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welcome 
Thank you for purchasing the MEAP for R in Action (3rd edition). If you picked up this book, 
you probably have some data that you need to collect, summarize, transform, explore, model, 
visualize, or present. If so, then R is for you! R has become the worldwide language for 
statistics, predictive analytics, and data visualization. It offers the widest range of 
methodologies for understanding data currently available, from the most basic to the most 
complex and bleeding edge. 

This book should appeal to anyone who deals with data. No background in statistical 
programming or the R language is assumed. Although the book is accessible to novices, there 
should be enough new and practical material to satisfy even experienced R mavens.  

There is a generally held notion that R is difficult to learn. What I hope to show you is that 
is doesn’t have to be. R is broad and powerful, with so many analytic and graphic functions 
available (more than 80,000 at last count) that it easily intimidates both novice and 
experienced users alike. But there is rhyme and reason to the apparent madness. With 
guidelines and instructions, you can navigate the tremendous resources available, selecting 
the tools you need to accomplish your work with style, elegance, efficiency, and certain degree 
of coolness. 

By the end of the book, you should be able to use R to 

• Access data (importing data from multiple sources)
• Clean data (code missing data, fix or delete miscoded data, transform variables into

more useful formats)
• Explore and summarize data (getting descriptive statistics to help characterize the

data)
• Visualize data (using a wide range of attractive and meaningful graphs)
• Model data (uncovering relationships, testing hypotheses, and developing predictive

models using both basic and advancedl statistical techniques and cutting edge machine
learning approaches)

• Prepare results for others (creating publication-quality tables, graphs, and reports)

If you have any questions, comments, or suggestions, please share them in Manning’s 
Author Online forum for my book. Your comments are invaluable and will help me craft 
content that is easier to understand and use effectively. 

—Rob Kabacoff 
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1  
Introduction to R 

This chapter covers 

• Installing R and RStudio 
• Understanding the R language 
• Running programs 

How we analyze data has changed dramatically in recent years. With the advent of personal 
computers and the internet, the sheer volume of data we have available has grown 
enormously. Companies have terabytes of data about the consumers they interact with, and 
governmental, academic, and private research institutions have extensive archival and survey 
data on every manner of research topic. Gleaning information (let alone wisdom) from these 
massive stores of data has become an industry in itself. At the same time, presenting the 
information in easily accessible and digestible ways has become increasingly challenging.  

The science of data analysis (statistics, psychometrics, econometrics, and machine 
learning) has kept pace with this explosion of data. Before personal computers and the 
internet, new statistical methods were developed by academic researchers who published their 
results as theoretical papers in professional journals. It could take years for these methods to 
be adapted by programmers and incorporated into the statistical packages widely available to 
data analysts. Today, new methodologies appear daily. Statistical researchers publish new and 
improved methods, along with the code to produce them, on easily accessible websites.  

The advent of personal computers had another effect on the way we analyze data. When 
data analysis was carried out on mainframe computers, computer time was precious and 
difficult to come by. Analysts would carefully set up a computer run with all the parameters 
and options thought to be needed. When the procedure ran, the resulting output could be 
dozens or hundreds of pages long. The analyst would sift through this output, extracting 
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useful material and discarding the rest. Many popular statistical packages (such as SAS and 
SPSS) were originally developed during this period and still follow this approach to some 
degree. 

With the cheap and easy access afforded by personal computers, modern data analysis has 
shifted to a different paradigm. Rather than setting up a complete data analysis all at once, 
the process has become highly interactive, with the output from each stage serving as the 
input for the next stage. An example of a typical analysis is shown in figure 1.1. At any point, 
the cycles may include transforming the data, imputing missing values, adding or deleting 
variables, fitting statistical models, and looping back through the whole process again. The 
process stops when the analyst believes they understand the data intimately and have 
answered all the relevant questions that can be answered. 

 
Figure 1.1 Steps in a typical data analysis 

The advent of personal computers (and especially the availability of high-resolution monitors) 
has also had an impact on how results are understood and presented. A picture really can be 
worth a thousand words, and human beings are adept at extracting useful information from 
visual presentations. Modern data analysis increasingly relies on graphical presentations to 
uncover meaning and convey results.  

Today’s data analysts need to access data from a wide range of sources (database 
management systems, text files, statistical packages, spreadsheets, and web pages), merge 
the pieces of data together, clean and annotate them, analyze them with the latest methods, 
present the findings in meaningful and graphically appealing ways, and incorporate the results 
into attractive reports that can be distributed to stakeholders and the public. As you’ll see in 
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the following pages, R is a comprehensive software package that’s ideally suited to accomplish 
these goals. 

1.1 Why use R? 
R is a language and environment for statistical computing and graphics, similar to the S 
language originally developed at Bell Labs. It’s an open source solution to data analysis that’s 
supported by a large and active worldwide research community. But there are many popular 
statistical and graphing packages available (such as Microsoft Excel, SAS, IBM SPSS, Stata, 
and Minitab). Why turn to R?  

R has many features to recommend it: 

• Most commercial statistical software platforms cost thousands, if not tens of thousands, 
of dollars. R is free! If you’re a teacher or a student, the benefits are obvious.  

• R is a comprehensive statistical platform, offering all manner of data-analytic 
techniques. Just about any type of data analysis can be done in R. 

• R contains advanced statistical routines not yet available in other packages. In fact, 
new methods become available for download on a weekly basis. If you’re a SAS user, 
imagine getting a new SAS PROC every few days. 

• R has state-of-the-art graphics capabilities. If you want to visualize complex data, R 
has the most comprehensive and powerful feature set available. 

• R is a powerful platform for interactive data analysis and exploration. From its 
inception, it was designed to support the approach outlined in figure 1.1. For example, 
the results of any analytic step can easily be saved, manipulated, and used as input for 
additional analyses.  

• Getting data into a usable form from multiple sources can be a challenging proposition. 
R can easily import data from a wide variety of sources, including text files, database-
management systems, statistical packages, and specialized data stores. It can write 
data out to these systems as well. R can also access data directly from web pages, 
social media sites, and a wide range of online data services. 

• R provides an unparalleled platform for programming new statistical methods in an 
easy, straightforward manner. It’s easily extensible and provides a natural language for 
quickly programming recently published methods. 

• R functionality can be integrated into applications written in other languages, including 
C++, Java, Python, PHP, Pentaho, SAS, and SPSS. This allows you to continue working 
in a language that you may be familiar with, while adding R’s capabilities to your 
applications. 

• R runs on a wide array of platforms, including Windows, Unix, and Mac OS X. It’s likely 
to run on any computer you may have. (I’ve even come across guides for installing R 
on an iPhone, which is impressive but probably not a good idea.) 

• If you don’t want to learn a new language, a variety of graphic user interfaces (GUIs) 
are available, offering the power of R through menus and dialogs. 
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You can see an example of R’s graphic capabilities in figure 1.2. This graph describes the 
relationships between years of experience and wages for men in women in six industries, 
collected from the US Current Population Survey in 1985. Technically, it’s a matrix of 
scatterplots with gender displayed by color and symbol. Trends are described using linear 
regression lines. If these terms scatterplot and regression lines are unfamiliar to you, don’t 
worry. We’ll cover them in later chapters.  

 
Figure 1.2 Relationships between wages and years of experience for men and women in six industries. Source: 
mosaicData package. Graphs like this can be created easily with a few lines of code in R. 
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Some of the more interesting findings from this graph: 

• The relationship between experience and wages varies by both gender and industry. 
• In the service industry, wages do not appear to go up with experience for either men or 

women. 
• In management positions, wages tend to go up with experience for men, but not for 

women.  

Are these differences real or can they be explained as chance sampling variation? We'll discuss 
this further in Chapter 8 Regression. The important point is that R allows you to create 
elegant, informative, highly customized graphs in a simple and straightforward fashion. 
Creating similar plots in other statistical languages would be difficult, time-consuming, or 
impossible. 

Unfortunately, R can have a steep learning curve. Because it can do so much, the 
documentation and help files available are voluminous. Additionally, because much of the 
functionality comes from optional modules created by independent contributors, this 
documentation can be scattered and difficult to locate. In fact, getting a handle on all that R 
can do is a challenge. 

The goal of this book is to make access to R quick and easy. We’ll tour the many features 
of R, covering enough material to get you started on your data, with pointers on where to go 
when you need to learn more. Let’s begin by installing the program. 

1.2 Obtaining and installing R 
R is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org. Precompiled binaries are available for Linux, Mac OS X, and Windows. Follow the 
directions for installing the base product on the platform of your choice. Later we’ll talk about 
adding functionality through optional modules called packages (also available from CRAN). 
Appendix A describes how to install or update an existing R installation to a newer version. 

1.3 Working with R  
R is a case-sensitive, interpreted language. You can enter commands one at a time at the 
command prompt (>) or run a set of commands from a source file. There are a wide variety of 
data types, including vectors, matrices, data frames (similar to datasets), and lists (collections 
of objects). We’ll discuss each of these data types in chapter 2.  

Most functionality is provided through built-in and user-created functions and the creation 
and manipulation of objects. An object is basically anything that can be assigned a value. For 
R, that is just about everything (data, functions, graphs, analytic results, and more). Every 
object has a class attribute (basically one or more associated text descriptors) that tells R how 
to print, plot, summarize, or in some other way, manipulate the object.  
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All objects are kept in memory during an interactive session. Basic functions are available 
by default. Other functions are contained in packages that can be attached to a current 
session as needed.  

Statements consist of functions and assignments. R uses the symbol <- for assignments, 
rather than the typical = sign. For example, the statement 

x <- rnorm(5) 

creates a vector object named x containing five random deviates from a standard normal 
distribution.  

NOTE R allows the = sign to be used for object assignments. But you won’t find many programs written that 

way, because it’s not standard syntax, there are some situations in which it won’t work, and R programmers 

will make fun of you. You can also reverse the assignment direction. For instance, rnorm(5) -> x is 

equivalent to the previous statement. Again, doing so is uncommon and isn’t recommended in this book.  

Comments are preceded by the # symbol. Any text appearing after the # is ignored by the R 
interpreter. An example program is given in the next section. 

1.3.1 Getting started 

The first step in using R is, of course, to install it. Instructions are provided in Appendix A. 
Once R is installed, start it up. If you’re using Windows, launch R from the Start menu. On a 
Mac, double-click the R icon in the Applications folder. For Linux, type R at the command 
prompt of a terminal window. Any of these will start the R interface (see figure 1.3 for an 
example). 

To get a feel for the interface, let’s work through a simple, contrived example. Say that 
you’re studying physical development and you’ve collected the ages and weights of 10 infants 
in their first year of life (see table 1.1). You’re interested in the distribution of the weights and 
their relationship to age. 
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Figure 1.3 Example of the R interface on Windows 

Table 1.1 The ages and weights of 10 infants 

Age (mo.) Weight (kg.) 

01 4.4 

03 5.3 

05 7.2 

02 5.2 

11 8.5 

09 7.3 

03 6.0 

09 10.4 

12 10.2 

03 6.1 

Note: These are fictional data. 

The analysis is given in listing 1.1. Age and weight data are entered as vectors using the 
function c(), which combines its arguments into a vector or list. The mean and standard 
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deviation of the weights, along with the correlation between age and weight, are provided by 
the functions mean(), sd(), and cor(), respectively. Finally, age is plotted against weight 
using the plot() function, allowing you to visually inspect the trend. The q() function ends 
the session and lets you quit. 

Listing 1.1 A sample R session 

> age <- c(1,3,5,2,11,9,3,9,12,3) 
> weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1) 
> mean(weight) 
[1] 7.06 
> sd(weight) 
[1] 2.077498 
> cor(age,weight) 
[1] 0.9075655 
> plot(age,weight) 
> q() 

You can see from listing 1.1 that the mean weight for these 10 infants is 7.06 kilograms, that 
the standard deviation is 2.08 kilograms, and that there is strong linear relationship between 
age in months and weight in kilograms (correlation = 0.91). The relationship can also be seen 
in the scatter plot in figure 1.4. Not surprisingly, as infants get older, they tend to weigh 
more. 
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Figure 1.4 Scatter plot of infant weight (kg) by age (mo) 

The scatter plot in figure 1.4 is informative but somewhat utilitarian and unattractive. In later 
chapters, you’ll see how to create more attractive and sophisticated graphs. 

TIP To get a sense of what R can do graphically, take a look at the graphs described in Data Visualization with 

R (http://rkabacoff.github.io/datavis) and The Top 50 ggplot2 Visualizations – The Master List (http://r-

statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html). 

1.3.2 Using RStudio 

The standard interface to R is very basic, offering little more than a command prompt for 
entering lines of code. For real-life projects, you'll want a more comprehensive tool for writing 
code and viewing output. Several such tools, called Integrated Development Environments 
(IDEs) have been developed for R, including Eclipse with StatET, Visual Studio for R, and 
RStudio Desktop.  

RStudio Desktop (http://www.rstudio.com) is by far the most popular choice. It provides a 
multi-window, multi-tabbed environment, with tools for importing data, writing clean code, 
debugging errors, visualizing output, and writing reports.   
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RStudio is freely available as an open source product, and is easily installed on Windows, 
Mac, and Linux. Since RStudio is an interface to R, be sure to install R before installing RStudio 
Desktop. 

TIP You can customize the RStudio interface by selecting the Tools> Global Options… from the menu bar. On 

the General tab, I recommend unchecking Restore .RData into workspace at startup, and selecting 

Never for Save workspace to .Rdata on exit. This will ensure a clean startup each time you run 

RStudio. 

Let's rerun the code from Listing 1.1 using RStudio. If you’re using Windows, launch RStudio 
from the Start menu. On a Mac, double-click the RSudio icon in the Applications folder. For 
Linux, type rstudio at the command prompt of a terminal window. The same interface will 
appear on all three platforms (see Figure 1.5). 

 
Figure 1.5 RStudio Desktop 
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SCRIPT WINDOW 

From the File menu, select New File > R Script. A new script window will open in the upper 
right hand corner of the screen (Figure 1.5 A). Type the code from Listing 1.1. into this 
window.  

As you type, the editor offers syntax highlighting and code completion (see figure 1.6).  
For example, as you type plot a pop-up window will appear with all functions that start with 
the letters that you've typed so far. Use can use the UP and DOWN arrow keys to select a 
function from the list and press TAB to select it. Within functions (parentheses) press TAB to 
see function options. Within quote marks, press TAB to complete file paths. 

To execute code, highlight/select it and click the Run button or press Cntr+Enter. Pressing 
Cntrl+Shift+Enter will run the entire script.  

To save the script, press the Save icon or select File > Save from the menu bar. Select a 
name and location from the dialog box that opens. By convention, script files end with a.R 
extension. The name of the script file will appear in the window tab in a red starred format if 
the current version has not been saved.  

CONSOLE WINDOW 

Code runs in the Console window (Figure 1.5 B). This is basically the same console you would 
see if you were using the basic R interface.  You can submit code from a script window with a 
Run command, or enter interactive commands directly in this window at the command prompt 
(>).   

If the command prompt changes to a plus (+) sign, the interpreter is waiting for a 
complete statement.  This will often happen if the statement is too long for one line or if there 
are mismatched parentheses in the code. You can get back to the command prompt by 
pressing ESC. 

Additionally, pressing the UP and DOWN arrow keys will cycle through past commands. You 
can edit a command and resubmit it with the ENTER key. Clicking on the broom icon clears 
text from the window. 
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Figure 1.6 Script window 

ENVIRONMENT AND HISTORY WINDOWS 

Any objects that were created (age and weight in this example) will appear in the 
Environment window (see figure 1.5 C). A record of executed commands will be saved in the 
History window (the tab the right of Environment). 

PLOT WINDOW 

Any plots that are created from the script will appear in the plot window(Figure 1.5 D). The 
toolbar for this window allows you to cycle through the graphs that have been created. In 
addition, you can open a zoom window to see the graph at different sizes, export the graphs in 
several formats, and delete one or all the graphs created so far.  

1.3.3 Getting help 

R provides extensive help facilities, and learning to navigate them will help you significantly in 
your programming efforts. The built-in help system provides details, references, and examples 
of any function contained in a currently installed package. You can obtain help by executing 
any of functions listed in table 1.2.  

Help is also available through the RStudio interface. In the Script window, place the cursor 
on a function name and press F1 to bring up the help window.  
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Table 1.2 R help functions 

Function Action 

help.start() General help 

help("foo") or ?foo Help on function foo 

help(package ="foo")  Help on a package named foo 

help.search("foo") or ??foo Searches the help system for instances of the string foo  

example("foo") Examples of function foo (quotation marks optional) 

data() Lists all available example datasets contained in currently loaded packages 

vignette() Lists all available vignettes for currently installed packages 

vignette("foo") Displays specific vignettes for topic foo 

help.start() General help 

The function help.start() opens a browser window with access to introductory and advanced 
manuals, FAQs, and reference materials. Alternatively, choose Help > R Help form the menu. 
The vignettes returned by the vignette() function are practical introductory articles provided 
in PDF or HTML format. Not all packages have vignettes.  

All help files have a similar format (see figure 1.7). The help page has a title and brief 
description, followed by the function's syntax and options. Computational details are provided 
in the Details section. The See Also section describes and links to related functions.  The help 
page almost always ends with examples illustrating typical uses of the function. 
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Figure 1.7 Help window  

As you can see, R provides extensive help facilities, and learning to navigate them will 
definitely aid your programming efforts. It’s a rare session that I don’t use ? to look up the 
features (such as options or return values) of some function. 
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1.3.4 The workspace 

The workspace is your current R working environment and includes any user-defined objects 
(vectors, matrices, functions, data frames, and lists).  The current working directory is the 
directory from which R will read files and to which it will save results by default. You can find 
out what the current working directory is by using the getwd() function. You can set the 
current working directory by using the setwd() function. If you need to input a file that isn’t in 
the current working directory, use the full pathname in the call. Always enclose the names of 
files and directories from the operating system in quotation marks. Some standard commands 
for managing your workspace are listed in table 1.3. 

Table 1.3 Functions for managing the R workspace 

Function Action 

getwd() Lists the current working directory. 

setwd("mydirectory") Changes the current working directory to mydirectory. 

ls() Lists the objects in the current workspace. 

rm(objectlist) Removes (deletes) one or more objects. 

help(options) Provides information about available options. 

options() Lets you view or set current options. 

save.image("myfile") Saves the workspace to myfile (default = .RData). 

save(objectlist, file="myfile") Saves specific objects to a file. 

load("myfile") Loads a workspace into the current session. 

To see these commands in action, look at the following listing. 

Listing 1.2 An example of commands used to manage the R workspace 

setwd("C:/myprojects/project1")            
options()                                  
options(digits=3)                          
                                                               

First, the current working directory is set to C:/myprojects/project1. The current option 
settings are then displayed, and numbers are formatted to print with three digits after the 
decimal place.  

Note the forward slashes in the pathname of the setwd() command. R treats the backslash 
(\) as an escape character. Even when you’re using R on a Windows platform, use forward 
slashes in pathnames. Also note that the setwd() function won’t create a directory that 
doesn’t exist. If necessary, you can use the dir.create() function to create a directory and 
then use setwd() to change to its location. 
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1.3.5 Projects 

It’s a good idea to keep your projects in separate directories. RStudio provides a simple 
mechanism for this. Choose File > New Project … and specify either New Directory to start 
a project in a brand new working directory, or Existing Directory to associate a project with 
an existing working directory.  All your program files, command history, report output, graphs 
and data will be saved in the project directory. You can easily switch between projects using 
the Project dropdown menu in the upper right portion of the RStudio application.  

It is easy to become overwhelmed with project files. I recommend creating several 
subfolders within the main project folder. I usually create a data folder to contain raw data 
files, an img folder for image files and graphical output, a docs folder for project 
documentation, and a reports folder for reports. I keep the R scripts and a README file in the 
main directory. If there is an order to the R scripts I number them (e.g., 01_import_data.R, 
02_clean_data.R, etc.). The README is a text file containing information such as author, date, 
stakeholders and their contact information, and the purpose of the project. Six months from 
now, this will remind me what I did and why I did it.  

1.4 Packages 
R comes with extensive capabilities right out of the box. But some of its most exciting features 
are available as optional modules that you can download and install. There are more than 
10,000 user-contributed modules called packages that you can download from http://cran.r-
project.org/web/packages. They provide a tremendous range of new capabilities, from the 
analysis of geospatial data to protein mass spectra processing to the analysis of psychological 
tests! You’ll use many of these optional packages in this book. 

One set of packages, collectively called the tidyverse, deserves particular attention. This is 
a relatively new collection of packages that offers a streamlined, consistent, and intuitive 
approach to data manipulation and analysis. The advantages offered by tidyverse packages 
(with names like tidyr, dplyr, lubridate, stringr and ggplot2) is changing the way data 
scientists write code in R, and we will be employing these packages often. In fact, the 
opportunity to describe how to use these packages for data analysis and visualization was a 
major motivation for writing a third edition of this book! 

1.4.1 What are packages? 

Packages are collections of R functions, data, and compiled code in a well-defined format. The 
directory where packages are stored on your computer is called the library. The function 
.libPaths() shows you where your library is located, and the function library() shows you 
what packages you’ve saved in your library.  

R comes with a standard set of packages (including base, datasets, utils, gr-Devices, 
graphics, stats, and methods). They provide a wide range of functions and datasets that are 
available by default. Other packages are available for download and installation. Once 
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installed, they must be loaded into the session in order to be used. The command search() 
tells you which packages are loaded and ready to use.  

1.4.2 Installing a package 

A number of R functions let you manipulate packages. To install a package for the first time, 
use the install.packages() command. For example, the gclus package contains functions 
for creating enhanced scatter plots. You can download and install the package with the 
command install.packages("gclus").  

You only need to install a package once. But like any software, packages are often updated 
by their authors. Use the command update.packages() to update any packages that you’ve 
installed. To see details on your packages, you can use the installed.packages() command. 
It lists the packages you have, along with their version numbers, dependencies, and other 
information. 

You can also install and update packages using the RStudio interface. Select the Packages 
tab (from the window on the lower right). Enter the name (or partial name) in the search box 
in the upper right of that tabbed window. Place a check mark next to the package(s) you want 
to install and click the install button. Alternatively, click the update button to update a 
package already installed. 

1.4.3 Loading a package 

Installing a package downloads it from a CRAN mirror site and places it in your library. To use 
it in an R session, you need to load the package using the library() command. For example, 
to use the package gclus, issue the command library(gclus).  

Of course, you must have installed a package before you can load it. You’ll only have to 
load the package once in a given session. If desired, you can customize your startup 
environment to automatically load the packages you use most often. Customizing your startup 
is covered in appendix B. 

1.4.4 Learning about a package 

When you load a package, a new set of functions and datasets becomes available. Small 
illustrative datasets are provided along with sample code, allowing you to try out the new 
functionalities. The help system contains a description of each function (along with examples) 
and information about each dataset included. Entering help(package="package_name") 
provides a brief description of the package and an index of the functions and datasets 
included. Using help() with any of these function or dataset names provides further details. 
The same information can be downloaded as a PDF manual from CRAN. To get help on a 
package using the RStudio interace, click on the Packages tab (lower right window), enter the 
name of the package in the search window, and click on the name of the package. 
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Common mistakes in R programming 
Some common mistakes are made frequently by both beginning and experienced R programmers. If your program 
generates an error, be sure to check for the following: 

 
  •  Using the wrong case—help(), Help(), and HELP() are three different functions (only the first will work). 
  •  Forgetting to use quotation marks when they’re needed—install.packages-("gclus") works, whereas 

install.packages(gclus) generates an error. 
  •  Forgetting to include the parentheses in a function call—For example, help() works, but help doesn’t. Even if 

there are no options, you still need the ().  
  •  Using the \ in a pathname on Windows—R sees the backslash character as an escape character. 

setwd("c:\mydata") generates an error. Use setwd("c:/mydata") or setwd("c:\\mydata") instead. 
  •  Using a function from a package that’s not loaded—The function order.clusters() is contained in the gclus 

package. If you try to use it before loading the package, you’ll get an error.  
 
The error messages in R can be cryptic, but if you’re careful to follow these points, you should avoid seeing many of 
them.   
 

1.5 Using output as input: reusing results 
One of the most useful design features of R is that the output of analyses can easily be saved 
and used as input to additional analyses. Let’s walk through an example, using one of the 
datasets that comes preinstalled with R. If you don’t understand the statistics involved, don’t 
worry. We’re focusing on the general principle here. 

R comes with many built in datasets that can be used to practice data analyses. One such 
dataset, called mtcars, contains information 32 automobiles collected from Motor Trend 
magazine road tests. Suppose we're interested in describing the relationship between a car's 
fuel efficiency and weight.  

First, we could run a simple linear regression predicting miles per gallon (mpg) from car 
weight (wt). This is accomplished with the following function call:  

lm(mpg~wt, data=mtcars) 

The results are displayed on the screen, and no information is saved. 
Alternatively, run the regression, but store the results in an object:  

lmfit <- lm(mpg~wt, data=mtcars)  

The assignment creates a list object called lmfit that contains extensive information from the 
analysis (including the predicted values, residuals, regression coefficients, and more). 
Although no output is sent to the screen, the results can be both displayed and manipulated 
further. 

Typing summary(lmfit) displays a summary of the results, and plot(lmfit) produces 
diagnostic plots. The statement cook<-cooks.distance(lmfit) generates and stores 
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influence statistics, and plot(cook) graphs them. To predict miles per gallon from car weight 
in a new set of data, you’d use predict(lmfit, mynewdata). 

To see what a function returns, look at the Value section of the R help page for that 
function. Here you’d look at help(lm) or ?lm. This tells you what’s saved when you assign 
the results of that function to an object.  

1.6 Working with large datasets 
Programmers frequently ask me if R can handle large data problems. Typically, they work with 
massive amounts of data gathered from web research, climatology, or genetics. Because R 
holds objects in memory, you’re generally limited by the amount of RAM available. For 
example, on my 3-year-old Windows PC with 8 GB of RAM, I can easily handle datasets with 
10 million elements (100 variables by 100,000 observations). On an iMac with 16 GB of RAM, I 
can usually handle 100 million elements without difficulty. 

But there are two issues to consider: the size of the dataset and the statistical methods 
that will be applied. R can handle data analysis problems in the gigabyte to terabyte range, 
but specialized procedures are required. The management and analysis of very large datasets 
is discussed in appendix F. 

1.7 Working through an example 
We’ll finish this chapter with an example that ties together many of these ideas. Here’s the 
task: 

1. Open the general help, and look at the “Introduction to R” section. 
2. Install the vcd package (a package for visualizing categorical data that you’ll be using in 

chapter 11). 
3. List the functions and datasets available in this package. 
4. Load the package, and read the description of the dataset Arthritis. 
5. Print out the Arthritis dataset (entering the name of an object will list it). 
6. Run the example that comes with the Arthritis dataset. Don’t worry if you don’t 

understand the results; it basically shows that arthritis patients receiving treatment 
improved much more than patients receiving a placebo. 
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Figure 1.8 RStudio window when executing the code in Listing 1.3. 

The code required is provided in the following listing, with a sample of the results displayed in 
figure 1.8. As this short exercise demonstrates, you can accomplish a great deal with a small 
amount of code. 

Listing 1.3 Working with a new package 

help.start() 
install.packages("vcd") 
help(package="vcd") 
library(vcd) 
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help(Arthritis) 
Arthritis 
example(Arthritis) 

1.8 Summary 
• R provides a comprehensive, highly interactive environment for analyzing and 

visualizing data. 
• RStudio is an integrated development environment that makes programming in R 

easier and more productive. 
• Packages are freely available add-on modules that greatly extend the power of the R 

platform. 
• R has an extensive help system and learning to use it will greatly facilitate your ability 

to program effectively. 

In this chapter, we looked at some of the strengths that make R an attractive option for 
students, researchers, statisticians, and data analysts trying to understand the meaning of 
their data. We walked through the program’s installation and talked about how to enhance R’s 
capabilities by downloading additional packages. We explored the basic interface and produced 
a few simple graphs. Because R can be a complex program, we spent some time looking at 
how to access the extensive help that’s available. Hopefully you’re getting a sense of how 
powerful this freely available software can be. 

Now that you have R and RStudio up and running, it’s time to get your data into the mix. 
In the next chapter, we’ll look at the types of data R can handle and how to import them into 
R from text files, other programs, and database management systems. 
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2  
Creating a dataset 

This chapter covers 

• Exploring R data structures 
• Using data entry 
• Importing data  
• Annotating datasets 

The first step in any data analysis is the creation of a dataset containing the information to be 
studied, in a format that meets your needs. In R, this task involves the following: 

• Selecting a data structure to hold your data 
• Entering or importing your data into the data structure 

The first part of this chapter (sections 2.1–2.2) describes the wealth of structures that R can 
use to hold data. In particular, section 2.2 describes vectors, factors, matrices, data frames, 
and lists. Familiarizing yourself with these structures (and the notation used to access 
elements within them) will help you tremendously in understanding how R works. You might 
want to take your time working through this section. 

The second part of this chapter (section 2.3) covers the many methods available for 
importing data into R. Data can be entered manually or imported from an external source. 
These data sources can include text files, spreadsheets, statistical packages, and database-
management systems. For example, the data that I work with typically comes as comma 
delimited text files or EXCEL spreadsheets. On occasion, though, I receive data as SAS and 
SPSS datasets or through connections to SQL databases. It’s likely that you’ll only have to use 
one or two of the methods described in this section, so feel free to choose those that fit your 
situation. 
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Once a dataset is created, you’ll typically annotate it, adding descriptive labels for 
variables and variable codes. The third portion of this chapter (section 2.4) looks at annotating 
datasets and reviews some useful functions for working with datasets (section 2.5). Let’s start 
with the basics. 

2.1 Understanding datasets 
A dataset is usually a rectangular array of data with rows representing observations and 
columns representing variables. Table 2.1 provides an example of a hypothetical patient 
dataset. 

Table 2.1 A patient dataset 

PatientID AdmDate Age Diabetes Status 

1 10/15/2018 25 Type1 Poor 

2 11/01/2018 34 Type2 Improved 

3 10/21/2018 28 Type1 Excellent 

4 10/28/2018 52 Type1 Poor 

Different traditions have different names for the rows and columns of a dataset. Statisticians 
refer to them as observations and variables, database analysts call them records and fields, 
and those from the data-mining and machine-learning disciplines call them examples and 
attributes. We’ll use the terms observations and variables throughout this book.  

You can distinguish between the structure of the dataset (in this case, a rectangular array) 
and the contents or data types included. In the dataset shown in table 2.1, PatientID is a row 
or case identifier, AdmDate is a date variable, Age is a continuous (quantitative) variable, 
Diabetes is a nominal variable, and Status is an ordinal variable. Both nominal and ordinal 
variables are categorical, but the categories in an ordinal variable have a natural ordering. 

R contains a wide variety of structures for holding data, including scalars, vectors, arrays, 
data frames, and lists. Table 2.1 corresponds to a data frame in R. This diversity of structures 
provides the R language with a great deal of flexibility in dealing with data.  

The data types that R can handle include numeric, character, logical (TRUE/FALSE), 
complex (imaginary numbers), and raw (bytes). In R, PatientID, AdmDate, and Age are 
numeric variables, whereas Diabetes and Status are character variables. Additionally, you 
need to tell R that PatientID is a case identifier, that AdmDate contains dates, and that 
Diabetes and Status are nominal and ordinal variables, respectively. R refers to case 
identifiers as rownames and categorical variables (nominal, ordinal) as factors. We’ll cover 
each of these in the next section. You’ll learn about dates in chapter 3. 
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2.2 Data structures 
R has a wide variety of objects for holding data, including scalars, vectors, matrices, arrays, 
data frames, and lists. They differ in terms of the type of data they can hold, how they’re 
created, their structural complexity, and the notation used to identify and access individual 
elements. Figure 2.1 shows a diagram of these data structures. Let’s look at each structure in 
turn, starting with vectors. 

 
Figure 2.1 R data structures 

Some definitions 
Several terms are idiosyncratic to R and thus confusing to new users.  

In R, an object is anything that can be assigned to a variable. This includes constants, data structures, functions, and 
even graphs. An object has a mode (which describes how the object is stored) and a class (which tells generic functions 
like print how to handle it). 

A data frame is a structure in R that holds data and is similar to the datasets found in standard statistical packages 
(for example, SAS, SPSS, and Stata). The columns are variables, and the rows are observations. You can have variables 
of different types (for example, numeric or character) in the same data frame. Data frames are the main structures you 
use to store datasets. 

Factors are nominal or ordinal variables. They’re stored and treated specially in R. You’ll learn about factors in 
section 2.2.5. 

Most other terms used in R should be familiar to you and follow the terminology used in statistics and computing in 
general. 
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2.2.1 Vectors 

Vectors are one-dimensional arrays that can hold numeric data, character data, or logical 
data. The combine function c() is used to form the vector. Here are examples of each type of 
vector:  

a <- c(1, 2, 5, 3, 6, -2, 4) 
b <- c("one", "two", "three") 
c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE) 

Here, a is a numeric vector, b is a character vector, and c is a logical vector. Note that the 
data in a vector must be only one type or mode (numeric, character, or logical). You can’t mix 
modes in the same vector.  

NOTE Scalars are one-element vectors. Examples include f <- 3, g <- "US", and h <- TRUE. They’re 

used to hold constants. 

You can refer to elements of a vector using a numeric vector of positions within brackets. For 
example, a[c(2, 4)] refers to the second and fourth elements of vector a. Here are 
additional examples: 

> a <- c("k", "j", "h", "a", "c", "m") 
> a[3] 
[1] "h" 
> a[c(1, 3, 5)] 
[1] "k" "h" "c" 
> a[2:6]   
[1]  "j" "h" "a" "c" "m" 

The colon operator used in the last statement generates a sequence of numbers. For example, 
a <- c(2:6) is equivalent to a <- c(2, 3, 4, 5, 6). 

2.2.2 Matrices 

A matrix is a two-dimensional array in which each element has the same mode (numeric, 
character, or logical). Matrices are created with the matrix function. The general format is 

myymatrix <- matrix(vector, nrow=number_of_rows, ncol=number_of_columns, 
                    byrow=logical_value, dimnames=list(               
                    char_vector_rownames, char_vector_colnames)) 

where vector contains the elements for the matrix, nrow and ncol specify the row and 
column dimensions, and dimnames contains optional row and column labels stored in character 
vectors. The option byrow indicates whether the matrix should be filled in by row 
(byrow=TRUE) or by column (byrow=FALSE). The default is by column. The following listing 
demonstrates the matrix function. 

Listing 2.1 Creating matrices 

> y <- matrix(1:20, nrow=5, ncol=4)    #1 
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> y 
     [,1] [,2] [,3] [,4] 
[1,]    1    6   11   16 
[2,]    2    7   12   17 
[3,]    3    8   13   18 
[4,]    4    9   14   19 
[5,]    5   10   15   20 
> cells    <- c(1,26,24,68)     
> rnames   <- c("R1", "R2") 
> cnames   <- c("C1", "C2")                                  #2 
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE, 
                     dimnames=list(rnames, cnames))  
> mymatrix 
   C1 C2 
R1  1 26 
R2 24 68 
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=FALSE,     
                     dimnames=list(rnames, cnames))     
> mymatrix                                                   #3 
  C1 C2 
R1  1 24 
R2 26 68 

#1 Creates a 5 × 4 matrix 
#2 2 × 2 matrix filled by rows 
#3 2 × 2 matrix filled by columns 

First you create a 5 × 4 matrix #1. Then you create a 2 × 2 matrix with labels and fill the 
matrix by rows #2. Finally, you create a 2 × 2 matrix and fill the matrix by columns #3.  

You can identify rows, columns, or elements of a matrix by using subscripts and brackets. 
X[i,] refers to the ith row of matrix X, X[,j] refers to the jth column, and X[i, j] refers to the 
ijth element, respectively. The subscripts i and j can be numeric vectors in order to select 
multiple rows or columns, as shown in the following listing.  

Listing 2.2 Using matrix subscripts 

> x <- matrix(1:10, nrow=2) 
> x 
     [,1] [,2] [,3] [,4] [,5] 
[1,]    1    3    5    7    9 
[2,]    2    4    6    8   10 
> x[2,]                                          
  [1]  2  4  6  8 10 
> x[,2]                                           
[1] 3 4 
> x[1,4]                                          
[1] 7 
> x[1, c(4,5)]                                    
[1] 7 9 

First a 2 × 5 matrix is created containing the numbers 1 to 10. By default, the matrix is filled 
by column. Then the elements in the second row are selected, followed by the elements in the 
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second column. Next, the element in the first row and fourth column is selected. Finally, the 
elements in the first row and the fourth and fifth columns are selected.  

Matrices are two-dimensional and, like vectors, can contain only one data type. When 
there are more than two dimensions, you use arrays (section 2.2.3). When there are multiple 
modes of data, you use data frames (section 2.2.4).  

2.2.3 Arrays 

Arrays are similar to matrices but can have more than two dimensions. They’re created with 
an array function of the following form 

myarray <- array(vector, dimensions, dimnames) 

where vector contains the data for the array, dimensions is a numeric vector giving the 
maximal index for each dimension, and dimnames is an optional list of dimension labels. The 
following listing gives an example of creating a three-dimensional (2 × 3 × 4) array of 
numbers. 

Listing 2.3 Creating an array 

> dim1 <- c("A1", "A2") 
> dim2 <- c("B1", "B2", "B3") 
> dim3 <- c("C1", "C2", "C3", "C4") 
> z <- array(1:24, c(2, 3, 4), dimnames=list(dim1, dim2, dim3)) 
> z 
, , C1 
   B1 B2 B3 
A1  1  3  5 
A2  2  4  6 
 
, , C2 
   B1 B2 B3 
A1  7  9 11 
A2  8 10 12 
 
, , C3 
   B1 B2 B3 
A1 13 15 17 
A2 14 16 18 
 
, , C4 
   B1 B2 B3 
A1 19 21 23 
A2 20 22 24 

As you can see, arrays are a natural extension of matrices. They can be useful in creating 
functions that perform statistical calculations. Like matrices, they must be a single mode. 
Identifying elements follows what you’ve seen for matrices. In the previous example, the 
z[1,2,3] element is 15.  
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2.2.4 Data frames 

A data frame is more general than a matrix in that different columns can contain different 
modes of data (numeric, character, and so on). It’s similar to the dataset you’d typically see in 
SAS, SPSS, and Stata. Data frames are the most common data structure you’ll deal with in R. 

The patient dataset in table 2.1 consists of numeric and character data. Because there are 
multiple modes of data, you can’t contain the data in a matrix. In this case, a data frame is 
the structure of choice. 

A data frame is created with the data.frame() function 

mydata <- data.frame(col1, col2, col3,...) 

where col1, col2, col3, and so on are column vectors of any type (such as character, numeric, or 
logical). Names for each column can be provided with the names function. The following listing 
makes this clear. 

Listing 2.4 Creating a data frame 

> patientID <- c(1, 2, 3, 4) 
> age <- c(25, 34, 28, 52) 
> diabetes <- c("Type1", "Type2", "Type1", "Type1") 
> status <- c("Poor", "Improved", "Excellent", "Poor") 
> patientdata <- data.frame(patientID, age, diabetes, status) 
> patientdata 
  patientID age diabetes    status 
1         1  25    Type1      Poor 
2         2  34    Type2  Improved 
3         3  28    Type1 Excellent 
4         4  52    Type1      Poor 

Each column must have only one mode, but you can put columns of different modes together 
to form the data frame. Because data frames are close to what analysts typically think of as 
datasets, we’ll use the terms columns and variables interchangeably when discussing data 
frames. 

There are several ways to identify the elements of a data frame. You can use the subscript 
notation you used before (for example, with matrices), or you can specify column names. 
Using the patientdata data frame created earlier, the following listing demonstrates these 
approaches. 

Listing 2.5 Specifying elements of a data frame 

> patientdata[1:2] 
  patientID age 
1         1  25 
2         2  34 
3         3  28 
4         4  52 
> patientdata[c("diabetes", "status")] 
  diabetes    status 
1    Type1      Poor 
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2    Type2  Improved 
3    Type1 Excellent     
4    Type1      Poor 
 > patientdata$age      #1    
[1] 25 34 28 52 

#1 Indicates the age variable in the patient data frame 

The $ notation in the third example is new #1. It’s used to indicate a particular variable from a 
given data frame. For example, if you want to cross-tabulate diabetes type by status, you can 
use the following code: 

> table(patientdata$diabetes, patientdata$status) 
      
        Excellent Improved Poor 
  Type1         1        0    2 
  Type2         0        1    0 

It can get tiresome typing patientdata$ at the beginning of every variable name, but 
shortcuts are available. For example, the  with() function can to simplify your code. 

USING WITH 

Consider the following code. 

  summary(mtcars$mpg) 
  plot(mtcars$mpg, mtcars$disp) 
  plot(mtcars$mpg, mtcars$wt) 

You can write  this code mode concisely as 

with(mtcars, { 
  summary(mpg) 
  plot(mpg, disp) 
  plot(mpg, wt) 
}) 

The statements within the {} brackets are evaluated with reference to the mtcars data frame. 
If there’s only one statement (for example, summary(mpg)), the {} brackets are optional. 

The limitation of the with() function is that assignments exist only within the function 
brackets. Consider the following: 

> with(mtcars, { 
   stats <- summary(mpg) 
   stats 
  }) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  10.40   15.43   19.20   20.09   22.80   33.90  
> stats 
Error: object 'stats' not found 
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If you need to create objects that will exist outside of the with() construct, use the special 
assignment operator <<- instead of the standard one (<-). It saves the object to the global 
environment outside of the with() call. This can be demonstrated with the following code: 

> with(mtcars, { 
   nokeepstats <- summary(mpg) 
   keepstats <<- summary(mpg) 
}) 
> nokeepstats 
Error: object 'nokeepstats' not found 
> keepstats 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    10.40   15.43   19.20   20.09   22.80   33.90 

CASE IDENTIFIERS 

In the patient data example, patientID is used to identify individuals in the dataset. In R, 
case identifiers can be specified with a rowname option in the data-frame function. For 
example, the statement  

patientdata <- data.frame(patientID, age, diabetes,  
                          status, row.names=patientID) 

specifies patientID as the variable to use in labeling cases on various printouts and graphs 
produced by R. 

2.2.5 Factors 

As you’ve seen, variables can be described as nominal, ordinal, or continuous. Nominal 
variables are categorical, without an implied order. Diabetes (Type1, Type2) is an example of 
a nominal variable. Even if Type1 is coded as a 1 and Type2 is coded as a 2 in the data, no 
order is implied. Ordinal variables imply order but not amount. Status (poor, improved, 
excellent) is a good example of an ordinal variable. You know that a patient with a poor 
status isn’t doing as well as a patient with an improved status, but not by how much. 
Continuous variables can take on any value within some range, and both order and amount 
are implied. Age in years is a continuous variable and can take on values such as 14.5 or 22.8 
and any value in between. You know that someone who is 15 is one year older than someone 
who is 14. 

Categorical (nominal) and ordered categorical (ordinal) variables in R are called factors. 
Factors are crucial in R because they determine how data is analyzed and presented visually. 
You’ll see examples of this throughout the book. 

The function factor() stores the categorical values as a vector of integers in the range 
[1… k], (where k is the number of unique values in the nominal variable) and an internal 
vector of character strings (the original values) mapped to these integers. 

For example, assume that you have this vector: 

diabetes <- c("Type1", "Type2", "Type1", "Type1") 
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The statement diabetes <- factor(diabetes) stores this vector as (1, 2, 1, 1) and 
associates it with 1 = Type1 and 2 = Type2 internally (the assignment is alphabetical). Any 
analyses performed on the vector diabetes will treat the variable as nominal and select the 
statistical methods appropriate for this level of measurement. 

For vectors representing ordinal variables, you add the parameter ordered=TRUE to the 
factor() function. Given the vector 

status <- c("Poor", "Improved", "Excellent", "Poor") 

the statement status <- factor(status, ordered=TRUE) will encode the vector as (3, 2, 1, 
3) and associate these values internally as 1 = Excellent, 2 = Improved, and 3 = Poor. 
Additionally, any analyses performed on this vector will treat the variable as ordinal and select 
the statistical methods appropriately.  

By default, factor levels for character vectors are created in alphabetical order. This 
worked for the status factor, because the order “Excellent,” “Improved,” “Poor” made sense. 
There would have been a problem if “Poor” had been coded as “Ailing” instead, because the 
order would have been “Ailing,” “Excellent,” “Improved.” A similar problem would exist if the 
desired order was “Poor,” “Improved,” “Excellent.” For ordered factors, the alphabetical 
default is rarely sufficient. 

You can override the default by specifying a levels option. For example, 

status <- factor(status, order=TRUE,  
                 levels=c("Poor", "Improved", "Excellent")) 

assigns the levels as 1 = Poor, 2 = Improved, 3 = Excellent. Be sure the specified levels 
match your actual data values. Any data values not in the list will be set to missing. 

Numeric variables can be coded as factors using the levels and labels options. If sex 
was coded as 1 for male and 2 for female in the original data, then 

sex <- factor(sex, levels=c(1, 2), labels=c("Male", "Female")) 

would convert the variable to an unordered factor. Note that the order of the labels must 
match the order of the levels. In this example, sex would be treated as categorical, the labels 
“Male” and “Female” would appear in the output instead of 1 and 2, and any sex value that 
wasn’t initially coded as a 1 or 2 would be set to missing. 

The following listing demonstrates how specifying factors and ordered factors impacts data 
analyses. 

Listing 2.6 Using factors 

> patientID <- c(1, 2, 3, 4)                                       #1 
> age <- c(25, 34, 28, 52) 
> diabetes <- c("Type1", "Type2", "Type1", "Type1") 
> status <- c("Poor", "Improved", "Excellent", "Poor") 
> diabetes <- factor(diabetes)                                           
> status <- factor(status, order=TRUE) 
> patientdata <- data.frame(patientID, age, diabetes, status)      #2 
> str(patientdata)     
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‘data.frame’:   4 obs. of  4 variables:                                       
 $ patientID: num  1 2 3 4                                
 $ age      : num  25 34 28 52 
 $ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1 
 $ status   : Ord.factor w/ 3 levels "Excellent"<"Improved"<..: 3 2 1 3 
> summary(patientdata)                                              #3 
   patientID         age         diabetes       status  
 Min.   :1.00   Min.   :25.00   Type1:3   Excellent:1      
 1st Qu.:1.75   1st Qu.:27.25   Type2:1   Improved :1   
 Median :2.50   Median :31.00             Poor     :2   
 Mean   :2.50   Mean   :34.75                           
 3rd Qu.:3.25   3rd Qu.:38.50                           
 Max.   :4.00   Max.   :52.00                           

#1 Enter data as vectors. 
#2 Displays the object structure 
#3 Displays the object summary 

First you enter the data as vectors #1. Then you specify that diabetes is a factor and status 
is an ordered factor. Finally, you combine the data into a data frame. The function 
str(object) provides information about an object in R (the data frame, in this case) #2. The 
output indicates that diabetes is a factor and status is an ordered factor, along with how 
they're coded internally. Note that the summary() function treats the variables differently #3. 
It provides the minimum, maximum, mean, and quartiles for the continuous variable age, and 
frequency counts for the categorical variables diabetes and status.  

2.2.6 Lists 

Lists are the most complex of the R data types. Basically, a list is an ordered collection of 
objects (components). A list allows you to gather a variety of (possibly unrelated) objects 
under one name. For example, a list may contain a combination of vectors, matrices, data 
frames, and even other lists. You create a list using the list() function 

mylist <- list(object1, object2, ...) 

where the objects are any of the structures seen so far. Optionally, you can name the objects 
in a list: 

mylist <- list(name1=object1, name2=object2, ...) 

The following listing shows an example. 

Listing 2.7 Creating a list 

> g <- "My First List" 
> h <- c(25, 26, 18, 39) 
> j <- matrix(1:10, nrow=5) 
> k <- c("one", "two", "three") 
> mylist <- list(title=g, ages=h, j, k)        #A 
> mylist                                       #B 
$title 
[1] "My First List" 
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$ages 
[1] 25 26 18 39 
 
[[3]] 
     [,1] [,2] 
[1,]    1    6 
[2,]    2    7 
[3,]    3    8 
[4,]    4    9 
[5,]    5   10 
 
[[4]] 
[1] "one"   "two"   "three" 
 
> mylist[[2]]                                  #C 
[1] 25 26 18 39 
> mylist[["ages"]] 
[[1] 25 26 18 39 

#A Creates a list 
#B Prints the entire list 
#C Prints the second component 

In this example, you create a list with four components: a string, a numeric vector, a matrix, 
and a character vector. You can combine any number of objects and save them as a list. 

You can also specify elements of the list by indicating a component number or a name 
within double brackets. In this example, mylist[[2]] and mylist[["ages"]] both refer to 
the same four-element numeric vector. For named components, mylist$ages would also 
work. Lists are important R structures for two reasons. First, they allow you to organize and 
recall disparate information in a simple way. Second, the results of many R functions return 
lists. It’s up to the analyst to pull out the components that are needed. You’ll see numerous 
examples of functions that return lists in later chapters. 

2.2.7 Tibbles 

Before moving on, it is worth mentioning tibbles. Tibbles are data frames that have specialized 
behaviors that are designed to make them more useful. They're created using the either the 
tibble() or as_tibble() function from the tibble package.  To install the tibble package, 
use install.packages("tibble"). Some of their attractive features are described below. 

Tibbles print in a more compact format than standard data frames. Additionally, variable 
labels describe the data type of each column.  

library(tibble) 
mtcars <- as_tibble(mtcars) 
mtcars 

 

# A tibble: 32 x 11 
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
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 * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4 
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4 
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1 
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1 
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2 
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1 
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4 
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2 
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2 
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4 
# ... with 22 more rows 

Tibbles never convert character variables to factors. Base R functions such as read.table(), 
data.frame() and as.data.frame() convert character data to factors by default. You would 
have to add the option stringsAsFactors = FALSE to these functions to suppress this 
behavior. 

Tibbles never change the names of variables. If the dataset being imported has a variable 
called "Last Address", base R functions would convert the name to "Last.Address", since R 
variable names don't use spaces. Tibbles would keep the name as is and use back ticks (e.g., 
`Last Address`) to make the variable name syntactly correct.  

Subsetting a tibble always returns a tibble. For example, subsetting the mtcars data frame 
using mtcars[,"mpg"], would return a vector, rather than a one column data frame. R 
automatically simplifies the results. To get a one column data frame, you would have to 
include the drop = FALSE option (mtcars[, "mpg", drop = FALSE]). In contrast, if mtcars 
is a tibble, then mtcars[, "mpg"] would return a one column tibble. The results are not 
simplified, allowing you to easily predict what the results of a subsetting operation will return. 

Finally, tibbles don't support row names. The function rownames_to_column() can be used 
to convert the row names in a data frame to a variable in a tibble. 

Tibbles are important because many popular packages, such as readr, tidyr, dplyr, and 
purrr save data frames as tibbles. Although tibbles have been designed to be "a modern take 
on data frames", note that they can be used interchangeably with data frames. Any function 
that requires a data frame can take a tibble and vice versa. To learn more, see 
https://r4ds.had.co.nz/tibbles.html. 

A note for programmers 
Experienced programmers typically find several aspects of the R language unusual. Here are some features of the 
language you should be aware of: 

 
  •  The period (.) has no special significance in object names. The dollar sign ($) has a somewhat analogous meaning 

to the period in other object oriented languages, and can be used to identify the parts of a data frame or list. For 
example, A$x refers to variable x in data frame A. 

  •  R doesn’t provide multiline or block comments. You must start each line of a multiline comment with #. For 
debugging purposes, you can also surround code that you want the interpreter to ignore with the statement 
if(FALSE){...}. Changing the FALSE to TRUE allows the code to be executed. 
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  •  Assigning a value to a nonexistent element of a vector, matrix, array, or list expands that structure to accommodate 
the new value. For example, consider the following: 

 
> x <- c(8, 6, 4)  
> x[7] <- 10 

> x 
[1]  8  6  4 NA NA NA 10 
 
The vector x has expanded from three to seven elements through the assignment. x <- x[1:3] would shrink it back 
to three elements. 

 
  •  R doesn’t have scalar values. Scalars are represented as one-element vectors. 
  •  Indices in R start at 1, not at 0. In the vector earlier, x[1] is 8.  
  •  Variables can’t be declared. They come into existence on first assignment. 
 
To learn more, see John Cook’s excellent blog post, “R Language for Programmers” (http://mng.bz/6NwQ). 
Programmers looking for stylistic guidance may also want to check out “Google’s R Style Guide” (http://mng.bz/i775).  
 

2.3 Data input 
Now that you have data structures, you need to put some data in them! As a data analyst, 
you’re typically faced with data that comes from a variety of sources and in a variety of 
formats. Your task is to import the data into your tools, analyze the data, and report on the 
results. R provides a wide range of tools for importing data. The definitive guide for importing 
data in R is the R Data Import/Export manual available at http://mng.bz/urwn. 

As you can see in figure 2.2, R can import data from the keyboard, from text files, from 
Microsoft Excel and Access, from popular statistical packages, from a variety of relational 
database management systems, from specialty databases, and from web sites and online 
services. Because you never know where your data will come from, we’ll cover each of them 
here. You only need to read about the ones you’re going to be using. 
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Figure 2.2 Sources of data that can be imported into R 

2.3.1 Entering data from the keyboard  

Perhaps the simplest way to enter data is from the keyboard. There are two common 
methods: entering data through R’s built-in text editor and embedding data directly into your 
code. We’ll consider the editor first. 

The edit() function in R invokes a text editor that lets you enter data manually. Here are 
the steps: 

1. Create an empty data frame (or matrix) with the variable names and modes you want 
to have in the final dataset.  

2. Invoke the text editor on this data object, enter your data, and save the results to the 
data object. 

The following example creates a data frame named mydata with three variables: age 
(numeric), gender (character), and weight (numeric). You then invoke the text editor, add 
your data, and save the results: 

mydata <- data.frame(age=numeric(0),            
  gender=character(0), weight=numeric(0)) 
mydata <- edit(mydata) 

Assignments like age=numeric(0) create a variable of a specific mode, but without actual 
data. Note that the result of the editing is assigned back to the object itself. The edit() 
function operates on a copy of the object. If you don’t assign it a destination, all of your edits 
will be lost! 

The results of invoking the edit() function on a Windows platform are shown in figure 2.3. 
In this figure, I’ve added some data. If you click a column title, the editor gives you the option 
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of changing the variable name and type (numeric or character). You can add variables by 
clicking the titles of unused columns. When the text editor is closed, the results are saved to 
the object assigned (mydata, in this case). Invoking mydata <- edit(mydata) again allows 
you to edit the data you’ve entered and to add new data. A shortcut for mydata <- 

edit(mydata) is fix(mydata). 

 
Figure 2.3 Entering data via the built-in editor on a Windows platform 

Alternatively, you can embed the data directly in your program. For example, the code 

mydatatxt <- " 
age gender weight 
25 m 166 
30 f 115 
18 f 120 
" 
mydata <- read.table(header=TRUE, text=mydatatxt) 

creates the same data frame as that created with the edit() function. A character string is 
created containing the raw data, and the read.table() function is used to process the string 
and return a data frame. The read.table() function is described more fully in the next 
section. 

Keyboard data entry can be convenient when you’re working with small datasets. For 
larger datasets, you’ll want to use the methods described next: importing data from existing 
text files, Excel spreadsheets, statistical packages, or database-management systems. 
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2.3.2 Importing data from a delimited text file 

You can import data from delimited text files using read.table(), a function that reads a file 
in table format and saves it as a data frame. Each row of the table appears as one line in the 
file. The syntax is 

mydataframe <- read.table(file, options) 

where file is a delimited ASCII file and the options are parameters controlling how data is 
processed. The most common options are listed in table 2.2. 

Table 2.2 read.table() options 

Option Description 

header A logical value indicating whether the file contains the variable names in the first line. 

sep The delimiter separating data values. The default is sep="", which denotes one or more 

spaces, tabs, new lines, or carriage returns. Use sep="," to read comma-delimited files, and 
sep="\t" to read tab-delimited files.  

row.names An optional parameter specifying one or more variables to represent row identifiers. 

col.names If the first row of the data file doesn’t contain variable names (header=FALSE), you can use 

col.names to specify a character vector containing the variable names. If header=FALSE and 
the col.names option is omitted, variables will be named V1, V2, and so on. 

na.strings An optional character vector indicating missing-values codes. For example, na.strings=c("-9", 
"?") converts each -9 and ? value to NA as the data is read. 

colClasses An optional vector of classes to be assign to the columns. For example, 

colClasses=c("numeric", "numeric", "character", "NULL", "numeric") reads the first two 

columns as numeric, reads the third column as character, skips the fourth column, and 

reads the fifth column as numeric. If there are more than five columns in the data, the 

values in colClasses are recycled. When you’re reading large text files, including the 
colClasses option can speed up processing considerably. 

quote Character(s) used to delimit strings that contain special characters. By default this is either 
double (") or single (') quotes. 

skip The number of lines in the data file to skip before beginning to read the data. This option is 

useful for skipping header comments in the file. 

stringsAsFactors A logical value indicating whether character variables should be converted to factors. The 

default is TRUE unless this is overridden by colClasses. When you’re processing large text 
files, setting stringsAsFactors=FALSE can speed up processing. 

text A character string specifying a text string to process. If text is specified, leave file blank. An 

example is given in section 2.3.1. 
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Consider a text file named studentgrades.csv containing students’ grades in math, science, 
and social studies. Each line of the file represents a student. The first line contains the variable 
names, separated with commas. Each subsequent line contains a student’s information, also 
separated with commas. The first few lines of the file are as follows: 

StudentID,First,Last,Math,Science,Social Studies 
011,Bob,Smith,90,80,67 
012,Jane,Weary,75,,80 
010,Dan,"Thornton, III",65,75,70 
040,Mary,"O'Leary",90,95,92 

The file can be imported into a data frame using the following code: 

grades <- read.table("studentgrades.csv", header=TRUE,  
    row.names="StudentID", sep=",")  

The results are as follows: 

> grades 
 
   First             Last Math Science Social.Studies 
11   Bob            Smith   90      80             67 
12  Jane            Weary   75      NA             80 
10   Dan    Thornton, III   65      75             70 
40  Mary          O'Leary   90      95             92 
 
> str(grades) 
 
'data.frame':   4 obs. of  5 variables: 
 $ First         : chr  "Bob" "Jane" "Dan" "Mary" 
 $ Last          : chr  "Smith" "Weary" "Thornton, III" "O'Leary" 
 $ Math          : int  90 75 65 90 
 $ Science       : int  80 NA 75 95 
 $ Social.Studies: int  67 80 70 92 

There are several interesting things to note about how the data is imported. The variable 
name Social Studies is automatically renamed to follow R conventions. The StudentID 
column is now the row name, no longer has a label, and has lost its leading zero. The missing 
science grade for Jane is correctly read as missing. I had to put quotation marks around Dan's 
last name in order to escape the comma between Thornton and III. Otherwise, R would have 
seen seven values on that line, rather than six. I also had to put quotation marks around 
O'Leary. Otherwise, R would have read the single quote as a string delimiter (which isn’t what 
I want). Finally, the first and last names are converted to factors.  

By default, read.table() converts character variables to factors, which may not always be 
desirable. For example, there would be little reason to convert a character variable containing 
a respondent’s comments into a factor. Additionally, you may want to manipulate or mine the 
text in a variable, and this is hard to do once it has been converted to a factor. You can 
suppress this behavior in a number of ways. Including the option stringsAsFactors=FALSE 
turns off this behavior for all character variables. Alternatively, you can use the colClasses 
option to specify a class (for example, logical, numeric, character, or factor) for each column. 
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Importing the same data with 

grades <- read.table("studentgrades.csv", header=TRUE, 
    row.names="StudentID", sep=",", 
    colClasses=c("character", "character", "character",   
                 "numeric", "numeric", "numeric")) 

produces the following data frame: 

> grades 
 
    First             Last Math Science Social.Studies 
011   Bob            Smith   90      80             67 
012  Jane            Weary   75      NA             80 
010   Dan    Thornton, III   65      75             70 
040  Mary          O'Leary   90      95             92 
 
> str(grades) 
 
'data.frame':   4 obs. of  5 variables: 
 $ First         : chr  "Bob" "Jane" "Dan" "Mary" 
 $ Last          : chr  "Smith" "Weary" "Thornton, III" "O'Leary" 
 $ Math          : num  90 75 65 90 
 $ Science       : num  80 NA 75 95 
 $ Social.Studies: num  67 80 70 92 

Note that the row names retain their leading zero and First and Last are no longer factors. 
Additionally, the grades are stored as real values rather than integers. 

The read.table() function has many options for fine-tuning data imports. See 
help(read.table) for details.  

Importing data via connections 
Many of the examples in this chapter import data from files that exist on your computer. R provides several 
mechanisms for accessing data via connections as well. For example, the functions file(), gzfile(), bzfile(), 
xzfile(), unz(), and url() can be used in place of the filename. The file() function allows you to access files, 
the clipboard, and C-level standard input. The gzfile(), bzfile(), xzfile(), and unz() functions let you read 
compressed files.  

The url() function lets you access internet files through a complete URL that includes http://, ftp://, or file://. For 
HTTP and FTP, proxies can be specified. For convenience, complete URLs (surrounded by double quotation marks) can 

usually be used directly in place of filenames as well. See help(file) for details. 
 

Base R also provides the functions read.csv() and read.delim() for importing rectangular 
text files. These are simply wrapper functions that call read.table() with specific defaults. 
For example read.csv() calls read.table() with header=TRUE, and sep="," while 
read.delim() calls read.table() with header=TRUE and sep="\t".  Details are provided in 
the read.table() help. 
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The readr package provides a powerful alternative to base R functions for reading 
rectangular text files. The primary function is read_delim() with helper functions read_csv() 
and read_tsv() for reading comma delimited and tab delimited files respectively. After 
installing the package, the previous data could have been read using the code 

library(readr) 
grades <- read_csv("studentgrades.csv") 

The package also provides for importing fixed width files (where data appears in specific 
columns), tabular files (where columns are separated by white-space), and web log files. 

Functions in the readr package provide a number of advantages over those in base R. First 
and foremost, they are significantly faster. This can be a tremendous advantage when reading 
large data files. Additionally, they are very good at guessing the correct data type of each 
column (numeric character, date, and date-time). Finally, unlike base R functions, they don't 
convert character data to factors by default. Functions in the readr package return data are 
returned as tibbles (data frames with some specialized features). To learn more, see 
https://readr.tidyverse.org.  

2.3.3 Importing data from Excel 

The best way to read an Excel file is to export it to a comma-delimited file from Excel and 
import it into R using the method described earlier. Alternatively, you can import Excel 
worksheets directly using the readxl package. Be sure to download and install it before you 
first use it. 

The readxl package can be used to read both .xls and .xlsx versions of Excel files. The 
read_excel() function imports a worksheet into a data frame (as a tibble). The simplest 
format is read_excel(file, n) where file is the path to an Excel workbook, n is the number of 
the worksheet to be imported, and the first line of the worksheet contains the variable names. 
For example, on a Windows platform, the code 

library(readxl) 
workbook <- "c:/myworkbook.xlsx" 
mydataframe <- read_xlsx(workbook, 1) 

imports the first worksheet from the workbook myworkbook.xlsx stored on the C: drive and 
saves it as the data frame mydataframe.  

The read_excel() function has options that allow you to specify a specific cell range (e.g. 
range = "Mysheet!B2:G14", along with the class of each column (col_types). See 
help(read_excel) for details. 

There are other packages that can help you work with Excel files. They include xlsx, 
XLConnect and openxlsx. The xlsx and XLConnect packages depend on Java, while openxlsx 
doesn't. Unlike readxl,  these packages can do more than import worksheets—they can 
create and manipulate Excel files as well. Programmers who need to develop an interface 
between R and Excel should check out one or more of these packages.  
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2.3.4 Importing data from XML 

Increasingly, data is provided in the form of files encoded in XML. R has several packages for 
handling XML files. For example, the XML package written by Duncan Temple Lang allows you 
to read, write, and manipulate XML files. Coverage of XML is beyond the scope of this text; if 
you’re interested in accessing XML documents from within R, see the excellent package 
documentation at www.omegahat.org/RSXML. 

2.3.5 Importing data from the Web 

Data can be obtained from the web via webscraping or the use of application programming 
interfaces (APIs). Webscraping is used to extract the information embedded in specific web 
pages, whereas APIs allow you to interact with web services and online data stores. 

Typically, webscraping is used to extract data from a web page and save it into an R 
structure for further analysis. For example, the text on a web page can be downloaded into an 
R character vector using the readLines() function and manipulated with functions such as 
grep() and gsub(). The rvest package provides functions that can simplify extracting data 
from web pages, and was inspired by the Python library Beautiful Soup. The RCurl and XML 
packages can also be used to extract the information desired. For more information, including 
examples, see “Examples of Web Scraping with R” available from the website ProgrammingR ( 
http://www.programmingr.com).   

APIs specify how software components should interact with each other. A number of R 
packages use this approach to extract data from web-accessible resources. These include data 
sources in biology, medicine, Earth sciences, physical science, economics and business, 
finance, literature, marketing, news, and sports.  

For example, if you’re interested in social media, you can access Twitter data via twitteR, 
Facebook data via Rfacebook, and Flickr data via Rflickr. Other packages allow you to 
access popular web services provide by Google, Amazon, Dropbox, Salesforce, and others. For 
a comprehensive list of R packages that can help you access web-based resources, see the 
CRAN Task view on Web Technologies and Services (http://mng.bz/370r).  

2.3.6 Importing data from SPSS 

IBM SPSS datasets can be imported into R via the read_spss() function in the haven 
package. First, download and install the package: 

install.packages("haven") 

Then use the following code to import the data: 

library(haven) 
mydataframe <- read_spss("mydata.sav") 
 

42

https://livebook.manning.com/book/r-in-action-third-edition/discussion
http://www.programmingr.com/examples/examples-web-scraping-r/
http://www.omegahat.org/RSXML
http://mng.bz/370r


©Manning Publications Co.  To comment go to  liveBook 

The imported dataset is a data frame (as a tibble) and variables containing imported SPSS 
value labels are assigned the class labelled. You can convert these labelled variables to R 
factors using the following code: 

labelled_vars <- names(mydataframe)[sapply(mydataframe, is.labelled)] 
for (vars in labelled_vars){ 
  mydataframe[[vars]] = as_factor(mydataframe[[vars]]) 
} 

The haven package has additional functions for reading SPSS files in compressed (.zsav) or 
transport (.por) format. 

2.3.7 Importing data from SAS 

SAS datasets can be imported using the read_sas() in the haven package. After installing the 
package, import that data using 

library(haven) 
mydataframe <- read_sas("mydata.sas7bdat") 

If the user also has a catalogue of variable formats, they can be imported and applied to the 
data as well using 

mydataframe <- read_sas("mydata.sas7bdat",  
                             catalog_file = "mydata.sas7bcat")  

In either case, the result is a data frame saved as a tibble. 
Alternatively, there is a commercial product named Stat/Transfer (described in section 

2.3.10) that does an excellent job of saving SAS datasets (including any existing variable 
formats) as R data frames. 

2.3.8 Importing data from Stata 

Importing data from Stata to R is straightforward. Again, using the haven package 

library(haven) 
mydataframe <- read_dta("mydata.dta") 

Here, mydata.dta is the Stata dataset, and mydataframe is the resulting R data frame, saved 
as a tibble. 

2.3.9 Accessing database management systems (DBMSs) 

R can interface with a wide variety of relational database management systems (DBMSs), 
including Microsoft SQL Server, Microsoft Access, MySQL, Oracle, PostgreSQL, DB2, Sybase, 
Teradata, and SQLite. Some packages provide access through native database drivers, 
whereas others offer access via ODBC or JDBC. Using R to access data stored in external 
DMBSs can be an efficient way to analyze large datasets (see appendix F) and takes 
advantage of the power of both SQL and R. 
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THE ODBC INTERFACE 

Perhaps the most popular method of accessing a DBMS in R is through the RODBC package, 
which allows R to connect to any DBMS that has an ODBC driver. This includes all the DBMSs 
listed earlier.  

The first step is to install and configure the appropriate ODBC driver for your platform and 
database (these drivers aren’t part of R). If the requisite drivers aren’t already installed on 
your machine, an internet search should provide you with options (Setting up ODBC Drivers at 
https://db.rstudio.com/best-practices/drivers/ is a good place to start). 

Once the drivers are installed and configured for the database(s) of your choice, install the 
RODBC package. You can do so by using the install.packages("RODBC") command. The 
primary functions included with RODBC are listed in table 2.3. 

Table 2.3 RODBC functions 

Function Description 

odbcConnect(dsn,uid="",pwd="") Opens a connection to an ODBC database 

sqlFetch(channel,sqltable) Reads a table from an ODBC database into a data frame 

sqlQuery(channel,query) Submits a query to an ODBC database and returns the results 

sqlSave(channel,mydf,tablename 

= sqltable,append=FALSE) 

Writes or updates (append=TRUE) a data frame to a table in the ODBC database 

sqlDrop(channel,sqltable) Removes a table from the ODBC database 

close(channel) Closes the connection 

The RODBC package allows two-way communication between R and an ODBC-connected SQL 
database. This means you can not only read data from a connected database into R, but also 
use R to alter the contents of the database itself. Assume that you want to import two tables 
(Crime and Punishment) from a DBMS into two R data frames called crimedat and pundat, 
respectively. You can accomplish this with code similar to the following: 

library(RODBC)                             
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardvark")         
crimedat <- sqlFetch(myconn, Crime)                 
pundat <- sqlQuery(myconn, "select * from Punishment")         
close(myconn)  

Here, you load the RODBC package and open a connection to the ODBC database through a 
registered data source name (mydsn) with a security UID (rob) and password (aardvark). The 
connection string is passed to sqlFetch, which copies the table Crime into the R data frame 
crimedat. You then run the SQL select statement against the table Punishment and save the 
results to the data frame pundat. Finally, you close the connection.  
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The sqlQuery() function is powerful because any valid SQL statement can be inserted. 
This flexibility allows you to select specific variables, subset the data, create new variables, 
and recode and rename existing variables. 

DBI-RELATED PACKAGES 

The DBI package provides a general and consistent client-side interface to DBMS. Building on 
this framework, the RJDBC package provides access to DBMS via a JDBC driver. Be sure to 
install the necessary JDBC drivers for your platform and database. Other useful DBI-based 
packages include RMySQL, ROracle, RPostgreSQL, and RSQLite. These packages provide 
native database drivers for their respective databases but may not be available on all 
platforms. Check the documentation on CRAN (http://cran.r-project.org) for details. 

2.3.10 Importing data via Stat/Transfer 

Before we end our discussion of importing data, it’s worth mentioning a commercial product 
that can make the task significantly easier. Stat/Transfer (www.stattransfer.com) is a 
standalone application that can transfer data among 34 data formats, including R (see figure 
2.4). 

 
Figure 2.4 Stat/Transfer’s main dialog on Windows 
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Stat/Transfer is available for Windows, Mac, and Unix platforms. It supports the latest 
versions of the statistical packages we’ve discussed so far, as well as ODBC-accessed DBMSs 
such as Oracle, Sybase, Informix, and DB/2. 

2.4 Annotating datasets 
Data analysts typically annotate datasets to make the results easier to interpret. Annotating 
generally includes adding descriptive labels to variable names and value labels to the codes 
used for categorical variables. For example, for the variable age, you might want to attach the 
more descriptive label “Age at hospitalization (in years).” For the variable gender, coded 1 or 
2, you might want to associate the labels “male” and “female.” 

2.4.1 Variable labels 

Unfortunately, R’s ability to handle variable labels is limited. One approach is to use the 
variable label as the variable’s name and then refer to the variable by its position index. 
Consider the earlier example, where you have a data frame containing patient data. The 
second column, age, contains the ages at which individuals were first hospitalized. The code 

names(patientdata)[2] <- "Age at hospitalization (in years)" 

renames age to "Age at hospitalization (in years)". Clearly this new name is too long 
to type repeatedly. Instead, you can refer to this variable as patientdata[2], and the string 
"Age at hospitalization (in years)" will print wherever age would have originally. 
Obviously, this isn’t an ideal approach, and you may be better off trying to come up with 
better variable names (for example, admissionAge). 

2.4.2 Value labels 

The factor() function can be used to create value labels for categorical variables. Continuing 
the example, suppose you have a variable named gender, which is coded 1 for male and 2 for 
female. You can create value labels with the code 

patientdata$gender <- factor(patientdata$gender, 
                             levels = c(1,2), 
                             labels = c("male", "female")) 

Here levels indicates the actual values of the variable, and labels refers to a character 
vector containing the desired labels. 

2.5 Useful functions for working with data objects 
We’ll end this chapter with a brief summary of useful functions for working with data objects 
(see table 2.4). 
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Table 2.4 Useful functions for working with data objects 

Function Purpose 

length(object) Gives the number of elements/components. 

dim(object) Gives the simensions of an object. 

str(object) Gives the structure of an object. 

class(object) Gives the class of an object. 

mode(object) Determines how an object is stored. 

names(object) Gives the names of components in an object. 

c(object, object,...) Combines objects into a vector. 

cbind(object, object, ...) Combines objects as columns. 

rbind(object, object, ...) Combines objects as rows. 

object Prints an object. 

head(object) Lists the first part of an object. 

tail(object) Lists the last part of an object. 

ls() Lists current objects. 

rm(object, object, ...) Deletes one or more objects. The statement rm(list = ls()) removes most 
objects from the working environment. 

newobject <- edit(object) Edits object and saves it as newobject. 

fix(object) Edits an object in place. 

We’ve already discussed most of these functions. head() and tail() are useful for quickly 
scanning large datasets. For example, head(patientdata) lists the first six rows of the data 
frame, whereas tail(patientdata) lists the last six. We’ll cover functions such as length(), 
cbind(), and rbind() in the next chapter; they’re gathered here as a reference. 

2.6 Summary 
• R provides a wide range of structures for holding data. These include vectors, matrices, 

arrays, data frames, and lists. 
• The ability to specify elements of these structures via single bracket notation [] for 

vectors, matrices and data frames, and double bracket notation [[]] for lists, is 
particularly important for selecting, subsetting, and transforming data. 

• R can import data from flat files, web files, statistical packages, spreadsheets, and 
databases. The imported data is usually stored in data frames or tibbles. Exporting data 
is covered in appendix C, and methods of working with large datasets (in the gigabyte 
to terabyte range) are covered in appendix F.  
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3  
Basic data management 

This chapter covers 

• Manipulating dates and missing values 
• Understanding data type conversions 
• Creating and recoding variables 
• Sorting, merging, and subsetting datasets 
• Selecting and dropping variables 

In chapter 2, we covered a variety of methods for importing data into R. Unfortunately, 
getting your data in the rectangular arrangement of a matrix or data frame is only the first 
step in preparing it for analysis. To paraphrase Captain Kirk in the Star Trek episode “A Taste 
of Armageddon” (and proving my geekiness once and for all), “Data is a messy business—a 
very, very messy business.” In my own work, as much as 60% of the time I spend on data 
analysis is focused on preparing the data for analysis. I’ll go out on a limb and say that the 
same is probably true in one form or another for most real-world data analysts. Let’s take a 
look at an example. 

3.1 A working example 
One of the topics that I study in my current job is how men and women differ in the ways they 
lead their organizations. Typical questions might be 

• Do men and women in management positions differ in the degree to which they defer 
to superiors? 

• Does this vary from country to country, or are these gender differences universal? 

49

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

One way to address these questions is to have bosses in multiple countries rate their 
managers on deferential behavior, using questions like the following: 

This manager asks my opinion before making personnel decisions. 

1 2 3 4 5 

strongly disagree disagree neither agree nor disagree agree strongly agree 

The resulting data might resemble that in table 3.1. Each row represents the ratings given to a 
manager by his or her boss. 

Table 3.1 Gender differences in leadership behavior 

Manager Date Country Gender Age q1 q2 q3 q4 q5 

1 10/24/14 US M 32 5 4 5 5 5 

2 10/28/14 US F 45 3 5 2 5 5 

3 10/01/14 UK F 25 3 5 5 5 2 

4 10/12/14 UK M 39 3 3 4    

5 05/01/14 UK F 99 2 2 1 2 1 

Here, each manager is rated by their boss on five statements (q1 to q5) related to deference 
to authority. For example, manager 1 is a 32-year-old male working in the US and is rated 
deferential by his boss, whereas manager 5 is a female of unknown age (99 probably indicates 
that the information is missing) working in the UK and is rated low on deferential behavior. 
The Date column captures when the ratings were made. 

Although a dataset might have dozens of variables and thousands of observations, we’ve 
included only 10 columns and 5 rows to simplify the examples. Additionally, we’ve limited the 
number of items pertaining to the managers’ deferential behavior to five. In a real-world 
study, you’d probably use 10–20 such items to improve the reliability and validity of the 
results. You can create a data frame containing the data in table 3.1 using the following code. 

Listing 3.1 Creating the leadership data frame 

manager <- c(1, 2, 3, 4, 5) 
date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09") 
country <- c("US", "US", "UK", "UK", "UK") 
gender <- c("M", "F", "F", "M", "F") 
age <- c(32, 45, 25, 39, 99) 
q1 <- c(5, 3, 3, 3, 2) 
q2 <- c(4, 5, 5, 3, 2) 
q3 <- c(5, 2, 5, 4, 1) 
q4 <- c(5, 5, 5, NA, 2) 
q5 <- c(5, 5, 2, NA, 1) 
leadership <- data.frame(manager, date, country, gender, age,  
                         q1, q2, q3, q4, q5, stringsAsFactors=FALSE) 
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In order to address the questions of interest, you must first deal with several data--
management issues. Here’s a partial list: 

• The five ratings (q1 to q5) need to be combined, yielding a single mean deferential 
score from each manager. 

• In surveys, respondents often skip questions. For example, the boss rating manager 4 
skipped questions 4 and 5. You need a method of handling incomplete data. You also 
need to recode values like 99 for age to missing. 

• There may be hundreds of variables in a dataset, but you may only be interested in a 
few. To simplify matters, you’ll want to create a new dataset with only the variables of 
interest.  

