraryData.userManagement, userId) ||
 UserManagement.isVIPMember(libraryData.userManagement, userId)) {
 return Catalog.addBookItem(libraryData.catalog, bookItemData);
 } else {
 throw "Not allowed to add a book item";
 }
 }
}

class UserManagement {
 static isLibrarian(userManagementData, userId) {
 // will be implemented later
 }
 static isVIPMember(userManagementData, userId) {
 // will be implemented later
 }
}

class Catalog {
 static addBookItem(catalogData, memberId) {
 // will be implemented later
 }
}

70

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: It was the same for me when I switched from OO to DO.

YOU: Will there be other mindset shifts in my journey into DO?

JOE: There will be two more mindset shifts but I think that they will be less challenging than
separating code from data.

YOU: What will it be about?

JOE: Representing data entities with (Chapter 3) and constraininggeneric data structures
ourselves to (Chapter 4).immutable data objects

But before that you and Joe go to a lunch at , a nice small restaurant near your office.Simple

In this chapter, we have illustrated DO Principle #1 about the separation between code from data:

NOTE Principle #1: Separate from in a way that the resides incode data code
functions whose behavior does not depend on that is somehowdata
encapsulated in the function’s context.

It required quite a big mindset shift to learn that in DO:

Code is from dataseparated
Code is aggregated in modules
Data is aggregated in data entities
Code is made of functionsstateless
Functions receive data as first argument

We illustrated how to apply this principle in a OO language.

A consequence of this separation is that:

We have the to design code and data in isolationfreedom
Module diagrams are : it’s only about usage (no inheritance)simple
Data entities diagram are : it’s only about association and compositionsimple

The details of Principle #1 are summarized in this mindmap:

2.7 Wrapping up

71

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 2.9 The summary of Principle #1: Separate code from data

Overall, the DO systems are (easier to understand) than classic OO systems and simpler more
 (easier to adapt to changing requirements).flexible

72

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

3
Now that we have separated code from data, let’s talk about data on its own.

Given a designed as a class hierarchy in OO, DO prescribes that wesystem data model rigid
represent our data model as a combination of and where we can accessflexible maps collections
each piece of information via an .information path

This chapter is a deep dive in DO Principle #2:

NOTE Represent data entities with data structuresgeneric

We increase system when we represent and not as objectsflexibility records as string maps
instantiated from classes. This data from the rigidity of a class-based system. Dataliberates
becomes powered by functions to add, remove or rename fields.first class citizens generic

The dependency between the code that manipulates data, and the data, is a .weak dependency
The only thing that matters are the names of the fields we want to manipulate.

In this chapter, we’ll deal only with data query. We’ll discuss managing changes in system state
in Chapter 4.

During lunch at , you and Joe don’t talk about programming. Instead, you try to get toSimple
know Joe on a personal level and talk about family, hobbies and health. You find out that Joe is
married with two kids, and that he meditates daily.

The food is good! And somehow, it helps you digest the DO material you ingested in the
morning!

Manipulate the whole system data with
generic functions

3.1 Introduction

3.2 Design a data model

73

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

As soon as you’re back at the office, you ask Joe about the next step in your journey into DO,
which is about the and …​data model data representation

JOE: When we get to the of the data part of our system, we can design it in .design isolation

YOU: What do you mean by ?isolation

JOE: I mean that you don’t have to bother with code. Only data.

YOU: Yes, I remember you telling me it’s a key aspect that makes a DO system simpler than
OO. After all, is a design principle I am used to in OO.separation of concerns

JOE: Indeed.

YOU: And when we think about data, the only relations we have to think about are association
and .composition

JOE: Correct.

YOU: Will the data model design be significantly different than the data model I’m used to
designing as an OO developer?

JOE: Not so much.

YOU: OK. Let me draw a data entity diagram.

You take a look at the data mind map that you drew in Chapter 2:

74

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 3.1 A data mindmap of the Library management system

You of the fields of each data entity and the kind of relationships betweenrefine the details
entities, and the result is this data entity diagram:

75

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 3.2 A data model of the Library management system

JOE: The next step is to be more about the relations between entities.explicit

YOU: What do you mean?

JOE: For example, in your entity diagram, and are connected by a many-to-manyBook Author

association relation. How is this going to be in your program?relation represented

YOU: In the entity, there will be a of author IDs, and in the entity, thereBook collection Author

will be a of book IDs.collection

JOE: Sounds good. And what will be the book ID?

YOU: The book ISBN.1

76

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: And where will you hold the index that will enable you to retrieve a from its ISBN?Book

YOU: In the . The catalog holds a index.Catalog bookByISBN

JOE: What about author ID?

YOU: Author ID is the author name, in lower case, and with dashes instead of white spaces
(assuming that we don’t have two authors with the same name).

JOE: And I guess that you also hold the author index in the ?Catalog

YOU: Exactly!

JOE: Excellent. You’ve been 100% explicit about the relation between and . I’llBook Author

ask you to do the same with the other relations of the system.

It’s quite easy for you. You did that so many times as an OO developer. Here’s the detailed
entity diagram of your system:

77

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.

2.

Figure 3.3 Library management relations model. Dashed lines (e.g., between Book and Author)
denotes indirect relations. [String] denotes a collection of strings. {Book} denotes an index of Books.

The entity contains two :Catalog indexes

booksByIsbn: The keys are book ISBNs and the values are entities. Its type isBook

noted as {Book}
authorsById: The keys are author IDs and the values are entities. Its type isAuthor

noted as {Author}

Inside a entity, we have , which is a of author IDs of type .Book authors collection [String]

Inside an entity, we have , which is a of book IDs of type .Author books collection [String]

NOTE Notation for collection and index types: A collection of s is noted as String

. An index of s is noted as . In the context of a data[String] Book {Book}

model, the index keys are always strings.

78

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.
2.

There is a between and , which means that the relation between dashed line Book Author Book

and is . To access the collection of entities from a entity, we’ll useAuthor indirect Author Book

the index defined in the entity.authorById Catalog

JOE: I like your .data entity diagram

YOU: Thank you.

JOE: Can you tell me what the three kinds of are in your diagram (and in factdata aggregations
in any data entity diagram)?

YOU: Let me see…​ We have , like in . We have , like collections authors Book indexes
 in . I can’t find the third one.booksByIsbn Catalog

JOE: The third kind of data aggregation is what we’ve called until now an "entity" (like
, , , etc…​). The common term for "entity" in computer science is .Library Catalog Book record

NOTE Record: A record is a data structure that groups together related data items.
It’s a collection of , possibly of .fields different data types

YOU: Is it correct to say that a data entity diagram consists only of records, collections and
indexes?

JOE: That’s correct. Can you make a similar statement about the relations between entities?

YOU: The relations in a data entity diagram are either (solid line with fullcomposition
diamond) or (dashed line with empty diamond). Both types of relations can be eitherassociation
1-to-1, 1-to-many or many-to-many.

JOE: Excellent!

TIP A consists of whose values are either , data entity diagram records primitives
 or . The relation between records is either or collections indexes composition
.association

So far, we’ve illustrated the benefits we gain from the at aseparation between Code and Data
high system level. There’s a between code and data, and each part hasseparation of concerns
clear constraints:

Code consists of that receive data as an argumentstatic functions explicit
Data entities are modeled as , and the relations between records are representedrecords

3.3 Represent records as maps

79

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

2.

by and collections indexes

Now comes the question of the .representation of the data

While DO has nothing special to say about collections and indexes, it’s strongly opinionated
about the . It applies to every programming language, dynamically- orrepresentation of records
statically-typed, Object-Oriented or Functional, it doesn’t matter. In DO, records should be
represented by such as maps. Let’s see how and why…​generic data structures

YOU: I’m really curious to know how we represent collections, indexes and records in DO.