• Past research suggests that leadership behavior may change as a function of the 
manager’s age. To examine this, you may want to recode the current values of age into 
a new categorical age grouping (for example, young, middle-aged, elder). 

• Leadership behavior may change over time. You might want to focus on deferential 
behavior during the recent global financial crisis. To do so, you may want to limit the 
study to data gathered during a specific period of time (say, January 1, 2009 to 
December 31, 2009). 

We’ll work through each of these issues in this chapter, as well as other basic data--
management tasks such as combining and sorting datasets. Then, in chapter 4, we’ll look at 
some advanced topics.  

3.2 Creating new variables 
In a typical research project, you’ll need to create new variables and transform existing ones. 
This is accomplished with statements of the form 

variable <- expression 

A wide array of operators and functions can be included in the expression portion of the 
statement. Table 3.2 lists R’s arithmetic operators. Arithmetic operators are used when 
developing formulas.  

Table 3.2 Arithmetic operators (continued) 

Operator Description 

+ Addition. 

- Subtraction. 

* Multiplication. 

/ Division. 

^ or ** Exponentiation. 
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x%%y Modulus (x mod y): for example, 5%%2 is 1. 

x%/%y Integer division: for example, 5%/%2 is 2. 

Given the data frame leadership, say you want to create a new variable total_score that 
adds the variables q1 to q5, and a new variable called mean_score that averages these 
variables. If you use the code  

total_score  <-  q1 + q2 + q3 + q4 + q5 
mean_score <- (q1 + q2 + q3 + q4 + q5)/5 

you’ll get an error, because R doesn’t know that q1, q2, q3, q4 and q5 are from the data 
frame leadership. If you use this code instead 

total_score  <-  leadership$q1 + leadership$q2 + leadership$q3 +  
                   leadership$q4 + leadership$q5 
mean_score <- (leadership$q1 + leadership$q2 + leadership$q3 +  
                   leadership$q4 + leadership$q5)/5 

the statements will succeed but you’ll end up with a data frame (leadership) and two 
separate vectors (total_score and mean_score). This probably isn’t the result you want. 
Ultimately, you want to incorporate new variables into the original data frame. The following 
listing provides two separate ways to accomplish this goal. The one you choose is up to you; 
the results will be the same. 

Listing 3.2 Creating new variables 

 
leadership$total_score  <-  leadership$q1 + leadership$q2 + leadership$q3 +  
                              leadership$q4 + leadership$q5 
leadership$mean_score <- (leadership$q1 + leadership$q2 + leadership$q3 +  
                            leadership$q4 + leadership$q5)/5 
 
leadership <- transform(leadership, 
                    total_score  =  q1 + q2 + q3 + q4 + q5, 
                    mean_score = (q1 + q2 + q3 + q4 + q5)/5) 
 
 

Personally, I prefer the second method, exemplified by the use of the transform() function. It 
simplifies the inclusion of as many new variables as desired and saves the results to the data 
frame. 

3.3 Recoding variables 
Recoding involves creating new values of a variable conditional on the existing values of the 
same and/or other variables. For example, you may want to 

• Change a continuous variable into a set of categories  
• Replace miscoded values with correct values  
• Create a pass/fail variable based on a set of cutoff scores 
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To recode data, you can use one or more of R’s logical operators (see table 3.3). Logical 
operators are expressions that return TRUE or FALSE.  

Table 3.3 Logical operators 

Operator Description 

< Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

== Exactly equal to 

!= Not equal to 

!x Not x 

x | y x or y 

x & y x and y 

isTRUE(x) Tests whether x is TRUE 

Let’s say you want to recode the ages of the managers in the leadership dataset from the 
continuous variable age to the categorical variable agecat (Young, Middle Aged, Elder). 
First, you must recode the value 99 for age to indicate that the value is missing using code 
such as 

leadership$age[leadership$age  == 99]     <- NA 

The statement variable[condition] <- expression will only make the assignment when 
condition is TRUE. 

Once missing values for age have been specified, you can then use the following code to 
create the agecat variable: 

leadership$agecat[leadership$age  > 75]   <- "Elder" 
leadership$agecat[leadership$age >= 55 &  
                  leadership$age <= 75]   <- "Middle Aged" 
leadership$agecat[leadership$age  < 55]   <- "Young" 

You include the data-frame names in leadership$agecat to ensure that the new variable is 
saved back to the data frame. (I defined middle aged as 55 to 75 so I won’t feel so old.) Note 
that if you hadn’t recoded 99 as missing for age first, manager 5 would’ve erroneously been 
given the value “Elder” for agecat. 

This code can be written more compactly as follows: 

leadership <- within(leadership,{ 
                     agecat <- NA 
                     agecat[age > 75]              <- "Elder" 

53

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

                     agecat[age >= 55 & age <= 75] <- "Middle Aged" 
                     agecat[age < 55]              <- "Young" }) 

The within() function is similar to the with() function (section 2.2.4), but it allows you to 
modify the data frame. First the variable agecat is created and set to missing for each row of 
the data frame. Then the remaining statements within the braces are executed in order. 
Remember that agecat is a character variable; you’re likely to want to turn it into an ordered 
factor, as explained in section 2.2.5. 

Several packages offer useful recoding functions; in particular, the car package’s recode() 
function recodes numeric and character vectors and factors very simply. The package doBy 
offers recodeVar(), another popular function. Finally, R ships with cut(), which allows you to 
divide the range of a numeric variable into intervals, returning a factor. 

3.4 Renaming variables 
If you’re not happy with your variable names, you can change them interactively or 
programmatically. Let’s say you want to change the variable manager to managerID and date 
to testDate. You can use the following statement to invoke an interactive editor: 

fix(leadership) 

Then you click the variable names and rename them in the dialogs that are presented (see 
figure 3.1). 
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Figure 3.1 Renaming variables interactively using the fix() function 

Programmatically, you can rename variables via the names() function. For example, this 
statement 

names(leadership)[2] <- "testDate" 

renames date to testDate as demonstrated in the following code: 

> names(leadership) 
 [1] "manager" "date"    "country" "gender"  "age"     "q1"      "q2"      
 [8] "q3"      "q4"      "q5"     
> names(leadership)[2] <- "testDate" 
> leadership 
  manager testDate country gender age q1 q2 q3 q4 q5 
1       1 10/24/08      US      M  32  5  4  5  5  5 
2       2 10/28/08      US      F  45  3  5  2  5  5 
3       3  10/1/08      UK      F  25  3  5  5  5  2 
4       4 10/12/08      UK      M  39  3  3  4 NA NA 
5       5   5/1/09      UK      F  99  2  2  1  2  1 

In a similar fashion, the statement 

names(leadership)[6:10] <- c("item1", "item2", "item3", "item4", "item5") 

renames q1 through q5 to item1 through item5.  

55

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

3.5 Missing values 
In a project of any size, data is likely to be incomplete because of missed questions, faulty 
equipment, or improperly coded data. In R, missing values are represented by the symbol NA 
(not available). Unlike programs such as SAS, R uses the same missing-value symbol for 
character and numeric data.  

R provides a number of functions for identifying observations that contain missing values. 
The function is.na() allows you to test for the presence of missing values. Assume that you 
have this vector: 

y <- c(1, 2, 3, NA) 

Then the following function returns c(FALSE, FALSE, FALSE, TRUE): 

is.na(y)  

Notice how the is.na() function works on an object. It returns an object of the same size, 
with the entries replaced by TRUE if the element is a missing value or FALSE if the element 
isn’t a missing value. The following listing applies this to the leadership example.  

Listing 3.3 Applying the is.na() function 

> is.na(leadership[,6:10]) 
        q1    q2    q3    q4    q5 
[1,] FALSE FALSE FALSE FALSE FALSE 
[2,] FALSE FALSE FALSE FALSE FALSE 
[3,] FALSE FALSE FALSE FALSE FALSE 
[4,] FALSE FALSE FALSE  TRUE  TRUE 
[5,] FALSE FALSE FALSE FALSE FALSE 

Here, leadership[,6:10] limits the data frame to columns 6 to 10, and is.na() identifies 
which values are missing.  

There are two important things to keep in mind when you’re working with missing values 
in R. First, missing values are considered noncomparable, even to themselves. This means you 
can’t use comparison operators to test for the presence of missing values. For example, the 
logical test myvar == NA is never TRUE. Instead, you have to use missing-value functions like 
is.na() to identify the missing values in R data objects. 

Second, R doesn’t represent infinite or impossible values as missing values. Again, this is 
different than the way other programs like SAS handle such data. Positive and negative 
infinity are represented by the symbols Inf and –Inf, respectively. Thus 5/0 returns Inf. 
Impossible values (for example, sin(Inf)) are represented by the symbol NaN (not a 
number). To identify these values, you need to use is.infinite() or is.nan(). 

3.5.1 Recoding values to missing 

As demonstrated in section 3.3, you can use assignments to recode values to missing. In the 
leadership example, missing age values are coded as 99. Before analyzing this dataset, you 
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must let R know that the value 99 means missing in this case (otherwise, the mean age for 
this sample of bosses will be way off!). You can accomplish this by recoding the variable: 

leadership$age[leadership$age == 99] <- NA 

Any value of age that’s equal to 99 is changed to NA. Be sure that any missing data is properly 
coded as missing before you analyze the data, or the results will be meaningless. 

3.5.2 Excluding missing values from analyses 

Once you’ve identified missing values, you need to eliminate them in some way before 
analyzing your data further. The reason is that arithmetic expressions and functions that 
contain missing values yield missing values. For example, consider the following code: 

x <- c(1, 2, NA, 3) 
y <- x[1] + x[2] + x[3] + x[4] 
z <- sum(x) 

Both y and z will be NA (missing) because the third element of x is missing. 
Luckily, most numeric functions have an na.rm=TRUE option that removes missing values 

prior to calculations and applies the function to the remaining values: 

x <- c(1, 2, NA, 3) 
y <- sum(x, na.rm=TRUE) 

Here, y is equal to 6.  
When using a function with incomplete data, be sure to check how that function handles 

missing data by looking at its online help (for example, help(sum)). The sum() function is only 
one of many functions we’ll consider in chapter 4. Functions allow you to transform data with 
flexibility and ease. 

You can remove any observation with missing data by using the na.omit() function. 
na.omit() deletes any rows with missing data. Let’s apply this to the leadership dataset in the 
following listing. 

Listing 3.4 Using na.omit() to delete incomplete observations 

> leadership     
  manager     date country gender age q1 q2 q3 q4 q5  #A   
1       1 10/24/08      US      M  32  5  4  5  5  5         
2       2 10/28/08      US      F  40  3  5  2  5  5 
3       3 10/01/08      UK      F  25  3  5  5  5  2 
4       4 10/12/08      UK      M  39  3  3  4 NA NA 
5       5 05/01/09      UK      F  NA  2  2  1  2  1 
 
> newdata <- na.omit(leadership)     
> newdata     
  manager     date country gender age q1 q2 q3 q4 q5    #B 
1       1 10/24/08      US      M  32  5  4  5  5  5 
2       2 10/28/08      US      F  40  3  5  2  5  5 
3       3 10/01/08      UK      F  25  3  5  5  5  2 
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#A Data frame with missing data 
#B Data frame with complete cases only 

Any rows containing missing data are deleted from leadership before the results are saved to 
newdata. 

Deleting all observations with missing data (called listwise deletion) is one of several 
methods of handling incomplete datasets. If there are only a few missing values or they’re 
concentrated in a small number of observations, listwise deletion can provide a good solution 
to the missing-values problem. But if missing values are spread throughout the data or there’s 
a great deal of missing data in a small number of variables, listwise deletion can exclude a 
substantial percentage of your data. We’ll explore several more sophisticated methods of 
dealing with missing values in chapter 18. Next, let’s look at dates. 

3.6 Date values 
Dates are typically entered into R as character strings and then translated into date variables 
that are stored numerically. The function as.Date() is used to make this translation. The 
syntax is as.Date(x, "input_format"), where x is the character data and input_format 
gives the appropriate format for reading the date (see table 3.4).  

Table 3.4 Date formats 

Symbol Meaning Example 

%d Day as a number (0–31) 01–31 

%a 

%A 

Abbreviated weekday  

Unabbreviated weekday 

Mon 

Monday 

%m Month (00–12) 00–12 

%b 

%B 

Abbreviated month 

Unabbreviated month 

Jan 

January 

%y 

%Y 

Two-digit year  

Four-digit year 

07 

2007 

The default format for inputting dates is yyyy-mm-dd. The statement 

mydates <- as.Date(c("2007-06-22", "2004-02-13")) 

converts the character data to dates using this default format. In contrast, 

strDates <- c("01/05/1965", "08/16/1975") 
dates <- as.Date(strDates, "%m/%d/%Y") 

reads the data using a mm/dd/yyyy format. 
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In the leadership dataset, date is coded as a character variable in mm/dd/yy format. 
Therefore:  

myformat <- "%m/%d/%y" 
leadership$date <- as.Date(leadership$date, myformat) 

uses the specified format to read the character variable and replace it in the data frame as a 
date variable. Once the variable is in date format, you can analyze and plot the dates using 
the wide range of analytic techniques covered in later chapters. 

Two functions are especially useful for time-stamping data. Sys.Date() returns today’s 
date, and date() returns the current date and time. As I write this, it’s November 27, 2014 at 
1:21 pm. So executing those functions produces 

> Sys.Date() 
[1] "2014-11-27" 
> date() 
[1] "Fri Nov 27 13:21:54 2014" 

You can use the format(x, format="output_format") function to output dates in a specified 
format and to extract portions of dates:  

> today <- Sys.Date() 
> format(today, format="%B %d %Y") 
[1] "November 27 2014" 
> format(today, format="%A") 
[1] "Thursday" 

The format() function takes an argument (a date in this case) and applies an output format 
(in this case, assembled from the symbols in table 3.4). The important result here is that 
there are only two more days until the weekend! 

When R stores dates internally, they’re represented as the number of days since January 
1, 1970, with negative values for earlier dates. That means you can perform arithmetic 
operations on them. For example,  

> startdate <- as.Date("2004-02-13") 
> enddate   <- as.Date("2011-01-22") 
> days      <- enddate - startdate 
> days 
Time difference of 2535 days 

displays the number of days between February 13, 2004 and January 22, 2011. 
Finally, you can also use the function difftime() to calculate a time interval and express 

it as seconds, minutes, hours, days, or weeks. Let’s assume that I was born on October 12, 
1956. How old am I? 

> today <- Sys.Date() 
> dob   <- as.Date("1956-10-12") 
> difftime(today, dob, units="weeks") 
Time difference of 3033 weeks   
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Apparently I am 3,033 weeks old. Who knew? Final test: On which day of the week was I 
born? 

3.6.1 Converting dates to character variables 

You can also convert date variables to character variables. Date values can be converted to 
character values using the as.character() function:  

strDates <- as.character(dates) 

The conversion allows you to apply a range of character functions to the data values 
(subsetting, replacement, concatenation, and so on). We’ll cover character functions in detail 
in chapter 4. 

3.6.2 Going further 

To learn more about converting character data to dates, look at help(as.Date) and 
help(strftime). To learn more about formatting dates and times, see help(ISOdatetime). 
The lubridate package contains a number of functions that simplify working with dates, 
including functions to identify and parse date-time data, extract date-time components (for 
example, years, months, days, and so on), and perform arithmetic calculations on date-times. 
If you need to do complex calculations with dates, the timeDate package can also help. It 
provides a myriad of functions for dealing with dates, can handle multiple time zones at once, 
and provides sophisticated calendar manipulations that recognize business days, weekends, 
and holidays. 

3.7 Type conversions 
In the previous section, we discussed how to convert character data to date values, and vice 
versa. R provides a set of functions to identify an object’s data type and convert it to a 
different data type. 

Type conversions in R work in a similar fashion to those in other statistical programming 
languages. For example, adding a character string to a numeric vector converts all the 
elements in the vector to character values. You can use the functions listed in table 3.5 to test 
for a data type and to convert it to a given type. 

Table 3.5 Type-conversion functions 

Test Convert 

is.numeric() as.numeric() 

is.character() as.character() 

is.vector() as.vector() 

is.matrix() as.matrix() 
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is.data.frame() as.data.frame() 

is.factor() as.factor() 

is.logical() as.logical() 

Functions of the form is.datatype() return TRUE or FALSE, whereas as.datatype() converts the 
argument to that type. The following listing provides an example. 

Listing 3.5 Converting from one data type to another 

> a <- c(1,2,3) 
> a 
[1] 1 2 3 
> is.numeric(a) 
[1] TRUE 
> is.vector(a) 
[1] TRUE 
> a <- as.character(a) 
> a 
[1] "1" "2" "3" 
> is.numeric(a) 
[1] FALSE 
> is.vector(a) 
[1] TRUE 
> is.character(a) 
[1] TRUE 

When combined with the flow controls (such as if-then) that we’ll discuss in chapter 4, the 
is.datatype() function can be a powerful tool, allowing you to handle data in different ways 
depending on its type. Additionally, some R functions require data of a specific type (character 
or numeric, matrix or data frame), and as.datatype() lets you transform your data into the 
format required prior to analyses. 

3.8 Sorting data 
Sometimes, viewing a dataset in a sorted order can tell you quite a bit about the data. For 
example, which managers are most deferential? To sort a data frame in R, you use the 
order() function. By default, the sorting order is ascending. Prepend the sorting variable with 
a minus sign to indicate descending order. The following examples illustrate sorting with the 
leadership data frame. 

The statement 

newdata <- leadership[order(leadership$age),] 

creates a new dataset containing rows sorted from youngest manager to oldest manager. The 
statement 

newdata <- leadership[order(leadership$gender, leadership$age),] 

sorts the rows into female followed by male, and youngest to oldest within each gender. 
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Finally, 

newdata <-leadership[order(leadership$gender, -leadership$age),] 

sorts the rows by gender, and then from oldest to youngest manager within each gender. 

3.9 Merging datasets 
If your data exists in multiple locations, you’ll need to combine it before moving forward. This 
section shows you how to add columns (variables) and rows (observations) to a data frame. 

3.9.1 Adding columns to a data frame 

To merge two data frames (datasets) horizontally, you use the merge() function. In most 
cases, two data frames are joined by one or more common key variables (that is, an inner 
join). For example, 

total <- merge(dataframeA, dataframeB, by="ID") 

merges dataframeA and dataframeB by ID. Similarly, 

total <- merge(dataframeA, dataframeB, by=c("ID","Country"))  

merges the two data frames by ID and Country. Horizontal joins like this are typically used to 
add variables to a data frame. 

Horizontal concatenation with cbind() 
If you’re joining two matrices or data frames horizontally and don’t need to specify a common key, you can use the 
cbind() function: 

 
total <- cbind(A, B) 
 
This function horizontally concatenates objects A and B. For the function to work properly, each object must have the 
same number of rows and be sorted in the same order. 
 

3.9.2 Adding rows to a data frame 

To join two data frames (datasets) vertically, use the rbind() function:  

total <- rbind(dataframeA, dataframeB)  

The two data frames must have the same variables, but they don’t have to be in the same 
order. If dataframeA has variables that dataframeB doesn’t, then before joining them, do one 
of the following: 

• Delete the extra variables in dataframeA. 
• Create the additional variables in dataframeB, and set them to NA (missing). 
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Vertical concatenation is typically used to add observations to a data frame. 

3.10 Subsetting datasets 
R has powerful indexing features for accessing the elements of an object. These features can 
be used to select and exclude variables, observations, or both. The following sections 
demonstrate several methods for keeping or deleting variables and observations.  

3.10.1 Selecting variables 

It’s a common practice to create a new dataset from a limited number of variables chosen 
from a larger dataset. In chapter 2, you saw that the elements of a data frame are accessed 
using the notation dataframe[row indices, column indices]. You can use this to select variables. 
For example,  

newdata <- leadership[, c(6:10)]  

selects variables q1, q2, q3, q4, and q5 from the leadership data frame and saves them to 
the data frame newdata. Leaving the row indices blank (,) selects all the rows by default. 

The statements 

myvars <- c("q1", "q2", "q3", "q4", "q5")  
newdata <-leadership[myvars] 

accomplish the same variable selection. Here, variable names (in quotes) are entered as 
column indices, thereby selecting the same columns.  

Finally, you could use 

myvars <- paste("q", 1:5, sep="")  
newdata <- leadership[myvars] 

This example uses the paste() function to create the same character vector as in the previous 
example. paste() will be covered in chapter 4.  

3.10.2 Dropping variables  

There are many reasons to exclude variables. For example, if a variable has many missing 
values, you may want to drop it prior to further analyses. Let’s look at some methods of 
excluding variables. 

You can exclude variables q3 and q4 with these statements: 

myvars <- names(leadership) %in% c("q3", "q4")  
newdata <- leadership[!myvars] 

In order to understand why this works, you need to break it down: 

1. names(leadership) produces a character vector containing the variable names:  

c("managerID","testDate","country","gender","age","q1","q2","q3","q4","q5") 
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2. names(leadership) %in% c("q3", "q4") returns a logical vector with TRUE for each 
element in names(leadership)that matches q3 or q4 and FALSE otherwise:  

c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE) 

3. The not (!) operator reverses the logical values:  

c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE) 

4. leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, 

TRUE)] selects columns with TRUE logical values, so q3 and q4 are excluded. 

Knowing that q3 and q4 are the eighth and ninth variables, you can exclude them with the 
following statement: 

newdata <- leadership[c(-8,-9)] 

This works because prepending a column index with a minus sign (-) excludes that column. 
Finally, the same deletion can be accomplished via 

leadership$q3 <- leadership$q4 <- NULL 

Here you set columns q3 and q4 to undefined (NULL). Note that NULL isn’t the same as NA 
(missing). 

Dropping variables is the converse of keeping variables. The choice depends on which is 
easier to code. If there are many variables to drop, it may be easier to keep the ones that 
remain, or vice versa. 

3.10.3 Selecting observations 

Selecting or excluding observations (rows) is typically a key aspect of successful data 
preparation and analysis. Several examples are given in the following listing. 

Listing 3.6 Selecting observations 

newdata <- leadership[1:3,] #A 
 
newdata <- leadership[leadership$gender=="M" &  #B 
                      leadership$age > 30,]     #B 
 

#A Asks for rows 1 through 3 (the first three observations) 
#B Selects all men over 30 

Each of these examples provides the row indices and leaves the column indices blank 
(therefore choosing all columns). Let’s break down the line of code at #1 in order to 
understand it: 

1. The logical comparison leadership$gender=="M" produces the vector c(TRUE, FALSE, 
FALSE, TRUE, FALSE). 
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2. The logical comparison leadership$age > 30 produces the vector c(TRUE, TRUE, 
FALSE, TRUE, TRUE). 

3. The logical comparison c(TRUE, FALSE, FALSE, TRUE, FALSE) & c(TRUE, TRUE, 
FALSE, TRUE, TRUE) produces the vector c(TRUE, FALSE, FALSE, TRUE, FALSE). 

4. leadership[c(TRUE, FALSE, FALSE, TRUE, FALSE),] selects the first and fourth 
observations from the data frame (when the row index is TRUE, the row is included; 
when it’s FALSE, the row is excluded). This meets the selection criteria (men over 30). 

At the beginning of this chapter, I suggested that you might want to limit your analyses to 
observations collected between January 1, 2009 and December 31, 2009. How can you do 
this? Here’s one solution: 

leadership$date <- as.Date(leadership$date, "%m/%d/%y")     #A 
 
startdate <- as.Date("2009-01-01")                          #B 
enddate   <- as.Date("2009-12-31")                          #C 
 
newdata <- leadership[which(leadership$date >= startdate &  #D 
           leadership$date <= enddate),]                    #D 

#A Converts the date values read in originally as character values to date values using the format mm/dd/yy 
#B Creates starting date 
#C Creates ending date 
#D Selects cases meeting your desired criteria, as in the previous example 

Note that the default for the as.Date() function is yyyy-mm-dd, so you don’t have to 
supply it here.  

3.10.4 The subset() function  

The examples in the previous two sections are important because they help describe the ways 
in which logical vectors and comparison operators are interpreted in R. Understanding how 
these examples work will help you to interpret R code in general. Now that you’ve done things 
the hard way, let’s look at a shortcut.  

The subset() function is probably the easiest way to select variables and observations. 
Here are two examples:  

newdata <- subset(leadership, age >= 35 | age < 23,  #A 
                  select=c(q1, q2, q3, q4))          #A 
 
newdata <- subset(leadership, gender=="M" & age > 25,#B   
                  select=gender:q4)                  #B 

#A Selects all rows that have a value of age greater than or equal to 35 or less than 23. Keeps variables q1 through q4 
#B Selects all men over the age of 25, and keeps variables gender through q4 (gender, q4, and all columns between 

them) 

You saw the colon operator from:to in chapter 2. Here, it provides all variables in a data 
frame between the from variable and the to variable, inclusive. 
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3.10.5 Random samples 

Sampling from larger datasets is a common practice in data mining and machine learning. For 
example, you may want to select two random samples, creating a predictive model from one 
and validating its effectiveness on the other. The sample() function enables you to take a 
random sample (with or without replacement) of size n from a dataset.  

You could take a random sample of size 3 from the leadership dataset using the following 
statement: 

mysample <- leadership[sample(1:nrow(leadership), 3, replace=FALSE),]  

The first argument to sample()  is a vector of elements to choose from. Here, the vector is 1 
to the number of observations in the data frame. The second argument is the number of 
elements to be selected, and the third argument indicates sampling without replacement. 
sample()  returns the randomly sampled elements, which are then used to select rows from 
the data frame. 

R has extensive facilities for sampling, including drawing and calibrating survey samples 
(see the sampling package) and analyzing complex survey data (see the survey package). 
Other methods that rely on sampling, including bootstrapping and resampling statistics, are 
described in chapter 12. 

3.11 Using dplyr to manipulate data frames 
So far, we've manipulated R data frames using base R functions. The dplyr package 

provides a series of shortcuts that allow you to complete the same data management tasks in 
a streamlined fashion. It is rapidly becoming one of the most popular R packages for data 
management. 

3.11.1 Basic dplyr functions 

The dplyr package provides a set of functions that can be used to select variables and 
observations, transform variables, rename variables, and sort rows. The relevant functions are 
listed in table 3.6.  

Table 3.5 dplyr functions for manipulating data frames 

Function Use 

select() Select variables/columns 

filter() Select observations/rows 

mutate() Transform or recode variables 

rename() Rename variables/columns 

recode() Recode variable values 
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arrange() Order rows by variable values 

Let's return to the data frame created in table 3.1 and reproduced in table 3.6 for 
convenience.  

Table 3.6 Gender differences in leadership behavior 

Manager Date Country Gender Age q1 q2 q3 q4 q5 

1 10/24/14 US M 32 5 4 5 5 5 

2 10/28/14 US F 45 3 5 2 5 5 

3 10/01/14 UK F 25 3 5 5 5 2 

4 10/12/14 UK M 39 3 3 4    

5 05/01/14 UK F 99 2 2 1 2 1 

This time we'll use dplyr functions to manipulate the dataset. The code is provided in listing 
3.7. Since dplyr is not part of base R, install it (install.packages("dplyr")) before first 
use. 

Listing 3.7 Manipulating data with dplyr 

manager <- c(1, 2, 3, 4, 5) 
date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09") 
country <- c("US", "US", "UK", "UK", "UK") 
gender <- c("M", "F", "F", "M", "F") 
age <- c(32, 45, 25, 39, 99) 
q1 <- c(5, 3, 3, 3, 2) 
q2 <- c(4, 5, 5, 3, 2) 
q3 <- c(5, 2, 5, 4, 1) 
q4 <- c(5, 5, 5, NA, 2) 
q5 <- c(5, 5, 2, NA, 1) 
leadership <- data.frame(manager, date, country, gender, age,  
                         q1, q2, q3, q4, q5, stringsAsFactors=FALSE) 
 
library(dplyr)                                                  #A 
 
leadership <- mutate(leadership,                                #B 
                     total_score = q1 + q2 + q3 + q4 + q5,      #B 
                     mean_score = total_score / 5)              #B 
 
leadership$gender <- recode(leadership$gender,                  #C 
                            "M" = "male", "F" = "female")       #C 
 
leadership <- rename(leadership, ID = "manager", sex = "gender")#D 
 
leadership <- arrange(leadership, sex, total_score)             #E 
 
leadership_ratings <- select(leadership, ID, mean_score)        #F 
 
leadership_men_high <- filter(leadership,                       #G 
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                              sex == "male" & total_score > 10) #G 

#A Load the dplyr package 
#B Create two summary variables 
#C Recode M and F to male and female  
#D Rename the manager and gender variables 
#E Sort the data by sex and then total score within sex 
#F Create a new data frame containing the rating variables 
#G Create a new data frame containing males with total scores above 10 

First the dplyr package is loaded #A. Then mutate() function is used to create a total score 
and mean score #B. The format is 

dataframe <- mutate(dataframe,  
                    newvar1 = expression,  
                    newvar2 = expression, ...). 

Note that when using dplyr, you don't place quote marks around variable names. The new 
variables are added to the data frame. 

Next, the recode() function is used to modify the values of the gender variable #C. The 
format is 

vector <- recode(vector,  
                 oldvalue1 = newvalue2,  
                 oldvalue2 = newvalue2, ...). 

Vector values that are not given new values are left unchanged. For example 

x <- c("a", "b", "c") 
x <- recode(x, "a" = "apple", "b" = "banana") 
x 
[1] "apple" "banana" "c" 

For numeric values, use back ticks to quote the original values. 

> y <- c(1, 2, 3) 
> y <- recode(y, `1` = 10, `2` = 15) 
> y 
[1] 10 15  3 

Next, the rename() function to change the variable names #D. The format is  

dataframe <- recode(dataframe,  
                    newname1 = "oldname1",  
                    newname2 = "oldname2", ...). 

The data are then sorted using the arrange() function #E. First the rows are sorted in 
ascending order by sex (females followed by males). Next the rows are in ascending order by 
total_score (low scores to high scores) separately within each sex group. The desc() 

function is used to reverse the order of the sorting. For example 

leadership <- arrange(leadership, sex, desc(total_score))    
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would sort the data in ascending order by sex and in descending order (high to low 

total_scores) within each sex.      
The select statement is used to select or exclude variables #F. In this case, the variables 

ID and mean_score are selected. 
The format for the select() function is 

dataframe <- select(dataframe, variablelist1, variablelist2, ...)  

Variable lists are typically variable names without quotes. The colon operator (:) can be used 
to select a range of variables. Additionally, functions can be used to select variables contain 
specific text strings. For example, the statement 

leadership_subset <- select(leadership,  
                             ID, country:age, starts_with("q"))  

would select the variables ID, country, sex, age, q1, q2, q3, q4 and q5. See 
help(select_helpers) for a list of functions that can be used to aid in the selection of 
variables. 

A minus sign (-) is used to exclude variables.  The statement  

leadership_subset <- select(leadership, -sex, -age) 

would include all variables except sex and age. 
Finally, the filter() function is used to select the observations or rows in a data frame 

meeting a given set of criteria #G. Here, men with total scores greater than 10 are retained. 
The format is 

dataframe <- filter(dataframe, expression) 

and rows are retained if the expression is TRUE. Any of the logical operators in table 3.3 can 
be used and parentheses can be used to clarify the precedence of these operators. For 
example 

extreme_men <- filter(leadership,  
                       sex == "male" &  
                       (mean_score < 2 | mean_score > 4)) 

would create a data frame containing all male managers with mean scores below 2 or above 4.  

3.11.2 Using pipe operators to chain statements 

The dplyr package allows you to write code in a compact format using the pipe operator (%>%) 
provided by the magrittr package. Consider the following three statements. 

high_potentials <- filter(leadership, total_score > 10) 
high_potentials <- select(high_potential, ID, country, mean_score) 
high_potentials <- arrange(high_potential, country, mean_score)   

These statements can be rewritten as a single statement using the pipe operator. 

high_potentials <- filter(leadership, total_score > 10) %>% 
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   select(ID, country, mean_score) %>% 
   arrange(country, mean_score)   

The %>% operator (pronounced THEN) passes the result on the left-hand side to the first 
parameter of the function on the right-hand side. A statement rewritten this way is often 
easier to read. 

Although we have covered basic dplyr functions, the package also contains has functions 
summarizing, combining, and restructure data. These additional functions will be discussed in 
chapter 4. 

3.12 Using SQL statements to manipulate data frames 
Until now, you’ve been using R statements and functions to manipulate data. But many data 
analysts come to R well versed in Structured Query Language (SQL). It would be a shame to 
lose all that accumulated knowledge. Therefore, before we end, let me briefly mention the 
existence of the sqldf package. (If you’re unfamiliar with SQL, please feel free to skip this 
section.) 

After downloading and installing the package (install.packages("sqldf")), you can use 
the sqldf() function to apply SQL SELECT statements to data frames. Two examples are given 
in the following listing.  

Listing 3.7 Using SQL statements to manipulate data frames 

> library(sqldf)                                                   #A 
> newdf <- sqldf("select * from mtcars where carb=1 order by mpg", #A  
                  row.names=TRUE)                                  #A 
> newdf                                                            #A 
                mpg cyl  disp  hp drat   wt qsec vs am gear carb 
Valiant        18.1   6 225.0 105 2.76 3.46 20.2  1  0    3    1 
Hornet 4 Drive 21.4   6 258.0 110 3.08 3.21 19.4  1  0    3    1 
Toyota Corona  21.5   4 120.1  97 3.70 2.46 20.0  1  0    3    1 
Datsun 710     22.8   4 108.0  93 3.85 2.32 18.6  1  1    4    1 
Fiat X1-9      27.3   4  79.0  66 4.08 1.94 18.9  1  1    4    1 
Fiat 128       32.4   4  78.7  66 4.08 2.20 19.5  1  1    4    1 
Toyota Corolla 33.9   4  71.1  65 4.22 1.83 19.9  1  1    4    1 
 
> sqldf("select avg(mpg) as avg_mpg, avg(disp) as avg_disp, gear #B 
              from mtcars where cyl in (4, 6) group by gear")    #B 
  avg_mpg avg_disp gear 
1    20.3      201    3 
2    24.5      123    4 
3    25.4      120    5 

#A Selects all variables (columns) from data frame mtcars, keeps only automobiles (rows) with one carburetor (carb), 
sorts in ascending order by mpg, and saves the results as the data frame newdf. The option row.names=TRUE 
carries the row names from the original data frame over to the new one.  

#B Prints the mean mpg and disp within each level of gear for automobiles with four or six cylinders (cyl) 

Experienced SQL users will find the sqldf package a useful adjunct to data management in R. 
See the project home page (https://github.com/ggrothendieck/sqldf) for more details. 
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3.13 Summary 
• Base R functions can be used to create new variables and rename existing variabels. 
• In R, missing values are represented with the symbol NA.  Functions are provided for 

recoding data as missing and removing missing values from data frames prior to 
analyses. 

• Date values are typically input as character strings, translated into date values via 
functions such as as.Date(), and stored internally as numerical values (the number of 
days since January 1, 1970).  

• Base R function are provided for subsetting the columns (variables), and rows 
(observations) of a data frame, sorting the rows of a data frame, and merging two or 
more data frames together. The dplyr package provides a set of functions for 
accomplishing these tasks in a format that often easier to use and understand. 
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4  
Getting started with graphs 

This chapter covers 

• An introduction to the ggplot2 package 
• Creating a simple bivariate (2-variable) graph 
• Using grouping and faceting to create multivariate graphs 
• Saving graphs in multiple formats 

On many occasions, I’ve presented clients with carefully crafted statistical results in the form 
of numbers and text, only to have their eyes glaze over while the chirping of crickets 
permeated the room. Yet those same clients had enthusiastic “Ah-ha!” moments when I 
presented the same information to them in the form of graphs. Often I can see patterns in 
data or detect anomalies in data values by looking at graphs—patterns or anomalies that I 
completely missed when conducting more formal statistical analyses.  

Human beings are remarkably adept at discerning relationships from visual 
representations. A well-crafted graph can help you make meaningful comparisons among 
thousands of pieces of information, extracting patterns not easily found through other 
methods. This is one reason why advances in the field of statistical graphics have had such a 
major impact on data analysis. Data analysts need to look at their data, and this is one area 
where R shines. 

The R language has grown organically over the years, through the contributions of many 
independent software developers. This has led to the creation of four distinct approaches to 
graph creation in R – base, lattice, ggplot2, and grid graphics. Appendix H provides an 
overview of each of these systems. In this chapter, and throughout a majority of the 
remaining chapters, we'll focus on ggplot2, the most powerful and popular approach currently 
available in R.  
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The ggplot2 package, written by Hadley Wickham (2009a), provides a system for creating 
graphs based on the grammar of graphics described by Wilkinson (2005) and expanded by 
Wickham (2009b). The intention of the ggplot2 package is to provide a comprehensive, 
grammar-based system for generating graphs in a unified and coherent manner, allowing 
users to create new and innovative data visualizations.  

This chapter will walk you through the major concepts and functions used to create 
ggplot2 graphs by using visualizations to address the following questions: 

• What is the relationship between a worker's past experience and their salary? 
• How can we summarize this relationship simply? 
• Is this relationship different for men and women? 
• Does it matter what industry the worker is in? 

We'll start with a simple scatterplot displaying the relationship between workers' 
experience and wages. Then in each section, we'll add new features until we've produced a 
single publication quality plot that addresses these questions. At each step, we'll hopefully 
gain greater insight into the questions presented. 

To answer these questions, we'll use the CPS85 data frame contained in the mosaicData 
package. The data frame contains a random sample of 534 individuals selected from the 1985 
Current Population Survey, and includes information their wages, demographics, and work 
experience. Be sure to install both the mosaicData and ggplot2 packages before continuing 
(install.packages(c("mosaicData", "ggplot2))). 

4.1 Creating a graph with ggplot2 
The ggplot2 package uses a series of functions to build up a graph in layers. We’ll build a 
complex graph by starting with a simple graph and adding additional elements, one at a time. 
By default, ggplot2 graphs appear on a grey background with white reference lines. We'll start 
by setting the default theme to a white background with light grey reference lines. This looks 
better when printed in black and white. Let's load the ggplot2 package and set this default 
theme. 

library(ggplot2) 
theme_set(theme_bw()) 

Themes are described in section 4.1.7. 

4.1.1 ggplot 

The first function in building a graph is the ggplot() function. It specifies the 

• data frame containing the data to be plotted 
• the mapping of the variables to visual properties of the graph. The mappings are placed 

in an aes() function (which stands for aesthetics or "something you can see"). 
The code 
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library(ggplot2) 
library(mosaicData) 
ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) 

produces the graph in figure 4.1. 

 
Figure 4.1 Mapping worker experience and wages to the x- and y-axes 

Why is the graph empty? We specified that the exper variable should be mapped to the x-
axis and that the wage variable should be mapped to the y-axis, but we haven’t yet specified 
what we wanted placed on the graph. In this case, we'll want points to represent each 
participant. 

4.1.2 Geoms 

Geoms are the geometric objects (points, lines, bars, and shaded regions) that can be placed 
on a graph. They are added using functions that start with the phrase geom_. Currently, 37 
different geoms are available and the list is growing. Table 4.1 describes the more common 
geoms, along with frequently used options for each. 
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Table 4.1 Geom functions 

Function Adds Options 

geom_bar() Bar chart color, fill, alpha 

geom_boxplot() Box plot color, fill, alpha, notch, 
width 

geom_density() Density plot color, fill, alpha, 
linetype 

geom_histogram() Histogram color, fill, alpha, 
linetype, binwidth 

geom_hline() Horizontal lines color, alpha, linetype, 
size 

geom_jitter() Jittered points color, size, alpha, shape 

geom_line() Line graph colorvalpha, linetype, 
size 

geom_point() Scatterplot color, alpha, shape, size 

geom_rug() Rug plot color, side 

geom_smooth() Fitted line method, formula, color, 
fill, linetype, size 

geom_text() Text annotations Many; see the help for this 
function 

geom_violin() Violin plot color, fill, alpha, 
linetype  

geom_vline() Vertical lines color, alpha, linetype, 
size 

 

We’ll add points using the geom_point() function, creating a scatterplot. In ggplot2 
graphs, functions are chained together using the + sign to build a final plot. 

library(ggplot2) 
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library(mosaicData) 
ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) +  geom_point() 

The results can be seen in figure 4.2. 

 
Figure 4.2 Scatterplot of worker experience vs. wages 

It appears that as experience goes up, wages go up, but the relationship is weak. The 
graph also indicates that there is an outlier. One individual has a wage much higher than the 
rest. We’ll delete this case and reproduce the plot. 

CPS85 <- CPS85[CPS85$wage < 40, ]  
ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) + 
  geom_point() 

The new graph is displayed in figure 4.3. 
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Figure 4.3 Scatterplot of worker experience vs. wages with outlier removed 

A number of options can be specified in a geom_ function (see table 4.1). Options for 
geom_point()include color, size, shape, and alpha. These control the point color, size, 
shape, and transparency, respectively. Colors can be specified by name or hexadecimal code. 
Shape and linetype can be specified by the name or number representing the pattern or 
symbol respectively. Point size is specified with positive real numbers starting at zero. Large 
numbers produce larger point sizes. Transparency ranges from 0 (completely transparent) to 1 
(completely opaque). Adding a degree of transparency can help visualize overlapping points. 
Each of these options is described more fully in Chapter 19 (Advanced Graphics with ggplot2). 

Let's make the points in figure 4.3 larger, semi-transparent, and blue. The code 

ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) + 
  geom_point(color = "cornflowerblue", alpha = .7, size = 3) 

produces the graph in figure 4.4. We'll also change the gray background to white using theme 
(themes are described in section 4.1.7). I might argue that the chart is more attractive (at 
least if you have color output), but it doesn't add to our insights. It would be helpful if the 
graph had a line summarizing the trend between experience and wages. 
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Figure 4.4 Scatterplot of worker experience vs. wages with outlier removed with modified point color, 
transparency, and point size 

We can add this line with the geom_smooth() function. Options control the type of line 
(linear, quadratic, nonparametric), the thickness of the line, the line’s color, and the presence 
or absence of a confidence interval. Each of these is discussed in Chapter 11(Intermediate 
Graphics). Here we request a linear regression (method = lm) line (where lm stands for linear 
model). 

ggplot(data = CPS85, mapping = aes(x = exper, y = wage)) + 
  geom_point(color = "cornflowerblue", alpha = .7, size = 3) + 
  geom_smooth(method = "lm") 

The results are given in figure 4.5. 
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Figure 4.5 Scatterplot of worker experience vs. wages with a line of best fit 

We can see from this line that on average, wages appear to increase to a moderate degree 
with experience. This chapter uses only two geoms. In future chapters, we'll use others to 
create a wide variety of graph types, including bar charts, histograms, boxplots, density plots, 
and others. 

4.1.3 Grouping 

In the previous section, we set graph characteristics such as color and transparency to a 
constant value. However, we can also map variables values to the color, shape, size, 
transparency, line style, and other visual characteristics of geometric objects. This allows 
groups of observations to be superimposed in a single graph (a process called grouping). 

Let’s add sex to the plot and represent it by color, shape, and linetype. 

ggplot(data = CPS85,  
       mapping = aes(x = exper, y = wage,  
                     color = sex, shape = sex, linetype = sex)) + 
  geom_point(alpha = .7, size = 3) + 
  geom_smooth(method = "lm", se = FALSE, size = 1.5) 
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By default, the first group (female) is represent by pink filled circles and a solid pink line, while 
the second group (male) is represent by teal filled triangles and a dashed teal line. The new 
graph is presented in figure 4.6 

 
Figure 4.6 Scatterplot of worker experience vs. wages with points colored by sex and separate line of best fit for 
men and women. 

Note that the color=sex, shape=sex, and linetype=sex, options are placed in the aes() 
function because we are mapping a variable to an aesthetic. The geom_smooth option (se = 
FALSE) was added to suppresses the confidence intervals, making the graph less busy and 
easier to read. The size = 1.5 option makes the line a bit thicker. 

Simplifying Graphs 
In general, or goal is to create graphs that are as simple as possible while conveying the information accurately. In the 
graphs in this chapter, I would probably map gender to color alone. Adding mappings to shape and line type make the 
graphs unnecessarily busy. I've added them here in order to create graphs that are more easily readable in both color 
(e-book) and the greyscale (print) formats of this book. 
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It now appears that men tend to make more money than women (higher line). 
Additionally, there may be a stronger relationship between experience and wages for men 
than for women (steeper line). 

4.1.4 Scales 

As we've seen, the aes() function is used to map variables to the visual characteristics of a 
plot. Scales specify how each of these mappings occurs. For example, ggplot2 automatically 
creates plot axes with tick marks, tick mark labels, and axis labels. Often they look fine, but 
occasionally you'll want to take greater control over their appearance. Colors that represent 
groups are chosen automatically, but you may want to select a different set of colors bases on 
your tastes or a publication's requirements.  

Scale functions (which start with scale_) allow you to modify these default scaling. Some 
common scaling functions are listed in table 4.2. 

Table 4.2 Some common scale functions 

 

Function Description 

scale_x_continuous(), 
scale_y_continuous() 

Scales the x and y axes for quantitative variables. Options include 
breaks for specifying tick marks, labels for specifying tick mark 
labels, and limits  to control the range of the values displayed. 

scale_x_discrete(), 
scale_y_discrete() 

Same as above for axes representing categorical variables. 

scale_color_manual() Specifies the colors used to represent the levels of a categorical 
variable. The values option specifies the colors. A table of colors can 
be found at 
http://research.stowers.org/mcm/efg/R/Color/Chart/ColorChart.pdf  

 
In the next plot, we’ll change the x- and y-axis scaling, and the colors representing males 

and females. The x-axis representing exper will range from 0 to 60 by 10, and the y-axis 
representing wage will range from 0 to 30 by 5. Females will be coded with an off-red color 
and males will be coded with an off-blue color. The code 

ggplot(data = CPS85, 
       mapping = aes(x = exper, y = wage,  
                     color = sex, shape=sex, linetype=sex)) + 
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   geom_point(alpha = .7, size = 3) + 
   geom_smooth(method = "lm", se = FALSE, size = 1.5) + 
   scale_x_continuous(breaks = seq(0, 60, 10)) + 
   scale_y_continuous(breaks = seq(0, 30, 5) + 
   scale_color_manual(values = c("indianred3", "cornflowerblue")) 

produces the graph in figure 4.7. 

 
Figure 4.7 Scatterplot of worker experience vs. wages with custom x- and y-axes and custom color mappings for 
sex. 

 

The numbers on the x- and y-axes are better, and the colors are more attractive (IMHO). 
However, wages are in dollars. We can change the labels on the y-axis to represent dollars 
using the scales package. The scales package provides label formatting for dollars, euros, 
percents, and more.  

Install the scales package (install.packages("scales")) and then run the following 
code. 
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ggplot(data = CPS85, 
       mapping = aes(x = exper, y = wage,  
                                   color = sex, shape=sex, linetype=sex)) + 
   geom_point(alpha = .7, size = 3) + 
   geom_smooth(method = "lm", se = FALSE, size = 1.5) + 
   scale_x_continuous(breaks = seq(0, 60, 10)) + 
   scale_y_continuous(breaks = seq(0, 30, 5), 
                      label = scales::dollar) + 
   scale_color_manual(values = c("indianred3", "cornflowerblue")) 

The results are provided in Figure 4.8. 

 
Figure 4.8 Scatterplot of worker experience vs. wages with custom x- and y-axes and custom color mappings for 
sex. Wages are printed in dollar format. 

We are definitely getting there. Here is the next question. Is the relationship between 
experience, wages and sex the same for each job sector? Let’s repeat this graph once for each 
job sector in order to explore this. 
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4.1.5 Facets 

Sometimes relationships are clearer if groups appear in side-by-side graphs rather than 
overlapping in a single graph. Facets reproduce a graph for each level of a given variable (or 
combination of variables). You can create faceted graphs using the facet_wrap() and 
facet_grid() functions. The syntax is given in table 14.3, where var, rowvar, and colvar 
are factors.  

Table 4.3 ggplot2 facet functions 

Syntax Results 

facet_wrap(~var, ncol=n) Separate plots for each level of var arranged into n columns 

facet_wrap(~var, nrow=n) Separate plots for each level of var arranged into n rows 

facet_grid(rowvar~colvar) Separate plots for each combination of rowvar and colvar, where 
rowvar represents rows and colvar represents columns 

facet_grid(rowvar~.) Separate plots for each level of rowvar, arranged as a single  
column 

facet_grid(.~colvar) Separate plots for each level of colvar, arranged as a single row 

 
Here, facets will be defined by the eight levels of the sector variable. Since each facet will 

be smaller than a one panel graph alone, we'll omit size=3 from geom_point() and size=1.5 
from geom_smooth(). This will reducethe point and line sizes compared with the previous 
graphs and looks better in a faceted graph. The code 

ggplot(data = CPS85, 
       mapping = aes(x = exper, y = wage,  
                     color = sex, shape = sex, linetype = sex)) + 
  geom_point(alpha = .7) + 
  geom_smooth(method = "lm", se = FALSE) + 
  scale_x_continuous(breaks = seq(0, 60, 10)) + 
  scale_y_continuous(breaks = seq(0, 30, 5), 
                     label = scales::dollar) + 
  scale_color_manual(values = c("indianred3", "cornflowerblue")) + 
  facet_wrap(~sector) 
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produces figure 4.9.  

 
Figure 4.9 Scatterplot of worker experience vs. wages with custom x- and y-axes and custom color mappings for 
sex. Separate graphs (facets) are provided for each of 8 job sectors. 

It appears that the differences between men and women depend on the job sector under 
consideration. For example, there is a strong positive relationship between experience and 
wages for male managers, but not for female managers. To a lesser extent, this is also true 
for sales workers.  There appears to be no relationship between experience and wages for 
both male and female service workers. In either case, males make slightly more. Wages go up 
with experience for female clerical workers, but may go down for male clerical workers (the 
relationship may not be significant here). We have gained a great deal of insight into the 
relationship of wages and experience at this point. 
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4.1.6 Labels 

Graphs should be easy to interpret and informative labels are a key element in achieving this 
goal. The labs() function provides customized labels for the axes and legends. Additionally, a 
custom title, subtitle, and caption can be added. Let's modify each in the following code. 

ggplot(data = CPS85,  
       mapping = aes(x = exper, y = wage, 
                 color = sex, shape=sex, linetype=sex)) + 
    geom_point(alpha = .7) + 
    geom_smooth(method = "lm", se = FALSE) + 
    scale_x_continuous(breaks = seq(0, 60, 10)) + 
    scale_y_continuous(breaks = seq(0, 30, 5), 
                       label = scales::dollar) + 
    scale_color_manual(values = c("indianred3",  
                                "cornflowerblue")) + 
    facet_wrap(~sector) + 
    labs(title = "Relationship between wages and experience", 
       subtitle = "Current Population Survey", 
       caption = "source: http://mosaic-web.org/", 
       x = " Years of Experience", 
       y = "Hourly Wage", 
       color = "Gender", shape = "Gender", linetype = "Gender") 

The graph is provided in figure 4.10. 
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Figure 4.10 Scatterplot of worker experience vs. wages with separate graphs (facets) for each of 8 job sectors 
and custom titles and labels. 

Now a viewer doesn’t need to guess what the labels expr and wage mean, or where the 
data come from. 

4.1.7 Themes 

Finally, we can fine tune the appearance of the graph using themes. Theme functions (which 
start with theme_) control background colors, fonts, grid-lines, legend placement, and other 
non-data related features of the graph. Let’s use a cleaner theme. We used themes at the 
beginning of section 4.1 in order to give each plot a white background. Let's try a different 
theme – one that is more minimalistic. The code 
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ggplot(data = CPS85, 
       mapping = aes(x = exper, y = wage, color = sex)) + 
  geom_point(alpha = .6) + 
  geom_smooth(method = "lm", se = FALSE) + 
  scale_x_continuous(breaks = seq(0, 60, 10)) + 
  scale_y_continuous(breaks = seq(0, 30, 5), 
                     label = scales::dollar) + 
  scale_color_manual(values = c("indianred3", "cornflowerblue")) + 
  facet_wrap(~sector) + 
  labs(title = "Relationship between wages and experience", 
       subtitle = "Current Population Survey", 
       caption = "source: http://mosaic-web.org/", 
       x = " Years of Experience", 
       y = "Hourly Wage", 
       color = "Gender") + 
  theme_minimal() 

produces the graph in figure 4.11. 
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Figure 4.11 Scatterplot of worker experience vs. wages with separate graphs (facets) for each of 8 job sectors 
and custom titles and labels, and a cleaner theme. 

This is our finished graph, ready for publication. Of course, these findings are tentative. 
They are based on a limited sample size and don't involve statistical testing to assess whether 
differences may be due to chance variation. Appropriate tests for this type of data will be 
described in Chapter 8 (Regression). 

4.2 ggplot2 details 
Before finishing this chapter, there are three important topics to consider: the placement of 
the aes() function, the treatment of ggplot2 graphs as R objects, and various methods to 
save your graphs for use in reports and webpages. 
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4.2.1 Placing the data and mapping options 

Plots created with ggplot2 always start with the ggplot function. In the previous examples, 
the data= and mapping= options were placed in this function. In this case they apply to each 
geom function that follows. 

You can also place these options directly within a geom. In that case, they only apply to 
that specific geom. Consider the following graph. 

ggplot(CPS85, 
         mapping = aes(x = exper, y = wage, color = sex)) + 
     geom_point(alpha = .7, size = 3) + 
     geom_smooth(method = "lm", se = FALSE, size = 1.5) 

The resulting plot is displayed in figure 4.12. 

 
Figure 4.12. Scatterplot of experience and wage by sex, where aes(color=sex) is placed in the ggplot() function. 
The mapping is applied to both the geom_point() and geom_smooth(), producing separate point colors for 
males and females, along with separate lines of best fit. 
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Since the mapping of sex to color appears in the ggplot() function, it applies to both 
geom_point and geom_smooth. The color of the point indicates the sex, and a separate colored 
trend line is produced for men and women. Compare this to  

ggplot(CPS85, aes(x = exper, y = wage)) + 
  geom_point(aes(color = sex), alpha = .7, size = 3) + 
geom_smooth(method = "lm", se = FALSE, size = 1.5) 

The resulting graph is given in figure 4.13. 

 
Figure 4.13 Scatterplot of experience and wage by sex, where aes(color=sex) is placed in the geom_point() 
function. The mapping is applied to point color producing separate point colors for men and women, but a single 
line of best fit for or all workers. 

Since the sex to color mapping only appears in the geom_point() function, it is only used 
there. A single trend line is created for all observations. 

Most of the examples in this book place the data and mapping options in the ggplot 
function. Additionally, the phrases data= and mapping= are omitted since the first option 
always refers to data and the second option always refers to mapping. 
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4.2.2 Graphs as objects 

A ggplot2 graph can be saved as a named R object (a list), manipulated further, and then 
printed or saved to disk. Consider the code in listing 4.1. 

Listing 4.1 Using a ggplot2 graph as an object 

data(CPS85 , package = "mosaicData")                 #A 
CPS85 <- CPS85[CPS85$wage < 40,]                     #A 
 
myplot <- ggplot(data = CPS85,                       #B 
            aes(x = exper, y = wage)) +              #B 
       geom_point()                                  #B 
 
myplot                                               #C 
 
myplot2 <- myplot + geom_point(size = 3, color = "blue")  #D 
myplot2                                                   #D 
 
myplot + geom_smooth(method = "lm") +               #E 
  labs(title = "Mildly interesting graph")          #E 

#A Prepare data 
#B Create a scatterplot and save it as myplot 
#C Display myplot 
#D Make the points larger and blue, save it as myplot2 and display the graph 
#E Display myplot with a best fit line and a title 

First the data are imported and outliers are removed #A. Then a simple scatter plot of 
experience vs. wages is created and saved as myplot #B. Next, the plot is printed #C. The 
plot is then modified by changing the point size and color, saved as myplot2 and printed #D. 
Finally, the original plot is given a line of best fit and title, and printed #E. Note that these 
changes are not saved.  

The ability to save graphs as objects allows you to continue to work with and modify them. 
This can be a real time saver (and help you avoid carpal tunnel syndrome). It is also handy 
when saving graphs programmatically, as we'll see in the next section. 

4.2.3 Exporting graphs 

You can export graphs created by ggplot2 in a variety of image formats using the RStudio 
GUI or through your code. To export a graph using the RStudio menus, go to the Plots tab and 
choose Export (see figure 4.14). 
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Figure 14.14 Saving a graph using the RStudio interface 

To export a graph via code use the ggsave() function. You can specify the plot to save, its 
size and format, and where to save it. For example, 

ggsave(file="mygraph.png", plot=myplot, width=5, height=4) 

saves myplot as a 5-inch by 4-inch PNG file named mygraph.png in the current working 
directory. You can save the graph in a different format by changing the file extension. A 
description of the most common formats is provided in table 4.4. 

Table 4.4 Image file formats 

Extension Format 

pdf Portable Document Format 

jpeg JPEG 

tiff Tagged Image File Format 

png Portable Network Graphics 

svg Scalable Vector Graphics 

wmf Windows Metafile 
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The pdf, svg, and wmf formats are lossless - they resize without fuzziness or pixilation. 
The other formats are lossy - they will pixelate when resized. This is especially noticeable 
when small images are enlarged. The png format is popular for images destined for webpages. 
The jpeg and tif formats are usually reserved for photographs. 

The wmf format is usually recommended for graphs that will appear in Microsoft Word or 
PowerPoint documents. MS Office does not support pdf or svg files, and the wmf format will 
rescale well. However, note that wmf files will lose any transparency settings that have been 
set. 

If you omit the plot= option, the most recently created graph is saved. The code 

ggplot(data=mtcars, aes(x=mpg)) + geom_histogram() 
ggsave(file="mygraph.pdf") 

is valid and saves the graph to disk as a PDF document. See help(ggsave) for additional 
details. 

4.2.4 Common mistakes 

After working with ggplot2 for years, I've found that there are two mistakes that are 
frequently made. The first is omitting or misplacing a closing parentheses. This happens most 
often following the aes() function. Consider the following code. 

ggplot(CPS85, aes(x = exper, y = wage, color = sex) + 
  geom_point() 

Note the lack of a closing parentheses at the end of the first line. I can't tell you how many 
times I've done this. 

The second error is confusing an assignment for a mapping. The code 

ggplot(CPS85, aes(x = exper, y = wage, color = "blue")) + 
  geom_point() 

produces the graph in figure 14.8. The points are red (not blue) and there is a strange legend. 
What happened? 
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Figure 14.15 Placing an assignment statement in the aes function() 

The aes() function is used to map variables to the visual characteristics of the graph. 
Assigning constant values is done outside the aes() function. The correct code would be 

ggplot(CPS85, aes(x = exper, y = wage) + 
  geom_point(color = "blue") 

4.3 Summary 
• The ggplot2 package provides a powerful platform for creating both simple and 

complex graphs. Graphs are built up in layers using functions chained together with the 
plus (+) symbol. 

• The ggplot() function specifies a data frame containing plot data and an aes() 
function that maps variables to visual aspects of the graph. 

• geom_ functions specify the geometric objects (bars, lines, points, etc.) to be placed on 
the graph. 

• Optional scale_ functions allow you to customize how a variable's values will be 
translated into their visual representations on the graph (e.g., the x- and y-axis scales 
and labels to used, and what colors, shapes, and line-types will be mapped to a 
variable's values). 

• Data from two or more groups can be represented by grouping (superimposing plots 
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distinguished by visual aspects such as color) or faceting (placing several small plots in 
a matrix-like array). 

• Two common errors of ggplot are missing/misplaced parentheses and confusing an 
assignment for a mapping. 

• Graphs can be exported in a wide variety of image formats (such as tiff, pdf, jpg, png, 
svg, and wmf) using the RStudio GUI or the ggsave() function. 
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5  
Advanced data management 

This chapter covers 

• Mathematical and statistical functions 
• Character functions 
• Looping and conditional execution 
• User-written functions 
• Ways to aggregate and reshape data 

In chapter 3, we reviewed the basic techniques used for managing datasets in R. In this 
chapter, we’ll focus on advanced topics. The chapter is divided into three basic parts. In the 
first part, we’ll take a whirlwind tour of R’s many functions for mathematical, statistical, and 
character manipulation. To give this section relevance, we begin with a data-management 
problem that can be solved using these functions. After covering the functions themselves, 
we’ll look at one possible solution to the data-management problem. 

Next, we cover how to write your own functions to accomplish data-management and -
analysis tasks. First, we’ll explore ways of controlling program flow, including looping and 
conditional statement execution. Then we’ll investigate the structure of user-written functions 
and how to invoke them once created.  

Then, we’ll look at ways of aggregating and summarizing data, along with methods of 
reshaping and restructuring datasets. When aggregating data, you can specify the use of any 
appropriate built-in or user-written function to accomplish the summarization, so the topics 
you learn in the first two parts of the chapter will provide a real benefit. 

5.1 A data-management challenge 
To begin our discussion of numerical and character functions, let’s consider a data-
management problem. A group of students have taken exams in math, science, and English. 
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You want to combine these scores in order to determine a single performance indicator for 
each student. Additionally, you want to assign an A to the top 20% of students, a B to the 
next 20%, and so on. Finally, you want to sort the students alphabetically. The data are 
presented in table 5.1. 

Table 5.1 Student exam data 

Student Math Science English 

John Davis 502 95 25 

Angela Williams 600 99 22 

Bullwinkle Moose 412 80 18 

David Jones 358 82 15 

Janice Markhammer 495 75 20 

Cheryl Cushing 512 85 28 

Reuven Ytzrhak 410 80 15 

Greg Knox 625 95 30 

Joel England 573 89 27 

Mary Rayburn 522 86 18 

Looking at this dataset, several obstacles are immediately evident. First, scores on the three 
exams aren’t comparable. They have widely different means and standard deviations, so 
averaging them doesn’t make sense. You must transform the exam scores into comparable 
units before combining them. Second, you’ll need a method of determining a student’s 
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percentile rank on this score in order to assign a grade. Third, there’s a single field for names, 
complicating the task of sorting students. You’ll need to split their names into first name and 
last name in order to sort them properly.  

Each of these tasks can be accomplished through the judicious use of R’s numerical and 
character functions. After working through the functions described in the next section, we’ll 
consider a possible solution to this data-management challenge. 

5.2 Numerical and character functions 
In this section, we’ll review functions in R that can be used as the basic building blocks for 
manipulating data. They can be divided into numerical (mathematical, statistical, probability) 
and character functions. After we review each type, I’ll show you how to apply functions to the 
columns (variables) and rows (observations) of matrices and data frames (see section 5.2.6). 

5.2.1 Mathematical functions 

Table 5.2 lists common mathematical functions along with short examples.  

Table 5.2 Mathematical functions 

Function Description 

abs(x) Absolute value 

abs(-4) returns 4. 

sqrt(x) Square root 

sqrt(25) returns 5. This is the same as 25^(0.5). 

ceiling(x) Smallest integer not less than x 

ceiling(3.475) returns 4. 

floor(x) Largest integer not greater than x 

floor(3.475) returns 3. 

trunc(x) Integer formed by truncating values in x toward 0 
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trunc(5.99) returns 5. 

round(x, digits=n)  Rounds x to the specified number of decimal places 

round(3.475, digits=2) returns 3.48. 

signif(x, digits=n)  Rounds x to the specified number of significant digits 

signif(3.475, digits=2) returns 3.5. 

cos(x), sin(x), tan(x)  Cosine, sine, and tangent 

cos(2) returns –0.416. 

acos(x), asin(x), atan(x) Arc-cosine, arc-sine, and arc-tangent 

acos(-0.416) returns 2. 

cosh(x), sinh(x), tanh(x)  Hyperbolic cosine, sine, and tangent 

sinh(2) returns 3.627. 

acosh(x), asinh(x), atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent 

asinh(3.627) returns 2. 

log(x,base=n) 

log(x) 

log10(x) 

Logarithm of x to the base n 

For convenience: 

• log(x) is the natural logarithm. 

• log10(x) is the common logarithm. 

• log(10) returns 2.3026. 

• log10(10) returns 1. 

exp(x) Exponential function 

exp(2.3026) returns 10. 
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Data transformation is one of the primary uses for these functions. For example, you often 
transform positively skewed variables such as income to a log scale before further analyses. 
Mathematical functions are also used as components in formulas, in plotting functions (for 
example, x versus sin(x)), and in formatting numerical values prior to printing. 

The examples in table 5.2 apply mathematical functions to scalars (individual numbers). 
When these functions are applied to numeric vectors, matrices, or data frames, they operate 
on each individual value. For example, sqrt(c(4, 16, 25)) returns c(2, 4, 5). 

5.2.2 Statistical functions 

Common statistical functions are presented in table 5.3. Many of these functions have optional 
parameters that affect the outcome. For example, 

y <- mean(x) 

provides the arithmetic mean of the elements in object x, and 
z <- mean(x, trim = 0.05, na.rm=TRUE) 

provides the trimmed mean, dropping the highest and lowest 5% of scores and any missing 
values. Use the help() function to learn more about each function and its arguments. 

Table 5.3 Statistical functions 

Function Description 

mean(x) Mean 

mean(c(1,2,3,4)) returns 2.5. 

median(x) Median 

median(c(1,2,3,4)) returns 2.5. 

sd(x) Standard deviation  

sd(c(1,2,3,4)) returns 1.29. 

var(x) Variance 

var(c(1,2,3,4)) returns 1.67. 

mad(x) Median absolute deviation 
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mad(c(1,2,3,4)) returns 1.48. 

quantile(x, probs) Quantiles where x is the numeric vector, where quantiles are desired and probs 
is a numeric vector with probabilities in [0,1] 

# 30th and 84th percentiles of x 

y <- quantile(x, c(.3,.84)) 

range(x) Range 

x <- c(1,2,3,4) 

range(x) returns c(1,4). 

diff(range(x)) returns 3. 

sum(x) Sum 

sum(c(1,2,3,4)) returns 10. 

diff(x, lag=n) Lagged differences, with lag indicating which lag to use. The default lag is 1. 

x<- c(1, 5, 23, 29) 

diff(x) returns c(4, 18, 6). 

min(x) Minimum 

min(c(1,2,3,4)) returns 1. 

max(x) Maximum 

max(c(1,2,3,4)) returns 4. 

scale(x,  

  center=TRUE,  

  scale=TRUE) 

Column center (center=TRUE) or standardize (center=TRUE, 
scale=TRUE) data object x. An example is given in listing 5.6. 
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To see these functions in action, look at the next listing. This example demonstrates two ways 
to calculate the mean and standard deviation of a vector of numbers. The data are the English 
scores in table 5.1. 

Listing 5.1 Calculating the mean and standard deviation 

> x <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18) 
 
> mean(x)                                 #A 
[1] 21.8                                  #A 
> sd(x)                                   #A 
[1] 5.452828                             #A 
 
> n <- length(x)                          #B 
> meanx <- sum(x)/n                       #B 
> css <- sum((x - meanx)^2)               #B 
> sdx <- sqrt(css / (n-1))                #B 
> meanx                                   #B 
[1] 21.8                                  #B 
> sdx                                     #B 
[1] 5.452828                              #B 

#A Short way 
#B Long way 

It’s instructive to view how the corrected sum of squares (css) is calculated in the second 
approach: 

1. x equals c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18), and mean x equals 21.8 
(length(x) returns the number of elements in x). 

2. (x – meanx) subtracts 4.5 from each element of x, resulting in  

c(3.2, 0.2, -3.8, -6.8, -1.8, 6.2, -6.8, 8.2, 5.2, -3.8) 

3. (x – meanx)^2 squares each element of (x - meanx), resulting in  

c(10.24, 0.04, 14.44, 46.24, 3.24, 38.44, 46.24, 67.24, 27.04, 14.44) 

4. sum((x - meanx)^2) sums each of the elements of (x - meanx)^2), resulting in 
267.6. 

Writing formulas in R has much in common with matrix-manipulation languages such as 
MATLAB (we’ll look more specifically at solving matrix algebra problems in appendix D).  

Standardizing data 
By default, the scale() function standardizes the specified columns of a matrix or data frame to a mean of 0 and a 
standard deviation of 1:  
newdata <- scale(mydata) 

To standardize each column to an arbitrary mean and standard deviation, you can use code similar to the following 
newdata <- scale(mydata)*SD + M 
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where M is the desired mean and SD is the desired standard deviation. Using the scale() function on non-numeric 
columns produces an error. To standardize a specific column rather than an entire matrix or data frame, you can use 
code such as this: 
newdata <- transform(mydata, myvar = scale(myvar)*10+50) 

This code standardizes the variable myvar to a mean of 50 and standard deviation of 10. You’ll use the scale() 
function in the solution to the data-management challenge in section 5.3. 
 

5.2.3 Probability functions 

You may wonder why probability functions aren’t listed with the statistical functions (it was 
really bothering you, wasn’t it?). Although probability functions are statistical by definition, 
they’re unique enough to deserve their own section. Probability functions are often used to 
generate simulated data with known characteristics and to calculate probability values within 
user-written statistical functions.  

In R, probability functions take the form 

[dpqr]distribution_abbreviation() 

where the first letter refers to the aspect of the distribution returned: 

d = density 

p = distribution function 

q = quantile function 

r = random generation (random deviates) 

The common probability functions are listed in table 5.4.  

Table 5.4 Probability distributions 

Distribution Abbreviation Distribution Abbreviation 

Beta beta Logistic logis 

Binomial binom Multinomial multinom 

Cauchy cauchy Negative binomial nbinom 

Chi-squared (noncentral) chisq Normal norm 
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Exponential exp Poisson pois 

F f Wilcoxon signed rank signrank 

Gamma gamma T t 

Geometric geom Uniform unif 

Hypergeometric hyper Weibull weibull 

Lognormal lnorm Wilcoxon rank sum wilcox 

To see how these work, let’s look at functions related to the normal distribution. If you don’t 
specify a mean and a standard deviation, the standard normal distribution is assumed 
(mean=0, sd=1). Examples of the density (dnorm), distribution (pnorm), quantile (qnorm), and 
random deviate generation (rnorm) functions are given in table 5.5. 
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Table 5.5 Normal distribution functions 

Problem Solution 

Plot the standard normal curve on the interval [–
3,3] (see figure). 
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library(ggplot2) 

x <- seq(from = -3, to = 3, by = 0.1) 

y = dnorm(x) 

data <- data.frame(x = x, y=y) 

ggplot(data, aes(x, y)) +  

       geom_line()  +  

       labs(x = "Normal Deviate", 

            y = "Density") +   

      scale_x_continuous( 

         breaks = seq(-3, 3, 1))  

What is the area under the standard normal curve 
to the left of z=1.96? 

pnorm(1.96)equals 0.975. 

What is the value of the 90th percentile of a 
normal distribution with a mean of 500 and a 
standard deviation of 100? 

qnorm(.9, mean=500, sd=100) equals 628.16. 

Generate 50 random normal deviates with a mean 
of 50 and a standard deviation of 10. 

rnorm(50, mean=50, sd=10) 

SETTING THE SEED FOR RANDOM NUMBER GENERATION 

Each time you generate pseudo-random deviates, a different seed, and therefore different 
results, are produced. To make your results reproducible, you can specify the seed explicitly, 
using the set.seed() function. An example is given in the next listing. Here, the runif() 
function is used to generate pseudo-random numbers from a uniform distribution on the 
interval 0 to 1. 
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Listing 5.2 Generating pseudo-random numbers from a uniform distribution 

> runif(5) 
[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.9255909 
> runif(5) 
[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.6584988 
> set.seed(1234)                                                      
> runif(5) 
[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154 
> set.seed(1234)                                                       
> runif(5) 
[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154 

By setting the seed manually, you’re able to reproduce your results. This ability can be helpful 
in creating examples you can access in the future and share with others. 

GENERATING MULTIVARIATE NORMAL DATA 

In simulation research and Monte Carlo studies, you often want to draw data from a 
multivariate normal distribution with a given mean vector and covariance matrix. The 
draw.d.variate.normal() function in the MultiRNG package makes this easy. The function 
call is 

draw.d.variate.normal(n, nvar, mean, sigma) 

where n is the desired sample size, nvar is the number of variables, mean is the vector of 
means, and sigma is the variance-covariance (or correlation) matrix. Listing 5.3 samples 500 
observations from a three-variable multivariate normal distribution for which the following are 
true: 

Mean vector 230.7 146.7 3.6 

Covariance matrix 15360.8 6721.2 -47.1 

  6721.2 4700.9 -16.5 

  -47.1 -16.5 0.3 

Listing 5.3 Generating data from a multivariate normal distribution 

> library(MultiRNG) 
> options(digits=3)                                         
> set.seed(1234)                               #1 
 
> mean <- c(230.7, 146.7, 3.6)                                
> sigma <- matrix(c(15360.8, 6721.2, -47.1,                    
                     6721.2, 4700.9, -16.5,                    
#2 
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                      -47.1,  -16.5,   0.3), nrow=3, ncol=3)   
#2 
> mydata <- draw.d.variate.normal(500, 3, mean, sigma)                #3 
> mydata <- as.data.frame(mydata)                                     #3 
> names(mydata) <- c("y","x1","x2")                                   #3 
 
> dim(mydata)                                        #4 
[1] 500 3                                            #4   
> head(mydata, n=10)                                 #4 
       y    x1   x2 
1   81.1 122.6 3.69 
2  265.1 110.4 3.49 
3  365.1 235.3 2.67 
4  -60.0  14.9 4.72 
5  283.9 244.8 3.88 
6  293.4 163.9 2.66 
7  159.5  51.5 4.03 
8  163.0 137.7 3.77 
9  160.7 131.0 3.59 
10 120.4  97.7 4.11 

#1 Sets the random number seed 
#2 Specifies the mean vector and covariance matrix 
#3 Generates data 
#4 Views the results 

In listing 5.3, you set a random number seed so that you can reproduce the results at a 
later time #1. You specify the desired mean vector and variance-covariance matrix #2 and 
generate 500 pseudo-random observations #3. For convenience, the results are converted 
from a matrix to a data frame, and the variables are given names. Finally, you confirm that 
you have 500 observations and 3 variables, and you print out the first 10 observations #4. 
Note that because a correlation matrix is also a covariance matrix, you could have specified 
the correlation structure directly. 

The MultiRNG package allows you to generate random data from 10 other multivariate 
distributions, including multivariate versions of the t, uniform, Bernouli, hypergeometric, beta, 
multinomial, Laplace, and Wishart distributions. 

The probability functions in R allow you to generate simulated data, sampled from 
distributions with known characteristics. Statistical methods that rely on simulated data have 
grown exponentially in recent years, and you’ll see several examples of these in later 
chapters. 

5.2.4 Character functions 

Whereas mathematical and statistical functions operate on numerical data, character functions 
extract information from textual data or reformat textual data for printing and reporting. For 
example, you may want to concatenate a person’s first name and last name, ensuring that the 
first letter of each is capitalized. Or you may want to count the instances of obscenities in 
open-ended feedback. Some of the most useful character functions are listed in table 5.6. 
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Table 5.6 Character functions 

Function Description  

nchar(x) Counts the number of characters of x. 

x <- c("ab", "cde", "fghij") 

length(x) returns 3 (see table 5.7). 

nchar(x[3]) returns 5. 

substr(x, start, stop) Extracts or replaces substrings in a character vector. 

x <- "abcdef"  

substr(x, 2, 4) returns bcd. 

substr(x, 2, 4) <- "22222" (x is now "a222ef"). 

grep(pattern, x, 
ignore.case=FALSE, 
fixed=FALSE) 

Searches for pattern in x. If fixed=FALSE, then pattern is a regular 
expression. If fixed=TRUE, then pattern is a text string. Returns the 
matching indices. 

grep("A", c("b","A","c"), fixed=TRUE) returns 2. 

sub(pattern, replacement, x, 
ignore.case=FALSE, 
fixed=FALSE) 

Finds pattern in x and substitutes the replacement text. If 
fixed=FALSE, then pattern is a regular expression. If fixed=TRUE, 
then pattern is a text string.  

sub("\\s",".","Hello There") returns Hello.There. Note 
that "\s" is a regular expression for finding whitespace; use "\\s" 
instead, because "\" is R’s escape character (see section 1.3.3). 

strsplit(x, split, 
fixed=FALSE) 

Splits the elements of character vector x at split. If fixed=FALSE, 
then pattern is a regular expression. If fixed=TRUE, then pattern is a 
text string.  

y <- strsplit("abc", "") returns a one-component,  
three-element list containing 
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"a" "b" "c" 

unlist(y)[2] and sapply(y, "[", 2) both return “b”. 

paste(..., sep="") Concatenates strings after using the sep string to separate them. 

paste("x", 1:3, sep="") returns c("x1", "x2", "x3"). 

paste("x",1:3,sep="M") returns c("xM1","xM2" "xM3"). 

paste("Today is", date()) returns 

Today is Mon Dec 28 14:17:32 2015 

(I changed the date to appear more current.) 

toupper(x) Uppercase. 

toupper("abc") returns “ABC”. 

tolower(x) Lowercase. 

tolower("ABC") returns “abc”. 

Note that the functions grep(), sub(), and strsplit() can search for a text string 
(fixed=TRUE) or a regular expression (fixed=FALSE); FALSE is the default. Regular 
expressions provide a clear and concise syntax for matching a pattern of text. For example, 
the regular expression  

^[hc]?at 

matches any string that starts with 0 or one occurrences of h or c, followed by at. The 
expression therefore matches hat, cat, and at, but not bat. To learn more, see the regular 
expression entry in Wikipedia. Helpful tutorials include Ryans Regular Expression Tutorial 
(https://ryanstutorials.net/regular-expressions-tutorial/) and an engaging interactive tutorial 
from RegexOne (https://regexone.com).  

5.2.5 Other useful functions 

The functions in table 5.7 are also quite useful for data-management and manipulation, but 
they don’t fit cleanly into the other categories. 
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Table 5.7 Other useful functions 

Function Description 

length(x) Returns the length of object x. 

x <- c(2, 5, 6, 9) 

length(x) returns 4. 

seq(from, to, by) Generates a sequence. 

indices <- seq(1,10,2) 

indices is c(1, 3, 5, 7, 9). 

rep(x, n) Repeats x n times. 

y <- rep(1:3, 2) 

y is c(1, 2, 3, 1, 2, 3). 

cut(x, n, labels) Divides the continuous variable x into a factor with n levels, with 
optional labels. To create an ordered factor, include the option 
ordered_result = TRUE. 

x <- c(6, 2, 4, 3, 5, 1) 

xcat <- cut(x, 3, labels=c("low", "med", 
"high")) 

xcat is c("high", "low", "med", "med", "high", 
"low") 

cat(... , file = "myfile", 
append = FALSE) 

Concatenates the objects in … and outputs them to the screen or to a 
file (if one is declared). 

name <- c("Jane") 

cat("Hello" , name, "\n")  
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The last example in the table demonstrates the use of escape characters in printing. Use \n 
for new lines, \t for tabs, \' for a single quote, \b for backspace, and so forth (type ?Quotes 
for more information). For example, the code 

name <- "Bob" 
cat( "Hello", name, "\b.\n", "Isn\'t R", "\t", "GREAT?\n") 

produces 

Hello Bob. 
 Isn't R         GREAT? 

Note that the second line is indented one space. When cat concatenates objects for output, it 
separates each by a space. That’s why you include the backspace (\b) escape character before 
the period. Otherwise it would produce “Hello Bob .” 

How you apply the functions covered so far to numbers, strings, and vectors is intuitive 
and straightforward, but how do you apply them to matrices and data frames? That’s the 
subject of the next section. 

5.2.6 Applying functions to matrices and data frames  

One of the interesting features of R functions is that they can be applied to a variety of data 
objects (scalars, vectors, matrices, arrays, and data frames). The following listing provides an 
example. 

Listing 5.4 Applying functions to data objects 

> a <- 5 
> sqrt(a) 
[1] 2.236068 
> b <- c(1.243, 5.654, 2.99) 
> round(b) 
[1] 1 6 3 
> c <- matrix(runif(12), nrow=3) 
> c 
       [,1]  [,2]  [,3]  [,4] 
[1,] 0.4205 0.355 0.699 0.323 
[2,] 0.0270 0.601 0.181 0.926 
[3,] 0.6682 0.319 0.599 0.215 
> log(c) 
       [,1]   [,2]   [,3]   [,4] 
[1,] -0.866 -1.036 -0.358 -1.130 
[2,] -3.614 -0.508 -1.711 -0.077 
[3,] -0.403 -1.144 -0.513 -1.538 
> mean(c) 
[1] 0.444 

Notice that the mean of matrix c in listing 5.4 results in a scalar (0.444). The mean() function 
takes the average of all 12 elements in the matrix. But what if you want the three row means 
or the four column means?  
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R provides a function, apply(), that allows you to apply an arbitrary function to any 
dimension of a matrix, array, or data frame. The format for the apply() function is 

apply(x, MARGIN, FUN, ...) 

where x is the data object, MARGIN is the dimension index, FUN is a function you specify, and 
... are any parameters you want to pass to FUN. In a matrix or data frame, MARGIN=1 
indicates rows and MARGIN=2 indicates columns. Look at the following examples.  

Listing 5.5 Applying a function to the rows (columns) of a matrix 

 > mydata <- matrix(rnorm(30), nrow=6)             #1 
> mydata 
         [,1]   [,2]    [,3]   [,4]   [,5] 
[1,]  0.71298  1.368 -0.8320 -1.234 -0.790 
[2,] -0.15096 -1.149 -1.0001 -0.725  0.506 
[3,] -1.77770  0.519 -0.6675  0.721 -1.350 
[4,] -0.00132 -0.308  0.9117 -1.391  1.558 
[5,] -0.00543  0.378 -0.0906 -1.485 -0.350 
[6,] -0.52178 -0.539 -1.7347  2.050  1.569 
> apply(mydata, 1, mean)                             #2 
[1] -0.155 -0.504 -0.511  0.154 -0.310  0.165               
> apply(mydata, 2, mean)                             #3 
[1] -0.2907  0.0449 -0.5688 -0.3442  0.1906          
> apply(mydata, 2, mean, trim=0.2)     
               #4 
[1] -0.1699  0.0127 -0.6475 -0.6575  0.2312   

#1 Generates data 
#2 Calculates the row means 
#3 Calculates the column means 
#4 Calculates the trimmed column means 

You start by generating a 6 × 5 matrix containing random normal variates #1. Then you 
calculate the six row means #2 and five column means #3. Finally, you calculate the trimmed 
column means (in this case, means based on the middle 60% of the data, with the bottom 
20% and top 20% of the values discarded) #4. 

Because FUN can be any R function, including a function that you write yourself (see 
section 5.4), apply() is a powerful mechanism. Whereas apply() applies a function over the 
margins of an array, lapply() and sapply() apply a function over a list. You’ll see an 
example of sapply() (which is a user-friendly version of lapply()) in the next section.  

You now have all the tools you need to solve the data challenge presented in section 5.1, 
so let’s give it a try.  

5.3 A solution for the data-management challenge 
Your challenge from section 5.1 is to combine subject test scores into a single performance 
indicator for each student, grade each student from A to F based on their relative standing 
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(top 20%, next 20%, and so on), and sort the roster by last name followed by first name. A 
solution is given in the following listing. 

Listing 5.6 A solution to the learning example 

> options(digits=2)                             #1 
                                                                     
> Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",  
               "David Jones", "Janice Markhammer", "Cheryl Cushing", 
               "Reuven Ytzrhak", "Greg Knox", "Joel England",        
               "Mary Rayburn")                                       
> Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)        
> Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)               
> English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)               
> roster <- data.frame(Student, Math, Science, English,              
                       stringsAsFactors=FALSE)                       
                                                   
> z <- scale(roster[,2:4])           #A     #2 
> score <- apply(z, 1, mean)         #A     #3 
> roster <- cbind(roster, score)     #A     #3 
 
 
> y <- quantile(score, c(.8,.6,.4,.2))                 #B    #4 
> roster$grade <- NA                                   #B    #5 
> roster$grade[score >= y[1]] <- "A"                   #B    #5 
> roster$grade[score < y[1] & score >= y[2]] <- "B"    #B    #5 
> roster$grade[score < y[2] & score >= y[3]] <- "C"    #B    #5 
> roster$grade[score < y[3] & score >= y[4]] <- "D"    #B    #5 
> roster$grade[score < y[4]] <- "F"                    #B    #5 
 
> name <- strsplit((roster$Student), " ")              #C    #6 
> Lastname <- sapply(name, "[", 2)                     #C    #7 
> Firstname <- sapply(name, "[", 1)                    #C    #7 
> roster <- cbind(Firstname,Lastname, roster[,-1])     #C    #7 
 
> roster <- roster[order(Lastname,Firstname),]         #D    #8 
 
> roster 
    Firstname   Lastname Math Science English score grade 
6      Cheryl    Cushing  512      85      28  0.35     C 
1        John      Davis  502      95      25  0.56     B 
9        Joel    England  573      89      27  0.70     B 
4       David      Jones  358      82      15 -1.16     F 
8        Greg       Knox  625      95      30  1.34     A 
5      Janice Markhammer  495      75      20 -0.63     D 
3  Bullwinkle      Moose  412      80      18 -0.86     D 
10       Mary    Rayburn  522      86      18 -0.18     C 
2      Angela   Williams  600      99      22  0.92     A 
   7      Reuven    Ytzrhak  410      80      15 -1.05     F  

#1 Step 1 
#2 Step 2 
#A Obtains the performance scores 
#3 Step 3 
#B Grades the students 
#4 Step 4 
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#5 Step 5 
#C Extracts the last and first names 
#6 Step 6 
#7 Step 7 
#D Sorts by last and first names 
#8 Step 8 

The code is dense, so let’s walk through the solution step by step. 

#1 The original student roster is given. options(digits=2) limits the number of digits printed 
after the decimal place and makes the printouts easier to read: 

> options(digits=2) 
> roster 
             Student Math Science English 
1         John Davis  502      95      25 
2    Angela Williams  600      99      22 
3   Bullwinkle Moose  412      80      18 
4        David Jones  358      82      15 
5  Janice Markhammer  495      75      20 
6     Cheryl Cushing  512      85      28 
7     Reuven Ytzrhak  410      80      15 
8          Greg Knox  625      95      30 
9       Joel England  573      89      27 
10      Mary Rayburn  522      86      18 

#2 Because the math, science, and English tests are reported on different scales (with widely 
differing means and standard deviations), you need to make them comparable before 
combining them. One way to do this is to standardize the variables so that each test is 
reported in standard-deviation units, rather than in their original scales. You can do this with 
the scale() function: 

> z <- scale(roster[,2:4])                        
> z 
        Math  Science  English 
 [1,]  0.013   1.078    0.587 
 [2,]  1.143   1.591    0.037 
 [3,] -1.026  -0.847   -0.697 
 [4,] -1.649  -0.590   -1.247 
 [5,] -0.068  -1.489   -0.330 
 [6,]  0.128  -0.205    1.137 
 [7,] -1.049  -0.847   -1.247 
 [8,]  1.432   1.078    1.504 
 [9,]  0.832   0.308    0.954 
[10,]  0.243  -0.077   -0.697 

#3 You can then get a performance score for each student by calculating the row means using 
the mean() function and adding them to the roster using the cbind() function: 

> score <- apply(z, 1, mean) 
> roster <- cbind(roster, score)    
> roster 
             Student Math Science English score 
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1         John Davis  502      95      25  0.56 
2    Angela Williams  600      99      22  0.92 
3   Bullwinkle Moose  412      80      18 -0.86 
4        David Jones  358      82      15 -1.16 
5  Janice Markhammer  495      75      20 -0.63 
6     Cheryl Cushing  512      85      28  0.35 
7     Reuven Ytzrhak  410      80      15 -1.05 
8          Greg Knox  625      95      30  1.34 
9       Joel England  573      89      27  0.70 
10      Mary Rayburn  522      86      18 -0.18 

#4 The quantile() function gives you the percentile rank of each student’s performance 
score. You see that the cutoff for an A is 0.74, for a B is 0.44, and so on: 

> y <- quantile(roster$score, c(.8,.6,.4,.2))  
> y 
  80%   60%   40%   20%  
 0.74  0.44 -0.36 -0.89 

#5 Using logical operators, you can recode students’ percentile ranks into a new categorical 
grade variable. This code creates the variable grade in the roster data frame: 

> roster$grade <- NA 
> roster$grade[score >= y[1]] <- "A"  
> roster$grade[score < y[1] & score >= y[2]] <- "B" 
> roster$grade[score < y[2] & score >= y[3]] <- "C" 
> roster$grade[score < y[3] & score >= y[4]] <- "D" 
> roster$grade[score < y[4]] <- "F" 
> roster 
             Student Math Science English score grade 
1         John Davis  502      95      25  0.56     B 
2    Angela Williams  600      99      22  0.92     A 
3   Bullwinkle Moose  412      80      18 -0.86     D 
4        David Jones  358      82      15 -1.16     F 
5  Janice Markhammer  495      75      20 -0.63     D 
6     Cheryl Cushing  512      85      28  0.35     C 
7     Reuven Ytzrhak  410      80      15 -1.05     F 
8          Greg Knox  625      95      30  1.34     A 
9       Joel England  573      89      27  0.70     B 
10      Mary Rayburn  522      86      18 -0.18     C 

#6 You use the strsplit() function to break the student names into first name and last 
name at the space character. Applying strsplit() to a vector of strings returns a list: 

> name <- strsplit((roster$Student), " ") 
> name 
 
[[1]] 
[1] "John"  "Davis" 
 
[[2]] 
[1] "Angela"   "Williams" 
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[[3]] 
[1] "Bullwinkle" "Moose"      
 
[[4]] 
[1] "David" "Jones" 
 
[[5]] 
[1] "Janice"     "Markhammer" 
 
[[6]] 
[1] "Cheryl"  "Cushing" 
 
[[7]] 
[1] "Reuven"  "Ytzrhak" 
 
[[8]] 
[1] "Greg" "Knox" 
 
[[9]] 
[1] "Joel"    "England" 
 
[[10]] 
[1] "Mary"    "Rayburn" 

#7 You use the sapply() function to take the first element of each component and put it in a 
Firstname vector, and the second element of each component and put it in a Lastname 
vector. "[" is a function that extracts part of an object—here the first or second component of 
the list name. You use cbind() to add these elements to the roster. Because you no longer 
need the student variable, you drop it (with the –1 in the roster index): 

> Firstname <- sapply(name, "[", 1) 
> Lastname <- sapply(name, "[", 2)   
> roster <- cbind(Firstname, Lastname, roster[,-1]) 
> roster 
    Firstname   Lastname Math Science English score grade 
1        John      Davis  502      95      25  0.56     B 
2      Angela   Williams  600      99      22  0.92     A 
3  Bullwinkle      Moose  412      80      18 -0.86     D 
4       David      Jones  358      82      15 -1.16     F 
5      Janice Markhammer  495      75      20 -0.63     D 
6      Cheryl    Cushing  512      85      28  0.35     C 
7      Reuven    Ytzrhak  410      80      15 -1.05     F 
8        Greg       Knox  625      95      30  1.34     A 
9        Joel    England  573      89      27  0.70     B 
10       Mary    Rayburn  522      86      18 -0.18     C 

#8 Finally, you sort the dataset by first and last name using the order() function: 

> roster[order(Lastname,Firstname),]  
    Firstname   Lastname Math Science English score grade 
6      Cheryl    Cushing  512      85      28  0.35     C 
1        John      Davis  502      95      25  0.56     B 
9        Joel    England  573      89      27  0.70     B 
4       David      Jones  358      82      15 -1.16     F 
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8        Greg       Knox  625      95      30  1.34     A 
5      Janice Markhammer  495      75      20 -0.63     D 
3  Bullwinkle      Moose  412      80      18 -0.86     D 
10       Mary    Rayburn  522      86      18 -0.18     C 
2      Angela   Williams  600      99      22  0.92     A 
7      Reuven    Ytzrhak  410      80      15 -1.05     F   
                        

Voilà! Piece of cake! 
There are many other ways to accomplish these tasks, but this code helps capture the 

flavor of these functions. Now it’s time to look at control structures and user--written 
functions. 

5.4 Control flow 
In the normal course of events, the statements in an R program are executed sequentially 
from the top of the program to the bottom. But there are times that you’ll want to execute 
some statements repetitively while executing other statements only if certain conditions are 
met. This is where control-flow constructs come in. 

R has the standard control structures you’d expect to see in a modern programming 
language. First we’ll go through the constructs used for conditional execution, followed by the 
constructs used for looping.  

For the syntax examples throughout this section, keep the following in mind: 

• statement is a single R statement or a compound statement (a group of R statements 
enclosed in curly braces {} and separated by semicolons). 

• cond is an expression that resolves to TRUE or FALSE. 
• expr is a statement that evaluates to a number or character string. 
• seq is a sequence of numbers or character strings. 

After we discuss control-flow constructs, you’ll learn how to write your own functions. 

5.4.1 Repetition and looping 

Looping constructs repetitively execute a statement or series of statements until a condition 
isn’t true. These include the for and while structures. 

FOR 

The for loop executes a statement repetitively until a variable’s value is no longer contained 
in the sequence seq. The syntax is 

for (var in seq) statement 

In this example 

for (i in 1:10)  print("Hello") 
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the word Hello is printed 10 times. 

WHILE 

A while loop executes a statement repetitively until the condition is no longer true. The 
syntax is 

while (cond) statement 

In a second example, the code 

i <- 10 
while (i > 0) {print("Hello"); i <- i - 1} 

once again prints the word Hello 10 times. Make sure the statements inside the brackets 
modify the while condition so that sooner or later it’s no longer true—otherwise the loop will 
never end! In the previous example, the statement  

i <- i – 1 

subtracts 1 from object i on each loop, so that after the tenth loop it’s no longer larger than 
0. If you instead added 1 on each loop, R would never stop saying hello. This is why while 
loops can be more dangerous than other looping constructs. 

Looping in R can be inefficient and time consuming when you’re processing the rows or 
columns of large datasets. Whenever possible, it’s better to use R’s built-in numerical and 
character functions in conjunction with the apply family of functions. 

5.4.2 Conditional execution 

In conditional execution, a statement or statements are executed only if a specified condition 
is met. These constructs include if-else, ifelse, and switch. 

IF-ELSE 

The if-else control structure executes a statement if a given condition is true. Optionally, a 
different statement is executed if the condition is false. The syntax is 

if (cond) statement 
if (cond) statement1 else statement2 

Here are some examples: 

if (is.character(grade)) grade <- as.factor(grade) 
if (!is.factor(grade)) grade <- as.factor(grade) else print("Grade already 
    is a factor")  

In the first instance, if grade is a character vector, it’s converted into a factor. In the second 
instance, one of two statements is executed. If grade isn’t a factor (note the ! symbol), it’s 
turned into one. If it’s a factor, then the message is printed.  
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IFELSE 

The ifelse construct is a compact and vectorized version of the if-else construct. The 
syntax is  

ifelse(cond, statement1, statement2) 

The first statement is executed if cond is TRUE. If cond is FALSE, the second statement is 
executed. Here are some examples: 

ifelse(score > 0.5, print("Passed"), print("Failed")) 
outcome <- ifelse (score > 0.5, "Passed", "Failed") 

Use ifelse when you want to take a binary action or when you want to input and output 
vectors from the construct. 

SWITCH 

switch chooses statements based on the value of an expression. The syntax is 

switch(expr, ...) 

where ... represents statements tied to the possible outcome values of expr. It’s easiest to 
understand how switch works by looking at the example in the following listing. 

Listing 5.7 A switch example 

> feelings <- c("sad", "afraid") 
> for (i in feelings) 
    print( 
      switch(i, 
        happy  = "I am glad you are happy", 
        afraid = "There is nothing to fear", 
        sad    = "Cheer up", 
        angry  = "Calm down now" 
      ) 
    ) 
 
[1] "Cheer up" 
[1] "There is nothing to fear" 

This is a silly example, but it shows the main features. You’ll learn how to use switch in user-
written functions in the next section.  

5.5 User-written functions 
One of R’s greatest strengths is the user’s ability to add functions. In fact, many of the 
functions in R are functions of existing functions. The structure of a function looks like this: 

myfunction <- function(arg1, arg2, ... ){ 
  statements 
  return(object) 
} 
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Objects in the function are local to the function. The object returned can be any data type, 
from scalar to list. Let’s look at an example.  

Say you’d like to have a function that calculates the central tendency and spread of data 
objects. The function should give you a choice between parametric (mean and standard 
deviation) and nonparametric (median and median absolute deviation) statistics. The results 
should be returned as a named list. Additionally, the user should have the choice of 
automatically printing the results or not. Unless otherwise specified, the function’s default 
behavior should be to calculate parametric statistics and not print the results. One solution is 
given in the following listing. 

Listing 5.8 mystats(): a user-written function for summary statistics 

mystats <- function(x, parametric=TRUE, print=FALSE) { 
  if (parametric) { 
    center <- mean(x); spread <- sd(x)  
  } else { 
    center <- median(x); spread <- mad(x)  
  } 
  if (print & parametric) { 
    cat("Mean=", center, "\n", "SD=", spread, "\n") 
  } else if (print & !parametric) { 
    cat("Median=", center, "\n", "MAD=", spread, "\n") 
  } 
  result <- list(center=center, spread=spread) 
  return(result) 
} 

To see this function in action, first generate some data (a random sample of size 500 from a 
normal distribution): 

set.seed(1234) 
x <- rnorm(500)  

After executing the statement 

y <- mystats(x) 

y$center contains the mean (0.00184) and y$spread contains the standard deviation (1.03). 
No output is produced. If you execute the statement  

y <- mystats(x, parametric=FALSE, print=TRUE) 

y$center contains the median (–0.0207) and y$spread contains the median absolute 
deviation (1.001). In addition, the following output is produced: 

Median= -0.0207  
MAD= 1 

Next, let’s look at a user-written function that uses the switch construct. This function gives 
the user a choice regarding the format of today’s date. Values that are assigned to parameters 
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in the function declaration are taken as defaults. In the mydate() function, long is the default 
format for dates if type isn’t specified: 

mydate <- function(type="long") { 
  switch(type, 
    long =  format(Sys.time(), "%A %B %d %Y"),  
    short = format(Sys.time(), "%m-%d-%y"), 
    cat(type, "is not a recognized type\n")         
   ) 
} 

Here’s the function in action: 

> mydate("long") 
[1] "Monday July 14 2014" 
> mydate("short") 
[1] "07-14-14" 
> mydate() 
[1] "Monday July 14 2014" 
> mydate("medium") 
medium is not a recognized type 

Note that the cat() function is executed only if the entered type doesn’t match "long" or 
"short". It’s usually a good idea to have an expression that catches user-supplied arguments 
that have been entered incorrectly.  

Several functions are available that can help add error trapping and correction to your 
functions. You can use the function warning() to generate a warning message, message() to 
generate a diagnostic message, and stop() to stop execution of the current expression and 
carry out an error action. Error trapping and debugging are discussed more fully in section 
20.5.  

After creating your own functions, you may want to make them available in every session. 
Appendix B describes how to customize the R environment so that user--written functions are 
loaded automatically at startup. We’ll look at additional examples of user-written functions in 
chapters 6 and 8.  

You can accomplish a great deal using the basic techniques provided in this section. 
Control flow and other programming topics are covered in greater detail in chapter 20. 
Creating a package is covered in chapter 21. If you’d like to explore the subtleties of function 
writing, or you want to write professional-level code that you can distribute to others, I 
recommend reading these two chapters and then reviewing three excellent books that you’ll 
find in the References section at the end of this book: Venables & Ripley (2000), Chambers 
(2008), and Wickham(2019). Together, they provide a significant level of detail and breadth of 
examples. 

Now that we’ve covered user-written functions, we’ll end this chapter with a discussion of 
data aggregation and reshaping. 
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5.6 Reshaping data 
When you reshape data, you alter the structure (rows and columns) determining how the data 
is organized. The three most common reshaping tasks are: (1) transposing a dataset; (2) 
converting a wide dataset to a long dataset; and (3) converting a long dataset to a wide 
dataset. Each is described in the following sections. 

5.6.1 Transpose 

Transposing (reversing rows and columns) is perhaps the simplest method of reshaping a 
dataset. Use the t() function to transpose a matrix or a data frame. In the latter case, the 
data frame is converted to a matrix first and row names become variable (column) names.  

We'll illustrate the transpose using the mtcars data frame that’s included with the base 
installation of R. This dataset, extracted from Motor Trend magazine (1974), describes the 
design and performance characteristics (number of cylinders, displacement, horsepower, mpg, 
and so on) for 34 automobiles. To learn more about the dataset, see help(mtcars).  

An example of the transpose operation is given in listing 5.9. A subset of the dataset in 
used in order to conserve space on the page. 

Listing 5.9 Transposing a dataset 

> cars <- mtcars[1:5,1:4]                                      
> cars 
                   mpg cyl disp  hp 
Mazda RX4         21.0   6  160 110 
Mazda RX4 Wag     21.0   6  160 110 
Datsun 710        22.8   4  108  93 
Hornet 4 Drive    21.4   6  258 110 
Hornet Sportabout 18.7   8  360 175 
> t(cars) 
     Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout 
mpg         21            21       22.8           21.4              18.7 
cyl          6             6        4.0            6.0               8.0 
disp       160           160      108.0          258.0             360.0 
hp         110           110       93.0          110.0             175.0 
 

The t() function always returns a matrix. Since a matrix can only have one type (numeric, 
character, or logical), the transpose operation works best when all the variables in the original 
dataset are numeric or logical. If there are any character variables in the dataset, the entire 
dataset will be converted to character values in the resulting transpose. 

5.6.2 Converting between wide to long dataset formats 

A rectangular dataset is typically in either wide or long format.  In wide format, each row 
represents a unique observation. An example is given in table 5.8. The table contains the life 
expectancy estimates for 4 countries in 1990, 2000, and 2010. It is part of a much larger 
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dataset obtained from Our World in Data (https://ourworldindata.org/life-expectancy). Note 
that each row represent the data gathered on a country. 

 

Table 5.8 Life expectancy by year and country – wide format 

ID Country LExp1990 LExp2000 LExp2010 

AU Australia 76.9 79.6 82.0 

CN China 69.3 72.0 75.2 

PRK North Korea 69.9 65.3 69.6 

 
In long format, each row represents a unique measurement. An example with the same 

data in long format is given if table 5.9. 

Table 5.9 Life expectancy by year and country – long format 

ID Country Variable LifeExp 

AU Australia LExp1990 76.9 

CN China LExp1990 69.3 

PRK North Korea LExp1990 69.9 

AU Australia LExp2000 79.6 

CN China LExp2000 72.0 

PRK North Korea LExp2000 65.3 

AU Australia LExp2010 82.0 

CN China LExp2010 75.2 

PRK North Korea LExp2010 69.6 
 
Different types of data analysis can require different data formats. For example, if you 

want to identify countries that have similar life expectancy trends over time, you could use 
cluster analysis (chapter 8). Cluster analysis requires data that are in wide format. On the 
other hand, you may want to predict life expectancy from country and year using multiple 
regression (chapter 8). In this case, the data would have to be in long format. 
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While most R functions expect wide format data frames, some require the data to be in a 
long format. Fortunately, the tidyr package provides functions that can easily convert data 
frames from one format to the other. Use install.packages("tidyr") to install the package 
before continuing. 

The gather() function in the tidyr package converts a wide format data frame to a long 
format data frame. The syntax is 

longdata <- gather(widedata, key, value, variable list) 

where 

• widedata is the data frame to be converted 
• key specifies the name to be used for the variable column ("Variable" in this example) 
• value specifies the name to be used for the value column ("LifeExp" in this example) 
• variable list specifies the variables to be stacked (LExp1990, LExp2000, LExp2010 in 

this example) 

An example is given in listing 5.10 

Listing 5.10 Converting a wide format data frame to a long format 

> library(tidyr) 
 
> data_wide <- data.frame(ID = c("AU", "CN", "PRK"), 
                          Country = c("Australia", "China", "North Korea"), 
                          LExp1990 = c(76.9, 69.3, 69.9), 
                          LExp2000 = c(79.6, 72.0, 65.3), 
                          LExp2010 = c(82.0, 75.2, 69.6)) 
> data_wide 
   ID     Country LExp1990 LExp2000 LExp2010 
1  AU   Australia     76.9     79.6     82.0 
2  CN       China     69.3     72.0     75.2 
3 PRK North Korea     69.9     65.3     69.6 
>  
>  
> data_long <- gather(data_wide, key="Variable", value="Life_Exp",  
                      c(LExp1990, LExp2000, LExp2010)) 
> data_long 
   ID     Country Variable Life_Exp 
1  AU   Australia LExp1990     76.9 
2  CN       China LExp1990     69.3 
3 PRK North Korea LExp1990     69.9 
4  AU   Australia LExp2000     79.6 
5  CN       China LExp2000     72.0 
6 PRK North Korea LExp2000     65.3 
7  AU   Australia LExp2010     82.0 
8  CN       China LExp2010     75.2 
9 PRK North Korea LExp2010     69.6 

The spread() function in the tidyr package converts a long format data frame to a wide 
format data frame. The format is 

widedata <- spread(longdata, key, value) 

125

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

where 

• longdata is the data frame to be converted 
• key is the column containing the variable names 
• value is the column containing the variable values 

Continuing the example, the code in listing 5.11 is used to convert the long format data frame 
back to a wide format. 

Listing 5.11 Converting a long format data frame to a wide format 

> data_wide <- spread(data_long, key=Variable, value=Life_Exp) 
> data_wide 
   ID     Country LExp1990 LExp2000 LExp2010 
1  AU   Australia     76.9     79.6     82.0 
2  CN       China     69.3     72.0     75.2 
3 PRK North Korea     69.9     65.3     69.6 
 

To learn more about the long and wide data formats, see Simon Ejdemyr's excellent tutorial 
(https://sejdemyr.github.io/r-tutorials/basics/wide-and-long/).  

5.7 Aggregating data 
When you aggregate data, you replace groups of observations with summary statistics based 
on those observations. Data aggregation can be a precursor to statistical analyses or a method 
of summarizing data for presentation in tables or graphs. 

It’s relatively easy to collapse data in R using one or more by variables and a defined 
function.  In base R, the aggregate() is typically used. The format is 

aggregate(x, by, FUN) 

where x is the data object to be collapsed, by is a list of variables that will be crossed to form 
the new observations, and FUN is a function used to calculate the summary statistics that will 
make up the new observation values. The by variables must be enclosed in a list (even if 
there’s only one). 

As an example, let’s aggregate the mtcars data by number of cylinders and gears, 
returning means for each of the numeric variables. 

Listing 5.12 Aggregating data with the aggregate() function 

> options(digits=3) 
> aggdata <-aggregate(mtcars,  
                      by=list(mtcars$cyl,mtcars$gear),  
                      FUN=mean, na.rm=TRUE) 
> aggdata 
  Group.1 Group.2  mpg cyl disp  hp drat   wt qsec  vs   am gear carb      
1       4       3 21.5   4  120  97 3.70 2.46 20.0 1.0 0.00    3 1.00 
2       6       3 19.8   6  242 108 2.92 3.34 19.8 1.0 0.00    3 1.00 
3       8       3 15.1   8  358 194 3.12 4.10 17.1 0.0 0.00    3 3.08 
4       4       4 26.9   4  103  76 4.11 2.38 19.6 1.0 0.75    4 1.50 
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5       6       4 19.8   6  164 116 3.91 3.09 17.7 0.5 0.50    4 4.00 
6       4       5 28.2   4  108 102 4.10 1.83 16.8 0.5 1.00    5 2.00 
7       6       5 19.7   6  145 175 3.62 2.77 15.5 0.0 1.00    5 6.00 
8       8       5 15.4   8  326 300 3.88 3.37 14.6 0.0 1.00    5 6.00 
 

In these results, Group.1 represents the number of cylinders (4, 6, or 8), and Group.2 
represents the number of gears (3, 4, or 5). For example, cars with 4 cylinders and 3 gears 
have a mean of 21.5 miles per gallon (mpg).  Here we used the mean function, but any 
function in R or any user defined function that computes summary statistics can be used. 

There are two limitations to this code. First, Group.1 and Group.2 are terribly 
uninformative variable names. Second, the original cyl and gear variables are included in the 
aggregated data frame. These columns are now redundant.  

You can declare custom names for the grouping variables from within the list.  For 
instance, by=list(Cylinders=cyl, Gears=gear will replace Group.1 and Group.2 with 
Cylinders and Gears. The redundant columns can be dropped from the input data frame 
using bracket notation (mtcars[-c(2, 10]). An improved version is given in listing 5.13.  

Listing 5.13 Improved code for aggregating data with aggregate() 

> aggdata <-aggregate(mtcars[-c(2, 10)],  
            by=list(Cylinders=mtcars$cyl, Gears=mtcars$gear),  
            FUN=mean, na.rm=TRUE) 
> aggdata 
  Cylinders Gears  mpg disp  hp drat   wt qsec  vs   am carb 
1         4     3 21.5  120  97 3.70 2.46 20.0 1.0 0.00 1.00 
2         6     3 19.8  242 108 2.92 3.34 19.8 1.0 0.00 1.00 
3         8     3 15.1  358 194 3.12 4.10 17.1 0.0 0.00 3.08 
4         4     4 26.9  103  76 4.11 2.38 19.6 1.0 0.75 1.50 
5         6     4 19.8  164 116 3.91 3.09 17.7 0.5 0.50 4.00 
6         4     5 28.2  108 102 4.10 1.83 16.8 0.5 1.00 2.00 
7         6     5 19.7  145 175 3.62 2.77 15.5 0.0 1.00 6.00 
8         8     5 15.4  326 300 3.88 3.37 14.6 0.0 1.00 6.00 
 

The dplyr package provides a more natural method of aggregating data. Consider the 
code in listing 5.14. 

Listing 5.14 Aggregating data with the dplyr package 

> mtcars %>%  
     group_by(cyl, gear) %>%  
     summarise_all(list(mean), na.rm=TRUE) 
 
# A tibble: 8 x 11 
# Groups:   cyl [3] 
    cyl  gear   mpg  disp    hp  drat    wt  qsec    vs    am  carb 
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
1     4     3  21.5  120.   97   3.7   2.46  20.0   1    0     1    
2     4     4  26.9  103.   76   4.11  2.38  19.6   1    0.75  1.5  
3     4     5  28.2  108.  102   4.1   1.83  16.8   0.5  1     2    
4     6     3  19.8  242.  108.  2.92  3.34  19.8   1    0     1    
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5     6     4  19.8  164.  116.  3.91  3.09  17.7   0.5  0.5   4    
6     6     5  19.7  145   175   3.62  2.77  15.5   0    1     6    
7     8     3  15.0  358.  194.  3.12  4.10  17.1   0    0     3.08 
8     8     5  15.4  326   300.  3.88  3.37  14.6   0    1     6  
 

The grouping variables retain their names, and are not duplicated in the data. We'll expand on 
dplyr's powerful summarization capabilities when discussing summary statistics in chapter 7. 

Now that you’ve gathered the tools you need to get your data into shape (no pun 
intended), you’re ready to bid part 1 goodbye and enter the exciting world of data analysis! In 
upcoming chapters, we’ll begin to explore the many statistical and graphical methods available 
for turning data into information. 

5.8 Summary 
• Base R contains hundreds of mathematical, statistical, and probability functions that 

are useful for manipulating data. They can be applied to a wide range of data objects 
including vectors, matrices, and data frames. 

• Functions for conditional execution and looping allow you to execute some statements 
repetitively and execute other statements only when certain conditions are met. 

• You can easily write your own functions, vastly increasing the power of your programs. 
• Data often have to be aggregated and/or restructured before further analyses are 

possible. 
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6  
Basic graphs 

This chapter covers 

• Bar, box, and dot plots 
• Pie charts and tree maps  
• Histograms and kernel density plots 

Whenever we analyze data, the first thing we should do is look at it. For each variable, what 
are the most common values? How much variability is present? Are there any unusual 
observations? R provides a wealth of functions for visualizing data. In this chapter, we’ll look 
at graphs that help you understand a single categorical or continuous variable. This topic 
includes 

• Visualizing the distribution of a variable 
• Comparing the distribution of a variable across two or more groups 

In both cases, the variable can be continuous (for example, car mileage as miles per gallon) or 
categorical (for example, treatment outcome as none, some, or marked). In later chapters, 
we’ll explore graphs that display more complex relationships among variables. 

The following sections explore the use of bar charts, pie charts, tree maps, histograms, 
kernel density plots, box plots, violin plots, and dot plots. Some of these may be familiar to 
you, whereas others (such as tree charts or violin plots) may be new to you. The goal, as 
always, is to understand your data better and to communicate this understanding to others. 
Let’s start with bar charts. 

6.1 Bar charts 
A bar plot displays the distribution (frequency) of a categorical variable through vertical or 
horizontal bars. Using the ggplot2 package, we can create a bar chart using the code 
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ggplot(data, aes(x=catvar) + geom_bar() 

where data is a data frame and catvar is a categorical variable. 
In the following examples, you’ll plot the outcome of a study investigating a new treatment 

for rheumatoid arthritis. The data are contained in the Arthritis data frame distributed with 
the vcd package. This package isn’t included in the default R installation, so install it before 
first use (install.packages("vcd")). Note that the vcd package isn’t needed to create bar 
charts. You’re installing it in order to gain access to the Arthritis dataset.  

6.1.1 Simple bar charts 
In the Arthritis study, the variable Improved records the patient outcomes for individuals 

receiving a placebo or drug: 

> data(Arthritis, package="vcd) 
> table(Arthritis$Improved) 
 
  None   Some Marked  
    42     14     28 

Here, you see that 28 patients showed marked improvement, 14 showed some improvement, 
and 42 showed no improvement. We’ll discuss the use of the table() function to obtain cell 
counts more fully in chapter 7.  

You can graph these counts using a vertical or horizontal bar chart. The code is provided in 
the following listing, and the resulting graphs are displayed in figure 6.1. 

Listing 6.1 Simple bar charts 

library(ggplot2) 
ggplot(Arthritis, aes(x=Improved)) + geom_bar() +      #A 
  labs(title="Simple Bar chart",                       #A 
       x="Improvement",                                #A 
       y="Frequency")                                  #A 
 
ggplot(Arthritis, aes(x=Improved)) + geom_bar() +      #B 
  labs(title="Horizontal Bar chart",                   #B 
       x="Improvement",                                #B 
       y="Frequency") +                                #B 
  coord_flip()                                         #B 
 

#A Simple bar chart 
#B Horizontal bar chart 
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Figure 6.1 Simple vertical and horizontal bar charts 

What happens if you have long labels? In section 6.1.4, you’ll see how to tweak labels so 
that they don’t overlap.  

6.1.2 Stacked, grouped and filled  bar charts 

The central question in the Arthritis study is "How does the level of improvement vary 
between the placebo and treated conditions?".   The table() function can used to generate a 
cross-tabulation of the variables.  

> table(Arthritis$Improved, Arthritis$Treatment) 
 
        Treatment 
Improved Placebo Treated 
  None        29      13 
  Some         7       7 
  Marked       7      21 

While the tabulation is helpful, the results are easier to grasp with a bar chart. The 
relationship between two categorical variables can be plotted using stacked, grouped, or filled 
bar charts. The code is provided in listing 6.2 and the graph is displayed in figures 6.2. 
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Listing 6.2 Stacked, grouped, and filled bar charts 

library(ggplot2) 
ggplot(Arthritis, aes(x=Treatment, fill=Improved)) +    #A 
  geom_bar(position = "stack") +                        #A 
  labs(title="Stacked Bar chart",                       #A 
       x="Treatment",                                   #A 
       y="Frequency")                                   #A 
 
ggplot(Arthritis, aes(x=Treatment, fill=Improved)) +    #B 
  geom_bar(position = "dodge") +                        #B 
  labs(title="Grouped Bar chart",                       #B 
       x="Treatment",                                   #B 
       y="Frequency")                                   #B 
 
ggplot(Arthritis, aes(x=Treatment, fill=Improved)) +    #C 
  geom_bar(position = "fill") +                         #C 
  labs(title="Stacked Bar chart",                       #C 
       x="Treatment",                                   #C 
       y="Frequency")                                   #C 
 

#A Stacked bar chart 
#B Grouped bar chart 
#C Filled bar chart 

In the stacked bar chart, each segment represents the frequency or proportion of cases 
within in a given Treatment (Placebo, Treated) and Improvement (None, Some, Marked) level 
combination. The segments are stacked separately for each Treatment level. The grouped bar 
chart places the segments representing Improvement side by side within each Treatment 
level. The filled bar chart is a stacked bar chart rescaled so that the height of each bar is 1 and 
the segment heights represent proportions.  

Filled bar charts are particularly useful for comparing the proportions of one categorical 
variable over the levels of another categorical variable. For example, the filled bar chart in 
figure 6.2 clearly displays the larger percentage of treated patients with marked improvement 
compared with patients receiving a placebo. 
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Figure 6.2 Stacked, grouped, and filled bar charts 

6.1.3 Mean bar charts 

Bar plots needn’t be based on counts or frequencies. You can create bar charts that represent 
means, medians, percents, standard deviations, and so forth by summarizing the data with an 
appropriate statistic and passing the results to ggplot2.  

In the following graph, we'll plot the mean illiteracy rate for regions of the United States in 
1970. The built-in R dataset state.x77 has the illiteracy rates by state, and the dataset 
state.region has the region names for each state. The following listing provides the code 
needed to create the graph in figure 6.3. 

Listing 6.3 Bar chart for sorted mean values 

> states <- data.frame(state.region, state.x77)     
> library(dplyr)                                   #1                       
> plotdata <- states %>%  
    group_by(state.region) %>% 
    summarize(mean = mean(Illiteracy)) 
  plotdata 
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# A tibble: 4 x 2 
  state.region   mean 
  <fct>         <dbl> 
1 Northeast      1    
2 South          1.74 
3 North Central  0.7  
4 West           1.02 
 
> ggplot(plotdata, aes(x=reorder(state.region, mean), y=mean)) +   #2 
    geom_bar(stat="identity") + 
    labs(x="Region", 
         y="", 
         title = "Mean Illiteracy Rate") 

#1 Generate means by region 
#2 Plot means in a sorted bar chart 

0.0

0.5

1.0

1.5

North Central Northeast West South
Region

Mean Illiteracy Rate

 
Figure 6.3 Bar chart of mean illiteracy rates for US regions sorted by rate 

First, the mean illiteracy rate is calculated for each region #1. Next, the means are plotted 
in sorted in ascending order as bars #2. Normally, the geom_bar() function calculates and 
plots cell counts but adding the stat="identity" option forces the function to plot the 
numbers provided (means in this case). The reorder() function is used to order the bars by 
increasing mean illiteracy.  
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When plotting summary statistics such as means, it's good practice to indicate the 
variability of the estimates involved. One measure of variability is the standard error of the 
statistic – an estimate of the expected variation of the statistic across hypothetical repeated 
samples. The following plot adds error bars using the standard error of the mean. 

Listing 6.4 Bar chart of mean values with error bars 

> plotdata <- states %>%                          #1 
    group_by(state.region) %>% 
    summarize(n=n(),  
              mean = mean(Illiteracy),                       
              se = sd(Illiteracy)/sqrt(n))                   
 
> plotdata 
 
# A tibble: 4 x 4 
  state.region      n  mean     se 
  <fct>         <int> <dbl>  <dbl> 
1 Northeast         9  1    0.0928 
2 South            16  1.74 0.138  
3 North Central    12  0.7  0.0408 
4 West             13  1.02 0.169  
 
> ggplot(plotdata, aes(x=reorder(state.region, mean), y=mean)) +      #2 
    geom_bar(stat="identity", fill="skyblue") + 
    geom_errorbar(aes(ymin=mean-se, ymax=mean+se), width=0.2) +        #3 
    labs(x="Region", 
         y="", 
         title = "Mean Illiteracy Rate", 
         subtitle = "with standard error bars") 
 

#1 Generate means and standard errors by region 
#2 Plot means in a sorted bar chart 
#3 Add error bars 

The means and standard errors are calculated for each region #1. The bars are then 
plotted in order of increasing illiteracy. The color is changed from a default dark grey to a 
lighter shade (sky blue) so that error bars to be added in the next step will stand out #2. 
Finally, the error bars are plotted #3. The width option in the geom_errorbar() function 
controls the horizontal width of the error bars and is purely aesthetic – it has no statistical 
meaning. In addition to displaying the mean illiteracy rates, we can see that the mean for the 
North Central region is the most reliable (least variability) and the West region is least reliable 
(largest variability).  
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Figure 6.4 Bar chart of mean illiteracy rates for US regions sorted by rate. The standard error of the mean has 
been added to each bar. 

6.1.4 Tweaking bar charts 

There are several ways to tweak the appearance of a bar chart. The most common are 
customizing the bar colors and labels. We'll look at each in turn. 

BAR CHART COLORS 

Custom colors can be selected for the bar areas and borders. In the geom_bar() function the 
option fill="color" assigns a color for the area, while color="color" assigns a color for the 
border.  

Fill vs. Color 
In general, ggplot2 uses fill to specify the color of geometric objects that have area (such as bars, pie slices, boxes), 
and the term color to when referring to the color of geometric objects without area (such as lines, points, and borders). 
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For example, the code 

data(Arthritis, package="vcd") 
ggplot(Arthritis, aes(x=Improved)) +  
   geom_bar(fill="gold", color="black") + 
   labs(title="Treatment Outcome") 

produces the graph in figure 6.5.  

 
Figure 6.5 Bar chart with custom fill and border colors 

In the previous example, single colors were assigned. Colors can also be mapped to the 
levels of a categorical variable. For example, the code 

ggplot(Arthritis, aes(x=Treatment, fill=Improved)) +     
  geom_bar(position = "stack", color="black") +   
  scale_fill_manual(values=c("red", "grey", "gold") +                       
  labs(title="Stacked Bar chart",                        
       x="Treatment",                                    
       y="Frequency")                                    

produces 
the graph in figure 6.6. 

137

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 6.6 Stacked bar chart with custom fill colors mapped to Improvement 

Here, bar fill colors are mapped to the levels of the variable Improved. The 
scale_fill_manual() function specifies red for None, grey for Some, and gold for Marked 
improvement. Color names can be obtained from 
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf . Other methods of selecting colors are 
discussed in chapter 19 (Advanced Graphics with ggplot2). 

BAR CHART LABELS 

When there are many bars or long labels, bar chart labels tend to overlap and become 
unreadable. Consider the following example. The dataset mpg in the ggplot2 package 
describes fuel economy data from for 38 popular car models in 1999 and 2008. Each model 
has several configurations (transmission type, number of cylinders, etc.). Let's say that we 
want a count of how many instances of each model are in the dataset. The code 

ggplot(mpg, aes(x=model)) +  
   geom_bar() + 
   labs(title="Car models in the mpg dataset",  
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        y="Frequency", x="") 

produces the graph in figure 6.7. 

 
Figure 6.7 Bar chart with overlapping labels 

Even with my glasses (or a glass of wine), I can't read this. Two simple tweaks will make 
the labels readable. First, we can plot the data as a horizontal bar chart. 

ggplot(mpg, aes(x=model)) +  
   geom_bar() + 
   labs(title="Car models in the mpg dataset",  
        y="Frequency", x="") + 
   coord_flip() 

139

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 6.8 A horizontal bar chart avoids label overlap. 

Second, we can angle the label text and use a smaller font. 

ggplot(mpg, aes(x=model)) +  
   geom_bar() + 
   labs(title="Model names in the mpg dataset",  
        y="Frequency", x="") + 
   theme(axis.text.x = element_text(angle = 45, hjust = 1, size=8)) 
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Figure 6.9 Bar chart with angled labels and a smaller label font. 

The theme() function is discussed more fully in chapter 19 (Advanced Graphics with 
ggplot2). In addition to bar charts, pie charts are a popular vehicle for displaying the 
distribution of a categorical variable. We’ll consider them next. 

6.2 Pie charts 
Pie charts are ubiquitous in the business world, but they’re denigrated by most statisticians, 
including the authors of the R documentation. They recommend bar or dot plots over pie 
charts because people are able to judge length more accurately than volume. Perhaps for this 
reason, the pie chart options in R are severely limited when compared with other statistical 
platforms.  
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However, there are times when pie charts can be useful. In particular, they can capture 
part-whole relationships well.  For example, a pie chart can be used to display the percentage 
of tenured faculty at a university who are female. 

You can create a pie chart in base R using the pie() function, but as I've said, the 
functionality is limited and the plots are unattractive. To address this, I've created a packaged 
called ggpie that allows you to create a wide variety of pie charts using ggplot2 (no flame 
emails please!). You can install it with the following code. 

if(!require(devtools) install.packages("devtools") 
devtools::install_github("rkabacoff/ggpie") 

The basic syntax is 

ggpie(data, x, by, offset, percent, legend, title) 

where 

• data is a data frame 
• x is the categorical variable to be plotted 
• by is an optional second categorical variable. If present, a pie will be produced for each 

level of this variable. 
• offset is the distance of the pie slice labels from the origin. A value of 0.5 will place 

the labels in the center of the slices, and a value greater than 1.0 will place them 
outside the slice. 

• percent is logical. If FALSE, percentage printing is suppressed. 
• legend is logical. If FALSE, the legend is omitted and each pie slice is labeled. 
• title is a an option title. 

Additional options (described on the ggpie website) allow you to customize the pie chart's 
appearance.  

Let's create a pie chart displaying the distribution of car classes in the mpg data frame. 

library(ggplot2) 
library(ggpie) 
ggpie(mpg, class) 

The results are given in figure 6.10. From the graph, we see that 26% percent of cars are 
SUVS, while only 2% are two-seaters.   
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Figure 6.10. Pie chart displaying the percentage of each car class in the mpg data frame. 

In the next version, the legend is removed and each pie slice is labeled. In addition, the 
labels are place outside the pie area, and title is added. 

ggpie(mpg, class, legend=FALSE, offset=1.3,  
         title="Automobiles by Car Class") 

 
Figure 6.11. Pie chart with labels displayed outside the pie. 

143

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

In the final example, the distribution of car class is displayed by year. 

ggpie(mpg, class, year,  
      legend=FALSE, offset=1.3, title="Car Class by Year") 

 
Figure 6.12. Pie charts displaying the distribution of car classes by year 

Between 1999 and 2008, the distribution of car classes appears to have remained rather 
constant. The ggpie package can create more complex and customized pie charts. See the 
documentation (http://rkabacoff.github.io/ggpie) for details. 

6.3 Tree maps 
An alternative to a pie chart is a tree map. A tree map displays the distribution of a categorical 
variable using rectangles that are proportional to variable levels.  Unlike pie charts, tree maps 
can handle categorical variables with many levels. We'll create tree maps using the 
treemapify package. Be sure to install it before proceeding 
(install.packages("treemapify")).   

We'll start by creating a tree map displaying the distribution of car manufacturers in the 
mpg data frame. The code is given in listing 6.6. The resulting graph is giving fin figure 6-12. 

Listing 6.6 Simple Tree Map 

library(ggplot2) 
library(dplyr) 
library(treemapify) 
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plotdata <- mpg %>% count(manufacturer) #1 
 
ggplot(plotdata,                        #2 
       aes(fill = manufacturer, 
           area = n, 
           label = manufacturer)) + 
geom_treemap() + 
geom_tree_text() + 
theme(legend.position = FALSE) 

#1 Summarize the data 
#2 Create the tree map 

First we calculate the frequency counts for each level the manufacturer variable #1. This 
information is passed to ggplot2 to create the graph #2.  In the aes()  function, fill refers 
to the categorical variable, area is the count for level, and label is the option variable used to 
label the cells. The geom_treemap() function creates the tree map and the geom_tree_text() 
function adds the labels to each cell. The theme() function is used to suppress the legend, 
which is redundant here, since each cell is labeled.  

 
Figure 6.13. Tree map displaying the distribution of car manufacturers in the mpg data set. Rectangle size is 
proportional to the number of cars from each manufacturer. 

In the next example, a second variable is added – drivetrain. The number of cars by 
manufacturer is plotted for front-wheel, rear-wheel, and four-wheel drives. The code is 
provided in listing 6.7 and the plot is displayed in figure 6.14.  
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Listing 6.7 Tree Map with Subgrouping 

plotdata <- mpg %>%                                                  #1 
  count(manufacturer, drv) 
   plotdata$drv <- factor(plotdata$drv,                                 #2 
                       levels=c("4", "f", "r"), 
                       labels=c("4-wheel", "front-wheel", "rear")) 
 
ggplot(plotdata,                                                     #3 
       aes(fill = manufacturer,  
           area = n, 
           label = manufacturer, 
           subgroup=drv)) + 
  geom_treemap() +  
  geom_treemap_subgroup_border() + 
  geom_treemap_subgroup_text( 
    place = "middle", 
    colour = "black", 
    alpha = 0.5, 
    grow = FALSE) + 
  geom_treemap_text(colour = "white",  
                    place = "centre", 
                    grow=FALSE) + 
  theme(legend.position = "none") 

#1 Compute cell counts 
#2 Provide better labels for drivetrains 
#2 Create tree map 

First, the frequencies for each manufacturer-drivetrain combination is calculated #1. Next, 
better labels are provided for the drivetrain variable #2. The new data frame is passed to 
ggplot2 to produce the tree map #3. The subgroup option in the aes() function creates 
separate subplots for each drivetrain type. The geom_treemap_border() and 
geom_treemap_subgroup_text() add borders and labels for the subgroups respectively. 
Options in each function control their appearance. The subgroup text is centered and given 
some transparency (alpha=0.5). The text font remains a constant size, rather than growing to 
fill the area (grow=FALSE). The tree map cell text is print in a white font, centered in each cell, 
and does not grow to fill the boxes. 

From the graph in figure 6.14, it is clear for example, that Hyundai has front-wheel cars, 
but not rear-wheel or four-wheel cars. The manufacturers with rear-wheel cars are primarily 
Ford  and Chevrolet. Many of the four-wheel cars are made by Dodge. 
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Figure 6.14 Tree map with car manufactures by drive-train type. 

Now that we’ve covered pie charts and tree maps, let’s move on to histograms. Unlike bar 
charts, pie charts, and tree maps, histograms describe the distribution of a continuous 
variable. 

6.4 Histograms 
Histograms display the distribution of a continuous variable by dividing the range of scores 
into a specified number of bins on the x-axis and displaying the frequency of scores in each 
bin on the y-axis. You can create histograms using 

ggplot(data, aes(x = contvar)) + geom_histogram() 

where data is a data frame and contvar is a continuous variable. Using the mpg data set in the 
ggplot package, we'll examine the distribution of city miles per gallon (cty) for 117 
automobile configurations in 2008. Four variations of a histogram are created in lisiting 6.8 
and the results graphs are presented in figure 6.15. 

Listing 6.6 Histograms 

library(ggplot2) 
library(scales) 
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data(mpg) 
cars2008 <- mpg[mpg$year == 2008, ] 
 
ggplot(cars2008, aes(x=hwy)) +                      #1 
   geom_histogram() +                               #1 
   labs(title="Default histogram")                  #1 
 
ggplot(cars2008, aes(x=hwy)) +                                    #2 
   geom_histogram(bins=20, color="white", fill="steelblue") +     #2 
   labs(title="Colored histogram with 20 bins",                   #2 
       x="City Miles Per Gallon",                                 #2 
       y="Frequency") 
 
 
ggplot(cars2008, aes(x=hwy, y=..density..)) +                     #3 
   geom_histogram(bins=20, color="white", fill="steelblue") +     #3 
   scale_y_continuous(labels=scales::percent) +                   #3 
  labs(title="Histogram with percentages",                        #3 
       y= "Percent".                                              #3 
       x="City Miles Per Gallon")                                 #3 
 
ggplot(cars2008, aes(x=hwy, y=..density..)) +                     #4 
   geom_histogram(bins=20, color="white", fill="steelblue") +     #4 
   scale_y_continuous(labels=scales::percent) +                   44 
   geom_density(color="red", size=1) +                            #4 
   labs(title="Histogram with density curve",                     #4 
        y="Percent" ,                                             #4 
       x="City Miles Per Gallon")                                 #4 

#1 Simple histogram 
#2 Colored histogram with 20 bins 
#3 Histogram with percentages 
#4 Histogram with density curve 
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Figure 6.15 Histogram examples 

The first histogram #1 demonstrates the default plot when no options are specified. In this 
case, 30 bins are created. For the second histogram #2, 20 bins, a steel blue fill, and a white 
border color are specified. In addition, more informative labels have been added. The number 
of bins can strongly influence the appearance of the histogram. It is a good idea to experiment 
with the bins value until you find one that captures the distribution well. With 20 bins, it 
appears that there are two peaks to the distribution – one around 13 mpg and one around 
20.5 mpg. 

The third histogram #3 plots the data as percents rather than frequencies. This is 
accomplished by assigning the built-in variable ..density.. to the y axis. The scales 
package is used to format the y-axis as percents. Be sure to install the package 
(install.packages("scales")) before running this part of the code. 

The fourth histogram #4 is similar to the previous plot, but adds a density curve. The 
density curve is a kernel density estimate and is described in the next section. It provides a 
smoother description of the distribution of scores. The geom_density() function is used to plot 

149

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

the kernel curve in a red color and a width that’s slightly larger the default thickness for lines. 
The density curve also suggests a bimodal distribution (two peaks). 

6.5 Kernel density plots 
In the previous section, you saw a kernel density plot superimposed on a histogram. 
Technically, kernel density estimation is a nonparametric method for estimating the probability 
density function of a random variable. Basically, we're trying to draw a smoothed histogram, 
where the area under the curve equals one. Although the mathematics are beyond the scope 
of this text, density plots can be an effective way to view the distribution of a continuous 
variable. The format for a density plot is 

ggplot(data, aes(x = contvar)) + geom_density() 

where data is a data frame and contvar is a continuous variable. Again, let's plot the 
distribution of city miles per gallon (cty) for cars in 2008. Three kernel density examples are 
given in the next listing, and the results are provided in figure 6.16. 

Listing 6.7 Kernel density plots 

library(ggplot2) 
data(mpg) 
cars2008 <- mpg[mpg$year == 2008, ] 
 
ggplot(cars2008, aes(x=cty)) +                  #1 
   geom_density() +                             #1 
   labs(title="Default kernel density plot")    #1 
 
ggplot(cars2008, aes(x=cty)) +                  #2 
   geom_density(fill="red") +                   #2 
   labs(title="Filled kernel density plot")     #2 
 
> bw.nrd0(cars2008$cty)                         #3 
1.408                                           #3 
 
ggplot(cars2008, aes(x=cty)) +                        #4 
   geom_density(fill="red", bw=.5) +                  #4 
   labs(title="Kernel density plot with bw=0.5")      #4 
                          

#1 Default density plot 
#2 Filled density plot 
#3 Print default bandwidth 
#4 Density plot with smaller bandwidth 

The default kernel density plot is given first #1. In the second example, the area under the 
curve is fill with red. The smoothness of the curve is control with a bandwidth parameter, 
which is calculated from the data being plotted. The code bw.nrd0(cars2008$cty) displays 
this value (1.408) #3. Using a larger bandwidth will give a smoother curve with less details. A 
smaller value will give a more squiggly curve (I don't squiggly an official term, but I couldn't 
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think of a better one). The third example uses a smaller bandwidth (bw=), allowing us to see 
more detail#4. As with the bins parameter for histograms, it is a good idea to try several 
bandwidth values to see which value helps you visualize the data most effectively.  

 
Figure 6.16 Kernel density plots 

Kernel density plots can be used to compare groups. This is a highly underutilized 
approach, probably due to a general lack of easily accessible software. Fortunately, the 
ggplot2 package fills this gap nicely.  

For this example, we'll compare the 2008 city gas mileage estimates for 4-, 6-, and 8-
cylinder cars. There are only a handful of cars with 5 cylinders so we will drop them from the 
analyses. The code is presented in listing 6.7. The resulting graphs are given in figures 6.17 
and 6.18. 
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Listing 6.8 Comparative kernel density plots 

   
data(mpg, package="ggplot2")                           #1 
cars2008 <- mpg[mpg$year == 2008 & mpg$cyl != 5,]      #1 
cars2008$Cylinders <- factor(cars2008$cyl)             #1 
 
ggplot(cars2008, aes(x=cty, color=Cylinders, linetype=Cylinders)) +   #2 
  geom_density(size=1)  +                                             #2 
  labs(title="Fuel Efficiecy by Number of Cylinders",                 #2 
       x = "City Miles per Gallon")                                   #2 
 
ggplot(cars2008, aes(x=cty, fill=Cylinders)) +  
  geom_density(alpha=.4) +                                            #3 
  labs(title="Fuel Efficiecy by Number of Cylinders",                 #3 
       x = "City Miles per Gallon")                                   #3 

#1 Prepare the data 
#2 Plots the density curves 
#3 Plot filled density curves 

First, a fresh copy of the data is loaded and 2008 data for cars with 4, 6, or 8 cylinders are 
retained #1. The number of cylinders (cyl) is saved as a categorical factor (Cylinders). The 
transformation is required because ggplot2 expects the grouping variable to be categorical 
(and cyl is stored as a continuous variable).  

A kernel density curve is plotted for each level of the Cylinders variable #2. Both the color 
(red, green, blue) and line type (solid, dotted, dashed) are mapped to the number of 
cylinders. Finally, the same plot is produced with filled curves #3. Transparency is added 
(alpha=0.4), since the filled curves overlap and we want to be able to see each one. 

 
Figure 6.17 Kernel density curves of city mpg by number of cylinders 
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Figure 6.18 Filled kernel density curves of city mpg by number of cylinders.  

Overlapping kernel density plots can be a powerful way to compare groups of observations 
on an outcome variable. Here you can see both the shapes of the distributions and the amount 
of overlap between groups. (The moral of the story is that my next car will have four 
cylinders—or a battery.)  

Box plots are also a wonderful (and more commonly used) graphical approach to 
visualizing distributions and differences among groups. We’ll discuss them next. 

6.6 Box plots 
A box-and-whiskers plot describes the distribution of a continuous variable by plotting its five-
number summary: the minimum, lower quartile (25th percentile), median (50th percentile), 
upper quartile (75th percentile), and maximum. It can also display observations that may be 
outliers (values outside the range of ± 1.5*IQR, where IQR is the interquartile range defined 
as the upper quartile minus the lower quartile). For example, the following code produces the 
plot shown in figure 6.19: 

ggplot(mtcars, aes(x="", y=mpg)) + 
  geom_boxplot() + 
  labs(y = "Miles Per Gallon", x="", title="Box Plot")) 
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Figure 6.19 Box plot with annotations added by hand 

I've added annotations by hand to illustrate the components. By default, each whisker 
extends to the most extreme data point, which is no more than 1.5 times the interquartile 
range for the box. Values outside this range are depicted as dots.  

For example, in this sample of cars, the median mpg is 17, 50% of the scores fall between 
14 and 19, the smallest value is 9, and the largest value is 35. How did I read this so precisely 
from the graph? Issuing boxplot.stats(mtcars$mpg) prints the statistics used to build the 
graph (in other words, I cheated). There is four outliers (greater than the upper hinge of 26). 
These values would be expected to occur less than 1% of the time in a normal distribution. 

6.6.1 Using parallel box plots to compare groups 

Box plots are a useful method of comparing the distribution of a quantitative variable across 
the levels of a categorical variable. Once again, let's compare city gas mileage for 3-, 6-, and 
8-cylinder cars, but this time use both 1999 and 2008 data. Since there are only a few 5-
cylinder cars, we will delete them. We'll also convert year and cyl from continuous numeric 
variables into categorical (grouping) factors.  

library(ggplot2) 
cars <- mpg[mpg$cyl != 5, ] 
cars$Cylinders <- factor(cars$cyl) 
cars$Year <- factor(cars$year) 
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The code  
ggplot(cars, aes(x=Cylinders, y=cty)) +  
  geom_boxplot() + 
  labs(x="Number of Cylinders",  
       y="Miles Per Gallon",  
       title="Car Mileage Data") 
 

produces the graph in figure 6.20. You can see that there’s a good separation of groups based 
on gas mileage, with fuel efficiency dropping as the number of cylinders increases. There are 
also four outliers (cars with unusually high mileage) in the four-cylinder group. 

 
Figure 6.20 Box plots of car mileage vs. number of cylinders 

Box plots are very versatile. By adding notch=TRUE, you get notched box plots. If two 
boxes’ notches don’t overlap, there’s strong evidence that their medians differ (Chambers et 
al., 1983, p. 62). The following code creates notched box plots for the mileage example: 
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ggplot(cars, aes(x=Cylinder, y=cty)) +  
  geom_boxplot(notch=TRUE,  
               fill="steelblue", 
               varwidth=TRUE) + 
  labs(x="Number of Cylinders",  
       y="Miles Per Gallon",  
       title="Car Mileage Data") 
 

The fill option fills the box plots with a red color. In a standard box plot, the box width has 
no meaning. Adding varwidth=TRUE, draws box widths proportional to the square roots of the 
number of observations in each group.  

You can see in figure 6.21 that the median car mileage for four-, six-, and eight-cylinder 
cars differs. Mileage clearly decreases with number of cylinders. Additionally, there are fewer 
8-cylinder cars, than 4- or 6-cylinder cars (although the difference is subtle). 

 
Figure 6.21 Notched box plots for car mileage vs. number of cylinders 
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Finally, you can produce box plots for more than one grouping factor. The following code 
provides box plots for city miles per gallon versus the number of cylinders by year (see figure 
6.21). The scale_fill_manual() function has been added in order to customize the fill colors.  

ggplot(cars, aes(x=Cylinders, y=cty, fill=Year)) +            
  geom_boxplot() +                                            
  labs(x="Number of Cylinders",                               
       y="Miles Per Gallon",                                  
       title="City Mileage by # Cylinders and Year") +     
  scale_fill_manual(values=c("gold", "green"))       
 

From figure 6.22, it’s again clear that median mileage decreases with number of cylinders. 
Additionally, for each group, mileage has increased between 1999 and 2008. 

 
Figure 6.22 Box plots for car mileage vs. year and number of cylinders 
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6.6.2 Violin plots 

Before we end our discussion of box plots, it’s worth examining a variation called a violin plot. 
A violin plot is a combination of a box plot and a kernel density plot. You can create one using 
the geom_violin() function. In listing 6.9, we'll add violin plots to the box plots in figure 
6.23. 

Listing 6.9 Violin plots 

library(ggplot2) 
cars <- mpg[mpg$cyl != 5, ] 
cars$Cylinders <- factor(cars$cyl) 
 
ggplot(cars, aes(x=Cylinders, y=cty)) +  
  geom_boxplot(width=0.2,  
              fill="green") + 
  geom_violin(fill="gold",  
              alpha=0.3) + 
  labs(x="Number of Cylinders",  
       y="City Miles Per Gallon",  
       title="Violin Plots of Miles Per Gallon") 
 

The width of the box plots are set to 0.2 so that they will fit inside the violin plots. The violin 
plots are set with a transparency level of 0.3 so that the box plots are still visible. 
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Figure 6.23 Violin plots of mpg vs. number of cylinders 

Violin plots are basically kernel density plots superimposed in a mirror-image fashion over 
box plots. The middle lines are the medians, the black boxes range from the lower to the 
upper quartile, and the thin black lines represent the whiskers. Dots are outliers. The outer 
shape provides the kernel density plot. Here we can see that the distribution of gas mileage 
for 8-cylinder cars may be bimodal – a fact that is obscured by using box plots alone. Violin 
plots haven’t really caught on yet. Again, this may be due to a lack of easily accessible 
software; time will tell. 

We’ll end this chapter with a look at dot plots. Unlike the graphs you’ve seen previously, 
dot plots plot every value for a variable. 
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6.7 Dot plots 
Dot plots provide a method of plotting a large number of labeled values on a simple horizontal 
scale. You create them with the dotchart() function, using the format 

ggplot(data, aes(x=contvar, y=catvar)) + geom_point() 

where data is a data frame, contvar is a continuous variable, and catvar is a categorical 
variable. Here’s an example using the highway gas mileage for the 2008 automobiles in the 
mpg dataset. Highway gas mileage is averaged by car model. 

 

library(ggplot2) 
library(dplyr) 
plotdata <- mpg %>% 
  filter(year == "2008") %>% 
  group_by(model) %>% 
  summarize(meanHwy=mean(hwy)) 
 
> plotdata 
 
# A tibble: 38 x 2 
   model              meanHwy 
   <chr>                <dbl> 
 1 4runner 4wd           18.5 
 2 a4                    29.3 
 3 a4 quattro            26.2 
 4 a6 quattro            24   
 5 altima                29   
 6 c1500 suburban 2wd    18   
 7 camry                 30   
 8 camry solara          29.7 
 9 caravan 2wd           22.2 
10 civic                 33.8 
# ... with 28 more rows 
 
 
ggplot(plotdata, aes(x=meanHwy, y=model)) +  
  geom_point() + 
  labs(x="Miles Per Gallon",  
       y="",  
       title="Gas Mileage for Car Models") 
 

The resulting plot is given in figure 6.24. 
This graph allows you to see the mpg for each car model on the same horizontal axis. Dot 

plots typically become most useful when they’re sorted. The following code sorts the cars from 
lowest to highest mileage.  

 
ggplot(plotdata, aes(x=meanHwy, y=reorder(model, meanHwy))) +  

  geom_point() + 
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  labs(x="Miles Per Gallon",  
       y="",  
       title="Gas Mileage for Car Models") 
 

The resulting graph is given in figure 6.25. To plot in descending order, use reorder(model, 
-meanHwy). 

 
Figure 6.24 Dot plot of mpg for each car model 
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Figure 6.25 Dot plot of mpg for car models sorted by mileage 

You can gain significant insight from the dot plot in this example because each point is 
labeled, the value of each point is inherently meaningful, and the points are arranged in a 
manner that promotes comparisons. But as the number of data points increases, the utility of 
the dot plot decreases.  

6.8 Summary 
• Bar charts (and to a lesser extent pie charts and tree maps) can be used to gain insight 

into the distribution of a categorical variable. 
•  Stacked, grouped, and filled bar charts can help you understand how groups differ on 
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a categorical outcome.  
• Histograms, box plots, violin plots, and dot plots can help you visualize the distribution 

of continuous variables.  
• Overlapping kernel density plots and parallel box plots can help you visualize group 

differences on a continuous outcome variable. 
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7  
Basic statistics 

This chapter covers 

• Descriptive statistics 
• Frequency and contingency tables 
• Correlations and covariances 
• t-tests 
• Nonparametric statistics 

In previous chapters, you learned how to import data into R and use a variety of functions to 
organize and transform the data into a useful format. We then reviewed basic methods for 
visualizing data. 

Once your data is properly organized and you’ve begun to explore the data visually, the 
next step is typically to describe the distribution of each variable numerically, followed by an 
exploration of the relationships among selected variables two at a time. The goal is to answer 
questions like these: 

• What kind of mileage are cars getting these days? Specifically, what’s the distribution 
of miles per gallon (mean, standard deviation, median, range, and so on) in a survey of 
automobile makes and models? 

• After a new drug trial, what’s the outcome (no improvement, some improvement, 
marked improvement) for drug versus placebo groups? Does the gender of the 
participants have an impact on the outcome? 

• What’s the correlation between income and life expectancy? Is it significantly different 
from zero? 

• Are you more likely to receive imprisonment for a crime in different regions of the 
United States? Are the differences between regions statistically significant? 
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In this chapter, we’ll review R functions for generating basic descriptive and inferential 
statistics. First, we’ll look at measures of location and scale for quantitative variables. Then 
you’ll learn how to generate frequency and contingency tables (and associated chi-square 
tests) for categorical variables. Next, we’ll examine the various forms of correlation 
coefficients available for continuous and ordinal variables. Finally, we’ll turn to the study of 
group differences through parametric (t-tests) and nonparametric (Mann–Whitney U test, 
Kruskal–Wallis test) methods. Although our focus is on numerical results, we’ll refer to 
graphical methods for visualizing these results throughout. 

The statistical methods covered in this chapter are typically taught in a first-year 
undergraduate statistics course. If these methodologies are unfamiliar to you, two excellent 
references are McCall (2000) and Kirk (2007). Alternatively, many informative online 
resources are available (such as Wikipedia) for each of the topics covered.  

7.1 Descriptive statistics 
In this section, we’ll look at measures of central tendency, variability, and distribution shape 
for continuous variables. For illustrative purposes, we’ll use several of the variables from the 
Motor Trend Car Road Tests (mtcars) dataset you first saw in chapter 1. Our focus will be on 
miles per gallon (mpg), horsepower (hp), and weight (wt): 

> myvars <- c("mpg", "hp", "wt") 
> head(mtcars[myvars]) 
                   mpg   hp   wt 
Mazda RX4         21.0  110  2.62 
Mazda RX4 Wag     21.0  110  2.88 
Datsun 710        22.8   93  2.32 
Hornet 4 Drive    21.4  110  3.21 
Hornet Sportabout 18.7  175  3.44 
Valiant           18.1  105  3.46 

First, we’ll look at descriptive statistics for all 32 cars. Then we’ll examine descriptive statistics 
by transmission type (am) engine cylinder configuration (vs). The former is coded 
0=automatic, 1=manual, and the later is coded 0=V-shape and 1=straight. 

7.1.1 A menagerie of methods 

When it comes to calculating descriptive statistics, R has an embarrassment of riches. Let’s 
start with functions that are included in the base installation. Then we’ll look at extensions 
that are available through the use of user-contributed packages. 

In the base installation, you can use the summary() function to obtain descriptive statistics. 
An example is presented in the following listing. 

Listing 7.1 Descriptive statistics via summary() 

> myvars <- c("mpg", "hp", "wt") 
> summary(mtcars[myvars]) 
      mpg             hp              wt       
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 Min.   :10.4   Min.   : 52.0   Min.   :1.51   
 1st Qu.:15.4   1st Qu.: 96.5   1st Qu.:2.58   
 Median :19.2   Median :123.0   Median :3.33   
 Mean   :20.1   Mean   :146.7   Mean   :3.22   
 3rd Qu.:22.8   3rd Qu.:180.0   3rd Qu.:3.61   
 Max.   :33.9   Max.   :335.0   Max.   :5.42   

The summary() function provides the minimum, maximum, quartiles, and mean for numerical 
variables and frequencies for factors and logical vectors. You can use the apply() and 
sapply() function from chapter 5 to provide any descriptive statistics you choose. The 
apply() function is used with matrices and the sapply() function is used with data frames. 
The format for the for the sapply() function is 

sapply(x, FUN, options) 

where x is the data frame and FUN is an arbitrary function. If options are present, they’re 
passed to FUN. Typical functions that you can plug in here are mean(), sd(), var(), min(), 
max(), median(), length(), range(), and quantile(). The function fivenum() returns 
Tukey’s five-number summary (minimum, lower-hinge, median, upper-hinge, and maximum).  

Surprisingly, the base installation doesn’t provide functions for skew and kurtosis, but you 
can add your own. The example in the next listing provides several descriptive statistics, 
including skew and kurtosis. 

Listing 7.2 Descriptive statistics via sapply() 

> mystats <- function(x, na.omit=FALSE){ 
                if (na.omit) 
                    x <- x[!is.na(x)] 
                m <- mean(x) 
                n <- length(x) 
                s <- sd(x) 
                skew <- sum((x-m)^3/s^3)/n 
                kurt <- sum((x-m)^4/s^4)/n - 3 
                return(c(n=n, mean=m, stdev=s,  
                       skew=skew, kurtosis=kurt)) 
              } 
 
> myvars <- c("mpg", "hp", "wt") 
> sapply(mtcars[myvars], mystats) 
            mpg      hp       wt 
n         32.000   32.000  32.0000 
mean      20.091  146.688   3.2172 
stdev      6.027   68.563   0.9785 
skew       0.611    0.726   0.4231 
kurtosis  -0.373   -0.136  -0.0227                

For cars in this sample, the mean mpg is 20.1, with a standard deviation of 6.0. The 
distribution is skewed to the right (+0.61) and is somewhat flatter than a normal distribution 
(–0.37). This is most evident if you graph the data. Note that if you wanted to omit missing 
values, you could use sapply(mtcars[myvars], mystats, na.omit=TRUE). 
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7.1.2 Even more methods 

Several user-contributed packages offer functions for descriptive statistics, including Hmisc, 
pastecs, psych, skimr, and summytools. Due to space limitations, we'll only demonstrate 
the first three, but you can generate useful summaries with any of the five. Because these 
packages aren’t included in the base distribution, you’ll need to install them on first use (see 
section 1.4). 

The describe() function in the Hmisc package returns the number of variables and 
observations, the number of missing and unique values, the mean, quantiles, and the five 
highest and lowest values. An example is provided in the following listing. 

Listing 7.3 Descriptive statistics via describe() in the Hmisc package 

> library(Hmisc) 
> myvars <- c("mpg", "hp", "wt") 
> describe(mtcars[myvars]) 
 
 3  Variables      32  Observations 
--------------------------------------------------------------------------- 
mpg  
n missing  unique  Mean    .05   .10     .25   .50    .75    .90    .95 
32      0    25   20.09 12.00  14.34  15.43  19.20  22.80  30.09  31.30 
 
lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9  
--------------------------------------------------------------------------- 
hp  
n missing  unique    Mean    .05     .10   .2     .50   .75   .90     .95 
32       0     22   146.7  63.65  66.00 96.50 123.00 180.00 243.50 253.55  
 
lowest :  52  62  65  66  91, highest: 215 230 245 264 335  
--------------------------------------------------------------------------- 
wt  
n missing  unique    Mean    .05    .10    .25    .50    .75    .90   .95 
32      0      29   3.217  1.736  1.956  2.581  3.325  3.610  4.048 5.293 
 
lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345 5.424  
--------------------------------------------------------------------------- 

The pastecs package includes a function named stat.desc() that provides a wide range of 
descriptive statistics. The format is 

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0.95) 

where x is a data frame or time series. If basic=TRUE (the default), the number of values, null 
values, missing values, minimum, maximum, range, and sum are provided. If desc=TRUE (also 
the default), the median, mean, standard error of the mean, 95% confidence interval for the 
mean, variance, standard deviation, and coefficient of variation are also provided. Finally, if 
norm=TRUE (not the default), normal distribution statistics are returned, including skewness 
and kurtosis (and their statistical significance) and the Shapiro–Wilk test of normality. A p-
value option is used to calculate the confidence interval for the mean (.95 by default). The 
next listing gives an example. 
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Listing 7.4 Descriptive statistics via stat.desc() in the pastecs package  

> library(pastecs) 
> myvars <- c("mpg", "hp", "wt") 
> stat.desc(mtcars[myvars]) 
                mpg       hp      wt 
nbr.val       32.00   32.000  32.000 
nbr.null       0.00    0.000   0.000 
nbr.na         0.00    0.000   0.000 
min           10.40   52.000   1.513 
max           33.90  335.000   5.424 
range         23.50  283.000   3.911 
sum          642.90 4694.000 102.952 
median        19.20  123.000   3.325 
mean          20.09  146.688   3.217 
SE.mean        1.07   12.120   0.173 
CI.mean.0.95   2.17   24.720   0.353 
var           36.32 4700.867   0.957 
std.dev        6.03   68.563   0.978 
coef.var       0.30    0.467   0.304 

As if this isn’t enough, the psych package also has a function called describe() that provides 
the number of nonmissing observations, mean, standard deviation, median, trimmed mean, 
median absolute deviation, minimum, maximum, range, skew, kurtosis, and standard error of 
the mean. You can see an example in the following listing. 

Listing 7.5 Descriptive statistics via describe() in the psych package  

> library(psych) 
Attaching package: 'psych' 
        The following object(s) are masked from package:Hmisc : 
         describe  
> myvars <- c("mpg", "hp", "wt") 
> describe(mtcars[myvars]) 
    var  n   mean    sd median trimmed   mad   min    max 
mpg   1 32  20.09  6.03  19.20   19.70  5.41 10.40  33.90 
hp    2 32 146.69 68.56 123.00  141.19 77.10 52.00 335.00 
wt    3 32   3.22  0.98   3.33    3.15  0.77  1.51   5.42 
     range skew kurtosis    se 
mpg  23.50 0.61    -0.37  1.07 
hp  283.00 0.73    -0.14 12.12 
wt    3.91 0.42    -0.02  0.17 

I told you that it was an embarrassment of riches! 