JOE: Let’s start with . DO is not opiniated about the representation of collections.collections
They can be linked lists, arrays, vectors, sets or other collections best suited for the use case.

YOU: It’s like in OO.

JOE: Right. For now, to keep things simple, we’ll use arrays to represent collections.

YOU: What about ?indexes

JOE: Indexes are represented as with string keys.homogeneous maps

YOU: What do you mean by an map?homogeneous

JOE: I mean that all the values of the map are of the same kind. For example, in a index,Book

all the values are , in an author index, all the values are , etc…​Book Author

YOU: Again, it’s like in OO.

NOTE A map is a map where all the values are of the same type. A homogeneous
 map is a map where the values are of different types.heterogeneous

JOE: Now, here’s the big surprise. In DO, ; more precisely, records are represented as maps
 with string keys.heterogeneous maps

80

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 3.4 The building blocks of data representation

You stay silent for a while. You’re shocked to hear that one can represent the data entities of a
system as a generic data structure, where the field names and value types are not specified in a
class.

Then you ask Joe:

YOU: What are the benefits of this folly?!

JOE: and .Flexibility genericity

YOU: Could you explain, please?

JOE: I’ll explain in a moment, but before that, I’d like to show you how an instance of a record
in a DO system looks like.

YOU: OK.

JOE: Let’s take as an example, "Watchmen" by Alan Moore and Dave Gibbons, which is my
favorite graphic novel. This masterpiece was published in 1987. I’m going to assume that there
are two copies of this book in the library, both located on a rack whose ID is , and thatrack-17

one of the two copies is currently out. Here’s how I’d represent the record for "Watchmen"Book

in DO.

Joe comes closer to your laptop, opens a text editor (not an IDE!) and starts typing…​

81

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.1 An instance of a record represented as a mapBook

You look at the laptop screen and ask Joe:

YOU: How am I supposed to instantiate the record for "Watchmen" ?Book programmatically

JOE: It depends on the facilities that your programming language offers to instantiate maps.
With dynamic languages like JavaScript, Ruby or Python, it’s straightforward because we can
leverage for maps and arrays.literals

Listing 3.2 Creating an instance of a record represented as a map in JavaScriptBook

YOU: And if I’m in Java?

JOE: It’s a bit more tedious, but still doable with the immutable and static factoryMap List

methods. :2

{
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authors": ["alan-moore", "dave-gibbons"],
 "bookItems": [

{
"id": "book-item-1",
"rackId": "rack-17",
"isLent": true

},
{

"id": "book-item-2",
"rackId": "rack-17",
"isLent": false

}
]
}

var watchmenBook = {
 "isbn": "978-1779501127",
 "title": "Watchmen",
 "publicationYear": 1987,
 "authors": ["alan-moore", "dave-gibbons"],
 "bookItems": [

{
"id": "book-item-1",
"rackId": "rack-17",
"isLent": true

},
{

"id": "book-item-2",
"rackId": "rack-17",
"isLent": false

}
]
}

82

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.3 Creating an instance of a record represented as a map in JavaBook

TIP In DO, we represent a as a with string keys.record heterogeneous map

YOU: I’d definitely prefer to instantiate a record out of a and a class.Book Book BookItem

You open your JavaScript IDE and you start typing…​

Map watchmen = Map.of(
"isbn", "978-1779501127",
"title", "Watchmen",
"publicationYear", 1987,
"authors", List.of("alan-moore", "dave-gibbons"),
"bookItems", List.of(

Map.of(
"id", "book-item-1",
"rackId", "rack-17",
"isLent", true
),

Map.of (
"id", "book-item-2",
"rackId", "rack-17",
"isLent", false
)

)
);

83

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.4 Creating an instance of a record represented as an instance of a Book Book

class in JavaScript

JOE: Why do you prefer for representing records?classes over maps

YOU: It makes the data shape of the record . As a result, the IDE canpart of my program
auto-complete field names, and errors are caught at compile time.

JOE: Fair enough. Would you let me show you some drawbacks of this approach?

YOU: Sure.

JOE: Imagine that you want to display the information about a book in the context of search
results. In that case, instead of author IDs, you want to display author names and you don’t need
the book item information. How would you handle that?

YOU: I’d create a class without a member, and with an BookInSearchResults bookItems

 member instead of the member of the class. Also, I would needauthorNames authorIds Book

to write a copy constructor that receives a object.Book

JOE:The fact that in classic OO, data is instantiated only via classes brings safety. But this
safety comes at the cost of flexibility.

class Book {
 isbn;
 title;
 publicationYear;
 authors;
 bookItems;
 constructor(isbn, title, publicationYear, authors, bookItems) {

this.isbn = isbn;
this.title = title;
this.publicationYear = publicationYear;
this.authors = authors;
this.bookItems = bookItems;

 }
}

class BookItem {
 id;
 rackId;
 isLent;
 constructor(id, rackId, isLent) {

this.id = id;
this.rackId = rackId;
this.isLent = isLent;

 }
}

var watchmenBook = new Book("978-1779501127",
"Watchmen",
1987,
["alan-moore", "dave-gibbons"],
[new BookItem("book-item-1", "rack-17", true),
new BookItem("book-item-2", "rack-17", false)]);

84

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: How can it be different?

TIP There’s a trade-off between and in a data model.flexibility safety

JOE: In the DO approach, where records are represented as maps, we don’t need to create a
class for each variation of the data. We’re free to add, remove and rename record fields
dynamically. Our data model is .flexible

YOU: Interesting!

TIP In DO, the data model is . We’re free to add, remove and renameflexible
record fields dynamically, at runtime.

JOE: Now, let me talk about : How would you serialize to JSON the content of a genericity
 object?Book

TIP In DO, records are manipulated with .generic functions

YOU: Oh no! I had a nightmare about JSON serialization when I was developing the first
version of the Library Management system (see Chapter 1).

JOE: Well, in DO, serializing a record to JSON is super easy.

YOU: Does it involve to go over the fields of the record?reflection

JOE: Not at all! Remember that in DO, a record is nothing more than data. We can write a
generic JSON serialization function that works with any record. It can be a , an , a Book Author

, or anything else.BookItem

YOU: Amazing!

TIP In DO, you get for free.JSON serialization

JOE: Actually, as I’ll show you in a moment, lots of data manipulation stuff can be done using
generic functions.

YOU: Are the generic functions part of the language?

JOE: It depends on the functions and on the language. For example, JavaScript provides a JSON
serialization function called out of the box, but none for omitting multipleJSON.stringify()

keys or for renaming keys.

85

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: That’s annoying.

JOE: Not so much. There are third-party libraries that provide data-manipulation facilities. A
popular data-manipulation library in the JavaScript ecosystem is Lodash.3

YOU: And in Java?

JOE: There exist ports of Lodash to Java, to C#, to Python, and to Ruby.4 5 6 7

YOU: Cool!

JOE: Actually, Lodash and its can be ported to anyrich set of data manipulation functions
language! That’s why it’s so beneficial to represent records as maps!

TIP DO compromises on data to gain and .safety flexibility genericity

JOE: Now, let me show you how we manipulate data in DO with generic functions.

YOU: Yes, I’m quite curious to see how you’ll implement the search functionality of the Library
Management system.

JOE: OK. First, let’s instantiate, according to your data model from , a Figure 3.3 Catalog

record for the catalog data of a library, where we have a single book, "Watchmen":

3.4 Manipulate data with generic functions

Table 3.1 Tradeoff between safety, flexibility and genericitym
OO DO

Safety high low

Flexibility low high

Genericity low high

86

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.5 A recordCatalog

YOU: I see the two indexes we talked about, and . How do youbooksByIsbn authorsById

differentiate a record from an index in DO?

JOE: In an entity diagram, there’s a clear distinction between records and indexes. But in our
code, both are plain data.

YOU: I guess that’s why this approach is called -Oriented Programming.Data

JOE: Notice how straightforward it is to visualize any part of the system data inside a program.
The reason is that !data is represented as data

YOU: It sounds like a lapalissade.8

TIP In DO, is as .data represented data

JOE: Indeed, it’s obvious, but usually in OO, data is represented by objects, which makes it
more challenging to visualize data inside a program.

TIP In DO, we can any part of the system data.visualize

var catalogData = {
 "booksByIsbn": {

"978-1779501127": {
"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,
"authorIds": ["alan-moore", "dave-gibbons"],
"bookItems": [

{
"id": "book-item-1",
"rackId": "rack-17",
"isLent": true

},
{

"id": "book-item-2",
"rackId": "rack-17",
"isLent": false

}
]

}
 },
 "authorsById": {

"alan-moore": {
"name": "Alan Moore",
"bookIsbns": ["978-1779501127"]

},
"dave-gibbons": {

"name": "Dave Gibbons",
"bookIsbns": ["978-1779501127"]

}
 }
}

87

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: How would you retrieve the title of a specific book from the catalog data?

JOE: That’s a great question. In fact, in a DO system, every piece of information has a path
from which we can retrieve the information.

YOU: I don’t get that.

JOE: For example, the path to the title of the "Watchmen" book in the catalog is:
.["booksByIsbn", "978-1779501127", "title"]

YOU: So what?

JOE: Once we have the path of a piece of information, we can retrieve the information with
Lodash’s function:_.get()

Listing 3.6 Retrieving the title of a book from its path

YOU: Does it work smoothly in a language like Java?statically-typed

JOE: It depends whether you need only to pass the value around or to concretely access the
value.

YOU: I don’t follow.

JOE: Imagine that once you get the title of a book, you want to convert the string into an
upper-case string. Then you need to do a static cast to .String

Listing 3.7 Casting a field value to a string, in order to manipulate it as a string

YOU: It makes sense. The values of the map are of different types. Thus, the compiler declares it
as a . The information of the type of the field is lost.Map<String,Object>

JOE: It’s a bit annoying, but quite often, the code just passes the data around. So we don’t have
to deal too much with static casting.

TIP In , we sometimes need to the fieldstatically-typed languages statically cast
values.

YOU: What about ?performance

JOE: In most programming languages, maps are quite effective. Accessing a field in a map is

_.get(catalogData, ["booksByIsbn", "978-1779501127", "title"])

((String)watchmen.get("title")).toUpperCase()

88

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

slightly slower than accessing a class member. Usually, this is not significant.

TIP No significant performance hit by accessing a field in a map instead of a class
member.

YOU: Let’s get back to this idea of information path. In OO also, I’d be able to access the title of
the "Watchmen" book with . ClasscatalogData.booksByIsbn["978-1779501127"].title

members for record fields and strings for index keys.

JOE: There’s a fundamental difference. When records are represented as maps, the information
can be retrieved via its path using a function like . But when records aregeneric _.get()

represented as objects, you need to write code for each type of information path.specific

YOU: What do you mean by code? What’s specific in specific
?catalogData.booksByIsbn["978-1779501127"].title

JOE: In a language like Java, to write this piece of code, you need to import thestatically-typed
class definitions for and .Catalog Book

YOU: And in a language like JavaScript?dynamically-typed

JOE: Even in JavaScript, when you represent records with objects instantiated from classes, you
cannot easily write a function that receives a path as an argument and display the information
that corresponds to this path. You would have to write for each kind of path. You’dspecific code
access class members with dot notation and map fields with bracket notation.

YOU: Would you say that in DO, the is a ?information path first-class citizen

JOE: Absolutely! The information path is a first-class citizen. It can be stored in a variable and
passed as an argument to a function.

TIP In DO, you can retrieve every piece of information via a and a path generic
.function

89

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 3.5 The catalog data as a tree. Each piece of information is accessible via a path made of
strings and integers. For example, the path of Alan Moore’s first book of is ["catalog", "authorsById",
"alan-moore", "bookIsbns", 0].

YOU: I am starting to feel the of DO.power of expression

JOE: Wait. It’s just the beginning. Let me show you how simple it is to write code that retrieves
the book information and displays it in search results. Can you tell me exactly what information
has to appear in search results?

YOU: In the context of search results, the book information should contain , and isbn title

.authorNames

JOE: Can you try to write down how a record would look like for "Watchmen"?BookInfo

YOU: Sure, here you go…​

3.5 Calculate search results

90

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.8 A record for Watchmen in the context of search resultBookInfo

JOE: Now, I’m going to show you, step by step, how to write a function that returns search
results matching a title in JSON format, using fromgeneric data manipulation functions
Lodash.

YOU: Cool!

JOE: Let’s start with an function that calculates the author names of a authorNames() Book

record by looking at the index. The information path for the name of an author is authorsById

.["authorsById", authorId, "name"]

Listing 3.9 Calculating the author names of a book

can be done with instead of .forEach() .map()

YOU: What’s this function? It smells like Functional Programming stuff! You_.map()

promised me I don’t have to learn FP to implement DO!

JOE: You can use Lodash’s if you like._.forEach()

YOU: Yes, I like that. What’s next?

JOE: Now, we need a function that converts a record into a record.bookInfo Book BookInfo

Listing 3.10 Converting a record into a recordBook BookInfo

{
 "title": "Watchmen",
 "isbn": "978-1779501127",
 "authorNames": [

"Alan Moore",
"Dave Gibbons",

]
}

function authorNames(catalogData, book) {
 var authorIds = _.get(book, "authorIds");
 var names = _.map(authorIds, function(authorId) {

return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
 return names;
}

function bookInfo(catalogData, book) {
 var bookInfo = {

"title": _.get(book, "title"),
"isbn": _.get(book, "isbn"),
"authorNames": authorNames(catalogData, book)

 };
 return bookInfo;
}

91

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

No need to create a class for bookInfo

YOU: Looking at the code, I see that a record has three fields: , and BookInfo title isbn

. Is there a way to get this information without looking at the code?authorNames

JOE: You can either add it to the data entity diagram or write it in the documentation of the
 function, or both.bookInfo

YOU: I have to get used to the idea that in DO, the record field information is not part of the
program.

JOE: Indeed, it’s not part of the program, but it gives us a lot of flexibility.

YOU: Is there any way for me to have my cake and eat it, too?!

JOE: Yes. In Part 3, I’ll show you how to make record field information as part of a DO
program.

YOU: Sounds intriguing!

JOE: Now, we have all the pieces in place to write our function thatsearchBooksByTitle

returns book information about the books that match the query. First, we find the recordsBook

that match the query (with), and then we transform each record into a _.filter() Book

 record (with and). Here’s the code:BookInfo _.map() bookInfo()

Listing 3.11 Searching books that match a query

when you pass a map to , it goes over the values of the map_.filter()

can be done with _.forEach()

YOU: It’s a bit weird to me that to access a the title of a book record, you write _.get(book,
. I’d expect it to be in dot notation, or in bracket"title") book.title book["title"]

notation!