NOTE In the previous examples, the packages psych and Hmisc both provide a function named 

describe(). How does R know which one to use? Simply put, the package last loaded takes precedence, as 

shown in listing 7.5. Here, psych is loaded after Hmisc, and a message is printed indicating that the 

describe() function in Hmisc is masked by the function in psych. When you type in the describe() 

function and R searches for it, R comes to the psych package first and executes it. If you want the Hmisc 

version instead, you can type Hmisc::describe(mt). The function is still there. You have to give R more 

information to find it. 
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Now that you know how to generate descriptive statistics for the data as a whole, let’s review 
how to obtain statistics for subgroups of the data. 

7.1.3 Descriptive statistics by group 

When comparing groups of individuals or observations, the focus is usually on the descriptive 
statistics of each group, rather than the total sample. Group statistics can be generated using 
base R's by() function. The format is 

by(data, INDICES, FUN) 

where data is a data frame or matrix, INDICES is a factor or list of factors that defines the 
groups, and FUN is an arbitrary function that operates on all the columns of a data frame. The 
next listing provides an example. 

Listing 7.6 Descriptive statistics by group using by() 

> dstats <- function(x)sapply(x, mystats) 
> myvars <- c("mpg", "hp", "wt") 
> by(mtcars[myvars], mtcars$am, dstats) 
 
mtcars$am: 0 
             mpg        hp        wt 
n          19.000    19.0000   19.000 
mean       17.147   160.2632    3.769 
stdev       3.834    53.9082    0.777 
skew        0.014    -0.0142    0.976 
kurtosis   -0.803    -1.2097    0.142 
----------------------------------------  
mtcars$am: 1 
             mpg        hp        wt 
n          13.0000    13.000   13.000 
mean       24.3923   126.846    2.411 
stdev       6.1665    84.062    0.617 
skew        0.0526     1.360    0.210 
kurtosis   -1.4554     0.563   -1.174 

In this case, dstats() applies the mystats() function from listing 7.2 to each column of the 
data frame. Placing it in the by() function gives you summary statistics for each level of am. 

In the next example (listing 7.7), summary statistics are generated for two by variables 
(am and vs) and the results for each group are printed with custom labels. Additionally, 
missing values are omitted before calculating statistics. 

Listing 7.7 Descriptive statistics for groups defined by multiple variables 

> dstats <- function(x)sapply(x, mystats, na.omit=TRUE) 
> myvars <- c("mpg", "hp", "wt") 
> by(mtcars[myvars],  
     list(Transmission=mtcars$am, 
          Engine=mtcars$vs),  
     FUN=dstats) 
 
Transmission: 0 

169

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

Engine: 0 
                mpg          hp         wt 
n        12.0000000  12.0000000 12.0000000 
mean     15.0500000 194.1666667  4.1040833 
stdev     2.7743959  33.3598379  0.7683069 
skew     -0.2843325   0.2785849  0.8542070 
kurtosis -0.9635443  -1.4385375 -1.1433587 
-----------------------------------------------------------------  
Transmission: 1 
Engine: 0 
                mpg          hp          wt 
n         5.0000000   6.0000000  6.00000000 
mean     19.5000000 180.8333333  2.85750000 
stdev     4.4294469  98.8158219  0.48672117 
skew      0.3135121   0.4842372  0.01270294 
kurtosis -1.7595065  -1.7270981 -1.40961807 
-----------------------------------------------------------------  
Transmission: 0 
Engine: 1 
                mpg          hp         wt 
n         7.0000000   7.0000000  7.0000000 
mean     20.7428571 102.1428571  3.1942857 
stdev     2.4710707  20.9318622  0.3477598 
skew      0.1014749  -0.7248459 -1.1532766 
kurtosis -1.7480372  -0.7805708 -0.1170979 
-----------------------------------------------------------------  
Transmission: 1 
Engine: 1 
                mpg         hp         wt 
n         7.0000000  7.0000000  7.0000000 
mean     28.3714286 80.5714286  2.0282857 
stdev     4.7577005 24.1444068  0.4400840 
skew     -0.3474537  0.2609545  0.4009511 
kurtosis -1.7290639 -1.9077611 -1.3677833 
 

Although the previous examples used the mystats() function, you could have used the 
describe() function from the Hmisc and psych packages, or the stat.desc() function from 
the pastecs package. In fact, the by() function provides a general mechanism for repeated 
any analysis by subgroups.  

7.1.4 Summarizing data interactively with dplyr 
So far, we've focused on methods that generate a comprehensive set of descriptive 

statistics for a given data frame. However, in interactive, exploratory data analyses, our goal 
is to answer targeted questions. In this case, we'll want to obtain a limited number of statistics 
on specific groups of observations.   

The dplyr package, introduces in section 3.11, provides us with tools to quickly and 
flexibly accomplish this. The summarize(), and summarize_all() functions can be used to 
calculate any statistic, and the group_by() function can be used to specify the groups on which 
to calculate those statistics.  
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As a demonstration, let's ask and answer a set of questions using the Salaries data frame 
in the carData package. The dataset contains 2008-2009 9-month salaries in US dollars 
(salary) for 397 faculty members at a university in the United States. The data were collected 
as part of ongoing efforts to monitor salary differences between male and female faculty. 

Before continuing, be sure that the carData and dplyr packages are installed 
(install.packages(c("carData", "dplyr")). Then load the packages. 

library(dplyr) 
library(carData) 
 

We're now ready to interogate the data. 

 (1) What is the median salary and salary range for the 397 professors? 
> Salaries %>% 

    summarize(med = median(salary),  
              min = min(salary),  
              max = max(salary)) 
 
     med   min    max 
1 107300 57800 231545 
 

The Salaries dataset is passed to the summarize() function, which calculates the median, 
minimum and maximum value for salary and returns the result as a one row tibble (data 
frame). The median 9-month salary is $107,300 and at least one person was making more 
than $230,000. I clearly need to ask for a raise. 

 

(2) What is the faculty count, median salary, and salary range by sex and rank? 

> Salaries %>% 
    group_by(rank, sex) %>% 
    summarize(n = length(salary), 
              med = median(salary),  
              min = min(salary),  
              max = max(salary)) 
 
  rank      sex        n     med   min    max 
  <fct>     <fct>  <int>   <dbl> <int>  <int> 
1 AsstProf  Female    11  77000  63100  97032 
2 AsstProf  Male      56  80182  63900  95079 
3 AssocProf Female    10  90556. 62884 109650 
4 AssocProf Male      54  95626. 70000 126431 
5 Prof      Female    18 120258. 90450 161101 
6 Prof      Male     248 123996  57800 231545 
 

When categorical variables are specified in a by_group() statement, the summarize() 
function generates a row of statistics for each combination of their levels. Women have a 
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lower median salary than men within each faculty rank. In addition, there are a very large 
number of male full professors at this university. 

 

(3) What is the mean years of service and years since Ph.D. for faculty by sex and rank? 

> Salaries %>% 
    group_by(rank, sex) %>% 
    select(yrs.service, yrs.since.phd) %>% 
    summarize_all(mean) 
 
  rank      sex    yrs.service yrs.since.phd 
  <fct>     <fct>        <dbl>         <dbl> 
1 AsstProf  Female        2.55          5.64 
2 AsstProf  Male          2.34          5    
3 AssocProf Female       11.5          15.5  
4 AssocProf Male         12.0          15.4  
5 Prof      Female       17.1          23.7  
6 Prof      Male         23.2          28.6 
 

The summarize_all() function calculates a summary statistic each non-grouping variable 
(yrs.service and yrs.since.phd here). If you want more than one statistic for each 
variable, provide them in a list. For example, summarize_all(list(mean=mean, std=sd)) 
would calculate the mean and standard deviation for each variable. Men and women have 
comparable experience histories at the Assistant and Associate Professor levels. However, 
female Full Professors have fewer years of experience than their male conterparts.  

One advantage of the dplyr approach is that results are returned as tibbles (data frames). 
This allows you to analyze these summary results further, plot them, and reformat them for 
printing. It also provides an easy mechanism for aggregating data. 

In general, data analysts have their own preferences for which descriptive statistics to 
display and how they like to see them formatted. This is probably why there are many 
variations available. Choose the one that works best for you, or create your own! 

7.1.5 Visualizing results 

Numerical summaries of a distribution’s characteristics are important, but they’re no substitute 
for a visual representation. For quantitative variables, you have histograms (section 6.4), 
density plots (section 6.5), box plots (section 6.6), and dot plots (section 6.7). They can 
provide insights that are easily missed by reliance on a small set of descriptive statistics. 

The functions considered so far provide summaries of quantitative variables. The functions 
in the next section allow you to examine the distributions of categorical variables. 

7.2 Frequency and contingency tables 
In this section, we’ll look at frequency and contingency tables from categorical variables, along 
with tests of independence, measures of association, and methods for graphically displaying 
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results. We’ll be using functions in the basic installation, along with functions from the vcd and 
gmodels packages. In the following examples, assume that A, B, and C represent categorical 
variables. 

The data for this section come from the Arthritis dataset included with the vcd package. 
The data are from Kock & Edward (1988) and represent a double-blind clinical trial of new 
treatments for rheumatoid arthritis. Here are the first few -observations: 

> library(vcd) 
> head(Arthritis) 
    ID  Treatment   Sex  Age  Improved 
1   57    Treated  Male   27      Some 
2   46    Treated  Male   29      None 
3   77    Treated  Male   30      None 
4   17    Treated  Male   32    Marked 
5   36    Treated  Male   46    Marked 
6   23    Treated  Male   58    Marked 

Treatment (Placebo, Treated), Sex (Male, Female), and Improved (None, Some, Marked) are 
all categorical factors. In the next section, you’ll create frequency and contingency tables 
(cross-classifications) from the data. 

7.2.1 Generating frequency tables 

R provides several methods for creating frequency and contingency tables. The most 
important functions are listed in table 7.1.  

Table 7.1 Functions for creating and manipulating contingency tables 

Function Description 

table(var1, var2, ..., varN) Creates an N-way contingency table from N categorical variables 
(factors) 

xtabs(formula, data) Creates an N-way contingency table based on a formula and a 
matrix or data frame 

prop.table(table, margins) Expresses table entries as fractions of the marginal table defined 
by the margins 

margin.table(table, margins) Computes the sum of table entries for a marginal table defined 
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by the margins 

addmargins(table, margins) Puts summary margins (sums by default) on a table 

ftable(table) Creates a compact, “flat” contingency table 

In the following sections, we’ll use each of these functions to explore categorical variables. 
We’ll begin with simple frequencies, followed by two-way contingency tables, and end with 
multiway contingency tables. The first step is to create a table using either the table() or 
xtabs() function and then manipulate it using the other functions. 

ONE-WAY TABLES 

You can generate simple frequency counts using the table() function. Here’s an example: 

> mytable <- with(Arthritis, table(Improved)) 
> mytable 
Improved 
  None   Some  Marked  
   42     14     28 

You can turn these frequencies into proportions with prop.table() 

> prop.table(mytable) 
Improved 
  None   Some  Marked  
 0.500  0.167  0.333 

or into percentages using prop.table()*100: 

> prop.table(mytable)*100 
Improved 
  None   Some  Marked  
  50.0   16.7   33.3 

Here you can see that 50% of study participants had some or marked improvement (16.7 + 
33.3). 

TWO-WAY TABLES 

For two-way tables, the format for the table() function is  
mytable <- table(A, B) 

where A is the row variable and B is the column variable. Alternatively, the xtabs() function 
allows you to create a contingency table using formula-style input. The format is 

mytable <- xtabs(~ A + B, data=mydata) 
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where mydata is a matrix or data frame. In general, the variables to be cross-classified appear 
on the right of the formula (that is, to the right of the ~) separated by + signs. If a variable is 
included on the left side of the formula, it’s assumed to be a vector of frequencies (useful if 
the data have already been tabulated).  

For the Arthritis data, you have 

> mytable <- xtabs(~ Treatment+Improved, data=Arthritis) 
> mytable 
          Improved 
Treatment  None  Some  Marked 
  Placebo   29    7      7 
  Treated   13    7     21 

You can generate marginal frequencies and proportions using the margin.table() and 
prop.table() functions, respectively. For row sums and row proportions, you have 

> margin.table(mytable, 1) 
Treatment 
Placebo Treated  
   43      41  
> prop.table(mytable, 1) 
           Improved 
Treatment   None   Some   Marked 
  Placebo  0.674  0.163   0.163 
  Treated  0.317  0.171   0.512 

The index (1) refers to the first variable in the xtabs()() statement –the row variable. The 
proportions in each row add up to one. Looking at the table, you can see that 51% of treated 
individuals had marked improvement, compared to 16% of those receiving a placebo.  

For column sums and column proportions, you have 

> margin.table(mytable, 2) 
Improved 
   None   Some  Marked  
    42     14     28  
> prop.table(mytable, 2) 
            Improved 
Treatment   None   Some   Marked 
  Placebo  0.690  0.500   0.250 
  Treated  0.310  0.500   0.750 

Here, the index (2) refers to the second variable in the xtabs() statement – i.e., the columns 
The proportions in each column add up to one. 

Cell proportions are obtained with this statement:  

> prop.table(mytable) 
            Improved 
Treatment   None    Some   Marked 
  Placebo  0.3452  0.0833  0.0833 
  Treated  0.1548  0.0833  0.2500 
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The sum of all the cell proportions add up to one. 
You can use the addmargins() function to add marginal sums to these tables. For 

example, the following code adds a Sum row and column: 

> addmargins(mytable) 
                Improved 
Treatment   None    Some   Marked    Sum 
  Placebo    29       7       7       43 
  Treated    13       7      21       41 
  Sum        42      14      28       84 
> addmargins(prop.table(mytable)) 
                Improved 
Treatment   None    Some   Marked    Sum 
  Placebo  0.3452  0.0833  0.0833  0.5119 
  Treated  0.1548  0.0833  0.2500  0.4881 
  Sum      0.5000  0.1667  0.3333  1.0000 

When using addmargins(), the default is to create sum margins for all variables in a table. In 
contrast, the following code adds a Sum column alone: 

> addmargins(prop.table(mytable, 1), 2) 
                Improved 
Treatment   None    Some   Marked    Sum 
  Placebo   0.674   0.163   0.163    1.000 
  Treated   0.317   0.171   0.512    1.000 

Similarly, this code adds a Sum row: 

> addmargins(prop.table(mytable, 2), 1) 
            Improved 
Treatment   None    Some   Marked 
  Placebo   0.690   0.500   0.250 
  Treated   0.310   0.500   0.750 
  Sum       1.000   1.000   1.000 

In the table, you see that 25% of those patients with marked improvement received a 
placebo.  

NOTE The table() function ignores missing values (NAs) by default. To include NA as a valid category in 

the frequency counts, include the table option useNA="ifany". 

A third method for creating two-way tables is the CrossTable() function in the gmodels 
package. The CrossTable() function produces two-way tables modeled after PROC FREQ in 
SAS or CROSSTABS in SPSS. The following listing shows an example.  

Listing 7.8 Two-way table using CrossTable 

> library(gmodels) 
> CrossTable(Arthritis$Treatment, Arthritis$Improved) 
 
   Cell Contents 
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|-------------------------| 
|                       N | 
| Chi-square contribution | 
|           N / Row Total | 
|           N / Col Total | 
|         N / Table Total | 
|-------------------------| 
 
Total Observations in Table:  84  
 
                    | Arthritis$Improved  
Arthritis$Treatment |      None |      Some |    Marked | Row Total |  
--------------------|-----------|-----------|-----------|-----------| 
            Placebo |        29 |         7 |         7 |        43 |  
                    |     2.616 |     0.004 |     3.752 |           |  
                    |     0.674 |     0.163 |     0.163 |     0.512 |  
                    |     0.690 |     0.500 |     0.250 |           |  
                    |     0.345 |     0.083 |     0.083 |           |  
--------------------|-----------|-----------|-----------|-----------| 
            Treated |        13 |         7 |        21 |        41 |  
                    |     2.744 |     0.004 |     3.935 |           |  
                    |     0.317 |     0.171 |     0.512 |     0.488 |  
                    |     0.310 |     0.500 |     0.750 |           |  
                    |     0.155 |     0.083 |     0.250 |           |  
--------------------|-----------|-----------|-----------|-----------| 
       Column Total |        42 |        14 |        28 |        84 |  
                    |     0.500 |     0.167 |     0.333 |           |  
--------------------|-----------|-----------|-----------|-----------| 

The CrossTable() function has options to report percentages (row, column, and cell); specify 
decimal places; produce chi-square, Fisher, and McNemar tests of independence; report 
expected and residual values (Pearson, standardized, and adjusted standardized); include 
missing values as valid; annotate with row and column titles; and format as SAS or SPSS style 
output. See help(CrossTable) for details.  

If you have more than two categorical variables, you’re dealing with multidimensional 
tables. We’ll consider these next. 

MULTIDIMENSIONAL TABLES 

Both table() and xtabs() can be used to generate multidimensional tables based on three or 
more categorical variables. The margin.table(), prop.table(), and addmargins() functions 
extend naturally to more than two dimensions. Additionally, the ftable() function can be 
used to print multidimensional tables in a compact and attractive manner. An example is given 
in the next listing. 

Listing 7.9 Three-way contingency table 

> mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)   #1 
> mytable           
, , Improved = None    
 
           Sex 
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Treatment  Female  Male 
  Placebo      19    10 
  Treated       6     7 
 
, , Improved = Some 
 
           Sex 
Treatment  Female  Male 
  Placebo       7     0 
  Treated       5     2 
 
, , Improved = Marked 
 
           Sex 
Treatment  Female  Male 
  Placebo       6     1 
  Treated      16     5 
 
> ftable(mytable)                 
                   Sex Female Male 
Treatment Improved                 
Placebo   None             19   10 
          Some              7    0 
          Marked            6    1 
Treated   None              6    7 
          Some              5    2 
          Marked           16    5 
 
> margin.table(mytable, 1)                          #2 
 
Treatment  
Placebo Treated                                    
     43      41  
> margin.table(mytable, 2)         
Sex 
Female   Male  
    59     25  
> margin.table(mytable, 3) 
Improved 
  None   Some Marked  
    42     14     28  
> margin.table(mytable, c(1, 3))                        #3 
         Improved 
Treatment None Some Marked                           
  Placebo   29    7      7 
  Treated   13    7     21 
 > ftable(prop.table(mytable, c(1, 2)))                     #4 
                 Improved  None  Some Marked 
Treatment Sex                                            
Placebo   Female          0.594 0.219  0.188 
          Male            0.909 0.000  0.091 
Treated   Female          0.222 0.185  0.593 
          Male            0.500 0.143  0.357 
 
> ftable(addmargins(prop.table(mytable, c(1, 2)), 3))      
                 Improved  None  Some Marked   Sum 
Treatment Sex                                      
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Placebo   Female          0.594 0.219  0.188 1.000 
          Male            0.909 0.000  0.091 1.000 
Treated   Female          0.222 0.185  0.593 1.000 
          Male            0.500 0.143  0.357 1.000 

#1 Cell frequencies 
#2 Marginal frequencies 
#3 Treatment × Improved marginal frequencies 
#4 Improved proportions for Treatment × Sex 

The code at #1 produces cell frequencies for the three-way classification. The code also 
demonstrates how the ftable() function can be used to print a more compact and attractive 
version of the table.  

The code at #2 produces the marginal frequencies for Treatment, Sex, and Improved. 
Because you created the table with the formula ~Treatment+Sex + Improved, Treatment is 
referred to by index 1, Sex is referred to by index 2, and Improved is referred to by index 3.  

The code at #3 produces the marginal frequencies for the Treatment x Improved 
classification, summed over Sex. The proportion of patients with None, Some, and Marked 
improvement for each Treatment × Sex combination is provided in #4. Here you see that 36% 
of treated males had marked improvement, compared to 59% of treated females. In general, 
the proportions will add to 1 over the indices not included in the prop.table() call (the third 
index, or Improved in this case). You can see this in the last example, where you add a sum 
margin over the third index.  

If you want percentages instead of proportions, you can multiply the resulting table by 
100. For example, this statement  

ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) * 100 

produces this table: 

                   Sex Female  Male   Sum 
Treatment Improved                        
Placebo   None           65.5  34.5 100.0 
          Some          100.0   0.0 100.0 
          Marked         85.7  14.3 100.0 
Treated   None           46.2  53.8 100.0 
          Some           71.4  28.6 100.0 
          Marked         76.2  23.8 100.0 

Contingency tables tell you the frequency or proportions of cases for each combination of the 
variables that make up the table, but you’re probably also interested in whether the variables 
in the table are related or independent. Tests of independence are covered in the next section. 

7.2.2 Tests of independence 

R provides several methods of testing the independence of categorical variables. The three 
tests described in this section are the chi-square test of independence, the Fisher exact test, 
and the Cochran-Mantel–Haenszel test.  
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CHI-SQUARE TEST OF INDEPENDENCE 

You can apply the function chisq.test() to a two-way table in order to produce a chi-square 
test of independence of the row and column variables. See the next listing for an example. 

Listing 7.10 Chi-square test of independence 

> library(vcd) 
> mytable <- xtabs(~Treatment+Improved, data=Arthritis)           
> chisq.test(mytable)                                           
        Pearson’s Chi-squared test 
data:  mytable                                                  
 X-squared = 13.1, df = 2, p-value = 0.001463                 #1 
 
> mytable <- xtabs(~Improved+Sex, data=Arthritis)               
> chisq.test(mytable)                                            
        Pearson's Chi-squared test                                 
data:  mytable   
 X-squared = 4.84, df = 2, p-value = 0.0889                    #2 
 
Warning message:     
In chisq.test(mytable) : Chi-squared approximation may be incorrect 

#1 Treatment and Improved aren’t independent. 
#2 Gender and Improved are independent. 

From the results #1, there appears to be a relationship between treatment received and 
level of improvement (p < .01). But there doesn’t appear to be a relationship #2 between 
patient sex and improvement (p > .05). The p-values are the probability of obtaining the 
sampled results, assuming independence of the row and column variables in the population. 
Because the probability is small for #1, you reject the hypothesis that treatment type and 
outcome are independent. Because the probability for #2 isn’t small, it’s not unreasonable to 
assume that outcome and gender are independent. The warning message in listing 7.10 is 
produced because one of the six cells in the table (male-some improvement) has an expected 
value less than five, which may invalidate the chi-square approximation. 

FISHER’S EXACT TEST 

You can produce a Fisher’s exact test via the fisher.test() function. Fisher’s exact test 
evaluates the null hypothesis of independence of rows and columns in a contingency table with 
fixed marginals. The format is fisher.test(mytable), where mytable is a two-way table. 
Here’s an example: 

> mytable <- xtabs(~Treatment+Improved, data=Arthritis) 
> fisher.test(mytable) 
        Fisher's Exact Test for Count Data 
data:  mytable  
p-value = 0.001393 
alternative hypothesis: two.sided 
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In contrast to many statistical packages, the fisher.test() function can be applied to any 
two-way table with two or more rows and columns, not just a 2 × 2 table. 

COCHRAN–MANTEL–HAENSZEL TEST 

The mantelhaen.test() function provides a Cochran–Mantel–Haenszel chi-square test of the 
null hypothesis that two nominal variables are conditionally independent in each stratum of a 
third variable. The following code tests the hypothesis that the Treatment and Improved 
variables are independent within each level for Sex. The test assumes that there’s no three-
way (Treatment × Improved × Sex) interaction: 

> mytable <- xtabs(~Treatment+Improved+Sex, data=Arthritis) 
> mantelhaen.test(mytable) 
        Cochran-Mantel-Haenszel test 
data:  mytable  
Cochran-Mantel-Haenszel M^2 = 14.6, df = 2, p-value = 0.0006647 

The results suggest that the treatment received and the improvement reported aren’t 
independent within each level of Sex (that is, treated individuals improved more than those 
receiving placebos when controlling for sex). 

7.2.3 Measures of association 

The significance tests in the previous section evaluate whether sufficient evidence exists to 
reject a null hypothesis of independence between variables. If you can reject the null 
hypothesis, your interest turns naturally to measures of association in order to gauge the 
strength of the relationships present. The assocstats() function in the vcd package can be 
used to calculate the phi coefficient, contingency coefficient, and Cramer’s V for a two-way 
table. An example is given in the following listing. 

Listing 7.11 Measures of association for a two-way table 

> library(vcd) 
> mytable <- xtabs(~Treatment+Improved, data=Arthritis) 
> assocstats(mytable) 
                    X^2 df  P(> X^2) 
Likelihood Ratio 13.530  2 0.0011536 
Pearson          13.055  2 0.0014626 
 
Phi-Coefficient   : 0.394  
Contingency Coeff.: 0.367  
Cramer's V        : 0.394 

In general, larger magnitudes indicate stronger associations. The vcd package also provides a 
kappa() function that can calculate Cohen’s kappa and weighted kappa for a confusion matrix 
(for example, the degree of agreement between two judges classifying a set of objects into 
categories). 
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7.2.4 Visualizing results 

R has mechanisms for visually exploring the relationships among categorical variables that go 
well beyond those found in most other statistical platforms. You typically use bar charts to 
visualize frequencies in one dimension (see section 6.1). The vcd package has excellent 
functions for visualizing relationships among categorical variables in multidimensional datasets 
using mosaic and association plots (see section 11.4). Finally, correspondence-analysis 
functions in the ca package allow you to visually explore relationships between rows and 
columns in contingency tables using various geometric representations (Nenadic and 
Greenacre, 2007).  

This ends the discussion of contingency tables, until we take up more advanced topics in 
chapters 11 and 15. Next, let’s look at various types of correlation coefficients. 

7.3 Correlations 
Correlation coefficients are used to describe relationships among quantitative variables. The 
sign (plus or minus) indicates the direction of the relationship (positive or inverse), and the 
magnitude indicates the strength of the relationship (ranging from 0 for no relationship to 1 
for a perfectly predictable relationship).  

In this section, we’ll look at a variety of correlation coefficients, as well as tests of 
significance. We’ll use the state.x77 dataset available in the base R installation. It provides 
data on the population, income, illiteracy rate, life expectancy, murder rate, and high school 
graduation rate for the 50 US states in 1977. There are also temperature and land-area 
measures, but we’ll drop them to save space. Use help(state.x77) to learn more about the 
file. In addition to the base installation, we’ll be using the psych and ggm packages. 

7.3.1 Types of correlations 

R can produce a variety of correlation coefficients, including Pearson, Spearman, Kendall, 
partial, polychoric, and polyserial. Let’s look at each in turn. 

PEARSON, SPEARMAN, AND KENDALL CORRELATIONS 

The Pearson product-moment correlation assesses the degree of linear relationship between 
two quantitative variables. Spearman’s rank-order correlation coefficient assesses the degree 
of relationship between two rank-ordered variables. Kendall’s tau is also a nonparametric 
measure of rank correlation.  

The cor() function produces all three correlation coefficients, whereas the cov() function 
provides covariances. There are many options, but a simplified format for producing 
correlations is 

cor(x, use= , method= )  

The options are described in table 7.2. 
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Table 7.2 cor/cov options 

Option Description  

X Matrix or data frame. 

Use Specifies the handling of missing data. The options are all.obs (assumes no missing 
data—missing data will produce an error), everything (any correlation involving a case 
with missing values will be set to missing), complete.obs (listwise deletion), and 
pairwise.complete.obs (pairwise deletion).  

Method Specifies the type of correlation. The options are pearson, spearman, and kendall. 

The default options are use="everything" and method="pearson". You can see an example in 
the following listing. 

Listing 7.12 Covariances and correlations 

> states<- state.x77[,1:6] 
> cov(states) 
           Population Income Illiteracy Life Exp  Murder  HS Grad 
Population   19931684 571230    292.868 -407.842 5663.52 -3551.51 
Income         571230 377573   -163.702  280.663 -521.89  3076.77 
Illiteracy        293   -164      0.372   -0.482    1.58    -3.24 
Life Exp         -408    281     -0.482    1.802   -3.87     6.31 
Murder           5664   -522      1.582   -3.869   13.63   -14.55 
HS Grad         -3552   3077     -3.235    6.313  -14.55    65.24 
 
> cor(states) 
           Population Income Illiteracy Life Exp Murder HS Grad 
Population     1.0000  0.208      0.108   -0.068  0.344 -0.0985 
Income         0.2082  1.000     -0.437    0.340 -0.230  0.6199 
Illiteracy     0.1076 -0.437      1.000   -0.588  0.703 -0.6572 
Life Exp      -0.0681  0.340     -0.588    1.000 -0.781  0.5822 
Murder         0.3436 -0.230      0.703   -0.781  1.000 -0.4880 
HS Grad       -0.0985  0.620     -0.657    0.582 -0.488  1.0000 
> cor(states, method="spearman") 
           Population Income Illiteracy Life Exp Murder HS Grad 
Population      1.000  0.125      0.313   -0.104  0.346  -0.383 
Income          0.125  1.000     -0.315    0.324 -0.217   0.510 
Illiteracy      0.313 -0.315      1.000   -0.555  0.672  -0.655 
Life Exp       -0.104  0.324     -0.555    1.000 -0.780   0.524 
Murder          0.346 -0.217      0.672   -0.780  1.000  -0.437 
HS Grad        -0.383  0.510     -0.655    0.524 -0.437   1.000 
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The first call produces the variances and covariances. The second provides Pearson product-
moment correlation coefficients, and the third produces Spearman rank-order correlation 
coefficients. You can see, for example, that a strong positive correlation exists between 
income and high school graduation rate and that a strong negative correlation exists between 
illiteracy rates and life expectancy.  

Notice that you get square matrices by default (all variables crossed with all other 
variables). You can also produce nonsquare matrices, as shown in the following example: 

> x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")] 
> y <- states[,c("Life Exp", "Murder")] 
> cor(x,y) 
           Life Exp Murder 
Population   -0.068  0.344 
Income        0.340 -0.230 
Illiteracy   -0.588  0.703 
HS Grad       0.582 -0.488 

This version of the function is particularly useful when you’re interested in the relationships 
between one set of variables and another. Notice that the results don’t tell you if the 
correlations differ significantly from 0 (that is, whether there’s sufficient evidence based on 
the sample data to conclude that the population correlations differ from 0). For that, you need 
tests of significance (described in section 7.3.2). 

PARTIAL CORRELATIONS 

A partial correlation is a correlation between two quantitative variables, controlling for one or 
more other quantitative variables. You can use the pcor() function in the ggm package to 
provide partial correlation coefficients. The ggm package isn’t installed by default, so be sure to 
install it on first use. The format is 

pcor(u, S) 

where u is a vector of numbers, with the first two numbers being the indices of the variables 
to be correlated, and the remaining numbers being the indices of the conditioning variables 
(that is, the variables being partialed out). S is the covariance matrix among the variables. An 
example will help clarify this: 

> library(ggm) 
> colnames(states) 
[1] "Population" "Income" "Illiteracy" "Life Exp" "Murder" "HS Grad"   
> pcor(c(1,5,2,3,6), cov(states)) 
[1] 0.346              

In this case, 0.346 is the correlation between population (variable 1) and murder rate 
(variable 5), controlling for the influence of income, illiteracy rate, and high school graduation 
rate (variables 2, 3, and 6 respectively). The use of partial correlations is common in the social 
sciences. 
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OTHER TYPES OF CORRELATIONS 

The hetcor() function in the polycor package can compute a heterogeneous correlation 
matrix containing Pearson product-moment correlations between numeric variables, polyserial 
correlations between numeric and ordinal variables, polychoric correlations between ordinal 
variables, and tetrachoric correlations between two dichotomous variables. Polyserial, 
polychoric, and tetrachoric correlations assume that the ordinal or dichotomous variables are 
derived from underlying normal distributions. See the documentation that accompanies this 
package for more information. 

7.3.2 Testing correlations for significance 

Once you’ve generated correlation coefficients, how do you test them for statistical 
significance? The typical null hypothesis is no relationship (that is, the correlation in the 
population is 0). You can use the cor.test() function to test an individual Pearson, 
Spearman, and Kendall correlation coefficient. A simplified format is 

cor.test(x, y, alternative = , method = ) 

where x and y are the variables to be correlated, alternative specifies a two-tailed or one-
tailed test ("two.side", "less", or "greater"), and method specifies the type of correlation 
("pearson", "kendall", or "spearman") to compute. Use alternative ="less" when the 
research hypothesis is that the population correlation is less than 0. Use 
alternative="greater" when the research hypothesis is that the population correlation is 
greater than 0. By default, alternative="two.side" (population correlation isn’t equal to 0) 
is assumed. See the following listing for an example. 

Listing 7.13 Testing a correlation coefficient for significance 

> cor.test(states[,3], states[,5]) 
 
        Pearson's product-moment correlation 
 
data:  states[, 3] and states[, 5]  
t = 6.85, df = 48, p-value = 1.258e-08 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 0.528 0.821  
sample estimates: 
  cor  
0.703  

This code tests the null hypothesis that the Pearson correlation between life expectancy and 
murder rate is 0. Assuming that the population correlation is 0, you’d expect to see a sample 
correlation as large as 0.703 less than 1 time out of 10 million (that is, p = 1.258e-08). Given 
how unlikely this is, you reject the null hypothesis in favor of the research hypothesis, that the 
population correlation between life expectancy and murder rate is not 0. 

Unfortunately, you can test only one correlation at a time using cor.test(). Luckily, the 
corr.test() function provided in the psych package allows you to go further. The 
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corr.test() function produces correlations and significance levels for matrices of Pearson, 
Spearman, and Kendall correlations. An example is given in the following listing. 

Listing 7.14 Correlation matrix and tests of significance via corr.test() 

> library(psych) 
> corr.test(states, use="complete") 
 
Call:corr.test(x = states, use = "complete") 
Correlation matrix  
           Population Income Illiteracy Life Exp Murder HS Grad 
Population       1.00   0.21       0.11    -0.07   0.34   -0.10     
Income           0.21   1.00      -0.44     0.34  -0.23    0.62 
Illiteracy       0.11  -0.44       1.00    -0.59   0.70   -0.66 
Life Exp        -0.07   0.34      -0.59     1.00  -0.78    0.58 
Murder           0.34  -0.23       0.70    -0.78   1.00   -0.49 
HS Grad         -0.10   0.62      -0.66     0.58  -0.49    1.00 
 
Sample Size  
[1] 50 
 
Probability value  
           Population Income Illiteracy Life Exp Murder HS Grad 
Population       0.00   0.15       0.46     0.64   0.01     0.5      
Income           0.15   0.00       0.00     0.02   0.11     0.0 
Illiteracy       0.46   0.00       0.00     0.00   0.00     0.0 
Life Exp         0.64   0.02       0.00     0.00   0.00     0.0 
Murder           0.01   0.11       0.00     0.00   0.00     0.0 
HS Grad          0.50   0.00       0.00     0.00   0.00     0.0         

The use= options can be "pairwise" or "complete" (for pairwise or listwise deletion of 
missing values, respectively). The method= option is "pearson" (the default), "spearman", or 
"kendall". Here you see that the correlation between illiteracy and life expectancy (-0.59) is 
significantly different from zero (p=0.00) and suggests that as the illiteracy rate goes up, life 
expectancy tends to go down. However, the correlation between population size and high 
school graduation rate (–0.10) is not significantly different from 0 (p = 0.5). 

OTHER TESTS OF SIGNIFICANCE 

In section 7.4.1, we looked at partial correlations. The pcor.test() function in the psych 
package can be used to test the conditional independence of two variables controlling for one 
or more additional variables, assuming multivariate normality. The format is 

pcor.test(r, q, n) 

where r is the partial correlation produced by the pcor() function, q is the number of 
variables being controlled, and n is the sample size. 

Before leaving this topic, it should be mentioned that the r.test() function in the psych 
package also provides a number of useful significance tests. The function can be used to test 
the following: 
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• The significance of a correlation coefficient 
• The difference between two independent correlations 
• The difference between two dependent correlations sharing a single variable 
• The difference between two dependent correlations based on completely different 

variables 

See help(r.test) for details. 

7.3.3 Visualizing correlations 

The bivariate relationships underlying correlations can be visualized through scatter plots and 
scatter plot matrices, whereas correlograms provide a unique and powerful method for 
comparing a large number of correlation coefficients in a meaningful way. Each is covered in 
chapter 11. 

7.4 T-tests 
The most common activity in research is the comparison of two groups. Do patients receiving 
a new drug show greater improvement than patients using an existing medication? Does one 
manufacturing process produce fewer defects than another? Which of two teaching methods is 
most cost-effective? If your outcome variable is categorical, you can use the methods 
described in section 7.3. Here, we’ll focus on group comparisons, where the outcome variable 
is continuous and assumed to be distributed -normally.  

For this illustration, we’ll use the UScrime dataset distributed with the MASS package. It 
contains information about the effect of punishment regimes on crime rates in 47 US states in 
1960. The outcome variables of interest will be Prob (the probability of imprisonment), U1 (the 
unemployment rate for urban males ages 14–24), and U2 (the unemployment rate for urban 
males ages 35–39). The categorical variable So (an indicator variable for Southern states) will 
serve as the grouping variable. The data have been rescaled by the original authors. (Note: I 
considered naming this section “Crime and Punishment in the Old South,” but cooler heads 
prevailed.) 

7.4.1 Independent t-test 

Are you more likely to be imprisoned if you commit a crime in the South? The comparison of 
interest is Southern versus non-Southern states, and the dependent variable is the probability 
of incarceration. A two-group independent t-test can be used to test the hypothesis that the 
two population means are equal. Here, you assume that the two groups are independent and 
that the data is sampled from normal populations. The format is either 

t.test(y ~ x, data)  

where y is numeric and x is a dichotomous variable, or 

t.test(y1, y2) 
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where y1 and y2 are numeric vectors (the outcome variable for each group). The optional 
data argument refers to a matrix or data frame containing the variables. In contrast to most 
statistical packages, the default test assumes unequal variance and applies the Welsh 
degrees-of-freedom modification. You can add a var.equal=TRUE option to specify equal 
variances and a pooled variance estimate. By default, a two-tailed alternative is assumed (that 
is, the means differ but the direction isn’t specified). You can add the option 
alternative="less" or alternative="greater" to specify a directional test.  

The following code compares Southern (group 1) and non-Southern (group 0) states on 
the probability of imprisonment using a two-tailed test without the assumption of equal 
variances: 

> library(MASS) 
> t.test(Prob ~ So, data=UScrime) 
 
        Welch Two Sample t-test 
 
data:  Prob by So  
t = -3.8954, df = 24.925, p-value = 0.0006506                            
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 -0.03852569 -0.01187439  
sample estimates: 
mean in group 0 mean in group 1  
     0.03851265      0.06371269 

You can reject the hypothesis that Southern states and non-Southern states have equal 
probabilities of imprisonment (p < .001). 

NOTE Because the outcome variable is a proportion, you might try to transform it to normality before carrying 

out the t-test. In the current case, all reasonable transformations of the outcome variable (Y/1-Y, log(Y/1-

Y), arcsin(Y), and arcsin(sqrt(Y)) would lead to the same conclusions. Transformations are covered 

in detail in chapter 8. 

7.4.2 Dependent t-test 

As a second example, you might ask if the unemployment rate for younger males (14–24) is 
greater than for older males (35–39). In this case, the two groups aren’t independent. You 
wouldn’t expect the unemployment rate for younger and older males in Alabama to be 
unrelated. When observations in the two groups are related, you have a dependent-groups 
design. Pre-post or repeated-measures designs also produce dependent groups. 

A dependent t-test assumes that the difference between groups is normally distributed. In 
this case, the format is 

t.test(y1, y2, paired=TRUE)  

where y1 and y2 are the numeric vectors for the two dependent groups. The results are as 
follows: 
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> library(MASS) 
> sapply(UScrime[c("U1","U2")], function(x)(c(mean=mean(x),sd=sd(x)))) 
       U1    U2 
mean 95.5 33.98                 
sd   18.0  8.45 
 
> with(UScrime, t.test(U1, U2, paired=TRUE)) 
 
        Paired t-test 
 
data:  U1 and U2  
t = 32.4066, df = 46, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0  
95 percent confidence interval: 
 57.67003 65.30870  
sample estimates: 
mean of the differences  
               61.48936 

The mean difference (61.5) is large enough to warrant rejection of the hypothesis that the 
mean unemployment rate for older and younger males is the same. Younger males have a 
higher rate. In fact, the probability of obtaining a sample difference this large if the population 
means are equal is less than 0.00000000000000022 (that is, 2.2e–16). 

7.4.3 When there are more than two groups 

What do you do if you want to compare more than two groups? If you can assume that the 
data are independently sampled from normal populations, you can use analysis of variance 
(ANOVA). ANOVA is a comprehensive methodology that covers many experimental and quasi-
experimental designs. As such, it has earned its own chapter. Feel free to abandon this section 
and jump to chapter 9 at any time. 

7.5 Nonparametric tests of group differences 
If you’re unable to meet the parametric assumptions of a t-test or ANOVA, you can turn to 
nonparametric approaches. For example, if the outcome variables are severely skewed or 
ordinal in nature, you may wish to use the techniques in this section. 

7.5.1 Comparing two groups 

If the two groups are independent, you can use the Wilcoxon rank sum test (more popularly 
known as the Mann–Whitney U test) to assess whether the observations are sampled from the 
same probability distribution (that is, whether the probability of obtaining higher scores is 
greater in one population than the other). The format is either 

wilcox.test(y ~ x, data)  

where y is numeric and x is a dichotomous variable, or  

wilcox.test(y1, y2)  
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where y1 and y2 are the outcome variables for each group. The optional data argument refers 
to a matrix or data frame containing the variables. The default is a two-tailed test. You can 
add the option exact to produce an exact test, and -alternative="less" or 
alternative="greater" to specify a directional test.  

If you apply the Mann–Whitney U test to the question of incarceration rates from the 
previous section, you’ll get these results: 

> with(UScrime, by(Prob, So, median)) 
 
So: 0 
[1] 0.0382 
--------------------  
So: 1 
[1] 0.0556 
 
> wilcox.test(Prob ~ So, data=UScrime) 
 
        Wilcoxon rank sum test 
 
data:  Prob by So  
W = 81, p-value = 8.488e-05  
alternative hypothesis: true location shift is not equal to 0 

Again, you can reject the hypothesis that incarceration rates are the same in Southern and 
non-Southern states (p < .001).  

The Wilcoxon signed rank test provides a nonparametric alternative to the dependent 
sample t-test. It’s appropriate in situations where the groups are paired and the assumption of 
normality is unwarranted. The format is identical to the Mann–Whitney U test, but you add the 
paired=TRUE option. Let’s apply it to the unemployment question from the previous section: 

> sapply(UScrime[c("U1","U2")], median) 
U1 U2  
92 34  
 
> with(UScrime, wilcox.test(U1, U2, paired=TRUE)) 
 
        Wilcoxon signed rank test with continuity correction 
 
data:  U1 and U2  
V = 1128, p-value = 2.464e-09                                        
alternative hypothesis: true location shift is not equal to 0  

Again, you reach the same conclusion reached with the paired t-test. 
In this case, the parametric t-tests and their nonparametric equivalents reach the same 

conclusions. When the assumptions for the t-tests are reasonable, the parametric tests are 
more powerful (more likely to find a difference if it exists). The nonparametric tests are more 
appropriate when the assumptions are grossly unreasonable (for example, rank-ordered data). 
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7.5.2 Comparing more than two groups 

When there are more than two groups to be compared, you must turn to other methods. 
Consider the state.x77 dataset from section 7.4. It contains population, income, illiteracy 
rate, life expectancy, murder rate, and high school graduation rate data for US states. What if 
you want to compare the illiteracy rates in four regions of the country (Northeast, South, 
North Central, and West)? This is called a one-way design, and there are both parametric and 
nonparametric approaches available to address the question. 

If you can’t meet the assumptions of ANOVA designs, you can use nonparametric methods 
to evaluate group differences. If the groups are independent, a Kruskal–Wallis test provides a 
useful approach. If the groups are dependent (for example, repeated measures or randomized 
block design), the Friedman test is more appropriate. 

The format for the Kruskal–Wallis test is 

kruskal.test(y ~ A, data) 

where y is a numeric outcome variable and A is a grouping variable with two or more levels (if 
there are two levels, it’s equivalent to the Mann–Whitney U test). For the Friedman test, the 
format is 

friedman.test(y ~ A | B, data) 

where y is the numeric outcome variable, A is a grouping variable, and B is a blocking variable 
that identifies matched observations. In both cases, data is an option argument specifying a 
matrix or data frame containing the variables. 

Let’s apply the Kruskal–Wallis test to the illiteracy question. First, you’ll have to add the 
region designations to the dataset. These are contained in the dataset state.region 
distributed with the base installation of R: 

states <- data.frame(state.region, state.x77) 

Now you can apply the test: 

> kruskal.test(Illiteracy ~ state.region, data=states) 
        Kruskal-Wallis rank sum test 
data:  states$Illiteracy by states$state.region  
Kruskal-Wallis chi-squared = 22.7, df = 3, p-value = 4.726e-05     

The significance test suggests that the illiteracy rate isn’t the same in each of the four regions 
of the country (p <.001). 

Although you can reject the null hypothesis of no difference, the test doesn’t tell you which 
regions differ significantly from each other. To answer this question, you could compare 
groups two at a time using the Wilcoxon test. A more elegant approach is to apply a multiple-
comparisons procedure that computes all pairwise comparisons, while controlling the type I 
error rate (the probability of finding a difference that isn’t there). I have created a function 
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called wmc() that can be used for this purpose. It compares groups two at a time using the 
Wilcoxon test and adjusts the probability values using the p.adj() function. 

To be honest, I’m stretching the definition of basic in the chapter title quite a bit, but 
because the function fits well here, I hope you’ll bear with me. You can download a text file 
containing wmc() from www.statmethods.net/RiA/wmc.txt. The following listing uses this 
function to compare the illiteracy rates in the four US regions. 

Listing 7.15 Nonparametric multiple comparisons 

> source("http://www.statmethods.net/RiA/wmc.txt")                 #1 
> states <- data.frame(state.region, state.x77) 
> wmc(Illiteracy ~ state.region, data=states, method="holm") 
 
Descriptive Statistics                                 #2 
 
        West North Central Northeast South 
n      13.00         12.00       9.0 16.00 
median  0.60          0.70       1.1  1.75 
mad     0.15          0.15       0.3  0.59 
 
Multiple Comparisons (Wilcoxon Rank Sum Tests)         #3 
Probability Adjustment = holm 
 
        Group.1       Group.2  W       p     
1          West North Central 88 8.7e-01     
2          West     Northeast 46 8.7e-01     
3          West         South 39 1.8e-02   * 
4 North Central     Northeast 20 5.4e-02   . 
5 North Central         South  2 8.1e-05 *** 
6     Northeast         South 18 1.2e-02   * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#1 Accesses the function 
#2 Basic statistics 
#3 Pairwise comparisons 

The source() function downloads and executes the R script defining the wmc() function 
#1. The function’s format is wmc(y ~ A, data, method), where y is a numeric outcome 
variable, A is a grouping variable, data is the data frame containing these variables, and 
method is the approach used to limit Type I errors. Listing 7.15 uses an adjustment method 
developed by Holm (1979). It provides strong control of the family-wise error rate (the 
probability of making one or more Type I errors in a set of comparisons). See help(p.adjust) 
for a description of the other methods available.  

The wmc() function first provides the sample sizes, medians, and median absolute 
deviations for each group #2. The West has the lowest illiteracy rate, and the South has the 
highest. The function then generates six statistical comparisons (West versus North Central, 
West versus Northeast, West versus South, North Central versus Northeast, North Central 
versus South, and Northeast versus South) #3. You can see from the two-sided p-values (p) 
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that the South differs significantly from the other three regions and that the other three 
regions don’t differ from each other at a p < .05 level.  

Nonparametric multiple comparisons are a useful set of techniques that aren’t easily 
accessible in R. In chapter 21, you’ll have an opportunity to expand the wmc() function into a 
fully developed package that includes error checking and informative graphics.  

7.6 Visualizing group differences 
In sections 7.4 and 7.5, we looked at statistical methods for comparing groups. Examining 
group differences visually is also a crucial part of a comprehensive data-analysis strategy. It 
allows you to assess the magnitude of the differences, identify any distributional 
characteristics that influence the results (such as skew, bimodality, or outliers), and evaluate 
the appropriateness of the test assumptions. R provides a wide range of graphical methods for 
comparing groups, including box plots (simple, notched, and violin), covered in section 6.6; 
overlapping kernel density plots, covered in section 6.5; and graphical methods for visualizing 
outcomes in an ANOVA framework, discussed in chapter 9. Advanced methods for visualizing 
group differences, including grouping and faceting, are discussed in chapter 19. 

7.7 Summary 
• Descriptive statistics are used to describe the distribution a quantitative variable 

numerically. Many packages in R provide descriptive statistics for data frames. The 
choice among packages is primarily a matter of personal preference. 

• Frequency tables and cross tabulations are used to summarize the distributions of 
categorical variables. 

• The t-tests and the Mann-Whitney U test can be used to compare two groups on a 
quantitative outcome. 

• A chi-square test can be used evaluate the association between two categorical 
variables. The correlation coefficient is used to evaluate the association between two 
quantitative variables. 

• Numeric summaries and statistical tests should usually be accompanied by data 
visualizations. Otherwise, import features of the data may be missed. 
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8  
Regression 

This chapter covers 

• Fitting and interpreting linear models 
• Evaluating model assumptions 
• Selecting among competing models 

In many ways, regression analysis lives at the heart of statistics. It’s a broad term for a set of 
methodologies used to predict a response variable (also called a dependent, criterion, or 
outcome variable) from one or more predictor variables (also called independent or 
explanatory variables). In general, regression analysis can be used to identify the explanatory 
variables that are related to a response variable, to describe the form of the relationships 
involved, and to provide an equation for predicting the response variable from the explanatory 
variables. 

For example, an exercise physiologist might use regression analysis to develop an equation for 
predicting the expected number of calories a person will burn while exercising on a treadmill. 
The response variable is the number of calories burned (calculated from the amount of oxygen 
consumed), and the predictor variables might include duration of exercise (minutes), 
percentage of time spent at their target heart rate, average speed (mph), age (years), 
gender, and body mass index (BMI).  

From a theoretical point of view, the analysis will help answer such questions as these: 

• What’s the relationship between exercise duration and calories burned? Is it linear or 
curvilinear? For example, does exercise have less impact on the number of calories 
burned after a certain point? 

• How does effort (the percentage of time at the target heart rate, the average walking 
speed) factor in? 
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• Are these relationships the same for young and old, male and female, heavy and slim? 

From a practical point of view, the analysis will help answer such questions as the -following: 

• How many calories can a 30-year-old man with a BMI of 28.7 expect to burn if he walks 
for 45 minutes at an average speed of 4 miles per hour and stays within his target 
heart rate 80% of the time? 

• What’s the minimum number of variables you need to collect in order to accurately 
predict the number of calories a person will burn when walking? 

• How accurate will your prediction tend to be? 

Because regression analysis plays such a central role in modern statistics, we’ll cover it in 
some depth in this chapter. First, we’ll look at how to fit and interpret regression models. 
Next, we’ll review a set of techniques for identifying potential problems with these models and 
how to deal with them. Third, we’ll explore the issue of variable selection. Of all the potential 
predictor variables available, how do you decide which ones to include in your final model? 
Fourth, we’ll address the question of generalizability. How well will your model work when you 
apply it in the real world? Finally, we’ll consider relative importance. Of all the predictors in 
your model, which one is the most important, the second most important, and the least 
important? 

As you can see, we’re covering a lot of ground. Effective regression analysis is an interactive, 
holistic process with many steps, and it involves more than a little skill. Rather than break it 
up into multiple chapters, I’ve opted to present this topic in a single chapter in order to 
capture this flavor. As a result, this will be the longest and most involved chapter in the book. 
Stick with it to the end, and you’ll have all the tools you need to tackle a wide variety of 
research questions. Promise! 

8.1 The many faces of regression 
The term regression can be confusing because there are so many specialized varieties (see 
table 8.1). In addition, R has powerful and comprehensive features for fitting regression 
models, and the abundance of options can be confusing as well. For example, in 2005, Vito 
Ricci created a list of more than 205 functions in R that are used to generate regression 
analyses (http://mng.bz/NJhu). 

Table 8.1 Varieties of regression analysis 

Type of regression Typical use 

Simple linear Predicting a quantitative response variable from a quantitative explanatory variable. 
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Polynomial  Predicting a quantitative response variable from a quantitative explanatory variable, 

where the relationship is modeled as an nth order polynomial. 

Multiple linear  Predicting a quantitative response variable from two or more explanatory variables. 

Multilevel  Predicting a response variable from data that have a hierarchical structure (for 

example, students within classrooms within schools). Also called hierarchical, nested, 
or mixed models.  

Multivariate  Predicting more than one response variable from one or more explanatory variables. 

Logistic Predicting a categorical response variable from one or more explanatory variables. 

Poisson Predicting a response variable representing counts from one or more explanatory 

variables. 

Cox proportional hazards  Predicting time to an event (death, failure, relapse) from one or more explanatory 

variables. 

Time-series Modeling time-series data with correlated errors. 

Nonlinear Predicting a quantitative response variable from one or more explanatory variables, 

where the form of the model is nonlinear. 

Nonparametric Predicting a quantitative response variable from one or more explanatory variables, 

where the form of the model is derived from the data and not specified a priori. 

Robust Predicting a quantitative response variable from one or more explanatory variables 

using an approach that’s resistant to the effect of influential observations. 

In this chapter, we’ll focus on regression methods that fall under the rubric of ordinary least 
squares (OLS) regression, including simple linear regression, polynomial regression, and 
multiple linear regression. OLS regression is the most common variety of statistical analysis 
today. Other types of regression models (including logistic regression and Poisson regression) 
will be covered in chapter 13. 
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8.1.1 Scenarios for using OLS regression 

In OLS regression, a quantitative dependent variable is predicted from a weighted sum of 
predictor variables, where the weights are parameters estimated from the data. Let’s take a 
look at a concrete example (no pun intended), loosely adapted from Fwa (2006).  

An engineer wants to identify the most important factors related to bridge deterioration (such 
as age, traffic volume, bridge design, construction materials and methods, construction 
quality, and weather conditions) and determine the mathematical form of these relationships. 
She collects data on each of these variables from a representative sample of bridges and 
models the data using OLS regression.  

The approach is highly interactive. She fits a series of models, checks their compliance with 
underlying statistical assumptions, explores any unexpected or aberrant findings, and finally 
chooses the “best” model from among many possible models. If successful, the results will 
help her to: 

• Focus on important variables, by determining which of the many collected variables are 
useful in predicting bridge deterioration, along with their relative importance. 

• Look for bridges that are likely to be in trouble, by providing an equation that can be 
used to predict bridge deterioration for new cases (where the values of the predictor 
variables are known, but the degree of bridge deterioration isn’t). 

• Take advantage of serendipity, by identifying unusual bridges. If she finds that some 
bridges deteriorate much faster or slower than predicted by the model, a study of these 
outliers may yield important findings that could help her to understand the mechanisms 
involved in bridge deterioration. 

Bridges may hold no interest for you. I’m a clinical psychologist and statistician, and I know 
next to nothing about civil engineering. But the general principles apply to an amazingly wide 
selection of problems in the physical, biological, and social sciences. Each of the following 
questions could also be addressed using an OLS approach: 

• What’s the relationship between surface stream salinity and paved road surface area 
(Montgomery, 2007)? 

• What aspects of a user’s experience contribute to the overuse of massively multiplayer 
online role-playing games (MMORPGs) (Hsu, Wen, & Wu, 2009)? 

• Which qualities of an educational environment are most strongly related to higher 
student achievement scores? 

• What’s the form of the relationship between blood pressure, salt intake, and age? Is it 
the same for men and women? 

• What’s the impact of stadiums and professional sports on metropolitan area 
development (Baade & Dye, 1990)?  

• What factors account for interstate differences in the price of beer (Culbertson & 
Bradford, 1991)? (That one got your attention!) 
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Our primary limitation is our ability to formulate an interesting question, devise a useful 
response variable to measure, and gather appropriate data. 

8.1.2 What you need to know  

For the remainder of this chapter, I’ll describe how to use R functions to fit OLS regression 
models, evaluate the fit, test assumptions, and select among competing models. I assume 
you’ve had exposure to least squares regression as typically taught in a second-semester 
undergraduate statistics course. But I’ve made efforts to keep the mathematical notation to a 
minimum and focus on practical rather than theoretical issues. A number of excellent texts are 
available that cover the statistical material outlined in this chapter. My favorites are John Fox’s 
Applied Regression Analysis and Generalized Linear Models (for theory) and An R and S-Plus 
Companion to Applied Regression (for application). They both served as major sources for this 
chapter. A good nontechnical overview is provided by Licht (1995).  

8.2 OLS regression 
For most of this chapter, we’ll be predicting the response variable from a set of predictor 
variables (also called regressing the response variable on the predictor variables—hence the 

 name) using OLS. OLS regression fits models of the form where n is the number of 
observations and k is the number of predictor variables. (Although I’ve tried to keep equations 
out of these discussions, this is one of the few places where it simplifies things.) In this 
equation: 

 
 is the predicted value of the dependent variable for observation i (specifically, it’s 

the estimated mean of the Y distribution, conditional on the set of predictor 
values). 

 is the jth predictor value for the ith observation. 

 

 is the intercept (the predicted value of Y when all the predictor variables equal 
zero). 

 is the regression coefficient for the jth predictor (slope representing the change in 
Y for a unit change in Xj). 

Our goal is to select model parameters (intercept and slopes) that minimize the difference 
between actual response values and those predicted by the model. Specifically, model 
parameters are selected to minimize the sum of squared residuals: 
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198

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

To properly interpret the coefficients of the OLS model, you must satisfy a number of 
statistical assumptions:  

• Normality—For fixed values of the independent variables, the dependent variable is 
normally distributed. 

• Independence—The Yi values are independent of each other. 
• Linearity—The dependent variable is linearly related to the independent variables.  
• Homoscedasticity—The variance of the dependent variable doesn’t vary with the levels 

of the independent variables. (I could call this constant variance, but saying 
homoscedasticity makes me feel smarter.) 

If you violate these assumptions, your statistical significance tests and confidence intervals 
may not be accurate. Note that OLS regression also assumes that the independent variables 
are fixed and measured without error, but this assumption is typically relaxed in practice.  

8.2.1 Fitting regression models with lm() 

In R, the basic function for fitting a linear model is lm(). The format is 

myfit <- lm(formula, data) 

where formula describes the model to be fit and data is the data frame containing the data to 
be used in fitting the model. The resulting object (myfit, in this case) is a list that contains 
extensive information about the fitted model. The formula is typically written as 

Y ~ X1 + X2 + ... + Xk 

where the ~ separates the response variable on the left from the predictor variables on the 
right, and the predictor variables are separated by + signs. Other symbols can be used to 
modify the formula in various ways (see table 8.2). 

Table 8.2 Symbols commonly used in R formulas 

Symbol Usage 

~ Separates response variables on the left from the explanatory variables on the right. For example, a 

prediction of y from x, z, and w would be coded y ~ x + z + w. 

+ Separates predictor variables. 

: Denotes an interaction between predictor variables. A prediction of y from x, z, and the interaction 

between x and z would be coded y ~ x + z + x:z. 
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* A shortcut for denoting all possible interactions. The code y ~ x * z * w expands to y ~ x + z + w + x:z + 

x:w + z:w + x:z:w. 

^ Denotes interactions up to a specified degree. The code y ~ (x + z + w)^2 expands to y ~ x + z + w + x:z + 
x:w + z:w. 

. A placeholder for all other variables in the data frame except the dependent variable. For example, if a 

data frame contained the variables x, y, z, and w, then the code y ~ . would expand to y ~ x + z + w. 

- A minus sign removes a variable from the equation. For example, y ~ (x + z + w)^2 – x:w expands to y ~ x 

+ z + w + x:z + z:w. 

-1 Suppresses the intercept. For example, the formula y ~ x -1 fits a regression of y on x, and forces the 

line through the origin at x=0.  

I()  Elements within the parentheses are interpreted arithmetically. For example, y ~ x + (z + w)^2 would 

expand to y ~ x + z + w + z:w. In contrast, the code y ~ x + I((z + w)^2) would expand to y ~ x + h, where h 
is a new variable created by squaring the sum of z and w. 

function Mathematical functions can be used in formulas. For example, log(y) ~ x + z + w would predict log(y) 

from x, z, and w. 

In addition to lm(), table 8.3 lists several functions that are useful when generating a simple 
or multiple regression analysis. Each of these functions is applied to the object returned by 
lm() in order to generate additional information based on that fitted model. 

Table 8.3 Other functions that are useful when fitting linear models 

Function Action 

summary() Displays detailed results for the fitted model 

coefficients() Lists the model parameters (intercept and slopes) for the fitted model 

confint() Provides confidence intervals for the model parameters (95% by default) 

fitted() Lists the predicted values in a fitted model 
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residuals() Lists the residual values in a fitted model 

anova() Generates an ANOVA table for a fitted model, or an ANOVA table comparing two or more 
fitted models 

vcov() Lists the covariance matrix for model parameters 

AIC() Prints Akaike’s Information Criterion 

plot() Generates diagnostic plots for evaluating the fit of a model 

predict() Uses a fitted model to predict response values for a new dataset 

When the regression model contains one dependent variable and one independent variable, 
the approach is called simple linear regression. When there’s one predictor variable but 
powers of the variable are included (for example, X, X2, X3), it’s called polynomial regression. 
When there’s more than one predictor variable, it’s called multiple linear regression. We’ll start 
with an example of simple linear regression, then progress to examples of polynomial and 
multiple linear regression, and end with an example of multiple regression that includes an 
interaction among the predictors. 

8.2.2 Simple linear regression 

Let’s look at the functions in table 8.3 through a simple regression example. The dataset 
women in the base installation provides the height and weight for a set of 15 women 

ages 30 to 39. Suppose you want to predict weight from height. Having an equation for 
predicting weight from height can help you to identify overweight or underweight individuals. 
The analysis is provided in the following listing, and the resulting graph is shown in figure 8.1 
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.  
Figure 8.1 Scatter plot with regression line for weight predicted from height 

Listing 8.1 Simple linear regression 

> fit <- lm(weight ~ height, data=women) 
> summary(fit) 
 
Call: 
lm(formula=weight ~ height, data=women) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-1.733 -1.133 -0.383  0.742  3.117  
 
Coefficients:                                                    
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -87.5167     5.9369   -14.7  1.7e-09 *** 
height        3.4500     0.0911    37.9  1.1e-14 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1  
 
Residual standard error: 1.53 on 13 degrees of freedom 
Multiple R-squared: 0.991,      Adjusted R-squared: 0.99  
F-statistic: 1.43e+03 on 1 and 13 DF,  p-value: 1.09e-14  
 
> women$weight 
 
 [1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164 
 
> fitted(fit) 
 
     1      2      3      4      5      6      7      8      9  
112.58 116.03 119.48 122.93 126.38 129.83 133.28 136.73 140.18  
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    10     11     12     13     14     15  
143.63 147.08 150.53 153.98 157.43 160.88  
 
> residuals(fit) 
 
    1     2     3     4     5     6     7     8     9    10    11  
 2.42  0.97  0.52  0.07 -0.38 -0.83 -1.28 -1.73 -1.18 -1.63 -1.08  
   12    13    14    15  
-0.53  0.02  1.57  3.12 
 
> plot(women$height,women$weight,  
       xlab="Height (in inches)",  
       ylab="Weight (in pounds)") 
> abline(fit) 

From the output, you see that the prediction equation is 

Because a height of 0 is impossible, you wouldn’t try to give a physical interpretation to the 
intercept. It merely becomes an adjustment constant. From the Pr(>|t|) column, you see that 
the regression coefficient (3.45) is significantly different from zero (p < 0.001) and indicates 
that there’s an expected increase of 3.45 pounds of weight for every 1 inch increase in height. 
The multiple R-squared (0.991) indicates that the model accounts for 99.1% of the variance in 
weights. The multiple R-squared is also the squared correlation between the actual and 
predicted value (that is,

2
ŷyR r= ).The residual standard error (1.53 pounds) can be thought 

of as the average error in predicting weight from height using this model. The F statistic tests 
whether the predictor variables, taken together, predict the response variable above chance 
levels. Because there’s only one predictor variable in simple regression, in this example the F 
test is equivalent to the t-test for the regression coefficient for height.  

For demonstration purposes, we’ve printed out the actual, predicted, and residual values. 
Evidently, the largest residuals occur for low and high heights, which can also be seen in the 
plot (figure 8.1).  

The plot suggests that you might be able to improve on the prediction by using a line with one 
bend. For example, a model of the form 

2
0 1 2

ˆ ˆ ˆ
îY X Xβ β β= + +   may provide a better fit to 

the data. Polynomial regression allows you to predict a response variable from an explanatory 
variable, where the form of the relationship is an nth-degree polynomial. 

8.2.3 Polynomial regression 

The plot in figure 8.1 suggests that you might be able to improve your prediction using a 
regression with a quadratic term (that is, X2). You can fit a quadratic equation using the 
statement 

fit2 <- lm(weight ~ height + I(height^2), data=women) 

87.52 3.45weight height=− + ×
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The new term I(height^2) requires explanation. height^2 adds a height-squared term to the 
prediction equation. The I() function treats the contents within the parentheses as an R 
expression. You need this because the ^ operator has a special meaning in formulas that you 
don’t want to invoke here (see table 8.2). 

The following listing shows the results of fitting the quadratic equation. 

Listing 8.2 Polynomial regression 

> fit2 <- lm(weight ~ height + I(height^2), data=women) 
> summary(fit2) 
 
Call: 
lm(formula=weight ~ height + I(height^2), data=women) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.5094 -0.2961 -0.0094  0.2862  0.5971  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept) 261.87818   25.19677   10.39  2.4e-07 *** 
height       -7.34832    0.77769   -9.45  6.6e-07 *** 
I(height^2)   0.08306    0.00598   13.89  9.3e-09 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 0.384 on 12 degrees of freedom 
Multiple R-squared: 0.999,      Adjusted R-squared: 0.999  
F-statistic: 1.14e+04 on 2 and 12 DF,  p-value: <2e-16  
 
> plot(women$height,women$weight, 
       xlab="Height (in inches)", 
       ylab="Weight (in lbs)") 
> lines(women$height,fitted(fit2)) 

From this new analysis, the prediction equation is 

 and both regression coefficients are significant at the p < 0.0001 level. The amount of 
variance accounted for has increased to 99.9%. The significance of the squared term (t = 
13.89, p < .001) suggests that inclusion of the quadratic term improves the model fit. If you 
look at the plot of fit2 (figure 8.2) you can see that the curve does indeed provide a better 
fit. 

2261.88 7.35 0.083weight height height= − × + ×

204

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 8.2 Quadratic regression for weight predicted by height 

Linear vs. nonlinear models 
Note that this polynomial equation still fits under the rubric of linear regression. It’s linear because the equation 
involves a weighted sum of predictor variables (height and height-squared in this case). Even a model such as 

0 1 2 2
ˆ ˆˆ log( ) siniY X Xβ β= × + ×

 
would be considered a linear model (linear in terms of the parameters) and fit with the formula  
Y ~ log(X1) + sin(X2) 
In contrast, here’s an example of a truly nonlinear model: 

 
2

0 1
ˆ ˆˆ x

iY e ββ β= +
  

Nonlinear models of this form can be fit with the nls() function. 

In general, an nth-degree polynomial produces a curve with n-1 bends. To fit a cubic 
polynomial, you’d use  

fit3 <- lm(weight ~ height + I(height^2) +I(height^3), data=women) 

Although higher polynomials are possible, I’ve rarely found that terms higher than cubic are 
necessary.  

8.2.4 Multiple linear regression 

When there’s more than one predictor variable, simple linear regression becomes multiple 
linear regression, and the analysis grows more involved. Technically, polynomial regression is 
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a special case of multiple regression. Quadratic regression has two predictors (X and X2), and 
cubic regression has three predictors (X, X2, and X3). Let’s look at a more general example.  

We’ll use the state.x77 dataset in the base package for this example. Suppose you want to 
explore the relationship between a state’s murder rate and other characteristics of the state, 
including population, illiteracy rate, average income, and frost levels (mean number of days 
below freezing).  

Because the lm() function requires a data frame (and the state.x77 dataset is contained in a 
matrix), you can simplify your life with the following code: 

states <- as.data.frame(state.x77[,c("Murder", "Population",  
                        "Illiteracy", "Income", "Frost")]) 

This code creates a data frame called states, containing the variables you’re interested in. 
You’ll use this new data frame for the remainder of the chapter. 

A good first step in multiple regression is to examine the relationships among the variables 
two at a time. The bivariate correlations are provided by the cor() function, and scatter plots 
are generated from the scatterplotMatrix() function in the car package (see the following 
listing and figure 8.3). 

Listing 8.3 Examining bivariate relationships 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
                          "Illiteracy", "Income", "Frost")]) 
 
> cor(states) 
           Murder Population Illiteracy Income Frost 
Murder       1.00       0.34       0.70  -0.23 -0.54 
Population   0.34       1.00       0.11   0.21 -0.33 
Illiteracy   0.70       0.11       1.00  -0.44 -0.67 
Income      -0.23       0.21      -0.44   1.00  0.23 
Frost       -0.54      -0.33      -0.67   0.23  1.00 
 
> library(car) 
> scatterplotMatrix(states, smooth=FALSE, main="Scatter Plot Matrix") 

206

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

Murde

0
10

00
0

20
00

0
30

00
45

00
60

00

2 4 6 8 12

0 5000 15000

Popula

Illiterac

0.5 1.5 2.5

3000 4500 6000

Income

2
6

10
14

0.
5

1.
5

2.
5

0 50 100 150

0
50

15
0

Frost

Scatter Plot Matrix

 
Figure 8.3 Scatter plot matrix of dependent and independent variables for the states data, including linear and 
smoothed fits, and marginal distributions (kernel-density plots and rug plots) 

By default, the scatterplotMatrix() function provides scatter plots of the variables with 
each other in the off-diagonals and superimposes smoothed (loess) and linear fit lines on 
these plots. The principal diagonal contains density and rug plots for each variable. The 
smoothed lines are suppressed with the argument smooth=FALSE. 

You can see that murder rate may be bimodal and that each of the predictor variables is 
skewed to some extent. Murder rates rise with population and illiteracy, and they fall with 
higher income levels and frost. At the same time, colder states have lower illiteracy rates,, 
lower population, and higher incomes. 

Now let’s fit the multiple regression model with the lm() function (see the following listing). 
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Listing 8.4 Multiple linear regression  

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
                          "Illiteracy", "Income", "Frost")]) 
 
> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,  
            data=states) 
> summary(fit) 
 
Call: 
lm(formula=Murder ~ Population + Illiteracy + Income + Frost,  
    data=states) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-4.7960 -1.6495 -0.0811  1.4815  7.6210  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 1.23e+00   3.87e+00    0.32    0.751     
Population  2.24e-04   9.05e-05    2.47    0.017 *   
Illiteracy  4.14e+00   8.74e-01    4.74  2.2e-05 *** 
Income      6.44e-05   6.84e-04    0.09    0.925     
Frost       5.81e-04   1.01e-02    0.06    0.954     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.v 0.1 'v' 1  
 
Residual standard error: 2.5 on 45 degrees of freedom 
Multiple R-squared: 0.567,      Adjusted R-squared: 0.528  
F-statistic: 14.7 on 4 and 45 DF,  p-value: 9.13e-08 

When there’s more than one predictor variable, the regression coefficients indicate the 
increase in the dependent variable for a unit change in a predictor variable, holding all other 
predictor variables constant. For example, the regression coefficient for Illiteracy is 4.14, 
suggesting that an increase of 1% in illiteracy is associated with a 4.14% increase in the 
murder rate, controlling for population, income, and temperature. The coefficient is 
significantly different from zero at the p < .0001 level. On the other hand, the coefficient for 
Frost isn’t significantly different from zero (p = 0.954) suggesting that Frost and Murder aren’t 
linearly related when controlling for the other predictor variables. Taken together, the 
predictor variables account for 57% of the variance in murder rates across states. 

Up to this point, we’ve assumed that the predictor variables don’t interact. In the next section, 
we’ll consider a case in which they do. 

8.2.5 Multiple linear regression with interactions 

Some of the most interesting research findings are those involving interactions among 
predictor variables. Consider the automobile data in the mtcars data frame. Let’s say that 
you’re interested in the impact of automobile weight and horsepower on mileage. You could fit 
a regression model that includes both predictors, along with their interaction, as shown in the 
next listing. 
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Listing 8.5 Multiple linear regression with a significant interaction term 

> fit <- lm(mpg ~ hp + wt + hp:wt, data=mtcars) 
> summary(fit) 
 
Call: 
lm(formula=mpg ~ hp + wt + hp:wt, data=mtcars) 
 
Residuals: 
   Min     1Q Median     3Q    Max  
-3.063 -1.649 -0.736  1.421  4.551  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) 49.80842    3.60516   13.82  5.0e-14 *** 
hp          -0.12010    0.02470   -4.86  4.0e-05 *** 
wt          -8.21662    1.26971   -6.47  5.2e-07 *** 
hp:wt        0.02785    0.00742    3.75  0.00081 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 2.1 on 28 degrees of freedom 
Multiple R-squared: 0.885,      Adjusted R-squared: 0.872  
F-statistic: 71.7 on 3 and 28 DF,  p-value: 2.98e-13 

You can see from the Pr(>|t|) column that the interaction between horsepower and car 
weight is significant. What does this mean? A significant interaction between two predictor 
variables tells you that the relationship between one predictor and the response variable 
depends on the level of the other predictor. Here it means the relationship between miles per 
gallon and horsepower varies by car weight. 

The model for predicting mpg is mpg = 49.81 – 0.12 × hp – 8.22 × wt + 0.03 × hp × wt. To 
interpret the interaction, you can plug in various values of wt and simplify the equation. For 
example, you can try the mean of wt (3.2) and one standard deviation below and above the 
mean (2.2 and 4.2, respectively). For wt=2.2, the equation simplifies to mpg = 49.81 – 0.12 
× hp – 8.22 × (2.2) + 0.03 × hp × (2.2) = 31.41 – 0.06 × hp. For wt=3.2, this becomes mpg 
= 23.37 – 0.03 × hp. Finally, for wt=4.2 the equation becomes mpg = 15.33 – 0.003 × hp. 
You see that as weight increases (2.2, 3.2, 4.2), the expected change in mpg from a unit 
increase in hp decreases (0.06, 0.03, 0.003). 

You can visualize interactions using the effect() function in the effects package. The format 
is  

plot(effect(term, mod,, xlevels), multiline=TRUE) 

where term is the quoted model term to plot, mod is the fitted model returned by lm(), and 
xlevels is a list specifying the variables to be set to constant values and the values to 
employ. The multiline=TRUE option superimposes the lines being plotted and the lines option 
specifies the line type for each line (where 1= solid, 2=dashed, and 3=dotted, etc.).  For the 
previous model, this becomes 
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library(effects) 
plot(effect("hp:wt", fit,, list(wt=c(2.2,3.2,4.2))),  
     lines=c(1,2,3), multiline=TRUE) 

The resulting graph is displayed in figure 8.5. 

hp*wt effect plot

hp

m
pg

15

20

25

 50 100 150 200 250 300

wt
2.2
3.2
4.2

 
Figure 8.4 Interaction plot for hp*wt. This plot displays the relationship between mpg and hp at three values of 
wt. 

You can see from this graph that as the weight of the car increases, the relationship between 
horsepower and miles per gallon weakens. For wt=4.2, the line is almost horizontal, indicating 
that as hp increases, mpg doesn’t change. 

Unfortunately, fitting the model is only the first step in the analysis. Once you fit a regression 
model, you need to evaluate whether you’ve met the statistical assumptions underlying your 
approach before you can have confidence in the inferences you draw. This is the topic of the 
next section. 
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8.3 Regression diagnostics 
In the previous section, you used the lm() function to fit an OLS regression model and the 
summary() function to obtain the model parameters and summary statistics. Unfortunately, 
nothing in this printout tells you whether the model you’ve fit is appropriate. Your confidence 
in inferences about regression parameters depends on the degree to which you’ve met the 
statistical assumptions of the OLS model. Although the summary() function in listing 8.4 
describes the model, it provides no information concerning the degree to which you’ve 
satisfied the statistical assumptions underlying the model.  

Why is this important? Irregularities in the data or misspecifications of the relationships 
between the predictors and the response variable can lead you to settle on a model that’s 
wildly inaccurate. On the one hand, you may conclude that a predictor and a response variable 
are unrelated when, in fact, they are. On the other hand, you may conclude that a predictor 
and a response variable are related when, in fact, they aren’t! You may also end up with a 
model that makes poor predictions when applied in real-world settings, with significant and 
unnecessary error.  

Let’s look at the output from the confint() function applied to the states multiple regression 
problem in section 8.2.4: 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
                          "Illiteracy", "Income", "Frost")]) 
> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states) 
> confint(fit) 
                2.5 %   97.5 % 
(Intercept) -6.55e+00 9.021318 
Population   4.14e-05 0.000406 
Illiteracy   2.38e+00 5.903874 
Income      -1.31e-03 0.001441 
Frost       -1.97e-02 0.020830 

The results suggest that you can be 95% confident that the interval [2.38, 5.90] contains the 
true change in murder rate for a 1% change in illiteracy rate. Additionally, because the 
confidence interval for Frost contains 0, you can conclude that a change in temperature is 
unrelated to murder rate, holding the other variables constant. But your faith in these results 
is only as strong as the evidence you have that your data satisfies the statistical assumptions 
underlying the model.  