JOE: Remember that is a record that’s not represented as an object. It’s a map. Indeed, inbook

function searchBooksByTitle(catalogData, query) {
 var allBooks = _.get(catalogData, "booksByIsbn");
 var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title").includes(query);
 });

 var bookInfos = _.map(matchingBooks, function(book) {
return bookInfo(catalogData, book);

 });
 return bookInfos;
}

searchBooksByTitle(catalogData, "Watchmen");

92

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JavaScript, you can write , or . But I_.get(book, "title") book.title book["title"]

prefer to use Lodash’s . In some languages, the dot and the bracket notations might not_.get()

work on maps.

YOU: Are we done with the search implementation?

JOE: Almost. The function we wrote is part of the module, andsearchBooksByTitle Catalog

it returns a collection of records. We have to write a function that’s part of the moduleLibrary

and that returns a JSON string.

YOU: You told me earlier that was straightforward in DO.JSON serialization

JOE: Right. Here’s the code for . It retrieves the record,searchBooksByTitleJSON() Catalog

passes it to , and converts the results to JSON with searchBooksByTitle() JSON.stringify()

(that’s part of JavaScript).

Listing 3.12 Searching books in a library as JSON

YOU: How are we going to combine the four functions that we have written so far?

JOE: The functions , and go into the authorNames bookInfo searchBooksByTitle Catalog

module, and goes into the module.searchBooksByTitleJSON Library

You look at the resulting code of the two modules, quite amazed by the of the code.conciseness

function searchBooksByTitleJSON(libraryData, query) {
 var results = searchBooksByTitle(_.get(libraryData, "catalog"), query);
 var resultsJSON = JSON.stringify(results);
 return resultsJSON;
}

93

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.13 Calculating search results. The code is split in two modules: and Library

.Catalog

can be done with _.forEach()

no need to create a class for bookInfo

when is passed a map, it goes over the values of the map_.filter()

converts data to JSON (part of JavaScript)

YOU: Let’s check whether the code works as expected.

JOE: Sure. For that, we need to create a record that contains our record.Library Catalog

class Catalog {
 static authorNames(catalogData, book) {

var authorIds = _.get(book, "authorIds");
var names = _.map(authorIds, function(authorId) {

return _.get(catalogData, ["authorsById", authorId, "name"]);
});
return names;

 }

 static bookInfo(catalogData, book) {
var bookInfo = {

"title": _.get(book, "title"),
"isbn": _.get(book, "isbn"),
"authorNames": Catalog.authorNames(catalogData, book)

};
return bookInfo;

 }

 static searchBooksByTitle(catalogData, query) {
var allBooks = _.get(catalogData, "booksByIsbn");
var matchingBooks = _.filter(allBooks, function(book) {

return _.get(book, "title").includes(query);
});
var bookInfos = _.map(matchingBooks, function(book) {

return Catalog.bookInfo(catalogData, book);
});
return bookInfos;

 }
}

class Library {
 static searchBooksByTitleJSON(libraryData, query) {

var catalogData = _.get(libraryData, "catalog");
var results = Catalog.searchBooksByTitle(catalogData, query);
var resultsJSON = JSON.stringify(results);
return resultsJSON;

 }
}

94

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 3.14 The library data (without user management data)

YOU: Let’s search for books with titles that match ."Watchmen"

Listing 3.15 Search results in JSON

You look again at the source code from …​ After a few seconds, you feel like you’reListing 3.12
in an Aha! moment.

YOU: The important thing is not that the code is , but that the code contains concise no
. It’s just data manipulation!abstractions

Joe responds with a smile that says, "You got it, my friend!"

var libraryData = {
 "name": "The smallest library on earth",
 "address": "Here and now",
 "catalog": {

"booksByIsbn": {
"978-1779501127": {

"isbn": "978-1779501127",
"title": "Watchmen",
"publicationYear": 1987,
"authorIds": ["alan-moore",

"dave-gibbons"],
"bookItems": [

{
"id": "book-item-1",
"rackId": "rack-17",
"isLent": true

},
{

"id": "book-item-2",
"rackId": "rack-17",
"isLent": false

}
]

}
},
"authorsById": {

"alan-moore": {
"name": "Alan Moore",
"bookIsbns": ["978-1779501127"]

},
"dave-gibbons": {

"name": "Dave Gibbons",
"bookIsbns": ["978-1779501127"]

}
}

 },
 "userManagement": {

// omitted for now
 }
};

Library.searchBooksByTitleJSON(libraryData, "Watchmen");
// returns "[{\"title\":\"Watchmen\",\"isbn\":\"978-1779501127\",\"authorNames\":[\"Alan Moore\",
// \"Dave Gibbons\"]}]"

95

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: It reminds me what my first meditation teacher told me 10 years ago: Meditation guides
the mind to grasp the reality as it is, without the abstractions created by our thoughts.

TIP In DO, many parts of our code base tend to be just about data manipulation
with .no abstractions

We’ve seen how DO enables us to treat records as that can be manipulated infirst class citizens
a way using functions. But if a record is nothing more than an aggregation offlexible generic
fields, how do we know what the of the record is?type

DO has a surprising answer to this question.

YOU: I have a question. If a record is nothing more than a , how do you know the map type of
?the record

JOE: That’s a great question with a answer.surprising

YOU: I’m curious.

JOE: Most of the time, there’s .no need to know the type of the record

YOU: What do you mean?

JOE: I mean that what matter most are the values of the fields. For example, take a look at the
 source code in . It operates on a record, but the onlyCatalog.authorNames() Listing 3.15 Book

thing that matters is the value of the field.authorIds

Doubtful, you look at the source code of .Catalog.authorNames

Listing 3.16 Calculating the author names of a book

can be done with instead of .forEach() .map()

YOU: What about between various user types like vs ? Idifferentiating Member Librarian

mean, they both have and . How do you know if a record representsemail encryptedPassword

a or a ?Member Librarian

3.6 Handle records of different types

function authorNames(catalogData, book) {
 var authorIds = _.get(book, "authorIds");
 var names = _.map(authorIds, function(authorId) {

return _.get(catalogData, ["authorsById", authorId, "name"]);
 });
 return names;
}

96

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: You check if the record is found in the index or in the librariansByEmail

 index of the .membersByEmail Catalog

YOU: Could you be more specific?

JOE: Sure. Let me write down how the user management data of our tiny library might look
like, assuming that we have one librarian and one member. To keep things simple, I am
encrypting passwords through naive base-64 encoding.

Listing 3.17 A UserManagement record

base-64 encoding of "mypassword"

base-64 encoding of "secret"

TIP Most of the time, there’s no need to know what the type of a record is.

YOU: I remember that in Chapter 2, you told me you’ll show me the code for
 function in Chapter 3.UserManagement.isLibrarian()

JOE: So here we are in Chapter 3, and I’m going to fulfill my promise:

Listing 3.18 Checking if a user is a librarian

YOU: OK. You simply check if the map contains the field.librariansByEmail email

JOE: Yep.

var userManagementData = {
 "librarians": {
 "franck@gmail.com" : {
 "email": "franck@gmail.com",
 "encryptedPassword": "bXlwYXNzd29yZA=="
 }
 },
 "members": {
 "samantha@gmail.com": {
 "email": "samantha@gmail.com",
 "encryptedPassword": "c2VjcmV0",
 "isBlocked": false,
 "bookLendings": [
 {
 "bookItemId": "book-item-1",
 "bookIsbn": "978-1779501127",
 "lendingDate": "2020-04-23"
 }
]
 }
 }
}

function isLibrarian(userManagement, email) {
 return _.has(_.get(userManagement, "librariansByEmail"), email);
}

97

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: Would you use the same pattern to check if a member is a Super member or a VIP
member?

JOE: We can, indeed, have and indexes. ButSuperMembersByEmail VIPMembersByEmail

there’s a better way.

YOU: How?

JOE: When a member is a VIP member, we add a field, with the value , to its record.isVIP true

To check if a member is a VIP member, check whether the field is set to in theisVIP true

member record:

Listing 3.19 Checking if a member is a VIP member

YOU: I see that you access the field via its information path: isVIP ["membersByEmail",

.email, "isVIP"]

JOE: Yes. I think it makes the code crystal clear.

YOU: Agree. And I guess that we can do the same and have an field set to whenisSuper true

a member is a Super member?

JOE: Yes. Just like this:

Listing 3.20 The code of moduleUserManagement

You look at the module code for a couple of seconds, and suddenly an ideaUserManagement

comes to you…​

YOU: Why not have a field in member record, whose value would be either or ?type VIP Super

JOE: I assume that, according to the product requirements, a member can be both a VIP and a
Super member.

YOU: Hmm…​ We can have a field that will be a collection of either or .types VIP Super

function isVIPMember(userManagement, email) {
 return _.get(userManagement, ["membersByEmail", email, "isVIP"]) == true;
}

class UserManagement {
 isVIPMember(userManagement, email) {
 return _.get(userManagement, ["membersByEmail", email, "isVIP"]) == true;
 }

 isSuperMember(userManagement, email) {
 return _.get(userManagement, ["membersByEmail", email, "isSuper"]) == true;
 }
}

98

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: In some situations, having a field is helpful, but I find it simpler to have a types boolean
field for each feature that the record supports.

YOU: Is there a name for fields like and ?isVIP isSuper

JOE: I call them .feature fields

TIP Instead of maintaining type information about a record, use a feature field
(e.g.,).isVIP

YOU: Can we use feature fields to differentiate between librarians and members?

JOE: You mean having an and an field?isLibrarian isMember

YOU: Yes, and having a common record type for both librarians and members.User

JOE: We can, but I think it’s simpler to have different record types for librarians and members:
 for librarians, and for members.Librarian Member

YOU: Why?

JOE: Because there’s a clear distinction between librarians and members in terms of data. For
example, members have book lendings but librarians don’t.

YOU: I agree. Now, we need to mention the two feature fields in our entity diagram:Member

99

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 3.6 Library management data model, with Member feature fields isVIP and isSuper.

JOE: Do you like the data model that we have designed together?

YOU: I find it quite and .simple clear

JOE: That’s the main goal of DO.

YOU: Also, I’m pleasantly surprised how easy it is to adapt to changing requirements both in
terms of code and data model.

JOE: I suppose you’re also happy to get rid of complex .class hierarchy diagrams

YOU: Absolutely! Feature fields feel much simpler to deal with than class inheritance.

JOE: Avoiding inheritance in records keeps our .data model simple

100

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: Are there more benefits of representing records with maps?

JOE: Yes. We can quite easily deal with advanced data inspection stuff. I’ll tell you more about
that in Chapter 5.

YOU: Why not in the next Chapter?

JOE: Because I have something more fundamental to tell you about.

YOU: What’s that?

JOE: How to manage state in DO without mutating the data.

In this chapter, we explored the benefits of .representing records with string maps

The data part of our system is , and each piece of information is accessible via its flexible
. We manipulate data with , which are provided either by theinformation path generic functions

language itself or by third-party libraries like Lodash. As an example, you get JSON
 for free.serialization

On one hand, we’ve lost the safety of accessing record fields via members defined at compile
time. On the other hand, we’ve data from the limitation of classes and objects. Data isliberated
represented as data!

When data is not represented by objects, we’re free to every part of the system.visualize

Instead of maintaining about a record, we use a .type information feature field

In a DO system, the dependency between code and data is . It’s all about record fieldweak
names. Weak dependency makes it is to changing requirements.easier to adapt

3.7 Wrapping up

101

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

4

1.
2.

So far we have seen how DO deals with requests that about the system, via query information
 functions that access the system data, represented as a .generic hash map

In this chapter and the following one, we illustrate how DO deals with , i.e. requestsmutations
that the . Instead of updating the state in place, we maintain change system state multiple

 of the system data. At a specific point in time, the system state refers to a specificversions
version of the system data.

The maintenance of multiple versions of the system data requires the data to be immutable. This
is made both in terms of and via a technique called efficient computation memory Structural

, where parts of the data that are common between two versions are shared instead ofSharing
being copied.

In DO, a mutation is split into two distinct phases:

In the , we the next version of the system data.Calculation phase compute
In the , we the system state so that it to the versionCommit phase move forward refers
of the system data computed by the Calculation phase.

This distinction between Calculation and Commit phases allows us to reduce the part of our
system that is stateful to its bare minimum. Only the code of the Commit phase is , whilestateful
the code in the Calculation phase of a mutation is and made of functionsstateless generic
similar to the code of a query.

The implementation of the Commit phase is common to all the mutations. As a consequence,
inside the Commit phase, we have the ability to ensure that the state always refers to a valid

 of the system data.version

State management with immutable data

4.1 Introduction

102

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Another benefit of this state management approach is that we can keep track of the history of
 of the system data. If needed, restoring the system to a previous state isprevious versions

straightforward.

In the present chapter, we assume that no mutations occur concurrently in our system. In the next
chapter, we will deal with concurrency control.

During the coffee break, you and Joe go for a walk around the block and this time the discussion
turns around version control systems. You discuss about how git keeps track of the whole
commit history and how easy and fast it is to restore the code to a previous commit. You discuss
also about commit hooks that allows to validate the code before it is committed.

JOE: So far we have seen how in DO, we manage that retrieve information from thequeries
system. Now I am going to show you how we manage . By a mutation, I mean anmutations
operation that changes the state of the system.

NOTE A is an operation that the state of the system.mutation changes

YOU: Is there a fundamental difference between queries and mutations in DO? After all, the
whole state of the system is represented as a hash map. I could easily write code that modifies
part of the hash map. It would be similar to the code that retrieves information from the hash
map.

JOE: You could mutate the data in place, but then it would be challenging to make sure that the
code of a mutation doesn’t put the system into an invalid date. Also you would lose track of
previous versions of the system state.

YOU: I see. So how do you handle mutations in DO?

JOE: We adopt a approach, similar to what a version control like git does.multi-version state
We manage different versions of the system data. At a specific point in time, the state of the
system refers to a version of the system data. After a mutation is executed, we move forward the
reference.

4.2 Multiple versions of the system data

Table 4.1 The two phases of a mutationm
Phase Responsibility State Implementation

Calculation Compute next version of
system data

Stateless Specific

Commit Move forward the system
state

Stateful Common

103

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: I am confused: is the system state mutable or immutable?

JOE: The data is but the state reference is .immutable mutable

TIP The data is but the state is mutable.immutable reference

Figure 4.1 After mutation B is executed, the system state refers to Data V12. After mutation C is
executed, the system state refers to Data V13.