A set of techniques called regression diagnostics provides the necessary tools for evaluating 
the appropriateness of the regression model and can help you to uncover and correct 
problems. We’ll start with a standard approach that uses functions that come with R’s base 
installation. Then we’ll look at newer, improved methods available through the car package. 
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8.3.1 A typical approach 

R’s base installation provides numerous methods for evaluating the statistical assumptions in a 
regression analysis. The most common approach is to apply the plot() function to the object 
returned by the lm(). Doing so produces four graphs that are useful for evaluating the model 
fit. Applying this approach to the simple linear regression example 

fit <- lm(weight ~ height, data=women) 
par(mfrow=c(2,2)) 
plot(fit) 
par(mfrow=c(1,1)) 

produces the graphs shown in figure 8.5. The par(mfrow=c(2,2)) statement is used to 
combine the four plots produced by the plot() function into one large 2 × 2 graph. The 
second par() function returns you to single graphs. 
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Figure 8.5 Diagnostic plots for the regression of weight on height 

To understand these graphs, consider the assumptions of OLS regression: 

• Normality—If the dependent variable is normally distributed for a fixed set of predictor 
values, then the residual values should be normally distributed with a mean of 0. The 
Normal Q-Q plot (upper right) is a probability plot of the standardized residuals against 
the values that would be expected under normality. If you’ve met the normality 
assumption, the points on this graph should fall on the straight 45-degree line. Because 
they don’t, you’ve clearly violated the normality assumption. 

• Independence—You can’t tell if the dependent variable values are independent from 
these plots. You have to use your understanding of how the data was collected. There’s 
no a priori reason to believe that one woman’s weight influences another woman’s 
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weight. If you found out that the data were sampled from families, you might have to 
adjust your assumption of independence. 

• Linearity—If the dependent variable is linearly related to the independent variables, 
there should be no systematic relationship between the residuals and the predicted 
(that is, fitted) values. In other words, the model should capture all the systematic 
variance present in the data, leaving nothing but random noise. In the Residuals vs. 
Fitted graph (upper left), you see clear evidence of a curved relationship, which 
suggests that you may want to add a quadratic term to the regression. 

• Homoscedasticity—If you’ve met the constant variance assumption, the points in the 
Scale-Location graph (bottom left) should be a random band around a horizontal line. 
You seem to meet this assumption. 

Finally, the Residuals vs. Leverage graph (bottom right) provides information about individual 
observations that you may wish to attend to. The graph identifies outliers, high-leverage 
points, and influential observations. Specifically:  

• An outlier is an observation that isn’t predicted well by the fitted regression model (that 
is, has a large positive or negative residual).  

• An observation with a high leverage value has an unusual combination of predictor 
values. That is, it’s an outlier in the predictor space. The dependent variable value isn’t 
used to calculate an observation’s leverage.  

• An influential observation is an observation that has a disproportionate impact on the 
determination of the model parameters. Influential observations are identified using a 
statistic called Cook’s distance, or Cook’s D. 

To be honest, I find the Residuals vs. Leverage plot difficult to read and not useful. You’ll see 
better representations of this information in later sections. 

Although these standard diagnostic plots are helpful, better tools are now available in R and I 
recommend their use over the plot(fit) approach. 

 

8.3.2 An enhanced approach 

The car package provides a number of functions that significantly enhance your ability to fit 
and evaluate regression models (see table 8.4).  

Table 8.4 Useful functions for regression diagnostics (car package) 

Function Purpose 

qqPlot() Quantile comparisons plot 
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durbinWatsonTest() Durbin–Watson test for autocorrelated errors 

crPlots() Component plus residual plots 

ncvTest() Score test for nonconstant error variance 

spreadLevelPlot() Spread-level plots 

outlierTest() Bonferroni outlier test 

avPlots() Added variable plots 

influencePlot() Regression influence plots 

scatterplot() Enhanced scatter plots 

scatterplotMatrix() Enhanced scatter plot matrixes 

vif() Variance inflation factors 

Let’s look at each in turn, by applying them to our multiple regression example. 

NORMALITY 

The qqPlot() function provides a more accurate method of assessing the normality 
assumption than that provided by the plot() function in the base package. It plots the 
studentized residuals (also called studentized deleted residuals or jackknifed residuals) against 
a t distribution with n – p – 1 degrees of freedom, where n is the sample size and p is the 
number of regression parameters (including the intercept). The code follows: 

library(car) 
states <- as.data.frame(state.x77[,c("Murder", "Population", 
                        "Illiteracy", "Income", "Frost")]) 
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states) 
qqPlot(fit, labels=row.names(states), id=list(method="identify"), 
       simulate=TRUE, main="Q-Q Plot") 

The qqPlot() function generates the probability plot displayed in figure 8.6. The option 
id=list(method="identify") makes the plot interactive—after the graph is drawn, mouse 
clicks on points in the graph will label them with values specified in the labels option of the 
function. Pressing the Esc key, or pressing the Finish button in the upper right corner of the 
graph, turns off this interactive mode. Here, I identified Nevada. When simulate=TRUE, a 95% 
confidence envelope is produced using a parametric bootstrap. (Bootstrap methods are 
considered in chapter 12.) 
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Figure 8.6 Q-Q plot for studentized residuals 

With the exception of Nevada, all the points fall close to the line and are within the confidence 
envelope, suggesting that you’ve met the normality assumption fairly well. But you should 
definitely look at Nevada. It has a large positive residual (actual – -predicted), indicating that 
the model underestimates the murder rate in this state. Specifically: 

> states["Nevada",] 
 
       Murder Population Illiteracy Income Frost 
Nevada   11.5        590        0.5   5149   188 
 
> fitted(fit)["Nevada"] 
 
  Nevada  
3.878958  
 
> residuals(fit)["Nevada"] 
 
  Nevada  
7.621042  
 
> rstudent(fit)["Nevada"] 
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  Nevada  
3.542929  

Here you see that the murder rate is 11.5%, but the model predicts a 3.9% murder rate. 

The question that you need to ask is, “Why does Nevada have a higher murder rate than 
predicted from population, income, illiteracy, and temperature?” Anyone (who hasn’t see 
Casino) want to guess? 

INDEPENDENCE OF ERRORS 

As indicated earlier, the best way to assess whether the dependent variable values (and thus 
the residuals) are independent is from your knowledge of how the data were collected. For 
example, time series data often display autocorrelation—observations collected closer in time 
are more correlated with each other than with observations distant in time. The car package 
provides a function for the Durbin–Watson test to detect such serially correlated errors. You 
can apply the Durbin–Watson test to the multiple-regression problem with the following code: 

> durbinWatsonTest(fit) 
 lag Autocorrelation D-W Statistic p-value 
   1          -0.201          2.32   0.282 
 Alternative hypothesis: rho != 0 

The nonsignificant p-value (p=0.282) suggests a lack of autocorrelation and, conversely, an 
independence of errors. The lag value (1 in this case) indicates that each observation is being 
compared with the one next to it in the dataset. Although appropriate for time-dependent 
data, the test is less applicable for data that isn’t clustered in this fashion. Note that the 
durbinWatsonTest() function uses bootstrapping (see chapter 12) to derive p-values. Unless 
you add the option simulate=FALSE, you’ll get a slightly different value each time you run the 
test. 

LINEARITY 

You can look for evidence of nonlinearity in the relationship between the dependent variable 
and the independent variables by using component plus residual plots (also known as partial 
residual plots). The plot is produced by the crPlots() function in the car package. You’re 
looking for any systematic departure from the linear model that you’ve specified.  

To create a component plus residual plot for variable k, you plot the points 

where the residuals are based on the full model (containing all the predictors), and i =1 … n. 
The straight line in each graph is given by ˆ  vs. k ik ikX Xβ × . A loess line (a smoothed 

ˆ  vs. i k ik ikX Xε β+ ×
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nonparametric fit line) is also provided for each plot. Loess lines are described in chapter 11. 
The code to produce these plots is as follows: 

> library(car) 
> crPlots(fit) 

The resulting plots are provided in figure 8.7. Nonlinearity in any of these plots suggests that 
you may not have adequately modeled the functional form of that predictor in the regression. 
If so, you may need to add curvilinear components such as polynomial terms, transform one 
or more variables (for example, use log(X) instead of X), or abandon linear regression in 
favor of some other regression variant. Transformations are discussed later in this chapter. 
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Figure 8.7 Component plus residual plots for the regression of murder rate on state characteristics 

The component plus residual plots confirm that you’ve met the linearity assumption. The form 
of the linear model seems to be appropriate for this dataset.  
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HOMOSCEDASTICITY 

The car package also provides two useful functions for identifying non-constant error 
variance. The ncvTest() function produces a score test of the hypothesis of constant error 
variance against the alternative that the error variance changes with the level of the fitted 
values. A significant result suggests heteroscedasticity (nonconstant error variance).  

The spreadLevelPlot() function creates a scatter plot of the absolute standardized residuals 
versus the fitted values and superimposes a line of best fit. Both functions are demonstrated 
in the next listing. 

Listing 8.6 Assessing homoscedasticity 

> library(car) 
> ncvTest(fit) 
 
Non-constant Variance Score Test  
Variance formula: ~ fitted.values  
Chisquare=1.7    Df=1     p=0.19  
 
> spreadLevelPlot(fit) 
 
Suggested power transformation:  1.2  

The score test is nonsignificant (p = 0.19), suggesting that you’ve met the constant variance 
assumption. You can also see this in the spread-level plot (figure 8.12). The points form a 
random horizontal band around a horizontal line of best fit. If you’d violated the assumption, 
you’d expect to see a nonhorizontal line. The suggested power transformation in listing 8.7 is 
the suggested power p (Yp) that would stabilize the nonconstant error variance. For example, 
if the plot showed a nonhorizontal trend and the suggested power transformation was 0.5, 
then using Y  rather than Y in the regression equation might lead to a model that satisfied 
homoscedasticity. If the suggested power was 0, you’d use a log transformation. In the 
current example, there’s no evidence of heteroscedasticity, and the suggested power is close 
to 1 (no transformation required). 
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Figure 8.8 Spread-level plot for assessing constant error variance 

8.3.3 Multicollinearity 

Before leaving this section on regression diagnostics, let’s focus on a problem that’s not 
directly related to statistical assumptions but is important in allowing you to interpret multiple 
regression results. Imagine you’re conducting a study of grip strength. Your independent 
variables include date of birth (DOB) and age. You regress grip strength on DOB and age and 
find a significant overall F test at p < .001. But when you look at the individual regression 
coefficients for DOB and age, you find that they’re both nonsignificant (that is, there’s no 
evidence that either is related to grip strength). What happened? 

The problem is that DOB and age are perfectly correlated within rounding error. A regression 
coefficient measures the impact of one predictor variable on the response variable, holding all 
other predictor variables constant. This amounts to looking at the relationship of grip strength 
and age, holding age constant. The problem is called multicollinearity. It leads to large 
confidence intervals for model parameters and makes the interpretation of individual 
coefficients difficult. 

Multicollinearity can be detected using a statistic called the variance inflation factor (VIF). For 
any predictor variable, the square root of the VIF indicates the degree to which the confidence 
interval for that variable’s regression parameter is expanded relative to a model with 
uncorrelated predictors (hence the name). VIF values are provided by the vif() function in 
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the car package. As a general rule, a vif > 10 indicates a multicollinearity problem. The code 
is provided in the following listing. The results indicate that multicollinearity isn’t a problem 
with these predictor variables. 

Listing 8.7 Evaluating multicollinearity 

> library(car) 
> vif(fit)  
 
Population Illiteracy     Income      Frost  
       1.2        2.2        1.3        2.1  
 
> vif(fit) > 10 # problem? 
 
Population Illiteracy     Income      Frost  
     FALSE      FALSE      FALSE      FALSE 

8.4 Unusual observations 
A comprehensive regression analysis will also include a screening for unusual observations—
namely outliers, high-leverage observations, and influential observations. These are data 
points that warrant further investigation, either because they’re different than other 
observations in some way, or because they exert a disproportionate amount of influence on 
the results. Let’s look at each in turn. 

8.4.1 Outliers 

Outliers are observations that aren’t predicted well by the model. They have unusually large 
positive or negative residuals

ˆ( )i iY Y−
. Positive residuals indicate that the model is 

underestimating the response value, whereas negative residuals indicate an overestimation. 

You’ve already seen one way to identify outliers. Points in the Q-Q plot of figure 8.6 that lie 
outside the confidence band are considered outliers. A rough rule of thumb is that 
standardized residuals that are larger than 2 or less than –2 are worth attention.  

The car package also provides a statistical test for outliers. The outlierTest() function 
reports the Bonferroni adjusted p-value for the largest absolute studentized residual: 

  > library(car)  
  > outlierTest(fit) 
       rstudent unadjusted p-value Bonferonni p 
Nevada      3.5            0.00095        0.048 

Here, you see that Nevada is identified as an outlier (p = 0.048). Note that this function tests 
the single largest (positive or negative) residual for significance as an outlier. If it isn’t 
significant, there are no outliers in the dataset. If it’s significant, you must delete it and rerun 
the test to see if others are present. 
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8.4.2 High-leverage points 

Observations that have high leverage are outliers with regard to the other predictors. In other 
words, they have an unusual combination of predictor values. The response value isn’t 
involved in determining leverage. 

Observations with high leverage are identified through the hat statistic. For a given dataset, 
the average hat value is p/n, where p is the number of parameters estimated in the model 
(including the intercept) and n is the sample size. Roughly speaking, an observation with a hat 
value greater than 2 or 3 times the average hat value should be examined. The code that 
follows plots the hat values: 

hat.plot <- function(fit) { 
              p <- length(coefficients(fit)) 
              n <- length(fitted(fit)) 
              plot(hatvalues(fit), main="Index Plot of Hat Values") 
              abline(h=c(2,3)*p/n, col="red", lty=2) 
              identify(1:n, hatvalues(fit), names(hatvalues(fit))) 
            } 
hat.plot(fit) 

The resulting graph is shown in figure 8.9. 
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Figure 8.9 Index plot of hat values for assessing observations with high leverage 

Horizontal lines are drawn at 2 and 3 times the average hat value. The locator function places 
the graph in interactive mode. Clicking points of interest labels them until the user presses 
Esc, or the Finish button in the upper right corner of the graph.  

Here you see that Alaska and California are particularly unusual when it comes to their 
predictor values. Alaska has a much higher income than other states, while having a lower 
population and temperature. California has a much higher population than other states, while 
having a higher income and higher temperature. These states are atypical compared with the 
other 48 observations. 

High-leverage observations may or may not be influential observations. That will depend on 
whether they’re also outliers. 
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8.4.3 Influential observations 

Influential observations have a disproportionate impact on the values of the model 
parameters. Imagine finding that your model changes dramatically with the removal of a 
single observation. It’s this concern that leads you to examine your data for influential points.  

There are two methods for identifying influential observations: Cook’s distance (or D statistic) 
and added variable plots. Roughly speaking, Cook’s D values greater than -4/(n – k – 1), 
where n is the sample size and k is the number of predictor variables, indicate influential 
observations. You can create a Cook’s D plot (figure 8.10) with the following code: 

cutoff <- 4/(nrow(states)-length(fit$coefficients)-2) 
plot(fit, which=4, cook.levels=cutoff) 
abline(h=cutoff, lty=2, col="red") 
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Figure 8.10 Cook’s D plot for identifying influential observations 
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The graph identifies Alaska, Hawaii, and Nevada as influential observations. Deleting these 
states will have a notable impact on the values of the intercept and slopes in the regression 
model. Note that although it’s useful to cast a wide net when searching for influential 
observations, I tend to find a cutoff of 1 more generally useful than 4/(n – k – 1). Given a 
criterion of D=1, none of the observations in the dataset would appear to be influential. 

Cook’s D plots can help identify influential observations, but they don’t provide information 
about how these observations affect the model. Added-variable plots can help in this regard. 
For one response variable and k predictor variables, you’d create k added-variable plots as 
follows. 

For each predictor Xk, plot the residuals from regressing the response variable on the other k – 
1 predictors versus the residuals from regressing Xk on the other k – 1 predictors. Added-
variable plots can be created using the avPlots() function in the car package: 

library(car) 
avPlots(fit, ask=FALSE, id.method="identify") 

The resulting graphs are provided in figure 8.11. The graphs are produced one at a time, and 
users can click points to identify them. Press Esc or press the Finish button on the upper right 
corner of the graph to move to the next plot. Here, I’ve identified Alaska in the bottom-left 
plot. 
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Figure 8.11 Added-variable plots for assessing the impact of influential observations 

The straight line in each plot is the actual regression coefficient for that predictor variable. You 
can see the impact of influential observations by imagining how the line would change if the 
point representing that observation was deleted. For example, look at the graph of Murder | 
Others versus Income | Others in the lower-left corner. You can see that eliminating the point 
labeled Alaska would move the line in a negative direction. In fact, deleting Alaska changes 
the regression coefficient for Income from positive (.00006) to negative (–.00085). 

You can combine the information from outlier, leverage, and influence plots into one highly 
informative plot using the influencePlot() function from the car package: 

library(car) 
influencePlot(fit, id="noteworthy", main="Influence Plot", 
              sub="Circle size is proportional to Cook's distance") 
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The resulting plot (figure 8.12) identifies observations that are particularly noteworthy. In 
particular, it shows that Nevada and Rhode Island are outliers; California, and Hawaii have 
high leverage; and Nevada and Alaska are influential observations. 

Replacing id="noteworthy" with id=list(method="identify") allows you to identify points 
interactively with mouse clicks (ending with ESC or pressing the Finish button). 
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Figure 8.12 Influence plot. States above +2 or below –2 on the vertical axis are considered outliers. States 
above 0.2 or 0.3 on the horizontal axis have high leverage (unusual combinations of predictor values). Circle size 
is proportional to influence. Observations depicted by large circles may have disproportionate influence on the 
parameter estimates of the model. 
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8.5 Corrective measures 
Having spent the last 16 pages learning about regression diagnostics, you may ask, “What do 
you do if you identify problems?” There are four approaches to dealing with violations of 
regression assumptions: 

• Deleting observations 
• Transforming variables 
• Adding or deleting variables 
• Using another regression approach 

Let’s look at each in turn. 

8.5.1 Deleting observations 

Deleting outliers can often improve a dataset’s fit to the normality assumption. Influential 
observations are often deleted as well, because they have an inordinate impact on the results. 
The largest outlier or influential observation is deleted, and the model is refit. If there are still 
outliers or influential observations, the process is repeated until an acceptable fit is obtained. 

Again, I urge caution when considering the deletion of observations. Sometimes you can 
determine that the observation is an outlier because of data errors in recording, or because a 
protocol wasn’t followed, or because a test subject misunderstood instructions. In these cases, 
deleting the offending observation seems perfectly reasonable.  

In other cases, the unusual observation may be the most interesting thing about the data 
you’ve collected. Uncovering why an observation differs from the rest can contribute great 
insight to the topic at hand and to other topics you might not have thought of. Some of our 
greatest advances have come from the serendipity of noticing that something doesn’t fit our 
preconceptions (pardon the hyperbole). 

8.5.2 Transforming variables 

When models don’t meet the normality, linearity, or homoscedasticity assumptions, 
transforming one or more variables can often improve or correct the situation. 
Transformations typically involve replacing a variable Y withY λ

. Common values of λ and 
their interpretations are given in table 8.5. If Y is a proportion, a logit transformation [loge 
(Y/1-Y)] is often used. When Y is highly skewed, a log transformation is often helpful. 
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Table 8.5 Common transformations 

λ -2 -1 -0.5 0 0.5 1 2 

Transformation 2
1

Y   
1

Y     
1

Y   
log(Y) Y   

None 2Y   

When the model violates the normality assumption, you typically attempt a transformation of 
the response variable. You can use the powerTransform() function in the car package to 
generate a maximum-likelihood estimation of the power λ most likely to normalize the variable 
X λ

. In the next listing, this is applied to the states data. 

Listing 8.10 Box–Cox transformation to normality 

> library(car) 
> summary(powerTransform(states$Murder)) 
bcPower Transformation to Normality  
 
              Est.Power Std.Err. Wald Lower Bound Wald Upper Bound 
states$Murder       0.6     0.26            0.088              1.1 
 
Likelihood ratio tests about transformation parameters 
                      LRT df  pval 
LR test, lambda=(0) 5.7  1 0.017 
LR test, lambda=(1) 2.1  1 0.145 

The results suggest that you can normalize the variable Murder by replacing it with Murder0.6. 
Because 0.6 is close to 0.5, you could try a square-root transformation to improve the model’s 
fit to normality. But in this case, the hypothesis that 1λ =  can’t be rejected (p = 0.145), so 
there’s no strong evidence that a transformation is needed in this case. This is consistent with 
the results of the Q-Q plot in figure 8.9. 

Interpreting a log transformation 
Log transformations are often used to make highly skewed distributions less skewed. For example, the variable income 
is often right skewed, with more individuals at the lower end of the scale, and a few individuals with very high incomes. 
How do we interpret regression coefficients with the response variable has been log transformed? 

We normally interpret the regression coefficient for X as the expected change in Y for a unit change in X. Consider the 
model Y = 3 + 0.6X.  We would predict a 0.6 increase in Y for a one-unit increase in X. Similarly, at 10 unit change in X 
would be associated with a 0.6(10) or 6 point change in Y. 

However, if the model is loge(Y) = 3 + 0.6X, then a one unit change in X multiplies the expected value of Y by e0.6 = 1.06. 
Thus, a one-unit increase in X would predict a 6% increase in Y. A 10 unit increase in X would multiply the expected 
valued of Y by e0.6(10) = 1.82. Thus, a 10-unit increase in X would predict an 82% increase in Y. 
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To learn more about interpreting log transformations in linear regression, see Kenneth's Benoit's excellent guide 

(https://kenbenoit.net/assets/courses/ME104/logmodels2.pdf). 

When the assumption of linearity is violated, a transformation of the predictor variables can 
often help. The boxTidwell() function in the car package can be used to generate maximum-
likelihood estimates of predictor powers that can improve linearity. An example of applying the 
Box–Tidwell transformations to a model that predicts state murder rates from their population 
and illiteracy rates follows: 

> library(car) 
> boxTidwell(Murder~Population+Illiteracy,data=states) 
 
           Score Statistic p-value MLE of lambda 
Population           -0.32    0.75          0.87 
Illiteracy            0.62    0.54          1.36 

The results suggest trying the transformations Population.87 and Population1.36 to achieve 
greater linearity. But the score tests for Population (p = .75) and Illiteracy (p = .54) 
suggest that neither variable needs to be transformed. Again, these results are consistent with 
the component plus residual plots in figure 8.7. 

Finally, transformations of the response variable can help in situations of heteroscedasticity 
(nonconstant error variance). You saw in listing 8.8 that the spreadLevelPlot() function in 
the car package offers a power transformation for improving homoscedasticity. Again, in the 
case of the states example, the constant error-variance assumption is met, and no 
transformation is necessary. 

A caution concerning transformations 
There’s an old joke in statistics: if you can’t prove A, prove B and pretend it was A. (For statisticians, that’s pretty funny.) 
The relevance here is that if you transform your variables, your interpretations must be based on the transformed 
variables, not the original variables. If the transformation makes sense, such as the log of income or the inverse of 
distance, the interpretation is easier. But how do you interpret the relationship between the frequency of suicidal 
ideation and the cube root of depression? If a transformation doesn’t make sense, you should avoid it. 
 

8.5.3 Adding or deleting variables 

Changing the variables in a model will impact the fit of the model. Sometimes, adding an 
important variable will correct many of the problems that we’ve discussed. Deleting a 
troublesome variable can do the same thing. 

Deleting variables is a particularly important approach for dealing with multicollinearity. If 
your only goal is to make predictions, then multicollinearity isn’t a problem. But if you want to 
make interpretations about individual predictor variables, then you must deal with it. The most 
common approach is to delete one of the variables involved in the multicollinearity (that is, 
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one of the variables with a vif > 10). An alternative is to use lasso or ridge regression, 
variants of multiple regression designed to deal with multicollinearity situations. 

8.5.4 Trying a different approach 

As you’ve just seen, one approach to dealing with multicollinearity is to fit a different type of 
model (ridge or lasso regression in this case). If there are outliers and/or influential 
observations, you can fit a robust regression model rather than an OLS regression. If you’ve 
violated the normality assumption, you can fit a nonparametric regression model. If there’s 
significant nonlinearity, you can try a nonlinear regression model. If you’ve violated the 
assumptions of independence of errors, you can fit a model that specifically takes the error 
structure into account, such as time-series models or multilevel regression models. Finally, 
you can turn to generalized linear models to fit a wide range of models in situations where the 
assumptions of OLS regression don’t hold. 

We’ll discuss some of these alternative approaches in chapter 13. The decision regarding when 
to try to improve the fit of an OLS regression model and when to try a different approach is a 
complex one. It’s typically based on knowledge of the subject matter and an assessment of 
which approach will provide the best result. 

Speaking of best results, let’s turn now to the problem of deciding which predictor variables to 
include in a regression model. 

8.6 Selecting the “best” regression model 
When developing a regression equation, you’re implicitly faced with a selection of many 
possible models. Should you include all the variables under study, or drop ones that don’t 
make a significant contribution to prediction? Should you add polynomial and/or interaction 
terms to improve the fit? The selection of a final regression model always involves a 
compromise between predictive accuracy (a model that fits the data as well as possible) and 
parsimony (a simple and replicable model). All things being equal, if you have two models with 
approximately equal predictive accuracy, you favor the simpler one. This section describes 
methods for choosing among competing models. The word “best” is in quotation marks 
because there’s no single criterion you can use to make the decision. The final decision 
requires judgment on the part of the investigator. (Think of it as job security.) 

8.6.1 Comparing models 

You can compare the fit of two nested models using the anova() function in the base 
installation. A nested model is one whose terms are completely included in the other model. In 
the states multiple-regression model, you found that the regression coefficients for Income 
and Frost were nonsignificant. You can test whether a model without these two variables 
predicts as well as one that includes them (see the following listing). 
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Listing 8.11 Comparing nested models using the anova() function 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
                          "Illiteracy", "Income", "Frost")]) 
> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost, 
          data=states) 
> fit2 <- lm(Murder ~ Population + Illiteracy, data=states) 
> anova(fit2, fit1) 
 
Analysis of Variance Table 
 
Model 1: Murder ~ Population + Illiteracy 
Model 2: Murder ~ Population + Illiteracy + Income + Frost 
  Res.Df     RSS  Df     Sum of Sq      F Pr(>F) 
1     47 289.246                            
2     45 289.167  2     0.079 0.0061     0.994 

Here, model 1 is nested within model 2. The anova() function provides a simultaneous test 
that Income and Frost add to linear prediction above and beyond Population and Illiteracy. 
Because the test is nonsignificant (p = .994), you conclude that they don’t add to the linear 
prediction and you’re justified in dropping them from your model. 

The Akaike Information Criterion (AIC) provides another method for comparing models. The 
index takes into account a model’s statistical fit and the number of parameters needed to 
achieve this fit. Models with smaller AIC values—indicating adequate fit with fewer 
parameters—are preferred. The criterion is provided by the AIC() function (see the following 
listing). 

Listing 8.12 Comparing models with the AIC 

> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost, 
          data=states) 
> fit2 <- lm(Murder ~ Population + Illiteracy, data=states) 
> AIC(fit1,fit2) 
 
     df      AIC 
fit1  6 241.6429 
fit2  4 237.6565 

The AIC values suggest that the model without Income and Frost is the better model. Note 
that although the ANOVA approach requires nested models, the AIC approach doesn’t. 

Comparing two models is relatively straightforward, but what do you do when there are 4, or 
10, or 100 possible models to consider? That’s the topic of the next section. 

8.6.2 Variable selection 

Two popular approaches to selecting a final set of predictor variables from a larger pool of 
candidate variables are stepwise methods and all-subsets regression.  
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STEPWISE REGRESSION 

In stepwise selection, variables are added to or deleted from a model one at a time, until 
some stopping criterion is reached. For example, in forward stepwise regression, you add 
predictor variables to the model one at a time, stopping when the addition of variables would 
no longer improve the model. In backward stepwise regression, you start with a model that 
includes all predictor variables, and then you delete them one at a time until removing 
variables would degrade the quality of the model. In stepwise stepwise regression (usually 
called stepwise to avoid sounding silly), you combine the forward and backward stepwise 
approaches. Variables are entered one at a time, but at each step, the variables in the model 
are reevaluated, and those that don’t contribute to the model are deleted. A predictor variable 
may be added to, and deleted from, a model several times before a final solution is reached. 

The implementation of stepwise regression methods varies by the criteria used to enter or 
remove variables. The step() function in base R performs stepwise model selection (forward, 
backward, or stepwise) using an AIC criterion. The next listing applies backward stepwise 
regression to the multiple regression problem. 

Listing 8.13 Backward stepwise selection 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
                          "Illiteracy", "Income", "Frost")]) 
 
> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, 
          data=states) 
> step(fit, direction="backward") 
 
 

Start:  AIC=97.75 
Murder ~ Population + Illiteracy + Income + Frost 
 
             Df Sum of Sq    RSS     AIC 
- Frost       1     0.021 289.19  95.753 
- Income      1     0.057 289.22  95.759 
<none>                    289.17  97.749 
- Population  1    39.238 328.41 102.111 
- Illiteracy  1   144.264 433.43 115.986 
 
Step:  AIC=95.75 
Murder ~ Population + Illiteracy + Income 
 
             Df Sum of Sq    RSS     AIC 
- Income      1     0.057 289.25  93.763 
<none>                    289.19  95.753 
- Population  1    43.658 332.85 100.783 
- Illiteracy  1   236.196 525.38 123.605 
 
Step:  AIC=93.76 
Murder ~ Population + Illiteracy 
 
             Df Sum of Sq    RSS     AIC 
<none>                    289.25  93.763 
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- Population  1    48.517 337.76  99.516 
- Illiteracy  1   299.646 588.89 127.311 
 
Call: 
lm(formula = Murder ~ Population + Illiteracy, data = states) 
 
Coefficients: 
(Intercept)   Population   Illiteracy   
  1.6515497    0.0002242    4.0807366   

You start with all four predictors in the model. For each step, the AIC column provides the 
model AIC resulting from the deletion of the variable listed in that row. The AIC value for 
<none> is the model AIC if no variables are removed. In the first step, Frost is removed, 
decreasing the AIC from 97.75 to 95.75. In the second step, Income is removed, decreasing 
the AIC to 93.76. Deleting any more variables would increase the AIC, so the process stops. 

Stepwise regression is controversial. Although it may find a good model, there’s no guarantee 
that it will find the “best” model. This is because not every possible model is evaluated. An 
approach that attempts to overcome this limitation is all subsets regression. 

ALL SUBSETS REGRESSION 

In all subsets regression, every possible model is inspected. The analyst can choose to have 
all possible results displayed or ask for the nbest models of each subset size (one predictor, 
two predictors, and so on). For example, if nbest=2, the two best one--predictor models are 
displayed, followed by the two best two-predictor models, followed by the two best three-
predictor models, up to a model with all predictors.  

All subsets regression is performed using the regsubsets() function from the leaps package. 
You can choose the R-squared, Adjusted R-squared, or Mallows Cp statistic as your criterion 
for reporting “best” models.  

As you’ve seen, R-squared is the amount of variance accounted for in the response variable by 
the predictors variables. Adjusted R-squared is similar but takes into account the number of 
parameters in the model. R-squared always increases with the addition of predictors. When 
the number of predictors is large compared to the sample size, this can lead to significant 
overfitting. The Adjusted R-squared is an attempt to provide a more honest estimate of the 
population R-squared—one that’s less likely to take advantage of chance variation in the data.  

In listing 8.14, we’ll apply all subsets regression to the states data. The leaps package 
presents the results in a plot, but I've found that many people are confused by this graph. The 
code below presents the same results in the form of a table, which I believe will be easier to 
understand. 

Listing 8.14 All subsets regression 

library(leaps) 
states <- as.data.frame(state.x77[,c("Murder", "Population",  
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                        "Illiteracy", "Income", "Frost")]) 
 
leaps <-regsubsets(Murder ~ Population + Illiteracy + Income + 
                   Frost, data=states, nbest=4) 
 
subsTable <- function(obj){ 
  x <- summary(leaps) 
  m <- cbind(round(x[[scale]],3), x$which[,-1]) 
  colnames(m)[1] <- scale 
  m[order(m[,1]), ] 
} 
 
subsTable(leaps, scale="adjr2) 
 
  adjr2 Population Illiteracy Income Frost 
1 0.033          0          0      1     0 
1 0.100          1          0      0     0 
1 0.276          0          0      0     1 
2 0.292          1          0      0     1 
3 0.309          1          0      1     1 
3 0.476          0          1      1     1 
2 0.480          0          1      1     0 
2 0.481          0          1      0     1 
1 0.484          0          1      0     0 
4 0.528          1          1      1     1 
3 0.539          1          1      1     0 
3 0.539          1          1      0     1 
2 0.548          1          1      0     0 

Each line of the table represents a model. The first column indicates the number of predictors 
in the model. The second column is the scale (adjusted r-squared in this case) ued to describe 
each model's fit and rows are sorted by this scale. (Note: other scale values can be used in 
place of adjr2. See? regsubsets for a list of options). The 1/0s in the row indicate which 
variables are included or excluded from the model.  

For example, a model based on the single predictor Income has an adjusted R-square of 
0.033. A model with the predictors Population, Illiteracy, and Income has an adjusted R-
square of 0.539. In contrast, a model using the predictors Population and Illiteracy alone 
has an adjusted R-square of 0.548. Here you see that a model with fewer predictors actually 
has a larger adjusted R-square (something that can’t happen with an unadjusted R-square). 
The table suggests that the two-predictor model (Population and Illiteracy) is the best.  

In most instances, all subsets regression is preferable to stepwise regression, because more 
models are considered. But when the number of predictors is large, the procedure can require 
significant computing time. In general, automated variable-selection methods should be seen 
as an aid rather than a directing force in model selection. A well-fitting model that doesn’t 
make sense doesn’t help you. Ultimately, it’s your knowledge of the subject matter that should 
guide you.  
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8.7 Taking the analysis further 
We’ll end our discussion of regression by considering methods for assessing model 
generalizability and predictor relative importance.  

8.7.1 Cross-validation 

In the previous section, we examined methods for selecting the variables to include in a 
regression equation. When description is your primary goal, the selection and interpretation of 
a regression model signals the end of your labor. But when your goal is prediction, you can 
justifiably ask, “How well will this equation perform in the real world?”  

By definition, regression techniques obtain model parameters that are optimal for a given set 
of data. In OLS regression, the model parameters are selected to minimize the sum of squared 
errors of prediction (residuals) and, conversely, maximize the amount of variance accounted 
for in the response variable (R-squared). Because the equation has been optimized for the 
given set of data, it's unlikely perform as well with a new set of data.  

We began this chapter with an example involving a research physiologist who wanted to 
predict the number of calories an individual will burn from the duration and intensity of their 
exercise, age, gender, and BMI. If you fit an OLS regression equation to this data, you’ll obtain 
model parameters that uniquely maximize the R-squared for this particular set of 
observations. But our researcher wants to use this equation to predict the calories burned by 
individuals in general, not only those in the original study. You know that the equation won’t 
perform as well with a new sample of observations, but how much will you lose? Cross-
validation is a useful method for evaluating the generalizability of a regression equation.  

In cross-validation, a portion of the data is selected as the training sample, and a portion is 
selected as the hold-out sample. A regression equation is developed on the training sample 
and then applied to the hold-out sample. Because the hold-out sample wasn’t involved in the 
selection of the model parameters, the performance on this sample is a more accurate 
estimate of the operating characteristics of the model with new data. 

In k-fold cross-validation, the sample is divided into k subsamples. Each of the k subsamples 
serves as a hold-out group, and the combined observations from the remaining k – 1 
subsamples serve as the training group. The performance for the k prediction equations 
applied to the k hold-out samples is recorded and then averaged. (When k equals n, the total 
number of observations, this approach is called jackknifing.)  

You can perform k-fold cross-validation using the crossval() function in the bootstrap 
package. The following listing provides a function (called shrinkage()) for cross-validating a 
model’s R-square statistic using k-fold cross-validation.  

Listing 8.15 Function for k-fold cross-validated R-square 

shrinkage <- function(fit, k=10, seed=1){ 
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  require(bootstrap) 
   
  theta.fit <- function(x,y){lsfit(x,y)}                      
  theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}      
   
  x <- fit$model[,2:ncol(fit$model)]                          
  y <- fit$model[,1]  
   
  set.seed(seed) 
  results <- crossval(x, y, theta.fit, theta.predict, ngroup=k)   
  r2    <- cor(y, fit$fitted.values)^2                          
  r2cv  <- cor(y, results$cv.fit)^2 
  cat("Original R-square =", r2, "\n") 
  cat(k, "Fold Cross-Validated R-square =", r2cv, "\n") 
} 

Using this listing, you define your functions, create a matrix of predictor and predicted values, 
get the raw R-squared and residual standard error, and get the cross-validated R-squared and 
residual standard error. (Chapter 12 covers bootstrapping in detail.) 

The shrinkage() function is then used to perform a 10-fold cross-validation with the states 
data, using a model with all four predictor variables: 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
         "Illiteracy", "Income", "Frost")]) 
> fit <- lm(Murder ~ Population + Income + Illiteracy + Frost, data=states) 
> shrinkage(fit) 
 
Original R-square = 0.567  
10 Fold Cross-Validated R-square = 0.356  

You can see that the R-square based on the sample (0.567) is overly optimistic. A better 
estimate of the amount of variance in murder rates that this model will account for with new 
data is the cross-validated R-square (0.356). (Note that observations are assigned to the k 
groups randomly, so a random number seed is provided to make the results reproducible.) 

You could use cross-validation in variable selection by choosing a model that demonstrates 
better generalizability. For example, a model with two predictors (Population and 
Illiteracy) shows less R-square shrinkage than the full model: 

> fit2 <- lm(Murder ~ Population + Illiteracy,data=states) 
> shrinkage(fit2) 
 
Original R-square = 0.567  
10 Fold Cross-Validated R-square = 0.515  

This may make the two-predictor model a more attractive alternative. 

All other things being equal, a regression equation that’s based on a larger training sample 
and one that’s more representative of the population of interest will cross-validate better. 
You’ll get less R-squared shrinkage and make more accurate predictions. 
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8.7.2 Relative importance 

Up to this point in the chapter, we’ve been asking, “Which variables are useful for predicting 
the outcome?” But often your real interest is in the question, “Which variables are most 
important in predicting the outcome?” You implicitly want to rank-order the predictors in terms 
of relative importance. There may be practical grounds for asking the second question. For 
example, if you could rank-order leadership practices by their relative importance for 
organizational success, you could help managers focus on the behaviors they most need to 
develop. 

If predictor variables were uncorrelated, this would be a simple task. You would rank-order the 
predictor variables by their correlation with the response variable. In most cases, though, the 
predictors are correlated with each other, and this complicates the task significantly.  

There have been many attempts to develop a means for assessing the relative importance of 
predictors. The simplest has been to compare standardized regression coefficients. 
Standardized regression coefficients describe the expected change in the response variable 
(expressed in standard deviation units) for a standard deviation change in a predictor variable, 
holding the other predictor variables constant. You can obtain the standardized regression 
coefficients in R by standardizing each of the variables in your dataset to a mean of 0 and 
standard deviation of 1 using the scale() function, before submitting the dataset to a 
regression analysis. (Note that because the scale() function returns a matrix and the lm() 
function requires a data frame, you convert between the two in an intermediate step.) The 
code and results for the multiple regression problem are shown here: 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
                          "Illiteracy", "Income", "Frost")]) 
> zstates <- as.data.frame(scale(states)) 
> zfit <- lm(Murder~Population + Income + Illiteracy + Frost, data=zstates) 
> coef(zfit) 
 
(Intercept)  Population      Income  Illiteracy       Frost  
 -9.406e-17   2.705e-01   1.072e-02   6.840e-01   8.185e-03 

Here you see that a one-standard-deviation increase in illiteracy rate yields a 0.68 standard 
deviation increase in murder rate, when controlling for population, income, and temperature. 
Using standardized regression coefficients as your guide, Illiteracy is the most important 
predictor and Frost is the least. 

There have been many other attempts at quantifying relative importance. Relative importance 
can be thought of as the contribution each predictor makes to R-square, both alone and in 
combination with other predictors. Several possible approaches to relative importance are 
captured in the relaimpo package written by Ulrike Grömping (http://mng.bz/KDYF).  

A new method called relative weights shows significant promise. The method closely 
approximates the average increase in R-square obtained by adding a predictor variable across 
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all possible submodels (Johnson, 2004; Johnson and Lebreton, 2004; Le-Breton and 
Tonidandel, 2008). A function for generating relative weights is provided in the next listing. 

Listing 8.16 relweights() for calculating relative importance of predictors 

relweights <- function(fit,...){                          
  R <- cor(fit$model)    
  nvar <- ncol(R)           
  rxx <- R[2:nvar, 2:nvar]  
  rxy <- R[2:nvar, 1]       
  svd <- eigen(rxx)         
  evec <- svd$vectors                            
  ev <- svd$values          
  delta <- diag(sqrt(ev))   
  lambda <- evec %*% delta %*% t(evec)         
  lambdasq <- lambda ^ 2    
  beta <- solve(lambda) %*% rxy            
  rsquare <- colSums(beta ^ 2)                    
  rawwgt <- lambdasq %*% beta ^ 2     
  import <- (rawwgt / rsquare) * 100  
  import <- as.data.frame(import) 
  row.names(import) <- names(fit$model[2:nvar])    
  names(import) <- "Weights" 
  import <- import[order(import),1, drop=FALSE] 
  dotchart(import$Weights, labels=row.names(import), 
     xlab="% of R-Square", pch=19, 
     main="Relative Importance of Predictor Variables",  
     sub=paste("Total R-Square=", round(rsquare, digits=3)), 
     ...)   
return(import) 
} 

NOTE The code in listing 8.16 is adapted from an SPSS program generously provided by Dr. Johnson. See 

Johnson (2000, Multivariate Behavioral Research, 35, 1–19) for an explanation of how the relative weights are 

derived.  

In listing 8.17, the relweights() function is applied to the states data with murder rate 
predicted by the population, illiteracy, income, and temperature.  

You can see from figure 8.19 that the total amount of variance accounted for by the model (R-
square=0.567) has been divided among the predictor variables. Illiteracy accounts for 59% of 
the R-square, Frost accounts for 20.79%, and so forth. Based on the method of relative 
weights, Illiteracy has the greatest relative importance, followed by Frost, Population, and 
Income, in that order. 
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Figure 8.19 Dot chart of relative weights for the states multiple regression problem. Larger weights indicate 
relatively more important predictors. For example, Illiteracy accounts for 59% of the total explained variance 
(0.567), whereas Income only accounts for 5.49%. Thus, Illiteracy has greater relative importance than Income 
in this model. 

Listing 8.17 Applying the relweights() function 

> states <- as.data.frame(state.x77[,c("Murder", "Population",  
         "Illiteracy", "Income", "Frost")]) 
> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states) 
> relweights(fit, col="blue") 
 
           Weights 
Income        5.49 
Population   14.72 
Frost        20.79 
Illiteracy   59.00 

Relative-importance measures (and, in particular, the method of relative weights) have wide 
applicability. They come much closer to our intuitive conception of relative importance than 
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standardized regression coefficients do, and I expect to see their use increase dramatically in 
coming years.  

8.8 Summary 
• Regression analysis is a highly interactive and iterative approach that involves fitting 

models, assessing their fit to statistical assumptions, modifying both the data and the 
models, and refitting to arrive at a final result.  

• Regression diagnostics are used to assess the data’s fit to statistical assumptions and 
select methods for modifying the model or the data to meet these assumptions more 
closely. 

• Numerous methods are available for selecting the variables to include in a final 
regression model, including the use of significance tests, fit statistics, and automated 
solutions such as stepwise and all subsets regression. 

• Cross-validation can be used to evaluate a predictive model's likely performance on 
new samples of data.  

• The method of relative weights can be used to address the thorny problem of variable 
importance: identifying which variables are the most important for predicting an 
outcome. 
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9  
Analysis of variance 

This chapter covers 

• Using R to model basic experimental designs 
• Fitting and interpreting ANOVA type models 
• Evaluating model assumptions 

In chapter 7, we looked at regression models for predicting a quantitative response variable 
from quantitative predictor variables. But there’s no reason that we couldn’t have included 
nominal or ordinal factors as predictors as well. When factors are included as explanatory 
variables, our focus usually shifts from prediction to understanding group differences, and the 
methodology is referred to as analysis of variance (ANOVA). ANOVA methodology is used to 
analyze a wide variety of experimental and quasi-experimental designs. This chapter provides 
an overview of R functions for analyzing common research designs. 

First, we’ll look at design terminology, followed by a general discussion of R’s approach to 
fitting ANOVA models. Then we’ll explore several examples that illustrate the analysis of 
common designs. Along the way, you’ll treat anxiety disorders, lower blood cholesterol levels, 
help pregnant mice have fat babies, assure that pigs grow long in the tooth, facilitate 
breathing in plants, and learn which grocery shelves to avoid. 

In addition to the base installation, you’ll be using the car, rrcov, multcomp, effects, MASS, 
dplyr, ggplot2, and mvoutlier packages in the examples. Be sure to install them before 
trying out the sample code.  

9.1 A crash course on terminology 
Experimental design in general, and analysis of variance in particular, has its own language. 
Before discussing the analysis of these designs, we’ll quickly review some important terms. 
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We’ll use a series of increasingly complex study designs to introduce the most significant 
concepts. 

Say you’re interested in studying the treatment of anxiety. Two popular therapies for anxiety 
are cognitive behavior therapy (CBT) and eye movement desensitization and reprocessing 
(EMDR). You recruit 10 anxious individuals and randomly assign half of them to receive five 
weeks of CBT and half to receive five weeks of EMDR. At the conclusion of therapy, each 
patient is asked to complete the State-Trait Anxiety Inventory (STAI), a self-report measure of 
anxiety. The design is outlined in table 9.1. 

Table 9.1 One-way between-groups ANOVA 

Treatment 

CBT EMDR 

s1 s6 

s2 s7 

s3 s8 

s4 s9 

s5 s10 

In this design, Treatment is a between-groups factor with two levels (CBT, EMDR). It’s called a 
between-groups factor because patients are assigned to one and only one group. No patient 
receives both CBT and EMDR. The s characters represent the subjects (patients). STAI is the 
dependent variable, and Treatment is the independent variable. Because there is an equal 
number of observations in each treatment condition, you have a balanced design. When the 
sample sizes are unequal across the cells of a design, you have an unbalanced design. 

The statistical design in table 9.1 is called a one-way ANOVA because there’s a single 
classification variable. Specifically, it’s a one-way between-groups ANOVA. Effects in ANOVA 
designs are primarily evaluated through F tests. If the F test for Treatment is significant, you 
can conclude that the mean STAI scores for two therapies differed after five weeks of 
treatment. 

If you were interested in the effect of CBT on anxiety over time, you could place all 10 
patients in the CBT group and assess them at the conclusion of therapy and again six months 
later. This design is displayed in table 9.2. 
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Table 9.2 One-way within-groups ANOVA 

Patient 

Time 

5 weeks 6 months 

s1     

s2     

s3     

s4     

s5     

s6     

s7     

s8     

s9     

s10     

Time is a within-groups factor with two levels (five weeks, six months). It’s called a within-
groups factor because each patient is measured under both levels. The statistical design is a 
one-way within-groups ANOVA. Because each subject is measured more than once, the design 
is also called a repeated measures ANOVA. If the F test for Time is significant, you can 
conclude that patients’ mean STAI scores changed between five weeks and six months. 

If you were interested in both treatment differences and change over time, you could combine 
the first two study designs and randomly assign five patients to CBT and five patients to 
EMDR, and assess their STAI results at the end of therapy (five weeks) and at six months (see 
table 9.3).  
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Table 9.3 Two-way factorial ANOVA with one between-groups and one within-groups factor 

 Patient 

Time 

5 weeks 6 months 

Therapy 

CBT 

s1     

s2     

s3     

s4     

s5     

EMDR 

s6     

s7     

s8     

s9     

s10     

By including both Therapy and Time as factors, you’re able to examine the impact of Therapy 
(averaged across time), Time (averaged across therapy type), and the interaction of Therapy 
and Time. The first two are called the main effects, whereas the interaction is (not 
surprisingly) called an interaction effect.  

When you cross two or more factors, as is done here, you have a factorial ANOVA design. 
Crossing two factors produces a two-way ANOVA, crossing three factors produces a three-way 
ANOVA, and so forth. When a factorial design includes both between-groups and within-groups 
factors, it’s also called a mixed-model ANOVA. The current design is a two-way mixed-model 
factorial ANOVA (phew!).  

In this case, you’ll have three F tests: one for Therapy, one for Time, and one for the Therapy 
× Time interaction. A significant result for Therapy indicates that CBT and EMDR differ in their 
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impact on anxiety. A significant result for Time indicates that anxiety changed from week five 
to the six-month follow-up. A significant Therapy × Time interaction indicates that the two 
treatments for anxiety had a differential impact over time (that is, the change in anxiety from 
five weeks to six months was different for the two treatments). 

Now let’s extend the design a bit. It’s known that depression can have an impact on therapy, 
and that depression and anxiety often co-occur. Even though subjects were randomly assigned 
to treatment conditions, it’s possible that the two therapy groups differed in patient depression 
levels at the initiation of the study. Any post-therapy differences might then be due to the 
preexisting depression differences and not to your experimental manipulation. Because 
depression could also explain the group differences on the dependent variable, it’s a 
confounding factor. And because you’re not interested in depression, it’s called a nuisance 
variable.  

If you recorded depression levels using a self-report depression measure such as the Beck 
Depression Inventory (BDI) when patients were recruited, you could statistically adjust for any 
treatment group differences in depression before assessing the impact of therapy type. In this 
case, BDI would be called a covariate, and the design would be called an analysis of 
covariance (ANCOVA).  

Finally, you’ve recorded a single dependent variable in this study (the STAI). You could 
increase the validity of this study by including additional measures of anxiety (such as family 
ratings, therapist ratings, and a measure assessing the impact of anxiety on their daily 
functioning). When there’s more than one dependent variable, the design is called a 
multivariate analysis of variance (MANOVA). If there are covariates present, it’s called a 
multivariate analysis of covariance (MANCOVA).  

Now that you have the basic terminology under your belt, you’re ready to amaze your friends, 
dazzle new acquaintances, and learn how to fit ANOVA/ANCOVA/MANOVA models with R. 

9.2 Fitting ANOVA models 
Although ANOVA and regression methodologies developed separately, functionally they’re both 
special cases of the general linear model. You could analyze ANOVA models using the same 
lm() function used for regression in chapter 7. But you’ll primarily use the aov() function in 
this chapter. The results of lm() and aov() are equivalent, but the aov() function presents 
these results in a format that’s more familiar to ANOVA methodologists. For completeness, I’ll 
provide an example using lm() at the end of this chapter.  

9.2.1 The aov() function 

The syntax of the aov() function is aov(formula, data=dataframe). Table 9.4 describes 
special symbols that can be used in the formulas. In this table, y is the dependent variable 
and the letters A, B, and C represent factors. 
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Table 9.4 Special symbols used in R formulas 

Symbol Usage 

~ Separates response variables on the left from the explanatory variables on the right. For example, a 
prediction of y from A, B, and C would be coded  

y ~ A + B + C 

: Denotes an interaction between variables. A prediction of y from A, B, and the interaction between A 
and B would be coded  

y ~ A + B + A:B 

* Denotes the complete crossing variables. The code  y ~ A*B*C expands to  

y ~ A + B + C + A:B + A:C + B:C + A:B:C 

^ Denotes crossing to a specified degree. The code y ~ (A+B+C)^2 expands to  

y ~ A + B + C + A:B + A:C + A:B 

.  Denotes all remaining variables. The code y ~ . expands to  

y ~ A + B + C 

Table 9.5 provides formulas for several common research designs. In this table, lowercase 
letters are quantitative variables, uppercase letters are grouping factors, and Subject is a 
unique identifier variable for subjects. 

Table 9.5 Formulas for common research designs 

Design Formula 

One-way ANOVA y ~ A 

One-way ANCOVA with 1 covariate y ~ x + A 

Two-way factorial ANOVA y ~ A * B  

Two-way factorial ANCOVA with 2 covariates y ~ x1 + x2 + A * B  
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Randomized block y ~ B + A (where B is a blocking factor) 

One-way within-groups ANOVA y ~ A + Error(Subject/A) 

Repeated measures ANOVA with 1 within-groups  

factor (W) and 1 between-groups factor (B) 
y ~ B * W + Error(Subject/W) 

We’ll explore in-depth examples of several of these designs later in this chapter. 

9.2.2 The order of formula terms 

The order in which the effects appear in a formula matters when (a) there’s more than one 
factor and the design is unbalanced, or (b) covariates are present. When either of these two 
conditions is present, the variables on the right side of the equation will be correlated with 
each other. In this case, there’s no unambiguous way to divide up their impact on the 
dependent variable. For example, in a two-way ANOVA with unequal numbers of observations 
in the treatment combinations, the model y ~ A*B will not produce the same results as the 
model y ~ B*A.  

By default, R employs the Type I (sequential) approach to calculating ANOVA effects (see the 
sidebar “Order counts!”). The first model can be written as y ~ A + B + A:B. The resulting R 
ANOVA table will assess  

• The impact of A on y 
• The impact of B on y, controlling for A 
• The interaction of A and B, controlling for the A and B main effects 

Order counts! 
When independent variables are correlated with each other or with covariates, there’s no unambiguous method for 
assessing the independent contributions of these variables to the dependent variable. Consider an unbalanced two-way 
factorial design with factors A and B and dependent variable y. There are three effects in this design: the A and B main 
effects and the A × B interaction. Assuming that you’re modeling the data using the formula Y ~ A + B + A:B there are 
three typical approaches for partitioning the variance in y among the effects on the right side of this equation. 
Type I (sequential) 
Effects are adjusted for those that appear earlier in the formula. A is unadjusted. B is adjusted for the A. The A:B 
interaction is adjusted for A and B.  
Type II (hierarchical) 
Effects are adjusted for other effects at the same or lower level. A is adjusted for B. B is adjusted for A. The A:B 
interaction is adjusted for both A and B. 
Type III (marginal) 
Each effect is adjusted for every other effect in the model. A is adjusted for B and A:B. B is adjusted for A and A:B. The 
A:B interaction is adjusted for A and B. 
R employs the Type I approach by default. Other programs such as SAS and SPSS employ the Type III approach by 
default. 
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The greater the imbalance in sample sizes, the greater the impact that the order of the terms 
will have on the results. In general, more fundamental effects should be listed earlier in the 
formula. In particular, covariates should be listed first, followed by main effects, followed by 
two-way interactions, followed by three-way interactions, and so on. For main effects, more 
fundamental variables should be listed first. Thus, gender would be listed before treatment. 
Here’s the bottom line: when the research design isn’t orthogonal (that is, when the factors 
and/or covariates are correlated), be careful when specifying the order of effects. 

Before moving on to specific examples, note that the Anova() function in the car package (not 
to be confused with the standard anova() function) provides the option of using the Type II or 
Type III approach, rather than the Type I approach used by the aov() function. You may want 
to use the Anova() function if you’re concerned about matching your results to those provided 
by other packages such as SAS and SPSS. See help(Anova, package="car") for details. 

9.3 One-way ANOVA 
In a one-way ANOVA, you’re interested in comparing the dependent variable means of two or 
more groups defined by a categorical grouping factor. This example comes from the 
cholesterol dataset in the multcomp package, taken from Westfall, Tobia, Rom, & Hochberg 
(1999). Fifty patients received one of five cholesterol-reducing drug regimens (trt). Three of 
the treatment conditions involved the same drug administered as 20 mg once per day (1time), 
10mg twice per day (2times), or 5 mg four times per day (4times). The two remaining 
conditions (drugD and drugE) represented competing drugs. Which drug regimen produced the 
greatest cholesterol reduction (response)? The analysis is provided in the following listing. 

Listing 9.1 One-way ANOVA 

> library(dplyr) 
> data(cholesterol, package="multcomp") 
> plotdata <- cholesterol %>%                                  #1 
    group_by(trt) %>% 
    summarize(n = n(), 
              mean = mean(response), 
              sd = sd(response), 
              ci = qt(0.975, df = n - 1) * sd / sqrt(n)) 
> plotdata                                         
 
  trt        n  mean    sd    ci 
  <fct>  <int> <dbl> <dbl> <dbl> 
1 1time     10  5.78  2.88  2.06 
2 2times    10  9.22  3.48  2.49 
3 4times    10 12.4   2.92  2.09 
4 drugD     10 15.4   3.45  2.47 
5 drugE     10 20.9   3.35  2.39 
 
> fit <- aov(response ~ trt, data=cholesterol)                    #2       
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> summary(fit)     
                                                                  
            Df Sum Sq   Mean Sq    F value           Pr(>F)     
trt          4   1351       338       32.4     9.8e-13  *** 
Residuals   45    469        10                     
---  
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1     
 
> library(ggplot2)                                                #3 
> ggplot(plotdata,  
       aes(x = trt, y = mean, group = 1)) + 
    geom_point(size = 3, color="red") + 
    geom_line(linetype="dashed", color="darkgrey") + 
    geom_errorbar(aes(ymin = mean - ci,  
                      ymax = mean + ci),  
                  width = .1) + 
    theme_bw() + 
    labs(x="Treatment", 
         y="Response", 
         title="Mean Plot with 95% Confidence Interval")     
 

#1 Group sample sizes, means, standard deviations, and 95% confidence intervals 
#2 Tests for group differences (ANOVA) 
#3 Plots group means and confidence intervals 

Looking at the output, you can see that 10 patients received each of the drug regimens #1. 
From the means, it appears that drugE produced the greatest cholesterol reduction, whereas 
1time produced the least #2. Standard deviations were relatively constant across the five 
groups, ranging from 2.88 to 3.48. We assume that each treatment group in our study is a 
sample from a larger potential population of patients that could receive the treatment. For 
each treatment, the sample mean +/- ci gives us an interval that we are 95% confident 
includes the true population mean. The ANOVA F test for treatment (trt) is significant (p < 
.0001), providing evidence that the five treatments aren’t all equally effective #2. 

The ggplot2 functions are used to create a graph of group means and their confidence 
intervals #3. A plot of the treatment means, with 95% confidence limits, is provided in figure 
9.1 and allows you to clearly see these treatment differences. 
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Figure 9.1 Treatment group means with 95% confidence intervals for five cholesterol-reducing drug regimens 

By including the confidence intervals in Figure 9.1, we show the degree of certainty (or 
uncertainty) in our estimates of the population means. 

9.3.1 Multiple comparisons 

The ANOVA F test for treatment tells you that the five drug regimens aren’t equally effective, 
but it doesn’t tell you which treatments differ from one another. You can use a multiple 
comparison procedure to answer this question. For example, the TukeyHSD() function provides 
a test of all pairwise differences between group means, as shown next.  

Listing 9.2 Tukey HSD pairwise group comparisons 

> pairwise <- TukeyHSD(fit)                                  #1 
> pairwise 
 
Fit: aov(formula = response ~ trt) 
 
$trt 
               diff    lwr   upr p adj 
2times-1time   3.44 -0.658  7.54 0.138 
4times-1time   6.59  2.492 10.69 0.000 
drugD-1time    9.58  5.478 13.68 0.000 
drugE-1time   15.17 11.064 19.27 0.000 
4times-2times  3.15 -0.951  7.25 0.205 
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drugD-2times   6.14  2.035 10.24 0.001 
drugE-2times  11.72  7.621 15.82 0.000 
drugD-4times   2.99 -1.115  7.09 0.251 
drugE-4times   8.57  4.471 12.67 0.000 
drugE-drugD    5.59  1.485  9.69 0.003 
 
> plotdata <- as.data.frame(pairwise[[1]])                     #2 
> plotdata$conditions <- row.names(plotdata) 
 
> library(ggplot2)                                             #3 
> ggplot(data=plotdata, aes(x=conditions, y=diff)) +  
    geom_point(size=3, color="red") + 
    geom_errorbar(aes(ymin=lwr, ymax=upr, width=.2)) + 
    geom_hline(yintercept=0, color="red", linetype="dashed") + 
       labs(y="Difference in mean levels", x="",  
         title="95% family-wise confidence level") + 
    theme_bw() +  
    coord_flip() 

#1 Calculate pairwise comparisons 
#2 Create a dataset of the results 
#3 Plot the results 

For example, the mean cholesterol reductions for 1time and 2times aren’t significantly 
different from each other (p = 0.138), whereas the difference between 1time and 4times is 
significantly different (p < .001).  

The pairwise comparisons are plotted in figure 9.2. In this graph, confidence intervals that 
include 0 indicate treatments that aren’t significantly different (p > 0.5). Here, we can see 
that the largest mean difference is between drugE and 1time and that the difference is 
significant (the confidence interval does not include 0).  

Before moving on, I should point out that we could have created the graphs in figures 9.2 
using base graphics. In this case the code would simply be plot(pairwise). The advantage of 
the ggplot2 approach is that it creates a more attractive plot and allows you to fully 
customize the graph to meet your needs. 
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Figure 9.2 Plot of Tukey HSD pairwise mean comparisons 

The glht() function in the multcomp package provides a much more comprehensive set of 
methods for multiple mean comparisons that you can use for both linear models (such as 
those described in this chapter) and generalized linear models (covered in chapter 13). The 
following code reproduces the Tukey HSD test, along with a different graphical representation 
of the results (figure 9.3): 

 
> tuk <- glht(fit, linfct=mcp(trt="Tukey"))  
> summary(tuk) 
 
  Simultaneous Tests for General Linear Hypotheses 
 
Multiple Comparisons of Means: Tukey Contrasts 
 
 
Fit: aov(formula = response ~ trt, data = cholesterol) 
 
Linear Hypotheses: 
                     Estimate Std. Error t value Pr(>|t|)     
2times - 1time == 0     3.443      1.443   2.385  0.13812     
4times - 1time == 0     6.593      1.443   4.568  < 0.001 *** 
drugD - 1time == 0      9.579      1.443   6.637  < 0.001 *** 
drugE - 1time == 0     15.166      1.443  10.507  < 0.001 *** 
4times - 2times == 0    3.150      1.443   2.182  0.20504     
drugD - 2times == 0     6.136      1.443   4.251  < 0.001 *** 
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drugE - 2times == 0    11.723      1.443   8.122  < 0.001 *** 
drugD - 4times == 0     2.986      1.443   2.069  0.25120     
drugE - 4times == 0     8.573      1.443   5.939  < 0.001 *** 
drugE - drugD == 0      5.586      1.443   3.870  0.00308 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Adjusted p values reported -- single-step method) 
  
> labels1 <- cld(tuk, level=.05)$mcletters$Letters 
> labels2 <- paste(names(labels1), "\n", labels1) 
> ggplot(data=fit$model, aes(x=trt, y=response)) + 
    scale_x_discrete(breaks=names(labels1), labels=labels2) + 
    geom_boxplot(fill="lightgrey") + 
    theme_bw() + 
    labs(x="Treatment", 
         title="Distribution of Response Scores by Treatment", 
         subtitle="Groups without overlapping letters differ signifcantly (p < .05)") 
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Figure 9.3 Tukey HSD tests provided by the multcomp package 

The level option in the cld() function provides the significance level to use (0.05, or 95% 
confidence in this case).  

Groups (represented by box plots) that have the same letter don’t have significantly different 
means. You can see that 1time and 2times aren’t significantly different (they both have the 
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letter a) and that 2times and 4times aren’t significantly different (they both have the letter b); 
but that 1time and 4times are different (they don’t share a letter). Personally, I find figure 9.3 
easier to read than figure 9.2. It also has the advantage of providing information on the 
distribution of scores within each group. 

From these results, you can see that taking the cholesterol-lowering drug in 5 mg doses four 
times a day was better than taking a 20 mg dose once per day. The competitor drugD wasn’t 
superior to this four-times-per-day regimen. But competitor drugE was superior to both drugD 
and all three dosage strategies for the focus drug. 

Multiple comparisons methodology is a complex and rapidly changing area of study. To learn 
more, see Bretz, Hothorn, and Westfall (2010). 

9.3.2 Assessing test assumptions 

As you saw in the previous chapter, confidence in results depends on the degree to which your 
data satisfies the assumptions underlying the statistical tests. In a one-way ANOVA, the 
dependent variable is assumed to be normally distributed and have equal variance in each 
group. You can use a Q-Q plot to assess the normality assumption: 

> library(car) 
> fit <- aov(response ~ trt, data=cholesterol) 
> qqPlot(fit, simulate=TRUE, main="Q-Q Plot") 

The graph is provided in figure 9.4. By default, the two observations with the highest 
standardized residuals are identified by data frame row number. The data falls within the 95% 
confidence envelope, suggesting that the normality assumption has been met fairly well. 
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Figure 9.4 Test of normality 

R provides several tests for the equality (homogeneity) of variances. For example, you can 
perform Bartlett’s test with this code:  

> bartlett.test(response ~ trt, data=cholesterol) 
 
        Bartlett test of homogeneity of variances 
 
data:  response by trt  
Bartlett's K-squared = 0.5797, df = 4, p-value = 0.9653 

Bartlett’s test indicates that the variances in the five groups don’t differ significantly (p = 
0.97). Other possible tests include the Fligner–Killeen test (provided by the fligner.test() 
function) and the Brown–Forsythe test (provided by the hov() function in the HH package). 
Although not shown, the other two tests reach the same conclusion. 

Finally, analysis of variance methodologies can be sensitive to the presence of outliers. You 
can test for outliers using the outlierTest() function in the car package: 
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> library(car) 
> outlierTest(fit) 
 
No Studentized residuals with Bonferonni p < 0.05 
Largest |rstudent|: 
   rstudent unadjusted p-value Bonferonni p 
19 2.251149           0.029422           NA 

From the output, you can see that there’s no indication of outliers in the cholesterol data (NA 
occurs when p > 1). Taking the Q-Q plot, Bartlett’s test, and outlier test together, the data 
appear to fit the ANOVA model quite well. This, in turn, adds to your confidence in the results. 

9.4 One-way ANCOVA 
A one-way analysis of covariance (ANCOVA) extends the one-way ANOVA to include one or 
more quantitative covariates. This example comes from the litter dataset in the multcomp 
package (see Westfall et al., 1999). Pregnant mice were divided into four treatment groups; 
each group received a different dose of a drug (0, 5, 50, or 500). The mean post-birth weight 
for each litter was the dependent variable, and gestation time was included as a covariate. The 
analysis is given in the following listing.  

Listing 9.3 One-way ANCOVA 

> library(multcomp) 
> library(dplyr) 
> litter %>% 
    group_by(dose) %>% 
    summarise(n=n(), mean=mean(gesttime), sd=sd(gesttime)) 
 
  dose      n  mean    sd 
  <fct> <int> <dbl> <dbl> 
1 0        20  22.1 0.438 
2 5        19  22.2 0.451 
3 50       18  21.9 0.404 
4 500      17  22.2 0.431 
 
> fit <- aov(weight ~ gesttime + dose, data=litter)                              
> summary(fit) 
            Df Sum Sq Mean Sq F value  Pr(>F)    
gesttime     1  134.3  134.30   8.049 0.00597 ** 
dose         3  137.1   45.71   2.739 0.04988 *  
Residuals   69 1151.3   16.69                    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

From the summarise() function, you can see that there is an unequal number of litters at each 
dosage level, with 20 litters at zero dosage (no drug) and 17 litters at dosage 500. Based on 
the group means, the no-drug group had the highest mean litter weight (32.3). The ANCOVA F 
tests indicate that (a) gestation time was related to birth weight, and (b) drug dosage was 
related to birth weight after controlling for gestation time. The mean birth weight isn’t the 
same for each of the drug dosages, after controlling for gestation time.  
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Because you’re using a covariate, you may want to obtain adjusted group means—that is, the 
group means obtained after partialing out the effects of the covariate. You can use the 
effect() function in the effects library to calculate adjusted means: 

> library(effects) 
> effect("dose", fit) 
 
 dose effect 
dose 
   0    5   50  500  
32.4 28.9 30.6 29.3 

These are the mean litter weights for each treatment dose, after statistically adjusting for 
initial differences in gestation time. In this case, the adjusted means differ quite a bit from the 
unadjusted means produced by the summarise() function. The effects package provides a 
powerful method of obtaining adjusted means for complex research designs and presenting 
them visually. See the package documentation on CRAN for more details. 

As with the one-way ANOVA example in the last section, the F test for dose indicates that the 
treatments don’t have the same mean birth weight, but it doesn’t tell you which means differ 
from one another. Again, you can use the multiple comparison procedures provided by the 
multcomp package to compute all pairwise mean comparisons. Additionally, the multcomp 
package can be used to test specific user-defined hypotheses about the means.  

Suppose you’re interested in whether the no-drug condition differs from the three-drug 
condition. The code in the following listing can be used to test this hypothesis. 

Listing 9.4 Multiple comparisons employing user-supplied contrasts 

> library(multcomp) 
> contrast <- rbind("no drug vs. drug" = c(3, -1, -1, -1)) 
> summary(glht(fit, linfct=mcp(dose=contrast))) 
 
Multiple Comparisons of Means: User-defined Contrasts 
 
Fit: aov(formula = weight ~ gesttime + dose) 
 
Linear Hypotheses: 
                      Estimate Std. Error t value Pr(>|t|)   
no drug vs. drug == 0    8.284      3.209   2.581   0.0120 * 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

The contrast c(3, -1, -1, -1) specifies a comparison of the first group with the average of 
the other three. The hypothesis is tested with a t statistic (2.581 in this case), which is 
significant at the p < .05 level. Therefore, you can conclude that the no-drug group has a 
higher birth weight than drug conditions. Other contrasts can be added to the rbind() 
function (see help(glht) for details). 
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9.4.1 Assessing test assumptions 

ANCOVA designs make the same normality and homogeneity of variance assumptions 
described for ANOVA designs, and you can test these assumptions using the same procedures 
described in section 9.3.2. In addition, standard ANCOVA designs assume homogeneity of 
regression slopes. In this case, it’s assumed that the regression slope for predicting birth 
weight from gestation time is the same in each of the four treatment groups. A test for the 
homogeneity of regression slopes can be obtained by including a gestation × dose interaction 
term in your ANCOVA model. A significant interaction would imply that the relationship 
between gestation and birth weight depends on the level of the dose variable. The code and 
results are provided in the following listing. 

Listing 9.5 Testing for homogeneity of regression slopes 

> library(multcomp) 
> fit2 <- aov(weight ~ gesttime*dose, data=litter) 
> summary(fit2) 
              Df Sum Sq Mean Sq F value Pr(>F)    
gesttime       1    134     134    8.29 0.0054 ** 
dose           3    137      46    2.82 0.0456 *  
gesttime:dose  3     82      27    1.68 0.1789    
Residuals     66   1069      16                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

The interaction is nonsignificant, supporting the assumption of equality of slopes. If the 
assumption is untenable, you could try transforming the covariate or dependent variable, 
using a model that accounts for separate slopes, or employing a nonparametric ANCOVA 
method that doesn’t require homogeneity of regression slopes. See the sm.ancova() function 
in the sm package for an example of the latter.  

9.4.2 Visualizing the results 

We can use ggplot2 to visualize of the relationship between the dependent variable, the 
covariate, and the factor. For example, 

pred <- predict(fit) 
library(ggplot2) 
ggplot(data = cbind(litter, pred), 
       aes(gesttime, weight)) + geom_point() + 
   facet_wrap(~ dose, nrow=1) + geom_line(aes(y=pred)) + 
   labs(title="ANCOVA for weight by gesttime and dose") + 
   theme_bw() + 
   theme(axis.text.x = element_text(angle=45, hjust=1), 
         legend.position="none") 

produces the plot shown in figure 9.5.  
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Figure 9.5 Plot of the relationship between gestation time and birth weight for each of four drug treatment 
groups 

Here you can see that the regression lines for predicting birth weight from gestation time are 
parallel in each group but have different intercepts. As gestation time increases, birth weight 
increases. Additionally, you can see that the zero-dose group has the largest intercept and the 
five-dose group has the lowest intercept. The lines are parallel because they’ve been specified 
to be. If you used the code  

ggplot(data = litter, aes(gesttime, weight)) +  
       geom_point() + geom_smooth(method="lm", se=FALSE) + 
       facet_wrap(~ dose, nrow=1) 

instead, you’d generate a plot that allows both the slopes and intercepts to vary by group. 
This approach is useful for visualizing the case where the homogeneity of regression slopes 
doesn’t hold. 

9.5 Two-way factorial ANOVA 
In a two-way factorial ANOVA, subjects are assigned to groups that are formed from the 
cross-classification of two factors. This example uses the ToothGrowth dataset in the base 
installation to demonstrate a two-way between-groups ANOVA. Sixty guinea pigs are randomly 
assigned to receive one of three levels of ascorbic acid (0.5, 1, or 2 mg) and one of two 
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delivery methods (orange juice or Vitamin C), under the restriction that each treatment 
combination has 10 guinea pigs. The dependent variable is tooth length. The following listing 
shows the code for the analysis. 

Listing 9.6 Two-way ANOVA 

> library(dplyr) 
> data(ToothGrowth) 
> ToothGrowth$dose <- factor(ToothGrowth$dose)              #1 
> stats <- ToothGrowth %>%                                  #2 
    group_by(supp, dose) %>% 
    summarise(n=n(), mean=mean(len), sd=sd(len), 
              ci = qt(0.975, df = n - 1) * sd / sqrt(n)) 
> stats 
 
# A tibble: 6 x 6 
# Groups:   supp [2] 
  supp  dose      n  mean    sd    ci 
  <fct> <fct> <int> <dbl> <dbl> <dbl> 
1 OJ    0.5      10 13.2   4.46  3.19 
2 OJ    1        10 22.7   3.91  2.80 
3 OJ    2        10 26.1   2.66  1.90 
4 VC    0.5      10  7.98  2.75  1.96 
5 VC    1        10 16.8   2.52  1.80 
6 VC    2        10 26.1   4.80  3.43 
 
> fit <- aov(len ~ supp*dose, data=ToothGrowth)            #3 
> summary(fit) 
 
            Df Sum Sq Mean Sq F value   Pr(>F)     
supp         1  205.4   205.4  15.572 0.000231 *** 
dose         2 2426.4  1213.2  92.000  < 2e-16 *** 
supp:dose    2  108.3    54.2   4.107 0.021860 *   
Residuals   54  712.1    13.2                      
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

#1 Prepare data 
#2 Calculate summary statistics 
#3 Fit 2-way ANOVA model 

First, the dose variable is converted to a factor so that the aov() function will treat it as a 
grouping variable, rather than a numeric covariate#1. Next, summary statistics (n, mean, 
standard deviation and confidence interval for the mean) are calculated for each combination 
of treatments #2. The sample sizes indicate that you have a balanced design (equal sample 
sizes in each cell of the design. The 2-way ANVOA model is fitted to the data #3, and the 
summary() function indicates that both main effects (supp and dose) and the interaction 
between these factors are significant.  

You can visualize the results in several ways, including the interaction.plot() function in 
base R, the plotmeans() function in the gplots package, and the interaction2wt() function 
in the HH package. In the code below, we’ll use ggplot2 to plot the means and 95% 
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confidence intervals for the means for this two-way ANOVA. Once advantage of using ggplot2 
is that we can customize the graph to suite are research and esthetic needs. The resulting 
graph is presented in figure 9.6. 

library(ggplot2) 
pd <- position_dodge(0.2) 
ggplot(data=stats,  
       aes(x = dose, y = mean,  
           group=supp,  
           color=supp,  
           linetype=supp)) + 
  geom_point(size = 2,  
             position=pd) + 
  geom_line(position=pd) + 
  geom_errorbar(aes(ymin = mean - ci, ymax = mean + ci),  
                width = .1,  
                position=pd) + 
  theme_bw() +  
  scale_color_manual(values=c("blue", "red")) + 
  labs(x="Dose", 
       y="Mean Length", 
       title="Mean Plot with 95% Confidence Interval") 
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Figure 9.6 Interaction between dose and delivery mechanism on tooth growth. The plot of means was created 
using the ggplot2 code. 

The graph indicates that tooth growth increases with the dose of ascorbic acid for both orange 
juice and Vitamin C. For the 0.5 and 1 mg doses, orange juice produced more tooth growth 
than Vitamin C. For 2 mg of ascorbic acid, both delivery methods produced identical growth.  

Although I don’t cover the tests of model assumptions and mean comparison procedures, 
they’re a natural extension of the methods you’ve seen so far. Additionally, the design is 
balanced, so you don’t have to worry about the order of effects. 

9.6 Repeated measures ANOVA 
In repeated measures ANOVA, subjects are measured more than once. This section focuses on 
a repeated measures ANOVA with one within-groups and one between-groups factor (a 
common design). We’ll take our example from the field of physiological ecology. Physiological 
ecologists study how the physiological and biochemical processes of living systems respond to 
variations in environmental factors (a crucial area of study given the realities of global 
warming). The CO2 dataset included in the base installation contains the results of a study of 
cold tolerance in Northern and Southern plants of the grass species Echinochloa crus-galli 
(Potvin, Lechowicz, & Tardif, 1990). The photosynthetic rates of chilled plants were compared 
with the photosynthetic rates of nonchilled plants at several ambient CO2 concentrations. Half 
the plants were from Quebec, and half were from Mississippi. 

In this example, we’ll focus on chilled plants. The dependent variable is carbon dioxide uptake 
(uptake) in ml/L, and the independent variables are Type (Quebec versus Mississippi) and 
ambient CO2 concentration (conc) with seven levels (ranging from 95 to 1000 umol/m^2 sec). 
Type is a between-groups factor, and conc is a within-groups factor. Type is already stored as 
a factor, but you’ll need to convert conc to a factor before continuing. The analysis is 
presented in the next listing.  