YOU: Does it mean that before the code of a mutation runs, we make a copy of the system data?

JOE: No. That would be very inefficient, as we would have to do a deep copy of the data.

YOU: So how does it work?

JOE: It works by using a technique called , where most of the data betweenstructural sharing
subsequent versions of the state is instead of being copied. This technique allows toshared
efficiently create new versions of the system data, both in terms of and .memory computation

YOU: I am intrigued.

TIP With , it is efficient (in terms of memory and computation)structural sharing
to create of data.new versions

JOE: I’ll explain you in details how works in a moment.structural sharing

104

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

You take another look at the diagram in that illustrates how the system state refers to aFigure 4.1
version of the system data and suddenly a question emerges in your mind.

YOU: Are the of the system data kept?previous versions

JOE: In a simple application, previous versions are automatically removed by the garbage
. But in some cases, we maintain to previous versions of the data.collector historical references

YOU: What kind of cases?

JOE: For example, we can allow in our system. Like in git, we can move back thetime travel
system to a previous version of the state very easily.

YOU: Now, I understand what you meant by: The data is immutable but the state reference is
mutable.

As we mentioned in the previous section, structural sharing allows to create newefficiently
versions of immutable data. In DO, we leverage in the phase ofstructural sharing Calculation
a to compute the next state of the system based of the current state of the system.mutation
Inside the calculation phase, we don’t have to deal with state management: this is delayed to the
Commit phase. As a consequence, the code involved in the calculation phase of a mutation is

 and is as simple as the code of a query.stateless

YOU: I am really intrigued by this efficient way to create new version of data. How does it
work?

JOE: Let’s take a simple example from our library system. Imagine that you want to modify the
value of a field in a book in the catalog, for instance the publication year of Watchmen. Can you
tell me what is the information path for Watchmen publication year?

After a a quick look at the catalog data in , you answer:Figure 4.2

4.3 Structural sharing

105

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 4.2 An updated version of the library

YOU: The information path for Watchmen publication year is: ["catalog", "booksByIsbn",
."978-1779501127", "publicationYear"]

JOE: Now, let me show how to use the provided by Lodash.immutable function _.set()

YOU: What do you mean by an immutable function? When I look at Lodash documentation for
, it says that it mutates the object._.set() 9

JOE: You are right. By default Lodash functions are not immutable. In order to use a immutable
version of the functions, we need to use Lodash FP module (Functional Programming), as it is
explained in the Lodash FP guide.10

YOU: Do the immutable functions have the same signature as the mutable functions?

JOE: By default, the order of the arguments in immutable functions is shuffled. In the Lodash
FP guide, they explain how to resolve it: with this piece of code in the signature ofListing 4.1
the immutable functions is exactly the same as the mutable functions.

106

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 4.1 Configuring Lodash so that the immutable functions have the same signature
as the mutable functions

TIP In order to use Lodash immutable functions, we use Lodash FP module and
we configure it so that the signature of the immutable functions is the same
as in the Lodash documentation web site.

YOU: So basically, I can still rely on Lodash documentation when using immutable versions of
the functions.

JOE: Except for the piece in the documentation that says the function mutates the object.

YOU: Of course!

JOE: Now, let me show you how to write code that creates a version of the library data with the
 provided by Lodash.immutable function _.set()

Listing 4.2 Creating a version of the library where Watchmen publication year is 1986

NOTE A function is said to be when instead of mutating the data, itimmutable
creates a of the data without changing the data it receives.new version

YOU: You told me earlier that structural sharing allowed immutable functions to be inefficient
terms of and . Could you tell me what make them efficient?memory computation

JOE: With pleasure. But before that you’d have to answer a series of questions. Are you ready?

YOU: Yes.

JOE: What part of the library data is impacted by updating Watchmen publication year: the
 or the ?UserManagement Catalog

YOU: Only the .Catalog

JOE: What part of the ?Catalog

_ = fp.convert({
 "cap": false,
 "curry": false,
 "fixed": false,
 "immutable": true,
 "rearg": false
});

var nextLibrary = _.set(library, ["catalog", "booksByIsbn",
 "978-1779501127", "publicationYear"],
 1986);

107

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: Only the index.booksByIsbn

JOE: What part of the index?booksByIsbn

YOU: Only the record that holds the information about Watchmen.Book

JOE: What part of the record?Book

YOU: Only the field.publicationYear

JOE: When you use an to create a new version of the where theimmutable function Library

publication year of Watchmen is set to 1986 (instead of 1987), it creates a fresh hashLibrary

map that uses the parts of the current that are between the tworecursively Library common
versions instead of deeply copying them. This technique is called: .structural sharing

YOU: Could you describe me how structural sharing works step by step?

Joe grabs a piece of paper and draws the diagram in that illustrates structural sharing.Figure 4.3

Figure 4.3 Structural sharing provides an efficient way to create a new version of the data: Next
Library is recursively made of nodes that uses the parts of Library that are common between the
two.

108

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: The next version of the , uses the same hash map as the oldLibrary UserManagement

one. The inside the next uses the same as the current .Catalog Library authorsById Catalog

The Watchmen record inside the next uses all the fields of the current Book Catalog Book

except for the field.publicationYear

TIP Structural sharing provides an way (both and)efficient memory computation
to create a new version of the data by recursively sharing the parts that don’t
need to change.

YOU: That’s very cool!

JOE: Indeed. Now let me show you how to write a mutation for adding a member using
immutable functions. shows a diagram that illustrates how structural sharing looksFigure 4.4
like when we add a member.

Figure 4.4 Adding a member with structural sharing: most of the data is shared between
the two versions

YOU: It’s so cool that the and the hash maps don’t have to be copied!Catalog librarians

JOE: In terms of code, we have to write a function that delegates to Library.addMember()

.UserManagement.addMember()

109

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: I guess it is going to be similar to the code we wrote in Chapter 2 to implement the search
books query, where delegates to Library.searchBooksByTitleJSON()

.Catalog.searchBooksByTitle()

JOE: Similar in the sense that all the functions are static and they receive the data they
manipulate as an argument. But there are two difference: First, A mutation could fail, for
instance if the member to be added already exists. Secondly, the code for

 is a bit more elaborate than the code for Library.addMember()

 as we have to create a new version of the thatLibrary.searchBooksByTitleJSON() Library

refers to the new version of the . shows the code for the mutationUserManagement Listing 4.3
that adds a member.

Listing 4.3 The code for the mutation that adds a member

Check if a member already exists with the same email address

Create a new version of that includes the memberuserManagement

Create a new version of that contains the new version of library

userManagement

YOU: It’s a bit weird to me that immutable functions return an updated version of the data
instead of changing it in place.

JOE: It was also weird for me when I first encountered immutable data in Clojure 10 years ago.

YOU: How long did it take you to get used to it?

JOE: A couple of weeks.

UserManagement.addMember = function(userManagement, member) {
 var email = _.get(member, "email");
 var infoPath = ["membersByEmail", email];
 if(_.has(userManagement, infoPath)) {
 throw "Member already exists.";
 }
 var nextUserManagement = _.set(userManagement,
 infoPath,
 member);
 return nextUserManagement;
}

Library.addMember = function(library, member) {
 var currentUserManagement = _.get(library, "userManagement");
 var nextUserManagement = UserManagement.addMember(currentUserManagement, member);
 var nextLibrary = _.set(library, "userManagement", nextUserManagement);
 return nextLibrary;
}

110

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: Something is not clear to me regarding this structural sharing stuff. What happens if we
write code that modifies the data part that is shared between the two versions of the data? Does
the change affect both versions?

JOE: Could you please write a code snippet that illustrates your question?

You start typing on your laptop, and you come up with the code snippet in thatListing 4.4
illustrates your point.

Listing 4.4 A piece of code that modifies a piece of data that is shared between two
versions

YOU: My question is: what is the value of in ?isBlocked updatedMember

JOE: The answer is that mutating data via the native hash map setter is . All the dataforbidden
manipulation must be via immutable functions.

WARNING All data manipulation must be done via immutable functions: It is forbidden
to use the hash map setter.native

YOU: When you say you mean that it’s up to the developer to make sure it doesn’tforbidden
happen. Right?

JOE: Exactly.

YOU: Is there a way to protect our system from a developer’s mistake?

JOE: Yes, there is a way to ensure the immutability of the data at the level of the data structure.
It’s called .persistent data structures

YOU: Are persistent data stuctures also efficient in terms of memory and computation?

JOE: Actually, the way data is organized inside persistent data structures make them even more
efficient than immutable functions.

4.4 Data safety

var member = {
 "email": "joe@me.com",
 "password": "secret",
 "isBlocked": true
}

var updatedMember = _.set(member, "password", "hidden");

member["isBlocked"] = false;

111

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

TIP Persistent data structures are immutable at the level of the : There is nodata
way to mutate them (even by mistake).

YOU: Are there providing persistent data structures?library

JOE: Definitely. For example, we have Immutable.js in JavaScript, Paguro in Java,11 12

Immutable Collections in C#, Pyrsistent in Python, and Hamster in Ruby.13 14 15

YOU: So why not using persistent data structures instead of immutable functions?

JOE: The of persistent data structures is that they are not native which means thatdrawback
working with them require from native to persistent and from persistent to native.conversion

YOU: What approach would you recommend then?

JOE: If you want to play around a bit, then start with immutable functions. But for a production
application I’d recommend using persistent data structures.

YOU: So bad native data structures are not persistent!

JOE: That’s one of the reasons why I love Clojure: the native data structures of the language are
immutable!

So far we have seen how to implement the phase of a mutation. The CalculationCalculation
phase is stateless, in the sense that it doesn’t make any change to the system. Now, we are going
to see how we update the state of the system inside the phase.Commit

You take another look at the code for in and somethingLibrary.addMember() Listing 4.5
bothers you: this function returns a new state of the library that contains an additional member
but it doesn’t affect the current state of the library!

Listing 4.5 The Calculation phase of a mutation doesn’t make any change to the system

YOU: I see that doesn’t change the state of the library. How the libraryLibrary.addMember()

state gets updated then?

4.5 The Commit phase of a mutation

Library.addMember = function(library, member) {
 var currentUserManagement = _.get(library, "userManagement");
 var nextUserManagement = UserManagement.addMember(currentUserManagement, member);
 var nextLibrary = _.set(library, "userManagement", nextUserManagement);
 return nextLibrary;
};

112

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

JOE: That’s an excellent question. deals only with data calculation andLibrary.addMember()

is stateless. The state is updated in the phase by moving forward the version of the stateCommit
that the system state refers to.

YOU: What do you mean?

JOE: Here is what happens when we add a member to the system. The phaseCalculation
creates a version of the state that has two members. Before the phase, the system stateCommit
refers to the version of the state with one member. The responsibility of the phase is toCommit
move the system state forward so that it refers to the version of the state with two members.

TIP The responsibility of the phase is to move forward the system state toCommit
the version of the state returned by the phase.Calculation

Figure 4.5 The Commit phase moves forward the system state

YOU: How does it look like in terms of code?

JOE: The code is made of 2 classes: , a singleton stateful class that implements theSystem

mutations. a singleton stateful class that manages the system state.SystemState

YOU: It sounds to me like classic OO.

JOE: Right. This part of the system being stateful is very OO-like.

YOU: I am happy to see that you still find some utility in OO.

JOE: Meditation taught me that .Every piece of our universe has a role to play

YOU: Nice! Could you show me some code?

JOE: Sure. Let’s start with the class: shows the implementation of the System Listing 4.6
 mutation.addMember

113

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 4.6 The classSystem

YOU: How does a look like?SystemState

JOE: shows the code for the class: It is a stateful class!Listing 4.7 SystemState

Listing 4.7 The classSystemState

YOU: I don’t get the point of the . It’s a simple class with a getter and a commitSystemState

function!

JOE: In a moment, we are going to enrich the code of the method soSystemState.commit()

that it provides data validation and history tracking. For now, the important thing to notice is that
the code of the phase is stateless and it is decoupled from the code of the Calculation Commit
phase which is stateful.

TIP The phase is . The phase is .Calculation stateless Commit stateful

YOU: Something still bothers me with the way functions manipulate immutable data in the
Calculation phase: How do we preserve the ?data integrity

JOE: What do you mean?

YOU: In OO, the data is manipulated only by methods that belong to the same class as the data.
It prevents from other classes to corrupt the inner state of the class.

JOE: Could you give me an example of an invalid state of the library?

4.6 Ensure system state integrity

class System {
 addMember(member) {
 var previous = SystemState.get();
 var next = Library.addMember(previous, member);
 SystemState.commit(previous, next);
 }
}

class SystemState {
 systemState;

 get() {
 return this.systemState;
 }

 commit(previous, next) {
 this.systemState = next;
 }
}

114

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

YOU: For example imagine that the code of a mutation adds a book item to the book lendings of
a member without marking the book item as lent in the catalog. Then the system data would be
corrupted.

JOE: In DO, we have the privilege to ensure at the level of the whole systemdata integrity
instead of scattering the validation among many classes.

YOU: I don’t get that.

JOE: The fact the code for the Commit phase is common to all the mutations allows us to
validate the system data in a : At the beginning of the Commit phase, there is a stepcentral place
that checks (see) whether the version of the system state to be committed is valid. IfListing 4.8
the data is invalid, the commit is rejected.

Listing 4.8 Data validation inside the commit phase

YOU: It sounds similar to a commit hook in git.

JOE: I like your analogy!

YOU: Why are you passing to the in addition to the SystemValidity.validate() previous

?next

JOE: Because it allows the code of to optimize the validation inSystemValidity.validate()

terms of computation. For example, we could validate only the part of the data that has changed.

TIP In DO, we the as a . Data validation is validate system data whole decoupled
from data manipulation.

YOU: How does the code of look like?SystemValidity.validate()

JOE: I will you show you in Part 2 how we could for instance make sure that every author id
mentioned in a book record is valid. It involves more advanced data manipulation logic.

SystemState.commit = function(previous, next) {
 if(!SystemValidity.validate(previous, next) {
 throw "The system data to be committed is not valid!";
 });
 this.systemData = next;
}

115

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Another advantage of the state approach with that is manipulatedmulti-version immutable data
via is that we can keep track of the of all the versions of the data structural sharing history

 of our program. It allows us for instance to restore the systemwithout exploding the memory
back to an earlier state very easily.

YOU: You told me earlier that it was easy to restore the system to a previous state. Could you
show me how?

JOE: With pleasure. But before I’d like to make sure you understand why keeping track of all
the versions of the data is in terms of .efficient memory

YOU: I think it’s related to the fact that immutable functions use . And moststructural sharing
of the data between subsequent versions of the state is shared.