Listing 9.7 Repeated measures ANOVA with one between- and within-groups factor 

> data(CO2) 
> CO2$conc <- factor(CO2$conc) 
> w1b1 <- subset(CO2, Treatment=='chilled') 
> fit <- aov(uptake ~ conc*Type + Error(Plant/(conc)), w1b1) 
> summary(fit) 
 
Error: Plant 
          Df Sum Sq Mean Sq F value Pr(>F)    
Type       1   2667    2667    60.4 0.0015 ** 
Residuals  4    177      44                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
Error: Plant:conc 
          Df Sum Sq Mean Sq F value  Pr(>F)     

263

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

conc       6   1472   245.4    52.5 1.3e-12 *** 
conc:Type  6    429    71.5    15.3 3.7e-07 *** 
Residuals 24    112     4.7                     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                
 
> library(dplyr) 
> stats <- CO2 %>% 
   group_by(conc, Type) %>% 
   summarise(mean_conc = mean(uptake)) 
 
> library(ggplot2) 
> ggplot(data=stats, aes(x=conc, y=mean_conc,  
          group=Type, color=Type, linetype=Type)) + 
   geom_point(size=2) + 
   geom_line(size=1) + 
   theme_bw() + theme(legend.position="top") + 
   labs(x="Concentration", y="Mean Uptake",  
        title="Interaction Plot for Plant Type and Concentration")        

The ANOVA table indicates that the Type and concentration main effects and the Type × 
concentration interaction are all significant at the 0.01 level. A plot of the interaction is 
provided in figure 9.7. In this case, I've left out confidence intervals to keep the graph from 
becoming too busy.  
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Figure 9.7 Interaction of ambient CO2 concentration and plant type on CO2 uptake. 
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In order to demonstrate a different presentation of the interaction, the geom_boxplot() 
function is used to plot the same data. The results are provided in figure 9.8. 

library(ggplot2) 
ggplot(data=CO2, aes(x=conc, y=uptake, fill=Type)) + 
  geom_boxplot() + 
  theme_bw() + theme(legend.position="top") + 
  scale_fill_manual(values=c("gold", "green"))+ 
  labs(x="Concentration", y="Uptake",  
       title="Chilled Quebec and Mississippi Plants") 

10

20

30

40

95 175 250 350 500 675 1000
Concentration

U
pt

ak
e

Type Quebec Mississippi

Chilled Quebec and Mississippi Plants

 
Figure 9.8 Interaction of ambient CO2 concentration and plant type on CO2 uptake.. 

From either graph, you can see that there’s a greater carbon dioxide uptake in plants from 
Quebec compared to Mississippi. The difference is more pronounced at higher ambient CO2 
concentrations. 

NOTE Datasets are typically in wide format, where columns are variables and rows are observations, and 

there’s a single row for each subject. The litter data frame from section 9.4 is a good example. When 

dealing with repeated measures designs, you typically need the data in long format before fitting models. In 

long format, each measurement of the dependent variable is placed in its own row. The CO2 dataset follows 

this form. Luckily, the tidyr package described in chapter 5 (section 5.6.2) can easily reorganize your data 

into the required format. 
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The many approaches to mixed-model designs 
The CO2 example in this section was analyzed using a traditional repeated measures ANOVA. The approach assumes 
that the covariance matrix for any within-groups factor follows a specified form known as sphericity. Specifically, it 
assumes that the variances of the differences between any two levels of the within-groups factor are equal. In real-
world data, it’s unlikely that this assumption will be met. This has led to a number of alternative approaches, including 
the following: 

a. Using the lmer() function in the lme4 package to fit linear mixed models (Bates, 2005) 

b. Using the Anova() function in the car package to adjust traditional test statistics to account for lack of sphericity 
(for example, the Geisser–Greenhouse correction)  

c. Using the gls() function in the nlme package to fit generalized least squares models with specified variance-
covariance structures (UCLA, 2009) 

d. Using multivariate analysis of variance to model repeated measured data (Hand, 1987) 
Coverage of these approaches is beyond the scope of this text. If you’re interested in learning more, check out Pinheiro 
and Bates (2000) and Zuur et al. (2009). 
 

Up to this point, all the methods in this chapter have assumed that there’s a single dependent 
variable. In the next section, we’ll briefly consider designs that include more than one 
outcome variable. 

9.7 Multivariate analysis of variance (MANOVA) 
If there’s more than one dependent (outcome) variable, you can test them simultaneously 
using a multivariate analysis of variance (MANOVA). The following example is based on the 
UScereal dataset in the MASS package. The dataset comes from Venables & Ripley (1999). In 
this example, you’re interested in whether the calories, fat, and sugar content of US cereals 
vary by store shelf, where 1 is the bottom shelf, 2 is the middle shelf, and 3 is the top shelf. 
Calories, fat, and sugars are the dependent variables, and shelf is the independent variable, 
with three levels (1, 2, and 3). The analysis is presented in the following listing. 

Listing 9.8 One-way MANOVA 

> data(UScereal, package="MASS") 
> shelf <- factor(UScereal$shelf)  
> shelf <- factor(shelf) 
> y <- cbind(UScereal$calories, UScereal$fat, UScereal$sugars) 
> colnames(y) <- c("calories", "fat", "sugars") 
> aggregate(y, by=list(shelf=shelf), FUN=mean) 
 
    shelf calories   fat sugars 
1       1      119 0.662    6.3 
2       2      130 1.341   12.5 
3       3      180 1.945   10.9 
 
> cov(y) 
 
         calories   fat sugars 
calories   3895.2 60.67 180.38 
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fat          60.7  2.71   4.00 
sugars      180.4  4.00  34.05 
 
> fit <- manova(y ~ shelf) 
> summary(fit) 
 
          Df Pillai approx F num Df den Df Pr(>F)     
shelf      2  0.402     5.12      6    122  1e-04 *** 
Residuals 62                                          
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
> summary.aov(fit)                                                  #1 
                                     
Response calories : 
            Df Sum Sq Mean Sq F value  Pr(>F)     
shelf        2  50435   25218    7.86 0.00091 *** 
Residuals   62 198860    3207                     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
 Response fat : 
            Df Sum Sq Mean Sq F value Pr(>F)   
shelf        2   18.4    9.22    3.68  0.031 * 
Residuals   62  155.2    2.50                  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
 Response sugars : 
            Df Sum Sq Mean Sq F value Pr(>F)    
shelf        2    381     191    6.58 0.0026 ** 
Residuals   62   1798      29                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#1 Prints univariate results 

First, the shelf variable is converted to a factor so that it can represent a grouping variable in 
the analyses. Next, the cbind() function is used to form a matrix of the three dependent 
variables (calories, fat, and sugars). The aggregate() function provides the shelf means, and 
the cov() function provides the variance and the covariances across cereals.  

The manova() function provides the multivariate test of group differences. The significant F 
value indicates that the three groups differ on the set of nutritional measures. Note that the 
shelf variable was converted to a factor so that it can represent a grouping variable. 

Because the multivariate test is significant, you can use the summary.aov() function to obtain 
the univariate one-way ANOVAs #1. Here, you see that the three groups differ on each 
nutritional measure considered separately. Finally, you can use a mean comparison procedure 
(such as TukeyHSD) to determine which shelves differ from each other for each of the three 
dependent variables (omitted here to save space). 
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9.7.1 Assessing test assumptions 

The two assumptions underlying a one-way MANOVA are multivariate normality and 
homogeneity of variance-covariance matrices. The first assumption states that the vector of 
dependent variables jointly follows a multivariate normal distribution. You can use a Q-Q plot 
to assess this assumption (see the sidebar “A theory interlude” for a statistical explanation of 
how this works). 

A theory interlude 
If you have p × 1 multivariate normal random vector x with mean µ and covariance matrix Σ, then the squared 
Mahalanobis distance between x and µ is chi-square distributed with p degrees of freedom. The Q-Q plot graphs the 
quantiles of the chi-square distribution for the sample against the Mahalanobis D-squared values. To the degree that 
the points fall along a line with slope 1 and intercept 0, there’s evidence that the data is multivariate normal. 
 

The code is provided in listing 9.9, and the resulting graph is displayed in figure 9.9.  

Listing 9.9 Assessing multivariate normality 

> center <- colMeans(y) 
> n <- nrow(y) 
> p <- ncol(y) 
> cov <- cov(y) 
> d <- mahalanobis(y,center,cov) 
> coord <- qqplot(qchisq(ppoints(n),df=p), 
    d, main="Q-Q Plot Assessing Multivariate Normality", 
    ylab="Mahalanobis D2") 
> abline(a=0,b=1) 
> identify(coord$x, coord$y, labels=row.names(UScereal)) 

If the data follow a multivariate normal distribution, then points will fall on the line. The 
identify() function allows you to interactively identify points in the graph. Click on each 
point of interest, then hit ESC or the Finish button. Here, the dataset appears to violate 
multivariate normality, primarily due to the observations for Wheaties Honey Gold and 
Wheaties. You may want to delete these two cases and rerun the analyses. 
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Figure 9.9 A Q-Q plot for assessing multivariate normality 

The homogeneity of variance-covariance matrices assumption requires that the covariance 
matrix for each group is equal. The assumption is usually evaluated with a Box’s M test. R 
doesn’t include a function for Box’s M, but an internet search will provide the appropriate 
code. Unfortunately, the test is sensitive to violations of normality, leading to rejection in most 
typical cases. This means that we don’t yet have a good working method for evaluating this 
important assumption (but see Anderson [2006] and Silva et al. [2008] for interesting 
alternative approaches not yet available in R). 

Finally, you can test for multivariate outliers using the aq.plot() function in the mvoutlier 
package. The code in this case looks like this: 

library(mvoutlier) 
outliers <- aq.plot(y) 
outliers 

Try it, and see what you get! 

9.7.2 Robust MANOVA 

If the assumptions of multivariate normality or homogeneity of variance-covariance matrices 
are untenable, or if you’re concerned about multivariate outliers, you may want to consider 
using a robust or nonparametric version of the MANOVA test instead. A robust version of the 
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one-way MANOVA is provided by the Wilks.test() function in the rrcov package. The 
adonis() function in the vegan package can provide the equivalent of a nonparametric 
MANOVA. The following listing applies Wilks.test() to the example. 

Listing 9.10 Robust one-way MANOVA 

> library(rrcov) 
> Wilks.test(y,shelf,method="mcd") 
 
        Robust One-way MANOVA (Bartlett Chi2) 
 
data:  x 
Wilks' Lambda = 0.511, Chi2-Value = 23.96, DF = 4.98, p-value = 
0.0002167 
sample estimates: 
  calories    fat  sugars 
1      120  0.701    5.66 
2      128  1.185   12.54 
3      161  1.652   10.35 

From the results, you can see that using a robust test that’s insensitive to both outliers and 
violations of MANOVA assumptions still indicates that the cereals on the top, middle, and 
bottom store shelves differ in their nutritional profiles. 

9.8 ANOVA as regression  
In section 9.2, we noted that ANOVA and regression are both special cases of the same 
general linear model. As such, the designs in this chapter could have been analyzed using the 
lm() function. But in order to understand the output, you need to understand how R deals 
with categorical variables when fitting models.  

Consider the one-way ANOVA problem in section 9.3, which compares the impact of five 
cholesterol-reducing drug regimens (trt): 

> library(multcomp) 
> levels(cholesterol$trt) 
 
[1] "1time"  "2times" "4times" "drugD"  "drugE" 

First, let’s fit the model using the aov() function: 

> fit.aov <- aov(response ~ trt, data=cholesterol) 
> summary(fit.aov) 
 
            Df   Sum Sq  Mean Sq  F value     Pr(>F)     
trt          4  1351.37   337.84   32.433  9.819e-13 *** 
Residuals   45   468.75    10.42                                       

Now, let’s fit the same model using lm(). In this case, you get the results shown in the next 
listing. 
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Listing 9.11 A regression approach to the ANOVA problem in section 9.3 

> fit.lm <- lm(response ~ trt, data=cholesterol) 
> summary(fit.lm) 
 
Coefficients: 
            Estimate Std. Error t value   Pr(>|t|)     
(Intercept)    5.782      1.021   5.665   9.78e-07 *** 
trt2times      3.443      1.443   2.385     0.0213 *   
trt4times      6.593      1.443   4.568   3.82e-05 *** 
trtdrugD       9.579      1.443   6.637   3.53e-08 *** 
trtdrugE      15.166      1.443  10.507   1.08e-13 *** 
 
Residual standard error: 3.227 on 45 degrees of freedom 
Multiple R-squared: 0.7425,     Adjusted R-squared: 0.7196  
F-statistic: 32.43 on 4 and 45 DF,  p-value: 9.819e-13    

What are you looking at? Because linear models require numeric predictors, when the lm() 
function encounters a factor, it replaces that factor with a set of numeric variables 
representing contrasts among the levels. If the factor has k levels, k – 1 contrast variables are 
created. R provides five built-in methods for creating these contrast variables (see table 9.6). 
You can also create your own (we won’t cover that here). By default, treatment contrasts are 
used for unordered factors, and orthogonal polynomials are used for ordered factors. 

Table 9.6 Built-in contrasts 

Contrast Description 

contr.helmert Contrasts the second level with the first, the third level with the average of the first two, the 

fourth level with the average of the first three, and so on. 

contr.poly Contrasts are used for trend analysis (linear, quadratic, cubic, and so on) based on 
orthogonal polynomials. Use for ordered factors with equally spaced levels. 

contr.sum Contrasts are constrained to sum to zero. Also called deviation contrasts, they compare the 

mean of each level to the overall mean across levels. 

contr.treatment Contrasts each level with the baseline level (first level by default). Also called dummy 

coding. 

contr.SAS Similar to contr.treatment, but the baseline level is the last level. This produces coefficients 
similar to contrasts used in most SAS procedures. 
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With treatment contrasts, the first level of the factor becomes the reference group, and each 
subsequent level is compared with it. You can see the coding scheme via the contrasts() 
function: 

> contrasts(cholesterol$trt) 
       2times  4times  drugD  drugE 
1time       0       0      0      0 
2times      1       0      0      0 
4times      0       1      0      0 
drugD       0       0      1      0 
drugE       0       0      0      1 

If a patient is in the drugD condition, then the variable drugD equals 1, and the variables 
2times, 4times, and drugE each equal zero. You don’t need a variable for the first group, 
because a zero on each of the four indicator variables uniquely determines that the patient is 
in the 1times condition.  

In listing 9.11, the variable trt2times represents a contrast between the levels 1time and 
2time. Similarly, trt4times is a contrast between 1time and 4times, and so on. You can see 
from the probability values in the output that each drug condition is significantly different from 
the first (1time). 

You can change the default contrasts used in lm() by specifying a contrasts option. For 
example, you can specify Helmert contrasts by using 

fit.lm <- lm(response ~ trt, data=cholesterol, contrasts="contr.helmert") 

You can change the default contrasts used during an R session via the options() function. For 
example,  

options(contrasts = c("contr.SAS", "contr.helmert")) 

would set the default contrast for unordered factors to contr.SAS and for ordered factors to 
contr.helmert. Although we’ve limited our discussion to the use of contrasts in linear models, 
note that they’re applicable to other modeling functions in R. This includes the generalized 
linear models covered in chapter 13. 

9.9 Summary 
• Analysis of variance (ANOVA) is a set of statistical methods frequently used when 

analyzing data from experimental and quasi-experimental research.  
• ANOVA methodologies are particularly helpful when investigating the relationship 

between a quantitative outcome variable and one or more categorical explanatory 
variables.  

• If a quantitative outcome variable is related to a categorical explanatory variable with 
more than two levels, post hoc tests are conducted to identify which levels/groups 
differ on that outcome.  

• When there are two or more categorical explanatory variables, a factorial ANOVA can 
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be used to study their unique and joint effects on the outcome variable. 
• When the effects of one or more quantitative nuisance variables are statistically 

controlled (removed), the design is called an analysis of covariance (ANCOVA).  
• When there is more than one outcome variable, the design is called a multivariate 

analysis of variance or covariance. 
• ANOVA and multiple regression are two equivalent expressions of the general linear 

model. The different terminologies, R functions, and output formats for these two 
approaches reflect their separate origins in different fields of research. When studies 
focus on group differences, ANOVA results are often easier to understand and 
communicate to others. 
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10  
Power analysis 

This chapter covers 

• Determining sample size requirements 
• Calculating effect sizes 
• Assessing statistical power 

As a statistical consultant, I’m often asked, “How many subjects do I need for my study?” 
Sometimes the question is phrased this way: “I have x number of people available for this 
study. Is the study worth doing?” Questions like these can be answered through power 
analysis, an important set of techniques in experimental design. 

Power analysis allows you to determine the sample size required to detect an effect of a given 
size with a given degree of confidence. Conversely, it allows you to determine the probability 
of detecting an effect of a given size with a given level of confidence, under sample size 
constraints. If the probability is unacceptably low, you’d be wise to alter or abandon the 
experiment. 

In this chapter, you’ll learn how to conduct power analyses for a variety of statistical tests, 
including tests of proportions, t-tests, chi-square tests, balanced one-way ANOVA, tests of 
correlations, and linear models. Because power analysis applies to hypothesis testing 
situations, we’ll start with a brief review of null hypothesis significance testing (NHST). Then 
we’ll review conducting power analyses within R, focusing primarily on the pwr package. 
Finally, we’ll consider other approaches to power analysis available with R. 

10.1 A quick review of hypothesis testing 
To help you understand the steps in a power analysis, we’ll briefly review statistical hypothesis 
testing in general. If you have a statistical background, feel free to skip to section 10.2.  
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In statistical hypothesis testing, you specify a hypothesis about a population parameter (your 
null hypothesis, or H0). You then draw a sample from this population and calculate a statistic 
that’s used to make inferences about the population parameter. Assuming that the null 
hypothesis is true, you calculate the probability of obtaining the observed sample statistic or 
one more extreme. If the probability is sufficiently small, you reject the null hypothesis in 
favor of its opposite (referred to as the alternative or research hypothesis, H1). 

An example will clarify the process. Say you’re interested in evaluating the impact of cell 
phone use on driver reaction time. Your null hypothesis is Ho: µ1 – µ2 = 0, where µ1 is the 
mean response time for drivers using a cell phone and µ2 is the mean response time for 
drivers that are cell phone free (here, µ1 – µ2 is the population parameter of interest). If you 
reject this null hypothesis, you’re left with the alternate or research hypothesis, namely H1: µ1 
– µ2 ≠ 0. This is equivalent to µ1 ≠ µ2, that the mean reaction times for the two conditions are 
not equal. 

A sample of individuals is selected and randomly assigned to one of two conditions. In the first 
condition, participants react to a series of driving challenges in a simulator while talking on a 
cell phone. In the second condition, participants complete the same series of challenges but 
without a cell phone. Overall reaction time is assessed for each individual. 

Based on the sample data, you can calculate the statistic / , where  and  are 
the sample reaction time means in the two conditions, s is the pooled sample standard 
deviation, and n is the number of participants in each condition. If the null hypothesis is true 
and you can assume that reaction times are normally distributed, this sample statistic will 
follow a t distribution with 2n – 2 degrees of freedom. Using this fact, you can calculate the 
probability of obtaining a sample statistic this large or larger. If the probability (p) is smaller 
than some predetermined cutoff (say p < .05), you reject the null hypothesis in favor of the 
alternate hypothesis. This predetermined cutoff (0.05) is called the significance level of the 
test.  

Note that you use sample data to make an inference about the population it’s drawn from. 
Your null hypothesis is that the mean reaction time of all drivers talking on cell phones isn’t 
different from the mean reaction time of all drivers who aren’t talking on cell phones, not just 
those drivers in your sample. The four possible outcomes from your decision are as follows: 

• If the null hypothesis is false and the statistical test leads you to reject it, you’ve made 
a correct decision. You’ve correctly determined that reaction time is affected by cell 
phone use.  

• If the null hypothesis is true and you don’t reject it, again you’ve made a correct 
decision. Reaction time isn’t affected by cell phone use. 

• If the null hypothesis is true but you reject it, you’ve committed a Type I error. You’ve 
concluded that cell phone use affects reaction time when it doesn’t. 

• If the null hypothesis is false and you fail to reject it, you’ve committed a Type II error. 
Cell phone use affects reaction time, but you’ve failed to discern this. 
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Each of these outcomes is illustrated in the following table: 

  Decision 

  Reject H0 Fail to Reject H0 

Actual H0 true Type I error correct 

 H0 false correct Type II error 

Controversy surrounding null hypothesis significance testing 
Null hypothesis significance testing isn’t without controversy and detractors have raised numerous concerns about the 
approach, particularly as practiced in the field of psychology. They point to a widespread misunderstanding of p values, 
reliance on statistical significance over practical significance, the fact that the null hypothesis is never exactly true and 
will always be rejected for sufficient sample sizes, and a number of logical inconsistencies in NHST practices.  
An in-depth discussion of this topic is beyond the scope of this book. Interested readers are referred to Harlow, Mulaik, 
and Steiger (1997). 
 

In planning research, the researcher typically pays special attention to four quantities (see 
figure 10.1): 

• Sample size refers to the number of observations in each condition/group of the 
experimental design.  

• The significance level (also referred to as alpha) is defined as the probability of making 
a Type I error. The significance level can also be thought of as the probability of finding 
an effect that is not there.  

• Power is defined as one minus the probability of making a Type II error. Power can be 
thought of as the probability of finding an effect that is there.  

• Effect size is the magnitude of the effect under the alternate or research hypothesis. 
The formula for effect size depends on the statistical methodology employed in the 
hypothesis testing.  
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Figure 10.1. Four primary quantities considered in a study design power analysis. Given any three, you can 
calculate the fourth. 

Although the sample size and significance level are under the direct control of the researcher, 
power and effect size are affected more indirectly. For example, as you relax the significance 
level (in other words, make it easier to reject the null hypothesis), power increases. Similarly, 
increasing the sample size increases power. 

Your research goal is typically to maximize the power of your statistical tests while maintaining 
an acceptable significance level and employing as small a sample size as possible. That is, you 
want to maximize the chances of finding a real effect and minimize the chances of finding an 
effect that isn’t really there, while keeping study costs within reason. 

The four quantities (sample size, significance level, power, and effect size) have an intimate 
relationship. Given any three, you can determine the fourth. You’ll use this fact to carry out 
various power analyses throughout the remainder of the chapter. In the next section, we’ll 
look at ways of implementing power analyses using the R package pwr. Later, we’ll briefly look 
at some highly specialized power functions that are used in biology and genetics. 

10.2 Implementing power analysis with the pwr package 
The pwr package, developed by Stéphane Champely, implements power analysis as outlined 
by Cohen (1988). Some of the more important functions are listed in table 10.1. For each 
function, the user can specify three of the four quantities (sample size, significance level, 
power, effect size), and the fourth will be calculated. 
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Table 10.1 pwr package functions 

Function Power calculations for … 

pwr.2p.test Two proportions (equal n) 

pwr.2p2n.test Two proportions (unequal n) 

pwr.anova.test Balanced one way ANOVA 

pwr.chisq.test Chi-square test 

pwr.f2.test General linear model 

pwr.p.test Proportion (one sample) 

pwr.r.test Correlation 

pwr.t.test t-tests (one sample, two samples, paired) 

pwr.t2n.test t-test (two samples with unequal n) 

Of the four quantities, effect size is often the most difficult to specify. Calculating effect size 
typically requires some experience with the measures involved and knowledge of past 
research. But what can you do if you have no clue what effect size to expect in a given study? 
You’ll look at this difficult question in section 10.2.7. In the remainder of this section, you’ll 
look at the application of pwr functions to common statistical tests. Before invoking these 
functions, be sure to install and load the pwr package. 

10.2.1 t-tests 

When the statistical test to be used is a t-test, the pwr.t.test() function provides a number 
of useful power analysis options. The format is 

pwr.t.test(n=, d=, sig.level=, power=, alternative=) 

where  

• n is the sample size. 
• d is the effect size defined as the standardized mean difference. 

1
1 2

2
2

mean of group 1
mean of group 2

common error variance

d
µ

µ µ
µ

σ
σ

=
−

= =

=   
• sig.level is the significance level (0.05 is the default). 
• power is the power level. 
• type is two-sample t-test ("two.sample"), a one-sample t-test ("one.sample"), or a 

dependent sample t-test ( "paired"). A two-sample test is the default. 
• alternative indicates whether the statistical test is two-sided ("two.sided") or one-

sided ("less" or "greater"). A two-sided test is the default. 
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Let’s work through an example. Continuing the experiment from section 10.1 involving cell 
phone use and driving reaction time, assume that you’ll be using a two-tailed independent 
sample t-test to compare the mean reaction time for participants in the cell phone condition 
with the mean reaction time for participants driving unencumbered.  

Let’s assume that you know from past experience that reaction time has a standard deviation 
of 1.25 seconds. Also suppose that a 1-second difference in reaction time is considered an 
important difference. You’d therefore like to conduct a study in which you’re able to detect an 
effect size of d = 1/1.25 = 0.8 or larger. Additionally, you want to be 90% sure to detect such 
a difference if it exists, and 95% sure that you won’t declare a difference to be significant 
when it’s actually due to random variability. How many participants will you need in your 
study?  

Entering this information in the pwr.t.test() function, you have the following: 

> library(pwr) 
> pwr.t.test(d=.8, sig.level=.05, power=.9, type="two.sample",          
             alternative="two.sided") 
 
     Two-sample t test power calculation  
 
              n = 34 
              d = 0.8 
      sig.level = 0.05 
          power = 0.9 
    alternative = two.sided 
 
 NOTE: n is number in *each* group 

The results suggest that you need 34 participants in each group (for a total of 68 participants) 
in order to detect an effect size of 0.8 with 90% certainty and no more than a 5% chance of 
erroneously concluding that a difference exists when, in fact, it doesn’t. 

Let’s alter the question. Assume that in comparing the two conditions you want to be able to 
detect a 0.5 standard deviation difference in population means. You want to limit the chances 
of falsely declaring the population means to be different to 1 out of 100. Additionally, you can 
only afford to include 40 participants in the study. What’s the probability that you’ll be able to 
detect a difference between the population means that’s this large, given the constraints 
outlined?  

Assuming that an equal number of participants will be placed in each condition, you have 

> pwr.t.test(n=20, d=.5, sig.level=.01, type="two.sample",  
             alternative="two.sided") 
 
     Two-sample t test power calculation  
 
              n = 20 
              d = 0.5 
      sig.level = 0.01 
          power = 0.14 
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    alternative = two.sided 
 
 NOTE: n is number in *each* group 

With 20 participants in each group, an a priori significance level of 0.01, and a dependent 
variable standard deviation of 1.25 seconds, you have less than a 14% chance of declaring a 
difference of 0.625 seconds or less significant (d = 0.5 = 0.625/1.25). Conversely, there’s an 
86% chance that you’ll miss the effect that you’re looking for. You may want to seriously 
rethink putting the time and effort into the study as it stands. 

The previous examples assumed that there are equal sample sizes in the two groups. If the 
sample sizes for the two groups are unequal, the function  

pwr.t2n.test(n1=, n2=, d=, sig.level=, power=, alternative=) 

can be used. Here, n1 and n2 are the sample sizes, and the other parameters are the same as 
for pwer.t.test. Try varying the values input to the pwr.t2n.test function and see the effect 
on the output. 

10.2.2 ANOVA 

The pwr.anova.test() function provides power analysis options for a balanced one-way 
analysis of variance. The format is 

pwr.anova.test(k=, n=, f=, sig.level=, power=)  

where k is the number of groups and n is the common sample size in each group.  

For a one-way ANOVA, effect size is measured by f, where  
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Let’s try an example. For a one-way ANOVA comparing five groups, calculate the sample size 
needed in each group to obtain a power of 0.80, when the effect size is 0.25 and a significance 
level of 0.05 is employed. The code looks like this: 

> pwr.anova.test(k=5, f=.25, sig.level=.05, power=.8) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 5 
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              n = 39 
              f = 0.25 
      sig.level = 0.05 
          power = 0.8 
 
 NOTE: n is number in each group 

The total sample size is therefore 5 × 39, or 195. Note that this example requires you to 
estimate what the means of the five groups will be, along with the common variance. When 
you have no idea what to expect, the approaches described in section 10.2.7 may help. 

10.2.3 Correlations 

The pwr.r.test() function provides a power analysis for tests of correlation coefficients. The 
format is as follows 

pwr.r.test(n=, r=, sig.level=, power=, alternative=) 

where n is the number of observations, r is the effect size (as measured by a linear correlation 
coefficient), sig.level is the significance level, power is the power level, and alternative 
specifies a two-sided ("two.sided") or a one-sided ("less" or "greater") significance test. 

For example, let’s assume that you’re studying the relationship between depression and 
loneliness. Your null and research hypotheses are 

H0: ρ ≤ 0.25 versus H1: ρ > 0.25 

where ρ is the population correlation between these two psychological variables. You’ve set 
your significance level to 0.05, and you want to be 90% confident that you’ll reject H0 if it’s 
false. How many observations will you need? This code provides the answer: 

> pwr.r.test(r=.25, sig.level=.05, power=.90, alternative="greater") 
 
     approximate correlation power calculation (arctangh transformation)  
 
              n = 134 
              r = 0.25 
      sig.level = 0.05 
          power = 0.9 
    alternative = greater 

Thus, you need to assess depression and loneliness in 134 participants in order to be 90% 
confident that you’ll reject the null hypothesis if it’s false. 

10.2.4 Linear models 

For linear models (such as multiple regression), the pwr.f2.test() function can be used to 
carry out a power analysis. The format is 

 pwr.f2.test(u=, v=, f2=, sig.level=, power=)  

281

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

where u and v are the numerator and denominator degrees of freedom and f2 is the effect 
size.  

2
2 2
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The first formula for f2 is appropriate when you’re evaluating the impact of a set of predictors 
on an outcome. The second formula is appropriate when you’re evaluating the impact of one 
set of predictors above and beyond a second set of predictors (or covariates).  

Let’s say you’re interested in whether a boss’s leadership style impacts workers’ satisfaction 
above and beyond the salary and perks associated with the job. Leadership style is assessed 
by four variables, and salary and perks are associated with three variables. Past experience 
suggests that salary and perks account for roughly 30% of the variance in worker satisfaction. 
From a practical standpoint, it would be interesting if leadership style accounted for at least 
5% above this figure. Assuming a significance level of 0.05, how many subjects would be 
needed to identify such a contribution with 90% confidence? 

Here, sig.level=0.05, power=0.90, u=3 (total number of predictors minus the number of 
predictors in set B), and the effect size is f2 = (.35 – .30)/(1 – .35) = 0.0769. Entering this 
into the function yields the following: 

> pwr.f2.test(u=3, f2=0.0769, sig.level=0.05, power=0.90) 
 
     Multiple regression power calculation  
 
              u = 3 
              v = 184.2426 
             f2 = 0.0769 
      sig.level = 0.05 
          power = 0.9 

In multiple regression, the denominator degrees of freedom equals N – k – 1, where N is the 
number of observations and k is the number of predictors. In this case, N – 7 – 1 = 185, 
which means the required sample size is N = 185 + 7 + 1 = 193. 
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10.2.5 Tests of proportions 

The pwr.2p.test() function can be used to perform a power analysis when comparing two 
proportions. The format is 

pwr.2p.test(h=, n=, sig.level=, power=)  

where h is the effect size and n is the common sample size in each group. The effect size h is 
defined as 

( ) ( )1 22arcsin 2arcsinh p p= −   
and can be calculated with the function ES.h(p1, p2). 

For unequal ns, the desired function is  

pwr.2p2n.test(h =, n1 =, n2 =, sig.level=, power=) 

The alternative= option can be used to specify a two-tailed ("two.sided") or one-tailed 
("less" or "greater") test. A two-tailed test is the default.  

Let’s say that you suspect that a popular medication relieves symptoms in 60% of users. A 
new (and more expensive) medication will be marketed if it improves symptoms in 65% of 
users. How many participants will you need to include in a study comparing these two 
medications if you want to detect a difference this large?  

Assume that you want to be 90% confident in a conclusion that the new drug is better and 
95% confident that you won’t reach this conclusion erroneously. You’ll use a one-tailed test 
because you’re only interested in assessing whether the new drug is better than the standard. 
The code looks like this: 

> pwr.2p.test(h=ES.h(.65, .6), sig.level=.05, power=.9,  
              alternative="greater") 
 
     Difference of proportion power calculation for binomial  
     distribution (arcsine transformation)  
 
              h = 0.1033347 
              n = 1604.007 
      sig.level = 0.05 
          power = 0.9 
    alternative = greater 
 
 NOTE: same sample sizes 

Based on these results, you’ll need to conduct a study with 1,605 individuals receiving the new 
drug and 1,605 receiving the existing drug in order to meet the criteria. 
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10.2.6 Chi-square tests 

Chi-square tests are often used to assess the relationship between two categorical variables. 
The null hypothesis is typically that the variables are independent versus a research 
hypothesis that they aren’t. The pwr.chisq.test() function can be used to evaluate the 
power, effect size, or requisite sample size when employing a chi-square test. The format is 

pwr.chisq.test(w =, N = , df = , sig.level =, power = )  

where w is the effect size, N is the total sample size, and df is the degrees of freedom. Here, 
effect size w is defined as  

( )2 0

11

where 0 cell probability in the ith cell under 0 1
1 cell probability in the ith cell under 0

m i
i i

ii i

p Hp p
w p Hp=

=−
= =∑

  
The summation goes from 1 to m, where m is the number of cells in the contingency table. 
The function ES.w2(P) can be used to calculate the effect size corresponding the alternative 
hypothesis in a two-way contingency table. Here, P is a hypothesized two-way probability 
table. 

As a simple example, let’s assume that you’re looking the relationship between ethnicity and 
promotion. You anticipate that 70% of your sample will be Caucasian, 10% will be African 
American, and 20% will be Hispanic. Further, you believe that 60% of Caucasians tend to be 
promoted, compared with 30% for African Americans and 50% for Hispanics. Your research 
hypothesis is that the probability of promotion follows the values in table 10.2. 

Table 10.2 Proportion of individuals expected to be promoted based on the research hypothesis 

Ethnicity Promoted Not Promoted 

Caucasian 0.42 0.28 

African American 0.03 0.07 

Hispanic 0.10 0.10 

For example, you expect that 42% of the population will be promoted Caucasians (.42 = .70 × 
.60) and 7% of the population will be nonpromoted African Americans (.07 = .10 × .70). Let’s 
assume a significance level of 0.05 and that the desired power level is 0.90. The degrees of 
freedom in a two-way contingency table are (r – 1) × (c – 1), where r is the number of rows 
and c is the number of columns. You can calculate the hypothesized effect size with the 
following code: 

> prob <- matrix(c(.42, .28, .03, .07, .10, .10), byrow=TRUE, nrow=3) 
> ES.w2(prob) 
 
[1] 0.1853198 
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Using this information, you can calculate the necessary sample size like this: 

> pwr.chisq.test(w=.1853, df=2, sig.level=.05, power=.9) 
 
     Chi squared power calculation  
 
              w = 0.1853 
              N = 368.5317 
             df = 2 
      sig.level = 0.05 
          power = 0.9 
 
 NOTE: N is the number of observations 

The results suggest that a study with 369 participants will be adequate to detect a relationship 
between ethnicity and promotion given the effect size, power, and significance level specified. 

10.2.7 Choosing an appropriate effect size in novel situations 

In power analysis, the expected effect size is the most difficult parameter to determine. It 
typically requires that you have experience with the subject matter and the measures 
employed. For example, the data from past studies can be used to calculate effect sizes, which 
can then be used to plan future studies. 

But what can you do when the research situation is completely novel and you have no past 
experience to call upon? In the area of behavioral sciences, Cohen (1988) attempted to 
provide benchmarks for “small,” “medium,” and “large” effect sizes for various statistical tests. 
These guidelines are provided in table 10.3. 

Table 10.3 Cohen’s effect size benchmarks 

Statistical method Effect size 
measures 

Suggested guidelines for effect size 

  Small Medium  Large 

t-test d 0.20 0.50 0.80 

ANOVA f 0.10 0.25 0.40 

Linear models f2 0.02 0.15 0.35 

Test of proportions h 0.20 0.50 0.80 

Chi-square w 0.10 0.30 0.50 

When you have no idea what effect size may be present, this table may provide some 
guidance. For example, what’s the probability of rejecting a false null hypothesis (that is, 
finding a real effect) if you’re using a one-way ANOVA with 5 groups, 25 subjects per group, 
and a significance level of 0.05?  
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Using the pwr.anova.test() function and the suggestions in the f row of table 10.3, the 
power would be 0.118 for detecting a small effect, 0.574 for detecting a moderate effect, and 
0.957 for detecting a large effect. Given the sample size limitations, you’re only likely to find 
an effect if it’s large.  

It’s important to keep in mind that Cohen’s benchmarks are just general suggestions derived 
from a range of social research studies and may not apply to your particular field of research. 
An alternative is to vary the study parameters and note the impact on such things as sample 
size and power. For example, again assume that you want to compare five groups using a 
one-way ANOVA and a 0.05 significance level. The following listing computes the sample sizes 
needed to detect a range of effect sizes and plots the results in figure 10.2. 

Listing 10.1 Sample sizes for detecting significant effects in a one-way ANOVA 

library(pwr) 
es <- seq(.1, .5, .01)                                                
nes <- length(es) 
 
samsize <- NULL                                                       
for (i in 1:nes){                                                     
    result <- pwr.anova.test(k=5, f=es[i], sig.level=.05, power=.9)   
    samsize[i] <- ceiling(result$n)                                   
}                                                                     
 
plotdata <- data.frame(es, samsize) 
library(ggplot2) 
ggplot(plotdata, aes(x=samsize, y=es)) + 
  geom_line(color="red", size=1) + 
  theme_bw() + 
  labs(title="One Way ANOVA (5 groups)", 
       subtitle="Power = 0.90,  Alpha = 0.05", 
       x="Sample Size (per group)", 
       y="Effect Size")  
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Figure 10.2 Sample size needed to detect various effect sizes in a one-way ANOVA with five groups (assuming 
a power of 0.90 and significance level of 0.05) 

Graphs such as these can help you estimate the impact of various conditions on your 
experimental design. For example, there appears to be little bang for the buck in increasing 
the sample size above 200 observations per group. We’ll look at another plotting example in 
the next section. 

10.3 Creating power analysis plots 
Before leaving the pwr package, let’s look at a more involved graphing example. Suppose 
you’d like to see the sample size necessary to declare a correlation coefficient statistically 
significant for a range of effect sizes and power levels. You can use the pwr.r.test() function 
and for loops to accomplish this task, as shown in the following listing. 

Listing 10.2 Sample size curves for detecting correlations of various sizes 

library(pwr) 
r <- seq(.1,.5,.01)                                          #1    
p <- seq(.4,.9,.1)                                         
 
df <- expand.grid(r, p) 
colnames(df) <- c("r", "p") 
 
for (i in 1:nrow(df)){                                       #2 
    result <- pwr.r.test(r = df$r[i], 
                         sig.level = .05, power = df$p[i], 
                         alternative = "two.sided") 
    df$n[i] <- ceiling(result$n) 
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} 
 
library(ggplot2)                                             #3 
ggplot(data=df, 
       aes(x=r, y=n, color=factor(p))) + 
  geom_line(size=1) + 
  theme_bw() + 
  labs(title="Sample Size Estimation for Correlation Studies", 
       subtitle="Sig=0.05 (Two-tailed)", 
       x="Correlation Coefficient (r)", 
       y="Samsple Size (n)", 
       color="Power") 

1 Sets the range of correlations and power values 
2 Obtains sample sizes 
3 Plot power curves 

Listing 10.2 uses the seq() function to generate a range of effect sizes r (correlation 
coefficients under H1) and power levels p #1. The expand.grid() function is used to create a 
data frame with every combination of these two variables.  A for loop then cycles through 
rows of the data frame, calculating the sample size (n) for that row's correlation and power 
level, and saving the result #2. The ggplot2 package is then used to plot a sample size vs. 
correlation curve for each power level #3. The resulting graph is displayed in figure 10.3. 
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Figure 10.3 Sample size curves for detecting a significant correlation at various power levels 

As you can see from the graph, you’d need a sample size of approximately 75 to detect a 
correlation of 0.20 with 40% confidence. You’d need approximately 185 additional 
observations (n = 260) to detect the same correlation with 90% confidence. With simple 
modifications, the same approach can be used to create sample size and power curve graphs 
for a wide range of statistical tests. 

We’ll close this chapter by briefly looking at other R functions that are useful for power 
analysis. 

10.4 Other packages 
There are many other packages in R that can be useful in the planning stages of studies. 
Several are listed in table 10.4. Some contain general tools, whereas some are highly 
specialized. The last four in the table are particularly focused on power analysis in genetic 
studies. Genome-wide association studies (GWAS) are studies used to identify genetic 
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associations with observable traits. For example, these studies would focus on why some 
people get a specific type of heart disease. 

Table 10.4 Specialized power analysis packages 

Package Purpose 

asypow Power calculations via asymptotic likelihood ratio methods 

longpower Sample-size calculations for longitudinal data 

PwrGSD Power analysis for group sequential designs 

pamm Power analysis for random effects in mixed models 

powerSurvEpi Power and sample-size calculations for survival analysis in epidemiological 
studies 

powerMediation Power and sample-size calculations for mediation effects in linear, logistic, 

Poisson, and cox regression 

semPower Power analyses for structural equation models (SEM) 

powerpkg Power analyses for the affected sib pair and the TDT (transmission 
disequilibrium test) design 

powerGWASinteraction Power calculations for interactions for GWAS 

gap Functions for power and sample-size calculations in case-cohort designs 

ssize.fdr Sample-size calculations for microarray experiments 

Finally, the MBESS and WebPower packages contains a wide range of functions that can be 
used for various forms of power analysis and sample size determination. The functions are 
particularly relevant for researchers in the behavioral, educational, and social sciences. 

10.5 Summary 
• In this chapter, we focused on the planning stages of such research. Power analysis 
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helps you to determine the sample sizes needed to discern an effect of a given size 
with a given degree of confidence. It can also tell you the probability of detecting such 
an effect for a given sample size. You can directly see the tradeoff between limiting the 
likelihood of wrongly declaring an effect significant (a Type I error) with the likelihood 
of rightly identifying a real effect (power). 

• The bulk of this chapter has focused on the use of functions provided by the pwr 
package. These functions can be used to carry out power and sample-size 
determinations for common statistical methods (including t-tests, chi-square tests, and 
tests of proportions, ANOVA, and regression). Pointers to more specialized methods 
were provided in the final section. 

• Power analysis is typically an interactive process. The investigator varies the 
parameters of sample size, effect size, desired significance level, and desired power to 
observe their impact on each other. The results are used to plan studies that are more 
likely to yield meaningful results. Information from past research (particularly 
regarding effect sizes) can be used to design more effective and efficient future 
research. 

• An important side benefit of power analysis is the shift that it encourages, away from a 
singular focus on binary hypothesis testing (that is, does an effect exists or not), 
toward an appreciation of the size of the effect under consideration. Journal editors are 
increasingly requiring authors to include effect sizes as well as p values when reporting 
research results. This helps you to determine both the practical implications of the 
research and provides you with information that can be used to plan future studies. 
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11  
Intermediate graphs 

This chapter covers 

• Visualizing bivariate and multivariate relationships 
• Working with scatter and line plots 
• Understanding corrgrams 
• Using mosaic and association plots  

In chapter 6 (basic graphs), we considered a wide range of graph types for displaying the 
distribution of single categorical or continuous variables. Chapter 8 (regression) reviewed 
graphical methods that are useful when predicting a continuous outcome variable from a set of 
predictor variables. In chapter 9 (analysis of variance), we considered techniques that are 
particularly useful for visualizing how groups differ on a continuous outcome variable. In many 
ways, the current chapter is a continuation and extension of the topics covered so far.  

In this chapter, we’ll focus on graphical methods for displaying relationships between two 
variables (bivariate relationships) and between many variables (multivariate relationships). 
For example: 

• What’s the relationship between automobile mileage and car weight? Does it vary by 
the number of cylinders the car has? 

• How can you picture the relationships among an automobile’s mileage, weight, 
displacement, and rear axle ratio in a single graph? 

• When plotting the relationship between two variables drawn from a large dataset (say, 
10,000 observations), how can you deal with the massive overlap of data points you’re 
likely to see? In other words, what do you do when your graph is one big smudge? 

• How can you visualize the multivariate relationships among three variables at once 
(given a 2D computer screen or sheet of paper, and a budget slightly less than the 
latest Star Wars movie)? 
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• How can you display the growth of several trees over time? 
• How can you visualize the correlations among a dozen variables in a single graph? How 

does it help you to understand the structure of your data? 
• How can you visualize the relationship of class, gender, and age with passenger 

survival on the Titanic? What can you learn from such a graph? 

These are the types of questions that can be answered with the methods described in this 
chapter. The datasets that we’ll use are examples of what’s possible. It’s the general 
techniques that are most important. If the topic of automobile characteristics or tree growth 
isn’t interesting to you, plug in your own data! 

We’ll start with scatter plots and scatter-plot matrices. Then, we’ll explore line charts of 
various types. These approaches are well known and widely used in research. Next, we’ll 
review the use of corrgrams for visualizing correlations and mosaic plots for visualizing 
multivariate relationships among categorical variables. These approaches are also useful but 
much less well known among researchers and data analysts. You’ll see examples of how you 
can use each of these approaches to gain a better understanding of your data and 
communicate these findings to others.  

11.1 Scatter plots 
As you’ve seen in previous chapters, scatter plots describe the relationship between two 
continuous variables. In this section, we’ll start with a depiction of a single bivariate 
relationship (x versus y). We’ll then explore ways to enhance this plot by superimposing 
additional information. Next, you’ll learn how to combine several scatter plots into a scatter-
plot matrix so that you can view many bivariate relationships at once. We’ll also review the 
special case where many data points overlap, limiting your ability to picture the data, and we’ll 
discuss several ways around this difficulty. Finally, we’ll extend the two-dimensional graph to 
three dimensions, with the addition of a third continuous variable. This will include 3D scatter 
plots and bubble plots. Each can help you understand the multivariate relationship among 
three variables at once. 

We'll start by visualizing the relationship between automobile weight and fuel efficiency.  

Listing 11.1 A scatter plot with best-fit lines 

data(mtcars)                                                             #1 
ggplot(mtcars, aes(x=wt, y=mpg)) +  geom_point()                         #2                                   
  geom_smooth(method="lm", se=FALSE, color="red") +                      #3 
  geom_smooth(method="loess", se=FALSE,                                  #4 
              color="blue", linetype="dashed") + 

  labs(title = "Basic Scatter Plot of MPG vs. Weight",                   #5 
       x = "Car Weight (lbs/1000)", 
       y = "Miles Per Gallon")      

#1 Load data 
#2 Create scatter plot 
#3 Add linear fit 
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#4 Add loess fit 
#5 Add annotations                                                 

The resulting graph is provided in figure 11.1. 

 
Figure 11.1 Scatter plot of car mileage vs. weight, with superimposed linear and loess fit lines 

The code in listing 11.1 loads a fresh copy of the built-in data frame mtcars #1, and creates a 
basic scatter plot using filled circles for the plotting symbol #2. As expected, as car weight 
increases, miles per gallon decreases, although the relationship isn’t perfectly linear. The first  
geom_smooth() function adds a linear fit line (solid red) #3. The se=FALSE option suppresses 
the 95% confidence interval for the line. The second geom_smooth() function  adds a loess fit 
(dashed blue line) #4. The loess line is a nonparametric fit line based on locally weighted 
polynomial regression and provides a smoothed trend line for the data. See Cleveland (1981) 
for technical details on the algorithm. Josh Starmer provides a highly intuitive explanation of 
loess fit lines on YouTube (www.youtube.com/watch?v=Vf7oJ6z2LCc).  

What if we want to look at the relationship between car weight and fuel efficiency 
separately for 4, 6, and 8-cylinder cars? This is easy to do with ggplot2, and a few simple 
modifications of the previous code. The graph is provided in figure 11.2. 
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Listing 11.2 A scatter plot with separate best-fit lines 

ggplot(mtcars,  
       aes(x=wt, y=mpg,  
           color=factor(cyl),  
           shape=factor(cyl))) + 
  geom_point(size=2) + 
  geom_smooth(method="lm", se=FALSE) + 
  geom_smooth(method="loess", se=FALSE, linetype="dashed") + 
  labs(title = "Scatter Plot of MPG vs. Weight", 
       subtitle = "By Number of Cylinders", 
       x = "Car Weight (lbs/1000)", 
       y = "Miles Per Gallon", 
       color = "Number of \nCylinders", 
       shape = "Number of \nCylinders") + 
  theme_bw()                                                      

 
Figure 11.2 Scatter plot with subgroups and separately estimated fit lines. 

By mapping the number of cylinders to  color and shape in the aes() function, the three 
groups (4, 6, or 8 cylinders) are differentiated by color and plotting symbol, and separate 
linear and loess lines. Since the cyl variable in numeric, factor(cyl) is used to convert the 
variable into discrete categories.  

You can control the smoothness of the loess lines using the span parameter. The default is 
geom_smooth(method="loess", span=0.75) Larger values lead to smoother fits. In this 
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example, the loess lines overfit the data (follow the points too closely). A value of span=4 (not 
shown) provides a much smoother fit.  

Scatter plots help you visualize relationships between quantitative variables two at a time. 
But what if you wanted to look at the bivariate relationships between automobile mileage, 
weight, displacement (cubic inch), and rear axle ratio? When there are several quantitative 
variables, you can represent their relationships using a scatter-plot matrix, covered next. 

11.1.1 Scatter-plot matrices 

There are many useful functions for creating scatter-plot matrices in R. Base R provides the 
pairs() function for creating simple scatter-plot matrices. Section 8.2.4 (multiple linear 
regression) demonstrates the creation of scatter-plot matrices using the scatterplotMatrix 
function from the car package. 

In this section, we'll use the ggpairs() function in the GGally package to create a 
ggplot2 version of a scatter-plot matrix. As you'll see, this approach provides options for 
creating highly customized graphs. Be sure to install the GGally package 
(install.packages("GGally")) before proceeding.  

First, let's create a default scatter-plot matrix for the mpg, disp, drat, and wt variables in 
the mtcars data frame. 

library(GGally) 
ggpairs(mtcars[c("mpg","disp","drat", "wt")]) 

The graph is provided in figure 11.3. 
By default, the principal diagonal of the matrix contains the kernel density curve for each 

variable (see section 6.5 for details). Miles per gallon is right skewed (there are a few high 
values) and the rear axle ratio appears to be bimodal. The six scatter plots are placed below 
the principal diagonal. The scatter plot between miles per gallon and engine displace is can be 
found in at the intersection of these two variables (2th row, 1st column) and indicates a 
negative relationship. The Pearson correlation coefficients between each pair of variables is 
placed above the principal diagonal. The correlation between miles per gallon and engine 
displacement is -0.848 (1st row, 2nd column) and supports our conclusion that as engine 
displacement increases, gas mileage decreases. 
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Figure 11.3 Scatter-plot matrix created by the ggpairs() function 

Next, we'll create a highly customized scatter-plot matrix, adding fit lines, histograms, and 
a personalized theme. The ggpairs() function allows you specify separate functions for 
creating plots on, below, and above the principal diagonal. The code is provided in listing 11.3. 

Listing 11.3 A scatter-plot matrix with fit lines, histograms, and correlation coefficients 

library(GGally) 
 
diagplots <- function(data, mapping) {                                   #1 
  ggplot(data = data, mapping = mapping) + 
    geom_histogram(fill="lightblue", color="black") 
} 
 
lowerplots <- function(data, mapping) {                                  #2 
    ggplot(data = data, mapping = mapping) + 
      geom_point(color="darkgrey") + 
      geom_smooth(method = "lm", color = "steelblue", se=FALSE) + 
      geom_smooth(method="loess", color="red", se=FALSE, linetype="dashed") 
} 
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upperplots <- function(data, mapping) {                              #3 
    ggally_cor(data=data, mapping=mapping,  
               displayGrid=FALSE, size=3.5, color="black") 
}  
 
mytheme <-  theme(strip.background = element_blank(),                #4 
                  panel.grid       = element_blank(), 
                  panel.background = element_blank(), 
                  panel.border = element_rect(color="grey20", fill=NA)) 
 
 
ggpairs(mtcars,                                                      #5  
        columns=c("mpg","disp", "drat", "wt"),  
        columnLabels=c("MPG", "Displacement",  
                       "R Axel Ratio", "Weight"), 
        title = "Scatterplot Matrix with Linear and Loess Fits", 
        lower = list(continuous = lowerplots), 
        diag =  list(continuous = diagplots), 
        upper = list(continuous = upperplots)) + 
        mytheme 
 

#1 Function for plots on principal diagonal 
#2 Function for plots below diagonal 
#3 Function for plots above diagonal 
#4 Customized theme 
#5 Generate scatter-plot matrix 
 

First, a function is defined for creating a histogram using light blue bars with black borders #1. 
Next, a function is created for generating a scatter plot with dark grey points, a steel blue line 
of best fit, and a dashed red loess smoothed line. Confidence intervals are suppressed 
(se=FALSE) #2.  A third function is specified for displaying correlation coefficients #3. This 
function uses the ggally_cor() function to obtain and print the coefficient, while the size and 
color option affect the appearance and the displayGrid option suppresses grid lines. A 
customize theme has also been added #4. This optional step eliminates facet strips and grid 
lines and surrounds each cell with a grey box. 

Finally, the ggpairs() function uses these functions to create the customized graph seen 
in figure 11.4. The columns option specifies the variables, and the columnLabels option 
provides descriptive names. The lower, diag, and upper options specify the functions that will 
be used to create the cell plots in each portion of the matrix. This approach provides you with 
a great deal of flexibility in designing the finished graph. 
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Figure 11.4 A scatter-plot matrix created with the ggpairs() function and user-supplied functions for the 
scatter-plots, histograms, and correlations.  

R provides many other ways to create scatter-plot matrices. You may want to explore the 
splom() function in the lattice package, the pairs2() function in the TeachingDemos 
package, the xysplom() function in the HH package, the kdepairs() function in the 
ResourceSelection package, and pairs.mod() in the SMPracticals package. Each adds its 
own unique twist. Analysts must love scatter-plot matrices! 

11.1.2 High-density scatter plots 

When there’s a significant overlap among data points, scatter plots become less useful for 
observing relationships. Consider the following contrived example with 10,000 observations 
falling into two overlapping clusters of data: 

set.seed(1234) 
n <- 10000 
c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2) 
c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2) 
mydata <- rbind(c1, c2) 
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mydata <- as.data.frame(mydata) 
names(mydata) <- c("x", "y") 

If you generate a standard scatter plot between these variables using the following code 

ggplot(mydata, aes(x=x, y=y)) + geom_point() + 
  ggtitle("Scatter Plot with 10,000 Observations") 

you’ll obtain a graph like the one in figure 11.5. 

 
Figure 11.5 Scatter plot with 10,000 observations and significant overlap of data points. Note that the overlap 
of data points makes it difficult to discern where the concentration of data is greatest. 

The overlap of data points in figure 11.5 makes it difficult to discern the relationship between 
x and y. R provides several graphical approaches that can be used when this occurs. They 
include the use of binning, color, and transparency to indicate the number of overprinted data 
points at any point on the graph. 

The smoothScatter() function uses a kernel-density estimate to produce smoothed color 
density representations of the scatter plot. The following code 

300

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

with(mydata, 
     smoothScatter(x, y,  
                   main="Scatter Plot Colored by Smoothed Densities")) 

produces the graph in figure 11.6. 

 
Figure 11.6 Scatter plot using smoothScatter() to plot smoothed density estimates. Densities are easy to 
read from the graph. 

Using an alternative approach, the geom_hex() function in the ggplot2 package provides 
bivariate binning into hexagonal cells (it looks better than it sounds). Basically, the plot area is 
divided into a grid of hexagonal cells and the number of points in each cell is displayed using 
color or shading. Applying this function to the dataset 

ggplot(mydata, aes(x=x, y=y)) +  
  geom_hex(bins=50) + 
  scale_fill_continuous(trans = 'reverse') + 
  ggtitle("Scatter Plot with 10,000 Observations") 
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gives you the scatter plot in figure 11.7. 

 
Figure 11.17 Scatter plot using hexagonal binning to display the number of observations at each point. Data 
concentrations are easy to see, and counts can be read from the legend. 

By default, geom_hex() uses lighter colors to indicate greater density. In your code, the 
function scale_fill_continuous(trans = 'reverse') ensures that darker colors are used 
to indicate areas of greater density. I think that this is more intuitive, and matches the 
approach of other R functions used to visualize large datasets.  

It’s useful to note that the hexbin() function in the hexbin package, along with the 
iplot() function in the IDPmisc package, can be used to create readable scatter plot matrices 
for large datasets as well. See ?hexbin and ?iplot for examples. 
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11.1.3 3D scatter plots 

Scatter plots and scatter-plot matrices display bivariate relationships. What if you want to 
visualize the interaction of three quantitative variables at once? In this case, you can use a 3D 
scatter plot. 

For example, say that you’re interested in the relationship between automobile mileage, 
weight, and displacement. You can use the scatterplot3d() function in the scatterplot3d 
package to picture their relationship. The format is  

scatterplot3d(x, y, z)  

where x is plotted on the horizontal axis, y is plotted on the vertical axis, and z is plotted in 
perspective. Continuing the example, 

library(scatterplot3d) 
with(mtcars, 
     scatterplot3d(wt, disp, mpg, 
                      main="Basic 3D Scatter Plot")) 
 

produces the 3D scatter plot in figure 11.8. 
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Figure 11.8 3D scatter plot of miles per gallon, auto weight, and displacement 

The scatterplot3d() function offers many options, including the ability to specify symbols, 
axes, colors, lines, grids, highlighting, and angles. For example, the code 

library(scatterplot3d)  
with(mtcars, 
     scatterplot3d(wt, disp, mpg, 
                   pch=16, 
                   highlight.3d=TRUE, 
                   type="h", 
                   main="3D Scatter Plot with Vertical Lines"))               

produces a 3D scatter plot with highlighting to enhance the impression of depth, and vertical 
lines connecting points to the horizontal plane (see figure 11.9). 
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Figure 11.9 3D scatter plot with vertical lines and shading 

As a final example, let’s take the previous graph and add a regression plane. The necessary 
code is 

library(scatterplot3d)  
s3d <-with(mtcars, 
           scatterplot3d(wt, disp, mpg, 
                         pch=16, 
                         highlight.3d=TRUE, 
                         type="h", 
          main="3D Scatter Plot with Vertical Lines and Regression Plane")) 
fit <- lm(mpg ~ wt+disp, data=mtcars) 
s3d$plane3d(fit) 

The resulting graph is provided in figure 11.10. 
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Figure 11.10 3D scatter plot with vertical lines, shading, and overlaid regression plane 

The graph allows you to visualize the prediction of miles per gallon from automobile weight 
and displacement using a multiple regression equation. The plane represents the predicted 
values, and the points are the actual values. The vertical distances from the plane to the 
points are the residuals. Points that lie above the plane are under-predicted, whereas points 
that lie below the line are over-predicted. Multiple regression is covered in chapter 8. 

11.1.4 Spinning 3D scatter plots 

Three-dimensional scatter plots are much easier to interpret if you can interact with them. R 
provides several mechanisms for rotating graphs so that you can see the plotted points from 
more than one angle.  

For example, you can create an interactive 3D scatter plot using the plot3d() function in 
the rgl package. It creates a spinning 3D scatter plot that can be rotated with the mouse. The 
format is 
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plot3d(x, y, z) 

where x, y, and z are numeric vectors representing points. You can also add options like col 
and size to control the color and size of the points, respectively. Continuing the example, try 
this code: 

library(rgl) 
with(mtcars, 
     plot3d(wt, disp, mpg, col="red", size=5)) 

You should get a graph like the one depicted in figure 11.11. Use the mouse to rotate the 
axes. I think you’ll find that being able to rotate the scatter plot in three dimensions makes 
the graph much easier to understand. 

 
Figure 11.11 Rotating 3D scatter plot produced by the plot3d() function in the rgl package 

You can perform a similar function with scatter3d() in the car package: 

library(car) 
with(mtcars, 
     scatter3d(wt, disp, mpg)) 

The results are displayed in figure 11.12. 
The scatter3d() function can include a variety of regression surfaces, such as linear, 

quadratic, smooth, and additive. The linear surface depicted is the default. Additionally, there 
are options for interactively identifying points. See help(scatter3d) for more details. 
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Figure 11.12 Spinning 3D scatter plot produced by the scatter3d() function in the car package 

11.1.5 Bubble plots 

In the previous section, you displayed the relationship between three quantitative variables 
using a 3D scatter plot. Another approach is to create a 2D scatter plot and use the size of the 
plotted point to represent the value of the third variable. This approach is referred to as a 
bubble plot.  

A simple example of a bubble plot is given in following listing. 

ggplot(mtcars,  
   aes(x = wt, y = mpg, size = disp)) + 
   geom_point() + 
   labs(title="Bubble Plot with point size proportional to displacement", 
        x="Weight of Car (lbs/1000)", 
        y="Miles Per Gallon") 

The result is a scatter plot displaying the relationship between car weight and fuel efficiency, 
where point size is proportional to each car's engine displacement. The graph is displayed in 
figure 11.13. 
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Figure 11.13 Bubble plot of car weight vs. mpg, where point size is proportional to engine displacement 

While useful, we can improve on the default appearance by choosing a different point shape 
and color and adding transparency to deal with point overlaps. We'll also increase the possible 
range of bubble sizes to make discrimination easier. Finally, we'll use color to add the number 
of cylinders as a fourth variable. The code is given in listing 11.4 and the resulting graph is 
provided in figure 11.14. 

Listing 11.4 An enhanced bubble plot 

ggplot(mtcars,  
       aes(x = wt, y = mpg, size = disp, fill=factor(cyl))) + 
  geom_point(alpha = .5,  
             color = "black",  
             shape = 21) + 
  scale_size_continuous(range = c(1, 10)) + 
  labs(title = "Auto mileage by weight and horsepower", 
       subtitle = "Motor Trend US Magazine (1973-74 models)", 
       x = "Weight (1000 lbs)", 
       y = "Miles/(US) gallon", 
       size = "Engine\ndisplacement", 
       fill = "Cylinders") + 
  theme_minimal()   
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Figure 11.14. Enhanced bubble plot. Automobiles with more engine cylinders tend to have increased weight and 
engine displacement, and poorer fuel efficiency.  

In general, statisticians involved in the R project tend to avoid bubble plots for the same 
reason they avoid pie charts. Humans typically have a harder time making judgments about 
volume than distance. But bubble charts are popular in the business world, so I’m including 
them here for completeness. 

l’ve certainly had a lot to say about scatter plots. This attention to detail is due, in part, to 
the central place that scatter plots hold in data analysis. Although simple, they can help you 
visualize your data in an immediate and straightforward manner, uncovering relationships that 
might otherwise be missed. 

11.2 Line charts 
If you connect the points in a scatter plot moving from left to right, you have a line plot. The 
dataset Orange that come with the base installation contains age and circumference data for 
five orange trees. Consider the growth of the first orange tree, depicted in figure 11.15. The 
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plot on the left is a scatter plot, and the plot on the right is a line chart. As you can see, line 
charts are particularly good vehicles for conveying change. The graphs in figure 11.15 were 
created with the code in the following listing. 

 
Figure 11.15 Comparison of a scatter plot and a line plot. A line charts helps the reader see growth and trend in 
the data. 

Listing 11.5 Scatter plots vs.  line plots 

library(ggplot2) 
tree1 <- subset(Orange, Tree == 1) 
ggplot(data=tree1,  
       aes(x=age, y=circumference)) + 
  geom_point(size=2) + 
  labs(title="Orange Tree 1 Growth", 
       x = "Age (days)", 
       y = "Circumference (mm)") + 
  theme_bw() 
 
ggplot(data=tree1,  
       aes(x=age, y=circumference)) + 
  geom_point(size=2) + 
  geom_line() + 
  labs(title="Orange Tree 1 Growth", 
       x = "Age (days)", 
       y = "Circumference (mm)") + 
  theme_bw() 
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The only difference between the code for the two plots is the addition of the geom_line() 
function. Common options for this function are given in table 11.1. Each can be assigned a 
value or mapped to a categorical variable. 

Table 11.1 geom_line() options 

Option Effect 

size Thickness of the line 

color Line color 

linetype Line pattern (e.g., dashed) 

 

Possible line types are given in figure 11.16. 

 
Figure 11.16 ggplot2 linetypes. You can specify either the name or the number. 

To demonstrate the creation of a more complex line chart, let’s plot the growth of all five 
orange trees over time. Each tree will have its own distinctive line and color. The code is 
shown in the next listing and the results in figure 11.17. 
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Figure 11.17 Line chart displaying the growth of five orange trees. 

Listing 11.6 Line chart displaying the growth of five orange trees over time 

library(ggplot2) 
ggplot(data=Orange, 
        aes(x=age, y=circumference, linetype=Tree, color=Tree)) + 
  geom_point() + 
  geom_line(size=1) + 
  scale_color_brewer(palette="Set1") + 
  labs(title="Orange Tree Growth", 
       x = "Age (days)", 
       y = "Circumference (mm)") + 
  theme_bw() 
 

In listing 11.6, the aes() function maps the tree number to both line type and color. The 
scale_color_brewer() function is used to select a color palette. Since I am chromatically 
challenged (i.e., I'm awful at choosing good colors), I rely heavily on predefined color palettes 
like those provided by the RColorBrewer package. Color palettes are described in greater 
detail in chapter 19 (advanced graphics).  
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You can see in the figure that tree 4 and tree 2 demonstrated the greatest growth across 
the range of days measured, and that tree 4 overtakes tree 2 at around 664 days. By default, 
the legend lists the lines in the opposite order that they appear on the chart (top to bottom in 
the legend is bottom to top in the graph). To make the orders match top to bottom, add 

+ guides(color = guide_legend(reverse = TRUE),  
         linetype = guide_legend(reverse = TRUE)) 

to the code in listing 11.6. In the next section, you’ll explore ways of examining a number of 
correlation coefficients at once. 

11.3 Corrgrams  
Correlation matrices are a fundamental aspect of multivariate statistics. Which variables under 
consideration are strongly related to each other, and which aren’t? Are there clusters of 
variables that relate in specific ways? As the number of variables grows, such questions can be 
harder to answer. Corrgrams are a relatively recent tool for visualizing the data in correlation 
matrices.  

It’s easier to explain a corrgram once you’ve seen one. Consider the correlations among 
the variables in the mtcars data frame. Here you have 11 variables, each measuring some 
aspect of 32 automobiles. You can get the correlations using the following code: 

> round(cor(mtcars), 2) 
       mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb 
mpg   1.00 -0.85 -0.85 -0.78  0.68 -0.87  0.42  0.66  0.60  0.48 -0.55 
cyl  -0.85  1.00  0.90  0.83 -0.70  0.78 -0.59 -0.81 -0.52 -0.49  0.53 
disp -0.85  0.90  1.00  0.79 -0.71  0.89 -0.43 -0.71 -0.59 -0.56  0.39 
hp   -0.78  0.83  0.79  1.00 -0.45  0.66 -0.71 -0.72 -0.24 -0.13  0.75 
drat  0.68 -0.70 -0.71 -0.45  1.00 -0.71  0.09  0.44  0.71  0.70 -0.09 
wt   -0.87  0.78  0.89  0.66 -0.71  1.00 -0.17 -0.55 -0.69 -0.58  0.43 
qsec  0.42 -0.59 -0.43 -0.71  0.09 -0.17  1.00  0.74 -0.23 -0.21 -0.66 
vs    0.66 -0.81 -0.71 -0.72  0.44 -0.55  0.74  1.00  0.17  0.21 -0.57 
am    0.60 -0.52 -0.59 -0.24  0.71 -0.69 -0.23  0.17  1.00  0.79  0.06 
gear  0.48 -0.49 -0.56 -0.13  0.70 -0.58 -0.21  0.21  0.79  1.00  0.27 
carb -0.55  0.53  0.39  0.75 -0.09  0.43 -0.66 -0.57  0.06  0.27  1.00 
 

Which variables are most related? Which variables are relatively independent? Are there any 
patterns? It isn’t that easy to tell from the correlation matrix without significant time and 
effort (and probably a set of colored pens to make notations).  

You can display that same correlation matrix using the corrgram() function in the 
corrgram package (see figure 11.18). The code is 

library(corrgram) 
corrgram(mtcars, order=TRUE, lower.panel=panel.shade, 
         upper.panel=panel.pie, text.panel=panel.txt, 
         main="Corrgram of mtcars intercorrelations") 
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Figure 11.18 Corrgram of the correlations among the variables in the mtcars data frame. Rows and columns 
have been reordered using principal components analysis. 

To interpret this graph, start with the lower triangle of cells (the cells below the principal 
diagonal). By default, a blue color and hashing that goes from lower left to upper right 
represent a positive correlation between the two variables that meet at that cell. Conversely, a 
red color and hashing that goes from the upper left to lower right represent a negative 
correlation. The darker and more saturated the color, the greater the magnitude of the 
correlation. Weak correlations, near zero, appear washed out. In the current graph, the rows 
and columns have been reordered (using principal components analysis discussed in chapter 
14) to cluster variables together that have similar correlation patterns. 
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You can see from the shaded cells that gear, am, drat, and mpg are positively correlated 
with one another. You can also see that wt, disp, cyl, hp, and carb are positively correlated 
with one another. But the first group of variables is negatively correlated with the second 
group of variables. You can also see that the correlation between carb and am is weak, as is 
the correlation between vs and gear, vs and am, and drat and qsec. 

The upper triangle of cells displays the same information using pies. Here, color plays the 
same role, but the strength of the correlation is displayed by the size of the filled pie slice. 
Positive correlations fill the pie starting at 12 o’clock and moving in a clockwise direction. 
Negative correlations fill the pie by moving in a counterclockwise direction. 

The format of the corrgram() function is 

corrgram(x, order=, panel=, text.panel=, diag.panel=) 

where x is a data frame with one observation per row. When order=TRUE, the variables are 
reordered using a principal component analysis of the correlation matrix. Reordering can help 
make patterns of bivariate relationships more obvious. 

The option panel specifies the type of off-diagonal panels to use. Alternatively, you can 
use the options lower.panel and upper.panel to choose different options below and above 
the main diagonal. The text.panel and diag.panel options refer to the main diagonal. 
Allowable values for panel are described in table 11.2. 

Table 11.2 Panel options for the corrgram() function 

Placement Panel Option Description 

Off diagonal  panel.pie The filled portion of the pie indicates the magnitude of the  
correlation. 

 panel.shade The depth of the shading indicates the magnitude of the correlation. 

 panel.ellipse Plots a confidence ellipse and smoothed line. 

 panel.pts Plots a scatter plot. 

 panel.conf Prints correlations and their confidence intervals. 

 panel.cor Prints correlations without their confidence intervals. 
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Main diagonal  panel.txt Prints the variable name. 

 panel.minmax Prints the minimum and maximum value and variable name. 

 panel.density Prints the kernel density plot and variable name. 

Let’s try a second example. The code 

library(corrgram) 
corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse, 
         upper.panel=panel.pts, text.panel=panel.txt, 
         diag.panel=panel.minmax,  
         main="Corrgram of mtcars data using scatter plots  
               and ellipses") 

produces the graph in figure 11.19. Here you’re using smoothed fit lines and confidence 
ellipses in the lower triangle and scatter plots in the upper triangle.  
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Figure 11.19 Corrgram of the correlations among the variables in the mtcars data frame. The lower triangle 
contains smoothed best-fit lines and confidence ellipses, and the upper triangle contains scatter plots. The 
diagonal panel contains minimum and maximum values. Rows and columns have been reordered using 
principal components analysis. 

Why do the scatter plots look odd? 
Several of the variables that are plotted in figure 11.19 have limited allowable values. For example, the number of 
gears is 3, 4, or 5. The number of cylinders is 4, 6, or 8. Both am (transmission type) and vs (V/S) are dichotomous. This 
explains the odd-looking scatter plots in the upper diagonal.  
Always be careful that the statistical methods you choose are appropriate to the form of the data. Specifying these 
variables as ordered or unordered factors can serve as a useful check. When R knows that a variable is categorical or 
ordinal, it attempts to apply statistical methods that are appropriate to that level of measurement. 
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We’ll finish with one more example. The code 

corrgram(mtcars, order=TRUE, lower.panel=panel.shade, 
         upper.panel=panel.cor, 
         main="Corrgram of mtcars data using shading and coefficients") 

produces the graph in figure 11.20. Here you’re using shading in the lower triangle, order 
variables to emphasize correlation patterns, and printing the correlation values in the upper 
triangle. 

 
Figure 11.20 Corrgram of the correlations among the variables in the mtcars data frame. The lower triangle is 
shaded to represent the magnitude and direction of the correlations. Rows and columns have been reordered 
using principal components analysis. Correlation coefficients are printed in the upper triangle. 
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Before moving on, I should point out that you can control the colors used by the corrgram() 
function. To do so, specify four colors in the colorRampPalette() function, and include the 
results using the col.regions option. Here’s an example: 

library(corrgram)  
cols <- colorRampPalette(c("darkgoldenrod4", "burlywood1", 
                           "darkkhaki", "darkgreen")) 
corrgram(mtcars, order=TRUE, col.regions=cols, 
         lower.panel=panel.shade,  
         upper.panel=panel.conf, text.panel=panel.txt, 
         main="A Corrgram (or Horse) of a Different Color") 

Try it and see what you get. 
Corrgrams can be a useful way to examine large numbers of bivariate relationships among 

quantitative variables. Because they’re relatively new, the greatest challenge is to educate the 
recipient on how to interpret them. To learn more, see Michael Friendly’s article “Corrgrams: 
Exploratory Displays for Correlation Matrices,” available at 
www.math.yorku.ca/SCS/Papers/corrgram.pdf.  

11.4 Mosaic plots 
Up to this point, we’ve been exploring methods of visualizing relationships among 
quantitative/continuous variables. But what if your variables are categorical? When you’re 
looking at a single categorical variable, you can use a bar or pie chart. If there are two 
categorical variables, you can use a stacked bar chart (section 6.1.2). But what do you do if 
there are more than two categorical variables?  

One approach is to use mosaic plots. In a mosaic plot, the frequencies in a 
multidimensional contingency table are represented by nested rectangular regions that are 
proportional to their cell frequency. Color and/or shading can be used to represent residuals 
from a fitted model. For details, see Meyer, Zeileis, and Hornick (2006), or Michael Friendly’s 
excellent tutorial (http://mng.bz/3p0d).  

Mosaic plots can be created with the mosaic() function from the vcd library (there’s a 
mosaicplot() function in the basic installation of R, but I recommend you use the vcd 
package for its more extensive features). As an example, consider the Titanic dataset available 
in the base installation. It describes the number of passengers who survived or died, cross-
classified by their class (1st, 2nd, 3rd, Crew), sex (Male, Female), and age (Child, Adult). This 
is a well-studied dataset. You can see the cross-classification using the following code: 

> ftable(Titanic) 
                   Survived  No Yes 
Class Sex    Age                    
1st   Male   Child            0   5 
             Adult          118  57 
      Female Child            0   1 
             Adult            4 140 
2nd   Male   Child            0  11 
             Adult          154  14 
      Female Child            0  13 
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             Adult           13  80 
3rd   Male   Child           35  13 
             Adult          387  75 
      Female Child           17  14 
             Adult           89  76 
Crew  Male   Child            0   0 
             Adult          670 192 
      Female Child            0   0 
             Adult            3  20 

The mosaic() function can be invoked as 

mosaic(table) 

where table is a contingency table in array form, or 

mosaic(formula, data=) 

where formula is a standard R formula, and data specifies either a data frame or a table. 
Adding the option shade=TRUE colors the figure based on Pearson residuals from a fitted model 
(independence by default), and the option legend=TRUE displays a legend for these residuals.  

For example, both 

library(vcd) 
mosaic(Titanic, shade=TRUE, legend=TRUE) 

and 

library(vcd) 
mosaic(~Class+Sex+Age+Survived, data=Titanic, shade=TRUE, legend=TRUE) 

will produce the graph shown in figure 11.21. The formula version gives you greater control 
over the selection and placement of variables in the graph. 
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Figure 11.21 Mosaic plot describing Titanic survivors by class, sex, and age 

A great deal of information is packed into this one picture. For example, as a person moves 
from crew to first class, the survival rate increases precipitously. Most children were in third 
and second class. Most females in first class survived, whereas only about half the females in 
third class survived. There were few females in the crew, causing the Survived labels (No, Yes 
at the bottom of the chart) to overlap for this group. Keep looking, and you’ll see many more 
interesting facts. Remember to look at the relative widths and heights of the rectangles. What 
else can you learn about that night? 
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Extended mosaic plots add color and shading to represent the residuals from a fitted 
model. In this example, the blue shading indicates cross-classifications that occur more often 
than expected, assuming that survival is unrelated to class, gender, and age. Red shading 
indicates cross-classifications that occur less often than expected under the independence 
model. Be sure to run the example so that you can see the results in color. The graph 
indicates that more first-class women survived, and more male crew members died than 
would be expected under an independence model. Fewer third-class men survived than would 
be expected if survival was independent of class, gender, and age. If you’d like to explore 
mosaic plots in greater detail, try running example(mosaic). 

 

11.5 Summary 
• Scatter plots and scatter plot matrices allow you to visualize relationships between 

quantitative variables two at a time. The plots can be enhanced with linear and loess fit 
lines showing trends. 

• When creating a scatter plot based on a large volume of data, methods that plot 
densities rather than points are particularly useful. 

• The relationships among three quantitative variables can be explored using 3D scatter 
plots or 2D bubble charts. 

• Change over time can be described effectively with line charts.  
• Large correlation matrices are difficult to understand in table form, but easily explored 

via corrgrams – visual plots of correlation matrices. 
• The relationships between two or more categorical variables can be visualized with 

mosaic charts. 
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12  
Resampling statistics and 

bootstrapping 

This chapter covers 

• Understanding the logic of permutation tests 
• Applying permutation tests to linear models 
• Using bootstrapping to obtain confidence intervals 

In chapters 7, 8, and 9, we reviewed statistical methods that test hypotheses and estimate 
confidence intervals for population parameters by assuming that the observed data is sampled 
from a normal distribution or some other well-known theoretical distribution. But there will be 
many cases in which this assumption is unwarranted. Statistical approaches based on 
randomization and resampling can be used in cases where the data is sampled from unknown 
or mixed distributions, where sample sizes are small, where outliers are a problem, or where 
devising an appropriate test based on a theoretical distribution is too complex and 
mathematically intractable. 

In this chapter, we’ll explore two broad statistical approaches that use randomization: 
permutation tests and bootstrapping. Historically, these methods were only available to 
experienced programmers and expert statisticians. Contributed packages in R now make them 
readily available to a wider audience of data analysts.  

We’ll also revisit problems that were initially analyzed using traditional methods (for 
example, t-tests, chi-square tests, ANOVA, and regression) and see how they can be 
approached using these robust, computer-intensive methods. To get the most out of section 
12.2, be sure to read chapter 7 first. Chapters 8 and 9 serve as prerequisites for section 12.3. 
Other sections can be read on their own. 
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12.1 Permutation tests 
Permutation tests, also called randomization or re-randomization tests, have been around for 
decades, but it took the advent of high-speed computers to make them practically available. 
To understand the logic of a permutation test, consider the following hypothetical problem. 
Ten subjects have been randomly assigned to one of two treatment conditions (A or B), and 
an outcome variable (score) has been recorded. The results of the experiment are presented 
in table 12.1. 

Table 12.1 Hypothetical two-group problem 

Treatment A Treatment B 

40 57 

57 64 

45 55 

55 62 

58 65 

The data are also displayed in figure 12.1. Is there enough evidence to conclude that the 
treatments differ in their impact?  

A

B

40 45 50 55 60 65
score

Tr
ea

tm
e

 
Figure 12.1 Strip chart of the hypothetical treatment data in table 12.1 
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In a parametric approach, you might assume that the data are sampled from normal 
populations with equal variances and apply a two-tailed independent-groups t-test. The null 
hypothesis is that the population mean for Treatment A is equal to the population mean for 
Treatment B. You’d calculate a t-statistic from the data and compare it to the theoretical 
distribution. If the observed t-statistic is sufficiently extreme, say outside the middle 95% of 
values in the theoretical distribution, you’d reject the null hypothesis and declare that the 
population means for the two groups are unequal at the 0.05 level of significance. 

A permutation test takes a different approach. If the two treatments are truly equivalent, 
the label (Treatment A or Treatment B) assigned to an observed score is arbitrary. To test for 
differences between the two treatments, you could follow these steps: 

1. Calculate the observed t-statistic, as in the parametric approach; call this t0. 
2. Place all 10 scores in a single group. 
3. Randomly assign five scores to Treatment A and five scores to Treatment B. 
4. Calculate and record the new observed t-statistic. 
5. Repeat steps 3–4 for every possible way of assigning five scores to Treatment A and 

five scores to Treatment B. There are 252 such possible arrangements. 
6. Arrange the 252 t-statistics in ascending order. This is the empirical distribution, based 

on (or conditioned on) the sample data. 
7. If t0 falls outside the middle 95% of the empirical distribution, reject the null 

hypothesis that the population means for the two treatment groups are equal at the 
0.05 level of significance. 

Notice that the same t-statistic is calculated in both the permutation and parametric 
approaches. But instead of comparing the statistic to a theoretical distribution in order to 
determine if it was extreme enough to reject the null hypothesis, it’s compared to an empirical 
distribution created from permutations of the observed data. This logic can be extended to 
most classical statistical tests and linear models.  

In the previous example, the empirical distribution was based on all possible permutations 
of the data. In such cases, the permutation test is called an exact test. As the sample sizes 
increase, the time required to form all possible permutations can become prohibitive. In such 
cases, you can use Monte Carlo simulation to sample from all possible permutations. Doing so 
provides an approximate test.  

If you’re uncomfortable assuming that the data is normally distributed, concerned about 
the impact of outliers, or feel that the dataset is too small for standard parametric approaches, 
a permutation test provides an excellent alternative. R has some of the most comprehensive 
and sophisticated packages for performing permutation tests currently available. The 
remainder of this section focuses on two contributed packages: the coin package and the 
lmPerm package. The coin package provides a comprehensive framework for permutation 
tests applied to independence problems, whereas the lmPerm package provides permutation 
tests for ANOVA and regression designs. We’ll consider each package in turn. Be sure to install 
them (install.packages(c("coin", "lmPerm"))) before continuing.  
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Setting the random number seed 
Before moving on, it’s important to remember that permutation tests use pseudo--random numbers to sample from 

all possible permutations (when performing an approximate test). Therefore, the results will change each time the test 
is performed. Setting the random-number seed in R allows you to fix the random numbers generated. This is 
particularly useful when you want to share your examples with others, because results will always be the same if the 
calls are made with the same seed. Setting the random number seed to 1234 (that is, set.seed (1234)) will allow 
you to replicate the results presented in this chapter. 
 

12.2 Permutation tests with the coin package 
The coin package provides a general framework for applying permutation tests to 
independence problems. With this package, you can answer such questions as  

• Are responses independent of group assignment? 
• Are two numeric variables independent? 
• Are two categorical variables independent? 

Using convenience functions provided in the package (see table 12.2), you can perform 
permutation test equivalents for most of the traditional statistical tests covered in chapter 7. 

Table 12.2 coin functions providing permutation test alternatives to traditional tests 

Test coin function 

Two- and K-sample permutation test oneway_test( y ~ A)  

Wilcoxon–Mann–Whitney rank-sum test wilcox_test( y ~ A ) 

Kruskal–Wallis test kruskal_test( y ~ A ) 

Pearson’s chi-square test chisq_test( A ~ B ) 

Cochran–Mantel–Haenszel test cmh_test( A ~ B | C ) 

Linear-by-linear association test lbl_test( D ~ E) 
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Spearman’s test spearman_test( y ~ x ) 

Friedman test friedman_test( y ~ A | C ) 

Wilcoxon signed-rank test wilcoxsign_test( y1 ~ y2 ) 

In the coin function column, y and x are numeric variables, A and B are categorical factors, C 
is a categorical blocking variable, D and E are ordered factors, and y1 and y2 are matched 
numeric variables. 

Each of the functions listed in table 12.2 takes the form 

function_name( formula, data, distribution= ) 

where 

• formula describes the relationship among variables to be tested. Examples are given in 
the table. 

• data identifies a data frame. 
• distribution specifies how the empirical distribution under the null hypothesis should 

be derived. Possible values are exact, asymptotic, and approximate. 

If distribution="exact", the distribution under the null hypothesis is computed exactly (that 
is, from all possible permutations). The distribution can also be approximated by its 
asymptotic distribution (distribution="asymptotic") or via Monte Carlo resampling 
(distribution="approximate(nresample=n)"), where n indicates the number of random 
replications used to approximate the exact distribution. The default is 10,000 replications. At 
present, distribution="exact" is only available for two-sample problems. 

NOTE In the coin package, categorical variables and ordinal variables must be coded as factors and ordered 

factors, respectively. Additionally, the data must be stored in a data frame. 

In the remainder of this section, you’ll apply several of the permutation tests described in 
table 12.2 to problems from previous chapters. This will allow you to compare the results to 
more traditional parametric and nonparametric approaches. We’ll end this discussion of the 
coin package by considering advanced extensions. 

12.2.1 Independent two-sample and k-sample tests 

To begin, let’s compare an independent samples t-test with a one-way exact test applied to 
the hypothetical data in table 12.2. The results are given in the following listing. 
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Listing 12.1 t-test vs. one-way permutation test for the hypothetical data 

> library(coin) 
> score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65) 
> treatment <- factor(c(rep("A",5), rep("B",5))) 
> mydata <- data.frame(treatment, score) 
> t.test(score~treatment, data=mydata, var.equal=TRUE) 
 
 Two Sample t-test 
 
data:  score by treatment 
t = -2.345, df = 8, p-value = 0.04705 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -19.0405455  -0.1594545 
sample estimates: 
mean in group A mean in group B  
           51.0            60.6  
 
> oneway_test(score~treatment, data=mydata, distribution="exact") 
 
 Exact Two-Sample Fisher-Pitman Permutation Test 
 
data:  score by treatment (A, B) 
Z = -1.9147, p-value = 0.07143 
alternative hypothesis: true mu is not equal to 0 

The traditional t-test indicates a significant group difference (p < .05), whereas the exact test 
doesn’t (p > 0.072). With only 10 observations, l’d be more inclined to trust the results of the 
permutation test and attempt to collect more data before reaching a final conclusion. 

Next, consider the Wilcoxon–Mann–Whitney U test. In chapter 7, we examined the 
difference in the probability of imprisonment in Southern versus non-Southern US states using 
the wilcox.test() function. Using an exact Wilcoxon rank-sum test, you’d get 

> library(MASS) 
> UScrime$So <- factor(UScrime$So) 
> wilcox_test(Prob ~ So, data=UScrime, distribution="exact") 
 
        Exact Wilcoxon Mann-Whitney Rank Sum Test 
 
data:  Prob by So (0, 1)  
Z = -3.7, p-value = 8.488e-05 
alternative hypothesis: true mu is not equal to 0 

suggesting that incarceration is more likely in Southern states. Note that in the previous code, 
the numeric variable So was transformed into a factor. This is because the coin package 
requires that all categorical variables be coded as factors. Additionally, you may have noted 
that these results agree exactly with the results of the wilcox.test() function in chapter 7. 
This is because wilcox.test() also computes an exact distribution by default. 

Finally, consider a k-sample test. In chapter 9, you used a one-way ANOVA to evaluate the 
impact of five drug regimens on cholesterol reduction in a sample of 50 patients. An 
approximate k-sample permutation test can be performed instead, using this code: 
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> library(multcomp) 
> set.seed(1234) 
> oneway_test(response~trt, data=cholesterol,  
  distribution=approximate(nresample=9999)) 
 
 Approximative K-Sample Fisher-Pitman Permutation Test 
 
data:  response by trt (1time, 2times, 4times, drugD, drugE) 
chi-squared = 36.381, p-value < 1e-04 

Here, the reference distribution is based on 9,999 permutations of the data. The random-
number seed is set so that your results will be the same as mine. There’s clearly a difference 
in response among patients in the various groups.  

12.2.2 Independence in contingency tables 

You can use permutation tests to assess the independence of two categorical variables using 
either the chisq_test()or cmh_test() function. The latter function is used when data is 
stratified on a third categorical variable. If both variables are ordinal, you can use the 
lbl_test() function to test for a linear trend. 

In chapter 7, you applied a chi-square test to assess the relationship between arthritis 
treatment and improvement. Treatment had two levels (Placebo and Treated), and Improved 
had three levels (None, Some, and Marked). The Improved variable was encoded as an 
ordered factor. 

If you want to perform a permutation version of the chi-square test, you can use the 
following code: 

> library(coin) 
> library(vcd) 
> Arthritis <- transform(Arthritis,  
  Improved=as.factor(as.numeric(Improved))) 
> set.seed(1234) 
> chisq_test(Treatment~Improved, data=Arthritis, 
             distribution=approximate(nresample=9999)) 
 
       Approximative Pearson Chi-Squared Test 
 
data:  Treatment by Improved (1, 2, 3) 
chi-squared = 13.055, p-value = 0.0018 

This gives you an approximate chi-square test based on 9,999 replications. You might ask why 
you transformed the variable Improved from an ordered factor to a categorical factor. (Good 
question!) If you’d left it an ordered factor, coin() would have generated a linear × linear 
trend test instead of a chi-square test. Although a trend test would be a good choice in this 
situation, keeping it a chi-square test allows you to compare the results with those reported in 
chapter 7. 
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12.2.3 Independence between numeric variables 

The spearman_test() function provides a permutation test of the independence of two 
numeric variables. In chapter 7, we examined the correlation between illiteracy rates and 
murder rates for US states. You can test the association via permutation, using the following 
code: 

> states <- as.data.frame(state.x77) 
> set.seed(1234) 
> spearman_test(Illiteracy~Murder, data=states,  
                distribution=approximate(B=9999)) 
 
         Approximative Spearman Correlation Test 
 
data:  Illiteracy by Murder 
Z = 4.7065, p-value < 1e-04 
alternative hypothesis: true rho is not equal to 0 

Based on an approximate permutation test with 9,999 replications, the hypothesis of 
independence can be rejected. Note that state.x77 is a matrix. It had to be converted into a 
data frame for use in the coin package. 

12.2.4 Dependent two-sample and k-sample tests 

Dependent sample tests are used when observations in different groups have been matched or 
when repeated measures are used. For permutation tests with two paired groups, the 
wilcoxsign_test() function can be used. For more than two groups, use the 
friedman_test() function.  

In chapter 7, we compared the unemployment rate for urban males age 14–24 (U1) with 
urban males age 35–39 (U2). Because the two variables are reported for each of the 50 US 
states, you have a two-dependent groups design (state is the matching variable). You can use 
an exact Wilcoxon signed-rank test to see if unemployment rates for the two age groups are 
equal: 

> library(coin) 
> library(MASS) 
> wilcoxsign_test(U1~U2, data=UScrime, distribution="exact") 
 
        Exact Wilcoxon-Signed-Rank Test 
 
data:  y by x (neg, pos)  
         stratified by block  
Z = 5.9691, p-value = 1.421e-14 
alternative hypothesis: true mu is not equal to 0 

Based on the results, you’d conclude that the unemployment rates differ.  
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12.2.5 Going further 

The coin package provides a general framework for testing that one group of variables is 
independent of a second group of variables (with optional stratification on a blocking variable) 
against arbitrary alternatives, via approximate permutation tests. In particular, the 
independence_test() function lets you approach most traditional tests from a permutation 
perspective and create new and novel statistical tests for situations not covered by traditional 
methods. This flexibility comes at a price: a high level of statistical knowledge is required to 
use the function appropriately. See the vignettes that accompany the package (accessed via 
vignette("coin")) for further details. 

In the next section, you’ll learn about the lmPerm package. This package provides a 
permutation approach to linear models, including regression and analysis of variance. 

12.3 Permutation tests with the lmPerm package 
The lmPerm package provides support for a permutation approach to linear models. In 
particular, the lmp()and aovp() functions are the lm() and aov() functions modified to 
perform permutation tests rather than normal theory tests. 

The parameters in the lmp() and aovp() functions are similar to those in the lm() and 
aov() functions, with the addition of a perm= parameter. The perm= option can take the value 
Exact, Prob, or SPR. Exact produces an exact test, based on all possible permutations. Prob 
samples from all possible permutations. Sampling continues until the estimated standard 
deviation falls below 0.1 of the estimated p-value. The stopping rule is controlled by an 
optional Ca parameter. Finally, SPR uses a sequential probability ratio test to decide when to 
stop sampling. Note that if the number of observations is greater than 10, perm="Exact" will 
automatically default to perm="Prob"; exact tests are only available for small problems. 

To see how this works, you’ll apply a permutation approach to simple regression, 
polynomial regression, multiple regression, one-way analysis of variance, one-way analysis of 
covariance, and a two-way factorial design. 

12.3.1 Simple and polynomial regression 

In chapter 8, you used linear regression to study the relationship between weight and height 
for a group of 15 women. Using lmp() instead of lm() generates the permutation test results 
shown in the following listing. 

Listing 12.2 Permutation tests for simple linear regression 

> library(lmPerm) 
> set.seed(1234) 
> fit <- lmp(weight~height, data=women, perm="Prob") 
[1] "Settings:  unique SS : numeric variables centered" 
> summary(fit) 
 
Call: 
lmp(formula = weight ~ height, data = women, perm = "Prob") 
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Residuals: 
   Min     1Q Median     3Q    Max  
-1.733 -1.133 -0.383  0.742  3.117  
 
Coefficients: 
       Estimate Iter Pr(Prob)     
height     3.45 5000   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 1.5 on 13 degrees of freedom 
Multiple R-Squared: 0.991,      Adjusted R-squared: 0.99  
F-statistic: 1.43e+03 on 1 and 13 DF,  p-value: 1.09e-14  

To fit a quadratic equation, you could use the code in this next listing. 

Listing 12.3 Permutation tests for polynomial regression 

> library(lmPerm) 
> set.seed(1234) 
> fit <- lmp(weight~height + I(height^2), data=women, perm="Prob") 
[1] "Settings:  unique SS : numeric variables centered" 
> summary(fit) 
 
Call: 
lmp(formula = weight ~ height + I(height^2), data = women, perm = "Prob") 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-0.5094 -0.2961 -0.0094  0.2862  0.5971  
 
Coefficients: 
            Estimate Iter Pr(Prob)     
height       -7.3483 5000   <2e-16 *** 
I(height^2)   0.0831 5000   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
Residual standard error: 0.38 on 12 degrees of freedom 
Multiple R-Squared: 0.999,      Adjusted R-squared: 0.999  
F-statistic: 1.14e+04 on 2 and 12 DF,  p-value: <2e-16 

As you can see, it’s a simple matter to test these regressions using permutation tests and 
requires little change in the underlying code. The output is also similar to that produced by the 
lm() function. Note that an Iter column is added, indicating how many iterations were 
required to reach the stopping rule.  

12.3.2 Multiple regression 

In chapter 8, multiple regression was used to predict the murder rate based on population, 
illiteracy, income, and frost for 50 US states. Applying the lmp() function to this problem 
results in the following output.  
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Listing 12.4 Permutation tests for multiple regression 

> library(lmPerm) 
> set.seed(1234) 
> states <- as.data.frame(state.x77) 
> fit <- lmp(Murder~Population + Illiteracy+Income+Frost, 
             data=states, perm="Prob") 
[1] "Settings:  unique SS : numeric variables centered" 
> summary(fit) 
 
Call: 
lmp(formula = Murder ~ Population + Illiteracy + Income + Frost,  
    data = states, perm = "Prob") 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-4.79597 -1.64946 -0.08112  1.48150  7.62104  
 
Coefficients: 
            Estimate Iter Pr(Prob)     
Population 2.237e-04   51   1.0000     
Illiteracy 4.143e+00 5000   0.0004 *** 
Income     6.442e-05   51   1.0000     
Frost      5.813e-04   51   0.8627     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1  
 
Residual standard error: 2.535 on 45 degrees of freedom 
Multiple R-Squared: 0.567,      Adjusted R-squared: 0.5285  
F-statistic: 14.73 on 4 and 45 DF,  p-value: 9.133e-08   

Looking back to chapter 8, both Population and Illiteracy are significant (p < 0.05) when 
normal theory is used. Based on the permutation tests, the Population variable is no longer 
significant. When the two approaches don’t agree, you should look at your data more 
carefully. It may be that the assumption of normality is untenable or that outliers are present. 

12.3.3 One-way ANOVA and ANCOVA 

Each of the analysis of variance designs discussed in chapter 9 can be performed via 
permutation tests. First, let’s look at the one-way ANOVA problem considered in section 9.1 on 
the impact of treatment regimens on cholesterol reduction. The code and results are given in 
the next listing. 

Listing 12.5 Permutation test for one-way ANOVA 

> library(lmPerm) 
> library(multcomp) 
> set.seed(1234) 
> fit <- aovp(response~trt, data=cholesterol, perm="Prob") 
[1] "Settings:  unique SS " 
> anova(fit) 
Component 1 : 
            Df R Sum Sq R Mean Sq Iter  Pr(Prob)     
trt          4  1351.37    337.84 5000 < 2.2e-16 *** 
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Residuals   45   468.75     10.42                    
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1  

The results suggest that the treatment effects are not all equal. 
This second example in this section applies a permutation test to a one-way analysis of 

covariance. The problem is from chapter 9, where you investigated the impact of four drug 
doses on the litter weights of rats, controlling for gestation times. The next listing shows the 
permutation test and results. 

Listing 12.6 Permutation test for one-way ANCOVA 

> library(lmPerm) 
> set.seed(1234) 
> fit <- aovp(weight ~ gesttime + dose, data=litter, perm="Prob") 
[1] "Settings:  unique SS : numeric variables centered" 
> anova(fit) 
Component 1 : 
            Df R Sum Sq R Mean Sq Iter Pr(Prob)     
gesttime     1   161.49   161.493 5000   0.0006 *** 
dose         3   137.12    45.708 5000   0.0392 *   
Residuals   69  1151.27    16.685                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Based on the p-values, the four drug doses don’t equally impact litter weights, controlling for 
gestation time. 

12.3.4 Two-way ANOVA 

You’ll end this section by applying permutation tests to a factorial design. In chapter 9, you 
examined the impact of vitamin C on the tooth growth in guinea pigs. The two manipulated 
factors were dose (three levels) and delivery method (two levels). Ten guinea pigs were 
placed in each treatment combination, resulting in a balanced 3 × 2 factorial design. The 
permutation tests are provided in the next listing. 

Listing 12.7 Permutation test for two-way ANOVA 

> library(lmPerm) 
> set.seed(1234) 
> fit <- aovp(len~supp*dose, data=ToothGrowth, perm="Prob") 
[1] "Settings:  unique SS : numeric variables centered" 
> anova(fit) 
Component 1 : 
            Df R Sum Sq R Mean Sq Iter Pr(Prob)     
supp         1   205.35    205.35 5000  < 2e-16 *** 
dose         1  2224.30   2224.30 5000  < 2e-16 *** 
supp:dose    1    88.92     88.92 2032  0.04724 *   
Residuals   56   933.63     16.67                   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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At the .05 level of significance, all three effects are statistically different from zero. At the .01 
level, only the main effects are significant. 

It’s important to note that when aovp()is applied to ANOVA designs, it defaults to unique 
sums of squares (also called SAS Type III sums of squares). Each effect is adjusted for every 
other effect. The default for parametric ANOVA designs in R is sequential sums of squares 
(SAS Type I sums of squares). Each effect is adjusted for those that appear earlier in the 
model. For balanced designs, the two approaches will agree, but for unbalanced designs with 
unequal numbers of observations per cell, they won’t. The greater the imbalance, the greater 
the disagreement. If desired, specifying seqs=TRUE in the aovp() function will produce 
sequential sums of squares. For more on Type I and Type III sums of squares, see section 
9.2. 

12.4 Additional comments on permutation tests 
Permutation tests provide a powerful alternative to tests that rely on a knowledge of the 

underlying sampling distribution. In each of the permutation tests described, you were able to 
test statistical hypotheses without recourse to the normal, t, F, or chi-square distributions. 

You may have noticed how closely the results of the tests based on normal theory agreed 
with the results of the permutation approach in previous sections. The data in these problems 
were well behaved, and the agreement between methods is a testament to how well normal-
theory methods work in such cases. 

Permutation tests really shine in cases where the data are clearly non-normal (for 
example, highly skewed), outliers are present, samples sizes are small, or no parametric tests 
exist. But if the original sample is a poor representation of the population of interest, no test, 
including permutation tests, will improve the inferences generated.  

Permutation tests are primarily useful for generating p-values that can be used to test null 
hypotheses. They can help answer the question, “Does an effect exist?” It’s more difficult to 
use permutation methods to obtain confidence intervals and estimates of measurement 
precision. Fortunately, this is an area in which bootstrapping excels. 

12.5 Bootstrapping 
Bootstrapping generates an empirical distribution of a test statistic or set of test statistics by 
repeated random sampling with replacement from the original sample. It allows you to 
generate confidence intervals and test statistical hypotheses without having to assume a 
specific underlying theoretical distribution. 

It’s easiest to demonstrate the logic of bootstrapping with an example. Say that you want 
to calculate the 95% confidence interval for a sample mean. Your sample has 10 observations, 
a sample mean of 40, and a sample standard deviation of 5. If you’re willing to assume that 
the sampling distribution of the mean is normally distributed, the (1- α/2)% confidence 
interval can be calculated using  
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s sX t X t
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µ− < < +
  

where t is the upper 1-α/2 critical value for a t distribution with n – 1 degrees of freedom. For 
a 95% confidence interval, you have 40 – 2.262(5/3.163) < µ < 40 + 2.262 -(5/3.162) or 
36.424 < µ < 43.577. You’d expect 95% of confidence intervals created in this way to 
surround the true population mean. 

But what if you aren’t willing to assume that the sampling distribution of the mean is 
normally distributed? You can use a bootstrapping approach instead: 

1. Randomly select 10 observations from the sample, with replacement after each 
selection. Some observations may be selected more than once, and some may not be 
selected at all.  

2. Calculate and record the sample mean. 
3. Repeat the first two steps 1,000 times. 
4. Order the 1,000 sample means from smallest to largest. 
5. Find the sample means representing the 2.5th and 97.5th percentiles. In this case, it’s 

the 25th number from the bottom and top. These are your 95% confidence limits. 

In the present case, where the sample mean is likely to be normally distributed, you gain little 
from the bootstrap approach. Yet there are many cases where the bootstrap approach is 
advantageous. What if you wanted confidence intervals for the sample median, or the 
difference between two sample medians? There are no simple normal-theory formulas here, 
and bootstrapping is the approach of choice. If the underlying distributions are unknown, if 
outliers are a problem, if sample sizes are small, or if parametric approaches don’t exist, 
bootstrapping can often provide a useful method of generating confidence intervals and 
testing hypotheses. 

12.6 Bootstrapping with the boot package 
The boot package provides extensive facilities for bootstrapping and related resampling 
methods. You can bootstrap a single statistic (for example, a median) or a vector of statistics 
(for example, a set of regression coefficients). Be sure to download and install the boot 
package before first use: 

install.packages("boot") 

The bootstrapping process will seem complicated, but once you review the examples it should 
make sense. 

In general, bootstrapping involves three main steps: 

1. Write a function that returns the statistic or statistics of interest. If there is a single 
statistic (for example, a median), the function should return a number. If there is a set 

337

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

of statistics (for example, a set of regression coefficients), the function should return a 
vector. 

2. Process this function through the boot() function in order to generate R bootstrap 
replications of the statistic(s). 

3. Use the boot.ci() function to obtain confidence intervals for the statistic(s) generated 
in step 2. 

Now to the specifics. 
The main bootstrapping function is boot(). It has the format 

bootobject <- boot(data=, statistic=, R=, ...)  

The parameters are described in table 12.3. 

Table 12.3 Parameters of the boot() function 

Parameter Description 

data A vector, matrix, or data frame. 

statistic A function that produces the k statistics to be bootstrapped (k=1 if bootstrapping 
a single statistic). The function should include an indices parameter that the 
boot() function can use to select cases for each replication (see the examples 
in the text).  

R Number of bootstrap replicates. 

... Additional parameters to be passed to the function that produces the statistic of 
interest. 

The boot() function calls the statistic function R times. Each time, it generates a set of 
random indices, with replacement, from the integers 1:nrow(data). These indices are used in 
the statistic function to select a sample. The statistics are calculated on the sample, and the 
results are accumulated in bootobject. The bootobject structure is described in table 12.4. 
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Table 12.4 Elements of the object returned by the boot() function 

Element Description 

t0 The observed values of k statistics applied to the original data 

t An R × k matrix, where each row is a bootstrap replicate of the k statistics 

You can access these elements as bootobject$t0 and bootobject$t. 
Once you generate the bootstrap samples, you can use print() and plot() to examine 

the results. If the results look reasonable, you can use the boot.ci() function to obtain 
confidence intervals for the statistic(s). The format is 

boot.ci(bootobject, conf=, type= )  

The parameters are given in table 12.5. 

Table 12.5 Parameters of the boot.ci() function 

Parameter Description 

bootobject The object returned by the boot() function. 

conf The desired confidence interval (default: conf=0.95). 

type The type of confidence interval returned. Possible values are norm, basic, 
stud, perc, bca, and all (default: type="all") 

The type parameter specifies the method for obtaining the confidence limits. The perc method 
(percentile) was demonstrated in the sample mean example. bca provides an interval that 
makes simple adjustments for bias. I find bca preferable in most circumstances. See Mooney 
and Duval (1993) for an introduction to these methods.  

In the remaining sections, we’ll look at bootstrapping a single statistic and a vector of 
statistics. 
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12.6.1 Bootstrapping a single statistic 

The mtcars dataset contains information on 32 automobiles reported in the 1974 Motor Trend 
magazine. Suppose you’re using multiple regression to predict miles per gallon from a car’s 
weight (lb/1,000) and engine displacement (cu. in.). In addition to the standard regression 
statistics, you’d like to obtain a 95% confidence interval for the R-squared value (the percent 
of variance in the response variable explained by the predictors). The confidence interval can 
be obtained using nonparametric bootstrapping.  

The first task is to write a function for obtaining the R-squared value: 

rsq <- function(formula, data, indices) { 
         d <- data[indices,] 
         fit <- lm(formula, data=d) 
         return(summary(fit)$r.square) 
}  

The function returns the R-squared value from a regression. The d <- data[indices,] 
statement is required for boot() to be able to select samples. 

You can then draw a large number of bootstrap replications (say, 1,000) with the following 
code: 

library(boot) 
set.seed(1234) 
results <- boot(data=mtcars, statistic=rsq,  
                R=1000, formula=mpg~wt+disp) 

The boot object can be printed using 

> print(results) 
 
ORDINARY NONPARAMETRIC BOOTSTRAP 
 
 
Call: 
boot(data = mtcars, statistic = rsq, R = 1000, formula = mpg ~  
    wt + disp) 
 
 
Bootstrap Statistics : 
     original      bias     std. error 
t1* 0.7809306  0.01333670   0.05068926 

and plotted using plot(results). The resulting graph is shown in figure 12.2. 
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Figure 12.2 Distribution of bootstrapped R-squared values 

In figure 12.2, you can see that the distribution of bootstrapped R-squared values isn’t 
normally distributed. A 95% confidence interval for the R-squared values can be obtained 
using 

> boot.ci(results, type=c("perc", "bca")) 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 1000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = results, type = c("perc", "bca")) 
 
Intervals :  
Level     Percentile            BCa           
95%   ( 0.6838,  0.8833 )   ( 0.6344,  0.8549 )     
Calculations and Intervals on Original Scale 
Some BCa intervals may be unstable 

You can see from this example that different approaches to generating the confidence 
intervals can lead to different intervals. In this case, the bias-adjusted interval is moderately 
different from the percentile method. In either case, the null hypothesis H0: R-square = 0 
would be rejected, because zero is outside the confidence limits. 

In this section, you estimated the confidence limits of a single statistic. In the next section, 
you’ll estimate confidence intervals for several statistics. 
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12.6.2 Bootstrapping several statistics 

In the previous example, bootstrapping was used to estimate the confidence interval for a 
single statistic (R-squared). Continuing the example, let’s obtain the 95% confidence intervals 
for a vector of statistics. Specifically, let’s get confidence intervals for the three model 
regression coefficients (intercept, car weight, and engine displacement).  

First, create a function that returns the vector of regression coefficients: 

bs <- function(formula, data, indices) {                 
        d <- data[indices,] 
        fit <- lm(formula, data=d) 
        return(coef(fit))                                     
} 

Then use this function to bootstrap 1,000 replications:  

library(boot) 
set.seed(1234) 
results <- boot(data=mtcars, statistic=bs, 
                R=1000, formula=mpg~wt+disp) 
> print(results) 
ORDINARY NONPARAMETRIC BOOTSTRAP 
Call: 
boot(data = mtcars, statistic = bs, R = 1000, formula = mpg ~  
    wt + disp) 
 
Bootstrap Statistics : 
    original   bias    std. error 
t1*  34.9606  0.137873     2.48576 
t2*  -3.3508 -0.053904     1.17043 
t3*  -0.0177 -0.000121     0.00879 

When bootstrapping multiple statistics, add an index parameter to the plot() and boot.ci() 
functions to indicate which column of bootobject$t to analyze. In this example, index 1 
refers to the intercept, index 2 is car weight, and index 3 is the engine displacement. To plot 
the results for car weight, use 

plot(results, index=2) 

The graph is given in figure 12.3. 
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Figure 12.3 Distribution of bootstrapping regression coefficients for car weight 

To get the 95% confidence intervals for car weight and engine displacement, use 

> boot.ci(results, type="bca", index=2) 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 1000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = results, type = "bca", index = 2) 
 
Intervals :  
Level       BCa           
95%   (-5.66, -1.19 )   
Calculations and Intervals on Original Scale  
 
> boot.ci(results, type="bca", index=3)  
 
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS 
Based on 1000 bootstrap replicates 
 
CALL :  
boot.ci(boot.out = results, type = "bca", index = 3) 
 
Intervals :  
Level       BCa           
95%   (-0.0331,  0.0010 )   
Calculations and Intervals on Original Scale 
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NOTE The previous example resamples the entire sample of data each time. If you can assume that the 

predictor variables have fixed levels (typical in planned experiments), you’d do better to only resample residual 

terms. See Mooney and Duval (1993, pp. 16–17) for a simple explanation and algorithm. 

Before we leave bootstrapping, it’s worth addressing two questions that come up often:  

• How large does the original sample need to be?  
• How many replications are needed? 

There’s no simple answer to the first question. Some say that an original sample size of 20–30 
is sufficient for good results, as long as the sample is representative of the population. 
Random sampling from the population of interest is the most trusted method for assuring the 
original sample’s representativeness. With regard to the second question, I find that 1,000 
replications are more than adequate in most cases. Computer power is cheap, and you can 
always increase the number of replications if desired. 

There are many helpful sources of information about permutation tests and bootstrapping. 
An excellent starting place is an online article by Yu (2003). Good (2006) provides a 
comprehensive overview of resampling in general and includes R code. A good, accessible 
introduction to bootstrapping is provided by Mooney and Duval (1993). The definitive source 
on bootstrapping is Efron and Tibshirani (1998). Finally, there are a number of great online 
resources, including Simon (1997), Canty (2002), Shah (2005), and Fox (2002). 

12.7 Summary 
• Resampling statistics and bootstrapping are computer-intensive methods that allow you 

to test hypotheses and form confidence intervals without reference to a known 
theoretical distribution. 

• They are particularly valuable when your data comes from unknown population 
distributions, when there are serious outliers, when your sample sizes are small, and 
when there are no existing parametric methods to answer the hypotheses of interest. 

• They are particularly exciting because they provide an avenue for answering questions 
when your standard data assumptions are clearly untenable or when you have no other 
idea how to approach the problem.  

• However, they aren’t a panaceas. They can’t turn bad data into good data. If your 
original samples aren’t representative of the population of interest or are too small to 
accurately reflect it, then these techniques won’t help. 
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13  
Generalized linear models 

This chapter covers 

• Formulating a generalized linear model 
• Predicting categorical outcomes 
• Modeling count data 

In chapters 8 (regression) and 9 (ANOVA), we explored linear models that can be used to 
predict a normally distributed response variable from a set of continuous and/or categorical 
predictor variables. But there are many situations in which it’s unreasonable to assume that 
the dependent variable is normally distributed (or even continuous). For example: 

• The outcome variable may be categorical. Binary variables (for example, yes/no, 
passed/failed, lived/died) and polytomous variables (for example, poor/good/excellent, 
republican/democrat/independent) clearly aren’t normally distributed. 

• The outcome variable may be a count (for example, number of traffic accidents in a 
week, number of drinks per day). Such variables take on a limited number of values 
and are never negative. Additionally, their mean and variance are often related (which 
isn’t true for normally distributed variables). 

Generalized linear models extend the linear-model framework to include dependent variables 
that are decidedly non-normal.  

In this chapter, we’ll start with a brief overview of generalized linear models and the glm() 
function used to estimate them. Then we’ll focus on two popular models in this framework: 
logistic regression (where the dependent variable is categorical) and Poisson regression 
(where the dependent variable is a count variable). 

To motivate the discussion, you’ll apply generalized linear models to two research 
questions that aren’t easily addressed with standard linear models: 
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• What personal, demographic, and relationship variables predict marital infidelity? In this 
case, the outcome variable is binary (affair/no affair). 

• What impact does a drug treatment for seizures have on the number of seizures 
experienced over an eight-week period? In this case, the outcome variable is a count 
(number of seizures). 

You’ll apply logistic regression to address the first question and Poisson regression to address 
the second. Along the way, we’ll consider extensions of each technique. 

13.1 Generalized linear models and the glm() function 
A wide range of popular data-analytic methods are subsumed within the framework of the 
generalized linear model. In this section, we’ll briefly explore some of the theory behind this 
approach. You can safely skip this section if you like and come back to it later. 

Let’s say that you want to model the relationship between a response variable Y and a set 
of p predictor variables X1 ...Xp. In the standard linear model, you assume that Y is normally 
distributed and that the form of the relationship is 

0 1

p
y j jj

Xµ β β
=

= +∑  
This equation states that the conditional mean of the response variable is a linear combination 
of the predictor variables. The βj are the parameters specifying the expected change in Y for a 
unit change in Xj, and β0 is the expected value of Y when all the predictor variables are 0. 
You’re saying that you can predict the mean of the Y distribution for observations with a given 
set of X values by applying the proper weights to the X variables and adding them up.  

Note that you’ve made no distributional assumptions about the predictor variables, Xj. 
Unlike Y, there’s no requirement that they be normally distributed. In fact, they’re often 
categorical (for example, ANOVA designs). Additionally, nonlinear functions of the predictors 
are allowed. You often include such predictors as X2 or X1 × X2. What is important is that the 
equation is linear in the parameters (β0, β1,…, βp). 

In generalized linear models, you fit models of the form 

( ) 0 1

p
y j jj

g Xµ β β
=

= +∑  
where g(µY) is a function of the conditional mean (called the link function). Additionally, you 
relax the assumption that Y is normally distributed. Instead, you assume that Y follows a 
distribution that’s a member of the exponential family. You specify the link function and the 
probability distribution, and the parameters are derived through an iterative maximum-
likelihood-estimation procedure.  
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13.1.1 The glm() function 

Generalized linear models are typically fit in R through the glm() function (although other 
specialized functions are available). The form of the function is similar to lm() but includes 
additional parameters. The basic format of the function is 

glm(formula, family=family(link=function), data=) 

where the probability distribution (family) and corresponding default link function (function) are 
given in table 13.1. 

Table 13.1 glm() parameters 

Family Default link function 

binomial (link = "logit") 

gaussian (link = "identity") 

gamma (link = "inverse") 

inverse.gaussian (link = "1/mu^2") 

poisson (link = "log") 

quasi (link = "identity", variance = "constant") 

quasibinomial (link = "logit") 

quasipoisson (link = "log") 

The glm() function allows you to fit a number of popular models, including logistic regression, 
Poisson regression, and survival analysis (not considered here). You can demonstrate this for 
the first two models as follows. Assume that you have a single response variable (Y), three 
predictor variables (X1, X2, X3), and a data frame (mydata) containing the data.  
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Logistic regression is applied to situations in which the response variable is dichotomous (0 
or 1). The model assumes that Y follows a binomial distribution and that you can fit a linear 
model of the form 

0 1
log

1
p

e j jj
Xπ β β

π =

  = + − 
∑

  
where π = µY is the conditional mean of Y (that is, the probability that Y = 1 given a set of X 
values), (π/1 – π) is the odds that Y = 1, and log(π/1 – π) is the log odds, or logit. In this 
case, log(π/1 – π) is the link function, the probability distribution is binomial, and the logistic 
regression model can be fit using 

glm(Y~X1+X2+X3, family=binomial(link="logit"), data=mydata) 

Logistic regression is described more fully in section 13.2. 
Poisson regression is applied to situations in which the response variable is the number of 

events to occur in a given period of time. The Poisson regression model assumes that Y follows 
a Poisson distribution and that you can fit a linear model of the form 

( ) 0 1
 log p

e j jj
Xλ β β

=
= +∑  

where λ is the mean (and variance) of Y. In this case, the link function is log(λ), the 
probability distribution is Poisson, and the Poisson regression model can be fit using 

glm(Y~X1+X2+X3, family=poisson(link="log"), data=mydata) 

Poisson regression is described in section 13.3. 
It’s worth noting that the standard linear model is also a special case of the generalized 

linear model. If you let the link function g(µY) = µY or the identity function and specify that the 
probability distribution is normal (Gaussian), then 

glm(Y~X1+X2+X3, family=gaussian(link="identity"), data=mydata) 

would produce the same results as 

lm(Y~X1+X2+X3, data=mydata) 

To summarize, generalized linear models extend the standard linear model by fitting a 
function of the conditional mean response (rather than the conditional mean response) and 
assuming that the response variable follows a member of the exponential family of 
distributions (rather than being limited to the normal distribution). The parameter estimates 
are derived via maximum likelihood rather than least squares. 
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13.1.2 Supporting functions 

Many of the functions that you used in conjunction with lm() when analyzing standard linear 
models have corresponding versions for glm(). Some commonly used functions are given in 
table 13.2. 

Table 13.2 Functions that support glm() 

Function Description 

summary() Displays detailed results for the fitted model 

coefficients(), coef() Lists the model parameters (intercept and slopes) for the fitted model 

confint() Provides confidence intervals for the model parameters (95% by default) 

residuals() Lists the residual values in a fitted model 

anova() Generates an ANOVA table comparing two fitted models 

plot() Generates diagnostic plots for evaluating the fit of a model 

predict() Uses a fitted model to predict response values for a new dataset 

deviance() Deviance for the fitted model 

df.residual() Residual degrees of freedom for the fitted model 

We’ll explore examples of these functions in later sections. In the next section, we’ll briefly 
consider the assessment of model adequacy. 

13.1.3 Model fit and regression diagnostics 

The assessment of model adequacy is as important for generalized linear models as it is for 
standard (OLS) linear models. Unfortunately, there’s less agreement in the statistical 
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community regarding appropriate assessment procedures. In general, you can use the 
techniques described in chapter 8, with the following caveats.  

When assessing model adequacy, you’ll typically want to plot predicted values expressed in 
the metric of the original response variable against residuals of the deviance type. For 
example, a common diagnostic plot would be 

plot(predict(model, type="response"),  
    residuals(model, type= "deviance"))   

where model is the object returned by the glm() function.  
The hat values, studentized residuals, and Cook’s D statistics that R provides will be 

approximate values. Additionally, there’s no general consensus on cutoff values for identifying 
problematic observations. Values have to be judged relative to each other. One approach is to 
create index plots for each statistic and look for unusually large values. For example, you 
could use the following code to create three diagnostic plots: 

plot(hatvalues(model)) 
plot(rstudent(model)) 
plot(cooks.distance(model)) 

Alternatively, you could use the code 

library(car) 
influencePlot(model) 

to create one omnibus plot. In the latter graph, the horizontal axis is the leverage, the vertical 
axis is the studentized residual, and the plotted symbol is proportional to the Cook’s distance. 

Diagnostic plots tend to be most helpful when the response variable takes on many values. 
When the response variable can only take on a limited number of values (for example, logistic 
regression), the utility of these plots is decreased. 

For more on regression diagnostics for generalized linear models, see Fox (2008) and 
Faraway (2006). In the remaining portion of this chapter, we’ll consider two of the most 
popular forms of the generalized linear model in detail: logistic regression and Poisson 
regression. 

13.2 Logistic regression 
Logistic regression is useful when you’re predicting a binary outcome from a set of continuous 
and/or categorical predictor variables. To demonstrate this, let’s explore the data on infidelity 
contained in the data frame Affairs, provided with the AER package. Be sure to download 
and install the package (using install.packages("AER")) before first use.  

The infidelity data, known as Fair’s Affairs, is based on a cross-sectional survey conducted 
by Psychology Today in 1969 and is described in Greene (2003) and Fair (1978). It contains 9 
variables collected on 601 participants and includes how often the respondent engaged in 
extramarital sexual intercourse during the past year, as well as their gender, age, years 
married, whether they had children, their religiousness (on a 5-point scale from 1=anti to 
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5=very), education, occupation (Hollingshead 7-point classification with reverse numbering), 
and a numeric self-rating of their marriage (from 1=very unhappy to 5=very happy). 

Let’s look at some descriptive statistics: 

> data(Affairs, package="AER") 
> summary(Affairs) 
    affairs          gender         age         yearsmarried    children  
 Min.   : 0.000   female:315   Min.   :17.50   Min.   : 0.125   no :171   
 1st Qu.: 0.000   male  :286   1st Qu.:27.00   1st Qu.: 4.000   yes:430   
 Median : 0.000                Median :32.00   Median : 7.000             
 Mean   : 1.456                Mean   :32.49   Mean   : 8.178             
 3rd Qu.: 0.000                3rd Qu.:37.00   3rd Qu.:15.000             
 Max.   :12.000                Max.   :57.00   Max.   :15.000             
 religiousness     education       occupation        rating      
 Min.   :1.000   Min.   : 9.00   Min.   :1.000   Min.   :1.000   
 1st Qu.:2.000   1st Qu.:14.00   1st Qu.:3.000   1st Qu.:3.000   
 Median :3.000   Median :16.00   Median :5.000   Median :4.000   
 Mean   :3.116   Mean   :16.17   Mean   :4.195   Mean   :3.932   
 3rd Qu.:4.000   3rd Qu.:18.00   3rd Qu.:6.000   3rd Qu.:5.000   
 Max.   :5.000   Max.   :20.00   Max.   :7.000   Max.   :5.000   
 
> table(Affairs$affairs) 
  0   1   2   3   7  12  
451  34  17  19  42  38 

From these statistics, you can see that that 52% of respondents were female, that 72% had 
children, and that the median age for the sample was 32 years. With regard to the response 
variable, 75% of respondents reported not engaging in an infidelity in the past year 
(451/601). The largest number of encounters reported was 12 (6%). 

Although the number of indiscretions was recorded, your interest here is in the binary 
outcome (had an affair/didn’t have an affair). You can transform affairs into a dichotomous 
factor called ynaffair with the following code. 

> Affairs$ynaffair <- ifelse(Affairs$affairs > 0, 1, 0)  
> Affairs$ynaffair <- factor(Affairs$ynaffair,  
                             levels=c(0,1),  
                             labels=c("No","Yes")) 
> table(Affairs$ynaffair) 
No Yes  
451 150 

This dichotomous factor can now be used as the outcome variable in a logistic regression 
model: 

> fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children +  
                  religiousness + education + occupation +rating, 
                  data=Affairs, family=binomial()) 
> summary(fit.full) 
 
Call: 
glm(formula = ynaffair ~ gender + age + yearsmarried + children +  
    religiousness + education + occupation + rating, family = binomial(),  
    data = Affairs) 
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Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-1.571  -0.750  -0.569  -0.254   2.519   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)     1.3773     0.8878    1.55  0.12081     
gendermale      0.2803     0.2391    1.17  0.24108     
age            -0.0443     0.0182   -2.43  0.01530 *   
yearsmarried    0.0948     0.0322    2.94  0.00326 **  
childrenyes     0.3977     0.2915    1.36  0.17251     
religiousness  -0.3247     0.0898   -3.62  0.00030 *** 
education       0.0211     0.0505    0.42  0.67685     
occupation      0.0309     0.0718    0.43  0.66663     
rating         -0.4685     0.0909   -5.15  2.6e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 675.38  on 600  degrees of freedom 
Residual deviance: 609.51  on 592  degrees of freedom 
AIC: 627.5 
 
Number of Fisher Scoring iterations: 4 

From the p-values for the regression coefficients (last column), you can see that gender, 
presence of children, education, and occupation may not make a significant contribution to the 
equation (you can’t reject the hypothesis that the parameters are 0). Let’s fit a second 
equation without them and test whether this reduced model fits the data as well: 

> fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness + 
                     rating, data=Affairs, family=binomial()) 
> summary(fit.reduced) 
Call: 
glm(formula = ynaffair ~ age + yearsmarried + religiousness + rating,  
    family = binomial(), data = Affairs) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-1.628  -0.755  -0.570  -0.262   2.400   
 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)     
(Intercept)     1.9308     0.6103    3.16  0.00156 **  
age            -0.0353     0.0174   -2.03  0.04213 *   
yearsmarried    0.1006     0.0292    3.44  0.00057 *** 
religiousness  -0.3290     0.0895   -3.68  0.00023 *** 
rating         -0.4614     0.0888   -5.19  2.1e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
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    Null deviance: 675.38  on 600  degrees of freedom 
Residual deviance: 615.36  on 596  degrees of freedom 
AIC: 625.4 
 
Number of Fisher Scoring iterations: 4 

Each regression coefficient in the reduced model is statistically significant (p < .05). Because 
the two models are nested (fit.reduced is a subset of fit.full), you can use the anova() 
function to compare them. For generalized linear models, you’ll want a chi-square version of 
this test: 

> anova(fit.reduced, fit.full, test="Chisq") 
Analysis of Deviance Table 
 
Model 1: ynaffair ~ age + yearsmarried + religiousness + rating 
Model 2: ynaffair ~ gender + age + yearsmarried + children +  
    religiousness + education + occupation + rating 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1       596        615                       
2       592        610  4     5.85      0.21 

The nonsignificant chi-square value (p = 0.21) suggests that the reduced model with four 
predictors fits as well as the full model with nine predictors, reinforcing your belief that 
gender, children, education, and occupation don’t add significantly to the prediction above and 
beyond the other variables in the equation. Therefore, you can base your interpretations on 
the simpler model. 

13.2.1 Interpreting the model parameters 

Let’s look at the regression coefficients: 

> coef(fit.reduced) 
  (Intercept)           age  yearsmarried religiousness        rating  
        1.931        -0.035         0.101        -0.329        -0.461 

In a logistic regression, the response being modeled is the log(odds) that Y = 1. The 
regression coefficients give the change in log(odds) in the response for a unit change in the 
predictor variable, holding all other predictor variables constant.  

Because log(odds) are difficult to interpret, you can exponentiate them to put the results 
on an odds scale: 

> exp(coef(fit.reduced)) 
  (Intercept)           age  yearsmarried religiousness        rating  
        6.895         0.965         1.106         0.720         0.630 

Now you can see that the odds of an extramarital encounter are increased by a factor of 1.106 
for a one-year increase in years married (holding age, religiousness, and marital rating 
constant). Conversely, the odds of an extramarital affair are multiplied by a factor of 0.965 for 
every year increase in age. The odds of an extramarital affair increase with years married and 
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decrease with age, religiousness, and marital rating. Because the predictor variables can’t 
equal 0, the intercept isn’t meaningful in this case.  

If desired, you can use the confint() function to obtain confidence intervals for the 
coefficients. For example, exp(confint(fit.reduced)) would print 95% confidence intervals 
for each of the coefficients on an odds scale. 

Finally, a one-unit change in a predictor variable may not be inherently interesting. For 
binary logistic regression, the change in the odds of the higher value on the response variable 
for an n unit change in a predictor variable is exp(βj)n. If a one-year increase in years married 
multiplies the odds of an affair by 1.106, a 10-year increase would increase the odds by a 
factor of 1.106^10, or 2.7, holding the other predictor variables constant. 

13.2.2 Assessing the impact of predictors on the probability of an outcome 

For many of us, it’s easier to think in terms of probabilities than odds. You can use the 
predict() function to observe the impact of varying the levels of a predictor variable on the 
probability of the outcome. The first step is to create an artificial dataset containing the values 
of the predictor variables you’re interested in. Then you can use this artificial dataset with the 
predict() function to predict the probabilities of the outcome event occurring for these 
values. 

Let’s apply this strategy to assess the impact of marital ratings on the probability of having 
an extramarital affair. First, create an artificial dataset where age, years married, and 
religiousness are set to their means, and marital rating varies from 1 to 5: 

> testdata <- data.frame(rating=c(1, 2, 3, 4, 5), age=mean(Affairs$age), 
                         yearsmarried=mean(Affairs$yearsmarried), 
                         religiousness=mean(Affairs$religiousness)) 
> testdata 
  rating  age yearsmarried religiousness 
1      1 32.5         8.18          3.12 
2      2 32.5         8.18          3.12 
3      3 32.5         8.18          3.12 
4      4 32.5         8.18          3.12  
5      5 32.5         8.18          3.12 

Next, use the test dataset and prediction equation to obtain probabilities: 

> testdata$prob <- predict(fit.reduced, newdata=testdata, type="response") 
  testdata 
  rating  age yearsmarried religiousness  prob 
1      1 32.5         8.18          3.12 0.530 
2      2 32.5         8.18          3.12 0.416 
3      3 32.5         8.18          3.12 0.310 
4      4 32.5         8.18          3.12 0.220 
5      5 32.5         8.18          3.12 0.151 

From these results, you see that the probability of an extramarital affair decreases from 0.53 
when the marriage is rated 1=very unhappy to 0.15 when the marriage is rated 5=very happy 
(holding age, years married, and religiousness constant). Now look at the impact of age: 

354

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

> testdata <- data.frame(rating=mean(Affairs$rating), 
                         age=seq(17, 57, 10),                  
                         yearsmarried=mean(Affairs$yearsmarried), 
                         religiousness=mean(Affairs$religiousness)) 
> testdata 
  rating age yearsmarried religiousness 
1   3.93  17         8.18          3.12 
2   3.93  27         8.18          3.12 
3   3.93  37         8.18          3.12 
4   3.93  47         8.18          3.12 
5   3.93  57         8.18          3.12 
 
> testdata$prob <- predict(fit.reduced, newdata=testdata, type="response") 
> testdata 
  rating age yearsmarried religiousness    prob 
1   3.93  17         8.18          3.12   0.335 
2   3.93  27         8.18          3.12   0.262 
3   3.93  37         8.18          3.12   0.199 
4   3.93  47         8.18          3.12   0.149 
5   3.93  57         8.18          3.12   0.109 

Here, you see that as age increases from 17 to 57, the probability of an extramarital 
encounter decreases from 0.34 to 0.11, holding the other variables constant. Using this 
approach, you can explore the impact of each predictor variable on the outcome. 

13.2.3 Overdispersion 

The expected variance for data drawn from a binomial distribution is 

 
where n is the number of observations and π is the probability of belonging to the Y = 1 group. 
Overdispersion occurs when the observed variance of the response variable is larger than what 
would be expected from a binomial distribution. Overdispersion can lead to distorted test 
standard errors and inaccurate tests of significance.  

When overdispersion is present, you can still fit a logistic regression using the glm() 
function, but in this case, you should use the quasibinomial distribution rather than the 
binomial distribution. 

One way to detect overdispersion is to compare the residual deviance with the residual 
degrees of freedom in your binomial model. If the ratio  

Residual deviance
Residual df

φ =
  

is considerably larger than 1, you have evidence of overdispersion. Applying this to the 
Affairs example, you have 

> deviance(fit.reduced)/df.residual(fit.reduced) 

355

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

[1] 1.032 

which is close to 1, suggesting no overdispersion. 
You can also test for overdispersion. To do this, you fit the model twice, but in the first 

instance you use family="binomial" and in the second instance you use 
family="quasibinomial". If the glm() object returned in the first case is called fit and the 
object returned in the second case is called fit.od, then 

pchisq(summary(fit.od)$dispersion * fit$df.residual,   
       fit$df.residual, lower = F) 

provides the p-value for testing the null hypothesis H0: Φ = 1 versus the alternative 
hypothesis H1: Φ ≠ 1. If p is small (say, less than 0.05), you’d reject the null hypothesis.  

Applying this to the Affairs dataset, you have 

> fit <- glm(ynaffair ~ age + yearsmarried + religiousness +  
             rating, family = binomial(), data = Affairs) 
> fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness + 
                rating, family = quasibinomial(), data = Affairs) 
> pchisq(summary(fit.od)$dispersion * fit$df.residual,   
         fit$df.residual, lower = F) 
 
[1] 0.34 

The resulting p-value (0.34) is clearly not significant (p > 0.05), strengthening your belief that 
overdispersion isn’t a problem. We’ll return to the issue of overdispersion when we discuss 
Poisson regression. 

13.2.4 Extensions 

Several logistic regression extensions and variations are available in R: 

• Robust logistic regression—The glmRob() function in the robustbase package can be 
used to fit a robust generalized linear model, including robust logistic regression. 
Robust logistic regression can be helpful when fitting logistic regression models to data 
containing outliers and influential observations. 

• Multinomial logistic regression—If the response variable has more than two unordered 
categories (for example, married/widowed/divorced), you can fit a polytomous logistic 
regression using the mlogit() function in the mlogit package. Alternatively, you can 
use the multinom() function in the nnet package. 

• Ordinal logistic regression—If the response variable is a set of ordered categories (for 
example, credit risk as poor/good/excellent), you can fit an ordinal logistic regression 
using the polyr() function in the MASS package. 

The ability to model a response variable with multiple categories (both ordered and 
unordered) is an important extension, but it comes at the expense of greater interpretive 
complexity. Assessing model fit and regression diagnostics in these cases will also be more 
complex. 
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In the Affairs example, the number of extramarital contacts was dichotomized into a 
yes/no response variable because our interest centered on whether respondents had an affair 
in the past year. If our interest had been centered on magnitude—the number of encounters 
in the past year—we would have analyzed the count data directly. One popular approach to 
analyzing count data is Poisson regression, the next topic we’ll address.  

13.3 Poisson regression 
Poisson regression is useful when you’re predicting an outcome variable representing counts 
from a set of continuous and/or categorical predictor variables. A comprehensive yet 
accessible introduction to Poisson regression is provided by Coxe, West, and Aiken (2009). 

To illustrate the fitting of a Poisson regression model, along with some issues that can 
come up in the analysis, we’ll use the Breslow seizure data (Breslow, 1993) provided in the 
robustbase package. Specifically, we’ll consider the impact of an antiepileptic drug treatment 
on the number of seizures occurring over an eight-week period following the initiation of 
therapy. Be sure to install the robustbase package before continuing. 

Data were collected on the age and number of seizures reported by patients suffering from 
simple or complex partial seizures during an eight-week period before, and eight-week period 
after, randomization into a drug or placebo condition. Ysum (the number of seizures in the 
eight-week period post-randomization) is the response variable. Treatment condition (Trt), 
age in years (Age), and number of seizures reported in the baseline eight-week period (Base) 
are the predictor variables. The baseline number of seizures and age are included because of 
their potential effect on the response variable. We're interested in whether or not evidence 
exists that the drug treatment decreases the number of seizures after accounting for these 
covariates. 

First, let’s look at summary statistics for the dataset: 

> data(epilepsy, package="robustbase") 
> names(epilepsy) 
 [1] "ID"    "Y1"    "Y2"    "Y3"    "Y4"    "Base"  "Age"   "Trt"   "Ysum"  
[10] "Age10" "Base4" 
 
> summary(breslow.dat[6:9]) 
      Base            Age              Trt          Ysum       
 Min.   :  6.0   Min.   :18.0   placebo  :28   Min.   :  0.0   
 1st Qu.: 12.0   1st Qu.:23.0   progabide:31   1st Qu.: 11.5   
 Median : 22.0   Median :28.0                  Median : 16.0   
 Mean   : 31.2   Mean   :28.3                  Mean   : 33.1   
 3rd Qu.: 41.0   3rd Qu.:32.0                  3rd Qu.: 36.0   
 Max.   :151.0   Max.   :42.0                  Max.   :302.0   

Note that although there are 11 variables in the dataset, we’re limiting our attention to the 4 
described earlier. Both the baseline and post-randomization number of seizures are highly 
skewed. Let’s look at the response variable in more detail. The following code produces the 
graphs in figure 13.1: 

library(ggplot2) 
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ggplot(epilepsy, aes(x=Ysum)) + 
  geom_histogram(color="black", fill="white") +  
  labs(title="Distribution of seizures",  
       x="Seizure Count", 
       y="Frequency") +  
  theme_bw() 
ggplot(epilepsy, aes(x=Trt, y=Ysum)) + 
  geom_boxplot() +  
  labs(title="Group comparisons", x="", y="") +  
  theme_bw() 
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Figure 13.1 Distribution of post-treatment seizure counts (source: Breslow seizure data) 

You can clearly see the skewed nature of the dependent variable and the possible presence of 
outliers. At first glance, the number of seizures in the drug condition appears to be smaller 
and has a smaller variance. (You’d expect a smaller variance to accompany a smaller mean 
with Poisson distributed data.) Unlike standard OLS regression, this heterogeneity of variance 
isn’t a problem in Poisson regression. 

The next step is to fit the Poisson regression:  

> fit <- glm(Ysum ~ Base + Age + Trt, data=epilepsy, family=poisson()) 
> summary(fit) 
 
Call: 
glm(formula = Ysum ~ Base + Age + Trt, family = poisson(), data = epilepsy) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-6.057  -2.043  -0.940   0.793  11.006   
 
Coefficients: 
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              Estimate Std. Error z value Pr(>|z|)     
(Intercept)   1.948826   0.135619   14.37  < 2e-16 *** 
Base          0.022652   0.000509   44.48  < 2e-16 *** 
Age           0.022740   0.004024    5.65  1.6e-08 *** 
Trtprogabide -0.152701   0.047805   -3.19   0.0014 **  
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 2122.73  on 58  degrees of freedom 
Residual deviance:  559.44  on 55  degrees of freedom 
AIC: 850.7 
 
Number of Fisher Scoring iterations: 5 

The output provides the deviances, regression parameters, standard errors, and tests that 
these parameters are 0. Note that each of the predictor variables is significant at the p < 0.05 
level. 

13.3.1 Interpreting the model parameters 

The model coefficients are obtained using the coef() function or by examining the 
Coefficients table in the summary() function output: 

> coef(fit) 
 (Intercept)         Base          Age Trtprogabide  
      1.9488       0.0227       0.0227      -0.1527  

In a Poisson regression, the dependent variable being modeled is the log of the conditional 
mean loge(λ). The regression parameter 0.0227 for Age indicates that a one-year increase in 
age is associated with a 0.02 increase in the log mean number of seizures, holding baseline 
seizures and treatment condition constant. The intercept is the log mean number of seizures 
when each of the predictors equals 0. Because you can’t have a zero age and none of the 
participants had a zero number of baseline seizures, the intercept isn’t meaningful in this case. 

It’s usually much easier to interpret the regression coefficients in the original scale of the 
dependent variable (number of seizures, rather than log number of seizures). To accomplish 
this, exponentiate the coefficients: 

> exp(coef(fit)) 
 (Intercept)         Base          Age Trtprogabide  
       7.020        1.023        1.023        0.858  

Now you see that a one-year increase in age multiplies the expected number of seizures by 
1.023, holding the other variables constant. This means that increased age is associated with 
higher numbers of seizures. More important, a one-unit change in Trt (that is, moving from 
placebo to progabide) multiplies the expected number of seizures by 0.86. You’d expect a 
14% (i.e., 1-0.86) decrease in the number of seizures for the drug group compared with the 
placebo group, holding baseline number of seizures and age constant. 
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It’s important to remember that, like the exponentiated parameters in logistic regression, 
the exponentiated parameters in the Poisson model have a multiplicative rather than an 
additive effect on the response variable. Also, as with logistic regression, you must evaluate 
your model for overdispersion. 

13.3.2 Overdispersion 

In a Poisson distribution, the variance and mean are equal. Overdispersion occurs in Poisson 
regression when the observed variance of the response variable is larger than would be 
predicted by the Poisson distribution. Because overdispersion is often encountered when 
dealing with count data and can have a negative impact on the interpretation of the results, 
we’ll spend some time discussing it. 

There are several reasons why overdispersion may occur (Coxe et al., 2009): 

• The omission of an important predictor variable can lead to overdispersion.  
• Overdispersion can also be caused by a phenomenon known as state dependence. 

Within observations, each event in a count is assumed to be independent. For the 
seizure data, this would imply that for any patient, the probability of a seizure is 
independent of each other seizure. But this assumption is often untenable. For a given 
individual, the probability of having a first seizure is unlikely to be the same as the 
probability of having a 40th seizure, given that they’ve already had 39. 

• In longitudinal studies, overdispersion can be caused by the clustering inherent in 
repeated measures data. We won’t discuss longitudinal Poisson models here. 

If overdispersion is present and you don’t account for it in your model, you’ll get standard 
errors and confidence intervals that are too small, and significance tests that are too liberal 
(that is, you’ll find effects that aren’t really there). 

As with logistic regression, overdispersion is suggested if the ratio of the residual deviance 
to the residual degrees of freedom is much larger than 1. For the seizure data, the ratio is 

> deviance(fit)/df.residual(fit) 
[1] 10.17 

which is clearly much larger than 1.  
The qcc package provides a test for overdispersion in the Poisson case. (Be sure to 

download and install this package before first use.) You can test for overdispersion in the 
seizure data using the following code: 

> library(qcc) 
> qcc.overdispersion.test(breslow.dat$sumY, type="poisson") 
Overdispersion test Obs.Var/Theor.Var Statistic p-value 
       poisson data              62.9      3646       0 

Not surprisingly, the significance test has a p-value less than 0.05, strongly suggesting the 
presence of overdispersion.  
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You can still fit a model to your data using the glm() function, by replacing 
family="poisson" with family="quasipoisson". Doing so is analogous to the approach to 
logistic regression when overdispersion is present: 

> fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, 
                family=quasipoisson()) 
> summary(fit.od) 
 
Call: 
glm(formula = sumY ~ Base + Age + Trt, family = quasipoisson(),  
    data = breslow.dat) 
 
Deviance Residuals:  
   Min      1Q  Median      3Q     Max   
-6.057  -2.043  -0.940   0.793  11.006   
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.94883    0.46509    4.19  0.00010 *** 
Base          0.02265    0.00175   12.97  < 2e-16 *** 
Age           0.02274    0.01380    1.65  0.10509     
Trtprogabide -0.15270    0.16394   -0.93  0.35570     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for quasipoisson family taken to be 11.8) 
 
    Null deviance: 2122.73  on 58  degrees of freedom 
Residual deviance:  559.44  on 55  degrees of freedom 
AIC: NA 
 
Number of Fisher Scoring iterations: 5 

Notice that the parameter estimates in the quasi-Poisson approach are identical to those 
produced by the Poisson approach. The standard errors are much larger, though. In this case, 
the larger standard errors have led to p-values for Trt (and Age) that are greater than 0.05. 
When you take overdispersion into account, there’s insufficient evidence to declare that the 
drug regimen reduces seizure counts more than receiving a placebo, after controlling for 
baseline seizure rate and age. 

Please remember that this example is used for demonstration purposes only. The results 
shouldn’t be taken to imply anything about the efficacy of progabide in the real world. I’m not 
a doctor—at least not a medical doctor—and I don’t even play one on TV. 

We’ll finish this exploration of Poisson regression with a discussion of some important 
variants and extensions. 

13.3.3 Extensions 

R provides several useful extensions to the basic Poisson regression model, including models 
that allow varying time periods, models that correct for too many zeros, and robust models 
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that are useful when data includes outliers and influential observations. I’ll describe each 
separately. 

POISSON REGRESSION WITH VARYING TIME PERIODS 

Our discussion of Poisson regression has been limited to response variables that measure a 
count over a fixed length of time (for example, number of seizures in an eight-week period, 
number of traffic accidents in the past year, or number of pro-social behaviors in a day). The 
length of time is constant across observations. But you can fit Poisson regression models that 
allow the time period to vary for each observation. In this case, the outcome variable is a rate. 

To analyze rates, you must include a variable (for example, time) that records the length 
of time over which the count occurs for each observation. You then change the model from 
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To fit this new model, you use the offset option in the glm() function. For example, assume 
that the length of time that patients participated post-randomization in the Breslow study 
varied from 14 days to 60 days. You could use the rate of seizures as the dependent variable 
(assuming you had recorded time for each patient in days) and fit the model 

fit <- glm(Ysum ~ Base + Age + Trt, data=epilepsy,  
           offset= log(time), family=poisson) 

where Ysum is the number of seizures that occurred post-randomization for a patient during 
the time the patient was studied. In this case, you’re assuming that rate doesn’t vary over 
time (for example, 2 seizures in 4 days is equivalent to 10 seizures in 20 days). 

ZERO-INFLATED POISSON REGRESSION 

There are times when the number of zero counts in a dataset is larger than would be predicted 
by the Poisson model. This can occur when there’s a subgroup of the population that would 
never engage in the behavior being counted. For example, in the Affairs dataset described in 
the section on logistic regression, the original outcome variable (affairs) counted the number 

362

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

of extramarital sexual intercourse experiences participants had in the past year. It’s likely that 
there’s a subgroup of faithful marital partners who would never have an affair, no matter how 
long the period of time studied. These are called structural zeros (primarily by the swingers in 
the group). 

In such cases, you can analyze the data using an approach called zero-inflated Poisson 
regression. The approach fits two models simultaneously—one that predicts who would or 
would not have an affair, and the second that predicts how many affairs a participant would 
have if you excluded the permanently faithful. Think of this as a model that combines a logistic 
regression (for predicting structural zeros) and a Poisson regression model (that predicts 
counts for observations that aren’t structural zeros). Zero-inflated Poisson regression can be 
fit using the zeroinfl() function in the pscl package.  

ROBUST POISSON REGRESSION 

Finally, the glmRob() function in the robustbase package can be used to fit a robust 
generalized linear model, including robust Poisson regression. As mentioned previously, this 
can be helpful in the presence of outliers and influential observations. 

Going further 
Generalized linear models are a complex and mathematically sophisticated subject, but many fine resources are 

available for learning about them. A good, short introduction to the topic is Dunteman and Ho (2006). The classic (and 
advanced) text on generalized linear models is provided by McCullagh and Nelder (1989). Comprehensive and 
accessible presentations are provided by Dobson and Barnett (2008) and Fox (2008). Faraway (2006) and Fox (2002) 
provide excellent introductions within the context of R. 
 

13.4 Summary 
• Generalized linear models allows you to analyze response variables that are decidedly 

non-normal, including categorical outcomes and discrete counts.  
• Logistic regression can be used when analyzing studies with a dichotomous (yes/no) 

outcome.  
• Poisson regression can be used to analyze studies when outcomes are measured as 

counts or rates.  
• Regression diagnostics can be more difficult for generalized linear models than for the 

linear models described in chapter 8. In particular, you should evaluate logistic and 
poisson regression models for overdispersion. If overdispersion is found, consider using 
an alternate error distribution such as quasi-binomial or quasi-poisson when fitting the 
model. 
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14  
Principal components and factor 

analysis 

This chapter covers 

• Principal components analysis 
• Exploratory factor analysis 
• Understanding other latent variable models 

One of the most challenging aspects of multivariate data is the sheer complexity of the 
information. If you have a dataset with 100 variables, how do you make sense of all the 
interrelationships present? Even with 20 variables, there are 190 pairwise correlations to 
consider when you’re trying to understand how the individual variables relate to one another. 
Two related but distinct methodologies for exploring and simplifying complex multivariate data 
are principal components and exploratory factor analysis. 

Principal components analysis (PCA) is a data-reduction technique that transforms a larger 
number of correlated variables into a much smaller set of uncorrelated variables called 
principal components. For example, you might use PCA to transform 30 correlated (and 
possibly redundant) environmental variables into 5 uncorrelated composite variables that 
retain as much information from the original set of variables as possible. 

In contrast, exploratory factor analysis (EFA) is a collection of methods designed to 
uncover the latent structure in a given set of variables. It looks for a smaller set of underlying 
or latent variables that can explain the relationships among the observed or manifest 
variables. For example, the dataset Harman74.cor contains the correlations among 24 
psychological tests given to 145 seventh- and eighth-grade children. If you apply EFA to this 
data, the results suggest that the 276 test intercorrelations can be explained by the children’s 
abilities on 4 underlying factors (verbal ability, processing speed, deduction, and memory). 
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The 24 psychological tests are the observed or manifest variables, and the four underlying 
factors or latent variables are derived from the correlations among these observed variables. 

The differences between the PCA and EFA models can be seen in figure 14.1. Principal 
components (PC1 and PC2) are linear combinations of the observed variables (X1 to X5). The 
weights used to form the linear composites are chosen to maximize the variance each principal 
component accounts for, while keeping the components uncorrelated.  

 
Figure 14.1 Comparing the principal components and factor analysis models. The diagrams show the observed 
variables (X1 to X5), the principal components (PC1, PC2), factors (F1, F2), and errors (e1 to e5).  

In contrast, factors (F1 and F2) are assumed to underlie or “cause” the observed variables, 
rather than being linear combinations of them. The errors (e1 to e5) represent the variance in 
the observed variables unexplained by the factors. The circles indicate that the factors and 
errors aren’t directly observable but are inferred from the correlations among the variables. In 
this example, the curved arrow between the factors indicates that they’re correlated. 
Correlated factors are common, but not required, in the EFA model.  

The methods described in this chapter require large samples to derive stable solutions. 
What constitutes an adequate sample size is somewhat complicated. Until recently, analysts 
used rules of thumb like “factor analysis requires 5–10 times as many subjects as variables.” 
Recent studies suggest that the required sample size depends on the number of factors, the 
number of variables associated with each factor, and how well the set of factors explains the 
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variance in the variables (Bandalos and Boehm-Kaufman, 2009). I’ll go out on a limb and say 
that if you have several hundred observations, you’re probably safe. In this chapter, we’ll look 
at artificially small problems in order to keep the output (and page count) manageable. 

We’ll start by reviewing the functions in R that can be used to perform PCA or EFA and give 
a brief overview of the steps involved. Then we’ll work carefully through two PCA examples, 
followed by an extended EFA example. A brief overview of other packages in R that can be 
used for fitting latent variable models is provided at the end of the chapter. This discussion 
includes packages for confirmatory factor analysis, structural equation modeling, 
correspondence analysis, and latent class analysis. 

14.1 Principal components and factor analysis in R 
In the base installation of R, the functions for PCA and EFA are princomp() and factanal(), 
respectively. In this chapter, we’ll focus on functions provided in the psych package. They 
offer many more useful options than their base counterparts. Additionally, the results are 
reported in a metric that will be more familiar to social scientists and more likely to match the 
output provided by corresponding programs in other statistical packages such as SAS and IBM 
SPSS.  

The psych package functions that are most relevant here are listed in table 14.1. Be sure 
to install the package before trying the examples in this chapter. 

Table 14.1 Useful factor analytic functions in the psych package 

Function Description 

principal() Principal components analysis with optional rotation 

fa() Factor analysis by principal axis, minimum residual, weighted least squares, or maximum 

likelihood 

fa.parallel() Scree plots with parallel analyses 

factor.plot() Plot the results of a factor or principal components analysis 

fa.diagram() Graph factor or principal components loading matrices 

scree() Scree plot for factor and principal components analysis 

EFA (and to a lesser degree PCA) are often confusing to new users. The reason is that they 
describe a wide range of approaches, and each approach requires several steps (and 
decisions) to achieve a final result. The most common steps are as follows: 
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1. Prepare the data. Both PCA and EFA derive their solutions from the correlations among 
the observed variables. You can input either the raw data matrix or the correlation 
matrix to the principal() and fa() functions. If raw data is input, the correlation 
matrix is automatically calculated. Be sure to screen the data for missing values before 
proceeding. By default, the psych package uses pairwise deletion when calculating 
correlations. 

2. Select a factor model. Decide whether PCA (data reduction) or EFA (uncovering latent 
structure) is a better fit for your research goals. If you select an EFA approach, you’ll 
also need to choose a specific factoring method (for example, maximum likelihood). 

3. Decide how many components/factors to extract.  
4. Extract the components/factors. 
5. Rotate the components/factors.  
6. Interpret the results.  
7. Compute component or factor scores. 

In the remainder of this chapter, we’ll carefully consider each of the steps, starting with PCA. 
At the end of the chapter, you’ll find a detailed flow chart of the possible steps in PCA/EFA 
(figure 14.7). The chart will make more sense once you’ve read through the intervening 
material. 

14.2 Principal components 
The goal of PCA is to replace a large number of correlated variables with a smaller number of 
uncorrelated variables while capturing as much information in the original variables as 
possible. These derived variables, called principal components, are linear combinations of the 
observed variables. Specifically, the first principal component 

PC = a1X1 + a2X2 + … + akXk 

is the weighted combination of the k observed variables that accounts for the most variance in 
the original set of variables. The second principal component is the linear combination that 
accounts for the most variance in the original variables, under the constraint that it’s 
orthogonal (uncorrelated) to the first principal component. Each subsequent component 
maximizes the amount of variance accounted for, while at the same time remaining 
uncorrelated with all previous components. Theoretically, you can extract as many principal 
components as there are variables. But from a practical viewpoint, you hope that you can 
approximate the full set of variables with a much smaller set of components. Let’s look at a 
simple example. 

The dataset USJudgeRatings contains lawyers’ ratings of state judges in the US Superior 
Court. The data frame contains 43 observations on 12 numeric variables. The variables are 
listed in table 14.2. 
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Table 14.2 Variables in the USJudgeRatings dataset 

Variable Description Variable Description 

CONT Number of contacts of lawyer with judge PREP Preparation for trial 

INTG Judicial integrity FAMI Familiarity with law 

DMNR Demeanor ORAL Sound oral rulings 

DILG Diligence WRIT Sound written rulings 

CFMG Case flow managing PHYS Physical ability 

DECI Prompt decisions RTEN Worthy of retention 

From a practical point of view, can you summarize the 11 evaluative ratings (INTG to RTEN) 
with a smaller number of composite variables? If so, how many will you need, and how will 
they be defined? Because the goal is to simplify the data, you’ll approach this problem using 
PCA. The data are in raw score format, and there are no missing values. Therefore, your next 
step is deciding how many principal components you’ll need.  

14.2.1 Selecting the number of components to extract 

Several criteria are available for deciding how many components to retain in a PCA. They 
include 

• Basing the number of components on prior experience and theory 
• Selecting the number of components needed to account for some threshold cumulative 

amount of variance in the variables (for example, 80%) 
• Selecting the number of components to retain by examining the eigenvalues of the k × 

k correlation matrix among the variables 

The most common approach is based on the eigenvalues. Each component is associated with 
an eigenvalue of the correlation matrix. The first PC is associated with the largest eigenvalue, 
the second PC with the second-largest eigenvalue, and so on. The Kaiser–Harris criterion 
suggests retaining components with eigenvalues greater than 1. Components with eigenvalues 
less than 1 explain less variance than contained in a single variable. In the Cattell Scree test, 
the eigenvalues are plotted against their component numbers. Such plots typically 
demonstrate a bend or elbow, and the components above this sharp break are retained. 
Finally, you can run simulations, extracting eigenvalues from random data matrices of the 
same size as the original matrix. If an eigenvalue based on real data is larger than the 
average corresponding eigenvalues from a set of random data matrices, that component is 
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retained. The approach is called parallel analysis (see Hayton, Allen, and Scarpello, 2004, for 
more details). 

You can assess all three eigenvalue criteria at the same time via the fa.parallel() 
function. For the 11 ratings (dropping the CONT variable), the necessary code is as follows: 

library(psych) 
fa.parallel(USJudgeRatings[,-1], fa="pc", n.iter=100,  
            show.legend=FALSE, main="Scree plot with parallel analysis") 
abline(h=1) 

This code produces the graph shown in figure 14.2. The plot displays the scree test based on 
the observed eigenvalues (as straight-line segments and x’s), the mean eigenvalues derived 
from 100 random data matrices (as dashed lines), and the eigenvalues greater than 1 criteria 
(as a horizontal line at y=1). The abline() function is used to add a horizontal line at y=1. 