TIP Structural sharing allows us to keep of the system state many versions
.without exploding the memory

JOE: Perfect. Now, I am going to show you how simple it is to a mutation. In order toundo
implement , our class needs to have two references to the system data: undo SystemState

 references to the current state of the system and referencessystemData previousSystemData

to the previous state of the system.

YOU: That makes sense.

JOE: In the Commit phase, we update both and .previousSystemData systemData

YOU: And what does it take to implement ?undo

JOE: Undo is achieved by having referencing the same version of the system datasystemData

as .previousSystemData

YOU: Could you give me an example?

JOE: To make things simple, I am going to give a number to each version of the system state. It
starts at and each time a mutation is committed the version is incremented: , , etc…​V0 V1 V2 V3

YOU: OK.

JOE: Let’s say that currently our system state is at (see). In the V12 Figure 4.6 SystemState

object, refers to and refers to .systemData V12 previousSystemData V11

4.7 Time travel

116

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Figure 4.6 When the system state is at V12, systemData refers to V12 and previousSystemData
refers to V11

YOU: So far so good.

JOE: Now when a mutation is committed (for instance adding a member), both references move
forward: refers to and refers to systemData V13 previousSystemData V12

Figure 4.7 When a mutation is committed, systemData refers to V13 and previousSystemData
refers to V12

YOU: And I suppose that when we undo the mutation, both references move backward.

JOE: In theory, yes. But in practice, it would require to maintain a stack of all the state
references. For now, to simplify things we maintain only a reference to the previous version. As
a consequence, when we undo the mutation, both references refer to as shown in .V12 Figure 4.8

Figure 4.8 When a mutation is undone, both systemData and previousSystemData refer to V12

YOU: Could you show me how to implement this undo mechanism?

JOE: Actually, it takes only a couple of changes to the class. The result is in SystemState

.Pay attention to the changes in the function: We keep inside Listing 4.9 commit()

 a reference to the current state of the system. If the validation andsystemDataBeforeUpdate

the conflict resolution succeed, we update both and .previousSystemData systemData

117

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

Listing 4.9 The class with undo capabilitySystemState

YOU: And I see that implementing is simply a matter of having System.undoLastMutation()

 refers the same value as .systemData previousSystemData

JOE: As I told you, if we need to allow multiple undos, the code would be a bit more
complicated. But you get the idea.

In this chapter, we have explored how DO via a multi-version approach, wheremanages state
the mutation is split into Calculation and Commit phases.

During the , the data is manipulated with that leverage Calculation phase immutable functions
 to (memory and computation) create a of the datastructural sharing efficiently new version

where the data that is common between the two versions is instead of being copied.shared

Moving forward the occurs in the phase which is the only part of ourstate reference Commit
system that is . The fact that the code for the is common to all thestateful Commit phase
mutations, allows us to the system state in a central place before we update the state.validate

Moreover, it is easy and efficient to keep the of the versions of the system data andhistory
restoring the system to a previous state is straightforward. As an example, we have seen how to
implement in a DO system.undo

4.8 Wrapping up

class SystemData {
 systemData;
 previousSystemData;

 get() {
 return this.systemData;
 }

 commit(previous, next) {
 var systemDataBeforeUpdate = this.systemData;
 if(!Consistency.validate(previous, next) {
 throw "The system data to be committed is not valid!";
 });
 this.systemData = next;
 this.previousSystemData = systemDataBeforeUpdate;
 }

 undoLastMutation() {
 this.systemData = this.previousSystemData;
 }
}

118

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

1.m
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended
to be unique

2.mdocs.oracle.com/javase/9/core/creating-immutable-lists-sets-and-maps.htm

3.mlodash.com/

4.mjavalibs.com/artifact/com.github.javadev/underscore-lodash

5.mwww.nuget.org/packages/lodash/

6.mgithub.com/dgilland/pydash

7.mrudash-website.now.sh/

8.mA lapalissade is an obvious truth — i.e. a truism or tautology — which produces a comical effect

9.mlodash.com/

10.mgithub.com/lodash/lodash/wiki/FP-Guide

11.mimmutable-js.github.io/immutable-js/

12.mgithub.com/GlenKPeterson/Paguro

13.mdocs.microsoft.com/en-us/archive/msdn-magazine/2017/march/net-framework-immutable-collections

14.mgithub.com/tobgu/pyrsistent

15.mgithub.com/hamstergem/hamster

Notes

119

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/data-oriented-programming/discussion

https://docs.oracle.com/javase/9/core/creating-immutable-lists-sets-and-maps.htm
https://lodash.com/
https://javalibs.com/artifact/com.github.javadev/underscore-lodash
https://www.nuget.org/packages/lodash/
https://github.com/dgilland/pydash
https://rudash-website.now.sh/
https://lodash.com/
https://github.com/lodash/lodash/wiki/FP-Guide
https://immutable-js.github.io/immutable-js/
https://github.com/GlenKPeterson/Paguro
https://docs.microsoft.com/en-us/archive/msdn-magazine/2017/march/net-framework-immutable-collections
https://github.com/tobgu/pyrsistent
https://github.com/hamstergem/hamster

	Data-Oriented Programming MEAP V02
	Copyright
	Welcome
	Brief contents
	Chapter 0: Principles of Data-Oriented Programming
	0.1 Introduction
	0.2 DO Principle #1: Separate code from data
	0.2.1 The principle in a nutshell
	0.2.2 Illustration of Principle #1
	0.2.3 Benefits of Principle #1
	0.2.4 Price for Principle #1
	0.2.5 Wrapping up

	0.3 DO Principle #2: Represent data entities with generic data structures
	0.3.1 The principle in a nutshell
	0.3.2 Illustration of Principle #2
	0.3.3 Benefits of Principle #2
	0.3.4 Price for Principle #2
	0.3.5 Wrapping up

	0.4 DO Principle #3: Data is immutable
	0.4.1 The principle in a nutshell
	0.4.2 Illustration of Principle #3
	0.4.3 Benefits of Principle #3
	0.4.4 Price for Principle #3
	0.4.5 Wrapping up

	0.5 Conclusion

	Chapter 1: The tendency of Object Oriented Programming towards increased system complexity
	1.1 Introduction
	1.2 OO design: classic or classical?
	1.2.1 Meeting with a customer
	1.2.2 The design phase
	1.2.3 UML 101
	1.2.4 Explaining each piece of the class diagram
	1.2.5 The implementation phase

	1.3 Sources of complexity
	1.4 When code and data are mixed, classes tend to be involved in many relations
	1.5 When objects are mutable, understanding code requires extra thinking
	1.6 When data is locked in objects as members, data serialization is not trivial
	1.7 When code is locked into classes, class hierarchies are complex
	1.8 Wrapping up

	Chapter 2: Reduce system complexity by separating Code from Data
	2.1 Introduction
	2.2 The two parts of a DO system
	2.3 Data entities
	2.4 Code modules
	2.5 DO systems are easy to understand
	2.6 DO systems are flexible
	2.7 Wrapping up

	Chapter 3: Manipulate the whole system data with generic functions
	3.1 Introduction
	3.2 Design a data model
	3.3 Represent records as maps
	3.4 Manipulate data with generic functions
	3.5 Calculate search results
	3.6 Handle records of different types
	3.7 Wrapping up

	Chapter 4: State management with immutable data
	4.1 Introduction
	4.2 Multiple versions of the system data
	4.3 Structural sharing
	4.4 Data safety
	4.5 The Commit phase of a mutation
	4.6 Ensure system state integrity
	4.7 Time travel
	4.8 Wrapping up

	Notes