 
Figure 14.2 Assessing the number of principal components to retain for the USJudgeRatings example. A 
scree plot (the line with x’s), eigenvalues greater than 1 criteria (horizontal line), and parallel analysis with 100 
simulations (dashed line) suggest retaining a single component. 

All three criteria suggest that a single component is appropriate for summarizing this dataset. 
Your next step is to extract the principal component using the principal() function. 
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14.2.2 Extracting principal components 

As indicated earlier, the principal() function performs a principal components analysis 
starting with either a raw data matrix or a correlation matrix. The format is 

principal(r, nfactors=, rotate=, scores=) 

where 

• r is a correlation matrix or a raw data matrix. 
• nfactors specifies the number of principal components to extract (1 by default). 
• rotate indicates the rotation to be applied (varimax by default; see section 14.2.3). 
• scores specifies whether to calculate principal-component scores (false by default). 

To extract the first principal component, you can use the code in the following listing. 

Listing 14.1 Principal components analysis of USJudgeRatings 

> library(psych) 
> pc <- principal(USJudgeRatings[,-1], nfactors=1) 
> pc 
 
Principal Components Analysis 
Call: principal(r = USJudgeRatings[, -1], nfactors=1) 
Standardized loadings based upon correlation matrix 
      PC1   h2    u2 
INTG 0.92 0.84 0.157 
DMNR 0.91 0.83 0.166 
DILG 0.97 0.94 0.061 
CFMG 0.96 0.93 0.072 
DECI 0.96 0.92 0.076 
PREP 0.98 0.97 0.030 
FAMI 0.98 0.95 0.047 
ORAL 1.00 0.99 0.009 
WRIT 0.99 0.98 0.020 
PHYS 0.89 0.80 0.201 
RTEN 0.99 0.97 0.028 
 
                 PC1 
SS loadings    10.13 
Proportion Var  0.92 
[... additional output omitted ...] 

Here, you’re inputting the raw data without the CONT variable and specifying that one 
unrotated component should be extracted. (Rotation is explained in section 14.3.3.) Because 
PCA is performed on a correlation matrix, the raw data is automatically converted to a 
correlation matrix before the components are extracted.  

The column labeled PC1 contains the component loadings, which are the correlations of the 
observed variables with the principal component(s). If you extracted more than one principal 
component, there would be columns for PC2, PC3, and so on. Component loadings are used to 
interpret the meaning of components. You can see that each variable correlates highly with 
the first component (PC1). It therefore appears to be a general evaluative dimension. 
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The column labeled h2 contains the component communalities—the amount of variance in 
each variable explained by the components. The u2 column contains the component 
uniquenesses—the amount of variance not accounted for by the components (or 1 – h2). For 
example, 80% of the variance in physical ability (PHYS) ratings is accounted for by the first 
PC, and 20% isn’t. PHYS is the variable least well represented by a one-component solution. 

The row labeled SS Loadings contains the eigenvalues associated with the components. 
The eigenvalues are the standardized variance associated with a particular component (in this 
case, the value for the first component is 10). Finally, the row labeled Proportion Var 
represents the amount of variance accounted for by each component. Here you see that the 
first principal component accounts for 92% of the variance in the 11 variables. 

Let’s consider a second example, one that results in a solution with more than one 
principal component. The dataset Harman23.cor contains data on 8 body measurements for 
305 girls. In this case, the dataset consists of the correlations among the variables rather than 
the original data (see table 14.3). 

Table 14.3 Correlations among body measurements for 305 girls (Harman23.cor) 

 Height 
Arm 
span 

Forearm 
Lower 
leg 

Weight Bitro diameter Chest girth 
Chest 
width 

Height 1.00 0.85 0.80 0.86 0.47 0.40 0.30 0.38 

Arm span 0.85 1.00 0.88 0.83 0.38 0.33 0.28 0.41 

Forearm 0.80 0.88 1.00 0.80 0.38 0.32 0.24 0.34 

Lower leg 0.86 0.83 0.8 1.00 0.44 0.33 0.33 0.36 

Weight 0.47 0.38 0.38 0.44 1.00 0.76 0.73 0.63 

Bitro diameter 0.40 0.33 0.32 0.33 0.76 1.00 0.58 0.58 

Chest girth 0.30 0.28 0.24 0.33 0.73 0.58 1.00 0.54 

Chest width 0.38 0.41 0.34 0.36 0.63 0.58 0.54 1.00 

Source: H. H. Harman, Modern Factor Analysis, Third Edition Revised, University of Chicago Press, 1976, 
Table 2.3. 
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Again, you wish to replace the original physical measurements with a smaller number of 
derived variables. You can determine the number of components to extract using the following 
code. In this case, you need to identify the correlation matrix (the cov component of the 
Harman23.cor object) and specify the sample size (n.obs): 

library(psych) 
fa.parallel(Harman23.cor$cov, n.obs=302, fa="pc", n.iter=100, 
            show.legend=FALSE, main="Scree plot with parallel analysis") 
abline(h=1) 

The resulting graph is displayed in figure 14.3.  

 
Figure 14.3 Assessing the number of principal components to retain for the body measurements example. The 
scree plot (line with x’s), eigenvalues greater than 1 criteria (horizontal line), and parallel analysis with 100 
simulations (dashed line) suggest retaining two components. 

You can see from the plot that a two-component solution is suggested. As in the first example, 
the Kaiser–Harris criteria, scree test, and parallel analysis agree. This won’t always be the 
case, and you may need to extract different numbers of components and select the solution 
that appears most useful. The next listing extracts the first two principal components from the 
correlation matrix. 
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Listing 14.2 Principal components analysis of body measurements 

> library(psych) 
> pc <- principal(Harman23.cor$cov, nfactors=2, rotate="none") 
> pc 
 
Principal Components Analysis 
Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "none") 
Standardized loadings based upon correlation matrix 
                PC1   PC2   h2    u2 
height         0.86 -0.37 0.88 0.123 
arm.span       0.84 -0.44 0.90 0.097 
forearm        0.81 -0.46 0.87 0.128 
lower.leg      0.84 -0.40 0.86 0.139 
weight         0.76  0.52 0.85 0.150 
bitro.diameter 0.67  0.53 0.74 0.261 
chest.girth    0.62  0.58 0.72 0.283 
chest.width    0.67  0.42 0.62 0.375 
 
                PC1  PC2 
SS loadings    4.67 1.77 
Proportion Var 0.58 0.22 
Cumulative Var 0.58 0.81 
 
[... additional output omitted ...] 

If you examine the PC1 and PC2 columns in listing 14.2, you see that the first component 
accounts for 58% of the variance in the physical measurements, whereas the second 
component accounts for 22%. Together, the two components account for 81% of the variance. 
The two components together account for 88% of the variance in the height variable. 

Components and factors are interpreted by examining their loadings. The first component 
correlates positively with each physical measure and appears to be a general size factor. The 
second component contrasts the first four variables (height, arm span, forearm, and lower 
leg), with the second four variables (weight, bitro diameter, chest girth, and chest width). It 
therefore appears to be a length-versus-volume factor. Conceptually, this isn’t an easy 
construct to work with. Whenever two or more components have been extracted, you can 
rotate the solution to make it more interpretable. This is the topic we’ll turn to next. 

14.2.3 Rotating principal components 

Rotations are a set of mathematical techniques for transforming the component loading matrix 
into one that’s more interpretable. They do this by “purifying” the components as much as 
possible. Rotation methods differ with regard to whether the resulting components remain 
uncorrelated (orthogonal rotation) or are allowed to correlate (oblique rotation). They also 
differ in their definition of purifying. The most popular orthogonal rotation is the varimax 
rotation, which attempts to purify the columns of the loading matrix, so that each component 
is defined by a limited set of variables (that is, each column has a few large loadings and 
many very small loadings). Applying a varimax rotation to the body measurement data, you 
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get the results provided in the next listing. You’ll see an example of an oblique rotation in 
section 14.4. 

Listing 14.3 Principal components analysis with varimax rotation 

> rc <- principal(Harman23.cor$cov, nfactors=2, rotate="varimax") 
> rc 
 
Principal Components Analysis 
Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "varimax") 
Standardized loadings based upon correlation matrix 
                RC1  RC2   h2    u2 
height         0.90 0.25 0.88 0.123 
arm.span       0.93 0.19 0.90 0.097 
forearm        0.92 0.16 0.87 0.128 
lower.leg      0.90 0.22 0.86 0.139 
weight         0.26 0.88 0.85 0.150 
bitro.diameter 0.19 0.84 0.74 0.261 
chest.girth    0.11 0.84 0.72 0.283 
chest.width    0.26 0.75 0.62 0.375 
 
                RC1  RC2 
SS loadings    3.52 2.92 
Proportion Var 0.44 0.37 
Cumulative Var 0.44 0.81 
 
[... additional output omitted ...] 

The column names change from PC to RC to denote rotated components. Looking at the 
loadings in column RC1, you see that the first component is primarily defined by the first four 
variables (length variables). The loadings in the column RC2 indicate that the second 
component is primarily defined by variables 5 through 8 (volume variables). Note that the two 
components are still uncorrelated and that together, they still explain the variables equally 
well. You can see that the rotated solution explains the variables equally well because the 
variable communalities haven’t changed. Additionally, the cumulative variance accounted for 
by the two-component rotated solution (81%) hasn’t changed. But the proportion of variance 
accounted for by each individual component has changed (from 58% to 44% for component 1 
and from 22% to 37% for component 2). This spreading out of the variance across 
components is common, and technically you should now call them components rather than 
principal components (because the variance-maximizing properties of individual components 
haven’t been retained). 

The ultimate goal is to replace a larger set of correlated variables with a smaller set of 
derived variables. To do this, you need to obtain scores for each observation on the 
components. 
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14.2.4 Obtaining principal components scores 

In the USJudgeRatings example, you extracted a single principal component from the raw 
data describing lawyers’ ratings on 11 variables. The principal() function makes it easy to 
obtain scores for each participant on this derived variable (see the next listing). 

Listing 14.4 Obtaining component scores from raw data 

> library(psych) 
> pc <- principal(USJudgeRatings[,-1], nfactors=1, score=TRUE) 
> head(pc$scores) 
                      PC1 
AARONSON,L.H.  -0.1857981 
ALEXANDER,J.M.  0.7469865 
ARMENTANO,A.J.  0.0704772 
BERDON,R.I.     1.1358765 
BRACKEN,J.J.   -2.1586211 
BURNS,E.B.      0.7669406 

The principal component scores are saved in the scores element of the object returned by the 
principal() function when the option scores=TRUE. If you wanted, you could now get the 
correlation between the number of contacts occurring between a lawyer and a judge and their 
evaluation of the judge using 

> cor(USJudgeRatings$CONT, pc$score) 
              PC1 
[1,] -0.008815895 

Apparently, there’s no relationship between the lawyer’s familiarity and their opinions! 
When the principal components analysis is based on a correlation matrix and the raw data 

aren’t available, getting principal component scores for each observation is clearly not 
possible. But you can get the coefficients used to calculate the principal components.  

In the body measurement data, you have correlations among body measurements, but you 
don’t have the individual measurements for these 305 girls. You can get the scoring 
coefficients using the code in the following listing. 

Listing 14.5 Obtaining principal component scoring coefficients 

> library(psych) 
> rc <- principal(Harman23.cor$cov, nfactors=2, rotate="varimax") 
> round(unclass(rc$weights), 2) 
                 RC1   RC2 
height          0.28 -0.05 
arm.span        0.30 -0.08 
forearm         0.30 -0.09 
lower.leg       0.28 -0.06 
weight         -0.06  0.33 
bitro.diameter -0.08  0.32 
chest.girth    -0.10  0.34 
chest.width    -0.04  0.27 

The component scores are obtained using the formulas  
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PC1 = 0.28*height + 0.30*arm.span + 0.30*forearm + 0.29*lower.leg -  
      0.06*weight - 0.08*bitro.diameter - 0.10*chest.girth -  
      0.04*chest.width  

and 

PC2 = -0.05*height - 0.08*arm.span - 0.09*forearm - 0.06*lower.leg +  
       0.33*weight + 0.32*bitro.diameter + 0.34*chest.girth +     
       0.27*chest.width 

These equations assume that the physical measurements have been standardized (mean = 0, 
sd = 1). Note that the weights for PC1 tend to be around 0.3 or 0. The same is true for PC2. 
As a practical matter, you could simplify your approach further by taking the first composite 
variable as the mean of the standardized scores for the first four variables. Similarly, you 
could define the second composite variable as the mean of the standardized scores for the 
second four variables. This is typically what I’d do in practice. 

Little Jiffy conquers the world 
There’s quite a bit of confusion among data analysts regarding PCA and EFA. One reason for this is historical and can 
be traced back to a program called Little Jiffy (no kidding). Little Jiffy was one of the most popular early programs for 
factor analysis, and it defaulted to a principal components analysis, extracting components with eigenvalues greater 
than 1 and rotating them to a varimax solution. The program was so widely used that many social scientists came to 
think of this default behavior as synonymous with EFA. Many later statistical packages also incorporated these defaults 
in their EFA programs.  
As I hope you’ll see in the next section, there are important and fundamental differences between PCA and EFA. To 
learn more about the PCA/EFA confusion, see Hayton, Allen, and Scarpello, 2004. 
 

If your goal is to look for latent underlying variables that explain your observed variables, you 
can turn to factor analysis. This is the topic of the next section. 

14.3 Exploratory factor analysis 
The goal of EFA is to explain the correlations among a set of observed variables by uncovering 
a smaller set of more fundamental unobserved variables underlying the data. These 
hypothetical, unobserved variables are called factors. (Each factor is assumed to explain the 
variance shared among two or more observed variables, so technically, they’re called common 
factors.) 

The model can be represented as 

Xi = a1F1 + a2F2 + ... + apFp + Ui 

where Xi is the ith observed variable (i = 1…k), Fj are the common factors (j = 1…p), and p < 
k. Ui is the portion of variable Xi unique to that variable (not explained by the common 
factors). The ai can be thought of as the degree to which each factor contributes to the 
composition of an observed variable. If we go back to the Harman74.cor example at the 
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beginning of this chapter, we’d say that an individual’s scores on each of the 24 observed 
psychological tests is due to a weighted combination of their ability on 4 underlying 
psychological constructs. 

Although the PCA and EFA models differ, many of the steps appear similar. To illustrate the 
process, you’ll apply EFA to the correlations among six psychological tests. One hundred 
twelve individuals were given six tests, including a nonverbal measure of general intelligence 
(general), a picture-completion test (picture), a block design test (blocks), a maze test 
(maze), a reading comprehension test (reading), and a vocabulary test (vocab). Can you 
explain the participants’ scores on these tests with a smaller number of underlying or latent 
psychological constructs?  

The covariance matrix among the variables is provided in the dataset ability.cov. You 
can transform this into a correlation matrix using the cov2cor() function: 

> options(digits=2) 
> covariances <- ability.cov$cov 
> correlations <- cov2cor(covariances) 
> correlations 
        general picture blocks maze reading vocab 
general    1.00    0.47   0.55 0.34    0.58  0.51 
picture    0.47    1.00   0.57 0.19    0.26  0.24 
blocks     0.55    0.57   1.00 0.45    0.35  0.36 
maze       0.34    0.19   0.45 1.00    0.18  0.22 
reading    0.58    0.26   0.35 0.18    1.00  0.79 
vocab      0.51    0.24   0.36 0.22    0.79  1.00 

Because you’re looking for hypothetical constructs that explain the data, you’ll use an EFA 
approach. As in PCA, the next task is to decide how many factors to extract.  

14.3.1 Deciding how many common factors to extract 

To decide on the number of factors to extract, turn to the fa.parallel() function: 

> library(psych) 
> covariances <- ability.cov$cov 
> correlations <- cov2cor(covariances) 
> fa.parallel(correlations, n.obs=112, fa="both", n.iter=100, 
              main="Scree plots with parallel analysis") 
> abline(h=c(0, 1)) 

The resulting plot is shown in figure 14.4. Notice you’ve requested that the function display 
results for both a principal-components and common-factor approach, so that you can 
compare them (fa = "both"). 

364

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 14.4 Assessing the number of factors to retain for the psychological tests example. Results for both PCA 
and EFA are present. The PCA results suggest one or two components. The EFA results suggest two factors.  

There are several things to notice in this graph. If you’d taken a PCA approach, you might 
have chosen one component (scree test, parallel analysis) or two components (eigenvalues 
greater than 1). When in doubt, it’s usually a better idea to overfactor than to underfactor. 
Overfactoring tends to lead to less distortion of the “true” solution.  

Looking at the EFA results, a two-factor solution is clearly indicated. The first two 
eigenvalues (triangles) are above the bend in the scree test and also above the mean 
eigenvalues based on 100 simulated data matrices. For EFA, the Kaiser–Harris criterion is 
number of eigenvalues above 0, rather than 1. (Most people don’t realize this, so it’s a good 
way to win bets at parties.) In the present case the Kaiser–Harris criteria also suggest two 
factors. 
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14.3.2 Extracting common factors 

Now that you’ve decided to extract two factors, you can use the fa() function to obtain your 
solution. The format of the fa() function is 

fa(r, nfactors=, n.obs=, rotate=, scores=, fm=) 

where 

• r is a correlation matrix or a raw data matrix. 
• nfactors specifies the number of factors to extract (1 by default). 
• n.obs is the number of observations (if a correlation matrix is input). 
• rotate indicates the rotation to be applied (oblimin by default). 
• scores specifies whether or not to calculate factor scores (false by default). 
• fm specifies the factoring method (minres by default). 

Unlike PCA, there are many methods of extracting common factors. They include maximum 
likelihood (ml), iterated principal axis (pa), weighted least square (wls), generalized weighted 
least squares (gls), and minimum residual (minres). Statisticians tend to prefer the 
maximum likelihood approach because of its well-defined statistical model. Sometimes, this 
approach fails to converge, in which case the iterated principal axis option often works well. To 
learn more about the different approaches, see Mulaik (2009) and Gorsuch (1983). 

For this example, you’ll extract the unrotated factors using the iterated principal axis (fm = 
"pa") approach. The results are given in the next listing. 

Listing 14.6 Principal axis factoring without rotation 

> fa <- fa(correlations, nfactors=2, rotate="none", fm="pa") 
> fa 
Factor Analysis using method =  pa 
Call: fa(r = correlations, nfactors = 2, rotate = "none", fm = "pa") 
Standardized loadings based upon correlation matrix 
         PA1   PA2   h2   u2 
general 0.75  0.07 0.57 0.43 
picture 0.52  0.32 0.38 0.62 
blocks  0.75  0.52 0.83 0.17 
maze    0.39  0.22 0.20 0.80 
reading 0.81 -0.51 0.91 0.09 
vocab   0.73 -0.39 0.69 0.31 
                PA1  PA2 
SS loadings    2.75 0.83 
Proportion Var 0.46 0.14 
Cumulative Var 0.46 0.60 
[... additional output deleted ...] 

You can see that the two factors account for 60% of the variance in the six psychological 
tests. When you examine the loadings, though, they aren’t easy to interpret. Rotating them 
should help. 
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14.3.3 Rotating factors 

You can rotate the two-factor solution from section 14.3.4 using either an orthogonal rotation 
or an oblique rotation. Let’s try both so you can see how they differ. First try an orthogonal 
rotation (in the next listing). 

Listing 14.7 Factor extraction with orthogonal rotation 

> fa.varimax <- fa(correlations, nfactors=2, rotate="varimax", fm="pa") 
> fa.varimax 
Factor Analysis using method =  pa 
Call: fa(r = correlations, nfactors = 2, rotate = "varimax", fm = "pa") 
Standardized loadings based upon correlation matrix 
         PA1  PA2   h2   u2 
general 0.49 0.57 0.57 0.43 
picture 0.16 0.59 0.38 0.62 
blocks  0.18 0.89 0.83 0.17 
maze    0.13 0.43 0.20 0.80 
reading 0.93 0.20 0.91 0.09 
vocab   0.80 0.23 0.69 0.31 
 
                PA1  PA2 
SS loadings    1.83 1.75 
Proportion Var 0.30 0.29 
Cumulative Var 0.30 0.60 
 
[... additional output omitted ...] 

Looking at the factor loadings, the factors are certainly easier to interpret. Reading and 
vocabulary load on the first factor; and picture completion, block design, and mazes load on 
the second factor. The general nonverbal intelligence measure loads on both factors. This 
suggests that the correlations among the 6 psychological tests (the manifest variables) may 
be explained by two underlying latent variables (a verbal intelligence factor and a nonverbal 
intelligence factor).  

By using an orthogonal rotation, you artificially force the two factors to be uncorrelated. 
What would you find if you allowed the two factors to correlate? You can try an oblique 
rotation such as promax (see the next listing). 

Listing 14.8 Factor extraction with oblique rotation 

> fa.promax <- fa(correlations, nfactors=2, rotate="promax", fm="pa") 
> fa.promax 
Factor Analysis using method =  pa 
Call: fa(r = correlations, nfactors = 2, rotate = "promax", fm = "pa") 
Standardized loadings based upon correlation matrix 
          PA1   PA2   h2   u2 
general  0.36  0.49 0.57 0.43 
picture -0.04  0.64 0.38 0.62 
blocks  -0.12  0.98 0.83 0.17 
maze    -0.01  0.45 0.20 0.80 
reading  1.01 -0.11 0.91 0.09 
vocab    0.84 -0.02 0.69 0.31 
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                PA1  PA2 
SS loadings    1.82 1.76 
Proportion Var 0.30 0.29 
Cumulative Var 0.30 0.60 
 
 With factor correlations of  
     PA1  PA2 
PA1 1.00 0.57 
PA2 0.57 1.00 
[... additional output omitted ...] 

Several differences exist between the orthogonal and oblique solutions. In an orthogonal 
solution, attention focuses on the factor structure matrix (the correlations of the variables with 
the factors). In an oblique solution, there are three matrices to consider: the factor structure 
matrix, the factor pattern matrix, and the factor intercorrelation matrix.  

The factor pattern matrix is a matrix of standardized regression coefficients. They give the 
weights for predicting the variables from the factors. The factor intercorrelation matrix gives 
the correlations among the factors.  

In listing 14.8, the values in the PA1 and PA2 columns constitute the factor pattern matrix. 
They’re standardized regression coefficients rather than correlations. Examination of the 
columns of this matrix is still used to name the factors (although there’s some controversy 
here). Again, you’d find a verbal and nonverbal factor.  

The factor intercorrelation matrix indicates that the correlation between the two factors is 
0.57. This is a hefty correlation. If the factor intercorrelations had been low, you might have 
gone back to an orthogonal solution to keep things simple. 

The factor structure matrix (or factor loading matrix) isn’t provided. But you can easily 
calculate it using the formula F = P*Phi, where F is the factor loading matrix, P is the factor 
pattern matrix, and Phi is the factor intercorrelation matrix. A simple function for carrying out 
the multiplication is as follows: 

fsm <- function(oblique) { 
if (class(oblique)[2]=="fa" & is.null(oblique$Phi)) { 
    warning("Object doesn't look like oblique EFA") 
} else {     
    P <- unclass(oblique$loading) 
    F <- P %*% oblique$Phi 
    colnames(F) <- c("PA1", "PA2") 
    return(F)     
} 
} 

Applying this to the example, you get 

> fsm(fa.promax) 
         PA1  PA2 
general 0.64 0.69 
picture 0.33 0.61 
blocks  0.44 0.91 
maze    0.25 0.45 
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reading 0.95 0.47 
vocab   0.83 0.46 

Now you can review the correlations between the variables and the factors. Comparing them 
to the factor loading matrix in the orthogonal solution, you see that these columns aren’t as 
pure. This is because you’ve allowed the underlying factors to be correlated. Although the 
oblique approach is more complicated, it’s often a more realistic model of the data. 

You can graph an orthogonal or oblique solution using the factor.plot() or 
fa.diagram() function. The code 

factor.plot(fa.promax, labels=rownames(fa.promax$loadings)) 

produces the graph in figure 14.5. 

 
Figure 14.5 Two-factor plot for the psychological tests in ability.cov. vocab and reading load on the first 
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factor (PA1), and blocks, picture, and maze load on the second factor (PA2). The general intelligence test 
loads on both. 

The code 

fa.diagram(fa.promax, simple=FALSE) 

produces the diagram in figure 14.6. If you let simple = TRUE, only the largest loading per 
item is displayed. It shows the largest loadings for each factor, as well as the correlations 
between the factors. This type of diagram is helpful when there are several factors. 

 
Figure 14.6 Diagram of the oblique two-factor solution for the psychological test data in ability.cov 

When you’re dealing with data in real life, it’s unlikely that you’d apply factor analysis to a 
dataset with so few variables. We’ve done it here to keep things manageable. If you’d like to 
test your skills, try factor-analyzing the 24 psychological tests contained in Harman74.cor. The 
code 

library(psych) 
fa.24tests <- fa(Harman74.cor$cov, nfactors=4, rotate="promax")  
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should get you started! 

14.3.4 Factor scores 

Compared with PCA, the goal of EFA is much less likely to be the calculation of factor scores. 
But these scores are easily obtained from the fa() function by including the score = TRUE 
option (when raw data are available). Additionally, the scoring coefficients (standardized 
regression weights) are available in the weights element of the object returned. 

For the ability.cov dataset, you can obtain the beta weights for calculating the factor 
score estimates for the two-factor oblique solution using 

> fa.promax$weights 
         [,1]  [,2] 
general 0.080 0.210 
picture 0.021 0.090 
blocks  0.044 0.695 
maze    0.027 0.035 
reading 0.739 0.044 
vocab   0.176 0.039 

Unlike component scores, which are calculated exactly, factor scores can only be estimated. 
Several methods exist. The fa() function uses the regression approach. To learn more about 
factor scores, see DiStefano, Zhu, and Mîndrila, (2009). 

Before moving on, let’s briefly review other R packages that are useful for exploratory 
factor analysis. 

14.3.5 Other EFA-related packages 

R contains a number of other contributed packages that are useful for conducting factor 
analyses. The FactoMineR package provides methods for PCA and EFA, as well as other latent 
variable models. It provides many options that we haven’t considered here, including the use 
of both numeric and categorical variables. The FAiR package estimates factor analysis models 
using a genetic algorithm that permits the ability to impose inequality restrictions on model 
parameters. The GPArotation package offers many additional factor rotation methods. Finally, 
the nFactors package offers sophisticated techniques for determining the number of factors 
underlying data.  

14.4 Other latent variable models 
EFA is only one of a wide range of latent variable models used in statistics. We’ll end this 
chapter with a brief description of other models that can be fit within R. These include models 
that test a priori theories, that can handle mixed data types (numeric and categorical), or that 
are based solely on categorical multiway tables. 

In EFA, you allow the data to determine the number of factors to be extracted and their 
meaning. But you could start with a theory about how many factors underlie a set of variables, 
how the variables load on those factors, and how the factors correlate with one another. You 
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could then test this theory against a set of collected data. The approach is called confirmatory 
factor analysis (CFA).  

CFA is a subset of a methodology called structural equation modeling (SEM). SEM allows 
you to posit not only the number and composition of underlying factors but also how these 
factors impact one another. You can think of SEM as a combination of confirmatory factor 
analyses (for the variables) and regression analyses (for the factors). The resulting output 
includes statistical tests and fit indices. There are several excellent packages for CFA and SEM 
in R. They include sem, OpenMx, and lavaan.  

The ltm package can be used to fit latent models to the items contained in tests and 
questionnaires. The methodology is often used to create large-scale standardized tests. 
Examples include the Scholastic Aptitude Test (SAT) and the Graduate Record Exam (GRE).  

Latent class models (where the underlying factors are assumed to be categorical rather 
than continuous) can be fit with the FlexMix, lcmm, randomLCA, and poLCA packages. The 
lcda package performs latent class discriminant analysis, and the lsa package performs 
latent semantic analysis, a methodology used in natural language processing. 

The ca package provides functions for simple and multiple correspondence analysis. These 
methods allow you to explore the structure of categorical variables in two-way and multiway 
tables, respectively. 

Finally, R contains numerous methods for multidimensional scaling (MDS). MDS is 
designed to detect underlying dimensions that explain the similarities and distances between a 
set of measured objects (for example, countries). The cmdscale() function in the base 
installation performs a classical MDS, whereas the isoMDS() function in the MASS package 
performs a nonmetric MDS. The vegan package also contains functions for classical and 
nonmetric MDS. 

14.5 Summary 
• Principal components analysis (PCA) a useful data-reduction method that can replace 

many correlated variables with a smaller number of uncorrelated composite variables.  
• Exploratory factor analysis (EFA) contains a broad range of methods for identifying 

latent or unobserved constructs (factors) that may underlie a set of observed or 
manifest variables. 

• While the goal of PCA is typically to summarize data and reduce its dimensionality, EFA 
can be used as a hypothesis-generating tool, useful when you’re trying to understand 
the relationships among variables. It’s often used in the social sciences for theory 
development.  

• PCA and EFA are both multistep processes that require the data analyst to make 
choices at each step. These steps are outlined in Figure 14.7. 

364

https://livebook.manning.com/book/r-in-action-third-edition/discussion


©Manning Publications Co.  To comment go to  liveBook 

 
Figure 14.7 A principal components/exploratory factor analysis decision chart  
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15  
Time series 

This chapter covers 

• Creating a time series 
• Decomposing a time series into components 
• Developing predictive models 
• Forecasting future values 

How fast is global warming occurring, and what will the impact be in 10 years? With the 
exception of repeated measures ANOVA in section 9.6, each of the preceding chapters has 
focused on cross-sectional data. In a cross-sectional dataset, variables are measured at a 
single point in time. In contrast, longitudinal data involves measuring variables repeatedly 
over time. By following a phenomenon over time, it’s possible to learn a great deal about it. 

In this chapter, we’ll examine observations that have been recorded at regularly spaced 
time intervals for a given span of time. We can arrange observations such as these into a time 
series of the form Y1, Y2, Y3, … , Yt, …, YT, where Yt represents the value of Y at time t and T is 
the total number of observations in the series. 

Consider two very different time series displayed in figure 15.1. The series on the left 
contains the quarterly earnings (dollars) per Johnson & Johnson share between 1960 and 
1980. There are 84 observations: one for each quarter over 21 years. The series on the right 
describes the monthly mean relative sunspot numbers from 1749 to 1983 recorded by the 
Swiss Federal Observatory and the Tokyo Astronomical Observatory. The sunspots time series 
is much longer, with 2,820 observations—1 per month for 235 years. 
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Figure 15.1 Time series plots for (a) Johnson & Johnson quarterly earnings per share (in dollars) from 1960 to 
1980, and (b) the monthly mean relative sunspot numbers recorded from 1749 to 1983 

Studies of time-series data involve two fundamental questions: what happened (description), 
and what will happen next (forecasting)? For the Johnson & Johnson data, you might ask 

• Is the price of Johnson & Johnson shares changing over time?  
• Are there quarterly effects, with share prices rising and falling in a regular fashion 

throughout the year?  
• Can you forecast what future share prices will be and, if so, to what degree of 

accuracy?  

For the sunspot data, you might ask  

• What statistical models best describe sunspot activity? 
• Do some models fit the data better than others?  
• Are the number of sunspots at a given time predictable and, if so, to what degree?  

The ability to accurately predict stock prices has relevance for my (hopefully) early retirement 
to a tropical island, whereas the ability to predict sunspot activity has relevance for my cell 
phone reception on said island. 

Predicting future values of a time series, or forecasting, is a fundamental human activity, 
and studies of time series data have important real-world applications. Economists use time-
series data in an attempt to understand and predict what will happen in financial markets. City 
planners use time-series data to predict future transportation demands. Climate scientists use 
time-series data to study global climate change. Corporations use time series to predict 
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product demand and future sales. Healthcare officials use time-series data to study the spread 
of disease and to predict the number of future cases in a given region. Seismologists study 
times-series data in order to predict earthquakes. In each case, the study of historical time 
series is an indispensable part of the process. Because different approaches may work best 
with different types of time series, we’ll investigate many examples in this chapter. 

There is a wide range of methods for describing time-series data and forecasting future 
values. If you work with time-series data, you’ll find that R has some of the most 
comprehensive analytical capabilities available anywhere. This chapter explores some of the 
most common descriptive and forecasting approaches and the R functions used to perform 
them. Table 15.1 lists the time-series data that you’ll analyze. They’re available with the base 
installation of R. The datasets vary greatly in their characteristics and the models that fit them 
best. 

Table 15.1 Datasets used in this chapter 

Time series Description 

AirPassengers Monthly airline passenger numbers from 1949–1960 

JohnsonJohnson Quarterly earnings per Johnson & Johnson share 

nhtemp Average yearly temperatures in New Haven, Connecticut, from 1912–1971 

Nile Flow of the river Nile 

sunspots Monthly sunspot numbers from 1749–1983 

We’ll start with methods for creating and manipulating time series, describing and plotting 
them, and decomposing them into level, trend, seasonal, and irregular (error) components. 
Then we’ll turn to forecasting, starting with popular exponential modeling approaches that use 
weighted averages of time-series values to predict future values. Next, we’ll consider a set of 
forecasting techniques called autoregressive integrated moving averages (ARIMA) models that 
use correlations among recent data points and among recent prediction errors to make future 
forecasts. Throughout, we’ll consider methods of evaluating the fit of models and the accuracy 
of their predictions. The chapter ends with a description of resources available for learning 
more about these topics. 

In order to reproduce the analyses in this chapter, be sure to install the xts, forecast, 
tseries, and directlabels packages before continuing (install.packages(c("xts", 
"forecast", "tseries", "directlabels")). 
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15.1 Creating a time-series object in R 
In order to work with a time series in R, you have to place it into a time-series object—an R 
structure that contains the observations and date specifications for the observations. Once the 
data are in a time-series object, you can use numerous functions to manipulate, model, and 
plot the data. 

R packages offers a variety of structures for holding time series (see Time series objects in 
R). In this chapter, we'll use the xts class offered by the xts package. It supports both 
regularly and irregularly spaced time series and has a wide range of function for manipulating 
time series data. 

Time series objects in R 
It is easy to get lost among the many objects R provides for holding time series data. Base R comes with ts for holding 
a single time series with regularly spaced time intervals, and mts for multiple time series with regularly spaced 
intervals. The zoo package offers a class which can hold time series with irregularly spaced intervals, and the xts 
package offers a superset of the zoo class, with more supporting functions. Other popular formats include tsibble, 
timeSeries, irts, and tis. Luckily, the tsbox package provides functions to convert a data frame into any of 
these formats and can also convert one time series format into another. 

To create a xts time series, you'll use  

library(xts) 
myseries <- xts(data, index) 
 

where data is a numeric vector at values, and index is a date vector indicating when the 
values were observed. An example is given in the following listing. The data consist of monthly 
sales figures for two years, starting in January 2018. 

Listing 15.1 Creating a time-series object 

library(xts) 
sales <- c(18, 33, 41,  7, 34, 35, 24, 25, 24, 21, 25, 20,           
           22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35) 
date  <- seq(from = as.Date("2018/1/1"),  
               to = as.Date("2019/12/1"),  
               by = "month") 
 
sales.xts <- xts(sales, date)                                            
 

Time series objects in xts format can be subset using bracket [] notation. For example, 
sales.xts["2018"] will return all data from 2018. Specifying sales.xts["2018-3/2019-5"] 
will return all data from March 2018 to May 2019.  
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There are also apply functions designed to execute a function on each distinct period of a 
time series object. They are particularly useful for aggregating a time series into larger time 
periods. The format is  

newseries <- apply.period(x, FUN, …) 

were period can be daily, weekly, monthly, quarterly, or yearly, x is an xts time series 
object, FUN is the function to be applied, and … are arguments passed to FUN.  

For example, quarterlies <- apply.quarterly(sales.xts, sum) will return a time 
series with 8 quarterly sales totals. The sum function could be replaced with mean, median, 
min, max, or any other function returning a single value. 

The autoplot() function in the forecast package can be used for plotting time series 
data as ggplot2 graphs. Listing 15.2 provides two examples. 

Listing 15.2 Plotting time-series 

library(ggplot2) 
library(forecast) 
autoplot(sales.xts)                                                      #1 
 
autoplot(sales.xts) +                                                     
  geom_line(color="blue") +                                              #2 
  scale_x_date(date_breaks="1 months",                                   #3 
               date_labels="%b %y") + 
  labs(x="", y="Sales", title="Customized Time Series Plot") + 
  theme_bw() +                                                           #4 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1), 
        panel.grid.minor.x=element_blank()) 
                                   

#1 Default graph 
#2 Set line color 
#3 Specify x-axis labels 
#4 Adjust theme 

In the first example, the autoplot() function is used to create ggplot2 graph #1. The graph is 
provided in figure 15.2. 

In the second example, the plot is modified to make it more appealing. The line color is 
changed to blue #2. The scale_x_date() function is used to provide better labels for the x-
axis #2. The data_breaks option specifies the distance between tick marks and take on 
values like "1 day", "2 weeks", "5 years" or whatever is appropriate. The date_labels 
option specifies the format for the labels. Here "%b %y" specifies month (3 letters) and year (2 
digits) with a space in between. See section 3.6 for a table of these codes. Finally, a black and 
white theme is chosen, the x-axis labels are rotated 90-dgrees, and the vertical minor grid 
lines are suppressed #4.  The customized graph is displayed in figure 15.3. 
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Figure 15.2 Time-series plot for the sales data in listing 15.1. This is the default format provided by the 
autoplot() function. 

 
Figure 15.3. Times-series plot for the sales data in listing 15.1. The graph is customized with color, better 
labeling and cleaner theme elements. 
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The time series examples that come with base R (table 15.1) are actually in ts format, but 
luckily the functions introduced in this chapter can handle time series in either ts or xts 
format. 

15.2 Smoothing and seasonal decomposition 
Just as analysts explore a dataset with descriptive statistics and graphs before attempting to 
model the data, describing a time series numerically and visually should be the first step 
before attempting to build complex models. In this section, we’ll look at smoothing a time 
series to clarify its general trend and decomposing a time series in order to observe any 
seasonal effects.  

15.2.1 Smoothing with simple moving averages 

The first step when investigating a time series is to plot it, as in listing 15.1. Consider the Nile 
time series. It records the annual flow of the river Nile at Ashwan from 1871–1970. A plot of 
the series can be seen in the upper-left panel of figure 15.3. The time series appears to be 
decreasing, but there is a great deal of variation from year to year. 

Time series typically have a significant irregular or error component. In order to discern 
any patterns in the data, you’ll frequently want to plot a smoothed curve that damps down 
these fluctuations. One of the simplest methods of smoothing a time series is to use simple 
moving averages. For example, each data point can be replaced with the mean of that 
observation and one observation before and after it. This is called a centered moving average. 
A centered moving average is defined as  

 
( ) ( )/ 2 1t t q t t qS Y Y Y q− += + + + + + 

 

where St is the smoothed value at time t and k = 2q + 1 is the number of observations that 
are averaged. The k value is usually chosen to be an odd number (3 in this example). By 
necessity, when using a centered moving average, you lose the   q observations at each end 
of the series. 

Several functions in R can provide a simple moving average, including SMA() in the TTR 
package, rollmean() in the zoo package, and ma() in the forecast package. Here, you’ll use 
the ma() function to smooth the Nile time series that comes with the base R installation. 

The code in the next listing plots the raw time series and smoothed versions using k equal 
to 3, 7, and 15. The plots are given in figure 15.3. 

Listing 15.3 Simple moving averages 

library(forecast) 
library(ggplot2) 
 
theme_set(theme_bw()) 
ylim <- c(min(Nile), max(Nile)) 
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autoplot(Nile) + 
  ggtitle("Raw time series") + 
  scale_y_continuous(limits=ylim) 
 
autoplot(ma(Nile, 3)) +  
  ggtitle("Simple Moving Averages (k=3)") + 
  scale_y_continuous(limits=ylim) 
 
autoplot(ma(Nile, 7)) + 
  ggtitle("Simple Moving Averages (k=7)") + 
  scale_y_continuous(limits=ylim) 
 
autoplot(ma(Nile, 15)) + 
  ggtitle("Simple Moving Averages (k=15)") + 
  scale_y_continuous(limits=ylim) 
 

As k increases, the plot becomes increasingly smoothed. The challenge is to find the value of k 
that highlights the major patterns in the data, without under- or over-smoothing. This is more 
art than science, and you’ll probably want to try several values of k before settling on one. 
From the plots in figure 15.4, there certainly appears to have been a drop in river flow 
between 1892 and 1900. Other changes are open to interpretation. For example, there may 
have been a small increasing trend between 1941 and 1961, but this could also have been a 
random variation. 

 
Figure 15.4 The Nile time series measuring annual river flow at Ashwan from 1871–1970 (upper left). The other 
plots are smoothed versions using simple moving averages at three smoothing levels (k=3, 7, and 15). 
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For time-series data with a periodicity greater than one (that is, with a seasonal component), 
you’ll want to go beyond a description of the overall trend. Seasonal decomposition can be 
used to examine both seasonal and general trends. 

15.2.2 Seasonal decomposition 

Time-series data that have a seasonal aspect (such as monthly or quarterly data) can be 
decomposed into a trend component, a seasonal component, and an irregular component. The 
trend component captures changes in level over time. The seasonal component captures 
cyclical effects due to the time of year. The irregular (or error) component captures those 
influences not described by the trend and seasonal effects. 

The decomposition can be additive or multiplicative. In an additive model, the components 
sum to give the values of the time series. Specifically, 

t t t tY Trend Seasonal Irregular= + +  

where the observation at time t is the sum of the contributions of the trend at time t, the 
seasonal effect at time t, and an irregular effect at time t.  

In a multiplicative model, given by the equation 
* *t t t tY Trend Seasonal Irregular=  

the trend, seasonal, and irregular influences are multiplied. Examples are given in figure 15.5. 
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Figure 15.5 Time-series examples consisting of different combinations of trend, seasonal, and irregular 
components 

In the first plot (a), there is neither a trend nor a seasonal component. The only influence 
is a random fluctuation around a given level. In the second plot (b), there is an upward trend 
over time, as well as random fluctuations. In the third plot (c), there are seasonal effects and 
random fluctuations, but no overall trend away from a horizontal line. In the fourth plot (d), all 
three components are present: an upward trend, seasonal effects, and random fluctuations. 
You also see all three components in the final plot (e), but here they combine in a 
multiplicative way. Notice how the variability is proportional to the level: as the level 
increases, so does the variability. This amplification (or possible damping) based on the 
current level of the series strongly suggests a multiplicative model. 
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An example may make the difference between additive and multiplicative models clearer. 
Consider a time series that records the monthly sales of motorcycles over a 10-year period. In 
a model with an additive seasonal effect, the number of motorcycles sold tends to increase by 
500 in November and December (due to the Christmas rush) and decrease by 200 in January 
(when sales tend to be down). The seasonal increase or decrease is independent of the current 
sales volume.  

In a model with a multiplicative seasonal effect, motorcycle sales in November and 
December tend to increase by 20% and decrease in January by 10%. In the multiplicative 
case, the impact of the seasonal effect is proportional to the current sales volume. This isn’t 
the case in an additive model. In many instances, the multiplicative model is more realistic. 

A popular method for decomposing a time series into trend, seasonal, and irregular 
components is seasonal decomposition by loess smoothing. In R, this can be accomplished 
with the stl() function. The format is

stl(ts, s.window=, t.window=) 

where ts is the time series to be decomposed, s.window controls how fast the seasonal
effects can change over time, and t.window controls how fast the trend can change over time.
Setting s.window="periodic" forces seasonal effects to be identical across years. Only the ts
and s.window parameters are required. See help(stl) for details.

The stl() function can only handle additive models, but this isn't a serious limitation. 
Multiplicative models can be transformed into additive models using a log transformation: 

log( ) log( * * )

log( ) log( ) log( )
t t t t

t t t

Y Trend Seasonal Irregular

Trend Seasonal Irregular

=

= + +

After fitting the additive model to the log transformed series, the results can be back-
transformed to the original scale. Let's look at an example. 

The time series AirPassengers comes with a base R installation and describes the monthly
totals (in thousands) of international airline passengers between 1949 and 1960. A plot of the 
data is given in the top of figure 15.6. From the graph, it appears that variability of the series 
increases with the level, suggesting a multiplicative model.  

The plot in the lower portion of figure 15.6 displays the time series created by taking the 
log of each observation. The variance has stabilized, and the logged series looks like an 
appropriate candidate for an additive decomposition. This is carried out using the stl()
function in the following listing. 
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Figure 15.6 Plot of the AirPassengers time series (top). The time series contains the monthly totals (in 
thousands) of international airline passengers between 1949 and 1960. The log-transformed time series 
(bottom) stabilizes the variance and fits an additive seasonal decomposition model better. 

Listing 15.4 Seasonal decomposition using stl() 

> library(forecast) 
> library(ggplot2) 
> autoplot(AirPassengers)                                    #1 
> lAirPassengers <- log(AirPassengers) 
> autoplot(lAirPassengers, ylab="log(AirPassengers)") 
 
> fit <- stl(lAirPassengers, s.window="period")              #2 
> autoplot(fit) 
 
> fit$time.series                                            #3 
 
         seasonal trend  remainder 
Jan 1949 -0.09164 4.829 -0.0192494 
Feb 1949 -0.11403 4.830  0.0543448 
Mar 1949  0.01587 4.831  0.0355884 
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Apr 1949 -0.01403 4.833  0.0404633 
May 1949 -0.01502 4.835 -0.0245905 
Jun 1949  0.10979 4.838 -0.0426814 
Jul 1949  0.21640 4.841 -0.0601152 
... output omitted ... 
 
> exp(fit$time.series) 
 
         seasonal trend remainder 
Jan 1949   0.9124 125.1    0.9809 
Feb 1949   0.8922 125.3    1.0558 
Mar 1949   1.0160 125.4    1.0362 
Apr 1949   0.9861 125.6    1.0413 
May 1949   0.9851 125.9    0.9757 
Jun 1949   1.1160 126.2    0.9582 
Jul 1949   1.2415 126.6    0.9417 
 
... output omitted ... 

#1 Plots the time series 
#2 Decomposes the time series 
#3 Components for each observation 

First, the time series is plotted and transformed #1. A seasonal decomposition is performed 
and saved in an object called fit #2. Plotting the results gives the graph in figure 15.6. The 
graph shows the time series, seasonal, trend, and irregular components from 1949 to 1960. 
Note that the seasonal components have been constrained to remain the same across each 
year (using the s.window="period" option). The trend is monotonically increasing, and the 
seasonal effect suggests more passengers in the summer (perhaps during vacations). The 
grey bars on the right are magnitude guides—each bar represents the same magnitude. This is 
useful because the y-axes are different for each graph. 
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Figure 15.6 A seasonal decomposition of the logged AirPassengers time series using the stl() function. 
The time series (data) is decomposed into seasonal, trend, and irregular components. 

The object returned by the stl() function contains a component called time.series that 
contains the trend, season, and irregular portion of each obser-vation #3. In this case, 
fit$time.series is based on the logged time series. exp(fit$time.series) converts the 
decomposition back to the original metric. Examining the seasonal effects suggests that the 
number of passengers decreased by 11% in February (with a multiplier of .89) and increased 
by 24% in July (a multiplier of 1.24).  

The forecast package provides additional tools for visualizing the seasonal decomposition. 
Listing 15.5 demonstrates the creation a month plot and seasonal plot. 

 

Listing 15.5 Month and season plots 

library(forecast) 
library(ggplot2) 
library(directlabels) 
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ggmonthplot(AirPassengers)  +                          #1 
  labs(title="Month plot: AirPassengers",  
       x="",  
       y="Passengers (thousands)") 
 
p <- ggseasonplot(AirPassengers) + geom_point() +      #2 
  labs(title="Seasonal plot: AirPassengers", 
       x="", 
       y="Passengers (thousands)") 
direct.label(p) 

#1 Monthplot 
#2 Seasonplot 
 

 
Figure 15.7 A month plot of AirPassenger time-series. The month plot displays the subseries for each month 
(all January values from 1949 to 1960 connected, all February values connected, and so on), along with the 
average of each subseries. There is a uniform increasing trend for each month, and the greatest number of 
passengers tend to fly in July and August.  
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Figure 15.8 A season plot (bottom) for the AirPassengers time series. Each shows an increasing trend and 
similar seasonal pattern year to year. 

The month plot (Figure 15.7) displays the subseries for each month (all January values 
connected, all February values connected, and so on), along with the average of each 
subseries. From this graph, it appears that the trend is increasing for each month in a roughly 
uniform way. Additionally, the greatest number of passengers occurs in July and August.  

The season plot (Figure 15.8) displays the subseries by year. Again you see a similar 
pattern, with increases in passengers each year, and the same seasonal pattern. By default, 
the ggplot2 package would create a legend for the year variable.  The directlabels package 
is used to place the year labels directly on the graph, next to each line in the time series.  

Note that although you’ve described the time series, you haven’t predicted any future 
values. In the next section, we’ll consider the use of exponential models for forecasting 
beyond the available data. 

15.3 Exponential forecasting models 
Exponential models are some of the most popular approaches to forecasting the future values 
of a time series. They’re simpler than many other types of models, but they can yield good 
short-term predictions in a wide range of applications. They differ from each other in the 
components of the time series that are modeled. A simple exponential model (also called a 
single exponential model) fits a time series that has a constant level and an irregular 
component at time i but has neither a trend nor a seasonal component. A double exponential 
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model (also called a Holt exponential smoothing) fits a time series with both a level and a 
trend. Finally, a triple exponential model (also called a Holt-Winters exponential smoothing) 
fits a time series with level, trend, and seasonal components.  

Exponential models can be fit with ets() function that comes with the forecast package. 
The format of the ets() function is 

ets(ts, model="ZZZ")  

where ts is a time series and the model is specified by three letters. The first letter denotes 
the error type, the second letter denotes the trend type, and the third letter denotes the 
seasonal type. Allowable letters are A for additive, M for multiplicative, N for none, and Z for 
automatically selected. Examples of common models are given in table 15.2. 

Table 15.2 Functions for fitting simple, double, and triple exponential forecasting models 

Type Parameters fit Functions 

simple level ets(ts, model="ANN") 

ses(ts) 

double level, slope ets(ts, model="AAN") 

holt(ts) 

triple level, slope, seasonal ets(ts, model="AAA") 

hw(ts) 

The ses(), holt(), and hw() functions are convenience wrappers to the ets() function with 
prespecified defaults. First we’ll look at the most basic exponential model: simple exponential 
smoothing.  

15.3.1 Simple exponential smoothing 

Simple exponential smoothing uses a weighted average of existing time-series values to make 
a short-term prediction of future values. The weights are chosen so that observations have an 
exponentially decreasing impact on the average as you go back in time.  

The simple exponential smoothing model assumes that an observation in the time series 
can be described by 

t tY level irregular= +
 

The prediction at time Yt+1 (called the 1-step ahead forecast) is written as 

1 0 1 1 2 2t t t tY c Y c Y c Y+ − −= + + + 
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where (1 ) , 0,1, 2, … and 0 1.i

ic iα α α= − = ≤ ≤  The ci weights sum to one, and the 1-step 
ahead forecast can be seen to be a weighted average of the current value and all past values 
of the time series. The alpha (α) parameter controls the rate of decay for the weights. The 
closer alpha is to 1, the more weight is given to recent observations. The closer alpha is to 0, 
the more weight is given to past observations. The actual value of alpha is usually chosen by 
computer in order to optimize a fit criterion. A common fit criterion is the sum of squared 
errors between the actual and predicted values. An example will help clarify these ideas. 

The nhtemp time series contains the mean annual temperature in degrees Fahrenheit in 
New Haven, Connecticut, from 1912 to 1971. A plot of the time series can be seen as the line 
in figure 15.9.  

There is no obvious trend, and the yearly data lack a seasonal component, so the simple 
exponential model is a reasonable place to start. The code for making a 1-step ahead forecast 
using the ses() function is given next. 

Listing 15.6 Simple exponential smoothing 

> library(forecast) 
> fit <- ets(nhtemp, model="ANN")                             #1 
> fit 
 
ETS(A,N,N)  
 
Call: 
 ets(y = nhtemp, model = "ANN")  
 
  Smoothing parameters: 
    alpha = 0.1819  
 
  Initial states: 
    l = 50.2762  
 
  sigma:  1.1455 
 
     AIC     AICc      BIC  
265.9298 266.3584 272.2129  
 
> forecast(fit, 1)                                              #2 
 
     Point Forecast  Lo 80  Hi 80  Lo 95  Hi 95 
1972          51.87 50.402 53.338 49.625 54.115 
 
> autoplot(forecast(fit, 1)) + 
  labs(x = "Year",  
       y = expression(paste("Temperature (", degree*F,")",)), 
       title = "New Haven Annual Mean Temperature") 
 
> accuracy(fit)                                                  #3                                                           
 
                ME  RMSE   MAE  MPE  MAPE   MASE 
Training set 0.146 1.126 0.895 0.242 1.749 0.751  
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#1 Fits the model 
#2 1-step ahead forecast 
#3 Prints accuracy measures 

The ets(mode="ANN") statement fits the simple exponential model to the nhtemp time series 
#1. The A indicates that the errors are additive, and the NN indicates that there is no trend and 
no seasonal component. The relatively low value of alpha (0.18) indicates that distant as well 
as recent observations are being considered in the forecast. This value is automatically chosen 
to maximize the fit of the model to the given dataset. 

The forecast() function is used to predict the time series k steps into the future. The 
format is forecast(fit, k). The 1-step ahead forecast for this series is 51.9°F with a 95% 
confidence interval (49.6°F to 54.1°F) #2. The time series, the forecasted value, and the 80% 
and 95% confidence intervals are plotted in figure 15.8 #3. 

 
Figure 15.9. Average yearly temperatures in New Haven, Connecticut; and a 1-step ahead prediction from a 
simple exponential forecast using the ets() function 

The forecast package also provides an accuracy() function that displays the most 
popular predictive accuracy measures for time-series forecasts #3. A description of each is 
given in table 15.3. The et represent the error or irregular component of each observation 
( )ˆ

i i
Y Y− . 
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Table 15.3 Predictive accuracy measures 

Measure Abbreviation Definition 

Mean error  ME mean( et )  

Root mean squared error RMSE sqrt( mean( et2) ) 

Mean absolute error MAE mean( | et | ) 

Mean percentage error MPE mean( 100 * et / Yt ) 

Mean absolute percentage error MAPE mean( | 100 * et / Yt | ) 

Mean absolute scaled error MASE mean( | qt | ) where  

qt = et / ( 1/(T-1) * sum( | yt – yt-1| ) ), T is the number of 

observations, and the sum goes from t=2 to t=T 

The mean error and mean percentage error may not be that useful, because positive and 
negative errors can cancel out. The RMSE gives the square root of the mean square error, 
which in this case is 1.13°F. The mean absolute percentage error reports the error as a 
percentage of the time-series values. It’s unit-less and can be used to compare prediction 
accuracy across time series. But it assumes a measurement scale with a true zero point (for 
example, number of passengers per day). Because the Fahrenheit scale has no true zero, you 
can’t use it here. The mean absolute scaled error is the most recent accuracy measure and is 
used to compare the forecast accuracy across time series on different scales. There is no one 
best measure of predictive accuracy. The RMSE is certainly the best known and often cited. 

Simple exponential smoothing assumes the absence of trend or seasonal components. The 
next section considers exponential models that can accommodate both. 

15.3.2 Holt and Holt-Winters exponential smoothing 

The Holt exponential smoothing approach can fit a time series that has an overall level and a 
trend (slope). The model for an observation at time t is 

*t tY level slope t irregular= + +
 

An alpha smoothing parameter controls the exponential decay for the level, and a beta 
smoothing parameter controls the exponential decay for the slope. Again, each parameter 
ranges from 0 to 1, with larger values giving more weight to recent observations. 
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The Holt-Winters exponential smoothing approach can be used to fit a time series that has 
an overall level, a trend, and a seasonal component. Here, the model is  

*t t tY level slope t s irregular= + + +  

where st represents the seasonal influence at time t. In addition to alpha and beta parameters, 
a gamma smoothing parameter controls the exponential decay of the seasonal component. 
Like the others, it ranges from 0 to 1, and larger values give more weight to recent 
observations in calculating the seasonal effect. 

In section 15.2, you decomposed a time series describing the monthly totals (in log 
thousands) of international airline passengers into additive trend, seasonal, and irregular 
components. Let’s use an exponential model to predict future travel. Again, you’ll use log 
values so that an additive model fits the data. The code in the following listing applies the 
Holt-Winters exponential smoothing approach to predicting the next five values of the 
AirPassengers time series. 

Listing 15.7 Exponential smoothing with level, slope, and seasonal components 

> library(forecast) 
> fit <- ets(log(AirPassengers), model="AAA")       
> fit 
 
ETS(A,A,A)  
 
Call: 
 ets(y = log(AirPassengers), model = "AAA")  
 
    Smoothing parameters: 
    alpha = 0.6975  
    beta  = 0.0031  
    gamma = 1e-04  
 
  Initial states: 
    l = 4.7925  
    b = 0.0111  
    s = -0.1045 -0.2206 -0.0787 0.0562 0.2049 0.2149 
           0.1146 -0.0081 -0.0059 0.0225 -0.1113 -0.0841 
 
  sigma:  0.0383 
 
    AIC    AICc     BIC  
-207.17 -202.31 -156.68  
 
>accuracy(fit) 
 
                     ME    RMSE      MAE       MPE    MAPE    MASE 
Training set -0.0018307 0.03607 0.027709 -0.034356 0.50791 0.22892 
> pred <- forecast(fit, 5)                                          #2 
> pred 
         Point Forecast  Lo 80  Hi 80  Lo 95  Hi 95 
Jan 1961         6.1093 6.0603 6.1584 6.0344 6.1843 
Feb 1961         6.0925 6.0327 6.1524 6.0010 6.1841 
Mar 1961         6.2366 6.1675 6.3057 6.1310 6.3423 
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Apr 1961         6.2185 6.1412 6.2958 6.1003 6.3367 
May 1961         6.2267 6.1420 6.3115 6.0971 6.3564 
 
> autoplot(pred) + 
  labs(title = "Forecast for Air Travel", 
       y = "Log(AirPassengers)",  
       x ="Time") 
 
> pred$mean <- exp(pred$mean)                                        #3                              
> pred$lower <- exp(pred$lower)                                      #3 
> pred$upper <- exp(pred$upper)                                      #3 
> p <- cbind(pred$mean, pred$lower, pred$upper) 
> dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95") 
> p                                                              
                                                          
           mean  Lo 80  Lo 95  Hi 80  Hi 95 
Jan 1961 450.04 428.51 417.53 472.65 485.08 
Feb 1961 442.54 416.83 403.83 469.85 484.97 
Mar 1961 511.13 477.01 459.88 547.69 568.10 
Apr 1961 501.97 464.63 446.00 542.30 564.95 
May 1961 506.10 464.97 444.57 550.87 576.15 

#1 Smoothing parameters 
#2 Future forecasts 
#3 Makes forecasts in the original scale 

The smoothing parameters for the level (.70), trend (.0004), and seasonal components 
(.003) are given in #1. The low value for the trend (.0001) doesn’t mean there is no slope; it 
indicates that the slope estimated from early observations didn’t need to be updated. 

The forecast() function produces forecasts for the next five months #2 and is plotted in 
figure 15.9. Because the predictions are on a log scale, exponentiation is used to get the 
predictions in the original metric: numbers (in thousands) of passengers #3. The matrix 
pred$mean contains the point forecasts, and the matrices pred$lower and pred$upper contain 
the 80% and 95% lower and upper confidence limits, respectively. The exp() function is used 
to return the predictions to the original scale, and cbind() creates a single table. Thus the 
model predicts 509,200 passengers in March, with a 95% confidence band ranging from 
454,900 to 570,000.  
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Figure 15.10 Five-year forecast of log(number of international airline passengers in thousands) based on a Holt-
Winters exponential smoothing model. Data are from the AirPassengers time series. 

15.3.3 The ets() function and automated forecasting 

The ets() function has additional capabilities. You can use it to fit exponential models that 
have multiplicative components, add a dampening component, and perform automated 
forecasts. Let’s consider each in turn. 

In the previous section, you fit an additive exponential model to the log of the 
AirPassengers time series. Alternatively, you could fit a multiplicative model to the original 
data. The function call would be as ets(AirPassengers, model="MAM"). The trend remains 
additive, but the seasonal and irregular components are assumed to be multiplicative. By 
using a multiplicative model in this case, the accuracy statistics and forecasted values are 
reported in the original metric (thousands of passengers)—a decided advantage.  

The ets() function can also fit a damping component. Time-series predictions often 
assume that a trend will continue up forever (housing market, anyone?). A damping 
component forces the trend to a horizontal asymptote over a period of time. In many cases, a 
damped model makes more realistic predictions.  

Finally, you can invoke the ets() function to automatically select a best-fitting model for 
the data. Let’s fit an automated exponential model to the Johnson & Johnson data described in 
the introduction to this chapter. The following code allows the software to select a best-fitting 
model.  
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Listing 15.8 Automatic exponential forecasting with ets() 

> library(forecast) 
> fit <- ets(JohnsonJohnson) 
> fit 
 
ETS(M,M,M)  
 
Call: 
 ets(y = JohnsonJohnson)  
 
    Smoothing parameters: 
    alpha = 0.2776  
    beta  = 0.0636  
    gamma = 0.5867  
 
  Initial states: 
    l = 0.6276  
    b = 0.0165  
    s = -0.2293 0.1913 -0.0074 0.0454 
 
  sigma:  0.0921 
 
   AIC   AICc    BIC  
163.64 166.07 185.52  
  
> autoplot(forecast(fit)) + 
  labs(x = "Time", 
       y = "Quarterly Earnings (Dollars)", 
       title="Johnson and Johnson Forecasts") 

Because no model is specified, the software performs a search over a wide array of models to 
find one that minimizes the fit criterion (log-likelihood by default). The selected model is one 
that has multiplicative trend, seasonal, and error components. The plot, along with forecasts 
for the next eight quarters (the default in this case), is given in figure 15.11. 
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Figure 15.11 Multiplicative exponential smoothing forecast with trend and seasonal components. The forecasts 
are a dashed line, and the 80% and 95% confidence intervals are provided in light and dark blue, respectively. 

As stated earlier, exponential time-series modeling is popular because it can give good short-
term forecasts in many situations. A second approach that is also popular is the Box-Jenkins 
methodology, commonly referred to as ARIMA models. These are described in the next 
section. 

15.4 ARIMA forecasting models 
In the autoregressive integrated moving average (ARIMA) approach to forecasting, predicted 
values are a linear function of recent actual values and recent errors of prediction (residuals). 
ARIMA is a complex approach to forecasting. In this section, we’ll limit discussion to ARIMA 
models for non-seasonal time series.  

Before describing ARIMA models, a number of terms need to be defined, including lags, 
autocorrelation, partial autocorrelation, differencing, and stationarity. Each is considered in the 
next section.  

15.4.1 Prerequisite concepts 

When you lag a time series, you shift it back by a given number of observations. Consider the 
first few observations from the Nile time series, displayed in table 15.4. Lag 0 is the unshifted 
time series. Lag 1 is the time series shifted one position to the left. Lag 2 shifts the time series 
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two positions to the left, and so on. Time series can be lagged using the function lag(ts,k), 
where ts is the time series and k is the number of lags. 

Table 15.4 The Nile time series at various lags 

Lag 1869 1870 1871 1872 1873 1874 1875 … 

0   1120 1160 963 1210 1160 … 

1  1120 1160 963 1210 1160 1160 … 

2 1120 1160 963 1210 1160 1160 813 … 

Autocorrelation measures the way observations in a time series relate to each other. ACk is the 
correlation between a set of observations (Yt) and observations k periods earlier (Yt-k). So AC1 
is the correlation between the Lag 1 and Lag 0 time series, AC2 is the correlation between the 
Lag 2 and Lag 0 time series, and so on. Plotting these correlations (AC1, AC2, …, ACk) produces 
an autocorrelation function (ACF) plot. The ACF plot is used to select appropriate parameters 
for the ARIMA model and to assess the fit of the final model.  

An ACF plot can be produced with the Acf() function in the forecast package. The format 
is Acf(ts), where ts is the original time series. The ACF plot for the Nile time series, with 
k=1 to 18, is provided a little later, in the top half of figure 15.13. 

A partial autocorrelation is the correlation between Yt and Yt-k with the effects of all Y 
values between the two (Yt-1, Yt-2, …, Yt-k+1) removed. Partial autocorrelations can also be 
plotted for multiple values of k. The PACF plot can be generated with the Pacf() function in 
the forecast package. The function call is Pacf(ts), where ts is the time series to be 
assessed. The PACF plot is also used to determine the most appropriate parameters for the 
ARIMA model. The results for the Nile time series are given in the bottom half of figure 15.13. 

ARIMA models are designed to fit stationary time series (or time series that can be made 
stationary). In a stationary time series, the statistical properties of the series don’t change 
over time. For example, the mean and variance of Yt are constant. Additionally, the 
autocorrelations for any lag k don’t change with time.  

It may be necessary to transform the values of a time series in order to achieve constant 
variance before proceeding to fitting an ARIMA model. The log transformation is often useful 
here, as you saw in section 15.1.3. Other transformations, such as the Box-Cox 
transformation described in section 8.5.2, may also be helpful. 

Because stationary time series are assumed to have constant means, they can’t have a 
trend component. Many non-stationary time series can be made stationary through 
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differencing. In differencing, each value of a time series Yt is replaced with Yt-1 – Yt. 
Differencing a time series once removes a linear trend. Differencing it a second time removes 
a quadratic trend. A third time removes a cubic trend. It’s rarely necessary to difference more 
than twice.  

You can difference a time series with the diff() function. The format is diff(ts, 
differences=d), where d indicates the number of times the time series ts is differenced. The 
default is d=1. The ndiffs() function in the forecast package can be used to help determine 
the best value of d. The format is ndiffs(ts). 

Stationarity is often evaluated with a visual inspection of a time-series plot. If the variance 
isn’t constant, the data are transformed. If there are trends, the data are differenced. You can 
also use a statistical procedure called the Augmented Dickey-Fuller (ADF) test to evaluate the 
assumption of stationarity. In R, the function adf.test() in the tseries package performs 
the test. The format is adf.test(ts), where ts is the time series to be evaluated. A 
significant result suggests stationarity.  

To summarize, ACF and PCF plots are used to determine the parameters of ARIMA models. 
Stationarity is an important assumption, and transformations and differencing are used to help 
achieve stationarity. With these concepts in hand, we can now turn to fitting models with an 
autoregressive (AR) component, a moving averages (MA) component, or both components 
(ARMA). Finally, we’ll examine ARIMA models that include ARMA components and differencing 
to achieve stationarity (Integration). 

15.4.2 ARMA and ARIMA models 

In an autoregressive model of order p, each value in a time series is predicted from a linear 
combination of the previous p values 

1 1 2 2( ) : t t t p t p tAR p Y Y Y Yµ β β β ε
− − −

= + + + + +  

where Yt is a given value of the series, µ is the mean of the series, the βs are the weights, and 
εt is the irregular component. In a moving average model of order q, each value in the time 
series is predicted from a linear combination of q previous errors. In this case 

1 1 2 2( ) : t t t p t q tMA q Y µ θ θ θ εε ε ε
− − −

= + + + + +  

where the εs are the errors of prediction and the θs are the weights. (It’s important to note 
that the moving averages described here aren’t the simple moving averages described in 
section 15.1.2.) 

Combining the two approaches yields an ARMA(p, q) model of the form 

1 1 2 2 1 1 2 2t t t p t p t t p t q tY Y Y Yµ β β β θ θ θ εε ε ε
− − − − − −

= + + + + − +− − −   

that predicts each value of the time series from the past p values and q residuals.  
An ARIMA(p, d, q) model is a model in which the time series has been differenced d times, 

and the resulting values are predicted from the previous p actual values and q previous errors. 
The predictions are “un-differenced” or integrated to achieve the final prediction. 
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The steps in ARIMA modeling are as follows: 

1. Ensure that the time series is stationary. 
2. Identify a reasonable model or models (possible values of p and q). 
3. Fit the model. 
4. Evaluate the model’s fit, including statistical assumptions and predictive accuracy. 
5. Make forecasts. 

Let’s apply each step in turn to fit an ARIMA model to the Nile time series. 

ENSURING THAT THE TIME SERIES IS STATIONARY 

First you plot the time series and assess its stationarity (see listing 15.7 and the top half of 
figure 15.11). The variance appears to be stable across the years observed, so there’s no need 
for a transformation. There may be a trend, which is supported by the results of the ndiffs() 
function. 

Listing 15.9 Transforming the time series and assessing stationarity 

> library(forecast) 
> library(tseries) 
> autoplot(Nile) 
> ndiffs(Nile) 
 
[1] 1 
 
> dNile <- diff(Nile)                                               
> autoplot(dNile) 
> adf.test(dNile) 
 
    Augmented Dickey-Fuller Test 
 
data:  dNile  
Dickey-Fuller = -6.5924, Lag order = 4, p-value = 0.01 
alternative hypothesis: stationary  
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Figure 15.12 Time series displaying the annual flow of the river Nile at Ashwan from 1871 to 1970 (top) along 
with the times series differenced once (bottom). The differencing removes the decreasing trend evident in the 
original plot. 

The series is differenced once (lag=1 is the default) and saved as dNile. The differenced time 
series is plotted in the bottom half of figure 15.12 and certainly looks more stationary. 
Applying the ADF test to the differenced series suggest that it’s now stationary, so you can 
proceed to the next step. 

IDENTIFYING ONE OR MORE REASONABLE MODELS 

Possible models are selected based on the ACF and PACF plots: 

autoplot(Acf(dNile)) 
autoplot(Pacf(dNile)) 

The resulting plots are given in figure 15.13. 
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Figure 15.13 Autocorrelation and partial autocorrelation plots for the differenced Nile time series 

The goal is to identify the parameters p, d, and q. You already know that d=1 from the 
previous section. You get p and q by comparing the ACF and PACF plots with the guidelines 
given in table 15.5. 

Table 15.5 Guidelines for selecting an ARIMA model 

Model ACF PACF 

ARIMA(p, d, 0) Trails off to zero Zero after lag p 

ARIMA(0, d, q) Zero after lag q Trails off to zero 
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ARIMA(p, d, q) Trails off to zero Trails off to zero 

The results in table 15.5 are theoretical, and the actual ACF and PACF may not match this 
exactly. But they can be used to give a rough guide of reasonable models to try. For the Nile 
time series in figure 15.13, there appears to be one large autocorrelation at lag 1, and the 
partial autocorrelations trail off to zero as the lags get bigger. This suggests trying an 
ARIMA(0, 1, 1) model. 

FITTING THE MODEL(S) 

The ARIMA model is fit with the Arima() function. The format is Arima(ts, order=c(q, d, 
q)). The result of fitting an ARIMA(0, 1, 1) model to the Nile time series is given in the 
following listing.  

Listing 15.8 Fitting an ARIMA model 

> library(forecast) 
> fit <- arima(Nile, order=c(0,1,1))                                  
> fit 
 
Series: Nile  
ARIMA(0,1,1)                     
 
Coefficients: 
          ma1 
      -0.7329 
s.e.   0.1143 
 
sigma^2 estimated as 20600:  log likelihood=-632.55 
AIC=1269.09   AICc=1269.22   BIC=1274.28 
 
> accuracy(fit) 
 
                 ME  RMSE   MAE    MPE  MAPE   MASE 
Training set -11.94 142.8 112.2 -3.575 12.94 0.8089 

Note that you apply the model to the original time series. By specifying d=1, it calculates first 
differences for you. The coefficient for the moving averages (-0.73) is provided along with the 
AIC. If you fit other models, the AIC can help you choose which one is most reasonable. 
Smaller AIC values suggest better models. The accuracy measures can help you determine 
whether the model fits with sufficient accuracy. Here the mean absolute percent error is 13% 
of the river level. 

EVALUATING MODEL FIT 

If the model is appropriate, the residuals should be normally distributed with mean zero, and 
the autocorrelations should be zero for every possible lag. In other words, the residuals should 
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be normally and independently distributed (no relationship between them). The assumptions 
can be evaluated with the following code. 

Listing 15.9 Evaluating the model fit 

> library(ggplot2) 
> df <- data.frame(resid = as.numeric(fit$residuals)) #1 
> ggplot(df, aes(sample = resid)) +                   #2 
      stat_qq() + stat_qq_line() + 
      labs(title="Normal Q-Q Plot")      
 
> Box.test(fit$residuals, type="Ljung-Box")            #3 
    Box-Ljung test 
 
data:  fit$residuals  
X-squared = 1.3711, df = 1, p-value = 0.2416 

#1 Extract residuals 
#2 Create Q-Q plot 
#3 Test autocorrelations are zero for all lags            

First, the residuals are extracted from the fit object and saved in a data frame. Then qq_* 
functions are used to produce the Q-Q plot (figure 15.14). Normally distributed data 
should fall along the line. In this case, the results look good. 

 
Figure 15.14 Normal Q-Q plot for determining the normality of the time-series residuals. Normally distributed 
values are expected to fall along the line. 
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The Box.test() function provides a test that the autocorrelations are all zero. The results 
aren’t significant, suggesting that the autocorrelations don’t differ from zero. This ARIMA 
model appears to fit the data well. 

MAKING FORECASTS 

If the model hadn’t met the assumptions of normal residuals and zero autocorrelations, it 
would have been necessary to alter the model, add parameters, or try a different approach. 
Once a final model has been chosen, it can be used to make predictions of future values. In 
the next listing, the forecast() function from the forecast package is used to predict three 
years ahead. 

Listing 15.10 Forecasting with an ARIMA model 

> forecast(fit, 3) 
 
     Point Forecast    Lo 80     Hi 80    Lo 95    Hi 95 
1971       798.3673 614.4307  982.3040 517.0605 1079.674 
1972       798.3673 607.9845  988.7502 507.2019 1089.533 
1973       798.3673 601.7495  994.9851 497.6663 1099.068 
 
> autoplot(forecast(fit, 3)) + labs(x="Year", y="Annual Flow") 

The autoplot() function is used to plot the forecast in figure 15.15. Point estimates are given 
by the black line, and 80% and 95% confidence bands are represented by dark and light blue 
bands, respectively. 
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Figure 15.15 Three-year forecast for the Nile time series from a fitted ARIMA(0,1,1) model. The black line 
represents point estimates, and the light and dark blue bands represent the 80% and 95% confidence bands 
limits, respectively. 

15.4.3 Automated ARIMA forecasting 

In section 15.2.3, you used the ets() function in the forecast package to automate the 
selection of a best exponential model. The package also provides an auto.arima() function to 
select a best ARIMA model. The next listing applies this approach to the sunspots time series 
described in the chapter introduction.  

Listing 15.11 Automated ARIMA forecasting 

> library(forecast) 
> fit <- auto.arima(sunspots) 
> fit 
Series: sunspots  
ARIMA(2,1,2)                     
Coefficients: 
       ar1     ar2    ma1    ma2 
      1.35  -0.396  -1.77  0.810 
s.e.  0.03   0.029   0.02  0.019 
 
sigma^2 estimated as 243:  log likelihood=-11746 
AIC=23501   AICc=23501   BIC=23531 
 
> forecast(fit, 3) 
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         Point Forecast       Lo 80    Hi 80      Lo 95    Hi 95 
Jan 1984      40.437722  20.4412613 60.43418   9.855774 71.01967 
Feb 1984      41.352897  18.2795867 64.42621   6.065314 76.64048 
Mar 1984      39.796425  15.2537785 64.33907   2.261686 77.33116 
 
> accuracy(fit) 
                   ME RMSE   MAE MPE MAPE MASE 
Training set -0.02673 15.6 11.03 NaN  Inf 0.32  

The function selects an ARIMA model with p=2, d=1, and q=2. These are values that minimize 
the AIC criterion over a large number of possible models. The MPE and MAPE accuracy blow up 
because there are zero values in the series (a drawback of these two statistics). Plotting the 
results and evaluating the fit are left for you as an exercise. 

A caveat on forecasting 
Although these methodologies can be crucial in understanding and predicting a wide variety of phenomena, it’s 
important to remember that they each entail extrapolation—going beyond the data. They assume that future conditions 
mirror current conditions. Financial predictions made in 2007 assumed continued economic growth in 2008 and 
beyond. As we all know now, that isn’t exactly how things turned out. Significant events can change the trend and 
pattern in a time series, and the farther out you try to predict, the greater the uncertainty. 

15.5 Going further 
There are many good books on time-series analysis and forecasting. Forecasting: Principles 
and Practice (http://otexts.com/fpp2, 2018) is a clear and concise online textbook written by 
Rob Hyndman and George Athanasopoulos; it includes R code throughout. I highly recommend 
it. Additionally, Cowpertwait & Metcalfe (2009) have written an excellent text on analyzing 
time series with R. A more advanced treatment that also includes R code can be found in 
Shumway & Stoffer (2010).  

Finally, you can consult the CRAN Task View on Time Series Analysis (http://cran.r-
project.org/web/views/TimeSeries.html). It contains a comprehensive summary of all of R’s 
time-series capabilities. 

 

15.6 Summary 
• Time series are important because they help us make future predictions based on past 

experience. 
• R provides a wide array of data structures for holding time-series data. Base R offers 

classes for holding one (ts) or more than one (mts) series of observations recorded at 
regular intervals.  The xts and zoo packages extends this to include observations 
recorded at irregular intervals.  

• Time-series data stored as xts objects can be easily subsetted using bracket [] 
notation, and aggregated using apply.period functions. 
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• The forecast package provides several functions for visually exploring time-series 
data. The autoplot() function can be used to plot time-series data as ggplot2 graphs. 
The ma() function can be used smooth irregularities in a time-series in order to 
highlight trends. The stl() function can be used to decompose a time series into 
trend, seasonal, and irregular (residual) components. 

• The forecast package can also be used to the forecast future values of a time series. 
We covered two popular forecasting approaches - exponential models and auto-
regressive integrated moving average (ARIMA) models.  
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